
Anas N. AI-Rabadi

Reversible Logic Synthesis

Springer-Verlag Berlin Heidelberg GmbH

Engineering
ONLINE LlBRARY

http://www.springer.de/eng inel

Anas N. AI-Rabadi

Reversible Logic
Synthesis
From Fundamentals to Quantum
Computing

With 213 Figures

Springer

DT. Anas N. AI-Rabadi

Post Oftice Box 85
97207-0085 Portland, OR
USA

E-mail: alra.badi@ece.pdx.edu

ISBN 978-3-642-62325-7 ISBN 978-3-642-18853-4 (eBook)
DOI 10.1007/978-3-642-18853-4

Cataloging-in-Publication Data applied for
Bibliographic infonnation published by Die Deutsche Bibliothek.
Dic Deutsche Bibliothck lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

This work is subject to copyright. AII rights are reserved, whether the whole or part of the material
is concerned, specificaIly the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law ofSeptember 9,1965, in its current version, and permission for use must aIways be obtained
from Springer-Verlag. Violations are liable for prosecution under German Copyright Law.

http://www.springer.de
© Springer-Verlag Berlin Heidelberg 2004
Originally published by Springer-Verlag Berlin Heidelberg New York in 2004
Softcover reprint of the hardcover 1 st edition 2004

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt fi'om the
relevant protective laws and regulations and therefore free for general use.
Typesetting: Camera ready by the author
Cover-design: design & production, Heidelberg
Printed on acid-free paper 62 / 3020 hu - 5 4 3 2 1 0-

To

The Memory of My Grandmother

Preface

Quantum Computing (QC) is the upcoming revolution in
computation. The fact that the tendency of current technologies is
towards the nano-scale (i.e., dimensions of a single atom in the order
of 10-10 m) will have, and is already having, disastrous effects on the
signal integrity in classical designs for processing and transmitting
information bits. The higher packing of devices on increasingly
smaller and smaller areas will have, and is already having,
tremendous power consumption effects. Thus, one would ask the
question: what is the solution? The answer for both problems is
simply: Quantum Circuits.
 Since QC must be reversible, Reversible Computing (RC)
becomes an inseparable intrinsic ingredient of QC. Consequently,
the first step towards the implementation of QC is to find methods
for RC. It turns out that various methods for RC produce various
amounts of “garbage” outputs that are needed only for the purpose
of reversibility not more. Thus, one needs to explore efficient
synthesis methods using Reversible Logic (RL) to be used in future
Computer Aided Design (CAD) tools for the synthesis of RL
circuits in analogy to the current advanced CAD tools for the
synthesis of classical irreversible circuits. Just this single purpose of
Reversible CAD (RCAD) tools will impose an overall re-evaluation
of all existing methods that are traditionally used in classical logic
synthesis, including decomposition methods, factorization methods,
and minimization methods. New benchmarks have to be created for
the comparison of efficiency of various RL synthesis techniques.
Thus one will ask the important question: what are the available
methods that exist for reversible logic synthesis? The answer is
almost none! This exact answer was the whole reason behind the
gradual development and growth of this Book over the years.
Totally new reversible logic synthesis methodologies had to be
created and various evaluations had to be conducted. The objective
is obvious: design RL circuits with minimum, if not none, garbage
outputs. This optimization constraint is reflected in quantum circuits
in the form of obtaining quantum registers of minimal size (i.e.,
length and width).

 The body of this Book contains twelve Chapts. These Chapts.
evolve gradually from basics towards the contributions. Chapter 1
provides the overall introduction to the subject of RC and QC.
Chapter 2 introduces the basic concepts of two-valued and multiple-
valued logic systems. An application of the concepts developed in
Chapt. 2 is the Shannon/Davio (S/D) trees introduced in Chapt. 3,
which will be used later on in Chapt. 8 for minimizing expressions
to be realized in reversible cascades. Chapter 4 introduces the
synthesis of logic functions using lattice structures, which resemble
another important application of the concepts that are developed in
Chapt. 2. Basic background and new results are introduced in Chapt.
5. Chapters 6, 7, and 8 introduce new structures and methods for RL
synthesis. An initial evaluation of the RL synthesis methods is
presented in Chapt. 9. Chapter 10 implements the quantum logic
circuits using the new results from the previous
Chapts. Two-valued and multiple-valued quantum computing for the
quantum circuits from Chapt. 10 is performed in Chapt. 11. Chapter
12 provides conclusions, highlights of new results that were
presented in this Book, and future directions of research. The end
matter of this Book contains eleven Appendices and a Bibliography.
 Around four years ago, at the start up of my research into
reversible and quantum computing, many researchers advised me to
rethink again about conducting research in this field, since it is a
fairly new research specialty and unlike most other research fields
has only minimal literature, which meant that I had to create “from
scratch” my own solutions to the continuously emerging problems.
Another concern was that part of this work especially in QC is more
or less futuristic, which means that there is little current use of the
results for industry and consequently limited number of accepted
money grants and proposals. Nevertheless, I felt that these
discouragements I faced, to proceed in this field, are in fact a
challenge and motivation for me to conduct research in this field,
and the result is this Book which accumulates some of my work for
the past four years. This Book tried to fill as much as possible the
large missing gaps in previous literature, especially for the synthesis
of reversible circuits and their consequent QC. Consequently, the
result of this work was an opening of a window of a new research
area, and does not mean by any means the end of the road. In fact

 VIII

this work is only one possible beginning, from which serious
researchers can start towards achieving the ultimate ambitious goal
of fully reliable super-fast power-free nano computing.

Portland, Spring 2003 Anas N. Al-Rabadi

 IX

Abstract

 The biggest problems in system design today, and in the future,
are the high rate of power consumption, and the emergence of
quantum effects for highly dense ICs. The real challenge is to design
reliable systems that consume as little power as possible and in
which the signals are processed and transmitted at very high speeds
with very high signal integrity. Current tools are used to design ICs
using only classical design methodologies that apply conventional
synthesis constraints such as area, delay, and power.
 As it was proven, physical processes have to be logically
reversible in order to reduce (theoretically eliminate) power
consumption. Logical reversibility requires that one can obtain the
vector of inputs from the vector of outputs (i.e., backward process)
as well as the vector of outputs from the vector of inputs (i.e.,
forward process). Since only ad-hoc methods were used previously
for the reversible synthesis of logic functions, and since systematic
and efficient reversible logic synthesis methodologies were
significantly missing from previous literature, this Book provides
several original contributions to reversible logic synthesis by
providing a set of tools that can be systematically used to synthesize
and evaluate logic functions using reversible logic. This includes,
among other new results, Reversible Lattice Structures, Reversible
Modified Reconstructability Analysis, Reversible Nets, Reversible
Decision Diagrams, and Reversible Cascades.
 To solve the problem of high signal integrity when processing
(computing and transmitting) information using extremely high
dense circuits one needs to incorporate the physical quantum
mechanical effects that are unavoidable in the nano scales. Since
quantum circuits are reversible, and since many of the underlying
theorems and formalisms for multiple-valued quantum computing
were significantly missing from previous literature, new
fundamental foundations for such computations had to be
established. These new results include, but not limited to, Quantum
Chrestenson Operator, new types of Quantum Decision Trees and
Quantum Decision Diagrams as efficient representations for
quantum computing, new Composite Basis States, new multiple-

valued Einstein-Podolsky-Rosen (EPR) Basis States, and new
classes of quantum primitives.
 Initial evaluations and conclusions for the comparative
advantages and disadvantages of the new reversible and quantum
computing methodologies are also provided, and applications to
Optical Computing and Quantum Neural Networks are presented.

 XI

Acknowledgements

 I would like to express my deep gratitude to all of the people
who never stopped their support to me during the process of
preparing this manuscript. Without their complete support, my
journey would have been much tougher. In particular, I would like
to express my sincere appreciation to my beloved parents who never
stopped supporting my endeavors.

Contents

Dedication V

Preface VII

Abstract X

Acknowledgements XII

Glossary XIX

1 Introduction...1

1.1 Scope of the Work……….…………………..………...….8

2.2 Invariant Multi-Valued Families of Generalized Spectral

2.2.1 General Notation for Operations on Transform

2.2.2 Invariant Families of Multi-Valued Spectral

3 New Multiple-Valued S/D Trees and their
 Canonical Galois Field Sum-Of-Product
 Forms…………………………………………....……...…….39

3.2 Binary S/D Trees and their Inclusive Forms…………….42
3.3 Ternary S/D Trees and their Inclusive Forms and
 Generalized Inclusive Forms…………………..…...……43

3.3.1
3.3.2

1.2 Organization of the Book…………….……………….…11

 Transforms………………………………………………28

Transforms……...………………………………....30
2.3 Summary….……………………………………..……....38

3.1 Green/Sasao Hierarchy of Binary Canonical Forms…….41

Ternary S/D Trees and Inclusive Forms…………..44
Enumeration of Ternary Inclusive Forms……...….48

2 Fundamentals……………………….....……………...…...15
2.1 Normal Galois Forms in Logic Synthesis…….……...…..17

Matrices…………………………………………....28

3.4 Properties of TIFs and TGIFs………………………........51

3.4.1
3.4.2

3.5 An Extended Green/Sasao Hierarchy with a New Sub-

3.6 Quaternary S/D Trees……………...……………….....…54
3.7 An Evolutionary Algorithm for the Minimization
 of GFSOP Expressions Using IF Polarity from

4 Novel Methods For the Synthesis of Boolean
 and Multiple-Valued Logic Circuits Using
 Lattice Structures…………………………………..…..67
 4.1 Symmetry Indices…………….……………………….….70
 4.2 Fundamental (2,2) Two-Dimensional Lattice
 Structures………………………………………………..72
 4.3 (3,3) Two-Dimensional Lattice Structures…...…………77
 4.4 New Three-Valued Families of (3,3) Three-Dimensional

 Shannon and Davio Lattice Structures………………......78

 4.4.2 New (3,3) Three-Dimensional Invariant Shannon

 4.4.3 New (3,3) Three-Dimensional Invariant Davio

 4.5 An Algorithm for the Expansion of Ternary Functions

 4.6 Example of the Implementation of Ternary Functions

 4.7 ISID: Iterative Symmetry Indices Decomposition……....99

 5.1 Fundamental Reversible Logic Primitives and Circuits..116
 5.2 The Elimination of Garbage in Two-Valued Reversible

 XIV Contents

 Family for Ternary Reed-Muller Logic…………....……52

Properties of TGIFs……………………………......51

 4.4.1 Three-Dimensional Lattice Structures……..….........80

 Into (3,3) Three-Dimensional Lattice Structures………..93

 Using the New Three-Dimensional Lattice Structures….95

3.8 Summary…………………..…..…………………..……..65
 Multiple-Valued S/D Trees………………………..…….57

Properties of TIFs………………………………….51

 Lattice Structures……..……………………..………90

 4.8 Summary……….…………………..…..………..….…..110

 Results…...…………………………….……………........112

 Circuits…………………………………………….........120

5 Reversible Logic: Fundamentals and New

 Lattice Structures………………………………....…91

 5.4 Novel General Methodology for the Creation and
 Classification of New Families of Reversible Invariant
 Multi-Valued Shannon and Davio Spectral Transforms.136

 5.5 The Elimination of Garbage in Multiple-Valued
 Reversible Circuits………………...…………………...146

 6.1 A General Algorithm for the Creation of Two-Valued

7 Novel Reconstructability Analysis Structures

7.1 New Type of Reconstructability Analysis: Two-Valued

7.3 Reversible MRA……….…………………….……...….182

8 New Reversible Structures: Reversible Nets,
 Reversible Decision Diagrams, and
 Reversible Cascades……………………………...…186

8.3 Reversible Cascades…………….…………….…..……196
8.3.1 The Realization of GFSOP Expressions Using

9 Initial Evaluation of the New Reversible

9.1 Complete Examples………….………..……………..…205
9.2 Initial Comparison…….………………….………….....215

 Contents XV

7.4 Summary……….…………………..……………….….185

8.1 Reversible Nets………….………………..…………....187

8.4 Summary….…………………………..………………..203

 Logic Synthesis Methodologies………………...205

9.3 Summary….………………………..………….……….217

 5.3 Combinational Reversible Circuits…………….…….....127

6 Reversible Lattice Structure…………..…...……...150

 5.6 Summary…………..…………...……...……...…….….......147

 and Multiple-Valued Reversible Lattice Structures…….150
 6.2 Summary…….……………………..………….………..157

 and their Reversible Realizations………....…….158

 Modified Reconstructability Analysis (MRA)……….....161
7.2 Multiple-Valued MRA…………….……………..….…171

8.2 Reversible Decision Diagrams……………….……...…193

Reversible Cascades………...………..……..……201

10 Quantum Logic Circuits for Reversible
 Structures…………………………...…..…………....….218

10.1 Notation for Two-Valued and Multiple-Valued

11 Quantum Computing: Basics and New

 11.1 Fundamentals of Two-Valued Quantum Evolution

 11.1.1 Mathematical Decompositions for Quantum

 11.2 New Two-Valued Quantum Evolution Processes…..…267
 11.3 Novel Representations for Two-Valued Quantum
 Logic: Two-Valued Quantum Decision Trees and

11.4 Fundamentals of Multiple-Valued Quantum
Computing…..………………………………….…..….274

11.5 New Multiple-Valued Quantum Chrestenson Evolution
 Process, Quantum Composite Basis States, and the
 Multiple-Valued Einstein-Podolsky-Rosen (EPR) Basis

11.6 New Multiple-Valued Quantum Evolution Processes,

11.7 Novel Representations for Multiple-Valued Quantum
 Logic: Multiple-Valued Quantum Decision Trees and

11.8 Automatic Synthesis of Two-Valued and
Quantum Logic Circuits Using Multiple-Valued
Evolutionary Algorithms………………………………304

11.9 Quantum Computing for the New Two-Valued and

 XVI Contents

10.3 Summary……………...…...……......………………....227

 Quantum Circuits…...…………………………..……..219

 Diagrams……………………………………………....269

 Processes and Synthesis…………………………….....239

 States……………………………………………….….278

12 Conclusions………………………………...…………..312

10.2 Quantum Logic Circuits………………………...……..222

 Results……………………….………………………..…229

 Computing…………………………………......…261

Generalized Permuters, and their Circuit Analysis…....286

 Diagrams………………………………………….…....301

 Multiple-Valued Reversible Structures………..………305
 11.10 Summary………………………………......….………......310

Appendices

A Count of the New Invariant Shannon and Davio

B Circuits for Quaternary Galois Field Sum-Of-Product

C Count of the Number of S/D Inclusive Forms and the Novel
 IFn,2 Triangles……………………………..…………..………330

D Universal Logic Modules (ULMs) for Circuit Realization of

E Evolutionary Computing: Genetic Algorithms (GA) and

F Count for the New Multiple-Valued Reversible Shannon and

G NPN Classification of Boolean Functions and Complexity
 Measures…………………………………………………..…..358

H Initial Evaluation of the New Modified Reconstructability
 Analysis and Ashenhurst-based Decompositions:
 Ashenhurst, Curtis, and Bi-Decomposition………………..….364

I Count for Reversible Nets……………………………………...377

J New Optical Realizations for Two-Valued and

K Artificial Neural Network Implementation Using

Index………………………………………..…………..………417

 Contents XVII

 Multiple-Valued Quantum Computing……………………….390

Bibliography………………………..…..………….………..403

 Expansions…………..………………………………………..321

 (GFSOP) Canonical Forms……………...………………….…326

 Shannon/Davio (S/D) Trees………………………………......343

 Genetic Programming (GP)……………………………..…….351

 Davio Decompositions……………………….....…………….355

 Multiple-Valued Classical and Reversible Logics…………..…378

Glossary

AC Ashenhurst-Curtis
AF Activation Function
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BBM Billiard Ball Model
BBL Billiard Ball Logic
BD Bi-Decomposition
BDD Binary Decision Diagram
C Complexity
CA Cellular Automata
CAD Computer Aided Design
CCD Charge Coupling Device
CCNOT Controlled-Controlled-NOT
CCW Counter Clock Wise
CMOS Complementary Metal Oxide Semi-Conductor
CNF (POS) Conjunctive Normal Form
CNOT Controlled-NOT
CoQDD Composite Quantum Decision Diagram
CoQDT Composite Quantum Decision Tree
CQDD Computational Quantum Decision Diagram
CQDT Computational Quantum Decision Tree
CRA Conventional Reconstructability Analysis
CRT Chinese Remainder Theorem
D Davio
DD Decision Diagram
DFC Decomposed Function Cardinality
DFT Discrete Fourier Transform
DM Data Mining
DNF (SOP) Disjunctive Normal Form
DT Decision Tree
EC Evolutionary Computation
EDA Electronic Design Automation
EPR Einstein-Podolsky-Rosen
EPRQDD Einstein-Podolsky-Rosen Quantum Decision Tree
EPRQDT Einstein-Podolsky-Rosen Quantum Decision Tree

ESOP Exclusive Sum Of Products
EXNOR Exclusive Not OR (XNOR)
EXOR Exclusive OR (XOR)
F Functionality
FIR Finite Impulse Response
FPGA Field Programmable Gate Arrays
FPRM Fixed Polarity Reed Muller
GA Genetic Algorithm
GBFM Generalized Basis Function Matrix
GF Galois field
GFSOP Galois field Sum-Of-Product
GIF Generalized Inclusive Forms
G(P)L Generalized (Post) Literal
GP Genetic Programming
GQD Generalized Quaternary Davio
GRM Generalized Polarity Reed Muller
IC Integrated Circuit
ID Invariant Davio
ID/IS Invariant Davio Invariant Shannon
ID/S Invariant Davio Shannon
IF Inclusive Forms
IfD Invariant flipped Davio
IfS Invariant flipped Shannon
IFn,2 Triangles Inclusive Forms of arbitrary radix and two
 variables triangles
I/O Input-Output
IPDE Invariant Permuted Davio Expansion
IPSE Invariant Permuted Shannon Expansion
IS Invariant Shannon
IS/D Invariant Shannon/Davio
ISID Iterative Symmetry Indices Decomposition
KD Knowledge Discovery
KDD Knowledge Discovery in Database
K-Map Karnaugh Map
LF Log-Functionality
LI Linearly Independent
LIL Linearly Independent Logic
LL Log-Linear

 XX Glossary

LOS Lattice-Of-Structures
LS Linearly Separable
LUT Look-Up Table
MAX Maximum
MC Gate Maximum Cofactor Gate
MIMO Multiple-Input Multiple-Output
MIN Minimum
MIN/MAX Minimum/Maximum
MISO Multiple-Input Single-Output
ML Machine Learning
MRA Modified Reconstructability Analysis
MUX Multiplexer
MV Multiple-Valued, Many-Valued, Multi-Valued
MVL MV Logic
MVQC Multiple-Valued Quantum Computing
MvQDD Multiple-Valued Quantum Decision Diagram
MvQDT Multiple-Valued Quantum Decision Tree
NC Neural Computing
ND Negative Davio
NDDD Negative Davio Decision Diagram
NLS Not-Linearly Separable
nMOS Negative Metal Oxide Semi-conductor
NN Neural Network
NPN Negation of variables, Permutation of variables,
 and Negation of function
OBDD Ordered Binary Decision Diagram
PD Positive Davio
PDDD Positive Davio Decision Diagram
PDF Probability Density Function
PL Post Literal
PLA Programmable Logic Arrays
PLD Programmable Logic Devices
POS Product-Of-Sum
PPRM Positive Polarity Reed-Muller
PSDD Pseudo-Symmetric Decision Diagram
PTL Pass Transistor Logic
PUS Positive Unate Symmetric
QC Quantum Computing, Quantum Computation

 Glossary XXI

QCA Quantum Cellular Automata
QCAD Quantum Computer Aided Design
QChT Quantum Chrestenson Transform
QCt Quantum Circuit
QCT Quantum Chrestenson Transform
QDD Quantum Decision Diagram
QDT Quantum Decision Tree
QFT Quantum Fourier Transform
QIF Quaternary Inclusive Forms
QL Quantum Logic
QMRA Quantum Modified Reconstructability Analysis
QN Quantum Neuron
QNN Quantum Neural Network
QS/DT Quaternary Shannon/Davio Tree
Qubit Quantum Bit
QuDT Quaternary Decision Tree
QWHT Quantum Walsh-Hadamard Transform
RA Reconstructability Analysis
RC Reversible Computing
RCAD Reversible Computer Aided Design
RCt Reversible Circuit
RDD Reversible Decision Diagram
RDT Reversible Decision Tree
RGBFM Reversible Generalized Basis Function Matrix
RL Reversible Logic
RM Reed-Muller
RMRA Reversible Modified Reconstructability Analysis
RPGA Reversible Programmable Gate Array
RPL Reduced Post Literal
ROBDD Reduced Ordered Binary Decision Diagram
RQDD Reduced Quaternary Decision Diagram
S Shannon
S/D Shannon/Davio
SDD Shannon Decision Diagram
SE Schrodinger Equation
SET Single Electron Transistor
SG Stern-Gerlach
SIMO Single-Input Multiple-Output

 XXII Glossary

SISO Single-Input Single-Output
SJ Summing Junction
SOP Sum-Of-Product
SVD Singular Value Decomposition
TDD Ternary Decision Diagram
TDSE Time Dependent Schrodinger Equation
TDT Ternary Decision Tree
TFKRODT Ternary Free Kronecker Decision Tree
TGIF Ternary Generalized Inclusive Forms
TGIGKDT Ternary Generalized Inclusive Forms Kronecker
 Decision Tree
TIF Ternary Inclusive Forms
TISE Time Independent Schrodinger Equation
TKRODT Ternary Kronecker Decision Tree
TPRMDT Ternary Pseudo-Reed-Muller Decision Tree
TPKRODT Ternary Pseudo-Kronecker Decision Tree
UL Universal Literal
ULM Universal Logic Module
WL Window Literal
1-D One-Dimensional
2-D Two-Dimensional
3-D Three-Dimensional

 Glossary XXIII

1 Introduction

Computing structures have been evolving since early times of
mankind. Such structures evolved from simple systems that use
simple mechanical elements such as ropes and pulleys, to
mechanical systems that use carefully designed elements, to
machines that use discrete electronic elements, to nowadays
computing machinery that uses highly complex integrated electronic
elements [256]. The power of the computing machinery has been
growing with the growing of the complexity of such machines for
processing, storage, and interfacing capabilities. This is observed in
the fact that the pre-electronic computing machines were able only
to perform basic arithmetic calculations, while modern computing
machines that are made up of highly complex electronic integrated
circuits (ICs) are capable of performing many more tasks such as
three-dimensional graphics (i.e., 3-D visualizations) and networking.
This evolution of computing has been driven by the need to fulfill
the increasingly demanding design specifications of more speed, less
power consumption, smaller size, better testability, better reliability,
and more regularity.
 If the trends in computing keep going according to Moore’s
law, by the year 2020 the basic memory components of a computer
will be the size of individual atoms, and the ongoing scale down of
technology to produce very high dense ICs will reach its limit,
where the scale down of technology will evolve from the micro-
scale to the nano-scale. At such scales, the current theory of
computation becomes invalid, and a new field, called "quantum
computing", starts emerging which is about re-inventing the
foundations of computer science and information theory in a way
that is consistent with quantum physics - the most accurate model of
reality that is currently known [81,208].
 Remarkably, this new theory predicts that quantum computers
can perform certain tasks breathtakingly faster than classical
computers and, better yet, can accomplish mind-boggling feats such

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

as teleporting information, breaking supposedly unbreakable codes,
generating true random numbers and communicating with messages
that betray the presence of eavesdropping [93,167,253,254]. Indeed,
a quantum scheme for sending and receiving ultra-secure messages
has already been implemented over a distance of 100 km - far
enough to wire the financial district of any major city
[149,167,253,254].�
 At the nano-scale, which is the scale of atomic diameter, a
different kind of physics emerges which is governed by quantum
mechanics of atoms and particles [81,208]. The physical laws will
be a driving force for different directions in computing due to the
fact that new phenomena are encountered in the quantum level,
which were not previously observed. This includes for instance
quantum entanglement, where the physical properties of one particle
affect one or more other particles and thus particles are entangled,
and quantum interference where physical phenomenon is interpreted
as several waves interfering with each other to produce specific
physical patterns [107,115,167]. Utilizing such new physical
phenomena that emerge in the nano-scale, quantum computations
use basic properties of particles that can be performed such as using
the spin of such particles to encode logic values [167].
 Several powerful features are harnessed using such type of
computation. One powerful feature is super-fast computing [268]
that can be achieved in the quantum domain, as compared to fast
computational speeds, which are achieved in the conventional
domains [57]. The speedups of calculations in quantum computing
are due to the new physical phenomenon encountered in the nano-
scale which is the quantum entanglement in which parallel
computations are performed simultaneousely [107,167]. Such
computational power could not be observed previously in the micro-
scale or in the macro-scale. This speedup in computations can have
many implications on highly important applications that can range
from consumer products having faster computers to national security
issues like the encryption of highly classified information
[162,163,167]. For example, it is known in the complexity theory of
algorithms (i.e, computational complexity) that an algorithm is
classified as a polynomial-time algorithm if that algorithm is
guaranteed to terminate within a number of steps which is a
polynomial function of the size of the problem. The new speedup of

 2 1 Introduction

quantum computations can have the ability to solve problems that
were previously thought to be unsolvable in polynomial time such as
the factoring problem [226,228], and this will lead to new
applications in encrypting and decrypting communicated
information which will have a direct impact on how much the
electronically transferred messages are secured [162,163].
 In addition to the need of quantum computing due to the
anticipated failure of Moore’s law at the quantum level, which
predicts that computing will be ultimately performed in hardware in
the size of nano-scale (less than 10-10 m = 1 Angestrom), the power
needed to switch a single bit in future nano-technologies will be
much lower than its counterparts in the bigger scales, and according
to the fundamental principles of thermodynamics the limit will be
K⋅T⋅ln(2) [139,140,141], where K is Boltzmann constant (≈
1.380658⋅10-23 Jouls/Kelvin) and T is the operating temperature
(Kelvins).
 Figure 1.1 illustrates this ongoing trend in power consumption.
One can observe from Fig. 1.1 that the energy needed to switch one
bit will be decreasing with the advancements of chip manufacturing
with highly increasing integration densities according to Moore’s
law, and that by the year 2020 the energy consumption for switching
a single bit will reach the thermodynamical limit of K⋅T⋅ln (2) which
is the threshold after which Moore’s law will not hold due to the
emerging quantum nano-scale effects.
 Using basic principles of thermodynamics, the
thermodynamical limit of K⋅T⋅ln (2) can be derived as follows [95]:
for a gas compression experiment, the following Eq. holds: P⋅V =
R⋅T, where P is pressure, V is volume, T is temperature (Kelvin),
and R = K⋅N, where K is Boltzmann constant (≈

Kelvin

Joules2310380658.1 −⋅), and N is the number of molecules in the

gas. Then from the basic laws of thermodynamics:

)2ln(|
2

1

2

1

RTdV
V

RT
PdVQST

o

o

o

o

V

V

V

V
===Δ=Δ � .

Therefore, for N molecules (~ N bits of information) one has:

 1 Introduction 3

Kelvin

Joules
KNRS)2ln()2ln(==Δ ,

and for 1 molecule (~ 1 bit of information) one obtains:

)2ln(K
N

S =Δ
Kelvin

Joules
.

For 1 molecule, one obtains the following energy dissipation ΔQ:

)2ln(KTKelvinT
Kelvin

Joules
SQ =⋅Δ=Δ Joules.

Besides reaching the quantum barrier, trends in computer hardware
are leading toward higher density and lower energy dissipation.

 Moore’s Law

Fig. 1.1. Trend in energy consumption for switching one bit for conventional and quantum
computing.

 Ultimately, some approaches should result in packing densities
in excess of 1017 logic devices in a cubiccentimeter [152]. The trend
towards higher packing density and higher speeds strongly influence
energy dissipation. For example, conventional devices must
dissipate more than K⋅T⋅ ln (2) Joules in switching, so
1017conventional devices operating at room temperature (K⋅T⋅ ln (2)
~ 3⋅10-21 Joules for T = 300 Kelvins) at a frequency of 10 gigaHertz
would dissipate more than 3,000,000 Watts; a computer with 1,000

Year

ΔQ: Energy for switching
one bit (Logarithmic Scale)

 2020

K⋅T⋅ln(2)

 4 1 Introduction

times as many logic elements would still be of reasonable size but
would dissipate 3,000,000,000 Watts! [152]. Consequently, a new
computational approach has to be invented such as quantum
computing.
 In quantum computing, low power consumption is needed
(theoretically zero) as no power is needed for processing
information and the power is only consumed when reading and
writing information into and from quantum computing machines
[92,93,94,130,139,140]. The minimal power consumption is due to
the fact that quantum computations are naturally reversible
[37,38,39,40,98,139,140,141], which means that the information
entropy must be conserved, since it has been proven using
fundamental principles of thermodynamics that reversible
computation does not consume power since no logical information is
lost [139,140]. Accordingly, the reversibility of computation is a
necessary but not sufficient step for quantum computing, as more
constraints are needed in addition to reversibility, to achieve
quantum computations. These additional constraints, that exist in the
quantum domain and do not exist in the conventional domain, drive
the use of new mathematical computational methodologies that map
the underlying quantum phenomena such as the quantum
entanglement, for which a new type of information representation
and the corresponding operations must be used. This includes the
use of the information element of quantum bit (qubit), which is a
vector of bits, as compared to a (scalar) bit, which exists in the
conventional domain [93,95,107,115,167,253,254].
 As quantum computation is reversible, reversible computing is
an essential ingredient of quantum computing, and reversible logic
serves as a mathematical concept to describe the physical reality of
quantum logic. Consequently, new methodologies of synthesizing
logic functions using reversible structures have to be invented. The
reversible computations aspect of quantum computing has its own
design constraints (design goals, design objectives) in the form of
(1) minimizing the number of garbage outputs that are needed only
for the purpose of reversibility (which leads to minimizing area and
power), (2) minimizing the number of gates used (which leads to
minimizing area and power), and (3) minimizing the delay of signal
propagation from inputs to outputs (i.e., more speed). These design
constraints, which are encountered in the conventional design of

 1 Introduction 5

reversible circuits, are reflected as design constraints in the quantum
domain in the form of the “size of the quantum register” [93,95,98]
(i.e., the width and length of the quantum register), and therefore
one wants to design a quantum register of minimal size that would
perform the underlying reversible computations. Reversible
computing as a mean of low-power computing has been investigated
and encouraging results have been reported
[35,42,70,71,70,72,131,143,206,262,263]. Figure 1.2 illustrates the
set-theoretic inclusion relationships between various computing
methodologies, where the shaded areas indicate the types of logic
synthesis that are presented in this Book.

 Fig. 1.2. Set-theoretic relationship between various computing methodologies.

 The inclusive relationship in Fig. 1.2 reflects the hierarchically
increasing design constraints when moving from the domain of
classical logic synthesis to the domain of quantum logic synthesis.
In Fig. 1.2, the classical (irreversible) logic synthesis includes all
methodologies that are developed in the conventional logic synthesis
field [136,164,118]. The two lightly shaded areas in Fig. 1.2 are
included within the general framework of reversible logic synthesis.
The word adiabatic comes from a Greek word that describes a
process that occurs without any loss or gain of heat (i.e., no heat is
injected in or generated out of a system). (Adiabatic system is the
opposite of isothermal system, where heat is injected in or generated
out of a system in order to preserve the constant temperature in that
system). In real-life computing, such an ideal process (or hardware)
cannot be achieved because of the presence of dissipative elements
like resistances in a circuit. However, one can achieve very low
energy dissipation by slowing down the speed of operation and only

Irreversible (classical) Logic Synthesis

Reversible (Adiabatic) Logic Synthesis

Partially Reversible (Quasi-Adiabatic; Energy Recovery)
 Logic Synthesis

 Quantum Logic Synthesis

 6 1 Introduction

switching the switches (e.g., transistors) under certain conditions.
Consequently, the real-life applications of rversible computing are
based on quasi-adiabatic (or energy recovery) techniques rather than
fully adiabatic techniques [206,262,263].
 It has been shown [37,38,139,140,141] that if the physical
processes that are associated with computing are nondissipative, the
natural laws require that the physical entropy must be conserved.
Entropy conservation means that the processes must be physically
reversible. One of the conclusions from earlier studies is that the
abstract logical operations composing the computing tasks must be
reversible, that is, the information entropy must be conserved in
order to be performed by physically nondissipative hardware.
Consequently, logical reversibility is the only necessary abstract
condition for nondissipative computing. Reversible logic operations
can be realized by either reversible or nonreversible hardware.
Consequently, the concept of reversibility can be implemented
spanning all of the abstraction levels of the conventional logic
design.

 Fig. 1.3. Reversibility in computing system design.

 Abstraction levels of reversibility includes the algorithmic level,
architectural level, logic level, and the physical level. Figure 1.3
illustrates the implementation of reversibility within all of the design
abstraction levels. This Book investigates reversibility in the logic
level, which is the shaded area in the abstraction levels in Fig. 1.3,
which was largely missing from previous literature.

Reversibility in Behavioral and Algorithmic Level
 Reversibility in Logical Level

 Reversibility in System/Architectural Level

 Reversibility in Physical/Technology Level

 Reversibility in Behavioral/Algorithmic Level

 1 Introduction 7

 The original motivating research guideline of this Book was that
reversibility and regularity are interrelated and various regularity
levels in two-valued and multiple-valued reversible structures will
lead to various sizes of two-valued and multiple-valued quantum
logic circuits and consequently various complexity levels in two-
valued and multiple-valued quantum computing. More specifically,
for several classes of small-dimension functions, the more
regularities that exist in two-valued and multiple-valued reversible
structures will lead to larger two-valued and multiple-valued
quantum logic circuits and consequently more operations are needed
in two-valued and multiple-valued quantum computing.
Consequently, in general, if one relaxes the regularity levels which
are imposed as constraints in the synthesis of reversible circuits, one
would expect to obtain reversible circuits with smaller size. To
prove this point, and since synthesis methodologies for binary and
multiple-valued reversible logic synthesis and multiple-valued
quantum computing were substantially missing in previous
literature, new mathematical formalisms, representations, novel two-
valued and multiple-valued reversible logic synthesis methodologies
and structures, and new operations for multiple-valued quantum
computing had to be invented first, and the next step was to apply
these new methods to verify the original motivating questions of the
Book.

1.1 Scope of the Work

Since modern circuit design requires a certain level of regularity due
to the fact that regular structures lead to the ease of testability
[99,124,198,199,204,218], ease of manufacturability, and free-
library synthesis, one would like to design reversible structures that
are regular, which will produce (1) minimal, (2) universal, (3)
regular, and (4) reversible circuits. Minimal means to reduce (or if
possible to eliminate) the number of garbage outputs that are needed
only for the purpose of reversibility, and to reduce the number of
gates used. Universal (or complete) means that the structure must be
able to realize all logic functions for particular radix of logic and
particular number of variables. Regular means that the structure

 8 1 Introduction

must have a fixed number of gate types and interconnect types from
which the whole structure is synthesized. Consequently, full
regularity means that one type of internal nodes and one type of
interconnects are used, semi regularity means that fixed number of
internal node types and fixed number of interconnect types are used,
and non-regularity means that arbitrary types of internal nodes and
arbitrary types of interconnects are used. Synthesis methods to
design minimal-size regular reversible circuits that will produce
minimal size quantum registers were largely missing from previous
research and literature, and this has been the driving force behind
the development of reversible and quantum computing methods
presented in this Book. To achieve the general goal of reversibility
and regularity new reversible logic synthesis methodologies have
been developed. Figure 1.4 shows the main ideas (i.e., tree paths)
that were the driving force behind the development of this work.

 Fig. 1.4. A general characterization of reversibility in logic synthesis.

 Since minimal size is one important design specification of
reversible and consequently quantum logic structures, functional
minimization techniques, which exist in the conventional design
tools, can be used to produce minimal size functional expressions,
and consequently algorithms can manipulate such expressions to
efficiently design reversible and quantum circuits. Conventional
ESOP minimizers and other minimization techniques, such as S/D
trees, can be used for this purpose [4,9,52,114,157,232,233,235].
Another direction of area minimization of reversible structures is
using multiple-valued logic, especially as multiple-valued logic has
been efficiently used in conventional hardware for learning
[186,187], testing [124], and IC design [86,267]. Similar to the
conventional case, using higher radix in multiple-valued logic will
minimize the number of wiring used as compared to binary logic to

Logic Synthesis

 Reversible Irreversible

Quantum Non-Quantum

Regular Irregular Regular Irregular

Regular Irregular

 1.1 Scope of the Work 9

achieve the same functionality of logic structure
[86,119,120,155,166,229,267]. Multiple-valued computing becomes
important especially as multiple-valued quantum computations are
performed on the same atomic structures on which two-valued
quantum computations are performed without the need of adding
new structural elements as compared to the conventional domain.
This is due to the fact that quantum computing is performed using
fundamental properties of particles such as spins of electron or
polarizations of light [162,163], and these same physical properties
are used to perform both two-valued and multiple-valued
computations without the need of adding new circuit elements as in
the conventional circuit design, especially the fact that multiple-
valued quantum devices that perform the corresponding multiple-
valued quantum computations have been created using trapped ions
[54,165], and tunnel diodes [220]. For example, another way to
harness the functional power of performing multiple-valued
quantum computations is to perform minimal number of light
polarizations to execute the same functionality as compared to using
only two-valued quantum computations [163]. (One objective of this
Book is to develop a theory for multiple-valued quantum computing
that includes the binary case as a special case.) Consequently, the
core stream of this Book follows the diagram shown in Fig. 1.5.

 Galois Logic

 Structural Regularity

 Reversibility

 Quantum Computing

 Fig. 1.5. Stream of topic development in this Book.

 The flow chart in Fig. 1.5 illustrates the logical build up of
most part of this Book. This starts with Galois field as the
fundamental algebraic basis from which other components are built

 10 1.1 Scope of the Work

upon. Using specific radix of Galois field, logic structures that
possess certain amount of regularity are synthesized. Such
structures, if not reversible, are generalized to the reversible domain.
The applications of two-valued and multiple-valued quantum
computations, using the new reversible logic structures, are then
performed.

1.2 Organization of the Book

To reach the objective shown in Fig. 1.5, this Book is divided into
several intermediate steps that include the general components of:
(1) reversibility, (2) multiple-valued logic, (3) minimization, (4)
regularity, and (5) quantum computing. These elements of the Book
are illustrated using the lattice diagram in Fig. 1.6.
 Chapter 2 includes fundamentals and mathematical background
that are needed to construct various important reversibility theorems
in the next Chapts. This include binary and multiple-valued normal
Galois forms, and new types of expansions which constitute a
generalization of some basic decompositions that play classically a
central role in modern logic synthesis tools.

 Fig. 1.6. General organization of this Book.

Chapter 2: Fundamentals

Chapter 3: Multi-Valued
S/D Trees

Chapter 4: Lattice
Structures Chapter 5: Reversible Logic

Chapter 6: Reversible
Lattice Structures

Chapter 8: New Reversible
Structures

Chapter 7: Reversible MRA

 Chapter 11: Quantum Computing

Chapter 10: Quantum Logic Circuits

 Chapter 9: Initial Evaluation of Reversible Structures

 1.1 Scope of the Work 11

 Chapter 3 presents new types of families of multiple-valued
trees, their associated properties, and their corresponding canonical
forms and hierarchies. These new forms serve as an intermediate
step to produce one important minimization methodology of
multiple-valued Galois functions that uses the polarity of multiple-
valued Inclusive Forms (IFs) which are generated from
Shannon/Davio (S/D) trees. The new multiple-valued minimizer will
be used for functional minimization in order to realize logic
functions in minimal size reversible structures such as reversible
Cascades that will be presented in Chapt. 8.
 An important class of regular structures that will be used in
Chapt. 6 to reversibly realize Boolean and multiple-valued logic
functions, which is called lattice structure, is presented in Chapt. 4.
New three-dimensional lattices, that are built using the new spectral
transforms from Chapt. 2, are introduced. An important
methodology that restricts the realization of lattice structures to
specific structural boundaries, called Iterative Symmetry Indices
Decomposition (ISID), is also introduced.
 Chapter 5 introduces the foundations of reversible computing.
New reversible logic circuits and the corresponding theorems in
reversible logic are introduced. The new theorems in reversible logic
produce new reversible primitives from which more complex
reversible structures will be synthesized in the following Chapts.
The important process of garbage elimination in binary and
multiple-valued reversible circuits is also presented.
 The first type of the new reversible structures is presented in
Chapt. 6. This type of regular reversible circuits is called reversible
lattice structure. The binary and multiple-valued reversible lattice
structures are used to realize regularly Boolean and multiple-valued
logic functions, respectively.
 Reversible Modified Reconstructability Analysis (RMRA) is
presented in Chapt. 7. This includes the introduction of a novel
binary and multiple-valued decomposition called Modified
Reconstructability Analysis (MRA), and then the reversible
realization of such structure.
 New types of binary and multiple-valued reversible structures
that present some advantages over previous reversible structures are
presented in Chapt. 8. This includes reversible Nets, reversible
Cascades, and reversible Decision Diagrams. Certain advantages

 12 1.2 Organization of the Book

and disadvantages of such structures are discussed, and examples
are provided.
 Chapter 9 presents an initial evaluation of the reversible logic
synthesis methodologies that have been produced in previous
Chapts. This evaluation is conducted on different symmetric and
non-symmetric NPN-classified logic functions, and lead to several
new insights into the new nature of some of the reversible circuits
such as reversible lattice circuits.
 The introduction of the physical operational quantum notation
and the associated examples of quantum circuits for the previously
invented reversible structures is presented in Chapt. 10. Advantages
of the usage of such quantum notation and its pragmatic meaning
and use are also presented.
 Chapter 11 introduces new formalisms, representations, and
operations in two-valued and multiple-valued quantum computing
that uses theorems of reversible computing and reversible structures
from previous Chapts. to compute functionalities using quantum
logic. This includes the production of the quantum representation of
the previously created reversible primitives in Chapt. 5, and then the
performance of quantum computations using such quantum
representations. The important concept of multiple-valued quantum
entanglement is introduced. Examples for the use of algebraic
mathematical decompositions for quantum computing such as the
Singular Value Decomposition (SVD), Spectral Theorem, Quantum
Fourier Transform (QFT), and Quantum Walsh-Hadamard
Transform (QWHT) are presented. The new quantum
representations of quantum decision trees and diagrams, as new
means of representations for the manipulation of quantum circuits
using Computer-Aided Design (CAD) tools, are also introduced.
 Chapter 12 presents conclusions of the Book and perspective
future work.
 This Book is terminated with a series of eleven Appendices that
produce new related results, important background, and motivations
for many components of the work which were introduced in the
previous Chapts. For example, some of these new results include the
counts of several theorems that were presented in previous Chapts.
Functions of these counts can be incorporated as upper or lower
bounds in search heuristics that can be used to search for solutions
to solve synthesis problems that have no concrete formal solutions.

 1.2 Organization of the Book 13

 Appendix A introduces count results to count the various
classes of the new binary and multiple-valued invariant Shannon and
Davio expansions from Chapt. 2. Circuits that implement the
quaternary Galois field Sum-Of-Products (GFSOP) expressions,
which are discussed in Chapt. 2, are introduced in Appendix B. Two
novel count results for the count of S/D trees and the corresponding
Inclusive Forms, that were the main result of Chapt. 3, are presented
in Appendix C. Circuit realizations of multiple-valued S/D trees are
introduced in the form of Universal Logic Modules (ULMs) in
Appendix D. Background on Evolutionary Computing, which is
used in various algorithms in different locations in Chapt. 3, Chapt.
8, and Chapt. 11, is presented in Appendix E. The count of all
possible families of binary and multiple-valued reversible Shannon
and Davio decompositions that result from Chapt. 5 is introduced in
Appendix F. Appendix G presents the NPN classification method of
Boolean functions and the complexity measures that are used in
Chapt. 7 and Appendix H of this Book. New evaluation results that
compare the new Modified Reconstructability Analysis (MRA)
structure from Chapt. 7 and Ashenhurst-Curtis and Bi-
Decomposition are presented in Appendix H. Appendix I introduces
the count for reversible Nets that were introduced in Chapt. 8. Novel
optical realizations of two-valued and multiple-valued classical and
reversible logics are presented in Appendix J. Appendix K utilizes
results in multiple-valued quantum computing from Chapt. 11 to
introduce new results in multiple-valued quantum implementation of
discrete Artificial Neural Networks.

 14 1.2 Organization of the Book

2 Fundamentals

This Chapt. presents the necessary mathematical background and the
fundamental formalisms of the work that will be introduced and
further developed in the next Chapts. This includes the main
reversible decompositions in Chapt. 5 that will be used to construct
reversible primitives, from which reversible structures are built in
Chapts. 6, 7 and 8, respectively. Also, the foundations that are
introduced in this Chapt. will be used to construct the quantum gates
and their associated quantum circuits and computing in Chapt. 11.
 Spectral transforms play an important role in synthesis, analysis,
testing, classification, formal verification, and simulation of logic
circuits. Dyadic families of discrete transforms: Reed-Muller and
Green-Sasao hierarchy, Walsh, Arithmetic, Adding, and Haar
wavelet transforms and their generalizations to p-adic (multi-valued)
transforms, have found a fruitful use in digital system design
[120,125]. In this Chapt., we present a specialized framework for the
creation, classification, and counts of new non-singular generalized
Reed-Muller-like families of expansions for an arbitrary radix of
Galois field.
 Reed-Muller-like spectral transforms [240] have found a variety
of useful applications in minimizing Exclusive Sum-Of-Products
(ESOP) and Galois field SOP (GFSOP) expressions
[9,76,77,79,80,171,264], creation of new forms
[4,78,104,173,265,266], binary decision diagrams [2,45,142],
spectral decision diagrams [82,238,239], regular structures
[5,7,13,18,50,51,84,177], besides their well-known uses in digital
communications [125], digital signal processing [89,257,260],
digital image processing [90], and fault detection (testing)
[99,124,147,198,199,204,218]. Ternary Reduced Post Galois field
Sum-Of-Products (RP-GFSOPs), their generalized Green/Sasao
hierarchies, and the extensions of such hierarchies to the case of
quaternary Galois field hierarchy were recently developed [4,9].

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

 For higher radices of Galois fields, there exist very large
number of nonsingular transforms that still need to be systematically
generated and classified. The main contributions in this Chapt. are:
• New methods of Galois Eqs. which are based on multiple-valued
 Galois logic to produce the corresponding multiple-valued
 Shannon and Davio expansions.
• A generic methodology of generating new types of multi-valued
 Shannon and Davio spectral transforms.
• The classification of the new types of multi-valued Shannon and
 Davio spectral transforms into families. The corresponding counts
 of the new families are also provided.
 The methodology of generating the new families of multi-
valued Shannon and Davio spectral transforms is based on the
fundamental multiple-valued Shannon expansions (i.e., p-adic) and
the fundamental multiple-valued Davio expansions. The new
families of multiple-valued decompositions possess many
advantages. The first advantage is the comparative ease of
generation of the new multiple-valued transforms, since they are
very closely related to the fundamental multiple-valued Shannon
and Davio transforms. The second advantage is that the new
transforms allow for a fast construction of the inverse transform
because the basis functions of such transforms are the same basis
functions of the fundamental multiple-valued Shannon and Davio
transforms just scaled by constants. These constants are the
multiplicative inverse of the corresponding constants that scale the
rows of the corresponding basic multiple-valued Shannon and Davio
transform matrices. This feature is very useful in hardware and
software implementation for the fast processing of digital signals.
The third advantage is that the flipped Shannon has an important
role in the construction of reduced-size lattices [50,51]. Such regular
structures have found application in the design for test and design
for self-repair of logic circuits [221]. Consequently, the new
multiple-valued flipped Shannon can find similar applications in the
design for test and self-repair of multiple-valued logic circuits,
utilizing more general regular structures such as three-dimensional
(3-D) lattices as shown in [5,13,18]. The fourth advantage is that all
the new multiple-valued canonical expansions can be used in the
implementation of various types of the corresponding lattice

 16 2 Fundamentals

structures linking the expansion choice to technology issues, like
improvements in area, speed, power, and testability.
 The remainder of this Chapt. is organized as follows. The basic
definitions of the fundamental binary expansions and their multiple-
valued extensions are given in Sect. 2.1. A new methodology for the
creation and classification of new Galois-based transforms and
examples of such transforms are presented in Sect. 2.2. A Summary
of the Chapt. is presented in Sect. 2.3.

2.1 Normal Galois Forms in Logic Synthesis

Normal canonical forms play an important role in the synthesis of
logic circuits [113,213,217,219]. This role includes testing,
synthesis, and optimization. The main algebraic structure which is
used in this work for developing the canonical normal forms is the
Galois field (GF) algebraic structure, which is a fundamental
algebraic structure in the theory of algebras [56,67,87,146,160,166].
 Galois field has proven high efficiency in various applications
such as in logic synthesis and computer engineering,
communications, information systems and computer science, and
mathematics. This includes items like: design for test [124],
reversible logic synthesis (cf. Sect. 5.4 in Chapt. 5) [6], error
correction codes [48], cryptography, number theory, and proving
Fermat’s last theorem [251]. The importance of Galois field results
from the fact that every finite field is isomorphic to a Galois field
[146]. In general, the attractive properties of GF-based circuits, such
as the high testability of such circuits, are due to the fact that the GF
operators exhibit the Cyclic Group (Latin Square) Property [67].
This property can be explained, for example, using the four-valued
(quaternary) GF operators as shown in Figs. 2.1e and 2.1f,
respectively. Note that in any row and column of the addition table
(Fig. 2.1e), the elements are all different, which is cyclic, and that
the elements have a different order in each row and column. Another
cyclic group can be observed in the multiplication table; if the zero
elements are removed from the multiplication table (Fig. 2.1f), then
the remaining elements form a cyclic group. In binary, for example,
the GF(2) addition operator, EXOR, has the cyclic group property.

 2 Fundamentals 17

 a b c d

 e f

Fig. 2.1. Galois field addition and multiplication tables: a GF2(+), b GF2(*), c GF3(+), d
GF3(*) , e GF4(+), and f GF4(*).

 Reed-Muller based normal forms have been classified using the
Green/Sasao hierarchy [4,52]. The Green/Sasao hierarchy of
families of canonical forms and corresponding decision diagrams is
based on three generic expansions: (1) Shannon [43,217], (2)
positive Davio [265,266,217], and (3) negative Davio [265,266,217]
expansions. Since Shannon and Davio expansions play an essential
role in logic synthesis, the corresponding generalized Green/Sasao
hierarchy of families of canonical forms and corresponding decision
diagrams have been developed [4]. Shannon, positive Davio, and
negative Davio decompositions are given below:

 f(x1,x2,…,xn) = x1’⋅ f0(x1,x2,…,xn) ⊕ x1⋅ f1(x1,x2,…,xn),

 [] �
�

	

�

�
�
�

	

�

�
=

1

0
11 10

01

f

f
xx , (2.1)

 f(x1,x2,…,xn) = 1⋅ f0(x1,x2,…,xn) ⊕ x1⋅ f2(x1,x2,…,xn),

 [] �
�

	

�

�
�
�

	

�

�
=

1

0
1 11

01
1

f

f
x , (2.2)

 f(x1,x2,…,xn) = 1⋅ f1(x1,x2,…,xn) ⊕ x1’⋅ f2(x1,x2,…,xn),

* 0 1
0 0 0
1 0 1

+ 0 1
0 0 1
1 1 0

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

* 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

 18 2.1 Normal Galois Forms in Logic Synthesis

 [] �
�

	

�

�
�
�

	

�

�
=

1

0
1 11

10
1

f

f
x , (2.3)

where f0(x1,x2,…,xn) = f(0,x2,…,xn) = f0 is the negative cofactor of
variable x1, f1(x1,x2,…,xn) = f(1,x2,…,xn) = f1 is the positive cofactor
of variable x1, and f2(x1,x2,…,xn) = f(0,x2,…,xn) ⊕ f(1,x2,…,xn) = f0

⊕ f1.
 An arbitrary n-variable function f(x1, x2, …, xn) can be
represented using the Positive Polarity Reed-Muller (PPRM)
expansion as follows [217,239]:

 f(x1,x2, …,xn) = a0⊕ a1x1⊕ a2x2⊕…⊕ anxn⊕ a12x1x2⊕ a13x1x3⊕
 an-1,nxn-1xn⊕…⊕ a12…nx1x2…xn. (2.4)

 For each function f, the coefficients ai in Eq. (2.4) are
determined uniquely, so PPRM is a canonical form. If we use either
only the positive literal or only the negative literal for each variable
in Eq. (2.4) we obtain the Fixed Polarity Reed-Muller (FPRM) form.
There are 2n possible combinations of polarities and as many
FPRMs for any given logic function. If we freely choose the polarity
of each literal in Eq. (2.4), we obtain Generalized Reed-Muller
(GRM) form. In GRMs, contrary to FPRMs, the same variable can
appear in both positive and negative polarities. There are

2.
)1(

n
n−

literals in Eq. (2.4), so there are 2 2.
)1(

n
n−

 polarities for an n-

variable function and as many GRMs [217]. Each of the polarities
determines a unique set of coefficients, and thus each GRM is a
canonical representation of a function. Two other types of
expansions result from the flattening of certain binary trees that will
produce Kronecker (KRO) forms and Pseudo Kronecker (PKRO)
forms for Shannon, positive Davio, and negative Davio expansions

[217]. There are 3n and at most 3 12)(−n
different KROs and

PKROs, respectively.
 The good selection of the various permutations in using the
Shannon and Davio expansions (in addition to other expansions like
Walsh, Arithmetic, etc) as internal nodes in decision trees (DTs) and
diagrams (DDs) will result in DTs and DDs, that represent the
corresponding logic functions, with smaller sizes in terms of the

 2.1 Normal Galois Forms in Logic Synthesis 19

total number of hierarchical levels used, and the total number of
internal nodes needed [217]. The minimization of the size of DD, to
represent a logic function, will result in speeding up the
manipulations of logic functions using DD as data structure, and the
minimization of the use of memory space during the execution of
such manipulations.
 We call the Shannon and Davio expansions presented in this
Sect. the “Fundamental” spectral transforms in order to distinguish
them from the more generalized case of the “Invariant” Shannon and
Davio expansions that will be presented in Sect. 2.2. One can
observe that by going from PPRM to GRM forms, less restrictions
(constraints) are imposed on the canonical forms due to the enlarged
set of polarities that one can choose from. The gain of more freedom
(less constraints) on the polarity of the canonical expansions will
provide an advantage of obtaining Exclusive-Sum-Of-Product
(ESOP) expressions with less number of terms and literals, and
consequently expressing Boolean functions using ESOP forms will
produce on average expressions with less size as if compared to
Sum-Of-Product (SOP) expressions for example. Table 2.1
illustrates these observations [217].
 In general, a literal can be defined as any function of a single
variable. Basis functions in the general case of multiple-valued
expansions are constructed using literals. Galois field Sum-Of-
Products expansions can be performed on variety of literals.

Table 2.1. The number of product terms required to realize some arithmetic functions using
different Reed-Muller forms.

 Function PPRM FPRM GRM ESOP SOP

 adr4 34 34 34 31 75
 log8 253 193 105 96 123
 nrm4 216 185 96 69 120
 rdm8 56 56 31 31 76
 rot8 225 118 51 35 57
 sym9 210 173 126 51 84
 wgt8 107 107 107 58 255

 20 2.1 Normal Galois Forms in Logic Synthesis

 For example, one can use, among others: K-Reduced Post literal
(K-RPL) to produce K-RPL-GFSOP [4,9], Post literal (PL) to
produce PL-GFSOP, Window literal (WL) to produce WL-GFSOP,
Generalized (Post) literal (GL) to produce GL-GFSOP, or Universal
literal (UL) to produce UL-GFSOP. Figure 2.2 demonstrates set-
theoretic relationships beween the various literals, where the shaded
Reduced Post literal is the type of literal that will be used through
this Book. (Note that RPL is analogous to the delta function in the
continuous domain.)

 Fig. 2.2. Inclusion relationship of various types of literals.

Example 2.1. Figure 2.3 demonstrates several literal types, where
one proceeds from the simplest literal in Fig. 2.3a (i.e., RPL) to the
most complex literal in Fig. 2.3e. For RPL in Fig. 2.3a, a value (K)
is produced by the literal when the value of the variable is equal to a
specific state, and in this particular example a value of K = 1 is
generated by the 1-RPL when the value of variable x is equal to
certain state (here this state is equal to one). Figure 2.3b shows PL
where the value generated by the literal at a specific state is equal to
the maximum value (i.e., radix) of that logic. WL in Fig. 2.3c
generates a value equal to the radix for a “window” of specific
states. GPL in Fig. 2.3d produces a value of radix for a set of distinct
states. One notes that, in contrast to the other literals, universal
literal (UL) in Fig. 2.3e can have any value of the logic system at
distinct states, and thus universal literals have the highest
complexity among the five different types of literals.

Reduced Post
 Literal

Post Literal

Window Literal

 Generalized (Post) Literal

 Universal Literal

 2.1 Normal Galois Forms in Logic Synthesis 21

Fig. 2.3. Illustrating the different types of literals over an arbitrary five-radix logic: a 1-
Reduced Post literal (RPL), b Post literal (PL), c Window literal (WL), d Generalized
(Post) literal (GL), and e Universal literal (UL).

 Since K-RPL-GFSOP is as simple as PL and it is simpler from
implementation point of view than WL, GL or UL, we will perform
all the GFSOP expansions utilizing 1-RPL-GFSOP. Let us define
the 1-Reduced Post Literal as:

 ix = 1 iff x =i else ix = 0. (2.5)

 For example 0x, 1x, 2x are the zero, first, and second polarities of
the 1-Reduced Post Literal, respectively. Also, let us define the
ternary shifts (over variable x) as x, x', x" as the zero, first, and
second shifts of the variable x respectively (i.e., x = x + 0, x’ = x +1,
and x” = x + 2, respectively), and x can take any value in the set
{0,1,2}. We chose to represent the 1-Reduced Post Literals in terms
of shifts and powers, among others, because of the ease of the
implementation of powers of shifted variables in hardware (for the
production of RPL, see the Universal Logic Modules (ULMs) in

 a b c

1

0 1 2 3 4 x

2

3

4

1x

0 1 2 3 4 x

1

2

3

4

L1(x)

0 1 2 3 4 x

1

2

3

4

L[1:2](x)

0 1 2 3 4 x

1

2

3

4

L{1,3}(x)

0 1 2 3 4 x

1

2

3

4

L<2,0,4,3,1>(x)

 d e

 22 2.1 Normal Galois Forms in Logic Synthesis

Appendix D). The fundamental Shannon expansion over GF(3) for a
ternary function with a single variable is shown in the following
theorem.

Theorem 2.1. Shannon expansion over GF(3) for a function with
single variable is:

 f = 0x f0 + 1x f1 + 2x f2, (2.6)

where f0 is cofactor of f with respect to variable x of value 0, f1 is
cofactor of f with respect to variable x of value 1, and f2 is cofactor
of f with respect to variable x of value 2.

Proof. From Eq. (2.5), if we substitute the values of the 1-Reduced
Post Literal in Eq. (2.6), we obtain the following Eqs.:
For x = 0
 f x=0 = f0.
For x = 1
 f x=1 = f1.
For x = 2
 f x=2 = f2.
which are the cofactors of variable x of value 0, of value 1, and of
value 2, respectively. Q.E.D.

Example 2.2. Let f(x1,x2) = x1'x2 + x2"x1.
Then the ternary truth vector of the function f is: F =
[0,2,1,1,2,0,2,2,2]T. Using Eq. (2.6), we obtain the following ternary
Shannon expansion over GF(3) of the above function f (x1,x2):
f = 0x1

1x2 + 2⋅ 0x1
2x2 + 2⋅ 1x1

0x2 + 2⋅ 1x1
1x2 + 2⋅ 1x1

2x2 + 2x1
0x2 +

 2⋅ 2x1
2x2.

 Using the addition and multiplication over GF(3), and the
axioms of GF(3), it can be shown that the 1-Reduced Post Literals
defined in Eq. (2.5), are related to the shifts of variables over GF(3)
in terms of powers as follows:

 0x = 2(x)2 + 1, (2.7)
 0x = 2(x')2 + 2(x'), (2.8)
 0x = 2(x")2 + x", (2.9)
 1x = 2(x)2 + 2(x), (2.10)
 1x = 2(x')2 + x', (2.11)
 1x = 2(x")2 + 1, (2.12)
 2x = 2(x)2 + x, (2.13)
 2x = 2(x')2 + 1, (2.14)

 2.1 Normal Galois Forms in Logic Synthesis 23

 2x = 2(x")2 + 2(x"), (2.15)

where 0x, 1x, 2x are the zero, first, and second polarities of the 1-
Reduced Post Literal, respectively, and x, x', x" are the zero, first,
and second shifts of the variable x respectively. The variable x can
take any value of the set {0,1,2}. After the substitution of Eqs. (2.7)
through (2.15) in Eq. (2.6), and after the minimization of the terms
according to the axioms of Galois field, one obtains the following
Eqs.:

 f = 1⋅ f0 + x⋅ (2f1+f2) + 2(x)2(f0+f1+f2), (2.16)
 f = 1⋅ f2 + x'⋅ (2f0+f1) + 2(x')2(f0+f1+f2), (2.17)
 f = 1⋅ f1 + x"⋅ (2f2+f0) + 2(x")2(f0+f1+f2). (2.18)

 Equations (2.6) and (2.16) through (2.18) are the ternary
fundamental Shannon and Davio expansions for single variable,
respectively. These Eqs. can be rewritten in the following matrix-
based forms:

 f = [0x 1x 2x]

�
�
�

�

	

�

�

100

010

001

�
�
�

�

	

�

�

f

f

f

2

1

0

, (2.19)

 f = [1 x x2]

�
�
�

�

	

�

�

222

120

001

�
�
�

�

	

�

�

f

f

f

2

1

0

, (2.20)

 f = [1 x’ (x’)2]

�
�
�

�

	

�

�

222

012

100

�
�
�

�

	

�

�

f

f

f

2

1

0

, (2.21)

 f = [1 x” (x”)2]

�
�
�

�

	

�

�

222

201

010

�
�
�

�

	

�

�

f

f

f

2

1

0

. (2.22)

 We observe that Eqs. (2.19) - (2.22) are expansions for a single
variable. Yet, these expansions can be recursively generated for
arbitrary number of variables (N) using the Kronecker (tensor)
product (⊗), analogous to the binary case [4,9,88,238]. This can be

 24 2.1 Normal Galois Forms in Logic Synthesis

expressed formally as in the following forms for ternary Shannon
(S), and Davio (D0, D1, and D2) expansions, respectively:

 f = ⊗
=

N

i 1

 [0xi
1xi

2xi] ⊗
=

N

i 1

 [S][F], (2.23)

 f = ⊗
=

N

i 1

 [1 xi xi
2] ⊗

=

N

i 1

 [D0][F], (2.24)

 f = ⊗
=

N

i 1

 [1 xi’ (xi’)
2] ⊗

=

N

i 1

 [D1][F], (2.25)

 f = ⊗
=

N

i 1

 [1 xi” (xi”)2] ⊗
=

N

i 1

 [D2][F]. (2.26)

 (The name “tensor product” is due to the fact that the growth of
a transform matrix is in the form of a matrix of matrix elements.)
 Analogously to the binary case, we can have expansions that are
mixed of Shannon (S) for certain variables and Davio (D0, D1, and
D2) for the other variables. This will lead, analogously to the binary
case, to the Kronecker Ternary Decision Trees (TDTs). Moreover,
the mixed expansions can be extended to include Pseudo Kronecker
TDT. (Full discussion of these TDTs that correspond to various
expansions, as well as their hierarchy will be included in Chapt. 3).
 Analogously to the ternary case, quaternary Shannon expansion
over GF(4) for a function with single variable is [9]:

 f = 0x f0 + 1x f1 + 2x f2 + 3x f3, (2.27)

where f0 is the cofactor of f with respect to variable x of value 0, f1 is
the cofactor of f with respect to variable x of value 1, f2 is the
cofactor of f with respect to variable x of value 2, and f3 is the
cofactor of f with respect to variable x of value 3.
Example 2.3. Let f (x1,x2) = x1”x2 + x2’’’x1. The quaternary truth
vector of this function f is F = [0,3,1,2,2,1,3,0,3,0,2,1,1,2,0,3]T.
Utilizing Eq. (2.27), we obtain the following quaternary Shannon
expansion over GF(4) of the function f:
f = 2 ⋅ 0x1

1x2 + 3⋅ 0x1
2x2 + 0x1

3x2 + 3⋅ 1x1
0x2 + ⋅ 1x1

1x2 + 2⋅ 1x1
3x2+

2x1
0x2+ 3⋅ 2x1

1x2+ 2⋅ 2x1
2x2+ 2⋅ 3x1

0x2+ 3x1
2x2+ 3⋅ 3x1

3x2 .
 Using the axioms of GF(4), it can be derived that the 1-RPL
defined in Eq. (2.5) are related to the shifts of variables over GF(4)
in terms of powers as follows:

 2.1 Normal Galois Forms in Logic Synthesis 25

 0x = x3 + 1, (2.28)
 0x = x’ + (x’)2 + (x’)3, (2.29)
 0x = 3(x’’) + 2(x’’)2 + (x’’)3, (2.30)
 0x = 2(x’’’) + 3(x’’’)2 + (x’’’)3, (2.31)
 1x = x + (x)2 + (x)3, (2.32)
 1x = (x’)3 + 1, (2.33)
 1x = 2(x’’) + 3(x’’)2 + (x’’)3, (2.34)
 1x = 3(x’’’) + 2(x’’’)2 + (x’’’)3, (2.35)
 2x = 3(x) + 2(x)2 + (x)3, (2.36)
 2x = 2(x’) + 3(x’)2 + (x’)3, (2.37)
 2x = (x’’)3 + 1, (2.38)
 2x = x’’’ + (x’’’)2 + (x’’’)3, (2.39)
 3x = 2(x) + 3(x)2 + (x)3, (2.40)
 3x = 3(x’) + 2(x’)2 + (x’)3, (2.41)
 3x = x’’ + (x’’)2 + (x’’)3, (2.42)
 3x = (x’’’)3 + 1, (2.43)

where 0x, 1x, 2x, 3x are the zero, first, second, and third polarities of
the 1-Reduced Post literal, respectively. Also, x, x’, x”, x’’’ are the
zero, first, second, and third shifts (inversions) of the variable x
respectively, and variable x can take any value of the set {0, 1, 2, 3}.
Analogous to the ternary case, we chose to represent the 1-Reduced
Post literal in terms of shifts and powers, among others, because of
the ease of the implementation of powers of shifted variables in
hardware. After the substitution of Eqs. (2.28) through (2.43) in Eq.
(2.27), and after the rearrangement and reduction of the terms
according to the axioms of GF(4), we obtain the following Eqs.:

 f = 1⋅ f0 + x (f1+3f2+2f3) +
 (x)2 (f1+2f2+3f3)+(x)3(f0+f1+f2+f3), (2.44)
 f = 1⋅ f1 + (x’)(f0+2f2+3f3) +
 (x’)2 (f0+3f2+2f3)+(x’)3 (f0+f1+f2+f3), (2.45)
 f = 1⋅ f2 + (x’’)(3f0+2f1+f3) +
 (x’’)2 (2f0+3f1+f3)+(x’’)3 (f0+f1+f2+f3), (2.46)
 f = 1⋅ f3 + (x’’’)(f2+3f1+2f0) +
 (x’’’)2 (f2+2f1+3f0)+(x’’’)3 (f0+f1+f2+f3). (2.47)

 Equations (2.27) and (2.44) through (2.47) are the 1-Reduced
Post literal quaternary Shannon and Davio expansions for single

 26 2.1 Normal Galois Forms in Logic Synthesis

variable, respectively. These Eqs. can be rewritten in the following
matrix-based convolution-like forms, respectively:

 f = [0x 1x 2x 3x]

�
�
�
�

�

	

�

�

1000

0100

0010

0001

�
�
�
�

�

	

�

�

3

2

1

0

f

f

f

f

, (2.48)

 f = [1 x x2 x3]

�
�
�
�

�

	

�

�

1111

3210

2310

0001

�
�
�
�

�

	

�

�

3

2

1

0

f

f

f

f

, (2.49)

 f = [1 x’ (x’)2 (x’)3]

�
�
�
�

�

	

�

�

1111

2301

3201

0010

�
�
�
�

�

	

�

�

3

2

1

0

f

f

f

f

, (2.50)

 f = [1 x” (x”)2 (x”)3]

�
�
�
�

�

	

�

�

1111

1032

1023

0100

�
�
�
�

�

	

�

�

3

2

1

0

f

f

f

f

, (2.51)

 f = [1 x’’’ (x’’’)2 (x’’’)3]

�
�
�
�

�

	

�

�

1111

0123

0132

1000

�
�
�
�

�

	

�

�

3

2

1

0

f

f

f

f

. (2.52)

 One can observe, that Eqs. (2.48) through (2.52) are expansions
for single variable. Yet, these canonical expressions can be
generated for arbitrary number of variables (N) using the Kronecker
(tensor) product. This can be expressed formally as in the following
discrete convolution-like forms for Shannon (S), and Davio (D0, D1,
D2, and D3) expressions, respectively:

 ⊗
=

=
N

i

f
1

[0xi
1xi

2xi
3xi]

N

i 1=
⊗ [S][F], (2.53)

 2.1 Normal Galois Forms in Logic Synthesis 27

 ⊗
=

=
N

i

f
1

[1 xi xi
2 xi

3
]

N

i 1=
⊗ [D0][F], (2.54)

 ⊗
=

=
N

i

f
1

[1 xi’ (xi’)
2 (xi’)

3
]

N

i 1=
⊗ [D1][F], (2.55)

 ⊗
=

=
N

i

f
1

[1 xi” (xi”)2 (xi”)3
]

N

i 1=
⊗ [D2][F], (2.56)

 ⊗
=

=
N

i

f
1

[1 xi’’’ (xi’’’)
2 (xi’’’)

3
]

N

i 1=
⊗ [D3][F]. (2.57)

 The following Sect. introduces generalizations of the multiple-
valued fundamental expansions introduced in this Sect. These
generalizations will be used in Chapt. 4 for building and minimizing
the size of 2-D and 3-D classical lattice structures, Chapt. 6 for
constructing reversible lattice structures, and in Chapt. 10 for
constructing the quantum counterparts of reversible lattice
structures.

2.2 Invariant Multi-Valued Families of Generalized
Spectral Transforms

In this Sect. we present the invariant multiple-valued Galois field
based spectral transforms, and their generalized notation. The new
scaled expansions can be used to produce minimal size circuits for
the three-dimensional lattice structures which will be presented in
Chapt. 4. Also, the new scaled expansions will be used for the
construction of a new type of logic primitives (as will be shown in
Fig. 2.4) that implement “weights” into their inputs. Such new
primitives can be useful in technological implementations where
weighted inputs are used to realize logic functionalities.

2.2.1 General Notation for Operations on Transform Matrices

The following notation describes the operations on a transform
matrix M over GF(K) [5,12]:

 28 2.1 Normal Galois Forms in Logic Synthesis

 MM
q Kqp Kp

OD
1...0|1...0 −−→ , (2.58)

 M O

1...11|... γβα
→ , (2.59)

where MD is the Derived (Modified) Matrix, MO is the Original
Matrix. The symbols p0, p1, …, pK-1 are row multiplication numbers
∈ GF(K), {0,1,…,K-1} are indices referring to row0, row1,…, and
row K-1. The symbols q0,q1,…, qK-1 are column multiplication
numbers ∈ GF(K), and {0,1,…,K-1} are indices referring to
column0, column1,…, and columnK-1. The operations performed
utilizing the upper notation are done through the multiplication of all
the elements of rowi of the matrix Mo by pi and then multiplying
each resulting element of (rowi⋅ pi) by qj, where i, j = 0, 1, …, k-1 (

i.e.,)(
,

ij

ji

i rowqp ⋅

∀

⋅∏). The mathematical interpretation of this

notation, in terms of matrices, is as follows: if D is a diagonal matrix

 D = Diag (α, β, …, γ), then MD = D⋅Mo
 MD

-1 = (D⋅Mo)
–1 =

Mo
-1 D-1. The following Eq. can be applied to obtain the functional

expansions for any modified transform matrix:

 FMMf s
1−= , (2.60)

where M is the transform matrix, and F is the truth vector of the

function f.
Example 2.4. Let us produce some modified matrices from their
unmodified counterparts utilizing the proposed notation for Galois
field of radix four.

GF(4): T =

�
�
�
�

�

	

�

�

2302

1320

2012

1223

 T→T 1231|3312 =

�
�
�
�

�

	

�

�

2302

1320

2012

1223

 ,

•••• 1

•••• 2

•••• 3

•••• 1

 •••• 3 •••• 3 •••• 1 •••• 2

 2.2.1 General Notation for Operations on Transform Matrices 29

 =

�
�
�
�

�

	

�

�

3301

1230

1012

2212

.

GF(4): T =

�
�
�
�

�

	

�

�

2302

1320

2012

1223

 T→T 2332|3333 =

�
�
�
�

�

	

�

�

2302

1320

2012

1223

,

 =

�
�
�
�

�

	

�

�

2302

2130

3023

1223

.

2.2.2 Invariant Families of Multi-Valued Spectral Transforms

To introduce Theorems 2.1, 2.2, and 2.3, the following definitions
are presented (where p is a prime number and k is a natural number
of value k ≥ 1).

Definition 2.1. The transform matrix that is generated by
multiplying the rows of GF(pk) Shannon matrix by the numbers {α,
β, …, γ} ∈ GF(pk) respectively is called αβ…γ IS (invariant
Shannon) matrix.

Definition 2.2. The transform matrix that is generated by
multiplying the rows of GF(pk) Davio of type t (denoted by Dt)
matrix by the numbers {α, β, …, γ} ∈ GF(pk) respectively is called
αβ…γ IDt (invariant Davio of type t) matrix, where t ∈ GF(pk).

Definition 2.3. The transform matrix that is generated by
multiplying the rows of GF(pk) flipped Shannon matrix by the
numbers {α, β, …, γ} ∈ GF(pk) respectively is called αβ…γ IfS
(invariant flipped Shannon) matrix, where t ∈ GF(pk).

 30 2.2.1 General Notation for Operations on Transform Matrices

Definition 2.4. For GF(n) where n = pk, a family of transforms is
defined as a set that contains one Shannon transform and the
corresponding n Davio transforms.

Definition 2.5. The Family (set) of spectral transforms that has the
members (elements) of {αβ…γIS, D} is called αβ…γ IS/D
(invariant Shannon/Davio).

Definition 2.6. The Family (set) of spectral transforms that has the
members (elements) of {αβ…γID, S} is called αβ…γ ID/S
(invariant Davio/Shannon).

Definition 2.7. The total Family (set) of spectral transforms that has
the members (elements) of {α1β1…γ1IS, α2β2…γ2ID} is called
α1β1…γ1IS/α2β2…γ2ID (invariant Shannon/invariant Davio).

 The following theorems are valid for arbitrary GF(n) fields for n
= pk, where p is a prime number and k is a natural number of value k
≥ 1. Full details and proofs of all counts are presented in Appendix
A.

Theorem 2.2. For {α, β, …, γ} ∈ GF(n), there exist (n–1)n of αβ…γ
IS nonsingular spectral transforms.

Proof. In general, Shannon matrix for GF(n) is the identity matrix I:

 S = I =

�
�
�
�

�

	

�

�

1...00

............

0...10

0...01

.

If the rows of the matrix S are multiplied by {α, β, …, γ}
respectively, we obtain:

 S αβ…γ |11…1 =

�
�
�
�

�

	

�

�

γ

β
α

...000

............

0...00

0...00

.

The inverse of such matrix is:

 2.2.2 Invariant Families of Multi-Valued Spectral Transforms 31

 []S 1...11|... 1γαβ −
=

�
�
�
�

�

	

�

�

γ

β
α

ˆ...000

............

0...0ˆ0

0...00ˆ

,

where: 1ˆ,...,1ˆ,1ˆ === γγββαα . Utilizing Eq. (2.60), we get the
following invariant (p-adic) Shannon expansion:

 f = [α̂ 0x β̂ 1x . . . γ̂ k-1x]

�
�
�
�
�

�

	

�

�

γ

β
α

...000

............

0...00

0...00

F , (2.61)

where k-1x is the 1-Reduced Post Literal defined previously. Note
that Eq. (2.61) is an expansion of the function, f, that always
preserves the values of the function (i.e., the cofactors) and does not
transform the truth vector into a different domain. Therefore, the
same set of Davio expansions (that correspond to the various
invariant Shannon expansions) will always be produced.
Consequently, the number of transform families is equal to the
number of different invariant Shannon transforms that can be
obtained. Q.E.D.

Theorem 2.3. For {α, β, …, γ} ∈ GF(n), there exist (n-1)n of αβ…γ
ID nonsingular spectral transforms per Davio type, and n(n-1)n of
αβ…γ ID nonsingular spectral transforms for all Davio types of
expansions.

Proof. Let us produce the proof for a single type of Davio (D)
expansion in a third radix GF. Although this proof is for one type of
Davio expansion and for the special case of GF(3), similar and
straightforward proofs can be provided systematically for other
Davio expansions of an arbitrary radix of GF (pk), where p is a
prime number and k is a natural number of value k ≥ 1. D0 matrix
for GF(3) is:

 32 2.2.2 Invariant Families of Multi-Valued Spectral Transforms

 D0 =

�
�
�

�

	

�

�

222

120

001

.

If the rows of the matrix D0 are multiplied by {α, β, γ} respectively,
we obtain:

 D0
αβγ |111 =

�
�
�

�

	

�

�

γγγ
ββ

α

222

20

00

.

Utilizing Eq. (2.60), we get the following invariant (p-adic) D0

functional expansion (for a single type of Shannon expansions I3x3):

 f = [α̂ β̂ x γ̂ x2]

�
�
�

�

	

�

�

γγγ
ββ

α

222

20

00

F , (2.62)

where 1ˆ,...,1ˆ,1ˆ === γγββαα . Note that Eq. (2.62) is an expansion
of the function, f, that always preserves the value of the function
(i.e., the cofactors) and does not transform the truth vector into a
different domain. Therefore, the same Shannon expansion will
always be produced. Q.E.D.

 As a consequence of Theorem 2.2, we observe that there exist
for a certain radix of Galois field a fixed number of Davio
expansions (i.e., same forms of Davio expansions), which is equal to
the radix of GF, and many invariant Shannon expansions (i.e.,
different forms of Shannon expansions). Also, as a consequence of
Theorem 2.3, we observe that there exist for a certain radix of
Galois field and a certain type of Davio expansions a single Shannon
expansion (i.e., one form) and many invariant Davio expansions
(i.e., different forms of Davio expansions).

Theorem 2.4. For {α, β, …, γ} ∈ GF(n), there exist (n–1)n of αβ…γ
IfS nonsingular spectral transforms.

Proof. In general, the flipped Shannon matrix for GF(n) is the
matrix:

 2.2.2 Invariant Families of Multi-Valued Spectral Transforms 33

 f S =

�
�
�
�

�

	

�

�

0...01

............

01..00

1...00

.

If the rows of the matrix of fS are multiplied by {α, β, …, γ}
respectively, we obtain:

 f S αβ…γ |11…1 =

�
�
�
�

�

	

�

�

0...00

............

0...00

...000

γ

β
α

.

The inverse of such matrix is:

 []Sf 1...11|... 1γαβ −
=

�
�
�
�

�

	

�

�

0...00ˆ

0...0ˆ0

............

ˆ...000

α
β

γ

,

where: 1ˆ,...,1ˆ,1ˆ === γγββαα . Utilizing Eq. (2.60), we get the
following invariant (p-adic) flipped Shannon expansion:

 f = [α̂ k-1x β̂ k-2x… γ̂ 0x]

�
�
�
�

�

	

�

�

0...00

............

0...00

0...00

γ

β
α

F , (2.63)

where k-1x is the 1-Reduced Post Literal defined previously. Eq.
(2.63) is an expansion of function f, that always preserves the values
of the function (i.e., the cofactors) and does not transform the truth
vector into a different domain. Q.E.D.

 Utilizing Eq. (2.61), all permutations of the invariant Shannon
expansion can be obtained to produce the Invariant Permuted
Shannon Expansions (IPSE). The invariant flipped Shannon in Eq.
(2.63) represents one special case of such permutations. Similar
permutations can be also obtained for the invariant Davio

 34 2.2.2 Invariant Families of Multi-Valued Spectral Transforms

expansions in Eq. (2.62) and the other types of Davio expansions to
produce the Invariant Permuted Davio Expansions (IPDE). One
potential important utilization of such permutations is in the
reduction of the size of the corresponding lattice structures
analogous to the results for the binary case in [50,51].
 Multi-valued spectral transforms that are generated by
Theorems 2.2, 2.3, and 2.4 can be produced for an arbitrary number
of variables utilizing the Kronecker-based recursion. From
Theorems 2.2, 2.3, and 2.4, one can note the following interesting
property of the new transforms: the basis functions of the new sets
of multi-valued transforms are exactly the same as the basis
functions of the fundamental Shannon, Davio, and flipped Shannon

expansions but scaled by constants (i.e.,)ˆ,...,ˆ,ˆ γβα . Moreover, these
constants are not generated arbitrarily; they are the multiplicative
inverses of the corresponding constants that scale the rows of the
corresponding basic multi-valued Shannon, Davio, and flipped
Shannon transform matrices (i.e., the constants { γβα ,...,, } in Eqs.
(2.61), (2.62), and (2.63) respectively), and can be directly
calculated according to the axioms of the Galois field which is
operated upon. For illustration, Example 2.5 illustrates the use of
Theorem 2.2.
Example 2.5. Utilizing Definition 2.1 and Theorem 2.2, The
following is one of the invariant Shannon transform matrices that
can be produced in GF(5):

S 34222|21142 =

�
�
�
�
�
�

�

	

�

�

30000

01000

00200

00040

00004

,

 [S 34222|21142] –1 =

�
�
�
�
�
�

�

	

�

�

30000

01000

00400

00020

00002

,

 2.2.2 Invariant Families of Multi-Valued Spectral Transforms 35

f = [2⋅ 0x 2⋅ 1x 4⋅ 2x 1⋅ 3x 3⋅ 4x]

�
�
�
�
�
�

�

	

�

�

30000

01000

00200

00040

00004

F .

Example 2.6. Utilizing Definition 2.2, and Theorem 2.3, The
following is one of the invariant D2 transform matrices that can be
produced in GF(3):

D2
212|111 =

�
�
�

�

	

�

�

111

201

020

 f = [2 x 2⋅ x2]

�
�
�

�

	

�

�

111

201

020

F .

Example 2.7. The following logic circuits represent a comparison
between the logic primitives of the fundamental ternary Shannon
decomposition versus the invariant ternary Shannon decomposition,
respectively.

 a b

Fig. 2.4. Fundamental and invariant Shannon decompositions: a logic primitive for the
ternary fundamental Shannon decomposition, and b logic primitive for the ternary invariant
Shannon decomposition.

 The resulting non-singular transforms in Theorems 2.2, 2.3, and
2.4 are a subset within the set of linearly independent (LI)

[]
�
�
�

�

	

�

�

�
�
�

�

	

�

�
=

2

1

0

210

100

010

001

f

f

f

cccf []
�
�
�

�

	

�

�

�
�
�

�

	

�

�
=

2

1

0

210

00

00

00

ˆˆˆ

f

f

f

cccf

γ
β

α
γβα

 0 1 2

 f0 f1 f2

c

 f

 0 1 2

 f0 f1 f2

c

 f

αααα ββββ γγγγ

 36 2.2.2 Invariant Families of Multi-Valued Spectral Transforms

transforms which is a subset of the whole space of singular
transforms. By linearly independent spectral transforms we mean all
possible transforms that have transform matrices for which no single
column is a linear combination of the other columns, and no single
row is a linear combination of the other rows. By singular
transforms we mean all possible transforms that have transform
matrices for which at least a single column is a linear combination
of the other columns, and a single row is a linear combination of the
other rows. Figure 2.5 illustrates a set-theoretic relationship between
the non-permuted new set of spectral transforms and other sets of
spectral transforms, where the shaded area represents the new sets of
multiple-valued invariant Shannon and invariant Davio spectral
transforms. Appendix A provides full counts of the new families
over an arbitrary GF(n) fields for n = pk, where p is a prime number
and k is a natural number of value k ≥ 1.

Fig. 2.5. A set-theoretic relationship between families of non-permuted multiple-valued
spectral transforms.

 Galois field forms that are introduced throughout this Chapt.
can be realized in the corresponding GFSOP logic circuits. Some of
the multiple-valued logic circuits that are used for the realization of
GFSOP expressions are illustrated in Appendix B.

The set of all Singular
 MV transforms

 The set of all
 non-singular
(Linearly Independent)
 MV transforms

The set of the new
MV IS and ID

 transforms

The set of the
 fundamental

MV Shannon and
Davio transforms

 2.2.2 Invariant Families of Multi-Valued Spectral Transforms 37

2.3 Summary

In this Chapt. we introduced a systematic method to create and
classify new multiple-valued invariant non-singular spectral
transforms based on multi-valued fundamental Shannon expansions
and Davio expansions over an arbitrary radix of Galois field.
 The new spectral transforms will have an application in the
construction of regular layout in three-dimensions as will be shown
in Chapt. 4. The new spectral transforms have an important
property: their basis functions are exactly the same as the basis
functions of the fundamental Shannon and Davio expansions but

scaled by constants (i.e.,)ˆ,...,ˆ,ˆ γβα . Moreover, these constants are
not generated arbitrarily; they are the multiplicative inverses of the
corresponding constants that scale the rows of the corresponding
basic multi-valued Shannon, Davio, and flipped Shannon transform
matrices, and can be directly calculated according to the axioms of
the Galois field. Due to the previously mentioned property, these
transforms possess fast inverses and therefore are suitable for many
applications including the fast computation of spectral transforms.
All results in this Chapt. can be extended to an arbitrary GF(pk)
fields, where p is a prime number and k is a natural number k ≥ 1.
Also, although the new expansions that are developed in this Chapt.
are for Galois field and 1-RPL, similar and analogous developments
can be done for other complete algebraic structures and spectral
transforms with different sorts of literals and operations.
 Lattice structures based on the new ternary invariant Shannon
and Davio expansions will be synthesized in Chapt. 4. The new 3-D
lattice structures will be further extended to include reversible lattice
structures in Chapt. 6, and their corresponding quantum circuits will
be introduced in Chapt. 10. The new primitive in Fig. 2.4b will be
extended to reversible logic in Chapt. 5 and will be used in Chapt. 6
to build reversible binary Shannon lattice structures. Also, the new
families of multiple-valued invariant Shannon and Davio expansions
that were introduced in this Chapt. will be fully generalized to
include the reversible counterparts of such new expansions in Chapt.
5, from which new reversible primitives and structures will be
constructed in the following Chapts.

 38 2.3 Summary

3 New Multiple-Valued S/D Trees and their
Canonical Galois Field Sum-Of-Product Forms

Economical and highly testable implementations of Boolean
functions [99,198,199,204,217], based on Reed-Muller (AND-
EXOR) logic, play an important role in logic synthesis and circuit
design. AND-EXOR circuits include canonical forms (i.e.,
expansions that are unique representations of a Boolean function).
Several large families of canonical forms: Fixed Polarity Reed-
Muller (FPRM) forms, Generalized Reed-Muller (GRM) forms,
Kronecker (KRO) forms, and Pseudo-Kronecker (PSDKRO) forms,
referred to as the Green/Sasao hierarchy, have been described [4,9].
Because canonical families have higher testability and some other
properties desirable for efficient synthesis, especially of some
classes of functions, they are widely investigated. A similar ternary
version of the binary Green/Sasao hierarchy was developed in [4].
This new hierarchy will find applications in minimizing Galois field
Sum-Of-Product (GFSOP) expressions (i.e., expressions that are in
the sum-of-product form which uses the additions and
multiplications of arbitrary radix Galois field that was introduced in
Chapt. 2), creation of new forms, decision diagrams, and regular
structures (Such new structures will be discussed in details in
Appendix D.)
 The state-of-the-art minimizers of Exclusive Sum-Of-Product
(ESOP) expressions [80,85,114,157,214,234,235,242] (i.e.,
expressions that are in the sum-of-product form which uses the
addition and multiplication of Galois field of radix two that was
introduced in Figs. 2.1a and 2.1b, respectively) are based on
heuristics and give the exact solution only for functions with a small
number of variables. The formulation for finding the exact ESOP
was given in [52], but all known exact algorithms can deliver
solutions for not all but only certain functions of more than five
variables. Because GFSOP minimization is even more difficult, it is

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

important to investigate structural properties and the counts of their
canonical subfamilies.
 Recently, two families of binary canonical Reed-Muller forms,
called Inclusive Forms (IFs) and Generalized Inclusive Forms
(GIFs) have been proposed [52]. The second family was the first to
include all minimum ESOPs (binary GFSOPs). In this Chapt., we
propose, as analogous to the binary case, two general families of
canonical ternary Reed-Muller forms, called Ternary Inclusive
Forms (TIFs), and their generalization, Ternary Generalized
Inclusive Forms (TGIFs). The second family includes minimum
GFSOPs over ternary Galois field GF(3). One of the basic
motivations in this work is the application of these TIFs and TGIFs
to find the minimum GFSOP for multiple-valued inputs multiple-
valued outputs for reversible logic synthesis using, for instance,
reversible cascades in Chapt. 8, a problem that has not yet been
solved.
 An ESOP minimizer for completely specified functions has
been developed [157]. This minimizer does not work for functions
with don’t cares. The ESOP minimizer from [235] works for
functions with few percent of don’t cares, yet this minimizer does
not work for functions with a high number of don’t cares (like in
machine learning where don’t cares comprise more than 99% of the
values of the functions). The best minimizer for functions with a
high number of don’t cares is based on the use of genetic algorithms
from [80]. Yet, this type of minimizer is for binary input binary
output functions and is restricted to GRM polarities only. The
multiple-valued S/D tree developed in this Chapt. provides more
general polarity of Inclusive Form (IF) polarity, which contains the
GRM as a special case. A GFSOP minimizer based on IF polarity
will be used to minimize the multiple-valued ESOP (GFSOP)
expression for a given function, as will be shown in Sect. 3.7, to
realize the logic function using reversible structures such as the
reversible Cascades that are presented in Chapt. 8. GFSOP
evolutionary algorithm for minimization using S/D trees will be
presented in this Chapt. The main contributions of this Chapt. are:
• Multiple-valued Galois Shannon/Davio (S/D) trees.
• The generation and count of two new families of canonical
 multiple-valued Reed-Muller forms, called multiple-valued
 Inclusive Forms (IFs), and their generalization, multiple-valued

 40 3 New Multiple-Valued S/D Trees and their Canonical Forms

 Generalized Inclusive Forms (GIFs). A new extended Green/Sasao
 hierarchy of families and forms with a new sub-family for
 multiple-valued Reed-Muller logic is also introduced.
• An evolutionary algorithm that implements the IF polarity from
 S/D trees to find the minimum GFSOP.
 The remainder of this Chapt. is organized as follows:
Green/Sasao hierarchy of binary canonical forms is presented in
Sect. 3.1. The concept of S/D trees and Inclusive Forms is presented
in Sect. 3.2. The ternary S/D trees and their corresponding Inclusive
Forms and Generalized Inclusive Forms are presented in Sect. 3.3.
Properties of the ternary Inclusive Forms and their Ternary
Generalized Inclusive Forms are presented in Sect. 3.4. The new
extended Green/Sasao hierarchy is presented in Sect. 3.5.
Quaternary S/D trees are presented in Sect. 3.6. An evolutionary
algorithm for the minimization of GFSOP expressions using the
Inclusive Forms polarity for the corresponding S/D trees will be
presented in Sect. 3.7. A Summary of the Chapt. is presented in
Sect. 3.8. Although we discuss the ternary and quaternary cases, all
results can be extended to an arbitrary GF(pk) fields, where p is a
prime number and k is a natural number of value k ≥ 1.

3.1 Green/Sasao Hierarchy of Binary Canonical Forms

The Green/Sasao hierarchy of families of canonical forms and
corresponding decision diagrams is based on three generic
expansions, Shannon, positive Davio, and negative Davio
expansions. This includes [217]: Shannon Decision Trees and
Diagrams, Positive Davio Decision Trees and Diagrams, Negative
Davio Decision Trees and Diagarms, Fixed Polarity Reed-Muller
Decision Trees and Diagrams, Kronecker Decision Trees and
Diagrams, Pseudo Reed-Muller Decision Trees and Diagrams,
pseudo Kronecker Decision Trees and Diagrams, and Linearly-
Independent Decision Trees and Diagrams. A set-theoretic
relationship between families of canonical forms over GF(2) was
proposed and extended in [52] by introducing binary IF, GIF, and
FGIF forms. Figure 3.1 illustrates the set-theoretic relationship
between families of canonical forms over GF(2).

 3 New Multiple-Valued S/D Trees and their Canonical Forms 41

 Analogously to the Green/Sasao hierarchy of binary Reed-
Muller families of spectral transforms over GF(2) that is shown in
Fig. 3.1, we will introduce the extended Green/Sasao hierarchy of
spectral transforms, with a new sub-family, for ternary Reed-Muller
logic over GF(3) in Sect. 3.5.

Fig. 3.1. Set-theoretic relationship between families of canonical forms over GF(2).

3.2 Binary S/D Trees and their Inclusive Forms

Two general families of DDs were introduced in [52]. These
families are based on the Shannon expansion and the Generalized
Davio expansion, and are produced using the S/D Trees. These
families are called the Inclusive Forms (IFs) and the Generalized
Inclusive Forms (GIFs), respectively. It was proven [52] that these
forms include a minimum ESOP. The expansions over GF(2) are
shown in Fig. 3.2, where Fig. 3.2d shows the new expansion, which
is based on binary Davio expansions, called generalized Davio (D)
expansion that generates the negative and positive Davio expansions
as special cases.

 ESOP

 Canonical Forms

 FGIF

 GIF

 IF

 PGK

 GK
 GRM

 PKRO

 KRO FPRM

 42 3.1 Green/Sasao Hierarchy of Binary Canonical Forms

 a’ a 1 a
 a b

 1 a’ 1 a
 c d

Fig. 3.2. Two-valued expansions: a Shannon, b positive Davio, c negative Davio, and d
generalized Davio expansions.

 The S/D trees for IFs of two variables of order {a,b}, and the
S/D trees for IFs of two variables of order {b,a} were fully
illustrated [52]. The set of Generalized Inclusive Forms (GIFs) for
two variables is the union of the two sets of Inclusive Forms (IFs).
The total number of the GIFs is equal to:

 # GIF = 2⋅(# IFa,b) - # (IFa,b ∩ IFb,a). (3.1)

 Thus for two variables:
IFa,b = 1 + 2 + 2 + 4 + 4 + 8 + 8 +16 = 45,
IFb,a = 1 + 2 + 2 + 4 + 4 + 8 + 8 +16 = 45,
GIF = 2⋅(45) - (1 + 4 + 4 +16) = 65.
 Properties and experimental results of the binary Inclusive
Forms and the binary Generalized Inclusive Forms were
investigated [52], where it was proven that GIFs include a minimum
ESOP.

3.3 Ternary S/D Trees and their Inclusive Forms and
Generalized Inclusive Forms

The following Sect. defines the ternary Shannon and ternary Davio
decision trees over GF(3). As analogous to the binary case, we can
have expansions that are mixed of Shannon (S) for certain variables
and Davio (D0, D1, and D2) for the other variables. This will lead,
analogously to the binary case, to the Kronecker TDT. Moreover,

S PD

 ND D

 3.2 Binary S/D Trees and their Inclusive Forms 43

the mixed expansions can be extended to include Pseudo Kronecker
TDT. (Full discussion of these TDTs that correspond to various
expansions, as well as their hierarchy will be included in Sect. 3.5).
The basic S, D0, D1, and D2 ternary expansions (i.e., flattened forms)
over GF(3) can be represented in Ternary DTs (TDTs) and the
corresponding varieties of Ternary DDs (TDDs) (according to the
corresponding reduction rules that are used). For one variable (one
level), Fig. 3.3 represents the expansion nodes for S, D0, D1, and D2 ,
respectively.

 0X 1X 2X 1 X X2 1 X’ (X’)2 1 X” (X”)2

 Equation (2.19) Equation (2.20) Equation (2.21) Equation (2.22)

 a b c d

Fig. 3.3. Ternary expansion nodes for ternary DTs: a Shannon, b Davio0, c Davio1, and d
Davio2.

 Utilizing Fig. 3.3, the following Sect. defines the Ternary S/D
trees, and Ternary Inclusive Forms (TIFs), respectively.

3.3.1 Ternary S/D trees and Inclusive Forms

In correspondence to the binary S/D trees, we can produce the
Ternary S/D Trees. To define the Ternary S/D Trees we will define
the Generalized Davio expansion over GF(3) as shown in Fig. 3.4:

 1 x (x)2

 Fig. 3.4. Generalized ternary Davio expansion.

 Our notation here is that (x) corresponds to the three possible
shifts of the variable x as follows:

 x ∈ {x, x’, x”} over GF(3). (3.2)

 D

 S D2 D0 D1

 44 3.3 Ternary S/D Trees and their Inclusive Forms and Generalized Inclusive Forms

Definition 3.1. The ternary tree with ternary Shannon and ternary
Generalized Davio expansion nodes, that generates other ternary
trees, is called the Ternary Shannon/Davio (S/D) tree.

 Utilizing the definition of ternary Shannon (Fig. 3.3a) and
ternary generalized Davio (Fig. 3.4), we obtain the ternary
Shannon/Davio trees (ternary S/D trees) for two variables as shown
in Fig. 3.5. From the ternary S/D DTs shown in Fig. 3.5, if we take
any S/D tree and multiply the second-level cofactors (which are in
the TDT leaves) each by the corresponding path in that TDT, and
sum all the resulting cubes (terms) over GF(3), we obtain the
flattened form of the function f, as a certain GFSOP expression. For
each TDT in Fig. 3.5, there are as many forms obtained for the
function f as the number of possible permutations of the polarities of
the variables in the second-level branches of each TDT.

Definition 3.2. The family of all possible forms obtained per ternary
S/D tree are called Ternary Inclusive Forms (TIFs).

 The numbers of these TIFs per TDT for two variables are
shown on top of each S/D TDT in Fig. 3.5. (General formalisms to
obtain the exact number of TIFs for any number of variables over
GF(3) are presented in Appendix C.)
 By observing Fig. 3.5, we can generate the flattened forms by
two methodologies. A classical methodology, per analogy with well-
known binary forms, would be to create every transform matrix for
every TIF S/D tree, and then expand using that transform matrix. A
better methodology is to create one flattened form (expansion over
certain transform matrix, i.e., certain TIF), and then transform
systematically from one form to another form, without the need to
create all transform matrices from the corresponding S/D trees. This
general approach can lead to several algorithms of various
complexity that generalize the binary algorithms to obtain FPRM,
KRM, GRM, and IF forms, including the butterfly methods [89,57].
Example 3.1. Using the result of Example 2.2 for the expansion of
f(x1,x2) in terms of ternary Shannon expansion (that resembles the
S/D tree for Shannon expansions in both levels as seen in Fig. 3.5):

 f = 0x1
1x2 + 2⋅ 0x1

2x2 + 2⋅ 1x1
0x2 + 2⋅ 1x1

1x2 + 2⋅ 1x1
2x2 + 2x1

0x2

 + 2⋅ 2x1
2x2. (3.3)

 3.3.1 Ternary S/D trees and Inclusive Forms 45

Fig. 3.5a. TIF S/D trees and their numbers for two-variable order {a,b}, where in general a,
and b, are defined as in Eq. (3.2).

 46 3.3.1 Ternary S/D trees and Inclusive Forms

Fig. 3.5b. TIF S/D trees and their numbers for two-variable order {b,a}, where in general a,
and b, are defined as in Eq. (3.2).

 We can substitute any of Eqs. (2.7) through (2.15), or a mix of
these Eqs., to transform one flattened form to another. For example,
if we substitute Eq. (2.7) and Eq. (2.11), we obtain:

 f = (2(x1)
2 + 1)(2(x2')

2 + x2') + 2(2(x1)
2 + 1) 2x2 +

 2(2(x1')
2 + x1')(2(x2)

2 + 1) + 2(2(x1')
2 + x1') (2(x2')

2 + x2') +
 2(2(x1')

2 + x1')⋅2x2 + 2x1(2(x2)
2 + 1) + 2 ⋅ 2x1

2x2. (3.4)

By utilizing the axioms of Galois field, Eq. (3.4) is transformed to:

 3.3.1 Ternary S/D trees and Inclusive Forms 47

 f = (x1)
2(x2’)

2 + 2(x1)
2(x2’) + 2(x2’)

2 + x2’ + (x1)
2 (2x2) +

 2(2x2) + 2(x1’)
2(x2)

2 + (x1’)
2 + (x1’)(x2)

2 + 2x1’ +
 2(x1’)

2(x2’)
2 + (x1’)

2(x2’) + (x1’)(x2’)
2 + 2x1’x2’ + (x1’)

2 2x2 +
 2(x1’)

2x2 + 2(2x1)(x2)
2 + 2x1 + 2(2x1)(

2x2). (3.5)

 Let us define, as one of possible definitions, the cost of the
flattened form (expression) to be:

 Cost = # Cubes. (3.6)

 We observe that Eq. (3.3) has the cost of seven, while Eq. (3.5)
has the cost of 19. Thus, the inverse transformations applied to Eq.
(3.5) would lead to Eq. (3.3) and a reduction of cost from 19 to
seven. Using the same approach, we can generate a subset of
possible GFSOP expressions (flattened forms). Note that all these
GFSOP expressions are equivalent (since they produce the same
function in different forms). Yet, as can be observed from Eq. (3.5),
by further transformations of Eq. (3.3) from one form to another,
some transformations produce flattened forms with a smaller
number of cubes than the others. From this observation rises the idea
of a possible application of evolutionary computing [80] using the
S/D trees and related transformations to produce the minimum
GFSOPs.

3.3.2 Enumeration of Ternary Inclusive Forms

Each of the S/D trees shown in Fig. 3.5 is a generator of a set of
flattened forms (TIFs). Each one of these TIFs is merely a
Kronecker-based transform as can be obtained from Eqs. (2.23)
through (2.26). The numbers of these TIFs generated by the
corresponding S/D trees are shown on the top of each S/D tree for
two variables in Fig. 3.5.
Example 3.2.
3.2a. For the S/D trees in Fig. 3.5a, and by utilizing the notation
from Eq. (3.2), we obtain for Figs. 3.6a and 3.7a, the ternary trees in
Figs. 3.6b - 3.6d and Figs. 3.7b - 3.7d, respectively.

 48 3.3.1 Ternary S/D trees and Inclusive Forms

 N = 9

 a

 b c d

Fig. 3.6. a An S/D tree with three Shannon nodes and one generalized Davio node, and (b,
c, d) some of the ternary trees that it generates.

 N = 81

 a

 b c d

Fig. 3.7. a An S/D tree with two Shannon nodes and two generalized Davio node, and (b, c,
d) some of the ternary trees that it generates.

S

D S S

 0a 1a 2a

0b 1b 2b 0b 1b 2b 1 b, (b,)2

S

D S S

S

D S S

S

D S S

0a 1a 2a
 0a 1a 2a 0a 1a 2a

 0b 1b 2b 0b 1b 2b 0b 1b 2b 0b 1b 2b 0b 1b 2b 0b 1b 2b 1 b (b)2 1 b’ (b)2 1 b’ (b”)2

S

S D D

0a 1a 2a

 0b 1b 2b 1 b, (b,)2 1 b, (b,)2

S

S D D

0a 1a 2a

 0b 1b 2b 1 b (b)2 1 b (b)2

S

S D D

0a 1a 2a

0b 1b 2b 1 b’ (b)2 1 b” (b)2

S

S D D

0a 1a 2a

 0b 1b 2b 1 b” (b’)2 1 b(b’)2

 3.3.2 Enumeration of Ternary Inclusive Forms 49

3.2b. Let us produce some of the ternary trees for the S/D tree in
Fig. 3.5b. Utilizing the notation from Eq. (3.2), we obtain, for the
S/D tree in Fig. 3.8a, the ternary trees in Figs. 3.8b, 3.8c, and 3.8d,
respectively.
The generalized IFs (GIFs) can be defined as the union of both IFs.

Definition 3.3. The family of forms, which is created as a union of
sets of TIFs for all variable orders, is called Ternary Generalized
Inclusive Forms (TGIFs).

Theorem 3.1. The total number of the ternary IFs (#TIFs), for two
variables, for orders {a,b} and {b,a}, are respectively:

 # TIFa,b = 1⋅ (3)0 + 3⋅ (3)2 + 3⋅ (3)4 + 2⋅ (3)6 + 3⋅ (3)8 + 3⋅ (3)10
 + 1⋅ (3)12 = 730,000, (3.7)
 # TIFb,a = 1⋅ (3)0 + 3⋅ (3)2 + 3⋅ (3)4 + 2⋅ (3)6 + 3⋅ (3)8 + 3⋅ (3)10
 + 1⋅ (3)12 = 730,000. (3.8)

 N = 531,441

 a

 b c d

Fig. 3.8. a An S/D tree with four generalized Davio nodes, and (b, c, d) some of the ternary
trees that it generates.

D

D D D

1 b, (b,)2

 1 a, (a,)2 1 a, (a,)2 1 a, (a,)2

D

D D D

1 b (b’)2

 1 a (a’)2 1 a (a”)2 1 a’ (a’)2

D

D D D

1 b’ (b”)2

 1 a” (a”)2 1 a (a’)2 1 a” (a)2

D

D D D

1 b (b”)2

 1 a (a)2 1 a (a”)2 1 a” (a”)2

 50 3.3.2 Enumeration of Ternary Inclusive Forms

Proof. By observing Figs. 3.5a and 3.5b, we note that the total
number of TIFs for orders {a,b} and {b,a} is the sum of the numbers
on the top of S/D trees, that leads to Eqs. (3.7) and (3.8). Q.E.D.

The total number of the ternary Generalized IFs (#TGIFs), for two
variables, is:

 # TGIF = # TIFa,b + # TIFb,a - # (TIFa,b ∩ TIFb,a)
 = 2⋅ # TIF - # (TIFa,b ∩ TIFb,a), (3.9)
 = 2⋅ (730,000) - (1⋅ (3)0+2⋅ (3)6+ 1⋅ (3)12) = 927,100.

3.4 Properties of TIFs and TGIFs

The following Sects. present are basic properties of TIFs and TGIFs.

3.4.1 Properties of TIFs

In this Sect., we prove that all TIFs for the given variable ordering
are canonical and unique.

Theorem 3.2. Each TIF {ti}, 1≤ i ≤ n, is canonical, i.e., for any
function F of the same number of variables, there exists one and
only one set of coefficients {ai}, such that F = a1t1 +GF(3)…+GF(3) antn.

Proof. In [52] (and references therein), it was shown that an
expansion is canonical iff its terms are linearly independent, that is,
none of the terms is equal to a linear combination of other terms
(over the algebraic field used). Using this fact, it was proven that IFs
over GF(2) are canonical. Using an approach which is analogous to
the approach presented in [52], one can therefore prove, by
induction on the number of variables, that terms in TIFs over ternary
Galois field are linearly independent and thus canonical. Q.E.D.

3.4.2 Properties of TGIFs

It is easy to see that, for different variable orderings, some forms are
not repeated while other forms are. For example, Kronecker forms

 3.3.2 Enumeration of Ternary Inclusive Forms 51

and GRMs over GF(3) are repeated. Therefore the union of sets of
TIFs for all variable orders contains more forms than any of the TIF
sets taken separately and less forms than the total sum of all of these
TIFs.

Theorem 3.3. Ternary Generalized Inclusive Forms (TGIFs) are
canonical with respect to the given variable order.

Proof. The proof is analogous to the one in Theorem 3.2. Q.E.D.

 Generalized Inclusive Forms include GRMs and PKROs over
GF(3) as can be shown by considering all possible combinations of
literals for all possible orders of variables. If we relax the
requirement of fixed variable ordering, and allow any ordering of
variables in the branches of the tree but do not allow repetitions of
variables in the branches, we generate more general family of forms
over GF(3).

Definition 3.4. The family of forms, generated by the S/D tree with
no fixed ordering of variables, provided that variables are not
repeated along the same branches, is called Ternary Free
Generalized Inclusive Forms (TFGIFs).

 The studies show that it is difficult to trace the relationship
between the number of forms that are repeated for N > 2 and the
number of forms that are not.

3.5 An Extended Green/Sasao Hierarchy with a New Sub-
Family for Ternary Reed-Muller Logic

Here we introduce the extended Green/Sasao hierarchy with a new
sub-family for ternary Reed-Muller logic over GF(3). Definitions
3.2, 3.3, and 3.4 defined the Ternary Inclusive Forms (TIFs),
Ternary Generalized Inclusive Forms (TGIFs), and Ternary Free
Generalized Inclusive Forms (TFGIFs), respectively. Analogously
to the binary Reed-Muller case, we introduce the following
definitions over GF(3).

 52 3.4.2 Properties of TGIFs

Definition 3.5. The Decision Tree (DT) that results from applying
the Ternary Shannon Expansion (Eq. (2.23)) recursively to a ternary
input-ternary output logic function (i.e., all levels in a DT) is called
Ternary Shannon Decision Tree (TSDT). The result expression
(flattened form) from the TSDT is called Ternary Shannon
Expression, which is a canonical expression.

Definition 3.6. The Decision Trees (DTs) that result from applying
the Ternary Davio expansions (Eqs. (2.24), (2.25), and (2.26))
recursively to a ternary-input ternary -output logic function (i.e., all
levels in a DT) are called: Ternary Zero-Polarity Davio Decision
Tree (TD0DT), Ternary First-Polarity Davio Decision Tree
(TD1DT), and Ternary Second-Polarity Davio Decision Tree
(TD2DT), respectively. The resulting expressions (flattened forms)
from TD0DT, TD1DT, and TD2DT are called: TD0, TD1, and TD2
expressions, respectively. These expressions are canonical.

Definition 3.7. The Decision Tree (DT) that results from applying
any of the Ternary Davio expansions (nodes) for all nodes in each
level (variable) in the DT is called Ternary Reed-Muller Decision
Tree (TRMDT). The corresponding expression is called Ternary
Fixed Polarity Reed-Muller (TFPRM) Expression. This expression
is canonical for a given set of polarities.

Definition 3.8. The Decision Tree (DT) that results from using any
of the Ternary Shannon (S) or Davio (D0, D1, or D2) expansions
(Nodes) for all nodes in each level (variable) in the DT (that has
fixed order of variables), is called Ternary Kronecker Decision Tree
(TKRODT). The resulting expression is called Ternary Kronecker
Expression. This expression is canonical.

Definition 3.9. The Decision Tree (DT) that results from using any
of the Ternary Davio expansions (Nodes) for each node (per level)
of the DT is called Ternary Pseudo-Reed-Muller Decision Tree
(TPRMDT). The resulting expression is called Ternary Pseudo-
Reed-Muller Expression.

Definition 3.10. The Decision Tree (DT) that results from using any
of the Ternary Shannon Expansion or Ternary Davio expansions
(Nodes) for each node (per level) of the DT is called Ternary

 3.5 An Extended Green/Sasao Hierarchy with a New Sub-Family 53

Pseudo-Kronecker Decision Tree (TPKRODT). The resulting
expression is called Ternary Pseudo-Kronecker Expression.

Definition 3.11. The Decision Tree (DT) that results from using any
of the Ternary Shannon Expansion or Ternary Davio expansions
(Nodes) for each node (per level) of the DT , disregarding order of
variables, provided that variables are not repeated along the same
branches, is called Ternary Free Kronecker Decision Tree
(TFKRODT). The result is called Ternary Free-Kronecker
Expression.

Definition 3.12. The Ternary Kronecker DT that has at least one
Ternary Generalized Reed-Muller expansion node is called Ternary
Generalized Kronecker Decision Tree (TGKDT). The result is called
Ternary Generalized Kronecker Expression.

Definition 3.13. The Ternary Kronecker DT that has at least one
TGIF node is called Ternary Generalized Inclusive Forms
Kronecker Decision Tree (TGIGKDT). The result is called Ternary
Generalized Inclusive Form Kronecker Expression.

 Figure 3.9 illustrates this extended Green/Sasao hierarchy with
a new sub-family (TGIFK) for ternary Reed-Muller logic over
GF(3). TGIF nodes can be realized with Universal Logic Modules
(ULMs) for pairs of variables, as shown in Appendix D, analogously
as done for binary. Although the S/D trees that have been developed
so far are for the ternary radix, interesting properties emerge when
applying S/D trees to higher radices, like radix four for example.
One important property is that the upper bound counts for S/D trees
using the Inclusive Forms Traingle (IF Triangle), which is presented
in Appendix C. Thus, next Sect. will introduce the quaternary S/D
trees as a generalization for ternary and binary cases.

3.6 Quaternary S/D Trees

The basic S, D0, D1, D2, and D3 quaternary expansions (i.e., flattened
forms) over GF(4) introduced previously in Eqs. (2.53) through
(2.57) can be represented in quaternary DTs (QuDTs) and the
corresponding varieties of reduced quaternary DDs (RQuDDs) (i.e.,

 54 3.5 An Extended Green/Sasao Hierarchy with a New Sub-Family

according to the corresponding reduction rules that are used). For
one variable (i.e., one level of the DT), Fig. 3.10 represents the
expansion nodes for S, D0, D1, D2, and D3, respectively.

Fig. 3.9. An extended Green/Sasao hierarchy with a new sub-family (TGIFK) for ternary
Reed-Muller logic over GF(3).

 Equation (2.53)
 a

 Equation (2.54) Equation (2.55) Equation (2.56) Equation (2.57)
 b c d e

Fig. 3.10. Quaternary Decision Trees: a Shannon, b Davio0, c Davio1, d Davio2, and e
Davio3.

S

 0x 1x 2x 3x

 D0 D1 D2 D3

 1 x x2 x3 1 (x’) (x’)2 (x’)3 1 (x’’) (x’’)2 (x’’)3 1 (x’’’) (x’’’)2 (x’’’)3

 TGRM

Ternary GFSOP

Ternary Canonical Forms
TFGIF
TGIF
 TIF

TPGK
 TGK

 TPKRO

 TKRO TFPRM

TGIFK

 3.6 Quaternary S/D Trees 55

 In correspondence to the binary S/D trees, and ternary S/D trees,
the concept of the quaternary S/D trees can be introduced. The
quaternary S/D trees are generated through the definition of the
Generalized Quaternary Davio (GQD) expansion over GF(4) as in
Fig. 3.11.

 x ∈ {x, x’, x”, x’’’} over GF(4). (3.10)

 Utilizing the definition of quaternary Shannon (Fig. 3.10.a) and
quaternary Generalized Davio (Fig. 3.11), and analogously to the
work done for the binary and ternary cases, one can obtain the
quaternary Shannon/Davio trees (QS/DT) for two variables. The
number of these S/D trees per variable order is 2(4+1) = 32. The
number of QIFs per S/D tree will be later derived in two different
ways: (1) the first method is by using the general formula for an
arbitrary number of variables over GF(4) developed in Appendix C,
and (2) the second method is using the very general formula
developed in Appendix C as well for any radix. The Count of the
number of all possible forms is important because it can be used as
an upper-bound parameter in a search heuristic that searches for a
minimum GFSOP expression using the S/D trees. Example 3.3
illustrates some of the quaternary S/D trees and some of the
quaternary trees they produce. The numbers on top of S/D trees in
Figs. 3.12a and 3.13a are the numbers of the total QIFs (i.e., total
number of quaternary trees) that are generated (As stated previously,
derivation of these numbers is shown later in Appendix C).
Example 3.3. Let us produce some of the quaternary trees for the
following quaternary S/D trees. Utilizing the notation in Eq. (3.10),
we obtain, for the S/D trees in Figs. 3.12a and 3.13a, the S/D trees in
Figs. 3.12b and 3.12c and Figs. 3.13b and 3.13c, respectively.

 1 x (x)2 (x)3

 Fig. 3.11. Generalized quaternary Davio (GQD) expansion.

The notation in Fig. 3.11 is that (x) corresponds to the four possible
shifts of the variable x as follows:

D

 56 3.6 Quaternary S/D Trees

 From the quaternary S/D DTs shown in Figs. 3.12 and 3.13, by
taking any S/D tree, multiplying the two-level cofactors (which are
in the QuDT leafs) each by the corresponding path in that QuDT,
and next summing all the resulting cubes (terms; products) over
GF(4), one obtains the flattened form for the function f, as a certain
GFSOP expression (expansion). For each QuDT in Figs. 3.12a and
3.13a, there are as many forms obtained for the function f as the
number of all possible permutations of the polarities of the variables
in the second level branches of each QuDT. Properties for the
quaternary S/D trees can be developed similar to the binary and
ternary cases. The following Sect. presents a minimization algorithm
that utilizes the S/D trees that are developed in this Chapt.

3.7 An Evolutionary Algorithm for the Minimization of
GFSOP Expressions Using IF Polarity from Multiple-
Valued S/D Trees

This Sect. presents an evolutionary algorithm (See Appendix E) that
uses the multiple-valued IF polarity from S/D trees to minimize
GFSOP functions. Evolutionary algorithms [80,102,137] have
proven superiority to heuristic algorithms [157,233] in the
minimization of incompletely specified functions with a high
number of don’t cares. Consequently, this process of minimization is
very important to realize a minimum GFSOP expression using
reversible structures such as the reversible Cascades that will be
presented in Chapt. 8.
 An ESOP minimizer for completely specified functions has
been developed [157]. This minimizer does not work for functions
with don’t cares. The ESOP minimizer from [235] works for
functions with few percent of don’t cares, yet this minimizer does
not work for functions with a high number of don’t cares. The best
minimizer for functions with a high number of don’t cares is based
on the use of genetic algorithms from [80]. Yet, as stated previously,
this type of minimizer is for two-valued input two-valued output
functions and is restricted to GRM polarities only.

 3.6 Quaternary S/D Trees 57

 N = 4,096

 a

 b

 c

Fig. 3.12. a A quaternary S/D tree for two variables of order {a,b} with three Shannon
nodes and two generalized Davio nodes, and (b, c) some of the quaternary trees that it
generates.

S

S S D D

 0a 1a 2a 3a

 1 b (b)2 (b)3 1 b (b)2 (b)3 0b 1b 2b 3b 0b 1b 2b 3b

S

S S D D

0a 1a 2a 3a

 1 b (b’) (b’)3 1 b” (b’)2 (b)3 0b 1b 2b 3b 0b 1b 2b 3b

S

S S D D

 0a 1a 2a 3a

 1 b (b)2 (b”)3 1 b’ (b)2 (b)3 0b 1b 2b 3b 0b 1b 2b 3b

 58 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees

 N = 262,144

 a

 b

 c

Fig. 3.13. a A quaternary S/D tree for two variables of order {b,a} with two Shannon nodes
and three generalized Davio nodes, and (b, c) some of the quaternary trees that it generates.

S

S D D D

0b 1b 2b 3b

 1 a (a)2 (a)3 1 a (a)2 (a)3 0a 1a 2a 3a 1 a (a)2 (a)3

S

S D D D

0b 1b 2b 3b

 1 a (a)2 (a)3 1 a’ (a”)2 (a’’’)3 0a 1a 2a 3a 1 a” (a’’’)2 (a’)3

 S

S D D D

 0b 1b 2b 3b

 1 a (a)2 (a’)3 1 a (a”)2 (a’’)3 0a 1a 2a 3a 1 a” (a)2 (a’)3

 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees 59

 Multiple-valued S/D trees developed previously provide more
general polarity of Inclusive Form (IF) polarity, which contains the
GRM as a special case. In this Sect., a proposition for GFSOP
evolutionary minimizer based on IF polarity is provided. This is
important in order to realize smallest functional forms using the
reversible structures that will be presented in Chapt. 8.
 In addition to the reason that evolutionary minimizers are valid
for functions with a high percentage of don’t cares [80],
evolutionary minimizers (and in general heuritic-based minimizers)
are far more efficient than exact (exhaustive) formal minimizers for
problems of high dimensions. Numerical results from [80] prove
that evolutionary methods can be a good fit for the minimization of
the general case of incompletely specified functions. Such results
are illustrated in Table 3.1, where (*) indicates a population of size
25, otherwise the population is of size 50.
 The minimization using this evolutionary algorithm utilizes a
heuristic inside it, which uses functional properties to ensure the
convergence of the algorithm in each iteration [80]. This functional
property, that the new evolutionary algorithm uses, is basically the
selection of “good” products of literals in a greedy algorithm which
when incorporated into the genetic algorithm (GA) will ensure
convergence of the result (i.e., the resulting function from the GA
minimizer is always correct). This internal heuristic was missing
from previous attempts to minimize functions using GA, which
made previous evolutionary algorithms for functional minimization
to be non-convergent (i.e., does not produce the correct functionality
after an iteration in the GA). The new GA minimizer utilizes the
Darwinian evolution (Appendix E), as well Lamarckian and
Baldwinian evolutions to minimize the logic functions.
 By referring to Appendix E, one observes that Darwinian
evolution evolves the polarity chromosome using the evolutionary
operations of mutation and crossover [102] to produce a modified
polarity chromosome upon which the fitness function compares the
cost and functional correctness (convergence) of the new polarity
chromosome, and iterations occur until the optimization criteria in
the fitness function are met.

 60 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees

Table 3.1. iGRMIN minimization results over a number of benchmarks.

 This type of evolution produces the modified polarity
chromosome through genetic operations only. The idea of
Darwinian evolution is modified to Baldwinian evolution by
generating the phenotype (function) from the polarity chromosome
and then evaluating the phenotype rather than the polarity
chromosome itself. The Baldwinian evolution can be further
generalized into the Lamarckian evolution by performing operations
on the phenotype and then evaluate the phenotype, which will lead
to the production of a new polarity chromosome. Thus, in the
Lamarckian model, a local heuristic search is used to modify and
improve the chromosomes, and thus Lamarckian evolution requires
an inverse mapping from phenotype and environment to genotype.
In contrast, Baldwinian learning uses the local search to improve the
fitnesses of the chromosomes but the chromosomes themselves
remain the same without modification. The functional minimization

Benchmark # Inputs # Outputs Terms Generation Run-time

 con175 7 2 10 g1 00:01:09.15*

 con195 7 2 4 g1 00:00:04.97

 rd7375 7 3 20 g2 00:01:50.52*

 rd7395 7 3 4 g1 00:00:06.59*

 5xp175 7 10 56 g3 00:05:01.52*

 5xp195 7 10 11 g1 00:00:26.75

 rd8475 8 4 79 g2 00:20:30.71

 rd8495 8 4 9 g1 00:00:36.16

 log8mod75 8 5 88 g1 00:30:12.22

 log8mod95 8 5 13 g1 00:01:08.73

 misex195 8 7 15 g1 00:04:08.00

 dc295 8 7 9 g2 00:00:24.55*

 clip95 9 5 19 g1 00:08:40.06

 rd84275 8 1 19 g2 00:06:23.65

 rd84295 8 1 3 g1 00:00:04.67*

 rd84475 8 1 9 g1 00:03:08.79*

 rd84495 8 1 2 g1 00:00:18.79

 9sym95 9 1 2 g1 00:02:11.47*

 sao2175 10 1 7 g2 01:53:55.23

 sao2195 10 1 1 g1 00:15:39.01

 misex6475 10 1 1 g1 00:53:55.89*

 misex6495 10 1 1 g1 00:07:56.95

 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees 61

using the new Baldwinian evolutionary algorithm combined with a
greedy heuristic for Generalized Reed-Muller polarity results in
functional minimization of incompletely specified functions which
is much more optimal than previously reported results [80]. The new
suggested algorithm for multiple-valued S/D-based minimizer
generalizes the algorithm from [80] as shown in Fig. 3.14.

 Old Method →→→→ New Method

 Parameters Old New

Radix GF(2) GF(pk)

Evolutionary

Learning

Method

Darwinian

Baldwinian

Darwinian

Baldwinian

Lamarckian

Polarity GRM IF

Fig. 3.14. A comparison between previous evolutionary ESOP minimizer and the newly
proposed evolutionary S/D-based GFSOP minimizer.

 The idea of the Darwinian, Baldwinian, and Lamarckian
learning methodologies [80] for the minimization of GFSOP
expressions is illustrated in Fig. 3.15. The chromosome that is used
in the evolutionary minimization represents the polarity of the
corresponding canonical S/D based expansions. The phenotype in
Fig. 3.15 represents the GFSOP expression. Figure 3.16
demonstrates such polarity chromosome for the binary expansions
that are included in the Green/Sasao hierarchy from Fig. 3.1. The
new S/D–based evolutionary minimizer generalizes the value of the
polarity chromosome in Fig. 3.16 into multiple-valued logic. The
following is a generic algorithm for Lamarckian evolutionary
minimizer for the new multiple-valued IF polarity (variations from
this algorithm can be implemented as well.)

 62 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees

{run:= 0
Maximum run:= i
cost = # literals
initial genotype:= G0
 1. if run:= 0
 then (Gn = G0)
 else Gn = Gz+run

2. perform random genetic operations on Gn
 3. using a greedy search heuristic obtain the initial phenotype Px+run

 using logic transformation produce a modified phenotype Py+run
 if cost(Px+run) < cost(Py+run)
 then (Pz+run = Px+run)
 else Pz+run = Py+run
 if cost(Pz+run) < cost(Pz+(run-1))
 then Pz+run = Pz+run
 else Pz+run = Pz+(run-1)

 produce genotype Gz+run for Pz+run

 run = run ++
 if run = i
 then go to 4
 else go to 1
 4. print Pz+run
 print Gz+run

 end}
Example 3.4. Let us demonstrate the idea of modifying the
genotype in Lamarckian evolution in contrast to Baldwinian
evolution using the K-map in Fig. 3.17.
 It can be observed that two possible ESOP-based expressions
(phenotypes) are possible for the function shown in Fig. 3.17a. The
first one is F1 = ab ⊕ cd, and the second one is F1 = ab ⊕ c. Both
phenotypes have the same genotype (polarity vector) of {a = 1, b =
1, c = 1, d = 1} or more compactly the polarity vector [1111].
Consequently, the Baldwinian evolutionary minimizer will use a
greedy search heuristic to search for the least cost (e.g., minimum
number of literals) phenotype for a specific non-changing polarity
vector. This is obviously the second phenotype F1 = ab ⊕ c which
has the cost of 3. On the other hand, Lamarckian evolutionary
minimizer will search for a phenotype without necessarily
maintaining the same chromosome (polarity vector). This can
potentially lead to less costly phenotypes, but on the expense of
having more run times of the evolutionary minimizer algorithm.

 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees 63

Fig. 3.15. Evolutionary Algorithms: a Darwinian, b Baldwinian, and c Lamarckian, where
the dashed box in (c) indicates the effect of the environment as knowledge and
optimization. (Greedy heuristic is used for a “good” selection of products of literals.)

Fig. 3.16. Polarity chromosome (string; polarity vector) for GRM.

Initial
Chromosome
Population

Modified
Chromosome
Population

Modified
Chromosome
Evaluator
-Functionality
- Correctness
 (Convergence)
- Cost

Initial
Chromosome
Population

Modified
Chromosome
Population

Phenotype

Greedy Search
Heuristic

Phenotype
Evaluator
-Correctness
 (Convergence)
-Cost

Initial
Chromosome
Population

Modified
Chromosome
Population

Initial
Phenotype

Greedy Search
Heuristic

Modified
Phenotype

Phenotype
Evaluator

New
Chromosome

 a b c

 64 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees

0/1 0/1 0/1 0/1
 a b c ab ac bc abc

0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Constant

 a b

Fig. 3.17. K-maps for a Boolean function F1, and b Boolean function F2.

 This can be observed utilizing the K-map in Fig. 3.17b, where
one possible phynotype is F2Initial = ab ⊕ abc. Yet, it can be
observed that due to the Boolean law xx =⊕1 , then this F2
phenotype can be transformed into F2Modified = ab(1⊕c) = cab . It
can be observed that while the intial phenotype with polarity vector
[111] has the cost of 5, the modified phenotype with the polarity
vector [110] has the cost of 3. Thus, a more compact (minimized)
expression (phenotype) has been obtained by changing the
chromosome (polarity vector) using the Lamarckian evolutionary
algorithm.

3.8 Summary

In this Chapt., we introduced a new family of Ternary S/D Trees,
defined new families of Ternary Inclusive Forms (TIFs) and Ternary
Generalized Inclusive Forms (TGIFs), and calculated their numbers
for two variables. We introduced a new subfamily of Trees called
Ternary Generalized Inclusive Forms Kronecker (TGIFK) Decision
Tree, and showed its hierarchical position with respect to the
Extended Green/Sasao hierarchy over GF(3). It can be observed that
the number of S/D trees for ternary logic is very large, and it grows
exponentially with the increase of the number of variables.
Therefore, searching for efficient algorithms to find the minimum
GFSOP flattened form expression of ternary logic over GF(3) would

F1 F2

ab 00 01 11 10

00 0 0 1 -

01 0 0 1 -

11 1 1 0 -

10 0 0 1 -

cd
ab 0 1

00 0 1

01 0 1

11 1 0

10 0 1

 c

 3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees 65

be a real challenge, and much more difficult than for the well-
researched binary case, where it is already practically intractable.
 Therefore, new strategies and heuristics have to be invented for
GFSOP minimization, using TIF structure and taking into account
the exponential growth of the number of TIFs. By analogy to binary
logic, in all cases, methods should be developed to find high quality
GFSOPs avoiding generating all transform matrices, by searching
efficiently in the space of TGIFs. We propose an evolutionary
algorithm to solve the problem of searching for a minimum GFSOP
using IF polarity from the corresponding multiple-valued S/D trees.
 The proposed evolutionary minimizer will be used to minimize
the GFSOP expression for a given function to realize the function
using reversible structures that will be developed in Chapt. 8. Such
GFSOP minimization for the realization of GFSOP expressions in
multiple-valued reversible structures will have an effect on
producing minimal size quantum circuits which will be shown in
Chapt. 10, and consequently minimizing the total number of
arithmetic calculations that are used in quantum computing as will
be demonstrated in Chapt. 11.

 66 3.8 Summary

4 Novel Methods for the Synthesis of Boolean
and Multiple-Valued Logic Circuits Using Lattice
Structures

This Chapt. presents a new type of regular structures that will be
used to produce regular reversible lattice structures in Chapt. 6.
With future logic realization in technologies that are scaled down
rapidly in size, the emphasis will be increasingly on the mutually
linked issues of regularity, predictable timing, high testability, and
self-repair. For the current leading technologies with the active-
device count reaching the hundreds of millions, and most of the
circuit areas occupied by local and global interconnects, the delay of
interconnects is responsible for about 40-50% or more of the total
delay associated with a circuit [51,229]. In future technologies,
interconnects will take an even higher percent of area and delay
which creates interest in cellular (regular) structures [109,209],
especially for nano technologies [109].
 As it has been shown [229] that most of the circuit area is
occupied by local and global interconnects, and the delay of
interconnects is responsible for most of the total delay associated
with a circuit, maintaining equal length of local inter-connects will
minimize the total length of the used wires and consequently
minimize the delay and power consumed. Also, it has been shown in
[229] that the relative delay for global interconnects with or without
repeaters over all process technologies are much larger than their
counterparts of local interconnects. This suggests that using lengthy
interconnects between the circuit elements will produce higher
delays of the signal propagation throughout the interconnects and
thus one wants to use shorter interconnects. This problem becomes
even more serious for circuits that switch at very high speeds, where
the power consumption increases with the increasing operation
frequencies, and even the smallest capacitance or inductance that
exists naturally within the wirings will be of extreme importance to
maintain the electrical “signal integrity” as much as possible. Figure

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

4.1 illustrates the trends for electrical signal delays for global
interconnects with repeaters and without repeaters versus the local
interconnects [229].
 Recently, regular layout fabrics are becoming more popular
with the new hardware implementation technologies such as single-
electron devices (SET) [111,112] and quantum dots [259].
Fabrication of two dimensional hexagonal regular structures has
been reported in [112] (See Figs. 11.1 and 11.2). Other circuits of
interest for regular structure approach use the Chemically
Assembled Electronic Nanotechnology (CAEN) [91,103], which is
expected to offer significantly denser devices than CMOS
technology. For instance, a single RAM cell that requires roughly
100 nm2, will occupy in CMOS technology an area of 100,000 nm2
[103].

 Fig. 4.1. Delay for local and global wiring versus feature size.

 Lattice structures [5,13,18,51,144,161,177,178,179] generalize
the ideas from the well-known regular structures: Fat trees,
Generalized PLAs, Maitra cascades [148], and Akers Arrays [1],
into a more systematic framework which is closely and naturally
related to the symmetry of functions, and “symmetric networks”

Process Technology Node (nm)

 Relative
 Delay

Gate Delay (Fan Out 4)
Local (Scaled)
Global with Repeaters
Global w/o Repeaters

0.1

1

10

 100

250 180 130 90 65 45 32

 68 4 Novel Methods for the Synthesis of Logic Circuits Using Lattice Structures

from [136]. In this Chapt., the concept of 2-D lattice structures is
extended to the case of regular 3-D lattice structures and a new
algorithm for the iterative decomposition of such 2-D and 3-D
regular structures is provided. This subject is essential for the future
nano technologies [103], as it shows the best way to place
combinational logic functions in a three-dimensional space where all
local connections are of the same length and global connections are
only inputs on parallel oblique planes. Although the concept of
symmetry for multiple-valued functions, which is closely related to
lattice structures, have been previously investigated [46,47,247], the
author is not aware of any previously published research about
expansions into regular structures that have more than two
dimensions. The main results of this Chapt. are:
• The application of expansions into regular three-dimensional
 lattice structures.
• The realization of non-symmetric ternary functions in 3-D lattice
 structures.
• Generic methodology of joining lattice nodes in three-dimensional
 space.
• The invariant (3,3) 3-D Shannon and (3,3) 3-D Davio lattice
 structures.
• Iterative Symmetry Indices Decomposition (ISID): A novel
 layout-driven method to decompose two-dimensional and three-
 dimensional lattice structures.
 The remainder of this Chapt. is organized as follows. Basic
background of symmetry indices is presented in Sect. 4.1. Basic
definitions of the fundamental (2,2) two-dimensional binary lattice
structures are given in Sect. 4.2. The concept of (3,3) two-
dimensional lattice structures is presented in Sect. 4.3. Three-
dimensional lattice structures based on the new generalized sets of
Shannon and Davio canonical expansions (from Sect. 2.2) are
presented in Sect. 4.4. An algorithm for the creation of three-
dimensional lattice structures is presented in Sect. 4.5. Complete
example of such three-dimensional lattice structures is presented in
Sect. 4.6. Iterative Symmetry Indices Decomposition (ISID) is
presented in Sect. 4.7. A Summary of the Chapt. is presented in
Sect. 4.8.

 4 Novel Methods for the Synthesis of Logic Circuits Using Lattice Structures 69

4.1 Symmetry Indices

It is known in logic synthesis that certain classes of logic functions
exhibit specific types of symmetries [83,118,136,213,244]. Such
symmetries include symmetries between different functions under
negation, symmetries within a logic function under the negation of
its variables, and symmetries within a logic function under the
permutation of its variables. Accordingly, the following is one
possible classification of logic functions:
(1) P-Equivalence class: a family of identical functions obtained by
the operation of permutation of variables.
(2) NP-Equivalence class: a family of identical functions obtained
by the operations of negation or permutation of one or more
variables.
(3) NPN-Equivalence class: a family of identical functions obtained
by the operations of negation or permutation of one or more
variables, and also negation of function (cf. Table G.1).
Example 4.1. The following represents symmetric function: F = ab
⊕ bc ⊕ ac.

 Fig. 4.2. K-map of three-variable symmetric function F = ab ⊕ bc ⊕ ac.

 In Fig. 4.2, a symmetry index Si specifies a K-map cell that
counts value “1” in the specified minterm i number of times.

Definition 4.1. A single index symmetric function, denoted as
Sk(x1,x2,…,xn) has value 1 when exactly k of its n inputs are equal to
1, and exactly (n-k) of its remaining inputs are 0.

Definition 4.2. The elementary symmetric functions of n variables
are:

 S0 = nxxx ...21 ,

ab
c

0 1

01 0 1

10 0 1 F

S0 S1

S1 S2

S2 S3

S1 S2

00 0 0

11 1 1

 70 4.1 Symmetry Indices

 S1 = nnnn xxxxxxxxxxx 12132121 −+++ ,

 …, and
 Sn = nxxx ...21 .

 Thus, for a Boolean function of three variables one obtains the
following sets of symmetry indices: S0 = { }cba , S1 =

{ }cbacbacba ,, , S2 = { }cbacabbca ,, , and S3 = { }abc . It has been
shown [213,219] that an arbitrary n-variable symmetric function f is
uniquely represented by elementary symmetric functions S0, S1, …,
Sn as follows: f = �

∈

=
Ai

Ai SS , where A ∈ {0, 1, …, n}. Also it can

be shown that, for f = SA and g = SB, the following are obtained:

 BASgf ∩=. , (4.1)

 BASgf ∪=+ , (4.2)

 BASgf ⊕=⊕ , (4.3)

 ASf = . (4.4)

 It has been shown in [1] that a non-symmetric function can be
symmetrized by repeating its variables. This method of variable
repetition transforms the values of K-map cells which make the
function non-symmetric into don’t cares which make the function
symmetric.
Example 4.2. The following K-map demonstrates the
symmetrization by repeating the variables of a non-symmetric
Boolean function: F = a’ + b.

Fig. 4.3. Symmetrization of a non-symmetric Boolean function by repeating its
variables: a non-symmetric Boolean function, and b symmetric Boolean function
obtained by repeating variable {a}.

b
a 0 1

0 1 1

1 0 1 F

S0 S1

S1 S2

b

aa 0 1

00 1 1

01 - -

11 0 1

10 - - F

S0 S1

S1 S2

S2 S3

S1 S2

 a b

 4.1 Symmetry Indices 71

 One notes that while in Fig. 4.3a conflicting values occur for
symmetry index S1 in minterms ba and ba , thus producing a non-
symmetric function, non-conflicting values are produced for the
same non-symmetric function in Fig. 4.3b by repeating variable {a}
two times.

4.2 Fundamental (2,2) Two-Dimensional Lattice Structures

The concept of lattice structures for switching functions involves
three components: (1) expansion of a function, that corresponds to
the initial node (root) in the lattice, which creates several successor
nodes of the expanded node, (2) joining (collapsing) of several
nodes of a decision tree’s level to a single node, which is the reverse
operation of the expansion process, and (3) regular geometry to
which the nodes are mapped that guides which nodes of the level are
to be joined.
 While the realization of non-symmetric functions in Akers
arrays [1] requires an exponential growth of repetition of variables
in the worst case, the realization of non-symmetric functions in
lattice structures requires a linear growth of repetition of variables
[50,51], and consequently one need not to repeat the variables of
non-symmetric functions many times to realize such functions in
lattice structures for most practical benchmarks. It has been shown
[50,51] that one needs to repeat variables to realize benchmarks in
lattice structures by 2.5 times on average. Figure 4.4 illustrates, as
an example, the geometry of 4-neighbors and joining operations on
the nodes where each cell has two inputs and two outputs (i.e., four
neighbors). The construction of the lattice structure in Fig. 4.4
implements the following one possible convention: top-to-bottom
expansion and left-to-right joining (i.e., left-to-right propagation of
the corresponding correction functions in Figs. 4.4c and 4.4d,
respectively).

Definition 4.3. The function that is generated by joining two nodes
(sub-functions) in the lattice structure is called the joined function.
The function that is generated in nodes other than the joining nodes,

 72 4.1 Symmetry Indices

to preserve the functionality in the lattice structure, is called the
correction function.

 Note that the lattices presented in Fig. 4.4 preserve the
functionality of the corresponding sub-functions f and g. This can be
observed, for instance, in Fig. 4.4b as the negated variable {a’} will
cancel the un-complemented variable {a}, when propagating the
cofactors from the lower levels to the upper levels or vice versa,
without the need for any correction functions to preserve the output
functionality of the corresponding lattice structure. This simple
observation cannot be seen directly in Figs. 4.4c and 4.4d, as the
correction functions are involved to cancel the effect of the new
joining nodes for the preservation of the functionality of the new
lattice structures (these correction functions are shown in the
extreme right of the second level in Figs. 4.4c and 4.4d,
respectively).
 It is shown in [1] that every function that is not symmetric can
be symmetrized by repeating variables, and that a totally symmetric
function can be obtained from an arbitrary non-symmetric function
by the repetition of variables. Consequently, lattice structures and
the symmetry of functions are very much related to each other.
Example 4.3 will illustrate such close relationship.
Example 4.3. For the following non-symmetric function: F = ab +
a’c. Utilizing the joining rule that was presented in Fig. 4.4b for a
two-dimensional lattice structure with binary Shannon nodes, one
obtains the lattice structure shown in Fig. 4.5.
 One can observe that in order to represent the non-symmetric
function in Example 4.3 in the 2-D lattice structure, variable {b} is
repeated. The nodes in Fig. 4.5 are Shannon nodes, which are
merely two-input one-output multiplexers, whose output goes in two
directions, with the variables {a, b, c} operating as control signals.
 The results from this Sect. will be generalized to ternary logic
in a later Sect., and thus from two-dimensional space to three-
dimensional space. It is important to prove that the repetition of
variables will have an end in the process of the symmetrization of
the non-symmetric functions. An intuitive proof is as follows: for
totally symmetric functions the number of variables are equal to the
number of levels of the lattice structure, as there is no need to repeat
variables, and as it is known that by the repetition of variables every

 4.2 Fundamental (2,2) Two-Dimensional Lattice Structures 73

 b

 d

 c d

Fig. 4.4. a A two-dimensional 4-neighbor lattice structure, b joining rules for binary
Shannon lattice structure, c binary positive Davio lattice structure, and d binary negative
Davio lattice structure.

non-symmetric function is symmetrized, then this must result in
definite number of levels in the corresponding lattice structure and
as a consequence in certain number of total variables, repeated and
non-repeated, that will result in the termination of the process of
symmetrization. Lattice synthesis is typically performed from top to
bottom when the levels of gates are synthesized one at a time until
the level with constant cofactors is reached.
Example 4.4. Figure 4.6 illustrates the close relationship between
the concept of the two-dimensional lattice structures and the
symmetry of functions.

f g

 1 a 1 a

 f0 af2 ⊕ a’g0 f2 ⊕ g0 ⊕ g2

f g

 1 a’ 1 a’

 f0 a’f2 ⊕ ag0 f2 ⊕ g0 ⊕ g2

f g

a’ a a’ a

f0 af1 + a’g0 g1

a

b

c

v1 v2 v3 v4 v5

 vi ∈ {0,1} a

 74 4.2 Fundamental (2,2) Two-Dimensional Lattice Structures

d

 Note that in Fig. 4.6b the symmetry indices represent the sets of
all possible paths from the leaves to the root through the internal
nodes in Fig. 4.6a.

 Fig. 4.5. Shannon lattice structure for the non-symmetric function: F = ab + a’c.

 Figure 4.6c shows that the same symmetry indices, that are
shown in Fig. 4.6b, are the counts of the number of ones in the
Gray-encoded cell indices of the K-map. The concept of lattice
structures is closely related to the concept of symmetric networks
[136]. In symmetric networks switches are allocated on data paths
that are controlled by control variables. The terminal nodes of such
structure are the value of the corresponding symmetry index. This
type of structures which is based on the concept of symmetry indices
is illustrated in Fig. 4.7 for a Boolean function of three variables.
 The realization of non-symmetric functions using lattice
structures require the repetition of variables. To minimize the size of
lattices, search heuristics for variable ordering for symmetric
functions and search heuristics for variable ordering and repetition
of non-symmetric functions are needed. This is similar to the case of
Binary Decision Diagrams (BDDs) [2,45,142] where various
variable ordering produces different sizes of the corresponding
BDDs. The following example illustrates the idea of the realization
of non-symmetric functions using lattice structures.

0 1

 F

a

b

c

 0 1 0 1

0 1

0 1 0 1 0 1

0

b

0 1

 0 1

1 1

 4.2 Fundamental (2,2) Two-Dimensional Lattice Structures 75

Fig. 4.6. a Two-dimensional lattice structure for function of four variables: lattice structure
with inter-connected nodes which are 2-to-1 inter-connected multiplexers, b sets of binary
symmetry indices, and c K-map interpretation of the binary symmetry indices.

 a b

Fig. 4.7. Symmetric network: a K-map that illustrates the distribution of symmetry indices,
and b the corresponding symmetric network which produces the symmetry indices as
terminal nodes.

a

 S0 S1 S2 S3 S4

 0 1

 0 1 0 1

 0 1 0 1 0 1

 0 1 0 1 0 1 0 1

F = S 0,1,2,4 (a,b,c,d)
a

b

c

 d

 1 1 1 0 1

Si is the symmetry indices, where i = # of ones in the
Gray-encoded cell indices of the K-map:

S0 = {a’b’c’d’}
S1 = {a’b’c’d, a’b’cd’, a’bc’d’, ab’c’d’}
S2 = {a’b’cd, a’bc’d, a’bcd’, abc’d’, ab’c’d, ab’cd’}
S3 = {a’bcd, abc’d, abcd’, ab’cd}
S4 = {abcd}

 ab
cd

S0 S1 S2 S1

 00 01 11 10

00
01

11

10

 S1 S2 S3 S2

 S2 S3 S4 S3

 S1 S2 S3 S2

b c

 76 4.2 Fundamental (2,2) Two-Dimensional Lattice Structures

ab
c 0 1

00 s0 s1

01 s1 s2

11 s2 s3

10 s1 s2

 a’ b’ c’
 a b c

 b’ c’ S1(a,b,c)
 b c

 c’ S2(a,b,c)

c

S3(a,b,c)

S0(a,b,c)

Example 4.5. For the binary non-symmetric implication function: F
= a’ + b, Fig. 4.8 illustrates the relationship between the k-map with
non-conflicting symmetry indices and the two-dimensional lattice
structure with non-conflicting leaves.
 The concept of two-dimensional (2,2) lattice structures has been
generalized to many types of two-dimensional (k,k) lattice
structures. The following Sect. introduces one generalization of 2-D
(2,2) lattice structures into 2-D (3,3) lattice structures.

4.3 (3,3) Two-Dimensional Lattice Structures

The idea of (2,2) lattice structures have been extended to the case of
planar (3,3) lattice structures [195,188,221]. This new planar regular
structure has some advantages over the (2,2) lattice structures
especially for self-repair for Field Programmable Gate Arrays
(FPGAs) [58,221].

 0 1 0 1

 0 1 0 1 0 1 0 1

 0 1

Fig. 4.8. a Non-symmetric implication function, b symmetrization by repetition of
variables, c two-dimensional lattice structure that corresponds to (a) with conflicting leaves,
and d two-dimensional lattice structure that corresponds to (b) with non-conflicting leaves.

 0 1 a
b

0 1 1

1 0 1

S0(a,b) S1(a,b)

S2(a,b)

a

1 1,0 1

b

F

c d 0

1 -

1

a

a

F

b

a

S0(a,a,b)

S1(a,a,b)

S2(a,a,b)

S2(a,a,b)

S3(a,a,b)

aa b 0 1

S1(a,a,b) b

11 0 1

01 - -

00 1 1

10 - -

 4.2 Fundamental (2,2) Two-Dimensional Lattice Structures 77

 Fig. 4.9. (3,3) two-dimensional lattice structure.

 The (3,3) 2-D lattice structures that are shown in Fig. 4.9 have
the following additional features over their counterparts of (2,2) 2-D
lattice structures: (1) the data inputs to a gate can be complemented,
and (2) both data inputs of a gate can be connected to the same gate
below. Numerical results have been obtained [188] that compared
the size of benchmarks realized in (2,2) and (3,3) Shannon lattice
structures, which showed a clear advantage of the (3,3) lattice
structures over (2,2) lattice structures in terms of size. Table 4.1
from [188] illustrates such comparison. The (3,3) two-dimensional
lattice stucture can be extended to any (k,k) two-dimensional lattice
structure using similar procedures.
 Table 4.1 shows that for 18 benchmarks the (3,3) 2-D lattice
structures have a total of 291 levels and 863 nodes as compared to
383 levels and 2011 nodes in the case of (2,2) 2-D lattice structures.
Thus for an initial evaluation, (3,3) 2-D lattice structures show a
significant improvement in the minimization of the total size of
lattice logic circuits over the (2,2) 2-D lattice structures.

4.4 New Three-Valued Families of (3,3) Three-Dimensional
Shannon and Davio Lattice Structures

The concept of binary two-dimensional Shannon and Davio lattice
structures that was presented in Sect. 4.2 can be generalized to
include the case of three-dimensional Shannon and Davio lattice
structures with function expansions that implement the fundamental

 78 4.3 (3,3) Two-Dimensional Lattice Structures

Table 4.1. Experimental results for the realization of MCNC benchmarks in (2,2) and (3,3)
two-dimensional lattice structures.

multi-valued Shannon and Davio decompositions, as well as the new
invariant set of multi-valued Shannon and Davio decompositions
from Sect. 2.2. Since the most natural way to think about binary
lattice structures is the two-dimensional 4-neighbor lattice structure
that was shown in Fig. 4.4a, one can extend the same idea to utilize
the full three-dimensional space in the case of ternary lattices. Such
lattices represent three-dimensional 6-neighbor lattice structures.
Although regular lattices can be realizable in the three-dimensional
space for radix three while maintaining their full regularity, they are
unrealizable for radices higher than three (i.e., 4, 5, etc). Higher
dimensionality lattices can be implemented in 3-D space but at the
expense of losing the full regularity. This is because the circuit
realization for the ternary case produces a regular structure in three
dimensions that is fully regular in terms of connections; all
connections are of the same length. Realizing the higher
dimensionality lattices in lower dimensionality space is possible but

 clip 5(1) 9(9) 18 103 9 30
 5(2) 9(9) 27 220 9 30

 cps 109(1) 24(22) 26 134 24 61

 109(3) 24(22) 39 342 30 128

 29(6) 22(17) 18 47 17 36

 example2 66(23) 85(16) 21 52 16 45

 sao2 4(2) 10(10) 18 71 14 56

 Ratio, % 100 100 76 43

Name # Outputs # Inputs (2,2) Lattice (3,3) Lattice

 # Levels # Nodes # Levels # Nodes

 apex7 37(30) 49(17) 25 148 19 33

 cm162a 5(3) 14(10) 11 24 10 18

 109(2) 24(18) 26 164 21 66

 duke2 29(3) 22(15) 18 52 15 69

 29(18) 22(15) 22 92 15 44

 66(59) 85(14) 17 31 14 21
 66(63) 85(13) 15 37 13 26
 frg2 139(99) 143(20) 22 189 20 28

 139(100) 143(19) 28 164 20 61

 4(3) 10(10) 16 73 14 65
 4(4) 10(10) 16 68 11 46

 Total 383 2011 291 863

 4.4 New Three-Valued Families of (3,3) Three-Dimensional Lattice Structures 79

at the expense of regularity; the lattices will not be fully regular due
to the uneven length of the inter-connections between nodes.
 As a topological concept, and as stated previously, lattice
structures can be created for two, three, four, and any higher radix.
However, because our physical space is three-dimensional, lattice
structures, as a geometrical concept, can be realized in solid
material, with all the inter-connections between the cells of the same
length, only for radix two (2-D space) or radix three (3-D space). It
is thus interesting to observe that the characteristic geometric
regularity of the lattice structure realization which is observed for
binary and ternary symmetric functions will be no longer observable
for quaternary functions. Thus, the ternary lattice structures have a
unique position as structures that make the best use of three-
dimensional space (we do not claim here that a regular structure that
would use 3-D space better than 3-D lattice structures can not be
invented, and the statement is restricted only to lattice-type
structures). The following Sect. will introduce the proposed general
three-dimensional logic circuit of ternary lattice structures. The new
3-D lattice structures that realize ternary functions, which will be
presented in the next Sects., will be further extended to the
reversible case in Chapt. 6, and then mapped into quantum circuits
as will be illustrated in Chapt. 10.

4.4.1 Three-Dimensional Lattice Structures

In general, to reserve the fully regular realization of expansions over
nth radix, it is sufficient to join n nodes in n-dimensional space to
obtain the corresponding lattice structures. For instance, as was
shown in Fig. 4.4, it is sufficient in the binary case to join two
nodes. Analogously, it is sufficient in the ternary case to join three
nodes to form the corresponding 3-D lattice structures [5,13,18].
Analogously to the work presented previously, fully symmetric
ternary functions do not need any joining operations to repeat
variables in order to realize them in three-dimensional lattice
structures. Because three-dimensional lattice structures exist in a
three-dimensional space, a geometrical reference of coordinate
systems is needed in order to be systematic in the realizations of the
corresponding logic circuits. Consequently, the right-hand rule of

 80 4.4 New Three-Valued Families of (3,3) Three-Dimensional Lattice Structures

the Cartesian coordinate system is adopted. Example 4.6 illustrates
lattice realizations for such fully symmetric ternary functions.
Example 4.6. For the fully symmetric three-variable ternary
input/ternary output function: F = ab + ac + bc. Adopting the right-
hand rule of the Cartesian coordinate system, the following is the
three-dimensional logic circuit realization of the symmetric
function:

Fig. 4.10. Three-dimensional logic circuit realization for the ternary symmetric function: F
= ab + ac + bc.

 One can observe that Fig. 4.10 represents a fully regular lattice
structure in three-dimensions. Each dimension corresponds to a
value of the corresponding control variable; value zero of the control
variable propagates along the x-axis, value one of the control
variable propagates along the y-axis, and value two of the control
variable propagates along the z-axis. Since the ternary function in
Example 4.6 is fully symmetric [18], no variables need to be
repeated in the corresponding lattice structure. In 3-D space, each
control variable spreads in a plane to control the corresponding
nodes (these parallel planes are represented using the dotted
triangles in Fig. 4.10), in contrast to the binary case where each
control variable spreads in a line to control the corresponding nodes

0

0a
0b

0c

2a

2b

0

2c

 1a 1b
0

1c

1b
2c

1b

0c

2b

2b

1c

0b

0
1c

0b

0c

1 1c

0c

2
1c

 2c

2

1c

2c 1

2c

0c

0

2c

0c 2

2 1

0 x

y

z

 4.4.1 Three-Dimensional Lattice Structures 81

(these control signals are in the solid bold lines in Fig. 4.4a). Each
node in Fig. 4.10 is a three-input one-output multiplexer, whose
output goes in three directions.
Example 4.7. The following is the ternary modsum addition.

 Fig. 4.11. Ternary modsum addition.

The following is the logic circuit of the ternary 3-digit full adder:

 Fig. 4.12. Logic circuit of a ternary 3-digit full adder.

The following maps resemble such functions for the Sum (S) and the
output carry (Cout) that appear in the logic circuit in Fig. 4.12.

 a b

 Fig. 4.13. Ternary sum and ternary carry out maps.

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

 a b
 Cin 0 1

 0 0 0 1
 0 1 1 2
 0 2 2 0
 1 0 1 2
 1 1 2 0
 1 2 0 1
 2 0 2 0
 2 1 0 1
 2 2 1 2

 a b
 Cin 0 1

 0 0 0 0
 0 1 0 0
 0 2 0 1
 1 0 0 0
 1 1 0 1
 1 2 1 1
 2 0 0 1
 2 1 1 1
 2 2 1 1

Cin Cin Cin

+ + +

0

Cout S2 S1 S0

a2 b2 a1 b1 a0 b0

 82 4.4.1 Three-Dimensional Lattice Structures

 The following are the 3-D lattice realizations of the functions in
Fig. 4.13.

 Fig. 4.14. The sum function of the ternary 3-digit full adder.

 Fig. 4.15. The carry out function of the ternary 3-digit full adder.

0

0a
0b

0c

2a

2b

 1a 1b
0

1c

1b
2c

1b

0c
0

2b

2b

1c

0b

1
1c

0b

0c

2 1c

0c

1
1c

2c

2

1c

2c 1

2c

0c

2

2c

0c

0

0a
0b

0c

2a

2b

 1a 1b 1
 1c

1b
2c

1b

0c
1

2b

2b

1c

0b

0
1c

0b

0c

0 1c

0c

1
1c

 2c

1

1c

2c 1

2c

0c

0

2c

0c

-

-

2 1

0 x

y

z

2 1

0 x

y

z

 4.4.1 Three-Dimensional Lattice Structures 83

 From Figs. 4.14 and 4.15, one can observe that the sum function
and the carry out function are both symmetric functions, and
consequently there is no need to repeat variables to make the ternary
functions realizable in the 3-D lattice structures. In the case of
ternary non-symmetric functions, one needs to repeat variables, to
symmetrize the corresponding non-symmetric functions, in order to
represent such functions in the corresponding lattice structures,
analogous to the binary case.
Example 4.8. Let us design a ternary 2-digit multiplier in a 3-D
lattice structure. Two-digit multi-valued multiplication is performed
utilizing the mod-multiplication operator as follows:
 B1 B0
 A1 A0
 Cout1 m01 m00
 Cout2 m11 m10 0
 Cout S3 S2 S1 S0

 Figure 4.16 shows the logic circuit of the ternary 2-digit
multiplier, and Fig. 4.17 shows the maps for the ternary
multiplication and the output carry (Cout) that appear in the logic
circuit (in Fig. 4.16). Figures 4.18 and 4.19 are the 3-D lattice
realizations of the functions in Fig. 4.17.

 Fig. 4.16. Logic circuit of a ternary 2-digit multiplier.

0

.

+

B0 A0

.

+

B1 A0

0

+ + + +
 0

 0

 Cout S3 S2 S1 S0

.

+

B0 A1

.

+

B1 A1

0

 84 4.4.1 Three-Dimensional Lattice Structures

 a b

 Fig. 4.17. a Ternary multiply, and b ternary carry out for the ternary 2-digit multiplier.

 The three input ternary adder that appears in the logic circuit in
Fig. 4.16 can be implemented directly from the 3-D lattices shown
in Figs. 4.14 and 4.15 for the sum and carry out, respectively. The
two input ternary adder that appears in the logic circuit in Fig. 4.16
can also be implemented directly from the 3-D lattices similar to
those shown in Figs. 4.14 and 4.15 for the sum and carry out,
respectively, by using only two control variables, and setting the
third digits (a2 and b2) in Fig. 4.12 to the value zero.
Example 4.9. For the non-symmetric two-variable ternary
input/ternary output function: F = ab + a’b’’, Fig. 4.20 illustrates the
three-dimensional logic circuit for such non-symmetric functions.
Figure 4.20 also indicates the relationship between the ternary
natural-encoded map with non-conflicting symmetry indices and the
three-dimensional lattice structure with non-conflicting leaves.
Example 4.10. Figure 4.21 illustrates the close relationship
between the concept of the three-dimensional lattice structure and
the symmetry of ternary functions.
 Note that, in Fig. 4.21b, the ternary symmetry indices represent
the sets of all possible paths from the leaves to the root through the
internal nodes of the three-dimensional lattice structure which is
shown in Fig. 4.21a. Figure 4.21c shows that the same ternary
symmetry indices, that are shown in Fig. 4.21b, correspond to the
counts of the number of ones and twos in the natural-encoded cell
indices of the ternary map. In general, as a convention, let us denote
the nodes in the lattice structure by their three-dimensional Cartesian
coordinates; the tuple {x, y, z}. Also, let us denote the edge between
two nodes {x1, y1, z1} and {x2, y2, z2} by {x1, y1, z1}-{x2, y2, z2}.

a 0 1 2
b

0 0 0 0

1 0 1 2

 2 0 2 1

 a 0 1 2
b

0 0 0 0

1 0 0 0

 2 0 0 1

 4.4.1 Three-Dimensional Lattice Structures 85

Fig. 4.18. The multiply function of ternary 2-digit multiplier.

Fig. 4.19. The carry out function of ternary 2-digit multiplier.

2 1

0 x

y

z

2 1

0 x

y

z

2a 2b

F
0a

a

b

b

b

0

1

1

0

2

0

0b 1b

1a
1b

2b

 0b

 1b
 0b

2b

0a
 b

2a

1a
a

b

b

0

0

1

0

0

0

 F

0b 1b

1b

2b

 0b

 2b

 1b
 0b

2b

 86 4.4.1 Three-Dimensional Lattice Structures

 a

 b

Fig. 4.20. a Three-dimensional lattice structure that corresponds to the non-symmetric
ternary function F = ab + a’b” with conflicting leaves (shaded cells in the corresponding
ternary map), and b three-dimensional lattice structure that corresponds to the symmetrized
function F (by repeating variable a two times) with non-conflicting leaves.

 As an example, the symbol (-) in the node {1, 1, 1} in Fig.
4.20b represents a complete three-valued don’t care (i.e., 0, 1, or 2).
This geometrical notation will be used in this Sect. and in the
following Sect. To produce the repetition of variables for non-
symmetric ternary functions, the joining operators are needed to join
the corresponding nodes to produce the corresponding correction
functions, in order to preserve the output function of the 3-D lattice.

a b F
0 0 2
0 1 0,1
0 2 1,0
1 0 0,1
1 1 1
1 2 2,1
2 0 1,0
2 1 2,1
2 2 1

a b F
0 0 2
0 1 0
0 2 1
1 0 1
1 1 1
1 2 1
2 0 0
2 1 2
2 2 1

2a

0b

0a

2a

0a

0b

2a

2b

 1a 1a 1b
1a

2b

1a

2a 1b

0a

1b

0a

0b

1b

0b

1b

2b

1b

2b
2b

0b

2b

0b

2

1
-

0

1

1

2

0

1

1

0a
0b

2a

2b

1a 1b

1b

1b
2b

2b

0b

0b

2

0,1

1

2,1

1

1,0

2 1

0 x

y

z

 2 1

 0 x
 y

 z

 4.4.1 Three-Dimensional Lattice Structures 87

 a

 b c
Fig. 4.21. Three-dimensional lattice structure for ternary functions of three 3-valued
variables: a 3-D lattice structure made of 3-to-1 inter-connected multiplexers, b sets of
ternary symmetry indices, and c the ternary natural-encoded map interpretation of the
ternary symmetry indices.

 Figure 4.22 represents such joining for three-dimensional lattice
structure.

0a
0b

0c

2a

2b

2c

1a

1b

1c

1b
2c

1b
0c

2b

2b

1c

0b

1c

0b

0c

 1c

0c

1c

2c

1c

2c

2c

0c

2c

0c

S0,0(a,b,c)

S1,0(a,b,c)

S2,0(a,b,c)

S3,0(a,b,c)

S2,1(a,b,c)

S1,2(a,b,c)

S0,3(a,b,c)

S0,2(a,b,c)

S0,1(a,b,c)
S1,1(a,b,c)

Si,j is the ternary symmetry indices, where i = # of ones in the
natural-encoded cell indices of the ternary map, and j = # of
 twos in the natural-encoded cell indices of the ternary map :

S0,0(a,b,c) = {0a0b0c}
S1,0(a,b,c) = {1a0b0c, 0a1b0c, 0a0b1c}
S2,0(a,b,c) = {1a1b0c, 1a0b1c, 0a1b1c}
S3,0(a,b,c) = {1a1b1c}
S0,1(a,b,c) = {2a0b0c, 0a2b0c, 0a0b2c}
S0,2(a,b,c) = {2a2b0c, 2a0b2c, 0a2b2c}
S0,3(a,b,c) = {2a2b2c}
S1,1(a,b,c) = {1a2b0c, 1a0b2c, 2a1b0c, 2a0b1c, 0a2b1c, 0a1b2c}
S1,2(a,b,c) = {1a2b2c, 2a1b2c, 2a2b1c}
S2,1(a,b,c) = {1a1b2c, 1a2b1c, 2a1b1c}

c ab 0 1 2

01 S 1,0 S 2,0 S 1,1

02 S 0,1 S 1,1 S 0,2

10 S 1,0 S 2,0 S 1,1

11 S 2,0 S 3,0 S 2,1

12 S 1,1 S 2,1 S 1,2

20 S 0,1 S 1,1 S 0,2

21 S 1,1 S 2,1 S 1,2

22 S 0,2 S 1,2 S 0,3

00 S 0,0 S 1,0 S 0,1

 88 4.4.1 Three-Dimensional Lattice Structures

2 1

0 x

y

z

Fig. 4.22. General 3-D lattice structure for three joining nodes and a single joined node.

 In Fig. 4.22, three nodes: B, D, and H are joining (super-
imposing) their nodes J0, J1, and J2, respectively, to form the super-
imposed node J. The set of nodes {C, A, J0} are the cofactors of the
node B. The set of nodes {E, F, J1} are the cofactors of the node D.
The set of nodes {G, I, J2} are the cofactors of the node H. The
geometrical distribution of the nodes and edges in Fig. 4.22 are as
follows:

 Axis Nodes Edges Weights
 x-axis {J0, E, I} {t, v, y} α
 y-axis {C, J1, G} {r, u, x} β
 z-axis {A, F, J2} {s, w, z} γ

 Section 4.4.2 will introduce the joining rules for the general
structure in Fig. 4.22 by using the new sets of Shannon
decompositions introduced in Sect. 2.2.2.

A

 B

C
 D

E
F

I

 H

G

J0

J2 J1

J

r
s

t

u v

w

x
y

z
2 1

0 x

 y

z

 4.4.1 Three-Dimensional Lattice Structures 89

4.4.2 New (3,3) Three-Dimensional Invariant Shannon Lattice
Structures

In the following derivation, two correction functions for the case of
ternary logic are implemented. In general, for nth radix Galois logic,
no correction functions are needed for lattice structures with n-
valued invariant Shannon nodes as will be shown in Theorem 4.1.
So, for instance, for the case of binary Shannon, no correction
functions are needed, due to the fact that all of the Shannon
cofactors are disjoint, as was shown in Fig. 4.4b.

Theorem 4.1. For lattice structures with all invariant ternary
Shannon nodes, the following is one possible joining rule:

 J = 0aJ0 + 1a J1 + 2aJ2. (4.5)

Proof. Utilizing Eq. (2.61), and by joining in Fig. 4.22 the following
invariant Shannon nodes:

�
�
�

�

�

�
�
�

�

�

1

1

1

00

00

00

γ
β

α
,

�
�
�

�

�

�
�
�

�

�

2

2

2

00

00

00

γ
β

α
,

�
�
�

�

�

�
�
�

�

�

3

3

3

00

00

00

γ
β

α
.

And by assigning the following values for the set of edges {r, s, t, u,
v, w, x, y, z} in Fig. 4.22:
 t = 1α̂ 0a , v = 2α̂ 0a , y = 3α̂ 0a.

 r = 1β̂ 1a , u = 2β̂ 1a , x = 3β̂ 1a.

 s = 1γ̂ 2a , w = 2γ̂ 2a , z = 3γ̂ 2a.
One obtains the following set of Eqs. before and after joining the
three nodes J0, J1, and J2 in Fig. 4.22 (where: {A, C, J0} are the set of
functions for node B, {E, F, J1} are the set of functions for node D,
and {I, G, J2} are the set of functions for node H, respectively):

Before joining the nodes:

 B = 1α̂ 0a J0 + 1β̂ 1a C + 1γ̂ 2a A, (4.6)

 D = 2α̂ 0a E + 2β̂ 1a J1 + 2γ̂ 2a F, (4.7)

 H = 3α̂ 0a I + 3β̂ 1a G + 3γ̂ 2a J2. (4.8)
After joining the nodes:

 B = 1α̂ 0a J + 1β̂ 1a C + 1γ̂ 2a A, (4.9)

 90 4.4.2 New (3,3) Three-Dimensional Invariant Shannon Lattice Structures

 D = 2α̂ 0a N + 2β̂ 1a J + 2γ̂ 2a F, (4.10)

 H = 3α̂ 0a I + 3β̂ 1a q + 3γ̂ 2a J, (4.11)

where N and q are the correction functions, and J is the super-
imposed node in Fig. 4.22. By equalizing Eq. (4.6) to Eq. (4.9), Eq.
(4.7) to Eq. (4.10), and Eq. (4.8) to Eq. (4.11), and utilizing the
axioms of GF(3), we obtain the following results:
 N = E,
 q = G,
 J = 0aJ0 + 1a J1 + 2aJ2. Q.E.D.

 From Eq. (4.5) one observes the fact that the joining rule of any
corresponding invariant Shannon decomposition does not depend on
the scaling numbers {α, β, γ} and does not need any correction
function. The methodology that has been presented in this Sect. can
be used for all possible permutations of the invariant Shannon
decompositions. The following example illustrates Theorem 4.1.
Example 4.11. Let us produce the joining rule for the following
invariant Shannon nodes:

�
�
�

�

�

�
�
�

�

�

200

010

002

,

�
�
�

�

�

�
�
�

�

�

200

020

002

,

�
�
�

�

�

�
�
�

�

�

200

010

001

.

Then according to Eq. (4.5), one obtains:
J = 0aJ0 + 1a J1 + 2aJ2.

4.4.3 New (3,3) Three-Dimensional Invariant Davio Lattice Structures

In the following derivation, two correction functions are
implemented for the case of ternary logic. In general, for nth radix
Galois logic, at least (n-1) correction functions are needed for lattice
structures with n-valued invariant Davio nodes. So, for instance, one
needs a single correction function in the case of binary Davio
expansions (as was shown in the extreme right nodes of Figs. 4.4c
and 4.4d, respectively). The following methodology, which is used
in Theorems 4.2 through 4.4, can be used for all possible
permutations of the invariant Davio decompositions as well.

 4.4.2 New (3,3) Three-Dimensional Invariant Shannon Lattice Structures 91

Theorem 4.2. For lattice structures with all invariant ternary Davio0
(D0) nodes (that were presented in Theorem 2.3), the following is
one possible set of joining rules, and correction functions,
respectively:

 J = J0, (4.12)

 N = 2 2α 2β̂ a J0 + E + 2α 2β̂ a J1, (4.13)
 q = 2 3γ̂ 3β a J0 + G + 3γ̂ 3β a J2. (4.14)

Proof. Utilizing Eq. (2.62), and by joining in Fig. 4.22 the following
invariant D0 nodes:

�
�
�

�

�

�
�
�

�

�

111

11

1

222

20

00

γγγ
ββ

α
,

�
�
�

�

�

�
�
�

�

�

222

22

2

222

20

00

γγγ
ββ

α
,

�
�
�

�

�

�
�
�

�

�

333

33

3

222

20

00

γγγ
ββ

α
.

By assigning the following values for the edges {r, s, t, u, v, w, x, y,
z} in Fig. 4.22:

 t = 1α̂ , v = 2α̂ , y = 3α̂ .

 r = 1β̂ a , u = 2β̂ a , x = 3β̂ a.

 s = 1γ̂ a2 , w = 2γ̂ a2 , z = 3γ̂ a2.
And by following the same procedure that was used in Theorem 4.1,
one obtains:

 J = J0,

 N = 2 2α 2β̂ a J0 + E + 2α 2β̂ a J1,
 q = 2 3γ̂ 3β a J0 + G + 3γ̂ 3β a J2. Q.E.D.

Theorem 4.3. For lattice structures with all invariant ternary Davio1
(D1) nodes, the following is one possible set of joining rules, and
correction functions, respectively:

 J = J0, (4.15)

 N = 2 2α 2β̂ a’ J0 + E + 2α 2β̂ a’ J1, (4.16)
 q = 2 3γ̂ 3β a’ J0 + G + 3γ̂ 3β a’ J2. (4.17)

Proof. The proof of Theorem 4.3 follows the same methodology
that is used to prove Theorem 4.1. Q.E.D.

 92 4.4.3 New (3,3) Three-Dimensional Invariant Davio Lattice Structures

Theorem 4.4. For lattice structures with all invariant ternary Davio2
(D2) nodes, the following is one possible set of joining rules, and
correction functions, respectively:

 J = J0, (4.18)
 N = 2 2α 2β̂ a”J0 + E + 2α 2β̂ a” J1, (4.19)
 q = 2 3γ̂ 3β a” J0 + G + 3γ̂ 3β a” J2. (4.20)

Proof. The proof follows the method used for Theorem 4.1. Q.E.D.

Example 4.12. For following invariant Davio0 (D0) nodes over
GF(3):

�
�
�

�

�

�
�
�

�

�

111

210

002

,

�
�
�

�

�

�
�
�

�

�

222

120

001

,

�
�
�

�

�

�
�
�

�

�

222

120

002

.

Then according to Eqs. (4.12), (4.13), and (4.14), one obtains:
J = J0, N = 2 a J0 + E + a J1, q = 2 a J0 + G + a J2.
 From the previous examples, it can be observed that the
structural property of lattice structures depends on the functional
property of the functions that are decomposed: if the ternary
function is symmetric then there is no need to repeat variables to
realize the function in three-dimensional lattice structure, otherwise
there is a need to repeat variables (as was shown in Example 4.9 for
instance). The following Sect. introduces an algorithm for the
realization of three-dimensional logic circuits using Theorem 4.1.

4.5 An Algorithm for the Expansion of Ternary Functions
into (3,3) Three-Dimensional Lattice Structures

This Sect. introduces as an example an algorithm for realizing multi-
valued invariant Shannon expansion of ternary functions in 3-D
lattice structures that were proposed in Theorem 4.1. Analogously to
the convention that was established for the binary case, this
algorithm is developed for the convention: in the octant that
corresponds to the positive x-axis, positive y-axis, and positive z-
axis, expand the nodes in-to-out and join the cofactors counter clock

 4.4.3 New (3,3) Three-Dimensional Invariant Davio Lattice Structures 93

wise (CCW). Similar algorithms can be developed for other
invariant expansions.
{for i = j = k = 0
 Utilizing Eq. (2.61) Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1)
 if all nodes are constants
 then go to 3
 else (
 // for the nodes that have common indices //

1. if there exist nodes with conflicting values
 then (
 (Utilizing Eq. (4.5)
 Join nodes with common indices
 if three nodes exist
 then (apply Eq. (4.5))
 else (set the non-existing nodes to zero
 apply Eq. (4.5))
)
 for all joined nodes
 (
 for each node (Utilizing Eq. (2.61)
 // for l, m, and n as general positional indices that can be
 expressed in terms of i, j, and k, respectively //.
 Expand n(l ,m, n) into n(l+1, m, n), n(l, m+1, n), n(l, m, n+1))
)
 go to 2
)
 else go to 2
 2. Utilizing Eq. (2.61)
 i = i ++: Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1)

 j = j ++: Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1)
 k = k ++: Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1)
 if all nodes are constants with no conflicting values in
 the same indices
 then go to 3
 else go to 1)
 3. end}
 The following Sect. presents a complete example that illustrates
the use of the invariant Shannon and Davio spectral transforms in
the proposed three-dimensional (3,3) lattice structures.

 94 4.5 An Algorithm for the Expansion of Functions into (3,3) 3-D Lattice Structures

4.6 Example of the Implementation of Ternary Functions
Using the New Three-Dimensional Lattice Structures

The following example follows one convention for constructing
three-dimensional lattice structures using the iterative process of
expanding (decomposing) and collapsing (joining) in three-
dimensional space: in the sub-space that corresponds to the positive
x-axis, positive y-axis, and positive z-axis, expand the nodes in-to-
out and join the cofactors counter clock wise (CCW). For the
following ternary function:

 F

Fig. 4.23. Ternary input/ternary output map for the function: F = 2 0a0b + 0a1b + 0a2b + 2
1a0b + 1a1b + 1a2b + 2 2a0b + 2 2a1b + 2 2a2b.

 Utilizing Fig. 4.22, the joining operations presented in Eqs.
(4.5) and (4.12) - (4.14) for the invariant Shannon and Davio0
decompositions respectively, and the expansions from Eqs. (2.61)
and (2.62), one obtains in Figs. 4.24 and 4.25 the 3-D lattice
structures that realize the non-symmetric ternary function F from
Fig. 4.23. In Fig. 4.24, one obtains the corresponding 3-D lattice, by
utilizing the following:
Step1: Expanding nodes: Expand the non-symmetric function: F = 2
0a0b + 0a1b + 0a2b + 2 1a0b + 1a1b + 1a2b + 2 2a0b + 2 2a1b + 2 2a2b in
node (0, 0, 0) according to Eq. (2.61) as:
F0 = F(a = 0) = 2 0b + 1b +2b into node (1, 0, 0),
F1 = F(a = 1) = 2 0b + 1b +2b into node (0, 1, 0),
F2 = F(a = 2) = 2 0b + 2 1b +2 2b into node (0, 0, 1).
Step 2: Joining nodes: As a result from step 1, conflicting values
occur in nodes (1, 1, 0), (0, 1, 1), and (1, 0, 1), then Join cofactors
according to Eq. (4.5), as follows:
y-axis cofactor of node (1, 0, 0) and x-axis cofactor of node (0, 1, 0)
into node (1, 1, 0) � the joined node (1, 1, 0) is: 1 1b + 2 0 b,

a b 0 1 2

0 2 1 1

1 2 1 1

2 2 2 2

 4.6 Example of the Implementation of Functions Using New 3-D Lattice Structures 95

Fig. 4.24. First three-dimensional logic circuit of the non-symmetric function in Fig. 4.23:
F = 2 0a 0b + 0a 1b + 2 1a 0b + 1a 1b + 1a 2b + 2 2a 2b + 2 2a 1b + 2 2a 0b + 0a 2b.

Fig. 4.25. Second three-dimensional logic circuit of the non-symmetric function in Fig.
4.23: F = 2 + a·b2 + 2 a2·b2 + 2 b2.

e2
e

1 x

y

z

a

b

2

b 1

b

2

b

b

b

2

2

2

1

1

1

0

0

0

1 1

2

2

0

0

1 1

2

1

0
1

0

1
0

2

2

2 2 F

2 1

0 x

y

z

1

1 b

a
a

b

b

b

2

1

2

0

0

0

F
b

1

b2

1

b
0

b

b

0

2

1 b

b
1

1

b2

b2

b2

b2

a2

b

b

0

b2

 96 4.6 Example of the Implementation of Functions Using New 3-D Lattice Structures

z-axis cofactor of node (0, 1, 0) and y-axis cofactor of node (0, 0, 1)
into node (0, 1, 1) � the joined node (0, 1, 1) is: 1 2b + 2 1b,
z-axis cofactor of node (1, 0, 0) and x-axis cofactor of node (0, 0, 1)
into node (1, 0, 1) � the joined node (1, 0, 1) is: 1 2b + 2 0b.
Step 3: Expanding nodes: Expand the lattice structure nodes, that
result from step 2, as follows:
node (1, 0, 0) into node (2, 0, 0) of value 2,
node (1, 1, 0) into nodes: (2, 1, 0) of value 2, (1, 2, 0) of value 1, and
(1, 1, 1) of value 0,
node (0, 1, 0) into node (0, 2, 0) of value 1,
node (0, 1, 1) into nodes: (0, 2, 1) of value 2, (0, 1, 2) of value 1, and
(1, 1, 1) of value 0,
node (0, 0, 1) into node (0, 0, 2) of value 2,
node (1, 0, 1) into nodes: (2, 0, 1) of value 2, (1, 0, 2) of value 1, and
(1, 1, 1) of value 0.
Note that by joining cofactors according to Eq. (4.5), the repetition
of variable {b} is created, and therefore a new level in the 3-D
lattice structure is created to create leaves with non-conflicting
values.
 By applying the same previous procedure of expanding-joining
steps, and utilizing the expansion in Eq. (2.62) for expansion nodes

of type D0 =

�
�
�

�

�

�
�
�

�

�

222

120

001

, and the joining operations in Eqs. (4.12)

through (4.14), one obtains the three-dimensional logic circuit which
is presented in Fig. 4.25. Note that by joining cofactors according to
Eqs. (4.12) through (4.14) the repetition of variable {b} is created,
and therefore a new level in the 3-D lattice structure is created to
create leaves with non-conflicting values.
 Observing Figs. 4.24 and 4.25, one obtains the size-based
comparison results in Table 4.2. One can note that while the
Shannon lattice structure in Fig. 4.24 has only one zero-valued leaf,
Davio0 lattice structure in Fig. 4.25 has six zero-valued leaves. This
is important when considering power consumption in such lattices,
since value “0” represents ground (Fig. 4.26a) and thus does not
need to be supplied from a power supply in contrast to values “1”

 4.6 Example of the Implementation of Functions Using New 3-D Lattice Structures 97

(Fig. 4.26b) and “2” (Fig. 4.26c) that are obtained from a power
supply and thus consume power.
 For example, from Figs. 4.18 and 4.19, one can observe that the
multiplication function and the carry function are both symmetric
functions, as there is no need to repeat variables to make the ternary
functions realizable in the 3-D lattice structures.

Table 4.2. Size-based comparison between the lattice realizations in Figs. 4.24 and 4.25,
for the non-symmetric function F = 2 0a0b + 0a1b + 0a2b + 2 1a0b + 1a1b + 1a2b + 2 2a0b + 2
2a1b + 2 2a2b.

 Parameter/Type Shannon (Fig. 4.24) Davio0 (Fig. 4.25)

 Total # of Internal Nodes 7 7

 Total # of Leaves 10 10

 Total # of Zero-Valued Leaves 1 6

 “2”

 “1”

No Power: “0”

 a b c

 Fig. 4.26. Power levels for ternary logic.

 Yet, as can be also observed in Example 4.8, by the substitution
of the 3-D lattice structures of Figs. 4.18 and 4.19 into the logic
circuit in Fig. 4.16, one can see that there is a need for placement of
the individual 3-D lattices and the routing of connections between
the placed lattices. Therefore, appropriate software tools should be
created for such placement and routing that would start from the
floor plan created with these 3-D regular lattice structures. One also
can observe that although the individual lattices that are created in
Figs. 4.18 and 4.19 are fully regular, the total structure of the logic
circuit in Fig. 4.16, that is composed of all of the individual lattices,
is only semi-regular because of the use of interconnects of different

 98 4.6 Example of the Implementation of Functions Using New 3-D Lattice Structures

lengths. One possible solution for this, to obtain a fully regular total
structure, is to produce a fully regular “macro” lattice from the
corresponding “micro” lattices to produce a multi-input multi-output
3-D lattice, analogous to the binary case. Another solution is to
combine the set of individual Eqs. into one Eq. to produce a single
ternary function for the 2-digit ternary multiplier, that would
produce all the individual multiply and Cout ternary functions from
it, and implementing this single ternary function in one big 3-D
lattice structure. All these variants should be combined in future
EDA tools for a comprehensive (1) system, (2) logic, and (3)
physical design levels into solid space. Other design issues to be
considered by EDA tools is that for the previously designed ternary
3-digit full adder and ternary 2-digit multiplier one other choice of
implementation would be the use of modulo-3 addition and
multiplication in different design of logic circuits other than 3-D
lattices. Another option, is to use Galois circuits whenever possible.
Other multi-valued input multi-valued output designs are also
possible for the ternary 2-digit multiplier, utilizing a mix of higher
and lower radix logics in the same design. The following Sect.
introduces a new algorithm called Iterative Symmetry Indices
Decomposition (ISID) for the design of two-dimensional and three-
dimensional lattice structures to fit specific layout boundaries.

4.7 ISID: Iterative Symmetry Indices Decomposition

As was illustrated in Example 4.5, as a simple case, realizing non-
symmetric functions using lattice structures demands the repetition
of variables. In many cases, one has to repeat variables so many
times that will result in a big size lattice structure that does not fit
specified area (or volume in case of three-dimensional lattice
structures from Sects. 4.4.2 and 4.4.3). On the other hand, one can
re-route the interconnects between the internal nodes of the lattice
structure using optimization methods in a way such that the structure
will ultimately fit into the specified layout area. Yet, this process
will make the interconnects between cells of many different lengths,
and consequently “strips” the lattice structure from one of its
important features; all the inter-connects are of equal length. This

 4.6 Example of the Implementation of Functions Using New 3-D Lattice Structures 99

idea of maintaining interconnects of equal length for a large size
lattice structure that does not fit specific layout boundaries can be
achieved using the new decomposition called Iterative Symmetry
Indices Decomposition (ISID), as follows [16,25]: Suppose one has
a k-map of a non-symmetric Boolean function. This means that
conflicting values of “0” and “1” exist within some symmetry
indices Si. One way of removing such conflicting values is to repeat
variables as was shown in previous Sects. Another way of removing
such conflicting values is to decompose the non-symmetric function
into a symmetric part superimposed with an error part [16,25]. The
error part can be then iteratively decomposed into a “superposition”
of two parts. The “superposition” of the decomposed parts to
produce the total function can be done using the Exclusive-OR (⊕)
operator or the Equivalence operator (⊗). The following algorithm
demonstrates the ISID decomposition [16,25]:
(1) For a given area (or a given volume as in the case of 3-D lattice
structures) specifications, synthesize a non-symmetric function
using a symmetry-based structure like a lattice structure by repeating
variables.
(2) If repeating variables will force the lattice structure to grow out
of the layout boundaries, decompose the non-symmetric function
into two super-imposed parts: a symmetric part and an error part (the
error part can be alternatively named as the correction part). The
original function is equal to the Exclusive-OR (⊕) or the
Equivalence (⊗) of the two decomposed functions. This is denoted
as ⊕-ISID and ⊗-ISID, respectively. Since there are many possible
ways to obtain a symmetric function from the original non-
symmetric function using ISID, one can choose a symmetric part by
using the criterion of minimum number of changes of function
values that are needed to transform the non-symmetric Boolean
function into a symmetric one (e.g., minimum Hamming distance).
(3) Synthesize the symmetric part using lattice structure. If the
synthesis fits layout boundaries then synthesize the error function.
(4) If the resulting synthesis does not fit layout boundaries go to step
(2), and perform in serial-mode a single decomposition of the
symmetric or error sub-functions, or perform in parallel-mode a
multi-decomposition on all symmetric and error sub-functions.
(5) Repeat step (4) until the synthesis fits the layout boundaries.

 100 4.7 ISID: Iterative Symmetry Indices Decomposition

Example 4.13. For the non-symmetric function in Fig. 4.27a, the
corresponding 2-D lattice structure is realized in Fig. 4.27b by
repeating the control variable {b} three times.

 a b

Fig. 4.27. Binary (2,2) 2-D Shannon lattice structure.

 One notes that the lattice structure in Fig. 4.27 is made up of 15
2-to-1 multiplexers. Each 2-to-1 multiplexer consists of three logic
gates. Thus Fig. 4.27 is made up of a total of 45 logic primitives.
The same non-symmetric function can be synthesized using ⊕-ISID
as in Fig. 4.28.
 Consequently, one has the ⊕-ISID synthesis of the non-
symmetric function where F1 realizes the symmetric part and F2
realizes the error part as shown in Fig. 4.28. Note that in Fig. 4.28
one has six 2-to-1 multiplexers and three primitives, namely AND,
OR, and XOR. Thus one has a total of 6⋅3 + 3 = 21 logic primitives.
Consequently, by comparing the total number of gates needed in
Fig. 4.28 to those in Fig. 4.27, one observes that we economized a
total of 45 - 21 = 24 primitives.

ab

c

 0 1

00 0 1

01 0 0

11 0 0

10 1 1 F

S0 S1

S1 S2

S2 S3

S1 S2

 0 1 1 0

 S0 S1 S2 S3 S4 S5

 0 1

 0 1 0 1

 0 1 0 1 0 1

 0 1 0 1 0 1 0 1

 0 1 0 1 0 1 0 1 0 1

a

b

b

b

c

F

 0 0

 4.7 ISID: Iterative Symmetry Indices Decomposition 101

 a

 b

 Fig. 4.28. ⊕-ISID Shannon lattice structure.

 On the other hand, if one uses ⊗-ISID we obtain the
decomposition in Fig. 4.29a and the synthesis of the non-symmetric
function as shown in Fig. 4.29b. The cost of the lattice structure in
Fig. 4.29b is 21 logic primitives which is the same as the cost from
Fig. 4.28b.
 One observes that 2-level Sum-Of-Product (SOP) structures
have been used to synthesize the error functions in Figs. 4.28b and
4.29b, respectively. This choice has the advantage of the use of a
minimal number of logic primitives, but has the disadvantage of

ab
c

 0 1

00 0 1

01 0 0

11 0 0

10 1 1 F

S0 S1

S1 S2

S2 S3

S1 S2

ab c
 0 1

00 0 1

01 1 1

11 1 0

10 1 1 F1

S0 S1

S1 S2

S2 S3

S1 S2

ab c
 0 1

00 0 0

01 1 1

11 1 0

10 0 0 F2

S0 S1

S1 S2

S2 S3

S1 S2

⊕

 0 1 0 1

 0 1 0 1 0 1

a

b

c

F

 0 1 1 0

 S0 S1 S2 S3

F2

F1

 0 1

 102 4.7 ISID: Iterative Symmetry Indices Decomposition

transforming the lattice structure from a fully-regular structure
where only one type of primitive has been used (namely 2-to-1
multiplexer) to “semi-regular” structure where many different logic
primitives have been used, namely 2-to-1 multiplexer, AND, and
OR gates. To retain full regularity in terms of using one type of
logic primitives, one can synthesize the error function using a
separate multiplexer-based logic structure like a Binary Decision
Tree (BDT) for instance. This idea is demonstrated in Fig. 4.30
using the ⊗-ISID Shannon lattice structure from Fig. 4.29b.
 One observes that the structure in Fig. 4.30 has 10 2-to-1
multilpexers and thus has 10⋅3 = 30 Boolean gates, which is still less
than the total number of gates obtained in Fig. 4.27. Using the
procedure for ISID decomposition, one can have a complicated
decomposed structure that fits certain specifications. Figure 4.31a
shows an iterative use of ISID using both operations of EXOR and
EXNOR. This issue can be important by observing that in some
certain cases the complement of a function can be much simpler
than the function itself. Figure 4.31b demonstrates the use of serial-
mode ISID decomposition versus parallel-mode ISID
decomposition. This will “chop” the total rectangular area into
smaller and smaller triangles of lattices as demonstrated in Fig.
4.31c.
 The same idea of 2-D ISID can be used for 3-D ISID by using
the algebraic identities over GF(3) to decompose the corresponding
three-valued input three-valued output maps, such as the GF(3) Eqs.
that are shown in Eqs. (4.21) and (4.22), respectively.

 a *GF(3) a *GF(3) a = a, (4.21)
 a +GF(3) a +GF(3) a = 0. (4.22)

Example 4.14. Lets us apply multiple-valued ISID to decompose
the map in Fig. 4.32. The ternary non-symmetric map shown in Fig.
4.32 can be decomposed using ISID to a symmetric part and non-
symmetric part. Yet, in contrast to the binary case where this can be
done only in one specific EXOR expression, it can be done in the
multiple-valued case in many different ways. This can be illustrated
in Example 4.14 since the cell with {a = 0, b = 2, c = 2} has the
value of “0”. To produce a symmetric part the value of the cell {a =
0, b = 2, c = 2} has the value of “1”.

 4.7 ISID: Iterative Symmetry Indices Decomposition 103

 a

 b

Fig. 4.29. ⊗-ISID Shannon lattice structure: a k-maps for ⊗-ISID, and b realization in
lattice structure.

Fig. 4.30. Fully regular ⊗-ISID Shannon lattice structure using 2-to-1 multiplexers. F1 is a
lattice structure that realizes symmetric function, and F2 is a decision tree (DT) that
implements the binary Shannon expansion to realize the error function.

 104 4.7 ISID: Iterative Symmetry Indices Decomposition

ab c 0 1
00 0 1

01 0 0

11 0 0

10 1 1 F

S0 S1

S1 S2

S2 S3

S1 S2

ab c 0 1
00 0 1

01 1 1

11 1 0

10 1 1 F1

S0 S1

S1 S2

S2 S3

S1 S2

ab c 0 1
00 1 1

01 0 0

11 0 1

10 1 1 F2

S0 S1

S1 S2

S2 S3

S1 S2

⊗

 0 1

 0 1 0 1

 0 1 0 1 0 1

a

b

c

F

 0 1 1 0
 S0 S1 S2 S3

F2

F1

 0 1

 0 1 0 1

 0 1 0 1 0 1

a

b

c

F

0 1 1 0
 S0 S1 S2 S3

F2

F1

0
1

 0
 1

 0
 1

0
1

1

 1

0

 0

 1

 c

Fig. 4.31. ISID for the decomposition of non-symmetric Boolean functions: a iterative
procedure using both ⊕ and ⊗ operations, b serial-mode ⊕-ISID versus parallel-mode ⊕–
ISID, and c rectangular grid layout as a result of iterative implementation of ISID, where
the original Boolean function is decomposed into error function E1 and symmetric function
S1, E1 is then decomposed into E2 and S2, and E2 is decomposed into E3 and S3.

 a b

S
E

S

E

E S

ab 0 1
c

 00 0 1

 01 0 0

 11 0 0

 10 1 1

ab 0 1
 c

00 0 1

01 1 1

11 1 0

10 1 1

ab 0 1

c

 00 1 1

01 0 0

11 0 1

 10 1 1

⊗

ab 0 1

 00 1 1

 01 1 0

 11 0 1

 10 1 0

ab 0 1

 00 0 0

 01 1 0

 11 0 0

 10 0 1

⊕

…

ab 0 1

 c

00 1 0

01 0 1

11 0 1

10 1 1

 Serial mode ⊕⊕⊕⊕-ISID Parallel mode ⊕⊕⊕⊕-ISID

ab 0 1
c

00 1 0

01 0 1

11 1 1

10 0 1

ab 0 1
c

 00 0 0

 01 0 0

 11 1 0

 10 1 0

⊕

ab 0 1
c

 00 1 0

 01 0 1

 11 1 1

 10 0 1

ab 0 1
 c

 00 0 0

 01 0 0

 11 1 0

 10 1 0

⊕

ab 01

 00 0 0

 01 0 1

 11 1 0

 10 0 1

 ab 0 1

 00 0 0

01 0 1

 11 0 0

 10 1 1

ab 01

 00 0 0

 01 0 1

 11 1 0

 10 0 1

 ab 0 1

 00 1 0

 01 0 0

 11 0 1

 10 0 0

ab 0 1

 00 0 0

 01 0 1

 11 1 0

 10 0 1

 ab 0 1

 00 0 0

01 0 1

 11 0 0

 10 1 1

⊕

… … …

Original
Function

Original
Function

Symmetric
Function1 Error

Function1

Symmetric
Function2

 Error
Function2

c c

c c c c c c

Symmetric
Function1

Error
Function 1

Symmetric
Function2

Error
Function2

Symmetric
Function1

Error
Function1

Symmetric
Function2

Error
Function2

Symmetric
Fun. 3

Error
Fun. 3

⊕ ⊕

 4.7 ISID: Iterative Symmetry Indices Decomposition 105

 Fig. 4.32. Map for non-symmetric ternary function.

 Consequently there are two possibilities for this. The first one
follows Eq. (4.22): 1 +GF(3) 1 +GF(3) 1 = 0, and the second possibility
follows the algebraic rule from Fig. 2.1c: 1 +GF(3) 2 = 0. Thus two
possible ternary decompositions follow as shown in Fig. 4.33.
Consequently two possible (3,3) 3-D lattice structures are
implemented using the ternary ISID decomposition as shown in Fig.
4.34. One notes that for the non-symmetric function in Fig. 4.32 one
needs to repeat one of the variables in order to realize it using (3,3)
3-D lattice structure. This will impose the addition of many new
internal cells, depending on the repeated variables chosen. On the
other hand, the structures in Fig. 4.34 do not need to repeat variables
because the ternary error part is realized in GFSOP form. This
reduces substantial number of nodes needed for highly non-
symmetric ternary functions.
 The semi-regular realization of two-valued and multiple-valued
lattice structures requires a “good” functional minimizer to
minimize the non-lattice part of the total logic structure. One can use
available minimizers for this purpose, or the GFSOP minimizer that
utilizes the IF polarity from Chapt. 3. Such new structures will be
used to produce reversible lattice structures for ternary functions in
Chapt. 6. The new three dimensional lattice structures will be of a
natural fit for the emerging 3-D nano technologies and optical
devices as shown in [24].

 106 4.7 ISID: Iterative Symmetry Indices Decomposition

 c
 ab 0 1 2

00 1 2 0

01 2 0 2

02 0 2 0

11 0 1 2

12 2 2 0

20 0 2 1

22 1 0 1

21 2 2 0

10 2 0 2

 a

 b

Fig. 4.33. Two possible ISID decompositions: a according to the algebraic rule: 1 +GF(3) 1
+GF(3) 1 = 0, and b the second possibility follows the algebraic rule from Fig. 2.1c: 1 +GF(3)
2 = 0. (All additions and multiplications here are performed using Figs. 2.1c and 2.1d.)

ab 0 1 2

00 1 2 0

c

01 2 0 2

02 0 2 0

10 2 0 2

11 0 1 2

12 2 2 0

20 0 2 1

21 2 2 0

22 1 0 1

ab 0 1 2

00 0 0 0

 c

01 0 0 0

02 0 0 1

10 0 0 0

11 0 0 0

12 0 0 0

20 0 0 0

21 0 0 0

22 0 0 0

= + +

ab 0 1 2

00 1 2 0

c

01 2 0 2

02 0 2 1

10 2 0 2

11 0 1 2

12 2 2 0

20 0 2 1

21 2 2 0

22 1 0 1

ab 0 1 2

00 0 0 0

c

01 0 0 0

02 0 0 1

10 0 0 0

11 0 0 0

12 0 0 0

20 0 0 0

21 0 0 0

22 0 0 0

ab 0 1 2

00 1 2 0

c

01 2 0 2

02 0 2 0

10 2 0 2

11 0 1 2

12 2 2 0

20 0 2 1

21 2 2 0

22 1 0 1

ab 0 1 2

00 0 0 0

c

01 0 0 0

02 0 0 2

10 0 0 0

11 0 0 0

12 0 0 0

20 0 0 0

21 0 0 0

22 0 0 0

= +

ab 0 1 2

00 1 2 0

c

01 2 0 2

02 0 2 1

10 2 0 2

11 0 1 2

12 2 2 0

20 0 2 1

21 2 2 0

22 1 0 1

 4.7 ISID: Iterative Symmetry Indices Decomposition 107

 a

 2

 b

Fig. 4.34. (3,3) three-dimensional lattice structures using the ternary ISID: a realization that
corresponds to Fig. 4.33a, and b realization that corresponds to Fig. 4.33b. All additions
and multiplications are performed using GF3(+) and GF3(*), respectively.

1

 108 4.7 ISID: Iterative Symmetry Indices Decomposition

F

0a

1a

0b
2c

0

1

0b

0c

2a

2b

2c

1b 1

 1c 1b

1b

0c
2

2b

2b

1c

0b

2
1c

0c

1c

0c

2
1c

2c

0

1c

2c 1

2c

0c

0

2c

0c

0a 2b 2c

0a

1

2a
 1a 1c

0 0a 2b 2c

1

0b
0c

2b

2c

1b 1

1b
2c

1b

0c
2

2b
2b

1c

 0b

2 1c

0b

0c
1c

0c

2
1c

2c

0
1c

2c

2c

0c

0

2c

0c

1

1

F

 Also, the spatial operations of the (2,2) 2-D and (3,3) 3-D sub-
lattices will be mapped to be implemented in temporal operations of
sub-lattices in quantum circuits and quantum computing as will be
illustrated in Chapts. 10 and 11, respectively.
 As observed from this Sect., the method of ISID is useful for
maintaining interconnects of equal length for a large size lattice
structure that does not fit specific 2-D or 3-D layout boundaries.
Consequently, and analogously to the classical case, the ISID
algorithm can play an important role in the minimization of the size
of 2-D and 3-D reversible circuits, such as 2-D and 3-D reversible
lattice structures, and therefore the minimization of the total size of
the corresponding quantum circuits, and thus the minimization of
the consequent number of basic quantum operations (that are
performed by the corresponding quantum circuits) which will be
illustrated in Chapts. 10 and 11, respectively.
 The general result of using 3-D ISID iteratively is the
decomposition of a total large (3,3) 3-D lattice structure into
superimposed smaller (3,3) 3-D lattice structures as shown in Fig.
4.35a. The iterative use of ISID in a serial-mode or parallel-mode
will “chop” the 3-D cube of lattice into 3-D pyramids as illustrated
in Fig. 4.35b.

 a

 b

Fig. 4.35. a ISID for three-dimensional (3,3) lattice structures for the decomposition of
ternary non-symmetric function F, and b pyramid grid layout as a result of iterative
implementation of ISID for the decomposition of a ternary function.

z

x

y

z Error
Part

F2 F1

Ternary
Addition

F

x

y

Symmetric
Part

z

y x

 4.7 ISID: Iterative Symmetry Indices Decomposition 109

4.8 Summary

In this Chapt. we presented 3-D lattice implementation of the new
multi-valued invariant Shannon and Davio spectral transforms. We
introduced the generalization of the concept of planar 4-neighbor
lattice structures into 3-D (solid) 6-neighbor lattices. The 3-D
joining rules of the new generalized sets of invariant multi-valued
Shannon and Davio canonical expansions were derived, and the
corresponding lattice structures were constructed. Lattice structures
possess a very important property of high regularity, which is useful
in many applications including fault-related issues; fault diagnosis
(testing), fault localization, and fault self-repair. Other advantages of
the new 3-D lattice structures include: (1) no need for layout routing
and placement in 3-D space, (2) one-to-one mapping to regular
isomorphic 3-D hardware structure (such as 3-D FPGAs), (3)
regularity leads to the comparable ease of manufacturability, (4) 3-D
lattices do not have intersecting edges which make them very
suitable for quantum logic that will be presented in Chapts. 10 and
11, and (5) the 3-D new lattices are especially well suited for deep
sub-micron technologies and future nano-technologies where the
intrinsic physical delay of the irregular and lengthy interconnections
limits the device performance (i.e., high power consumption and
high delay in the interconnects especially at high frequencies
(speeds) of operation).
 A new decomposition called Iterative Symmetry Indices
Decomposition (ISID) for Boolean and multiple-valued logic is
introduced. This decomposition superimposes iteratively the
symmetric part and the error part of a non-symmetric Boolean or
multiple-valued functions. It has been shown [229] that most of
circuit area is occupied by local and global interconnects, and the
delay of interconnects is responsible for about 40-50% or more of
the total delay associated with a circuit. Thus maintaining, as
possible, equal length local inter-connects in a large size lattice
structure, for specific layout constraints, will minimize the total
length of wire used and consequently minimize the delay and power
consumed. This idea of maintaining interconnects of equal length
for a large size lattice structure that does not fit specific two-
dimensional or three-dimensional layout boundaries can be achieved

 110 4.8 Summary

using ISID. ISID algorithm can play an important role in the
minimization of the size of reversible lattice structures and thus the
minimization of the total size of the corresponding quantum circuits
that will be illustrated in Chapt. 10.

 4.8 Summary 111

5 Reversible Logic: Fundamentals and New
Results

Due to the anticipated failure of Moore’s law around the year 2020,
quantum computing will hopefully play an increasingly crucial role
in building more compact and less power consuming computers
[93,107,167,248,253]. Due to this fact, and because all quantum
computer gates (i.e., building blocks; primitives) must be reversible
[37,38,39,73,74,75,95,97,139,150,167,203,245,246], reversibility
in computing will have increasing importance in the future design of
regular, compact, and universal structures and machines (systems).
(n,k) reversible circuits are circuits that have (n) inputs and (k)
outputs and are one-to-one mappings between vectors of inputs and
outputs, thus the vector of input states (values) can be always
uniquely reconstructed from the vector of output states (values).
(k,k) reversible circuits are circuits that have the same number of
inputs (k) and outputs (k) and are one-to-one mappings between
vectors of inputs and outputs, thus the vector of input states (values)
can be always uniquely reconstructed from the vector of output
states (values). Conservative circuits [98,210,211,212] are circuits
that have the same number of values in inputs and outputs (e.g., the
same number of ones in inputs and outputs for binary, the same
number of ones and twos in inputs and outputs for ternary, etc).
Conservativeness exists naturally in physical laws where no energy
is created or destroyed.
 As was proven in [37,139] it is a necessary but not sufficient
condition for not dissipating power in any physical circuit that all
system circuits must be built using fully reversible logical
components. An important argument for power-free computation in
a computer that “pushes information around” using reversible logic
is given in [139], using the model of a particle in a bistable potential
well, as follows:

 … Let us arbitrarily label the particle in the left-hand well as the ZERO
 state. When the particle is in the right-hand well, the device is in the

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

 ONE state. Now consider the operation RESTORE TO ONE, which
 leaves the particle in the ONE state, regardless of its initial location.
 if we are told that the particle is in the ONE state, then it is easy to
 leave it in the ONE state, without spending energy. If on the other
 hand we are told that the particle is in the ZERO state, we can apply
 a force to it, which will push it over the barrier, and then, when it
 has passed the maximum, we can apply a retarding force, so that
 when the particle arrives at ONE, it will have no excess kinetic
 energy, and we will not have expended any energy in the whole
 process, since we extracted energy from the particle in its downhill
 motion. Thus at first sight it seems possible to RESTORE TO ONE
 without any expenditure of energy …

 As a consequence, the statement “information is physical”, and
consequently the famous Eq. “information loss = energy loss” are
appropriate [139]. For this reason, different technologies have been
investigated that implement reversible logic in hardware. Fully
reversible digital systems will greatly reduce the power consumption
(theoretically eliminate) through three conditions: (1) logical
reversibility: the vector of input states (values) can always be
uniquely reconstructed from the vector of output states (values), (2)
physical reversibility: the physical switch operates backwards as
well as forwards, and (3) the implementation using “ideal-like”
switches that have no parasitic resistances.
 To achieve reversible computing, different technologies have
been studied to implement reversible logic in hardware including
CMOS [68,70,71,72,131,143,152,153,206,250], optical
[17,24,62,63,64,65,156,190,197,222], magnetic [132], mechanical
[154], and quantum [31,53,55,111,112,156,259], respectively.
Complete complex reversible circuits were fabricated [35].
 Bit-permutations are a special case of reversible functions, that
is, functions which permute the set of possible input values.
Consequently, and in addition to logic synthesis, reversible
computing was applied in areas where computational tasks are
important enough to justify new microprocessor instructions and
instruction sets where bit-permutation instructions greatly improve
the performance of several standard algorithms as matrix
transposition. These applications include digital signal processing,
communications, computer graphics, and cryptography [225], where
it is required that all of the information encoded in the input must be

 5 Reversible Logic: Fundamentals and New Results 113

preserved in the output. Figure 5.1 illustrates the inclusion
relationship between various classes of reversible circuits, where the
shaded areas indicate the sub-sets of reversible logic synthesis that
have been worked with throughout this Book.

Fig. 5.1. Set-theoretic relationship between various classes of reversible logic.

 Billiard Ball Model (BBM) is one of the fundamental models
for reversible computing [98]. Cellular Automata (CA), which are
computationally universal as they can compute any function, were
modeled as a BBM [98]. Consider the elements in the BBM in Fig.
5.2 where billiard balls move on a lattice with unit velocity, and
scatter off of each other and from walls. Two balls colliding
generate the AND function, and if one of the streams of balls is
continuous it generates the NOT function of the other input. These
two elements are sufficient to build up all of Boolean logic. Specific
memory structures can be implemented by delays, and wiring by
various walls to guide the balls. The balls can be represented by four
bits per site (one for each direction), with one extra bit per site
needed to represent the walls. This kind of computing developed in
[98] has many interesting features; no information is ever destroyed,
which means that it is reversible (it can be run backwards to produce
inputs from outputs), and which in turn means that it can be
performed (in theory) with arbitrarily little dissipation [139].
 Reversibility is also essential for designing quantum Cellular
Automata (QCA), since quantum evolution is reversible. A quantum
CA is much like a classical CA, but it permits the sites to be in a
superposition of their possible states [145]. This is a promising
conceptual architecture model for building quantum computers
[101].

 (n,k) Reversible Primitives

(k,k) Reversible Primitives

Bit-Permutation Reversible
Primitives

Conservative
Primitives

 114 5 Reversible Logic: Fundamentals and New Results

Fig. 5.2. Billiard Ball Logic (BBL): a transport, b scattering (logic), c reflection, d shift, e
delay (memory), and f crossover.

 In this Chapt., fundamental reversible primitives are presented,
new theorems for reversible logic are introduced, and the
corresponding reversible gates are created. Figure 5.3 demonstrates
the link between the continuation of the theoretical development
from this Chapt. and the following Chapts.

Fig. 5.3. A graph illustrates the theoretical development of theorems for reversible logic in
this Chapt.

 The new results and theorems that are obtained from this Chapt.
are built on top of the results that were introduced in Chapt. 2, and
will be utilized in Chapt. 6 in the construction of reversible lattice
structures, and in Chapt. 10 where the quantum circuits for the

Theory Theory

Reversible Primitives Reversible Structures

 a b c

 d e f

A

B

A AND B

A AND B

(NOT A) AND B

A AND (NOT B)

 5 Reversible Logic: Fundamentals and New Results 115

corresponding reversible lattice structures will be introduced. The
main contributions of this Chapt. are:
• The invention of new methodology to generate reversible multiple-
 valued Shannon decompositions (that includes the binary case as a
 special case): Latin Square Property of the Generalized Basis
 Function Matrix.
• The generation of reversible multiple-valued Davio
 decompositions.
• Exhaustive classification and count of all possible reversible
 multiple-valued Shannon and Davio gates into classes.
• Generalizations of two-valued Margolus primitive.
• Synthesis of reversible combinational logic circuits. This includes
 various reversible code converters, reversible barrel shifter,
 reversible sorter, and reversible MIN/MAX tree.
 The remainder of this Chapt. is organized as follows. Basic
reversible gates and circuits are presented in Sect. 5.1. The
elimination of the garbage outputs in two-valued reversible circuits
is presented in Sect. 5.2. Examples of combinational reversible
circuits are given in Sect. 5.3. A new general methodology for the
creation and classification of new Galois-based reversible spectral
transforms, expansions, and examples of such transforms and
expansions are presented in Sect. 5.4. The process of eliminating
garbage outputs in multiple-valued reversible circuits is introduced
in Sect. 5.5. A Summary of the Chapt. is presented in Sect. 5.6.

5.1 Fundamental Reversible Logic Primitives and Circuits

Reversible circuits which are hierarchically composed of reversible
primitives have two types of outputs in general: (1) functionality
outputs, and (2) outputs that are needed only to achieve reversibility
which are called “garbage” [98]. Many reversible gates have been
proposed as building blocks for reversible (and consequently
quantum) computing. Figure 5.4 shows some of the binary (k,k)
reversible gates that are commonly used in the synthesis of
reversible logic circuits [6,14,95,126,127,128,129]. It is noted from
Fig. 5.4 that while Wire (Buffer), Not, and Swap gates are naturally
reversible, others are not, and thus “garbage” has to be added.

 116 5 Reversible Logic: Fundamentals and New Results

 Multiple-valued counterparts of similar reversible primitives
and some of their applications were introduced in
[6,11,14,190,191,192,193]. Figure 5.5 illustrates the multiple-valued
gate from [191]. More multiple-valued gates and the systematic
methodology for their creation and classification will be introduced
in Sect. 5.4.

Fig. 5.4. Binary reversible gates: a (1,1) Wire, b (1,1) Inverter, c (2,2) Swap, d (2,2)
Feynman gate (also known as quantum XOR, Controlled-NOT), e (3,3) Toffoli gate (also
known as Controlled-Controlled-NOT), f Maximum Cofactor (MC) gate, g (3,3) Fredkin
gate, h Margolus0 gate, i Margolus1 gate, and j Margolus2 gate.

 5.1 Fundamental Reversible Logic Primitives and Circuits 117

A A A B
A

B

C

D

A

B

C

D

0 1 0 1

A B

C C

 f0 f1

A
B

C

D

E

F

0 1 0 1 0 1 0 1 0 1 0 1

 f0 f1 f2 f0 f1 f2

A
B
C

A
B
C

0 1 0 1 0 1

 f0 f1 f2

A
B
C

 0 1
. .

+ +

A B C

P Q R

a b

c

 d
e

 f
g

h i

j

Fig. 5.5. Multi-valued logic primitive: Picton gate.

 Although most of available literature on reversible computing
presents gates that are (k,k) reversible, other literature has reported
the conceptual need for (n,k) reversible primitives in general. The
need for (n,k) reversible primitives stems from the fact that the
logical model must fit the physical reality of computing, and not to
be disjoint from the physical laws of computing as it was in the
previous abstract mathematical logics before reversible (and thus
quantum) computing. For instance, the Interaction gate
[62,63,64,222] has been reported to be of a good fit to reversible
computing in optics. Figure 5.6 illustrates some of the (n,k)
reversible gates. (It is important to note that here fan-out and
feedback are not allowed in reversible computing applications using
either (k,k) reversible gates or (n,k) reversible gates.)
 Fredkin gate [98] is one of the most basic building blocks in
reversible and quantum computing. Many propositions have been
proposed to realize the Fredkin gate in various technologies:
Optical, Electrical, Mechanical (nano-technology), and Quantum.
The Fredkin gate belongs to a group of gates that each represents a
fundamental family of logic gates in reversible computing. These
families of reversible gates are Fredkin-like, Toffoli-like, and
Feynman-like gates. It will be shown in Sect. 5.4 how to formally
generalize the Fredkin gate to any multiple-valued logic radix.

0

1

0

1

A < B

A
B

C

D

P
Q

R

S

 118 5.1 Fundamental Reversible Logic Primitives and Circuits

Fig. 5.6. Some (n,k) reversible gates: a (2,4) Interaction gate, b (2,3) Switch (Priese) gate,
and c (2,3) AND gate.

 This is especially important for ternary logic since ternary logic
is the logic for regular lattice realization in three-dimensional space.
It can be observed in Fig. 5.4 that while Feynman gate is not
universal since it is composed only of a linear (EXOR) part, the
Toffoli gate is universal as it is composed of a linear (EXOR) and
nonlinear (AND) parts.
 The multiple-valued gate in Fig. 5.5 is just one example of
families of multiple-valued reversible gates. For example, Feynman
gate from Fig. 5.4 can be extended to any radix over a Galois field
using the same topological circuits, and the only difference will be
the type of AND and OR operations that have to be performed over
the corresponding radix of a Galois field. Also, note that in Fig. 5.4,
the Fan-Out gate (Copying gate) is built using a single Feynman
gate with constant “0” at the XOR control-input, and the Swap gate
which is not realizable in quantum circuits is built using three
serially inter-connected Feynman gates (this will be illustrated in
Chapt. 11). Also, one can note that while a Maximum Cofactor
(MC) gate (which is a member of a bigger family of related gates)
produces a maximum number of cofactors (18 cofactors) for three
binary inputs, other gates do not. The production of cofactors for
various (k,k) reversible primitives is shown in Fig. 5.7 [8]. It has
been shown in [98] that for a (k,k) reversible gate to be universal the
gate should have at least three inputs (i.e., (3,3) gate). Various
binary (3,3) reversible gates that are universal in two inputs have
been also shown in [126].

.

.

.

.

A

B

AB

AB

 A’B

 AB’

.

.

A

B

 A’B

 AB

A

.

A A

B B

 AB

 a b c

 5.1 Fundamental Reversible Logic Primitives and Circuits 119

 Balanced primitives are primitives for which each output value
appears a number of times which is equal to the number of times
that each of the other output values appears. For example, in ternary
(4,4) reversible primitive which is balanced, the number of times
that 0’s appear in the outputs is equal to the number of times that 1’s
appear in the outputs and also equal to the number of times that 2’s
appear in the outputs, and this is equal to (81/3) = 27 times for each
output. One can note that while the (k,k) reversible gates: Wire
(Buffer), Inverter, Swap, Fredkin, and Margolus are balanced and
conservative, other reversible gates: Feynman, Toffoli, and MC are
balanced but not conservative. In general, reversible primitives can
be classified into families according to the corresponding functional
properties of such gates [126], like being (or not being)
conservative, balanced, cyclic, 0-1 preserving, invertible, etc.

5.2 The Elimination of Garbage in Two-Valued Reversible
Circuits

In reversible logic, it is important to construct the inverse of the gate
to eliminate the garbage outputs [95,98,262,263].

 Fig. 5.7. Demonstration of the number of cofactors for various (k,k) reversible gates.

 120 5.1 Fundamental Reversible Logic Primitives and Circuits

 Feynman Toffoli Fredkin Margolus MC
 (6 cofactors) (7 cofactors) (12 cofactors) (15 cofactors) (18 cofactors)

F2(0,b,c)=c
F2(1,b,c)=b⊕c
F2(a,1,c)= a⊕c
F2(a,b,0)=ab
F2(a,b,1)=(ab)’
F1(0)=0
F1(1)=1

F0(0)=0
F0(1)=1
F1(0,b)=b
F1(1,b)=b’
F1(a,0)=a
F1(a,1)=a’

F0(0,b,c)=bc
F0(1,b,c)=c’+b
F0(a,0,c)=c’a
F0(a,1,c)=c+a
F0(a,b,0)=a
F0(a,b,1)=b
F1(0,b,c)=c’b
F1(1,b,c)=c+b
F1(a,0,c)=ca
F1(a,1,c)=c’+a

F1(0,b,c)=b
F1(1,b,c)=c
F1(a,0,c)=ac
F1(a,1,c)=a’+c
F1(a,b,0)=a’b
F1(a,b,1)=a+b
F2(0,b,c)=b’c
F2(1,b,c)=c+b
F2(a,1,c)=a
F2(a,b,0)=ab
F2(a,b,1)=b’+a
F3(0,b,c)=bc
F3(1,b,c)=c’+b
F3(a,0,c)=c’a
F3(a,1,c)=c+a

P(0,B,C)=(BC)’
P(1,B,C)=B’C’
P(A,0,C)=(AC)’
P(A,1,C)=A’C’
P(A,B,0)=(AB)’
P(A,B,1)=A’B’
Q(0,B,C)=CB’
Q(1,B,C)=B’+C
Q(A,0,C)=A+C
Q(A,1,C)=AC
Q(A,B,0)=AB’
Q(A,B,1)=B’+A
R(0,B,C)=BC’
R(1,B,C)=C’+B
R(A,0,C)=AC’
R(A,1,C)=C’+A
R(A,B,0)=A+B
R(A,B,1)=AB

 This is achieved by taking the outputs of the first reversible
circuit and produce from them “inversely” the inputs. This is
important especially in quantum computing where garbage is not
allowed [98]. Also, it is important in certain techniques in reversible
CMOS computing [262,263]. Figure 5.8 shows reversible circuit (in
white color) and its reversible “mirror” (inverse) (in shaded color).
 A gate (F) is said to be inverse of itself when FF-1 = I. For
instance, it has been shown [98] that a Fredkin gate is the inverse of
itself and a Toffoli gate is also the inverse to itself. The following
examples show circuits and their inverses.

 Fig. 5.8. The reversible circuit and its reversible mirror to eliminate garbage.

Example 5.1. Figures 5.9 and 5.10 generate the inverse gate for the
Interaction gate and the Switch (Priese) gate, respectively. To
measure the state of the hidden functions within the total network of
the reversible circuit and its inverse, one has to use the “spy” circuit
[98]. (This has been shown to be of special importance in QC [98].)

 Note that in the examples for two-valued and multiple-valued
reversible logic synthesis through this Book, two commonly applied
constraints for reversible logic synthesis are imposed: (1) feedback
is not allowed, and (2) fan-out is not allowed (i.e., fan-out = 1).
One explanation for not using fan-out in reversible logic is as
follows: in the “forward” conventional logic synthesis combining
wires is not allowed, so in reversible logic synthesis branching wires
will not be allowed since branching of a signal, if looked at in
reverse, will appear to be as combining signals. Consequently,
Feynman gate is used as a copier (i.e., fan-out generator) by setting
the value of the control input to value “0”. Also, one can observe
that, when the garbage outputs are eliminated by cascading the
forward reversible circuit with the inverse reversible circuit and
therefore the inputs are generated as outputs from the whole

 5.2 The Elimination of Garbage in Two-Valued Reversible Circuits 121

… … …

x1
x2

xn

x1
x2

xn

F F-1

 Circuit Mirror Circuit

garbage-free netowork, although it is possible in some technologies
to connect the inputs that are generated at the output of the garbage-
free network to the inputs of the whole network using wires (e.g.,
CMOS technology), it is not possible to do so in quantum circuits
since the concept of “wire” does not exist physically.

 a c

 b d
Fig. 5.9. Interaction gate: a truth table, b logic circuit, c the inverse truth table,
and d the inverse logic circuit.

Fig. 5.10. Switch (Priese) gate: a truth table, b logic circuit, c inverse truth table, and d
inverse logic circuit.

 Input Output
 1 2 3 4 A B
 0 0 0 0 0 0
 0 1 0 0 0 1
 0 0 1 0 1 0
 1 0 0 1 1 1

 1 0 0 0 1 0

 Input Output
 A B 1 2 3 4
 0 0 0 0 0 0
 0 1 0 1 0 0

 1 1 1 0 0 1

Inverse

 a c

 0 0 0 0 0

 Input Output
 A B 1 2 3

 0 1 1 0 0
 1 0 0 0 1

 1 1 0 1 1

Inverse
 0 0 0 0 0

 Input Output
 1 2 3 A B

 1 0 0 0 1
 0 0 1 1 0
 0 1 1 1 1

 b d

+ (1)
(2)

(3)

B

A

Inverse

.

.
A

B

 A’B (1)

 AB (2)

A (3)

 122 5.2 The Elimination of Garbage in Two-Valued Reversible Circuits

 .

 .

 .

 .

A

B

AB (1)

AB (4)

 A’B
 (2)

 AB’
 (3)

Inverse (3)

(4)

 (1) A

B +

 +

 (2)

Example 5.2. This example shows the process of obtaining two-
valued reversible inverse gates for fundamental reversible (forward)
gates. These gates are illustrated in Figs. 5.11 through 5.13. One can
note that Fredkin gate in Fig. 5.11 is the inverse to itself. The same
note can be observed for the case of two-valued Feynman and
Toffoli gates in Figs. 5.12 and 5.13, respectively.

 a b
 c c

 c d

 e

Fig. 5.11. a Truth table for reversible forward Fredkin gate, b truth table for reversible
inverse Fredkin gate, c reversible forward Fredkin circuit, d reversible inverse Fredkin
circuit, and e the elimination of garbage for Fredkin gate by combining the reversible
forward Fredkin circuit with the reversible inverse Fredkin circuit.

a b c f0 f1 c

a b 0 a b 0

a b 1 b a 1

f0 f1 c a b c

a b 0 a b 0

b a 1 a b 1

0

1

0

1

a

b

c

f0

f1

f0

f1

0

1

0

1

c

a

b

c c

0
1

0
1

a

b

 c

0
1

0
1

f0

f1

 c

a

b

f0

f1

 5.2 The Elimination of Garbage in Two-Valued Reversible Circuits 123

 a b

 c d

 e

Fig. 5.12. a Truth table for reversible forward Feynman gate, b truth table for reversible
inverse Feynman gate, c reversible forward Feynman circuit, d reversible inverse Feynman
circuit, and e the elimination of garbage for Feynman gate by combining the reversible
forward Feynman circuit with the reversible inverse Feynman circuit.

a b c d

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

c d a b

0 0 0 0

0 1 0 1

1 1 1 0

1 0 1 1

c

d

a

b

a

b

c

d

a

b

c

d

a

b

 124 5.2 The Elimination of Garbage in Two-Valued Reversible Circuits

a b c d e f

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

a b

 c d

 e

Fig. 5.13. a Truth table for reversible forward Toffoli gate, b truth table for reversible
inverse Toffoli gate, c reversible forward Toffoli circuit, d reversible inverse Toffoli
circuit, and e the elimination of garbage for Toffoli gate by combining the reversible
forward Toffoli circuit with the reversible inverse Toffoli circuit.

d e f a b c

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 1 1 1 0

1 1 0 1 1 1

a

b

c

d

e

f

d

e

f

a

b

c

d

e

f

a

b

c

a

b

c

 5.2 The Elimination of Garbage in Two-Valued Reversible Circuits 125

 The following example illustrates the concept of the creation of
the total network that consists of the reversible circuit and its mirror
image, and the use of “spy” circuit to measure the hidden
functionalities within the total network.
Example 5.3. Figure 5.14 shows the network composed of the
forward reversible part, inverse reversible part, and the “spy” circuit.

Fig. 5.14. An illustration of the creation of the reversible circuit and its mirror image: a
truth table for the forward reversible circuit, b truth table for the inverse reversible circuit,
and c the total network including the “spy” circuit.

c

 Toffoli
Fred-
kin

Feyn-
man

Feyn-
man

Feyn-
man-1

Feyn-
man-1

 Toff-
 oli-1

Fred-
kin-1

A

C

D
Y

X

Z

V

B
C

D

 0

P

F

“spy” circuit

F-1

B
A

 126 5.2 The Elimination of Garbage in Two-Valued Reversible Circuits

Function: F

 ABCD XYZV

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0011
1011
0010
1010
0000
0111
0001
0110
1111
1000
1110
1001
1101
0101
1100
0100

Function-1: F-1

 XYZV ABCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0100
0110
0010
0000
1111
1101
0111
0101
1001
1011
0011
0001
1110
1100
1010
1000

 a b

5.3 Combinational Reversible Circuits

Reversible circuits can be synthesized using careful design
methodologies where one utilizes the outputs from a previous stage
as inputs to the next stage. Various reversible circuits have been
synthesized using this methodology [8,200]. This Sect. introduces
some of these circuits. Figure 5.15 illustrates the creation of all of
the 16 possible binary logic functions of two variables (cf. Fig. G.3
in Appendix G) using certain reversible logic primitives.

 Fig. 5.15. Synthesis of various Boolean functions using some reversible logic primitives.

gate gate

AND
NAND

OR NOR

XOR

NXOR

NOT
 WIRE
 (BUFFER)

 IMPLICA
 - TION INHIBI

- TION

Logic Circuit Logic Circuit

 .
 0

 0 1 0 1

 0 1 0 1

0

 0 1 0 1

 1

b b’

 .

 .
1

 .
 0

 .
1

1 . 1

 FAN OUT ~ FAN-
 OUT 1 0

 .
 0

 .
1

 0 1 0 1

 0

 0 1 0 1

 1

 0 1 0 1

 1

0 1 0 1

b b’

 0 1 0 1

0

Controlled Not,
Quantum XOR

 0

Toffoli
Gate

Multiplixer
0 1 0 1

Fredkin Gate

 .
Controlled Controlled Not
 (CCN)

 5.3 Combinational Reversible Circuits 127

 Note that such constructions are not unique, and thus the
optimization criteria should be (1) minimum size and (2) have
mimimum garbage used in the synthesis. Figure 5.16 illustrates the
synthesis of half-adder and full–adder using Feynman (Controlled-
NOT: CN) and Toffoli (Controlled-Controlled-NOT: CCN) gates.

 c

 d

Fig. 5.16. Reversible logic synthesis of half- and full-adders: a half-adder truth table, b
full-adder truth table, c half-adder reversible circuit, and d full adder reversible circuit.

 Inputs Outputs

A B Co S

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 1 0

 Inputs Outputs
A B Ci Co S

 0 0 0 0 0
 0 0 1 0 1
 0 1 0 0 1
 0 1 1 1 0
 1 0 0 0 1
 1 0 1 1 0
 1 1 0 1 0
 1 1 1 1 1

 a b

CCN

CN

A

B

0

 A

S = A ⊕ B

Co = AB

CCN
CN

A

B

0

Ci

CCN
CN

 A

A ⊕ B

S = ci (A ⊕’ B) + ci’(A ⊕ B)

Co = ci(A +B) + AB

 128 5.3 Combinational Reversible Circuits

 Figure 5.17 demonstrates one possible reversible realization of
various coding schemes (Natural, Gray, and Aiken) [8] using
Feynman and Toffoli gates.

 c

 d
Fig. 5.17. a truth tables for Natural, Gray, and Aiken codes, b reversible cascade of Natural
code, c reversible circuit of Gray code, and d reversible circuit of Aiken code.

 0001 0001 0001

 0011 0010 0011

 Natural Gray Aiken

 0000 0000 0000

 0010 0011 0010

 0100 0110 0100
 0101 0111 0101
 0110 0101 0110
 0111 0100 0111
 1000 1100 1110
 1001 1101 1111

a

X1
X2

0

X3
X4

0

1 0

X1

 X1’X2

X1’X2⊕ X3

X3’X4⊕X3X4’
⊕ X1’X2

b c

X3

1

 X1

 X1+X3

X1+X2

 X4

 X1

 X1⊕X2

 X2 ⊕X3

 X3
 ⊕X4

X1

0

X2

X3

X4

X1
X2

1

X4

 5.3 Combinational Reversible Circuits 129

 As shifters are important in combinational and sequential logic
synthesis, it is important to produce a reversible logic shifter. Figure
5.18 illustrates a novel reversible Barrel shifter design from [8].
Figure 5.18 represents one possible design of concurrent shift-left
and shift-right reversible Barrel shifter, which shows a fundamental
concept in the design of reversible logic circuits: the idea of the use
of reversibility to perform multiple operations using the same design
while retaining reversibility [8].
 Note that by controlling the value of the variable in the first
level, the Barrel shifter operates in the shift-left mode by setting the
value of variable X in the first level to value “0” and collecting the
shifted-left outputs from the locations that are marked by (X) at the
outputs of Fredkin gates, or the shift-right mode by setting the value
of variable X in the first level to value “1” and collecting the shifted-
right outputs from the locations that are marked by (+) at the outputs
of Fredkin gates, respectively. The first level of the reversible Barrel
shifter will shift the inputs by one location, the second level will
shift the inputs by two locations, the third level will shift the inputs
by three locations, and the fourth level will shift the inputs by four
locations (i.e., full cycle or rotation).
 Figure 5.19 illustrates the use of MIN/MAX gate, which is
synthesized from Picton gate, to realize a multiple-valued Sorter [8].
By following the paths, from the inputs to the outputs, one will
obtain the sorted values of the inputs at the outputs.
 Figure 5.20 illustrates a MIN/MAX Tree [8] using MIN/MAX
from Fig. 5.19a. The inputs in Fig. 5.20b are (A0, A1, A2, A3, B0,
B1, B2, B3). The outputs in Fig. 5.20b are denoted as (1), (2), (3),
(4), (5), (6), (7), and (8). By following the paths from inputs to the
outputs in Fig. 5.20b, one obtains the following MIN and MAX
expressions at the outputs of the MIN/MAX tree:
Output (1): MAX [MIN (A3,B3), MIN (A2,B2)],
Output (2): MIN [MAX (A3,B3), MAX (A2,B2)],
Output (3): MAX [MIN (A1,B1), MIN (A0,B0)],
Output (4): MIN [MAX (A1,B1), MAX (A0,B0)],

 130 5.3 Combinational Reversible Circuits

 Fig. 5.18. Concurrent shift-left (X) and shift-right (+) Barrel shifter.

 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a1 a2 a3 a4

 X = 0:Sh-L
 X = 1:Sh-R

Y = 0

Z = 0

W = 0

 5.3 Combinational Reversible Circuits 131

Fig. 5.19. Reversible pipelined 4-input binary combinational sorter: a two interconnected
Picton gates, b symbol for the gate from (a), c symbol for (b), and d binary and multi-
valued reversible Sorter.

0

1

0

1

A < B

0

1

0

1

A < B

 MIN(A,B)

 MAX(A,B)

A

B

0

1 a

MIN/MAX

MIN/MAX

MIN/MAX

MIN/MAX

MIN/MAX

MIN/MAX

A1
B1
0
1

A2
B2
0
1

0
1

0
1

0
1

0
1

≥≥≥≥

≥≥≥≥

A

B
0

1

 MIN(A,B)

 MAX(A,B)

 MIN/MAX

b

A
B
0
1

 MIN(A,B)
 MAX(A,B)

 c

 d

 132 5.3 Combinational Reversible Circuits

Fig. 5.20. Reversible MIN/MAX tree using MIN/MAX gate: a Symbol, and b reversible
MIN/MAX tree.

MIN/MAX

 MIN MAX a

 (1) (2) (3) (4)

MIN/MAX

 1 0 B3 A3

MIN/MAX

 1 0 B2 A2

MIN/MAX

 1 0 B1 A1

MIN/MAX

 1 0 B0 A0

MIN/MAX MIN/MAX MIN/MAX MIN/MAX

 1 0

1 0 1 0 1 0 1 0

1 0

(5) (6) (7) (8)

MIN/MAX MIN/MAX

b

 5.3 Combinational Reversible Circuits 133

Output(5):
MIN[MIN{MIN(A3,B3),MIN(A2,B2)},MIN{MIN(A1,B1),MIN(A0,B0)}],
Output (6):
MAX[MIN{MIN(A3,B3),MIN(A2,B2)},MIN{MIN(A1,B1),MIN(A0,B0)}],
Output (7):
MIN[MAX{MAX(A3,B3),MAX(A2,B2)},MAX{MAX(A1,B1),MAX (A0,B0)}],
Output (8):
MAX[MAX{MAX(A3,B3),MAX(A2,B2)},MAX{MAX(A1,B1),MAX(A0,B0)}].
 Figure 5.21 [8] implements one-way production of the logic
polynomial: F = an⋅x + an-1. Figure 5.22b [8] implements the two-
way production of the logic polynomial: F = ain ⋅(W2+W1+W0). The
circuits in Figs. 5.21 and 5.22b apply reversible pipelined and
reversible systolic operations. A logic cell that can be systolically
connected to neighbor cells to implement reversible functions is the
octagon systolic cell from Fig. 5.23a [8]. Figure 5.23b [8] resembles
one general topological systolic structure that can implement logic
operations using the cell from Fig. 5.23a.
 Although new reversible circuits were synthesized in this Sect.
by using the outputs from a previous stage as inputs to the next
stage, no mathematical theory has been yet established to construct
the reversible building blocks (from which more complex reversible
systems will be constructed in the following Chapts.). Prior to the
work in [6,7,14], the reversible logic primitives were constructed
either by ad-hoc methods or using exhaustive computer programs to
generate all possible reversible gates for certain radix and certain
number of variables as in [126]. Consequently, the novel
construction of a systematic mathematical formalism for the creation
of reversible primitives for reversible computing from [6,7,14] is
introduced in the next Sect.

 Fig. 5.21. One-directional reversible polynomial generator.

1

. .

 an-1

0

x

F
an

 134 5.3 Combinational Reversible Circuits

 a

 b

 Fig. 5.22. Two-directional polynomial generator: a cell, and b reversible logic circuit.

 a b

Fig. 5.23. Logic systolic implementation: a octagon systolic cell, and b topological systolic
structure that uses the logic systolic cell from (a).

A

B

Cout = Cin OR
(A AND B)

.
0

.
1

 A AND B

B

A

Cin

Cin

 A’ OR B’

 .
 +

ain aout

bout bin

wi

.
0

.
 1

.
0

.
 1

.
0

.
 1

0

ain

bout

W0 W1 W2

 5.3 Combinational Reversible Circuits 135

5.4 Novel General Methodology for the Creation and
Classification of New Families of Reversible Invariant
Multi-Valued Shannon and Davio Spectral Transforms

In this Sect. a new methodology for the creation and classification of
new reversible invariant multiple-valued GF-based families of
spectral transforms will be introduced [6,7,14]. In this Sect. we
present and prove new theorems to systematically generate and
classify the new families of multiple-valued invariant reversible GF-
based Shannon and Davio expansions from Sect. 2.2.2. These
theorems are the only theorems introduced so far for reversible
expansions, and they stand alone so far as the only formalism and
methodology introduced in the available literature for the creation
and classification of multiple-valued reversible Shannon and Davio
expansions.

Definition 5.1. The matrix that is constructed from the permutations
of many basis functions of the same type of the corresponding
spectral transform is called Generalized Basis Functions Matrix
(GBFM).

Definition 5.2. From the total state-space of all possible Generalized
Basis Functions Matrices the matrices that produce reversible
spectral transforms are called Reversible Generalized Basis
Functions Matrices (RGBFM).

Example 5.4. The following is the ternary Shannon transform over
GF(3).

[]
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
=

2

1

0

210

100

010

001

f

f

f

cccf .

The following is one possible Generalized Basis Functions Matrix:

�
�
�

�

�

�
�
�

�

�

ccc

ccc

ccc

012

120

210

.

Yet as will be demonstrated in the following theorem, the upper
Generalized Basis Functions Matrix is not reversible; it does not

 136 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms

produce a reversible spectral transform. One possible Reversible
Shannon Generalized Basis Functions Matrix that leads to a
reversible spectral transform is the following matrix:

�
�
�

�

�

�
�
�

�

�

ccc

ccc

ccc

102

021

210

.

 In Example 5.4, note that the Shannon set of basis functions {0c,
1c, 2c} will always appear in any of the rows of the corresponding
Shannon RGBFM that would accordingly produce a reversible
Shannon spectral transform (in this case a Shannon set of basis
functions {0c, 1c, 2c} appears in the first row).

Theorem 5.1. A necessary and sufficient condition to generate the
reversible invariant multi-valued Shannon expansions is that the
order of the permuted basis functions in the Generalized Basis
Functions Matrix should satisfy the Latin Square Property (Cyclic
Group Property): in any given row or column the elements in that
row or column are different than the elements in the corresponding
positions of the other rows or columns.

Proof. Since the Shannon spectral transform matrix is orthogonal,
then the multi-input multi-output multiple-valued Shannon
expansion that is shown in Eq. (5.1):

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

210

021

102

100

010

001

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f
�

, (5.1)

is reversible (as an example we are using in this proof the Shannon
set of basis functions {0c, 1c, 2c} that appears in the third row, but as
discussed earlier, a Shannon set of basis functions {0c, 1c, 2c} can
appear in any of the rows of the corresponding Reversible
Generalized Basis Functions Matrix). Eq. (5.1) is reversible since it
satisfies the following reversibility restrictions:
(1) For number of inputs {f0, f1, f2, c} is equal to the number of
outputs {fr0, fr1, fr2, c}.
(2) We can uniquely reconstruct any set of inputs from the set of
outputs and vice versa. This stems from the fact that for any reduced

 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms 137

Post literal kc the set of outputs are uniquely selected for the
specified value of kc in the corresponding ternary truth table of the
ternary inputs/ternary outputs (since kc = 1 iff c = k). This allows for
the unique selection of I/O such that for any combination of inputs
there is only one corresponding combination of outputs. Q.E.D.

 The resulting outputs in Eq. (5.1) are fully balanced; for 4-
outputs the number of times that 0’s appear is equal to the number of
times that 1’s appear and also equal to the number of times that 2’s
appear, and this is equal to (81/3) = 27. Also the reversible Shannon
spectral transform in Eq. (5.1) is conservative; it has the same
number of values in inputs and outputs (i.e., for ternary logic the
number of ones and twos in every input vector is equal to the
number of ones and twos in the corresponding output vector).
Therefore the circuits (gates) that are constructed from Eq. (5.1) are
both reversible and conservative. Utilizing the same methodology
used in Theorem (5.1), all possible permutations of a multi-valued
Shannon spectral transform can be converted to be a reversible
permuted Shannon spectral transforms.

Theorem 5.2. In general for any invariant Shannon spectral
transform matrix

�
�
�

�

�

�
�
�

�

�

γ
β

α

00

00

00

,

the following is a reversible expansion:

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

210

021

102

00

00

00

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f

γ
β

α

γβα
γβα
γβα

���

���

���
�

, (5.2)

where 1ˆ,1ˆ,1ˆ === γγββαα .

Proof. the proof is similar to the proof of Theorem 5.1. Q.E.D.

 The following is an example of some of the total possible
Shannon reversible expansions over GF(2) and GF(3), respectively.
Example 5.5. Let’s produce the reversible Shannon gates for binary
logic as well as ternary logic.

 138 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms

5.5a. In binary logic there are only two Reversible Shannon gates as
follows:

 �
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
=

1

0

1

0

10

01

r

r

f

f

f

f

cc

cc
f
�

, (5.3)

 �
�

�
�
�

�
=�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
=

1

0

1

0

10

01

r

r

f

f

f

f

cc

cc
f
�

. (5.4)

The following are logic circuit realizations of Eqs. (5.3) and (5.4).

Fig. 5.24. Logic circuit realizations of reversible Shannon primitives: a two-valued
reversible Shannon (Fredkin gate), and b the flipped reversible Shannon (flipped Fredkin
gate). Both gates are composed of two 2-to-1 multiplexers.

 Note that the function of the gates in Fig. 5.24 is the
permutation of inputs (cofactors) to produce outputs (that are merely
a permutation of inputs). Figure 5.25 illustrates such property.

 Fig. 5.25. Permutation of cofactors.

5.5b. Utilizing Theorem 5.1, Let’s produce all the possible
permutations of the Reversible Generalized Basis Functions Matrix

for the invariant Shannon transform matrix

�
�
�

�

�

�
�
�

�

�

200

010

002

 to produce

0 1 0 1

 fr0 fr1

c c

 f0 f1

0 1 0 1

 fr0 fr1

c c

 f0 f1
 a b

 fr0 = c’f0 + cf1

 fr1 = c’f1 + cf0

 fr0 = c’f1 + cf0

 fr1 = c’f0 + cf1

 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms 139

the corresponding reversible invariant ternary Shannon expansions
over GF(3).

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

102

021

210

200

010

002

22

22

22

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f
�

, (5.5)

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

021

102

210

200

010

002

22

22

22

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f
�

, (5.6)

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

102

210

021

200

010

002

22

22

22

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f
�

, (5.7)

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

021

210

102

200

010

002

22

22

22

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f
�

, (5.8)

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

210

102

021

200

010

002

22

22

22

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f
�

, (5.9)

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

2

1

0

210

021

102

200

010

002

22

22

22

r

r

r

f

f

f

f

f

f

ccc

ccc

ccc

f
�

. (5.10)

 The following reversible logic circuits represent logic circuit
realizations for Eqs. (5.6) and (5.9), respectively, where all inputs
and outputs can have any of the ternary values (i.e., 0, 1, or 2).

 140 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms

 Fig. 5.26. Logic circuit realization of the reversible expansion in Eq. (5.6).

 Fig. 5.27. Logic circuit realization of the reversible expansion in Eq. (5.9).

Where:

 Note that Eqs. (5.5) through (5.10) lead through the application
of the Latin Square Property of the Generalized Basis Functions
Matrix to the permutation of cofactors to achieve reversibility. Also,
generalizations of the reversible gates (as in Figs. 5.26 and 5.27, for
instance) are possible by using ternary inverters (shifters) (which are
intrinsically reversible) interchangeably at the inputs and/or outputs
of the reversible gates.

0 1 2 0 1 2 0 1 2
c

 fr0 fr1 fr2

 f0 f1 f2

c

 f0 f1 f2

0 1 2 0 1 2 0 1 2
c

 fr0 fr1 fr2

c

Is a 2-to-1 multiplexer in binary logic

Is a 3-to-1 multiplexer in ternary logic

0 1

0 1 2

 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms 141

Theorem 5.3. For each reversible invariant multi-valued Shannon
expansion over GF(n) there exist n2 fixed reversible invariant multi-
valued Davio expansions of all types. For each type of reversible
invariant multi-valued Davio expansion Dn there exist n reversible
invariant multi-valued Davio expansions of that type (i.e., Dn).

Proof. The proof of Theorem 5.3 provides also the systematic
methodology of generating all possible reversible invariant multi-
valued Davio expansions. Let us prove this theorem for the ternary
case over GF(3), for one possible reversible invariant multi-valued
Shannon expansion. Using the following reversible invariant multi-
valued Shannon expansion:

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

=
2

1

0

102

021

210

100

010

001

f

f

f

ccc

ccc

ccc

f
�

. (5.11)

For Eq. (5.11), there exists three Davio types for each row of the
Generalized Reversible Shannon Basis Functions Matrix. Utilizing
the derivation of ternary Davio expansion, the following are the D0-
type expansions for the first row, second row, and third row of the
above Generalized Reversible Shannon Basis Functions Matrix

�
�
�

�

�

�
�
�

�

�

ccc

ccc

ccc

102

021

210

, respectively:

 fD0,row0 = [1 c c2]

�
�
�

�

�

�
�
�

�

�

222

120

001

�
�
�

�

�

�
�
�

�

�

f

f

f

2

1

0

, (5.12)

 fD0,row1 = [1 c c2]

�
�
�

�

�

�
�
�

�

�

222

012

100

�
�
�

�

�

�
�
�

�

�

f

f

f

2

1

0

, (5.13)

 142 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms

 fD0,row2 = [1 c c2]

�
�
�

�

�

�
�
�

�

�

222

201

010

�
�
�

�

�

�
�
�

�

�

f

f

f

2

1

0

. (5.14)

To produce one form of the reversible Davio0-type functional

expansion, let us choose the transform matrix

�
�
�

�

�

�
�
�

�

�

222

012

100

in Eq.

(5.13) to produce the corresponding reversible invariant multi-
valued Davio0 expansion. Note that we have two other choices of

�
�
�

�

�

�
�
�

�

�

222

120

001

 and

�
�
�

�

�

�
�
�

�

�

222

201

010

 transform matrices in Eqs. (5.12) and

(5.14), respectively. The utilization of

�
�
�

�

�

�
�
�

�

�

222

012

100

transform matrix

as our representation matrix will impose the following conditions to
produce the overall correct Davio0 expansion:

 Condition 1:

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

222

120

001

222

012

100

ihg

fed

cba

.

 Condition 2:

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

222

201

010

222

012

100

ihg

fed

cba

.

Solving condition 1 over GF(3) produces the solution:

�
�
�

�

�

�
�
�

�

�

ihg

fed

cba

=
�
�
�

�

�

�
�
�

�

�

100

210

111

.

Solving condition 2 over GF(3) produces the solution:

 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms 143

�
�
�

�

�

�
�
�

�

�

ihg

fed

cba

 =
�
�
�

�

�

�
�
�

�

�

100

110

121

.

The above solutions (for Eq. (5.13)) for the two conditions produce
the following ternary Davio expansion:

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

+++

+++
=

2

1

0

2

2

2

0

222

012

100

121

1

2111

f

f

f

ccc

cc

ccc

fD

�
, (5.15)

which can be written in the form:

 fr0,D0 = 1⋅ f0 + c⋅ (2f1+f2) + (c)2(2f0+2f1+2f2), (5.16)
 fr1,D0 = 1⋅ f2 + c⋅ (2f0+f1) + (c)2(2f0+2f1+2f2), (5.17)
 fr2,D0 =1⋅ f1 + c⋅ (2f2+f0) + (c)2(2f0+2f1+2f2). (5.18)

The above Davio0 expansion is reversible, since Eq. (5.15) satisfies
the following reversibility restrictions:
(1) For the number of inputs {f0, f1, f2, c} is equal to the number of
outputs {fr0, fr1, fr2, c}.
(2) We can uniquely reconstruct any set of inputs from the set of
outputs and vice versa (for any unique selection of inputs/outputs
such that for any combination of inputs there is only one unique
corresponding combination of outputs). Q.E.D.

 Each of the result outputs in Eq. (5.15) is fully balanced; the
number of times that 0’s appear is equal to the number of times that
1’s appear and also equal to the number of times that 2’s appear, and
this is equal to (81/3) = 27. Also the reversible Davio0 spectral
transform in Eq. (5.15) is conservative; it has the same number of
values in inputs and outputs (i.e., the number of ones and twos in
inputs is equal to the number of ones and twos in the outputs).
Therefore the circuits that are constructed using Eq. (5.15) are both
reversible and conservative. Reversible Davio gates (that result from
the corresponding reversible Davio decompositions) can be
constructed either using individual GF(*) and GF(+) gates or using
multiplexers.

 144 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms

 The previous theorem provides a very general methodology of
creating reversible Davio spectral transforms of any type from the
corresponding reversible Shannon spectral transforms. Theorem 5.3
shows also that for each reversible Shannon expansion one
constructs the corresponding reversible Davio expansions. Utilizing
the same methodology used in Theorem 5.3, all possible
permutations of multi-valued Davio spectral transforms can be
converted to be reversible permuted Davio spectral transforms.
 Note that Eqs. (5.1), (5.2), and (5.15) can be written in the
general form:

 [] [] fMMf trgbfr

��
= , (5.19)

 [] fMc

�
= ,

where Mrgbf is the reversible generalized basis function symbolic
matrix, Mt is the transform matrix, and Mc is the combined matrix

(i.e., [] [][]trgbfc MMM =). One can also obtain the output vector rf
�

from knowing the input vector f
�

 by using the inverse of Eq. (5.19)
as follows:

 [] [] rrgbft fMMf
�� 11 −−

= , (5.20)

 [] .
1

rc fM
�−

=

 Analogously to the binary case, the Matrices Mt and Mrgbf can
be generated recursively for an arbitrary number of variables using a
Kronecker-like product. Analogously to the result in Theorem 5.2,
reversible expansions can be created for any multi-valued invariant
Davio spectral transform. Also, the methodology of obtaining
reversible decompositions that has been introduced in this Sect. can
be adapted for other functional representations like K-maps, maps,
etc. Figure 5.28 presents a tree-based analysis of the relationship of
the reversible spectral transforms that are presented in this Book and
other spectral transforms.
 An extensive treatment for the count of all possible families of
binary and multiple-valued reversible Shannon and Davio
decompositions is presented in Appendix F. The general theories of

 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms 145

producing reversible Shannon and Davio expansions will be used
hierarchically to obtain the corresponding reversible regular lattice
structures in Chapt. 6. Also such reversible primitives will be used
to obtain the quantum Shannon and Davio logic primitives that will
be presented in Chapt. 11 in order to perform quantum computing
using such new quantum primitives.

 (Ch. 5)

 (Ch. 2)

 (Ch. 5)

Fig. 5.28. A tree-based relationship between various non-reversible and reversible
decompositions. Generalizations of each level of reversible Shannon and Davio expansions
are possible through using shifters (inverters) at the input and/or output of the
corresponding reversible gates (circuits). Also, all permutations of the expansions in each
level can be done to yield the corresponding permuted decompositions.

5.5 The Elimination of Garbage in Multiple-Valued
Reversible Circuits

The process of the elimination of output garbage in multiple-valued
reversible circuits follow exactly the same methodology used for
two-valued circuits. Example 5.6 illustrates the elimination of
garbage for ternary reversible Shannon and Feynman gates,
respectively.
Example 5.6. This example illustrates the process of obtaining
three-valued reversible inverse gates to some fundamental reversible

Fundamental Multi-Valued Shannon Decomposition

Invariant1 Invariant2 Invariantn (Ch. 2)

…

Reversible
Invariant1

Reversible
Invariantm

… Reversible
Invariant1

Reversible
Invariantm … …

Davio0 … Davioz

…

Davio0 … Davioz

Reversible1 … Reversiblew Reversible1 … Reversiblew

…

 146 5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms

(forward) gates. These gates are illustrated in Figs. 5.29 through
5.30, respectively.

5.6 Summary

In this Chapt. we introduced a new and general methodology to
generate, classify, and count new reversible multiple-valued
expansions and their corresponding primitives. The new results in
this Chapt. utilize the multiple-valued families of spectral transforms
that were introduced in Sect. 2.2.2 in order to produce the
corresponding reversible decompositions that encompass reversible
invariant multiple-valued Shannon and reversible multiple-valued
Davio expansions. Such new reversible decompositions will play an
important role for the synthesis of logic functions into reversible 3-
D regular structures as will be shown in Chapt. 6. Since the basic
requirement for logic synthesis for several new technologies are: (1)
reversibility, (2) no wire intersections, and (3) three-dimensionality
(to utilize the atomic 3-D structures), the new families of multiple-
input multiple-output multiple-valued reversible decompositions that
are presented in this Chapt. can be used to create new category of
reversible regular structures and will be used to synthesize quantum
logic circuits in Chapt. 10 and their corresponding quantum
computations in Chapt. 11. Various new reversible circuits were also
created in this Chapt. by the careful design using basic reversible
gates. These include reversible barrel shifter, reversible code
converters, reversible sorter, and reversible MIN/MAX tree. Such
new reversible circuits can be used to start building a library for
reversible logic synthesis. The process of eliminating garbage
outputs that can be produced in two-valued and multiple-valued
reversible circuits is also shown. This is done through the synthesis
of the reversible inverse (mirror image) circuit and then cascading
this circuit to the reversible forward circuit. The intermediate
functions are measured using the “spy” circuit which is merely a
copy circuit made up of a Feynman primitive that uses “0” value in
the input to the XOR gate. The process of garbage elimination is
important as quantum circuits do not allow for garbage in the
outputs. This point will be further illustrated in Chapts. 10 and 11,

 5.5 The Elimination of Garbage in Multiple-Valued Reversible Circuits 147

where quantum logic circuits and quantum computations are
implemented for the new reversible logic structures that will be
created in Chapts. 6, 7, and 8.

 a b

 c d

 e

Fig. 5.29. a Truth table for ternary reversible forward Shannon gate, b truth table for
ternary reversible inverse Shannon gate, c ternary reversible forward Shannon circuit, d
ternary reversible inverse Shannon circuit, and e the elimination of garbage for ternary
Shannon gate by combining the ternary reversible forward Shannon circuit with the ternary
reversible inverse Shannon circuit.

f0 f1 f2 c fr0 fr1 fr2 c

f0 f1 f2 0 f0 f1 f2 0

f0 f1 f2 1 f1 f2 f0 1

f0 f1 f2 2 f2 f0 f1 2

fr0 fr1 fr2 c f0 f1 f2 c

f0 f1 f2 0 f0 f1 f2 0

f1 f2 f0 1 f0 f1 f2 1

f2 f0 f1 2 f0 f1 f2 2

0
1
2

0
1
2

0
1
2

c

f0

f1

f2

fr0

fr1

fr2

c

0
1
2

0
1
2

0
1
2

c

fr0

fr1

fr2

f0

f1

f2

c

0
1
2

0
1
2

0
1
2

c

f0

f1

f2

fr0

fr1

fr2

c

0
1
2

0
1
2

0
1
2

c

fr0

fr1

fr2

f0

f1

f2

c

 148 5.6 Summary

a b c d
0 0 0 0
0 1 0 1
0 2 0 2
1 0 1 1
1 1 1 2
1 2 1 0
2 0 2 2
2 1 2 0
2 2 2 1

 a b

 c d

 e

Fig. 5.30. Ternary reversible Feynman gate: a truth table for forward gate, b truth table for
inverse gate, c forward circuit, d inverse circuit, and e the elimination of garbage.

 Since a “forward” function is defined if one-to-one mapping
exists between the set of values in Domain D and set of values in
Range R, and a “forward” relation is defined if one-to-many
mapping exists between D and R, one can define “reversible”
function if a unique one-to-one mapping exists reversely between R
and D, and “reversible” relation if a unique many-to-one mapping
exists reversely between R and D. This conclusion is general (i.e.,
valid in Discrete or Continuos D and R) and can be helpful in order
to use reversibility-based symmetries in other mathematical
formalisms, besides spectral techniques from Sect. 5.4 in this
Chapt., such as Group Theory for example.

c d a b
0 0 0 0
0 1 0 1
0 2 0 2
1 1 1 0
1 2 1 1
1 0 1 2
2 2 2 0
2 0 2 1
2 1 2 2

c

d

a

b

a

b

c

d

a

b

c

d

a

b

 5.6 Summary 149

6 Reversible Lattice Structures

This Chapt. will introduce a methodology of synthesizing binary and
multiple-valued logic functions using a regular reversible structure.
This will be done by utilizing the new reversible binary and
multiple-valued Shannon primitives that were introduced in
Theorem 5.1, and the use of the process of permutation of cofactors
that resulted from the new reversible Shannon primitives. The new
idea in this Chapt. is:
• The hierarchical application of the process of permutation of
 cofactors that will produce the corresponding reversible lattices.
• The implementation of the inverse reversible lattice structure
 (mirror image) to produce structure that is suited for quantum
 computing since in quantum logic garbage is not allowed.
 The new two-valued and multiple-valued reversible lattice
structures will be used to obtain their counterparts of quantum logic
circuits in Chapt. 10, and the methodologies of implementing two-
valued and multiple-valued quantum computations using reversible
lattice structures will be implemented in Chapt. 11.
 Section 6.1 of this Chapt. presents a new general algorithm for
the production of reversible lattice structures for any radix of Galois
logic, and the introduction of the idea of mirror image of reversible
lattice structures to eliminate the output garbage. Summary of the
results that are introduced in this Chapt. will be presented in Sect.
6.2.

6.1 A General Algorithm for the Creation of Two-Valued
and Multiple-Valued Reversible Lattice Structures

It has been shown in Fig. 5.25 that the application of the processs of
permutation of cofactors will lead to the reversible Shannon
primitives. The algorithm for the synthesis of reversible lattice
structures depends on the hierarchical application of this process of

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

permutation of cofactors (as a result of the application of the Latin
square property onto the Generalized Basis Function Matrix
(GBFM)) that has been presented in Sect. 5.4. A general procedure
for the construction of reversible Shannon lattice structure over nth
radix logic is as follows [6,14,182]:
Synthesis Stage:
(1) Utilizing a reversible Shannon primitive (From Sect. 5.4), assign
the multi-valued map of the function (that is needed to be realized in
the reversible lattice structure) for one output of the reversible
Shannon primitive in the first level, and assign don’t care maps for
the rest of the primitive outputs at the first level. Also assign don’t
care maps to the “garbage” outputs of the primitives in each level of
the reversible lattice structure. These “garbage” outputs are needed
only for the purpose of satisfying reversibility. The process of
assigning don’t cares to multi-valued maps stems from the fact that
one does not know a priori what will be the values of the leaves of
the corresponding reversible lattice structure.
(2) Following the output-to-input paths of the reversible Shannon
primitive in the first level of the reversible lattice structure, going
from outputs-to-inputs, and using the reverse of the method of
permutation of cofactors from Sect. 5.4 (e.g., constructing inputs
from outputs in Figs. 5.24, 5.26, and 5.27, for instance), construct
new maps at the input of the reversible Shannon primitive by
permuting the output cofactors (in the output maps) that correspond
to the expansion variable in the first level. This process of permuting
the output cofactors will result in new maps at the inputs of the
reversible Shannon primitive at the first level. Thus, the contents of
the input maps will result from the permutation of the values of the
cofactors in maps at the output of the same reversible Shannon
primitives at the first level.
(3) Going from top-to-bottom and left-to-right of the reversible
lattice structure, repeat step 2 for each expansion variable in each
level (i.e., for each reversible Shannon primitive in every level) until
one reaches multi-valued maps at the bottom of the reversible lattice
structure with each map having only a constant value from the set
{0, 1, 2}.
Analysis Stage: This is an opposite process to the process of
synthesis.

 6.1 A General Algorithm for the Creation of Reversible Lattice Structures 151

(4) Following the input-to-output paths of the reversible Shannon
primitives at the last level of the reversible lattice structure, going
from inputs-to-outputs, and using the forward method of
permutation of cofactors from Sect. 5.4, construct new maps at the
output of the reversible Shannon primitives by permuting the input
cofactors (in the input maps) that correspond to the expansion
variable in the last level. This process of permuting the input
cofactors will result in multi-valued maps at the outputs of the
reversible Shannon primitives at the last level. Thus, the contents of
the output maps (at the last level) will result from the permutation of
the values of the cofactors in maps at the inputs of the same
reversible Shannon primitives.
(5) Going from bottom-to-top and right-to-left of the reversible
lattice structure, repeat step 4 for each expansion variable in each
level (i.e., for each reversible Shannon primitive in every level) until
one reaches completely specified maps, in all wires throughout the
reversible lattice structure from bottom-to-top and right-to-left, with
no don’t cares.
 The following examples illustrate the concept of reversible
lattice structures.
Example 6.1. This example illustrates the creation of the reversible
binary lattice structure for the Boolean function (F) in Figs. 6.1 and
6.2. Note that in Figs. 6.1 and 6.2 the desired output function is
denoted as F and the “garbage” outputs (that are necessary only for
reversibility) are denoted as G1-G5.
Example 6.2. Figures 6.3 and 6.4 illustrate the creation of the
reversible ternary lattice structure for the ternary function (F). Note
in that Figs. 6.3 and 6.4 the desired output function is denoted as F
and the “garbage” outputs (that are necessary only for reversibility)
are denoted as G1-G8.
 Note that the regular lattice structures in Figs. 6.2 and 6.4 are
fully reversible as the vector of input values (9 inputs in Fig. 6.2,
and 11 inputs in Fig. 6.4) can be always uniquely reconstructed from
the vector of output values (9 outputs in Fig. 6.2, and 11 outputs in
Fig. 6.4), respectively. One can note that the main advantage of such
reversible structures is that they possess regularity. The
disadvantage is that such lattice structures produce big garbage in
the outputs.

 152 6.1 A General Algorithm for the Creation of Reversible Lattice Structures

Fig. 6.1. Synthesis of a reversible lattice structure: a Boolean function to be realized in 2-D
reversible lattice structure, and b top-to-down and left-to-right algorithm to produce the
values of leaves of the 9 input/9 output two-dimensional reversible lattice structure.

 0 1 0 1

a
 bc

 00 01 11 10

 0 1 0 1 0

a

0 1 0 1 0 1 0 1

 0 1 0 1 0 1 0 1 0 1 0 1

a

b

c

a

b

c

 1 0 1 1 1

 a bc
 00 01 11 10

0 - - - -
1 - - - -

 - - - -
 - - - -

 - - - -
 - - - -

 - - - -
 - - - -

- - - -

- - - -

 1 0 1 0

 - - - -
 - - - -
 0 1 1 1

 - - - 0

 - - - -

 - - 1 0

 - - - -
 1 0 - -

 - - - -
 - - - -
 0 1 - -

 - - - -
 - - 1 1

 - - 1 -
 - - - -

 1 - - -
 - 1 - -

 - 0 - -

 0 - - -

 - - - -
 - - - 1

 - - - -
 - - 1 -

a
 bc

 00 01 11 10
 0 1 0 1 0
 1 0 1 1 1

G1

G2

G3

G4

G5

F

F

b

 6.1 A General Algorithm for the Creation of Reversible Lattice Structures 153

Fig. 6.2. Bottom-up analysis of the lattice structure for the synthesis of the Boolean
function (F) in Example 6.1.

 As verified on small functions, this garbage is still smaller than
using factorization, SOP-PLA, or decomposition methods. As stated
previously in Sects. 5.2 and 5.5, the elimination of garbage in
reversible structures is done by using the reversible mirror image of
the forward reversible circuit. Figure 6.5 illustrates the process of
garbage elimination by cascading (i.e., serially interconnecting) the
reversible forward lattice structure to the reversible inverse lattice
structure. The functionality in the outputs can be measured using the
“spy” circuit which is a Feynman primitive with “0” value to the
input of its Galois addition gate.

 0 1 0 1

0 1 0 1 0 1 0 1

 0 1 0 1 0 1 0 1 0 1 0 1

a

b

c

a

b

c

a
bc

 00 01 11 10
0 0 1 1 1
1 1 0 1 0

 0 1 0 1

 0 1 0 1

 1 1 1 0

1 0 0 1

 1 0 1 0

 0 1 1 1

 0 0 0 0

 0 1 1 0 1 0 0 1

 0 1 1 0 1 1 1 1

a

 bc

 00 01 11 10
0 1 0 1 0
1 0 1 1 1

G1

G2

G3

G4

G5

F

 1 0 1 0

 0 1 1 1
 1 1 1 0

1 0 0 1

 0 1 1 0 1 0 0 1

 0 1 1 0 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1
 1 1 1 1 0 0 0 0

 1 1 1 1
 1 1 1 1

 0 0 0 0
 0 0 0 0

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 154 6.1 A General Algorithm for the Creation of Reversible Lattice Structures

Fig. 6.3. Synthesis of a ternary reversible lattice structure: a ternary function to be realized
in a reversible lattice structure, and b top-to-down and left-to-right algorithm to produce the
values of leaves of the 11 input/11 output reversible lattice structure.

 0 1 2 0 1 2 01 2

 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

a a

b b

a
 b 0 1 2

0 - - -
1 - - -

 2 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -

 - - -
 - - -

 - 2 -

 - - -
 - - -

 - - 1

 - - -
 - - -

 0 - -

 - - 0
 - - -

 - - -

 1 - -
 - - -

 - - -

 - 2 -

 - - -

 - - -
 - - -
 2 - -
 - - -

 - - -

 - 1 -
 - - -

 - - -

 - - 2
 - - -

a

b
0 1 2

0 1 2 0

1 2 1 2

2 0 2 1

a
b 0 1 2

 0 1 2 0
 1 2 1 2

 2 0 2 1

a
b
 0 1 2

 0 - - -
 1 - - -
 2 - - -

F1

F1

G1 G2 G3

G4 G5

G6 G7 G8

a

b

 6.1 A General Algorithm for the Creation of Reversible Lattice Structures 155

Fig. 6.4. Bottom-up analysis of the resulting reversible lattice structure for the synthesis of
the ternary function (F) in Example 6.2.

 In Fig. 6.5, the gate K-1 is the inverse to the gate K, and the gate
denoted by 0 is the spy circuit. Note that by referring to Fig. 5.11
Fredkin gate (i.e., two-valued reversible Shannon gate) is the inverse
to itself, and that by referring to Fig. 5.29 multiple-valued Fredkin
gate (i.e., multiple-valued reversible Shannon gate) is also the
inverse to itself.

 0 1 2 0 1 2 0 1 2

 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

a a

b b

a
b 0 1 2

0 0 2 1
1 1 2 0
2 2 1 2

 2 1 0 1 0 2 0 1 2 2 0 1 1 2 2 2 2 1

 2 2 2 1 1 1 0 0 0

 0 0 0 1 1 1 2 2 2
 2 2 2 1 1 1 2 2 2

a b 0 1 2

 0 1 2 0
 1 2 1 2
 2 0 2 1

a
b 0 1 2

0 2 1 2
1 0 2 1
2 1 2 0

F1

G1 G2 G3

G4 G5

G6 G7 G8

 2 1 0

 2 1 0

 1 0 2

 1 0 2

 0 1 2

 0 1 2

 2 0 1

 2 0 1

 1 2 2

 1 2 2

 2 2 1

 2 2 1

 2 2 2
 2 2 2

 1 1 1
 1 1 1

 0 0 0
 0 0 0

 0 0 0
 0 0 0

 1 1 1
 1 1 1

 2 2 2
 2 2 2 2 2 2

 2 2 2

 1 1 1

 1 1 1

 2 2 2

 2 2 2

 156 6.1 A General Algorithm for the Creation of Reversible Lattice Structures

6.2 Summary

A general new algorithm has been presented in this Chapt. to
produce reversible lattice structures. This algorithm depends on the
hierarchical application of the process of permutation of cofactors
that has been presented in Sect. 5.4. Since garbage is not allowed in
quantum computing, the concept of reversible inverse lattice
structure has been also presented. The intermediate functionalities
from the total circuit that is composed of cascading the forward
reversible lattice structure and the inverse reversible lattice structure
are measured using the “spy” circuit, which consists of a Feynman
gate with value “0” to its Galois addition gate in order to make the
copy primitive. The total network of the forward and inverse
reversible lattice structures will be used to implement the
corresponding quantum circuits from Chapt. 10 and quantum
computations in Chapt. 11.

 Constants Constants

 Constants … Constants

 Fig. 6.5. Garbageless reversible lattice structure.

a

3

1

1-1

2

4 5 6

2-1

4-1 5-1 6-1

. . .

a

b

c

b

c

F 0

7 8 9 10

7-1 8-1 9-1 10-1

d

d

 3-1

 6.2 Summary 157

7 Novel Reconstructability Analysis Circuits and
their Reversible Realizations

This Chapt. will introduce another new type of reversible structures
called Reversible Modified Reconstructability Analysis (RMRA).
Reconstructability Analysis (RA) is an important decomposition
technique that is used widely in system science area to decompose
qualitative data [133,134,135,138,273,275]. This kind of
decomposition is commonly used in the decomposition of data
obtained in the social and system science fields, and overlaps with
other decomposition techniques used in the social sciences as well
like the Log-Linear (LL) decomposition method [138]. RA
decomposition aims at the simplest decomposition of qualitative
data using Lattice-Of-Structure (LOS) (cf. Fig. 7.1) as representation
(generation) and contingency tables (for probabilistic data) for
evaluation (minimization of error).
 In lossless decomposition, the aim is to obtain the simplest
decomposed model from data (saturated model) without the loss of
any information (i.e., error = 0). In lossy decomposition, the aim is
to obtain the simplest decomposed model from data (saturated
model) with an acceptable amount of error. RA data is typically
either a set-theoretic relation [271,272] (or mapping) or it is a
probability (or frequency) distribution. The former case is the
domain of set-theoretic RA or more precisely crisp possibilistic RA.
The latter is the domain of information-theoretic RA, or more
precisely probabilistic RA [133,134,135,138,274]. The RA
framework can apply to other types of data (e.g., fuzzy data) via
generalized information theory [135,223]. In this work, we are
concerned only with crisp possibilistic RA.
 New RA decomposition, called the Modified RA (MRA)
decomposition [10,20,21,22,27,28,29,30] is introduced in this
Chapt., and the lossless MRA decomposition is used to decompose
logic functions. A comparison of the complexities obtained from the
resulting decompositions from MRA decomposition with the

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

complexities obtained through lossless Ahsenhurst-Curtis (AC)
decomposition and Bi-decomposition for the same Boolean logic
functions will be also provided in Appendix H. Although the
comparisons, which will be presented in this Chapt., and in
Appendix H serve only as a first step, since we consider only the
256 3-input Boolean functions, the results will provide a first useful
“glimpse” of the comparative complexities obtained from the new
MRA decomposition.
 For three variables, the LOS for RA decomposition consists of
a total of 5 decomposed structures and 9 decomposed models (as
model is a structure applied on data) (See Fig. 7.1). The RA
decomposition is a general graph-based decomposition which
applies recursively level by level the following rules: (1) remove
one relation from the previous model, and (2) restore embedded
relations if they are not already present. Composition process in
Reconstructibility Analysis requires opposite rules to the rules of the
RA decomposition process. The lattice of relations, for three-
variables, is illustrated in Fig. 7.1, where each box represents a
relation between the variables that are represented as input lines.
This representation that is used for RA decomposition is
complementary to the general graph-based representation, which
uses the general graph-based notation in which a relation is
represented as a line connecting variables which are boxes (nodes).
 Each variable in Fig. 7.1 represents an input variable to a
function or a general object. Objects {A,B,C} can be for instance: A
can be a father, B be a mother, and C be a child, and the boxes
represents the general interaction (relation) between the three
members of the family (i.e., father, mother, and child). Richer
models of interaction (i.e., higher dimensional functions) can be
constructed by considering other elements like D to be the fourth
argument (as a family cat for instance). For 4 objects (elements)
similar lattice of relations of 4 variables (objects, elements) is
constructed.
 For logic synthesis, the lattice of structure in Fig. 7.1
represents circuit decomposition, where elements A, B, and C in
Fig. 7.1 are the input variables to the circuit, and the resulting
structure (in the lattice of structures in Fig. 7.1) is the decomposed
circuit. This Chapt. introduces the following new results:

 7 Novel Reconstructability Analysis Circuits and their Reversible Realizations 159

 Most complex possible model: B
 initial model (Saturated Model)
 ABC

 Simplest possible
 model (Variable-
 Independence Model)

 A:B:C

Fig. 7.1. Three-variable lattice of relations for RA (graph-based) decomposition:
lines represent variables (elements or objects), and boxes represent the
interactions between the associated variables.

• Novel type of two-valued decomposition based on
 Reconstructability Analysis called Modified Reconstructability
 Analysis (MRA). Two variants of MRA for Boolean logic are
 provided: 1-MRA and 0-MRA. The superiority of MRA over the
 Conventional Reconstructability Analysis (CRA) in terms of the
 decomposability of Boolean functions and the reduction of
 complexity is also provided.
• The generalization of two-valued MRA into multiple-valued
 MRA.

A C

A B

C

AC:AB:BC

A C B A C B A C

AC:BC AB:BC AB:AC

B C
A

A C
B

A B
C

BC:A
 AC:B AB:C

A B C

B

 160 7 Novel Reconstructability Analysis Circuits and their Reversible Realizations

• New type of reversible structures which is based on reversible
 MRA (R-MRA).
• Evaluations for MRA versus Ashenhurst-Curtis (AC)
 decomposition and Bi-decomposition in terms of the
 decomposability of Boolean functions and the reduction of
 complexity is provided in Appendix H.
 The remainder of this Chapt. is organized as follows. Section
7.1 introduces the new two-valued Modified Reconstructability
Analysis (MRA). Multiple-valued MRA is introduced in Sect. 7.2.
Section 7.3 introduces the Reversible realization of MRA (R-MRA).
A Summary of this Chapt. is presented in Sect. 7.4. (New results of
complexity comparisons of MRA versus AC-like decompositions
will be also introduced in Appendix H.)

7.1 New Type of Reconstructability Analysis: Two-Valued
Modified Reconstructability Analysis (MRA)

This Sect. introduces an innovation in set-theoretic RA, which we
call “modified” RA (or MRA) as opposed to the conventional set-
theoretic RA (or CRA). This innovation will be illustrated by
Examples 7.1 and 7.2. The main idea of MRA stems from the
following fact: While the conventional RA (CRA) decomposes on
the set of all functional values of the corresponding function, the
modified RA (MRA) decomposes on the set of minimum functional
values from which the function can be totally reconstructed. In
general, the procedure for the lossless MRA decomposition follows
the following steps:
(1) Using the lattice-of-relations, decompose for one value only of
the Boolean function into the simplest error-free decomposed
structure:
(1a) Remove one relation between variables from the previous level.
(1b) Add the embedded relation(s) between variables, in the current
level, if they are not already present in the new model.
(2) As a result of step 1, one obtains MRA decomposition for value
“1” of the Boolean function (denoted as 1-MRA decomposition),
and MRA decomposition for value “0” of the Boolean function
(denoted as 0-MRA decomposition). Select the simplest model from

 7 Novel Reconstructability Analysis Circuits and their Reversible Realizations 161

the resulting 1-MRA decomposition and the 0-MRA decomposition,
respectively.
(3) In the resulting simplest decomposed data model from step 2,
generate the corresponding sub-functional values for each
interaction (relation) between the variables that exist in the
decomposed model.
(4) Generate the total functional values using the intersection
between all possible sub-functional values for 1-MRA, and the
union between all possible sub-functional values for 0-MRA.
Example 7.1. Figure 7.2 illustrates decomposed structures using
both CRA and MRA decompositions, respectively for the logic
function: F = x1x2 + x1x3.
 CRA decomposition is illustrated in the upper half of the Fig.,
while MRA decomposition is illustrated in the lower half of the Fig.
As one can observe, MRA decomposition yields a much simpler
logic circuit than the corresponding CRA decomposition, while
retaining complete information about the decomposed function. For
CRA as shown in the top middle part of the Fig., the calculated
function for the model x1x2f1:x1x3f2:x2x3f3 (i.e., α:β:γ) is defined as
follows:

 x1x2x3Fx1x2f1:x1x3f2:x2x3f3 ≡ (x1x2f1 ⊗ x3) ∩ (x1x3f2 ⊗ x2) ∩ (x2x3f3 ⊗ x1),

where ⊗ here means the Cartesian product of sets. (For lossless
CRA decomposition, this equals the original function x1x2x3F that is
shown at the top left of the Fig., and for lossy CRA
x1x2x3Fx1x2f1:x1x3f2:x2x3f3 would not be equivalent to x1x2x3F). The
CRA model can be interpreted by the circuit shown at the top right
of the Fig., where different projections of F are labeled f1, f2, and f3.
In Fig. 7.2, while CRA decomposes for all values of Boolean
functions, MRA decomposes for an arbitrarily chosen value of the
Boolean functions (e.g., for value “1”).
 From Fig. 7.2, one notes that 1-MRA has two advantages over
CRA for the decomposition of two-valued functions: (1) the
resulting decomposed structures from 1-MRA are less complex than
the corresponding decomposed structures from CRA, and (2) the
resulting decomposed structures from 1-MRA are directly realizable
in Boolean-based circuits, while the resulting decomposed structures
from CRA are not directly realizable in Boolean circuits.

 162 7.1 New Type of Reconstructability Analysis: Two-Valued MRA

 Fig. 7.2. CRA versus 1-MRA decompositions for the Boolean function F = x1x2 + x1x3.

 The completely specified Boolean function can be retrieved if
one knows the MRA decomposition for the Boolean function being
equal either to “1” or to “0”. As can be observed from Fig. 7.2, 1-
MRA decomposition yields much simpler logic circuit than the
corresponding CRA decomposition, while retaining complete
information about the decomposed logic function. MRA simplifies
the decomposition problem by focusing, in the original function F,
on the three shaded tuples (“cubes”) for which F = 1. The procedure
for 1-MRA in Fig. 7.2 is as follows:
(1) Using the Lattice-Of-Structures (LOS), decompose the Boolean
function of value “1” into the simplest lossless CRA decomposition.
(2) For a particular model, selected from the LOS, get the
projections.
(3) Assign value “1” (for 1-MRA) to tuples in the resulted
projections. Add all tuples that are missing in the projections which
will have the functional value “0”.
(4) Perform the AND operation for 1-MRA in the output block to
obtain the total functionality.
 Steps (2)-(4) are illustrated as follows:

 x1 x2 x3 F

0 0 0 0

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

 0 1 0

 0 0 0

 1 0 -

 1 1 1

 x1 x2 f1

α β

 0 0 0
 0 1 0
 1 0 -

 1 1 1

 x1 x3 f2

γ

 0 1 -

 0 0 0

 1 0 -

 1 1 -

 x2 x3 f3
 f1

β
f2

x2
x3

x1

∩

α

 γ
 f3

F

X1X2f1:X1X3f2: X2X3f3

 x1 f2
’ x2 x3 f3

’

 0 0

 1 1

 0 0 0
 0 1 1
 1 0 1
 1 1 1

δ ’ γ ‘

Original Function Simplest CRA Model Simplest CRA Circuit Model

Simplest MRA Simplest MRA Circuit

 f2
’

f3
‘

x1
x3

 x2

 ∧ F

γ ’

x1f2’:x2x3f3’

δ ’

 7.1 New Type of Reconstructability Analysis: Two-Valued MRA 163

 The output function in step (4) is the (logical) AND of the two
sub-functions, i.e., F = f2

′(x1) ∧ f3
′(x2,x3). Set-theoretically. this is

illustrated as F = (x1⊗(1∪x1’) ⊗0) ∩ (x2x3⊗(1∪(x2x3)’) ⊗0). The
idea of 0-MRA versus 1-MRA is illustrated in the following
Example 7.2.
Example 7.2. For the logic function F = x1x2 + x1x3. Figure 7.3
illustrates the simplest model using both 1-MRA and 0-MRA. In this
example, the completely specified Boolean function can be retrieved
if one knows the MRA decomposition for the Boolean function
being equal either to “1” (that is 1-MRA) or to “0” (that is 0-MRA).
0-MRA simplifies the decomposition problem by focusing, in the
original function F, on the five shaded tuples (“cubes”) for which F
= 0. The procedure used to obtain the 0-MRA in Fig. 7.3 is as
follows:
(1) Using the Lattice-Of-Structures (LOS), decompose the Boolean
function of value “0” into the simplest lossless CRA decomposition.
(2) For a particular model, selected from the LOS, get the
projections.

x1 x2 x3

1 0 1

 1 0

 1 1

x1 x2 x3 F

1 0 1 1

1 1 0 1

1 1 1 1

x1 f2
′′′′ x2 x3 f3

′′′′

0 0 0 0 0

1 1 0 1 1

 1 0 1

 1 1 1

 164 7.1 New Type of Reconstructability Analysis: Two-Valued MRA

 Fig. 7.3. 0-MRA versus 1-MRA decompositions for the Boolean function F = x1x2 + x1x3.

(3) Assign value “0” (for 0-MRA) to tuples in the resulted
projections. Add all tuples that are missing in the projections which
will have the functional value “1”.
(4) Perform the OR operation for 0-MRA in the output block to
obtain the total functionality.
 Steps (2)-(4) are illustrated in the following flow diagram where
the output function in step (4) is the (logical) OR of the two sub-
functions. This is illustrated as F = f1”(x1,x2) ∨ f2

”(x1,x3).

x1 x2 x3 F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

x1 x2 x1 x3

0 0 0 0

0 1 0 1

1 0 1 0

x1 x2 f1” x1 x3 f2”

0 0 0 0 0 0

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 1 1 1

Original Function Simplest 0-MRA Model Simplest 0-MRA Circuit

Simplest 1-MRA Simplest 1-MRA Circuit

f1
″

 ∨

F α”

β”

x1x2f1
”:x1x3f2

”

 x1 x2 f1
”

 0 0 0
 0 1 0
 1 0 0
 1 1 1

 α” β”

 x1 x3 f2
”

 0 0 0
 0 1 0
 1 0 0

 1 1 1

0 0 1 0

1 1 0 1

 x1 x2 x3 F

0 0 0 0

0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1

1 1 1 1

δ′ γ ′

 0 0 0
 x1 f2

’ x2 x3 f3
’

 0 0
 1 1 0 1 1

 1 0 1
 1 1 1

 f3
‘

 x3

 x2

 ∧ F δ ‘

γ ’

x1f2’:x2x3f3’

f2
’ x1

x2

x1

x3 f2
”

 7.1 New Type of Reconstructability Analysis: Two-Valued MRA 165

 As can be observed from Fig. 7.3, 0-MRA produces more
complex decomposed structure than 1-MRA: using the log-
functionality complexity measure from Appendix G, the log-
functionality of 0-MRA is = 6.6 while the log-functionality of 1-
MRA is = 6.5. Table 7.1 gives the complexities of the
decomposition of all NPN-classes of 3-variable Boolean functions
(NPN classification as well as the complexity measures are fully
discussed in Appendix G) using CRA decomposition and the
simplest MRA decomposition (from either 0-MRA or 1-MRA),
respectively.
 From both Figs. 7.2 (1-MRA) and 7.3 (0-MRA), one observes
that MRA possesses two main advantages over CRA for the
decomposition of Boolean functions: (1) the resulting decomposed
structures from MRA are less complex than the corresponding
decomposed structures from CRA, and (2) the resulting decomposed
structures from MRA are directly realizable in Boolean-based
circuits, while the resulting decomposed structures from CRA are
not realizable in Boolean-based circuits, but in ternary-valued logic
circuits, and thus the resulting logic circuits from MRA are directly
implementable using the current technologies.
 Table 7.1 shows that, in terms of the log-functionality
complexity measure, in five NPN classes (classes 1, 2, 6, 8, 9) MRA
and CRA give equivalent complexity decompositions, but in the
remaining five classes (classes 3, 4, 5, 7, 10) MRA is superior in
complexity reduction.
 One observes from Table 7.1 that, when decomposition exists,
MRA produces four distinct structures, while CRA generates only
two distinct structures. This observation for the capability of MRA
to generate more different structural topologies can be very
important when compared for instance with decompositions that are
capable of producing only a specific structural topology as a result
of functional decomposition (e.g., Ashenhurst-Curtis (AC)
decomposition that is shown in Appendix H). The importance of this
point is in the potential of additional design flexibility that one can
have, when considering the synthesis of certain functions, in the
form of having larger space of designs that one can choose from to
meet certain design specifications.

 166 7.1 New Type of Reconstructability Analysis: Two-Valued MRA

Table 7.1. Conventional RA (CRA) versus Modified RA (MRA) for the decomposition of
all NPN-classes of 3-variable Boolean functions (See Table G.1 in Appendix G). (Compare
the right-most two columns.)

 7.1 New Type of Reconstructability Analysis: Two-Valued MRA 167

 By observing Table 7.1, one observes that the MRA
decomposition possesses more advantages over the CRA
decomposition when comparing the corresponding CRA versus
MRA decompositions for all NPN-classess of 3-variable Boolean
functions. For this purpose, we will use the MRA decomposition to
compare RA decomposition versus the Ashenhurst-Curtis (AC) and
Bi-decomposition (BD) (as will be illustrated in Appendix H).
 Figure 7.4 provides a quantitative analysis of the decomposition
of the NPN-classified functions using MRA and CRA, respectively.
The analysis, in terms of complexity, of the results in Fig. 7.4 is as
follows:

Fig. 7.4. Comparison of the Log-Functionality complexity measure between modified RA
(MRA) and conventional RA (CRA) of 3-variable NPN-classified Boolean functions.

Total number of classes that CRA is better than MRA: 0.
Total number of functions that CRA is better than MRA: 0.
Total number of classes that MRA is better than CRA: 5 (3, 4, 5, 7, 10).
Total number of functions that MRA is better than CRA: 144.
Total number of classes for CRA is the same as MRA: 5 (1, 2, 6, 8, 9).
Total number of functions for CRA is the same as MRA: 74.

C LF (CRA)

C LF (MRA)
 4 5 6 7 8

 5

6

 class 1 (8) ••••
class 4 (48)

class 8 (24)

 class 7 (24)

7

 8
 classes 2,6,9 (42)

••••

 class 5,10 (56) ••••

 4

class 3
(16)

••••

•••• •••• ••••

 168 7.1 New Type of Reconstructability Analysis: Two-Valued MRA

 From the results in Fig. 7.4, one observes the clear superiority
of MRA (whether it is 0-MRA or 1-MRA) over CRA in terms of the
decomposition of Boolean functions. Logic circuits to realize all
NPN-classified Boolean functions using CRA and MRA (the
simplest decomposition from either 1-MRA or 0-MRA) are given in
Table 7.2.
 As can be observed that while the output block in CRA
decomposition is the set-theoretic intersection operation (∩), the
output block in 1-MRA decomposition is the Boolean AND
operation and the output block in 0-MRA decomposition is the
Boolean OR operation. The importance of this is that both the AND
and OR Boolean operations are directly realizable in current binary
technologies such as CMOS, while the set-theoretic intersection
operation (∩) is only realizable in technologies that implement
ternary logic.
 While the log-functionality complexity measure that is used in
Table 7.1 is a good cost measure for machine learning, it is not in
general a good measure to measure the cost for the purpose of
circuit design. An alternative acceptable cost measure for circuit
design will be the count of the total number of two-input gates in the
final circuit (C#).
 Table 7.3 presents an initial evaluation for MRA using the C#
complexity measure. One can note that, for all of the classes of
NPN-classified 3-variable Boolean functions in Table 7.3, the total
C# for all of the MRA Boolean circuits with inverters is 20, while
the total C# for all of the MRA Boolean circuits without inverters is
19, and this result is not surprising since usually Boolean circuits
with inverters are more complex than the same Boolean circuits
without counting inverters. While the results in Table 7.3 are
technology-independent, the same results that are obtained in Table
7.3 can be viewed from technology-dependent point of view as well.
This is because while the realization of certain two-input logic
primitives (gates) from Fig. G.3 (in Appendix G) needs less number
of physical primitives (devices) in certain types of technologies, the
same gates can need more number of devices in other types of
technologies.

 7.1 New Type of Reconstructability Analysis: Two-Valued MRA 169

Table 7.2. Conventional RA (CRA) circuits versus Modified RA (MRA) circuits for the
decomposition of all NPN-classes of 3-variable Boolean functions.

NPN Representative Simplest MRA Circuit Simplest CRA Circuit
Function

non-decomposable

non-decomposable

non-decomposable

F = x1x2 + x2x3 + x1x3

 F = x1⊕ x2 ⊕ x3

 F = x1+ x2 + x3

 F = x1(x2 + x3)

 F = x1x2 x3 + x1
’x2

 ‘x3
’

 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’

 F = x1(x2 x3 + x2
’x3

 ‘)

 F = x1x2 + x2x3 + x1
’x3

 F = x1
’x2 x3 + x1x2

 ‘x3 + x1 x2x3
’

 F = x1x2
’
 x3

‘+ x2
 x3

Class 1 (8)

Class 2 (2)

Class 3 (16)

Class 4 (48)

Class 5 (8)

Class 6 (24)

Class 7 (24)

Class 8 (24)

Class 9 (16)

Class 10 (48)

x1

x2

x3

∧ F

f1

f2

 f3

f1

f2

∧

x1

x2

x3

F

∧

x2

x1

x3

f1

f2

F

F

∧

x2

x3

f1

x1

non-decomposable

non-decomposable

non-decomposable

non-decomposable

non-decomposable

non-decomposable

non-decomposable

x1

f2

x2

x3

∩ F

f1

f3

x1

F
x2

x3

∩

f1

f2

f3

x2
∩ x1

x3

f1

f2

F

 ∨ F

x1

x2

x3

∧

x1

x3

x2

f1

f2

F

∧

x2

x1

x3

f1

f2

F

 170 7.1 New Type of Reconstructability Analysis: Two-Valued MRA

Table 7.3. Evaluating two-valued MRA circuits using C# cost measure.

 Class C# with inverters (MRA) C# without inverters (MRA)

 1 5 5
 2 - -
 3 1 1
 4 2 2
 5 3 3
 6 - -
 7 2 2
 8 4 3
 9 - -
 10 3 3

7.2 Multiple-Valued MRA

Real-life data are in general many-valued. Consequently, if MRA
can decompose relations between many-valued variables it can have
practical applications in machine learning (ML) and data mining
(DM). Many-valued MRA is made up of two main steps which are
common to two equivalent (intersection-based and union-based)
algorithms as follows:
(1) partition the many-valued truth table into sub-tables, each
contain only single functional value.
(2) Perform CRA on all sub-tables. Figure 7.5 illustrates the general
pre-processing procedure for the two many-valued MRA algorithms,
which will be explained in more detail below.
 For an “n”-valued completely specified function one needs (n-1)
values to define the function (i.e., to be able to retrieve the
completely specified function without any loss of information). We
thus do all n decompositions and use for our MRA model the (n-1)
simplest of these. Figure 7.5 illustrates the general flow diagram of
the multiple-valued MRA decomposition using the pre-processing
steps that are common to both of the intersection-based and union-
based algorithms.

 7.1 New Type of Reconstructability Analysis: Two-Valued MRA 171

 Original 3-valued table
 0
 1
 2

 Step (1): Separate one-valued tables

 Step (2): CRA decompositions of all one-valued tables

 Step (3): Application of MRA algorithm

 Intersection Union
 Algorithm Algorithm

 Fig. 7.5. Steps for many-valued MRA.

 For example, using the lattice-of-structures, decompose the 3-
valued function for each individual value. One then obtains the
simplest lossless MRA decomposition for value “0” of the function
(denoted as the 0-MRA decomposition), for value “1” (1-MRA
decomposition), and for value “2” (2-MRA decomposition). By
selecting the simplest two models from these 0-MRA, 1-MRA, and
2-MRA decompositions, one can generate the complete function.
 In the intersection method, first CRA decompositions are
expanded to include the full set of variable and function values, and
these expanded decompositions are then intersected to yield the
original table. Equivalently, one can use a union operation to
generate the corresponding many-valued MRA as follows: (1)
decompose the original table (function or relation) into sub-tables
for each output value: e.g., T = T0 ∪ T1 ∪ T2 for the corresponding
output values O0, O1, and O2 respectively, (2) do the 3-valued CRA
decomposition on each sub-table. Let Mj be the decomposition of Tj,
and (3) the reconstructed function or relation (T*) is the union of all

the sub-table decompositions, �
1

0

* −

=
⊗=

n

j
OMT jj , where ⊗ is the

 0 1 2

 172 7.2 Multiple-Valued MRA

set-theoretic Cartesian product. The union procedure can also be
done with (n-1) decompositions.
 The following are two examples which illustrate many-valued
MRA of three-valued logic functions. In the first example MRA can
decompose the function for only two values, and one has no choice
but to use both of these decompositions in the MRA model. In the
second example, the function is decomposable for all three of its
values, and the two simplest decompositions are chosen to define the
model. In discussing the second example, we show that this
approach is generalizable to set-theoretic relations, in addition to
mappings.
Example 7.3. For the following ternary map:

The following is the many-valued MRA intersection algorithm.
Step 1. decompose the ternary chart of the function into three
separate tables each for a single function value. This will produce
the following three sub-tables.

F

 X1X2

X3

 0 1 2

 00 0 0 0

 01 1 1 0

 02 1 1 1

 10 0 0 2

 11 0 0 2

 12 1 1 1

 20 0 2 0

 21 1 1 0

 22 2 2 0

 7.2 Multiple-Valued MRA 173

 D0 D1 D2
Step 2. Perform CRA for each sub-table.
Step 2a. The simplest error-free 0-MRA decomposition is the
original “0”-subtable itself since it is not decomposable.
Step 2b. 1-MRA decomposition of D1 is as follows:

Table 1 Table 2
X1 X2 : X2X3

0 1 1 0
0 2 1 1
1 2 2 0
2 1 2 1

 2 2
 D11 D12
Step 2c. The 2-MRA decomposition of D2 is as follows:

Table 3 Table 4
X1 X3 : X2X3

1 2 0 2
2 1 1 2
2 0 0 1

 2 0
 2 1
 D21 D22

THE INTERSECTION ALGORITHM

Step 3.1. Select the two simplest error-free decomposed models. In
this particular example, these are 1-MRA and 2-MRA

000
001
002
012
100
101

Value “0” Value “1” Value “2”

110
111
200
202
212
222

010
011
020
021
022
120
121
122
210
211

102
112
201
220
221

 174 7.2 Multiple-Valued MRA

decompositions. MRA thus gives the decomposition model of
D11:D12:D21:D22 from which the original function can be
reconstructed as follows.
Step 3.2. Note that, for Tables 1 and 2, the MRA decomposition is
for the value “1” of the logic function. Therefore, the existence of
the tuples in the decomposed model implies that the function has
value “1” for those tuples, and the non-existence of the tuples in the
decomposed model implies that the function does not have value “1”
but “0” or “2” for the non-appearing tuples. This is shown in Tables
1’ and 2’, respectively. Similarly note that, for Tables 3 and 4, the
MRA decomposition is for the value “2” of the logic function.
Therefore, the existence of the tuples in the decomposed model
implies that the function has value “2” for those tuples, and the non-
existence of the tuples in the decomposed model implies that the
function does not have value “2” but “0” or “1” for the non-
appearing tuples. This is shown in Tables 3’ and 4’, respectively.

 Table 1’ Table 2’ Table 3’ Table 4’
 X1 X2 F1 : X2 X3 F2 X1 X3 F3 : X2 X3 F4
 0 0 0,2 0 0 0,2 0 0 0,1 0 0 0,1

 0 1 1,0,2 0 1 0,2 0 1 0,1 0 1 2,0,1
 0 2 1,0,2 0 2 0,2 0 2 0,1 0 2 2,0,1
 1 0 0,2 1 0 1,0,2 1 0 0,1 1 0 0,1
 1 1 0,2 1 1 1,0,2 1 1 0,1 1 1 0,1
 1 2 1,0,2 1 2 0,2 1 2 2,0,1 1 2 2,0,1
 2 0 0,2 2 0 1,0,2 2 0 2,0,1 2 0 2,0,1
 2 1 1,0,2 2 1 1,0,2 2 1 2,0,1 2 1 2,0,1
 2 2 0,2 2 2 1,0,2 2 2 0,1 2 2 0,1

 In Tables 1’ and 2’ (i.e., the decomposition for value “1” of the
function), the existence of value “1” (of sub-relations F1 and F2)
means that the value “1” appeared in the original non-decomposed
function for the corresponding tuples that appear in each table, but
does not imply that the values “0” or “2” (of sub-relations F1 and F2)
did not exist in the original non-decomposed function for the same
tuples. Therefore “0” and “2” are added to “1” as allowed values. In
the remaining tuples, however, only “0” and “2” are allowed since
the value “1” did not occur. Similarly, in Tables 3’ and 4’, the
existence of the value “2” (of sub-relations F3 and F4) means that the

 7.2 Multiple-Valued MRA 175

value “2” appeared in the original non-decomposed function for the
corresponding tuples that appear in each table, but does not imply
that values “0” or “1” did not exist in the original non-decomposed
function for the same tuples. Therefore “0” and “1” are added to “2”
as allowed values. In the remaining tuples, however, only “0” and
“1” are allowed since the value “2” did not occur. Set-theoretically,
obtaining Tables 1’, 2’, 3’, and 4’ from Tables 1, 2, 3, and 4 is
described as follows where ′ here means complement.
Table 1’: (D11⊗(0,1,2))∪(D11′⊗(0,2)),
Table 2’: (D12⊗(0,1,2))∪(D12′⊗(0,2)),
Table 3’: (D21⊗(0,1,2))∪(D21′⊗(0,1)),
Table 4’: (D22⊗(0,1,2))∪(D22′⊗(0,1)),
Step 3.3. Tables 1’, 2’, 3’, and 4’ are used to obtain the block
diagram in Fig. 7.6, where the following set-theoretic Eqs. govern
the outputs of the levels in the circuit shown in the Fig.: F = F5 ∩
F6, F5 = F1 ∩ F2, F6 = F3 ∩ F4, where F1 is given by Table 1’, F2
by Table 2’, F3 by Table 3’, and F4 by Table 4’, respectively.

Fig. 7.6. The resulting decomposed structure by applying the multi-valued MRA
decomposition.

 The intermediate sub-functions, F5 and F6 are shown in the
following maps, respectively.

x1

x3

x2

F1

F2

F3

F4

F

x1

x2

x3

Table 1’

Table 2’

Table 3’

Table 4’

∩
F5

F6 ∩

∩

x1

x2x3

 00 01 02 10 11 12 20 21 22

0 0,20,2 0,2 1 1 0,2 1 1 1

1 0,20,2 0,20,20,2 0,2 1 1 1

2 0,20,2 0,2 1 1 0,20,2 0,2 0,2
F5 = F1 ∩ F2

x1

 x2x3

 00 01 02 10 11 12 20 21 22

0 0,1 0,1 0,10,10,1 0,10,1 0,10,1

1 0,10,1 2 0,10,1 2 0,1 0,10,1

2 0,1 2 0,1 0,10,1 0,1 2 2 0,1
F6 = F3 ∩ F4

 176 7.2 Multiple-Valued MRA

 Note that in Fig. 7.6 the intersection blocks in the second level
and the intersection block at the third (output) level, are general and
do not depend on the function being decomposed. Only the tables at
the first level depend upon this function.

THE UNION ALGORITHM

Steps 1 and 2 are the same as in the intersection algorithm.
Step 3.1. Using the decomposition model D11:D12:D21:D22 obtain
D1 and D2 by standard methods as follows:
D1 = (D11⊗x3)∩(D12⊗x1),
D2 = (D21⊗x2)∩(D22⊗x1),
D0 = (D1∪D2)′,
where D1 is the decomposition for function value “1”, D2 for
function value “2”, and x1, x2, and x3 ∈ {0,1,2}.
Step 3.2. Perform the set-theoretic operations to obtain the total
function from the decomposed sub-functions.
x1x2x3F = (D1⊗1)∪(D2⊗2)∪((D1∪D2)′⊗(1∪2)′),
 = (D1⊗1)∪(D2⊗2)∪((D1∪D2)′⊗0).
Alternatively, one can use all three decompositions:
x1x2x3F = (D0⊗0)∪(D1⊗1)∪(D2⊗2).
 The function value of (x1,x2,x3) is determined by the following
block diagram, where G performs the following operation:
F = 0 if (x1x2x3) ∈ D0,
F = 1 if (x1x2x3) ∈ D1,
F = 2 if (x1x2x3) ∈ D2.

 Note that the logic function in Example 7.3 is non-
decomposable using CRA. Consequently, as can be seen from this
example and analogously to the binary case, the new many-valued
MRA is superior to CRA.

G

x1
x2
x3

F

 7.2 Multiple-Valued MRA 177

 We now consider an example where CRA does decompose, and
also where MRA decomposes for all three values.
Example 7.4. Let us generate the MRA decomposition for the
ternary function specified by the following ternary map:

Utilizing the intersection-based algorithm, one obtains the following
results for MRA for the ternary function in Example 7.4.
Step 1. decompose the ternary chart of the function into three
separate tables each for a single function value. This will produce
the following three sub-tables.

 D0 D1 D2

Step 2. Perform CRA for each sub-table.
Step 2a. The 0-MRA decomposition of D0 is as follows:

 0 0 0

 X1X2

X3

 0 1 2

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2 F

 1 1 1
 1 1 1
 0 0 2
 0 0 2
 1 1 1
 0 2 0
 1 1 1
 2 2 0

000
001
002
100
101

Value “0”

110
111
200
202
222

010
011
012
020
021
022

Value “1”

120
121
122
210

102
112
201
220
221

Value “2”

211
212

 178 7.2 Multiple-Valued MRA

 Table 1 Table 2 Table 3
X1X2 : X2X3 : X1X3

0 0 0 0 0 0
1 0 0 1 0 1
1 1 0 2 0 2
2 0 1 0 1 0
2 2 1 1 1 1

 2 2 2 0
 2 2
 D01 D02 D03
Step 2b. The 1-MRA decomposition of D1 is as follows:

Table 4 Table 5
X1 X2 : X3

0 1 0
0 2 1
1 2 2

 2 1
 D11 D12
Step 2c: The 2-MRA decomposition of D2 is as follows:

Table 6 Table 7
X1 X3 : X2X3

1 2 0 2
2 1 1 2
2 0 0 1

 2 0
 2 1
 D21 D22

THE INTERSECTION ALGORITHM

Step 3.1. Select the two simplest decomposed models, namely 1-
MRA and 2-MRA decompositions. These are at a lower level in the
lattice of structures than 0-MRA.
Step 3.2. Analogously to Example 7.3, one obtains the following
expanded tables:

 7.2 Multiple-Valued MRA 179

 Table 4’ Table 5’ Table 6’ Table 7’
X1 X2 F1 : X3 F2 X1 X3 F3 : X2 X3 F4
0 0 0,2 0 1,0,2 0 0 0,1 0 0 0,1

 0 1 1,0,2 1 1,0,2 0 1 0,1 0 1 2,0,1
 0 2 1,0,2 2 1,0,2 0 2 0,1 0 2 2,0,1

1 0 0,2 1 0 0,1 1 0 0,1
1 1 0,2 1 1 0,1 1 1 0,1

 1 2 1,0,2 1 2 2,0,1 1 2 2,0,1
 2 0 0,2 2 0 2,0,1 2 0 2,0,1
 2 1 1,0,2 2 1 2,0,1 2 1 2,0,1

2 2 0,2 2 2 0,1 2 2 0,1
Set-theoretically, obtaining Tables 4’-7’ is as follows:
Table 4’: (D11⊗(0,1,2))∪(D11’⊗(0,2)),
Table 5’: (D12⊗(0,1,2))∪(D12’⊗(0,2)),
Table 6’: (D21⊗(0,1,2))∪(D21’⊗(0,1)),
Table 7’: (D22⊗(0,1,2))∪(D22’⊗(0,1)).
Step 3.3. Tables 4’, 5’, 6’, and 7’ are used to obtain Fig. 7.7, where
F = F5 ∩ F6, F5 = F1 ∩ F2, F6 = F3 ∩ F4, and F1 is given by Table
4’, F2 by Table 5’, F3 by Table 6’, and F4 by Table 7’.

 Fig. 7.7. The resulting decomposed structure by applying the multi-valued MRA.

The intermediate sub-functions, F5 and F6 are shown as follows.

x1

x2

x3

x1

x3

x2

F1

F2

F3

F4

F

Table 4’

Table 5’

Table 6’

Table 7’

 ∩
F5

F6 ∩

 ∩

x1

x2x3

 00 01 02 10 11 12 20 21 22

0 0,20,2 0,2 1 1 1 1 1 1

1 0,20,2 0,20,2 0,20,2 1 1 1

2 0,20,2 0,2 1 1 1 0,2 0,20,2

F5 = F1 ∩ F2

x1

x2x3

 00 01 02 10 11 12 20 21 22

0 0,1 0,10,10,1 0,10,1 0,10,10,1

1 0,1 0,1 2 0,1 0,1 2 0,10,10,1

2 0,1 2 0,10,1 0,10,1 2 2 0,1

F6 = F3 ∩ F4

 180 7.2 Multiple-Valued MRA

THE UNION ALGORITHM

Steps 1 and 2 are the same as in the intersection algorithm.
Step 3.1. Using the decomposition model
D01:D02:D11:D12:D21:D22 obtain D0, D1, and D2 by standard
methods as follows:
D0 = (D01⊗x3)∩(D02⊗x1)∩(D03⊗x2),
D1 = (D11⊗x3)∩(D12⊗x1x2),
D2 = (D21⊗x2)∩(D22⊗x1),
where D0 is the decomposition for function value “0”, D1 is for
value “1”, D2 for value “2”, and x1, x2, and x3 ∈ {0,1,2}.
Step 3.2. Perform the set-theoretic operations to obtain the total
function from the decomposed sub-functions. This can be done
using only two of the three decompositions as in Step (3.2) of the
union algorithm in Example 7.3, or alternatively, one can use all
three decompositions as follows:
x1x2x3F = (D0⊗0)∪(D1⊗1)∪(D2⊗2).
 The function value of (x1,x2,x3) is determined by the following
block diagram, where G performs the following operation: F = 0 if
(x1x2x3) ∈ D0, F = 1 if (x1x2x3) ∈ D1, and F = 2 if (x1x2x3) ∈
D2.

 The logic function in Example 7.4 is decomposable using CRA
with the lossless CRA model x1x2:x2x3:x1x3. Consequently, unlike
the previous example, both many-valued MRA and CRA decompose
losslessly. Since both CRA and MRA decompose this function, we
would like to be able to compare the complexities of the two
decompositions. The complexity measure used in Appendix G could
be used, but needs to be extended to many-valued functions.
 From the previous discussion, it follows that the extension of
many-valued MRA from functions to relations is trivial. One just
performs the union algorithm using all n decompositions, e.g., for
three values (D0⊗0)∪(D1⊗1)∪(D2⊗2). One can observe that the
set-theoretic formulation of multiple-valued MRA as the union of

G

x1
x2
x3

F

 7.2 Multiple-Valued MRA 181

the individual sub-tables (e.g., x1x2x3F =
(D0⊗0)∪(D1⊗1)∪(D2⊗2)) is analogous to the algebraic
formulation of multiple-valued Shannon expansion as the
disjunction of the individual values of a logic function (e.g., Eq.
(2.6): f = 0x f0 + 1x f1 + 2x f2).

7.3 Reversible MRA

Reversible (3,3) gates, that are universal in two arguments, can be
used for the construction of reversible MRA (RMRA) circuits.
Figure 7.8 illustrates one example of a binary (3,3) reversible gate
from [126], which is universal in two arguments.

Fig. 7.8. a Diagram of the reversible (3,3) Boolean logic circuit, b truth table of this gate,
and c proof of universality of the gate in two arguments.

 The following example illustrates the use of the reversible gate
in Fig. 7.8 for the synthesis of 1-MRA circuit for class 5. The 1-
MRA decomposed Boolean circuit of class 5 can be realized using
the binary (3,3) reversible circuit in Fig. 7.8b. This is done with the

 b c

 a

 Inputs Outputs

a=0 R=c, Q=(b⊕⊕⊕⊕c)’, P=b’+c’

a=1 R=b, P=bc’

b=0 P=a’

b=1 R=a+c, Q=a⊕c, P=c’

c=0 R=ab, Q=a+b’, P=a’+b

c=1 Q=a’b, P=a’b’

 a=1, b=0 P=0

 a=1,b=1 R=1

 a b c P Q R

 0 0 0 1 1 0
 0 0 1 1 0 1
 0 1 0 1 0 0
 0 1 1 0 1 1
 1 0 0 0 1 0
 1 0 1 0 0 0
 1 1 0 1 1 1
 1 1 1 0 0 1

a P

 b Q

 c R

 B

 182 7.2 Multiple-Valued MRA

reversible circuit in Fig. 7.9, where blocks B1 and B2 are the
reversible (3,3) gate from Fig. 7.8b, and block B3 is the reversible
(3,3) Toffoli gate. For B3, c = 0 and thus B3 is a reversible logic
AND gate.
 Utilizing Fig. 7.8c, the Boolean reversible circuit in Fig. 7.9
implements the 1-MRA circuit of class 5 using the following input
settings: a = 0 � Q1 = f1 = (x1⊕x2)’, a = 0 � Q2 = f2 = (x1⊕x3)’,
and F = Q1∧Q2 = f1∧f2 = (x1⊕x2)’∧(x1⊕x3)’= x1x2x3+x1’x2’x3’.
Using similar substitutions with appropriate input values according
to Fig. 7.8b, the reversible circuit in Fig. 7.9 can realize all 1-MRA
circuits from classes 8 and 10, respectively.

Fig. 7.9. Reversible (7,7) Boolean circuit that implements the 1-MRA circuit from class 5.
Input {a} in B1 and B2 and the set of outputs {R1, P1, R2, P2, G1, G2} are needed for
reversibility. Input {a} also selects the appropriate function value of which the universal B
gate (Fig. 7.8b) is to implement.

 The remaining classes can be realized using analogous
techniques, by adding one more block from Fig. 7.8b to the first
level of Fig. 7.9 in the case of class 1, and removing one block from
the first level of Fig. 7.9 in the case of classes 4 and 7, respectively.
Yet, as one can observe, the RMRA produces garbage in the
outputs, and this output garbage has to be eliminated when the
quantum counterpart of RMRA is created. To eliminate such
garbage one needs to use the reversible inverse RMRA circuit as in
Fig. 7.10.

R2

 f2

B2

 “0”

B1

 B3

a

x2

x1

x3

a

F

R1
 P1

 f1

 P2

G1

G2

 7.3 Reversible MRA 183

 Fig. 7.10. Garbageless reversible MRA circuit.

Example.7.5. Let us obtain the RMRA circuit for the Boolean
function in NPN class 5: 321321 xxxxxxf += . Figure 7.11 illustrates

the complete garbageless reversible 1-MRA for the function in
Example 7.5.
 The new MRA posseses the advantage of producing four
distinct structures as shown in the middle column of Table 7.2, when
decomposition occurs. Thus using one unified theory different
topological structures are created, where such structures have to be
created using separate decomposition methods in the case of other
type of decompositions (such as in the case of Ashenhurst-Curtis
(AC) based decompositions in Appendix H). As stated previously,
this point can be of high importance when synthesizing logic circuits
as it gives the designer more design options (i.e., larger design
space) to choose from to meet specific design criteria, and this is an
issue that needs further exploration.
 The disadvantage of reversible MRA is that it creates big
garbage, and thus the elimination of garbage in reversible MRA
structures is done by using the reversible mirror image circuit of the
forward reversible circuit as shown in Example 7.5. Another
disadvantage of the current 1-MRA and 0-MRA decompositions is
that MRA does not yet decompose for the ESOP-like Boolean
function from NPN class 2, which is a very common and useful
form in many applications in logic synthesis [217].

1

2

3

1-1

2-1

3-1
“0” “0”

 184 7.3 Reversible MRA

 Fig. 7.11. Garbageless reversible 1-MRA circuit for NPN class 5 Boolean function.

7.4 Summary

A novel RA-based decomposition is introduced. The new
decomposition is called the Modified Reconstructability Analysis
(MRA). It is shown that in 4 out of 10 NPN classes while 3-variable
NPN-classified Boolean functions are not decomposable using the
Conventional Reconstructability Analysis (CRA) decomposition,
they are decomposable using the Modified Reconstructability
Analysis (MRA) decomposition. For the purpose of binary circuit
design, it has been shown also that, by counting the total number of
two-input gates, MRA is superior to CRA for both cases when
including the cost of the inverters and when not including the cost of
the inverters. The multiple-valued MRA has been also introduced.
The reversible realization of the MRA has been introduced as a first
step towards the quantum computation of such reversible structures.

 0

0

x1

x2

x3

F

x1

0

x1

x2

0

x1

 x3

 0

 7.3 Reversible MRA 185

8 New Reversible Structures: Reversible Nets,
Reversible Decision Diagarams, and Reversible
Cascades

In Chapts. 6 and 7 two reversible decompositions were created:
reversible lattice structures and reversible Modified
Reconstructability Analysis. While these reversible structures
exhibit certain regularities, yet they generate a big “garbage” at the
output which requires the use of the mirror image (i.e., inverse)
reversible circuit to eliminate such “garbage”. This Chapt. will
provide a variety of new reversible structures, which can possess
advantages that the previous reversible structures did not have like
the use of minimal garbage or no garbage at all in some cases. Since
garbage is a big issue in reversible logic synthesis, search heuristics
for reversible logic synthesis should include the following: (1) do
not create many outputs of gates and sub-circuits, (2) re-use these
outputs as inputs in other gates or sub-circuits, (3) apply re-usability
properties of these common sub-functions and symmetry is one of
such properties, (4) the method must be general, and (5) use
regularity and algebraic properties (e.g., group, field, or linear
properties) to create more powerful reversible structures. The new
contributions of this Chapt. are:
• The creation of a new reversible structure, that uses the symmetry
 indices that were presented in Chapt. 4, called reversible Nets.
• The creation of new reversible Decision Trees and Diagrams that
 use the form of trees and diagrams to realize reversibly the
 corresponding logic functions.
• The invention of a multiple-valued reversible Cascade structures
 that show efficiency in the reversible synthesis of logic functions.
 The remainder of this Chapt. is organized as follows. Reversible
Nets are presented in Sect. 8.1. Reversible Decision Diagrams are
presented in Sect. 8.2. Binary and multiple-valued reversible
Cascades are presented in Sect. 8.3. Chapter Summary is presented
in Sect. 8.4.

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

8.1 Reversible Nets

The basic idea of reversible Net structures [183,185] made up of
(2,2) reversible gates is based on regular planes as shown in Fig. 8.1.

 a

 b

Fig. 8.1. a Three plane regular structure to realize arbitrary multi-input, multi-output
Boolean functions using MIN/MAX reversible gates, and b an equivalent two plane regular
structure that realizes arbitrary multi-input multi-output Boolean functions using
MIN/MAX reversible gates.

 The first plane from left in Fig. 8.1b is a levelized triangular
structure in which the input variables correspond to the columns (we
will call this plane the triangular plane). In contrast to lattices
however, this structure, when realizing an arbitrary multi-output
function with geometrically adjacent output signal, does not require
variable repetition. The structure of the first plane is planar, regular,
and algorithmically created. It realizes all positive unate symmetric
functions of its input variables. The second structure plane in Fig.
8.1b is a plane of Feynman gates that uses their internal EXOR gates
to realize every output function as an EXOR of single index
symmetric functions from plane two. This plane can be compared in
its functionality to the OR plane in the standard AND/OR PLA that
is used to realize a Sum-Of-Product (SOP; DNF) expression.
Because the functions on the output of the second plane are disjoint
as single index functions, the OR of them is the same as the EXOR
of them (i.e., this is based on the Boolean law: A + B = A ⊕ B ⊕

Regular
Symmetric
Structure

EXOR
Level 1

EXOR
Level 2

Regular
Symmetric
Structure

EXOR
Level

 8.1 Reversible Nets 187

AB, and thus when A and B are disjoint functions we obtain: AB = 0
and thus A + B = A ⊕ B).
 The whole idea is thus based on the well known fact that every
symmetric function can be realized as OR or EXOR of its single
value symmetric functions (as was illustrated in Sect. 4.1). Figure
8.2 illustrates how positive polarity unate symmetric functions can
be created systematically in a regular planar arrangement of
reversible MIN/MAX gates (from Fig. 5.19a). (Here we don not
show for brevity the input and output constants’ lines.) Observe that
each ouput function, from top to bottom, includes the next function
and are all positive polarity and unate. The sets of indices of the
adjacent functions differ by one.

Fig. 8.2. Example of the realization of three-variable symmetric functions in the left plane
from Fig. 8.1: a regular structure from reversible MAX/MIN gates that realizes positive
polarity unate symmetric functions, and b indices of a symmetric function of three
variables A, B, and C, where each cell includes an index of a symmetric function that
corresponds to it, for instance function S2,3(A,B,C) will have ones in cells with indices 2
and 3 and zeros in cells with indices 0 and 1.

 Let us observe that positive unate symmetric functions that are
generated on the outputs of the triangular plane have a very nice
property: the EXOR of the neighbor functions creates a single index
symmetric function. This is illustrated in Fig. 8.3. However, because
the EXOR gate is not reversible, we have to complete it with a
Feynman gate by repeating one of its inputs to the output. Because
our structure is regular, this does not complicate the structure. In

C

AB 0 1

00 S0 S1

01 S1 S2

11 S2 S3

10 S1 S2

 a b

MAX/MIN
gate

MAX/MIN
gate

A

B

MAX(A,B) MAX(A,B,C)

 MIN(A,B)

 MIN(A,B)

C

S1,2,3(A,B,C)

S2,3(A,B,C)

MAX/MIN
gate

 S3(A,B,C)

 188 8.1 Reversible Nets

result, we obtain a structure such as the one shown in Fig. 8.4 for
four variables.
 As one observes, in this regular reversible Net structure, we
obtain not only the single index symmetric functions, but also some
interval functions whose parameters are highly correlated to the
neighboring single index functions. We have also fan-out gates in
the second plane as shown in Fig. 8.4. These fan-out gates (in the
second plane of Fig. 8.4) uses Feynman gates (cf. Fig. 5.4d) with
value “0” at the control line (input) to generate copies of the desired
output signals from the first triangular plane.
 Counts to characterize the complexity for this regular reversible
Net structure are presented in Appendix I. Similarly to the argument
presented for the case of lattice structures in Sect. 4.2 of Chapt. 4,
evaluating the worst case for non-symmetric functions is difficult
because we do not know yet how many times variables should be
repeated in the process of symmetrization that is used to transform a
non-symmetric function to a symmetric counterpart. Symmetrization
however is a difficult problem for which no efficient algorithms
have been created so far. When the input variables (in this particular
case the inputs to the Net structure) have different polarities, the
problem becomes even more complex, especially that repeated
variables can have various distinct polarities.

Fig. 8.3. Illustration of how a single index symmetric functions can be realized by an
additional column of EXORs.

MIN(A,B)

MAX/MIN
gate

MAX/MIN
gate

MAX/MIN
gate

A

B

MAX(A,B)
 MAX(A,B,C)

 MIN(A,B)

C

S1,2,3(A,B,C)

S2,3(A,B,C)

S3(A,B,C)

S1(A,B,C)

S2(A,B,C)

 8.1 Reversible Nets 189

 Fig. 8.4. Realization of all single index symmetric functions using only reversible gates.

 It can be observed from Figs. 8.3 and 8.4 that the reversible Net
structures produce garbage in their outputs. To eliminate this
garbage, the reversible forward Net structure has to be serially
interconnected with the reversible inverse Net structure as illustrated
in Fig. 8.5, where the spy circuit is used to measure the intermediate
outputs in the total network.
 In Fig. 8.6, horizontal outputs (from the MC plane positive
unate symmetric (PUS) functions) are EXOR-ed using Feynman
gates in the right plane to create arbitrary symmetric functions at the
bottom. Additional garbage outputs of MC gates must be forwarded
to the primary outputs, shown in Fig. 8.6 as bold arrows from cells
in the upper row only. These garbage outputs can be inputs to
Feynman gates in the same way as the horizontal outputs. This
extends the class of realizable functions in the structure using no
repeated variables.

MAX/
MIN
gate

MAX/
MIN
gate

MAX/
MIN
gate

A

B

 MAX(A,B)

 MIN(A,B)

 MIN(A,B)

C

S1,2,3(A,B,C)

S2,3

MAX/
MIN
gate

MAX/
MIN
gate

MAX/
MIN
gate

D

0

0

S1(A,B,C,D)

S 2,3,4(A,B,C,D)

S2(A,B,C,D)

S 3,4(A,B,C,D)

S3(A,B,C,D)

S4(A,B,C,D)

S1,2,3,4(A,B,C,D)

S3,4

S4

 190 8.1 Reversible Nets

Fig. 8.5. Garbageless reversible net structure for 4-variable functions: a initial circuit, and b
rectangular reversible net made up of one triangular reversible forward Net and one
triangular reversible inverse Net.

 Figure 8.6 illustrates the use of MC gates in contrast to the use
of the reversible MIN/MAX gates (from Fig. 5.19a) to reversibly
realize symmetric functions. The control signals for the first
triangular plane that contains MC gates and the second plane that
contains Feynman gates come from memory. These signals can take
values of “0” or “1”. Feynman gates in the second plane can be
alternatively replaced with Toffoli gates with control signals coming
from memory with values “0” or “1”. This type of structure is semi-
reversible because the memory from which the control signals come
is not reversible, while the data path is reversible. The
programmability of the Reversible Programmable Gate Array
(RPGA) is done in the second plane in the form of interconnecting
or disconnecting the gates in the columns in the second rectangular
plane to achieve certain symmetric functions at the output of the
second plane from which any other function can be synthesized.

 8.1 Reversible Nets 191

 F F-1

…

…

…

a

F

F-1
…

 b

Fig. 8.6. Reversible Programmable Gate Array (RPGA): a the notation for MC
gate used as a cell in the first plane, b the notation for Feynman gate used as a cell
in the second plane, c symbol for Toffoli gate, and d an example of the realization
of a 5-input, 2-output function (S1,2(a,b,c,d,e), S2,4,5(a,b,c,d,,e)) in RPGA.

1 1 1 1

1 1 1

1 1

1

0 0

a

b c d e

 S5

 S2,4,5

1 2 3a

3b

4a

4b 5a

5b 6

7

1

C = Control A =Input 1

B = Input 2

P = Output1

Q = Output2
R = Garbage

A A

B

A ⊕ B

a b c

d

S1,2,3,4,5

S2,3,4,5

S3,4,5

S4,5

0

A A

B

B

D = AB ⊕ C

C = Control

 0

1

 192 8.1 Reversible Nets

8.2 Reversible Decision Diagrams

Because some decompositions require complex data processing to
find a high quality solution, large multi-output functions should be
first partitioned to smaller functions. This is based on their
representations such as Binary Decision Diagrams, Pseudo-
Kronecker Decision Diagrams (PKDD), Pseudo-Kronecker
Diagrams with Complemented edges, Linearly Transformed Binary
Decision Diagrams, Function-Driven Decision Diagrams, or other
similar diagrams [180,181,184,189].
 The goal of representing functions in such a representation is to
find the “natural” structure of the function helpful for its subsequent
partitioning to blocks of logic and subsets of variables. In PKDD a
control variable goes through an entire level of a diagram.
Therefore, a fast natural mapping from a PKDD into a reversible
netlist with Toffoli gates exists. First a PKDD, or other similar
diagram is mapped to Feynman, Fredkin, MC, and Toffoli gates and
inverters, in such a way that there are no feedback loops and no fan-
out larger than one from primary inputs and gates. In this Sect. the
synthesis of reversible PKDDs with Toffoli gates are discussed, but
similar approaches can be done with other types of diagrams as well.
 After the mapping, every Toffoli gate in the mapped circuit can
be in one of the following states: (1) no garbage outputs, (2) one
garbage output, and (3) two garbage outputs. Thus a group of
Toffoli gates that are controlled by the same control variable can
have some percentage p of garbage outputs. Tj are different assigned
values for various gate types. If this value p is higher than a certain
threshold value Tj, the group is redesigned, otherwise it is retained.
This is illustrated in Figs. 8.7 and 8.8.
 The groups of Toffoli gates that are generated in this way create
a partitioning of the initial circuit based on PKDD into blocks.
Similar synthesis methods for various reversible Decision Diagrams
have been shown in [184] in which one utilizes the signals from
previous levels and inputs them into the next levels in a way that
minimizes garbage and maximizes the use of the out functions.

 8.2 Reversible Decision Diagrams 193

 K2+K1ci K3+K1ci K5+K4ci K4+K6ci

 ci

 Fig. 8.7. A part of PKDD with positive Davio expansions in a level.

 K2+K1ci K1 K3+K1ci K5+K4ci K4+K6ci ci K6

Fig. 8.8. A part of PKDD from Fig. 8.7 after the mapping into Toffoli gates. This mapping
determined natural partitionaing to previous levels, next levels, and other gates of this level.
Garbage outputs are drawn in interrupted lines.

+
.

+ . +
.

+
.

K2 K1
K3 K4 K6

K5

Next Levels

…

…

… Previous Levels

f1 f2 f3 f4

ci

+ . + . + . + .
…

K1 K2
K3 K5 K6

K4
…

… Previous Levels

f1 f2 f3 f4

Next Levels

 194 8.2 Reversible Decision Diagrams

 This is done by a good selection of reversible gates such as
Feynman, Inverters, Fredkin, Toffoli, or MC primitives. This type of
realization produces garbage, thus the forward reversible circuit
should be cascaded with the inverse (mirror image) reversible circuit
to eliminate the resulting garbage outputs.
Example 8.1. This example shows the realization using reversible
BDD (RBDD), for the Boolean function: F = ab ⊕ bc ⊕ ac, as
shown in Fig. 8.9.
 The reversible decision diagrams as shown in this Sect.
produces garbage in the outputs. Consequently, to eliminate such
garbage one needs to synthesize the reversible inverse decision
diagram and then interconnect it to the reversible forward decision
diagram. This is shown in Fig. 8.10.

 Fig. 8.9. Reversible Binary Decision Diagram (RBDD).

0 1

 0 1

 0 1 0 1

 0 1

F

S

S S

 S

a

b

c

 0 1

 0 1

0 1

0 1

a

b

c

F
0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1

 0 1

a

 b c

F G
a

b

c

a

b

c

 8.2 Reversible Decision Diagrams 195

 0 1

 Fig. 8.10. The elimination of garbage in Reversible Decision Diagrams (RDDs).

8.3 Reversible Cascades

The following introduces a method to generate the Cascade of
reversible complex Maitra terms [148]. The new structure is called a
reversible Cascade [121,158,224]. The general structure for the
reversible Cascade is shown in Fig. 8.11. The input variables (a1, a2,
…, an) are the primiary inputs of function F. In the direct
computation flow, they propagate from left to right and feed the
two-input gates that form the individual stages of the Cascade. It is
assumed, without the loss of the expressive power of the reversible
Cascade, that one of the inputs of the topmost gate is the constant
“0” Boolean function. The outputs of the Maitra terms feed the
inputs of the EXOR gates at the bottom. The EXOR gates form the
Cascade producing the output of function F. Without the loss of the
expressive power of the reversible Cascade, the input of the first
EXOR gate is set to the constant “1” Boolean function. The constant
“1” input of the Cascade is the only garbage input in the reversible
representation of the Cascade. In this implementation, the individual
Cascades that are enclosed in the dashed lines in Fig. 8.11 can be
viewed as (n+1) reversible gates belonging to Toffoli family of
reversible gates.

…

…

…
.
.
.

.

.

.

 F

F-1

.

.

.

.

.

.

 196 8.2 Reversible Decision Diagrams

 Fig. 8.11. Reversible wave cascades.

 Inputs Outputs = Inputs
 (No output garbage
 on average)

 Constant Function

 Fig. 8.12. Illustration of the fact that reversible cascades are naturally garbageless.

0 0 0

… … …

…

…

…

…

…
1 F

a1

a2

a3

an

 8.3 Reversible Cascades 197

 Note that the value “0” can be used as an input to the EXORs
instead of the value “1”. This should be determined by the minimum
expression that a function can be expressed with. Note that in Fig.
8.11 that the input variables are produced for the output and thus
there is no need for the creation of a mirror image (inverse)
reversible circuit to be cascaded with the forward reversible circuit
as was the case in the new Nets and reversible Decision Diagrams.
The following example shows the reversible synthesis using the
reversible Cascades.
Example 8.2. Figure 8.13a synthesizes using reversible Cascades of
the logic function: babaf ⊕⊕⊕= 1 . Yet, if a minimizer was

used to minimize the expression babaf ⊕⊕⊕= 1 one obtains
baf = , and the circuit would be the one shown in Fig. 8.13b. This

example shows clearly the need for a minimizer to minimize the
expression before it is realized in a reversible Cascade circuit. This
is the basic idea the motivates the introduction of the algorithm in
Sect. 8.3.1.

 a b

Fig. 8.13. a Reversible cascade composed of three stages of two Feynman gates in the first
two stages and a Toffoli gate at the third stage, and b an equivalent reversible cascade
circuit made only of Toffoli gate as a result of minimization. Here a bubble means an
inverter.

 It has been shown [158] that the good property of the reversible
logic synthesis using reversible Cascades, compared to other
previous reversible logic synthesis methods, is that it creates on
average at most one constant input and no additional garbage
outputs. Table 8.1 from [158] represents experimental results for the
upper bound for the number of stages needed in reversible Cascades.

 198 8.3 Reversible Cascades

.

 0 f

a

b

a

b

.
a

b

1 f

a

b

 Table 8.1. Upper bound on the number of stages in two-valued reversible cascades.

 Although the reversible Cascade from Fig. 8.11 is for Boolean
logic over a Galois field of radix two, the same topological structure
can be straightforward generalized to a Galois field of any radix.
The only difference is that reversible multiple-valued gates have to
be used and the constant in the bottom layer can be either of any
value within the radix instead of just being of values “0” or “1” for
radix two. Example 8.3 illustrates this generalization.
Example 8.3. Let us synthesize the ternary input ternary output
function using a multi-valued reversible Cascade:

cababf GFGFGF ""'2)3()3()3(+++= .

 Benchmark

Name # Inputs # Outputs

Upper
Bound

 5xp1 7 10 31
 9sym 9 1 51
 add6 12 7 127
 addm4 9 8 89
 b12 15 9 28
 clip 9 5 63
 ex7 16 5 81
 f51m 8 8 31
 in7 26 10 35
 intb 15 7 268
 life1 9 1 48
 m181 15 9 29
 m4 8 16 76
 max512 9 6 82
 rd53 5 3 14
 rd73 7 3 36
 rd84 8 4 58
 ryy6 16 1 40
 sao2 10 4 28
 seq 41 35 246
 sym10 10 1 79
 t3 12 8 24
 t481 16 1 13
 vg2 25 8 184
 z4 7 4 29

 Average 13.0 7.0 71.6

 8.3 Reversible Cascades 199

 Figure 8.14 shows such a synthesis using the multi-valued
Feynman and Toffoli gates that were presented in Chapt. 5.

Fig. 8.14. Reversible multiple-valued cascade for the realization of the function in Example
8.3, where a bubble produces the corresponding multiple-valued literal.

 Yet, and analogous to Example 8.2, a minimizer is needed to
produce reversible Cascade circuits of minimal size.
Example 8.4. Figure 8.15a synthesizes using reversible cascades the
logic function: cbcbf GFGF)3()3(++= . Yet, if a minimizer was

used to minimize the expression, one obtains the minimal form as
follows:

,)1(

,)1(

)3()3(

)3()3()3()3(

cbbcccb

ccbcbcbf

GFGF

GFGFGFGF

=+=+=

++=++=

and the minimized circuit would be the one shown in Fig. 8.15b.
Example 8.4 shows clearly the need for a multiple-valued minimizer
to minimize the expression before it is realized in a reversible
Cascade circuit. This is the basic idea that motivates the introduction
of the algorithm in Sect. 8.3.1 for the synthesis of multiple-valued
functions using reversible Cascade logic circuits.

GF(3) GF(3) GF(3)

a

b

c

2

. .
a

b

c

 f

 200 8.3 Reversible Cascades

 GF(3)
 b
Fig. 8.15. The realization of multiple-valued expressions using reversible cascades: a

reversible cascade for the original function cbcbf GFGF)3()3(++= , and b reversible

cascade circuit for the minimized function cbf = .

8.3.1 The Realization of GFSOP Expressions Using Reversible
Cascades

From Sect. 8.3 and Examples 8.2 and 8.4 one notes that having the
function represented in a certain flattened form (i.e., certain polarity)
can produce minimum size expression in terms of count of the
number of literals and/or terms, and thus this can lead to a
realization in a reversible Cascade with a minimal number of stages
that are needed. Consequently, the issue of functional minimization
becomes very important. The minimizer from [233,235] works for
functions with few percent of don’t cares, yet this minimizer does
not work for functions with a high number of don’t cares. Multiple-

 .

 f

b

c

b

c

0

a
GF(3) GF(3) GF(3)

b

c

0

 .
b

c

f

 8.3 Reversible Cascades 201

valued S/D trees developed previously in Chapt. 3 provide a general
polarity of Inclusive Form (IF) polarity. For this reason we use the
GFSOP evolutionary functional minimizer that was proposed in
Chapt. 3, which uses the Inclusive Form (IF) polarity that is
produced by the corresponding S/D tree. This is important in order
to realize smallest functional forms using the reversible Cascades.
Thus, the pre-processing step for the realization of functions using
reversible Cascade is to minimize this function, and then using a
search heuristic routine to search a library for an optimal synthesis
of the function using a reversible Cascade in terms of minimizing
the number of stages that are needed.
 Figure 8.16 illustrates such pre-processing for the realization of
logic functions in reversible Cascades. In Fig. 8.16, the reversible
logic circuit synthesizer has four inputs. The first input is the cost of
the final reversible circuit. This can be in general a combination
(i.e., a linear superposition) of (1) the total number of two-input
gates, (2) the total number of garbages, and (3) delay which is
characterized by the critical path delay where the signal propagation
from the inputs to the outputs require the most delay time. The
second input is a library that contains (k,k) two-valued and multiple-
valued reversible gates, from which the final reversible circuit will
be designed. The third input is the minimal form of the function
which is needed to be reversibly realized.

Fig. 8.16. General block diagram for the synthesis of logic functions using reversible logic.

 GFSOP
 F Minimizer

Search
Heuristic Netlist
Synthesizer

Library of
Reversible
Gates

Reversible
Circuit Type
(Topology)

 Cost =
 α⋅delay + β⋅#gates
 + γ⋅#garbages

 202 8.3.1 The Realization of GFSOP Expressions Using Reversible Cascades

 This minimal size expression can be the output of the GFSOP
evolutionary minimizer that was introduced in Sect. 3.7 using
evolutionary methods from Fig. 3.15, or the output of other
appropriate minimizers as well. For example, if one has functions
with few percent of don’t cares, one could use alternatively the
minimizer from [233,235]. The fourth input is the internal
specification of the type (topology) of the reversible structure that is
used to realize reversibly the minimal size expression from the
output of the GFSOP minimizer. This can be, in this case for
instance, the general reversible Cascade structure. The synthesizer
can be of any type of search-based synthesizers. This can include
Evolutionary Algorithms type (as discussed in Sect. 3.7 and in
Appendix E) or any other search heuristic. The synthesizer can use
an exact search algorithm for functions with low dimensions (i.e.,
composed of small number of input variables), but must be heuristic
for logic functions with high dimensions (i.e., high number of input
variables). Consequently, “good” search heuristics in the synthesizer
has yet to be found to minimize the time needed in order to design
the final reversible netlist at the output of the synthesizer.

8.4 Summary

Novel methods for the synthesis of Boolean and multiple-valued
logic functions have been presented in this Chapt. These methods
are reversible Nets, reversible Decision Diagrams, and reversible
Cascades.
 Reversible Cascades show a big advantage over the rest of these
methods, since reversible Cascades do not produce on average
garbage at the outputs while the other methods do produce such
garbage in the outputs. The garbage in the output of reversible Nets
and Decision Diagrams is eliminated by interconnecting the forward
reversible circuits to their inverse reversible circuits. This is
important since these structures will be used in quantum computing,
such as the quantum Cascades (including two-valued quantum
Cascades and multiple-valued quantum Cascades), in Chapts. 10 and
11, where no garbage is expected at the output.

 8.3.1 The Realization of GFSOP Expressions Using Reversible Cascades 203

 The type of reversible Cascades that was introduced in Sect. 8.3
of this Chapt. belongs to one specific family of circuit topology for
the reversible synthesis of logic functions. Other families of various
circuit topologies for Cascade-based reversible synthesis can also be
created [121,224], and in general multiple-output multiple-valued
reversible Cascades that use serial, parallel, or mix of serial and
parallel interconnects of multiple-valued reversible n-ary operators
(e.g., reversible 3-valued unary shift operators from the formalisms
presented in Sect. 2.1 in Chapt. 2 such as: (1) Wire (Buffer; zero
shift): x = x, (2) first shift: x’ = x + 1, (3) second shift: x” = x + 2,
and (4) other shifts of x by: 2⋅x, 2⋅x + 1, 2⋅x + 2, etc) can be also
synthesized.
 The following Chapt. introduces an initial evaluation of the
implementation of logic functions using the various types of
reversible logic structures and methods that have been introduced in
Chapts. 6, 7, and 8, respectively.

 204 8.4 Summary

9 Initial Evaluation of the New Reversible Logic
Synthesis Methodologies

This Chapt. introduces an initial evaluation of the implementation of
the reversible structures that have been presented in Chapts. 6, 7,
and 8 to realize logic functions. Although this evaluation is for
functions with relatively small number of arguments, it still gives an
important first look to some of the weaknesses, strengths, and new
properties of the previously introduced reversible structures.
 The remainder of this Chapt. is organized as follows. Section
9.1 introduces complete examples for the synthesis of functions
using the previously introduced reversible structures. Initial
comparison between the various reversible realizations is introduced
in Sect. 9.2. Summary of the Chapt. is presented in Sect. 9.3.

9.1 Complete Examples

In this Sect. complete examples are presented for the synthesis of
symmetric and non-symmetric logic functions using different
reversible logic synthesis methodologies in order to produce the
corresponding reversible structures. In the following evaluations, we
will consider the following criterion to characterize garbage in the
outputs: If there is a need to create the reversible inverse circuit then
the outputs contain garbage, otherwise the outputs do not contain
garbage. This criterion is reflected in the following conclusion: If
the structure produces only the output function and the inputs as
outputs, then there is no need to create the reversible inverse circuit
and we will consider that there is no garbage in the output of the
structure. Otherwise, if the structure produces at least one garbage in
the output of the forward reversible circuit then there is a need to
create the reversible inverse circuit to eliminate the garbage.
Consequently, outputs of a reversible circuit, that are generated by

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

propagating the inputs through the reversible circuit, are not
considered as garbage.
Example 9.1. Let us synthesize the following symmetric Boolean
function, which is the representative of class 1 for the NPN
classification of Boolean functions (See Table G.1 in Appendix G)
that encompass eight Boolean functions, using reversible synthesis
methods introduced in previous Chapts.: acbcabf ++= .
(1) Reversible Lattice Structure: Fig. 9.1 represents the realization of
the Boolean function in Example 9.1 using the reversible lattice
structure from Chapt. 6.

 Fig. 9.1. Synthesis of a reversible lattice structure for the function from NPN class 1.

 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

a

b

c

a

b

c

a 00 01 11 10
0 0 1 1 1
1 0 0 1 0

 0 1 0 0

 0 1 0 0

 1 1 1 0

1 0 0 1

 0 0 1 0
 0 1 1 1

 0 0 0 0

 0 1 1 0 0 0 0 0

 0 1 1 0 1 1 1 1

a 00 01 11 10
0 0 0 1 0
1 0 1 1 1

G1

G2

G3

G4

G5

F

 0 0 1 0

 0 1 1 1 1 1 1 0

1 0 0 1

 0 1 1 0 0 0 0 0
 0 1 1 0 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1
 1 1 1 1 0 0 0 0

 0 1 1 0
 0 1 1 0

 0 0 0 0
 0 0 0 0

 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1

0 1 0 1
c

 1 1 1 1
 1 1 1 1

c
 1 0 0 1

 1 0 0 1

 0 0 0 0
 0 0 0 0

G6

 bc bc

 206 9.1 Complete Examples

 It is interesting to observe from this example that although the
function in Example 9.1 is totally symmetric, variable c has to be
repeated two times in order to realize the symmetric Boolean
function in the reversible lattice structure in Fig. 9.1. This is totally
different from the non-reversible lattice structures from Chapt. 4,
and implies that reversible lattice structures require different type of
symmetry than the regular lattice structures. The structure in Fig. 9.1
has a total of 6 garbage outputs, and 7 Fredkin gates.
(2) Reversible MRA: Fig. 9.2 represents the realization of the
Boolean function in Example 9.1 using the reversible MRA
structure from Chapt. 7.
 As observed the circuit in Fig. 9.2 is fully regular since it uses
one type of Toffoli primitives. Figure 9.2 has a total of 4 garbage
outputs, and 5 Toffoli gates.

Fig. 9.2. Reversible Boolean circuit to implement 1-MRA circuit for the function from
NPN class 1.

0

a

b

0

c

0

0

0

 F
G1

G2

G3

G4

a

b

c

 9.1 Complete Examples 207

(3) Reversible Cascade: Fig. 9.3 presents the reversible Cascade
realization, from Chapt. 8, for the Boolean function in Example 9.1.
To realize the function from Example 9.1 which is in the SOP form,
one has to transform it to the ESOP form. This is performed using
the Boolean (i.e., two-valued) rule: baba ⊕=+ 1 as follows:

cbcabaacbcabf ⊕⊕⊕=++= 1 .

 Fig. 9.3. Reversible cascade circuit for the function from NPN class 1.

 One can note that the circuit in Fig. 9.3 produces no garbage at
the output, and uses a total of 3 Toffoli gates.
(4) Reversible Net: Fig. 9.4 represents the realization of the Boolean
function in Example 9.1 using the reversible Nets from Chapt. 8.

 Fig. 9.4. Reversible Net for the function from NPN class 1.

MAX/MIN
gate

MAX/MIN
gate

MAX/MIN
gate

a

b

MAX(a,b)

 MIN(a,b)

c

S1,2,3(a,b,c)

S2,3(a,b,c)

S3(a,b,c)

F

a

b

c

1 F

a

b

c

 208 9.1 Complete Examples

 One notes that the circuit in Fig. 9.4 produces two garbage
outputs, and uses 3 reversible MAX/MIN gates (from Fig. 5.19a).
(The garbage count performed here includes only the variable
outputs and does not include the constant outputs.)
(5) Reversible Decision Diagram: Let us implement the function in
Example 9.1 using reversible Positive Davio Decision Diagram
(PDDD). Positive Davio DD is shown in Fig. 9.5. The reversible
PDDD is shown in Fig. 9.6.

 Fig. 9.5. Positive Davio DD for the function from NPN class1.

 Fig. 9.6. Reversible positive Davio DD for the function in NPN class 1.

1

c
1

0

b

1

a

F

G1 1

b

G2 a

c 0

 9.1 Complete Examples 209

c 1

0 1

F
a

b

c

1

1

1

b b

c c 1

 a

 One notes that the total number of garbage outputs in Fig. 9.6 is
2, and that the reversible structure uses 6 reversible primitives.
 Let us now realize a non-symmetric Boolean function using the
same methods used in Example 9.1.
Example 9.2. Let us synthesize the following non-symmetric
Boolean function, which is the representative of class 4 for the NPN
classification of Boolean functions (See Table G.1 in Appendix G)
that encompass 48 Boolean functions, using reversible synthesis
methods that were introduced in the previous Chapts.: acabf += .
(1) Reversible Lattice Structure: Fig. 9.7 represents the realization of
the Boolean function in Example 9.2 using the reversible lattice
structure from Chapt. 6.

 Fig. 9.7. Synthesis of a reversible lattice structure for the function from NPN class 4.

 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

a

b

c

a

b

c

a 00 01 11 10
0 0 1 1 1
1 0 0 0 0

 0 0 0 0

 0 0 0 0

 1 1 1 0

0 0 0 0

 0 0 0 0
 0 1 1 1

 0 0 0 0

 0 0 0 0 0 0 0 0

 0 1 1 0 1 1 1 1

a 00 01 11 10
0 0 0 0 0
1 0 1 1 1

G1

G2

G3

G4

G5

F

 0 0 0 0

 0 1 1 1 1 1 1 0

0 0 0 0

 0 0 0 0 0 0 0 0

 0 1 1 0 1 1 1 1

 1 1 1 1

 0 0 0 0
 0 0 0 0 0 0 0 0

 0 1 1 0
 0 1 1 0

 0 0 0 0
 0 0 0 0

 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1

0 1 0 1
c

 1 1 1 1
 1 1 1 1

c
 1 0 0 1

 1 0 0 1

 0 0 0 0
 0 0 0 0

G6

 bc bc

 210 9.1 Complete Examples

 It is interesting to observe from this example that although the
function in Example 9.2 is non-symmetric, variable c has to be
repeated two times in order to realize the non-symmetric Boolean
function in the reversible lattice structure in Fig. 9.7. This is the
same structure from Fig. 9.1 with different leaf values. The structure
in Fig. 9.7 has a total of 6 garbage outputs, and uses 7 Fredkin gates.
(2) Reversible MRA: Fig. 9.8 represents the realization of the
Boolean function from NPN class 4 using the reversible MRA
structure from Chapt. 7.

Fig. 9.8. Reversible Boolean circuit that implements the 1-MRA circuit for the function
from NPN class 4.

 As can be observed, the circuit in Fig. 9.8 is fully regular since
it uses one type of Toffoli primitives. The circuit from Fig. 9.8 has a
total of 1 garbage output, and uses two Toffoli gates.
(3) Reversible Cascade: Fig. 9.9 presents the reversible Cascade
realization, from Chapt. 8, for the non-symmetric Boolean function
from Example 9.2. To realize the function from Example 9.2 which
is in the SOP form, one has to transform it to the ESOP form. This is
done using the Boolean rule baba ⊕=+ 1 as follows:

cbaaacabf ⊕⊕=+= 1 .
 One can note that the circuit in Fig. 9.9 produces 1 garbage at
the output, and uses three reversible gates.

a

b

c

0

0 F

b

c

a

G1

 9.1 Complete Examples 211

 Fig. 9.9. Reversible cascade circuit for the function from NPN class 4.

 (4) Reversible Net: The Boolean function in Example 9.2 is non-
symmetric. Consequently, repetition of variables has to be made to
symmetrize the function. Figure 9.10a presents the symmetrization
of the non-symmetric Boolean function, and Fig. 9.10b illustrates
the realization of the Boolean function from Example 9.2 using the
reversible Nets from Chapt. 8.
 Although Fig. 9.10b implements the circuit from Fig. 8.4, one
notes that Fig. 9.10b implements the function S3,4(a,b,c,a) by
repeating variable {a} two times, and thus there is no need for
Feynman planes at the output (analogously to the symmetric
function F in Fig. 9.4). Consequently, one observes that the circuit in
Fig. 9.10b produces three (variable) garbage outputs, and uses 6
reversible MAX/MIN gates (from Fig. 5.19a).
(5) Reversible Decision Diagram: Let us implement the function in
Example 9.2 using reversible Binary Decision Diagram (i.e.,
reversible Shannon Decision Diagram (SDD)). BDD is shown in
Fig. 9.11, and the reversible BDD is shown in Fig. 9.12.
 One notes that the total number of garbage outputs in Fig. 9.12
is 3, and that the reversible structure uses 3 Fredkin gates.

a

b

c

1 F

0
a

b

c

G1

 212 9.1 Complete Examples

 a S3,4(a,a,b,c)

 b

Fig. 9.10. Reversible Net for the function from NPN class 4: a symmetrization of the non-
symmetric Boolean function, and b reversible Net structure.

 ab 0 1

00 0 0

01 0 0

11 1 1

10 0 1

c
aa 00 01 11 10

bc

00 0 0 0 0

 01 - - - -

11 0 1 1 1

10 - - - -

MAX/
MIN
gate

MAX/
MIN
gate

MAX/
MIN
gate

a

b

MAX(a,b)

MIN(a,b)

c

MAX/
MIN
gate

MAX/
MIN
gate

MAX/
MIN
gate

a

0

0

 G1

 G2

 G3

S 3,4(a,b,c,a)

 G4

 G5

S1,2,3,4(a,b,c,a)

S2,3,4(a,b,c,a)

S3,4(a,b,c,a)

S4(a,b,c,a)

 9.1 Complete Examples 213

 Fig. 9.11. BDD for the Boolean function from NPN class 4.

 Fig. 9.12. Reversible BDD for the Boolean function from NPN class 4.

 Other reversible decompositions have been implemented such
as the compositional method where search heuristics are applied to
compose a reversible circuit level-by-level by using backtracking
search algorithm [184], and the reversible form of classical
Ashenhurst-Curtis decomposition (from Appendix H).
 It has been presented in Chapts. 6, 7, and 8 various new
methods for the reversible synthesis of logic functions. Yet,

F

0 1

a

b

c

a’

b’

c’

a

b

c

0 1

 0 1 0 1 c c

 0 1 0 1 b b

 0 1 0 1 a a

F
G1

G2

G3 1

0

 214 9.1 Complete Examples

advantages and disadvantages occur for the use of certain reversible
decompositions over the others. Table 9.1 in the next Sect. illustrates
some of the advantages and disadvantages that we see so far for the
previously mentioned reversible decompositions.

9.2 Initial Comparison

While the methodologies for the reversible synthesis of logic
functions that have been introduced in Chapts. 6, 7, and 8 are new,
some of the introduced structures possess certain advantages over
the other structures, and vice versa, which should be investigated in
a further analysis. This was initially observed when symmetric and
non-symmetric Boolean functions were synthesized in Examples 9.1
and 9.2, respectively. Table 9.1 shows some properties that have
been observed so far when synthesizing reversibly the logic
functions. Although this analysis is presented based on few
previously presented examples, it produces some important first
look at the property-based cost-benefit analysis of using the new
reversible structures.
 For example, one can observe (from Table 9.1) that reversible
Nets are very suitable for single-output and multi-output symmetric
functions. On the other hand, if the functions are not symmetric,
then reversible Cascades can produce reversible circuits with small
garbage on average. Also, as the reversible synthesis using
reversible Cascades does not produce garbage in the outputs on
average, it has been shown that this type of synthesis is very well
suited for quantum computing [121] as will be shown in the
quantum logic circuits that will be introduced in Chapt. 10.
Although some initial insights and conclusions were made regarding
reversible logic synthesis of logic functions using the reversible
structures from Chapts. 6, 7, and 8, the various methods in Table 9.1
still need more extensive experimental results (evaluations) to have
numerical comparisons on well-known binary and multiple-valued
benchmarks. In future CAD tools, these methods must be combined.

 9.1 Complete Examples 215

 Table 9.1. Advantages and disadvantages of various reversible logic synthesis methods.

 Type Advantages Disadvantages

Reversible (1) Regularity which is useful for testing, (1) Produces garbage,
Lattices (2) methodological, (3) generally applied (2) inefficient for multi-
 for incompletely specified functions. output functions.

Reversible (1) Good for multi-output functions, (2) (1) Produces garbage,
Nets uses symmetry, (3) can be extended to (2) inefficient for strongly
 incompletely specified functions. non-symmetric functions.

Reversible (1) No garbage is produced on average, (1) Not methodological
Cascades (2) good for quantum circuits, (3) and depends on search,
 can be extended to incompletely (2) no efficient minimizer
 specified functions, (4) can be created exists yet for this method,
 for efficient realization of multiple- (3) has a single constant
 input multiple-output (MIMO) garbage at the input, (4)
 functions (circuits). for functions with many
 inputs, cascades can be
 exponential in size that
 results in long circuits.

Reversible (1) Exhibit certain regularities, (2) (1) Produces garbage.
Decision many types of decision diagrams exist
Diagrams from which minimal size reversible
 structure could be found.

Reversible (1) Can produce a comparative small (1) Produces garbage, (2)
MRA size reversible circuits. currently does not realize
 ESOP forms.

 Also, one important factor for the evaluation of such reversible
methods is the final total cost of the physical quantum circuits that
will implement such reversible structures. While in conventional
circuit design the cost of the design is measured by the total number
of two-input gates that are used (i.e., C# from Appendix H), in
quantum circuits this is not the case, since in quantum circuits
physical processes implement the quantum operations rather than
simple hardware gates (e.g., CMOS) as in the case of the classical
logic design. Quantum cost characterizes the physical process
complexity that is needed to realize physically the corresponding
reversible structures. Since little, if none, has been published on this
quantum cost for the realization of the reversible structures in Table
9.1, one very important question is still open on how much complex
the quantum realization of the structures in Table 9.1 will be, and

 216 9.2 Initial Comparison

the answer to this question may very well lead to new cost-benefit
conclusions.

9.3 Summary

This Chapt. has introduced an initial evaluation of the various
implementations of the reversible structures that have been
presented in Chapts. 6, 7, and 8, respectively. Although this
evaluation is for functions with relatively small number of
arguments (variables), it still produces an initial important first look
to some of the weaknesses, strengths, and new properties of the
previously introduced reversible structures. Also one important issue
still to be considered is the quantum cost of the physical processes
that implement the new reversible structures, a subject that can lead
to a new cost-benefit evaluations for the reversible methods
introduced in Table 9.1.
 Next Chapt. will introduce the physical quantum operational
notation and quantum circuits that would be used to construct the
counterparts of the reversible structures from Chapts. 6, 7, and 8.
Two-valued and multiple-valued quantum computations of such
circuits will be implemented in Chapt. 11.

 9.2 Initial Comparison 217

10 Quantum Logic Circuits for Reversible
Structures

The reversible structures that are introduced in previous Chapts. can
be implemented, utilizing the garbageless circuits of such structures,
using many possible technologies, including optical
[17,24,62,63,64,65,222], and CMOS [35,68,70,206,262,263]. We
are interested in this Chapt. with the implementation of the
reversible structures using quantum logic circuits. This will be a
second step, after the reversibility step from Chapts. 6, 7, and 8,
towards quantum computing of such structures (that will be
introduced in Chapt. 11). The main contribution of this Chapt. is the
introduction of the quantum circuits for two-valued and multiple-
valued reversible structures using the corresponding quantum
notation.
 The fact that the tendency of current technologies is towards the
nano-scale (i.e., dimensions of a single atom in the order of 10-10 m
= 1 Angestrom) will have, and already having, disaster effects on the
signal integrity in classical designs of processing and transmitting
information bits. The higher packing of devices in increasingly
smaller and smaller areas will have, and is already having,
tremendous power consumption effects. Thus, one possible solution
for both problems is the implementation of logic functionalities
using quantum circuits and the associated quantum technology. This
Chapt. uses the quantum notation from [95,167] that emphasizes the
use of control lines to activate the classical logical operations on
other inputs. This is important since this can realize physical
processes where there are specific physical control variables which
one would like to use to obtain logical operations form other wires
using such processes. Another important advantage of using the
operational quantum notation is that the quantum notation shows the
one-dimensional left-to-right time-based evolution of the physical
process which is realized by the reversible circuits, and also shows
the composition of the circuit as number of inputs that are equal to

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

the number of outputs, and the propagation of the input signals from
input lines to output lines throughout the gates. The main
contributions of this Chapt. are:
• Multiple-valued quantum gates and their operational quantum
 notation. This includes for example the multiple-valued quantum
 Swap and controlled-Swap gates.
• Showing that minimum two-valued and multiple-valued reversible
 logic structures lead to minimum size two-valued and multiple-
 valued quantum logic circuits, respectively.
 The remainder of this Chapt. is organized as follows. Section
10.1 presents the important quantum notation that is used for
quantum circuits. Section 10.2 introduces the quantum circuits that
correspond to the previously introduced reversible structures in
Chapts. 6, 7, and 8. Summary is provided in Sect. 10.3.
 The content of this Chapt. will be computationally implemented
using the two-valued and multiple-valued quantum computing
methods that will be introduced in Chapt. 11.

10.1 Notation for Two-Valued and Multiple-Valued
Quantum Circuits

In quantum computing, usually a set of “quantum” notations are
used for the corresponding reversible gates. The quantum notation
for some basic logic primitives are shown in Fig. 10.1. This notation
is very useful to explain the two-valued and multiple-valued
quantum evolution (i.e., time-based) processes. We will follow here
the two-valued quantum notation introduced in [95] and [167].
 The primitive in Fig. 10.1a is a two way AND which is a dot on
an intersection. Two-way OR gate in Fig. 10.1b is a box on an
intersection. NOT gate is represented as an “X” on a wire. No
connection is represented with a simple crossing in Fig. 10.1d, and
control wire is an “O” on a wire in Fig. 10.1e. Using the quantum
notation in Fig. 10.1, one can obtain two-valued and multiple-valued
quantum gates using such notation as demonstrated in Fig. 10.2.

 10 Quantum Logic Circuits for Reversible Structures 219

 f

Fig. 10.1. Quantum notation of quantum circuits for: a two way AND which is a dot on an
intersection, b two way OR which is a box on an intersection, c Not which is an “X” on a
wire, d no connection which is simple crossing, e control wire which is an “O” on a wire,
and f multiple-valued shift by (k).

 This quantum notation is easier to use and conveys the
important information regarding the “control lines” which control
the operations of C-NOT gate, C-C-NOT gate, and C-Swap gate.
The “X” (in Fig. 10.2) denotes a NOT operation, however, this NOT
operation is not a conventional one; it is controlled by the input to
the O-wire. Specifically, if the input to the O-wire is 1, then the
input to the X-wire is inverted; if the O-input is zero, then the NOT
gate does not work, and the signal on the X-wire goes through
unchanged. In other words, the input to the O-line activates the NOT
gate on the lower line. The O-output, however, is always the same as
the O-input (i.e., the upper line is identity). In CCN gate, we have
two control lines A and B, each marked by an O, and as with the CN
gate, the signals on this line are unchanged on passage through the
gate: A’ = A, and B’ = B. The remaining line, again, has a NOT on
it, but this is only activated if both A = 1 and B = 1: then: C’ = NOT
C.

 c d e

 a b

≡ ≡

≡

(k)

 220 10.1 Notation for Two-Valued and Multiple-Valued Quantum Circuits

 A A’

 B B’

 C C’

 A A’

 B B’

 C C’

 A A’

 B B’
 GF(n)
 C C’
 GF(n)

 GF(n)

 GF(n)

Fig. 10.2. Quantum notation for: a two-valued Controlled-NOT gate (Feynman gate), b
two-valued Controlled-Controlled-NOT gate (Toffoli gate), c two-valued Swap gate, d
two-valued Controlled-Swap gate (Fredkin gate), e multiple-valued Galois Controlled-NOT
gate (Feynman gate), f multiple-valued Galois Controlled-Controlled-NOT gate (Toffoli
gate), g multiple-valued Swap gate, and h multiple-valued Galois Controlled-Swap gate
(Fredkin gate).

 Notice that this single gate is very powerful. If we keep both A
and B equal to one then the CCN gate is just a NOT gate. If we keep
just A = 1, then the gate is just a CN gate with B and C as inputs. So,
if we have a CCN gate and a source of 1’s and 0’s, we can
implement both N (NOT) and CN gates, besides the CCN gate
which is a universal gate. Thus the control lines just activate a more
conventional operation on other inputs. In the case of Fredkin gate,
the operation that is been controlled is exchange (swap): if A = 0, B

 a b

 e f

 c d

 g h

… …

 10.1 Notation for Two-Valued and Multiple-Valued Quantum Circuits 221

and C are not exchanged. However, if A = 1 then B and C are
exchanged.
 Many of the two-valued and multiple-valued quantum circuit
implementations in this Chapt. use two-valued and multiple-valued
quantum Swap-based and NOT-based gates. This can be important,
since the Swap and NOT gates are basic primitives in quantum
computing, from which many other gates are built, such as (1) two-
valued NOT gate, (2) two-valued Controlled-NOT gate (Feynman
gate), (3) two-valued Controlled-Controlled-NOT gate (Toffoli
gate), (4) two-valued Swap gate, (5) two-valued Controlled-Swap
gate (Fredkin gate), (6) multiple-valued NOT gate, (7) multiple-
valued Controlled-NOT gate (multiple-valued Feynman gate), (8)
multiple-valued Controlled-Controlled-NOT gate (multiple-valued
Toffoli gate), (9) multiple-valued Swap gate, and (10) multiple-
valued Controlled-Swap gate (multiple-valued Fredkin gate).

10.2 Quantum Logic Circuits

Using the upper quantum notation one can obtain a half adder and
full adder as shown in Fig. 10.3. The half adder and full adder are
described by the following Boolean Eqs.: (1) Half Adder (HA): Sum
= S = a ⊕ b and Carry = C = ab, and (2) Full Adder (FA): Sum = a
⊕ b ⊕ c and Carry = C = (a⊕b)c ⊕ ab. Note that the dashed CN gate
(in Fig. 10.3d) is used to produce the inputs a and b from the output
garbage.
 The quantum notation introduced in Sect. 10.1 emphasizes the
use of control lines to activate conventional operations on other
inputs. This is important since this can realize physical processes
where there are specific physical control variables which we would
like to use to obtain logic operations from such processes.
 Using such operational quantum notation, one can realize the
reversible structures that were introduced previously (in Chapts. 6,
7, and 8) using the form of quantum circuits.

 222 10.1 Notation for Two-Valued and Multiple-Valued Quantum Circuits

 a

 b

 c

 d

Fig. 10.3. Quantum circuits of adders: a a truth table for half adder, b truth table for full
adder, c quantum circuit for half adder, and d quantum circuit for full adder.

 For instance, Fig. 10.4 illustrates the quantum notation for the
reversible lattice structure from Fig. 6.2. Here, another importance
of the quantum notation is readily apparent: (1) the quantum
notation shows the one-dimensional left-to-right time-based
evolution of the process realized by the lattice structures, (2) it
shows the composition of the circuit as number of inputs that are

a b c C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

a b C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

 10.2 Quantum Logic Circuits 223

a

b

0

a

Sum

Carry

a

b

c

0

 a

 b

Sum

Carry

equal to the number of outputs, and (3) the propagation of the input
signals from input lines to output lines throughout the gates.

Fig. 10.4. One-dimensional left-to-right time-based evolution quantum circuit that realizes
the process implemented by the 2-D lattice structure in Fig. 6.2.

 Using the same quantum notation, one obtains the one-
dimensional left-to-right time-based evolution quantum circuit in
Fig. 10.5 that realizes the process which is implemented by the
multiple-valued reversible lattice structure from Fig. 6.4.
 It is observed that when the quantum lattice structure is of a big
size, one can utilize the ISID decomposition from Chapt. 4 to
decompose the total structure into multiple parts and thus potentially
reducing the total size of the quantum lattice structure (and
consequently reducing the total number of quantum operations that
are needed to perform quantum computations using such structures
as will be shown in Chapt. 11).
 Using the two-valued operational quantum notation, one obtains
the quantum logic circuits in Figs. 10.6a and 10.6b for the reversible
Cascade circuits in Figs. 8.13a and 8.13b, respectively.

a

b

c

1

0

1

0

1

1

a

b

c

G1

G5

G2

G4

G3

 F

 224 10.2 Quantum Logic Circuits

 GF(3)

 GF(3)

 GF(3)

 GF(3)

Fig. 10.5. One-dimensional left-to-right time-based evolution quantum circuit that realizes
the process implemented by the lattice structure in Fig. 6.4.

 a

 b

Fig. 10.6. One-dimensional left-to-right time-based evolution two-valued quantum logic
circuits: a the implementation of the reversible cascade circuit in Fig. 8.13a, and b the
implementation of the reversible cascade circuit in Fig. 8.13b.

a

b

2

2

2

2

1

1

1

0

0

a

b

G1

G2

G3

G6

G7

G8

G4

F1

G5

a

b

0

b

a

f

a

b

1

b

a

f

 10.2 Quantum Logic Circuits 225

 From Fig. 10.6, one notes that while the quantum logic circuit in
Fig. 10.6a requires a total of 7 quantum primitives (4 N gates, 2 CN
gates, and 1 CCN gate), the quantum logic circuit in Fig. 10.6b
requires a total of three quantum primitives (2 N gates, and 1 CCN
gate).
 Using the multiple-valued quantum notation, one obtains the
following quantum logic circuits in Figs. 10.7a and 10.7b for the
reversible Cascade circuits in Figs. 8.15a and 8.15b, respectively.
 From Fig. 10.7, one notes that while the quantum logic circuit in
Fig. 10.7a requires a total of 7 ternary quantum primitives (2 N(1)
gates, 2 N(2) gates, 2 CN gates, and 1 CCN gate), the quantum logic
circuit in Fig. 10.7b requires a total of five ternary quantum
primitives (2 N(1) gates, 2 N(2) gates, and 1 CCN gate).

 a

 b

Fig. 10.7. One-dimensional left-to-right time-based evolution ternary quantum logic
circuits: a the implementation of the reversible cascade circuit in Fig. 8.15a, and b the
implementation of the reversible cascade circuit in Fig. 8.15b.

 The examples from Figs. 10.6 and 10.7 show very clearly that
the result of minimum reversible logic circuit will lead to a
minimum quantum logic circuit, in terms of minimizing the length
(number of levels) and the width (number of gates per level) of the
corresponding quantum logic circuit. (The size of the quantum logic
circuit will be reflected in the size of the quantum (scratchpad)

b

c

0

c

b

f

(1)

GF(3) GF(3) GF(3)

(1) (2)

(2)

b

c

0

c

b

f

(2) (1)

(2) (1)

GF(3)

 226 10.2 Quantum Logic Circuits

register, as will be shown in the next Chapt.) This is illustrated in
Fig. 10.8.

 Chapters (6), (7), and (8) Chapter (10)

Fig. 10.8. Relationship between the size of the reversible circuit and the corresponding size
of the quantum logic circuit.

 Also, one can note the difference between the reversible
notation in Figs. 8.13 and 8.15 and the corresponding operational
quantum notation from Figs. 10.6 and 10.7, respectively. The
difference is not only in the fact that the quantum notation reflects
the 1-D quantum evolution from left-to-right, but also the quantum
notation will lead to different number of primitives than the
corresponding reversible notation, which are needed to show the
implementation of the reversible circuit using garbage-free quantum
logic circuit.
 Although the conclusion in Fig. 10.8 has a common sense
ground, it can be of limited importance. This is because another very
important factor besides the size of the quantum logic circuit is the
cost of the physical quantum processes that implement the
corresponding quantum logic circuits, and thus smaller size quantum
logic circuit is not necessarily implemented by a less complex
quantum physical processes, and vice versa. This issue is an open
subject with very little, if none, literature available, and needs much
further future investigations.

10.3 Summary

This Chapt. has inroduced the quantum notation and the
corresponding quantum logic circuits for the previously invented
reversible circuits. The quantum notation introduced emphasizes the
use of control lines to activate conventional operations on other

Minimum Size of
Reversible Logic
Circuit

 Minimum Size of
 Quantum Logic
 Circuit

 10.2 Quantum Logic Circuits 227

inputs. This is important since this can realize physical processes
where there are specific physical control variables which one would
like to use to obtain logical operations from other wires within such
processes.
 Using such operational quantum notation one can realize the
reversible structures that were introduced previously in quantum
logic circuits. Other good properties of the operational quantum
notation can be observed when implemented upon reversible
structures from Chapts. 6, 7, and 8 as follows: (1) the quantum
notation shows the one-dimensional left-to-right time-based
evolution of the process realized by the reversible circuits, (2) it
shows the composition of the circuit as number of inputs that are
equal to the number of outputs, and (3) it shows the propagation of
the input signals from input lines to output lines throughout the
quantum gates (primitives).
 Besides the circuits shown in Sect. 10.2 of this Chapt., other
quantum circuits could be created as well, such as for the general
synthesis of multiple-output multiple-valued quantum Cascades that
use serial, parallel, or mix of serial and parallel interconnects of
multiple-valued quantum n-ary operators (e.g., the equivalent
quantum counterparts of the reversible 3-valued unary shift
operators from the mathematical formalisms that were introduced in
Sect. 2.1 in Chapt. 2 such as: (1) Wire (Buffer; zero shift): x = x, (2)
first shift: x’ = x + 1, (3) second shift: x” = x + 2, and (4) other shifts
of x by: 2⋅x, 2⋅x + 1, 2⋅x + 2, etc). (Methods of quantum
computations using similar Cascades will be shown in the next
Chapt.)
 Next Chapt. will introduce the two-valued and multiple-valued
quantum computing methodologies for the two-valued and multiple-
valued quantum circuits that were introduced in this Chapt.

 228 10.3 Summary

11 Quantum Computing: Basics and New Results

Trends in computer hardware are leading toward higher density and
lower energy dissipation. Ultimately, some approaches should result
in packing extremely high densities in excess of 1017 logic devices
in a cubiccentimeter. The trend towards higher packing density
strongly influences energy dissipation. Conventional devices must
dissipate more than K⋅T⋅ln(2) Joules in switching (cf. Fig. 1.1), and
thus enormous amounts of power will be needed for computing
using classical methods of computations [116]. Even an idealized
device, which uses a one Volt power supply and dissipatively
discharges a single electron to ground during the switching
operation, would dissipate one electron Volt per switching
operation. At T = 300 Kelvins, this is 40⋅K⋅T per switching
operation or about 160,000,000 Watts for a computer with 1017 logic
elements operating at 10 GHz. If each switching operation involves
hundreds of electrons then the energy dissipation enters the multi
gigaWatt range.
 New thermodynamically reversible circuits (e.g., CMOS,
nMOS, CCD-based logic circuits, etc) would be far better [116], but
these circuits still have some amount of dissipative losses that are
caused by the unavoidable parasetic resistance that exists in the
circuit. Thus quantum computing technology, which is naturally
reversible, offers a very promising solution for this big problem.
 Logic circuits within the quantum barrier (nano-scale) have
already been fabricated using nanotechnology [111,112,196].
Figures 11.1 and 11.2 from [111] show the electron microscope
images of a two-dimensional lattice-like structure which was
fabricated using nanotechnology.
 The nano circuits in Figs. 11.1 and 11.2 are very similar to the
(2,2) two-dimensional lattice structures from Chapt. 4. Figures 11.1
and 11.2 implement at the nano scale a binary adder, where s1 and s0
represent the sum outputs, and c1 represents the output carry.

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

 a b

 c

Fig. 11.1. Circuit fabricated using nanotechnology: a logic circuit diagram, b nanowire
layout, and c image of the physical nano circuit.

 230 11 Quantum Computing: Basics and New Results

 a

 b

Fig. 11.2. The (2,2) 2-D lattice-like structure from Fig. 9.1: a image, and b
visualization.

 Due to the anticipated failure of Moore’s law around the year
2020, quantum computing will play an important role in building
smaller size and less power-consuming computers
[40,107,115,167,168,170]. Because all quantum computer gates
(i.e., building blocks) must be reversible, reversible computing will
also be increasingly important in the future design of regular,
minimal size, and universal (complete) systems. Due to the fact that
higher power consumption occurs at higher frequencies of operation,
and due to the fact that minimal power consumption is needed for
mobile and remote tele-communications (as cellular phones) and
computing (as laptops), two major solutions have been proposed for
this increasing power consumption problem: (1) asynchronous
design of sequential machines, and (2) adiabatic design of circuits
and systems, which is related to reversible logic [206]. Reversible
computing can be considered a necessary but not sufficient step
towards quantum computing, where no power is consumed for
internal information processing, and the power is only consumed

 11 Quantum Computing: Basics and New Results 231

when reading and writing quantum bits (quantum data) from and
into the quantum computer, respectively [93,122,160,167,205].
 While some logic systems are non-linear (like fuzzy logic),
quantum logic (QL) is linear, since all the evolutions (operations) of
input quantum bits are performed using linear unitary
transformations (evolution processes). Quantum computing requires
the following main constraints that distinguish it from classical
computing (The notation that is used in this Chapt. follows the well-
known “Dirac notation” of quantum mechanics [81]):
(1) Quantum operations are done on vectors of bits called qubits
(quantum bits).
(2) Quantum functions are complex-weighted probability-based
linear combinations (superpositions) of orthonormal basis states
[167] as follows: �=

i
iic ϕψ , where the coefficients ci are called

probability amplitudes, and |ci|
2 produces the probability of the

quantum state ψ collapsing into the state iϕ , and the unitarity

condition 1
2 =�

i
ic . Some of the basis states that are used in a 1-

qubit binary quantum systems include [95,107,115,167,253,254]: (a)
the computational basis states { }1,0 , and (b) the composite basis

states
�
�
�

�
�
� −

=−
+

=+
2

10
,

2

10
. Some of the basis states that

are used in a 2-qubit binary quantum systems include: (a) Einstein-
Podolsky-Rosen (EPR) basis states

�
�
�

�
�
� −+−+

2

1001
,

2

1001
,

2

1100
,

2

1100
, and (b) the

computational basis states { }11,10,01,00 .

(3) Quantum computations, algorithms, and circuits must be
reversible.
(4) Linear and Unitary operations (evolutions; transformations).
These operations are performed in n-dimensional Hilbert space,
which is in general a linear complex vector space. The states |0> and
|1> are the computational basis states that form an orthonormal basis
set in Hilbert space. Two-valued single qubits exist in 2-D Hilbert

 232 11 Quantum Computing: Basics and New Results

space, and three-valued single qubits exist in 3-D Hilbert space. The
quantum operators in Hilbert space describe how one wave function
is changed into another wave function. In the formalism as an
eigenvalue Eq. (problem), one obtains the following eigenvalue Eq.:

iii bB ϕϕ =ˆ , where bi is the eigenvalue, and the solutions to the

eigenvalue Eq. are iϕ , which are called eigenstates that can be

used to construct the basis states of a Hilbert space. Consequently,
the Hilbert space has a set of basis states iϕ and the quantum

system is described by a quantum state ψ as: �=
i

iic ϕψ ,

where in general the coefficients ci may be complex. In Dirac
notation [81], the probability that a quantum state ψ will collapse

into an eigenstate iϕ is equal to
2ψϕ i which is the dot (inner;

scalar) product (projection) of the two vectors iϕ and ψ . The

unitarity of operators (matrices) (cf. Sect. 11.1) implies reversibility.
(5) The quantum register, which is an array of qubits, can be in any
of the individual states of its qubits at any instant of time or at all of
the states at the same time, thus allowing for parallelism at the
quantum level. When the quantum states exhibit correlations that
cannot be accounted for classically, then the quantum state is said to
be in entanglement.
 Quantum computing has important advantages in comparison to
classical computing as follows:
(1) Transforming highly complex problems from the real domain to
other domains (like Fourier domain, Walsh domain, etc) does not
reduce the problem complexity, but transforming such complex
problems to the quantum domain does reduce the problem
complexity. Due to this fact, some problems that are not solvable in
polynomial time in classical domains can be solvable in polynomial
time in the quantum domain, and a well-known example is the
factoring problem [226,228]. Solving the factoring problem results
in the ability to penetrate encrypted messages utilizing any
communication channels like the internet for instance, which makes
it a vital issue for national security of any country [162,163], and
thus quantum cryptography becomes very important. Fast quantum
algorithms for database search have been also created [105,106].

 11 Quantum Computing: Basics and New Results 233

(2) Quantum logic (QL) permits intensive parallel computations.
(3) QL executes on 2-valued as well as many-valued logics, as was
shown in [54,165]. Thus by utilizing the physical properties of
atoms, one can use the same aperture to perform two-valued or
multiple-valued quantum computing. This is different from classical
computing where different complex devices have to be designed for
two-valued and multiple-valued logics. This can be performed using
the polarization of light for binary and multiple-valued computing,
spin of particles for two-valued computing [79,167], the energy
(eigen) state transitions of cold trapped ions for two-valued
computing [54] and multiple-valued computing [165]. (This is
illustrated in Fig. 11.3.)
 In Fig. 11.3a, for the equally distributed quantum states (Ei), the
eigenstates that are obtained by solving Schrodinger Eq. for the
simple harmonic oscillator (SHO), can be considered as the
positions where an electron can be found purely in any of the
eigenstates or as entangled states where the electron exists in
intermediate (superimposed) eigenstates and not in any individual
eigenstate. Figure 11.3b illustrates the famous Stern-Gerlach
experiment [167] where the quantum number, which is associated
with the spin of particles, was discovered. Such quantum spin
number, in the case of an electron, proton, or neutron for example,

has two possible values: (
2

1+) for spin-up and (
2

1−) for spin-down,

and thus two-valued quantum computations can be achieved using
such unique spins [107,167]. (Quantum spin numbers for other
particles such as a photon (+1 and -1) can be different). Figure 11.3c
illustrates the potential use of light polarization (E

�
) as quantum

states for two-valued and multiple-valued quantum computations.
Figure 11.3d illustrates the multiple-valued quantum computing
using linear ion trap scheme from [165], where by using d-level ions
in this scheme, (d-1) neighboring transitions occur by illuminating
(d-1) distinct laser beams on the linearly trapped ions, and thus
multiple-valued quantum computing can be accomplished.
(4) The requirement of reversible algorithms/codes on quantum
machines, thus very little power is needed (theoretically zero). This
issue is important in mobile and remote communications (as in
cellular phones) and computing (such as laptops).

 234 11 Quantum Computing: Basics and New Results

(5) The size of a future quantum computer (QC) will be extremely
small (nano-scale), since all the quantum operations are performed
on the level of atoms.
(6) In teleportation (e.g., teleporting quantum state of an object to a
distant object and thus teleporting the encoding (qubit)) the quantum
effects are vital, thus the need for quantum computers [44,107,167].
(7) A quantum computer is a true random number generator [253].
 As was discussed in Chapt. 5, while the physical constraints
allow for some reversible gates to have the number of inputs to be
not equal to the number of outputs like in the case of optical
computing using the Interaction and Switch gates [62], other
physical constraints allow for reversible gates only to have the
number of inputs equal to the number of outputs like in the case of
quantum computing.
 Three layers of abstraction are distinguished in investigating
quantum logic design. The first layer is the quantum algorithmic
(mathematical) level where algorithms (procedures) are developed
that use fundamental concepts from the quantum domain such as the
entanglement and quantum transforms (e.g., the quantum Fourier
transforms (QFT) on dyadic and p-adic groups) to efficiently solve
problems that were previously thought to be unsolvable in the
classical domain. The second layer is the quantum logic synthesis
level where methodologies for the synthesis of circuits using
quantum primitives are created. This includes synthesis methods
such as various mathematical decompositions, factorizations, etc.
The third layer is the quantum physical (device) level which consists
of device modeling, simulation, and fabrication in the nano scale
(i.e., less or equal to 10-10 m = 1 Angestrom).
 In general, two methodologies exist to synthesize quantum
computers: (1) quantum Turing machine [167] which requires: (a)
“infinite” memory, (b) read/write head, (c) information encoding
(0,1,-), and (d) set of instructions (i.e., program or code) that
specify: (1) the output, (2) next state of the head as a function of the
present state of the head and inputs, and (3) shift-left or shift-right
operation of the head, or (2) a combination of interconnections
between (universal) logic primitives [95,107,167]. In this Chapt. the
focus will be on synthesizing quantum circuits using the second
approach of interconnections between quantum logic primitives.

 11 Quantum Computing: Basics and New Results 235

 a b c

 x

 d

Fig. 11.3. Various physical realization methodologies for the implementation of two-valued
and multiple-valued quantum computing: a energy states for Simple Harmonic Oscillator
(SHO) potential for two-valued and multiple-valued quantum computing, b particle spin
angular momentum in Stern-Gerlach experiment for two-valued quantum computing, c
light polarization for two-valued and multiple-valued quantum computing, and d cold
trapped ions for two-valued and multiple-valued quantum computing.

 Many types of quantum computers have been proposed that
utilize a combination of interconnections between quantum logic
primitives: Feynman quantum computer [93,253], Deutsch quantum
computer [69], Czerny quantum computer, Benhoff quantum
computer, Chuang-Yamamoto quantum computer [53], and others in
[41,169]. Physical devices have been proposed for quantum
computing like the ½ spin particles [248], and Nuclear Magnetic
Resonance (NMR) machines [167]. NMR is one of the main
quantum engines that have been proposed and can currently operate
on up to seven qubits.

 236 11 Quantum Computing: Basics and New Results

.
.
.

…

 E3,U3

 E2,U2

 E1,U1

 E0,U0

N

S

 ms = +1/2

 ms = -1/2

 SG

Z

 SG

 X

|+z>

|-z>

 |+x>

 |-x>

k

E

H

1 2 q

(d-1) lasers

 Since little has been developed towards the analysis and
synthesis of multiple-valued quantum logic circuits, this Chapt.
serves as a first step to fill this gap. This Chapt. provides the
theoretical background for multiple-valued quantum logic,
especially that multiple-valued quantum primitives have been
constructed [165], and quantum hardware devices have been built
[54,162,163,165] that can utilize such theories. Figure 11.4
illustrates the analogy graph that motivates the developments for the
various quantum circuits in this Chapt.

 Fig. 11.4. Analogy graph that motivates the developments in this Chapt.

 So far, not much has been published on multiple-valued
quantum logic gates and especially their characterization and
representation formalisms. It is the main goal of this Chapt. to start
building a systematic theory of multiple-valued quantum gates,
structures, and synthesis methods. This Chapt. introduces the
following new results:
• New two-valued and multiple-valued quantum primitives and
 evolution processes.
• New multiple-valued composite basis states and Einstein-
 Podolsky-Rosen (EPR) basis states.
• Generalized multiple-valued quantum permuters.
• Two-valued and multiple-valued canonical quantum decision trees
 (QDTs) and decision diagrams (QDDs).
• Introducing the mathematical operations for the analysis and
 synthesis of serial, parallel, and mixture of serial and parallel
 multiple-valued quantum circuits.
• Showing that minimum two-valued and multiple-valued quantum
 logic circuits, that result from minimum size two-valued and
 multiple-valued reversible logic structures, lead to minimum
 complexity of two-valued and multiple-valued quantum
 computing, respectively.

Reversible Primitive Quantum Representation

Reversible Structure Quantum Computation

 11 Quantum Computing: Basics and New Results 237

 Items 1 and 3 are necessary for the automated analysis and
verification of netlists of the corresponding quantum gates. They are
also necessary for the automated synthesis of a netlist described as
an evolution matrix from quantum gates, especially for try-and-
check (i.e., try-and-error) methods such as evolutionary
computations [100,110,207,236,237,249,252,255,258]. Since
decision diagrams allow for efficient representation of large sparse
matrices, they found applications in many computer aided design
(CAD) algorithms, and we believe that their quantum counterparts
will be useful for quantum logic synthesis and analysis. Finally, item
2 is important because new forms (representations) of quantum
decision trees and diagrams can be produced for the new quantum
multiple-valued Einstein-Podolsky-Rosen (EPR) basis states, and
thus allowing for further possible optimizations in the design of
quantum circuits, analogous to the classical (non-quantum) case
where different forms of decision trees and diagrams lead to
different scales of optimizations in the design of logic circuits
[213,217,219].
 The remainder of this Chapt. is organized as follows:
Background and preliminaries on two-valued quantum evolution
processes and synthesis are included in Sect. 11.1. Different types of
mathematical decompositions that can be used for quantum
computing and for the synthesis of quantum logic circuits using
basic quantum primitives are presented in Sect. 11.1.1. New two-
valued quantum evolution processes are introduced in Sect. 11.2.
Two-valued quantum decision trees and diagrams are presented in
Sect. 11.3. Fundamentals of multiple-valued quantum computing are
presented in Sect. 11.4. New multiple-valued composite and EPR
basis states and quantum Chrestenson evolution process are
presented in Sect. 11.5. New multiple-valued generalized quantum
permuters and evolution processes are presented in Sect. 11.6. Novel
representations of multiple-valued quantum decision trees and
diagrams for multiple-valued quantum computing are introduced in
Sect. 11.7. A methodology of the automatic synthesis of quantum
circuits based on evolutionary algorithms is presented in Sect. 11.8.
Quantum computations using reversible structures (from Chapts. 5,
6, 7, and 8) and initial comparison for such synthesis methods are
presented in Sect. 11.9. Chapter Summary is presented in Sect.
11.10.

 238 11 Quantum Computing: Basics and New Results

11.1 Fundamentals of Two-Valued Quantum Evolution
Processes and Synthesis

In general, the dynamical behavior of quantum systems is governed
by the solution of Ψ in the time-dependent Shrodinger Eq. (TDSE)

[81,208]. The following is the 1-D TDSE [81,208]:

t

hiV
xm

h

∂
Ψ∂

=Ψ+
∂
Ψ∂

−)2/(
2

)2/(
2

22

ππ
,

dt

d
hiH

Ψ
=Ψ)2/(π , (11.1)

where h is Planck constant (6.626⋅10-34 J⋅s), V(x,t) is the potential, m

is particle mass, i is the imaginary number (1−=i),),(txΨ is the

time-dependent quantum state, and H is the Hamiltonian operator

(e.g., for 1-D: V
xm

h
H +

∂
∂−=

2

22

2

)2/(π
).

 A general solution to TDSE is the expansion of a stationary
(time-independent; spatial) basis functions (eigen states)

)(rU e

�
using a time-dependent (i.e., temporal) expansion coefficients

Ce(t), as follows:

 �
=

=Ψ
n

e
r

e
ut

e
ctr

0
)()(),(
��

,

 =)()(...)()()()()()(221100 rutcrutcrutcrutc nn

���� ++++ .

 The expansion coefficients Ce(t) are a scaled complex
exponentials as follows:

t

h

E
i

ee

e

ektC)2/()(π
−

= .

 Most of the proposed quantum computers [95,167], and the
proposed quantum algorithms to solve (time-independent)
optimization problems (e.g., Traveling Slaseman problem, Graph
Coloring problem, Maximum Clique problem, etc) are systems that
evolve according to the time-independent Shrodinger Eq. (TISE):

 Ψ=Ψ HE , (11.2)

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 239

where E is the system energy, H is the system Hamiltonian operator
(which is related to the total energy of the quantum system, and can
be thought of as the quantum computer hardware that evolves the
input quantum state vector or quantum data), and |ψ|2 is the wave
Eq. (probability density). (For a complete example for obtaining ψ
and |ψ|2 = ψψ* please refer to Example K.1 and Fig. K.1 in
Appendix K.)
 Thus, and according to Fig. 11.3a for instance, if one considers
the eigen states)(rU e

�
 to be the qubits e of the quantum system,

then the expansion coefficients Ce are the square roots of the
probability density functions (PDFs) as follows:

.
0

,
0

||
0

,
00

2*

�
=

=

�
=

=�
=

=

�
=

=�
=

=Ψ

n

e
ePDF

n

e
e

n

e
e

n

e
e

n

e
uc

e

eee

eee

ααα

α

Where PDFe is the probability of finding the state Ψ in the state

eU , and:

 .1|||| 22 ==��
e

e
e

ec α

 The evolution operator (transformation; process) U is a unitary
operator like the Walsh-Hadamard operator [167]. This operator is a
function of the Hamiltonian (H), which is obtained by solving
Shrodinger Eq., and thus:

 ∴ U = f (H). (11.3)

 If the initial quantum state of a quantum system is:

 � Ψ=Ψ
k

kkμ , (11.4)

then the quantum system evolves over time, using the linear and
unitary operator U, to the following state:

 240 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

.'

,''

μμ

μ
��

U

U
k

kk

=∴

Ψ=Ψ=Ψ �

Where the unitarity condition holds: ,1')'(, == μμ �� HH IUU and H
is the Hermitian (i.e., transpose of the conjugate).
 As stated previously, quantum logic incorporates physical
axioms into the abstract mathematical axioms in order to make the
resulting logic a true representation of the natural physical reality, an
ability the classical irreversible logics lack. Thus, in the quantum
domain, the issues of: interference, entanglement, decoherence, and
measurement (observation) are essential. These quantum-based
phenomena have been experimentally verified.
 The quantum interference exists to explain the 2-slot
experiment: when a beam is projected into a plane through two
“tiny” slots, a detector on the projected plane detects a varying
amplitude wave-like beam [81,208]. This varying amplitude wave-
like beam can be constructed by super-imposing two waves, called
“probability waves”. Mathematically, this quantum interference
corresponds to the fact that when a unitary operator is applied upon
an input, some “amplitudes” increase while others decrease (i.e.,
they interfere with each other). Therefore, when the linear unitary
operator is applied upon the wave function, the wave function
interferes with itself, and consequently different parts of the wave
function interfere constructively or destructively according to their
relative phases, and thus the interference pattern occurs, where for
the total amplitudes cj some amplitudes ci increase and other
amplitudes cj-i decrease. The physical phenomenon of interference is
illustrated as shown in Fig. 11.5.
 The quantum entanglement means that a quantum state cannot
be written as the tensor product of individual states (i.e., non-
decomposable). When the quantum states iϕ exhibit correlations

that cannot be accounted for classically, then the quantum state ψ

is said to be in entanglement. (Further explanation of two-valued
and multiple-valued entanglement will be shown in Examples 11.1
and 11.5, respectively.)
 The quantum measurement (observation) means that while the
state of the quantum register can be in general in any of the

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 241

individual states at any instant of time or at all of the states at the
same time, the state of the binary quantum register “collapses” into
either the quantum state 0 or quantum state 1 when

measurement is conducted. Measurement in the quantum domain is
governed by Heisenberg’s “uncertainty principle” [81] which states
that one cannot measure with absolute certainty specific multiple
quantum quantities (i.e., observable variables) at the same time since
a measurement of one variable affects the measurement of the other
variable (e.g., the measurement of the pairs: (position, momentum)
and (time, energy)). Because in measuring the state of a quantum
system ψ the superposition, in which quantum state exists,

collapses into a single state iϕ , and because this measurement is

governed by the uncertainty principle, the collapsing of the quantum
state ψ into a single state iϕ , through measurement in the

quantum domain, changes the state of the quantum register
according to the uncertainty principle.
 The physical process of decoherence (dephasing) [117] (or the
loss of phase coherence) indicates the tendency of a quantum system
(such as a quantum computer) to decay from a given quantum state
into an incoherent state as it interacts, or entangles, with the state of
the environment in which that specific quantum system exists. A
quantum system is said to be coherent if it exists in a linear
superposition of its basis states. Yet, as a result of quantum
mechanics, if the quantum system interacts in any means with its
environment (i.e., the surrounding or outer system), then the linear
superposition of that specific quantum system will be destroyed.
When the quantum system ψ is coherent, one cannot decide the

state iϕ in which the quantum system exists, since the state of

such quantum system is the probabilistic superposition of basic
orthogonal quantum basis states. On the other hand, when the
quantum system ψ decoheres, then one can decide which state

iϕ the system ψ will be in with a probability according to the

scalar projection
2ψϕ i .

 242 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 243

Fig. 11.5. The quantum interference experiment, which by analogy to quantum computing
implies that when a unitary quantum operator is applied, some amplitudes increase while
others decrease (i.e., they interfere with each other). The probability density function PDF

2 *=P12 = IPI =PP . Thus, ~2 =rl~ +r2P2'

These interactions between the environment and the states of
the quantum system are unavoidable, and induce the breakdown of
information stored in the quantum system (computer), and thus
errors in computation. Other types of quantum noise also appear in
the nano scale besides the noise from decoherence [261].
Consequently, error correction methods have to be used to obtain the
phase coherence and to counteract the effects of noise [48,227,241].
The phenomena of decoherence is one of the biggest obstacles that
prevent us today from building a quantum computer, or more
precisely, building a quantum computer that can rival today's
modern digital computer, and still need to be solved to obtain
reliable quantum computations.
Conservation law states that matter cannot be created or

vanished but can be transformed from one form to another.
Conservative logic implements the physical law of conservation by

having the number of ones in the input vector equal to the number of
ones in the output vector for binary reversible logic, and number of
ones and twos in the input vector equal to the number of ones and
twos in the output vector for ternary reversible logic, etc.
 Thus, in general, the axiomatic algebraic systems, which are
used in quantum logic, incorporate the following set of physical
phenomena: uncertainty principle, interference, entanglement,
decoherence, linear evolution, conservativeness, and reversibility.
 In binary quantum logic, two qubits can be represented by the
vector corresponding to the spin of atomic particles as follows:

)270(
1

0
1),90(

0

1
0 00 ↓−��

�

�
�
�

�
=↑−��

�

�
�
�

�
= downspinupspin .

 Figure 11.6 illustrates the spin-up and spin-down for particles to
perform two-valued quantum computing. A qubit can be
mathematically modeled in the spherical coordinate system using
the Bloch sphere [167,270], where a vector of fixed length rotates
with angles inside the sphere and each of these rotations correspond
to a specific quantum gate (primitive). For example, the core of
quantum Fourier transform (QFT) (i.e., n = 1) that will be presented
in Sect. 11.1.1 is performed by the composition of two vectors
(qubits) in 2-D (vector or function) Hilbert space: (1) quantum state
0 and (2) a specific rotation equal to ijeπ of quantum state 1 . (In

the case of p-adic groups the core of QFT is performed by the
composition of p vectors each with different rotation in p-
dimensional space. For example, in the case of ternary logic [268],
the core of QFT is generated by the composition of three vectors
(qubits) in 3-D space: (1) quantum state 0 , (2) rotation1 of

quantum state 1 , and (3) rotation2 of quantum state 2 .)

 An n-qubit binary quantum register (also called a scratchpad
register [95,98,167]) is an array of n binary qubits. For a quantum
register that is composed of 2 binary qubits, one obtains 4 possible
states of the register. These states are as follows:

[] []

[] [] .1000
1

0

1

0
1111,0100

0

1

1

0
0110

,0010
1

0

0

1
1001,0001

0

1

0

1
0000

TT

TT

=�
�

�
�
�

�
⊗�
�

�
�
�

�
=⊗==�

�

�
�
�

�
⊗�
�

�
�
�

�
=⊗=

=�
�

�
�
�

�
⊗�
�

�
�
�

�
=⊗==�

�

�
�
�

�
⊗�
�

�
�
�

�
=⊗=

 244 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

 a b

Fig. 11.6. a Atomic particle spin-up that represents qubit |0>, and b atomic particle spin-
down that represents qubit |1>. An m-qubit binary quantum register consists of m of such
spins, and thus can have up to 2m distinct states. Any quantum state is a linear combination
(superposition) of the orthonormal computational basis states |0> and |1>.

Where ⊗ is the tensor (Kronecker) product [217]. For a scratchpad
register composed of three binary qubits, one obtains 8 possible
states of the quantum register. These states are generated as follows:

[]

[]

[]

[]

[]

[]

[]

[] .10000000
1

0

1

0

1

0
111111

,01000000
0

1

1

0

1

0
011110

,00100000
1

0

0

1

1

0
101101

,00010000
0

1

0

1

1

0
001100

,00001000
1

0

1

0

0

1
110011

,00000100
0

1

1

0

0

1
010010

,00000010
1

0

0

1

0

1
100001

,00000001
0

1

0

1

0

1
000000

T

T

T

T

T

T

T

T

=⊗⊗=⊗⊗=

=⊗⊗=⊗⊗=

=⊗⊗=⊗⊗=

=⊗⊗=⊗⊗=

=⊗⊗=⊗⊗=

=⊗⊗=⊗⊗=

=⊗⊗=⊗⊗=

=⊗⊗=⊗⊗=

 In general, a binary quantum register that is composed of k
binary qubits can have up to 2k possible states. The quantum register
can be in any of the individual states at any instant of time or in all
of the states at the same time. The fact that the scratchpad register

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 245

can be in all of the states at the same time is the reason for the
binary parallelism that exists at the binary quantum level. Due to
this parallelism, a binary quantum processor can operate on all of
the states of the quantum register at the same time (i.e., it can be
modeled like application-specific 2k binary parallel processors).
 For a register composed of 1 qubit, the evolution state (Ψ) is

represented as follows:

 qubitbinary −Ψ = 10 10 pp + , (11.5)

where in general:

,
||||

||

||||

||
)1(

,
||||

||

||||

||
)0(

2222

2

2222

2

11

00

βα
β

βα
β

βα
α

βα
α

+
=�

+
==

+
=�

+
==

ppp

ppp

 1≥ pi≥ 0, i∈{0,1}, and p0 + p1 = 1.
 Here p0 is the probability of the qubit being in state |0>, and p1
is the probability of the qubit being in state |1>, α and β are complex
numbers called “probability amplitudes”, and in general αα* + ββ* =
|α|2 + |β|2 = 1. Thus, if {|α| = 0, |β| = 1}, {|α| = 1, |β| = 0}, {|α| =
1/√2, |β| = 1/√2}, or {|α| = 1/√4/3, |β| = 1/√4}, etc, then |α|2 + |β|2 =
p0 + p1 = 1.

 ∴ qubitbinary −Ψ = 10 10 pp + = 10 βα + . (11.6)

Eq. (11.6) is the amplitude Eq. that describes two-valued quantum
computing. The more general Eq. that includes the phase as well is
as follows [167]:

 qubitbinary −Ψ = 1)
2

sin(0)
2

cos()(θθ ϕγγ ++ ii ee , (11.7)

where {γ,ϕ,θ}∈ R. Equation (11.6) can be re-written as:

 qubitbinary −Ψ = [][] �
�

�
�
�

�
β
α

E10 , (11.8)

 246 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

where [E] is an evolution matrix.
 In general, the size of the evolution matrix [E] for (k,k)
reversible gates over any radix and for an arbitrary number of inputs
is governed by the following Eq. [15]:

 ||E|| = radix #inputs = #outputs ⋅ radix #inputs = #outputs, (11.9)

where the radix indicates the radix of logic which is used for
reversible and quantum computing.
 For a two-valued quantum register that is composed of two
binary qubits, the quantum state Ψ is represented using the

computational basis states { 1,0 }, as follows:

 1qubitbinary −Ψ = 10 10 pp + ,

 2qubitbinary −Ψ = 10 32 pp + ,

 qubitbinary −−Ψ 2 = Ψ 1 ⊗ Ψ 2

 = (10 10 pp +)⊗(10 32 pp +),

 = 11100100 31213020 pppppppp +++ .

Given that:

.
||||

||

,
||||

||

,
||||

||

,
||||

||

22

22

22

22

22

2

3

11

1

1

22

2

2

11

1

0

βα
β
βα

β
βα

α
βα

α

+
=

+
=

+
=

+
=

p

p

p

p

One obtains qubitbinary −−Ψ 2 equals to:

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 247

qubitbinary −−Ψ 2 =

,11
||||

||

||||

||
10

||||

||

||||

||

01
||||

||

||||

||
00

||||

||

||||

||

22222222

22222222

22

2

11

1

22

2

11

1

22

2

11

1

22

2

11

1

βα

β

βα

β

βα

α

βα

β
βα

β

βα

α

βα

α

βα

α

++
+

++

+
++

+
++

 =

.11
)|||)(||||(|

||||
10

)|||)(||||(|

||||

01
)|||)(||||(|

||||
00

)|||)(||||(|

||||

22222222

22222222

2211

21

2211

21

2211

21

2211

21

βαβα

ββ

βαβα

αβ
βαβα

βα

βαβα

αα

++
+

++

+
++

+
++

 Specifically, given the orthonormalization conditions: |α1|
2 +

|β1|
2 = 1 and |α2|

2 + |β2|
2 = 1, one obtains:

 (|α1|
2 + |β1|

2)(|α2|
2 + |β2|

2)= 1,
 α1α2|

2 + |α1β2|
2 +|β1α2|

2 +|β1β2|
2 = 1.

 qubitbinary −−Ψ∴ 2 = Ψ 1 ⊗ Ψ 2 =)10()10(2211 βαβα +⊗+ ,

 = 11011000 21212121 ββαββααα +++ ,

 = 11100100 21212121 ββαββααα +++ .

 ∴∴∴∴ qubitbinary −−Ψ 2 = [][]
�
�
�
�

�

�

�
�
�
�

�

�

21

21

21

21

11100100

ββ
αβ
βα
αα

E . (11.10)

where [E] is the quantum evolution process.
 It is interesting to note that the binary 2-qubit orthonormal
computational basis states: }11,10,01,00{ in Eq. (11.10) is just

one possible set of orthonormal basis states. Other possible
orthonormal basis states for a binary 2-qubit quantum register
include the Einstein-Podolsky-Rosen (EPR) basis states [167]:

�
	

�
�

 −+−+

2

1001
,

2

1001
,

2

1100
,

2

1100
(Example 11.1 will

illustrate the quantum circuit that creates the EPR set of orthonormal

 248 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

basis states). The following represents the unitary evolution matrices
for some quantum gates that are used in quantum computing
[36,167,230,253] (quantum gates, such as the Pauli gates, can be
obtained using quantum mechanical formalisms [81]):

(1,1) gates:

Walsh-Hadamard: �
�

�
�
�

�
−11

11

2

1
, Pauli-X (NOT): �

�

�
�
�

�
01

10
, Pauli-Y:

�
�

�
�
�

� −
0

0

i

i
, Pauli-Z: �

�

�
�
�

�
−10

01
, Phase: �

�

�
�
�

�
i0

01
,

8

Π
: �

�

�
�
�

�
4/0

01
πie

,

�
�
�

�

�
�
�

�
k

i
k

e
R

2

2

0

01
: π , Uθ :

�
�
�

�

�

�
�
�

�

�

− −−+−

−+−++

)
2

cos()
2

sin(

)
2

sin()
2

cos(

)()(

)()(

θθ

θθ

τσδτσδ

τσδτσδ

ii

ii

ee

ee
,

�
�
�

�

�

�
�
�

�

�

+−

−+

2

1

2

1
2

1

2

1

:
ii

ii

NOT , Wire (Buffer; Identity): �
�

�
�
�

�
10

01
.

(2,2) gates:

Feynman (CN):

�
�
�
�

�

�

�
�
�
�

�

�

0100

1000

0010

0001

, Swap:

�
�
�
�

�

�

�
�
�
�

�

�

1000

0010

0100

0001

,

 Controlled-Z:

�
�
�
�

�

�

�
�
�
�

�

�

−1000

0100

0010

0001

, Controlled-Phase:

�
�
�
�

�

�

�
�
�
�

�

�

i000

0100

0010

0001

,

Barenco-DiVincenzo:

�
�
�
�

�

�

�
�
�
�

�

�

−
−

+

−

)cos()sin(00

)sin()cos(00

0010

0001

)(

)(

θθ
θθ

αφα

φαα

ii

ii

eie

iee
.

where α, φ, and θ are constant irrational multiples of π and one
another.

(3,3) gates:

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 249

defabcToffoli / :

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

, 10/0
rr fcfabcFredkin :

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

10000000

00001000

00100000

00000010

01000000

00010000

00000100

00000001

.

 The size of each evolution matrix is governed by Eq. (11.9). For
example, for (2,2) two-valued gate, the size of the evolution matrix
is equal to 22⋅22 = 4⋅4 = 16 elements. Note that the orthogonal

Walsh-Hadamard transform �
�

�
�
�

�
−11

11
is normalized by

2

1
to make

the matrix unitary (i.e., the columns are orthogonal to each other and
the Euclidian length of each column is one).
 It has been shown [167] that any quantum computer can be
constructed using only the Barenco-DiVincenzo gates, quantum
XOR (Feynman gate) and one generalized quantum inverter (i.e.,
single-input single-output gates), or only using Toffoli gate together
with (1,1) gates. This stems from the fact that a complete (universal)
system should consist of at least a linear part and a non-linear part,
not only a linear part. Since a Feynman gate is only made of a linear
part (XOR gate) then it cannot be a universal gate on its own. On the
contrary is the Toffoli gate, which consists of a linear part (XOR
gate) and a non-linear part (AND gate) that qualify the gate to be
universal (complete) (i.e., all possible 256 3-variable binary
functions are produced using the quantum Toffoli gate).
 From the matrix representation of the quantum gates, the matrix
representation is equivalent to the input-output (I/O) mapping
representation of quantum gates, as follows: If one considers each
row in the input side of the I/O map as an input vector represented
by the natural binary code of 2index with row index starting from 0,
and similarly for the output row of the I/O map, then the matrix
transforms the input vector to the corresponding output vector by
transforming the code for the input to the code for the output. One
notes from this example, that the Feynman gate is merely a
permuter, i.e., it produces output vectors, which are permutations of
the input vectors.
 Although some quantum gates like Feynman gates are merely
permuters, not all quantum gates do simple permutations. For

 250 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

example the Walsh-Hadamard quantum gate is a transformer and not
only a permuter. The mapping of a set of inputs into any set of
outputs can be obtained using quantum computing methods.
 According to the principles of quantum mechanics, the
combination of quantum state qubits can be in either (1)
decomposable or (2) in entangled states [167]. While each
individual state qubit can be observed in the former case, the same is
impossible in the later. The combination of two systems with the
bases { }nxxx ,...,, 21 and { }myyy ,...,, 21 is described as a pair

()ji yx , , and the composite quantum state is expressed as:

 ��
= =

n

i

m

j
jiij yx

1 1

,α . (11.11)

 In quantum logic, one defines a state to be decomposable if it
can be expressed as:

 � �
= =

n

i

m

j
jiji xx

1 1
... ,...,... α = j

n

i

m

j
iji xx

1 1
� �

= =
βα ,

 = ��
==

⊗⊗
m

j
jj

n

i
ii xx

11

... βα ,

 = ��
==

m

j
jj

n

i
ii xx

11

... βα . (11.12)

Otherwise, the state is entangled. The speedups in quantum
computations seem to be due to the entanglement, by which many
computations are performed in parallel. The following example
illustrates the concept of two-valued quantum entanglement.
Example 11.1. This example demonstrates the concept of two-
valued entanglement.
11.1a. Consider a two-valued quantum system of two qubits, given
as:

 ()11100100
2

1 +++ ,

 = () ()10
2

1
10

2

1 +⊗+ = () ()10
2

1
10

2

1 ++ .

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 251

This system is decomposable, as the functions of the first and
second qubits are disentangled according to Eq. (11.12).
11.1b. Consider now the two-valued quantum system:

()1001
2

1 + .

This system is entangled, as no decomposition according to Eq.
(11.12) is possible.
 Among the previous quantum gates, the Walsh-Hadamard gate
and Feynman gate are the most important quantum gates that are
often used in binary quantum computing and synthesis. Analogous
to the classical non-quantum operators (e.g., optical systems
[49,261]), each quantum evolution matrix represents a unique
quantum gate. For an evolution matrix of the size given by Eq.
(11.9), the input qubit to the quantum gate corresponds to the
column index of the evolution matrix, and the output qubit of the
quantum gate corresponds to the row index of the evolution matrix.
The column and row indices of the evolution matrix are in the
following order for 1-input 1-output gates, 2-input 2-output gates,
and 3-input 3-output gates, respectively:

.111,110,101,100,011,010,001,000:33

.11,10,01,00:22

.1,0:11

gateoutputinput

gateoutputinput

gateoutputinput

−−

−−

−−

Quantum circuits are synthesized using interconnects between
quantum primitives. Interconnects can be serial-like interconnects,
parallel-like interconnects, or a mixture of serial-like and parallel-
like inter-connects.
Example 11.2. This example illustrates a number representation and
qubit transformation in binary quantum computing.
11.2a. Number representation:

Booleandecimal

110113 = =
Boolean

↓↓↑↓ .

11.2b. Pauli-Z transformation: 11
10

01
,00

10

01
−=�

�

�
�
�

�
−

=�
�

�
�
�

�
−

.

11.2c. Normalized Walsh-Hadamard transformation:

 ,
1

1

2

1
0

11

11

2

1
�
�

�
�
�

�
=�

�

�
�
�

�
−

 252 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

 () 00
11

11

2

1

11

11

2

1 =�
�

�
�
�

�
−

⋅�
�

�
�
�

�
−

.

Thus, two serially inter-connected Walsh-Hadamard gates lead to
the Identity transformation.
11.2d. Figure 11.7 illustrates the quantum logic circuit that creates
the EPR basis states [167]:

�
	

�
�

 −+−+

2

1001
,

2

1001
,

2

1100
,

2

1100
.

 1Ψ

 1Ψ '1Ψ

 2Ψ '2Ψ

Fig. 11.7. a Input-Output quantum truth table, and b the corresponding quantum circuit that
creates the orthonormal EPR basis states.

Utilizing Fig. 11.7.b, and the shift operator over GF(2):
{0→1,1→0}, one obtains the following Eqs.:

,10

,10

222

111

βα
βα

+=Ψ

+=Ψ

[]

),'('

,
2

10

2

10

,
11

11

2

1
10'

12

11

1

1
1

2
Ψ=Ψ

−
+

+
=

�
�

�
�
�

�
�
�

�
�
�

�
−

=Ψ

ΨShift

βα

β
α

where)'(' 12 2
Ψ=Ψ ΨShift means to shift the value of the basis

states of '1Ψ by the amount 2Ψ over GF(2).

 Input qubits Output qubits

 |00> (|00> + |11>)/√2

 |01> (|01> + |10>)/√2

 |10> (|00> - |11>)/√2

 |11> (|01> - |10>)/√2

 a b

GF(2) Shift Operator

Normalized
Walsh-
Hadamard
gate

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 253

Then: For {α1 = 1, β1 = 0}:
2

10
'1

+
=Ψ ,

 � For{α2=1,β2=0}:

2

1100
''

2

10
',0 2122

+
=ΨΨ=Ψ�

+
=Ψ∴=Ψ .

 � For{α2=0,β2=1}:

2

1001
''

2

01
',1 2122

+
=ΨΨ=Ψ�

+
=Ψ∴=Ψ .

For {α1 = 0, β1 = 1}:
2

10
'1

−
=Ψ ,

 � For{α2=1,β2=0}:

2

1100
''

2

10
',0 2122

−
=ΨΨ=Ψ�

−
=Ψ∴=Ψ .

 � For{α2=0,β2=1}:

2

1001
''

2

01
',1 2122

−
=ΨΨ=Ψ�

−
=Ψ∴=Ψ .

11.2e. The following is the derivation of the orthonormal composite

basis states:
�
�
�

�
�
� −

=−
+

=+
2

10
,

2

10
.

Assuming the normalization of the “probability amplitudes”, and
using the quantum signal Ψ = 10 βα + as an input to the

normalized Walsh-Hadamard circuit in Fig. 11.8.

 Fig. 11.8. Walsh-Hadamard logic circuit.

One obtains the following quantum signal at the output of the gate:

 	

�
�

�
−11

11

2

1 |Ψ> = α |0> + β |1> |Ψ>’

 254 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

[] []

[]

[] .

,
2

10

2

10

11

11

2

1
10'

.1
2

0
2

,

2

210
11

11

2

1
10'

−++=�
�

�
�
�

�
−+=

�
�

�
�
�

�
�
�

�
�
�

� −+
=�

�

�
�
�

�
�
�

�
�
�

�
−

=Ψ

−++=

�
�
�
�

�

�

�
�
�
�

�

�

−

+

=�
�

�
�
�

�
�
�

�
�
�

�
−

=Ψ

βα
β
α

β
α

β
α

βαβα

βα

βα

β
α

Where:

�	

�

�

��

�

� −

=−
+

=+
2

10
,

2

10
and

�	

�

�

��

�

� −−+

=
−++

=
2

1,
2

0 .

Therefore, one obtains, at the input side of the quantum Walsh-
Hadamard gate, the following quantum signal:

.
22

,
22

10

−−+++=

−−+
+

−++
=+=Ψ∴

βαβα

βαβα

Therefore: {
2

,
2

βαβα −=+= −+ pp }.

 Consequently, measuring Ψ with respect to the new basis

{ }−+ , will result in the state (basis) { }+ with probability

2

|| 2βα +
and the state (basis) { }− with probability

2

|| 2βα −
.

Example 11.3. The following circuits illustrate the process of
evolving the input binary quantum bits using a composite of binary
quantum primitives in serial-like, parallel-like, and a mixture of
serial-like and parallel-like interconnects, respectively.

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 255

11.3a. Figure 11.9 illustrates the process of evolving the input
binary qubits using the corresponding quantum circuits. Let us

evolve the input binary qubit 11 = []T1000
1

0

1

0
=�

�

�
�
�

�
⊗�

�

�
�
�

�
.

Fig. 11.9. a Quantum circuit composed of a serial interconnect of two Feynman gates and a
Swap gate, and b quantum circuit composed of serial and parallel interconnects of a single
Feynman gate, two Wires (Buffers), and a single Swap gate.

The evolution of the input qubit using cascaded (i.e., serially-
interconnected) quantum gates can be viewed in two equivalent
perspectives. The first perspective is to evolve the input qubit step
by step using the serially interconnected gates. The second
perspective, is to evolve the input qubit using the total quantum
circuit at once, since the total evolution transformation []netM is

equal to the multiplication of the individual evolution matrices []qM
that correspond to the individual quantum primitives:
∴[] []∏=

q

qserialnet MM .

Perspective #1:

.

0

0

1

0

0

0

1

0

0100

1000

0010

0001

,

0

0

1

0

0

1

0

0

1000

0010

0100

0001

0

1

0

0

1

0

0

0

0100

1000

0010

0001

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

a

a

b

x

y
b

(1)

(2)

(3)

(4)

(5) (6)

b

a

c

x

y

z

 256 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

Perspective #2:

.

0

0

1

0

1

0

0

0

0100

1000

0010

0001

1000

0010

0100

0001

0100

1000

0010

0001

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

	
	
	
	
	

�

�
�
�
�
�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

Thus, the quantum circuit shown in Fig. 11.9a evolves the qubit 11

into the qubit 01 .

 The quantum circuit in Fig. 11.9b is composed of a serial
interconnect of two parallel circuits as follows: dashed boxes
((1),(2)) and ((3),(4)) are parallel interconnected, and dotted boxes
(5) and (6) are serially interconnected. The total evolution
transformation []netM of the total parallel-interconnected quantum

circuit is equal to the tensor (Kronecker) product of the individual
evolution matrices []qM that correspond to the individual quantum

primitives: ∴[] []qparallelnet MM ⊗= . Thus, analogously to the

operations of the circuit in Fig. 11.9a, the evolution of the input
qubit, in Fig. 11.9b, can be viewed in two equivalent perspectives.
The first perspective is to evolve the input qubit stage by stage. The
second perspective is to evolve the input qubit using the total
quantum circuit at once. Let us evolve the input binary qubit 111

using the quantum circuit in Fig. 11.9b. The evolution matrices of
the parallel-interconnected dashed boxes in (5) and (6), are as
follows (where the symbol || means parallel connection):

input = []T00000001
1

0

1

0

1

0
111 =		

�
��

�
⊗		

�
��

�
⊗		

�
��

�
=⊗⊗ .

 The evolution matrix for (5) = (1) || (2) is:

Feynman⊗Wire=
,

10

01

0100

1000

0010

0001

�
�

�
�
�

�
⊗

�
�
�
�

�

�

�
�
�
�

�

�

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 257

 =

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

10

01
10

01
10

01
10

01

.

 The evolution matrix for (6) = (3) || (4) is:

Wire ⊗ Swap =

�
�
�
�
�

�

�

�
�
�
�
�

�

�

⊗�
�

�
�
�

�

1000

0010

0100

0001

10

01 ,

 =

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�
�
�
�
�
�

�

�

�
�
�
�
�

�

�

1000

0010

0100

0001
1000

0010

0100

0001

.

Perspective #1: input� (5) � output1, input2 (= output1) � (6) �
output2.

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

10

01
10

01
10

01
10

01

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

1

0

0

0

0

0

0

0

=

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

0

0

1

0

0

0

0

0

,

 258 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

1000

0010

0100

0001
1000

0010

0100

0001

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

0

0

1

0

0

0

0

0

 = 110

0

1

0

0

0

0

0

0

=

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

.

Perspective #2: input� ((6)(5)) � output2.

(

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

1000

0010

0100

0001
1000

0010

0100

0001

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

�
�

�
�
�

�

10

01
10

01
10

01
10

01

)⋅

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

1

0

0

0

0

0

0

0

= 110

0

1

0

0

0

0

0

0

=

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

.

 Thus, the quantum circuit shown in Fig. 11.9b evolves the qubit
111 into the qubit 110 .

 (Note here the reason for the name “tensor product”; the form of
the matrix for a parallel interconnect is in the form of matrix of
matrix elements (i.e., tensor) generated by this type of product.)
11.3b. Let us evolve the input qubit |1111> using the following
parallel-like interconnected quantum circuit.

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 259

 a x

 b y

 c z

 d w

Fig. 11.10. Quantum circuit composed of parallel-like interconnect of three Feynman gates.

 It can be shown the qubit |1111> evolves using the quantum
circuit in Fig. 11.10 into the qubit |1010>.
11.3c. Let us evolve the input qubit |100> using the following
mixture of interconnected quantum circuits:

 a x

 b y

 c z

Fig. 11.11. Quantum circuit composed of parallel-like and serial-like interconnects of five
Feynman gates and one controlled-Swap gate.

 It can be shown the qubit |101> evolves using the quantum
circuit in Fig. 11.11 into the qubit |101>.
11.3d. Since, in logic design, the replacement of one “large” circuit
with an equivalent smaller size circuit, using components from
library, is very important because it reduces the cost of synthesis, the
same reasoning would hold in the synthesis of quantum logic
circuits. The following shows an example of quantum circuit
equivalence of two quantum logic circuits, where the first circuit is a
binary quantum Swap gate and the second equivalent circuit is made
of three serially-interconnected binary Feynman gates.

 260 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis

 a x

 b y

 a b

Fig. 11.12. a Binary quantum Swap gate, and b its equivalence in terms of three
serially-interconnected binary Feynman gates. This equivalence in structural
transformation is important since Swap, as crossing wires, can be realizable in
quantum logic using Feynman gates.

11.1.1 Mathematical Decompositions for Quantum Computing

Factorization of the evolution process leads to the serial
decomposition of the total quantum circuit into serially inter-
connected quantum sub-circuits. Utilizing Example 11.3, it is
interesting to solve for the following binary evolution process
factorization (or equivalently quantum circuit decomposition)
problem: given the output (evolved) qubit, factorize the total
composite evolution process into known evolution sub-processes.
This type of quantum decomposition can be very useful in the
synthesis of quantum logic circuits.
 Quantum Analysis means to take the total synthesized quantum
circuit of interconnected quantum sub-circuits and produce the total
evolution matrix from it. Quantum Synthesis is the opposite; by
having the total evolution matrix we want to produce within specific
design constraints certain topological quantum circuit made up of
either totally serial interconnects (i.e., using only matrix product),
totally parallel interconnects (i.e., using only Kronecker product), or
a hybrid of serial and parallel interconnects (i.e., using both matrix
product and Kronecker product). The definitions of quantum
analysis and quantum synthesis are illustrated in Fig. 11.13.
 Consequently, many decompositions that are commonly used in
linear algebra have been proposed [15,167] for the decomposition of
the unitary evolution matrices, like: spectral theorem, Z-Y
decomposition, Polar decomposition, LDU decomposition, Jordan
decomposition, fast Fourier-like decomposition [123], and Singular
Value Decomposition (SVD) [15].

 11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis 261

 Fig. 11.13. Demonstration of Quantum Analysis versus Quantum Synthesis.

Example 11.4. This example illustrates the use of factorization to
decompose the total evolution processes into quantum-realizable
sub-processes, and to find quantum circuit equivalences.
11.4a. For a complex matrix [M], in general, M is said to be
symmetric iff [M] = [M]H, where H is the Hermitian (i.e., transpose
of the conjugate). If [M] is symmetric, then the spectral theorem (in
geometry and mechanics this is also known as “principal axis
theorem”) is as follows:

[] [][][]
nxnnxnnxn

H

H
n

H

n

n

eve

eve

eva

eva

eveeveQQM

�
�
�

�

�

�
�
�

�

�

−−

−−

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
=Λ= ...

00

0.0

00

|.|

.

|.| 11

1

where eve is the eigenvector of [M], and eva is the eigenvalue of
[M], [Q] is an orthonormal matrix, and []Λ is a diagonal matrix. The
following is the result of the application of spectral theorem on the

evolution matrix �
�

�
�
�

� −
ττ
ττ

cossin

sincos
, which is unitary and symmetric.

 � �
�

�
�
�

�
−�

�

�
�
�

�
�
�

�
�
�

�
−

=�
�

�
�
�

� −
= − i

i

e

e

ii
M

i

i

1

1

2

1

0

011

2

1

cossin

sincos
τ

τ

ττ
ττ

.

But:

 Analysis
(Serial : Matrix Product,
Parallel : Tensor Product)

… …
.
.
.

.

.

.

.

.

.

.

.

.

 Synthesis
(Factorization,
Quantum Logic Synthesis,
Search Algorithms)

 Total Evolution Matrix
 (“Black-Box” Quantum Circuit)

 Topological Quantum Circuit
 (Serial and Parallel interconnects)

 262 11.1.1 Mathematical Decompositions for Quantum Computing

.

11

11

0

01

10

01

,
11

11

0

0111
,

0

01

11

11

1

1

�
�

�
�
�

�
−�

�

�
�
�

�
�
�

�
�
�

�
−

=

�
�

�
�
�

�
−�

�

�
�
�

�
−

=�
�

�
�
�

�
−�

�

�
�
�

�
�
�

�
�
�

�
−

=�
�

�
�
�

�
−

i

iiiii

i

Where: �
�

�
�
�

�
−11

11
is Walsh-Hadamard gate, �

�

�
�
�

�
i0

01
is Phase gate,

�
�

�
�
�

�
−10

01
is Pauli-Z gate, and �

�

�
�
�

�
− τ

τ

i

i

e

e

0

0
 is Uθ gate with θ = 0, δ = 0,

σ = 0, and τ = 1. Therefore:

.
0

01

11

11

2

1

0

0

11

11

2

1

0

01

10

01

cossin

sincos
�
�

�
�
�

�
�
�

�
�
�

�
−�

�

�
�
�

�
�
�

�
�
�

�
−�

�

�
�
�

�
�
�

�
�
�

�
−

=�
�

�
�
�

� −
− ie

e

i i

i

τ

τ

ττ
ττ

This result is presented in Fig. 11.14.

Fig. 11.14. Cascade of quantum circuits using the decomposition from the spectral
theorem.

11.4b. The following illustrates finding serially-interconnected
quantum sub-blocks which is equivalent to a single quantum
evolution process using the SVD decomposition. For any matrix
[N]mxn, the Singular Value Decomposition (SVD) is as follows:

[] [][][]

T

nxn

H
n

H

mxn
rmxm

H
m

H

T

NNeveNNeve

eva

eva

NNeveNNeve

QQN

�
�
�

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
=

Ξ=

|.|

)(.)(

|.|

.0

...

0.

|.|

)(.)(

|.|

,

1

1

1

21

where eve is the eigenvector, and eva is the eigenvalue of [NNH] and
[NHN], [Q1] and [Q2] are orthogonal matrices, and []Ξ is a diagonal
matrix of r singular-value elements. Let’s use the SVD
decomposition to decompose the normalized Walsh-Hadamard
operator into an equivalent cascade of serially-interconnected sub-
operators.

≡ �
�

�
�
�

� −
tt

tt

cossin

sincos
Pauli-
 Z

Phase Walsh Uθθθθ Walsh Phase

 11.1.1 Mathematical Decompositions for Quantum Computing 263

 � �
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
−

=�
�

�
�
�

�
− 01

10

10

01

11

11

2

1

11

11

2

1
.

But:

��
�

�
�
�

�
−�

�

�
�
�

�
−

=�
�

�
�
�

�
− 11

11

10

01

11

11

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
−�

�

�
�
�

�
−

=�
�

�
�
�

�
− 01

10

10

01

11

11

2

1

10

01

11

11

2

1
,

Where: �
�

�
�
�

�
−10

01
 is Pauli-Z, �

�

�
�
�

�
10

01
 is a wire (Buffer), and �

�

�
�
�

�
01

10
 is

Pauli-X. This is presented in Fig. 11.15.

 Fig. 11.15. Cascade of quantum circuits using the decomposition from SVD.

 Other types of classical (not quantum) mathematical expansions
have been also developed to fit the context of quantum computing.
One important example is the quantum Fourier transform (QFT)
[167,226,228,249]. Analogously to the classical discrete Fourier
transform (DFT) with its crucial role in so many real-world data
processing applications (e.g., in computer speech recognition), QFT
has many important application such as in the attempt to solve the
factoring problem [226,228].
 The derivation of the quantum Fourier expansion (transform) is
performed as follows [167]: having the mathematical notation for

DFT as follows:
N

ijk
N

j
jk ex

N
y

π2
1

0

1 	
−

=

≡ , then the quantum Fourier

transform is exactly the same as the classical discrete Fourier
transform, except it is written in the quantum notation instead of the
conventional notation. This is done in the quantum notation as a
linear combination (operator, superposition) of the orthonormal
computational basis set { 1,...,1,0 −N } of an n qubit quantum

computer, where N= 2n, as follows:

Pauli-Z Walsh Pauli-X ≡ Walsh

 264 11.1.1 Mathematical Decompositions for Quantum Computing

 ke
N

j
N

ijk
N

k

π2
1

0

1 �
−

=

→ ,

 ke
nn
ijk

k
n

2

2
12

02

1
π

�
−

=
= = ke

nn
ijk

k
n

2

2
12

022

1
π

�
−

=

,

 � �
= =

�
= =

−1

0

1

0
1

)2(2

2 1

1

2

1

k k
n

kij

n
n

n

l

l
l

kke
π

 = � �∏
= = =

−
1

0

1

0 1

22

2 1

...

2

1

k k

n

l
l

ijk

n
n

l
l ke π ,

 = ∏ �
= =

�
�

�
�
�

� −
n

l k
l

ijk

n
l

l
l ke

1

1

0

22

22

1 π = []∏
=

−

+
n

l

ij
n

l

e
1

22

2

10

2

1 π .

where the following two-valued representation (notation) of the
quantum state j has been used:

 02
2

1
121 2...22... n

nn
n jjjjjjj +++== −− ,

and the two-valued fraction
1

1

2
...

42 +−
+ +++

lm
mll jjj is represented

using the following quantum notation (representation):
)1(2

1
1

1 2...22... +−−−
+

−
+ +++= lm

mllmll jjjjjj .

 Efficient quantum circuit for the product representation of the
quantum Fourier transform has been shown [167] using the Walsh-

Hadamard gate �
�

�
�
�

�
−

=
11

11

2

1
H , and the gate

�
�
�

�

�
�
�

�
=

k

i
k

e
R

2

2

0

01
π

(which is a generalization for the family that includes the phase gate
and the π/8 gate). For example, one obtains the following unitary
QFT matrix [ℑ] for a three qubit quantum Fourier transform (i.e., n

= 3), where ie
i

== 32

2π

ν :

 11.1.1 Mathematical Decompositions for Quantum Computing 265

 [ℑ] =

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

1234567

246246

3614725

4444

5274163

642642

7654321

3

1

11

1

1111

1

11

1

11111111

2

1

ννννννν
νννννν
ννννννν
νννν
ννννννν
νννννν
ννννννν

.

 An example of the use of the QFT in quantum computing is as
follows [249]. A two-valued (bipolar-valued) binary function f:
{0,1}n→ {-1,1} can be represented as a Fourier expansion (two-
valued Fourier expansion is called the Walsh-Hadamard expansion)

as follows, where)(ˆ af
�

 are the Fourier spectral coefficients and

)(xa

�
�χ are the Fourier basis functions:

() ,)()(

2

1
1

),(ˆ)()(

}1,0{ }1,0{

}1,0{

� �

�

∈ ∈

∈

	
	

�
�
�

�
−=

=

n n

T

n

a b
bn

xa

a
a

abf

afxxf

� �
�

��

�

�

��

���

χ

χ

 = () 	

�

�

�

fByB
n

][
2

1
][* .

Where:
�
�
� ==

Otherwise

xbif
y

b ,0

,1
��

� ,

)(xa

�
�χ = () xaT ��

1− ,)(ˆ af
�

 = �
∈ nb

bn
abf

}1,0{

)()(
2

1
�

�
��

χ , and * is the complex

conjugate transpose (adjoint). The quantum formulation of the
Walsh-Hadamard transform (QWHT) is as follows:

 fBxBfxf]ˆ[]ˆ[ˆ)(
�� == χ ,

where �
∈

=
nx

x xcf
}1,0{

�

�
�

, the amplitudes }1,1{)(−== xfcx

�
� are

properly normalized according to � =
i

ic 1|| 2 ,]ˆ[B is the linear and

 266 11.1.1 Mathematical Decompositions for Quantum Computing

unitary (quantum; normalized) Walsh-Hadamard transform matrix
(operator; gate), and is the inner (dot; scalar) product

(projection) of the Bra component and the Ket component .

 The comparative use of QWHT as a quantum computational
learning algorithm for complete data versus quantum computational
learning algorithm for incomplete (noisy) data was also shown
[249].

11.2 New Two-Valued Quantum Evolution Processes

In the following theorems, the subscripts without parenthesis for
evolution matrices resemble the order of the inputs and outputs that
are used to generate the quantum evolution processes of the
corresponding reversible gates from Chapt. 5.

Theorem 11.1. The following transformations represent the binary
quantum processes for Fredkin1 (Fig. 5.24b), Margolus0 (Fig. 5.4h),
Margolus1 (Fig. 5.4i), and Margolus2 (Fig. 5.4j), respectively.

 10/1
rr fcfabcF :

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

10000000

00100000

00001000

00000010

01000000

00000100

00010000

00000001

,

 210/0 fffabcM :

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

10000000

00100000

00001000

00000100

01000000

00000010

00010000

00000001

,

 11.1.1 Mathematical Decompositions for Quantum Computing 267

 210/1 fffabcM :

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

10000000

01000000

00100000

00000010

00001000

00010000

00000100

00000001

,

 210/2 fffabcM :

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

10000000

00001000

01000000

00010000

00100000

00000100

00000010

00000001

.

Proof: Utilizing Figs. 5.24b, 5.4h, 5.4i, and 5.4j for (3,3) qubit
binary primitives, one obtains the following set of linearly
independent Eqs. for each reversible gate:

.111,...,000,8,...,1

,

87654321

87654321

87654321

87654321

87654321

87654321

87654321

87654321

==

=

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

inputandk

outputinput
kk

γγγγγγγγ
ϕϕϕϕϕϕϕϕ
φφφφφφφφ
εεεεεεεε
δδδδδδδδ
χχχχχχχχ
ββββββββ
αααααααα

Then by solving the set of linearly independent Eqs. over GF(2) for
each reversible gate, one obtains the binary quantum evolution
processes for the corresponding reversible gates: F1 (F1 from Fig.
5.24b), Margolus0 (M0 from Fig. 5.4h), Margolus1 (M1 from Fig.
5.4i), and Margolus2 (M2 from Fig. 5.4j), respectively. Q.E.D.

 The theorems that are introduced in this Sect. are necessary for
automated analysis and verification of netlists of quantum gates.

 268 11.2 New Two-Valued Quantum Evolution Processes

They are also necessary for automated synthesis of a netlist
described as an evolution matrix from quantum gates, especially for
try-and-check (i.e., trial-and-error) methods such as evolutionary
computations [252].

11.3 Novel Representations for Two-Valued Quantum
Logic: Two-Valued Quantum Decision Trees and
Diagrams

Since decision diagrams [217] allow for efficient representation of
large sparse matrices, they have found applications in many
computer aided design algorithms, and we believe that their
quantum counterparts will be useful for quantum logic synthesis and
analysis. Utilizing the binary Feynman and Swap evolution matrices
that were presented previously, the following represents the binary
initial state (Buffer) (which is equivalent to two wires), binary final
state of a 2-qubit Feynman register, and binary final state of a 2-
qubit Swap register using the binary computational basis states
[]11100100 :

Initial

Ψ = []
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

21

21

21

21

1000

0100

0010

0001

11100100

ββ
αβ
βα
αα

, (11.13)

FeynmanFinal−

Ψ = []
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

21

21

21

21

0100

1000

0010

0001

11100100

ββ
αβ
βα
αα

, (11.14)

 SwapFinal −Ψ = []
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

43

43

43

43

1000

0010

0100

0001

11100100

ββ
αβ
βα
αα

. (11.15)

 Since various types of decision trees and diagrams are of
fundamental importance in binary, multiple-valued (MV Reed-

 11.2 New Two-Valued Quantum Evolution Processes 269

Muller, Galois, arithmetic, etc) and fuzzy logic [215,217], it is
obvious that they will be also useful in binary quantum logic.
 Figures 11.16a and 11.16c illustrate examples of the
computational quantum decision trees (CQDT) [15,26], and Fig.
11.16b illustrates an example of the computational decision diagram
(CQDD) [15,26]. When traversing the tree in Fig. 11.16b two paths
01 and 10 lead to two leaves with same values, that is values

α1β2 and β1β2, respectively. Since the two paths lead to the same
leaf then the two nodes are combined as a single leaf and thus a
more compact representation of CQDD is created.
 The new quantum representations can be useful in future
algorithms for the synthesis of quantum circuits, analogous to the
already existing algorithms that depend on such representations for
the optimized synthesis of classical (non-quantum) circuits. This is
because in order to perform complex operations one has to choose
(1) a specific type of representation and (2) the corresponding set of
basic operations that are associated with that particular
representation. Since decision diagrams has proven in the classical
domain their suitability as a representation that leads to efficient
manipulation of large varieties of logic functions in terms of using
minimal amount of space (memory) and minimal amount of time
[45], the quantum decision diagrams would have the same effect for
the representation and manipulation of functions in the quantum
domain.
 One notes that for a specific order of variables, the resulting
CQDT (e.g., Figs. 11.16a and 11.16c) and CQDD (e.g., Fig. 11.16b)
are canonical. Obviously, from the software implementation side,
and similar to the tools for classical logics, quantum decision
diagrams (Fig. 11.16b) can be realized on top of standard binary
decision diagram (BDD) packages [231].
 Figure 11.17 shows the binary quantum evolution decision tree
for a serially-interconnected Swap gate followed by a Feynman gate
[15,26]. One observes that the evolution matrices in Eqs. (11.13)
through (11.15) force the quantum states }11,10,01,00{ and

the probability amplitudes {αi, βj} to be in specific combinations
(permutations) that are unique for the specific gates that are used.

 270 11.3 Quantum Decision Trees and Diagrams

 Ψ Ψ Ψ

 0 1 0 1 0 1

 0 1 0 1 0 1 0 1 0 1 0 1

 a b c

Fig. 11.16. Binary computational quantum decision tree (CQDT) and decision diagram
(CQDD): a Buffer CQDT, b Feynman CQDD, and c Swap CQDT, for the binary quantum
computational basis states { 11,10,01,00 }, where {αi, βj} are the probability

amplitudes.

Fig. 11.17. Binary quantum evolution decision tree for Swap gate serially-interconnected
with a Feynman gate, respectively, for the 2-qubit orthonormal computational basis states:
{ }11,10,01,00 , where ρi are the probability amplitudes.

 ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12 ρ13 ρ14 ρ15

|ψ> Swap-Feynman

|0>

|0> |0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

|0>

 |0>

|0>

 |0>

|1>

|1> |1>

|1>

|1>

|1>

|1>

|1>

|1>

|1>

|1>

|1>

|1>

|1>

 |1>

 α1α2 α1β2 β1α2 β1β2 α1α2 α1β2 = β1β2 β1α2 α3α4 β3α4 α3β4 β3β4

 11.3 Quantum Decision Trees and Diagrams 271

 Note that the leaves in Fig. 11.17 represent the probability to
obtain the state of the Swap-Feynman quantum register after
measurement. So, for instance, by utilizing Fig. 11.17, one obtains
the following states with the corresponding normalized probabilities:

()()()(),||||||||||||||||

||||||||
0000:0000

22222222

2222

44332211

2143
0

βαβαβαβα
ααααρ

++++
==P

()()()(),||||||||||||||||

||||||||
0001:0001

22222222

2222

44332211

2143
1

βαβαβαβα
βαααρ

++++
==P

()()()(),||||||||||||||||

||||||||
0010:0010

22222222

2222

44332211

2143
2

βαβαβαβα
ββααρ

++++
==P

()()()(),||||||||||||||||

||||||||
0011:0011

22222222

2222

44332211

2143
3

βαβαβαβα
αβααρ

++++
==P

()()()(),||||||||||||||||

||||||||
0100:0100

22222222

2222

44332211

2143
4

βαβαβαβα
αααβρ

++++
==P

 …

()()()(),||||||||||||||||

||||||||
1110:1110

22222222

2222

44332211

2143
14

βαβαβαβα
ββββρ

++++
==P

()()()().||||||||||||||||

||||||||
1111:1111

22222222

2222

44332211

2143
15

βαβαβαβα
αβββρ

++++
==P

 One notes that for the condition � =

i
ic 1|| 2 , the denominators

in the upper Eqs., for Fig. 11.17, will be equal to the value one. The
quantum evolution decision tree in Fig. 11.17 can be computed for
the composite basis states { }−−+−−+++ ,,, (that were

produced in Example 11.2e), for which the states
{ }11,10,01,00 are replaced by the states

{ }−−+−−+++ ,,, , respectively. For the composite basis

states decision tree, the leaves represent the new probability
amplitudes to obtain the state of the Swap-Feynman quantum
register after measurement. So, for instance, one obtains the
following state ++++ with the corresponding probability

++++P for the composite basis states quantum evolution

 272 11.3 Quantum Decision Trees and Diagrams

decision tree as follows (For more clarification, please refer to
Example 11.2e):

,

2

2||

2

2||

2

2||

2

2||

2

2||

2

2||

2

2||

2

2||

2

2||

2

2||

2

2||

2

2||

:

2222111144443333

22114433

0

��
�

�

�

��
�

�

�
+

+
��
�

�

�

��
�

�

�
+

+
��
�

�

�

��
�

�

� −
+

+
��
�

�

�

��
�

�

� −
+

+

++++

=Γ=++++++++

−− βαβαβαβαβαβαβαβα

βαβαβαβα

P

 =

.
2||2||2||2||2||2||2||2||

2||2||2||2||

2222111144443333

22114433

�
�
��

�
� −++�
�
��

�
� −++�
�
��

�
� −++�
�
��

�
� −++

++++

βαβαβαβαβαβαβαβα

βαβαβαβα

 One can note that, similar to the CQDD, although the values of
the leaves in the CoQDT are not equal to each other in general, a
binary composite quantum decision diagram (CoQDD) can be
constructed for the corresponding CoQDT. The rules for such
quantum decision diagrams are the same as in classical decision
diagrams: (1) join isomorphic nodes, and (2) remove redundant
nodes [45].
 Also, one may note that having a variety of quantum decision
diagrams can have an effect on the size of the representations of the
corresponding quantum netlists and thus can lead to efficient
quantum operations on such compact representations similar to the
case of classical logic design [217].
 In the following Sects., fundamentals of multiple-valued
quantum computing are presented in Sect. 11.4, and new multiple-
valued quantum evolution processes and orthonormal basis states
are developed in Sect. 11.5. This includes the development of new
multiple-valued 1-qubit and 2-qubit orthonormal quantum basis
states called multiple-valued composite basis states, and multiple-
valued Einstein-Podolsky-Rosen (EPR) basis states, respectively.
This is achieved by using the new quantum Chrestenson transform
(gate) (QChT) introduced in Sect. 11.5. (Further use of QChT in the
generation of multiple-valued QFT will be discussed in Sect. 11.6.)
Multiple-valued canonical quantum decision trees (QDTs) and
quantum decision diagrams (QDDs) as efficient representations for
multiple-valued quantum computations are also introduced.
 Although the following Sects. are developed for GF(3),
extensions to higher radices is very similar.

 11.3 Quantum Decision Trees and Diagrams 273

11.4 Fundamentals of Multiple-Valued Quantum
Computing

In Sect. 11.1 of this Chapt., it was shown that in two-valued (binary)
quantum logic, two qubits 0 and 1 are used. Similarly, in ternary

quantum logic, the 0 , 1 , and 2 qubits are used. These qubits

are represented by the vector that corresponds to the following
[15,19,23,165]:

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�
=

�
�
�

�

�

�
�
�

�

�
=

1

0

0

2,

0

1

0

1,

0

0

1

0 .

 As was shown previously, Figs. 11.3a, 11.3c, and 11.3d
implements such multiple-valued quantum computations (MVQC).
In ternary logic, an n-qubit ternary quantum register is an array of n
ternary qubits. For a ternary quantum register composed of 2 ternary
qubits, one obtains 9 possible states of the ternary quantum register
{ 22,21,20,12,11,10,02,01,00 }, where ⊗ is the tensor

(Kronecker) product.
 In general, a ternary quantum register that is composed of k
ternary qubits can have up to 3k distinct possible states. The ternary
quantum register can be in any of the individual states at any instant
of time or at all of the states at the same time. Due to the fact that
the multiple-valued quantum register can be at all of the states at the
same time is the major reason of the multi-valued parallelism that
exists at the quantum level, and due to this parallelism, a ternary
quantum processor can operate on all of the states of the quantum
register at the same time (it can be modeled like having application-
specific 3k ternary parallel processors).
 As was shown in Fig. 11.3, a physical system consisting of
trapped ions under several laser excitations can be used to reliably
apply MVQC. Also, a physical system in which a particle is exposed
to a specific potential function can be used to implement MVQC. In
such implementation, the resulting distinct energy levels are used as
the set of orthonormal basis states (e.g., Fig. K.1 in Appendix K).

 274 11.4 Fundamentals of Multiple-Valued Quantum Computing

[]

[]

[]

[]

[]

[]

[]

[]

[] .100000000

1

0

0

1

0

0

2222

,010000000

0

1

0

1

0

0

1221

,001000000

0

0

1

1

0

0

0220

,000100000

1

0

0

0

1

0

2112

,000010000

0

1

0

0

1

0

1111

,000001000

0

0

1

0

1

0

0110

,000000100

1

0

0

0

0

1

2002

,000000010

0

1

0

0

0

1

1001

,000000001

0

0

1

0

0

1

0000

T

T

T

T

T

T

T

T

T

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

=
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=⊗=

 For a quantum register composed of 1-ternary qubit, and
assuming, as in binary, the orthonormalization of the computational
basis states, the evolution state (Ψ) is represented as follows:

 qubitternary −Ψ = 210 γβα ++ , (11.16)

where α, β, and γ are complex numbers called “probability
amplitudes”, and in general: αα* + ββ* + γγ* = |α|2 + |β|2 + |γ|2 = 1.

 11.4 Fundamentals of Multiple-Valued Quantum Computing 275

,)|||||(|||

,)|||||(|||

,)|||||(|||

222

222

222

2

1

0

γβαγ

γβαβ

γβαα

++=

++=

++=

p

p

p

.
||||||

||
)2(

,
||||||

||
)1(

,
||||||

||
)0(

222

2

222

2

222

2

2

1

0

γβα
γ

γβα
β

γβα
α

++
==

++
==

++
==

pp

pp

pp

Where: 1≥ pi≥ 0, i∈{0,1,2}, p0 is the probability of the system being
in state |0>, p1 is the probability of the system being in state |1>, and
p2 is the probability of the system being in state |2>, and p0 + p1 + p2
= 1. The quantum orthonormalization condition requires that |α|2
+|β|2 + |γ|2 = 1. Thus, if {|α| = 0, |γ| = 0, |β| = 1}, {|α| =0 , |γ| = 1, |β| =
0}, {|α| =1 , |γ| = 0, |β| = 0}, {|α| = 1/√3, |γ| = 1/√3, |β| = 1/√3}, or
{|α| = 1/√9/4, |γ| = 1/√9/2, |β| = 1/√3}, …etc, then |α|2 +|β|2 + |γ|2 =
p0 + p1+ p2 = 1.
 ∴∴∴∴ qubitternary −Ψ =

 210 210 ppp ++ = 210 γβα ++ .

Equation (11.16) can be written as:

 qubitternary −Ψ = [][]
�
�
�

�

�

�
�
�

�

�

γ
β
α

E210 , (11.17)

where [E] is the evolution matrix. For a 2-qubit ternary quantum
register and giving the orthonormalization conditions |α1|

2 + |β1|
2 +

|γ1|
2 = 1 and |α2|

2 + |β2|
2 + |γ2|

2 = 1, one obtains:
 (|α1|

2 + |β1|
2 + |γ1|

2)(|α2|
2 + |β2|

2 + |γ2|
2) = 1,

 ∴∴∴∴|α1α2|
2 + |α1β2|

2 +|α1γ2|
2 + |β1α2|

2 +|β1β2|
2 + |β1γ2|

2 + |γ1α2|
2

 +|γ1β2|
2 +|γ1γ2|

2 = 1.

 276 11.4 Fundamentals of Multiple-Valued Quantum Computing

 Thus, for a ternary quantum register which is composed of two
ternary qubits, the evolution quantum state Ψ is represented as

follows:

1qubitternary−

Ψ = 210 111 γβα ++ ,

 2qubitternary −Ψ = 210 222 γβα ++ .

 For two ternary qubits, and by using the tensor (Kronecker)
product , one obtains:

qubitternary−−

Ψ
2

= Ψ 1 ⊗ Ψ 2

 =)210()210(222111 γβαγβα ++⊗++ ,

,22120221

1101201000

21212121

2121212121

γγβγαγγβ
ββαβγαβααα

+++

+++++=

.22212012

1110020100

21212121

2121212121

γγβγαγγβ
ββαβγαβααα

+++

+++++=

 Therefore, for the case of two ternary qubits, and similarly to
the matrix-based method that is used for two-valued representation
in Eq. (11.10), Ψ can be represented using matrix-based form as

follows:

qubitternary−−

Ψ
2

 =

[][]

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

21

21

21

21

21

21

21

21

21

222120121110020100

γγ
βγ
αγ
γβ
ββ
αβ
γα
βα
αα

E . (11.18)

 11.4 Fundamentals of Multiple-Valued Quantum Computing 277

where [E] is the evolution matrix, which is obtained through the
solution of Schrodinger Eq.
 For an N-ary quantum logic system the definition of quantum
entanglement for multiple-valued quantum logic is a straightforward
extension of Eq. (11.12). As the entanglement in the case of two-
valued quantum systems seems to be the major factor behind the
speedups of quantum computations by which many computations
are performed in parallel, the same role of entanglement is expected
to be observed in the case of multiple-valued quantum systems. In
this aspect, entanglement will be a special new resource in multiple-
valued quantum computing.
Example 11.5.
11.5a. Consider a ternary quantum system of two qubits, given as:

 ()222120121110020100
3

1 ++++++++ ,

 = () ()210
3

1
210

3

1 ++⊗++ ,

 = () ()210
3

1
210

3

1 ++++ .

This system is decomposable, as the functions of the first and
second qubits are disentangled according to Eq. (11.12).

11.5b. Consider now the ternary quantum system: ()1002
3

1 + .

This system is entangled, as no decomposition according to Eq.
(11.12) is possible.

11.5 New Multiple-Valued Quantum Chrestenson
Evolution Process, Quantum Composite Basis States,
and the Multiple-Valued Einstein-Podolsky-Rosen (EPR)
Basis States

So far, not much has been published on multiple-valued quantum
logic gates and especially their characterization and representation
formalisms. It is the main goal of this Sect. and the following Sects.
to start building a systematic theory of multiple-valued quantum
gates, structures, and synthesis methods. Theorems 11.2 and 11.3

 278 11.4 Fundamentals of Multiple-Valued Quantum Computing

establish the ternary quantum composite basis states and the ternary
quantum Einstein-Podolsky-Rosen (EPR) basis states, respectively.
Although the results that are presented in the following Sects. are for
the ternary case, generalization to higher radices is straightforward.

Theorem 11.2. The following represents the ternary composite basis
states:

{ },
3

210
,

3

210
|,

3

210 1221 dddd ++
=−

++
=

++
=+

where:

.)31(
2

1
)1(,)31(

2

1
)1(

,
3

|
2,

3

|
1,

3

|
0

3

2

3

4

2112

2112

ii

eiddeidd

dddd

ππ

=−−=+−==+−=+−=

−+++
=

−+++
=

−+++
=

Proof. Utilizing the orthogonal ternary Chrestenson spectral
transform [120,159,166] (ternary Walsh-Hadamard transform) for a
single variable [15]:

�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111
)3(

)1(

dd

ddC ,

and due to the fact that the evolution process must be unitary, one
obtains the following quantum (normalized) Chrestenson spectral
transform (QChT) [15]:

�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111

3

1)3(
)1(

dd

ddC
normalized

,

where
normalized

C)3(
)1(means that QChT is for ternary radix (i.e.,

superscript is equal to 3) and a single variable (i.e., subscript is equal
to 1).
 By using the normalized Chrestenson transformation as the
evolution matrix as follows in Fig. 11.18:

 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR 279

Fig. 11.18. Ternary quantum Chrestenson evolution matrix.

One obtains the corresponding output composite basis states in
Theorem 11.2, for the corresponding ternary input:

210 γβα ++=Ψ . Q.E.D.

Theorem 11.3. For the following ternary inputs:
 22,21,20,12,11,10,02,01,00 ,

and by utilizing the QChT from Theorem 11.2, the following
represents the set of ternary 2-qubit orthonormal Einstein-Podolsky-
Rosen (EPR) basis states, respectively.

,
3

211002
,

3

201201
,

3

221100

,
3

211002
,

3

201201
,

3

221100

,
3

211002
,

3

201201
,

3

221100

121212

212121

dddddd

dddddd

++++++

++++++

++++++

where:

3

2

3

4

)31(
2

1
)1(,)31(

2

1
)1(2112

ii

eiddeidd
ππ

=−−=+−==+−=+−= .

Proof. Analogously to the binary case (Fig. 11.7b) (where QWHT
has been used), and by using the QChT in the following ternary
quantum circuit:

�
�
�

�

�

�
�
�

�

�

12

21

1

1

111

3

1

dd

dd |Ψ> = α |0> +
 β |1> + γ |2>

 |Ψ>’ =

3

210

3

210

3

210

12

21

dd

dd

++

+
++

+
++

γ

βα

 280 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR

Fig. 11.19. Ternary quantum logic circuit for EPR production.

Where:

3

2

3

4

)31(
2

1
)1(,)31(

2

1
)1(2112

ii

eiddeidd
ππ

=−−=+−==+−=+−= .

By utilizing the shift operation over GF(3): {0→1, 1→2, 2→0}, one
obtains the corresponding ternary EPR basis states as follows:

210,210 22221111 γβαγβα ++=Ψ++=Ψ ,

).'('

,
3

210

3

210

3

210
'1

12

12
1

21
11

2
Ψ=Ψ

++
+

++
+

++
=Ψ

ΨShift

dddd
γβα

Where)'(' 12 2

Ψ=Ψ ΨShift means to shift the value of the basis

states of '1Ψ by the amount 2Ψ over GF(3).

For {α1 = 1, β1 = 0, γ1 = 0}:
3

210
'1

++
=Ψ ,

 For {α2 = 1, β2 = 0, γ2 = 0}

 ∴ 02 =Ψ �
3

210
'2

++
=Ψ ���� Ψ =

 '' 21 ΨΨ =
3

221100 ++
.

 For {α2 = 0, β2 = 1, γ2 = 0}

 ∴ 12 =Ψ �
3

021
'2

++
=Ψ ���� Ψ =

GF(3) Shift Operator

|Ψ1> = α1 |0> + β1 |1> + γ1 |2> |Ψ1>’

 |Ψ2>’ |Ψ2> = α2 |0> + β2 |1> + γ2 |2>

�
�
�

�

�

�
�
�

�

�

12

21

1

1

111

3

1

dd

dd

 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR 281

 '' 21 ΨΨ =
3

201201 ++
.

 For {α2 = 0, β2 = 0, γ2 = 1}

 ∴ 22 =Ψ �
3

102
'2

++
=Ψ ���� Ψ =

 '' 21 ΨΨ =
3

211002 ++
.

For {α1 = 0, β1 = 1, γ1 = 0}:
3

210
' 21

1

dd ++
=Ψ ,

 For {α2 = 1, β2 = 0, γ2 = 0}

 ∴ 02 =Ψ �
3

210
' 21

2

dd ++
=Ψ ���� Ψ =

 '' 21 ΨΨ =
3

221100 21 dd ++
.

 For {α2 = 0, β2 = 1, γ2 = 0}

 ∴ 12 =Ψ �
3

021
' 21

2

dd ++
=Ψ ���� Ψ =

 '' 21 ΨΨ =
3

201201 21 dd ++
.

 For {α2 = 0, β2 = 0, γ2 = 1}

 ∴ 22 =Ψ �
3

102
' 21

2

dd ++
=Ψ ���� Ψ =

 '' 21 ΨΨ =
3

211002 21 dd ++
.

For {α1 = 0, β1 = 0, γ1 = 1}:
3

210
' 12

1

dd ++
=Ψ ,

 For {α2 = 1, β2 = 0, γ2 = 0}

∴ 02 =Ψ �
3

210
' 12

2

dd ++
=Ψ ���� Ψ =

 282 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR

 '' 21 ΨΨ =
3

221100 12 dd ++
.

 For {α2 = 0, β2 = 1, γ2 = 0}

 ∴ 12 =Ψ �
3

021
' 12

2

dd ++
=Ψ ���� Ψ =

 '' 21 ΨΨ =
3

201201 12 dd ++
.

 For {α2 = 0, β2 = 0, γ2 = 1}

 ∴ 22 =Ψ �
3

102
' 12

2

dd ++
=Ψ ���� Ψ =

 '' 21 ΨΨ =
3

211002 12 dd ++
.

 Q.E.D.

 One observes that, while in the two-valued case in Example 11.
2 and Fig. 11.7 the set of two-valued 2-qubit orthonormal Einstein-
Podolsky-Rosen (EPR) basis states using QWHT consists of four
basis states, the set of ternary 2-qubit orthonormal EPR basis states
(from Theorem 11.3 and Fig. 11.19) consists of nine basis states.
Therefore, in general, for N-valued 2-qubit EPR, one would have a
set that contains N2 of N-valued orthonormal basis states by
performing the corresponding transformations on input qubits using

normalized

NC)(
)1(gate in a circuit topology similar to the one shown in

Fig. 11.19 and by utilizing a shift operator over general Galois field
of Nth radix.
Example 11.6. The following is a derivation of the probability
amplitudes of the ternary composite basis states that were introduced
in Theorem 11.2. Assuming the normalization of the probability
amplitudes, and by using the ternary quantum signal Ψ =

210 γβα ++ as an input to the ternary normalized quantum

Chrestenson gate
�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111

3

1)3(
)1(

dd

ddC
normalized

, one obtains the

following quantum signal at the output of the gate:

 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR 283

[] []

[]

[] .||

,
3

210

3

210

3

210

,

1

1

111

3

1
210'

.2
3

1
3

0
3

,

3

3

3

210

1

1

111

3

1
210'

1221

12

21

1221

12

21

12

21

−+++=
�
�
�

�

�

�
�
�

�

�
−+=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
�
�

� ++++++
=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
=Ψ

++++++++=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

++

++

++

=
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
=Ψ

γβα
γ
β
α

γ
β
α

γ
β
α

γβαγβαγβα

γβα

γβα

γβα

γ
β
α

dddd

dd

dd

dddd

dd

dd

dd

dd

Where:

{ }
3

210
,

3

210
|,

3

210 1221 dddd ++
=−

++
=

++
=+

, and:

{
3

|
2,

3

|
1,

3

|
0

2112 −+++
=

−+++
=

−+++
=

dddd
}.

Thus, one obtains at the input of the quantum Chrestenson gate the
following quantum state:

 284 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR

,
3

|

3

|

3

|

,210

2112 −+++
+

−+++
+

−+++
=

++=Ψ∴

dddd
γβα

γβα

 .
3

|
33

2112 −
++

+++++
++

=
γβαγβαγβα dddd

{ }
3

||
,

3

||
,

3

|| 1221

|
γβαγβαγβα dd

p
dd

pp
++=++=++=∴ +− .

 Consequently, measuring Ψ with respect to the new basis

{ }−+ ,,| will result in the state (basis) { }| with probability

equals to
3

|| 2γβα ++
, will result in the state (basis) { }− with

probability equals to
3

|| 2
21 γβα dd ++

, and will result in the state

(basis) { }+ with probability equals to
3

|| 2
12 γβα dd ++

, where:

.)31(
2

1
)1(

,)31(
2

1
)1(

3

2

3

4

21

12

i

i

eidd

eidd

π

π

=−−=+−=

=+−=+−=

 Figure 11.20 shows several factorizations of serially
interconnected evolution processes that resemble equivalences
between some ternary quantum logic circuits, using the ternary

quantum Chrestenson operator
�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111

3

1)3(
)1(

dd

ddC
normalized

, which

was presented in Theorem 11.2.
 The equivalences of serially interconnected quantum
Chrestenson primitives can be utilized in the synthesis of quantum
circuits by replacing long serial gate interconnections with their
equivalent circuits (i.e., technology mapping). For instance, such
transformations can be applied to a quantum circuit that is created
by a genetic algorithm (GA) or other evolutionary algorithms
[207,252].

 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR 285

Fig. 11.20. Multiple-valued quantum logic circuit equivalences using quantum Chrestenson
gate.

11.6 New Multiple-Valued Quantum Evolution Processes,
Generalized Permuters, and their Circuit Analysis

The following presents theorems to obtain the ternary logic
evolution processes for the ternary Feynman, Swap, Fredkin
(Shannon), and Davio quantum gates (transformations),
respectively.
 The size of the following evolution matrices is governed by Eq.
(11.9). For example, for a (2,2) ternary quantum gate
(transformation) (as in Theorems 11.4 and 11.5), the size of the
evolution matrix is equal to 32 rows ⋅ 32 columns = 9⋅9 = 81
elements, and for a (4,4) ternary quantum gate (transformation) (as
in Theorems 11.6, 11.7, and 11.8), the size of the evolution matrix is
equal to 34 rows ⋅ 34 columns = 81⋅81 = 6,561 elements.
 Analogously to the binary case, the input qubit to the ternary
quantum gate is the column index of the ternary evolution matrix,
and the output qubit of the ternary quantum gate is the row index of
the ternary evolution matrix. The column and row indices of the
ternary evolution matrix take the following order for 1-input 1-
output, 2-input 2-output, and 3-input 3-output gates, respectively.

 286 11.5 New Quantum Chrestenson Process and the Multiple-Valued EPR

)3(
)1(normalized

C)3(
)1(normalized

C ≡ �
�
�

�

�

�
�
�

�

�

010

100

001

)3(
)1(normalized

C)3(
)1(normalized

C)3(
)1(normalized

C ≡
�
�
�

�

�

�
�
�

�

�

21

12

1

1

111

3

1

dd

dd ≡
�
�
�

�

�

�
�
�

�

�

010

100

001

)3(
)1(normalized

C

)3(
)1(normalized

C)3(
)1(normalized

C)3(
)1(normalized

C)3(
)1(normalized

C ≡
�
�
�

�

�

�
�
�

�

�

100

010

001

)3(
)1(normalized

C)3(
)1(normalized

C)3(
)1(normalized

C)3(
)1(normalized

C)3(
)1(normalized

C ≡)3(
)1(normalized

C

.222,221,220

,212,211,210,202,201,200,122,121

,120,112,111,110,102,101,100,022

,021,020,012,011,010,002,001,000:33

.22,21,20,12,11,10,02,01,00:22

.2,1,0:11

gateoutputinput

gateoutputinput

gateoutputinput

−−�

−−�

−−�

 The following multiple-valued evolution matrices in Theorems
11.4 through 11.8 will be useful in the synthesis of multiple-valued
quantum circuits. For instance, by using evolutionary algorithms for
the synthesis of minimal size multiple-valued quantum circuits
[252], one can consider the fitness function of the evolutionary
algorithms (such as genetic programming or genetic algorithms from
Appendix E) to contain two components: (1) first component is for
the correctness of the resulting function (e.g., error is zero), and (2)
the second component is for the cost of the resulting quantum circuit
(e.g., number of gates). The synthesis of such multiple-valued
quantum circuits, using evolutionary algorithms, is done through the
calculation of the final evolution matrix of the whole circuit by
using normal matrix multiplication (serial logic interconnects) and
tensor multiplication (parallel logic interconnects) of the individual
multiple-valued evolution matrices (i.e., gates). (Example 11.7 will
illustrate such serial, and parallel algebraic manipulations for the
analysis of the corresponding multiple-valued quantum logic
circuits).
 The representation of such evolutionary computations for the
synthesis of multiple-valued quantum circuits can be done by using
the evolutionary matrics as the chromosome of the evolutionary
algorithm that was shown in Fig. 3.16.

Theorem 11.4. The following is the ternary Galois field Feynman
evolution matrix:

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 287

 =
cdab

Feynman
/

)3(
)2(

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

.

Proof. Utilizing the algebraic addition and multiplication operations
over Galois field, one obtains the following quantum
transformations of the ternary input qubits into the output qubits
using GF(3) Feynman quantum register:

2122,2021,2220,1012

1211,1110,0202,0101,0000

→→→→

→→→→→

Then by solving for the following set of linearly independent Eqs.
over ternary Galois field:

0000

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

=

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

ηηηηηηηηη
γγγγγγγγγ
ϕϕϕϕϕϕϕϕϕ
φφφφφφφφφ
εεεεεεεεε
δδδδδδδδδ
χχχχχχχχχ
βββββββββ
ααααααααα

,

GF(3)

|a>

|b>

|c>

|d>

 288 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis

0101

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

=

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

ηηηηηηηηη
γγγγγγγγγ
ϕϕϕϕϕϕϕϕϕ
φφφφφφφφφ
εεεεεεεεε
δδδδδδδδδ
χχχχχχχχχ
βββββββββ
ααααααααα

,

 .
 .
 .

2122

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

987654321

=

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

ηηηηηηηηη
γγγγγγγγγ
ϕϕϕϕϕϕϕϕϕ
φφφφφφφφφ
εεεεεεεεε
δδδδδδδδδ
χχχχχχχχχ
βββββββββ
ααααααααα

.

One obtains the GF(3) Feynman evolution matrix:

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

. Q.E.D.

Theorem 11.5. The following is the ternary Galois field Swap
evolution matrix:

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 289

cdab

Swap
/

)3(
)2(=

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

.

Proof. Utilizing the algebraic addition and multiplication operations
over Galois field, one obtains the following quantum
transformations of the ternary input qubits into the output qubits
using the ternary Swap quantum register:

2222,1221,0220,2112

1111,0110,2002,1001,0000

→→→→

→→→→→

Similar to Theorem 11.4, by solving for the set of linearly
independent Eqs. over a ternary Galois field, one obtains the ternary
Swap Galois field evolution matrix. Q.E.D.

 Using the previous approach in Theorems 11.4 and 11.5, one
can construct the ternary evolution matrices for ternary reversible
Fredkin gates, Toffoli gates, Davio gates, and Margolus gates that
were presented in Chapt. 5. Since the ternary 4-qubit evolution
matrices will be according to Eq. (11.9) of size: 34 ⋅ 34 = 81 ⋅ 81 =
6,561 elements, the documentation of the evolution process in a
matrix form will be very difficult since the size of the matrix is very
big. Alternatively, we write the evolution matrices in terms of the
indices where the elements are of value “1”, where the remaining of
the elements are understood to be of value “0”.

|a>

|b>

|c>

|d>

 290 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis

Theorem 11.6. The following is the ternary Galois field evolution
matrix for a ternary Galois field reversible Shannon ()3(

)1(1S) which is

represented in Eq. (5.6) in the order of inputs/outputs
cf0f1f2/cfr0fr1fr2, respectively.

Proof. Utilizing the algebraic addition and multiplication operations
over a Galois field, one obtains the following quantum
transformations of the ternary reversible Shannon decomposition
(Eq. (5.6) and Fig. 5.26):

Row index Column index

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 37 31
11 11 38 34

13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26

Row index Column index

27 27
28 30
29 33
30 36
31 39
32 42
33 45
34 48
35 51
36 28

40 40
41 43
42 46
43 49
44 52
45 29
46 32
47 35
48 38
49 41
50 44
51 47
52 50
53 53

Row index Column index

54 54
55 63
56 72
57 55
58 64
59 73
60 56
61 65
62 74
63 57
64 66
65 75

 12 12 39 37 66 58
67 67
68 76
69 59
70 68
71 77
72 60
73 69
74 78
75 61
76 70
77 79
78 62
79 71
80 80

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 291

.22222222,21222221,2022

2220,22212212,21212211,20212210,22202202,21202201,20202200

,22122122,21122121,20122120,22112112,21112111,20112110,2210

2102,21102101,20102100,22022022,21022021,20022020,22012012

,21012011,20012010,22002002,21002001,20002000,12221222,1212

1221,12021220,11221212,11121211,11021210,10221202,10121201

,10021200,12211122,12111121,12011120,11211112,11111111,1101

1110,10211102,10111101,10011100,12201022,12101021,12001020,1120

1012,11101011,11001010,10201002,10101001,10001000,02220222

,02210221,02200220,02120212,02110211,02100210,02020202,0201

0201,02000200,01220122,01210121,01200120,01120112,01110111

,01100110,01020102,01010101,01000100,00220022,00210021,0020

0020,00120012,00110011,00100010,00020002,00010001,00000000

→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

Then the proof follows the same method from Theorem 11.4.Q.E.D.

Theorem 11.7. The following is the ternary Galois field evolution
matrix for a ternary Galois field reversible Shannon ()3(

)1(4S) which is

represented in Eq. (5.9) in the order of inputs/outputs
cf0f1f2/cfr0fr1fr2.

 Row index Column index

0 0
1 9
2 18
3 3
4 12
5 21
6 6
7 15
8 24
9 1
10 10
11 19
12 4
13 13
14 22
15 7
16 16
17 25
18 2
19 11
20 20
21 5
22 14
23 23
24 8
25 17
26 26

 Row index Column index

27 27
28 30
29 33
30 28
31 31
32 34
33 29
34 32
35 35
36 36
37 39
38 42
39 37
40 40
41 43
42 38
43 41
44 44
45 45
46 48
47 51
48 46
49 49
50 52
51 47
52 50
53 53

 Row index Column index

54 54
55 55
56 56
57 63
58 64
59 65
60 72
61 73
62 74
63 57
64 58
65 59
66 66
67 67
68 68
69 75
70 76
71 77
72 60
73 61
74 62
75 69
76 70
77 71
78 78
79 79
80 80

 292 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis

Proof. Using GF, one obtains the following quantum
transformations:

.22222222,22212221,2220

2220,21222212,21212211,20212120,20222202,20212201,20202200

,22122122,22112121,22102120,21122112,21112111,21102110,2012

2102,20112101,20102100,22022022,22012021,22002020,21022012

,21012011,21002010,20022002,20012001,20002000,12221222,1212

1221,12021220,12211212,12111211,12011210,12201202,12101201

,12001200,11221122,11121121,11021120,11211112,11111111,1101

1110,11201102,11101101,11001100,10221022,10121021,10021020,1021

1012,10111011,10011010,10201002,10101001,10001000,02220222

,01220221,00220220,02120212,01120211,00120210,02020202,0102

0201,00020200,02210122,01210121,00210120,02110112,01110111

,00110110,02010102,01010101,00010100,02200022,01200021,0020

0020,02100012,01100011,00100010,02000002,01000001,00000000

→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

Then the proof follows the same method from Theorem 11.4.Q.E.D.

Theorem 11.8. GF(3) evolution matrix for ternary reversible
Davio0 ()3(

)1(0D) (Eq. (5.15)) in the order of cf0f1f2/cfr0fr1fr2 is as

follows:

0 0
1 3
2 6
3 1
4 4
5 7
6 2
7 5
8 8
9 9
10 12
11 15
12 10
13 13
14 16
15 11
16 14
17 17
18 18
19 21
20 24
21 19
22 22
23 25
24 20
25 23
26 26

 Row index Column index

27 27
28 28
29 29
30 36
31 37
32 38
33 45
34 46
35 47
36 30
37 31
38 32
39 39
40 40
41 41
42 48
43 49 70 70
 44 50
45 33
46 34
47 35
48 42
49 43
50 44
51 51
52 52
53 53

 Row index Column index

54 54
55 63

57 57
58 66
59 75
60 60
61 69
62 78
63 55
64 64
65 73
66 58
67 67
68 76
69 61

71 79
72 56
73 65
74 74
75 59
76 68
77 77
78 62
79 71
80 80

 Row index Column index

56 72

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 293

Proof. Using GF, one obtains the following quantum
transformations:

.22222222,21222221,2022

2220,22122212,21122211,20122210,22022202,21022201,20022200

,22212122,21212121,20212120,22112112,21112111,20112110,2201

2102,21012101,20012100,22202022,21202021,20202020,22102012

,21102011,20102010,22002002,21002001,20002000,12221222,1221

1221,12201220,11221212,11211211,11201210,10221202,10211201

,10201200,12121122,12111121,12101120,11121112,11111111,1110

1110,10121102,10111101,10101100,12021022,12011021,12001020,1102

1012,11011011,11001010,10021002,10011001,10001000,02220222

,02120221,02020220,02210212,02110211,02010210,02200202,0210

0201,02000200,01220122,01120121,01020120,01210112,01110111

,01010110,01200102,01100101,01000100,00220022,00120021,0002

0020,002120012,00110011,00010010,00200002,00100001,00000000

→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

Then the proof follows the same method from Theorem 11.4.Q.E.D.

 Theorems 11.4, 11.5, 11.6, 11.7, and 11.8 provide the quantum
computations of the reversible gates that were developed previously
in Chapt. 5. Figure 11.21 shows the extensions for quantum
computations of the gates that were provided in Fig. 5.28.

 (Ch. 2)

 (Ch. 5)

(Ch. 11) (Ch. 11)
 (Ch. 2)

 (Ch. 5)

 (Ch.11)

 Fig. 11.21. A tree-based relationship between various decompositions.

…

Invariant1 Invariant2 Invariantn

Davio0 … Davioz

Davio0 … Davioz

Fundamental Multi-Valued Shannon Decomposition

…

Reversible1 … Reversiblew

Reversible1 …Reversiblew

…

Quantum Quantum

Quantum Quantum

Reversible
Invariant1

Reversible
Invariantm

…

Reversible
Invariant1

Reversible
Invariantm

…

Quantum Quantum

 294 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis

 Note in Fig. 11.21 that the quantum Shannon and Quantum
Davio primitives, which are the extensions of the reversible
Shannon and reversible Davio primitives from Sect. 5.4, are
produced, and consequently quantum computations that use such
quantum primitives can be implemented.
 The quantum representations of reversible multiple-valued
Shannon primitives, reversible multiple-valued Davio primitives,
and other multiple-valued reversible primitives will be used to
perform the multiple-valued quantum computing to analyze the
multiple-valued quantum circuits and structures as will be shown in
the following examples.
Example 11.7. The following circuits represent serial-like, parallel-
like, and mixture of serial-like and parallel-like interconnects
between multiple-valued quantum primitives.
11.7a. Let us evolve the input qubit |12> using the following serial-
like interconnected multiple-valued quantum circuit:

 a x

 b y
 GF(3) GF(3)

Fig. 11.22. Ternary Galois field quantum circuit composed of a Feynman gate
interconnected serially with a Swap gate and then a Feynman gate, respectively.

 Similar to two-valued quantum computing, the evolution of the
input ternary qubit in Fig. 11.22 can be viewed in two equivalent
perspectives, respectively. The first perspective is to evolve the
input qubit step-by-step using the serially interconnected gates. The
second perspective is to evolve the input qubit using the total
quantum circuit at once. The second perspective is due to the fact
that the total multiple-valued quantum evolution transformation []M
of the total serially interconnected quantum circuit is equal to the
normal matrix multiplication of the individual evolution matrices
[]qN that correspond to the individual quantum primitives, i.e.

[] []∏=
q

qserial NM .

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 295

Perspective #1:

.01

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

,

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

==�

=�=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

So, the quantum circuit that is shown in Fig. 11.22 evolves the input
qubit |12> into the output qubit |01>.

Perspective #2:

.01

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

000000100

001000000

000010000

000001000

000000010

100000000

010000000

000100000

000000001

0

0

0

1

0

0

0

0

0

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

==

=•••

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

Identical to the result from perspective #1, the quantum circuit
shown in Fig. 11.22 evolves the qubit |12> into the qubit |01>.

 296 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis

11.7b. Let us evolve the input qubit |122> using the multiple-valued
quantum circuit in Fig. 11.23.
The total evolution transformation []M of the total parallel-
interconnected quantum circuit is equal to the tensor (Kronecker)
product of the individual evolution matrices []qN that correspond to

the individual quantum primitives, i.e., [] []qparallel NM ⊗= . The

evolution of the input ternary qubit, in Fig. 11.23, can be viewed in
two equivalent perspectives, respectively. One perspective is to
evolve the input qubit stage by stage. The second perspective is to
evolve the input qubit using the total quantum circuit at once. The
evolution matrices of the parallel-connected dashed boxes in (5) and
(6), are as follows, respectively (Where the symbol || means parallel
connection):

 a x

 (1) (3)

 b y
 GF(3)
 c z

 (2) (4)
 (5) (6)

Fig. 11.23. Ternary Galois-field quantum circuit composed of serial interconnect of two
parallel ternary Galois-field circuits: dashed boxes ((1),(2) and (3),(4)) in each sub-circuit
are parallel connected, and dotted boxes (5) and (6) are serially interconnected.

� (5) = (1) || (2): Feynman ⊗ Wire = �
�
�

�

�

�
�
�

�

�

⊗

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

100

010

001

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

,

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 297

 =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�
�
�
�
�

�

�

�
�
�
�

�

�

100

010

001

100

010

001

100

010

001

100

010

001

100

010

001

100

010

001

100

010

001

100

010

001

100

010

001

.

� (6) = (3) || (4): Wire ⊗ Swap =

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

⊗
�
�
�

�

�

�
�
�

�

�

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

100

010

001

,

 =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

.

� input = input1 =

[]T000000000100000000000000000221 =⊗⊗ .

 298 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis

Perspective #1: input1� (5) � output1, output1= input2 � (6) � output2.

Utilizing the same method in perspective #1 in Example 11.7a, the
quantum circuit that is shown in Fig. 11.23 evolves input qubit
|122> into the output qubit |120>.

Perspective #2: input1� ((6)(5)) � output2.

Utilizing the same method in perspective #2 in Example 11.7a, the
quantum circuit shown in Fig. 11.23 evolves the qubit |122> into the
qubit |120> (which is the same result obtained in perspective #1).
 The following are new multiple-valued quantum permuters that
can be used in the future synthesis of multiple-valued quantum logic
circuits, where 1± and i± means that any combination of positive
and negative 1 and any combination of positive and negative i can
occur.

Theorem 11.9. The following are the ternary generalized inverters
(permuters):

Class-A:

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

100

010

001

:5,

010

100

001

:4,

010

001

100

:3,

001

100

010

:2,

100

001

010

:1,

001

010

100

:0 IIIIII .

Class-B:

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

i

i

i

I

i

i

i

I

i

i

i

I

i

i

i

I

i

i

i

I

i

i

i

I

00

00

00

:11,

00

00

00

:10,

00

00

00

:9,

00

00

00

:8,

00

00

00

:7,

00

00

00

:6 .

Class-C:

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

100

010

001

:,

010

100

001

:,

010

001

100

:,

001

100

010

:,

100

001

010

:,

001

010

100

: 171615141312 IIIIII .

Class-D:

,

00

00

001

:23,

00

00

001

:22,

00

00

100

:21,

00

00

010

:20,

00

00

010

:19,

00

00

100

:18
�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

i

iI

i

iI

i

iI

i

iI

i

iI

i

iI

,

00

010

00

:29,

00

100

00

:28,

00

001

00

:27,

00

100

00

:26,

00

001

00

:25,

00

010

00

:24
�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

i

i

I

i

i

I

i

i

I

i

i

I

i

i

I

i

i

I

,

100

00

00

:35,

010

00

00

:34,

010

00

00

:33,

001

00

00

:32,

100

00

00

:31,

001

00

00

:30
�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±
i

i

Ii

i

Ii

i

Ii

i

Ii

i

Ii

i

I

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 299

Class-E:

,

00

010

001

:41,

00

100

001

:40,

00

001

100

:39,

00

100

010

:38,

00

001

010

:37,

00

010

100

:36
�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

i

I

i

I

i

I

i

I

i

I

i

I

,

100

00

001

:47,

010

00

001

:46,

010

00

100

:45,

001

00

010

:44,

100

00

010

:43,

001

00

100

:42
�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±
iIiIiIiIiIiI

.

100

010

00

:53,

010

100

00

:52,

010

001

00

:51,

001

100

00

:50,

100

001

00

:49,

001

010

00

:48
�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

±

�
�
�

�

�

�
�
�

�

�

±
±

± i

I

i

I

i

I

i

I

i

I

i

I

Proof. By performing all possible permutations of unitary 3-by-3
matrices that have each row and column composed of one element
of value “1”, one obtains the ternary generalized inverters
(permuters) that are given in Theorem 11.9 Q.E.D.

 While every quantum operator must be unitary, it is not claimed
here that every unitary matrix is realizable as a quantum operator.
Therefore, it might be possible that while some of the generalized
unitary operators in Theorem 11.9 are realizable in quantum circuits,
other unitary operators might be realizable only in other
technologies.
 Similar to the two-valued case, it is interesting to solve for the
following multi-valued evolution process factorization (which is
equivalent to multi-valued quantum circuit decomposition) problem:
given the output (evolved) qubit, factorize the total composite multi-
valued evolution process into a corresponding multi-valued
evolution sub-processes. This type of quantum multi-valued
decomposition can be very useful in the synthesis of multi-valued
quantum logic circuits. Thus, similar to the binary case,
decompositions that are commonly used in linear algebra can be
utilized for the decomposition of multi-valued unitary evolution
matrices, like: spectral theorem, Z-Y decomposition, LDU
decomposition, fast Fourier-like decomposition, Jordan
decomposition, Polar decomposition, Chinese Remainder Theorem
(CRT) decomposition, and Singular Value Decomposition (SVD)
[15].
 Also, using the quantum Chrestenson operator [15,19,23], the
theoretical development of the multiple-valued quantum Fourier
transform (QFT) and the multiple-valued quantum circuit that
generates the multiple-valued QFT have been shown [268].

 300 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis

 The idea of performing super-fast multiple-valued operations
(transformations) in quantum computing using the entanglement of
several quantum Chrestenson operators, analogously to the role of
the Walsh-Hadamard operator in super-fast two-valued quantum
computing [167], has been also discussed [268].

11.7 Novel Representations for Multiple-Valued Quantum
Logic: Multiple-Valued Quantum Decision Trees and
Diagrams

Utilizing Theorems 11.4 and 11.5, the following is the GF(3)
quantum Buffer (which is equivalent to two wires), Feynman
(Theorem 11.4), and Swap (Theorem 11.5) evolution processes, for
the ternary computational basis states
{ 22,21,20,12,11,10,02,01,00 }, respectively:

 =Ψ
Buffer

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

21

21

21

21

21

21

21

21

21

100000000

010000000

001000000

000100000

000010000

000001000

000000100

000000010

000000001

22

21

20

12

11

10

02

01

00

γγ
βγ
αγ
γβ
ββ
αβ
γα
βα
ααT

, (11.19)

 =Ψ −FeynmanFinal

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

21

21

21

21

21

21

21

21

21

001000000

100000000

010000000

000010000

000001000

000100000

000000100

000000010

000000001

22

21

20

12

11

10

02

01

00

γγ
βγ
αγ
γβ
ββ
αβ
γα
βα
ααT

, (11.20)

 11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis 301

 =Ψ −SwapFinal

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

21

21

21

21

21

21

21

21

21

100000000

000100000

000000100

010000000

000010000

000000010

001000000

000001000

000000001

22

21

20

12

11

10

02

01

00

γγ
βγ
αγ
γβ
ββ
αβ
γα
βα
ααT

. (11.21)

 Since various types of multiple-valued decision trees and
diagrams are of fundamental importance in various algebraic
systems [96,216], it is obvious that they will be also useful in
multiple-valued quantum logic which is a generalization of multiple-
valued logic, where the concepts of quantum decision trees and
diagrams have not been introduced so far in the known literature.
 Figures 11.24a and 11.24b represent the corresponding ternary
Feynman gate (Eq. (11.20)) and ternary Swap gate (Eq. (11.21))
multiple-valued quantum decision trees (MvQDTs) for the ternary
computational basis states, { 22,21,20,12,11,10,02,01,00 },

respectively. One observes that the evolution matrices in Eqs.
(11.19) through (11.21) force the quantum states
{ 22,21,20,12,11,10,02,01,00 } and the probability

amplitudes {αi, βj, γk} to be in specific combinations (permutations)
that are unique for the specific gates that are used.
 The new quantum evolution decision tree representation can be
useful in the future algorithms for the synthesis of quantum logic
circuits, analogous to the already existing algorithms that depend on
such multiple-valued representations for the optimized synthesis of
classical multiple-valued (non-quantum) logic circuits.
 Fig. 11.24c illustrates an example of the multiple-valued
computational decision diagram (MvCQDD) [15,26]. When
traversing the tree in Fig. 11.24c three paths: 10 , ,11 and 12

lead to three leaves with same values: α1β2, β1β2, and γ1β2,
respectively. Since the three paths lead to the same leaf value then
the three nodes are combined as a single leaf and thus a more
compact representation of MvCQDD is created.

 302 11.7 Multiple-Valued Quantum Decision Trees and Diagrams

 a

 b

 c

Fig. 11.24. Ternary quantum decision trees: a Feynman, b Swap, and c Swap decision
diagram for the ternary computational basis states, where {αi, βj, γk} are the probability
amplitudes.

 α1α2 α1β2 α1γ2 β1 γ2 β1 α2 β1 β2 γ1 β2 γ1 γ2 γ1 α 2

|ψ>

|0> |1> |2>

|0> |1> |2> |0> |1> |2> |0> |1> |2>

 α1α2 β1 α2 γ1 α 2 α1β2 β1 β2 γ1 β2 α1γ2 β1γ2 γ1 γ2

|ψ>

|0> |1> |2>

|0> |1> |2> |0> |1> |2> |0> |1> |2>

α1α2 = β1 α2 = γ1 α 2 α1β2 β1 β2 γ1 β2 α1γ2 = β1 γ2 = γ1 γ2

|ψ>

|0> |1> |2>

|0> |1> |2> |0> |1> |2> |0> |1> |2>

 11.7 Multiple-Valued Quantum Decision Trees and Diagrams 303

 The ternary quantum decision trees in Figs. 11.24a and 11.24b
can be computed for the ternary composite basis states
{ }−−+−−−++++−+ ||,|,|,|| (that were produced in

Theorem 11.2), for which the states
22,21,20,12,11,10,02,01,00 are replaced by the states

{ }−−+−−−++++−+ ||,|,|,|| , respectively. Although the

values in the leaves of the MvQDT in Figs. 11.24a and 11.24b are
not equal to each other in general, multiple-valued quantum decision
diagrams (MvQDDs) can be constructed for the corresponding
multiple-valued quantum decision trees. The rules for such quantum
decision diagrams are the same as in classical decision diagrams
[45]: (1) join isomorphic nodes, and (2) remove redundant nodes.
Figure 11.24c illustrates one case for the concept of ternary quantum
evolution decision diagrams.
 One notes that for specific orders of variables, the resulting
MvQDTs (Figs. 11.24a and 11.24b) and MvQDDs (Fig. 11.24c) are
canonical. Obviously, from the software implementation point of
view, and similar to the tools for classical multiple-valued logic,
quantum decision diagrams (Fig. 11.24c) can be realized on top of
standard binary decision diagram (BDD) packages [231].

11.8 Automatic Synthesis of Two-Valued and Multiple-
Valued Quantum Logic Circuits Using Evolutionary
Algorithms

In order to design a quantum circuit that performs a desired quantum
computation, it is necessary to find a decomposition of the unitary
matrix that represents that computation in terms of a sequence of
quantum gate operations. To date, such designs have either been
found by hand or by exhaustive enumeration of all possible circuit
topologies. It has been shown in [207,252] an automated approach
to quantum circuit design using search heuristics based on principles
abstracted from evolutionary genetics, which uses a genetic
programming algorithm adapted specially for this problem. The
method has been demonstrated on the task of discovering quantum
circuit designs for quantum teleportation. It has been shown [207]
that to find a given known circuit design (one which was hand-

 304 11.7 Multiple-Valued Quantum Decision Trees and Diagrams

crafted by a human), the method considers roughly an order of
magnitude fewer designs than naive enumeration. In addition, the
method was shown to find novel circuit designs superior to those
previously known.
 The difficulties of applying GA for designing correct and
minimal quantum circuits are the following: (1) a high time is
needed for the of evaluation of the quantum circuit evolution matrix,
especially when calculating the Kronecker product with matrices
that possess sizes that grow exponentially for larger quantum
circuits, (2) if the population is composed of high number of
individuals then the synthesis result can be found in less number of
generations but with longer times for the evaluation of fitness, and
(3) using certain encodings for quantum gates leads to a big loss of
time. To avoid extreme time consumption for calculations, one, for
example, can limit the GA to a population that contains a relatively
small number of individuals, and maintain the iterations of the
algorithm to be limited to relatively small quantum circuits (i.e.,
with limited number of wires).

11.9 Quantum Computing for the New Two-Valued and
Multiple-Valued Reversible Structures

As was demonstrated in previous Sects., the input qubits to any type
of quantum circuit can be evolved from input to output by using the
normal matrix product for serial interconnects and the Kronecker
product for the parallel interconnects. These quantum evolutions are
performed on the quantum matrix representations of the
corresponding quantum primitives. Such matrix representations are
a pure mathematical representation that can be realized physically
using the corresponding quantum devices. The evolution operations
can be implemented using the matrix representation or the
corresponding QDTs or QDDs representations. This quantum
evolution of the input qubits can be performed using the quantum
counterparts of the reversible lattice structures from Chapt. 6,
reversible Modified Reconstructability Analysis for Chapt. 7, and
reversible Nets, Decision Diagrams, and Cascades from Chapt. 8,

 11.8 Automatic Synthesis of Quantum Circuits Using Evolutionary Algorithms 305

respectively. For this purpose, the quantum logic circuits from
Chapt. 10 can be used.
 The minimization of the quantum logic circuits from Chapt. 10
will lead to a minimum size of the quantum (scratchpad) register and
thus to a minimum number of quantum computations. This
reasoning is demonstrated in Fig. 11.25.

Chapters (6), (7), and (8) Chapter (10) Chapter (11)

Fig. 11.25. The effect of minimization of the size of quantum logic circuits on the
complexity of quantum computing.

 The following example illustrates the point that was shown in
Fig. 11.25.
Example 11.8. This example will demonstrate the effect of
minimization of the size of two-valued quantum logic circuits on the
total complexity of two-valued quantum computing (i.e., the total
number of quantum arithmetic (addition and multiplication)
operations that are needed). The method of functional minimization
can be implemented using, for instance, the evolutionary algorithm
for the minimization of general GFSOP forms using the IF polarity
from the S/D trees that was introduced in Sect. 3.7. The effect of
minimization is illustrated using the quantum logic circuits from
Fig. 11.26. The quantum logic circuits in Fig. 11.26 are the same
from Fig. 10.6, and thus one would observe the validity of the
reasoning in Fig. 11.25.

 a b

 Fig. 11.26. Two equivalent two-valued quantum logic circuits.

 Minimum Size Minimum Size
 Reversible Logic Quantum Logic
 Circuit Circuit

 Minimum Number
 of Quantum
 Computations

 306 11.9 Quantum Computing for the New Reversible Structures

a

b

1

b

a

f

a

b b

a

f 0

 The quantum evolution matrix for the circuit in Fig. 11.26a is
obtained using 4 N (NOT) operations using the quantum primitive

�
�

�
�
�

�
01

10
, 2 CN operations using the quantum primitive

�
�
�
�

�

�

�
�
�
�

�

�

0100

1000

0010

0001

,

and a single CCN operation using the quantum

primitive

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

. On the other hand, the quantum

evolution matrix for the circuit in Fig. 11.26b is obtained using 2 N

(NOT) operations using the quantum primitive �
�

�
�
�

�
01

10
, and a single

CCN operation using the quantum

primitive

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

. Consequently, it is obvious that

the total number of operations needed for evolving qubits using Fig.
11.26b is much less than the total number of operations that are
needed for evolving qubits using Fig. 11.26a. This conclusion is also
valid for the case of multiple-valued quantum computing as can be
seen in Fig. 11.27 for example, where the notation follows from
Chapt. 10.

 11.9 Quantum Computing for the New Reversible Structures 307

 a

 b

 Fig. 11.27. Two equivalent ternary quantum logic circuits.

 Analogous to the classical domain where (computational)
complexity theory studies whether or not the total number of
operations that are needed to execute certain computational task can
be done in a polynomial time with respect to the increasing size of
the problem (e.g., function), the domain of quantum complexity
theory investigates whether or not the total number of quantum
operations that are needed to execute certain quantum computational
task can be done in a polynomial time with respect to the increasing
size of the quantum problem (e.g., quantum function) [167].
 Some of the quantum computing structures that have been
introduced in Chapts. 10 and 11 possess certain advantages over the
other quantum computing structures. Table 11.1 shows an initial
evaluation that have been observed so far when performing quantum
computing using such structures.
 One observes that while in reversible circuits garbage do appear
in the outputs, and thus one counts (1) number of garbage outputs,
and (2) number of internal gates as the cost of the reversible circuit
(Chapt. 9) and consequently as an efficiency measure of the method
used for reversible logic synthesis, in quantum circuits garbage do
not appear in the outputs, and thus one counts only number of
internal gates (i.e., size of the quantum register) as the cost of the
quantum circuit (i.e., as an efficiency measure of the method used
for quantum logic synthesis).

b

c

0

c

b

f

(1)

GF(3) GF(3) GF(3)

(1) (2)

(2)

b

c

0

c

b

f

(2) (1)

(2) (1)

GF(3)

 308 11.9 Quantum Computing for the New Reversible Structures

Table 11.1. Initial evaluation for the use of the various two-valued and multiple-valued
quantum structures to perform the corresponding two-valued and multiple-valued quantum
computations.

 Type Advantages Disadvantages

Quantum (1) Utilizes exclusively the NOT (1) Since quantum circuits do not
Shannon gate and Controlled-Swap gate allow for garbage, it needs the
Lattices which are basic primitives for mirror image to cancel the garbage
 quantum circuits. and thus requires more of the total
 number of basic quantum
 operations using the garbageless
 circuit, (2) requires big width of the
 scratchpad register.

Quantum (1) Good for quantum symmetric (1) For highly non-symmetric quantum
Nets functions, and thus for highly functions, it requires large number of
 symmetric functions can need less the total basic quantum operations to
 of total number of basic quantum perform quantum computations on the
 operations to perform quantum garbageless circuit, since the variable
 computations. repetition is required and mirror image
 circuit is needed to eliminate the
 garbage, (2) requires big width of the
 scratchpad register.

Quantum (1) Structurally fits quantum circuits (1) The quantum cascade circuit can be
Cascades since on avg. no garbage is created very long to realize quantum functions
 and the inputs propagate to the with many inputs, and thus need large
 outputs thus requires less number of number of basic quantum ops. to perform
 total number of basic quantum ops. quantum computations for such functions.
 to perform quantum computations,
 (2) the use of EXOR in cascades has
 strong relation to quantum structures,
 (3) requires relatively small width of
 the scratchpad register, (4) can be
 used for efficient realization of
 MIMO type of quantum functions
 (circuits).

Quantum (1) Very useful as good quantum data (1) create garbage, and thus it needs
DDs structure to perform fast simulations mirror image to cancel garbage and thus
 and ops. for quantum computing, requires more of the total number of basic
 (2) big variety of quantum DDs quantum ops. to perform quantum comps.
 for the two-valued and multiple- using the garbageless circuit.
 valued computational basis states,
 composite basis states, and EPR basis
 states, besides the big types of DDs,
 to achieve both minimal size circuits
 and faster ops. on quantum data.

 11.9 Quantum Computing for the New Reversible Structures 309

Table 11.1. (cont.)

Quantum (1) Due to its four circuit topologies, (1) Does not realize yet ESOP of quantum
MRA it can possess advantages to design functions, (2) in general needs mirror
 quantum circuits by utilizing quantum image to cancel garbage and thus
 processes that are low in cost and thus needs more number of basic quantum ops.
 need less number of quantum ops., using the garbageless circuit.
 (2) in some cases it produces
 minimum size quantum circuits.

11.10 Summary

This Chapt. has introduced the following new results: (1) New two-
valued and multiple-valued quantum primitives and evolution
processes, (2) new multiple-valued composite basis states and
Einstein-Podolsky-Rosen (EPR) basis states, (3) generalized
multiple-valued quantum permuters, (4) various types of two-valued
and multiple-valued canonical quantum decision trees (QDTs) and
quantum decision diagrams (QDDs), and (5) the introduction of the
mathematical operations for the analysis and synthesis of serial,
parallel, and mixture of serial and parallel multiple-valued quantum
circuits.
 Results (1) and (3) are necessary for the automated analysis of
netlists of quantum primitives. They are also necessary for
automated synthesis of a netlist described as an evolution matrix
from quantum gates, especially for try-and-check methods such as
evolutionary algorithms [207,252]. Since decision diagrams allow
for efficient representation of large sparse matrices, they found
applications in many CAD algorithms, and we believe that their
quantum counterparts in item (4) will be useful for quantum logic
synthesis and analysis. Finally, result (2) is important because new
forms of quantum decision trees and diagrams can be produced for
the new multiple-valued EPR basis states, and thus allowing for
further possible optimizations in the design of quantum circuits,
analogous to the classical (non-quantum) case where different forms
of decision trees and diagrams lead to different scales of
optimizations in the design of logic circuits.

 310 11.9 Quantum Computing for the New Reversible Structures

 The new multiple-valued quantum EPR basis states have been
achieved by utilizing the new quantum Chrestenson operator
introduced in this Chapt. The new Galois-based quantum gates,
evolution processes, and the corresponding canonical quantum
decision trees and decision diagrams were introduced as a first
attempt of developing a comprehensive set of (1) complete system
of quantum logic elements (gates; primitives), (2) quantum
representations, and (3) quantum synthesis methods. It has been also
demonstrated that by minimizing the size of the two-valued and
multiple-valued quantum circuits one would need minimum number
of the corresponding arithmetic operations needed to perform the
corresponding two-valued and multiple-valued quantum computing,
respectively.

 11.10 Summary 311

12 Conclusions

The biggest problems in system design today, and in the future, are
the high rate of power consumption and the emergence of quantum
effects for highly dense ICs. The real challenge is to design reliable
systems that consume as little power as possible and in which the
signals are processed and transmitted at very high speeds with very
high signal integrity. The tools that are used to design ICs using the
conventional design methodologies apply the area, delay, and power
constraints. The synthesis approaches that are implemented using
such computer-aided design tools are only for the classical type of
synthesis.
 This Book has proposed new methodologies for the synthesis of
reversible binary and multiple-valued logic circuits and their
implementations using quantum computing. The methodology
presented for the proposed quantum computations evolved from the
creation of necessary reversible primitives, then the structures to
synthesize logic functions, binary and multiple-valued, using such
primitives, next quantum logic circuits were constructed, and finally
the quantum computations using such circuits were conducted.
 First, Chapt. 4 provided the regular lattice structures for two-
dimensional and three-dimensional synthesis to logic functions.
Such structures exhibited high regularity that makes them fit for
many applications, especially as such structures are synthesized on
the nano-scale, which was shown in Chapt. 11. When the functions
are deeply non-symmetric, one has to repeat variables so many times
in order to realize the non-symmetric function using the lattice
structure, and consequently lattices will grow larger very fast such
that they do not fit the specific conventional layout boundaries any
more. To solve this problem, a new algorithm called Iterative
Symmetry Indices Decomposition (ISID) for two-valued and
multiple-valued lattice structures was developed.
 The development of new reversible primitives was
accomplished in Chapt. 5. This development was necessary as such

A. N. Al-Rabadi, Reversible Logic Synthesis

© Springer-Verlag Berlin Heidelberg 2004

primitives were used later to synthesize more complex structures.
The new reversible gates implement the Latin Square Property in
their basis functions and consequently the permutation of cofactors.
 Chapters 6 through 8 provided the foundation for synthesizing
binary and multiple-valued logic functions using the reversible
primitives that were introduced and developed in Chapt. 5. It was
shown that among the proposed reversible structures, the reversible
Cascade stands as one good method for synthesizing reversible logic
functions without producing on average garbage in the outputs that
are needed only for the purpose of reversibility. The disadvantage of
such structures was shown to be the fact that they produce single-
outputs where other reversible structures as the Nets can produce
multiple-output functions, but this production of multiple-output
functions is at the expense of having garbage in the outputs, and thus
the mirror image reversible circuit has to be cascaded with the
forward reversible circuit for the elimination of such garbage. This
is important because in the quantum computations, that were
provided in Chapt. 11, the garbage in outputs is not allowed.
 The synthesis of logic functions using the reversible structures
such as reversible Cascades requires the minimization of logic
functions for optimal realization in such circuits, which is obtained
for example in the case of reversible Cascades through the use of a
minimal number of stages for the synthesis of binary and multiple-
valued logic functions. The GFSOP minimizer that was proposed in
Chapt. 3 uses the most general polarity of Inclusive Forms (IFs),
where an evolutionary algorithm that implements the IF polarity
chromosome was also introduced.
 This Book started with a motivating research guidline that
regularity in two-valued and multiple-valued reversible logic
structures have an effect on the final complexity of the
corresponding two-valued and multiple-valued quantum computing,
respectively. Consequently, and to achieve this goal, the Book
started with the invention of new methodologies for regular and
semi-regular reversible structures and reversible logic synthesis
methodologies, which was missing largely from the known previous
literature, and then the exploration of the effect of such new
methods on the total size of quantum logic circuits and consequently
on the complexity of two-valued and multiple-valued quantum

 12 Conclusions 313

computing in terms of the count of the total number of operations
required.
 From the body of this Book, the conclusion was that, for small
functions, highly regular reversible structures, such as the reversible
lattice structures and reversible Nets, will require larger size of
quantum logic circuits and thus more operations for the
corresponding two-valued and multiple-valued quantum computing,
as if compared to the size of the circuits in semi-regular reversible
structures, such as reversible Cascades, and their corresponding
quantum computations. Therefore, as the process of producing
reversible structures will lead to specific internal symmetries in
terms of certain levels of regularities, due to the implementation of
the reverse as well as the forward lossless information retrieval
process, regularity itself will lead by necessity in most cases to
larger size structures that possess high internal symmetries, which
can be good for many applications, such as testing, similar to the
results in [221].
 The main contributions of this Book can be summarized as
follows:
• A generic methodology of generating new types of multi-valued
 Shannon and Davio expansions called the invariant Shannon and
 Davio spectral transforms, and the classification of the new types
 of multi-valued invariant Shannon and Davio spectral transforms
 into their corresponding families.
• The application of the new expansions into regular three-
 dimensional lattice structures, and the process of realizing non-
 symmetric ternary functions in three-dimensional lattice structures
 using a new 3-D joining operator. This was implemented for the
 regular and the new invariant Shannon and Davio 3-D lattice
 structures.
• The invention of a new methodology to generate and classify
 reversible multiple-valued Shannon decompositions that includes
 the binary case as a special case. This methodology implements
 the idea of the Latin Square Property of the Generalized Basis
 Function Matrix, which leads to the process of permutation of
 cofactors. The exhaustive classification of all possible reversible
 multi-valued Shannon gates into the corresponding classes was
 also provided.

 314 12 Conclusions

• The generation of binary and multiple-valued reversible Davio
 decompositions, and the exhaustive classification of all possible
 reversible multi-valued Davio gates into the corresponding classes.
• The creation of new reversible structures including: (1) binary and
 multiple-valued reversible Lattice Structures, (2) reversible
 Modified Reconstructability Analysis (RMRA), (3) reversible
 Nets, (4) reversible Decision Diagrams (RDDs), and (5) multiple-
 Valued reversible Cascades.
• The invention of a new 2-valued decomposition: the Modified
 Reconstructability Analysis (MRA) decomposition. Two variants
 of binary MRA: 1-MRA and 0-MRA were also introduced. The
 extension to the multi-valued case is also achieved. The
 demonstration of the superiority of the Modified
 Reconstructability Analysis (MRA) decomposition to the
 Conventional Reconstructability Analysis (CRA) decomposition,
 in terms of complexity reduction for all 256 NPN-classified
 Boolean functions of three input variables has also been
 demonstrated.
• New multiple-valued 1-qubit and 2-qubit orthonormal quantum
 basis states: multi-valued composite basis states, and multi-valued
 Einstein-Podolsky-Rosen (EPR) basis states, respectively. The
 new quantum Chrestenson gate that produces such new multiple-
 valued basis states is also introduced.
• Two-valued and multiple-valued canonical quantum decision trees
 (QDTs) and quantum decision diagrams (QDDs).
• The serial interconnect and parallel interconnect operations for
 multiple-valued quantum computing, and the demonstration of
 these operations for the analysis of multiple-valued quantum logic
 circuits.
• New multiple-valued quantum gates and evolution processes
 including Feynman, Swap, Shannon (Fredkin), and Davio
 evolution processes, and generalized multi-valued inverters
 (permuters) were created. Synthesis of the new multi-valued
 quantum primitives in serial and parallel interconnects’ topologies
 was also shown.
• The invention of several reversible combinational circuits like the
 reversible concurrent shift-left and shift-right Barrell shifter,
 reversible Sorter, reversible MIN/MAX tree, reversible pipelined

 12 Conclusions 315

 circuits, reversible systolic circuits, and reversible code converters.
• A novel Iterative Symmetry Indices Decomposition (ISID) needed
 for layout optimization.
• The creation of multiple-valued Shannon/Davio (S/D) trees, and
 their corresponding multiple-valued Inclusive Forms (IFs) and
 Generalized Inclusive Forms (GIFs). The very general count
 formula and the IFn,2 triangles for the count of the total number of
 all binary and multiple-valued S/D forms that are generated have
 been also introduced.
• The synthesis of regular Boolean and multiple-valued optical
 classical and reversible circuits using: (1) total internal reflection,
 (2) optical polarizers, and (3) optical frequency shifters (See
 Appendix J).
• The implementation of Artificial Neural Networks using multiple-
 valued quantum computing (See Appendix K).
 During the course of investigating new types of reversible logic
methods and their corresponding two-valued and multiple-valued
quantum computations, some secondary results were obtained
(Appendices A through I provide such results). Although these
contributions are not directly related to the theme of this Book, we
provide their listing as follows:
• New theorems to count all possible families of the invariant
 multiple-valued Shannon and Davio expansions.
• Very general count formula that count the total number of
 multiple-valued Inclusive Forms that result from the
 corresponding S/D trees for any radix and an arbitrary number of
 variables.
• The invention of a new pattern for the count of IF forms for an
 arbitrary radix and two variables. We call it the IFn,2 triangles. The
 relation of these triangles to the important Pascal triangle was also
 demonstrated.
• The creation of new types of Galois circuits.
• The creation of the multiple-valued Universal Logic Modules
 (ULMs) for ternary and quaternary S/D trees.
• An evaluation of the complexities of the new two-valued MRA
 decomposition versus the complexities obtained using Ashenhurst-
 Curtis (AC) like decompositions for all NPN classified Boolean
 functions of three vaiables. The evaluations are performed using

 316 12 Conclusions

 the log-functionality complexity measure which is suitable for
 machine learning, and using the complexity measure which is
 defined as the count of the total number of two-input primitives
 which is suitable for circuit design.
• The count of reversible Net structures.
 In this Book, the goal was to explore the relationship between
regularity and reversibility, which resulted in the development of
new reversible logic synthesis techniques in order to synthesize
functions using minimum size quantum logic circuits that will
require minimum number of operations for quantum computing.
However, one important factor for the evaluation of such reversible
methods is the final total cost of the physical quantum circuits that
will implement such reversible structures. While in conventional
circuit design the cost of the design is measured by the total number
of two-input gates that are used, in quantum circuits this is not the
case, since in quantum circuits physical processes implement the
quantum operations rather than simple hardware gates (e.g., CMOS)
as in the case of the classical logic design. Quantum cost
characterizes the physical process complexity that is needed to
realize physically the corresponding reversible structures. Since
little, if none, has been published on this quantum cost for the
realization of the reversible structures, one very important question
is still open on how much complex the quantum realization of the
structures will be, and the answer to this question may very well
lead to new cost-benefit conclusions.
 This Book showed that the level of regularity in reversible logic
structures has a direct effect on the size of the corresponding
quantum circuits and their corresponding quantum computations.
Thus this conclusion should be further explored with more
quantitative analysis (i.e., numerical results) and qualitative analysis
based on well-known two-valued and multiple-valued benchmarks.
Since symmetries exist in reversible structures, due to the
reversibility of lossless information retrieval, group-theoretic
formulations of reversible primitives [243] from Chapt. 5, and
reversible structures from Chapts. 6, 7, and 8 have to be further
explored. Future work will include the construction of a
comprehensive Computer-Aided Design (CAD) system [269] for
reversible logic synthesis using various nano-based technologies as
shown in Fig. 12.1.

 12 Conclusions 317

Fig. 12.1. Comprehensive CAD system for nano computing.

 The design and fabrication of adiabatic (low-power) CMOS
VLSI ICs using the new reversible logic synthesis methods will be
conducted. Also future work will include the systematic
methodology for the extension of current reversible logic synthesis
methodologies to different types of quantum systems such as:
multiple-input multiple-output (MIMO) quantum circuits, multiple-
input single-output (MISO) quantum circuits, single-input multiple-
output (SIMO) quantum circuits, and single-input single-output
(SISO) quantum gates like Walsh, Phase, Pauli, etc, as shown in Fig.
12.2. The synthesis of a cascade of quantum gates to realize a
quantum circuit for a specific length of a total quantum scratchpad
register, as shown in Fig. 12.2, will be also investigated.

Library of Reversible Gates:
Feynman, Toffoli, Fredkin,
Swap, Not, Wire, Margolus,
etc.

 Synthesis
 Optimization

Reversible Logic
Synthesis
Strucutre.

Optimization
Parameters:
- Size,
- Delay (Speed),
- Power, etc.

Reversible
Circuit

ESOP Minimizer:
EXORCISM4, XMIN,
SIS, MIS, GA, etc.

Decision Making: Optimization:
-Satisfiability, -Graph Coloring,
-Search: - Maximum Cliques,
 (Exact & Heuristic), - Set Covering,
-Genetic Algorithms, - Traveling Salesman,
-Simulated Annealing, - Linear, Non-Linear, Visualization.
 etc. Integer, and Dynamic
 Programming, etc.

Optimization Parameters:
- Number of Literals,
- Number of Terms, etc.

Technology:
- CMOS,
- Optical,
- DNA,
- Quantum,
- Molecular,
 etc.

 Benchmark.

Function pre-
Processing.

 - Group Theory,
 - Decomposition,
 etc.

Efficient
Heuristics.

 318 12 Conclusions

Fig. 12.2. Cascade of quantum circuits (QCts) for a specific length of a total scratchpad
register.

 Future work will include the implementation of the
representations of binary and multiple-valued computational
quantum decision trees (CQDTs) and diagrams (CQDDs), and
binary and multiple-valued composite quantum decision trees
(CoQDTs) and diagrams (CoQDDs), that are introduced in this
Book, using the standard BDD packages [231]. Further research to
find minimum and complete set of two-valued and multiple-valued
quantum operators, from which complex two-valued and multiple-
valued quantum circuits can be synthesized, will be conducted.
 Making improvements of tasks to an existing system or
synthesizing a new system to perform specific functions or tasks
(e.g., recognition, prediction, diagnosis, robot control, planning, etc)
is the main goal of Machine Learning (ML). Information retrieval
from large data bases (sets) and finding data patterns in a data
environment (i.e., extracting useful information from data, and
fitting theories to data or enumerating patterns from data) is studied
within specific ML area called Data Mining (DM). Knowledge
Discovery in Database (KDD) is the field that focuses on the total
process of information retrieval and data analysis (e.g., selection,
preprocessing, and data transformation) [108]. Since the new two-
valued and multiple-valued reversible and quantum computing
methods, that are developed in this Book, were used for the purpose
of circuit design, the use of these new methods for ML, DM, and
KDD will be also investigated.
 While mathematical formalisms can solve wide variety of
synthesis problems (e.g., two-valued and multiple-valued reversible
Shannon and Davio expansions from Chapt. 5), the solution and
optimization of many two-valued and multiple-valued reversible and
quantum synthesis problems (e.g., optimal variable ordering for the
minimization of the total size of reversible lattice structure that
reversibly realize large logic functions, in terms of minimization of
the number of levels and minimization of the number of nodes in

… QC1 QC2 QC3 QCN .
.

.

.
.
.

.

.
.
.

.

.

 12 Conclusions 319

each level) are still very difficult to solve mathematically, and thus
one has to rely on search algorithms to synthesize and optimize
these two-valued and multiple-valued reversible and quantum
synthesis problems. Since exhaustive search methods are suitable to
solve algorithmically for a small dimension problem (that has none,
little, or impractical mathematical formalisms), these exhaustive
methods are not practical to synthesize and optimize large multi-
input multi-output dimension problems. Consequently, future work
will investigate the creation of suitable heuristics to perform
heuristic search for the automatic synthesis and optimization of large
multi-input multi-output dimension problems [269].
 Future investigation should also involve the creation of
systematic theories and formalisms for sequesntial reversible circuit
synthesis; a problem that has not been yet totally resolved.
 Further research on the realization of various abstract quantum
primitives using other physically-realizable quantum primitives
(such as the case in [230]) should also be conducted.

 320 12 Conclusions

Appendix A

Count of the New Invariant Shannon and Davio
Expansions

This Appendix provides the counts for the invariant Shannon and
Davio Families of spectral transforms, that were presented in Chapt.
2, over an arbitrary Galois field. The following theorems provide
counts for the new transform families, members per family, and total
number of transforms, that belong to the sets of αβ…γ IS/D, αβ…γ
ID/S, α1β1…γ1IS/α2β2…γ2ID families of spectral transforms, and
αβ…γ IfS spectral transforms that are generated by the application
of Theorems 2.2, 2.3, and 2.4, respectively. These counts can be
used as a heuristic parameter and thus can play an important role in
the search for optimal invariant expansions to create the
corresponding minimal size three-dimensional lattice structures
from Chapt. 4 [5,13] (For more clarifications, please refer to
Definitions 2.1 through 2.7 in Chapt. 2, respectively).

Theorem A.1. For {α, β, …, γ} ∈ GF(n), and for:
φ is the number of αβ…γ IS/D spectral transform families.
Θ is the number of members of Shannon transforms per family.
Γ is the number of members of Davio transforms per family.
Ω is the number of all members per αβ…γ IS/D transform family.
ϕ is the total number of spectral transforms for ∀αβ…γ IS/D

families. Then we obtain:

 φ = (n - 1)n, (A.1)
 Θ = 1, (A.2)
 Γ = n, (A.3)
 Ω = n + 1, (A.4)

 ϕ = φ + Ω - 1 = (n - 1)n + n. (A.5)

Proof. Utilizing the transform matrix for Generalized Shannon
expansion (i.e. the identity matrix) over GF(n), the size of such a
matrix is (n⋅n). In such matrix, there are n number of positions for
nonzero-element and each position can take in general a number
from (n-1) numbers (excluding the zero that leads to the trivial
singular matrix). Consequently the total number of the resulting
invariant Shannon transforms would be: φ = (n-1) (n-1) (n-1) … (n-
1) = (n - 1)n. For GF(n), for each multi-valued fundamental Shannon
expansion there are n corresponding multi-valued fundamental
Davio expansions. By defining the invariant multi-valued Shannon
transform and the corresponding multi-valued Davio transforms to
be belonging to one Family, the number of transform members per
family will be Ω = (n + 1). Consequently, the total number of
transforms per Galois radix is ϕ = φ + Ω - 1 = (n - 1)n + n. Q.E.D.

Theorem A.2. For {α, β, …, γ} ∈ GF(n), and for:
Χ is the number of αβ…γ ID/S spectral transform families.
Δ is the number of members of Shannon transforms per family.
ϑ is the number of members of Davio transforms per family.
Ξ is the number of all members per αβ…γ ID/S transform family.
Ψ is the total number of transforms for ∀αβ…γ ID/S families.
Then we obtain:

 Χ =)1(
2

−n n , (A.6)

 Δ = 1, (A.7)
 ϑ = n, (A.8)
 Ξ = n + 1, (A.9)
 Ψ = n(n - 1)n + 1. (A.10)

Proof. Using the transform matrix for any type of Generalized
Davio expansion over GF(n), the size of such a matrix is n⋅n. In such
matrix, there are (n2-2n+3) number of positions for nonzero-element
and (2n-3) of zero positions. Each position can take a number from
(n-1) numbers (excluding the zero that leads to the trivial singular
matrix). There are n basic Davio for GF(n). By multiplying the rows
of each Davio type by {α, β, …, γ} ∈ GF(n), we get consequently
the total number of the resulting invariant Davio transforms per
Davio type as: φ = (n-1)…(n-1) = (n - 1)n. So the total number of

 322 Appendix A: Count of the New Invariant Shannon and Davio Expansions

transforms for all Davio is n(n - 1)n . For GF(n), for each MV Davio
family there is one corresponding MV Shannon family. By defining
the invariant Davio transforms and the corresponding Shannon
transform to be belonging to one family, the number of transform
members per family is Ω = (n + 1). Consequently, the total number
of transforms is Ψ = n(n - 1)n + 1. Q.E.D.

Theorem A.3. For {α, β, …, γ} ∈ GF(n), and for:
χ is the number of αβ…γ ID/αβ…γIS spectral transform families.
δ is the number of members of Shannon transforms per family.
ε is the number of members of Davio transforms per family.
η is the number of all members per αβ…γ ID/αβ…γIS family.
ψ is the total number of transforms for ∀ αβ…γ ID/αβ…γIS

families.
Then we obtain:

 χ = (n-1)n(n+1), (A.11)
 δ = 1, (A.12)
 ε = n, (A.13)
 η = n + 1, (A.14)
 ψ = (n+1)(n-1)n. (A.15)

Proof. Since φ = (n - 1)n and Χ =)1(
2

−n n , then the total number of

αβ…γ ID/αβ…γIS spectral transform families is equal to χ = φ ⋅ Χ
= (n-1)n(n+1). Since there exists over GF(n), by definition, one
Shannon transform and n Davio transforms per family, then the total
number of transforms for all αβ…γ ID/αβ…γIS families is the union
of all transforms. This will lead to the non-repetition of the existing
transforms within the same set of total spectral transforms, and thus
to the total number of ψ = ϕ + Ψ - n - 1 = (n+1)(n-1)n. Q.E.D.

Theorem A.4. For {α, β, …, γ} ∈ GF(n), and for ∂ is the number of
αβ…γ IfS spectral transform families then we obtain:

 ∂ = (n - 1)n. (A.16)

Proof. Utilizing the transform matrix for Generalized flipped
Shannon expansion over GF(n), the size of such a matrix is (n)(n).
In such matrix, there are n number of positions for nonzero-element

 Appendix A: Count of the New Invariant Shannon and Davio Expansions 323

and each position can take in general a number from (n-1) numbers
(excluding the zero that leads to the trivial singular matrix). Thus,
the total number of the resulting invariant flipped Shannon
transforms would be: ∂ = (n-1) (n-1) … (n-1) = (n - 1)n. Q.E.D.

 The following example illustrates the various counts of the new
set of spectral transforms.
Example A.1. Let us produce the counts of the new set of spectral
transforms {φ, ∂, ϕ, Χ, Ψ, χ, ψ} for Galois field of radices equal to
2, 3, 4, and 5, respectively.
For GF(2), one obtains:
φ = ∂ = 1, ϕ = 3, Χ = 1, Ψ = 3, χ = 1, ψ = 3 (i.e., this is the familiar
family of binary Shannon expansion, flipped Shannon expansion,
and Davio expansions).
For GF(3), one obtains:
φ = ∂ = 8, ϕ =11, Χ = 512, Ψ = 25, χ = 4,096, ψ = 32.
For GF(4), one obtains:
φ = ∂ =81, ϕ = 85, Χ = 43,046,421, Ψ = 325, χ = 3.4868⋅10 9,
ψ = 405.
For GF(5), one obtains:
φ = ∂ = 1,024, ϕ = 1,029, Χ = 1.1259⋅1015 , Ψ = 5,121, χ =
1.1529⋅1018, ψ = 6,144.
 Table A.1 provides a comparison of the spectral transforms: φ,
∂, ϕ, Χ, Ψ, χ, ψ and the total number of singular transforms ξ for
various radices of Galois fields GF(pk) (where p is a prime number
and k is a natural number of value k ≥ 1).
 In general, the total number of the nonsingular spectral
transforms will be much less than ξ. ξ is used in Table A.1 as an
upper-extreme (Bound) reference to obtain an idea of how large the
counts of the new families and their transforms are if compared to
the whole space of spectral transforms.

 324 Appendix A: Count of the New Invariant Shannon and Davio Expansions

Table A.1. Counts of the new invariant Shannon and Davio families of transformations for
GF(pk).

 GF φ, ∂ ϕ Χ Ψ χ ψ+∂ ξ

3

4

 5

7

8

 2 1 3 1 3 1 4 16

8 11 512 25 4,096 40 19,683

 81 85 43,046,421 325 3.487x109 486 ≅ 4295x106

 1024 1029 1.126x1015 5,121 1.153x1018 7,168 ≅ 2.98x1017

9

 279,936 279,943 1.347x1038 1,959,553 3.77x1043 2,519,424 ≅ 2.57x1041

 5,764,801 5,764,809 1.22x1054 46,118,409 7.032x1060 57,648,010 ≅ 6.28x1057

 134,217,728 134,217,737 1.4135x1073 1.2080x109 1.897x1081 ≅1.34x109 ≅ 1.97x1077

 Appendix A: Count of the New Invariant Shannon and Davio Expansions 325

Appendix B

Circuits for Quaternary Galois Field Sum-Of-
Product (GFSOP) Canonical Forms

One interesting logic synthesis of quaternary GFSOPs are various
circuit and filter implementations, similar to the work in [125], of
which FIR filter is the simplest case. Higher radix extensions of this
kind of filters can be useful for digital signal processing of 1-D
multi-valued I/O signals or 2-D multi-valued I/O blocks of images
(e.g., 4x4, and 8x8 blocks of a still image).
 A general FIR filter for single variable GF(4) GFSOP-based
expansion can be produced as in Fig. B.1 [125]. This realization is a
direct implementation of the Shannon and Davio expansions that
were obtained in Chapt. 2. Such realization can be useful in various
applications such as applications that involve multi-valued I/O bio-
medical signals. The addition and multiplication performed in Fig.
B.1 are the Galois addition and multiplication operations defined in
Chapt. 2. These additions and multiplications can be implemented
using quaternary circuits, or using binary circuits. Yet, another
implementation of GF(4) logical multiplication gate can be achieved
by utilizing a third radix Galois addition operation. This can be
achieved by utilizing the GF(3) addition which is presented in
Chapt. 2, and noticing the relationship between the multiplication
operation over GF(4) and the addition operation over GF(3). This
relationship can be stated as follows: Excluding the first row of
zeros and the first column of zeros in the GF(4) multiplication, then
by subtracting one from the remaining rows and columns, the GF(3)
addition operation is obtained, but next a value of “1” must be added
to every entry of the GF(4) multiplication in order to obtain GF(3)
addition.

 Fig. B.1. FIR Filter realization of four-valued GF(4) GFSOP canonical forms.

This can be formulated formally as follows:

�
�
�

+−⊕−
==

=⋅ .,1)]1()1[(

,00,0
)4(Otherwiseba

boraif
ba

GF

Where ⊕ is either GF(3) addition or mod-3 addition, + is either a
shift up operation or mod-3 addition, and - is a shift down operation.
 For simplicity of implementation, shift-up operation is used
instead of mod-3 addition for + operation, and mod-3 addition is
used instead of GF(3) addition for the ⊕ operation.
 Figures B.2 and B.3 illustrate an implementation of the GF(4)
addition and multiplication operations. Note that multi-input
addition and multiplication circuits can be realized as trees of two-
input addition and multiplication circuits as shown in Figs. B.2b and
B.3b, respectively. Similar approaches can be used to realize
addition and multiplication operators for higher radices of Galois
fields.

* * * *

+ + +

 C1 C2 C3 C4

F

X

Basis1
Generator

Basis2
Generator

Basis3
Generator

Basis4
Generator

 Appendix B: Circuits for Quaternary GFSOP Canonical Forms 327

 a b c

Fig. B.2. a Implementation of three input single GF(4) addition gate as two decomposed
two-input tree-structured GF(4) addition gates as in b, and c consequently as quadruple
two-input tree-structured vector of GF(2) EXORs.
 a
 a
 b b

 c a c b

 a a+b

 b

 c

Fig. B.3. a Implementation of a 3-input single GF(4) logic multiplication gate as
decomposed 2-input two tree-structured GF(4) multiplication gates as in b, and c the
implementation of a single GF(4) logic multiplication using mod-3 addition and shift
operations.

a

b

c

a

b

c

a1

a2

b1

b2

c1

c2

+ +

+

 328 Appendix B: Circuits for Quaternary GFSOP Canonical Forms

.
.

.

“0”
 -1

 -1
 +1

Where:

 Is a –1 shifter

 Is a +1 shifter

 Is a modulo-3 addition

 Is a comparator to value “0”

 Is a 1/0 binary multiplexer

 Logical addition and multiplication gates are used in many
applications such as the realization of 2r-bit arithmetic addition and
2r-bit arithmetic multiplication operations, which are the
fundamental arithmetic operations by which the complex arithmetic
and logic unit (ALU) is designed.
 Complex arithmetic operations such as the convolution
operation are the base of linear transformations used in many digital
signal processing and digital image processing applications. Instead
of standard arithmetics, Galois logic can be used for fast and
efficient realizations which use linear algebra.
 The physical implementation of the circuit in Fig. B.3 can be
implemented utilizing various choices of technologies: micro
technologies, deep sub-micron technologies, or nano technologies.
One of the options is the pass transistor logic (PTL) that have
recently found popularity within the CMOS technologies due to
circuit optimization issues. Also, other future technologies such as:
(1) single electron transistors (SET), (2) Josephson junction, and (3)
low-power VLSI design [206,262] technologies require efficient
realization of multiple-valued Shannon and Davio canonical
expressions and Galois gates.

 Appendix B: Circuits for Quaternary GFSOP Canonical Forms 329

 -1

 +1

Appendix C

Count of the Number of S/D Inclusive Forms and
the Novel IFn,2 Triangles

This Appendix provides the count for the numbers of Inclusive
Forms (IF) in Chapt. 3, and provide a generic way of counting such
forms when the number of variables is very large in a way such that
an ordinary computer routine will not perform such counts in a
polynomial time, and thus the need for the IFn,2 triangles as a
pattern-based way for performing a count. These counts can be used
as numerical parameters (e.g., upper-bounds) in search heuristics
that search for minimum GFSOP expressions from Chapt. 3.

Theorem C.1. For GF(3) and N variables, the total number of TIFs
per variable order is:

 # TIFs =

]})3...()3()3()3][(
!)!3(

!3

...
!)!3(

!3

!)!3(

!3

!)!3(

!3
{[...

)1(
3

2
2

1
1

0

1

1

2

2

3

3

0

)3.(2)3.(2)3.(2)3.(2
0

0

33
)3(

)3(

22
)2(

)2()3(

0

)3(

0

)3(

0

)3(

0 11
)1(

)1(

N
N

N N N

N

kkkk

NN

N

N

N

N

k k k K
N

N

kk

kkkkkk

−

− − −

−

−−− −

−

−

−

= = = =
−

−

� � � �

 (C.1)

Proof. The following is the derivation of the general formula (C.1)
to calculate #TIFs per variable order: the total number of nodes for
any GF(3) tree with N levels (i.e., N variables) equals to:

 �
−

=

1

0

)3(
N

k

k . (C.2)

For any S-type node there is only one type of nodes (as the branches
have the possibility of single value each). Yet, for D-type node there
are N possible types of nodes (where N is the number of variables,
which is equal to the number of levels). The highest possible

number of forms for the D-type node is when the D-type node exists
in the first (highest) level, and the lowest possible number of forms
for the D-type node is when the D-type node exists in the Nth-level
(lowest level).
 Therefore, for certain number (M) of S-type nodes the following
formula describes the number of the D-type nodes for N variables:

 # S = M � # D = [�
−

=

1

0

)3(
N

k

k - M]. (C.3)

 It can be shown that for GF(3) (i.e., ternary decision tree (TDT))
and N-levels (i.e., N-variables), the general formulas that count the
number of D-type nodes, and the number of all possible forms for
the D-type node in the kth level of the Nth-level TDT are,
respectively:

 # Dk =)3(
)1(−K
, (C.4)

 | Dk | per node =)3()3.(2
)(KN −

, (C.5)

where:
Dk: is the number of D-type nodes in the kth level,
|Dk|: is the number of all possible forms for the D-type node in the
 kth level.
 Let us define S/D tree category to be: the S/D trees that have in
common the same number of S-type nodes and the same number of
D-type nodes within the same variable order. Also, let us define the
following:

 ψ = number of variable orders. (C.6)

 Ω = number of S/D tree categories per variable order. (C.7)

 φ = number of S/D trees per category. (C.8)

 Φ = number of TIFs per variable order. (C.9)

 Appendix C: Count of the Number of S/D IFs and the Novel IFn,2 Triangles 331

 From Eqs. (C.2) through (C.5), and using some elementary
count rules, we can derive by mathematical induction the following
general formulas for N being the number of variables:

 ψ = N!, (C.10)

 Ω = �
−

=

1

0

)3(
N

k

k + 1, (C.11)

 φ =
�

�
−

=

−

=

−1

0

1

0

!]!)3([

]!)3([

N

k

k

N

k

k

kk
,

 where k = 0, 1, 2, 3, …, �
−

=

1

0

)3(
N

k

k , (C.12)

 Φ =

]})3(

...)3()3()3][(
!)!3(

!3
...

!)!3(

!3

!)!3(

!3

!)!3(

!3
{[...

)1(

3
2

2
1

1
0

1

1

2

2

3

3

0

)3.(2

)3.(2)3.(2)3.(2
0

0

33
)3(

)3(

22
)2(

)2()3(

0

)3(

0

)3(

0

)3(

0 11
)1(

)1(

N
N

N N N

N

k

kkk

NN
N

N

N

N

k k k K
N

N

kkkk

kkkk

−

− − −

−−

−−

−

−

−

−

= = = =
−

−

� � � �

 (C.13)
 Q.E.D.

 From Eqs. (C.10) through (C.13), it can be noticed that the total
number of TIFs for all variable orders is equal to {[N!][#TIFs per
order]}, and the number of TGIFs is bounded according to the
inequality {#TIFs per variable order < #TGIFs < #TIFs for all
variable orders}.
Example C.1. For number of variables equal to two (N = 2), Eq.
(C.12) reduces to:

 332 Appendix C: Count of the Number of S/D IFs and the Novel IFn,2 Triangles

Φ =

}{ 21

1

1 2

)3()3(
!)!3(

!3
!)!3(

!3 10

220

0

0

1

0 111

1
)3.(2)3.(2

3 kk
kkkkk k −�� −= =

Φ = Φ|
0,0 21 == kk
+ Φ |

0,1 21 == kk
 +Φ |

0,2 21 == kk
+

 Φ |
0,3 21 == kk
+Φ|

1,0 21 == kk
+ Φ |

1,1 21 == kk
 + Φ |

1,2 21 == kk
+

 Φ |
1,3 21 == kk
,

 = Φ 00 + Φ 10 + Φ 20 + Φ 30 + Φ 01 + Φ 11 + Φ 21
 + Φ 31,

 = 1 + 27 + 243 + 729 + 729 + 19683 + 177147 + 531441,

 = 730,000 .
 Utilizing multi-valued map representation, there are, in general,
for Nth-valued input-output logic: (N)#Minterms different functions.
Therefore, for ternary logic, there are 39 = 19,683 different ternary
functions of two variables, and 730,000 ternary Inclusive Forms
generated by the S/D trees. Thus, on the average every function of
two variables can be realized in approximately 37 ways.

Theorem C.2. For GF(4) and N variables, the total number of QIFs
per variable order is equal to:

 # QIFs = Φ =

!!

!
...

!!

!

!!

!
{...

)4(
4

)4(
4

)4(
4

0

0

22
)2(

)2(

11
)1(

)1(

00 0

)4()4()4(
01

1

2

2 NN
N

N

N

N

kk k kkkkkkN

N N

−−−
−

−

−

−

== =
�� �

− −

 }...)4()4()4()4.(3)4.(3)4.(3
)1(

2
1

1
0

N
N

kkk
−

. (C.14)

 Appendix C: Count of the Number of S/D IFs and the Novel IFn,2 Triangles 333

Proof. A general proof that will include the quaternary Galois field
as a special case will be provided later in this Appendix. Q.E.D.

 Properties and extended Green/Sasao hierarchy for quaternary
S/D trees and their corresponding forms can be developed similar to
the work in [4] and the properties of ternary S/D trees shown in
Chapt. 3. The extension of the concept of S/D trees to higher radices
of Galois fields (i.e., higher than four) is a systematic and direct
process that follows the same methodology developed for the
ternary case [3,4] and the quaternary case.
 The following example demonstrates the counts of QIFs using
Theorem C.2.
Example C.2. For number of variables equal to two (N=2), Eq.
(C.14) reduces to:

Φ =

⋅
−−

��
== !!

!

!!

!
{

22
)0(

)0(

11
)1(

)1(

00)4(
4

)4(
4)4()4(

01

1 kkkkNkk

})4()4(
2

1
1

0

)4.(3)4.(3 kk

 = Φ |
0,0 21 == kk
+ Φ |

0,1 21 == kk
+ Φ |

0,2 21 == kk
+ Φ |

0,3 21 == kk
+ Φ |

0,4 21 == kk
+

 Φ |
1,0 21 == kk
+ Φ |

1,1 21 == kk
+ Φ |

1,2 21 == kk
+ Φ |

1,3 21 == kk
+ Φ |

1,4 21 == kk
,

 = Φ 00 +Φ 10 + Φ 20 + Φ 30 + Φ 40 + Φ 01 + Φ 11 + Φ 21 + Φ 31

 + Φ 41,
 = 1 + 256 + 24,576 + 1,048,576 + 16,777,216 + 16,777,216 +
 4,294,967,296 + 412,316,860,416 + 1.75921860444* 1013
 +2.81477976711*1014,
 = 2.99483809211*1014.
 Utilizing MVL map representation, we can easily prove that
there are 416 = 4,294,967,296 quaternary functions of two variables,
and 2.99483809211*1014 quaternary Inclusive Forms generated by
the S/D trees. Thus, on the average every function of two variables
can be synthesized (realized) in approximately 69,729 ways. This
high number of realizations means that most functions of two
variables are realized with less than five expansions, and all
functions with at most five expansions.

 334 Appendix C: Count of the Number of S/D IFs and the Novel IFn,2 Triangles

C.1 General Formula to Compute the Number of IFs for an
Arbitrary Number of Variables and Arbitrary Galois Field
Radix

Although the S/D trees and Inclusive Forms that were developed in
Chapt. 3 are for GF(4), the same concept can be directly and
systematically extended to the case of nth radix of Galois fields and
N variables. Theorem C.3 provides the total number of IFs per
variable order for N variables (i.e., N decision tree levels) and nth
radix of any arbitrary algebraic field, including GF(pk) where p is a
prime number and k is a natural number ≥ 1. The generality of
Theorem C.3 comes from the fact that algebraic structures specify
the type of operations (e.g., addition and multiplication operations)
in the functional expansions but do not specify the counts which are
an intrinsic property of the tree structure and are independent of the
algebraic operations performed. Thus, Theorem C.3 is valid, among
others, for Galois fields of arbitrary radix (pk) where p is a prime
number and k is a natural number ≥ 1 (e.g., 3, 4, 5, 7, 8, 9, 11, 13,
etc).

Theorem C.3. The total number of Inclusive Forms for N variables
and nth radix Galois field logic is equal to:

 # QIFs = Φ n,N =

!!

!
...

!!

!

!!

!
{...

)()()(
0

0

22
)2(

)2(

11
)1(

)1(

00 0

)()()(
01

1

2

2 NN
N

N

N

N

kk k kkkkkk n
n

n
n

n
nnn n

N

N N

−−−
−

−

−

−

== =
�� �

− −

}...)()()()).(1()).(1()).(1(
)1(

2
1

1
0

N
N

kkk

nnn nnnnnn −−− −

.

 (C.15)

Proof. The following is the derivation of the general Eq. to calculate
the number of IFs per variable order: The total number of nodes for
any nth radix Galois field (GF(n)) tree with N levels (i.e., N
variables) equals to:

 �
−

=

1

0
)(

N

k

k

n . (C.16)

 C.1 General Formula to Compute the Number of IFs 335

For any S-type (i.e., Shannon type) node there is only one type of
nodes as the branches of the Shannon node have the possibility of
single value each. Yet, for D-type (i.e., Davio type) node there are N
possible types of nodes (where N is the number of variables, which
is equal to the number of levels). The highest possible number of
forms for the D-type node exists when the Davio node exists in the
first (highest) level, and the lowest possible number of forms for the
D-type node is when the Davio node exists in the Nth-level (lowest
level). Therefore, for certain number (M) of S-type nodes the
following formula describes the number of the D-type nodes for N
variables:

 # S = M � # D = �
−

=

1

0
)(

N

k

k

n - M. (C.17)

It can be shown that for GF(n) (n-ary decision tree with N-levels
(i.e., N variables), the general formulas that count the number of D-
type nodes, and the number of all possible forms for the D-type node
in the kth level (where k is less than or equal the total number of
levels N) are, respectively:

 # Dk =)(
)1(

n
k−

, (C.18)

 |Dk| =)()).(1(
)(

n nn
KN− −

, (C.19)

where # Dk is the number of D-type nodes in the kth level, |Dk| is the
number of all possible forms (per node) for the D-type node in the
kth level, Let us define the S/D tree category to be the S/D trees that
have in common the same number of S-type nodes and the same
number of D-type nodes within the same variable order. Let us
define the following entities for nth radix Galois field and N
variables (i.e., N decision tree levels):

 ψ n,N = number of variable orders. (C.20)

 Ω n,N = number of S/D tree categories per variable
 order. (C.21)
 φ n,N = number of S/D trees per category. (C.22)

 Φ n,N = number of IFs per variable order. (C.23)

 336 C.1 General Formula to Compute the Number of IFs

From the previous Eqs., and using elementary count rules, one can
derive by mathematical induction the following general formulas for
N being the number of variables, and n being the field radix:

 ψ n,N = N!, (C.24)

 Ω n,N = �
−

=

1

0
)(

N

k

k

n + 1, (C.25)

 φ n,N =

�

�
−

=

−

=

−
1

0

1

0

!]![

]![

N

k

k

N

k

k

kkn

n
 , where k =0, 1, 2, 3, …, N-1, (C.26)

 Φ n,N =

!!

!
...

!!

!

!!

!
{...

)()()(
0

0

22
)2(

)2(

11
)1(

)1(

00 0

)()()(
01

1

2

2 NN
N

N

N

N

kk k kkkkkk n
n

n
n

n
nnn n

N

N N

−−−
−

−

−

−

== =
�� �

− −

}...)()()()).(1()).(1()).(1(
)1(

2
1

1
0

N
N

kkk

nnn nnnnnn −−− −

.

 (C.27)
 Q.E.D.

 One can note that the formula in Eq. (C.27) used to obtain the
total number of Inclusive Forms for N variables and nth radix of
Galois field is a very general fomula that includes the ternary case
(Eq. (C.1)) and the quaternary case (Eq. (C.14)) as special cases.
 Numerical counting results that are obtained from Eq. (C.27)
can be used in search heuristics as numerical bounds that could be
incorporated into efficient search of S/D trees (from Chapt. 3) in
order to obtain minimal GFSOP forms for specific multiple-valued
logic functions. Since such search for minimal forms is already a
difficult problem in two-valued logic (for example using binary S/D
trees) especially when the number of variables is large, the search
for minimal GFSOP forms in multiple-valued Galois logic will be
very difficult. Thus, further numerical evaluations have to be
conducted in order to estimate the usefulness of numerical bounds
obtained from Eq. (C.27) in such multiple-valued search heuristics.

 C.1 General Formula to Compute the Number of IFs 337

Example C.3. Let us produce the number of QIFs over GF(4) for
two variables (i.e., N=2 and n = 4), then one obtains:
Φ 4,2 =

}

!!

!

!!

!
{

)4(

)4(
)4(

4
)4(

4

2
1

1
0

12

1

22

2

)4).(14(

)4).(14()4()4(

22
)22(

)22(

11
)12(

)12(

0 0

k

k

k k kkkk

−

−
⋅

−−
−

−

−

−

= =
� �

− −

= Φ 00|4,2 +Φ 10|4,2 + Φ 20|4,2 + Φ 30|4,2 + Φ 40|4,2 + Φ 01|4,2 +
 Φ 11|4,2 + Φ 21|4,2 + Φ 31|4,2 + Φ 41|4,2,
= 1 + 256 + 24,576 + 1,048,576 + 16,777,216 + 16,777,216 +
 4,294,967,296 + 412,316,860,416 + 1.75921860444* 1013 +
 2.81477976711*1014,
 = 2.99483809211*1014.

Corollary C.1. From [52] and Eq. (C.15), the following
mathematical corollary can be obtained to count the number of
Inclusive Forms for N variables and second radix:

=∏ +
−

=

−−

)21(221

0

1 kknn

k

!!

!
...

!!

!

!!

!
{...

)2(
2

)2(
2

)2(
2

0

0

22
)2(

)2(

11
)1(

)1(

00 0

)2()2()2(
01

1

2

2 NN
N

N

N

N

kk k kkkkkkN

N N

−−−
−

−

−

−

== =
�� �

− −

}...)2()2()2()2).(12()2).(12()2).(12(
)1(

2
1

1
0

N
N

kkk −−− −

. (C.28)

 In general, expansions of functions can be produced over basis
functions of a single variable, two variables, or any number of
variables. The interesting case of expansions of functions utilizing
pairs of variables can be produced using the general procedure for
expansions over Linearly Independent (LI) logic. This can be
achieved by the recursive expansions of a multi-variable function
over bases of two variables. The advantage of such expansions is the
regular usage of universal blocks with two control variables that
generalize multiplexers (data selectors) with two control variables
(i.e., variables of control functions) and four data inputs (data

 338 C.1 General Formula to Compute the Number of IFs

functions). The following Sect. introduces a fast method to calculate
the number of IFs (that are special cases of Linearly Independent
(LI) logic) for an arbitrary Galois field logic for functions with two
variables.

C.2 A Fast Method to Calculate the Number of IFs for an
Arbitrary Radix of Galois Field GF(pk) for Functions of
Two Variables Using IFn,2 Triangles

The count of the number of IFs is important in many applications,
especially in providing upper numerical boundaries for efficient
search of a minimum GFSOP. Calculating the numbers of Inclusive
Forms (IFs) can be very time consuming due to the time required to
perform the mathematical operations in the general Eq. (C.15). This
is why a fast method to generate the number of IFs is needed.
Because functions with two variables find an important application
in the ULMs for pairs of variables, the following subsection
provides a fast method to calculate the number of IFs over an
arbitrary radix of Galois field GF(pk) for two variable functions (i.e.,
N = 2).

C.2.1 IFn,2 Triangles

Functions with two variables are attractive in logic synthesis since
many functional decomposition methods exist that produce two
control inputs for primitive cells in a standard library of standard
cells (such as in a multiplexer with two address lines). It is shown in
[3,4] how to produce ULMs for pairs of control variables that
generalize Shannon and Davio expansion modules. Theorem C.4
will introduce a fast method to calculate the number of Inclusive
Forms for functions with two input variables over an arbitrary radix
of Galois field [3].
 These triangles are important because the complexity of count
using Eq. (C.15) for high dimensions is very high, and thus the
ability of a personal computer to compute the counts for number of
variables greater than five in a reasonable amount of time becomes

 C.1 General Formula to Compute the Number of IFs 339

questionable. Consequently, the IFn,2 triangles provide an alternative
numerical and geometrical pattern of computing [3].

Theorem C.4. The following IFn,2 Triangles provide a fast method
to calculate the number of IFs over an arbitrary nth radix of Galois
field (GF(pk)) for two variable functions (N=2).

 a

 b

Fig. C.1. IFn,2 Triangles: a the Triangle of Coefficients, and b the Triangle of Values for a
fast calculation of the number of Inclusive Forms for an arbitrary radix Galois field and
functions of two input variables (N=2).

1 2 1 1 2 1

 1 3 3 1 1 3 3 1

 1 4 6 4 1 1 4 6 4 1

 1 5 10 10 5 1 1 5 10 10 5 1
1 6 15 20 15 6 1 1 6 15 20 15 6 1

 1 7 21 35 35 21 7 1 1 7 21 35 35 21 7 1

20 21 22 22 23 24

 30 32 34 36 36 38 310 312

 40 43 46 49 412 412 415 418 421 424

 50 54 58 512 516 520 520 524 528 532 536 540

 N0(N-1) N1(N-1)N2(N-1) N3(N-1).. N(N-1)(N-1) NN(N-1)NN(N-1) N(N+1)(N-1) N(N+2)(N-1).. N2N(N-1)

 340 C.2.1 IFn,2 Triangles

Proof. The proof of Theorem C.4 follows directly from the
mathematical induction of the number of IFs over an arbitrary radix
of Galois field GF(pk) for two variable functions. This can be
deduced directly from Eq. (C.15); if the IFn,2 Triangles are valid for
n = q then they will be also valid for n = q + 1, where n = pk (p is a
prime number and k is a natural number ≥ 1). Q.E.D.

 It can be observed that the IFn,2 Triangle of Coefficients
possesses a close similarity to the well known Pascal Triangle. This
occurs as follows: if one omits the first two rows of the Pascal
Triangle and duplicates each row into another horizontally adjacent
row, the IFn,2 Triangle of Coefficients will be obtained. This fact
helps in creating computer algorithms that generates the IFn,2
Triangle of Coefficients since many efficient and optimized
algorithms already exist to generate the Pascal Triangle. The
following example illustrates the concept of count of the number of
IFs over an arbitrary radix of Galois field GF(pk) for two variable
functions through the IFn,2 Triangles that were demonstrated in Fig.
C.1.
Example C.4. Utilizing the IFn,2 Triangles from Fig. C.1, we can
calculate the number of Inclusive Forms for GF(2), GF(3), and
GF(4) for two variables:
Φ 2,2 = 1⋅ 20+2⋅ 21+1⋅ 22+1⋅ 22+2⋅ 23+1⋅ 24 = 1 + 4 + 4 + 4 + 16 +
 16 = 45.
Φ 3,2 = 1⋅ 30+3⋅ 32+3⋅ 34+1⋅ 36+1⋅ 36+3⋅ 38+3⋅ 310+1⋅ 312 = 730,000.
Φ 4,2 = 1⋅ 40+4⋅ 4 3+6⋅ 46+4⋅ 49+1⋅ 412+1⋅ 412+4⋅ 415+6⋅ 418+4⋅ 421+1⋅
 424,
 = 2.99483809211*1014.
 One can observe that the results from Eqs. (C.29), (C.30), and
(C.31) are the same results that were obtained previously.

C.2.2 Properties of IFn,2 Triangles

(1) The number of positions (elements) in each row of the triangles
in Figs. C.1a and C.1b are even starting from six.

 C.2.1 IFn,2 Triangles 341

(2) The sum of elements in each row in Fig. C.1a equals to the
number of S/D trees per variable order.
(3) The triangle in Fig. C.1a possesses even symmetry around an
imaginary vertical axis in the middle of the triangle.
(4) The minimum number of columns required to generate the whole
triangle in Fig. C.1a is equal to three (due to even symmetry): one
wing, one column neighbor to the middle column, and one middle
column.
(5) The triangle in Fig. C.1a can be generated by the process of
“Shift Diagonally and Add Diagonally” (SDAAD); shift the left
wing diagonally from west to southeast direction and add two
numbers diagonally from east to southwest direction, and shift the
right wing diagonally from east to southwest direction and add two
numbers diagonally from west to southeast direction.
(6) The difference in powers in the triangle in Fig. C.1b per row
element is (N-1).
(7) The first number in each row of the triangle in Fig. C.1b is N0
and the last number per row is N2N(N-1), where N is the number of
variables.
(8) The middle two numbers in each row of the triangle in Fig. C.1b
are always equal to NN(N-1), where N is the number of variables.

 342 C.2.2 Properties of IFn,2 Triangles

Appendix D

Universal Logic Modules (ULMs) for Circuit
Realization of Shannon/Davio (S/D) Trees

This Appendix provides logic circuit realizations of Universal Logic
Modules (ULMs) for the S/D expansions of multiple-valued
Shannon and Davio spectral transforms from Chapt. 3.

D.1 S/D Universal Logic Modules for Ternary Radix

The nonsingular expansions of Ternary Shannon (S) and Ternary
Davio (D0, D1, and D2), can be realized using a “Universal Logic
Module” (ULM) with control variables corresponding to the
variables of the basis functions (i.e., the variables we are expanding
upon). We call it a universal logic module, because similarly to a
multiplexer, all functions of two variables can be realized with two-
level trees of such modules using constants on the second-level data
inputs. ULMs are complete systems, because they can implement all
possible functions with certain number of variables. The concept of
the universal logic module was used for binary RM logic (over
GF(2)), as well as the very general case of Linearly Independent (LI)
logic [172,174], that includes R-M logic as a special case. Binary LI
logic extended the universal logic module from just being a
multiplexer (Shannon Expansion), AND/EXOR gate (positive Davio
expansion), and AND/EXOR/NOT gate with inverted control
variable (negative Davio expansion), to the universal logic modules
for any expansion over any linearly independent basis functions.
Analogously to the binary case, Figs. D.1 and D.2 present the
universal logic modules for ternary Shannon (S), and ternary Davio
(D0, D1, and D2), respectively.
 We can note, as seen from Chapt. 3, that any function f can be
produced by the application of the independent variable {x} and the

cofactors {fi, fj, and fk } as inputs to a ULM. The form of the
resulting function depends on our choice of the shift and power
operations that we choose inside the ULM for the input independent
variable, and on our choice of the weighted combinations of the
input cofactors. Utilizing this note, we can combine all Davio ULMs
to create the single all-Davio ULM. Figure D.3 illustrates this ULM.
An even more general Universal Logic Module can be generated to
implement all Ternary Shannon and Davio expansions over GF(3).
Figure D.4 illustrates such a ULM.
 In general, the gates in the ULMs can be implemented, among
other circuit technologies, by using binary logic over GF(2) [3,4], or
using multi-valued circuit gates. Each ternary ULM corresponds to a
single node in the nodes of TDTs that were illustrated in Chapt. 3.
The main advantage of such powerful ULMs is in high layout
regularity that is required by future nano technologies. The trees can
be realized in layout because they do not grow exponentially for
practical functions. For instance, assuming a ULM from Fig. D.4,
although every function of two variables can be realized with four
such modules, it is highly probable that most of the functions of two
variables will require less than four modules. Because of these
properties, this approach should give very good results when applied
to incompletely specified functions and multi-valued relations.
 Multiplexers and Davio gates are used to design new
reconfigurable structures, such as FPGAs with their well-known
applications in memory-based Ping-Pong architectures and parallel
processing systems (such as DEC-PERLE system), and regular data
path blocks, besides many of the multi-level structures that are based
on them. Similarly, the new ULMs can find various implementations
in different sorts of regular structures, such as: iterative circuits,
Cellular Automata (CA), Lattices (or Pseudo-Symmetric Decision
Diagrams (PSDDs) from Chapt. 4), Pipelining, and Systolic
Architectures. One important implementation is one-to-one mapping
of regular layout of functions into Lattices. Regular structures are
most favorable in circuit design as they allow the ease of many
tasks, such as: (1) fault detection (circuit diagnosis; circuit testing),
(2) fault localization, (3) circuit self-repairing, (4) evolvable
hardware, and (5) circuit manufacturing. Such properties are
essential in the future advanced technologies for sensitive
applications such as space-oriented applications (e.g., satellite

 344 D.1 S/D Universal Logic Modules for Ternary Radix

circuits that are immune to galactic/cosmic radiation) and bio-
medical applications (e.g., human-IC interface). ULMs can be also
created for pairs of variables and their larger sets.

 Fig. D.1. ULM of ternary Shannon over GF(3).

 a

 b

 c

 Fig. D.2. ULMs of Davio over GF(3): a D0, b D1, and c D2.

 +

•

 •

•

 X

f0

f2

f1

0x

2x

1x

 D.1 S/D Universal Logic Modules for Ternary Radix 345

+

 •

 •

 •

 X

 f0

 f0 + f1 + f2

 2f1 + f2

1

2(x)2

x

+

 •

 •

 •

 X

 f2

 f0 + f1 + f2

 2f0 + f1

1

 x’

 2(x’)2

+

 •

•

 • f1

 f0 + f1 + f2

 2f2 + f0

1

 2(x”)2

 x”

 X

Fig. D.4. Ternary S/D ULM over GF(3).

 Fig. D.3. Universal Logic Module for all ternary Davio expansions over GF(3).

x

1

2
•

•

•

•

+
+1

fi

fk

fj

 f

•

•

•

•

 +

0x

 1

1x

2x
2

x
x’
x”

 fi

 fk

 fj

 f

 +1

 346 D.1 S/D Universal Logic Modules for Ternary Radix

D.2 Logic Synthesis of Quaternary GFSOPs

The nonsingular expansions of quaternary Shannon and Davio
expansions, can be realized using a quaternary Universal Logic
Module (ULM) with control variables corresponding to the variables
of the basis functions (i.e., the variables that are expanded upon).
 Similarly to the ternary case, quaternary ULMs (i.e, ULMs with
quaternary gates) for quaternary Shannon and quaternary Davio
expansions can be designed. Yet, because of the “maturity” and the
intensive usage of the binary-based (i.e., Boolean) technologies, we
will illustrate the implementation of the quaternary ULMs as binary-
based logic circuits. This can be done through the encoding of a
single 4-valued variable into two 2-valued variables.
 Analogously to the ternary case, the general ULM that covers
the quaternary Shannon and all Davio expansions can be created.
Note that by utilizing Figs. D.5 and D.6, all the quaternary logical
addition and multiplication gates in Fig. D.7 can be converted into
the corresponding binary logical addition and multiplication gates,
respectively, similar to the encoding of a single 4-valued variable
into two 2-valued variables presented in (for simplicity of
illustration, the internal 4/2 encoders and 2/4 decoders in Fig. D.7
are cancelled and the internal structure is simplified). It also can be
observed in Fig. D.7 that Shannon ULM is a two level circuit, Davio
ULM (i.e., per Davio) is a two level circuit, all Davio ULM (i.e.,
ULM for all Davio types) is a four level ULM circuit, and all
Shannon and Davio ULM is a five level circuit (excluding the levels
of literals’ generators as seen in Fig. D.7).
 In general, each quaternary ULM corresponds to a single node
of QuDTs that were illustrated in Chapt. 3. The main advantage of
such powerful ULMs is in high layout regularity that will be
required by future nano-technologies. The trees can be realized in
layout because they do not grow exponentially for practical
functions. For instance, although every function of two variables can
be realized with five such modules, it is highly probable that most of
the functions of two variables will require less than five modules.
Because of these properties, this approach should give very good
results when applied to incompletely specified functions and multi-
valued relations.

 D.2 Logic Synthesis of Quaternary GFSOPs 347

 a b

Fig. D.5. Realization of GF(4) addition in a as GF(2) addition in b (i.e., vector of EXORs).

 a b

 Fig. D.6. Realization of GF(4) multiplication in a using GF(2) operations from b.

A

B

C

GF(4)

����

GF(2)

a1

a2

 b1

 b2

 c1

 c2

A

B

C

 4/2

 4/2

 2/4

GF(4)

A

B

C

����
.

A

B 4/2

4/2

.

.

.

.

.

a2

b1

b2
 c3

 c4

C
2/4

a1

 348 D.2 Logic Synthesis of Quaternary GFSOPs

Fig. D.7. Quaternary ULM that produces quaternary Shannon expansion (Eq. (2.27)), and
all quaternary Davio expansions (Eqs. (2.44), (2.45), (2.46), and (2.47)).

Where:

4/2

2/4

Is a quaternary-to-binary encoder.

Is a binary-to-quaternary decoder.

.

+

Is a binary Mux.

Is a GF(4) logical multiplier.

Is a GF(4) logical adder.

 fk

 fl

x’

. .

.

.

.

 +

 fi

 fj
 f

0x

1x

2x

3x

1

x

x”
x’’’

.

 D.2 Logic Synthesis of Quaternary GFSOPs 349

 The ULM shown in Fig. D.7 is used repeatedly (systematically)
as the processing node in the corresponding canonical multi-level
QuDTs. Also, nodes of the corresponding optimized (minimized),
non-canonical, and non-regular Reduced Quaternary Decision
Diagrams (RQuDDs) can be implemented using the ULM in Fig.
D.7. RQuDD circuits are important in the case when they are one-to-
one mapped into an isomorphic hardware.

 350 D.2 Logic Synthesis of Quaternary GFSOPs

Appendix E

Evolutionary Computing: Genetic Algorithm (GA)
and Genetic Programming (GP)

This Appendix provides a basic background for the evolutionary-
based algorithms in Chapts. 3, 8, and 11, respectively. Evolutionary
Computing (EC) is one type of “black box” global optimization
methods that has been successfully implemented to solve for many
nonlinear difficult problems [102].
 EC implements the idea which was proposed by Darwin as an
explanation of the biological world surrounding us: Evolution by
Natural Selection [66]. By evolution we mean the change of the
genes that produce a structure. The result of this evolution is the
Survival of the Fittest and the Elimination of the Unfit. Darwin's
theory of evolutionary selection holds that variation within species
occurs randomly and that the survival or extinction of each organism
is determined by that organism's ability to adapt to its environment.
 This very simple but very powerful idea has been implemented
in algorithms which are called Genetic Algorithms (GA) and
Genetic Programming (GP). The only difference between GA and
GP is the representation of the problem and consequently the set of
genetic operators used to obtain the solution. This is because GA
uses string representation and the consequent genetic operators
[102], and GP uses tree representation and the consequent genetic
operators [137].
 Figure E.1 represents the general optimization or synthesis EC
method, where iterations on this flow diagram are made until the
actual output matches exactly the desired output (i.e., no error) or
the actual output mismatches the desired output within an acceptable
range of error.

Fig. E.1. Block diagram that illustrates the mechanism of solving a problem using
Evolutionary Computing (EC).

 The main operations that are used in EC are copying, mutation
(or copying error), and crossover. By copying we mean a
reproduction of an exact copy of the individual. Mutation means a
reproduction of an erroneous copy of the individual. Crossover
means the combination of genes from two parents to produce
offsprings. Figure E.2 demonstrates a general flow diagram of an
EC, where Run is the current run number, N is the maximum
number of runs, Gen. is the current generation number, M is the
population size, i is the current individual in the population, Pr is the
probability of reproduction, Pc is the probability of crossover, Pm is
the probability of mutation, and Pr + Pc + Pm = 1.0.
 In Fig. E.2, the result of looping over� Gen. is best-of-run
individual, the result of looping over�Run is best-of-all individual,
and the result of looping over i is the best-of-generation individual.
Iterations in Fig. E.2 continues until optimal solution is obtained. EC
algorithms are try-and-check (try-and-error) probabilistic search
algorithms (i.e., depends on the reduction of error in the search
process to produce a solution), and the EC program may have to
perform so many iterations (as in Fig. E.2) to produce the desired
solution to a problem. Thus, and although EC methods produce in
many occasions new solutions that humans never made before, it is
in general highly advisable to consider EC as one final option for
problem solving (i.e., when other methods fail to solve the problem),
since EC acts like a “black box” that produces solutions without
showing methodology (i.e., EC does not provide a detailed step-by-
step algorithm (analytical or procedural) to solve a problem and it
only shows the final solution).

EC

Mapping from
EC domain into
problem domain

Error
Actual

Objective

 Desired

 352 Appendix E: Genetic Algorithm (GA) and Genetic Programming (GP)

 Fig. E.2. Flowgraph of a general GA and GP.

Run:=0

Gen.:=0

Create Initial Population
(Random,Seeding,or Hybrid)

for Run (Strings:Binary/MV and Fixed/Variable length)

Termination Criterion is Satisfied
 for Run

No

Yes
Designate

Result
for Run

Run:=Run+

Run=N?
No

END

Yes

Evaluate Fitness
of each Individual

in Population.

i:=0

i=M?

Yes

No

Gen.:=Gen.+1

Select Genetic Operation

Copy into new
population

Perform Reproduction
on copy of Indiv.

Pr∝f1(Fitness)

Select one individual
based on fitness (with
reselection allowed)

Pc∝f2(Fitness)

Select Two Indiv.
(Parents) based on fitness
(with reselection allowed)

i:=i+1

Select Crossover point (Fixed/Random
and Single/Multiple)and perform
crossover (Sexual Recombination) on

Insert Two Offspring into the new

Pm∝f3(Fitness)

Select one individual
based on fitness (with
reselection allowed)

Perform Mutation on copy
of Indiv. (Fixed/Random
and Single/Multiple Mut.

Insert Mutant into
the new population

i:=i+1

Loop 3

Loop 2

Loop 1

 Appendix E: Genetic Algorithm (GA) and Genetic Programming (GP) 353

 The evolutionary algorithm from Fig. E.2 has many variants.
Yet, a canonical form in all these variants exist. Figure E.3
illustrates one possible canonical diagram for evolutionary
computing, where select survivors means the selection of (1)
parents, and (2) generation of offspring.

 Fig. E.3. Canonical flow diagram for evolutionary methods.

 The canonical diagram for EC (shown in Fig. E.3) characterizes
the canonical implementation of various types of EC such as GA
and GP, and (as stated previously) the only difference will be in (1)
the internal representation of chromosomes operated upon and (2)
the types of internal operations used accordingly.

Evaluate
Fitness

Select
Survivors

 Randomly
 Vary
 Individuals

Initialize
Population

 354 Appendix E: Genetic Algorithm (GA) and Genetic Programming (GP)

Appendix F

Count for the New Multiple-Valued Reversible
Shannon and Davio Decompositions

This Appendix provides the count for the new families of reversible
Shannon and Davio spectral transforms from Chapt. 5. These counts
can be used as a heuristic for efficient search for specific families of
multiple-valued reversible Shannon and Davio expansions.

F.1 Counts for the new families of reversible spectral
transforms

The following theorems count the number of the new reversible
Shannon and Davio spectral transforms over GF(n) where n = pk,
where p is a prime number and k is a natural number of value k ≥ 1.

Theorem F.1. There exists n! reversible fundamental Shannon
expansions over GF(n).

Proof. To obtain reversible Shannon expansions we should have
reversible basis functions matrices (as was shown in Chapt. 5). This
implies that the total count of correct permutations of the rows in the
basis functions matrix that satisfy the Cyclic Group Property for
GF(n) is equal to:

!)!1()!1(
1

0

nnnn
n

k

=−=−�
−

=

. Q.E.D.

Theorem F.2. For each type of reversible invariant multi-valued
Davio expansion Dn there exists n reversible invariant multi-valued
Davio expansions of that type (Dn). There exists n2 total reversible
fundamental Davio expansions of all types per reversible
fundamental Shannon expansion, and total of n2n! for all possible
reversible fundamental Shannon expansions.

Proof. Since each row of the reversible fundamental Shannon
expansion over GF(n) corresponds to n possible fundamental Davio
expansions, then the total reversible fundamental Davio expansions
for the whole rows in the basis functions matrix per reversible
Shannon expansion is equal to n⋅n = n2. Since there exists n! total
reversible fundamental Shannon expansions, so the total number of
reversible fundamental Davio expansions is equal to n2n!. Q.E.D.

 For the generation of the total number of counts for all
reversible invariant multi-valued Shannon and Davio expansions
one just needs to refer to the results presented previously.
Example F.1. The following are counts of the corresponding
reversible fundamental Shannon and Davio expansions:
GF(2): there exists 2 possible reversible Shannon expansions and 8
possible reversible Davio expansions.
GF(3): there exists 6 possible reversible Shannon expansions and
54 possible reversible Davio expansions.
GF(4): there exists 24 possible reversible Shannon expansions and
384 possible reversible Davio expansions.
 Table F.1 provides counts for the new reversible families of
fundamental multi-valued Shannon and Davio spectral transforms.
The large numbers of the new reversible multi-valued spectral
transforms that are shown in Table F.1 imply that one can have a
very large space of total reversible spectral transforms to choose
from for any applications that involve spectral methods (like
constructing 3-D regular structures as was shown in Chapt. 4).

 356 F.1 Counts for the new families of reversible spectral transforms

Table F.1. Counts of the new reversible multi-valued GF-based classes of decompositions.

 This can be good on one hand in the sense that one can have
wide variety of reversible spectral transforms to choose from to
meet certain optimization criteria such as reduction of area, delay,
and power, and improving testability, but can be challenging on the
other hand in that one needs “smart” search heuristics and strategies
to search such large space for the optimal spectral transforms that
meet certain optimization criteria.

GF(n)
Reversible Fundamental
Multi-Valued Shannon
Expansions

Total Reversible
Fundamental Multi-Valued
Davio Expansions

 2 2 8

 3 6 54

 4 24 384

 5 120 3,000

 7 5,040 251,460

 F.1 Counts for the new families of reversible spectral transforms 357

Appendix G

NPN Classification of Boolean Functions and
Complexity Measures

This Appendix provides the NPN-classifification of Boolean
functions and the complexity measures that were used in Chapt. 7
and Appendix H.

G.1 NPN-Classification of Logic Functions

There exist many classification methods to cluster logic functions
into families of functions [118,164]. Two important operations that
produce equivalence classes of logic functions are negation and
permutation. Accordingly, the following classification types result:
(1) P-Equivalence class: a family of identical functions obtained by
the operation of permutation of variables.
(2) NP-Equivalence class: a family of identical functions obtained
by the operations of negation or permutation of one or more
variables.
(3) NPN-Equivalence class: a family of identical functions obtained
by the operations of negation or permutation of one or more
variables, and also negation of function.
 NPN-Equivalence classification is used in this Book. Table G.1
lists 3-variable Boolean functions, for the non-degenerate classes
(i.e., the classes depending on all three variables).
Example G.1. The following steps produce the sets of all possible
Boolean functions that are included in class #1 in Table G.1 for the
representative function: F = x1x2 + x2x3 + x1x3.

Table G.1. NPN equivalence classes for non-degenerate Boolean functions of three binary
variables.

 NPN Class Representative Function Number of Functios

 1 F = x1x2 + x2x3 + x1x3 8
 2 F = x1⊕ x2 ⊕ x3 2
 3 F = x1+ x2 + x3 16
 4 F = x1(x2 + x3) 48
 5 F = x1x2x3 + x1′x2′x3′ 8
 6 F = x1′x2x3 + x1x2′+ x1x3′ 24
 7 F = x1(x2x3 + x2′x3′) 24
 8 F = x1x2 + x2x3 + x1′x3 24
 9 F = x1′x2x3 + x1x2′x3 + x1x2x3′ 16
 10 F = x1x2′x3 ′+ x2x3 48

(1) Negation of variables (N): {F1 = x1

’x2 + x2x3 + x1
’x3, F2 = x1x2

’ +
x2

’x3 + x1x3, F3 = x1x2
 + x2x3

’ + x1x3
’, F4 = x1

’x2
’ + x2

’x3 + x1
’x3, F5 =

x1
’x2 + x2x3

’ + x1
’x3

’, F6 = x1x2
’ + x2

’x3
’ + x1x3

’, F7 = x1
’x2

’ + x2
’x3

’ +
x1

’x3
’}.

(2) Permutation of variables (P): {F8 = x1x2 + x2x3 + x1x3}.
(3) Negation of functions (N): {F9 = x1

’x2
’ + x2

’x3
’ + x1

’x3
’}.

Thus the union of the three types of sets from steps 1-3 (which
produces a set with irredundant functions as its elements) is {F1 =
x1

’x2 + x2x3 + x1
’x3, F2 = x1x2

’ + x2
’x3 + x1x3, F3 = x1x2

 + x2x3
’ +

x1x3
’, F4 = x1

’x2
’ + x2

’x3 + x1
’x3, F5 = x1

’x2 + x2x3
’ + x1

’x3
’, F6 = x1x2

’
+ x2

’x3
’ + x1x3

’, F7 = x1
’x2

’ + x2
’x3

’ + x1
’x3

’, F8 = x1x2 + x2x3 + x1x3},
which encompasses a total of eight functions.

G.2 Complexity Measures

Decomposability means complexity reduction. Many complexity
measures exist for the purpose of evaluating the efficiency of the
decomposition of complex systems into simpler sub-systems. Such
complexity measures include: (1) the Cardinality complexity
measure (DFC), (2) the Log-Functionality (LF) complexity measure
[108], and (3) the Sigma complexity measure [271]. In the first two
measures, complexity is a count of the total number of possible
functions realizable by all of the sub-blocks; the third just indicates

 G.1 NPN-Classification of Logic Functions 359

the level of decomposition in the lattice of possible structures. The
complexity of the decomposed structures is always less or equal to
the complexity of the original Look-Up-Table (LUT) that represents
the mapping of the non-decomposed structure. That is, if a
decomposed structure has higher complexity than the original
structure, then the original structure is said to be non-decomposable.
Although the DFC measure is easier and more familiar, LF is a
better measure because it more properly deals with non-disjoint
systems [108]. Consequently, the LF measure is used in Chapt. 7
and Appendix H. The DFC and LF complexity measures are
illustrated using Fig. G.1, which exemplifies an example of
Ashenhurst-Curtis (AC) decomposition, as follows:

Fig. G.1. Generic non-disjoint decomposition.

 In Fig. G.1, for the first block, the total number of possible
functions for three 2-valued input variables is 223 = 256. Also, for the
second block, the total number of possible functions is similarly
256. The total possible number of functions for the whole structure
is equal to 256⋅256 = 65,536. The DFC measure is defined as:

 DFC = O⋅ 2I, (G.1)
 CDFC = �

n

nDFC , (G.2)

where O is the number of outputs to a block, I is the number of
inputs to the same block, Eq. (G.1) is the complexity for every
block, and Eq. (G.2) is the complexity for the total decomposed
structure. For instance, the DFC for Fig. G.1 is: CDFC = 1⋅23 + 1⋅23 =
log2 (65,536) = 16. It was shown in [108] that, for Fig. G.1, the Log-
Functionality complexity measure (CLF) for Boolean functions can
be expressed as follows:

)(log2 FFL CC = , (G.3)
where:

 x2

x1

x4

F
g

x3

 360 G.2 Complexity Measures

)(3F
X

F C pC ′= ,),(),
1

0
(1

3

1
1

1

2

3

2

ip
p

p
Sip

p

i
pPC Y

X

X
Y

Y

Y

p

p

F

X

X

−−�
−

=
=′ ,

)!(

!
),(

kn

n
knP

−
= , () nik

k

i i

ki
k

knS)(
0

)1(
!

1
),(−�

=
−= ,

)!(!

!

iki

k

i

k

−
=��

�

�
��
�

�
,

 }{},,{},,,{ 12134123211 xXXXxxXxxxX =∩=== ,
 ∏=

∈ 1

||1
Xx

iX
i

xp , ∏=
∈ 2

||2
Xx

iX
i

xp , ∏=
∈ 3

||3
Xx

iX
i

xp ,

 ∏=
∈ 1

1 ||
Yy

iY
i

yp , ∏=
∈ 2

2 ||
Yy

iY
i

yp ,

where X1 is the set of input variables to the first block, X2 is the set
of input variables to the second block, X3 is the set of overlapping
variables between sets X1 and X2, PXi is the product of cardinalities
of the input variables in set Xi, and PYi is the product of cardinalities
of output variables in set Yi. For example, the LF for Fig. G.1 is:

}{},,{},,,{ 12134123211 xXXXxxXxxxX =∩=== .

,2,2

,2,422,8222

21

321

==
==⋅==⋅⋅=∴

YY

XXX

pp

ppp

88)2,4()2,
1

0
22(=−−�

=
=′ iSi

i
PCF ,

.92.12)744,7(log744,7 2 ==	=∴ LFF CC
 Figure G.1 shows a four input function, where the variable sets
for the first and second blocks are not disjoint. Note that the variable
sets for the two blocks with outputs g and F are necessarily disjoint,
because if the two blocks shared one input variable, F would have
three inputs and the decomposed structure would be more complex
than the original non-decomposed 3-input function.
Example G.2.

Fig. G.2. A decomposed structure.

x2

x1

x3

 F

 g

 G.2 Complexity Measures 361

 The Log-Functionality complexity measure of the structure in
Fig. G.2 is obtained as follows: Each sub-block in Fig. G.2 has a

total of 162
22 = possible Boolean functions. Figure G.3 illustrates

all of the possible 16 two-variable Boolean functions per sub-block
in Fig. G.2.

Fig. G.3. Maps of all 16 possible Boolean functions of two variables.

 By allowing g and F in Fig. G.2 to take on all possible maps
from Fig. G.3, one obtains the following count of total non-repeated
(irredundant) 3-variable functions, as follows: CF = 88 � CLF = 6.5.
This answer agrees with the result which is obtained previously
[108].
Example G.3. RA produces decompositions for 3-variable functions
that resemble the structures shown in Fig. G.4.

 F =0 F=1 F=(ab)’ F=a→b

 F=b→a F= a+b F= a’ F= b’

 F=a F=b F=eq(a,b) F=a⊕ b

 F= ab F= (a→b)’ F= (b→a)’ F= (a+b)’

a a a a

a a a a

a

a

a

a

a

a

a

a

b b b b

b b b

b

b b

b b

b

b

b

b

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 0
 0 0

 1 1
 1 1

 1 1
 1 0

 1 1
 0 1

 1 0
 1 1

 0 1
 1 1

 1 1
 0 0

 1 0
 1 0

 0 0
 1 1

 0 1
 0 1

 1 0
 0 1

 0 1
 1 0

 0 0
 0 1

 0 0
 1 0

 0 1
 0 0

 1 0
 0 0

 362 G.2 Complexity Measures

 a b

 Fig. G.4. Some RA decomposed structures.

 The Log-Functionality complexity measure for the structures in
Fig. G.4, is obtained as shown in Fig. G.5. Figure G.5 represents a
tree that generates all possible functions for the structures in Figs.
G.4a and G.4b, respectively. (Superscripts of functions denote the
specific edge between two nodes in the tree).

Fig. G.5. All possible combinations of sub-functions f1

(i), f2
(j), and f3

(k) in Figs. G.4a and
G.4b, respectively. Log-functionality complexity measure represents the count of all
possible irredundant functions, that is all different sub-functions and F(i,j) within Fig. G.4a,
and all different sub-functions and F(i,j,k) within Fig. G.4b, where two nodes of the tree are
superposed (*), they are counted only once. At level 2, 100 of the (16)2 possible nodes are
irredundant, and at level 3, 152 out of (16)3 are irredundant.

 Utilizing this methodology of removing redundant functions,
one obtains the following results for Log-Functionality: for Fig.
G.4a, the total number of irredundant sub-functions is CF = 100 �
∴ CLF = log2 (100) = 6.6, and for Fig. G.4b, the total number of
irredundant sub-functions is CF = 152 � ∴ CLF = log2 (152) = 7.2.

 f2
(16)

… …

…

… f2
(16)

Level 0

… … … … …

16 possible 2-variable Boolean functions

16 possible 2-variable Boolean functions per branch

16 possible 2-variable Boolean functions per branch

F(i,j) = f1
(i) f2

(j)

F(i,j,k) = f1
(i) f2

(j)f3
(k)

Level 1

Level 2

 f1
(16) f1

(1) f1
(2) … f1

(15)

 f2
(1) f2

(1)

 f3
(1) f3

(16)

 f2
(16)

 f3
(16)

 f2
(1)

 f3
(1)

*

* *

x1

x2

x3

F

 f1

 f2

 f3

x1

x2

x3

 f1

 f2

F
 ∧∧∧∧

 ∧∧∧∧

 G.2 Complexity Measures 363

Appendix H

Initial Evaluation of the New Modified
Reconstructability Analysis and Ashenhurst-
based Decompositions: Ashenhurst, Curtis, and
Bi-Decomposition

This Appendix provides the necessary background for Ashenhurst-
Curtis (AC) decomposition and Bi-decomposition (BD). This
Appendix also introduces the comparisons between the Modified
Reconstructability Analysis (MRA) (Chapt. 7), Ashenhurst-Curtis
(AC) decomposition, and Bi-decomposition for the decomposition
of 3-variable NPN-classified Boolean functions from Table G.1.
Although the evaluation results provided in this Appendix are only
for all NPN-classified Boolean functions of three variables, and thus
the results are a big simplification if compared to real life problems
which have hundreds of inputs and hundreds of outputs, the results
serve as an important initial insight into the comparative various
complexities of MRA and AC-like decompositions.

H.1 Binary Ashenhurst-Curtis Decomposition

Ashenhurst-Curtis (AC) decomposition [32,33,34,59,60,61] is one
of the major techniques for the decomposition of functions that is
commonly used in the field of logic synthesis. Other decompositions
exist, such as the Bi-decomposition, composition (or Bottom-Up
decomposition), and others [175]. The main idea of AC
decomposition is to decompose logic functions into simpler logic
blocks using the compression of the number of cofactors in the
corresponding representation. This compression is achieved through
exploiting the logical compatibility (i.e., redundancy) of cofactors
(i.e., column multiplicity). As a result of AC decomposition (i.e., as

a result of column compression), intermediate constructs (latent
variables) are created, and learning is achieved as a result of these
variables [96,108]. A general algorithm of the AC decomposition
utilizing map representation, for instance, is as follows:
(1) Select the type of the variant of AC decomposition required:
Ashenhurst, Curtis, generalized Curtis, etc.
(2) Specify the optimization criterion (i.e., termination condition) to
be optimized by the process of decomposition. Such optimization
criterion can be: area, speed, power, or testability.
(3) Remove the vacuous (redundant) variables.
(4) Decompose (partition) the input set of variables into free set and
bound set.
(5) Label columns (cofactors) of the map.
(6) Decompose the bound set and create a new map for the
decomposed bound set. Utilizing minimum graph coloring,
maximum clique, or any other algorithm, combine similar cofactors
into single cofactor. Each cell in the new map represents a labeled
column in the original map.
(7) Encode the columns (cofactors) in the cells of the new map. This
stage will produce the input decomposed sub-block. These
intermediate variables are shown as g and h in Example H.1 (Fig.
H.1).
(8) Using the intersection of the cell values of the compatible
columns produce the output decomposed sub-block (Express the
intermediate variables as functions of the bound set variables).
(9) Produce the total decomposed structure.
(10) Iterate until decomposed blocks, within the optimization
criterion, are obtained.
 In general, steps (4) and (7) determine the optimality of the AC
decomposition (i.e., whether the resulting decomposed blocks are of
minimal complexity or not).
Example H.1. For the following logic function: F = x2x3 + x1x3 +
x1x2, let the sub-set of variables {x2, x3} be the Bound Set, and the
sub-set of variables {x1} be the Free Set. The following is the
disjoint AC decomposition of F (where {–} means don’t care).

 H.1 Binary Ashenhurst-Curtis Decomposition 365

 (4) (6) (7) (9)

Fig. H.1. AC decomposition. Steps (4), (6), (7), and (9) are discussed in the text.

 In Example H.1, the first block of the decomposed structure has
two outputs (i.e., intermediate variables g and h). The DFC measure
of the decomposed structure is equal to 2⋅22 + 1⋅23 = 16, while the
DFC of the original LUT is = 1⋅23 = 8.
 The calculation of the DFC complexity measure in Example H.1
shows the inadequacy of DFC as a measure of complexity because
the decomposition produces a more complex structure than the non-
decomposed LUT (which should be considered as the most complex
data model).
 By contrast, the log-functionality (LF) complexity measure for
the decomposed structure in Fig. H.1 is 8, which does not exceed the
complexity of the LUT (which is equal to 8). Therefore, for the AC
decomposition of Boolean functions with three variables, if the first
block of the decomposed structure has two outputs, then the
decomposed structure is at least as complex as the LUT, and
consequently, the decomposition is rejected. For other NPN
functions, the AC decomposition produces only one output in the
first block, and the decomposed structure is less complex than the
LUT (which should be considered as the most complex model since
it involves the original non-decomposed data), and thus these
decompositions are not rejected.

 0 1 00 01 11 10

0 0,00,1

F

x2
x3 x1

 x2x3

0 0 0 1 0
1 0 1 1 1

 A B C B

0 A B

1 B C

 x3
0 1

 1 0,11,0

x2

 g,h
 g = x2x3
 h = x2⊕ x3

x

gh

00 01 11 10

0 0 0 - 1
1 0 1 - 1

F

 F

g x2

x1

x3

 h

 A = 0,0 B = 0,1 C = 1,0

 366 H.1 Binary Ashenhurst-Curtis Decomposition

H.2 Multiple-Valued AC decomposition

This Sect. provides the AC decomposition for multiple-valued logic
functions. Since every function which is non-decomposable using
disjoint decomposition can be decomposed by the process of
repetition (sharing) of variables in bound and free sets (i.e., non-
disjoint decomposition), AC decomposition, in general, can be
found in both its disjoint and non-disjoint variants. In general, the

process of repeating a single n-valued variable will produce
n

n)1(−

don’t cares of the total number of cells of the n-valued map of the
corresponding n-valued function with repeated variables. As a result
of AC decomposition, intermediate constructs are created. The new
variables (constructs) correspond to new induced concepts, and
therefore learning is achieved.
 The following example illustrates the use of multi-valued AC
decomposition.
Example H.2. Let us produce the AC decomposition for the
following logic function:

 F

For the sub-set of variables {x2, x3} to be the Bound Set, and the
sub-set of variable {x1} to be the Free Set, by applying the
previously mentioned AC procedure for the AC decomposition, one
obtains the following disjoint AC decomposition of the function F as
shown in Fig. H.2.

x1

x2x3

 00 01 02 10 11 12 20 21 22

0 0 0 1 1 1 0 0 0 1

1 0 2 2 0 0 2 1 0 2

2 0 2 0 1 1 2 0 0 0

 H.2 Multiple-Valued AC decomposition 367

 a b c

 d e f

 g

 g

Fig. H.2. Disjoint AC decomposition for the function in Example H.2: a column
compatibility labeling and variable partitioning into bound set {x2, x3} and free set {x1}, b
map of bound set, c encoded map of the bound set, d output function f of first sub-block, e
output function g of the first sub-block, f map of the second decomposed sub-block, and g
the total resulting structure for AC disjoint decomposition.

 0 1 2

x2
x3

x1

f
g F

First
sub-
block

Second
sub-
block

x1

 f g

00 01 02 10 11 12 20 21 22

0 1 1 - 0 0 - - 0 -

1 2 0 - 2 0 - - 1 -

2 0 1 - 2 0 - - 0 -

 C D B A E F

x2

x3 0 1 2

0 A B C

1 D D B

2 E A C

x2

x3 0 1 2

0 1,1 1,0 0,0

1 0,1 0,1 1,0

2 2,1 1,1 0,0

f,g

x1

x2x3

00 01 02 10 11 12 20 21 22

0 0 0 1 1 1 0 0 0 1

1 0 2 2 0 0 2 1 0 2

2 0 2 0 1 1 2 0 0 0

A B C D D B E A C

x2

x3

0 1 1 0

1 0 0 1

2 2 1 0 f

x2

x3

 0 1 2

0 1 0 0

1 1 1 0

2 1 1 0 g

 368 H.2 Multiple-Valued AC decomposition

 The same ternary function F can be equivalently decomposed
by using the method of the repetition of variables to produce the
corresponding non-disjoint AC decomposition, as follows:

Fig. H.3. Non-disjoint AC decomposition for the function in Example H.2: a variable
repetition, column compatibility labeling, and variable partitioning into bound set {x2, x3}
and free set {x1, x2}, b map of bound set, c encoded map of the bound set and the output
function of the first decomposed sub-block, d map of the second decomposed sub-block,
and e the total resulting structure for AC non-disjoint decomposition.

 The decomposition obtained in Fig. H.2 is not the classical
Curtis decomposition; it is the generalized Curtis decomposition
[96]. This is due to the fact that in classical Curtis decomposition the
number of outputs from the predecessor decomposed block must be
less than the number of inputs to that block (this includes the case of
having only one output, which is the Ashenhurst decomposition as a
special case of Curtis decomposition), but in Fig. H.2 the number of

a

e

b
g

c

x2

x3 0 1 2

0 0 1 2

1 0 0 1
2 1 0 2

d

A

B

C

g 00 01 02 10 11 12 20 21 22

0 0 1 0 0 0 0 0 1 0

1 0 0 0 2 2 1 2 2 0

2 1 - 1 2 - 2 0 - 0

x1x2

F

x1x2

x2x3

 00 01 02 10 11 12 20 21 22

00 0 0 1 - - - - - -

A B C A A B B A C

x2

x3 0 1 2

0 A B C

1 A A B

2 B A C

01 - - - 1 1 0 - - -

02 - - - - - - 0 0 1

10 0 2 2 - - - - - -

11 - - - 0 0 2 - - -

12 - - - - - - 1 0 2

20 0 2 0 - - - - - -

21 - - - 1 1 2 - - -

22 - - - - - - 0 0 0

x3
x2

x1

g F

First
sub-
block

Second
sub-
block

 H.2 Multiple-Valued AC decomposition 369

outputs of the first sub-block is equal to the number of inputs to the
same sub-block (i.e., number of outputs = number of inputs = 2).

H.3 Bi-decomposition

This Sect. presents Bi-decomposition (BD) algorithm that is used
later in this Sect. to be compared to MRA decomposition. Bi-
decomposition is another type of decomposition, which is widely
used in logic synthesis of Boolean functions. Let x ={x1, x2} be a
partition of the variables representing a function f(x) such that x1∩x2
= 0, and x1 is a set of m variables and x2 is a set of (n-m) variables.
The function, F(x1,x2)=h(g1(x1), g2(x2)), is said to be disjoint bi-
decomposition if f(x) can be realized as shown in Fig. H.4, where h
is a two input gate (e.g., AND, OR, XOR gates) and g1 and g2 are
either AND, OR, or EXOR gates.

Fig. H.4. Disjoint Bi-decomposition.

 A general algorithm of bi-decomposition utilizing K-map
representation, for instance, is as follows:
(1) Partition the input set of variables in the K-map into two sets:
set1 (bound set) and set2 (free set), and label all the different
columns and rows.
(2) Decompose set1 and create a new K-map for the decomposed set
(utilizing minimum graph coloring, maximum clique, or some other
algorithm to combine similar columns into a single column). Each
cell in the new K-map represents a labeled column in the original K-
map.
(3) Encode the labels in the cells of the new K-map using minimum
number of intermediate binary variables. Express the intermediate
variables as functions of the set of variables.
(4) Decompose set2 and create a new K-map for the decomposed set
(utilizing minimum graph coloring, maximum clique, or some other
algorithm to combine similar columns into a single column). Each

 h

x1

x2

 g1 a

 g2 b

 F
. . .

. . .

 370 H.2 Multiple-Valued AC decomposition

cell in the new K-map represents a labeled row in the original K-
map. This step is equivalent to making set2 as bound set and set1 as
free set.
(5) Encode the labels in the cells of the new K-map using minimum
number of intermediate binary variables. Express the intermediate
variables as functions of the set of variables.
(6) Produce the decomposed structure, i.e., a K-map specifying the
function (F) in terms of the intermediate variables from steps 3 and
5, respectively.
 The following example illustrates the use of BD for
decomposition of logic functions. Although the following example
is performed for the case of disjoint BD, non-disjoint BD could be
also obtained in a manner similar to the method used in Fig. H.3 in
Example H.2.
Example H.3. For the logic function F in Fig. H.5 which is
represented using the K-map, let the sub-set of variables {x1, x2} be
set2, and the sub-set of variables {x3, x4} be set1. Figure H.5 is the
disjoint Bi-decomposition of F (where {–} means don’t care). Note
that the decomposed structure in Fig. H.5 has the following logic
blocks as a result of BD: g1 is an AND gate: g1 = x3x4, g2 is an AND
gate: g2 = x1’x2, and h is an AND gate: h = g1’g2. In general, for a
disjoint BD circuit, h can be a two input gate (e.g., AND, OR, XOR
gates) and g1 and g2 can consist of AND, OR, or EXOR gates.

H.4 Complexity of the Two-Valued Modified
Reconstructability Analysis Versus Ashenhurst-Curtis
Decomposition and Bi-Decomposition

Utilizing the new methods of 1-MRA and 0-MRA decomposition
that were described in Sect. 7.1, one obtains the following results in
Table H.1 for the decomposition of 3-variable NPN-classified
Boolean functions (from Table G.1) using the different
decompositions of the new Modified Reconstructability Analysis
(MRA), Ashenhurst-Curtis (AC), and Bi-decomposition (BD),
respectively.

 H.3 Bi-decomposition 371

 (1)

 (2) (3)

 (6)

 (4) (5)

 Fig. H.5. Bi-decomposition. Steps (1) - (6) are discussed in the text.

 x1 0 1

g2

x4

x1x2 00 01 11 10
x3x4

 00 0 0 0 -

 01 - 1 0 1

 11 0 0 0 0

 10 0 - 0 -

 A A B A F

C

D

C

C

 x3 0 1 x4

0 A A

1 A B

 x3 0 1

0 0 0

1 0 1

A= 0 , B = 1

g1 = x3x4

 x2

0 C D

1 C C

 x1 0 1 x2

0 0 1

1 0 0

C= 0 , D = 1

g2 = x1
’x2

 g1 0 1

0 0 1

1 0 0

 h =g1
’g2

 h

x3

x4

x1

x2

 g1

 g2

 F

 372 H.4 Complexity of the Two-Valued MRA Versus AC and BD

Table H.1. AC and BD decompositions versus MRA for the decomposition of all NPN-
classes of 3-variable Boolean functions (See Table G.1 in Appendix G). (Compare the
right-most two columns.)

 Table H.1 shows that, in terms of the log-functionality
complexity measure from Appendix G, in three NPN classes (4, 7,
9) MRA and AC and BD decompositions give equivalent
complexity decompositions. In two remaining classes (2, 6), which
encompass 26 functions, AC and BD decompositions are superior,
but in five classes (1, 3, 5, 8, 10), which encompass 104 functions,
MRA is superior. Figure H.6 provides a quantitative analysis of the

 H.4 Complexity of the Two-Valued MRA Versus AC and BD 373

decomposition, of the NPN-classified functions, using MRA, AC,
and BD decompositions (from Table H.1), respectively.

 a b

Fig. H.6. a Comparison of the Log-Functionality complexity measure between CRA versus
AC/BD decompositions, and b MRA versus AC/BD decompositions, of 3-variable NPN-
classified Boolean functions.

 The analysis, in terms of complexity, of the results in Fig. H.6a
is as follows:
Total number of classes that AC and BD is better than CRA: 5 (2,3,4,6,7).
Total number of functions that AC and BD is better than MRA: 114.
Total number of classes that CRA is better than AC and BD: 2 (1,8).
Total number of functions that CRA is better than AC and BD: 32.
Total number of classes for AC and BD is the same as CRA: 3 (5,9,10).
Total number of functions for AC and BD is the same as CRA: 72.
 The analysis, in terms of complexity, of the results in Fig. H.6b
is as follows:
Total number of classes that AC and BD is better than MRA: 2 (2,6).
Total number of functions that AC and BD is better than MRA: 26.
Total number of classes that MRA is better than AC and BD: 5 (1,3,5,8,10).
Total number of functions that MRA is better than AC and BD: 104.
Total number of classes for AC and BD is the same as MRA: 3 (4,9,7).
Total number of functions for AC and BD is the same as MRA: 88.
 We can also summarize the results, from Table H.1 and Fig.
H.6, by comparing the decomposability versus non-decomposability

Class 1 (8)

CLF(MRA)

CLF(AC/BD)

 2 4 6 8 10 12

 2

 4

 6

 8

 10

 12

 Classes 5,8,10 (80)
 Classes 4,7 (72)

Classes 2,6 (26) Class 9 (16)

 Class 3 (16)

CLF(CRA)

CLF(AC/BD)

 2 4 6 8 10 12

 2

 4

 6

 8

 10

 12

 Classes 5,9,10 (72)
 Classes 2,3,6,7 (66)
 Class 4 (48) Class 1 (8)

 Class 8 (24)

 374 H.4 Complexity of the Two-Valued MRA Versus AC and BD

for the various approaches. Figure H.7 shows the number of
functions decomposable by one method but not by another (upper
right and lower left cells).

 a b

 c

Fig. H.7. a Comparison of the Decomposability (D) versus Non-Decomposability (ND) for
AC and BD decompositions versus MRA, b CRA versus AC and BD decompositions, and
c CRA versus MRA, respectively.

 Utilizing the results of decomposability from Fig. H.7, one
concludes that for NPN-classified 3-variable Boolean functions,
MRA decomposition is superior to AC and BD decompositions (88
versus 26), AC and BD decompositions are superior to CRA
decomposition(66 versus 32), and MRA decomposition is superior
to CRA decomposition (96 versus 0).
 While the log-functionality used in Table H.1 and Figs. H.6 and
H.7, is a good cost measure for machine learning, it is not a good
measure for circuit design. An alternative acceptable cost measure
for circuit design will be the count of the total number of 2-input
gates in the final circuit (C#). Table H.2 presents an initial
comparison between MRA and AC using the C# complexity
measure.
 Table H.2 shows that, using the C# cost measure, in four NPN
classes (1,2,6,9) which encompass 50 functions AC/BD is superior

ND

D

 ND D ND D

 ND D

ND

D

ND

D

 MRA

MRA

AC,BD

AC,BD

CRA

CRA

(9: 16) (1,5,8,10: 88)

(2,6: 26) (3,4,7: 88)

(2,6,9:42)

(1,4,8: 80)

(3,5,7,10: 96)

 (0)

(5,9,10: 72)

 (1,8: 32) (4: 48)

 (2,3,6,7: 66)
1 4

2 3

3 4

0 3

3

1

4

2

 H.4 Complexity of the Two-Valued MRA Versus AC and BD 375

to MRA for both including and not including the cost of the
inverters. For two NPN classes (4, 8), which encompass 72
functions, AC/BD is equivalent to MRA for both including and not
including the cost of the inverters. For four NPN classes (3,5,7,10),
which encompass 96 functions, MRA is superior to AC/BD when
including the cost of the inverters. For two NPN classes (5, 10),
which encompass 56 functions, MRA is superior to AC/BD when
not including the cost of the inverters.
 While the results in Table H.2 are technology-independent, the
results obtained in Table H.2 can be viewed from technology-
dependent point of view as well. This is because while the
realization of certain two-input logic primitives (gates) from Fig.
G.3 need less number of physical primitives (devices) in certain
technology, the same gates may need more number of devices in
another technology.

Table H.2. Comparison of AC versus MRA using C# cost measure.

Class C# with inverters C# without inverters C# with inverters C# without inverters
 (AC/BD) (AC/BD) (MRA) (MRA)

1 4 4 5 5
2 2 2 - -
3 2 2 1 1
4 2 2 2 2
5 9 6 3 3
6 2 2 - -
7 3 2 2 2
8 4 3 4 3
9 6 5 - -
10 7 5 3 3

 376 H.4 Complexity of the Two-Valued MRA Versus AC and BD

Appendix I

Count for Reversible Nets

This Appendix provides the counts to charaterize the complexity of
the two-valued reversible Nets from Chapt. 8.

Theorem I.1. Every positive unate symmetric funtion of n variables

can be realized in
2

)1(
)1(...321

−=−++++ nn
n MIN/MAX gates.

Proof. Every positive unate (symmetric) function of 2 variables can
be realized in 1 gate. Every positive unate function of 3 variables
can be realized in 1+ 2 gates. Every positive unate function of four
variables can be realized in 1 + 2 + 3 gates, etc. Thus, the total

number of gates for n variables will be
2

)1(−nn
. Q.E.D.

Theorem I.2. Every single index totally symmetric function of n

variables can be realized in
2

)1(−nn
 MIN/MAX gates, (n-2) fan out

gates, and (n-1) Feynman gates.

Theorem I.3. Every single-output totally symmetric function of n

variables can be realized in
2

)1(−nn
 MAX/MIN gates, (n-2) fan out

gates, (n-1) Feynman gates in the second plane, and at most (n-1)
Feynman gates in the third plane.

Theorem I.4. Every m-output totally symmetric function of n

variables can be realized in
2

)1(−nn
 MAX/MIN gates, (n-2) fan out

gates, (n-1) Feynman gates in the second plane, and at most (m ⋅ (n-
1)) gates in the third plane.

Appendix J

New Optical Realizations for Two-Valued and
Multiple-Valued Classical and Reversible Logics

Many optical devices are naturally reversible. When processing
light, such devices can operate on the inputs as outputs and the
outputs as inputs. One reversibility aspect of light is illustrated in
Fig. J.1, which shows that the incident light (I1) can be totally
reconstructed as the transmitted light (T2), by reversing the input
light beams to be outputs and the output light beams to be inputs
[261].

Fig. J.1. Illustration of reversibility of light: I is incident ray, R is reflected ray, and T is
transmitted ray. Solid lines are forward rays and dashed lines are reverse rays. Note that I1
= T2 (Here Absorption (A) is neglected (i.e., A = 0) since in general: T + R + A = 1.0).

 Optical realizations of reversible logic circuits are presented in
this Appendix. The optical circuits utilize coherent light beams to
perform the functionality of basic logic primitives. Three new
optical devices are presented that utilize the properties of frequency,
polarization, and incident angle that are associated with any light-
matter interaction. The hierarchical implementation of such optical
reversible primitives results in the synthesis of optical regular
reversible structures. The synthesis of reversible lattice structures
using such optical devices is described. The concept of optical
parallel processing of an array of input laser beams using the new
optical devices is also presented. This Appendix reports the
synthesis of regular Boolean and multi-valued optical reversible

Medium 1

Medium 2

Interface

 I1 T2 R1 I3

 T1 I2

circuits using: (1) Total internal reflection, (2) Optical polarizers,
and (3) Optical frequency shifters [17,24].
 In general, if the optical properties of the material (i.e., channel
or medium) through which light is traveling such as material index
of refraction n (that determines the phase of the traveling field) (or
material gain or loss (that determines the magnitude of the traveling
field), etc) are a function of the electric field then light polarization
is a non-linear function of the electric field and this is called non-
linear optics (and the medium is called non-linear medium). On the
other hand, if the optical properties of the material through which
light is traveling such as n (or gain or loss, etc) are constants (i.e.,
not a function of the electric field) then the light polarization is a
linear function (proportional) of electric field and this is called linear
optics (and the medium is called linear medium) [261].
 On the other hand, if the optical properties of the material
through which light is traveling such as n (or gain or loss, etc) are
linear function (propotional) of the electric field (or magnetic field)
then this is called linear electro-optics (or linear magneto-optics). If
the optical properties of the material through which light is traveling
such as n (or gain or loss, etc) are non-linear function of the electric
field (or magnetic field) then this is called non-linear electro-optics
[261] (or non-linear magneto-optics).
 This Appendix uses linear optics, but results could also be
generalizable and extendable to the non-linear optics domain.

J.1 Optical Realization of Two-Valued and Multiple-Valued
Logic

This Sect. presents the implementation of two-valued and multiple-
valued logics using optical circuits.

J.1.1 Two-to-one optical multiplexers

A laser beam possesses many properties that may be involved in
light-matter interaction. Such properties include [261]: wavelength
λ, frequency ν, speed c, polarization, phase front curvature R, spot

 Appendix J: New Optical Realizations for Classical and Reversible Logics 379

 Fig. J.2. Three optical devices that implement the 2-to-1 multiplexer.

size ωs, and incident angle θi. One can construct optical devices
using transformations of such properties.
 Figure J.2 presents three optical primitives that realize the 2-to-
1 multiplexer.
 In Fig. J.2, the input control signal that is used to change the
electric properties of the devices can be thermal, acoustic, optical, or
electrical [261]. While thermal and acoustic control signals can
impose slow changes of the electric properties of the material of the
device, optical and electrical control signals can impose fast changes
[261]. In any of the two-to-one optical devices shown in Fig. J.2, the
(orthogonal) polarization of light serves as the label or ID of that
light signal. Thus, if the polarization is () then the signal is of value
“1”, and if the polarization is () then the signal is of value “0”. The
devices in Fig. J.2 operate as follows:

b c

a

 φi

ni ni

φi

 Control Signal:
Condition1 ≡ “0”,Condition2 ≡ “1”

 n t1,1= n t2,2 , n t1,2= n t2,1

 n t2,1= n t1,2 , n t2,2= n t1,1

 Material2

Material1

E ≡ “1”

E ≡ “0”

 Polarizer

 Control Signal:
 Condition1 ≡ “0”,
 Condition2 ≡ “1”

ni

 nt

E ≡ “1”

E ≡ “0”

 Wavelength
 Shifter

 Control Signal:
 Condition1 ≡ “0”,
 Condition2 ≡ “1”

ni

 nt

E ≡ “1”

E ≡ “0”

 380 J.1.1 Two-to-one optical multiplexers

Device 1 (Fig. J.2a):
 In Fig. J.2a, two laser beams with the same frequency (ω) are
incident on the device with the same incident angle θi. The design
specifications of the device are as follows:

 =iθ constant, (J.1)

 ic θθ < , (J.2)

2,21,1 tt nn = , (J.3)

1,22,1 tt nn = , (J.4)

1,22,12,21,1 tttt nnnn =>= , (J.5)

1,22,12,21,1 ttitt nnnnn =>>= . (J.6)

Where ni is the incidence index of refraction, θi is the incidence
angle, θc is the critical angle, nt1,1 is the index of refraction of
material 1 when condition 1 is imposed, nt1,2 is the index of
refraction of material 1 when condition 2 is imposed, nt2,1 is the
index of refraction of material 2 when condition 1 is imposed, nt2,2 is
the index of refraction of material 2 when condition 2 is imposed.
 The Eqs. that govern the behavior of the laser propagation
through an optical device are as follows [17,24], where nt is the
transmitting index of refraction, and θt is the transmitting angle.
(1) Snell’s law for the angle of transmission (θt):

 ttii nn θθ sinsin = . (J.7)

(2) Critical angle (θθθθc):

)(sin 1

i

t
c n

n−=θ . (J.8)

(3) Fresnel’s Eqs. for the calculation of the magnitudes and
polarizations of the transmitted electric field tE

�
and reflected electric

field rE
�

:

ttii

ttii

i

r

nn

nn

E

E

θθ
θθ

coscos

coscos

||

||

+
−=

⊥

⊥�

�

, (J.9)

 J.1.1 Two-to-one optical multiplexers 381

ttii

ii

i

t

nn

n

E

E

θθ
θ
coscos

cos2

||

||

+
=

⊥

⊥�

�

, (J.10)

ttti

tiit

i

r

nn

nn

E

E

θθ
θθ

coscos

coscos

||

||

||

||

+
−=�

�

, (J.11)

ttti

ii

i

t

nn

n

E

E

θθ
θ
coscos

cos2

||

||

||

||

+
=�

�

. (J.12)

(4) The wavelength of a laser beam in a medium is:

m

m n
0λλ = . (J.13)

where λ0 is the light wavelength in vacuum, and nm is the index of
refraction of the medium given by:

.

0ε
ε m

mn ≈
 (J.14)

where εm is the material electric permittivity, and εo is the vacuum
electric permittivity.
 A qualitative description of the operation of device 1 in Fig.
J.2a is as follows: by imposing a certain value of the control
(modulation) signal, the material changes its electric permittivity εm.
It can be observed from Eq. (J.14), that this change of the electric
properties of the material imposes changes on the index of
refraction. From Eq. (J.8), changing the index of refraction of the
material results in changing the critical angle. This change of the
critical angle of the material will make one laser beam totally reflect
back and the other laser beam propagate through the material. This
device implements the functionality of a 2-to-1 multiplexer
(accbf +=).
Example J.1. The following are design specifications for device 1
(Fig. J.2a): θi = 60o, ni = 1.5, n t1,1 = n t2,2 =1.8, n t1,2= n t2,1 = 1.2,
λgreen = 500 nm. Then, by using Eqs. (J.7) and (J.8), the transmitted
angle (θt) and the critical angle (θc) of the laser beams are: θt =

 382 J.1.1 Two-to-one optical multiplexers

46.24o, and θc = 53.13o. Thus when condition1 is imposed on the
device, laser beam1 which resembles logic value “1” is transmitted
through the device with transmitted angle θt = 46.24o, and laser
beam2 which resembles logic value “0” is totally reflected back.
When condition2 is imposed on the device, then laser beam2 which
resembles logic value “0” is transmitted through the device with
transmitted angle θt = 46.24o, and laser beam1 which resembles
logic value “1”is totally reflected back. Using Eqs. (J.9) - (J.12), the
magnitudes and directions of the orthogonal and parallel
polarizations for the transmitted and reflected laser beams are:

.||071.0||,||25.0||

,||774.0||,||752.0||

||||

||||

irir

itit

EEEE

EEEE
����

����

−=−=

==

⊥⊥

⊥⊥

Device 2 (Fig. J.2b):
 A qualitative description of the operation of device 2 is as
follows: by imposing control (modulation) signal, the polarizer
changes the polarization of the incident laser beam. This change of
polarization of laser beams will make one beam totally absorbed
into the incident material where the other beam propagates through
the incident material. The polarizations of the transmitted and
reflected light beams follow Eqs. (J.9)-(J.12), respectively.
Device 3 (Fig. J.2c):
 A qualitative description of the operation of device 3 is as
follows: by imposing certain control (modulation) signal, the
frequency of the light changes [261]. The up-shift of the frequency
by Δω for both laser beams will make beam 2 to be totally absorbed
into the material when its frequency is equal to the resonant
frequency of that material (i.e., ωlaser2 = ω0 in Eq. (J.17)), and beam
1 to propagate through the material, and vice versa occurs when the
frequency is down-shifted by Δω for both laser beams according to
Eq. (J.16).

 ωmaterial = ω0, (J.15)
 ωlaser1 = ω0 + Δω, (J.16)
 ωlaser2 = ω0 - Δω. (J.17)

 J.1.1 Two-to-one optical multiplexers 383

J.1.2 Many-to-one optical multiplexers

The idea of building many-to-one optical multiplexers is possible
using the basic two-to-one optical multiplexers from Fig. J.2. For
ternary signals one needs two devices to realize the functionality of
three-to-one optical multiplexers. This idea is illustrated in Fig. J.3.

 Fig. J. 3. 3-to-1 optical multiplexer.

 For N-valued logic signals one needs (N-1) devices to realize
the functionality of N-to-1 multiplexer. This idea is illustrated in
Fig. J.4. In the 3-to-1 optical device in Fig. J.3, the rotation of light
polarization serves as the label of light signal; If polarization is ()
then this is signal of value “2”, if the polarization is () then this is
signal of value “1”, and if the polarization is () then this is signal
of value “0”.

Fig. J.4. Optical realization of an N-to-1 logic multiplexer. Devices D1,..., DN can be any
of the three devices in Fig. J.2.

 Control Signal 1:
 Condition1 ≡ “0”
 Condition2 ≡ “1”

 Control Signal 2:
 Condition1 ≡ “0”
 Condition2 ≡ “1”

E2 ≡ “2”

E1 ≡ “1”

E0 ≡ “0”

 D1

 D2

ni

 nt1

 nt2

 384 J.1.2 Many-to-one optical multiplexers

.
 .
 .

D0
D1

D2

 DN-1

 E0 ≡ “0”

 E1 ≡ “1”
 E2 ≡ “2”
 E3 ≡ "3”

EN-1 ≡ “N-1”

 Control Signal 1:
 Condition1 ≡ “0”
 Condition2 ≡ “1”

 Control Signal N-1:
 Condition1 ≡ “0”
 Condition2 ≡ “1”
…

.
 .
 .

.
 .

 Note that, for instance, in Fig. J.3 that device D1 outputs one
signal from two input signals and device D2 outputs one signal from
two input signals thus the overall functionality of the device in Fig.
J.3 is a three-to-one multiplexer.

J.2 Optical Reversible Lattice Structures

Using the previously introduced three optical devices in Sect. J.1,
Figs. J.5a and J.5b illustrate the optical realization of the 2-valued
and 3-valued reversible lattice structures (from Chapt. 6),
respectively.
 For example, in Fig. J.5a, two laser beam sources generate two
distinct laser beams with two distinct (orthogonal) polarizations (as
was shown in Sect. J.1.1) that correspond to logic values “0” and
“1”. A beam splitter splits each beam to the desired number of
beams. These partitioned beams are then directed by the optical
switch to the desired path at the input nodes (or terminals T1-T9) of
the two-valued reversible lattice structure. The resulting processed
light beams are then measured using optical sensors at output nodes
D1-D9.
 In Fig. J.5b, the optical switch distributes the logic values of
“0”, “1”, and “2”, that result from the beam splitter, at it’s output.
These outputs are denoted by T1-T11. M is a 3-to-1 optical
multiplexer from Fig. J.3. As was shown in Fig. J.5a, the
propagation of the laser beam can be guided using a fiber-optic
cable or propagate freely in the medium (i.e., channel or material),
and the resulting processed light beams are then measured using
optical sensors at output nodes D1-D11.
 Various beam splitters can be used for the purpose of splitting
the light beam into many light beams. Figure J.6 illustrates three
methodologies of splitting the light beam [See [24] and references
therein].

 J.1.2 Many-to-one optical multiplexers 385

 nm

 Fig. J.5a. Optical realization of two-valued reversible lattice structure.

 Fig. J.5b. Optical realization of three-valued reversible lattice structure.

Optical Switch

M1 M2 M3 M4 M5 M6

M7 M8 M9 M10

 M11 M12

T1 T2 T3 T4 T5 T6 T7 T8 T9

D1 D2 D3 D4 D5 D6 D7 D8 D9

L1=“0” L2=“1”

Beam Splitter

D11

M1 M2 M3 M4 M5 M6 M7 M8 M9

M10 M11 M12

nm

L1=“0 L2=“1 L3=“2

Optical Switch
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Beam Splitter

 386 J.2 Optical Reversible Lattice Structures

 Fig. J.6. Three possible beam splitters.

 The beam splitter in Figs. J.6a and J.6b utilize the phenomenon
of evanescent surface waves [261] that result when the incident
angle of the light beam is greater than the critical angle. On the other
hand, the beam splitter in Fig. J.6c utilizes the transmission and
reflection of light at dielectric boundaries governed by Eq. (J.7). The
compound layer of the beam splitter and the optical switch sub-
layers is used repetitively whenever it is needed for splitting and
directing the propagating laser beams. The optical switch in Fig. J.5
can be constructed using an array of reflecting micro-mirrors [See
[24] and references therein] that direct the laser beam to the desired
destination.

J.3 Optical parallel processing

One major advantage of optical computing is that optical signals
don’t experience cross talk to the extent that electrical signals do,
and thus the optical “signal integrity” is high. This advantage is
proposed for the optical parallel processing of an array of input laser
beams as in Fig. J.7.

 di-electric

 a b

c

 J.2 Optical Reversible Lattice Structures 387

 []CO

��
, []11,CO

��
 []22 ,CO

��

 []11,CO
��

 []33 ,CO
��

 []22 ,CI

��
 []22 ,CO

��

 []33 ,CI
��

 []CI
��

, []11,CI
��

 []11,CI
��

 []22 ,CI
��

 a b c

 Fig. J.7. Three 3-D optical devices for parallel processing of logic signals.

 The parallel processing of many input laser beams is done using
a single optical cell to produce an array of outputs as in Fig. J.7a,
where C

�
 is the vector of control signals, I

�
 is the vector of inputs,

and O
�

 is the vector of outputs. While the optical cell in Fig. J.7a
processes a 1-D input array, the cell in Fig. J.7b processes a 2-D
input array. Each element of the input and output arrays in Fig. J.7b
contains two signals: one is the input signal and the other is the
control signal. Each layer in Fig. J.7a, and each cube in Fig. J.7b,
represents a single device from Fig. J.2 for two-valued logic, or Fig.
J.4 for any N-valued logic. Note that each layer and each cube of the
3-D cells, in Figs. J.7a and J.7b respectively, is an internal node that
lays in the plane of a single lattice structure. Thus, if one has N
streams of distinct inputs to each cell then one can construct N
lattice structures to process N logic functions at the same time.
Distinct laser beams in Fig. J.7 propagate freely and their
propagation paths can intersect since no cross talk exists between
different laser beams.
 The only constraint is that insulation sheets must be presented
between the neighbor layers in Fig. J.7a, and neighbor cubes in Fig.
J.7b to isolate the effects of adjacent non-optical control signals.
 Further extensions can include the processing of laser beams
that propagate in three dimensions in an anistropic material [261]
controlled by a control signal as shown in Fig. J.7c where six sheets
surround each optical cell to perform reversible beam splitting,
optical switching, and providing control signals. Further extension

z

y

x

 388 J.3 Optical parallel processing

can include the application of Fizeau’s effect to double the number
of processed laser beams that propagate in opposite directions within
each dimension in a 3-D optical cell from Fig. J.7c.

 J.3 Optical parallel processing 389

Appendix K

Artificial Neural Network Implementation Using
Multiple-Valued Quantum Computing

This Appendix provides another implementation of multiple-valued
quantum computing (QC) that was presented in Chapt. 11. Quantum
neural network (NN) implementation using the general scheme of
multiple-valued QC is presented in this Appendix. The proposed
method uses the multiple-valued orthonormal computational basis
states, that were presented in Chapt. 11, to implement such
computations. Physical implementation of NNQC is performed by
controlling the potential V to yield specific wavefunction as a result
of solving Shrodinger Eq. that governs the dynamics of QC. The
main contributions of this Appendix are: (1) quantum
implementation of NNs using multiple-valued QC. This is achieved
via the use of discrete-grid weight space and making an assignment
(encoding; mapping) of points on the grid to individual components
of a many-valued orthonormal set of quantum basis states, (2) show
the underlying mathematical methodology and formalisms for such
many-valued QC of NNs, and (3) propose a “reverse engineering”
method to develop look-up tables (LUTs) for potential functions
associated with specified many-valued logic functions to be
performed.

K.1 Neural Networks

The importance of neural networks in application is their ability to
learn to perform functions in a problem domain, based on interacting
with data from that domain [See [249] and references therein]. A
key role in the process is performed by the training set (i.e., a
collection of input-output pairs from the problem domain). The
training set can be said to provide problem domain “constraints.”

 The role of learning in the classical domain can be implemented
in the quantum domain by the dynamics of a physical system
governed by the Schrodinger Eq. (Eqs. (11.1) and (11.2)). The role
of training set in classical NN learning can be implemented in the
quantum domain by the potential function V (also considered as
“constraints”). Thus, there is motivation to establish a mechanism
for converting the training set (i.e., collection of input-output pairs)
from the problem domain into an appropriate V function in the
quantum domain. (An approach for this is presented in Sect. K.3.)
 As was shown in Fig. 11.3d in Chapt. 11, a physical system
comprising trapped ions under multiple-laser excitations can be used
to reliably implement MVQC. A physical system in which an atom
(particle) is exposed to a specific potential field (function) can also
be used to implement MVQC with two-valued being a special case
(cf. Fig. 11.3a in Chapt. 11). In such an implementation, the
(resulting) distinct energy states are used as the orthonormal basis
states which can be further used for neural network realization. The
latter is illustrated in Example K.1 below.
Example K.1. We assume the following constraints: (1) spring
potential V(x) = (1/2) kx2, where m is a particle, k = mω2 is spring
constant, and ω is angular frequency (= 2π⋅frequency), and (2)
boundary conditions. Also, assuming the solution of SE for these
constraints is of the following form (i.e., the Gaussian function):

 2

2

)(
x

Cex
α

ψ
−

= ,

where α = mω/(h/2π). The general solution for the wavefunction
|ψ> (for a spring potential) is:

)(
!2

1
4/1

xH
n

C n
n

α
π
α
��
�

��
�= ,

where Hn(x) are the Hermite polynomials. This solution leads to the
sequence of evenly spaced energy levels (eigenvalues) En
characterized by a quantum number (n) as follows:

 ωπ)2/)(
2

1
(hnEn += .

The distribution of the energy states (eigenvalues) and their
associated probabilities are shown in Fig. K.1.

 K.1 Neural Networks 391

 a b c

Figure K.1. Harmonic oscillator potential and wavefunctions: a wavefunctions for various
energy levels (subscripts), b spring potential V(x) and the associated energy levels En, and
c probabilities for measuring particle (m) in each energy state (En).

K.2 Multiple-Valued Quantum Implementation of Neural
Networks: Methodology and Notation

A classic shortcoming of single-neuron neural networks (e.g.,
perceptron, Adeline) is their inability to implement the XOR
function [See [249] and references therein]. In [249] on the other
hand, a single quantum neuron is shown to be capable of solving this
not-linearly separable (NLS) function. In this Sect., we develop a
methodology and formalisms for dealing with multiple-valued logic
functions using multiple-valued quantum neurons.

 392 K.1 Neural Networks

 The notion of linearly separable (LS) and not-linearly separable
(NLS) mappings in the two-valued context generalizes to the many-
valued case.
 The following steps describe the notion of associating a
quantum state to a point in the weight space of a neural network
(NN) using a two-weight NN as an example (extension to any
number of weights is straightforward). (See Fig. K.2.)
(1) Assume each weight can take a finite (discrete) set of values
(i.e., 0, 1, 2, etc).
(2) Form a two-dimensional grid of all possible combinations of
weight value pairs (2-tuples). (In the case of three weight NN this
generalizes to three-dimensional grid of all possible combinations of
weight value tuples, and in general for N weight NN this results in
N-dimensional grid.)
(3) Assign each of the grid points (i.e., each 2-tuple) to be a
quantum basis state (in quantum state space). These quantum basis
states are orthogonal (cf. Chapt. 11), and thus unique operations can
be implemented on such representation. (For higher dimension
quantum space, the Kronecker (tensor) product is used to produce all
possible combinations of grid points as was shown in Sects. 11.1
and 11.4 in Chapt. 11.)
(4) If each of the two weights (w1 and w2) can take m values, then
there will be m2 quantum basis states, each with dimension m2 (to
yield an orthonormal basis set). (Thus, for the general case of N-
weight NN, if each weight can take m values then there will be mN
quantum basis states each with dimension mN to yield a unique
(orthonormal) quantum basis set.)
(5) Let:

 1,...,2,1,0,,
2

1 −=�
�

�
�
�

�
= mji

w

w
w

j

i

ji

�
. (K.1)

represent the m2 points in the 2-dimensional weight space, where
(i,j) are position indices for the vector wij and the components of wij
are weight values at the corresponding positions (i,j).
(6) Then define:

 K.2 Multiple-Valued Quantum Implementation of Neural Networks 393

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

−−

−

T
mm

T

T
m

T

T

m

w

w

w

w

w

w

1,1

10

1,0

01

00

,2

...

...

�

�

�

�

�

�
, (K.2)

where the superscript refers to 2 dimensions, with m (discrete)
values in each dimension. (To reference a subset of all these
possibilities, an appropriate subscript may be provided.)
 For example, by letting each weight take three values from the
set {a,b,c} where a, b, c are any discrete real values (i.e., m = 3) then
one would have nine grid points {00,01,02,10,11,12,20,21,22}, and
Eq. (K.2) becomes:

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

cc

cb

ca

bc

bb

ba

ac

ab

aa

w

w

w

w

w

w

w

w

w

w

T

T

T

T

T

T

T

T

T

22

21

20

12

11

10

02

01

00

3,2� .

 Thus, one can perform MVQC by making the following
assignments (maps; encodings) between the weight space and the
quantum space:

 394 K.2 Multiple-Valued Quantum Implementation of Neural Networks

 MV Weight Space MV Quantum Space

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

cc

cb

ca

bc

bb

ba

ac

ab

aa

w 3,2�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

22

21

20

12

11

10

02

01

00

3,2w
�

. (K.3)

 Using the notation from Chapt. 11, the above may be written as
follows:

() ()

.2221201211

10020100

210210

,

2121212121

21212121

222111

2121

γγβγαγγβββ
αβγαβααα

γβαγβα
ψψψψ

++++

++++=

++⊗++=

⊗=

 (K.4)

 Note that each component of the tensor product (in Eq. (K.4) is
associated with a product of two probabilities. The coefficients of
the quantum basis functions (i.e., probabilities) are the system
parameters, obtained by solving the waveequation with the specified
potential function V applied. We note that different Vs will
(normally) result in different solutions (i.e., different probabilities)
for each of the quantum basis states. Upon measurement of an
observable variable in a physical quantum implementation, by
definition, the highest probability state is the most likely one to
occur. In the context of neural networks (NNs) with an assignment
such as the one given in Eq. (K.3), each basis state corresponds to a
particular combination of weight values. These weight values
determine the mapping performed (e.g., logic function) by the NN.
(See Fig. K.2.)

 K.2 Multiple-Valued Quantum Implementation of Neural Networks 395

 1
 w0(Bias)
 x1 w1
 … … � f y
 xN-1 wN-1

 Fig. K.2. A simple neuron.

Where f is the activation (transfer) function, and:

 y = f (w0⋅1 + w1x1 + w2x2 +…+ wN-1xN-1). (K.5)

and f can be an appropriate mapping (such as threshold function,
sigmoid, etc). The manner in which the MVQC is implemented for
neural computing (NC) is illustrated in Fig. K.3.

 Constriants: {V, I.C.}

 |α1α2|

2 |α1β2|
2 … |γ1γ2|

2
 wij

 |00> |01> … |22>

 Dynamics: SE

Fig. K.3. MVQC scheme to implement a NN using a ternary 2-qubit QC system. (All
possible quantum states are shown in different colors.)

Example K.2. For a quantum neuron, let the following unitary
ternary quantum operator A [15,23] perform a function analogous to
the activation function (AF) and summing junction (SJ) in classical
artificial neurons.

�
�
�

�

�

�
�
�

�

�
=

010

100

001

A .

Let us denote a ternary 2-weight quantum neuron as in Fig. K.4.

 396 K.2 Multiple-Valued Quantum Implementation of Neural Networks

 Fig. K.4. Ternary quantum neuron.

Then, for instance, for binary inputs {x1,x2}, the MVQC would
proceed as follows to produce the following ternary function f*:

The quantum weights will be determined by a suitable learning
algorithm utilizing the operator A (e.g., the algorithm using bipolar
quantum Fourier operater in [249]), which is equivalent to solving
the TISE with an appropriate potential V. In the notation of Fig. K.4,
an example result would be {w1 = |2>, w2 = |1>}, where in the MV
quantum space (as shown in Chapt. 11):

 []Tww 010000000

0

1

0

1

0

0

2121 =
�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�
=→ .

Then the MVQC (in Fig. K.4) is performed in the following manner:
the matrix of inputs {x1,x2} is transformed, before being processed
by the activation function (AF), to a new matrix of inputs by
multiplying the set of inputs by the values of the corresponding
weights {w1 = 2, w2 = 1} as follows:

x1 x2 f*
0 0 0
0 1 2
1 0 0
1 1 2

 K.2 Multiple-Valued Quantum Implementation of Neural Networks 397

 w1

V1

V2

X1

X2
 w2

*

0 1 0
1 0 0
0 0 1

0 1 0
1 0 0
0 0 1

f
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
⊗
�
�
�

�

�

�
�
�

�

�

 [x1 x2] → [w1x1 w2x2]

�
�
�
�

�

�

�
�
�
�

�

�

→

�
�
�
�

�

�

�
�
�
�

�

�

12

02

10

00

11

01

10

00

.

Encoding the new matrix of inputs in the MV quantum space H will
lead to:

[]
[]
[]
[] �

�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

→
�
�
�
�

�

�

�
�
�
�

�

�

T

T

T

T

010000000

001000000

000000010

000000001

21

20

01

00

12

02

10

00

.

By using the 2-qubit ternary operator:

[] []

.

010

100

001
010

100

001
010

100

001

,

010

100

001

010

100

001

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
�
�
�

�

�

�
�
�

�

�
�
�
�

�

�

�
�
�

�

�

=

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
⊗

�
�
�

�

�

�
�
�

�

�
=⊗ AA

the matrix of the output functions will be obtained from the matrix
of the weighted inputs as follows:

 398 K.2 Multiple-Valued Quantum Implementation of Neural Networks

[]
[]
[]
[]

[]
[]
[]
[]

,

000100000

000001000

000000100

000000001

010000000

001000000

000000010

000000001

010

100

001
010

100

001
010

100

001

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�
�
�
�

�

�

�
�
�

�

�
�
�
�

�

�

�
�
�

�

�

T

T

T

T

T

T

T

T

but in MV quantum space, the matrix of outputs correspond to the
following values:

[] *
112100200

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

ff→=

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

.

Then by measuring the second output one obtains the function f*.
(Note that in this example another function f1 is naturally obtained,
and thus this adds a possibility of utilizing such additional output in
a separate computation.) The generation of other multiple-valued
logic functions, at the output of the quantum neuron in Fig. K.4, is
performed using the same topology and same AF (and SJ) by
changing the values of the weights.
 Other varieties of quantum operators from [15,23] could be used
as well to perform the functionality of the AF (and SJ) in Fig. K.4.

 K.2 Multiple-Valued Quantum Implementation of Neural Networks 399

 For instance, one could use the quantum Chrestenson operator
(that was introduced in Theorem 11.2 in Chapt. 11 [15,23]):

�
�
�

�

�

�
�
�

�

�
=

12

21
)3(

)1(

1

1

111

3

1

dd

ddC ,

where the superscript indicates the radix, the subscript indicates
number of variables, and d1 and d2 are complex numbers. The
quantum Chrestenson operator used here is the quantum multiple-
valued Fourier operator (which is equivalently called the quantum
multiple-valued Walsh-Hadamard operator), which is the
generalization (extension) of the quantum bipolar Fourier operator
(which is equivalently called the quantum (two-valued) Walsh-
Hadamard operator). Consequently, the (quantum) learning
algorithm proposed in [249] for the quantum Walsh operator could
be extended to be used for the quantum Chrestenson operator as
well.

K.3 Further NN Implementations Using MVQC

As noted earlier, the quantum analog of a training set in the classical
NN context is the potential function V, and the quantum analog for
the training process are the dynamics described by the SE. An
approach to implement a quantum NN suggested here is as follows
(cf. Fig. K.5a): (1) specify a set of functions, Fi, and train a separate
neural network (in the first stages of this work, think in terms of a
single-neuron NN, e.g., perceptron) for each function; (2) construct
a table that associates the trained NN weight vector for each
function Fi; (3) construct a separate wavefunction ψi in the MV
quantum space for each Fi such that its highest probability is at the
weight vector in the table, and relatively low at all other weight
values as illustrated in Fig. K.5b; (4) substitute this ψi into the TISE
(Eq. (11.2) in Chapt. 11) and solve for Vi. After the above
information has been generated and tabulated (as a look-up table) as
indicated in Fig. K.5c, one could implement a full quantum NN as
shown in Fig. K.6.

 400 K.2 Multiple-Valued Quantum Implementation of Neural Networks

 Classical Domain
 I/O (map) wij |ΨΨΨΨ> V

 Quantum Domain a
 |Ψ>

 w1i I/Oi | Vi
 w2j

 Input Output
 b c

Fig. K.5. a Possible MVQC strategy to implement a NN, b MV Quantum-Weight space to
obtain |Ψ>, and c Look-Up-Table to implement a NN for all logic functions.

 In this more general case (in Fig. K.6), we specify a single V for
an entire weight vector going into a single quantum neuron
(corresponding to a single neural element of a NN). Such a quantum
neuron (QN) is here represented as shown in Fig. K.6a. A full
network would be a collection of such QNs, connected in a specified
topology, as in Fig. K.6b.
 So far in this Sect., we proposed a methodology of
implementing a NN using a multiple-valued quantum computation
(MVQC). This method uses the encoding of multiple-valued
orthonormal computational basis states in the quantum space to be
the weights in a NN. The potential plays the role of a training (I/O)
set and the dynamics of the solution of SE to be the training process.
Future work will involve (1) simulations for various designs of
potential distributions (Vs) that correspond to specific logic
functions, (2) determine MVQC equivalents of (a) supervised, (b)
reinforcement, and (c) unsupervised learning strategies, and (3) for
storing given number of patterns Si in Auto-Associative memory (as
in a Hopfield NN), where i = 1, 2, …, N, and the pattern vector Si is
of dimension D.

 K.3 Further NN Implementations Using MVQC 401

Fig. K.6. An MVQC implementation of a NN: a a quantum neuron (QN), which is a
dynamical system governed by TISE constrained by Vp

qr, where I is the interface
mechanism, superscript p is the number of incoming weights, subscript q is the layer
number, and subscript r is the element number in layer q, and b a 3-layer NN.

 This is done conceptually as follows:
(1) Construct a state-space grid (equivalent to weight-space grid
discussed in Sect. K.2). Each point on the grid corresponds to a
specific pattern Si.
(2) Design a wavefunction ψi for each given pattern to be stored.
Then solve the TISE for the corresponding potential function Vi.
(3) For a query that is a “dirty” version of a stored pattern Si

*,
construct a corresponding ψi

*
 and Vi

*, where the designed ψi
*

corresponds to the query pattern, and Vi
* is obtained by solving

TISE.
(4) If the original ψi was crafted such that probability is maximum at
Si and gradually decreases for nearby patterns, then the application
of Vi

* should yield the quantum state Si (i.e., the “clean”/complete
pattern).

I I QN f

Vp
qr

a

b

I QN I

Vn
11

I QN I

Vn
12

I QN I

Vn
1m

…

I QN I

Vm
21

I QN I

Vm
2k

… I QN I

Vk
31 x1

xn

y

 402 K.3 Further NN Implementations Using MVQC

Bibliography

[1] S. B. Akers, “A Rectangular Logic Array,” IEEE Trans. on Comp., Vol. C-21, pp. 848-
857, August 1972.
[2] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans. on Comp., Vol. C-27, No. 6, pp.
509-516, June 1978.
[3] A. Al-Rabadi, “A Novel Counting Triangle and Expression for Characterizing the
Complexity of S/D Trees for Arbitrary Radix Logic and Arbitrary Number of Variables,”
Technical Report #2002/02, ECE Department, PSU, 25th May 2000.
[4] A. Al-Rabadi, and M. Perkowski, “An Extended Green/Sasao Hierarchy of Canonical
Ternary Galois Field Decision Diagrams and Forms,” submitted to special issue of
Multiple-Valued Logic (MVL) Journal, 1st August 2000.
[5] A. Al-Rabadi, “New Three-Dimensional Invariant MVL Shannon and Davio Families
of Spectral Transforms and their Lattice Structures,” Technical Report #2001/002, ECE
Department, PSU, 9th January 2001.
[6] A. Al-Rabadi, “New Reversible Invariant Multi-Valued Families of Spectral
Transforms For Three-Dimensional Layout,” Technical Report #2001/003, ECE
Department, PSU, 3rd March 2001.
[7] A. Al-Rabadi, and M. Perkowski, “New Families of Reversible Expansions and their
Lattice Structures,” Submitted to MVL Journal, 26th March 2001.
[8] A. Al-Rabadi, “Towards a Fully Reversible 2-valued Nano-Processor: A Library of
Binary Reversible Hardware Components,” Technical Report #2001/004, ECE Department,
PSU, 3rd April 2001.
[9] A. Al-Rabadi, and M. Perkowski, “Multiple-Valued Galois Field S/D Trees for GFSOP
Minimization and their Complexity,” Proc. Int. Symp. on Multiple-Valued Logic (ISMVL)
’01, pp. 159-166, Warsaw, Poland, 22-24th May 2001.
[10] A. Al-Rabadi, “A Novel Reconstructability Analysis For the Decomposition of Logic
Functions,” Technical Report #2001/005, ECE Department, PSU, 1st July 2001.
[11] A. Al-Rabadi, “On the Characterization of Multi-Valued Equally Input-Output
Reversible Galois Logic Primitives,” Technical Report #2001/006, ECE Department, PSU,
1st August 2001.
[12] A. Al-Rabadi, and M. Perkowski, “Families of New Multi-Valued Reed-Muller-Based
Spectral Transforms,” Proc. Int. Workshop on Applications of the Reed-Muller Expansion
in Circuit Design (Reed-Muller)’2001 workshop, pp. 226-241, Starkville, Mississippi, 10-
11th August 2001.
[13] A. Al-Rabadi, and M. Perkowski, “Shannon and Davio Sets of New Lattice Structures
for Logic Synthesis in Three-Dimensional Space,” Proc. Reed-Muller’01, pp. 165-184,
Starkville, Mississippi, 10-11th August 2001.
[14] A. Al-Rabadi, and M. Perkowski, “New Classes of Multi-Valued Reversible
Decompositions for Three-Dimensional Layout,” Proc. Reed-Muller’01, pp. 185-204,
Starkville, Mississippi, 10-11th August 2001.
[15] A. Al-Rabadi, “Synthesis and Canonical Representations of Equally Input-Output
Binary and Multiple-Valued Galois Quantum Logic: Decision Trees, Decision Diagrams,
Quantum Butterflies, Quantum Chrestenson Gate, and Multiple-Valued Bell-Einstein-

Podolsky-Rosen Basis States,” Technical Report #2001/007, ECE Department, PSU, 22nd
August 2001.
[16] A. Al-Rabadi, “Novel Semi-Regular Conventional and Reversible Decompositions of
Logic Circuits,” Technical Report #2001/008, ECE Department, PSU, 3rd September 2001.
[17] A. Al-Rabadi, “Novel Optical Gates and Structures for Reversible Logic,” Technical
Report #2001/009, ECE Department, PSU, 13th October 2001.
[18] A. Al-Rabadi, and M. Perkowski, “Three-Dimensional Regular Realization of Galois
Field Logic Circuits,” Submitted to IEE Series-E, 3rd December 2001.
[19] A. Al-Rabadi, L. W. Casperson, and M. Perkowski, “Multiple-Valued Quantum
Computing,” Submitted to Quantum Computers and Computing Journal, 8th March 2002.
[20] A. Al-Rabadi, M. Zwick, and M. Perkowski, “A Comparison of Enhanced
Reconstructability Analysis and Ashenhurst-Curtis Decomposition of Boolean Functions,”
Book of Abstracts of the 12th international World Organization for Systems and Cybernetics
(WOSC) Congress and the 4th International Institute for General Systems Studies (IIGSS)
workshop, Pittsburgh, Pennsylvania, p. 12, 24-26th March 2002.
[21] A. Al-Rabadi, and M. Zwick, “Modified Reconstructability Analysis for Many-Valued
Logic Functions,” Book of Abstracts of the WOSC/IIGSS’02, Pittsburgh, Pennsylvania, p.
90, 24-26th March 2002.
[22] A. Al-Rabadi, and M. Zwick, “Reversible Modified Reconstructability Analysis of
Boolean Circuits and its Quantum Computation,” Book of Abstracts of the
WOSC/IIGSS’02, Pittsburgh, Pennsylvania, p. 90, 24-26th March 2002.
[23] A. Al-Rabadi, L. W. Casperson, M. Perkowski, and X. Song, “Multiple-Valued
Quantum Logic,” Booklet of the 11th Post-Binary Ultra Large Scale Integration (ULSI)’02
workshop, pp. 35-45, Boston, Massachusetts, 15th May 2002.
[24] A. Al-Rabadi, and L. W. Casperson, “Optical Realizations of Reversible Logic,” Proc.
International Workshop on Logic and Synthesis (IWLS)’02, pp. 21-26, New Orleans,
Louisiana, 4-7th June 2002.
[25] A. Al-Rabadi, “Symmetry as a Base for a New Decomposition of Boolean Logic,”
Proc. IWLS’02, pp. 273-278, New Orleans, Louisiana, 4-7th June 2002.
[26] A. Al-Rabadi, L. W. Casperson, M. Perkowski, and X. Song, “Canonical
Representations for Two-Valued Quantum Computing,” accepted to the 5th International
Workshop on Boolean Problems (WBP)’02, Freiberg, Germany, 19-20th September 2002.
[27] A. Al-Rabadi, M. Zwick, and M. Perkowski, “A Comparison of Modified
Reconstructability Analysis and Ashenhurst-Curtis Decomposition of Boolean Functions,”
submitted to Kybernetes.
[28] A. Al-Rabadi, and M. Zwick, “Modified Reconstructability Analysis for Many-Valued
Logic Functions,” submitted to Kybernetes.
[29] A. Al-Rabadi, and M. Zwick, “Reversible Modified Reconstructability Analysis of
Boolean Circuits and its Quantum Computation,” submitted to Kybernetes.
[30] A. Al-Rabadi, and M. Zwick, “Enhancements to Crisp Possibilistic Reconstructability
Analysis,” submitted to the International Journal of General Systems (IJGS).
[31] E. Andersson, and S. Stenholm, “Quantum Logic Gate with Microtraps,” Optics
Communications, 188, pp. 141-148, 1 February 2001.
[32] R. L. Ashenhurst, “The Decomposition of Switching Functions,” Bell Laboratories
Report, Vol. 1, pp. II-1-II-37, 1953.
[33] R. L. Ashenhurst, “The Decomposition of Switching Functions,” Bell Laboratories
Report, Vol. 16, pp. III-1-III-72, 1956.
[34] R. L. Ashenhurst, “The Decomposition of Switching Functions,” International
Symposium on the Theory of Switching Functions, pp. 74-116, 1959.
[35] W. C. Athas, and L. J. Svensson, “Reversible Logic Issues in Adiabatic CMOS,”
Exploratory Design Group, University of Southern California, Information Sciences
Institute, Marina del Rey, CA 90292-6695.

 404 Bibliography

[36] A. Barenco et al., “Elementary Gates for Quantum Computation,” Physical Review A,
Vol. 52, pp. 3457-3467, 1995.
[37] C. H. Bennett, “Logical Reversibility of computation,” IBM Journal of Research and
Development, Vol. 17, pp.525-532, 1973.
[38] C. H. Bennett, and R. Landauer, “The Fundamental Physical Limits of Computation,”
Scientific American, 253, pp. 38-46, July 1985.
[39] C. H. Bennett, “Notes on the History of Reversible Computation,” IBM Journal of
Research and Development, Vol. 32, pp. 16-23, 1988.
[40] C. H. Bennett, and D. P. DiVincenzo, “Progress Toward Quantum Computation,”
Nature, September 1995.
[41] S. Bettelli, L. Serafini, and T. Calarco, “Toward an Architecture for Quantum
Programming,” IRST Technical Report #0103-010, March 8, 2001.
[42] A. Blotti, S. Di Pascoli, and R. Saletti, “A Comparison of Some Circuit Schemes for
Semi-Reversible Adiabatic Logic,” Int. J. Electronics, Vol. 89, No. 2, pp. 147-158, 2002.
[43] G. Boole, An Investigation into the Laws of Thought on which are Founded the
Mathematical Theories of Logic and Probabilities, 1854.
[44] G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as Quantum
Computation”, Physica D, Vol. 120, pp. 43-47, 1998.
[45] R. E. Bryant, “Graph-based Algorithms for Boolean Functions Manipulation,” IEEE
Trans. on Comp., Vol. C-35, No.8, pp. 667-691, 1986.
[46] J. T. Butler, K. A. Schueller, “Worst Case Number of Terms In Symmetric Multiple-
Valued Functions,” Proc. ISMVL’91, pp. 94-101, Victoria, B. C., Canada, May 26-29,1991.
[47] J. T. Butler, and T. Sasao, “On the Properties of Multiple-Valued Functions that are
Symmetric in Both Variable Values and Labels,” Proc. ISMVL’98, pp. 83-88, Fukuoka,
Japan, May 27-29, 1998.
[48] A. Calderbank, E. Rains, P. Shor, and N. Sloane, “Quantum Error Correction Via
Codes Over GF(4),” AT&T Labs Research, 5 March 1998.
[49] L. W. Casperson, “Synthesis of Gaussian Beam Optical Systems,” Applied Optics,
Vol. 20, No. 13, pp. 2243-2249, 1 July 1981.
[50] M. Chrzanowska-Jeske, Z. Wang, and Y. Xu, “Regular Representation for Mapping to
Fine-Grain, Locally-Connected FPGAs,” Proc. Int. Symp. on Circuits and Systems
(ISCAS)’97, Vol. 4, pp. 2749-2752, 1997.
[51] M. Chrzanowska-Jeske, Y. Xu, M. A. Perkowski, “Logic Synthesis for a Regular
Layout,” VLSI Design: An International Journal of Custom-Chip Design, Simulation, and
Testing, Vol. 10, No. 1, pp. 35-55, 1999.
[52] M. Chrzanowska-Jeske, A. Mishchenko, and M. Perkowski, “A Family of Canonical
AND/EXOR Forms That Includes the Exact Minimum ESOPs,” accepted to VLSI Design
Journal, 2000.
[53] I. Chuang, and Y. Yamamoto, “A Simple Quantum Computer”, ERATO Quantum
Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University, 28 March 1995.
[54] J. I. Cirac, and P. Zoller, “Quantum Computations with Cold Trapped Ions,” Phys.
Rev. Lett., Vol. 74, No. 20, pp. 4091-4094, 15 May 1995.
[55] R. Cleve, and J. Watrous, “Fast Parallel Circuits for the Quantum Fourier Transform,”
Proc. Symp. on the Theory of Computing, pp. 526-535, 2000.
[56] M. Cohn, Switching Function Canonical Form over Integer Fields, Ph.D. Dissertation,
Harvard University, Cambridge, Massachusetts, 1960.
[57] W. Cooley, and J. Tukey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” Mathematics of Computation, Vol. 19, pp. 297-301, 1965.
[58] Concurrent Logic Inc., “CLI 6000 Series Field Programmable Gate Arrays,” Prelimin.
Inform., Dec. 1, 1991, Rev. 1.3.
[59] H. A. Curtis, “Generalized Tree Circuit,” ACM, pp. 484-496, 1963.

 Bibliography 405

[60] H. A. Curtis, “Generalized Tree Circuit-The Basic Building Block of an Extended
Decomposition Theory,” ACM, Vol. 10, pp. 562-581, 1963.
[61] H. A. Curtis, A New Approach to the Design of Switching Circuits, Princeton, Van
Nostrand, NJ, 1962.
[62] R. Cuykendall, and D. R. Andersen, “Reversible Computing: All-Optical
Implementation of Interaction and Priese Gates,” Optics Communications, Vol. 62, No. 4,
pp. 232-236, May 1987.
[63] R. Cuykendall, and D. McMillin, “Control-Specific Optical Fredkin Circuits,” Applied
Optics, Vol. 26, No. 10, pp. 1959-1963, May 1987.
[64] R. Cuykendall, and D. R. Andersen, “Reversible Optical Computing Circuits,” Optics
Letters, Vol. 12, No. 7, pp. 542-544, July 1987.
[65] R. Cuykendall, “Three-Port Reversible Logic,” Applied Optics, Vol. 27, No. 9, pp.
1772-1779, May 1988.
[66] C. Darwin, On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life, 1859.
[67] J. Denes and A. D. Keedwell, Latin Squares and their Applications, Academic Press,
New York, 1974.
[68] B. Desoete, A. De Vos, M. Sibinski, and T. Widerski, “Feynman’s Reversible Logic
Gates Implemented in Silicon,” Proc. 6th Int. Conference on MIXDES, pp. 497-502, 1999.
[69] D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer,” Proc. Royal Society of London A, Vol. 400, pp. 97-117, 1985.
[70] A. De Vos, “Proposal for an Implementation of Reversible Gates in c-MOS,” Int. J. of
Electronics, Vol.76, pp. 293-302, 1994.
[71] A. De Vos, “Reversible Computing in c-MOS,” Proc. Advanced Training Course on
Mixed Design of VLSI Circuits, pp.36-41, 1994.
[72] A. De Vos, “A 12-Transistor c-MOS Building-Block for Reversible Computers,” Int.
J. of Electronics, Vol.79, pp. 171-182, 1995.
[73] A. De Vos, “Reversible and Endoreversible Computing,” Int. J. of Theoretical
Physics, Vol.34, pp. 2251-2266, 1995.
[74] A. De Vos, “Towards Reversible Digital Computers,” Proc. European Conf. on
Circuit Theory and Design, pp. 923-931, Budapest 1997.
[75] A. De Vos, “Reversible Computing,” Progress in Quantum Electronics, 23, pp. 1-49,
1999.
[76] K. Dill, and M. Perkowski, “Minimization of Generalized Reed-Muller Forms with a
Genetic Algorithm,” Proc. Genetic Programming’97 Conf., p. 362, Stanford University,
CA, July 1997.
[77] K. Dill, J. Herzog, and M. Perkowski, “Genetic Programming and its applications to
the synthesis of Digital Logic,” Proc. PACRIM’97, vol. 2, pp. 823-826, Canada, 20-22
August, 1997.
[78] K. Dill, K. Ganguly, R. Safranek, and M. Perkowski, “A new Linearly-Independent,
Zhegalkin Galois Field Reed-Muller Logic,” Proc. Reed-Muller’97, pp. 247-257, Oxford
Univ. U.K., September 1997.
[79] K. Dill, and M. Perkowski, “Evolutionary Minimization of Generalized Reed-Muller
Forms,” Proc. ICCIMA’98 Conf., pp. 727-733, Australia, February 1998, published by
World Scientific.
[80] K. M. Dill, and M. A. Perkowski, “Baldwinian Learning Utilizing Genetic and
Heuristic Algorithms for Logic Synthesis and Minimization of Incompletely Specified Data
With Generalized Reed-Muller (AND-EXOR) Forms,” J. Systems Architecture, Vol. 47,
pp. 477-489, 2001.
[81] P. Dirac, The Principles of Quantum Mechanics, first edition, Oxford University Press,
1930.

 406 Bibliography

[82] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski, “Efficient
Representation and Manipulation of Switching Functions Based on Ordered Kronecker
Functional Decision Diagrams,” Proc. DAC’94, pp. 415-419, 1994.
[83] R. Drechsler, “Pseudo-Kronecker Expressions for Symmetric Functions,” IEEE Trans.
on Comp., Vol. 48. No. 8, pp. 987-990, September 1999.
[84] B. T. Drucker, C. M. Files, M. A. Perkowski, and M. Chrzanowska-Jeske, “Polarized
Pseudo-Kronecker Symmetry with an Application to the Synthesis of Lattice Decision
Diagarms,” Proc. ICCIMA’98, pp. 745-755, 1998.
[85] M. Escobar, and F. Somenzi, “Synthesis of AND/EXOR Expressions via
Satisfiability,” Proc. Reed-Muller’95, pp. 80-87, 1995.
[86] D. Etiemble, and M. Israel, “Comparison of Binary and Multivalued ICs According to
VLSI Criteria,” IEEE Trans. on Comp., pp. 28-42, April 1988.
[87] B. Falkowski, Spectral Methods for Boolean and Multiple-Valued Input Logic
Functions, Ph.D. Dissertation, Electrical and Computer Engineering Department, Portland
State University, 1991.
[88] B. Falkowski, and S. Rahardja, “Efficient Algorithm for the Generation of Fixed
Polarity Quaternary Reed-Muller Expansions,” Proc ISMVL’95, pp.158-163, Bloomington,
Indiana, 1995.
[89] B. J. Falkowski, and S. Rahardja, “Classification and Properties of Fast Linearly
Independent Logic Transformations,” IEEE Trans. on Circuits and Systems-II: Analog and
Digital Signal Processing, Vol. 44, No. 8, pp. 646-655, August 1997.
[90] B. Falkowski, and L.-S. Lim, “Gray Scale Image Compression Based on Multiple-
Valued Input Binary Functions, Walsh and Reed-Muller Spectra,” Proc. ISMVL’00, pp.
279-284, 23-25 May 2000.
[91] P. Farm, and E. Dubrova, “Technology Mapping for Chemically Assembeled
Electronic Nanotechnology,” Proc. IWLS’02, pp. 121-124, New Orleans, Louisiana, 4-7th
June 2002.
[92] R. Feynman, “Simulating Physics with Computers,” Int. J. of Theoretical Physics,
Vol. 21, Nos. 6/7, pp. 467-488, 1982.
[93] R. Feynman, “Quantum Mechanical Computers,” Optics News, 11, pp. 11-20, 1985.
[94] R. Feynman, “There is Plenty of Room at the Bottom: an Invitation to Enter a New
Field of Physics,” Nanotechnology, edited by B. C. Crandal and J. Lewis, MIT Press, pp.
347-363, 1992.
[95] R. Feynman, Feynman Lectures on Computation, Addison Wesley, 1996.
[96] C. M. Files, A New Functional Decomposition Method as Applied to Machine
Learning and VLSI Layout, Ph.D. Dissertation, Electrical and Computer Engineering
Department, Portland State University, Portland, Oregon, 2000.
[97] M. P. Frank, Reversibility for Efficient Computing, Ph.D. Dissertation, Massachusetts
Institute of Technology, 1999.
[98] E. Fredkin, and T. Toffoli, “Conservative Logic,” Int. J. of Theoretical Physics, 21,
pp.219-253, 1982.
[99] H. Fujiwara, Logic Testing and Design for Testability, The MIT Press, 1985.
[100] Y. Z. Ge, L. T. Watson, and E. G. Collins, “Genetic Algorithms for Optimization on
a Quantum Computer,” Int. Conf. Unconventional Models of Computation (UMC)’98, pp.
218-227, Auckland, New Zealand, 5-9 January 1998.
[101] N. A. Gershenfeld, and I. L. Chuang, “Bulk Spin Resonance Quantum Computation,”
Science, 275, pp. 350-356, 1997.
[102] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison Wesley, 1989.
[103] S. Goldstein, and M. Budiu, “Nanofabrics: Spatial Computing Using Molecular
Electronics,” Proc. Int. Symp. on Computer Architecture, Gothenborg, Sweden, June 2001.

 Bibliography 407

[104] D. H. Green, “Families of Reed-Muller Canonical Forms,” Int. J. of Electronics, No.
2, pp. 259-280, February 1991.
[105] L. K. Grover, “A Fast Quantum-Mechanical Algorithm for Database Search,” Proc.
Symp. on Theory of Computing (STOC)’96, pp. 212-219, 1996.
[106] L. K. Grover, “A Framework for Fast Quantum Mechanical Algorithms,” Proc.
STOC’98, pp. 53-62, May 1998.
[107] J. Gruska, Quantum Computing, McGraw-Hill, 1999.
[108] S. Grygiel, Decomposition of Relations as a new Approach to Constructive Induction
in Machine Learning and Data Mining, Ph.D. Dissertation, Electrical and Computer
Engineering Department, Portland State University, Portland, Oregon, 2000.
[109] D. Hammerstrom, “Computational Neurobiology Meets Semiconductor
Engineering,” Proc. ISMVL’00, pp. 3-12, Portland, Oregon, 23-25 May 2000.
[110] K. Han, K. Park, C. Lee, and J. Kim, “Parallel quantum-inspired genetic algorithm
for combinatorial optimization problems,” Proc. of the Congress on Evolutionary
Computation (CEC),01, volume 2, pp. 1422-1429, 2001.
[111] H. Hasegawa, “Quantum Devices and Integrated Circuits Based on Quantum
Confinement in III-V Nanowire Networks Controlled by Nano-Schottky Gates,” ECS Joint
Int. Meeting and Sixth Int. Symp. on Quantum Confinement, San Fransisco, 2-7th September
2001.
[112] H. Hasegawa, A. Ito, C. Jiang, and T. Muranaka, “Atomic Assisted Selective MBE
Growth of InGaAs Linear and Hexagonal Nanowire Networks for Novel Quantum
Circuits,” Proc. of the 4th Int. Workshop on Novel Index Surfaces (NIS)’01, Apset, France,
16-20 September 2001.
[113] S. Hassoun, T. Sasao, and R. Brayton (editors), Logic Synthesis and Verification,
Kluwer Academic Publishers, November 2001.
[114] M. Helliwell, M. A. Perkowski, “A Fast Algorithm to Minimize Multi-Output
Mixed-Polarity Generalized Reed-Muller Forms,” Proc. Design Automation Conference
(DAC)’88, pp. 427-432, 1988.
[115] M. Hirvensalo, Quantum Computing, Springer, 2001.
[116] T. Hogg, C. Mochon, W. Polak, and E. Rieffel, “Tools for Quantum Algorithms,” Int.
J. of Modern Physics C, Vol. 10, No. 7, pp. 1347-1361, 1999.
[117] R. J. Hughes, D. F. V. James, E. H. Knill, R. Laflamme and A. G. Petschek,
“Decoherence Bounds on Quantum Computation with Trapped Ions,” Los Alamos National
Laboratory, Los Alamos, New Mexico, 8 April 2002.
[118] S. L. Hurst, Logical Processing of Digital Signals, Crane Russak and Edward Arnold,
London and Basel, 1978.
[119] S. L. Hurst, “Multiple-Valued Logic – Its Status and Its Future,” IEEE Trans. on
Comp., Vol. C-33, pp. 1160-1179, December 1984.
[120] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in Digital Logic,
Academic Press Inc., 1985.
[121] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation Rules for Designing
CNOT-based Quantum Circuits,” Proc. DAC’2002, pp. 419-424, New Orleans, Louisiana,
10-14th June 2002.
[122] T. P. Johnson, “Reversible Fuzzy Topological Spaces,” J. Fuzzy Mathematics, Vol. 1,
No. 3, p. 491, September 1993.
[123] R. Josza, “Quantum Algorithms and the Fourier Transform,” Proc. Royal Society of
London, Vol. 454, pp. 323-337, 1997.
[124] U. Kalay, Highly Testable Quasigroup-Based Combinational Logic Circuits, Ph.D.
Dissertation, Electrical and Computer Engineering Department, Portland State University,
Portland, Oregon, 2001.
[125] M. G. Karpovski, Finite Orthogonal Series in the Design of Digital Devices, Wiley,
New York, 1976.

 408 Bibliography

[126] P. Kerntopf, “A Comparison of Logical Efficiency of Reversible and Conventional
Gates,” Proc. Symp. on Logic, Design and Learning (LDL)’00, Portland, Oregon, 2000.
[127] P. Kerntopf, “Logic Synthesis Using Reversible Gates,” Proc. LDL’00, Portland,
Oregon, 31 May 2000.
[128] P. Kerntopf, “On Efficiency of Reversible Logic (3,3)-Gates,” Proc. Int. Conf. on
Mixed Design of Integrated Circuits and Systems (MIXDES)’00, pp. 185-190, June 2000.
[129] P. Kerntopf, “An Approach to Designing Complex Reversible Logic Gates,” Proc.
IWLS’02, pp. 31-36, New Orleans, Louisiana, 2002.
[130] R. Keyes, and R. Landauer, “Minimal Energy Dissipation in Logic,” IBM J. Research
and Development, 14, pp. 153-157, 1970.
[131] S. Kim, C. H. Ziesler, and M. C. Papaefthymiou, “A True Single-Phase 8-bit
Adiabatic Multiplier,” DAC’01, pp. 758-763, 2001.
[132] K. Kinoshita, T. Sasao, and J. Matsuda, “On Magnetic Bubble Logic Circuits,” IEEE
Trans. on Comp., Vol. C-25, No. 3, pp. 247-253, March 1976.
[133] G. Klir, Architecture of Systems Problem Solving, Plenum Press, New York, 1985.
[134] G. Klir (editor), “Reconstructability Analysis Bibliography,” Int. J. of General
Systems, Vol. 24, pp. 225- 229, 1996.
[135] G. Klir, and M. J. Wierman, Uncertainty-Based Information: Variables of
Generalized Information Theory, Physica-Verlag, New York, 1998.
[136] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Inc., 1978.
[137] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge, MA, 1992.
[138] K. Krippendorff, Information Theory: Structural Models for Qualitative Data, Sage
Publications, Inc., 1986.
[139] R. Landauer, “Irreversibility and heat generation in the computational process,” IBM
J. of Research and Development, 5, pp. 183-191, 1961.
[140] R. Landauer, “Fundamental Physical Limitations of the Computational Process,”
Ann. N.Y. Acad. Sci., 426, 161, 1985.
[141] R. Landauer, “Computation and Physics: Wheeler’s Meaning Circuit,” Found. Phys.,
16, 551, 1986.
[142] C. Y. Lee, “Representation of Switching Circuits by Binary Decision Diagrams,” Bell
Syst. Tech. J., Vol. 38, pp. 985-999, 1959.
[143] J. Lim, D. Kim, and S. Chae, “Reversible Energy Recovery Logic Circuits and Its 8-
Phase Clocked Power Generator for Ultra-Low-Power Applications,” IEICE Trans.
Electron, OL. E82-C, No. 4, April 1999.
[144] P. Lindgren, R. Drechsler, and B. Becker, “Synthesis of Pseudo-Kronecker Lattice
Diagrams,” Proc. Reed-Muller‘99, pp. 197-204, Victoria, B. C., Canada, 1999.
[145] S. Loloyd, “A Potentially Realizable Quantum Computer,” Science, 261, pp. 1569-
1571, 1993.
[146] S. MacLane and G. Birkoff, Algebra, Macmillan Company, New York, 1967.
[147] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1977.
[148] K. K. Maitra, “Cascaded Switching Networks of Two-Input Flexible Cells,” IRE
Trans. Electron Comput., pp. 136-143, 1962.
[149] C. Marand, and P. Townsend, “Quantum Key Distribution Over Distances as Long as
30 km,” Optics Letters, Vol. 20, No. 16, pp. 1695-1697, 15 August 1995.
[150] N. Margolus, Physics and Computation, Ph.D. Dissertation, Massachusetts Institute
of Technology, 1988.
[151] R. J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer
Academic Publishers, Boston, 1987.
[152] R. C. Merkle, and K. Drexler, “Helical Logic,” Nanotechnology, 7, pp. 325-339,
1996.

 Bibliography 409

[153] R. C. Merkle, “Reversible Electronic Logic Using Switches,” Nanotechnology, 4, pp.
21-40, 1993.
[154] R. C. Merkle, “Two Types of Mechanical Reversible Logic,” Nanotechnology, 4, pp.
114-131, 1993.
[155] L. J. Micheel, A. H. Taddiken, and A. C. Seabaugh, “Multiple-Valued Logic
Computation Using Micro- and Nanoelectronic Devices,” Proc. ISMVL’93, pp. 164-169,
1993.
[156] G. J. Milburn, “Quantum Optical Fredkin Gate,” Phys. Rev. Lett., Vol. 62, No. 18,
pp. 2124-2127, 1 May 1989.
[157] A. Mishchenko, M. Perkowski, “Fast Heuristic Minimization of Exclusive-Sum-Of-
Products,” Proc. Reed-Muller’01, pp. 242-250, Starkville, Mississippi, August 2001.
[158] A. Mishchenko, and M. Perkowski, “Logic Synthesis of Reversible Wave Cascades,”
Proc. IWLS’02, pp. 197-202, New Orleans, Louisiana, 2002.
[159] C. Moraga, “Ternary Spectral Logic,” Proc. ISMVL’77, pp. 7-12, 1977.
[160] J. N. Mordeson, “Fuzzy Galois Theory,” J. Fuzzy Mathematics, Vol. 1, No. 3, 659,
September 1993.
[161] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska , and S. I. Long, “Wave Steering in
YADDs: A Novel Non-Iterative Synthesis and Layout Technique,” Proc. DAC’99, pp. 466-
471, New Orleans, June 1999.
[162] J. Mullins, “Quantum Physics Spins Off Marketable Products: Uncrackable
Encryption Key is One of First New Devices,” IEEE Spectrum Magazine, pp. 21-22, May
2002.
[163] J. Mullins, “Making Unbreakable Code: The Quantum Properties of Photons Could
Make Encrypted Messages Absolutely Secure,” IEEE Spectrum Magazine, pp. 40-45, May
2002.
[164] S. Muroga, Logic Design and Switching Theory, Wiley, New York, 1979.
[165] A. Muthukrishnan, and C. R. Stroud, “Multivalued Logic Gates for Quantum
Computation,” Physical Review A, Vol. 62, 052309, 2000.
[166] J. C. Muzio, and T. Wesselkamper, Multiple-Valued Switching Theory, Adam-Hilger,
1985.
[167] M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, 2000.
[168] M. A. Nielsen, and Isaac L. Chuang, “Programmable Quantum Gate Arrays,”
Submitted to Phys. Rev. Lett., 12th May 1998.
[169] M. Oskin, F. T. Chong, and I. L. Chuang, “A Practical Architecture for Reliable
Quantum Computers,” IEEE Computer Magazine, pp. 79-87, January 2002.
[170] A. Peres, “Reversible Logic and Quantum Computers,” Physical Review A, 32, pp.
3266-3276, 1985.
[171] M. Perkowski, and M. Chrzanowska-Jeske, “An Exact Algorithm to Minimize
Mixed-Radix Exclusive Sums of Products for Incompletely Specified Boolean Functions,”
Proc. ISCAS’90, Intern. Symposium on Circuits and Systems, pp. 1652-1655, New
Orleans, 1-3 May 1990.
[172] M. Perkowski, “The Generalised Orthonormal Expansion of Functions with Multiple-
Valued Inputs and Some of its Applications,” Proc. ISMVL’92, pp. 442-450, 1992.
[173] M. Perkowski, “A Fundamental Theorem for Exor Circuits,” Proc. Reed-Muller’93,
pp. 52-60, 1993.
[174] M. Perkowski, A. Sarabi, and F. Beyl, “Fundamental Theorems and Families of
Forms for Binary and Multiple-Valued Linearly Independent Logic,” Proc. Reed-
Muller’95, pp. 288-299, Chiba, Japan, August 1995.
[175] M. Perkowski, T. Ross, D. Gadd, J. A. Goldman, and N. Song, “Application of ESOP
Minimization in Machine Learning and Knowledge Discovery,” Proc. Reed-Muller’95, pp.
102-109, Chiba, Japan, August 1995.

 410 Bibliography

[176] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel, M. Nowicka,
R. Malvi, Z. Wang, and J. Zhang, “Decomposition of Multiple-Valued Relations,” Proc.
ISMVL’97, pp. 13-18, Halifax, Nova Scotia, Canada, 28-30th May 1997.
[177] M. Perkowski, E. Pierzchala, and R. Drechsler, “Layout-Driven Synthesis for
Submicron Technology: Mapping Expansions to Regular Lattices,” Proc. First
International Conference on Information, Communications, and Signal Processing,
(ICICS)’97, Session 1C1: Spectral Techniques and Decision Diagrams, Singapore, 9-12th
September 1997.
[178] M. A. Perkowski, E. Pierzchala, and R. Drechsler, “Ternary and Quaternary Lattice
Diagrams for Linearly-Independent Logic, Multiple-Valued Logic and Analog Synthesis,”
Proc. ISIC’97, Singapore, Vol. 1, pp. 269-273, 10-12th September 1997.
[179] M. Perkowski, M. Chrzanowska-Jeske, and Y. Xu, “Lattice Diagrams using Reed-
Muller Logic,” Proc. Reed-Muller’97, Oxford Univ., U.K., pp. 85-102, 19-20th September
1997.
[180] M. Perkowski, L. Jozwiak, and R. Drechler, “A Canonical AND/EXOR Form that
includes both the Generalized Reed-Muller Forms and Kronecker Reed-Muller Forms,”
Proc. Reed-Muller’97, Oxford Univ., U.K., pp. 219-233, 19-20th September 1997.
[181] M. Perkowski, L. Jozwiak, and R. Drechler, “Two Hierarchies of Generalized
Kronecker Trees, Forms, Decision Diagrams, and Regular Layouts,” Proc. Reed-Muller’97,
Oxford Univ., U.K., pp. 115-132, 19-20th September 1997.
[182] M. Perkowski, A. Al-Rabadi, P. Kerntopf, A. Mishchenko, and M. Chrzanowska-
Jeske, “Three-Dimensional Realization of Multiple-Valued Functions using Reversible
Logic,” Booklet ULSI’01, pp. 47-53, Warsaw, Poland, 21st May 2001.
[183] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X.
Song, A. Al-Rabadi, L. Jozwiak, and A. Coppola, “Regularity and Symmetry as a Base for
Efficient Realization of Reversible Logic Circuits,” Proc. IWLS’01, pp. 90-95, Lake Tahoe,
California, 12-15th June 2001.
[184] M. Perkowski, L. Jozwiak, P. Kerntopf, A. Mishchenko, A. Al-Rabadi, A. Coppola,
A. Buller, X. Song, M. Khan, S. Yanushkevich, V. Shmerko, and M. Chrzanowska-Jeske,
“A General Decomposition for Reversible Logic,” Proc. Reed-Muller’01, pp. 119-138,
Starkville, Mississippi, 10-11th August 2001.
[185] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X.
Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, and B. Massey, “Regular Realization of
Symmetric Functions using Reversible Logic,” Proc. Euro-Micro’01, pp. 245-252,
Warsaw, Poland, September 2001.
[186] M. Perkowski, D. Foote, Q. Chen, A. Al-Rabadi, and L. Jozwiak, “Learning
Hardware Using Multiple-Valued Logic, Part 1: Introduction and Approach,” IEEE Micro,
pp. 41-51, May/June 2002.
[187] M. Perkowski, D. Foote, Q. Chen, A. Al-Rabadi, and L. Jozwiak, “Learning
Hardware Using Multiple-Valued Logic, Part 2: Cube Calculus and Architecture,” IEEE
Micro, pp. 52-61, May/June 2002.
[188] M. Perkowski, and A. Mishchenko, “Logic Synthesis for Regular Layout using
Satisfiability,” accepted to International Workshop on Boolean Problems (WBP)’02,
Freiberg, Germany, 2002.
[189] M. Perkowski, B. Falkowski, M. Chrzanowska-Jeske, and R. Drechsler, “Efficient
Algorithms for Creation of Linearly-Independent Decision Diagrams and their Mapping to
Regular Layout,” accepted to VLSI Design.
[190] P. Picton, “Optoelectronic Multi-Valued Conservative Logic,” Int. J. of Optical
Computing, Vol.2, pp. 19-29, 1991.
[191] P. Picton, “Modified Fredkin Gate in Logic Design,” Microelectronics J., 25, pp.
437-441, 1994.

 Bibliography 411

[192] P. Picton, “Multi-Valued Sequential Logic Design Using Fredkin Gates,” MVL J.,
Vol. 1, pp. 241-251, 1996.
[193] P. Picton, “A Universal Architecture for Multiple-Valued Reversible Logic,” MVL J.,
5, pp. 27-37, 2000.
[194] E. Pierzchala, M. A. Perkowski, and S. Grygiel, “A Field Programmable Analog
Array for Continuous, Fuzzy, and Multiple-Valued Logic Applications,” Proc. ISMVL’94,
pp. 148-155, Boston, 25-27th May 1994.
[195] E. Pierzchala, M. A. Perkowski, “Programmable analog array circuit,” U. S. Patent
US5959871. Issued/Filed Dates: Sept. 28, 1999/ Dec. 22, 1994.
[196] H. W. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon Nanotube
Single-Electron Transistors at Room Temperature,” Science, Vol. 293, No. 5527, pp. 76-79,
6th July 2001.
[197] A. J. Poustie, and K. J. Blow, “Demonstration of an All-Optical Fredkin Gate,”
Optics Communications, 174, pp. 317-320, 2000.
[198] D. K. Pradhan, “Universal Test Sets for Multiple Fault Detection in AND-EXOR
Arrays,” IEEE Trans. on Comp., Vol. 27, pp. 181-187, February 1978.
[199] D. K. Pradhan, Fault-Tolerant Computing: Theory and Techniques, Vol. I, Prentice-
Hall, New Jersey, 1987.
[200] L. Priese, “On a Simple Combinatorial Structure Sufficient for Sublying Nontrivial
Self-Reproduction,” J. Cybernet., 6, 101, 1976.
[201] S. Rahardja, and B. J. Falkowski, “Family of Unified Complex Hadamard
Transforms,” IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal
Processing, Vol. 46, No. 8, pp. 1094-1100, August 1999.
[202] K. R. Rao, and D. F. Elliott, Fast Transforms Algorithms, Analyses, Applications,
Academic Press Inc., 1982.
[203] M. R. Rayner, and D. J. Newton, “On the Symmetry of Logic,” J. of Phys. A:
Mathematical and General, 28, pp. 5623-5631, 1995.
[204] S. M. Reddy, “Easily Testable Realizations of Logic Functions,” IEEE Trans. on
Comp., C-21, pp. 1183-1188, Nov. 1972.
[205] R. Rovatti, and G. Baccarani, “Fuzzy Reversible Logic,” Proc. Int. Conference on
Fuzzy Systems (FUZZ-IEEE)’98, 1998.
[206] K. Roy, and S. Prasad, Low-Power CMOS VLSI Circuit Design, John Wiley & Sons
Inc., 2000.
[207] B. I. P. Rubinstein, “Evolving quantum circuits using genetic programming,” Proc.
Congress on Evolutionary Computation (CEC)’01, pp. 144-151, 2001.
[208] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading,
Massachusetts, 1995.
[209] A. Sarabi, N. Song, M. Chrzanowska-Jeske, and Marek A. Perkowski, “A
Comprehensive Approach to Logic Synthesis and Physical Design for Two-Dimensional
Logic Arrays,” Proc. DAC’94, pp. 321-326, 1994.
[210] T. Sasao, and K. Kinoshita, “Cascade Realization of 3-Input 3-Output Conservative
Logic Circuits,” IEEE Trans. on Comp., Vol. C-27, No. 3, pp. 214-221, March 1978.
[211] T. Sasao, and K. Kinoshita, “Realization of Minimum Circuits with Two-Input
Conservative Logic Elements,” IEEE Trans. on Comp., Vol. C-27, No. 8, pp. 749-752,
August 1978.
[212] T. Sasao, and K. Kinoshita, “Conservative Logic Elements and Their Universality,”
IEEE Trans. on Comp., Vol. C-28, No. 9, pp. 682-685, September 1979.
[213] T. Sasao (editor), Logic Synthesis and Optimization, Kluwer Academic Publishers,
January 1993.
[214] T. Sasao, “EXMIN2: A Simplified Algorithm for Exclusive-OR-Sum-Of-Products
Expressions for Muliptle-Valued Input Two-Valued Output Functions,” IEEE Trans. on
Computer Aided Design, Vol. 12, No. 5, pp. 621-632, May 1993.

 412 Bibliography

[215] T. Sasao, “Representation of Logic Functions using EXOR Operators,” Proc. Reed-
Muller’95, pp. 11-20, 1995.
[216] T. Sasao, and J. T. Butler, “Planar Multiple-Valued Decision Diagrams,” Proc.
ISMVL’95, pp. 28-35, 1995.
[217] T. Sasao, and M. Fujita (editors), Representations of Discrete Functions, Kluwer
Academic Publishers, April 1996.
[218] T. Sasao, “Easily Testable Realizations for Generalized Reed-Muller Expressions,”
IEEE Trans. on Comp., Vol. 46, pp. 709-716, June 1997.
[219] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers,
February 1999.
[220] A. C. Seabaugh, “Multi-Valued Logic and the Esaki Tunnel Diode,” Booklet
ULSI’02, p. 46, Boston, Massachusetts, 15th May 2002.
[221] D. Shah, Self-Repairable Field Programmable Gate Array, M.S. Thesis, Electrical
and Computer Engineering Department, Portland State University, November 2000.
[222] J. Shamir, H. J. Caulfield, W. Micelli, and R. Seymour, “Optical Computing and the
Fredkin Gates,” Applied Optics, Vol. 25, p.1604, 1986.
[223] C. E. Shannon and W. Weaver, A Mathematical Theory of Communication,
University of Illinois Press, 1949.
[224] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.Hayes, “Reversible Logic Circuit
Synthesis,” Proc. IWLS’02, pp. 125-130, New Orleans, Louisiana, 2002.
[225] Z. Shi, and R. Lee, “Bit Permutation Instructions for Accelerating Software
Cryptography,” Int. Conference on Application-Specific Systems, Architectures, and
Processors, pp. 138-148, July 2000.
[226] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring,” Proc. Symp. Foundations of Computer Science, pp. 124-134, 1994.
[227] P. W. Shor, “Fault-tolerant quantum computation,” Proc. Symp. Foundations of
Computer Science, 1996.
[228] P. W. Shor, “Polynomial Time Algorithms for Prime Factorization and Discrete
Logarithm,” SIAM J. of Computing, 26(5), pp. 1484-1509, 1997.
[229] K. C. Smith, “Prospects for VLSI Technologies in MVL,” Booklet ULSI’02, p. 4,
Boston, Massachusetts, 15th May 2002.
[230] J. A. Smolin, and D. P. DiVincenzo, “Five Two-Bit Quantum Gates are Sufficient to
Implement the Quantum Fredkin Gate,” Phys. Rev. A, 53, pp. 2855-2856, 1996.
[231] F. Somenzi, CUDD Package, Release 2.3.1.
[232] N. Song, and M. Perkowski, “EXORCISM-MV-2: Minimization of Exclusive Sum
of Products Expressions for Multiple-Valued Input Incompletely Specified Functions,”
Proc. ISMVL’93, pp. 132-137, 24 May, 1993.
[233] N. Song, and M. Perkowski, “Minimization of Exclusive Sum of Products
Expressions for Multi-Output Multiple-Valued Input Incompletely Specified Functions,”
IEEE Trans. on Computer Aided Design, Vol. 15, pp. 285-395, April 1996.
[234] N. Song, and M. Perkowski, “Fast Look-Ahead Algorithm for Approximate ESOP
Minimization of Incompletely Specified Multi-Output Boolean Functions,” Proc. Reed-
Muller‘97, pp. 61-72, 1997.
[235] N. Song, A New Design Methodology for Two-Dimensional Logic Cell Arrays, Ph.D.
Dissertation, Electrical and Computer Engineering Department, Portland State University,
1997.
[236] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Finding a better-than-
classical quantum AND/OR algorithm using genetic programming,” Proc. CEC’99, volume
3, pp. 2239-2246, Washington D.C, 6-9. July 1999.
[237] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Quantum Computing
Applications of Genetic Programming,” In Advances in Genetic Programming, Vol. 3, pp.
135-160, 1999.

 Bibliography 413

[238] R. S. Stankovic, “Functional Decision Diagrams for Multiple-Valued Functions,”
Proc. ISMVL’95, pp. 284-289, 1995.
[239] R. S. Stankovic, Spectral Transform Decision Diagrams in Simple Questions and
Simple Answers, Nauka, Belgrade, 1998.
[240] R. S. Stankovic, C. Moraga, and J. T. Astola, “Reed-Muller Expressions in the
Previous Decade,” Proc. Reed-Muller’01, pp. 7-26, Starkville, Mississippi, 10-11th August
2001.
[241] A. Steane, “Quantum Error Correction,” in Introduction to Quantum Computation
and Information, H-K. Lo, T. Spiller, and S. Popescu (editors), World Scientific, 1998.
[242] B. Steinbach, and A. Mishchenko, “A New Approach to Exact ESOP Minimization,”
Proc. Reed-Muller’01, pp. 66-81, Starkville, Mississippi, August 2001.
[243] L. Storme, A. De Vos, and G. Jacobs, “Group Theoretical Aspects of Reversible
Logic Gates,” J. Universal Computer Science, Vol. 5, No. 5, pp. 307-321, May 1999.
[244] V. P. Suprun, “Fixed Polarity Reed-Muller Expressions of Symmetric Boolean
Functions,” Proc. Reed-Muller’95, pp.246-249.
[245] T. Toffoli, “Reversible Computing,” Tech. Memo. 151, Laboratory for Computer
Science, MIT, Cambridge, MA, 1980.
[246] T. Toffoli, “Reversible Computing,” Automata, Languages and Programming, pp.
632-644, Springer Verlag, 1980.
[247] R. Tosic, I. Stojmenovic, and M. Miyakawa, “On the Maximum Size of the Terms in
the Realization of Symmetric Functions,” Proc. ISMVL’91, pp. 110-117, Victoria, B.C.,
Canada, May 26-29,1991.
[248] V. I. Varshavsky, “Logic Design and Quantum Challenge,” Preprint from the author.
[249] D. Ventura, Quantum and Evolutionary Approaches to Computational Learning,
Ph.D. Dissertation, Computer Science Department, Brigham Young University, 1998.
[250] P. Wayner, “Silicon in Reverse,” Byte, p. 67, August 1994.
[251] A. Wiles, “Modular Elliptic Curves and Fermat’s Last Theorem”, Annals of
Mathematics, 141 (3), May 1995.
[252] C. P. Williams, and A. Gray, “Automated Design of Quantum Circuits,” Proc. of first
NASA International Conference on Quantum Computing and Quantum Communications,
Palm Springs, CA, vol. 1509, Springer Verlag lecture notes in computer science, 1998.
[253] C. P. Williams, and S. H. Clearwater, Explorations in Quantum Computing,
Springer-Verlag, New York, 1998.
[254] C. P. Williams, and S. H. Clearwater, Ultimate Zero and One- Computing at the
Quantum Frontier, Springer, 2000.
[255] C. P. Williams, and A. G. Gray, “Automated Design of Quantum Circuits,” Quantum
Computing and Quantum Communications (QCQC)'98, pp. 113-125, Palm Springs,
California, 17-20th February 1998.
[256] M. R. Williams, A History of Computing Technology, second edition, 1997.
[257] H. Wu, M. A. Perkowski, X. Zheng, and N. Zhuang, “Generalized Partially-Mixed-
Polarity Reed-Muller Expansion and Its Fast Computation,” IEEE Trans. on Comp., Vol.
45, No. 9, pp. 1084-1088, 1996.
[258] T. Yabuki and H. Iba. “Genetic algorithms and quantum circuit design, evolving a
simpler teleportation circuit,” Late Breaking Papers at the 2000 Genetic and Evolutionary
Computation Conference, pp. 421-425, 2000.
[259] T. Yamada, Y. Kinoshita, S. Kasai, H. Hasegawa, Y. Amemiya, “Quantum Dot Logic
Circuits Based on Shared Binary-Decision Diagram,” Japanese J. Applied Physics, Vol. 40,
Part 1, No. 7, pp. 4485-4488, July 2001.
[260] S. N. Yanushkevich, Logic Differential Calculus in Multi-Valued Logic Design,
Technical University of Szczecin Academic Publisher, Poland, 1998.
[261] A. Yariv, Quantum Electronics, John Wiley, 1989.

 414 Bibliography

[262] S. G. Younis, Asymptotically Zero Energy Computing Using Split-Level Charge
Recovery Logic, Ph.D. Dissertation, MIT, 1994.
[263] S. G. Younis, and T. F. Knight, “Asymptotically Zero Energy Split-Level Charge
Recovery Logic,” Workshop on Low Power Design’94, pp. 177-182, 1994.
[264] X. Zeng, M. Perkowski, K. Dill, and A. Sarabi, “Approximate Minimization of
Generalized Reed-Muller Forms,” Proc. Reed-Muller’95, pp. 221-230.
[265] I. I. Zhegalkin, “On the Techniques of Calculating Sentences in Symbolic Logic,”
Math. Sb., Vol. 34, pp. 9-28, 1927 (in Russian).
[266] I. I. Zhegalkin, “Arithmetic Representations for Symbolic Logic,” Math. Sb., Vol. 35,
pp. 311-377, 1928 (in Russian).
[267] Z. Zilic, and Z. G. Vranesic, “Current-Mode CMOS Galois Field Circuits,” Proc.
ISMVL’93, pp. 245-250, 1993.
[268] Z. Zilic, and K. Radecka, “The Role of Super-Fast Transforms in Speeding Up
Quantum Computations,” Proc. ISMVL’02, pp. 129-135, Boston, Massachusetts, 15-18th
May 2002.
[269] G. W. Zobrist (editor), Progress in Computer-Aided VLSI Design: Tools, Volume 1,
1985.
[270] G. Zorpette, “The Quest for the Spin Transistor,” IEEE Spectrum Magazine, 2002.
[271] M. Zwick, “Control Uniqueness in Reconstructibility Analysis,” Int. J. General
Systems, 23(2), 1995.
[272] M. Zwick, and H. Shu, “Set-Theoretic Reconstructability of Elementary Cellular
Automata,” Advances in System Science and Application, Special Issue I, pp. 31-36, 1995.
[273] M. Zwick, Wholes and Parts in General Systems Methodology, In: The Character
Concept in Evolutionary Biology, edited by G. Wagner, Academic Press, 2001.
[274] M. Zwick, “Reconstructability Analysis with Fourier Transforms,” Book of Abstracts
of the WOSC/IIGSS’02, Pittsburgh, Pennsylvania, p. 82, 24-26th March 2002.
[275] M. Zwick, Elements and Relations, Book in preparation.

 Bibliography 415

Index

⊕-ISID, 100

(
(1,1) gates, 249, 250
(2,2) gates, 249
(3,3) gates, 182, 249

“
“spy” circuit, 120, 126, 147

0
0-MRA, 160, 161, 162, 164, 166, 169,

172, 179, 184, 315, 371

1
1-MRA, 160, 161, 163, 164, 165, 166,

169, 172, 182, 183, 184, 315
1-Reduced Post Literal, 22, 23, 24, 32,

34
1-RPL-GFSOP, 22

2
2-D, 69, 77, 78, 80, 101, 103, 109, 153,

224, 231, 232, 388
2-D lattice structures, 78
2-MRA, 172, 174, 179

3
3-D, 16, 38, 69, 79, 80, 83, 84, 85, 89,

93, 95, 97, 98, 100, 103, 106, 109,
110, 147, 233, 314, 356, 388, 389

3-D FPGAs, 110
3-D joining operator, 314

3-D lattice structures, 38, 80, 84, 93, 98,

100, 109, 110, 314
3-D regular structures, 356
3-D Shannon lattice structures, 69
3-D space, 80, 110

A
Abstraction levels, 7
Addition, 3, 5, 17, 18, 19, 23, 39, 60, 82,

99, 106, 113, 154, 157, 173, 288,
290, 291, 305, 326, 327, 328, 329,
335, 347, 348

Adiabatic, 6, 231, 318
Aiken code, 129
Akers Arrays, 68
Algebra, 261, 300, 329
Algebraic structure, 17
Algorithm, 2, 57, 60, 62, 63, 69, 93, 99,

109, 110, 150, 153, 155, 157, 172,
173, 177, 178, 181, 196, 198, 200,
203, 267, 304, 305, 312, 352, 365,
370, 397, 400

Algorithmic level, 7
Analysis, 15, 145, 154, 156, 168, 215,

237, 238, 261, 268, 269, 287, 310,
315, 317, 319, 373, 374

AND gate, 120, 183, 250
AND-EXOR, 39
Architectural level, 7
Area, 5, 7, 9, 17, 37, 67, 68, 99, 100,

103, 110, 312, 319, 357, 365
Artificial Neural Networks, 14
Ashenhurst-Curtis, 14, 161, 168, 214,

316, 360, 364, 371

B
Balanced, 118
Baldwinian, 60, 61, 62, 63, 64
Baldwinian evolution, 61

Basis functions, 16, 35, 38, 136, 137,
239, 266, 313, 338, 343, 347, 355,
356, 395

Basis states, 232, 237, 238, 242, 245,
247, 248, 253, 254, 269, 271, 272,
273, 275, 279, 280, 281, 283, 301,
302, 303, 304, 310, 311, 315, 390,
393, 395, 401

BDD, 195, 212, 214, 270, 304, 319
Beam splitter, 385, 387
Bi-Decomposition, 14, 364, 371
Billiard Ball Model, 114
Binary, 8, 9, 11, 12, 14, 15, 17, 19, 24,

25, 35, 38, 39, 40, 41, 42, 43, 44, 45,
52, 54, 56, 57, 62, 65, 69, 73, 74, 76,
77, 79, 80, 81, 84, 90, 91, 93, 99,
103, 104, 112, 116, 118, 127, 138,
139, 145, 150, 152, 169, 177, 182,
185, 215, 229, 232, 234, 241, 244,
245, 247, 248, 250, 252, 255, 256,
257, 261, 266, 267, 268, 269, 270,
271, 273, 275, 280, 286, 300, 304,
312, 313, 314, 315, 316, 319, 324,
326, 329, 343, 344, 347, 359, 370,
371, 397

Binary logic, 9, 66, 127, 138, 139, 344
Binary S/D Trees, 44
Bit, 3, 4, 5, 113, 114, 329
Boltzmann constant, 3
Boolean, 12, 14, 20, 39, 65, 67, 71, 75,

100, 101, 103, 105, 110, 114, 127,
152, 153, 154, 158, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169,
170, 182, 183, 184, 185, 187, 195,
196, 199, 203, 206, 207, 208, 210,
211, 212, 213, 214, 215, 222, 315,
316, 347, 358, 359, 360, 362, 364,
366, 370, 371, 373, 374, 375, 378

Boolean functions, 159, 160, 162, 169,
187, 206, 210, 362

Boolean logic, 159
Bound set, 365, 368, 369, 370, 371

C
C# complexity measure, 169
CAD, 13, 215, 238, 310, 317, 318
Canonical, 12, 16, 17, 18, 19, 20, 27, 39,

40, 41, 42, 51, 52, 53, 62, 69, 110,
237, 270, 304, 310, 311, 315, 327,
329, 350, 354

Cartesian coordinates, 85
Cartesian product, 162
Cascades, 186, 196, 201
Chrestenson, 238, 278, 279, 280, 283,

284, 285, 286, 300, 311, 315, 400
Chromosome, 60, 61, 62, 63, 64, 287,

313
Circuits, 1, 8, 9, 12, 13, 15, 16, 17, 28,

36, 37, 39, 67, 68, 78, 80, 93, 99,
109, 112, 114, 116, 117, 119, 127,
130, 134, 138, 140, 144, 146, 147,
148, 150, 166, 170, 171, 182, 183,
186, 200, 203, 215, 216, 217, 218,
219, 223, 224, 225, 226, 227, 228,
229, 231, 232, 237, 238, 252, 255,
257, 260, 261, 270, 285, 287, 295,
299, 300, 302, 305, 306, 308, 311,
312, 313, 314, 315, 316, 317, 326,
327, 344, 347, 350, 378, 379

Classes, 8, 14, 39, 70, 114, 116, 166,
167, 168, 170, 183, 185, 314, 315,
357, 358, 359, 373, 374, 375

Classification, 14, 15, 16, 17, 70, 116,
117, 136, 166, 206, 210, 314, 358

Coefficients, 19, 51, 232, 233, 239, 240,
266, 395

Cofactor, 19, 23, 25, 95, 97, 365
Cofactors, 32, 33, 34, 45, 57, 73, 74, 89,

90, 93, 95, 97, 118, 121, 139, 151,
152, 344, 364, 365

Combinational, 69, 116, 130, 315
Complete, 8, 38, 87, 94, 162, 163, 172,

184, 188, 205, 231, 250, 267, 319,
343, 347, 402

Complexity, 1, 2, 8, 14, 21, 45, 160,
161, 166, 168, 169, 181, 189, 216,
233, 237, 306, 308, 313, 315, 316,
317, 339, 358, 359, 360, 362, 363,
365, 366, 373, 374, 377

Complexity measure, 169, 316, 359,
360, 375

Computer-Aided Design, 13, 317
Computing, 1, 10, 14, 218, 229, 261,

274, 305, 351, 352, 390
Conservative, 112, 243
Constraints, 5, 8, 20, 110, 121, 232, 235,

312, 390, 391
Control signal, 380, 388
Controlled-Controlled-NOT, 119, 128,

221, 222
Controlled-NOT, 119, 128, 221, 222

 418 Index

Conventional Reconstructability
Analysis, 160, 185, 315

Correction functions, 72, 73, 87, 90, 91,
92, 93

Cost, 48, 60, 63, 102, 169, 171, 185,
202, 215, 216, 217, 227, 287, 308,
317, 375, 376

Count, 14, 40, 67, 116, 145, 147, 169,
201, 209, 313, 316, 317, 330, 331,
336, 337, 338, 339, 341, 355, 359,
362, 363, 375

Counter clock wise, 94, 95
CRA, 160, 161, 162, 163, 164, 166, 167,

168, 169, 170, 171, 172, 174, 177,
178, 181, 185, 315, 374, 375

Critical angle, 381
Crossover, 60, 115, 352
Cubes, 45, 48, 57, 163, 164, 388
Curtis decomposition, 369
Cyclic, 17, 118
Cyclic Group, 17, 137, 355
Cyclic group property, 17

D
Darwinian, 60, 61, 62, 64
Davio, 12, 14, 16, 18, 19, 20, 24, 25, 26,

27, 30, 31, 32, 33, 34, 35, 37, 38, 40,
41, 42, 43, 44, 45, 49, 50, 53, 54, 56,
58, 59, 69, 74, 78, 79, 91, 94, 116,
136, 142, 144, 145, 146, 147, 194,
209, 286, 290, 295, 314, 315, 316,
319, 321, 322, 323, 324, 325, 326,
329, 336, 339, 343, 344, 347, 348,
349, 355, 356

Davio expansions, 16, 18, 19, 20, 32, 33,
35, 38, 41, 43, 91, 136, 142, 145,
146, 347, 355, 356

Decision Diagrams, 12, 15, 18, 39, 41,
75, 186, 193, 195, 196, 198, 203,
237, 238, 269, 270, 273, 304, 305,
310, 311, 315, 344, 350

Decoherence, 241, 242, 244
Decomposable, 173, 174, 177, 181, 185,

241, 251, 252, 278, 360, 367, 375
Decomposition, 12, 36, 69, 91, 100, 102,

103, 105, 106, 109, 110, 154, 158,
159, 160, 161, 162, 163, 164, 166,
167, 168, 169, 170, 172, 174, 175,
176, 177, 178, 179, 180, 181, 184,
185, 214, 224, 252, 261, 263, 264,

278, 291, 300, 304, 315, 316, 339,
359, 360, 364, 365, 366, 367, 368,
369, 370, 371, 372, 373, 375

Delay, 5, 67, 110, 115, 202, 312, 357
Design constraints, 5, 6, 261
Design specification, 9
Devices, 4, 10, 68, 106, 169, 218, 229,

234, 236, 237, 305, 376, 378, 379,
380, 384, 385, 388

DFC, 359, 360, 366
Diagrams, 41, 193, 269, 301, 315
Discrete-grid weight space, 390
Disjoint, 90, 117, 187, 360, 361, 365,

367, 368, 369, 370, 371
Disjoint AC decomposition, 367
Don’t care, 87, 151, 365, 371
Don’t cares, 40, 57, 60, 71, 151, 152,

201, 203, 367
Dyadic, 15

E
Energy recovery, 7
Entanglement, 2, 5, 13, 241, 244, 251,

278, 301
EPR, 232, 237, 238, 248, 253, 278, 279,

280, 281, 310, 311, 315
Error, 17, 100, 101, 102, 104, 105, 106,

110, 158, 161, 174, 243, 269, 287,
351, 352

ESOP, 9, 15, 20, 39, 40, 42, 43, 57, 62,
63, 66, 184, 208, 211

ESOP minimizer, 40, 57
Evaluation, 13, 14, 78, 158, 169, 203,

205, 216, 217, 305, 308, 309, 316,
317, 364

Evolution, 1, 60, 61, 63, 114, 218, 219,
223, 224, 225, 226, 227, 228, 232,
237, 238, 240, 244, 246, 247, 248,
249, 250, 252, 256, 257, 258, 261,
262, 263, 267, 268, 269, 270, 271,
272, 273, 275, 276, 277, 278, 279,
280, 285, 286, 287, 289, 290, 292,
293, 295, 297, 300, 301, 302, 304,
305, 307, 310, 311, 315, 351

Evolutionary algorithm, 40, 41, 57, 60,
62, 65, 66, 287, 313, 354

EXOR, 17, 39, 103, 117, 187, 188, 190,
196, 343, 347, 370

Expansion, 17, 19, 22, 23, 25, 32, 33,
34, 42, 44, 45, 51, 54, 55, 56, 57, 72,

 Index 419

93, 97, 138, 142, 143, 144, 151, 152,
182, 239, 240, 264, 266, 322, 324,
326, 339, 343, 347, 349, 356

Expressions, 9, 14, 15, 20, 27, 37, 39,
41, 48, 53, 62, 63, 66, 130, 201, 329,
330

Extended Green/Sasao hierarchy, 41, 42

F
Factoring problem, 3, 233, 264
Families, 12, 14, 15, 16, 18, 32, 37, 38,

39, 40, 41, 42, 65, 117, 118, 136,
145, 147, 314, 316, 321, 322, 323,
324, 325, 355, 356, 358

Family, 40, 41, 42, 45, 50, 52, 65, 70,
117, 118, 159, 196, 265, 321, 322,
323, 324, 358

Fan out, 117, 121, 377
Feynman gate, 117, 124, 149, 188, 192,

221, 222, 250, 252, 256, 270, 271,
295

Flattened form, 45, 47, 48, 53, 57, 65,
201

Flipped Shannon, 16, 30, 34, 35, 38, 324
Formalisms, 8, 13, 15, 45, 237, 278,

319, 390, 393
Formula, 56, 316, 330, 331, 336
Forward reversible circuit, 126, 154,

184, 195, 198, 205, 313
FPGA, 348
FPRM, 19, 45
Fredkin gate, 117, 119, 123, 139, 156,

221, 222
Free set, 365, 368, 369, 370, 371
Fresnel’s Equations, 381
Full adder, 82, 83, 99, 128, 222, 223
Full regularity, 9, 79
Functional minimization, 9, 12, 60, 61,

66, 201
Functionality, 10, 60, 73, 87, 116, 139,

154, 163, 165, 166, 169, 187, 316,
363, 373, 375, 378, 382, 384, 385,
399

Fuzzy logic, 232, 269

G
Galois Equations, 16
Galois field, 10, 15, 17, 18, 24, 28, 35,

37, 38, 39, 40, 47, 51, 117, 199, 287,

288, 289, 290, 291, 292, 293, 294,
295, 326, 334, 335, 336, 339, 340,
341

Galois Field Sum-Of-Products, 14, 15,
20

Garbage, 5, 8, 12, 116, 118, 121, 122,
123, 124, 125, 128, 146, 147, 149,
150, 151, 152, 154, 157, 183, 184,
186, 190, 193, 195, 196, 197, 198,
203, 205, 207, 208, 209, 210, 211,
212, 215, 222, 308, 313

Garbage elimination, 154
Gate, 9, 78, 117, 118, 119, 120, 122,

123, 124, 125, 130, 133, 139, 147,
149, 154, 156, 157, 182, 183, 188,
192, 193, 196, 198, 219, 220, 221,
222, 226, 250, 251, 252, 254, 255,
256, 260, 261, 263, 265, 267, 268,
270, 271, 283, 284, 285, 286, 295,
304, 315, 326, 328, 343, 347, 370,
377

Gates, 5, 8, 15, 74, 101, 103, 112, 116,
117, 118, 119, 120, 121, 123, 128,
129, 130, 138, 139, 141, 144, 146,
147, 169, 185, 186, 187, 188, 189,
190, 191, 193, 194, 196, 198, 199,
200, 202, 207, 208, 209, 211, 212,
216, 219, 221, 222, 224, 226, 228,
231, 235, 237, 238, 247, 249, 250,
252, 253, 256, 260, 261, 267, 268,
278, 286, 287, 290, 294, 295, 305,
308, 310, 311, 315, 317, 318, 328,
329, 344, 347, 348, 375, 376, 377

Generalization, 11, 40, 54, 77, 110, 160,
199, 265, 279, 302, 400

Generalized (Post) literal, 21, 22
Generalized Basis Function Matrix, 116,

314
Generalized Curtis decomposition, 369
Generalized Inclusive Forms, 40, 41, 42,

43, 52, 65, 316
Genetic algorithm, 60, 285
Genetic Programming, 351
Genotype, 61, 63
Geometry, 72, 262
GF(2), 17, 41, 42, 51, 62, 138, 253, 268,

324, 328, 341, 343, 344, 348, 349,
356

GF(3), 22, 23, 32, 36, 40, 42, 43, 44, 45,
51, 52, 54, 55, 65, 91, 93, 103, 106,
107, 136, 138, 140, 142, 143, 201,
225, 273, 281, 288, 289, 295, 297,

 420 Index

301, 324, 326, 327, 330, 331, 341,
344, 345, 356

GF(4), 25, 26, 29, 30, 54, 56, 57, 324,
326, 327, 328, 333, 338, 341, 348,
349, 356

GF(pk), 30, 38, 41, 62, 325, 335, 339,
340, 341

GF2(*), 18
GF2(+), 18
GF3(*), 18
GF3(+), 18
GF4(*), 18
GF4(+), 18
GFSOP, 14, 15, 21, 22, 37, 39, 40, 41,

45, 48, 56, 57, 60, 62, 65, 106, 201,
202, 203, 313, 326, 327, 330, 339

GFSOP evolutionary minimizer, 60, 203
GFSOP minimizer, 203
GIFs, 40, 41, 42, 43, 50, 316
Global, 67, 68, 69, 110, 351
Graph Coloring, 239
Gray code, 129
Green/Sasao hierarchy, 18, 39, 41, 42,

52, 54, 55, 62, 65, 334
Green-Sasao hierarchy, 15
GRM, 19, 20, 40, 45, 57, 62, 64
Group Theory, 149, 317

H
Hamiltonian, 239, 240
Hamming distance, 100
Hardware, 3, 4, 6, 7, 9, 16, 22, 26, 68,

110, 113, 216, 229, 237, 240, 317,
344, 350

Hermitian, 241, 262
Hierarchy, 41, 52
Hilbert space, 232

I
IC design, 9
Identity matrix, 31
IF polarity, 40, 60, 313
IF Triangle, 54
IFn,2 Triangles, 330, 339, 340, 341
IFs, 12, 40, 42, 43, 50, 51, 313, 316,

335, 336, 339, 340, 341
Inclusive Forms, 12, 14, 40, 41, 42, 43,

44, 45, 48, 50, 52, 54, 65, 313, 316,
330, 333, 334, 335, 339, 341

Inclusive relationship, 6
Incompletely specified functions, 57, 60,

62, 344, 348
Index of refraction, 381, 382
Information entropy, 5, 7
Interconnect, 9, 195, 256, 257, 260, 315
Interconnects, 9, 67, 98, 99, 109, 110,

252, 255, 256, 260, 261, 287, 295,
305

Interference, 2, 241, 243, 244
Intersection, 162, 169, 171, 172, 173,

177, 178, 181, 219, 220, 365
Invariant Davio, 30, 33, 322
Invariant Permuted Davio Expansions,

35
Invariant Permuted Shannon

Expansions, 34
Invariant Shannon, 30, 32, 36, 314, 322
Inverse, 16, 31, 34, 48, 61, 118, 119,

120, 122, 123, 124, 125, 126, 145,
146, 147, 149, 150, 154, 156, 157,
183, 186, 190, 191, 195, 198, 203,
205

Inverse reversible circuit, 122, 126
Inverter, 118, 119, 198, 250
Irreversible, 6, 241
ISID, 12, 69, 99, 100, 101, 102, 103,

104, 105, 107, 108, 109, 110, 224,
312, 315

Isothermal, 6
Iterative Symmetry Indices

Decomposition, 12, 69, 99, 100, 110,
312, 315

J
Joining rule, 73, 90, 91
Joining rules, 74, 89, 92, 93, 110

K
K-map, 63, 65, 70, 71, 75, 76, 370, 371
Kronecker, 19, 24, 25, 27, 35, 39, 41,

43, 48, 51, 53, 54, 65, 145, 193, 245,
257, 261, 274, 297, 305

L
Lamarckian, 60, 61, 62, 63, 64
Lamarckian evolution, 61

 Index 421

Laser, 234, 378, 379, 381, 382, 383,
385, 387, 388

Laser beam, 382, 387
Latin Square, 17, 116, 137, 141, 313,

314
Lattice, 12, 13, 16, 28, 35, 38, 67, 69,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
83, 84, 85, 88, 89, 90, 91, 92, 93, 94,
95, 97, 98, 99, 100, 101, 102, 103,
104, 106, 108, 109, 110, 114, 115,
117, 146, 150, 151, 152, 153, 154,
155, 156, 157, 158, 159, 160, 161,
172, 179, 186, 206, 207, 210, 211,
223, 224, 225, 229, 231, 305, 312,
314, 319, 321, 360, 378, 385, 386,
388

Lattice diagrams, 17, 69, 110
Lattice structure, 12, 72, 73, 74, 75, 76,

77, 78, 79, 80, 81, 84, 85, 88, 89, 93,
97, 99, 100, 101, 102, 103, 104, 106,
109, 110, 150, 151, 152, 153, 154,
155, 156, 157, 158, 206, 207, 210,
211, 223, 224, 225, 312, 319, 385,
386, 388

Lattice-of-structures, 159, 172
Lattices, 12, 16, 73, 75, 79, 85, 97, 98,

103, 109, 110, 187, 312
Layout, 38, 68, 99, 100, 105, 109, 110,

230, 312, 316, 344, 348
Learning, 9, 40, 61, 62, 169, 171, 267,

316, 365, 367, 375, 391, 397, 400,
401

Library, 8, 147, 202, 339
Light, 10, 234, 236, 378, 379, 380, 382,

383, 384, 385, 387
Linear, 37, 51, 72, 117, 186, 202, 232,

234, 240, 241, 242, 244, 245, 250,
261, 264, 266, 300, 329

Literal, 19, 20, 21, 22, 26, 138, 200
Local, 61, 67, 68, 69, 110
Log-functionality, 166
Logic functions, 5, 8, 12, 13, 19, 60, 69,

70, 134, 147, 150, 158, 202, 203,
205, 214, 215, 312, 313, 320, 358,
364, 367, 375, 388, 390, 393, 399,
401

Logic level, 7
Logic synthesis, 6, 8, 9, 11, 13, 17, 18,

39, 40, 70, 113, 121, 128, 130, 147,
159, 184, 186, 198, 205, 216, 235,
317, 318, 326, 339, 364, 370

Look-Up-Table, 360, 401

LOS, 163, 164
Low-power computing, 6

M
Machine Learning, 319
Manufacturability, 8, 110
Many-to-one, 384
Many-valued, 171, 172, 173, 177, 181,

234, 390, 393
Many-valued MRA, 171
Map, 5, 77, 85, 88, 95, 100, 103, 151,

250, 334, 365, 367, 368, 369, 370,
371, 390, 401

Margolus gates, 290
Matrix, 24, 26, 28, 29, 30, 31, 32, 33,

34, 45, 113, 136, 137, 138, 139, 143,
145, 151, 238, 247, 250, 252, 257,
258, 261, 262, 263, 265, 267, 269,
276, 278, 279, 280, 286, 287, 289,
290, 292, 293, 295, 300, 304, 305,
307, 310, 322, 324, 355, 356, 397,
398, 399

Matrix product, 261
Maximum clique, 365, 370
MIN/MAX, 116, 130, 133, 147, 187,

188, 191, 315, 377
MIN/MAX tree, 116, 147, 315
Minimal, 5, 6, 8, 9, 12, 28, 66, 102, 186,

200, 201, 202, 231, 287, 305, 313,
321, 365

Minimization, 9, 11, 12, 20, 24, 28, 39,
40, 41, 57, 60, 61, 62, 66, 78, 109,
111, 158, 198, 306, 313, 319

Minimizer, 12, 40, 57, 60, 62, 63, 66,
106, 198, 200, 201, 203, 313

Minterm, 70
Mirror, 119, 120, 121, 126, 147, 150,

154, 184, 186, 195, 198, 313
Mirror image, 121
Modified Reconstructability Analysis,

12, 160, 161, 185, 315
Moore’s law, 1, 3, 112, 231
MRA, 12, 14, 158, 160, 161, 162, 163,

164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177,
178, 179, 180, 181, 182, 183, 184,
185, 207, 211, 315, 316, 364, 370,
371, 373, 374, 375, 376

Multi-input, 99, 137, 187, 320, 327
Multiple-output, 147, 313

 422 Index

Multiple-valued, 8, 9, 11, 12, 13, 14, 16,
17, 20, 28, 37, 38, 40, 57, 62, 66, 69,
103, 106, 110, 116, 117, 121, 130,
136, 145, 146, 147, 150, 156, 160,
181, 185, 186, 199, 200, 201, 202,
203, 215, 217, 218, 219, 220, 221,
222, 224, 226, 228, 234, 236, 237,
238, 269, 274, 278, 287, 295, 297,
299, 300, 302, 304, 307, 309, 310,
311, 312, 313, 314, 315, 316, 317,
319, 343, 355, 367, 379, 390, 393,
399, 400, 401

Multiple-valued Controlled-Controlled-
NOT gate, 222

Multiple-valued Controlled-NOT gate,
222

Multiple-valued Controlled-Swap gate,
222

Multiple-valued Feynman gate, 222
Multiple-valued Fredkin gate, 222
Multiple-valued logic, 9, 12, 16, 302
Multiple-valued NOT gate, 222
Multiple-valued quantum Cascades, 203
Multiple-valued quantum permuters,

310
Multiple-valued reversible Cascades, 66
Multiple-valued Swap gate, 222
Multiple-valued Toffoli gate, 222
Multiplexer, 82, 101, 103, 329, 339,

343, 347, 379, 380, 382, 384, 385
Multiplication, 17, 18, 23, 29, 39, 84,

98, 256, 287, 288, 290, 291, 295,
326, 327, 328, 329, 335, 347, 349

Multiplier, 84, 85, 86, 99
Multi-valued, 15, 16, 35, 38, 79, 93, 99,

110, 117, 137, 138, 142, 143, 145,
151, 152, 176, 180, 199, 200, 237,
273, 274, 300, 314, 315, 322, 323,
326, 329, 333, 344, 348, 356, 357,
367, 378

Mutation, 60, 352
MUX, 347

N
Nano-scale, 1, 2, 3, 218, 229, 235, 312
Nanotechnology, 229, 230
Natural code, 129
N-dimensional space, 80
Negation, 70, 358

Negative Davio, 18, 19, 41, 43, 74, 343,
347

Nets, 186, 187, 198, 208, 212, 215, 313,
377

NMR, 236
Node, 9, 49, 53, 54, 72, 82, 87, 89, 90,

91, 94, 95, 97, 330, 331, 336, 344,
348, 350, 388

Non-decomposable, 360
Non-disjoint, 360, 367, 369
Nondissipative, 7
Nonlinear, 117, 351
Non-regularity, 9
Nonsingular spectral transforms, 32, 324
Non-symmetric, 13, 71, 72, 73, 74, 75,

84, 100, 103, 110, 189, 205, 211,
212, 215, 312

Non-symmetric ternary functions, 69,
87, 106, 314

Normal forms, 17, 18
NP-Equivalence class, 70, 358
NPN, 13, 14, 70, 166, 167, 168, 169,

170, 184, 185, 206, 207, 208, 209,
210, 211, 212, 213, 214, 315, 316,
358, 359, 364, 366, 371, 373, 374,
375

O
Offspring, 354
Offsprings, 352
Operator, 17, 84, 100, 239, 240, 241,

243, 253, 263, 264, 267, 285, 300,
311, 314, 396, 397, 398, 400

Optical, 14, 106, 113, 218, 235, 252,
316, 378, 379, 380, 381, 384, 385,
387, 388

Optical frequency shifters, 316
Optical multiplexers, 384
Optical parallel processing, 378, 387
Optical polarizers, 316
Optical realizations, 14
Optimization, 17, 60, 64, 99, 128, 239,

316, 319, 329, 351, 357, 365
OR, 103

P
P-adic, 15, 16, 32, 33, 34
Parallel, 2, 69, 81, 100, 103, 105, 109,

234, 237, 246, 251, 252, 255, 256,

 Index 423

257, 259, 260, 261, 274, 278, 287,
295, 297, 305, 310, 315, 344, 348,
378, 387, 388

Parallel computations, 2, 234
Parents, 352, 354
Partition, 171, 365, 370
Pattern, 241, 316, 330, 340, 402
Pauli, 249, 252, 263, 264, 318
P-Equivalence class, 70, 358
Permutation, 70, 113, 139, 141, 150,

151, 152, 157, 313, 314, 358
Permutation of cofactors, 141, 150, 151,

152, 157, 313, 314
Permutations, 19, 34, 45, 57, 91, 113,

136, 138, 139, 145, 146, 250, 300,
355

Phase, 242, 246, 265, 379
Phenotype, 61, 62, 63
Physical entropy, 7
Physical level, 7
Pipelined, 134
Placement, 98, 110
Planck constant, 239
Polarity, 12, 19, 20, 40, 41, 57, 60, 61,

62, 63, 64, 66, 106, 188, 201, 313
Polarity chromosome, 60, 61, 62
Polarity vector, 63
Polarization, 234, 236, 378, 379, 380,

383, 384
Polynomial time, 3, 233, 308, 330
Positive Davio, 18, 343, 347
Post literal, 21, 22
Potential function, 391, 395, 400, 402
Power, 1, 2, 3, 5, 10, 17, 67, 97, 110,

112, 113, 196, 218, 229, 231, 234,
312, 318, 344, 357, 365

PPRM, 19, 20
Priese Gate, 119, 122
Probability amplitudes, 232, 246, 254,

271, 273, 275, 283, 303
Pseudo Kronecker, 19, 25, 44

Q
QC, 218, 235, 390, 396
QChT, 279
QFT, 13, 264, 266, 300
Quantum barrier, 4, 229
Quantum Cascades, 203
Quantum Chrestenson, 285, 301, 400

Quantum circuits, 9, 13, 15, 38, 66, 80,
109, 111, 115, 118, 122, 147, 157,
216, 218, 219, 220, 222, 235, 237,
238, 256, 260, 263, 264, 287, 295,
300, 305, 308, 310, 317, 319

Quantum computing, 1, 2, 3, 4, 5, 8, 9,
10, 11, 13, 66, 109, 112, 117, 118,
146, 150, 157, 203, 215, 218, 219,
222, 228, 231, 234, 235, 236, 237,
238, 243, 244, 246, 249, 251, 252,
264, 266, 278, 295, 301, 306, 307,
308, 311, 312, 313, 314, 315, 317,
390

Quantum cost, 216, 317
Quantum decision diagrams, 273, 304,

315
Quantum decision trees, 13, 237, 238,

270, 302, 303, 304, 310, 311, 315,
319

Quantum domain, 2, 5, 6, 233, 241, 261,
391

Quantum Fourier transform, 13, 264,
265

Quantum lattice, 224
Quantum lattice structure, 224
Quantum logic, 5, 6, 8, 9, 13, 110, 147,

148, 150, 215, 219, 224, 225, 226,
227, 228, 232, 235, 236, 237, 238,
241, 244, 251, 253, 260, 261, 269,
270, 274, 278, 281, 285, 286, 287,
299, 300, 302, 306, 308, 310, 311,
312, 313, 314, 315, 317

Quantum neural network, 390
Quantum NN, 400, 401
Quantum notation, 13, 217, 218, 219,

220, 222, 223, 224, 226, 227, 228,
264, 265

Quantum physics, 1
Quantum register, 6, 233, 241, 244, 245,

247, 248, 272, 273, 274, 276, 277,
288, 290

Quantum representation, 13
Quantum Walsh, 255, 400
Quantum XOR, 119, 250
Quasi-adiabatic, 7
Quaternary, 14, 15, 17, 25, 26, 41, 54,

56, 57, 58, 59, 80, 316, 326, 334,
347, 348, 349

Quaternary S/D trees, 56
Qubit, 5, 232, 244, 245, 246, 248, 251,

252, 256, 257, 259, 260, 261, 264,
265, 268, 269, 271, 274, 275, 276,

 424 Index

280, 286, 290, 295, 296, 297, 299,
300, 315, 396, 398

QWHT, 13, 266, 267

R
RA, 158, 159, 160, 161, 167, 168, 170,

185, 362, 363
Radix, 8, 9, 11, 15, 22, 29, 32, 33, 38,

39, 54, 79, 80, 90, 91, 99, 117, 134,
150, 151, 199, 247, 316, 322, 326,
335, 336, 337, 338, 339, 340, 341,
400

RBDD, 195
RDDs, 196, 315
Realization, 12, 37, 66, 67, 72, 75, 79,

80, 81, 93, 104, 106, 108, 117, 129,
161, 169, 185, 188, 192, 195, 200,
201, 202, 206, 207, 208, 210, 211,
212, 216, 236, 313, 317, 326, 327,
329, 376, 384, 385, 386

Reconstructability Analysis, 12, 14, 158,
160, 161, 185, 186, 305, 315, 364,
371

Recursion, 35
Reduced Post literal, 21, 26
Reed-Muller, 15, 18, 19, 20, 39, 40, 41,

42, 52, 53, 54, 55, 62, 269
Register, 6, 227, 241, 244, 245, 246,

269, 274, 306, 308, 318, 319
Regular, 8, 12, 15, 16, 38, 39, 67, 68,

69, 72, 77, 79, 80, 81, 98, 103, 104,
106, 110, 112, 117, 146, 147, 150,
152, 187, 188, 189, 207, 211, 231,
312, 313, 314, 316, 338, 344, 348,
350, 356, 378

Regularity, 1, 8, 11, 67, 79, 80, 103,
110, 152, 186, 312, 313, 314, 317,
344, 348

Reliability, 1
Reversibility, 5, 7, 8, 9, 11, 113, 116,

130, 137, 141, 144, 147, 151, 152,
183, 218, 244, 313, 317, 378

Reversible, 5, 6, 7, 8, 9, 11, 12, 13, 14,
15, 28, 38, 40, 57, 60, 66, 67, 80,
106, 109, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129,
130, 133, 134, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146,
147, 149, 150, 151, 152, 153, 154,

155, 156, 157, 158, 161, 182, 183,
184, 185, 186, 187, 188, 190, 191,
193, 195, 196, 197, 198, 199, 200,
201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 219, 222, 223,
224, 225, 226, 227, 228, 229, 231,
232, 234, 235, 237, 238, 244, 247,
267, 268, 290, 291, 292, 293, 294,
295, 305, 308, 312, 313, 314, 315,
316, 317, 318, 319, 355, 356, 357,
377, 378, 385, 386, 388

Reversible Barrel shifter, 130
Reversible Cascades, 12, 40, 198, 202,

203, 215, 313, 314, 315
Reversible circuits, 6, 8, 12, 13, 112,

113, 116, 147, 203, 215, 228, 379
Reversible code converters, 116, 147,

315
Reversible computation, 5
Reversible computing, 5, 112, 113, 117,

134, 231
Reversible Davio, 144
Reversible domain, 11
Reversible gates, 115, 116, 117, 118,

134, 141, 146, 187, 195, 196, 202,
235, 268

Reversible invariant multi-valued Davio
expansions, 142

Reversible invariant multi-valued
Shannon expansion, 142

Reversible lattice structure, 151, 152,
153, 155, 157

Reversible lattice structures, 12, 28, 109,
115, 150, 157, 186, 207, 314, 378

Reversible logic, 5, 8, 9, 11, 12, 38, 112,
113, 115, 116, 121, 127, 130, 134,
147, 148, 183, 186, 198, 215, 231,
244, 308, 313, 317, 318

Reversible logic synthesis, 114, 122
Reversible MRA, 184
Reversible multi-valued Shannon gates,

314
Reversible Nets, 12, 14, 186, 203, 305,

314, 315
Reversible pipelined circuits, 315
Reversible Programmable Gate Array,

191, 192
Reversible Shannon, 136, 139, 145, 146,

150, 151, 152, 156, 355, 356
Reversible Sorter, 315

 Index 425

Reversible structures, 5, 8, 9, 12, 13, 15,
152, 185, 186, 205, 215, 216, 217,
218, 228, 313, 314, 317, 378

Reversible systolic circuits, 315
RMRA, 12, 158, 182, 183, 184
Routing, 98, 110
RPL, 21, 22

S
S/D expansion, 343
S/D trees, 9, 14, 40, 41, 43, 44, 45, 46,

47, 48, 51, 54, 56, 57, 60, 66, 202,
316, 331, 333, 334, 335, 336, 342

Schrodinger, 234, 278, 391
Schrodinger Equation, 234
Scratchpad register, 245
Search, 13, 56, 61, 63, 75, 186, 202,

203, 214, 233, 304, 320, 321, 330,
339, 352, 355, 357

Search heuristics, 75, 203
Self-repair, 16, 67, 77, 110
Semi regularity, 9
Serial, 100, 103, 105, 109, 237, 252,

255, 256, 257, 260, 261, 285, 287,
295, 305, 310, 315

Set-theoretic, 6, 21, 37, 41, 158, 161,
169, 173, 176, 177, 181

Shannon, 12, 14, 16, 18, 19, 20, 22, 23,
24, 25, 26, 27, 30, 31, 32, 33, 34, 35,
36, 37, 38, 40, 41, 42, 43, 44, 45, 49,
52, 53, 54, 55, 56, 58, 59, 69, 73, 74,
75, 78, 79, 89, 90, 91, 93, 94, 95, 97,
101, 102, 103, 104, 110, 116, 136,
137, 138, 139, 142, 145, 146, 147,
150, 151, 152, 156, 182, 286, 290,
291, 292, 295, 314, 315, 316, 319,
321, 322, 323, 324, 325, 326, 329,
336, 339, 343, 344, 345, 347, 349,
355, 356

Shannon expansion, 33, 104, 137, 142,
145, 322, 347, 356

Shannon lattice structures, 38, 69, 78
Shifts, 22, 23, 24, 25, 26, 44
Signal integrity, 67, 218, 312, 387
Singular transforms, 36, 324
Singular Value Decomposition, 13, 261,

263, 300
Size, 1, 2, 3, 5, 6, 8, 9, 12, 16, 20, 28,

35, 60, 66, 67, 68, 75, 78, 97, 99,
109, 110, 128, 200, 201, 203, 219,

224, 226, 227, 231, 235, 237, 247,
250, 252, 273, 286, 287, 290, 306,
308, 311, 313, 314, 317, 319, 321,
322, 324, 352, 379

Snell’s law, 381
SOP, 15, 20, 102, 154, 187, 208, 211
Spectral Theorem, 13
Spectral transforms, 12, 15, 16, 20, 28,

31, 32, 33, 35, 37, 38, 42, 94, 110,
116, 136, 138, 145, 147, 314, 321,
322, 323, 324, 343, 355, 356

Speed, 1, 5, 6, 17, 365, 379
Spin, 2, 234, 236, 244, 245
State-space grid, 402
String, 64, 351
Structural boundaries, 12
Structures, 1, 8, 9, 11, 12, 13, 15, 16, 28,

35, 38, 39, 67, 68, 69, 72, 73, 74, 75,
77, 78, 79, 80, 84, 90, 91, 92, 93, 94,
95, 98, 99, 100, 102, 106, 108, 109,
110, 111, 112, 114, 116, 146, 147,
148, 150, 152, 154, 157, 158, 159,
161, 162, 166, 179, 184, 186, 187,
190, 203, 205, 207, 215, 216, 217,
218, 219, 222, 223, 228, 229, 237,
238, 278, 295, 305, 308, 309, 312,
313, 314, 315, 317, 321, 335, 344,
348, 356, 360, 362, 363, 388

Superposition, 100, 114, 202, 242, 245,
264

SVD, 13, 261, 263, 264, 300
Swap, 116, 118, 119, 222, 256, 260,

261, 270, 271
Symmetric, 13, 68, 69, 70, 71, 72, 73,

75, 76, 77, 80, 81, 84, 85, 87, 93, 95,
96, 98, 99, 100, 101, 102, 103, 104,
105, 106, 109, 110, 187, 188, 189,
190, 191, 205, 206, 207, 210, 211,
212, 213, 215, 262, 312, 314, 377

Symmetric networks, 75
Symmetrization, 71, 73, 77, 189, 212,

213
Symmetry indices, 69, 71, 75, 76, 77,

85, 88, 100
Synthesis, 6, 8, 13, 15, 17, 39, 74, 100,

101, 102, 116, 121, 128, 147, 150,
151, 154, 156, 157, 182, 186, 193,
198, 200, 202, 203, 205, 206, 210,
214, 215, 237, 238, 252, 261, 269,
270, 278, 285, 287, 299, 300, 302,
305, 308, 310, 311, 312, 313, 316,
317, 318, 319, 351, 378

 426 Index

Systolic, 134, 135

T
Technology, 1, 17, 68, 117, 122, 169,

218, 229, 285, 376
Technology-dependent, 169, 376
Tensor, 241, 245, 257, 274, 287, 297,

395
Ternary Feynman gate, 149
Ternary S/D trees, 41, 56, 334
Ternary Shannon expansion, 140
Testability, 1, 8, 17, 39, 67, 357, 365
Testing, 9, 15, 17, 110, 314, 344
Theorem, 17, 23, 31, 32, 33, 35, 36, 50,

51, 52, 90, 91, 92, 93, 136, 137, 138,
139, 142, 145, 150, 261, 262, 263,
267, 279, 280, 283, 285, 287, 289,
290, 292, 293, 294, 299, 300, 301,
304, 321, 322, 323, 324, 330, 333,
334, 335, 339, 340, 341, 355, 356,
377

Thermodynamics, 3, 5
Three-dimensional, 1, 12, 28, 69, 73, 78,

80, 81, 85, 88, 93, 94, 95, 96, 97, 99,
108, 109, 117, 312, 314, 321

Three-dimensional lattice structures, 28,
69, 80, 314

Three-dimensional space, 79, 80, 95
Three-to-one, 384, 385
Toffoli gate, 117, 119, 125, 183, 192,

198, 221, 222, 250
Total internal reflection, 316
Transform, 16, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 45, 47, 48, 66,
100, 136, 137, 138, 139, 143, 144,
145, 208, 211, 250, 264, 265, 266,
267, 279, 300, 321, 322, 323, 324

Transform matrix, 29, 45, 143, 145
Transforms, 15, 16, 17, 31, 32, 35, 37,

38, 42, 71, 116, 145, 250, 314, 321,
322, 323, 324, 325, 356

Trapped ions, 10, 234, 236
Tunnel diodes, 10
Turing machine, 235
Two-dimensional, 28, 69, 73, 74, 77, 78,

79, 99, 153, 229, 312
Two-dimensional lattice structures, 69
Two-to-one, 379
Two-valued, 8, 10, 11, 13, 14, 57, 106,

116, 121, 123, 139, 146, 147, 150,

156, 160, 161, 171, 199, 202, 217,
218, 219, 221, 222, 224, 225, 228,
234, 236, 237, 238, 244, 246, 250,
251, 252, 265, 266, 278, 295, 300,
301, 306, 309, 310, 311, 312, 313,
314, 316, 317, 319, 377, 379, 386,
388, 393, 400

Two-valued Controlled-NOT gate, 221
Two-valued Controlled-Swap gate, 221,

222
Two-valued quantum Cascades, 203
Two-valued Swap gate, 221, 222

U
ULMs, 14, 22, 54, 316, 339, 343, 344,

347, 348
Union, 43, 50, 52, 162, 171, 172, 181,

359
Unitary, 232, 240, 241, 243, 249, 250,

261, 262, 265, 267, 279, 300, 304,
396

Universal, 8, 21, 112, 114, 117, 118,
182, 183, 221, 231, 235, 250, 338,
343, 347

Universal literal, 21, 22
Universal Logic Modules, 14, 22, 54,

316, 343

V
Volume, 3, 99, 100

W
Walsh-Hadamard, 13, 240, 249, 250,

251, 252, 253, 254, 255, 263, 265,
266, 267, 279, 301, 400

Walsh-Hadamard Transform, 13
Wavelength, 379, 382
Weight space, 401
Weights, 28, 393, 397, 399, 401, 402
Window literal, 21, 22
Wire, 2, 110, 116, 118, 119, 122, 147,

219, 220, 264

X
XOR gate, 250, 370

 Index 427

