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Preface 
 
Quantum Computing (QC) is the upcoming revolution in 
computation. The fact that the tendency of current technologies is 
towards the nano-scale (i.e., dimensions of a single atom in the order 
of 10-10 m) will have, and is already having, disastrous effects on the 
signal integrity in classical designs for processing and transmitting 
information bits. The higher packing of devices on increasingly 
smaller and smaller areas will have, and is already having, 
tremendous power consumption effects. Thus, one would ask the 
question: what is the solution? The answer for both problems is 
simply: Quantum Circuits. 
       Since QC must be reversible, Reversible Computing (RC) 
becomes an inseparable intrinsic ingredient of QC. Consequently, 
the first step towards the implementation of QC is to find methods 
for RC. It turns out that various methods for RC produce various 
amounts of “garbage” outputs that are needed only for the purpose 
of reversibility not more. Thus, one needs to explore efficient 
synthesis methods using Reversible Logic (RL) to be used in future 
Computer Aided Design (CAD) tools for the synthesis of RL 
circuits in analogy to the current advanced CAD tools for the 
synthesis of classical irreversible circuits. Just this single purpose of 
Reversible CAD (RCAD) tools will impose an overall re-evaluation 
of all existing methods that are traditionally used in classical logic 
synthesis, including decomposition methods, factorization methods, 
and minimization methods. New benchmarks have to be created for 
the comparison of efficiency of various RL synthesis techniques. 
Thus one will ask the important question: what are the available 
methods that exist for reversible logic synthesis? The answer is 
almost none! This exact answer was the whole reason behind the 
gradual development and growth of this Book over the years. 
Totally new reversible logic synthesis methodologies had to be 
created and various evaluations had to be conducted. The objective 
is obvious: design RL circuits with minimum, if not none, garbage 
outputs. This optimization constraint is reflected in quantum circuits 
in the form of obtaining quantum registers of minimal size (i.e., 
length and width). 



 
       The body of this Book contains twelve Chapts. These Chapts. 
evolve gradually from basics towards the contributions. Chapter 1 
provides the overall introduction to the subject of RC and QC. 
Chapter 2 introduces the basic concepts of two-valued and multiple-
valued logic systems. An application of the concepts developed in 
Chapt. 2 is the Shannon/Davio (S/D) trees introduced in Chapt. 3, 
which will be used later on in Chapt. 8 for minimizing expressions 
to be realized in reversible cascades. Chapter 4 introduces the 
synthesis of logic functions using lattice structures, which resemble 
another important application of the concepts that are developed in 
Chapt. 2. Basic background and new results are introduced in Chapt. 
5. Chapters 6, 7, and 8 introduce new structures and methods for RL 
synthesis. An initial evaluation of the RL synthesis methods is 
presented in Chapt. 9. Chapter 10 implements the quantum logic 
circuits using the new results from the previous  
Chapts. Two-valued and multiple-valued quantum computing for the 
quantum circuits from Chapt. 10 is performed in Chapt. 11. Chapter 
12 provides conclusions, highlights of new results that were 
presented in this Book, and future directions of research. The end 
matter of this Book contains eleven Appendices and a Bibliography. 
       Around four years ago, at the start up of my research into 
reversible and quantum computing, many researchers advised me to 
rethink again about conducting research in this field, since it is a 
fairly new research specialty and unlike most other research fields 
has only minimal literature, which meant that I had to create “from 
scratch” my own solutions to the continuously emerging problems. 
Another concern was that part of this work especially in QC is more 
or less futuristic, which means that there is little current use of the 
results for industry and consequently limited number of accepted 
money grants and proposals. Nevertheless, I felt that these 
discouragements I faced, to proceed in this field, are in fact a 
challenge and motivation for me to conduct research in this field, 
and the result is this Book which accumulates some of my work for 
the past four years. This Book tried to fill as much as possible the 
large missing gaps in previous literature, especially for the synthesis 
of reversible circuits and their consequent QC. Consequently, the 
result of this work was an opening of a window of a new research 
area, and does not mean by any means the end of the road. In fact 

 VIII 



 
this work is only one possible beginning, from which serious 
researchers can start towards achieving the ultimate ambitious goal 
of fully reliable super-fast power-free nano computing. 
 
Portland, Spring 2003                                            Anas N. Al-Rabadi 
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Abstract 
 
       The biggest problems in system design today, and in the future, 
are the high rate of power consumption, and the emergence of 
quantum effects for highly dense ICs. The real challenge is to design 
reliable systems that consume as little power as possible and in 
which the signals are processed and transmitted at very high speeds 
with very high signal integrity. Current tools are used to design ICs 
using only classical design methodologies that apply conventional 
synthesis constraints such as area, delay, and power. 
       As it was proven, physical processes have to be logically 
reversible in order to reduce (theoretically eliminate) power 
consumption. Logical reversibility requires that one can obtain the 
vector of inputs from the vector of outputs (i.e., backward process) 
as well as the vector of outputs from the vector of inputs (i.e., 
forward process). Since only ad-hoc methods were used previously 
for the reversible synthesis of logic functions, and since systematic 
and efficient reversible logic synthesis methodologies were 
significantly missing from previous literature, this Book provides 
several original contributions to reversible logic synthesis by 
providing a set of tools that can be systematically used to synthesize 
and evaluate logic functions using reversible logic. This includes, 
among other new results, Reversible Lattice Structures, Reversible 
Modified Reconstructability Analysis, Reversible Nets, Reversible 
Decision Diagrams, and Reversible Cascades. 
       To solve the problem of high signal integrity when processing 
(computing and transmitting) information using extremely high 
dense circuits one needs to incorporate the physical quantum 
mechanical effects that are unavoidable in the nano scales. Since 
quantum circuits are reversible, and since many of the underlying 
theorems and formalisms for multiple-valued quantum computing 
were significantly missing from previous literature, new 
fundamental foundations for such computations had to be 
established. These new results include, but not limited to, Quantum 
Chrestenson Operator, new types of Quantum Decision Trees and 
Quantum Decision Diagrams as efficient representations for 
quantum computing, new Composite Basis States, new multiple-



 
valued Einstein-Podolsky-Rosen (EPR) Basis States, and new 
classes of quantum primitives. 
       Initial evaluations and conclusions for the comparative 
advantages and disadvantages of the new reversible and quantum 
computing methodologies are also provided, and applications to 
Optical Computing and Quantum Neural Networks are presented.  
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1 Introduction 
 
 
 
 
 
Computing structures have been evolving since early times of 
mankind. Such structures evolved from simple systems that use 
simple mechanical elements such as ropes and pulleys, to 
mechanical systems that use carefully designed elements, to 
machines that use discrete electronic elements, to nowadays 
computing machinery that uses highly complex integrated electronic 
elements [256]. The power of the computing machinery has been 
growing with the growing of the complexity of such machines for 
processing, storage, and interfacing capabilities. This is observed in 
the fact that the pre-electronic computing machines were able only 
to perform basic arithmetic calculations, while modern computing 
machines that are made up of highly complex electronic integrated 
circuits (ICs) are capable of performing many more tasks such as 
three-dimensional graphics (i.e., 3-D visualizations) and networking. 
This evolution of computing has been driven by the need to fulfill 
the increasingly demanding design specifications of more speed, less 
power consumption, smaller size, better testability, better reliability, 
and more regularity. 
       If the trends in computing keep going according to Moore’s 
law, by the year 2020 the basic memory components of a computer 
will be the size of individual atoms, and the ongoing scale down of 
technology to produce very high dense ICs will reach its limit, 
where the scale down of technology will evolve from the micro-
scale to the nano-scale. At such scales, the current theory of 
computation becomes invalid, and a new field, called "quantum 
computing", starts emerging which is about re-inventing the 
foundations of computer science and information theory in a way 
that is consistent with quantum physics - the most accurate model of 
reality that is currently known [81,208]. 
       Remarkably, this new theory predicts that quantum computers 
can perform certain tasks breathtakingly faster than classical 
computers and, better yet, can accomplish mind-boggling feats such  
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as teleporting information, breaking supposedly unbreakable codes, 
generating true random numbers and communicating with messages 
that betray the presence of eavesdropping [93,167,253,254]. Indeed, 
a quantum scheme for sending and receiving ultra-secure messages 
has already been implemented over a distance of 100 km - far 
enough to wire the financial district of any major city 
[149,167,253,254].�
       At the nano-scale, which is the scale of atomic diameter, a 
different kind of physics emerges which is governed by quantum 
mechanics of atoms and particles [81,208]. The physical laws will 
be a driving force for different directions in computing due to the 
fact that new phenomena are encountered in the quantum level, 
which were not previously observed. This includes for instance 
quantum entanglement, where the physical properties of one particle 
affect one or more other particles and thus particles are entangled, 
and quantum interference where physical phenomenon is interpreted 
as several waves interfering with each other to produce specific 
physical patterns [107,115,167]. Utilizing such new physical 
phenomena that emerge in the nano-scale, quantum computations 
use basic properties of particles that can be performed such as using 
the spin of such particles to encode logic values [167]. 
       Several powerful features are harnessed using such type of 
computation. One powerful feature is super-fast computing [268] 
that can be achieved in the quantum domain, as compared to fast 
computational speeds, which are achieved in the conventional 
domains [57]. The speedups of calculations in quantum computing 
are due to the new physical phenomenon encountered in the nano-
scale which is the quantum entanglement in which parallel 
computations are performed simultaneousely [107,167]. Such 
computational power could not be observed previously in the micro-
scale or in the macro-scale. This speedup in computations can have 
many implications on highly important applications that can range 
from consumer products having faster computers to national security 
issues like the encryption of highly classified information 
[162,163,167]. For example, it is known in the complexity theory of 
algorithms (i.e, computational complexity) that an algorithm is 
classified as a polynomial-time algorithm if that algorithm is 
guaranteed to terminate within a number of steps which is a 
polynomial function of the size of the problem. The new speedup of 
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quantum computations can have the ability to solve problems that 
were previously thought to be unsolvable in polynomial time such as 
the factoring problem [226,228], and this will lead to new 
applications in encrypting and decrypting communicated 
information which will have a direct impact on how much the 
electronically transferred messages are secured [162,163]. 
       In addition to the need of quantum computing due to the 
anticipated failure of Moore’s law at the quantum level, which 
predicts that computing will be ultimately performed in hardware in 
the size of nano-scale (less than 10-10 m = 1 Angestrom), the power 
needed to switch a single bit in future nano-technologies will be 
much lower than its counterparts in the bigger scales, and according 
to the fundamental principles of thermodynamics the limit will be 
K⋅T⋅ln(2) [139,140,141], where K is Boltzmann constant (≈ 
1.380658⋅10-23 Jouls/Kelvin) and T is the operating temperature 
(Kelvins). 
       Figure 1.1 illustrates this ongoing trend in power consumption. 
One can observe from Fig. 1.1 that the energy needed to switch one 
bit will be decreasing with the advancements of chip manufacturing 
with highly increasing integration densities according to Moore’s 
law, and that by the year 2020 the energy consumption for switching 
a single bit will reach the thermodynamical limit of K⋅T⋅ln (2) which 
is the threshold after which Moore’s law will not hold due to the 
emerging quantum nano-scale effects.  
       Using basic principles of thermodynamics, the 
thermodynamical limit of K⋅T⋅ln (2) can be derived as follows [95]: 
for a gas compression experiment, the following Eq. holds: P⋅V = 
R⋅T, where P is pressure, V is volume, T is temperature (Kelvin), 
and R = K⋅N, where K is Boltzmann constant (≈ 

Kelvin

Joules2310380658.1 −⋅ ), and N is the number of molecules in the 

gas. Then from the basic laws of thermodynamics:  
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Therefore, for N molecules (~ N bits of information) one has: 
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and for 1 molecule (~ 1 bit of information) one obtains: 
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For 1 molecule, one obtains the following energy dissipation ΔQ:  
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Besides reaching the quantum barrier, trends in computer hardware 
are leading toward higher density and lower energy dissipation. 
 

 

 

 

 

                                                                       Moore’s Law 

 

 
 
Fig. 1.1. Trend in energy consumption for switching one bit for conventional and quantum 
computing. 

 
       Ultimately, some approaches should result in packing densities 
in excess of 1017 logic devices in a cubiccentimeter [152]. The trend 
towards higher packing density and higher speeds strongly influence 
energy dissipation. For example, conventional devices must 
dissipate more than K⋅T⋅ ln (2) Joules in switching, so 
1017conventional devices operating at room temperature (K⋅T⋅ ln (2) 
~ 3⋅10-21 Joules for T = 300 Kelvins) at a frequency of 10 gigaHertz 
would dissipate more than 3,000,000 Watts; a computer with 1,000 

Year 

ΔQ: Energy for switching 
one bit (Logarithmic Scale) 
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times as many logic elements would still be of reasonable size but 
would dissipate 3,000,000,000 Watts! [152]. Consequently, a new 
computational approach has to be invented such as quantum 
computing. 
       In quantum computing, low power consumption is needed 
(theoretically zero) as no power is needed for processing 
information and the power is only consumed when reading and 
writing information into and from quantum computing machines 
[92,93,94,130,139,140]. The minimal power consumption is due to 
the fact that quantum computations are naturally reversible 
[37,38,39,40,98,139,140,141], which means that the information 
entropy must be conserved, since it has been proven using 
fundamental principles of thermodynamics that reversible 
computation does not consume power since no logical information is 
lost [139,140]. Accordingly, the reversibility of computation is a 
necessary but not sufficient step for quantum computing, as more 
constraints are needed in addition to reversibility, to achieve 
quantum computations. These additional constraints, that exist in the 
quantum domain and do not exist in the conventional domain, drive 
the use of new mathematical computational methodologies that map 
the underlying quantum phenomena such as the quantum 
entanglement, for which a new type of information representation 
and the corresponding operations must be used. This includes the 
use of the information element of quantum bit (qubit), which is a 
vector of bits, as compared to a (scalar) bit, which exists in the 
conventional domain [93,95,107,115,167,253,254]. 
       As quantum computation is reversible, reversible computing is 
an essential ingredient of quantum computing, and reversible logic 
serves as a mathematical concept to describe the physical reality of 
quantum logic. Consequently, new methodologies of synthesizing 
logic functions using reversible structures have to be invented. The 
reversible computations aspect of quantum computing has its own 
design constraints (design goals, design objectives) in the form of 
(1) minimizing the number of garbage outputs that are needed only 
for the purpose of reversibility (which leads to minimizing area and 
power), (2) minimizing the number of gates used (which leads to 
minimizing area and power), and (3) minimizing the delay of signal 
propagation from inputs to outputs (i.e., more speed). These design 
constraints, which are encountered in the conventional design of 

                                                                                                                      1 Introduction      5 



 

reversible circuits, are reflected as design constraints in the quantum 
domain in the form of the “size of the quantum register” [93,95,98] 
(i.e., the width and length of the quantum register), and therefore 
one wants to design a quantum register of minimal size that would 
perform the underlying reversible computations. Reversible 
computing as a mean of low-power computing has been investigated 
and encouraging results have been reported 
[35,42,70,71,70,72,131,143,206,262,263]. Figure 1.2 illustrates the 
set-theoretic inclusion relationships between various computing 
methodologies,  where the shaded areas indicate the types of logic 
synthesis that are presented in this Book. 
 
 

 

 

 

 
 
            Fig. 1.2. Set-theoretic relationship between various computing methodologies. 

 
       The inclusive relationship in Fig. 1.2 reflects the hierarchically 
increasing design constraints when moving from the domain of 
classical logic synthesis to the domain of quantum logic synthesis. 
In Fig. 1.2, the classical (irreversible) logic synthesis includes all 
methodologies that are developed in the conventional logic synthesis 
field [136,164,118]. The two lightly shaded areas in Fig. 1.2 are 
included within the general framework of reversible logic synthesis. 
The word adiabatic comes from a Greek word that describes a 
process that occurs without any loss or gain of heat (i.e., no heat is 
injected in or generated out of a system). (Adiabatic system is the 
opposite of isothermal system, where heat is injected in or generated 
out of a system in order to preserve the constant temperature in that 
system). In real-life computing, such an ideal process (or hardware) 
cannot be achieved because of the presence of dissipative elements 
like resistances in a circuit. However, one can achieve very low 
energy dissipation by slowing down the speed of operation and only 

Irreversible (classical) Logic Synthesis 

Reversible (Adiabatic) Logic Synthesis 

Partially Reversible (Quasi-Adiabatic; Energy Recovery)   
                                Logic Synthesis 

 Quantum Logic Synthesis 
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switching the switches (e.g., transistors) under certain conditions. 
Consequently, the real-life applications of rversible computing are 
based on quasi-adiabatic (or energy recovery) techniques rather than 
fully adiabatic techniques [206,262,263]. 
       It has been shown [37,38,139,140,141] that if the physical 
processes that are associated with computing are nondissipative, the 
natural laws require that the physical entropy must be conserved. 
Entropy conservation means that the processes must be physically 
reversible. One of the conclusions from earlier studies is that the 
abstract logical operations composing the computing tasks must be 
reversible, that is, the information entropy must be conserved in 
order to be performed by physically nondissipative hardware. 
Consequently, logical reversibility is the only necessary abstract 
condition for nondissipative computing. Reversible logic operations 
can be realized by either reversible or nonreversible hardware. 
Consequently, the concept of reversibility can be implemented 
spanning all of the abstraction levels of the conventional logic 
design.  
 
 

 
 
 
 
 

 

 

 

                               Fig. 1.3. Reversibility in computing system design. 

 
       Abstraction levels of reversibility includes the algorithmic level, 
architectural level, logic level, and the physical level. Figure 1.3 
illustrates the implementation of reversibility within all of the design 
abstraction levels. This Book investigates reversibility in the logic 
level, which is the shaded area in the abstraction levels in Fig. 1.3, 
which was largely missing from previous literature. 

Reversibility in Behavioral and Algorithmic Level 
      Reversibility in Logical Level 

        Reversibility in System/Architectural Level 

   Reversibility in Physical/Technology Level 
 

        Reversibility in Behavioral/Algorithmic Level 
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       The original motivating research guideline of this Book was that 
reversibility and regularity are interrelated and various regularity 
levels in two-valued and multiple-valued reversible structures will 
lead to various sizes of two-valued and multiple-valued quantum 
logic circuits and consequently various complexity levels in two-
valued and multiple-valued quantum computing. More specifically, 
for several classes of small-dimension functions, the more 
regularities that exist in two-valued and multiple-valued reversible 
structures will lead to larger two-valued and multiple-valued 
quantum logic circuits and consequently more operations are needed 
in two-valued and multiple-valued quantum computing. 
Consequently, in general, if one relaxes the regularity levels which 
are imposed as constraints in the synthesis of reversible circuits, one 
would expect to obtain reversible circuits with smaller size. To 
prove this point, and since synthesis methodologies for binary and 
multiple-valued reversible logic synthesis and multiple-valued 
quantum computing were substantially missing in previous 
literature, new mathematical formalisms, representations, novel two-
valued and multiple-valued reversible logic synthesis methodologies 
and structures, and new operations for multiple-valued quantum 
computing had to be invented first, and the next step was to apply 
these new methods to verify the original motivating questions of the 
Book. 

 
1.1 Scope of the Work 
 
Since modern circuit design requires a certain level of regularity due 
to the fact that regular structures lead to the ease of testability 
[99,124,198,199,204,218], ease of manufacturability, and free-
library synthesis, one would like to design reversible structures that 
are regular, which will produce (1) minimal, (2) universal, (3) 
regular, and (4) reversible circuits. Minimal means to reduce (or if 
possible to eliminate) the number of garbage outputs that are needed 
only for the purpose of reversibility, and to reduce the number of 
gates used. Universal (or complete) means that the structure must be 
able to realize all logic functions for particular radix of logic and 
particular number of variables. Regular means that the structure 
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must have a fixed number of gate types and interconnect types from 
which the whole structure is synthesized. Consequently, full 
regularity means that one type of internal nodes and one type of 
interconnects are used, semi regularity means that fixed number of 
internal node types and fixed number of interconnect types are used, 
and non-regularity means that arbitrary types of internal nodes and 
arbitrary types of interconnects are used. Synthesis methods to 
design minimal-size regular reversible circuits that will produce 
minimal size quantum registers were largely missing from previous 
research and literature, and this has been the driving force behind 
the development of reversible and quantum computing methods  
presented in this Book. To achieve the general goal of reversibility 
and regularity new reversible logic synthesis methodologies have 
been developed. Figure 1.4 shows the main ideas (i.e., tree paths) 
that were the driving force behind the development of this work. 
 

 

 

 

                             
                      Fig. 1.4. A general characterization of reversibility in logic synthesis. 

 
       Since minimal size is one important design specification of 
reversible and consequently quantum logic structures, functional 
minimization techniques, which exist in the conventional design 
tools, can be used to produce minimal size functional expressions, 
and consequently algorithms can manipulate such expressions to 
efficiently design reversible and quantum circuits. Conventional 
ESOP minimizers and other minimization techniques, such as S/D 
trees, can be used for this purpose [4,9,52,114,157,232,233,235]. 
Another direction of area minimization of reversible structures is 
using multiple-valued logic, especially as multiple-valued logic has 
been efficiently used in conventional hardware for learning 
[186,187], testing [124], and IC design [86,267]. Similar to the 
conventional case, using higher radix in multiple-valued logic will 
minimize the number of wiring used as compared to binary logic to 

Logic Synthesis 

                           Reversible                              Irreversible 

Quantum       Non-Quantum 

Regular      Irregular    Regular     Irregular 

Regular         Irregular 
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achieve the same functionality of logic structure 
[86,119,120,155,166,229,267]. Multiple-valued computing becomes 
important especially as multiple-valued quantum computations are 
performed on the same atomic structures on which two-valued 
quantum computations are performed without the need of adding 
new structural elements as compared to the conventional domain. 
This is due to the fact that quantum computing is performed using 
fundamental properties of particles such as spins of electron or 
polarizations of light [162,163], and these same physical properties 
are used to perform both two-valued and multiple-valued 
computations without the need of adding new circuit elements as in 
the conventional circuit design, especially the fact that multiple-
valued quantum devices that perform the corresponding multiple-
valued quantum computations have been created using trapped ions 
[54,165], and tunnel diodes [220]. For example, another way to 
harness the functional power of performing multiple-valued 
quantum computations is to perform minimal number of light 
polarizations to execute the same functionality as compared to using 
only two-valued quantum computations [163]. (One objective of this 
Book is to develop a theory for multiple-valued quantum computing 
that includes the binary case as a special case.) Consequently, the 
core stream of this Book follows the diagram shown in Fig. 1.5. 
 

  Galois Logic 
 
 

  Structural Regularity 
 
 

  Reversibility 
 
 

  Quantum Computing 
 

                               Fig. 1.5. Stream of topic development in this Book. 
 
       The flow chart in Fig. 1.5 illustrates the logical build up of  
most part of this Book. This starts with Galois field as the 
fundamental algebraic basis from which other components are built 
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upon. Using specific radix of Galois field, logic structures that 
possess certain amount of regularity are synthesized. Such 
structures, if not reversible, are generalized to the reversible domain. 
The applications of two-valued and multiple-valued quantum 
computations, using the new reversible logic structures, are then 
performed. 

 
1.2 Organization of the Book 
 
To reach the objective shown in Fig. 1.5, this Book is divided into 
several intermediate steps that include the general components of: 
(1) reversibility, (2) multiple-valued logic, (3) minimization, (4) 
regularity, and (5) quantum computing. These elements of the Book 
are illustrated using the lattice diagram in Fig. 1.6. 
       Chapter 2 includes fundamentals and mathematical background 
that are needed to construct various important reversibility theorems 
in the next Chapts. This include binary and multiple-valued normal 
Galois forms, and new types of expansions which constitute a 
generalization of some basic decompositions that play classically a 
central role in modern logic synthesis tools. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
                                         Fig. 1.6. General organization of this Book. 

Chapter 2: Fundamentals 
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       Chapter 3 presents new types of families of multiple-valued 
trees, their associated properties, and their corresponding canonical 
forms and hierarchies. These new forms serve as an intermediate 
step to produce one important minimization methodology of 
multiple-valued Galois functions that uses the polarity of multiple-
valued Inclusive Forms (IFs) which are generated from 
Shannon/Davio (S/D) trees. The new multiple-valued minimizer will 
be used for functional minimization in order to realize logic 
functions in minimal size reversible structures such as reversible 
Cascades that will be presented in Chapt. 8. 
       An important class of regular structures that will be used in 
Chapt. 6 to reversibly realize Boolean and multiple-valued logic 
functions, which is called lattice structure, is presented in Chapt. 4. 
New three-dimensional lattices, that are built using the new spectral 
transforms from Chapt. 2, are introduced. An important 
methodology that restricts the realization of lattice structures to 
specific structural boundaries, called Iterative Symmetry Indices 
Decomposition (ISID), is also introduced. 
       Chapter 5 introduces the foundations of reversible computing. 
New reversible logic circuits and the corresponding theorems in 
reversible logic are introduced. The new theorems in reversible logic 
produce new reversible primitives from which more complex 
reversible structures will be synthesized in the following Chapts. 
The important process of garbage elimination in binary and 
multiple-valued reversible circuits is also presented. 
       The first type of the new reversible structures is presented in 
Chapt. 6. This type of regular reversible circuits is called reversible 
lattice structure. The binary and multiple-valued reversible lattice 
structures are used to realize regularly Boolean and multiple-valued 
logic functions, respectively. 
       Reversible Modified Reconstructability Analysis (RMRA) is 
presented in Chapt. 7. This includes the introduction of a novel 
binary and multiple-valued decomposition called Modified 
Reconstructability Analysis (MRA), and then the reversible 
realization of such structure. 
       New types of binary and multiple-valued reversible structures 
that present some advantages over previous reversible structures are 
presented in Chapt. 8. This includes reversible Nets, reversible 
Cascades, and reversible Decision Diagrams. Certain advantages 
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and disadvantages of such structures are discussed, and examples 
are provided. 
       Chapter 9 presents an initial evaluation of the reversible logic 
synthesis methodologies that have been produced in previous 
Chapts. This evaluation is conducted on different symmetric and 
non-symmetric NPN-classified logic functions, and lead to several 
new insights into the new nature of some of the reversible circuits 
such as reversible lattice circuits. 
       The introduction of the physical operational quantum notation 
and the associated examples of quantum circuits for the previously 
invented reversible structures is presented in Chapt. 10. Advantages 
of the usage of such quantum notation and its pragmatic meaning 
and use are also presented. 
       Chapter 11 introduces new formalisms, representations, and 
operations in two-valued and multiple-valued quantum computing 
that uses theorems of reversible computing and reversible structures 
from previous Chapts. to compute functionalities using quantum 
logic. This includes the production of the quantum representation of 
the previously created reversible primitives in Chapt. 5, and then the 
performance of quantum computations using such quantum 
representations. The important concept of multiple-valued quantum 
entanglement is introduced. Examples for the use of algebraic 
mathematical decompositions for quantum computing such as the 
Singular Value Decomposition (SVD), Spectral Theorem, Quantum 
Fourier Transform (QFT), and Quantum Walsh-Hadamard 
Transform (QWHT) are presented. The new quantum 
representations of quantum decision trees and diagrams, as new 
means of representations for the manipulation of quantum circuits 
using Computer-Aided Design (CAD) tools, are also introduced.    
       Chapter 12 presents conclusions of the Book and perspective 
future work. 
       This Book is terminated with a series of eleven Appendices that 
produce new related results, important background, and motivations 
for many components of the work which were introduced in the 
previous Chapts. For example, some of these new results include the 
counts of several theorems that were presented in previous Chapts. 
Functions of these counts can be incorporated as upper or lower 
bounds in search heuristics that can be used to search for solutions 
to solve synthesis problems that have no concrete formal solutions.      
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       Appendix A introduces count results to count the various 
classes of the new binary and multiple-valued invariant Shannon and 
Davio expansions from Chapt. 2. Circuits that implement the 
quaternary Galois field Sum-Of-Products (GFSOP) expressions, 
which are discussed in Chapt. 2, are introduced in Appendix B. Two 
novel count results for the count of S/D trees and the corresponding 
Inclusive Forms, that were the main result of Chapt. 3, are presented 
in Appendix C. Circuit realizations of multiple-valued S/D trees are 
introduced in the form of Universal Logic Modules (ULMs) in 
Appendix D. Background on Evolutionary Computing, which is 
used in various algorithms in different locations in Chapt. 3, Chapt. 
8, and Chapt. 11, is presented in Appendix E. The count of all 
possible families of binary and multiple-valued reversible Shannon 
and Davio decompositions that result from Chapt. 5 is introduced in 
Appendix F. Appendix G presents the NPN classification method of 
Boolean functions and the complexity measures that are used in 
Chapt. 7 and Appendix H of this Book. New evaluation results that 
compare the new Modified Reconstructability Analysis (MRA) 
structure from Chapt. 7 and Ashenhurst-Curtis and Bi-
Decomposition are presented in Appendix H. Appendix I introduces 
the count for reversible Nets that were introduced in Chapt. 8. Novel 
optical realizations of two-valued and multiple-valued classical and 
reversible logics are presented in Appendix J. Appendix K utilizes 
results in multiple-valued quantum computing from Chapt. 11 to 
introduce new results in multiple-valued quantum implementation of 
discrete Artificial Neural Networks. 
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2 Fundamentals 
 
 
 
 
 
This Chapt. presents the necessary mathematical background and the 
fundamental formalisms of the work that will be introduced and 
further developed in the next Chapts. This includes the main 
reversible decompositions in Chapt. 5 that will be used to construct 
reversible primitives, from which reversible structures are built in  
Chapts. 6, 7 and 8, respectively. Also, the foundations that are 
introduced in this Chapt. will be used to construct the quantum gates 
and their associated quantum circuits and computing in Chapt. 11. 
       Spectral transforms play an important role in synthesis, analysis, 
testing, classification, formal verification, and simulation of logic 
circuits. Dyadic families of discrete transforms: Reed-Muller and 
Green-Sasao hierarchy, Walsh, Arithmetic, Adding, and Haar 
wavelet transforms and their generalizations to p-adic (multi-valued) 
transforms, have found a fruitful use in digital system design 
[120,125]. In this Chapt., we present a specialized framework for the 
creation, classification, and counts of new non-singular generalized 
Reed-Muller-like families of expansions for an arbitrary radix of 
Galois field. 
       Reed-Muller-like spectral transforms [240] have found a variety 
of useful applications in minimizing Exclusive Sum-Of-Products 
(ESOP) and Galois field SOP (GFSOP) expressions 
[9,76,77,79,80,171,264], creation of new forms 
[4,78,104,173,265,266], binary decision diagrams [2,45,142], 
spectral decision diagrams [82,238,239], regular structures 
[5,7,13,18,50,51,84,177], besides their well-known uses in digital 
communications [125], digital signal processing [89,257,260], 
digital image processing [90], and fault detection (testing) 
[99,124,147,198,199,204,218]. Ternary Reduced Post Galois field 
Sum-Of-Products (RP-GFSOPs), their generalized Green/Sasao 
hierarchies, and the extensions of such hierarchies to the case of 
quaternary Galois field hierarchy were recently developed [4,9].  
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       For higher radices of Galois fields, there exist very large 
number of nonsingular transforms that still need to be systematically 
generated and classified. The main contributions in this Chapt. are: 
• New methods of Galois Eqs. which are based on multiple-valued    
   Galois logic to produce the corresponding multiple-valued   
   Shannon and Davio expansions. 
• A generic methodology of generating new types of multi-valued    
   Shannon and Davio spectral transforms. 
• The classification of the new types of multi-valued Shannon and   
   Davio spectral transforms into families. The corresponding counts   
   of  the new families are also provided. 
       The methodology of generating the new families of multi-
valued Shannon and Davio spectral transforms is based on the 
fundamental multiple-valued Shannon expansions (i.e., p-adic) and 
the fundamental multiple-valued Davio expansions. The new 
families of multiple-valued decompositions possess many 
advantages. The first advantage is the comparative ease of 
generation of the new multiple-valued transforms, since they are 
very closely related to the fundamental multiple-valued Shannon 
and Davio transforms. The second advantage is that the new 
transforms allow for a fast construction of the inverse transform 
because the basis functions of such transforms are the same basis 
functions of the fundamental multiple-valued Shannon and Davio 
transforms just scaled by constants. These constants are the 
multiplicative inverse of the corresponding constants that scale the 
rows of the corresponding basic multiple-valued Shannon and Davio 
transform matrices. This feature is very useful in hardware and 
software implementation for the fast processing of digital signals. 
The third advantage is that the flipped Shannon has an important 
role in the construction of reduced-size lattices [50,51]. Such regular 
structures have found application in the design for test and design 
for self-repair of logic circuits [221]. Consequently, the new 
multiple-valued flipped Shannon can find similar applications in the 
design for test and self-repair of multiple-valued logic circuits, 
utilizing more general regular structures such as three-dimensional 
(3-D) lattices as shown in [5,13,18]. The fourth advantage is that all 
the new multiple-valued canonical expansions can be used in the 
implementation of various types of the corresponding lattice 
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structures linking the expansion choice to technology issues, like 
improvements in area, speed, power, and testability. 
       The remainder of this Chapt. is organized as follows. The basic 
definitions of the fundamental binary expansions and their multiple-
valued extensions are given in Sect. 2.1. A new methodology for the 
creation and classification of new Galois-based transforms and 
examples of such transforms are presented in Sect. 2.2. A Summary 
of the Chapt. is presented in Sect. 2.3. 

 
2.1 Normal Galois Forms in Logic Synthesis 
 
Normal canonical forms play an important role in the synthesis of 
logic circuits [113,213,217,219]. This role includes testing, 
synthesis, and optimization. The main algebraic structure which is 
used in this work for developing the canonical normal forms is the 
Galois field (GF) algebraic structure, which is a fundamental 
algebraic structure in the theory of algebras [56,67,87,146,160,166].      
       Galois field has proven high efficiency in various applications 
such as in logic synthesis and computer engineering, 
communications, information systems and computer science, and 
mathematics. This includes items like: design for test [124], 
reversible logic synthesis (cf. Sect. 5.4 in Chapt. 5) [6], error 
correction codes [48], cryptography, number theory, and proving 
Fermat’s last theorem [251]. The importance of Galois field results 
from the fact that every finite field is isomorphic to a Galois field 
[146]. In general, the attractive properties of GF-based circuits, such 
as the high testability of such circuits, are due to the fact that the GF 
operators exhibit the Cyclic Group (Latin Square) Property [67]. 
This property can be explained, for example, using the four-valued 
(quaternary) GF operators as shown in Figs. 2.1e and 2.1f, 
respectively. Note that in any row and column of the addition table 
(Fig. 2.1e), the elements are all different, which is cyclic, and that 
the elements have a different order in each row and column. Another 
cyclic group can be observed in the multiplication table; if the zero 
elements are removed from the multiplication table (Fig. 2.1f), then 
the remaining elements form a cyclic group. In binary, for example, 
the GF(2) addition operator, EXOR, has the cyclic group property. 
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Fig. 2.1. Galois field addition and multiplication tables: a GF2(+), b GF2(*), c GF3(+), d 
GF3(*) , e GF4(+), and f GF4(*). 

 
       Reed-Muller based normal forms have been classified using the 
Green/Sasao hierarchy [4,52]. The Green/Sasao hierarchy of 
families of canonical forms and corresponding decision diagrams is 
based on three generic expansions: (1) Shannon [43,217], (2) 
positive Davio [265,266,217], and (3) negative Davio [265,266,217] 
expansions. Since Shannon and Davio expansions play an essential 
role in logic synthesis, the corresponding generalized Green/Sasao 
hierarchy of families of canonical forms and corresponding decision 
diagrams have been developed [4]. Shannon, positive Davio, and 
negative Davio decompositions are given below: 
 

       f(x1,x2,…,xn) = x1’⋅ f0(x1,x2,…,xn) ⊕ x1⋅ f1(x1,x2,…,xn),       
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       f(x1,x2,…,xn) = 1⋅ f0(x1,x2,…,xn) ⊕ x1⋅ f2(x1,x2,…,xn),       
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       f(x1,x2,…,xn) = 1⋅ f1(x1,x2,…,xn) ⊕ x1’⋅  f2(x1,x2,…,xn),     

* 0 1 
0 0 0 
1 0 1 

+ 0 1 
0 0 1 
1 1 0 

+ 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1 

* 0 1 2 
0 0 0 0 
1 0 1 2 
2 0 2 1 

+ 0 1 2 3 
0 0 1 2 3 
1 1 0 3 2 
2 2 3 0 1 
3 3 2 1 0 

* 0 1 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 3 1 
3 0 3 1 2 
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where f0(x1,x2,…,xn) = f(0,x2,…,xn) = f0 is the negative cofactor of 
variable x1, f1(x1,x2,…,xn) = f(1,x2,…,xn) = f1 is the positive cofactor 
of variable x1, and f2(x1,x2,…,xn) = f(0,x2,…,xn) ⊕ f(1,x2,…,xn) = f0 

⊕  f1. 
       An arbitrary n-variable function f(x1, x2, …, xn) can be 
represented using the Positive Polarity Reed-Muller (PPRM) 
expansion as follows [217,239]: 
 

       f(x1,x2, …,xn) = a0⊕ a1x1⊕ a2x2⊕…⊕ anxn⊕ a12x1x2⊕ a13x1x3⊕  
                                an-1,nxn-1xn⊕…⊕ a12…nx1x2…xn.                     (2.4) 
 

       For each function f, the coefficients ai in Eq. (2.4) are 
determined uniquely, so PPRM is a canonical form. If we use either 
only the positive literal or only the negative literal for each variable 
in Eq. (2.4) we obtain the Fixed Polarity Reed-Muller (FPRM) form. 
There are 2n possible combinations of polarities and as many 
FPRMs for any given logic function. If we freely choose the polarity 
of each literal in Eq. (2.4), we obtain Generalized Reed-Muller 
(GRM) form. In GRMs, contrary to FPRMs, the same variable can 
appear in both positive and negative polarities. There are 

2.
)1(

n
n−

literals in Eq. (2.4), so there are 2 2.
)1(

n
n−

 polarities for an n-

variable function and as many GRMs [217]. Each of the polarities 
determines a unique set of coefficients, and thus each GRM is a 
canonical representation of a function. Two other types of 
expansions result from the flattening of certain binary trees that will 
produce Kronecker (KRO) forms and Pseudo Kronecker (PKRO) 
forms for Shannon, positive Davio, and negative Davio expansions 

[217]. There are 3n  and at most 3 12 )( −n
different KROs and 

PKROs, respectively.  
       The good selection of the various permutations in using the 
Shannon and Davio expansions (in addition to other expansions like 
Walsh, Arithmetic, etc) as internal nodes in decision trees (DTs) and 
diagrams (DDs) will result in DTs and DDs, that represent the 
corresponding logic functions, with smaller sizes in terms of the 
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total number of hierarchical levels used, and the total number of 
internal nodes needed [217]. The minimization of the size of DD, to 
represent a logic function, will result in speeding up the 
manipulations of logic functions using DD as data structure, and the 
minimization of the use of memory space during the execution of 
such manipulations. 
       We call the Shannon and Davio expansions presented in this 
Sect. the “Fundamental” spectral transforms in order to distinguish 
them from the more generalized case of the “Invariant” Shannon and 
Davio expansions that will be presented in Sect. 2.2. One can 
observe that by going from PPRM to GRM forms, less restrictions 
(constraints) are imposed on the canonical forms due to the enlarged 
set of polarities that one can choose from. The gain of more freedom 
(less constraints) on the polarity of the canonical expansions will 
provide an advantage of obtaining Exclusive-Sum-Of-Product 
(ESOP) expressions with less number of terms and literals, and 
consequently expressing Boolean functions using ESOP forms will 
produce on average expressions with less size as if compared to 
Sum-Of-Product (SOP) expressions for example. Table 2.1 
illustrates these observations [217].  
       In general, a literal can be defined as any function of a single 
variable. Basis functions in the general case of multiple-valued 
expansions are constructed using literals. Galois field Sum-Of-
Products expansions can be performed on variety of literals.   
 
Table 2.1. The number of product terms required to realize some arithmetic functions using 
different Reed-Muller forms. 
 
 
                   Function       PPRM         FPRM         GRM         ESOP         SOP 

 
                      adr4              34                34                34               31             75 
                      log8              253              193              105             96            123 
                      nrm4            216              185               96              69             120 
                      rdm8             56                56                31              31             76 
                      rot8              225              118               51              35             57 
                      sym9           210              173               126             51             84 
                      wgt8            107              107               107             58             255 
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       For example, one can use, among others: K-Reduced Post literal 
(K-RPL) to produce K-RPL-GFSOP [4,9], Post literal (PL) to 
produce PL-GFSOP, Window literal (WL) to produce WL-GFSOP, 
Generalized (Post) literal (GL) to produce GL-GFSOP, or Universal 
literal (UL) to produce UL-GFSOP. Figure 2.2 demonstrates set-
theoretic relationships beween the various literals, where the shaded 
Reduced Post literal is the type of literal that will be used through 
this Book. (Note that RPL is analogous to the delta function in the 
continuous domain.) 
 
 

 

 

 

 

 

 
  Fig. 2.2. Inclusion relationship of various types of literals. 

 
Example 2.1. Figure 2.3 demonstrates several literal types, where 
one proceeds from the simplest literal in Fig. 2.3a (i.e., RPL) to the 
most complex literal in Fig. 2.3e. For RPL in Fig. 2.3a, a value (K) 
is produced by the literal when the value of the variable is equal to a 
specific state, and in this particular example a value of K = 1 is 
generated by the 1-RPL when the value of variable x is equal to 
certain state (here this state is equal to one). Figure 2.3b shows PL 
where the value generated by the literal at a specific state is equal to 
the maximum value (i.e., radix) of that logic. WL in Fig. 2.3c 
generates a value equal to the radix for a “window” of specific 
states. GPL in Fig. 2.3d produces a value of radix for a set of distinct 
states. One notes that, in contrast to the other literals, universal 
literal (UL) in Fig. 2.3e can have any value of the logic system at 
distinct states, and thus universal literals have the highest 
complexity among the five different types of literals. 
 

Reduced Post 
      Literal 

Post Literal 

Window Literal 

 Generalized (Post) Literal 

 Universal Literal 
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Fig. 2.3. Illustrating the different types of literals over an arbitrary five-radix logic: a 1-
Reduced Post literal (RPL), b Post literal (PL), c Window literal (WL), d Generalized 
(Post) literal (GL), and e Universal literal (UL). 

 
       Since K-RPL-GFSOP is as simple as PL and it is simpler from 
implementation point of view than WL, GL or UL, we will perform 
all the GFSOP expansions utilizing 1-RPL-GFSOP. Let us define 
the 1-Reduced Post Literal as: 
 
       ix = 1 iff x =i  else ix = 0.                                                         (2.5) 
 

       For example 0x, 1x, 2x are the zero, first, and second polarities of 
the 1-Reduced Post Literal, respectively. Also, let us define the 
ternary shifts (over variable x) as x, x', x" as the zero, first, and 
second shifts of the variable x respectively (i.e., x = x + 0, x’ = x +1, 
and x” = x + 2, respectively), and x can take any value in the set 
{0,1,2}. We chose to represent the 1-Reduced Post Literals in terms 
of shifts and powers, among others, because of the ease of the 
implementation of powers of shifted variables in hardware (for the 
production of RPL, see the Universal Logic Modules (ULMs) in 

           a                                             b                                        c  

1 
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Appendix D). The fundamental Shannon expansion over GF(3) for a 
ternary function with a single variable is shown in the following 
theorem. 
 

Theorem 2.1. Shannon expansion over GF(3) for a function with 
single variable is: 
 

       f = 0x f0 + 1x f1 + 2x f2,                                                           (2.6) 
 

where f0 is cofactor of f with respect to variable x of value 0, f1 is 
cofactor of  f with respect to variable x of value 1, and f2 is cofactor 
of f with respect to variable x of value 2. 
 

Proof. From Eq. (2.5), if we substitute the values of the 1-Reduced 
Post Literal in Eq. (2.6), we obtain the following Eqs.: 
For x = 0 
 f x=0 = f0. 
For x = 1 
 f x=1 = f1. 
For x = 2 
 f x=2 = f2. 
which are the  cofactors of variable x of value 0, of value 1, and  of 
value 2, respectively.                                                                Q.E.D. 
 

Example 2.2. Let f(x1,x2) = x1'x2 + x2"x1. 
Then the ternary truth vector of the function f is: F = 
[0,2,1,1,2,0,2,2,2]T. Using Eq. (2.6), we obtain the following ternary 
Shannon expansion over GF(3) of the above function f (x1,x2): 
f = 0x1 

1x2 + 2⋅ 0x1 
2x2 + 2⋅ 1x1 

0x2 + 2⋅ 1x1 
1x2 + 2⋅ 1x1 

2x2 + 2x1 
0x2 +  

      2⋅ 2x1 
2x2. 

       Using the addition and multiplication over GF(3), and the 
axioms of GF(3), it can be shown that the 1-Reduced Post Literals 
defined in Eq. (2.5), are related to the shifts of variables over GF(3) 
in terms of powers as follows: 
 
       0x = 2(x)2 + 1,                                                                          (2.7) 
       0x = 2(x')2 + 2(x'),                                                                    (2.8) 
       0x = 2(x")2 + x",                                                                       (2.9) 
       1x = 2(x)2 + 2(x),                                                                    (2.10) 
       1x = 2(x')2 + x',                                                                       (2.11) 
       1x = 2(x")2 + 1,                                                                       (2.12) 
       2x = 2(x)2 + x,                                                                         (2.13) 
       2x = 2(x')2 + 1,                                                                       (2.14) 
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       2x = 2(x")2 + 2(x"),                                                                (2.15) 
 

where 0x, 1x, 2x are the zero, first, and second polarities of the 1-
Reduced Post Literal, respectively, and x, x', x" are the zero, first, 
and second shifts of the variable x respectively. The variable x can 
take any value of the set {0,1,2}. After the substitution of Eqs. (2.7) 
through (2.15) in Eq. (2.6), and after the minimization of the terms 
according to the axioms of Galois field, one obtains the following 
Eqs.: 
 

       f = 1⋅ f0 + x⋅ (2f1+f2) + 2(x)2(f0+f1+f2),                               (2.16) 
       f = 1⋅ f2 + x'⋅ (2f0+f1) + 2(x')2(f0+f1+f2),                              (2.17) 
       f = 1⋅ f1 + x"⋅ (2f2+f0) + 2(x")2(f0+f1+f2).                            (2.18) 
 

       Equations (2.6) and (2.16) through (2.18) are the ternary 
fundamental Shannon and Davio expansions for single variable, 
respectively. These Eqs. can be rewritten in the following matrix-
based forms: 
 

       f =  [ 0x  1x   2x]  
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       f   =    [1   x   x2]
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       f = [1  x’   (x’)2]
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       f = [1  x”  (x”)2]
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       We observe that Eqs. (2.19) - (2.22) are expansions for a single 
variable. Yet, these expansions can be recursively generated for 
arbitrary number of variables (N) using the Kronecker (tensor) 
product ( ⊗ ), analogous to the binary case [4,9,88,238]. This can be 
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expressed formally as in the following forms for ternary Shannon 
(S), and Davio (D0, D1, and D2) expansions, respectively: 

       f   = ⊗
=

N

i 1

 [0xi  
1xi  

2xi] ⊗
=

N

i 1

 [S][ F ],                                        (2.23) 

       f  =  ⊗
=

N

i 1

 [1  xi  xi
2] ⊗

=

N

i 1

 [D0][ F ],                                         (2.24) 

       f  =  ⊗
=

N

i 1

 [1 xi’   (xi’)
2] ⊗

=

N

i 1

 [D1][ F ],                                   (2.25) 

       f  =  ⊗
=

N

i 1

 [1 xi”   (xi”)2] ⊗
=

N

i 1

 [D2][ F ].                                  (2.26) 

 

       (The name “tensor product” is due to the fact that the growth of 
a transform matrix is in the form of a matrix of matrix elements.) 
       Analogously to the binary case, we can have expansions that are 
mixed of Shannon (S) for certain variables and Davio (D0, D1, and 
D2) for the other variables. This will lead, analogously to the binary 
case, to the Kronecker Ternary Decision Trees (TDTs). Moreover, 
the mixed expansions can be extended to include Pseudo Kronecker 
TDT. (Full discussion of these TDTs that correspond to various 
expansions, as well as their hierarchy will be included in Chapt. 3). 
       Analogously to the ternary case, quaternary Shannon expansion 
over GF(4) for a function with single variable is [9]: 
 

       f = 0x f0 + 1x f1 + 2x f2 + 3x f3,                                              (2.27) 
 

where f0 is the cofactor of f with respect to variable x of value 0, f1 is 
the cofactor of f with respect to variable x of value 1, f2 is the 
cofactor of f with respect to variable x of value 2, and f3 is the 
cofactor of f with respect to variable x of value 3. 
Example 2.3. Let f (x1,x2) = x1”x2 + x2’’’x1. The quaternary truth 
vector of this function f is F = [0,3,1,2,2,1,3,0,3,0,2,1,1,2,0,3]T. 
Utilizing Eq. (2.27), we obtain the following quaternary Shannon 
expansion over GF(4) of the function f: 
f = 2 ⋅ 0x1 

1x2 + 3⋅ 0x1 
2x2 +  0x1 

3x2 + 3⋅ 1x1 
0x2 + ⋅ 1x1 

1x2 + 2⋅ 1x1 
3x2+  

2x1 
0x2+ 3⋅ 2x1 

1x2+ 2⋅ 2x1 
2x2+ 2⋅ 3x1 

0x2+  3x1 
2x2+ 3⋅ 3x1 

3x2 . 
       Using the axioms of GF(4), it can be derived that the 1-RPL 
defined in Eq. (2.5) are related to the shifts of variables over GF(4) 
in terms of powers as follows: 
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       0x = x3 + 1,                                                                             (2.28) 
       0x = x’ + (x’)2 + (x’)3,                                                            (2.29) 
       0x = 3(x’’) + 2(x’’)2 + (x’’)3,                                                 (2.30) 
       0x = 2(x’’’) + 3(x’’’)2 + (x’’’)3,                                             (2.31) 
       1x = x + (x)2 + (x)3,                                                                (2.32) 
       1x = (x’)3 + 1,                                                                         (2.33) 
       1x = 2(x’’) + 3(x’’)2 + (x’’)3,                                                 (2.34) 
       1x = 3(x’’’) + 2(x’’’)2 + (x’’’)3,                                             (2.35) 
       2x = 3(x) + 2(x)2 + (x)3,                                                         (2.36) 
       2x = 2(x’) + 3(x’)2 + (x’)3,                                                     (2.37) 
       2x = (x’’)3 + 1,                                                                        (2.38) 
       2x = x’’’ + (x’’’)2 + (x’’’)3,                                                    (2.39) 
       3x = 2(x) + 3(x)2 + (x)3,                                                         (2.40) 
       3x = 3(x’) + 2(x’)2 + (x’)3,                                                     (2.41) 
       3x = x’’ + (x’’)2 + (x’’)3,                                                        (2.42) 
       3x = (x’’’)3 + 1,                                                                      (2.43) 
 

where 0x, 1x, 2x, 3x are the zero, first, second, and third polarities of 
the 1-Reduced Post literal, respectively. Also, x, x’, x”, x’’’ are the 
zero, first, second, and third shifts (inversions) of the variable x 
respectively, and variable x can take any value of the set {0, 1, 2, 3}. 
Analogous to the ternary case, we chose to represent the 1-Reduced 
Post literal in terms of shifts and powers, among others, because of 
the ease of the implementation of powers of shifted variables in 
hardware. After the substitution of Eqs. (2.28) through (2.43) in Eq. 
(2.27), and after the rearrangement and reduction of the terms 
according to the axioms of GF(4), we obtain the following Eqs.: 
 

       f = 1⋅ f0 + x (f1+3f2+2f3) +  
             (x)2 (f1+2f2+3f3)+(x)3(f0+f1+f2+f3),                               (2.44) 
       f = 1⋅ f1 + (x’)(f0+2f2+3f3) +  
             (x’)2 (f0+3f2+2f3)+(x’)3 (f0+f1+f2+f3),                           (2.45) 
       f = 1⋅ f2 + (x’’)(3f0+2f1+f3) +  
             (x’’)2 (2f0+3f1+f3)+(x’’)3 (f0+f1+f2+f3),                         (2.46) 
       f = 1⋅ f3 + (x’’’)(f2+3f1+2f0) + 
             (x’’’)2 (f2+2f1+3f0)+(x’’’)3 (f0+f1+f2+f3).                      (2.47) 
 

       Equations (2.27) and (2.44) through (2.47) are the 1-Reduced 
Post literal quaternary Shannon and Davio expansions for single 
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variable, respectively. These Eqs. can be rewritten in the following 
matrix-based convolution-like forms, respectively: 
 

       f = [0x   1x   2x   3x]
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       f = [1   x   x2   x3]  
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       f = [1   x’   (x’)2   (x’)3] 

�
�
�
�

�

	










�

�

1111

2301

3201

0010

�
�
�
�

�

	










�

�

3

2

1

0

f

f

f

f

,                     (2.50) 

       f = [1   x”  ( x”)2  ( x”)3]
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       f = [1   x’’’   (x’’’)2  ( x’’’)3]
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       One can observe, that Eqs. (2.48) through (2.52) are expansions 
for single variable. Yet, these canonical expressions can be 
generated for arbitrary number of variables (N) using the Kronecker 
(tensor) product. This can be expressed formally as in the following 
discrete convolution-like forms for Shannon (S), and Davio (D0, D1, 
D2, and D3) expressions, respectively:  
 

       ⊗
=

=
N

i

f
1

[0xi   
1xi   

2xi   
3xi ] 

N

i 1=
⊗  [S][ F ],                         (2.53) 
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       ⊗
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=
N
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N
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       ⊗
=
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N

i

f
1

[ 1   xi’’’  (xi’’’)
2  (xi’’’)

3
 ] 

N

i 1=
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       The following Sect. introduces generalizations of the multiple-
valued fundamental expansions introduced in this Sect. These 
generalizations will be used in Chapt. 4 for building and minimizing 
the size of 2-D and 3-D classical lattice structures, Chapt. 6 for 
constructing reversible lattice structures, and in Chapt. 10 for 
constructing the quantum counterparts of reversible lattice 
structures.  

 
2.2 Invariant Multi-Valued Families of Generalized 
Spectral Transforms 
 
In this Sect. we present the invariant multiple-valued Galois field 
based spectral transforms, and their generalized notation. The new 
scaled expansions can be used to produce minimal size circuits for 
the three-dimensional lattice structures which will be presented in 
Chapt. 4. Also, the new scaled expansions will be used for the 
construction of a new type of logic primitives (as will be shown in 
Fig. 2.4) that implement “weights” into their inputs. Such new 
primitives can be useful in technological implementations where 
weighted inputs are used to realize logic functionalities. 

 
2.2.1 General Notation for Operations on Transform Matrices 
 
The following notation describes the operations on a transform 
matrix M over GF(K) [5,12]: 
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       MM
q Kqp Kp

OD
1...0|1...0 −−→ ,                            (2.58) 

     M O

1...11|... γβα
→ ,                        (2.59) 

 

where MD is the Derived (Modified) Matrix, MO is the Original 
Matrix. The symbols p0, p1, …, pK-1 are row multiplication numbers 
∈ GF(K), {0,1,…,K-1} are indices referring to row0, row1,…, and 
row K-1. The symbols q0,q1,…, qK-1 are column multiplication 
numbers ∈ GF(K), and {0,1,…,K-1} are indices referring to 
column0, column1,…, and columnK-1. The operations performed 
utilizing the upper notation are done through the multiplication of all 
the elements of rowi of the matrix Mo by pi and then multiplying 
each resulting element of (rowi⋅ pi) by qj, where i, j = 0, 1, …, k-1 ( 

i.e., )(
,

ij

ji

i rowqp ⋅

∀

⋅∏  ). The mathematical interpretation of this 

notation, in terms of matrices, is as follows: if D is a diagonal matrix 

 D = Diag (α, β, …, γ), then MD = D⋅Mo 
 MD 

-1 = (D⋅Mo) 
–1 = 

Mo
-1 D-1. The following Eq. can be applied to obtain the functional 

expansions for any modified transform matrix: 
 

       FMMf s
1−= ,                                                       (2.60) 

 

where M is the transform matrix, and F  is the truth vector of the 

function f. 
Example 2.4. Let us produce some modified matrices from their 
unmodified counterparts utilizing the proposed notation for Galois 
field of radix four. 
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2.2.2 Invariant Families of Multi-Valued Spectral Transforms 
 
To introduce Theorems 2.1, 2.2, and 2.3, the following definitions 
are presented (where p is a prime number and k is a natural number 
of value k ≥ 1). 
 

Definition 2.1. The transform matrix that is generated by 
multiplying the rows of GF(pk) Shannon matrix by the numbers {α, 
β, …, γ} ∈ GF(pk) respectively is called αβ…γ IS (invariant 
Shannon) matrix. 
 

Definition 2.2. The transform matrix that is generated by 
multiplying the rows of GF(pk) Davio of type t (denoted by Dt) 
matrix by the numbers {α, β, …, γ} ∈ GF(pk) respectively is called 
αβ…γ IDt (invariant Davio of type t) matrix, where t ∈ GF(pk). 
 

Definition 2.3. The transform matrix that is generated by 
multiplying the rows of GF(pk) flipped Shannon matrix by the 
numbers {α, β, …, γ} ∈ GF(pk) respectively is called αβ…γ IfS 
(invariant flipped Shannon) matrix, where t ∈ GF(pk). 
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Definition 2.4. For GF(n) where n = pk, a family of transforms is 
defined as a set that contains  one Shannon transform and the 
corresponding n Davio transforms. 
 

Definition 2.5. The Family (set) of spectral transforms that has the 
members (elements) of {αβ…γIS, D} is called αβ…γ IS/D 
(invariant Shannon/Davio). 
 

Definition 2.6. The Family (set) of spectral transforms that has the 
members (elements) of {αβ…γID, S} is called αβ…γ ID/S 
(invariant Davio/Shannon). 
 

Definition 2.7. The total Family (set) of spectral transforms that has 
the members (elements) of {α1β1…γ1IS, α2β2…γ2ID} is called 
α1β1…γ1IS/α2β2…γ2ID (invariant Shannon/invariant Davio). 
 

       The following theorems are valid for arbitrary GF(n) fields for n 
= pk, where p is a prime number and k is a natural number of value k 
≥ 1. Full details and proofs of all counts are presented in Appendix 
A. 
 

Theorem 2.2. For {α, β, …, γ} ∈ GF(n), there exist (n–1)n of αβ…γ 
IS nonsingular spectral transforms. 
 

Proof. In general, Shannon matrix for GF(n) is the identity matrix I: 

       S = I = 

�
�
�
�

�

	










�

�

1...00

............

0...10

0...01

. 

If the rows of the matrix S are multiplied by {α, β, …, γ} 
respectively, we obtain: 

       S αβ…γ |11…1  = 

�
�
�
�

�

	










�

�

γ

β
α

...000

............

0...00

0...00

. 

The inverse of such matrix is: 
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       [ ]S 1...11|... 1γαβ −
=

�
�
�
�

�

	










�

�

γ

β
α

ˆ...000

............

0...0ˆ0

0...00ˆ

,  

where: 1ˆ,...,1ˆ,1ˆ === γγββαα . Utilizing Eq. (2.60), we get the 
following invariant (p-adic) Shannon expansion: 
 

       f = [α̂ 0x  β̂ 1x . . . γ̂ k-1x]

�
�
�
�
�

�

	












�

�

γ

β
α

...000

............

0...00

0...00

F ,                  (2.61) 

 

where k-1x is the 1-Reduced Post Literal defined previously. Note 
that Eq. (2.61) is an expansion of the function, f, that always 
preserves the values of the function (i.e., the cofactors) and does not 
transform the truth vector into a different domain. Therefore, the 
same set of Davio expansions (that correspond to the various 
invariant Shannon expansions) will always be produced. 
Consequently, the number of transform families is equal to the 
number of different invariant Shannon transforms that can be 
obtained.                                                                                   Q.E.D. 
 

Theorem 2.3. For {α, β, …, γ} ∈ GF(n), there exist (n-1)n of αβ…γ 
ID nonsingular spectral transforms per Davio type, and n(n-1)n of 
αβ…γ ID nonsingular spectral transforms for all Davio types of 
expansions. 
 

Proof. Let us produce the proof for a single type of Davio (D) 
expansion in a third radix GF. Although this proof is for one type of 
Davio expansion and for the special case of GF(3), similar and 
straightforward proofs can be provided systematically for other 
Davio expansions of an arbitrary radix of GF (pk), where p is a 
prime number and k is a natural number of value k ≥ 1. D0 matrix 
for GF(3) is: 
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       D0 = 

�
�
�

�

	








�

�

222

120

001

. 

If the rows of the matrix D0 are multiplied by {α, β, γ} respectively, 
we obtain: 

       D0
αβγ |111  = 

�
�
�

�

	








�

�

γγγ
ββ

α

222

20

00

. 

Utilizing Eq. (2.60), we get the following invariant (p-adic) D0 

functional expansion (for a single type of Shannon expansions I3x3): 
 

       f = [ α̂   β̂ x  γ̂ x2] 

�
�
�

�

	








�

�

γγγ
ββ

α

222

20

00

F ,                              (2.62) 

 

where 1ˆ,...,1ˆ,1ˆ === γγββαα . Note that Eq. (2.62) is an expansion 
of the function, f, that always preserves the value of the function 
(i.e., the cofactors) and does not transform the truth vector into a 
different domain. Therefore, the same Shannon expansion will 
always be produced.                                                                 Q.E.D. 
 

       As a consequence of Theorem 2.2, we observe that there exist 
for a certain radix of Galois field a fixed number of Davio 
expansions (i.e., same forms of Davio expansions), which is equal to 
the radix of GF, and many invariant Shannon expansions (i.e., 
different forms of Shannon expansions). Also, as a consequence of 
Theorem 2.3, we observe that there exist for a certain radix of 
Galois field and a certain type of Davio expansions a single Shannon 
expansion (i.e., one form) and many invariant Davio expansions 
(i.e., different forms of Davio expansions). 
 

Theorem 2.4. For {α, β, …, γ} ∈ GF(n), there exist (n–1)n of αβ…γ 
IfS nonsingular spectral transforms. 
 

Proof. In general, the flipped Shannon matrix for GF(n) is the 
matrix: 
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       f S =  

�
�
�
�

�

	










�

�

0...01

............

01..00

1...00

. 

 

If the rows of the matrix of fS are multiplied by {α, β, …, γ} 
respectively, we obtain: 
 

       f S αβ…γ |11…1  = 

�
�
�
�

�

	










�

�

0...00

............

0...00

...000

γ

β
α

. 

 

The inverse of such matrix is: 

       [ ]Sf 1...11|... 1γαβ −
=

�
�
�
�

�

	










�

�

0...00ˆ

0...0ˆ0

............

ˆ...000

α
β

γ

,  

where: 1ˆ,...,1ˆ,1ˆ === γγββαα . Utilizing Eq. (2.60), we get the 
following invariant (p-adic) flipped Shannon expansion: 
 

       f = [α̂ k-1x  β̂ k-2x… γ̂ 0x]  

�
�
�
�

�

	










�

�

0...00

............

0...00

0...00

γ

β
α

F ,               (2.63) 

where k-1x is the 1-Reduced Post Literal defined previously. Eq. 
(2.63) is an expansion of function f, that always preserves the values 
of the function (i.e., the cofactors) and does not transform the truth 
vector into a different domain.                                                 Q.E.D. 
 

       Utilizing Eq. (2.61), all permutations of the invariant Shannon 
expansion can be obtained to produce the Invariant Permuted 
Shannon Expansions (IPSE). The invariant flipped Shannon in Eq. 
(2.63) represents one special case of such permutations. Similar 
permutations can be also obtained for the invariant Davio 
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expansions in Eq. (2.62) and the other types of Davio expansions to 
produce the Invariant Permuted Davio Expansions (IPDE). One 
potential important utilization of such permutations is in the 
reduction of the size of the corresponding lattice structures 
analogous to the results for the binary case in [50,51]. 
       Multi-valued spectral transforms that are generated by 
Theorems 2.2, 2.3, and 2.4 can be produced for an arbitrary number 
of variables utilizing the Kronecker-based recursion. From 
Theorems 2.2, 2.3, and 2.4, one can note the following interesting 
property of the new transforms: the basis functions of the new sets 
of multi-valued transforms are exactly the same as the basis 
functions of the fundamental Shannon, Davio, and flipped Shannon 

expansions but scaled by constants (i.e., )ˆ,...,ˆ,ˆ γβα . Moreover, these 
constants are not generated arbitrarily; they are the multiplicative 
inverses of the corresponding constants that scale the rows of the 
corresponding basic multi-valued Shannon, Davio, and flipped 
Shannon transform matrices (i.e., the constants { γβα ,...,, } in Eqs. 
(2.61), (2.62), and (2.63) respectively), and can be directly 
calculated according to the axioms of the Galois field which is 
operated upon. For illustration, Example 2.5 illustrates the use of 
Theorem 2.2. 
Example 2.5. Utilizing Definition 2.1 and Theorem 2.2, The 
following is one of the invariant Shannon transform matrices that 
can be produced in GF(5): 

S 34222|21142 = 

�
�
�
�
�
�

�

	














�

�

30000

01000

00200

00040

00004

,  


 [S 34222|21142] –1 = 

�
�
�
�
�
�

�

	














�

�

30000

01000

00400

00020

00002

, 
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f = [ 2⋅ 0x    2⋅ 1x    4⋅ 2x    1⋅ 3x    3⋅ 4x] 

�
�
�
�
�
�

�

	














�

�

30000

01000

00200

00040

00004

F . 

Example 2.6. Utilizing Definition 2.2, and Theorem 2.3, The 
following is one of the invariant D2 transform matrices that can be 
produced in GF(3): 

D2 
212|111 = 

�
�
�

�

	








�

�

111

201

020

 
  f = [ 2   x   2⋅ x2] 

�
�
�

�

	








�

�

111

201

020

F . 

Example 2.7. The following logic circuits represent a comparison 
between the logic primitives of the fundamental ternary Shannon 
decomposition versus the invariant ternary Shannon decomposition, 
respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                           a                                                                           b 
 
Fig. 2.4. Fundamental and invariant Shannon decompositions: a logic primitive for the 
ternary fundamental Shannon decomposition, and b logic primitive for the ternary invariant 
Shannon decomposition. 

 
       The resulting non-singular transforms in Theorems 2.2, 2.3, and 
2.4 are a subset within the set of linearly independent (LI) 
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αααα      ββββ       γγγγ 
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transforms which is a subset of the whole space of singular 
transforms. By linearly independent spectral transforms we mean all 
possible transforms that have transform matrices for which no single 
column is a linear combination of the other columns, and no single 
row is a linear combination of the other rows. By singular 
transforms we mean all possible transforms that have transform 
matrices for which at least a single column is a linear combination 
of the other columns, and a single row is a linear combination of the 
other rows. Figure 2.5 illustrates a set-theoretic relationship between 
the non-permuted new set of spectral transforms and other sets of 
spectral transforms, where the shaded area represents the new sets of 
multiple-valued invariant Shannon and invariant Davio spectral 
transforms. Appendix A provides full counts of the new families 
over an arbitrary GF(n) fields for n = pk, where p is a prime number 
and k is a natural number of value k ≥ 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.5. A set-theoretic relationship between families of non-permuted multiple-valued 
spectral transforms. 

 
       Galois field forms that are introduced throughout this Chapt. 
can be realized in the corresponding GFSOP logic circuits. Some of 
the multiple-valued logic circuits that are used for the realization of 
GFSOP expressions are illustrated in Appendix B. 

 

 

 

The set of all Singular 
        MV transforms 

        The set of all 
         non-singular 
(Linearly Independent) 
      MV transforms 

The set of the new  
MV IS and ID 

 transforms 

The set of the 
 fundamental 

MV Shannon and 
Davio transforms 
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2.3 Summary 
 
In this Chapt. we introduced a systematic method to create and 
classify new multiple-valued invariant non-singular spectral 
transforms based on multi-valued fundamental Shannon expansions 
and Davio expansions over an arbitrary radix of Galois field.  
       The new spectral transforms will have an application in the 
construction of regular layout in three-dimensions as will be shown 
in Chapt. 4. The new spectral transforms have an important 
property: their basis functions are exactly the same as the basis 
functions of the fundamental Shannon and Davio expansions but 

scaled by constants (i.e., )ˆ,...,ˆ,ˆ γβα . Moreover, these constants are 
not generated arbitrarily; they are the multiplicative inverses of the 
corresponding constants that scale the rows of the corresponding 
basic multi-valued Shannon, Davio, and flipped Shannon transform 
matrices, and can be directly calculated according to the axioms of 
the Galois field. Due to the previously mentioned property, these 
transforms possess fast inverses and therefore are suitable for many 
applications including the fast computation of spectral transforms. 
All results in this Chapt. can be extended to an arbitrary GF(pk) 
fields, where p is a prime number and k is a natural number k ≥ 1. 
Also, although the new expansions that are developed in this Chapt. 
are for Galois field and 1-RPL, similar and analogous developments 
can be done for other complete algebraic structures and spectral 
transforms with different sorts of literals and operations.  
       Lattice structures based on the new ternary invariant Shannon 
and Davio expansions will be synthesized in Chapt. 4. The new 3-D 
lattice structures will be further extended to include reversible lattice 
structures in Chapt. 6, and their corresponding quantum circuits will 
be introduced in Chapt. 10. The new primitive in Fig. 2.4b will be 
extended to reversible logic in Chapt. 5 and will be used in Chapt. 6 
to build reversible binary Shannon lattice structures. Also, the new 
families of multiple-valued invariant Shannon and Davio expansions 
that were introduced in this Chapt. will be fully generalized to 
include the reversible counterparts of such new expansions in Chapt. 
5, from which new reversible primitives and structures will be 
constructed in the following Chapts. 
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3 New Multiple-Valued S/D Trees and their   
Canonical Galois Field Sum-Of-Product Forms 
 
 
 
 
 
Economical and highly testable implementations of Boolean 
functions [99,198,199,204,217], based on Reed-Muller (AND-
EXOR) logic, play an important role in logic synthesis and circuit 
design. AND-EXOR circuits include canonical forms (i.e., 
expansions that are unique representations of a Boolean function). 
Several large families of canonical forms: Fixed Polarity Reed-
Muller (FPRM) forms, Generalized Reed-Muller (GRM) forms, 
Kronecker (KRO) forms, and Pseudo-Kronecker (PSDKRO) forms, 
referred to as the Green/Sasao hierarchy, have been described [4,9]. 
Because canonical families have higher testability and some other 
properties desirable for efficient synthesis, especially of some 
classes of functions, they are widely investigated. A similar ternary 
version of the binary Green/Sasao hierarchy was developed in [4]. 
This new hierarchy will find applications in minimizing Galois field 
Sum-Of-Product (GFSOP) expressions (i.e., expressions that are in 
the sum-of-product form which uses the additions and 
multiplications of arbitrary radix Galois field that was introduced in 
Chapt. 2), creation of new forms, decision diagrams, and regular 
structures (Such new structures will be discussed in details in 
Appendix D.) 
       The state-of-the-art minimizers of Exclusive Sum-Of-Product 
(ESOP) expressions [80,85,114,157,214,234,235,242] (i.e., 
expressions that are in the sum-of-product form which uses the 
addition and multiplication of Galois field of radix two that was 
introduced in Figs. 2.1a and 2.1b, respectively) are based on 
heuristics and give the exact solution only for functions with a small 
number of variables. The formulation for finding the exact ESOP 
was given in [52], but all known exact algorithms can deliver 
solutions for not all but only certain functions of more than five 
variables. Because GFSOP minimization is even more difficult, it is 
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important to investigate structural properties and the counts of their 
canonical subfamilies. 
       Recently, two families of binary canonical Reed-Muller forms, 
called Inclusive Forms (IFs) and Generalized Inclusive Forms 
(GIFs) have been proposed [52]. The second family was the first to 
include all minimum ESOPs (binary GFSOPs). In this Chapt., we 
propose, as analogous to the binary case, two general families of 
canonical ternary Reed-Muller forms, called Ternary Inclusive 
Forms (TIFs), and their generalization, Ternary Generalized 
Inclusive Forms (TGIFs). The second family includes minimum 
GFSOPs over ternary Galois field GF(3). One of the basic 
motivations in this work is the application of these TIFs and TGIFs 
to find the minimum GFSOP for multiple-valued inputs multiple-
valued outputs for reversible logic synthesis using, for instance, 
reversible cascades in Chapt. 8, a problem that has not yet been 
solved. 
       An ESOP minimizer for completely specified functions has 
been developed [157]. This minimizer does not work for functions 
with don’t cares. The ESOP minimizer from [235] works for 
functions with few percent of don’t cares, yet this minimizer does 
not work for functions with a high number of don’t cares (like in 
machine learning where don’t cares comprise more than 99% of the 
values of the functions). The best minimizer for functions with a 
high number of don’t cares is based on the use of genetic algorithms 
from [80]. Yet, this type of minimizer is for binary input binary 
output functions and is restricted to GRM polarities only. The 
multiple-valued S/D tree developed in this Chapt. provides more 
general polarity of Inclusive Form (IF) polarity, which contains the 
GRM as a special case. A GFSOP minimizer based on IF polarity 
will be used to minimize the multiple-valued ESOP (GFSOP) 
expression for a given function, as will be shown in Sect. 3.7, to 
realize the logic function using reversible structures such as the 
reversible Cascades that are presented in Chapt. 8. GFSOP 
evolutionary algorithm for minimization using S/D trees will be 
presented in this Chapt. The main contributions of this Chapt. are: 
• Multiple-valued Galois Shannon/Davio (S/D) trees. 
• The generation and count of two new families of canonical     
   multiple-valued Reed-Muller forms, called multiple-valued  
   Inclusive Forms (IFs), and their generalization, multiple-valued   
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   Generalized Inclusive Forms (GIFs). A new extended Green/Sasao  
   hierarchy of families and forms with a new sub-family for   
   multiple-valued Reed-Muller logic is also introduced. 
• An evolutionary algorithm that implements the IF polarity from   
   S/D trees to find the minimum GFSOP. 
       The remainder of this Chapt. is organized as follows: 
Green/Sasao hierarchy of binary canonical forms is presented in 
Sect. 3.1. The concept of S/D trees and Inclusive Forms is presented 
in Sect. 3.2. The ternary S/D trees and their corresponding Inclusive 
Forms and Generalized Inclusive Forms are presented in Sect. 3.3. 
Properties of the ternary Inclusive Forms and their Ternary 
Generalized Inclusive Forms are presented in Sect. 3.4. The new 
extended Green/Sasao hierarchy is presented in Sect. 3.5. 
Quaternary S/D trees are presented in Sect. 3.6. An evolutionary 
algorithm for the minimization of GFSOP expressions using the 
Inclusive Forms polarity for the corresponding S/D trees will be 
presented in Sect. 3.7. A Summary of the Chapt. is presented in 
Sect. 3.8. Although we discuss the ternary and quaternary cases, all 
results can be extended to an arbitrary GF(pk) fields, where p is a 
prime number and k is a natural number of value k ≥ 1. 

 
3.1 Green/Sasao Hierarchy of Binary Canonical Forms 
 
The Green/Sasao hierarchy of families of canonical forms and 
corresponding decision diagrams is based on three generic 
expansions, Shannon, positive Davio, and negative Davio 
expansions. This includes [217]: Shannon Decision Trees and 
Diagrams, Positive Davio Decision Trees and Diagrams, Negative 
Davio Decision Trees and Diagarms, Fixed Polarity Reed-Muller 
Decision Trees and Diagrams, Kronecker Decision Trees and 
Diagrams, Pseudo Reed-Muller Decision Trees and Diagrams, 
pseudo Kronecker Decision Trees and Diagrams, and Linearly-
Independent Decision Trees and Diagrams. A set-theoretic 
relationship between families of canonical forms over GF(2) was 
proposed and extended in [52] by introducing binary IF, GIF, and 
FGIF forms. Figure 3.1 illustrates the set-theoretic relationship 
between families of canonical forms over GF(2). 
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       Analogously to the Green/Sasao hierarchy of binary Reed-
Muller families of spectral transforms over GF(2) that is shown in 
Fig. 3.1, we will introduce the extended Green/Sasao hierarchy of 
spectral transforms, with a new sub-family, for ternary Reed-Muller 
logic over GF(3) in Sect. 3.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     

Fig. 3.1. Set-theoretic relationship between families of canonical forms over GF(2). 

 
3.2 Binary S/D Trees and their Inclusive Forms 
 
Two general families of DDs were introduced in [52]. These 
families are based on the Shannon expansion and the Generalized 
Davio expansion, and are produced using the S/D Trees. These 
families are called the Inclusive Forms (IFs) and the Generalized 
Inclusive Forms (GIFs), respectively. It was proven [52] that these 
forms include a minimum ESOP. The expansions over GF(2) are 
shown in Fig. 3.2, where Fig. 3.2d shows the new expansion, which 
is based on binary Davio expansions, called generalized Davio (D) 
expansion that generates the negative and positive Davio expansions 
as special cases.  

      ESOP 

 Canonical Forms 

 FGIF 

 GIF 

 IF 

 PGK 

 GK 
 GRM 

 PKRO 

 KRO  FPRM 
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                            a’                 a            1                a                                        
                                 a                                        b 
 
                                              
          
 
                              1               a’               1              a  
                                       c                                        d 
 
Fig. 3.2. Two-valued expansions: a Shannon, b positive Davio, c negative Davio, and d 
generalized Davio expansions. 

 
       The S/D trees for IFs of two variables of order {a,b}, and the 
S/D trees for IFs of two variables of order {b,a} were fully 
illustrated [52]. The set of Generalized Inclusive Forms (GIFs) for 
two variables is the union of the two sets of Inclusive Forms (IFs). 
The total number of the GIFs is equal to: 
 

       # GIF = 2⋅(# IFa,b) - # (IFa,b ∩ IFb,a).                                    (3.1) 
 

       Thus for two variables: 
# IFa,b = 1 + 2 + 2 + 4 + 4 + 8 + 8 +16 = 45, 
# IFb,a = 1 + 2 + 2 + 4 + 4 + 8 + 8 +16 = 45, 
# GIF = 2⋅(45) - (1 + 4 + 4 +16) = 65. 
       Properties and experimental results of the binary Inclusive 
Forms and the binary Generalized Inclusive Forms were 
investigated [52], where it was proven that GIFs include a minimum 
ESOP. 

 
3.3 Ternary S/D Trees and their Inclusive Forms and 
Generalized Inclusive Forms 
 
The following Sect. defines the ternary Shannon and ternary Davio 
decision trees over GF(3). As analogous to the binary case, we can 
have expansions that are mixed of Shannon (S) for certain variables 
and Davio (D0, D1, and D2) for the other variables. This will lead, 
analogously to the binary case, to the Kronecker TDT. Moreover, 

S   PD 

  ND  D 
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the mixed expansions can be extended to include Pseudo Kronecker 
TDT. (Full discussion of these TDTs that correspond to various 
expansions, as well as their hierarchy will be included in Sect. 3.5). 
The basic S, D0, D1, and D2 ternary expansions (i.e., flattened forms) 
over GF(3) can be represented in Ternary DTs (TDTs) and the 
corresponding varieties of Ternary DDs (TDDs) (according to the 
corresponding reduction rules that are used). For one variable (one 
level), Fig. 3.3 represents the expansion nodes for S, D0, D1, and D2 , 
respectively. 
 

 
 
     
      0X        1X           2X       1           X          X2       1       X’        (X’)2     1      X”         (X”)2 

 

        Equation (2.19)                          Equation (2.20)                       Equation (2.21)                    Equation (2.22) 

                      a                                      b                                c                                d 

Fig. 3.3. Ternary expansion nodes for ternary DTs: a Shannon, b Davio0, c Davio1, and d 
Davio2. 

 
       Utilizing Fig. 3.3, the following Sect. defines the Ternary S/D 
trees, and Ternary Inclusive Forms (TIFs), respectively. 

 
3.3.1 Ternary S/D trees and Inclusive Forms 
 
In correspondence to the binary S/D trees, we can produce the 
Ternary S/D Trees. To define the Ternary S/D Trees we will define 
the Generalized Davio expansion over GF(3) as shown in Fig. 3.4: 
 
 

 
                                          1           x              ( x )2 
 

 Fig. 3.4. Generalized ternary Davio expansion. 

 
       Our notation here is that ( x ) corresponds to the three possible 
shifts of the variable x as follows: 
 

       x ∈ {x, x’, x”} over GF(3).                                                    (3.2) 
 

  D 

 S     D2  D0  D1 
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Definition 3.1. The ternary tree with ternary Shannon and ternary 
Generalized Davio expansion nodes, that generates other ternary 
trees, is called the Ternary Shannon/Davio (S/D) tree. 
 

       Utilizing the definition of ternary Shannon (Fig. 3.3a) and 
ternary generalized Davio (Fig. 3.4), we obtain the ternary 
Shannon/Davio trees (ternary S/D trees) for two variables as shown 
in Fig. 3.5. From the ternary S/D DTs shown in Fig. 3.5, if we take 
any S/D tree and multiply the second-level cofactors (which are in 
the TDT leaves) each by the corresponding path in that TDT, and 
sum all the resulting cubes (terms) over GF(3), we obtain the 
flattened form of the function f, as a certain GFSOP expression. For 
each TDT in Fig. 3.5, there are as many forms obtained for the 
function f as the number of possible permutations of the polarities of 
the variables in the second-level branches of each TDT. 
 

Definition 3.2. The family of all possible forms obtained per ternary 
S/D tree are called Ternary Inclusive Forms (TIFs). 
 

       The numbers of these TIFs per TDT for two variables are 
shown on top of each S/D TDT in Fig. 3.5. (General formalisms to 
obtain the exact number of TIFs for any number of variables over 
GF(3) are presented in Appendix C.) 
       By observing Fig. 3.5, we can generate the flattened forms by 
two methodologies. A classical methodology, per analogy with well-
known binary forms, would be to create every transform matrix for 
every TIF S/D tree, and then expand using that transform matrix. A 
better methodology is to create one flattened form (expansion over 
certain transform matrix, i.e., certain TIF), and then transform 
systematically from one form to another form, without the need to 
create all transform matrices from the corresponding S/D trees. This 
general approach can lead to several algorithms of various 
complexity that generalize the binary algorithms to obtain FPRM, 
KRM, GRM, and IF forms, including the butterfly methods [89,57].  
Example 3.1. Using the result of Example 2.2 for the expansion of 
f(x1,x2) in terms of ternary Shannon expansion (that resembles the 
S/D tree for Shannon expansions in both levels as seen in Fig. 3.5): 
 

       f = 0x1 
1x2 + 2⋅ 0x1 

2x2 + 2⋅ 1x1 
0x2 + 2⋅ 1x1 

1x2 + 2⋅ 1x1 
2x2 + 2x1 

0x2    

                  + 2⋅ 2x1 
2x2.                                                                        (3.3) 
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Fig. 3.5a. TIF S/D trees and their numbers for two-variable order {a,b}, where in general a, 
and b, are defined as in Eq. (3.2). 
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Fig. 3.5b. TIF S/D trees and their numbers for two-variable order {b,a}, where in general a, 
and b, are defined as in Eq. (3.2). 
 
       We can substitute any of Eqs. (2.7) through (2.15), or a mix of 
these Eqs., to transform one flattened form to another. For example, 
if we substitute Eq. (2.7) and Eq. (2.11), we obtain: 
 

       f = (2(x1)
2 + 1)(2(x2')

2 + x2') + 2( 2(x1)
2 + 1) 2x2 +  

             2(2(x1')
2 + x1')(2(x2)

2 + 1) + 2(2(x1')
2 + x1') (2(x2')

2 + x2') +   
             2(2(x1')

2 + x1')⋅2x2 + 2x1(2(x2)
2 + 1) + 2 ⋅  2x1 

2x2.            (3.4) 
 

By utilizing the axioms of Galois field, Eq. (3.4) is transformed to: 
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       f = (x1)
2(x2’)

2 + 2(x1)
2(x2’) + 2(x2’)

2 + x2’ + (x1)
2 (2x2) +  

             2(2x2) + 2(x1’)
2(x2)

2 + (x1’)
2 + (x1’)(x2)

2 + 2x1’ +   
             2(x1’)

2(x2’)
2 + (x1’)

2(x2’) + (x1’)(x2’)
2 + 2x1’x2’ + (x1’)

2 2x2 +   
             2(x1’)

2x2 + 2(2x1)(x2)
2 + 2x1 + 2(2x1)( 

2x2).                       (3.5) 
 

       Let us define, as one of possible definitions, the cost of the 
flattened form (expression) to be: 
 

       Cost = # Cubes.                                                                     (3.6) 
 

       We observe that Eq. (3.3) has the cost of seven, while Eq. (3.5) 
has the cost of 19. Thus, the inverse transformations applied to Eq. 
(3.5) would lead to Eq. (3.3) and a reduction of cost from 19 to 
seven. Using the same approach, we can generate a subset of 
possible GFSOP expressions (flattened forms). Note that all these 
GFSOP expressions are equivalent (since they produce the same 
function in different forms). Yet, as can be observed from Eq. (3.5), 
by further transformations of Eq. (3.3) from one form to another, 
some transformations produce flattened forms with a smaller 
number of cubes than the others. From this observation rises the idea 
of a possible application of evolutionary computing [80] using the 
S/D trees and related transformations to produce the minimum 
GFSOPs. 

 
3.3.2 Enumeration of Ternary Inclusive Forms 
 
Each of the S/D trees shown in Fig. 3.5 is a generator of a set of 
flattened forms (TIFs). Each one of these TIFs is merely a 
Kronecker-based transform as can be obtained from Eqs. (2.23) 
through (2.26). The numbers of these TIFs generated by the 
corresponding S/D trees are shown on the top of each S/D tree for 
two variables in Fig. 3.5.  
Example 3.2. 
3.2a. For the S/D trees in Fig. 3.5a, and by utilizing the notation 
from Eq. (3.2), we obtain for Figs. 3.6a and 3.7a, the ternary trees in 
Figs. 3.6b - 3.6d and Figs. 3.7b - 3.7d, respectively.  
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                                        N = 9 
  
 
 
 
                                                                               a 
 
 
 
 
 
 
 
 
                 b                                            c                                           d 
 
Fig. 3.6. a An S/D tree with three Shannon nodes and one generalized Davio node, and (b, 
c, d) some of the ternary trees that it generates. 

 
                                      N = 81 
 
 
 
                                                                                 
                                                                                a 
 
 
 
 
 
 
 
 
 
 

                     b                                             c                                             d 
 
Fig. 3.7. a An S/D tree with two Shannon nodes and two generalized Davio node, and (b, c, 
d) some of the ternary trees that it generates. 
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3.2b. Let us produce some of the ternary trees for the S/D tree in 
Fig. 3.5b. Utilizing the notation from Eq. (3.2), we obtain, for the 
S/D tree in Fig. 3.8a, the ternary trees in Figs. 3.8b, 3.8c, and 3.8d, 
respectively. 
The generalized IFs (GIFs) can be defined as the union of both IFs. 
 

Definition 3.3. The family of forms, which is created as a union of 
sets of TIFs for all variable orders, is called Ternary Generalized 
Inclusive Forms (TGIFs). 
 

Theorem 3.1. The total number of the ternary IFs (#TIFs), for two 
variables, for orders {a,b} and {b,a}, are respectively: 
 

       # TIFa,b = 1⋅ (3)0 + 3⋅ (3)2 + 3⋅ (3)4 + 2⋅ (3)6 + 3⋅ (3)8 + 3⋅ (3)10   
                       + 1⋅ (3)12 =  730,000,                                             (3.7) 
       # TIFb,a = 1⋅ (3)0 + 3⋅ (3)2 + 3⋅ (3)4 + 2⋅ (3)6 + 3⋅ (3)8 + 3⋅ (3)10   
                       + 1⋅ (3)12 = 730,000.                                              (3.8) 
 
 
                               N = 531,441 
        
                     
 
 
 
 
                                                       a 
                                                                                                                  
 
 
 
 

 
 
 
                          b                                         c                                              d 
 
Fig. 3.8. a An S/D tree with four generalized Davio nodes, and (b, c, d) some of the ternary 
trees that it generates. 
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Proof. By observing Figs. 3.5a and 3.5b, we note that the total 
number of TIFs for orders {a,b} and {b,a} is the sum of the numbers 
on the top of S/D trees, that leads to Eqs. (3.7) and (3.8).        Q.E.D. 
 

The total number of the ternary Generalized IFs (#TGIFs), for two 
variables, is: 
 

       # TGIF = # TIFa,b + # TIFb,a - # ( TIFa,b ∩ TIFb,a)  
                   = 2⋅ # TIF - # ( TIFa,b ∩ TIFb,a),                                (3.9) 
                   = 2⋅ (730,000) - (1⋅ (3)0+2⋅ (3)6+ 1⋅ (3)12) = 927,100. 

 
3.4 Properties of TIFs and TGIFs 
 
The following Sects. present are basic properties of TIFs and TGIFs. 

 
3.4.1 Properties of TIFs 
 
In this Sect., we prove that all TIFs for the given variable ordering 
are canonical and unique. 
 

Theorem 3.2. Each TIF {ti}, 1≤ i ≤ n, is canonical, i.e., for any 
function F of the same number of variables, there exists one and 
only one set of coefficients {ai}, such that F = a1t1 +GF(3)…+GF(3) antn. 
 

Proof. In [52] (and references therein), it was shown that an 
expansion is canonical iff its terms are linearly independent, that is, 
none of the terms is equal to a linear combination of other terms 
(over the algebraic field used). Using this fact, it was proven that IFs 
over GF(2) are canonical. Using an approach which is analogous to 
the approach presented in [52], one can therefore prove, by 
induction on the number of variables, that terms in TIFs over ternary 
Galois field are linearly independent and thus canonical.        Q.E.D. 

 
3.4.2 Properties of TGIFs 
 
It is easy to see that, for different variable orderings, some forms are 
not repeated while other forms are. For example, Kronecker forms 
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and GRMs over GF(3) are repeated. Therefore the union of sets of 
TIFs for all variable orders contains more forms than any of the TIF 
sets taken separately and less forms than the total sum of all of these 
TIFs. 
 

Theorem 3.3. Ternary Generalized Inclusive Forms (TGIFs) are 
canonical with respect to the given variable order. 
 

Proof. The proof is analogous to the one in Theorem 3.2.       Q.E.D. 
 

       Generalized Inclusive Forms include GRMs and PKROs over 
GF(3) as can be shown by considering all possible combinations of 
literals for all possible orders of variables. If we relax the 
requirement of fixed variable ordering, and allow any ordering of 
variables in the branches of the tree but do not allow repetitions of 
variables in the branches, we generate more general family of forms 
over GF(3). 
 

Definition 3.4. The family of forms, generated by the S/D tree with 
no fixed ordering of variables, provided that variables are not 
repeated along the same branches, is called Ternary Free 
Generalized Inclusive Forms (TFGIFs). 
 

       The studies show that it is difficult to trace the relationship 
between the number of forms that are repeated for N > 2 and the 
number of forms that are not. 

 
3.5 An Extended Green/Sasao Hierarchy with a New Sub-
Family for Ternary Reed-Muller Logic 
 
Here we introduce the extended Green/Sasao hierarchy with a new 
sub-family for ternary Reed-Muller logic over GF(3). Definitions 
3.2, 3.3, and 3.4 defined the Ternary Inclusive Forms (TIFs), 
Ternary Generalized Inclusive Forms (TGIFs), and Ternary Free 
Generalized Inclusive Forms (TFGIFs), respectively. Analogously 
to the binary Reed-Muller case, we introduce the following 
definitions  over GF(3). 
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Definition 3.5. The Decision Tree (DT) that results from applying 
the Ternary Shannon Expansion (Eq. (2.23)) recursively to a ternary 
input-ternary output logic function (i.e., all levels in a DT) is called 
Ternary Shannon Decision Tree (TSDT). The result expression 
(flattened form) from the TSDT is called Ternary Shannon 
Expression, which is a canonical expression. 
 

Definition 3.6. The Decision Trees (DTs) that result from applying 
the Ternary Davio expansions (Eqs. (2.24), (2.25), and (2.26)) 
recursively to a ternary-input ternary -output logic function (i.e., all 
levels in a DT) are called: Ternary Zero-Polarity Davio Decision 
Tree (TD0DT), Ternary First-Polarity Davio Decision Tree 
(TD1DT), and Ternary Second-Polarity Davio Decision Tree 
(TD2DT), respectively. The resulting expressions (flattened forms) 
from TD0DT, TD1DT, and TD2DT are called: TD0, TD1, and TD2 
expressions, respectively. These expressions are canonical. 
 

Definition 3.7. The Decision Tree (DT) that results from applying 
any of the Ternary Davio expansions (nodes) for all nodes in each 
level (variable) in the DT is called Ternary Reed-Muller Decision 
Tree (TRMDT). The corresponding expression is called Ternary 
Fixed Polarity Reed-Muller (TFPRM) Expression. This expression 
is canonical for a given set of polarities. 
 

Definition 3.8. The Decision Tree (DT) that results from using any 
of the Ternary Shannon (S) or Davio (D0, D1, or D2) expansions 
(Nodes) for all nodes in each level (variable) in the DT (that has 
fixed order of variables), is called Ternary Kronecker Decision Tree 
(TKRODT). The resulting expression is called Ternary Kronecker 
Expression. This expression is canonical. 
 

Definition 3.9. The Decision Tree (DT) that results from using any 
of the Ternary Davio expansions (Nodes) for each node (per level) 
of the DT is called Ternary Pseudo-Reed-Muller Decision Tree 
(TPRMDT). The resulting expression is called Ternary Pseudo-
Reed-Muller Expression. 
 

Definition 3.10. The Decision Tree (DT) that results from using any 
of the Ternary Shannon Expansion or Ternary Davio expansions 
(Nodes) for each node (per level) of the DT is called Ternary 
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Pseudo-Kronecker Decision Tree (TPKRODT). The resulting 
expression is called Ternary Pseudo-Kronecker Expression. 
 

Definition 3.11. The Decision Tree (DT) that results from using any 
of the Ternary Shannon Expansion or Ternary Davio expansions 
(Nodes) for each node (per level) of the DT , disregarding order of 
variables, provided that variables are not repeated along the same 
branches, is called Ternary Free Kronecker Decision Tree 
(TFKRODT). The result is called Ternary Free-Kronecker 
Expression. 
 

Definition 3.12. The Ternary Kronecker DT that has at least one 
Ternary Generalized Reed-Muller expansion node is called Ternary 
Generalized Kronecker Decision Tree (TGKDT). The result is called 
Ternary Generalized Kronecker Expression. 
 

Definition 3.13. The Ternary Kronecker DT that has at least one 
TGIF node is called Ternary Generalized Inclusive Forms 
Kronecker Decision Tree (TGIGKDT). The result is called Ternary 
Generalized Inclusive Form Kronecker Expression. 
 

       Figure 3.9 illustrates this extended Green/Sasao hierarchy with 
a new sub-family (TGIFK) for ternary Reed-Muller logic over 
GF(3). TGIF nodes can be realized with Universal Logic Modules 
(ULMs) for pairs of variables, as shown in Appendix D, analogously 
as done for binary. Although the S/D trees that have been developed 
so far are for the ternary radix, interesting properties emerge when 
applying S/D trees to higher radices, like radix four for example. 
One important property is that the upper bound counts for S/D trees 
using the Inclusive Forms Traingle (IF Triangle), which is presented 
in Appendix C. Thus, next Sect. will introduce the quaternary S/D 
trees as a generalization for ternary and binary cases. 

 
3.6 Quaternary S/D Trees 
 
The basic S, D0, D1, D2, and D3 quaternary expansions (i.e., flattened 
forms) over GF(4) introduced previously in Eqs. (2.53) through 
(2.57) can be represented in quaternary DTs (QuDTs) and the 
corresponding varieties of reduced quaternary DDs (RQuDDs) (i.e., 
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according to the corresponding reduction rules that are used). For 
one variable (i.e., one level of the DT), Fig. 3.10 represents the 
expansion nodes for S, D0, D1, D2, and D3, respectively. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.9. An extended Green/Sasao hierarchy with a new sub-family (TGIFK) for ternary 
Reed-Muller logic over GF(3). 
 
 
 
 
 
 
                                                                 Equation (2.53) 
                                                         a 
 
 
 
 
 
 
 
  Equation (2.54)              Equation (2.55)              Equation (2.56)             Equation (2.57) 
             b                               c                               d                               e 
 
Fig. 3.10. Quaternary Decision Trees: a Shannon, b Davio0, c Davio1, d Davio2, and e 
Davio3. 
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       In correspondence to the binary S/D trees, and ternary S/D trees, 
the concept of the quaternary S/D trees can be introduced. The 
quaternary S/D trees are generated through the definition of the 
Generalized Quaternary Davio (GQD) expansion over GF(4) as in 
Fig. 3.11. 
 
 
 
 

 
 

      
 

       x  ∈ {x, x’, x”, x’’’} over GF(4).                                         (3.10) 
 

       Utilizing the definition of quaternary Shannon (Fig. 3.10.a) and 
quaternary Generalized Davio (Fig. 3.11), and analogously to the 
work done for the binary and ternary cases, one can obtain the 
quaternary Shannon/Davio trees (QS/DT) for two variables. The 
number of these S/D trees per variable order is 2(4+1) = 32. The 
number of QIFs per S/D tree will be later derived in two different 
ways: (1) the first method is by using the general formula for an 
arbitrary number of variables over GF(4) developed in Appendix C, 
and (2) the second method is using the very general formula 
developed in Appendix C as well for any radix. The Count of the 
number of all possible forms is important because it can be used as 
an upper-bound parameter in a search heuristic that searches for a 
minimum GFSOP expression using the S/D trees. Example 3.3 
illustrates some of the quaternary S/D trees and some of the 
quaternary trees they produce. The numbers on top of S/D trees in 
Figs. 3.12a and 3.13a are the numbers of the total QIFs (i.e., total 
number of quaternary trees) that are generated (As stated previously, 
derivation of these numbers is shown later in Appendix C). 
Example 3.3. Let us produce some of the quaternary trees for the 
following quaternary S/D trees. Utilizing the notation in Eq. (3.10), 
we obtain, for the S/D trees in Figs. 3.12a and 3.13a, the S/D trees in 
Figs. 3.12b and 3.12c and Figs. 3.13b and 3.13c, respectively. 

                                    1      x      (x  )2      ( x )3 

 

                      Fig. 3.11. Generalized quaternary Davio (GQD) expansion. 
 

The notation in Fig. 3.11 is that ( x ) corresponds to the four possible 
shifts of the variable x as follows: 
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       From the quaternary S/D DTs shown in Figs. 3.12 and 3.13, by 
taking any S/D tree, multiplying the two-level cofactors (which are 
in the QuDT leafs) each by the corresponding path in that QuDT, 
and next summing all the resulting cubes (terms; products) over 
GF(4), one obtains the flattened form for the function f, as a certain 
GFSOP expression (expansion). For each QuDT in Figs. 3.12a and 
3.13a, there are as many forms obtained for the function f as the 
number of all possible permutations of the polarities of the variables 
in the second level branches of each QuDT. Properties for the 
quaternary S/D trees can be developed similar to the binary and 
ternary cases. The following Sect. presents a minimization algorithm 
that utilizes the S/D trees that are developed in this Chapt. 

 
3.7 An Evolutionary Algorithm for the Minimization of 
GFSOP Expressions Using IF Polarity from Multiple-
Valued S/D Trees 
 
This Sect. presents an evolutionary algorithm (See Appendix E) that 
uses the multiple-valued IF polarity from S/D trees to minimize 
GFSOP functions. Evolutionary algorithms [80,102,137] have 
proven superiority to heuristic algorithms [157,233] in the 
minimization of incompletely specified functions with a high 
number of don’t cares. Consequently, this process of minimization is 
very important to realize a minimum GFSOP expression using  
reversible structures such as the reversible Cascades that will be 
presented in Chapt. 8. 
       An ESOP minimizer for completely specified functions has 
been developed [157]. This minimizer does not work for functions 
with don’t cares. The ESOP minimizer from [235] works for 
functions with few percent of don’t cares, yet this minimizer does 
not work for functions with a high number of don’t cares. The best 
minimizer for functions with a high number of don’t cares is based 
on the use of genetic algorithms from [80]. Yet, as stated previously, 
this type of minimizer is for two-valued input two-valued output 
functions and is restricted to GRM polarities only. 
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Fig. 3.12. a A quaternary S/D tree for two variables of order {a,b} with three Shannon 
nodes and two generalized Davio nodes, and (b, c) some of the quaternary trees that it 
generates. 
 

S 

S S D D 

       0a               1a                            2a             3a 

    1     b  (b)2  (b)3       1     b  (b)2 (b)3   0b    1b  2b   3b      0b   1b      2b    3b  

 

S 

S S D D 

0a              1a                           2a              3a 

  1     b  (b’) (b’)3       1  b” (b’)2  (b)3    0b  1b  2b   3b      0b    1b     2b   3b  

 

S 

S S D D 

   0a               1a                           2a            3a 

    1    b  (b)2  (b”)3          1    b’   (b)2  (b)3      0b   1b      2b   3b      0b   1b    2b    3b  

 

  58      3.7 An Evolutionary Algorithm for the Minimization of GFSOP Using S/D Trees      
 



 

 

 

                                  N = 262,144 

 
 
 
 
                     

 

                                                                          a 

                                                                      

 

 

  

                                                                            b 

 
                                                                                                
 
 
 
 
 
 
                                                                   c 
 
Fig. 3.13. a A quaternary S/D tree for two variables of order {b,a} with two Shannon nodes 
and three generalized Davio nodes, and (b, c) some of the quaternary trees that it generates. 
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       Multiple-valued S/D trees developed previously provide more 
general polarity of Inclusive Form (IF) polarity, which contains the 
GRM as a special case. In this Sect., a proposition for GFSOP 
evolutionary minimizer based on IF polarity is provided. This is 
important in order to realize smallest functional forms using the 
reversible structures that will be presented in Chapt. 8. 
       In addition to the reason that evolutionary minimizers are valid 
for functions with a high percentage of don’t cares [80], 
evolutionary minimizers (and in general heuritic-based minimizers) 
are far more efficient than exact (exhaustive) formal minimizers for 
problems of high dimensions. Numerical results from [80] prove 
that evolutionary methods can be a good fit for the minimization of 
the general case of incompletely specified functions. Such results 
are illustrated in Table 3.1, where (*) indicates a population of size 
25, otherwise the population is of size 50. 
       The minimization using this evolutionary algorithm utilizes a 
heuristic inside it, which uses functional properties to ensure the 
convergence of the algorithm in each iteration [80]. This functional 
property, that the new evolutionary algorithm uses, is basically the 
selection of “good” products of literals in a greedy algorithm which 
when incorporated into the genetic algorithm (GA) will ensure 
convergence of the result (i.e., the resulting function from the GA 
minimizer is always correct). This internal heuristic was missing 
from previous attempts to minimize functions using GA, which 
made previous evolutionary algorithms for functional minimization 
to be non-convergent (i.e., does not produce the correct functionality 
after an iteration in the GA). The new GA minimizer utilizes the 
Darwinian evolution (Appendix E), as well Lamarckian and 
Baldwinian evolutions to minimize the logic functions. 
       By referring to Appendix E, one observes that Darwinian 
evolution evolves the polarity chromosome using the evolutionary 
operations of mutation and crossover [102] to produce a modified 
polarity chromosome upon which the fitness function compares the 
cost and functional correctness (convergence) of the new polarity 
chromosome, and iterations occur until the optimization criteria in 
the fitness function are met. 
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Table 3.1. iGRMIN minimization results over a number of benchmarks. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

       This type of evolution produces the modified polarity 
chromosome through genetic operations only. The idea of 
Darwinian evolution is modified to Baldwinian evolution by 
generating the phenotype (function) from the polarity chromosome 
and then evaluating the phenotype rather than the polarity 
chromosome itself. The Baldwinian evolution can be further 
generalized into the Lamarckian evolution by performing operations 
on the phenotype and then evaluate the phenotype, which will lead 
to the production of a new polarity chromosome. Thus, in the 
Lamarckian model, a local heuristic search is used to modify and 
improve the chromosomes, and thus Lamarckian evolution requires 
an inverse mapping from phenotype and environment to genotype. 
In contrast, Baldwinian learning uses the local search to improve the 
fitnesses of the chromosomes but the chromosomes themselves 
remain the same without modification. The functional minimization 

Benchmark         # Inputs        # Outputs         Terms            Generation         Run-time 

          con175                7                    2                     10                    g1             00:01:09.15* 

                      con195               7                    2                      4                     g1              00:00:04.97 

          rd7375                7                    3                      20                   g2              00:01:50.52* 

          rd7395                7                    3                      4                     g1              00:00:06.59* 

          5xp175               7                   10                    56                    g3               00:05:01.52* 

          5xp195               7                   10                    11                    g1               00:00:26.75 

          rd8475                8                    4                      79                   g2              00:20:30.71 

          rd8495                8                    4                       9                    g1              00:00:36.16 

          log8mod75         8                    5                      88                   g1               00:30:12.22 

          log8mod95         8                    5                      13                   g1               00:01:08.73 

          misex195            8                    7                     15                    g1              00:04:08.00 

          dc295                  8                    7                      9                     g2              00:00:24.55* 

          clip95                 9                    5                      19                    g1              00:08:40.06 

          rd84275              8                    1                      19                   g2               00:06:23.65 

          rd84295              8                    1                       3                    g1               00:00:04.67* 

          rd84475              8                    1                       9                    g1               00:03:08.79* 

          rd84495              8                    1                       2                    g1               00:00:18.79 

          9sym95              9                    1                       2                    g1               00:02:11.47* 

          sao2175            10                    1                       7                    g2               01:53:55.23 

          sao2195            10                    1                       1                    g1               00:15:39.01 

          misex6475        10                    1                       1                    g1               00:53:55.89* 

          misex6495        10                    1                       1                    g1               00:07:56.95 
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using the new Baldwinian evolutionary algorithm combined with a 
greedy heuristic for Generalized Reed-Muller polarity results in 
functional minimization of incompletely specified functions which 
is much more optimal than previously reported results [80]. The new 
suggested algorithm for multiple-valued S/D-based minimizer 
generalizes the algorithm from [80] as shown in Fig. 3.14. 
 

                  Old Method          →→→→         New Method 
 

 Parameters Old New 

Radix GF(2) GF(pk) 

Evolutionary 

Learning 

Method 

Darwinian 

Baldwinian 

Darwinian 

Baldwinian 

Lamarckian 

Polarity GRM IF 

 
Fig. 3.14. A comparison between previous evolutionary ESOP minimizer and the newly 
proposed evolutionary S/D-based GFSOP minimizer. 

 
       The idea of the Darwinian, Baldwinian, and Lamarckian 
learning methodologies [80] for the minimization of GFSOP 
expressions is illustrated in Fig. 3.15. The chromosome that is used 
in the evolutionary minimization represents the polarity of the 
corresponding canonical S/D based expansions. The phenotype in 
Fig. 3.15 represents the GFSOP expression. Figure 3.16 
demonstrates such polarity chromosome for the binary expansions 
that are included in the Green/Sasao hierarchy from Fig. 3.1. The 
new S/D–based evolutionary minimizer generalizes the value of the 
polarity chromosome in Fig. 3.16 into multiple-valued logic. The 
following is a generic algorithm for Lamarckian evolutionary 
minimizer for the new multiple-valued IF polarity (variations from 
this algorithm can be implemented as well.) 
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{run:= 0 
Maximum run:= i 
cost = # literals 
initial genotype:= G0 
  1.      if run:= 0 
             then (Gn = G0) 
             else Gn = Gz+run 

2. perform random genetic operations on Gn 
  3.   using a greedy search heuristic obtain the initial phenotype Px+run 

  using logic transformation produce a modified phenotype Py+run 
         if cost(Px+run) < cost( Py+run) 
             then (Pz+run = Px+run) 
             else Pz+run = Py+run 
         if cost(Pz+run) < cost(Pz+(run-1)) 
            then Pz+run = Pz+run 
            else Pz+run = Pz+(run-1) 

               produce genotype Gz+run for Pz+run 

                  run = run ++ 
                      if run = i  
                          then go to 4 
                          else go to 1 
                  4. print Pz+run 
            print Gz+run 

      end} 
Example 3.4. Let us demonstrate the idea of modifying the 
genotype in Lamarckian evolution in contrast to Baldwinian 
evolution using the K-map in Fig. 3.17. 
       It can be observed that two possible ESOP-based expressions 
(phenotypes) are possible for the function shown in Fig. 3.17a. The 
first one is F1 = ab ⊕ cd, and the second one is F1 = ab ⊕ c. Both 
phenotypes have the same genotype (polarity vector) of {a = 1, b = 
1, c = 1, d = 1} or more compactly the polarity vector [1111]. 
Consequently, the Baldwinian evolutionary minimizer will use a 
greedy search heuristic to search for the least cost (e.g., minimum 
number of literals) phenotype for a specific non-changing polarity 
vector. This is obviously the second phenotype F1 = ab ⊕ c which 
has the cost of 3. On the other hand, Lamarckian evolutionary 
minimizer will search for a phenotype without necessarily 
maintaining the same chromosome (polarity vector). This can 
potentially lead to less costly phenotypes, but on the expense of 
having more run times of the evolutionary minimizer algorithm. 
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Fig. 3.15. Evolutionary Algorithms: a Darwinian, b Baldwinian, and c Lamarckian, where 
the dashed box in (c) indicates the effect of the environment as knowledge and 
optimization. (Greedy heuristic is used for a “good” selection of products of literals.) 
 
 
 
 
 
 

Fig. 3.16. Polarity chromosome (string; polarity vector) for GRM. 
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                                                a                                                b 

 
Fig. 3.17. K-maps for a Boolean function F1, and b Boolean function F2. 

 
       This can be observed utilizing the K-map in Fig. 3.17b, where 
one possible phynotype is F2Initial = ab ⊕ abc. Yet, it can be 
observed that due to the Boolean law xx =⊕1 , then this F2 
phenotype can be transformed into F2Modified = ab(1⊕c) = cab . It 
can be observed that while the intial phenotype with polarity vector 
[111] has the cost of 5, the modified phenotype with the polarity 
vector [110] has the cost of 3. Thus, a more compact (minimized) 
expression (phenotype) has been obtained by changing the 
chromosome (polarity vector) using the Lamarckian evolutionary 
algorithm. 

 
3.8 Summary 
 
In this Chapt., we introduced a new family of Ternary S/D Trees, 
defined new families of Ternary Inclusive Forms (TIFs) and Ternary 
Generalized Inclusive Forms (TGIFs), and calculated their numbers 
for two variables. We introduced a new subfamily of Trees called 
Ternary Generalized Inclusive Forms Kronecker (TGIFK) Decision 
Tree, and showed its hierarchical position with respect to the 
Extended Green/Sasao hierarchy over GF(3). It can be observed that 
the number of S/D trees for ternary logic is very large, and it grows 
exponentially with the increase of the number of variables. 
Therefore, searching for efficient algorithms to find the minimum 
GFSOP flattened form expression of ternary logic over GF(3) would 

F1                                          F2  

ab        00    01     11    10 

00    0      0      1      - 

01    0      0      1      - 

11    1      1      0      - 

10    0      0      1      - 

cd 
ab         0      1 

00    0      1  

01    0      1  

11    1      0  

10    0      1  

 c 
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be a real challenge, and much more difficult than for the well-
researched binary case, where it is already practically intractable.         
       Therefore, new strategies and heuristics have to be invented for 
GFSOP minimization, using TIF structure and taking into account 
the exponential growth of the number of TIFs. By analogy to binary 
logic, in all cases, methods should be developed to find high quality 
GFSOPs avoiding generating all transform matrices, by searching 
efficiently in the space of TGIFs. We propose an evolutionary 
algorithm to solve the problem of searching for a minimum GFSOP 
using IF polarity from the corresponding multiple-valued S/D trees.  
       The proposed evolutionary minimizer will be used to minimize 
the  GFSOP expression for a given function to realize the function 
using reversible structures that will be developed in Chapt. 8. Such 
GFSOP minimization for the realization of GFSOP expressions in 
multiple-valued reversible structures will have an effect on 
producing minimal size quantum circuits which will be shown in 
Chapt. 10, and consequently minimizing the total number of 
arithmetic calculations that are used in quantum computing as will 
be demonstrated in Chapt. 11. 
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4 Novel Methods for the Synthesis of Boolean 
and Multiple-Valued Logic Circuits Using Lattice 
Structures 
 
 
 
 
 
This Chapt. presents a new type of regular structures that will be 
used to produce regular reversible lattice structures in Chapt. 6. 
With future logic realization in technologies that are scaled down 
rapidly in size, the emphasis will be increasingly on the mutually 
linked issues of regularity, predictable timing, high testability, and 
self-repair. For the current leading technologies with the active-
device count reaching the hundreds of millions, and most of the 
circuit areas occupied by local and global interconnects, the delay of 
interconnects is responsible for about 40-50% or more of the total 
delay associated with a circuit [51,229]. In future technologies, 
interconnects will take an even higher percent of area and delay 
which creates interest in cellular (regular) structures [109,209], 
especially for nano technologies [109]. 
       As it has been shown [229] that most of the circuit area is 
occupied by local and global interconnects, and the delay of 
interconnects is responsible for most of the total delay associated 
with a circuit, maintaining equal length of local inter-connects will 
minimize the total length of the used wires and consequently 
minimize the delay and power consumed. Also, it has been shown in 
[229] that the relative delay for global interconnects with or without 
repeaters over all process technologies are much larger than their 
counterparts of local interconnects. This suggests that using lengthy 
interconnects between the circuit elements will produce higher 
delays of the signal propagation throughout the interconnects and 
thus one wants to use shorter interconnects. This problem becomes 
even more serious for circuits that switch at very high speeds, where 
the power consumption increases with the increasing operation 
frequencies, and even the smallest capacitance or inductance that 
exists naturally within the wirings will be of extreme importance to 
maintain the electrical “signal integrity” as much as possible. Figure 
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4.1 illustrates the trends for electrical signal delays for global 
interconnects with repeaters and without repeaters versus the local 
interconnects [229]. 
       Recently, regular layout fabrics are becoming more popular 
with the new hardware implementation technologies such as single-
electron devices (SET) [111,112] and quantum dots [259]. 
Fabrication of two dimensional hexagonal regular structures has 
been reported in [112] (See Figs. 11.1 and 11.2). Other circuits of 
interest for regular structure approach use the Chemically 
Assembled Electronic Nanotechnology (CAEN) [91,103], which is 
expected to offer significantly denser devices than CMOS 
technology. For instance, a single RAM cell that requires roughly 
100 nm2, will occupy in CMOS technology an area of 100,000 nm2 
[103]. 
 

 

 

 

 

 

 

 

 

 
                       Fig. 4.1. Delay for local and global wiring versus feature size. 

 
       Lattice structures [5,13,18,51,144,161,177,178,179] generalize 
the ideas from the well-known regular structures: Fat trees, 
Generalized PLAs, Maitra cascades [148], and Akers Arrays [1], 
into a more systematic framework which is closely and naturally 
related to the symmetry of functions, and “symmetric networks” 

Process Technology Node (nm) 

 Relative 
 Delay 

Gate Delay (Fan Out 4) 
Local (Scaled) 
Global with Repeaters 
Global w/o Repeaters 

0.1 

1 

10 

 
 100 

250 180 130 90 65 45 32 

 68      4 Novel Methods for the Synthesis of Logic Circuits Using Lattice Structures 



 

from [136]. In this Chapt., the concept of 2-D lattice structures is 
extended to the case of regular 3-D lattice structures and a new 
algorithm for the iterative decomposition of such 2-D and 3-D 
regular structures is provided. This subject is essential for the future 
nano technologies [103], as it shows the best way to place 
combinational logic functions in a three-dimensional space where all 
local connections are of the same length and global connections are 
only inputs on parallel oblique planes. Although the concept of 
symmetry for multiple-valued functions, which is closely related to 
lattice structures, have been previously investigated [46,47,247], the 
author is not aware of any previously published research about 
expansions into regular structures that have more than two 
dimensions. The main results of this Chapt. are: 
• The application of expansions into regular three-dimensional  
   lattice structures. 
• The realization of non-symmetric ternary functions in 3-D lattice  
   structures. 
• Generic methodology of joining lattice nodes in three-dimensional  
   space. 
• The invariant (3,3) 3-D Shannon and (3,3) 3-D Davio lattice  
   structures.  
• Iterative Symmetry Indices Decomposition (ISID): A novel   
   layout-driven method to decompose two-dimensional and three-   
   dimensional lattice structures.             
       The remainder of this Chapt. is organized as follows. Basic 
background of symmetry indices is presented in Sect. 4.1. Basic 
definitions of the fundamental (2,2) two-dimensional binary lattice 
structures are given in Sect. 4.2. The concept of (3,3) two-
dimensional lattice structures is presented in Sect. 4.3. Three-
dimensional lattice structures based on the new generalized sets of 
Shannon and Davio canonical expansions (from Sect. 2.2) are 
presented in Sect. 4.4. An algorithm for the creation of three-
dimensional lattice structures is presented in Sect. 4.5. Complete 
example of such three-dimensional lattice structures is presented in 
Sect. 4.6. Iterative Symmetry Indices Decomposition (ISID) is 
presented in Sect. 4.7. A Summary of the Chapt. is presented in 
Sect. 4.8. 
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4.1 Symmetry Indices 
 
It is known in logic synthesis that certain classes of logic functions 
exhibit specific types of symmetries [83,118,136,213,244]. Such 
symmetries include symmetries between different functions under 
negation, symmetries within a logic function under the negation of 
its variables, and symmetries within a logic function under the 
permutation of its variables. Accordingly, the following is one 
possible classification of logic functions: 
(1) P-Equivalence class: a family of identical functions obtained by 
the operation of permutation of variables. 
(2) NP-Equivalence class: a family of identical functions obtained 
by the operations of negation or permutation of one or more 
variables. 
(3) NPN-Equivalence class: a family of identical functions obtained 
by the operations of negation or permutation of one or more 
variables, and also negation of function (cf. Table G.1). 
Example 4.1. The following represents symmetric function: F = ab 
⊕ bc ⊕ ac. 
 
 
 
 
 
 
 
 
 
                      Fig. 4.2. K-map of three-variable symmetric function F = ab ⊕ bc ⊕ ac. 

 
       In Fig. 4.2, a symmetry index Si specifies a K-map cell that 
counts value “1” in the specified minterm i number of times. 
 

Definition 4.1. A single index symmetric function, denoted as 
Sk(x1,x2,…,xn) has value 1 when exactly k of its n inputs are equal to 
1, and exactly (n-k) of its remaining inputs are 0. 
 

Definition 4.2. The elementary symmetric functions of n variables 
are: 

       S0 = nxxx ...21 , 

ab 
c 

0           1 

01       0          1 

10       0          1          F 

S0 S1 

S1 S2 

S2 S3 

S1 S2 

00       0          0 

11       1          1 
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       S1 = nnnn xxxxxxxxxxx 12132121 ............ −+++ , 

       …, and 
       Sn = nxxx ...21 . 
 

       Thus, for a Boolean function of three variables one obtains the 
following sets of symmetry indices: S0 = { }cba , S1 = 

{ }cbacbacba ,, , S2 = { }cbacabbca ,, , and S3 = { }abc . It has been 
shown [213,219] that an arbitrary n-variable symmetric function f is 
uniquely represented by elementary symmetric functions S0, S1, …, 
Sn as follows: f = �

∈

=
Ai

Ai SS , where A ∈ {0, 1, …, n}. Also it can 

be shown that, for f = SA and g = SB, the following are obtained: 
 

       BASgf ∩=. ,                                                                           (4.1) 

       BASgf ∪=+ ,                                                                        (4.2) 

       BASgf ⊕=⊕ ,                                                                       (4.3) 

       ASf = .                                                                                  (4.4) 
 

       It has been shown in [1] that a non-symmetric function can be 
symmetrized by repeating its variables. This method of variable 
repetition transforms the values of K-map cells which make the 
function non-symmetric into don’t cares which make the function 
symmetric. 
Example 4.2. The following K-map demonstrates the 
symmetrization by repeating the variables of a non-symmetric 
Boolean function: F = a’ + b. 
        
 
 

 
 
 
 
 
 

 
Fig. 4.3. Symmetrization of a non-symmetric Boolean function by repeating its 
variables: a non-symmetric Boolean function, and b symmetric Boolean function 
obtained by repeating variable {a}.  
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       One notes that while in Fig. 4.3a conflicting values occur for 
symmetry index S1 in minterms ba and ba , thus producing a non-
symmetric function, non-conflicting values are produced for the 
same non-symmetric function in Fig. 4.3b by repeating variable {a} 
two times. 

 
4.2 Fundamental (2,2) Two-Dimensional Lattice Structures 
 
The concept of lattice structures for switching functions involves 
three components: (1) expansion of a function, that corresponds to 
the initial node (root) in the lattice, which creates several successor 
nodes of the expanded node, (2) joining (collapsing) of several 
nodes of a decision tree’s level to a single node, which is the reverse 
operation of the expansion process, and (3) regular geometry to 
which the nodes are mapped that guides which nodes of the level are 
to be joined. 
       While the realization of non-symmetric functions in Akers 
arrays [1] requires an exponential growth of repetition of variables 
in the worst case, the realization of non-symmetric functions in 
lattice structures requires a linear growth of repetition of variables 
[50,51], and consequently one need not to repeat the variables of 
non-symmetric functions many times to realize such functions in 
lattice structures for most practical benchmarks. It has been shown 
[50,51] that one needs to repeat variables to realize benchmarks in 
lattice structures by 2.5 times on average. Figure 4.4 illustrates, as 
an example, the geometry of 4-neighbors and joining operations on 
the nodes where each cell has two inputs and two outputs (i.e., four 
neighbors). The construction of the lattice structure in Fig. 4.4 
implements the following one possible convention: top-to-bottom 
expansion and left-to-right joining (i.e., left-to-right propagation of 
the corresponding correction functions in Figs. 4.4c and 4.4d, 
respectively). 
 

Definition 4.3. The function that is generated by joining two nodes 
(sub-functions) in the lattice structure is called the joined function. 
The function that is generated in nodes other than the joining nodes, 
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to preserve the functionality in the lattice structure, is called the 
correction function. 
 

       Note that the lattices presented in Fig. 4.4 preserve the 
functionality of the corresponding sub-functions f and g. This can be 
observed, for instance, in Fig. 4.4b as the negated variable {a’} will 
cancel the un-complemented variable {a}, when propagating the 
cofactors from the lower levels to the upper levels or vice versa, 
without the need for any correction functions to preserve the output 
functionality of the corresponding lattice structure. This simple 
observation cannot be seen directly in Figs. 4.4c and 4.4d, as the 
correction functions are involved to cancel the effect of the new 
joining nodes for the preservation of the functionality of the new 
lattice structures (these correction functions are shown in the 
extreme right of the second level in Figs. 4.4c and 4.4d, 
respectively). 
       It is shown in [1] that every function that is not symmetric can 
be symmetrized by repeating variables, and that a totally symmetric 
function can be obtained from an arbitrary non-symmetric function 
by the repetition of variables. Consequently, lattice structures and 
the symmetry of functions are very much related to each other. 
Example 4.3 will illustrate such close relationship. 
Example 4.3. For the following non-symmetric function: F = ab + 
a’c. Utilizing the joining rule that was presented in Fig. 4.4b for a 
two-dimensional lattice structure with binary Shannon nodes, one 
obtains the lattice structure shown in Fig. 4.5. 
       One can observe that in order to represent the non-symmetric 
function in Example 4.3 in the 2-D lattice structure, variable {b} is 
repeated. The nodes in Fig. 4.5 are Shannon nodes, which are 
merely two-input one-output multiplexers, whose output goes in two 
directions, with the variables {a, b, c} operating as control signals.  
        The results from this Sect. will be generalized to ternary logic 
in a later Sect., and thus from two-dimensional space to three-
dimensional space. It is important to prove that the repetition of 
variables will have an end in the process of the symmetrization of 
the non-symmetric functions. An intuitive proof is as follows: for 
totally symmetric functions the number of variables are equal to the 
number of levels of the lattice structure, as there is no need to repeat 
variables, and as it is known that by the repetition of variables every 
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Fig. 4.4. a A two-dimensional 4-neighbor lattice structure, b joining rules for binary 
Shannon lattice structure, c binary positive Davio lattice structure, and d binary negative 
Davio lattice structure. 
 
non-symmetric function is symmetrized, then this must result in 
definite number of levels in the corresponding lattice structure and 
as a consequence in certain number of total variables, repeated and 
non-repeated, that will result in the termination of the process of 
symmetrization. Lattice synthesis is typically performed from top to 
bottom when the levels of gates are synthesized one at a time until 
the level with constant cofactors is reached. 
Example 4.4. Figure 4.6 illustrates the close relationship between 
the concept of the two-dimensional lattice structures and the 
symmetry of functions. 
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       Note that in Fig. 4.6b the symmetry indices represent the sets of 
all possible paths from the leaves to the root through the internal 
nodes in Fig. 4.6a.  
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
            Fig. 4.5. Shannon lattice structure for the non-symmetric function: F = ab + a’c. 

 
       Figure 4.6c shows that the same symmetry indices, that are 
shown in Fig. 4.6b, are the counts of the number of ones in the 
Gray-encoded cell indices of the K-map. The concept of lattice 
structures is closely related to the concept of symmetric networks 
[136]. In symmetric networks switches are allocated on data paths 
that are controlled by control variables. The terminal nodes of such 
structure are the value of the corresponding symmetry index. This 
type of structures which is based on the concept of symmetry indices 
is illustrated in Fig. 4.7 for a Boolean function of three variables. 
       The realization of non-symmetric functions using lattice 
structures require the repetition of variables. To minimize the size of 
lattices, search heuristics for variable ordering for symmetric 
functions and search heuristics for variable ordering and repetition 
of non-symmetric functions are needed. This is similar to the case of 
Binary Decision Diagrams (BDDs) [2,45,142] where various 
variable ordering produces different sizes of the corresponding 
BDDs. The following example illustrates the idea of the realization 
of non-symmetric functions using lattice structures. 
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Fig. 4.6. a Two-dimensional lattice structure for function of four variables: lattice structure 
with inter-connected nodes which are 2-to-1 inter-connected multiplexers, b sets of binary 
symmetry indices, and c K-map interpretation of the binary symmetry indices. 

 
 
 
 
 
 
 
 
 
 
                                                                   
                              a                                                  b 

 
Fig. 4.7. Symmetric network: a K-map that illustrates the distribution of symmetry indices, 
and b the corresponding symmetric network which produces the symmetry indices as 
terminal nodes. 
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Si is the symmetry indices, where i = # of ones in the  
Gray-encoded cell indices of the K-map: 
 
S0  = {a’b’c’d’} 
S1 = {a’b’c’d, a’b’cd’, a’bc’d’, ab’c’d’} 
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S3 = {a’bcd, abc’d, abcd’, ab’cd} 
S4 = {abcd} 
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c 0         1 

00       s0        s1 

01       s1        s2 

11       s2       s3 

10       s1        s2 

 a’         b’         c’         
    a          b          c 

                          b’        c’          S1(a,b,c) 
    b          c 

 c’ S2(a,b,c) 

c 

S3(a,b,c) 

S0(a,b,c) 



 

Example 4.5. For the binary non-symmetric implication function: F 
= a’ + b, Fig. 4.8 illustrates the relationship between the k-map with  
non-conflicting symmetry indices and the two-dimensional lattice 
structure with non-conflicting leaves. 
       The concept of two-dimensional (2,2) lattice structures has been 
generalized to many types of two-dimensional (k,k) lattice 
structures. The following Sect. introduces one generalization of 2-D 
(2,2) lattice structures into 2-D (3,3) lattice structures. 

 
4.3 (3,3) Two-Dimensional Lattice Structures 
 
The idea of (2,2) lattice structures have been extended to the case of 
planar (3,3) lattice structures [195,188,221]. This new planar regular 
structure has some advantages over the (2,2) lattice structures 
especially for self-repair for Field Programmable Gate Arrays 
(FPGAs) [58,221]. 
 

 
 
 
 
 
 
 
 
 
 
 
                      0                   1                                0                 1 
 
 
                    0           1    0          1                     0          1     0           1 
 
 
                                                                                                  0                1     
 
 
Fig. 4.8. a Non-symmetric implication function, b symmetrization by repetition of 
variables, c two-dimensional lattice structure that corresponds to (a) with conflicting leaves, 
and d two-dimensional lattice structure that corresponds to (b) with non-conflicting leaves. 
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    Fig. 4.9. (3,3) two-dimensional lattice structure. 

 
       The (3,3) 2-D lattice structures that are shown in Fig. 4.9 have 
the following additional features over their counterparts of (2,2) 2-D 
lattice structures: (1) the data inputs to a gate can be complemented, 
and (2) both data inputs of a gate can be connected to the same gate 
below. Numerical results have been obtained [188] that compared 
the size of benchmarks realized in (2,2) and (3,3) Shannon lattice 
structures, which showed a clear advantage of the (3,3) lattice 
structures over (2,2) lattice structures in terms of size. Table 4.1 
from [188] illustrates such comparison. The (3,3) two-dimensional 
lattice stucture can be extended to any (k,k) two-dimensional lattice 
structure using similar procedures. 
       Table 4.1 shows that for 18 benchmarks the (3,3) 2-D lattice 
structures have a total of 291 levels and 863 nodes as compared to 
383 levels and 2011 nodes in the case of (2,2) 2-D lattice structures. 
Thus for an initial evaluation, (3,3) 2-D lattice structures show a 
significant improvement in the minimization of the total size of 
lattice logic circuits over the (2,2) 2-D lattice structures. 

 
4.4 New Three-Valued Families of (3,3) Three-Dimensional 
Shannon and Davio Lattice Structures 
 
The concept of binary two-dimensional Shannon and Davio lattice 
structures that was presented in Sect. 4.2 can be generalized to 
include the case of three-dimensional Shannon and Davio lattice 
structures with function expansions that implement the fundamental 
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Table 4.1. Experimental results for the realization of MCNC benchmarks in (2,2) and (3,3) 
two-dimensional lattice structures. 

 

 

 

 

 

 

 

 
 
 
  
 
 
 
 
multi-valued Shannon and Davio decompositions, as well as the new 
invariant set of multi-valued Shannon and Davio decompositions 
from Sect. 2.2. Since the most natural way to think about binary 
lattice structures is the two-dimensional 4-neighbor lattice structure 
that was shown in Fig. 4.4a, one can extend the same idea to utilize 
the full three-dimensional space in the case of ternary lattices. Such 
lattices represent three-dimensional 6-neighbor lattice structures. 
Although regular lattices can be realizable in the three-dimensional 
space for radix three while maintaining their full regularity, they are 
unrealizable for radices higher than three (i.e., 4, 5, etc). Higher 
dimensionality lattices can be implemented in 3-D space but at the 
expense of losing the full regularity. This is because the circuit 
realization for the ternary case produces a regular structure in three 
dimensions that is fully regular in terms of connections; all 
connections are of the same length. Realizing the higher 
dimensionality lattices in lower dimensionality space is possible but 

    clip                    5(1)                         9(9)                       18           103            9           30 
                              5(2)                         9(9)                       27           220            9           30 

    cps                    109(1)                    24(22)                    26           134            24          61 

                              109(3)                    24(22)                    39           342           30         128 

                          29(6)                      22(17)                    18            47            17          36 

   example2           66(23)                     85(16)                    21           52             16          45 

   sao2                   4(2)                         10(10)                    18            71            14          56 

      Ratio, %                                                                          100         100             76         43 

Name               # Outputs                # Inputs                (2,2) Lattice                (3,3) Lattice 

 # Levels  # Nodes   # Levels  # Nodes 

 
   apex7                 37(30)                    49(17)                    25           148           19          33 

    cm162a              5(3)                       14(10)                     11           24             10          18 

                              109(2)                    24(18)                    26          164            21           66 

   duke2                 29(3)                      22(15)                    18            52            15           69 

                              29(18)                    22(15)                    22            92            15          44 

                                  66(59)                    85(14)                    17            31            14           21 
                              66(63)                    85(13)                    15            37            13           26 
   frg2                    139(99)                   143(20)                  22          189            20          28 

                                 139(100)                 143(19)                  28          164            20           61 

                         4(3)                         10(10)                    16            73            14           65 
                             4(4)                         10(10)                    16            68            11          46 

  Total                                                                               383        2011           291        863 
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at the expense of regularity; the lattices will not be fully regular due 
to the uneven length of the inter-connections between nodes. 
       As a topological concept, and as stated previously, lattice 
structures can be created for two, three, four, and any higher radix. 
However, because our physical space is three-dimensional, lattice 
structures, as a geometrical concept, can be realized in solid 
material, with all the inter-connections between the cells of the same 
length, only for radix two (2-D space) or radix three (3-D space). It 
is thus interesting to observe that the characteristic geometric 
regularity of the lattice structure realization which is observed for 
binary and ternary symmetric functions will be no longer observable 
for quaternary functions. Thus, the ternary lattice structures have a 
unique position as structures that make the best use of three-
dimensional space (we do not claim here that a regular structure that 
would use 3-D space better than 3-D lattice structures can not be 
invented, and the statement is restricted only to lattice-type 
structures). The following Sect. will introduce the proposed general 
three-dimensional logic circuit of ternary lattice structures. The new 
3-D lattice structures that realize ternary functions, which will be 
presented in the next Sects., will be further extended to the 
reversible case in Chapt. 6, and then mapped into quantum circuits 
as will be illustrated in Chapt. 10. 

 
4.4.1 Three-Dimensional Lattice Structures 
 
In general, to reserve the fully regular realization of expansions over 
nth radix, it is sufficient to join n nodes in n-dimensional space to 
obtain the corresponding lattice structures. For instance, as was 
shown in Fig. 4.4, it is sufficient in the binary case to join two 
nodes. Analogously, it is sufficient in the ternary case to join three 
nodes to form the corresponding 3-D lattice structures [5,13,18]. 
Analogously to the work presented previously, fully symmetric 
ternary functions do not need any joining operations to repeat 
variables in order to realize them in three-dimensional lattice 
structures. Because three-dimensional lattice structures exist in a 
three-dimensional space, a geometrical reference of coordinate 
systems is needed in order to be systematic in the realizations of the 
corresponding logic circuits. Consequently, the right-hand rule of 
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the Cartesian coordinate system is adopted. Example 4.6 illustrates 
lattice realizations for such fully symmetric ternary functions. 
Example 4.6. For the fully symmetric three-variable ternary 
input/ternary output function: F = ab + ac + bc. Adopting the right-
hand rule of the Cartesian coordinate system, the following is the 
three-dimensional logic circuit realization of the symmetric 
function: 
 
 
 
 
 
 
 
 
 
                                                                      
 
 
 
 
 
 
 
Fig. 4.10. Three-dimensional logic circuit realization for the ternary symmetric function: F 
= ab + ac + bc. 

 
       One can observe that Fig. 4.10 represents a fully regular lattice 
structure in three-dimensions. Each dimension corresponds to a 
value of the corresponding control variable; value zero of the control 
variable propagates along the x-axis, value one of the control 
variable propagates along the y-axis, and value two of the control 
variable propagates along the z-axis. Since the ternary function in 
Example 4.6 is fully symmetric [18], no variables need to be 
repeated in the corresponding lattice structure. In 3-D space, each 
control variable spreads in a plane to control the corresponding 
nodes (these parallel planes are represented using the dotted 
triangles in Fig. 4.10), in contrast to the binary case where each 
control variable spreads in a line to control the corresponding nodes 
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(these control signals are in the solid bold lines in Fig. 4.4a). Each 
node in Fig. 4.10 is a three-input one-output multiplexer, whose 
output goes in three directions. 
Example 4.7. The following is the ternary modsum addition. 
 
 
 
 
 
 
 
                                      Fig. 4.11. Ternary modsum addition. 
 

The following is the logic circuit of the ternary 3-digit full adder:         
 
 
 
 
 
 
 
 
 
 
                     Fig. 4.12. Logic circuit of a ternary 3-digit full adder. 

 
The following maps resemble such functions for the Sum (S) and the 
output carry (Cout) that appear in the logic circuit in Fig. 4.12. 
 
 
 
 
 
 
 
 
 
 

                                  a                                                                   b 
 
                            Fig. 4.13. Ternary sum and ternary carry out maps. 
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       The following are the 3-D lattice realizations of the functions in 
Fig. 4.13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
                           Fig. 4.14. The sum function of the ternary 3-digit full adder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Fig. 4.15. The carry out function of the ternary 3-digit full adder. 
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       From Figs. 4.14 and 4.15, one can observe that the sum function 
and the carry out function are both symmetric functions, and 
consequently there is no need to repeat variables to make the ternary 
functions realizable in the 3-D lattice structures. In the case of 
ternary non-symmetric functions, one needs to repeat variables, to 
symmetrize the corresponding non-symmetric functions, in order to 
represent such functions in the corresponding lattice structures, 
analogous to the binary case. 
Example 4.8. Let us design a ternary 2-digit multiplier in a 3-D 
lattice structure. Two-digit multi-valued multiplication is performed 
utilizing the mod-multiplication operator as follows: 
                                                   B1     B0 
                                                   A1     A0 
                                     Cout1     m01     m00 
                          Cout2      m11     m10     0 
                  Cout      S3       S2       S1      S0 

       Figure 4.16 shows the logic circuit of the ternary 2-digit 
multiplier, and Fig. 4.17 shows the maps for the ternary 
multiplication and the output carry (Cout) that appear in the logic 
circuit (in Fig. 4.16). Figures 4.18 and 4.19 are the 3-D lattice 
realizations of the functions in Fig. 4.17. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
                           Fig. 4.16. Logic circuit of a ternary 2-digit multiplier. 
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                              a                                                                       b 
 
      Fig. 4.17. a Ternary multiply, and b ternary carry out for the ternary 2-digit multiplier. 
 
       The three input ternary adder that appears in the logic circuit in 
Fig. 4.16 can be implemented directly from the 3-D lattices shown 
in Figs. 4.14 and 4.15 for the sum and carry out, respectively. The 
two input ternary adder that appears in the logic circuit in Fig. 4.16 
can also be implemented directly from the 3-D lattices similar to 
those shown in Figs. 4.14 and 4.15 for the sum and carry out, 
respectively, by using only two control variables, and setting the 
third digits (a2 and b2) in Fig. 4.12 to the value zero. 
Example 4.9. For the non-symmetric two-variable ternary 
input/ternary output function: F = ab + a’b’’, Fig. 4.20 illustrates the 
three-dimensional logic circuit for such non-symmetric functions. 
Figure 4.20 also indicates the relationship between the ternary 
natural-encoded map with non-conflicting symmetry indices and the 
three-dimensional lattice structure with non-conflicting leaves. 
Example 4.10.  Figure 4.21 illustrates the close relationship 
between the concept of the three-dimensional lattice structure and 
the symmetry of ternary functions. 
       Note that, in Fig. 4.21b, the ternary symmetry indices represent 
the sets of all possible paths from the leaves to the root through the 
internal nodes of the three-dimensional lattice structure which is 
shown in Fig. 4.21a. Figure 4.21c shows that the same ternary 
symmetry indices, that are shown in Fig. 4.21b, correspond to the 
counts of the number of ones and twos in the natural-encoded cell 
indices of the ternary map. In general, as a convention, let us denote 
the nodes in the lattice structure by their three-dimensional Cartesian 
coordinates; the tuple {x, y, z}. Also, let us denote the edge between 
two nodes {x1, y1, z1} and {x2, y2, z2} by {x1, y1, z1}-{x2, y2, z2}. 
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Fig. 4.18. The multiply function of ternary 2-digit multiplier. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.19.  The carry out function of ternary 2-digit multiplier. 
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                                                                                              a 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
                                                                                          b 
 
Fig. 4.20. a Three-dimensional lattice structure that corresponds to the non-symmetric 
ternary function F = ab + a’b” with conflicting leaves (shaded cells in the corresponding 
ternary map), and b three-dimensional lattice structure that corresponds to the symmetrized 
function F (by repeating variable a two times) with non-conflicting leaves. 
 
       As an example, the symbol (-) in the node {1, 1, 1} in Fig. 
4.20b represents a complete three-valued don’t care (i.e., 0, 1, or 2). 
This geometrical notation will be used in this Sect. and in the 
following Sect. To produce the repetition of variables for non-
symmetric ternary functions, the joining operators are needed to join 
the corresponding nodes to produce the corresponding correction 
functions, in order to preserve the output function of the 3-D lattice.  
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                                                       a 
 
 
 
 
 
 
 
 
 
 
 
 
                                    b                                                                                 c 
Fig. 4.21. Three-dimensional lattice structure for ternary functions of three 3-valued 
variables: a 3-D lattice structure made of 3-to-1 inter-connected multiplexers, b sets of 
ternary symmetry indices, and c the ternary natural-encoded map interpretation of the 
ternary symmetry indices. 

 
       Figure 4.22 represents such joining for three-dimensional lattice 
structure.

 

0a 
0b 

0c 

2a 

2b 

 

2c 

1a 

1b 
 

1c 

1b 
2c 

1b 
0c 

2b 

2b 

1c 

0b 

 
1c 

0b 

0c 

 1c 

0c 

 
1c 

2c 

 

1c 

2c  

2c 

0c 

 

2c 

0c 

S0,0(a,b,c) 

S1,0(a,b,c) 

S2,0(a,b,c) 

S3,0(a,b,c) 

S2,1(a,b,c) 

S1,2(a,b,c) 

S0,3(a,b,c) 

S0,2(a,b,c) 

S0,1(a,b,c) 
S1,1(a,b,c) 

Si,j is the ternary symmetry indices, where i = # of ones in the 
natural-encoded cell indices of the ternary map, and j = # of 
 twos in the natural-encoded cell indices of the ternary map : 
 
S0,0(a,b,c) = {0a0b0c} 
S1,0(a,b,c) = {1a0b0c, 0a1b0c, 0a0b1c} 
S2,0(a,b,c) = {1a1b0c, 1a0b1c, 0a1b1c} 
S3,0(a,b,c) = {1a1b1c} 
S0,1(a,b,c) = {2a0b0c, 0a2b0c, 0a0b2c} 
S0,2(a,b,c) = {2a2b0c, 2a0b2c, 0a2b2c} 
S0,3(a,b,c) = {2a2b2c} 
S1,1(a,b,c) = {1a2b0c, 1a0b2c, 2a1b0c, 2a0b1c, 0a2b1c, 0a1b2c} 
S1,2(a,b,c) = {1a2b2c, 2a1b2c, 2a2b1c} 
S2,1(a,b,c) = {1a1b2c, 1a2b1c, 2a1b1c} 
 

c ab   0       1        2 

01   S 1,0      S 2,0     S 1,1  

02   S 0,1      S 1,1     S 0,2  

10   S 1,0      S 2,0     S 1,1  

11   S 2,0      S 3,0     S 2,1  

12   S 1,1      S 2,1     S 1,2  

20   S 0,1      S 1,1     S 0,2  

21   S 1,1      S 2,1     S 1,2  

22   S 0,2      S 1,2     S 0,3  

00   S 0,0      S 1,0     S 0,1  
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Fig. 4.22. General 3-D lattice structure for three joining nodes and a single joined node. 

 
       In Fig. 4.22, three nodes: B, D, and H are joining (super-
imposing) their nodes J0, J1, and J2, respectively, to form the super-
imposed node J. The set of nodes {C, A, J0} are the cofactors of the 
node B. The set of nodes {E, F, J1} are the cofactors of the node D. 
The set of nodes {G, I, J2} are the cofactors of the node H. The 
geometrical distribution of the nodes and edges in Fig. 4.22 are as 
follows: 
 

         Axis                   Nodes                   Edges              Weights  
              x-axis               {J0, E, I}                 {t, v, y}                α 
              y-axis               {C, J1, G}               {r, u, x}                β 
              z-axis               {A, F, J2}                {s, w, z}                γ 
 

       Section 4.4.2 will introduce the joining rules for the general 
structure in Fig. 4.22 by using the new sets of Shannon 
decompositions introduced in Sect. 2.2.2. 
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4.4.2 New (3,3) Three-Dimensional Invariant Shannon Lattice 
Structures 
 
In the following derivation, two correction functions for the case of 
ternary logic are implemented. In general, for nth radix Galois logic, 
no correction functions are needed for lattice structures with n-
valued invariant Shannon nodes as will be shown in Theorem 4.1. 
So, for instance, for the case of binary Shannon, no correction 
functions are needed, due to the fact that all of the Shannon 
cofactors are disjoint, as was shown in Fig. 4.4b. 
 

Theorem 4.1. For lattice structures with all invariant ternary 
Shannon nodes, the following is one possible joining rule: 
 

       J = 0aJ0 + 1a J1 + 2aJ2.                                                          (4.5) 
 

Proof. Utilizing Eq. (2.61), and by joining in Fig. 4.22 the following 
invariant Shannon nodes: 
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And by assigning the following values for the set of edges {r, s, t, u, 
v, w, x, y, z} in Fig. 4.22: 
       t = 1α̂  0a  , v = 2α̂  0a , y = 3α̂  0a. 

       r = 1β̂  1a , u  = 2β̂  1a , x  = 3β̂  1a. 

       s = 1γ̂   2a , w = 2γ̂   2a , z  = 3γ̂   2a. 
One obtains the following set of Eqs. before and after joining the 
three nodes J0, J1, and J2 in Fig. 4.22 (where: {A, C, J0} are the set of 
functions for node B, {E, F, J1} are the set of functions for node D, 
and {I, G, J2} are the set of functions for node H, respectively): 
 

Before joining the nodes: 

       B = 1α̂  0a J0 + 1β̂  1a C + 1γ̂  2a A,                                       (4.6) 

       D = 2α̂  0a E + 2β̂  1a J1 + 2γ̂  2a F,                                      (4.7)  

       H = 3α̂  0a I + 3β̂  1a G + 3γ̂  2a J2.                                                          (4.8) 
After joining the nodes: 

       B = 1α̂  0a J + 1β̂  1a C + 1γ̂  2a A,                                         (4.9) 
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       D = 2α̂  0a N + 2β̂  1a J + 2γ̂  2a F,                                     (4.10)  

       H = 3α̂  0a I + 3β̂  1a q + 3γ̂  2a J,                                                           (4.11) 
 

where N and q are the correction functions, and J is the super-
imposed node in Fig. 4.22. By equalizing Eq. (4.6) to Eq. (4.9), Eq. 
(4.7) to Eq. (4.10), and Eq. (4.8) to Eq. (4.11), and utilizing the 
axioms of GF(3), we obtain the following results: 
       N = E, 
       q = G, 
       J = 0aJ0 + 1a J1 + 2aJ2.                                                      Q.E.D. 
 

       From Eq. (4.5) one observes the fact that the joining rule of any 
corresponding invariant Shannon decomposition does not depend on 
the scaling numbers {α, β, γ} and does not need any correction 
function. The methodology that has been presented in this Sect. can 
be used for all possible permutations of the invariant Shannon 
decompositions. The following example illustrates Theorem 4.1. 
Example 4.11. Let us produce the joining rule for the following 
invariant Shannon nodes: 
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Then according to Eq. (4.5), one obtains: 
J = 0aJ0 + 1a J1 + 2aJ2.     

 
4.4.3 New (3,3) Three-Dimensional Invariant Davio Lattice Structures 
 
In the following derivation, two correction functions are 
implemented for the case of ternary logic. In general, for nth radix 
Galois logic, at least (n-1) correction functions are needed for lattice 
structures with n-valued invariant Davio nodes. So, for instance, one 
needs a single correction function in the case of binary Davio 
expansions (as was shown in the extreme right nodes of Figs. 4.4c 
and 4.4d, respectively). The following methodology, which is used 
in Theorems 4.2 through 4.4, can be used for all possible 
permutations of the invariant Davio decompositions as well. 
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Theorem 4.2. For lattice structures with all invariant ternary Davio0 
(D0) nodes (that were presented in Theorem 2.3), the following is 
one possible set of joining rules, and correction functions, 
respectively: 
 

       J = J0,                                                                                   (4.12) 

       N = 2 2α 2β̂ a J0 + E + 2α 2β̂ a J1,                                    (4.13) 
       q = 2 3γ̂ 3β a J0 + G + 3γ̂ 3β a J2.                                       (4.14) 
 

Proof. Utilizing Eq. (2.62), and by joining in Fig. 4.22 the following 
invariant D0 nodes: 
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By assigning the following values for the edges {r, s, t, u, v, w, x, y, 
z} in Fig. 4.22: 

       t = 1α̂  , v = 2α̂  , y = 3α̂ . 

       r = 1β̂  a , u  = 2β̂  a , x  = 3β̂  a. 

       s = 1γ̂   a2 , w = 2γ̂  a2 , z  = 3γ̂  a2. 
And by following the same procedure that was used in Theorem 4.1, 
one obtains: 
 

       J = J0,                                                                                                               

       N = 2 2α 2β̂ a J0 + E + 2α 2β̂ a J1,                                                                
       q = 2 3γ̂ 3β a J0 + G + 3γ̂ 3β a J2.                                     Q.E.D. 
 

Theorem 4.3. For lattice structures with all invariant ternary Davio1 
(D1) nodes, the following is one possible set of joining rules, and 
correction functions, respectively: 
 

       J = J0,                                                                                   (4.15) 

       N = 2 2α 2β̂ a’ J0 + E + 2α 2β̂ a’ J1,                                 (4.16) 
       q = 2 3γ̂ 3β a’ J0 + G + 3γ̂ 3β a’ J2.                                    (4.17) 
 

Proof. The proof of Theorem 4.3 follows the same methodology 
that is used to prove Theorem 4.1.                                            Q.E.D. 
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Theorem 4.4. For lattice structures with all invariant ternary Davio2 
(D2) nodes, the following is one possible set of joining rules, and 
correction functions, respectively: 
 

       J = J0,                                                                                   (4.18) 
       N = 2 2α 2β̂ a”J0 + E + 2α 2β̂ a” J1,                                (4.19) 
       q = 2 3γ̂ 3β a” J0 + G + 3γ̂ 3β a” J2.                                   (4.20) 
 

Proof. The proof follows the method used for Theorem 4.1.  Q.E.D. 
 

Example 4.12. For following invariant Davio0 (D0) nodes over 
GF(3): 

�
�
�

�

�

�
�
�

�

�

111

210

002

, 

�
�
�

�

�

�
�
�

�

�

222

120

001

, 

�
�
�

�

�

�
�
�

�

�

222

120

002

. 

Then according to Eqs. (4.12), (4.13), and (4.14), one obtains: 
J = J0, N = 2 a J0 + E + a J1, q = 2 a J0 +  G +  a J2.               
       From the previous examples, it can be observed that the 
structural property of lattice structures depends on the functional 
property of the functions that are decomposed: if the ternary 
function is symmetric then there is no need to repeat variables to 
realize the function in three-dimensional lattice structure, otherwise 
there is a need to repeat variables (as was shown in Example 4.9 for 
instance). The following Sect. introduces an algorithm for the 
realization of three-dimensional logic circuits using Theorem 4.1. 

 
4.5 An Algorithm for the Expansion of Ternary Functions 
into (3,3) Three-Dimensional Lattice Structures 
 
This Sect. introduces as an example an algorithm for realizing multi-
valued invariant Shannon expansion of ternary functions in 3-D 
lattice structures that were proposed in Theorem 4.1. Analogously to 
the convention that was established for the binary case, this 
algorithm is developed for the convention: in the octant that 
corresponds to the positive x-axis, positive y-axis, and positive z-
axis, expand the nodes in-to-out and join the cofactors counter clock 
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wise (CCW). Similar algorithms can be developed for other 
invariant expansions. 
{for  i = j = k = 0 
      Utilizing Eq. (2.61) Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1) 
                if all nodes are constants 
                    then go to 3 
                else ( 
                       // for the nodes that have common indices // 

1. if there exist nodes with conflicting values 
                          then ( 
                                           ( Utilizing Eq. (4.5)  
                                             Join nodes with common indices 
                                                if three nodes exist 
                                                                   then (apply Eq. (4.5)) 
                                                else (set the non-existing nodes to zero 
                                                                apply Eq. (4.5)) 
                                            ) 
                                      for all joined nodes  
                                             ( 
                                               for each node ( Utilizing Eq. (2.61)  
                   // for l, m, and n as general positional indices that can be   
                        expressed in terms of i, j, and k, respectively //. 
                                Expand n(l ,m, n) into n(l+1, m, n), n(l, m+1, n), n(l, m, n+1) ) 
                                              ) 
                                          go to 2 
                                     ) 
                             else go to 2 
                      2. Utilizing Eq. (2.61)  
                       i = i ++: Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1) 

                       j = j ++: Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1) 
                       k = k ++: Expand n(i, j, k) into n(i+1, j, k), n(i, j+1, k), n(i, j, k+1) 
                        if all nodes are constants with no conflicting values in          
                           the same indices 
                                 then go to 3 
                           else go to 1) 
                     3. end} 
       The following Sect. presents a complete example that illustrates 
the use of the invariant Shannon and Davio spectral transforms in 
the proposed three-dimensional (3,3) lattice structures. 
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4.6 Example of the Implementation of Ternary Functions 
Using the New Three-Dimensional Lattice Structures 
 
The following example follows one convention for constructing 
three-dimensional lattice structures using the iterative process of 
expanding (decomposing) and collapsing (joining) in three-
dimensional space: in the sub-space that corresponds to the positive 
x-axis, positive y-axis, and positive z-axis, expand the nodes in-to-
out and join the cofactors counter clock wise (CCW). For the 
following ternary function: 
 
 
 
 

 
 

                                                                     
                                                                                                                            F 
 
Fig. 4.23. Ternary input/ternary output map for the function: F = 2 0a0b + 0a1b + 0a2b + 2 
1a0b + 1a1b + 1a2b + 2 2a0b + 2 2a1b + 2 2a2b. 

 
       Utilizing Fig. 4.22, the joining operations presented in Eqs. 
(4.5) and (4.12) - (4.14) for the invariant Shannon and Davio0 
decompositions respectively, and the expansions from Eqs. (2.61) 
and (2.62), one obtains in Figs. 4.24 and 4.25 the 3-D lattice 
structures that realize the non-symmetric ternary function F from 
Fig. 4.23. In Fig. 4.24, one obtains the corresponding 3-D lattice, by 
utilizing the following: 
Step1: Expanding nodes: Expand the non-symmetric function: F = 2 
0a0b + 0a1b + 0a2b + 2 1a0b + 1a1b + 1a2b + 2 2a0b + 2 2a1b + 2 2a2b in 
node (0, 0, 0) according to Eq. (2.61) as: 
F0 = F(a = 0) = 2 0b + 1b +2b into node (1, 0, 0), 
F1 = F(a = 1) = 2 0b + 1b +2b into node (0, 1, 0), 
F2 = F(a = 2) = 2 0b + 2 1b +2 2b into node (0, 0, 1). 
Step 2: Joining nodes: As a result from step 1, conflicting values 
occur in nodes (1, 1, 0), (0, 1, 1), and (1, 0, 1), then Join cofactors 
according to Eq. (4.5), as follows: 
y-axis cofactor of node (1, 0, 0) and x-axis cofactor of node (0, 1, 0) 
into node (1, 1, 0) � the joined node (1, 1, 0) is: 1 1b + 2 0 b, 

a b     0                    1                  2 

0              2                 1                 1 

1              2                 1                 1 

2              2                 2                 2 
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Fig. 4.24. First three-dimensional logic circuit of the non-symmetric function in Fig. 4.23: 
F = 2 0a 0b + 0a 1b + 2 1a 0b + 1a 1b + 1a 2b + 2 2a 2b + 2 2a 1b + 2 2a 0b + 0a 2b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.25. Second three-dimensional logic circuit of the non-symmetric function in Fig. 
4.23: F = 2 + a·b2 + 2 a2·b2 + 2 b2. 
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z-axis cofactor of node (0, 1, 0) and y-axis cofactor of node (0, 0, 1) 
into node (0, 1, 1) � the joined node (0, 1, 1) is: 1 2b + 2 1b, 
z-axis cofactor of node (1, 0, 0) and x-axis cofactor of node (0, 0, 1) 
into node (1, 0, 1) � the joined node (1, 0, 1) is: 1 2b + 2 0b. 
Step 3: Expanding nodes: Expand the lattice structure nodes, that 
result from step 2, as follows: 
node (1, 0, 0) into node (2, 0, 0) of value 2, 
node (1, 1, 0) into nodes: (2, 1, 0) of value 2, (1, 2, 0) of value 1, and 
(1, 1, 1) of value 0, 
node (0, 1, 0) into node (0, 2, 0) of value 1, 
node (0, 1, 1) into nodes: (0, 2, 1) of value 2, (0, 1, 2) of value 1, and 
(1, 1, 1) of value 0, 
node (0, 0, 1) into node (0, 0, 2) of value 2, 
node (1, 0, 1) into nodes: (2, 0, 1) of value 2, (1, 0, 2) of value 1, and 
(1, 1, 1) of value 0. 
Note that by joining cofactors according to Eq. (4.5), the repetition 
of variable {b} is created, and therefore a new level in the 3-D 
lattice structure is created to create leaves with non-conflicting 
values. 
       By applying the same previous procedure of expanding-joining 
steps, and utilizing the expansion in Eq. (2.62) for expansion nodes 

of type D0 = 

�
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222

120

001

, and the joining operations in Eqs. (4.12) 

through (4.14), one obtains the three-dimensional logic circuit which 
is presented in Fig. 4.25. Note that by joining cofactors according to 
Eqs. (4.12) through (4.14) the repetition of variable {b} is created, 
and therefore a new level in the 3-D lattice structure is created to 
create leaves with non-conflicting values. 
       Observing Figs. 4.24 and 4.25, one obtains the size-based 
comparison results in Table 4.2. One can note that while the 
Shannon lattice structure in Fig. 4.24 has only one zero-valued leaf, 
Davio0 lattice structure in Fig. 4.25 has six zero-valued leaves. This 
is important when considering power consumption in such lattices, 
since value “0” represents ground (Fig. 4.26a) and thus does not 
need to be supplied from a power supply in contrast to values “1” 
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(Fig. 4.26b) and “2” (Fig. 4.26c) that are obtained from a power 
supply and thus consume power. 
       For example, from Figs. 4.18 and 4.19, one can observe that the 
multiplication function and the carry function are both symmetric 
functions, as there is no need to repeat variables to make the ternary 
functions realizable in the 3-D lattice structures.  
 
Table 4.2. Size-based comparison between the lattice realizations in Figs. 4.24 and 4.25, 
for the non-symmetric function F = 2 0a0b + 0a1b + 0a2b + 2 1a0b + 1a1b + 1a2b + 2 2a0b + 2 
2a1b + 2 2a2b. 
 
 
            Parameter/Type                 Shannon (Fig. 4.24)             Davio0 (Fig. 4.25) 
 
       Total # of Internal Nodes                        7                                           7 
 
       Total # of Leaves                                    10                                         10 
 
       Total # of Zero-Valued Leaves                1                                           6 
 
 

      
                                                                                           “2” 
                                                        
                                                                            “1” 
 
 
 
No Power: “0” 
 
                                  a                                       b                                        c 
 
                                    Fig. 4.26. Power levels for ternary logic. 

 
       Yet, as can be also observed in Example 4.8, by the substitution 
of the 3-D lattice structures of Figs. 4.18 and 4.19 into the logic 
circuit in Fig. 4.16, one can see that there is a need for placement of 
the individual 3-D lattices and the routing of connections between 
the placed lattices. Therefore, appropriate software tools should be 
created for such placement and routing that would start from the 
floor plan created with these 3-D regular lattice structures. One also 
can observe that although the individual lattices that are created in 
Figs. 4.18 and 4.19 are fully regular, the total structure of the logic 
circuit in Fig. 4.16, that is composed of all of the individual lattices, 
is only semi-regular because of the use of interconnects of different 
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lengths. One possible solution for this, to obtain a fully regular total 
structure, is to produce a fully regular “macro” lattice from the 
corresponding “micro” lattices to produce a multi-input multi-output 
3-D lattice, analogous to the binary case. Another solution is to 
combine the set of individual Eqs. into one Eq. to produce a single 
ternary function for the 2-digit ternary multiplier, that would 
produce all the individual multiply and Cout ternary functions from 
it, and implementing this single ternary function in one big 3-D 
lattice structure. All these variants should be combined in future 
EDA tools for a comprehensive (1) system, (2) logic, and (3) 
physical design levels into solid space. Other design issues to be 
considered by EDA tools is that for the previously designed ternary 
3-digit full adder and ternary 2-digit multiplier one other choice of 
implementation would be the use of modulo-3 addition and 
multiplication in different design of logic circuits other than 3-D 
lattices. Another option, is to use Galois circuits whenever possible. 
Other multi-valued input multi-valued output designs are also 
possible for the ternary 2-digit multiplier, utilizing a mix of higher 
and lower radix logics in the same design. The following Sect. 
introduces a new algorithm called Iterative Symmetry Indices 
Decomposition (ISID) for the design of two-dimensional and three-
dimensional lattice structures to fit specific layout boundaries. 

 
4.7 ISID: Iterative Symmetry Indices Decomposition 
 
As was illustrated in Example 4.5, as a simple case, realizing non-
symmetric functions using lattice structures demands the repetition 
of variables. In many cases, one has to repeat variables so many 
times that will result in a big size lattice structure that does not fit 
specified area (or volume in case of three-dimensional lattice 
structures from Sects. 4.4.2 and 4.4.3). On the other hand, one can 
re-route the interconnects between the internal nodes of the lattice 
structure using optimization methods in a way such that the structure 
will ultimately fit into the specified layout area. Yet, this process 
will make the interconnects between cells of many different lengths, 
and consequently “strips” the lattice structure from one of its 
important features; all the inter-connects are of equal length. This 

      4.6 Example of the Implementation of Functions Using New 3-D Lattice Structures      99 



 

idea of maintaining interconnects of equal length for a large size 
lattice structure that does not fit specific layout boundaries can be 
achieved using the new decomposition called Iterative Symmetry 
Indices Decomposition (ISID), as follows [16,25]: Suppose one has 
a k-map of a non-symmetric Boolean function. This means that 
conflicting values of “0” and “1” exist within some symmetry 
indices Si. One way of removing such conflicting values is to repeat 
variables as was shown in previous Sects. Another way of removing 
such conflicting values is to decompose the non-symmetric function 
into a symmetric part superimposed with an error part [16,25]. The 
error part can be then iteratively decomposed into a “superposition” 
of two parts. The “superposition” of the decomposed parts to 
produce the total function can be done using the Exclusive-OR (⊕) 
operator or the Equivalence operator (⊗). The following algorithm 
demonstrates the ISID decomposition [16,25]: 
(1) For a given area (or a given volume as in the case of 3-D lattice 
structures) specifications, synthesize a non-symmetric function 
using a symmetry-based structure like a lattice structure by repeating 
variables. 
(2) If repeating variables will force the lattice structure to grow out 
of the layout boundaries, decompose the non-symmetric function 
into two super-imposed parts: a symmetric part and an error part (the 
error part can be alternatively named as the correction part). The 
original function is equal to the Exclusive-OR (⊕) or the 
Equivalence (⊗) of the two decomposed functions. This is denoted 
as ⊕-ISID and ⊗-ISID, respectively. Since there are many possible 
ways to obtain a symmetric function from the original non-
symmetric function using ISID, one can choose a symmetric part by 
using the criterion of minimum number of changes of function 
values that are needed to transform the non-symmetric Boolean 
function into a symmetric one (e.g., minimum Hamming distance). 
(3) Synthesize the symmetric part using lattice structure. If the 
synthesis fits layout boundaries then synthesize the error function. 
(4) If the resulting synthesis does not fit layout boundaries go to step 
(2), and perform in serial-mode a single decomposition of the 
symmetric or error sub-functions, or perform in parallel-mode a 
multi-decomposition on all symmetric and error sub-functions. 
(5) Repeat step (4) until the synthesis fits the layout boundaries. 
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Example 4.13. For the non-symmetric function in Fig. 4.27a, the 
corresponding 2-D lattice structure is realized in Fig. 4.27b by 
repeating the control variable {b} three times. 
 

 

 

 

 

 

 

 
                     a                                                                  b 

 
Fig. 4.27. Binary (2,2) 2-D Shannon lattice structure. 

 
       One notes that the lattice structure in Fig. 4.27 is made up of 15 
2-to-1 multiplexers. Each 2-to-1 multiplexer consists of three logic 
gates. Thus Fig. 4.27 is made up of a total of 45 logic primitives. 
The same non-symmetric function can be synthesized using ⊕-ISID 
as in Fig. 4.28. 
       Consequently, one has the ⊕-ISID synthesis of the non-
symmetric function where F1 realizes the symmetric part and F2 
realizes the error part as shown in Fig. 4.28. Note that in Fig. 4.28 
one has six 2-to-1 multiplexers and three primitives, namely AND, 
OR, and XOR. Thus one has a total of 6⋅3 + 3 = 21 logic primitives. 
Consequently, by comparing the total number of gates needed in 
Fig. 4.28 to those in Fig. 4.27, one observes that we economized a 
total of 45 - 21 = 24  primitives. 
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                       Fig. 4.28. ⊕-ISID Shannon lattice structure. 

 
       On the other hand, if one uses ⊗-ISID we obtain the 
decomposition in Fig. 4.29a and the synthesis of the non-symmetric 
function as shown in Fig. 4.29b. The cost of the lattice structure in 
Fig. 4.29b is 21 logic primitives which is the same as the cost from 
Fig. 4.28b.  
       One observes that 2-level Sum-Of-Product (SOP) structures 
have been used to synthesize the error functions in Figs. 4.28b and 
4.29b, respectively. This choice has the advantage of the use of a 
minimal number of logic primitives, but has the disadvantage of 
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transforming the lattice structure from a fully-regular structure 
where only one type of primitive has been used (namely 2-to-1 
multiplexer) to “semi-regular” structure where many different logic 
primitives have been used, namely 2-to-1 multiplexer, AND, and 
OR gates. To retain full regularity in terms of using one type of 
logic primitives, one can synthesize the error function using a 
separate multiplexer-based logic structure like a Binary Decision 
Tree (BDT) for instance. This idea is demonstrated in Fig. 4.30 
using the ⊗-ISID Shannon lattice structure from Fig. 4.29b. 
       One observes that the structure in Fig. 4.30 has 10 2-to-1 
multilpexers and thus has 10⋅3 = 30 Boolean gates, which is still less 
than the total number of gates obtained in Fig. 4.27. Using the 
procedure for ISID decomposition, one can have a complicated 
decomposed structure that fits certain specifications. Figure 4.31a 
shows an iterative use of ISID using both operations of EXOR and 
EXNOR. This issue can be important by observing that in some 
certain cases the complement of a function can be much simpler 
than the function itself. Figure 4.31b demonstrates the use of serial-
mode ISID decomposition versus parallel-mode ISID 
decomposition. This will “chop” the total rectangular area into 
smaller and smaller triangles of lattices as demonstrated in Fig. 
4.31c. 
       The same idea of 2-D ISID can be used for 3-D ISID by using 
the algebraic identities over GF(3) to decompose the corresponding 
three-valued input three-valued output maps, such as the GF(3) Eqs. 
that are shown in Eqs. (4.21) and (4.22), respectively. 
 

       a  *GF(3)  a  *GF(3)  a = a,                                                      (4.21) 
       a  +GF(3)  a  +GF(3)  a = 0.                                                     (4.22) 
 

Example 4.14. Lets us apply multiple-valued ISID to decompose 
the map in Fig. 4.32. The ternary non-symmetric map shown in Fig. 
4.32 can be decomposed using ISID to a symmetric part and non-
symmetric part. Yet, in contrast to the binary case where this can be 
done only in one specific EXOR expression, it can be done in the 
multiple-valued case in many different ways. This can be illustrated 
in Example 4.14 since the cell with {a = 0, b = 2, c = 2} has the 
value of “0”. To produce a symmetric part the value of the cell {a = 
0, b = 2, c = 2} has the value of “1”. 
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Fig. 4.29. ⊗-ISID Shannon lattice structure: a k-maps for ⊗-ISID, and b realization in 
lattice structure. 

 
 
 
 
 
             
 
 
 
 
 
Fig. 4.30. Fully regular ⊗-ISID Shannon lattice structure using 2-to-1 multiplexers. F1 is a 
lattice structure that realizes symmetric function, and F2 is a decision tree (DT) that 
implements the binary Shannon expansion to realize the error function. 
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Fig. 4.31. ISID for the decomposition of non-symmetric Boolean functions: a iterative 
procedure using both ⊕ and ⊗ operations, b serial-mode ⊕-ISID versus parallel-mode ⊕–
ISID, and c rectangular grid layout as a result of iterative implementation of ISID, where 
the original Boolean function is decomposed into error function E1 and symmetric function 
S1, E1 is then decomposed into E2 and S2, and E2 is decomposed into E3 and S3. 
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                                 Fig. 4.32. Map for non-symmetric ternary function. 

 
       Consequently there are two possibilities for this. The first one 
follows Eq. (4.22): 1 +GF(3) 1 +GF(3) 1 = 0, and the second possibility 
follows the algebraic rule from Fig. 2.1c: 1 +GF(3) 2 = 0. Thus two 
possible ternary decompositions follow as shown in Fig. 4.33. 
Consequently two possible (3,3) 3-D lattice structures are 
implemented using the ternary ISID decomposition as shown in Fig. 
4.34. One notes that for the non-symmetric function in Fig. 4.32 one 
needs to repeat one of the variables in order to realize it using (3,3) 
3-D lattice structure. This will impose the addition of many new 
internal cells, depending on the repeated variables chosen. On the 
other hand, the structures in Fig. 4.34 do not need to repeat variables 
because the ternary error part is realized in GFSOP form. This 
reduces substantial number of nodes needed for highly non-
symmetric ternary functions. 
       The semi-regular realization of two-valued and multiple-valued 
lattice structures requires a “good” functional minimizer to 
minimize the non-lattice part of the total logic structure. One can use 
available minimizers for this purpose, or the GFSOP minimizer that 
utilizes the IF polarity from Chapt. 3. Such new structures will be 
used to produce reversible lattice structures for ternary functions in 
Chapt. 6. The new three dimensional lattice structures will be of a 
natural fit for the emerging 3-D nano technologies and optical 
devices as shown in [24]. 
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Fig. 4.33. Two possible ISID decompositions: a according to the algebraic rule: 1 +GF(3) 1 
+GF(3) 1 = 0, and b the second possibility follows the algebraic rule from Fig. 2.1c: 1 +GF(3) 
2 = 0. (All additions and multiplications here are performed using Figs. 2.1c and 2.1d.)  
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Fig. 4.34. (3,3) three-dimensional lattice structures using the ternary ISID: a realization that 
corresponds to Fig. 4.33a, and b realization that corresponds to Fig. 4.33b. All additions 
and multiplications are performed using GF3(+) and GF3(*), respectively. 
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       Also, the spatial operations of the (2,2) 2-D and (3,3) 3-D sub-
lattices will be mapped to be implemented in temporal operations of 
sub-lattices in quantum circuits and quantum computing as will be 
illustrated in Chapts. 10 and 11, respectively. 
       As observed from this Sect., the method of ISID is useful for 
maintaining interconnects of equal length for a large size lattice 
structure that does not fit specific 2-D or 3-D layout boundaries. 
Consequently, and analogously to the classical case, the ISID 
algorithm can play an important role in the minimization of the size 
of 2-D and 3-D reversible circuits, such as 2-D and 3-D reversible 
lattice structures, and therefore the minimization of the total size of 
the corresponding quantum circuits, and thus the minimization of 
the consequent number of basic quantum operations (that are 
performed by the corresponding quantum circuits) which will be 
illustrated in Chapts. 10 and 11, respectively. 
       The general result of using 3-D ISID iteratively is the 
decomposition of a total large (3,3) 3-D lattice structure into 
superimposed smaller (3,3) 3-D lattice structures as shown in Fig. 
4.35a. The iterative use of ISID in a serial-mode or parallel-mode 
will “chop” the 3-D cube of lattice into 3-D pyramids as illustrated 
in Fig. 4.35b. 
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Fig. 4.35. a ISID for three-dimensional (3,3) lattice structures for the decomposition of 
ternary non-symmetric function F, and b pyramid grid layout as a result of iterative 
implementation of ISID for the decomposition of a ternary function. 
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4.8 Summary 

 
In this Chapt. we presented 3-D lattice implementation of the new 
multi-valued invariant Shannon and Davio spectral transforms. We 
introduced the generalization of the concept of planar 4-neighbor 
lattice structures into 3-D (solid) 6-neighbor lattices. The 3-D 
joining rules of the new generalized sets of invariant multi-valued 
Shannon and Davio canonical expansions were derived, and the 
corresponding lattice structures were constructed. Lattice structures 
possess a very important property of high regularity, which is useful 
in many applications including fault-related issues; fault diagnosis 
(testing), fault localization, and fault self-repair. Other advantages of 
the new 3-D lattice structures include: (1) no need for layout routing 
and placement in 3-D space, (2) one-to-one mapping to regular 
isomorphic 3-D hardware structure (such as 3-D FPGAs), (3) 
regularity leads to the comparable ease of manufacturability, (4) 3-D 
lattices do not have intersecting edges which make them very 
suitable for quantum logic that will be presented in Chapts. 10 and 
11, and (5) the 3-D new lattices are especially well suited for deep 
sub-micron technologies and future nano-technologies where the 
intrinsic physical delay of the irregular and lengthy interconnections 
limits the device performance (i.e., high power consumption and 
high delay in the interconnects especially at high frequencies 
(speeds) of operation).  
       A new decomposition called Iterative Symmetry Indices 
Decomposition (ISID) for Boolean and multiple-valued logic is 
introduced. This decomposition superimposes iteratively the 
symmetric part and the error part of a non-symmetric Boolean or 
multiple-valued functions. It has been shown [229] that most of 
circuit area is occupied by local and global interconnects, and the 
delay of interconnects is responsible for about 40-50% or more of 
the total delay associated with a circuit. Thus maintaining, as 
possible, equal length local inter-connects in a large size lattice 
structure, for specific layout constraints, will minimize the total 
length of wire used and consequently minimize the delay and power 
consumed. This idea of maintaining interconnects of equal length 
for a large size lattice structure that does not fit specific two-
dimensional or three-dimensional layout boundaries can be achieved 
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using ISID. ISID algorithm can play an important role in the 
minimization of the size of reversible lattice structures and thus the 
minimization of the total size of the corresponding quantum circuits 
that will be illustrated in Chapt. 10. 
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5 Reversible Logic: Fundamentals and New 
Results 
 
 
 
 
 
Due to the anticipated failure of Moore’s law around the year 2020, 
quantum computing will hopefully play an increasingly crucial role 
in building more compact and less power consuming computers 
[93,107,167,248,253]. Due to this fact, and because all quantum 
computer gates (i.e., building blocks; primitives) must be reversible 
[37,38,39,73,74,75,95,97,139,150,167,203,245,246], reversibility                  
in computing will have increasing importance in the future design of 
regular, compact, and universal structures and machines (systems). 
(n,k) reversible circuits are circuits that have (n) inputs and (k) 
outputs and are one-to-one mappings between vectors of inputs and 
outputs, thus the vector of input states (values) can be always 
uniquely reconstructed from the vector of output states (values). 
(k,k) reversible circuits are circuits that have the same number of 
inputs (k) and outputs (k) and are one-to-one mappings between 
vectors of inputs and outputs, thus the vector of input states (values) 
can be always uniquely reconstructed from the vector of output 
states (values). Conservative circuits [98,210,211,212] are circuits 
that have the same number of values in inputs and outputs (e.g., the 
same number of ones in inputs and outputs for binary, the same 
number of ones and twos in inputs and outputs for ternary, etc). 
Conservativeness exists naturally in physical laws where no energy 
is created or destroyed. 
       As was proven in [37,139] it is a necessary but not sufficient 
condition for not dissipating power in any physical circuit that all 
system circuits must be built using fully reversible logical 
components. An important argument for power-free computation in 
a computer that “pushes information around” using reversible logic 
is given in [139], using the model of a particle in a bistable potential 
well, as follows: 
 

     … Let us arbitrarily label the particle in the left-hand well as the ZERO   
         state. When  the particle is in the right-hand well, the device is in the   
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         ONE state. Now consider the operation RESTORE TO ONE, which   
         leaves the particle in the ONE state, regardless of its initial location.        
         if we are told that the particle is in the ONE state, then it is easy to        
         leave it in the ONE state, without spending energy. If on the other   
         hand we are told that the particle is in the ZERO state, we can apply   
         a force to it, which will push it over the barrier, and then, when it              
         has passed the maximum, we can apply a retarding force, so that   
         when the particle arrives at ONE, it will have no excess kinetic   
         energy, and we will not have expended any energy in the whole   
         process, since we extracted  energy from the particle in its downhill   
         motion. Thus at first sight it seems possible to RESTORE TO ONE    
         without any expenditure of energy … 
 

       As a consequence, the statement “information is physical”, and 
consequently the famous Eq. “information loss = energy loss” are 
appropriate [139]. For this reason, different technologies have been 
investigated that implement reversible logic in hardware. Fully 
reversible digital systems will greatly reduce the power consumption 
(theoretically eliminate) through three conditions: (1) logical 
reversibility: the vector of input states (values) can always be 
uniquely reconstructed from the vector of output states (values), (2) 
physical reversibility: the physical switch operates backwards as 
well as forwards, and (3) the implementation using “ideal-like” 
switches that have no parasitic resistances. 
       To achieve reversible computing, different technologies have 
been studied to implement reversible logic in hardware including 
CMOS [68,70,71,72,131,143,152,153,206,250], optical 
[17,24,62,63,64,65,156,190,197,222], magnetic [132], mechanical 
[154], and quantum [31,53,55,111,112,156,259], respectively. 
Complete complex reversible circuits were fabricated [35].  
       Bit-permutations are a special case of reversible functions, that 
is, functions which permute the set of possible input values. 
Consequently, and in addition to logic synthesis, reversible 
computing was applied in areas where computational tasks are 
important enough to justify new microprocessor instructions and 
instruction sets where bit-permutation instructions greatly improve 
the performance of several standard algorithms as matrix 
transposition. These applications include digital signal processing, 
communications, computer graphics, and cryptography [225], where 
it is required that all of the information encoded in the input must be 
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preserved in the output. Figure 5.1 illustrates the inclusion 
relationship between various classes of reversible circuits, where the 
shaded areas indicate the sub-sets of reversible logic synthesis that 
have been worked with throughout this Book. 
 

 

 

 

 

 

Fig. 5.1. Set-theoretic relationship between various classes of reversible logic. 

 
       Billiard Ball Model (BBM) is one of the fundamental models 
for reversible computing [98]. Cellular Automata (CA), which are 
computationally universal as they can compute any function, were 
modeled as a BBM [98]. Consider the elements in the BBM in Fig. 
5.2 where billiard balls move on a lattice with unit velocity, and 
scatter off of each other and from walls. Two balls colliding 
generate the AND function, and if one of the streams of balls is 
continuous it generates the NOT function of the other input. These 
two elements are sufficient to build up all of Boolean logic. Specific 
memory structures can be implemented by delays, and wiring by 
various walls to guide the balls. The balls can be represented by four 
bits per site (one for each direction), with one extra bit per site 
needed to represent the walls. This kind of computing developed in 
[98] has many interesting features; no information is ever destroyed, 
which means that it is reversible (it can be run backwards to produce 
inputs from outputs), and which in turn means that it can be 
performed (in theory) with arbitrarily little dissipation [139].    
       Reversibility is also essential for designing quantum Cellular 
Automata (QCA), since quantum evolution is reversible. A quantum 
CA is much like a classical CA, but it permits the sites to be in a 
superposition of their possible states [145]. This is a promising 
conceptual architecture model for building quantum computers 
[101]. 
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Fig. 5.2. Billiard Ball Logic (BBL): a transport, b scattering (logic), c reflection, d shift, e 
delay (memory), and f crossover. 

 
       In this Chapt., fundamental reversible primitives are presented, 
new theorems for reversible logic are introduced, and the 
corresponding reversible gates are created. Figure 5.3 demonstrates 
the link between the continuation of the theoretical development 
from this Chapt. and the following Chapts. 
 
 
 
 
 
 
 
Fig. 5.3. A graph illustrates the theoretical development of theorems for reversible logic in 
this Chapt. 

 
       The new results and theorems that are obtained from this Chapt. 
are built on top of the results that were introduced in Chapt. 2, and 
will be utilized in Chapt. 6 in the construction of reversible lattice 
structures, and in Chapt. 10 where the quantum circuits for the 
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corresponding reversible lattice structures will be introduced. The 
main contributions of this Chapt. are:   
• The invention of new methodology to generate reversible multiple-  
   valued Shannon decompositions (that includes the binary case as a  
   special case): Latin Square Property of the Generalized Basis   
   Function Matrix. 
• The generation of reversible multiple-valued Davio  
   decompositions. 
• Exhaustive classification and count of all possible reversible  
   multiple-valued Shannon and Davio gates into classes. 
• Generalizations of two-valued Margolus primitive. 
• Synthesis of reversible combinational logic circuits. This includes   
   various reversible code converters, reversible barrel shifter,    
   reversible sorter, and reversible MIN/MAX tree. 
       The remainder of this Chapt. is organized as follows. Basic 
reversible gates and circuits are presented in Sect. 5.1. The 
elimination of the garbage outputs in two-valued reversible circuits 
is presented in Sect. 5.2. Examples of combinational reversible 
circuits are given in Sect. 5.3. A new general methodology for the 
creation and classification of new Galois-based reversible spectral 
transforms, expansions, and examples of such transforms and 
expansions are presented in Sect. 5.4. The process of eliminating 
garbage outputs in multiple-valued reversible circuits is introduced 
in Sect. 5.5. A Summary of the Chapt. is presented in Sect. 5.6. 

 
5.1 Fundamental Reversible Logic Primitives and Circuits 
 
Reversible circuits which are hierarchically composed of reversible 
primitives have two types of outputs in general: (1) functionality 
outputs, and (2) outputs that are needed only to achieve reversibility 
which are called “garbage” [98]. Many reversible gates have been 
proposed as building blocks for reversible (and consequently 
quantum) computing. Figure 5.4 shows some of the binary (k,k) 
reversible gates that are commonly used in the synthesis of 
reversible logic circuits [6,14,95,126,127,128,129]. It is noted from 
Fig. 5.4 that while Wire (Buffer), Not, and Swap gates are naturally 
reversible, others are not, and thus “garbage” has to be added.         
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       Multiple-valued counterparts of similar reversible primitives 
and some of their applications were introduced in 
[6,11,14,190,191,192,193]. Figure 5.5 illustrates the multiple-valued 
gate from [191]. More multiple-valued gates and the systematic 
methodology for their creation and classification will be introduced 
in Sect. 5.4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.4. Binary reversible gates: a (1,1) Wire, b (1,1) Inverter, c (2,2) Swap, d (2,2) 
Feynman gate (also known as quantum XOR, Controlled-NOT), e (3,3) Toffoli gate (also 
known as Controlled-Controlled-NOT), f Maximum Cofactor (MC) gate, g (3,3) Fredkin 
gate, h Margolus0 gate, i Margolus1 gate, and j Margolus2 gate. 
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Fig. 5.5. Multi-valued logic primitive: Picton gate. 

 
       Although most of available literature on reversible computing 
presents gates that are (k,k) reversible, other literature has reported 
the conceptual need for (n,k) reversible primitives in general. The 
need for (n,k) reversible primitives stems from the fact that the 
logical model must fit the physical reality of computing, and not to 
be disjoint from the physical laws of computing as it was in the 
previous abstract mathematical logics before reversible (and thus 
quantum) computing. For instance, the Interaction gate 
[62,63,64,222] has been reported to be of a good fit to reversible 
computing in optics. Figure 5.6 illustrates some of the (n,k) 
reversible gates. (It is important to note that here fan-out and 
feedback are not allowed in reversible computing applications using 
either (k,k) reversible gates or (n,k) reversible gates.) 
       Fredkin gate [98] is one of the most basic building blocks in 
reversible and quantum computing. Many propositions have been 
proposed to realize the Fredkin gate in various technologies: 
Optical, Electrical, Mechanical (nano-technology), and Quantum. 
The Fredkin gate belongs to a group of gates that each represents a 
fundamental family of logic gates in reversible computing. These 
families of reversible gates are Fredkin-like, Toffoli-like, and 
Feynman-like gates. It will be shown in Sect. 5.4 how to formally 
generalize the Fredkin gate to any multiple-valued logic radix.  
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Fig. 5.6. Some (n,k) reversible gates: a (2,4) Interaction gate, b (2,3) Switch (Priese) gate, 
and c (2,3) AND gate. 

 
       This is especially important for ternary logic since ternary logic 
is the logic for regular lattice realization in three-dimensional space. 
It can be observed in Fig. 5.4 that while Feynman gate is not 
universal since it is composed only of a linear (EXOR) part, the 
Toffoli gate is universal as it is composed of a linear (EXOR) and 
nonlinear (AND) parts. 
       The multiple-valued gate in Fig. 5.5 is just one example of 
families of multiple-valued reversible gates. For example, Feynman 
gate from Fig. 5.4 can be extended to any radix over a Galois field 
using the same topological circuits, and the only difference will be 
the type of AND and OR operations that have to be performed over 
the corresponding radix of a Galois field. Also, note that in Fig. 5.4, 
the Fan-Out gate (Copying gate) is built using a single Feynman 
gate with constant “0” at the XOR control-input, and the Swap gate 
which is not realizable in quantum circuits is built using three 
serially inter-connected Feynman gates (this will be illustrated in 
Chapt. 11). Also, one can note that while a Maximum Cofactor 
(MC) gate (which is a member of a bigger family of related gates) 
produces a maximum number of cofactors (18 cofactors) for three 
binary inputs, other gates do not. The production of cofactors for 
various (k,k) reversible primitives is shown in Fig. 5.7 [8]. It has 
been shown in [98] that for a (k,k) reversible gate to be universal the 
gate should have at least three inputs (i.e., (3,3) gate). Various 
binary (3,3) reversible gates that are universal in two inputs have 
been also shown in [126]. 
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       Balanced primitives are primitives for which each output value 
appears a number of times which is equal to the number of times 
that each of the other output values appears. For example, in ternary 
(4,4) reversible primitive which is balanced, the number of times 
that 0’s appear in the outputs is equal to the number of times that 1’s 
appear in the outputs and also equal to the number of times that 2’s 
appear in the outputs, and this is equal to (81/3) = 27 times for each 
output. One can note that while the (k,k) reversible gates: Wire 
(Buffer), Inverter, Swap, Fredkin, and Margolus are balanced and 
conservative, other reversible gates: Feynman, Toffoli, and MC are 
balanced but not conservative. In general, reversible primitives can 
be classified into families according to the corresponding functional 
properties of such gates [126], like being (or not being) 
conservative, balanced, cyclic, 0-1 preserving, invertible, etc. 

 
5.2 The Elimination of Garbage in Two-Valued Reversible 
Circuits 
 
In reversible logic, it is important to construct the inverse of the gate 
to eliminate the garbage outputs [95,98,262,263]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 5.7. Demonstration of the number of cofactors for various (k,k) reversible gates. 
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   Feynman            Toffoli                   Fredkin                  Margolus                               MC 
  (6 cofactors)     (7 cofactors)         (12 cofactors)          (15 cofactors)                   (18 cofactors) 

F2(0,b,c)=c 
F2(1,b,c)=b⊕c 
F2(a,1,c)= a⊕c 
F2(a,b,0)=ab 
F2(a,b,1)=(ab)’ 
F1(0)=0 
F1(1)=1 

F0(0)=0 
F0(1)=1 
F1(0,b)=b 
F1(1,b)=b’ 
F1(a,0)=a 
F1(a,1)=a’ 

F0(0,b,c)=bc 
F0(1,b,c)=c’+b 
F0(a,0,c)=c’a 
F0(a,1,c)=c+a 
F0(a,b,0)=a 
F0(a,b,1)=b 
F1(0,b,c)=c’b 
F1(1,b,c)=c+b 
F1(a,0,c)=ca 
F1(a,1,c)=c’+a 
 

F1(0,b,c)=b 
F1(1,b,c)=c 
F1(a,0,c)=ac 
F1(a,1,c)=a’+c 
F1(a,b,0)=a’b 
F1(a,b,1)=a+b 
F2(0,b,c)=b’c 
F2(1,b,c)=c+b 
F2(a,1,c)=a 
F2(a,b,0)=ab 
F2(a,b,1)=b’+a 
F3(0,b,c)=bc 
F3(1,b,c)=c’+b 
F3(a,0,c)=c’a 
F3(a,1,c)=c+a 
 

P(0,B,C)=(BC)’ 
P(1,B,C)=B’C’ 
P(A,0,C)=(AC)’ 
P(A,1,C)=A’C’ 
P(A,B,0)=(AB)’ 
P(A,B,1)=A’B’ 
Q(0,B,C)=CB’ 
Q(1,B,C)=B’+C 
Q(A,0,C)=A+C 
Q(A,1,C)=AC 
Q(A,B,0)=AB’ 
Q(A,B,1)=B’+A 
R(0,B,C)=BC’ 
R(1,B,C)=C’+B 
R(A,0,C)=AC’ 
R(A,1,C)=C’+A 
R(A,B,0)=A+B 
R(A,B,1)=AB 
 



 

       This is achieved by taking the outputs of the first reversible 
circuit and produce from them “inversely” the inputs. This is 
important especially in quantum computing where garbage is not 
allowed [98]. Also, it is important in certain techniques in reversible 
CMOS computing [262,263]. Figure 5.8 shows reversible circuit (in 
white color) and its reversible “mirror” (inverse) (in shaded color).    
       A gate (F) is said to be inverse of itself when FF-1 = I. For 
instance, it has been shown [98] that a Fredkin gate is the inverse of 
itself and a Toffoli gate is also the inverse to itself. The following 
examples show circuits and their inverses. 
 
 
 
 
 
 
 
 
           Fig. 5.8. The reversible circuit and its reversible mirror to eliminate garbage. 

 
Example 5.1. Figures 5.9 and 5.10 generate the inverse gate for the 
Interaction gate and the Switch (Priese) gate, respectively. To 
measure the state of the hidden functions within the total network of 
the reversible circuit and its inverse, one has to use the “spy” circuit 
[98]. (This has been shown to be of special importance in QC [98].) 

       Note that in the examples for two-valued and multiple-valued 
reversible logic synthesis through this Book, two commonly applied 
constraints for reversible logic synthesis are imposed: (1) feedback 
is not allowed, and (2) fan-out is not allowed (i.e., fan-out = 1).       
One explanation for not using fan-out in reversible logic is as 
follows: in the “forward” conventional logic synthesis combining 
wires is not allowed, so in reversible logic synthesis branching wires 
will not be allowed since branching of a signal, if looked at in 
reverse, will appear to be as combining signals. Consequently, 
Feynman gate is used as a copier (i.e., fan-out generator) by setting 
the value of the control input to value “0”. Also, one can observe 
that, when the garbage outputs are eliminated by cascading the 
forward reversible circuit with the inverse reversible circuit and 
therefore the inputs are generated as outputs from the whole 
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garbage-free netowork, although it is possible in some technologies 
to connect the inputs that are generated at the output of the garbage-
free network to the inputs of the whole network using wires (e.g., 
CMOS technology), it is not possible to do so in quantum circuits 
since the concept of “wire” does not exist physically.  
 
 
 
 
 
 
                           a                                                                      c 
                 
 
 
 
 
  
 
 
 
                                                            b                                                    d 
Fig. 5.9. Interaction gate: a truth table, b logic circuit, c the inverse truth table, 
and d the inverse logic circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.10. Switch (Priese) gate: a truth table, b logic circuit, c inverse truth table, and d 
inverse logic circuit. 

  Input    Output 
     1   2    3   4      A        B      
    0   0    0   0       0        0  
    0   1    0   0       0        1 
    0   0    1   0       1        0  
    1   0    0   1       1        1  

    1       0       0   0    1   0  

   Input     Output 
    A        B      1   2    3   4 
    0       0       0   0    0   0  
    0       1       0   1    0   0  

    1       1       1   0    0   1  

Inverse 

    a                                              c 

     0        0        0      0      0   

  Input    Output 
    A       B        1     2      3   

     0        1        1      0      0    
   1        0        0      0      1   

     1        1        0      1      1   

Inverse 
     0     0      0        0        0   

  Input      Output 
      1      2      3       A      B   

     1     0      0        0        1   
     0     0      1        1        0     
     0     1      1        1        1     

                 b                                                           d 
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Example 5.2. This example shows the process of obtaining two-
valued reversible inverse gates for fundamental reversible (forward) 
gates. These gates are illustrated in Figs. 5.11 through 5.13. One can 
note that Fredkin gate in Fig. 5.11 is the inverse to itself. The same 
note can be observed for the case of two-valued Feynman and 
Toffoli gates in Figs. 5.12 and 5.13, respectively.  
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                                                                      e 
 
Fig. 5.11. a Truth table for reversible forward Fredkin gate, b truth table for reversible 
inverse Fredkin gate, c reversible forward Fredkin circuit, d reversible inverse Fredkin 
circuit, and e the elimination of garbage for Fredkin gate by combining the reversible 
forward Fredkin circuit with the reversible inverse Fredkin circuit. 
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                                       c                                                       d 
 
 
 
 
 
 
                                                          e 
 
Fig. 5.12. a Truth table for reversible forward Feynman gate, b truth table for reversible 
inverse Feynman gate, c reversible forward Feynman circuit, d reversible inverse Feynman 
circuit, and e the elimination of garbage for Feynman gate by combining the reversible 
forward Feynman circuit with the reversible inverse Feynman circuit. 
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a b c d e f 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 1 

1 1 1 1 1 0 

 
a                                                                 b 

 
 
 
 
 
 
 
 
                                          c                                                                       d 
 
 
 
 
 
 
 
                                                                  e 
 
Fig. 5.13. a Truth table for reversible forward Toffoli gate, b truth table for reversible 
inverse Toffoli gate, c reversible forward Toffoli circuit, d reversible inverse Toffoli 
circuit, and e the elimination of garbage for Toffoli gate by combining the reversible 
forward Toffoli circuit with the reversible inverse Toffoli circuit. 
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       The following example illustrates the concept of the creation of 
the total network that consists of the reversible circuit and its mirror 
image, and the use of “spy” circuit to measure the hidden 
functionalities within the total network.  
Example 5.3. Figure 5.14 shows the network composed of the 
forward reversible part, inverse reversible part, and the “spy” circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.14. An illustration of the creation of the reversible circuit and its mirror image: a 
truth table for the forward reversible circuit, b truth table for the inverse reversible circuit, 
and c the total network including the “spy” circuit. 
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Function: F 

 ABCD           XYZV 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0011 
1011 
0010 
1010 
0000 
0111 
0001 
0110 
1111 
1000 
1110 
1001 
1101 
0101 
1100 
0100 

Function-1: F-1 

 XYZV            ABCD 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0100 
0110 
0010 
0000 
1111 
1101 
0111 
0101 
1001 
1011 
0011 
0001 
1110 
1100 
1010 
1000 

  a                                                                    b 



 

5.3 Combinational Reversible Circuits 

 
Reversible circuits can be synthesized using careful design 
methodologies where one utilizes the outputs from a previous stage 
as inputs to the next stage. Various reversible circuits have been 
synthesized using this methodology [8,200]. This Sect. introduces 
some of these circuits. Figure 5.15 illustrates the creation of all of 
the 16 possible binary logic functions of two variables (cf. Fig. G.3 
in Appendix G) using certain reversible logic primitives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5.15. Synthesis of various Boolean functions using some reversible logic primitives. 
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       Note that such constructions are not unique, and thus the 
optimization criteria should be (1) minimum size and (2) have 
mimimum garbage used in the synthesis. Figure 5.16 illustrates the 
synthesis of half-adder and full–adder using Feynman (Controlled-
NOT: CN) and Toffoli (Controlled-Controlled-NOT: CCN) gates. 
 
 
 

 

 

 

 

 

 

 

                                                          c 

 

                                                                          

 
 
 
                                                          d 
 
Fig. 5.16. Reversible logic synthesis of half- and full-adders: a half-adder truth table, b 
full-adder truth table, c half-adder reversible circuit, and d full adder reversible circuit. 
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       Figure 5.17 demonstrates one possible reversible realization of 
various coding schemes (Natural, Gray, and Aiken) [8] using 
Feynman and Toffoli gates. 
 

 

 

 

 

 

 
 
 
 
 
 
                                                                             c 
 
 
 
 
 
                                                                          
 
 
 
 
 
 
 
 
 
                                                                       d 
Fig. 5.17. a truth tables for Natural, Gray, and Aiken codes, b reversible cascade of Natural 
code, c reversible circuit of Gray code, and d reversible circuit of Aiken code. 
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       As shifters are important in combinational and sequential logic 
synthesis, it is important to produce a reversible logic shifter. Figure 
5.18 illustrates a novel reversible Barrel shifter design from [8]. 
Figure 5.18 represents one possible design of concurrent shift-left 
and shift-right reversible Barrel shifter, which shows a fundamental 
concept in the design of reversible logic circuits: the idea of the use 
of reversibility to perform multiple operations using the same design 
while retaining reversibility [8]. 
       Note that by controlling the value of the variable in the first 
level, the Barrel shifter operates in the shift-left mode by setting the 
value of variable X in the first level to value “0” and collecting the 
shifted-left outputs from the locations that are marked by (X) at the 
outputs of Fredkin gates,  or the shift-right mode by setting the value 
of variable X in the first level to value “1” and collecting the shifted-
right outputs from the locations that are marked by (+) at the outputs 
of Fredkin gates, respectively. The first level of the reversible Barrel 
shifter will shift the inputs by one location, the second level will 
shift the inputs by two locations, the third level will shift the inputs 
by three locations, and the fourth level will shift the inputs by four 
locations (i.e., full cycle or rotation). 
       Figure 5.19 illustrates the use of MIN/MAX gate, which is 
synthesized from Picton gate, to realize a multiple-valued Sorter [8]. 
By following the paths, from the inputs to the outputs, one will 
obtain the sorted values of the inputs at the outputs. 
       Figure 5.20 illustrates a MIN/MAX Tree [8] using MIN/MAX 
from Fig. 5.19a. The inputs in Fig. 5.20b are (A0, A1, A2, A3, B0, 
B1, B2, B3). The outputs in Fig. 5.20b are denoted as (1), (2), (3), 
(4), (5), (6), (7), and (8). By following the paths from inputs to the 
outputs in Fig. 5.20b, one obtains the following MIN and MAX 
expressions at the outputs of the MIN/MAX tree: 
Output (1): MAX [MIN (A3,B3), MIN (A2,B2)],  
Output (2): MIN [MAX (A3,B3), MAX (A2,B2)],  
Output (3): MAX [MIN (A1,B1), MIN (A0,B0)],  
Output (4): MIN [MAX (A1,B1), MAX (A0,B0)],  
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                       Fig. 5.18. Concurrent shift-left (X) and shift-right (+) Barrel shifter. 
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Fig. 5.19. Reversible pipelined 4-input binary combinational sorter: a two interconnected 
Picton gates, b symbol for  the gate from (a), c symbol for (b), and d binary and multi-
valued reversible Sorter. 

0 
 
1 

0 
 
1 

A < B 

0 
 
1 

0 
 
1 

A < B 

 MIN(A,B) 
 
 
 
 MAX(A,B) 

A 
 
B 
 
 
0 

 

 
1    a 

 
MIN/MAX 

 
MIN/MAX 

 
MIN/MAX 

 
MIN/MAX 

 
MIN/MAX 

 
MIN/MAX 

A1 
B1 
0 
1 
 
 
 
A2 
B2 
0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

≥≥≥≥ 

≥≥≥≥ 

A 
 
B 
0 
 
1 

  
 
 
  
   MIN(A,B) 
 
   MAX(A,B) 

 
   MIN/MAX 

 

b 

A 
B 
0 
1 

  
 
 
  MIN(A,B) 
  MAX(A,B) 

   c     

   d 

 132      5.3 Combinational Reversible Circuits       



 

 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.20. Reversible MIN/MAX tree using MIN/MAX gate: a Symbol, and b reversible 
MIN/MAX tree. 
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Output(5):  
MIN[MIN{MIN(A3,B3),MIN(A2,B2)},MIN{MIN(A1,B1),MIN(A0,B0)}],  
Output (6): 
MAX[MIN{MIN(A3,B3),MIN(A2,B2)},MIN{MIN(A1,B1),MIN(A0,B0)}],  
Output (7):  
MIN[MAX{MAX(A3,B3),MAX(A2,B2)},MAX{MAX(A1,B1),MAX (A0,B0)}],  
Output (8):  
MAX[MAX{MAX(A3,B3),MAX(A2,B2)},MAX{MAX(A1,B1),MAX(A0,B0)}]. 
       Figure 5.21 [8] implements one-way production of the logic 
polynomial: F = an⋅x + an-1. Figure 5.22b [8] implements the two-
way production of the logic polynomial: F = ain ⋅(W2+W1+W0). The 
circuits in Figs. 5.21 and 5.22b apply reversible pipelined and 
reversible systolic operations. A logic cell that can be systolically 
connected to neighbor cells to implement reversible functions is the 
octagon systolic cell from Fig. 5.23a [8]. Figure 5.23b [8] resembles 
one general topological systolic structure that can implement logic 
operations using the cell from Fig. 5.23a. 
       Although new reversible circuits were synthesized in this Sect. 
by using the outputs from a previous stage as inputs to the next 
stage, no mathematical theory has been yet established to construct 
the reversible building blocks (from which more complex reversible 
systems will be constructed in the following Chapts.). Prior to the 
work in [6,7,14], the reversible logic primitives were constructed 
either by ad-hoc methods or using exhaustive computer programs to 
generate all possible reversible gates for certain radix and certain 
number of variables as in [126]. Consequently, the novel 
construction of a systematic mathematical formalism for the creation 
of reversible primitives for reversible computing from [6,7,14] is 
introduced in the next Sect. 
 
 
 
 
 
 
                        Fig. 5.21. One-directional reversible polynomial generator. 
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       Fig. 5.22. Two-directional polynomial generator: a cell, and b reversible logic circuit. 
 
 

 

 

 

 

 

 

 
                                            a                                                                 b 
 
Fig. 5.23. Logic systolic implementation: a octagon systolic cell, and b topological systolic 
structure that uses the logic systolic cell from (a). 
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5.4 Novel General Methodology for the Creation and 
Classification of New Families of Reversible Invariant 
Multi-Valued Shannon and Davio Spectral Transforms 
 
In this Sect. a new methodology for the creation and classification of 
new reversible invariant multiple-valued GF-based families of 
spectral transforms will be introduced [6,7,14]. In this Sect. we 
present and prove new theorems to systematically generate and 
classify the new families of multiple-valued invariant reversible GF-
based Shannon and Davio expansions from Sect. 2.2.2. These 
theorems are the only theorems introduced so far for reversible 
expansions, and they stand alone so far as the only formalism and 
methodology introduced in the available literature for the creation 
and classification of multiple-valued reversible Shannon and Davio 
expansions. 
 

Definition 5.1. The matrix that is constructed from the permutations 
of many basis functions of the same type of the corresponding 
spectral transform is called Generalized Basis Functions Matrix 
(GBFM). 
 

Definition 5.2. From the total state-space of all possible Generalized 
Basis Functions Matrices the matrices that produce reversible 
spectral transforms are called Reversible Generalized Basis 
Functions Matrices (RGBFM). 
 

Example 5.4. The following is the ternary Shannon transform over 
GF(3). 
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The following is one possible Generalized Basis Functions Matrix: 
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012

120

210

. 

Yet as will be demonstrated in the following theorem, the upper 
Generalized Basis Functions Matrix is not reversible; it does not 
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produce a reversible spectral transform. One possible Reversible 
Shannon Generalized Basis Functions Matrix that leads to a 
reversible spectral transform is the following matrix: 

�
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�
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�

ccc

ccc

ccc

102

021

210

. 

       In Example 5.4, note that the Shannon set of basis functions {0c, 
1c, 2c} will always appear in any of the rows of the corresponding 
Shannon RGBFM that would accordingly produce a reversible 
Shannon spectral transform (in this case a Shannon set of basis 
functions {0c, 1c, 2c} appears in the first row). 
 

Theorem 5.1. A necessary and sufficient condition to generate the 
reversible invariant multi-valued Shannon expansions is that the 
order of the permuted basis functions in the Generalized Basis 
Functions Matrix should satisfy the Latin Square Property (Cyclic 
Group Property): in any given row or column the elements in that 
row or column are different than the elements in the corresponding 
positions of the other rows or columns. 
 

Proof. Since the Shannon spectral transform matrix is orthogonal, 
then the multi-input multi-output multiple-valued Shannon 
expansion that is shown in Eq. (5.1): 
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,                   (5.1) 

 

is reversible (as an example we are using in this proof the Shannon 
set of basis functions {0c, 1c, 2c} that appears in the third row, but as 
discussed earlier, a Shannon set of basis functions {0c, 1c, 2c} can 
appear in any of the rows of the corresponding Reversible 
Generalized Basis Functions Matrix). Eq. (5.1) is reversible since it 
satisfies the following reversibility restrictions: 
(1) For number of inputs {f0, f1, f2, c} is equal to the number of 
outputs {fr0, fr1, fr2, c}. 
(2) We can uniquely reconstruct any set of inputs from the set of 
outputs and vice versa. This stems from the fact that for any reduced 
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Post literal kc the set of outputs are uniquely selected for the 
specified value of kc in the corresponding ternary truth table of the 
ternary inputs/ternary outputs (since kc = 1 iff c = k). This allows for 
the unique selection of I/O such that for any combination of inputs 
there is only one corresponding combination of outputs.         Q.E.D. 
 

       The resulting outputs in Eq. (5.1) are fully balanced; for 4-
outputs the number of times that 0’s appear is equal to the number of 
times that 1’s appear and also equal to the number of times that 2’s 
appear, and this is equal to (81/3) = 27. Also the reversible Shannon 
spectral transform in Eq. (5.1) is conservative; it has the same 
number of values in inputs and outputs (i.e., for ternary logic the 
number of ones and twos in every input vector is equal to the 
number of ones and twos in the corresponding output vector). 
Therefore the circuits (gates) that are constructed from Eq. (5.1) are 
both reversible and conservative. Utilizing the same methodology 
used in Theorem (5.1), all possible permutations of a multi-valued 
Shannon spectral transform can be converted to be a reversible 
permuted Shannon spectral transforms. 
 

Theorem 5.2. In general for any invariant Shannon spectral 
transform matrix 
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the following is a reversible expansion: 
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,            (5.2) 

where 1ˆ,1ˆ,1ˆ === γγββαα . 
 

Proof. the proof is similar to the proof of Theorem 5.1.          Q.E.D. 
 

       The following is an example of some of the total possible 
Shannon reversible expansions over GF(2) and GF(3), respectively. 
Example 5.5. Let’s produce the reversible Shannon gates for binary 
logic as well as ternary logic. 
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5.5a. In binary logic there are only two Reversible Shannon gates as 
follows: 
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The following are logic circuit realizations of Eqs. (5.3) and (5.4). 
 
 
 
 
 
 
 
 
 
Fig. 5.24. Logic circuit realizations of reversible Shannon primitives: a two-valued 
reversible Shannon (Fredkin gate), and b the flipped reversible Shannon (flipped Fredkin 
gate). Both gates are composed of two 2-to-1 multiplexers. 

 
       Note that the function of the gates in Fig. 5.24 is the 
permutation of inputs (cofactors) to produce outputs (that are merely 
a permutation of inputs). Figure 5.25 illustrates such property. 
 
 
 

 
 

                                         Fig. 5.25. Permutation of cofactors. 

 
5.5b. Utilizing Theorem 5.1, Let’s produce all the possible 
permutations of the Reversible Generalized Basis Functions Matrix 

for the invariant Shannon transform matrix 

�
�
�

�

�

�
�
�

�

�

200

010

002

 to produce 

0    1 0    1 

      fr0                               fr1 

c c 
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     fr0 = c’f0 + cf1 

 

 

 

     fr1 = c’f1 + cf0 

 fr0 = c’f1 + cf0 

 

 

 
 fr1 = c’f0 + cf1 

  5.4 Novel New Families of Reversible Multi-Valued Shannon and Davio Transforms      139       



 

the corresponding reversible invariant ternary Shannon expansions 
over GF(3). 
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       The following reversible logic circuits represent logic circuit 
realizations for Eqs. (5.6) and (5.9), respectively, where all inputs 
and outputs can have any of the ternary values (i.e., 0, 1, or 2). 
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                      Fig. 5.26. Logic circuit realization of the reversible expansion in Eq. (5.6). 

 
 
 
 
 
 
 
 

 
                        Fig. 5.27. Logic circuit realization of the reversible expansion in Eq. (5.9). 

 
Where: 

 
 

 

 

 

       Note that Eqs. (5.5) through (5.10) lead through the application 
of the Latin Square Property of the Generalized Basis Functions 
Matrix to the permutation of cofactors to achieve reversibility. Also, 
generalizations of the reversible gates (as in Figs. 5.26 and 5.27, for 
instance) are possible by using ternary inverters (shifters) (which are 
intrinsically reversible) interchangeably at the inputs and/or outputs 
of the reversible gates. 

0     1     2 0     1     2 0     1     2 
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  fr0                                  fr1                                     fr2 

      f0                                                          f1                                                      f2 
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     f0                                                          f1                                                         f2 

0     1     2 0     1     2 0     1     2 
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  fr0                                    fr1                                   fr2 

c 

Is a 2-to-1 multiplexer in binary logic 

Is a 3-to-1 multiplexer in ternary logic 

0      1 

0  1  2 
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Theorem 5.3. For each reversible invariant multi-valued Shannon 
expansion over GF(n) there exist n2 fixed reversible invariant multi-
valued Davio expansions of all types. For each type of reversible 
invariant multi-valued Davio expansion Dn there exist n reversible 
invariant multi-valued Davio expansions of that type (i.e., Dn). 
 

Proof. The proof of Theorem 5.3 provides also the systematic 
methodology of generating all possible reversible invariant multi-
valued Davio expansions. Let us prove this theorem for the ternary 
case over GF(3), for one possible reversible invariant multi-valued 
Shannon expansion. Using the following reversible invariant multi-
valued Shannon expansion: 
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For Eq. (5.11), there exists three Davio types for each row of the 
Generalized Reversible Shannon Basis Functions Matrix. Utilizing 
the derivation of ternary Davio expansion, the following are the D0-
type expansions for the first row, second row, and third row of the 
above Generalized Reversible Shannon Basis Functions Matrix 
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To produce one form of the reversible Davio0-type functional 

expansion, let us choose the transform matrix 
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in Eq. 

(5.13) to produce the corresponding reversible invariant multi-
valued Davio0 expansion. Note that we have two other choices of 
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(5.14), respectively. The utilization of 
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as our representation matrix will impose the following conditions to 
produce the overall correct Davio0 expansion: 
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Solving condition 1 over GF(3) produces the solution:  
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Solving condition 2 over GF(3) produces the solution:  
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The above solutions (for Eq. (5.13)) for the two conditions produce 
the following ternary Davio expansion: 
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which can be written in the form: 
 

       fr0,D0 = 1⋅ f0 + c⋅ (2f1+f2) + (c)2(2f0+2f1+2f2),                     (5.16)                  
       fr1,D0 = 1⋅ f2 + c⋅ (2f0+f1) + (c)2(2f0+2f1+2f2),                     (5.17)                   
       fr2,D0 =1⋅ f1 + c⋅ (2f2+f0) + (c)2(2f0+2f1+2f2).                      (5.18) 
 

The above Davio0 expansion is reversible, since Eq. (5.15) satisfies 
the following reversibility restrictions: 
(1) For the number of inputs {f0, f1, f2, c} is equal to the number of 
outputs {fr0, fr1, fr2, c}. 
(2) We can uniquely reconstruct any set of inputs from the set of 
outputs and vice versa (for any unique selection of inputs/outputs 
such that for any combination of inputs there is only one unique 
corresponding combination of outputs).                                   Q.E.D. 
 

       Each of the result outputs in Eq. (5.15) is fully balanced; the 
number of times that 0’s appear is equal to the number of times that 
1’s appear and also equal to the number of times that 2’s appear, and 
this is equal to (81/3) = 27. Also the reversible Davio0 spectral 
transform in Eq. (5.15) is conservative; it has the same number of 
values in inputs and outputs (i.e., the number of ones and twos in 
inputs is equal to the number of ones and twos in the outputs). 
Therefore the circuits that are constructed using Eq. (5.15) are both 
reversible and conservative. Reversible Davio gates (that result from 
the corresponding reversible Davio decompositions) can be 
constructed either using individual GF(*) and GF(+) gates or using 
multiplexers.  
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       The previous theorem provides a very general methodology of 
creating reversible Davio spectral transforms of any type from the 
corresponding reversible Shannon spectral transforms. Theorem 5.3 
shows also that for each reversible Shannon expansion one 
constructs the corresponding reversible Davio expansions. Utilizing 
the same methodology used in Theorem 5.3, all possible 
permutations of multi-valued Davio spectral transforms can be 
converted to be reversible permuted Davio spectral transforms. 
        Note that Eqs. (5.1), (5.2), and (5.15) can be written in the 
general form: 
 

       [ ] [ ] fMMf trgbfr

��
= ,                                                 (5.19) 

        [ ] fMc

�
= , 

 

where Mrgbf is the reversible generalized basis function symbolic 
matrix, Mt is the transform matrix, and Mc is the combined matrix 

(i.e., [ ] [ ][ ]trgbfc MMM = ). One can also obtain the output vector rf
�

 

from knowing the input vector f
�

 by using the inverse of Eq. (5.19) 
as follows: 
 

       [ ] [ ] rrgbft fMMf
�� 11 −−

= ,                                              (5.20) 

        [ ] .
1

rc fM
�−

=  
 

       Analogously to the binary case, the Matrices Mt and Mrgbf  can 
be generated recursively for an arbitrary number of variables using a 
Kronecker-like product.  Analogously to the result in Theorem 5.2, 
reversible expansions can be created for any multi-valued invariant 
Davio spectral transform. Also, the methodology of obtaining 
reversible decompositions that has been introduced in this Sect. can 
be adapted for other functional representations like K-maps, maps, 
etc. Figure 5.28 presents a tree-based analysis of the relationship of 
the reversible spectral transforms that are presented in this Book and 
other spectral transforms. 
       An extensive treatment for the count of all possible families of 
binary and multiple-valued reversible Shannon and Davio 
decompositions is presented in Appendix F. The general theories of 
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producing reversible Shannon and Davio expansions will be used 
hierarchically to obtain the corresponding reversible regular lattice 
structures in Chapt. 6. Also such reversible primitives will be used 
to obtain the quantum Shannon and Davio logic primitives that will 
be presented in Chapt. 11 in order to perform quantum computing 
using such new quantum primitives. 
 
 
 
 
 
 
 
 
                                                      (Ch. 5) 
 
 
 
                                                                     (Ch. 2) 
 
                                                     (Ch. 5) 
 
Fig. 5.28. A tree-based relationship between various non-reversible and reversible 
decompositions. Generalizations of each level of reversible Shannon and Davio expansions 
are possible through using shifters (inverters) at the input and/or output of the 
corresponding reversible gates (circuits). Also, all permutations of the expansions in each 
level can be done to yield the corresponding permuted decompositions. 

 
5.5 The Elimination of Garbage in Multiple-Valued 
Reversible Circuits 
 
The process of the elimination of output garbage in multiple-valued 
reversible circuits follow exactly the same methodology used for 
two-valued circuits. Example 5.6 illustrates the elimination of 
garbage for ternary reversible Shannon and Feynman gates, 
respectively. 
Example 5.6. This example illustrates the process of obtaining 
three-valued reversible inverse gates to some fundamental reversible 

Fundamental Multi-Valued Shannon Decomposition 

Invariant1   Invariant2             Invariantn  (Ch. 2) 

… 

Reversible 
Invariant1 

Reversible 
Invariantm 

… Reversible 
Invariant1 

Reversible 
Invariantm … … 

Davio0    …  Davioz 

… 

Davio0  … Davioz 

Reversible1  …  Reversiblew Reversible1  …  Reversiblew 

… 
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(forward) gates. These gates are illustrated in Figs. 5.29 through 
5.30, respectively. 

 
5.6 Summary 
 
In this Chapt. we introduced a new and general methodology to 
generate, classify, and count new reversible multiple-valued 
expansions and their corresponding primitives. The new results in 
this Chapt. utilize the multiple-valued families of spectral transforms 
that were introduced in Sect. 2.2.2 in order to produce the 
corresponding reversible decompositions that encompass reversible 
invariant multiple-valued Shannon and reversible multiple-valued 
Davio expansions. Such new reversible decompositions will play an 
important role for the synthesis of logic functions into reversible 3-
D regular structures as will be shown in Chapt. 6. Since the basic 
requirement for logic synthesis for several new technologies are: (1) 
reversibility, (2) no wire intersections, and (3) three-dimensionality 
(to utilize the atomic 3-D structures), the new families of multiple-
input multiple-output multiple-valued reversible decompositions that 
are presented in this Chapt. can be used to create new category of 
reversible regular structures and will be used to synthesize quantum 
logic circuits in Chapt. 10 and their corresponding quantum 
computations in Chapt. 11. Various new reversible circuits were also 
created in this Chapt. by the careful design using basic reversible 
gates. These include reversible barrel shifter, reversible code 
converters, reversible sorter, and reversible MIN/MAX tree. Such 
new reversible circuits can be used to start building a library for 
reversible logic synthesis. The process of eliminating garbage 
outputs that can be produced in two-valued and multiple-valued 
reversible circuits is also shown. This is done through the synthesis 
of the reversible inverse (mirror image) circuit and then cascading 
this circuit to the reversible forward circuit. The intermediate 
functions are measured using the “spy” circuit which is merely a 
copy circuit made up of a Feynman primitive that uses “0” value in 
the input to the XOR gate. The process of garbage elimination is 
important as quantum circuits do not allow for garbage in the 
outputs. This point will be further illustrated in Chapts. 10 and 11, 
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where quantum logic circuits and quantum computations are 
implemented for the new reversible logic structures that will be 
created in Chapts. 6, 7, and 8. 
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Fig. 5.29. a Truth table for ternary reversible forward Shannon gate, b truth table for 
ternary reversible inverse Shannon gate, c ternary reversible forward Shannon circuit, d 
ternary reversible inverse Shannon circuit, and e the elimination of garbage for ternary 
Shannon gate by combining the ternary reversible forward Shannon  circuit with the ternary 
reversible inverse Shannon circuit. 
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Fig. 5.30. Ternary reversible Feynman gate: a truth table for forward gate, b truth table for  
inverse gate, c forward circuit, d inverse circuit, and e the elimination of garbage. 
 
       Since a “forward” function is defined if one-to-one mapping 
exists between the set of values in Domain D and set of values in 
Range R, and a “forward” relation is defined if one-to-many 
mapping exists between D and R, one can define “reversible” 
function if a unique one-to-one mapping exists reversely between R 
and D, and “reversible” relation if a unique many-to-one mapping 
exists reversely between R and D. This conclusion is general (i.e., 
valid in Discrete or Continuos D and R) and can be helpful in order 
to use reversibility-based symmetries in other mathematical 
formalisms, besides spectral techniques from Sect. 5.4 in this 
Chapt., such as Group Theory for example.   
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6 Reversible Lattice Structures 

 
 
 
 
 
This Chapt. will introduce a methodology of synthesizing binary and 
multiple-valued logic functions using a regular reversible structure. 
This will be done by utilizing the new reversible binary and 
multiple-valued Shannon primitives that were introduced in 
Theorem 5.1, and the use of the process of permutation of cofactors 
that resulted from the new reversible Shannon primitives. The new 
idea in this Chapt. is: 
• The hierarchical application of the process of permutation of   
   cofactors that will produce the corresponding reversible lattices.   
• The implementation of the inverse reversible lattice structure   
   (mirror image) to produce structure that is suited for quantum   
   computing since in quantum logic garbage is not allowed. 
       The new two-valued and multiple-valued reversible lattice 
structures will be used to obtain their counterparts of quantum logic 
circuits in Chapt. 10, and the methodologies of implementing two-
valued and multiple-valued quantum computations using reversible 
lattice structures will be implemented in Chapt. 11. 
       Section 6.1 of this Chapt. presents a new general algorithm for 
the production of reversible lattice structures for any radix of Galois 
logic, and the introduction of the idea of mirror image of reversible 
lattice structures to eliminate the output garbage. Summary of the 
results that are introduced in this Chapt. will be presented in Sect. 
6.2. 

 
6.1 A General Algorithm for the Creation of Two-Valued 
and Multiple-Valued Reversible Lattice Structures 
 
It has been shown in Fig. 5.25 that the application of the processs of 
permutation of cofactors will lead to the reversible Shannon 
primitives. The algorithm for the synthesis of reversible lattice 
structures depends on the hierarchical application of this process of 
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permutation of cofactors (as a result of the application of the Latin 
square property onto the Generalized Basis Function Matrix 
(GBFM)) that has been presented in Sect. 5.4. A general procedure 
for the construction of reversible Shannon lattice structure over nth 
radix logic is as follows [6,14,182]: 
Synthesis Stage: 
(1) Utilizing a reversible Shannon primitive (From Sect. 5.4), assign 
the multi-valued map of the function (that is needed to be realized in 
the reversible lattice structure) for one output of the reversible 
Shannon primitive in the first level, and assign don’t care maps for 
the rest of the primitive outputs at the first level. Also assign don’t 
care maps to the “garbage” outputs of the primitives in each level of 
the reversible lattice structure. These “garbage” outputs are needed 
only for the purpose of satisfying reversibility. The process of 
assigning don’t cares to multi-valued maps stems from the fact that 
one does not know a priori what will be the values of the leaves of 
the corresponding reversible lattice structure. 
(2) Following the output-to-input paths of the reversible Shannon 
primitive in the first level of the reversible lattice structure, going 
from outputs-to-inputs, and using the reverse of the method of 
permutation of cofactors from Sect. 5.4 (e.g., constructing inputs 
from outputs in Figs. 5.24, 5.26, and 5.27, for instance), construct 
new maps at the input of the reversible Shannon primitive by 
permuting the output cofactors (in the output maps) that correspond 
to the expansion variable in the first level. This process of permuting 
the output cofactors will result in new maps at the inputs of the 
reversible Shannon primitive at the first level. Thus, the contents of 
the input maps will result from the permutation of the values of the 
cofactors in maps at the output of the same reversible Shannon 
primitives at the first level. 
(3) Going from top-to-bottom and left-to-right of the reversible 
lattice structure, repeat step 2 for each expansion variable in each 
level (i.e., for each reversible Shannon primitive in every level) until 
one reaches multi-valued maps at the bottom of the reversible lattice 
structure with each map having only a constant value from the set 
{0, 1, 2}. 
Analysis Stage: This is an opposite process to the process of 
synthesis. 
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(4) Following the input-to-output paths of the reversible Shannon 
primitives at the last level of the reversible lattice structure, going 
from inputs-to-outputs, and using the forward method of 
permutation of cofactors from Sect. 5.4, construct new maps at the 
output of the reversible Shannon primitives by permuting the input 
cofactors (in the input maps) that correspond to the expansion 
variable in the last level. This process of permuting the input 
cofactors will result in multi-valued maps at the outputs of the 
reversible Shannon primitives at the last level. Thus, the contents of 
the output maps (at the last level) will result from the permutation of 
the values of the cofactors in maps at the inputs of the same 
reversible Shannon primitives.     
(5) Going from bottom-to-top and right-to-left of the reversible 
lattice structure, repeat step 4 for each expansion variable in each 
level (i.e., for each reversible Shannon primitive in every level) until 
one reaches completely specified maps, in all wires throughout the 
reversible lattice structure from bottom-to-top and right-to-left, with 
no don’t cares. 
       The following examples illustrate the concept of reversible 
lattice structures.  
Example 6.1. This example illustrates the creation of the reversible 
binary lattice structure for the Boolean function (F) in Figs. 6.1 and 
6.2. Note that in Figs. 6.1 and 6.2 the desired output function is 
denoted as F and the “garbage” outputs (that are necessary only for 
reversibility) are denoted as G1-G5. 
Example 6.2. Figures 6.3 and 6.4 illustrate the creation of the 
reversible ternary lattice structure for the ternary function (F). Note 
in that Figs. 6.3 and 6.4 the desired output function is denoted as F 
and the “garbage” outputs (that are necessary only for reversibility) 
are denoted as G1-G8. 
       Note that the regular lattice structures in Figs. 6.2 and 6.4 are 
fully reversible as the vector of input values (9 inputs in Fig. 6.2, 
and 11 inputs in Fig. 6.4) can be always uniquely reconstructed from 
the vector of output values (9 outputs in Fig. 6.2, and 11 outputs in 
Fig. 6.4), respectively. One can note that the main advantage of such 
reversible structures is that they possess regularity. The 
disadvantage is that such lattice structures produce big garbage in 
the outputs.      
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Fig. 6.1. Synthesis of a reversible lattice structure: a Boolean function to be realized in 2-D 
reversible lattice structure, and b top-to-down and left-to-right algorithm to produce the 
values of leaves of the 9 input/9 output two-dimensional reversible lattice structure. 
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Fig. 6.2. Bottom-up analysis of the lattice structure for the synthesis of the Boolean 
function (F) in Example 6.1. 
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using factorization, SOP-PLA, or decomposition methods. As stated 
previously in Sects. 5.2 and 5.5, the elimination of garbage in 
reversible structures is done by using the reversible mirror image of 
the forward reversible circuit. Figure 6.5 illustrates the process of 
garbage elimination by cascading (i.e., serially interconnecting) the 
reversible forward lattice structure to the reversible inverse lattice 
structure. The functionality in the outputs can be measured using the 
“spy” circuit which is a Feynman primitive with “0” value to the 
input of its Galois addition gate. 
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Fig. 6.3. Synthesis of a ternary reversible lattice structure: a ternary function to be realized 
in a reversible lattice structure, and b top-to-down and left-to-right algorithm to produce the 
values of leaves of the 11 input/11 output reversible lattice structure. 
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Fig. 6.4. Bottom-up analysis of the resulting reversible lattice structure for the synthesis of 
the ternary function (F) in Example 6.2. 
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to itself, and that by referring to Fig. 5.29 multiple-valued Fredkin 
gate (i.e., multiple-valued reversible Shannon gate) is also the 
inverse to itself. 
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6.2 Summary 
 
A general new algorithm has been presented in this Chapt. to 
produce reversible lattice structures. This algorithm depends on the 
hierarchical application of the process of permutation of cofactors 
that has been presented in Sect. 5.4. Since garbage is not allowed in 
quantum computing, the concept of reversible inverse lattice 
structure has been also presented. The intermediate functionalities 
from the total circuit that is composed of cascading the forward 
reversible lattice structure and the inverse reversible lattice structure 
are measured using the “spy” circuit, which consists of a Feynman 
gate with value “0” to its Galois addition gate in order to make the 
copy primitive. The total network of the forward and inverse 
reversible lattice structures will be used to implement the 
corresponding quantum circuits from Chapt. 10 and quantum 
computations in Chapt. 11. 
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7 Novel Reconstructability Analysis Circuits and 
their Reversible Realizations 
 
 
 
 
 
This Chapt. will introduce another new type of reversible structures 
called Reversible Modified Reconstructability Analysis (RMRA). 
Reconstructability Analysis (RA) is an important decomposition 
technique that is used widely in system science area to decompose 
qualitative data [133,134,135,138,273,275]. This kind of 
decomposition is commonly used in the decomposition of data 
obtained in the social and system science fields, and overlaps with 
other decomposition techniques used in the social sciences as well 
like the Log-Linear (LL) decomposition method [138]. RA 
decomposition aims at the simplest decomposition of qualitative 
data using Lattice-Of-Structure (LOS) (cf. Fig. 7.1) as representation 
(generation) and contingency tables (for probabilistic data) for 
evaluation (minimization of error). 
       In lossless decomposition, the aim is to obtain the simplest 
decomposed model from data (saturated model) without the loss of 
any information (i.e., error = 0). In lossy decomposition, the aim is 
to obtain the simplest decomposed model from data (saturated 
model) with an acceptable amount of error. RA data is typically 
either a set-theoretic relation [271,272] (or mapping) or it is a 
probability (or frequency) distribution. The former case is the 
domain of set-theoretic RA or more precisely crisp possibilistic RA. 
The latter is the domain of information-theoretic RA, or more 
precisely probabilistic RA [133,134,135,138,274]. The RA 
framework can apply to other types of data (e.g., fuzzy data) via 
generalized information theory [135,223]. In this work, we are 
concerned only with crisp possibilistic RA. 
       New RA decomposition, called the Modified RA (MRA) 
decomposition [10,20,21,22,27,28,29,30] is introduced in this 
Chapt., and the lossless MRA decomposition is used to decompose 
logic functions. A comparison of the complexities obtained from the 
resulting decompositions from MRA decomposition with the 

A. N. Al-Rabadi, Reversible  Logic  Synthesis

© Springer-Verlag Berlin Heidelberg 2004



 

complexities obtained through lossless Ahsenhurst-Curtis (AC) 
decomposition and Bi-decomposition for the same Boolean logic 
functions will be also provided in Appendix H. Although the 
comparisons, which will be presented in this Chapt., and in 
Appendix H serve only as a first step, since we consider only the 
256 3-input Boolean functions, the results will provide a first useful 
“glimpse” of the comparative complexities obtained from the new 
MRA decomposition. 
       For three variables, the LOS  for RA decomposition consists of 
a total of 5 decomposed structures and 9 decomposed models (as  
model is a structure applied on data) (See Fig. 7.1). The RA 
decomposition is a general graph-based decomposition which 
applies recursively level by level the following rules: (1) remove 
one relation from the previous model, and (2) restore embedded 
relations if they are not already present. Composition process in 
Reconstructibility Analysis requires opposite rules to the rules of the 
RA decomposition process. The lattice of relations, for three-
variables, is illustrated in Fig. 7.1, where each box represents a 
relation between the variables that are represented as input lines. 
This representation that is used for RA decomposition is 
complementary to the general graph-based representation, which 
uses the general graph-based notation in which a relation is 
represented as a line connecting variables which are boxes (nodes).  
       Each variable in Fig. 7.1 represents an input variable to a 
function or a general object. Objects {A,B,C} can be for instance: A 
can be a father, B be a mother, and C be a child, and the boxes 
represents the general interaction (relation) between the three 
members of the family (i.e., father, mother, and child). Richer 
models of interaction (i.e., higher dimensional functions) can be 
constructed by considering other elements like D to be the fourth 
argument (as a family cat for instance). For 4 objects (elements) 
similar lattice of relations of 4 variables (objects, elements) is 
constructed. 
       For logic synthesis, the lattice of structure in Fig. 7.1 
represents circuit decomposition, where elements A, B, and C in 
Fig. 7.1 are the input variables to the circuit, and the resulting 
structure (in the lattice of structures in Fig. 7.1) is the decomposed 
circuit. This Chapt. introduces the following new results: 
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Fig. 7.1. Three-variable lattice of relations for RA (graph-based) decomposition: 
lines represent variables (elements or objects), and boxes represent the 
interactions between the associated variables. 
 
• Novel type of two-valued decomposition based on   
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• New type of reversible structures which is based on reversible   
   MRA (R-MRA). 
• Evaluations for MRA versus Ashenhurst-Curtis (AC)   
   decomposition and Bi-decomposition in terms of the   
   decomposability of Boolean functions and the reduction of   
   complexity is provided in Appendix H. 
       The remainder of this Chapt. is organized as follows. Section 
7.1 introduces the new two-valued Modified Reconstructability 
Analysis (MRA). Multiple-valued MRA is introduced in Sect. 7.2. 
Section 7.3 introduces the Reversible realization of MRA (R-MRA). 
A Summary of this Chapt. is presented in Sect. 7.4. (New results of 
complexity comparisons of MRA versus AC-like decompositions 
will be also introduced in Appendix H.) 

 
7.1 New Type of Reconstructability Analysis: Two-Valued 
Modified Reconstructability Analysis (MRA) 
 
This Sect. introduces an innovation in set-theoretic RA, which we 
call “modified” RA (or MRA) as opposed to the conventional set-
theoretic RA (or CRA). This innovation will be illustrated by 
Examples 7.1 and 7.2. The main idea of MRA stems from the 
following fact: While the conventional RA (CRA) decomposes on 
the set of all functional values of the corresponding function, the 
modified RA (MRA) decomposes on the set of minimum functional 
values from which the function can be totally reconstructed. In 
general, the procedure for the lossless MRA decomposition follows 
the following steps: 
(1) Using the lattice-of-relations, decompose for one value only of 
the Boolean function into the simplest error-free decomposed 
structure: 
(1a) Remove one relation between variables from the previous level. 
(1b) Add the embedded relation(s) between variables, in the current 
level, if they are not already present in the new model. 
(2) As a result of step 1, one obtains MRA decomposition for value 
“1” of the Boolean function (denoted as 1-MRA decomposition), 
and MRA decomposition for value “0” of the Boolean function 
(denoted as 0-MRA decomposition). Select the simplest model from 
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the resulting 1-MRA decomposition and the 0-MRA decomposition, 
respectively. 
(3) In the resulting simplest decomposed data model from step 2, 
generate the corresponding sub-functional values for each 
interaction (relation) between the variables that exist in the 
decomposed model. 
(4) Generate the total functional values using the intersection 
between all possible sub-functional values for 1-MRA, and the 
union between all possible sub-functional values for 0-MRA. 
Example 7.1. Figure 7.2 illustrates decomposed structures using 
both CRA and MRA decompositions, respectively for the logic 
function: F = x1x2 + x1x3.  
       CRA decomposition is illustrated in the upper half of the Fig., 
while MRA decomposition is illustrated in the lower half of the Fig. 
As one can observe, MRA decomposition yields a much simpler 
logic circuit than the corresponding CRA decomposition, while 
retaining complete information about the decomposed function. For 
CRA as shown in the top middle part of the Fig., the calculated 
function for the model x1x2f1:x1x3f2:x2x3f3 (i.e., α:β:γ) is defined as 
follows:  
 

   x1x2x3Fx1x2f1:x1x3f2:x2x3f3 ≡ (x1x2f1 ⊗ x3) ∩ (x1x3f2 ⊗ x2) ∩ (x2x3f3 ⊗ x1),  
 

where ⊗ here means the Cartesian product of sets. (For lossless 
CRA decomposition, this equals the original function x1x2x3F that is 
shown at the top left of the Fig., and for lossy CRA 
x1x2x3Fx1x2f1:x1x3f2:x2x3f3 would not be equivalent to x1x2x3F). The 
CRA model can be interpreted by the circuit shown at the top right 
of the Fig., where different projections of F are labeled f1, f2, and f3. 
In Fig. 7.2, while CRA decomposes for all values of Boolean 
functions, MRA decomposes for an arbitrarily chosen value of the 
Boolean functions (e.g., for value “1”).  
       From Fig. 7.2, one notes that 1-MRA has two advantages over 
CRA for the decomposition of two-valued functions: (1) the 
resulting decomposed structures from 1-MRA are less complex than 
the corresponding decomposed structures from CRA, and (2) the 
resulting decomposed structures from 1-MRA are directly realizable 
in Boolean-based circuits, while the resulting decomposed structures 
from CRA are not directly realizable in Boolean circuits.     
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   Fig. 7.2. CRA versus 1-MRA decompositions for the Boolean function F = x1x2 + x1x3. 

 
       The completely specified Boolean function can be retrieved if 
one knows the MRA decomposition for the Boolean function being 
equal either to “1” or to “0”. As can be observed from Fig. 7.2, 1-
MRA decomposition yields much simpler logic circuit than the 
corresponding CRA decomposition, while retaining complete 
information about the decomposed logic function. MRA simplifies 
the decomposition problem by focusing, in the original function F, 
on the three shaded tuples (“cubes”) for which F = 1. The procedure 
for 1-MRA in Fig. 7.2 is as follows: 
(1) Using the Lattice-Of-Structures (LOS), decompose the Boolean 
function of value “1” into the simplest lossless CRA decomposition. 
(2) For a particular model, selected from the LOS, get the 
projections. 
(3) Assign value “1” (for 1-MRA) to tuples in the resulted 
projections. Add all tuples that are missing in the projections which 
will have the functional value “0”. 
(4) Perform the AND operation for 1-MRA in the output block to 
obtain the total functionality. 
       Steps (2)-(4) are illustrated as follows: 
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       The output function in step (4) is the (logical) AND of the two 
sub-functions, i.e., F = f2

′(x1) ∧ f3
′(x2,x3). Set-theoretically. this is 

illustrated as F = (x1⊗(1∪x1’) ⊗0) ∩ (x2x3⊗(1∪(x2x3)’) ⊗0). The 
idea of 0-MRA versus 1-MRA is illustrated in the following 
Example 7.2. 
Example 7.2. For the logic function F = x1x2 + x1x3. Figure 7.3 
illustrates the simplest model using both 1-MRA and 0-MRA. In this 
example, the completely specified Boolean function can be retrieved 
if one knows the MRA decomposition for the Boolean function 
being equal either to “1” (that is 1-MRA) or to “0” (that is 0-MRA). 
0-MRA simplifies the decomposition problem by focusing, in the 
original function F, on the five shaded tuples (“cubes”) for which F 
= 0. The procedure used to obtain the 0-MRA in Fig. 7.3 is as 
follows: 
(1) Using the Lattice-Of-Structures (LOS), decompose the Boolean 
function of value “0” into the simplest lossless CRA decomposition. 
(2) For a particular model, selected from the LOS, get the 
projections. 
 
 
 

x1 x2 x3 

1 0 1 

 1 0 

 1 1 

x1 x2 x3 F 

1 0 1 1 

1 1 0 1 

1 1 1 1 

x1 f2
′′′′ x2 x3 f3
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  Fig. 7.3. 0-MRA versus 1-MRA decompositions for the Boolean function F = x1x2 + x1x3. 

 
(3) Assign value “0” (for 0-MRA) to tuples in the resulted 
projections. Add all tuples that are missing in the projections which 
will have the functional value “1”. 
(4) Perform the OR operation for 0-MRA in the output block to 
obtain the total functionality. 
       Steps (2)-(4) are illustrated in the following flow diagram where 
the output function in step (4) is the (logical) OR of the two sub-
functions. This is illustrated as F = f1”(x1,x2) ∨ f2

”(x1,x3). 
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       As can be observed from Fig. 7.3, 0-MRA produces more 
complex decomposed structure than 1-MRA: using the log-
functionality complexity measure from Appendix G, the log-
functionality of 0-MRA is = 6.6 while the log-functionality of 1-
MRA is = 6.5. Table 7.1 gives the complexities of the 
decomposition of all NPN-classes of 3-variable Boolean functions 
(NPN classification as well as the complexity measures are fully 
discussed in Appendix G) using CRA decomposition and the 
simplest MRA decomposition (from either 0-MRA or 1-MRA), 
respectively. 
       From both Figs. 7.2 (1-MRA) and 7.3 (0-MRA), one observes 
that MRA possesses two main advantages over CRA for the 
decomposition of Boolean functions: (1) the resulting decomposed 
structures from MRA are less complex than the corresponding 
decomposed structures from CRA, and (2) the resulting decomposed 
structures from MRA are directly realizable in Boolean-based 
circuits, while the resulting decomposed structures from CRA are 
not realizable in Boolean-based circuits, but in ternary-valued logic 
circuits, and thus the resulting logic circuits from MRA are directly 
implementable using the current technologies.        
       Table 7.1 shows that, in terms of the log-functionality 
complexity measure, in five NPN classes (classes 1, 2, 6, 8, 9) MRA 
and CRA give equivalent complexity decompositions, but in the 
remaining five classes (classes 3, 4, 5, 7, 10) MRA is superior in 
complexity reduction.  
       One observes from Table 7.1 that, when decomposition exists, 
MRA produces four distinct structures, while CRA generates only 
two distinct structures. This observation for the capability of MRA 
to generate more different structural topologies can be very 
important when compared for instance with decompositions that are 
capable of producing only a specific structural topology as a result 
of functional decomposition (e.g., Ashenhurst-Curtis (AC) 
decomposition that is shown in Appendix H). The importance of this 
point is in the potential of additional design flexibility that one can 
have, when considering the synthesis of certain functions, in the 
form of having larger space of designs that one can choose from to 
meet certain design specifications. 
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Table 7.1. Conventional RA (CRA) versus Modified RA (MRA) for the decomposition of 
all NPN-classes of 3-variable Boolean functions (See Table G.1 in Appendix G). (Compare 
the right-most two columns.) 
 

 
 
 
 

                                7.1 New Type of Reconstructability Analysis: Two-Valued MRA      167    



 

       By observing Table 7.1, one observes that the MRA 
decomposition possesses more advantages over the CRA 
decomposition when comparing the corresponding CRA versus 
MRA decompositions for all NPN-classess of 3-variable Boolean 
functions. For this purpose, we will use the MRA decomposition to 
compare RA decomposition versus the Ashenhurst-Curtis (AC) and 
Bi-decomposition (BD) (as will be illustrated in Appendix H). 
       Figure 7.4 provides a quantitative analysis of the decomposition 
of the NPN-classified functions using MRA and CRA, respectively. 
The analysis, in terms of complexity, of the results in Fig. 7.4 is as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.4. Comparison of the Log-Functionality complexity measure between modified RA 
(MRA) and conventional RA (CRA) of 3-variable NPN-classified Boolean functions. 

 
Total number of classes that CRA is better than MRA: 0. 
Total number of functions that CRA is better than MRA: 0. 
Total number of classes that MRA is better than CRA: 5 (3, 4, 5, 7, 10). 
Total number of functions that MRA is better than CRA: 144. 
Total number of classes for CRA is the same as MRA: 5 (1, 2, 6, 8, 9). 
Total number of functions for CRA is the same as MRA: 74. 
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       From the results in Fig. 7.4, one observes the clear superiority 
of MRA (whether it is 0-MRA or 1-MRA) over CRA in terms of the 
decomposition of Boolean functions. Logic circuits to realize all 
NPN-classified Boolean functions using CRA and MRA (the 
simplest decomposition from either 1-MRA or 0-MRA) are given in 
Table 7.2.  
       As can be observed that while the output block in CRA 
decomposition is the set-theoretic intersection operation (∩), the 
output block in 1-MRA decomposition is the Boolean AND 
operation and the output block in 0-MRA decomposition is the 
Boolean OR operation. The importance of this is that both the AND 
and OR Boolean operations are directly realizable in current binary 
technologies such as CMOS, while the set-theoretic intersection 
operation (∩) is only realizable in technologies that implement 
ternary logic. 
       While the log-functionality complexity measure that is used in 
Table 7.1 is a good cost measure for machine learning, it is not in 
general a good measure to measure the cost for the purpose of 
circuit design. An alternative acceptable cost measure for circuit 
design will be the count of the total number of two-input gates in the 
final circuit (C#).  
       Table 7.3 presents an initial evaluation for MRA using the C# 
complexity measure. One can note that, for all of the classes of 
NPN-classified 3-variable Boolean functions in Table 7.3, the total 
C# for all of the MRA Boolean circuits with inverters is 20, while 
the total C# for all of the MRA Boolean circuits without inverters is 
19, and this result is not surprising since usually Boolean circuits 
with inverters are more complex than the same Boolean circuits 
without counting inverters. While the results in Table 7.3 are 
technology-independent, the same results that are obtained in Table 
7.3 can be viewed from technology-dependent point of view as well. 
This is because while the realization of certain two-input logic 
primitives (gates) from Fig. G.3 (in Appendix G) needs less number 
of physical primitives (devices) in certain types of technologies, the 
same gates can need more number of devices in other types of 
technologies. 
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Table 7.2. Conventional RA (CRA) circuits versus Modified RA (MRA) circuits for the 
decomposition of all NPN-classes of 3-variable Boolean functions. 
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Table 7.3. Evaluating two-valued MRA circuits using C# cost measure. 
 

 
     Class                             C# with inverters (MRA)                C# without inverters (MRA) 

 
      1                                                     5                                                         5  
        2                                                     -                                                          -  
        3                                                     1                                                         1  
        4                                                     2                                                         2 
        5                                                     3                                                         3  
        6                                                     -                                                          -  
        7                                                     2                                                         2  
        8                                                     4                                                         3 
        9                                                     -                                                          -  
       10                                                    3                                                         3  

 

 
7.2 Multiple-Valued MRA 
 
Real-life data are in general many-valued. Consequently, if MRA 
can decompose relations between many-valued variables it can have 
practical applications in machine learning (ML) and data mining 
(DM). Many-valued MRA is made up of two main steps which are 
common to two equivalent (intersection-based and union-based) 
algorithms as follows:  
(1) partition the many-valued truth table into sub-tables, each 
contain only single functional value. 
(2) Perform CRA on all sub-tables. Figure 7.5 illustrates the general 
pre-processing procedure for the two many-valued MRA algorithms, 
which will be explained in more detail below.  
       For an “n”-valued completely specified function one needs (n-1) 
values to define the function (i.e., to be able to retrieve the 
completely specified function without any loss of information). We 
thus do all n decompositions and use for our MRA model the (n-1) 
simplest of these. Figure 7.5 illustrates the general flow diagram of 
the multiple-valued MRA decomposition using the pre-processing 
steps that are common to both of the intersection-based and union-
based algorithms.  
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                                  Fig. 7.5. Steps for many-valued MRA. 

 
       For example, using the lattice-of-structures, decompose the 3-
valued function for each individual value. One then obtains the 
simplest lossless MRA decomposition for value “0” of the function 
(denoted as the 0-MRA decomposition), for value “1” (1-MRA 
decomposition), and for value “2” (2-MRA decomposition). By 
selecting the simplest two models from these 0-MRA, 1-MRA, and 
2-MRA decompositions, one can generate the complete function. 
       In the intersection method, first CRA decompositions are 
expanded to include the full set of variable and function values, and 
these expanded decompositions are then intersected to yield the 
original table. Equivalently, one can use a union operation to 
generate the corresponding many-valued MRA as follows: (1) 
decompose the original table (function or relation) into sub-tables 
for each output value: e.g., T = T0 ∪ T1 ∪ T2 for the corresponding 
output values O0, O1, and O2 respectively, (2) do the 3-valued CRA 
decomposition on each sub-table. Let Mj be the decomposition of Tj, 
and (3) the reconstructed function or relation (T*) is the union of all 

the sub-table decompositions, �
1

0

* −

=
⊗=

n

j
OMT jj , where ⊗ is the 
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set-theoretic Cartesian product. The union procedure can also be 
done with (n-1) decompositions. 
       The following are two examples which illustrate many-valued 
MRA of three-valued logic functions. In the first example MRA can 
decompose the function for only two values, and one has no choice 
but to use both of these decompositions in the MRA model. In the 
second example, the function is decomposable for all three of its 
values, and the two simplest decompositions are chosen to define the 
model. In discussing the second example, we show that this 
approach is generalizable to set-theoretic relations, in addition to 
mappings. 
Example 7.3. For the following ternary map: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following is the many-valued MRA intersection algorithm. 
Step 1. decompose the ternary chart of the function into three 
separate tables each for a single function value. This will produce 
the following three sub-tables. 
 
 
 
 

F 

 X1X2 

X3 

   0         1            2  

    00       0          0             0  

   01       1          1             0  

   02       1          1             1  

   10       0          0             2  

   11       0          0             2  

   12       1          1             1  

   20       0          2             0  

   21       1          1             0  
     
    22       2          2             0 
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                                D0                      D1                      D2 
Step 2. Perform CRA for each sub-table. 
Step 2a. The simplest error-free 0-MRA decomposition is the 
original “0”-subtable itself since it is not decomposable. 
Step 2b. 1-MRA decomposition of D1 is as follows: 

Table 1   Table 2 
X1 X2  :   X2X3 

0    1      1   0 
0    2      1   1 
1    2      2   0 
2    1      2   1 

                                                           2   2 
                                                      D11        D12 
Step 2c. The 2-MRA decomposition of D2 is as follows: 

Table 3   Table 4 
X1 X3  :  X2X3 

1    2      0   2 
2    1      1   2 
2    0      0   1 

                                                           2   0 
                                                           2   1 
                                             D21       D22 
 

THE INTERSECTION ALGORITHM 
 

Step 3.1. Select the two simplest error-free decomposed models. In 
this particular example, these are 1-MRA and 2-MRA 
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decompositions. MRA thus gives the decomposition model of 
D11:D12:D21:D22 from which the original function can be 
reconstructed as follows. 
Step 3.2. Note that, for Tables 1 and 2, the MRA decomposition is 
for the value “1” of the logic function. Therefore, the existence of 
the tuples in the decomposed model implies that the function has 
value “1” for those tuples, and the non-existence of the tuples in the 
decomposed model implies that the function does not have value “1” 
but “0” or “2” for the non-appearing tuples. This is shown in Tables 
1’ and 2’, respectively. Similarly note that, for Tables 3 and 4, the 
MRA decomposition is for the value “2” of the logic function. 
Therefore, the existence of the tuples in the decomposed model 
implies that the function has value “2” for those tuples, and the non-
existence of the tuples in the decomposed model implies that the 
function does not have value “2” but “0” or “1” for the non-
appearing tuples. This is shown in Tables 3’ and 4’, respectively. 
 

  Table 1’    Table 2’            Table 3’     Table 4’ 
  X1 X2 F1  :  X2 X3 F2           X1 X3 F3  :  X2 X3 F4 
   0  0  0,2      0  0  0,2             0  0  0,1     0  0  0,1 

                   0  1  1,0,2   0  1  0,2             0  1  0,1     0  1  2,0,1 
                   0  2  1,0,2   0  2  0,2             0  2  0,1     0  2  2,0,1 
                   1  0  0,2      1  0  1,0,2          1  0  0,1     1  0  0,1 
                   1  1  0,2      1  1  1,0,2          1  1  0,1     1  1  0,1 
                   1  2  1,0,2   1  2  0,2             1  2  2,0,1  1  2  2,0,1 
                   2  0  0,2      2  0  1,0,2          2  0  2,0,1  2  0  2,0,1 
                   2  1  1,0,2   2  1  1,0,2          2  1  2,0,1  2  1  2,0,1 
                   2  2  0,2      2  2  1,0,2          2  2  0,1     2  2  0,1 
 

       In Tables 1’ and 2’ (i.e., the decomposition for value “1” of the 
function), the existence of value “1” (of sub-relations F1 and F2) 
means that the value “1” appeared in the original non-decomposed 
function for the corresponding tuples that appear in each table, but 
does not imply that the values “0” or “2” (of sub-relations F1 and F2) 
did not exist in the original non-decomposed function for the same 
tuples. Therefore “0” and “2” are added to “1” as allowed values. In 
the remaining tuples, however, only “0” and “2” are allowed since 
the value “1” did not occur. Similarly, in Tables 3’ and 4’, the 
existence of the value “2” (of sub-relations F3 and F4) means that the 
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value “2” appeared in the original non-decomposed function for the 
corresponding tuples that appear in each table, but does not imply 
that values “0” or “1” did not exist in the original non-decomposed 
function for the same tuples. Therefore “0” and “1” are added to “2” 
as allowed values. In the remaining tuples, however, only “0” and 
“1” are allowed since the value “2” did not occur. Set-theoretically, 
obtaining Tables 1’, 2’, 3’, and 4’ from Tables 1, 2, 3, and 4 is 
described as follows where ′ here means complement. 
Table 1’: (D11⊗(0,1,2))∪(D11′⊗(0,2)), 
Table 2’: (D12⊗(0,1,2))∪(D12′⊗(0,2)), 
Table 3’: (D21⊗(0,1,2))∪(D21′⊗(0,1)), 
Table 4’: (D22⊗(0,1,2))∪(D22′⊗(0,1)), 
Step 3.3. Tables 1’, 2’, 3’, and 4’ are used to obtain the block 
diagram in Fig. 7.6, where the following set-theoretic Eqs. govern 
the outputs of the levels in the circuit shown in the Fig.: F = F5 ∩ 
F6, F5 = F1 ∩ F2, F6 = F3 ∩ F4, where F1 is given by Table 1’, F2 
by Table 2’, F3 by Table 3’, and F4 by Table 4’, respectively. 
 
 
 
 
 
 
 
 
 
 
Fig. 7.6. The resulting decomposed structure by applying the multi-valued MRA 
decomposition. 

 
       The intermediate sub-functions, F5 and F6 are shown in the 
following maps, respectively. 
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F3 

 
 
F4 
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x1 

  
x2 

 
x3  

Table 1’ 

Table 2’ 

Table 3’ 

Table 4’ 

∩ 
F5 

F6 ∩ 

∩ 

x1 

x2x3 

   00  01 02 10 11  12 20  21 22 

0  0,20,2 0,2  1   1  0,2  1    1   1 

1  0,20,2 0,20,20,2 0,2  1    1   1 

2  0,20,2 0,2  1   1  0,20,2 0,2 0,2 
F5 = F1 ∩ F2 

x1 

 x2x3 

  00  01 02 10  11 12  20  21 22 

0 0,1 0,1 0,10,10,1 0,10,1 0,10,1 
 
 
1  0,10,1  2  0,10,1  2  0,1 0,10,1 

2 0,1  2  0,1 0,10,1 0,1 2   2   0,1 
F6 = F3 ∩ F4 
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       Note that in Fig. 7.6 the intersection blocks in the second level 
and the intersection block at the third (output) level, are general and 
do not depend on the function being decomposed. Only the tables at 
the first level depend upon this function. 
 

THE UNION ALGORITHM 
 

Steps 1 and 2 are the same as in the intersection algorithm. 
Step 3.1. Using the decomposition model D11:D12:D21:D22 obtain 
D1 and D2 by standard methods as follows: 
D1 = (D11⊗x3)∩(D12⊗x1), 
D2 = (D21⊗x2)∩(D22⊗x1), 
D0 = (D1∪D2)′, 
where D1 is the decomposition for function value “1”, D2 for 
function value “2”, and x1, x2, and x3 ∈ {0,1,2}. 
Step 3.2. Perform the set-theoretic operations to obtain the total 
function from the decomposed sub-functions. 
x1x2x3F = (D1⊗1)∪(D2⊗2)∪((D1∪D2)′⊗(1∪2)′), 
               = (D1⊗1)∪(D2⊗2)∪((D1∪D2)′⊗0). 
Alternatively, one can use all three decompositions: 
x1x2x3F = (D0⊗0)∪(D1⊗1)∪(D2⊗2). 
       The function value of (x1,x2,x3) is determined by the following 
block diagram, where G performs the following operation: 
F = 0 if (x1x2x3) ∈ D0, 
F = 1 if (x1x2x3) ∈ D1, 
F = 2 if (x1x2x3) ∈ D2. 
 
 
 
 
 
 
 
       Note that the logic function in Example 7.3 is non-
decomposable using CRA. Consequently, as can be seen from this 
example and analogously to the binary case, the new many-valued 
MRA is superior to CRA. 
 

G 

x1 
x2 
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       We now consider an example where CRA does decompose, and 
also where MRA decomposes for all three values. 
Example 7.4. Let us generate the MRA decomposition for the 
ternary function specified by the following ternary map: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Utilizing the intersection-based algorithm, one obtains the following 
results for MRA for the ternary function in Example 7.4. 
Step 1. decompose the ternary chart of the function into three 
separate tables each for a single function value. This will produce 
the following three sub-tables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                          D0                      D1                  D2 
 

Step 2. Perform CRA for each sub-table.  
Step 2a. The 0-MRA decomposition of D0 is as follows: 

   0           0          0  

 X1X2 
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0 2  
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                                  Table 1   Table 2   Table 3 
X1X2    :   X2X3  :  X1X3 

0 0         0 0        0 0 
1 0         0 1        0 1 
1 1         0 2        0 2 
2 0         1 0        1 0 
2 2         1 1        1 1 

                                                     2 2        2 0 
                                                                  2 2 
                                       D01      D02      D03 
Step 2b. The 1-MRA decomposition of D1 is as follows: 

Table 4    Table 5 
X1 X2  :   X3 

0    1       0 
0    2       1 
1    2       2 

                                               2    1 
                                                D11     D12 
Step 2c: The 2-MRA decomposition of D2 is as follows: 

Table 6   Table 7 
X1 X3   :   X2X3 

1    2       0   2 
2    1       1   2 
2    0       0   1 

                                                            2   0 
                                                            2   1 
                                              D21       D22 
 

THE INTERSECTION ALGORITHM 
 

Step 3.1. Select the two simplest decomposed models, namely 1-
MRA and 2-MRA decompositions. These are at a lower level in the 
lattice of structures than 0-MRA. 
Step 3.2. Analogously to Example 7.3, one obtains the following 
expanded tables: 
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                     Table 4’    Table 5’     Table 6’    Table 7’ 
X1 X2 F1  :  X3 F2        X1 X3 F3  :  X2 X3 F4 
0  0  0,2      0  1,0,2    0  0  0,1      0  0  0,1 

                      0  1  1,0,2   1  1,0,2    0  1  0,1      0  1  2,0,1 
                      0  2  1,0,2   2  1,0,2    0  2  0,1      0  2  2,0,1 

1  0  0,2                      1  0  0,1      1  0  0,1 
1  1  0,2                      1  1  0,1      1  1  0,1 

                      1  2  1,0,2                   1  2  2,0,1   1  2  2,0,1 
                      2  0  0,2                      2  0  2,0,1   2  0  2,0,1 
                      2  1  1,0,2                   2  1  2,0,1   2  1  2,0,1 

2  2  0,2                      2  2  0,1      2  2  0,1 
Set-theoretically, obtaining Tables 4’-7’ is as follows:  
Table 4’: (D11⊗(0,1,2))∪(D11’⊗(0,2)), 
Table 5’: (D12⊗(0,1,2))∪(D12’⊗(0,2)),  
Table 6’: (D21⊗(0,1,2))∪(D21’⊗(0,1)),  
Table 7’: (D22⊗(0,1,2))∪(D22’⊗(0,1)). 
Step 3.3. Tables 4’, 5’, 6’, and 7’ are used to obtain Fig. 7.7, where 
F = F5 ∩ F6, F5 = F1 ∩ F2, F6 = F3 ∩ F4, and F1 is given by Table 
4’, F2 by Table 5’, F3 by Table 6’, and F4 by Table 7’. 
 
 
 
 
 
 
 
 
 
 
 
 
              Fig. 7.7. The resulting decomposed structure by applying the multi-valued MRA. 
 
The intermediate sub-functions, F5 and F6 are shown as follows. 
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  00 01  02 10  11 12 20  21 22 
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1 0,20,2 0,20,2 0,20,2  1   1   1 

2 0,20,2 0,2  1   1   1  0,2 0,20,2 

F5 = F1 ∩ F2 
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1 0,1 0,1 2  0,1 0,1 2   0,10,10,1     

2 0,1  2  0,10,1 0,10,1  2   2  0,1 

F6 = F3 ∩ F4 
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THE UNION ALGORITHM 
 

Steps 1 and 2 are the same as in the intersection algorithm. 
Step 3.1. Using the decomposition model 
D01:D02:D11:D12:D21:D22 obtain D0, D1, and D2 by standard 
methods as follows: 
D0 = (D01⊗x3)∩(D02⊗x1)∩(D03⊗x2),  
D1 = (D11⊗x3)∩(D12⊗x1x2), 
D2 = (D21⊗x2)∩(D22⊗x1), 
where D0 is the decomposition for function value “0”, D1 is for 
value “1”, D2 for value “2”, and x1, x2, and x3 ∈ {0,1,2}. 
Step 3.2. Perform the set-theoretic operations to obtain the total 
function from the decomposed sub-functions. This can be done 
using only two of the three decompositions as in Step (3.2) of the 
union algorithm in Example 7.3, or alternatively, one can use all 
three decompositions as follows:  
x1x2x3F = (D0⊗0)∪(D1⊗1)∪(D2⊗2). 
       The function value of (x1,x2,x3) is determined by the following 
block diagram, where G performs the following operation: F = 0 if 
(x1x2x3) ∈ D0, F = 1 if (x1x2x3) ∈ D1, and F = 2 if (x1x2x3) ∈ 
D2. 
 
 
 
 
 
 
       The logic function in Example 7.4 is decomposable using CRA 
with the lossless CRA model x1x2:x2x3:x1x3. Consequently, unlike 
the previous example, both many-valued MRA and CRA decompose 
losslessly. Since both CRA and MRA decompose this function, we 
would like to be able to compare the complexities of the two 
decompositions. The complexity measure used in Appendix G could 
be used, but needs to be extended to many-valued functions. 
       From the previous discussion, it follows that the extension of 
many-valued MRA from functions to relations is trivial. One just 
performs the union algorithm using all n decompositions, e.g., for 
three values (D0⊗0)∪(D1⊗1)∪(D2⊗2). One can observe that the 
set-theoretic formulation of multiple-valued MRA as the union of 

G 

x1 
x2 
x3 
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the individual sub-tables (e.g., x1x2x3F = 
(D0⊗0)∪(D1⊗1)∪(D2⊗2)) is analogous to the algebraic 
formulation of multiple-valued Shannon expansion as the 
disjunction of the individual values of a logic function (e.g., Eq. 
(2.6): f = 0x f0 + 1x f1 + 2x f2). 

 
7.3 Reversible MRA 
 
Reversible (3,3) gates, that are universal in two arguments, can be 
used for the construction of reversible MRA (RMRA) circuits. 
Figure 7.8 illustrates one example of a binary (3,3) reversible gate 
from [126], which is universal in two arguments. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.8. a Diagram of the reversible (3,3) Boolean logic circuit, b truth table of this gate, 
and c proof of universality of the gate in two arguments. 

 
       The following example illustrates the use of the reversible gate 
in Fig. 7.8 for the synthesis of 1-MRA circuit for class 5. The 1-
MRA decomposed Boolean circuit of class 5 can be realized using 
the binary (3,3) reversible circuit in Fig. 7.8b. This is done with the 

  
  

 b                                                           c 

                                                      a                                     

 Inputs                 Outputs 

a=0         R=c, Q=(b⊕⊕⊕⊕c)’, P=b’+c’ 

a=1         R=b, P=bc’ 

b=0         P=a’ 

b=1         R=a+c, Q=a⊕c, P=c’ 

c=0         R=ab, Q=a+b’, P=a’+b 

c=1          Q=a’b, P=a’b’ 

 a=1, b=0       P=0 
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 0  0  1  1  0  1 
 0  1  0  1  0  0 
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 1  0  1  0  0  0 
 1  1  0  1  1  1 
 1  1  1  0  0  1 
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   b                                   Q 

   c                                   R 

      B 
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reversible circuit in Fig. 7.9, where blocks B1 and B2 are the 
reversible (3,3) gate from Fig. 7.8b, and block B3 is the reversible 
(3,3) Toffoli gate. For B3, c = 0 and thus B3 is a reversible logic 
AND gate. 
       Utilizing Fig. 7.8c, the Boolean reversible circuit in Fig. 7.9 
implements the 1-MRA circuit of class 5 using the following input 
settings: a = 0 � Q1 = f1 = (x1⊕x2)’, a = 0 � Q2 = f2 = (x1⊕x3)’, 
and F = Q1∧Q2 = f1∧f2 = (x1⊕x2)’∧(x1⊕x3)’= x1x2x3+x1’x2’x3’. 
Using similar substitutions with appropriate input values according 
to Fig. 7.8b, the reversible circuit in Fig. 7.9 can realize all 1-MRA 
circuits from classes 8 and 10, respectively.   
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 7.9. Reversible (7,7) Boolean circuit that implements the 1-MRA circuit from class 5. 
Input {a} in B1 and B2 and the set of outputs {R1, P1, R2, P2, G1, G2} are needed for 
reversibility. Input {a} also selects the appropriate function value of which the universal B 
gate (Fig. 7.8b) is to implement. 
 
       The remaining classes can be realized using analogous 
techniques, by adding one more block from Fig. 7.8b to the first 
level of Fig. 7.9 in the case of class 1, and removing one block from 
the first level of Fig. 7.9 in the case of classes 4 and 7, respectively. 
Yet, as one can observe, the RMRA produces garbage in the 
outputs, and this output garbage has to be eliminated when the 
quantum counterpart of RMRA is created. To eliminate such 
garbage one needs to use the reversible inverse RMRA circuit as in 
Fig. 7.10. 
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                              Fig. 7.10. Garbageless reversible MRA circuit. 

 
Example.7.5. Let us obtain the RMRA circuit for the Boolean 
function in NPN class 5: 321321 xxxxxxf += . Figure 7.11 illustrates 

the complete garbageless reversible 1-MRA for the function in 
Example 7.5. 
       The new MRA posseses the advantage of producing four 
distinct structures as shown in the middle column of Table 7.2, when 
decomposition occurs. Thus using one unified theory different 
topological structures are created, where such structures have to be 
created using separate decomposition methods in the case of other 
type of decompositions (such as in the case of Ashenhurst-Curtis 
(AC)  based decompositions in Appendix H). As stated previously, 
this point can be of high importance when synthesizing logic circuits 
as it gives the designer more design options (i.e., larger design 
space) to choose from to meet specific design criteria, and this is an 
issue that needs further exploration. 
       The disadvantage of reversible MRA is that it creates big 
garbage, and thus the elimination of garbage in reversible MRA 
structures is done by using the reversible mirror image circuit of the 
forward reversible circuit as shown in Example 7.5. Another 
disadvantage of the current 1-MRA and 0-MRA decompositions is 
that MRA does not yet decompose for the ESOP-like Boolean 
function from NPN class 2, which is a very common and useful 
form in many applications in logic synthesis [217]. 
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   Fig. 7.11. Garbageless reversible 1-MRA circuit for NPN class 5 Boolean function. 

 
7.4 Summary 
 
A novel RA-based decomposition is introduced. The new 
decomposition is called the Modified Reconstructability Analysis 
(MRA). It is shown that in 4 out of 10 NPN classes while 3-variable 
NPN-classified Boolean functions are not decomposable using the 
Conventional Reconstructability Analysis (CRA) decomposition, 
they are decomposable using the Modified Reconstructability 
Analysis (MRA) decomposition. For the purpose of binary circuit 
design, it has been shown also that, by counting the total number of 
two-input gates, MRA is superior to CRA for both cases when 
including the cost of the inverters and when not including the cost of 
the inverters. The multiple-valued MRA has been also introduced. 
The reversible realization of the MRA has been introduced as a first 
step towards the quantum computation of such reversible structures. 
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8 New Reversible Structures: Reversible Nets, 
Reversible Decision Diagarams, and Reversible 
Cascades 
 
 
 
 
 
In Chapts. 6 and 7 two reversible decompositions were created: 
reversible lattice structures and reversible Modified 
Reconstructability Analysis. While these reversible structures 
exhibit certain regularities, yet they generate a big “garbage” at the 
output which requires the use of the mirror image (i.e., inverse) 
reversible circuit to eliminate such “garbage”. This Chapt. will 
provide a variety of new reversible structures, which can possess 
advantages that the previous reversible structures did not have like 
the use of minimal garbage or no garbage at all in some cases. Since 
garbage is a big issue in reversible logic synthesis, search heuristics 
for reversible logic synthesis should include the following: (1) do 
not create many outputs of gates and sub-circuits, (2) re-use these 
outputs as inputs in other gates or sub-circuits, (3) apply re-usability 
properties of these common sub-functions and symmetry is one of 
such properties, (4) the method must be general, and (5) use 
regularity and algebraic properties (e.g., group, field, or linear 
properties) to create more powerful reversible structures. The new 
contributions of this Chapt. are: 
• The creation of a new reversible structure, that uses the symmetry   
   indices that were presented in Chapt. 4, called reversible Nets. 
• The creation of new reversible Decision Trees and Diagrams that   
   use the form of trees and diagrams to realize reversibly the   
   corresponding logic functions. 
• The invention of a multiple-valued reversible Cascade structures   
   that show efficiency in the reversible synthesis of logic functions. 
       The remainder of this Chapt. is organized as follows. Reversible 
Nets are presented in Sect. 8.1. Reversible Decision Diagrams are 
presented in Sect. 8.2. Binary and multiple-valued reversible 
Cascades are presented in Sect. 8.3. Chapter Summary is presented 
in Sect. 8.4. 

A. N. Al-Rabadi, Reversible  Logic  Synthesis
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8.1 Reversible Nets 
 
The basic idea of reversible Net structures [183,185] made up of 
(2,2) reversible gates is based on regular planes as shown in Fig. 8.1. 
 
 
 
 

 

                                                                  a 

 

 

                                                                   b 
 
Fig. 8.1. a Three plane regular structure to realize arbitrary multi-input, multi-output 
Boolean functions using MIN/MAX reversible gates, and b an equivalent two plane regular 
structure that realizes arbitrary multi-input multi-output Boolean functions using 
MIN/MAX reversible gates. 

 
       The first plane from left in Fig. 8.1b is a levelized triangular 
structure in which the input variables correspond to the columns (we 
will call this plane the triangular plane). In contrast to lattices 
however, this structure, when realizing an arbitrary multi-output 
function with geometrically adjacent output signal, does not require 
variable repetition. The structure of the first plane is planar, regular, 
and algorithmically created. It realizes all positive unate symmetric 
functions of its input variables. The second structure plane in Fig. 
8.1b is a plane of Feynman gates that uses their internal EXOR gates 
to realize every output function as an EXOR of single index 
symmetric functions from plane two. This plane can be compared in 
its functionality to the OR plane in the standard AND/OR PLA that 
is used to realize a Sum-Of-Product (SOP; DNF) expression. 
Because the functions on the output of the second plane are disjoint 
as single index functions, the OR of them is the same as the EXOR 
of them (i.e., this is based on the Boolean law: A + B = A ⊕ B ⊕ 

Regular  
Symmetric 
Structure 

EXOR 
Level 1 

EXOR 
Level 2 
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AB, and thus when A and B are disjoint functions we obtain: AB = 0 
and thus A + B = A ⊕ B). 
       The whole idea is thus based on the well known fact that every 
symmetric function can be realized as OR or EXOR of its single 
value symmetric functions (as was illustrated in Sect. 4.1). Figure 
8.2 illustrates how positive polarity unate symmetric functions can 
be created systematically in a regular planar arrangement of 
reversible MIN/MAX gates (from Fig. 5.19a). (Here we don not 
show for brevity the input and output constants’ lines.) Observe that 
each ouput function, from top to bottom, includes the next function 
and are all positive polarity and unate. The sets of indices of the 
adjacent functions differ by one. 
 

 

 

 

 

 

 
 
Fig. 8.2. Example of the realization of three-variable symmetric functions in the left plane 
from Fig. 8.1: a regular structure from reversible MAX/MIN gates that realizes positive 
polarity unate symmetric functions, and b indices of a symmetric function of three 
variables A, B, and C, where each cell includes an index of a symmetric function that 
corresponds to it, for instance function S2,3(A,B,C) will have ones in cells with indices 2 
and 3 and zeros in cells with indices 0 and 1. 

 
       Let us observe that positive unate symmetric functions that are 
generated on the outputs of the triangular plane have a very nice 
property: the EXOR of the neighbor functions creates a single index 
symmetric function. This is illustrated in Fig. 8.3. However, because 
the EXOR gate is not reversible, we have to complete it with a 
Feynman gate by repeating one of its inputs to the output. Because 
our structure is regular, this does not complicate the structure. In 
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result, we obtain a structure such as the one shown in Fig. 8.4 for 
four variables. 
       As one observes, in this regular reversible Net structure, we 
obtain not only the single index symmetric functions, but also some 
interval functions whose parameters are highly correlated to the 
neighboring single index functions. We have also fan-out gates in 
the second plane as shown in Fig. 8.4. These fan-out gates (in the 
second plane of Fig. 8.4) uses Feynman gates (cf. Fig. 5.4d) with 
value “0” at the control line (input) to generate copies of the desired 
output signals from the first triangular plane.  
       Counts to characterize the complexity for this regular reversible 
Net structure are presented in Appendix I. Similarly to the argument 
presented for the case of lattice structures in Sect. 4.2 of Chapt. 4, 
evaluating the worst case for non-symmetric functions is difficult 
because we do not know yet how many times variables should be 
repeated in the process of symmetrization that is used to transform a 
non-symmetric function to a symmetric counterpart. Symmetrization 
however is a difficult problem for which no efficient algorithms 
have been created so far. When the input variables (in this particular 
case the inputs to the Net structure) have different polarities, the 
problem becomes even more complex, especially that repeated 
variables can have various distinct polarities.  
 

 
 

 

 

 

 

 
 
 
 
Fig. 8.3. Illustration of how a single index symmetric functions can be realized by an 
additional column of EXORs. 
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   Fig. 8.4. Realization of all single index symmetric functions using only reversible gates. 

 
       It can be observed from Figs. 8.3 and 8.4 that the reversible Net 
structures produce garbage in their outputs. To eliminate this 
garbage, the reversible forward Net structure has to be serially 
interconnected with the reversible inverse Net structure as illustrated 
in Fig. 8.5, where the spy circuit is used to measure the intermediate 
outputs in the total network. 
       In Fig. 8.6, horizontal outputs (from the MC plane positive 
unate symmetric (PUS) functions) are EXOR-ed using Feynman 
gates in the right plane to create arbitrary symmetric functions at the 
bottom. Additional garbage outputs of MC gates must be forwarded 
to the primary outputs, shown in Fig. 8.6 as bold arrows from cells 
in the upper row only. These garbage outputs can be inputs to 
Feynman gates in the same way as the horizontal outputs. This 
extends the class of realizable functions in the structure using no 
repeated variables. 
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Fig. 8.5. Garbageless reversible net structure for 4-variable functions: a initial circuit, and b 
rectangular reversible net made up of one triangular reversible forward Net and one 
triangular reversible inverse Net. 

        
       Figure 8.6 illustrates the use of MC gates in contrast to the use 
of the reversible MIN/MAX gates (from Fig. 5.19a) to reversibly 
realize symmetric functions. The control signals for the first 
triangular plane that contains MC gates and the second plane that 
contains Feynman gates come from memory. These signals can take 
values of “0” or “1”. Feynman gates in the second plane can be 
alternatively replaced with Toffoli gates with control signals coming 
from memory with values “0” or “1”. This type of structure is semi-
reversible because the memory from which the control signals come 
is not reversible, while the data path is reversible. The 
programmability of the Reversible Programmable Gate Array 
(RPGA) is done in the second plane in the form of interconnecting 
or disconnecting the gates in the columns in the second rectangular 
plane to achieve certain symmetric functions at the output of the 
second plane from which any other function can be synthesized. 
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Fig. 8.6. Reversible Programmable Gate Array (RPGA): a the notation for MC 
gate used as a cell in the first plane, b the notation for Feynman gate used as a cell 
in the second plane, c symbol for Toffoli gate, and d an example of the realization 
of a 5-input, 2-output function (S1,2(a,b,c,d,e), S2,4,5(a,b,c,d,,e)) in RPGA. 

1 1 1 1

1 1 1

1 1

1

0 0 

a 

b c d e 

      S5 

 S2,4,5 

1 2 3a 

3b 

4a 

4b 5a 

5b 6 

7 

1 

C = Control A =Input 1 

B = Input 2 

P = Output1 

Q = Output2 
R = Garbage 

A A 

B

A ⊕ B 

a                                              b                                   c   

d

S1,2,3,4,5 

S2,3,4,5 

S3,4,5 

S4,5 

0 

A A

B

B

D = AB ⊕ C 

C = Control 

    0 

1

 192      8.1 Reversible Nets       



 

8.2 Reversible Decision Diagrams 
 
Because some decompositions require complex data processing to 
find a high quality solution, large multi-output functions should be 
first partitioned to smaller functions. This is based on their 
representations such as Binary Decision Diagrams, Pseudo-
Kronecker Decision Diagrams (PKDD), Pseudo-Kronecker 
Diagrams with Complemented edges, Linearly Transformed Binary 
Decision Diagrams, Function-Driven Decision Diagrams, or other 
similar diagrams [180,181,184,189]. 
       The goal of representing functions in such a representation is to 
find the “natural” structure of the function helpful for its subsequent 
partitioning to blocks of logic and subsets of variables. In PKDD a 
control variable goes through an entire level of a diagram. 
Therefore, a fast natural mapping from a PKDD into a reversible 
netlist with Toffoli gates exists. First a PKDD, or other similar 
diagram is mapped to Feynman, Fredkin, MC, and Toffoli gates and 
inverters, in such a way that there are no feedback loops and no fan-
out larger than one from primary inputs and gates. In this Sect. the 
synthesis of reversible PKDDs with Toffoli gates are discussed, but 
similar approaches can be done with other types of diagrams as well.    
       After the mapping, every Toffoli gate in the mapped circuit can 
be in one of the following states: (1) no garbage outputs, (2) one 
garbage output, and (3) two garbage outputs. Thus a group of 
Toffoli gates that are controlled by the same control variable can 
have some percentage p of garbage outputs. Tj are different assigned 
values for various gate types. If this value p is higher than a certain 
threshold value Tj, the group is redesigned, otherwise it is retained. 
This is illustrated in Figs. 8.7 and 8.8. 
       The groups of Toffoli gates that are generated in this way create 
a partitioning of the initial circuit based on PKDD into blocks. 
Similar synthesis methods for various reversible Decision Diagrams 
have been shown in [184] in which one utilizes the signals from 
previous levels and inputs them into the next levels in a way that 
minimizes garbage and maximizes the use of the out functions.  
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                  Fig. 8.7. A part of PKDD with positive Davio expansions in a level. 

 
 
 
 
           K2+K1ci                   K1                    K3+K1ci          K5+K4ci       K4+K6ci          ci        K6 

 
 
 
 
 
 
 
 
 
 
Fig. 8.8. A part of PKDD from Fig. 8.7 after the mapping into Toffoli gates. This mapping 
determined natural partitionaing to previous levels, next levels, and other gates of this level. 
Garbage outputs are drawn in interrupted lines. 
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       This is done by a good selection of reversible gates such as 
Feynman, Inverters, Fredkin, Toffoli, or MC primitives. This type of 
realization produces garbage, thus the forward reversible circuit 
should be cascaded with the inverse (mirror image) reversible circuit 
to eliminate the resulting garbage outputs. 
Example 8.1. This example shows the realization using reversible 
BDD (RBDD), for the Boolean function: F = ab ⊕ bc ⊕ ac, as 
shown in Fig. 8.9. 
        The reversible decision diagrams as shown in this Sect. 
produces garbage in the outputs. Consequently, to eliminate such 
garbage one needs to synthesize the reversible inverse decision 
diagram and then interconnect it to the reversible forward decision 
diagram. This is shown in Fig. 8.10. 
 

 

 

 

 

 

 

 

 

 

 

          
                 Fig. 8.9. Reversible Binary Decision Diagram (RBDD).                  
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              Fig. 8.10. The elimination of garbage in Reversible Decision Diagrams (RDDs). 

 
8.3 Reversible Cascades 
 
The following introduces a method to generate the Cascade of 
reversible complex Maitra terms [148]. The new structure is called a 
reversible Cascade [121,158,224]. The general structure for the 
reversible Cascade is shown in Fig. 8.11. The input variables (a1, a2, 
…, an) are the primiary inputs of function F. In the direct 
computation flow, they propagate from left to right and feed the 
two-input gates that form the individual stages of the Cascade. It is 
assumed, without the loss of the expressive power of the reversible 
Cascade, that one of the inputs of the topmost gate is the constant 
“0” Boolean function. The outputs of the Maitra terms feed the 
inputs of the EXOR gates at the bottom. The EXOR gates form the 
Cascade producing the output of function F. Without the loss of the 
expressive power of the reversible Cascade, the input of the first 
EXOR gate is set to the constant “1” Boolean function. The constant 
“1” input of the Cascade is the only garbage input in the reversible 
representation of the Cascade. In this implementation, the individual 
Cascades that are enclosed in the dashed lines in Fig. 8.11 can be 
viewed as (n+1) reversible gates belonging to Toffoli family of 
reversible gates. 
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                                                   Fig. 8.11. Reversible wave cascades. 
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            Fig. 8.12. Illustration of the fact that reversible cascades are naturally garbageless. 
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       Note that the value “0” can be used as an input to the EXORs 
instead of the value “1”. This should be determined by the minimum 
expression that a function can be expressed with. Note that in Fig. 
8.11 that the input variables are produced for the output and thus 
there is no need for the creation of a mirror image (inverse) 
reversible circuit to be cascaded with the forward reversible circuit 
as was the case in the new Nets and reversible Decision Diagrams. 
The following example shows the reversible synthesis using the 
reversible Cascades. 
Example 8.2. Figure 8.13a synthesizes using reversible Cascades of 
the logic function: babaf ⊕⊕⊕= 1 . Yet, if a minimizer was 

used to minimize the expression babaf ⊕⊕⊕= 1  one obtains 
baf = , and the circuit would be the one shown in Fig. 8.13b. This 

example shows clearly the need for a minimizer to minimize the 
expression before it is realized in a reversible Cascade circuit. This 
is the basic idea the motivates the introduction of the algorithm in 
Sect. 8.3.1. 
 

 

 

 

 

                                    a                                                                b 
 
Fig. 8.13. a Reversible cascade composed of three stages of two Feynman gates in the first 
two stages and a Toffoli gate at the third stage, and b an equivalent reversible cascade 
circuit made only of Toffoli gate as a result of minimization. Here a bubble means an 
inverter. 

 
       It has been shown [158] that the good property of the reversible 
logic synthesis using reversible Cascades, compared to other 
previous reversible logic synthesis methods, is that it creates on 
average at most one constant input and no additional garbage 
outputs. Table 8.1 from [158] represents experimental results for the 
upper bound for the number of stages needed in reversible Cascades. 
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     Table 8.1. Upper bound on the number of stages in two-valued reversible cascades. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
       Although the reversible Cascade from Fig. 8.11 is for Boolean 
logic over a Galois field of radix two, the same topological structure 
can be straightforward generalized to a Galois field of any radix. 
The only difference is that reversible multiple-valued gates have to 
be used and the constant in the bottom layer can be either of any 
value within the radix instead of just being of values “0” or “1” for 
radix two. Example 8.3 illustrates this generalization. 
Example 8.3. Let us synthesize the ternary input ternary output 
function using a multi-valued reversible Cascade: 

cababf GFGFGF ""'2 )3()3()3( +++= . 

     Benchmark 

Name  # Inputs # Outputs 

Upper 
Bound 

    5xp1               7                   10                  31 
    9sym              9                   1                    51 
    add6               12                 7                    127 
    addm4            9                   8                     89 
    b12                 15                 9                    28 
    clip                 9                   5                    63 
    ex7                 16                 5                     81 
    f51m              8                   8                     31 
    in7                  26                10                   35 
    intb                 15                 7                   268 
    life1               9                    1                    48 
    m181             15                  9                    29 
    m4                 8                   16                   76 
    max512         9                    6                    82 
    rd53               5                   3                    14 
    rd73               7                   3                    36 
    rd84               8                   4                    58 
    ryy6              16                  1                    40 
    sao2               10                 4                    28 
    seq                 41                 35                  246 
    sym10           10                 1                     79 
    t3                   12                 8                     24 
    t481               16                 1                     13 
    vg2                25                  8                   184 
    z4                   7                  4                     29 

    Average        13.0              7.0                 71.6 
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       Figure 8.14 shows such a synthesis using the multi-valued 
Feynman and Toffoli gates that were presented in Chapt. 5. 
 
 

 

 

 

 

 

 

 
 
Fig. 8.14. Reversible multiple-valued cascade for the realization of the function in Example 
8.3, where a bubble produces the corresponding multiple-valued literal. 

 
       Yet, and analogous to Example 8.2, a minimizer is needed to 
produce reversible Cascade circuits of minimal size.  
Example 8.4. Figure 8.15a synthesizes using reversible cascades the 
logic function: cbcbf GFGF )3()3( ++= . Yet, if a minimizer was 

used to minimize the expression, one obtains the minimal form as 
follows: 
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and the minimized circuit would be the one shown in Fig. 8.15b. 
Example 8.4 shows clearly the need for a multiple-valued minimizer 
to minimize the expression before it is realized in a reversible 
Cascade circuit. This is the basic idea that motivates the introduction 
of the algorithm in Sect. 8.3.1 for the synthesis of multiple-valued 
functions using reversible Cascade logic circuits. 
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                                                             GF(3) 
                                                 b 
Fig. 8.15. The realization of multiple-valued expressions using reversible cascades: a 

reversible cascade for the original function cbcbf GFGF )3()3( ++= , and b reversible 

cascade circuit for the minimized function cbf = . 

 
8.3.1 The Realization of GFSOP Expressions Using Reversible 
Cascades 
 
From Sect. 8.3 and Examples 8.2 and 8.4 one notes that having the 
function represented in a certain flattened form (i.e., certain polarity) 
can produce minimum size expression in terms of count of the 
number of literals and/or terms, and thus this can lead to a 
realization in a reversible Cascade with a minimal number of stages 
that are needed. Consequently, the issue of functional minimization 
becomes very important. The minimizer from [233,235] works for 
functions with few percent of don’t cares, yet this minimizer does 
not work for functions with a high number of don’t cares. Multiple-
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valued S/D trees developed previously in Chapt. 3 provide a general 
polarity of Inclusive Form (IF) polarity. For this reason we use the 
GFSOP evolutionary functional minimizer that was proposed in 
Chapt. 3, which uses the Inclusive Form (IF) polarity that is 
produced by the corresponding S/D tree. This is important in order 
to realize smallest functional forms using the reversible Cascades. 
Thus, the pre-processing step for the realization of functions using 
reversible Cascade is to minimize this function, and then using a 
search heuristic routine to search a library for an optimal synthesis 
of the function using a reversible Cascade in terms of minimizing 
the number of stages that are needed.  
       Figure 8.16 illustrates such pre-processing for the realization of 
logic functions in reversible Cascades. In Fig. 8.16, the reversible 
logic circuit synthesizer has four inputs. The first input is the cost of 
the final reversible circuit. This can be in general a combination 
(i.e., a linear superposition) of (1) the total number of two-input 
gates, (2) the total number of garbages, and (3) delay which is 
characterized by the critical path delay where the signal propagation 
from the inputs to the outputs require the most delay time. The 
second input is a library that contains (k,k) two-valued and multiple-
valued reversible gates, from which the final reversible circuit will 
be designed. The third input is the minimal form of the function 
which is needed to be reversibly realized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.16. General block diagram for the synthesis of logic functions using reversible logic. 
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       This minimal size expression can be the output of the GFSOP 
evolutionary minimizer that was introduced in Sect. 3.7 using 
evolutionary methods from Fig. 3.15, or the output of other 
appropriate minimizers as well. For example, if one has functions 
with few percent of don’t cares, one could use alternatively the 
minimizer from [233,235]. The fourth input is the internal 
specification of the type (topology) of the reversible structure that is 
used to realize reversibly the minimal size expression from the 
output of the GFSOP minimizer. This can be, in this case for 
instance, the general reversible Cascade structure. The synthesizer 
can be of any type of search-based synthesizers. This can include 
Evolutionary Algorithms type (as discussed in Sect. 3.7 and in 
Appendix E) or any other search heuristic. The synthesizer can use 
an exact search algorithm for functions with low dimensions (i.e., 
composed of small number of input variables), but must be heuristic 
for logic functions with high dimensions (i.e., high number of input 
variables). Consequently, “good” search heuristics in the synthesizer 
has yet to be found to minimize the time needed in order to design 
the final reversible netlist at the output of the synthesizer.  

 
8.4 Summary 
 
Novel methods for the synthesis of Boolean and multiple-valued 
logic functions have been presented in this Chapt. These methods 
are reversible Nets, reversible Decision Diagrams, and reversible 
Cascades.  
       Reversible Cascades show a big advantage over the rest of these 
methods, since reversible Cascades do not produce on average 
garbage at the outputs while the other methods do produce such 
garbage in the outputs. The garbage in the output of reversible Nets 
and Decision Diagrams is eliminated by interconnecting the forward 
reversible circuits to their inverse reversible circuits. This is 
important since these structures will be used in quantum computing, 
such as the quantum Cascades (including two-valued quantum 
Cascades and multiple-valued quantum Cascades), in Chapts. 10 and 
11, where no garbage is expected at the output.  
 

                     8.3.1 The Realization of GFSOP Expressions Using Reversible Cascades      203 



 

       The type of reversible Cascades that was introduced in Sect. 8.3 
of this Chapt. belongs to one specific family of circuit topology for 
the reversible synthesis of logic functions. Other families of various 
circuit topologies for Cascade-based reversible synthesis can also be 
created [121,224], and in general multiple-output multiple-valued 
reversible Cascades that use serial, parallel, or mix of serial and 
parallel interconnects of multiple-valued reversible n-ary operators 
(e.g., reversible 3-valued unary shift operators from the formalisms 
presented in Sect. 2.1 in Chapt. 2 such as: (1) Wire (Buffer; zero 
shift): x = x, (2) first shift: x’ = x + 1, (3) second shift: x” = x + 2, 
and (4) other shifts of x by: 2⋅x, 2⋅x + 1, 2⋅x + 2, etc) can be also 
synthesized.              
       The following Chapt. introduces an initial evaluation of the 
implementation of logic functions using the various types of 
reversible logic structures and methods that have been introduced in 
Chapts. 6, 7, and 8, respectively. 
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9 Initial Evaluation of the New Reversible Logic 
Synthesis Methodologies 
 
 
 
 
 
This Chapt. introduces an initial evaluation of the implementation of 
the reversible structures that have been presented in Chapts. 6, 7, 
and 8 to realize logic functions. Although this evaluation is for 
functions with relatively small number of arguments, it still gives an 
important first look to some of the weaknesses, strengths, and new 
properties of the previously introduced reversible structures. 
       The remainder of this Chapt. is organized as follows. Section 
9.1 introduces complete examples for the synthesis of functions 
using the previously introduced reversible structures. Initial 
comparison between the various reversible realizations is introduced 
in Sect. 9.2. Summary of the Chapt. is presented in Sect. 9.3. 

 
9.1 Complete Examples 
 
In this Sect. complete examples are presented for the synthesis of 
symmetric and non-symmetric logic functions using different 
reversible logic synthesis methodologies in order to produce the 
corresponding reversible structures. In the following evaluations, we 
will consider the following criterion to characterize garbage in the 
outputs: If there is a need to create the reversible inverse circuit then 
the outputs contain garbage, otherwise the outputs do not contain 
garbage. This criterion is reflected in the following conclusion: If 
the structure produces only the output function and the inputs as 
outputs, then there is no need to create the reversible inverse circuit 
and we will consider that there is no garbage in the output of the 
structure. Otherwise, if the structure produces at least one garbage in 
the output of the forward reversible circuit then there is a need to 
create the reversible inverse circuit to eliminate the garbage. 
Consequently, outputs of a reversible circuit, that are generated by 
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propagating the inputs through the reversible circuit, are not 
considered as garbage. 
Example 9.1. Let us synthesize the following symmetric Boolean 
function, which is the representative of class 1 for the NPN 
classification of Boolean functions (See Table G.1 in Appendix G) 
that encompass eight Boolean functions, using reversible synthesis 
methods introduced in previous Chapts.: acbcabf ++= . 
(1) Reversible Lattice Structure: Fig. 9.1 represents the realization of 
the Boolean function in Example 9.1 using the reversible lattice 
structure from Chapt. 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 9.1. Synthesis of a reversible lattice structure for the function from NPN class 1. 
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       It is interesting to observe from this example that although the 
function in Example 9.1 is totally symmetric, variable c has to be 
repeated two times in order to realize the symmetric Boolean 
function in the reversible lattice structure in Fig. 9.1. This is totally 
different from the non-reversible lattice structures from Chapt. 4, 
and implies that reversible lattice structures require different type of 
symmetry than the regular lattice structures. The structure in Fig. 9.1 
has a total of 6 garbage outputs, and 7 Fredkin gates. 
(2) Reversible MRA: Fig. 9.2 represents the realization of the 
Boolean function in Example 9.1 using the reversible MRA 
structure from Chapt. 7. 
       As observed the circuit in Fig. 9.2 is fully regular since it uses 
one type of Toffoli primitives. Figure 9.2 has a total of 4 garbage 
outputs, and 5 Toffoli gates. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.2. Reversible Boolean circuit to implement 1-MRA circuit for the function from 
NPN class 1. 
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(3) Reversible Cascade: Fig. 9.3 presents the reversible Cascade 
realization, from Chapt. 8, for the Boolean function in Example 9.1. 
To realize the function from Example 9.1 which is in the SOP form, 
one has to transform it to the ESOP form. This is performed using 
the Boolean (i.e., two-valued) rule: baba ⊕=+ 1  as follows: 

cbcabaacbcabf ⊕⊕⊕=++= 1 . 
 

 

 

 

 

 

 
            Fig. 9.3. Reversible cascade circuit for the function from NPN class 1. 

 
       One can note that the circuit in Fig. 9.3 produces no garbage at 
the output, and uses a total of 3 Toffoli gates. 
(4) Reversible Net: Fig. 9.4 represents the realization of the Boolean 
function in Example 9.1 using the reversible Nets from Chapt. 8. 
 
 

 

 

 

 
                             Fig. 9.4. Reversible Net for the function from NPN class 1. 
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       One notes that the circuit in Fig. 9.4 produces two garbage 
outputs, and uses 3 reversible MAX/MIN gates (from Fig. 5.19a). 
(The garbage count performed here includes only the variable 
outputs and does not include the constant outputs.) 
(5) Reversible Decision Diagram: Let us implement the function in 
Example 9.1 using reversible Positive Davio Decision Diagram 
(PDDD). Positive Davio DD is shown in Fig. 9.5. The reversible 
PDDD is shown in Fig. 9.6. 
 

 

 

 

 

 
                          Fig. 9.5. Positive Davio DD for the function from NPN class1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      Fig. 9.6. Reversible positive Davio DD for the function in NPN class 1. 
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       One notes that the total number of garbage outputs in Fig. 9.6 is 
2, and that the reversible structure uses 6 reversible primitives.  
       Let us now realize a non-symmetric Boolean function using the 
same methods used in Example 9.1. 
Example 9.2. Let us synthesize the following non-symmetric 
Boolean function, which is the representative of class 4 for the NPN 
classification of Boolean functions (See Table G.1 in Appendix G) 
that encompass 48 Boolean functions, using reversible synthesis 
methods that were introduced in the previous Chapts.: acabf += . 
(1) Reversible Lattice Structure: Fig. 9.7 represents the realization of 
the Boolean function in Example 9.2 using the reversible lattice 
structure from Chapt. 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Fig. 9.7. Synthesis of a reversible lattice structure for the function from NPN class 4. 
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       It is interesting to observe from this example that although the 
function in Example 9.2 is non-symmetric, variable c has to be 
repeated two times in order to realize the non-symmetric Boolean 
function in the reversible lattice structure in Fig. 9.7. This is the 
same structure from Fig. 9.1 with different leaf values. The structure 
in Fig. 9.7 has a total of 6 garbage outputs, and uses 7 Fredkin gates. 
(2) Reversible MRA: Fig. 9.8 represents the realization of the 
Boolean function from NPN class 4 using the reversible MRA 
structure from Chapt. 7. 
 
 

 

 

 
 
 
 
 
 
Fig. 9.8. Reversible Boolean circuit that implements the 1-MRA circuit for the function 
from NPN class 4. 

 
       As can be observed, the circuit in Fig. 9.8 is fully regular since 
it uses one type of Toffoli primitives. The circuit from Fig. 9.8 has a 
total of 1 garbage output, and uses two Toffoli gates. 
(3) Reversible Cascade: Fig. 9.9 presents the reversible Cascade 
realization, from Chapt. 8, for the non-symmetric Boolean function 
from Example 9.2. To realize the function from Example 9.2 which 
is in the SOP form, one has to transform it to the ESOP form. This is 
done using the Boolean rule baba ⊕=+ 1 as follows: 

cbaaacabf ⊕⊕=+= 1 . 
       One can note that the circuit in Fig. 9.9 produces 1 garbage at 
the output, and uses three reversible gates. 
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                      Fig. 9.9. Reversible cascade circuit for the function from NPN class 4. 
 
 (4) Reversible Net: The Boolean function in Example 9.2 is non-
symmetric. Consequently, repetition of variables has to be made to 
symmetrize the function. Figure 9.10a presents the symmetrization 
of the non-symmetric Boolean function, and Fig. 9.10b illustrates 
the realization of the Boolean function from Example 9.2 using the 
reversible Nets from Chapt. 8. 
       Although Fig. 9.10b implements the circuit from Fig. 8.4, one 
notes that Fig. 9.10b implements the function S3,4(a,b,c,a) by 
repeating variable {a} two times, and thus there is no need for 
Feynman planes at the output (analogously to the symmetric 
function F in Fig. 9.4). Consequently, one observes that the circuit in 
Fig. 9.10b produces three (variable) garbage outputs, and uses 6 
reversible MAX/MIN gates (from Fig. 5.19a). 
(5) Reversible Decision Diagram: Let us implement the function in 
Example 9.2 using reversible Binary Decision Diagram (i.e., 
reversible Shannon Decision Diagram (SDD)). BDD is shown in 
Fig. 9.11, and the reversible BDD is shown in Fig. 9.12. 
       One notes that the total number of garbage outputs in Fig. 9.12 
is 3, and that the reversible structure uses 3 Fredkin gates. 
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Fig. 9.10. Reversible Net for the function from NPN class 4: a symmetrization of the non-
symmetric Boolean function, and b reversible Net structure. 
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                             Fig. 9.11. BDD for the Boolean function from NPN class 4. 

 

 

 

 

 

 

 

 

                       Fig. 9.12. Reversible BDD for the Boolean function from NPN class 4. 

 
       Other reversible decompositions have been implemented such 
as the compositional method where search heuristics are applied to 
compose a reversible circuit level-by-level by using backtracking 
search algorithm [184], and the reversible form of classical 
Ashenhurst-Curtis decomposition (from Appendix H).  
       It has been presented in Chapts. 6, 7, and 8 various new 
methods for the reversible synthesis of logic functions. Yet, 
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advantages and disadvantages occur for the use of certain reversible 
decompositions over the others. Table 9.1 in the next Sect. illustrates 
some of the advantages and disadvantages that we see so far for the 
previously mentioned reversible decompositions. 

 
9.2 Initial Comparison 
 
While the methodologies for the reversible synthesis of logic 
functions that have been introduced in Chapts. 6, 7, and 8 are new, 
some of the introduced structures possess certain advantages over 
the other structures, and vice versa, which should be investigated in 
a further analysis. This was initially observed when symmetric and 
non-symmetric Boolean functions were synthesized in Examples 9.1 
and 9.2, respectively. Table 9.1 shows some properties that have 
been observed so far when synthesizing reversibly the logic 
functions. Although this analysis is presented based on few 
previously presented examples, it produces some important first 
look at the property-based cost-benefit analysis of using the new 
reversible structures. 
       For example, one can observe (from Table 9.1) that reversible 
Nets are very suitable for single-output and multi-output symmetric 
functions. On the other hand, if the functions are not symmetric, 
then reversible Cascades can produce reversible circuits with small 
garbage on average. Also, as the reversible synthesis using 
reversible Cascades does not produce garbage in the outputs on 
average, it has been shown that this type of synthesis is very well 
suited for quantum computing [121] as will be shown in the 
quantum logic circuits that will be introduced in Chapt. 10. 
Although some initial insights and conclusions were made regarding 
reversible logic synthesis of logic functions using the reversible 
structures from Chapts. 6, 7, and 8, the various methods in Table 9.1 
still need more extensive experimental results (evaluations) to have 
numerical comparisons on well-known binary and multiple-valued 
benchmarks. In future CAD tools, these methods must be combined. 
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 Table 9.1. Advantages and disadvantages of various reversible logic synthesis methods. 
 
        Type                                     Advantages                                    Disadvantages 

Reversible               (1) Regularity which is useful for testing,     (1) Produces garbage,  
Lattices                    (2) methodological, (3) generally applied     (2) inefficient for multi-                            
                                  for incompletely specified functions.            output functions. 
 
Reversible                (1) Good for multi-output functions, (2)      (1) Produces garbage,  
Nets                          uses symmetry, (3) can be extended to         (2) inefficient for strongly  
                                  incompletely specified functions.                 non-symmetric functions. 
 
Reversible                (1) No garbage is produced on average,       (1) Not methodological   
Cascades                  (2) good for quantum circuits, (3)                and depends on search,   
                                  can be extended to incompletely                  (2) no efficient minimizer                         
                                  specified functions, (4) can be created          exists yet for this method, 
                                  for efficient realization of multiple-             (3) has a single constant         
                                  input multiple-output (MIMO)                     garbage at the input, (4)  
                                  functions (circuits).                                       for functions with many        
                                                                                                        inputs, cascades can be   
                                                                                                        exponential in size that 
                                                                                                        results in long circuits.  
                                                                                    
Reversible              (1) Exhibit certain regularities, (2)                  (1) Produces garbage. 
Decision                  many types of decision diagrams exist 
Diagrams                from which minimal size reversible  
                                 structure could be found. 
 
Reversible              (1) Can produce a comparative small             (1) Produces garbage, (2)  
MRA                       size reversible circuits.                                   currently does not realize   
                                                                                                        ESOP forms. 
 

       Also, one important factor for the evaluation of such reversible 
methods is the final total cost of the physical quantum circuits that 
will implement such reversible structures. While in conventional 
circuit design the cost of the design is measured by the total number 
of two-input gates that are used (i.e., C# from Appendix H), in 
quantum circuits this is not the case, since in quantum circuits 
physical processes implement the quantum operations rather than 
simple hardware gates (e.g., CMOS) as in the case of the classical 
logic design. Quantum cost characterizes the physical process 
complexity that is needed to realize physically the corresponding 
reversible structures. Since little, if none, has been published on this 
quantum cost for the realization of the reversible structures in Table 
9.1, one very important question is still open on how much complex 
the quantum realization of the structures in Table 9.1 will be, and 
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the answer to this question may very well lead to new cost-benefit 
conclusions. 

 
9.3 Summary 
 
This Chapt. has introduced an initial evaluation of the various 
implementations of the reversible structures that have been 
presented in Chapts. 6, 7, and 8, respectively. Although this 
evaluation is for functions with relatively small number of 
arguments (variables), it still produces an initial important first look 
to some of the weaknesses, strengths, and new properties of the 
previously introduced reversible structures. Also one important issue 
still to be considered is the quantum cost of the physical processes 
that implement the new reversible structures, a subject that can lead 
to a new cost-benefit evaluations for the reversible methods 
introduced in Table 9.1.  
       Next Chapt. will introduce the physical quantum operational 
notation and quantum circuits that would be used to construct the 
counterparts of the reversible structures from Chapts. 6, 7, and 8. 
Two-valued and multiple-valued quantum computations of such 
circuits will be implemented in Chapt. 11. 
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10 Quantum Logic Circuits for Reversible  
Structures 
 
 
 
 
 
The reversible structures that are introduced in previous Chapts. can 
be implemented, utilizing the garbageless circuits of such structures, 
using many possible technologies, including optical 
[17,24,62,63,64,65,222], and CMOS [35,68,70,206,262,263]. We 
are interested in this Chapt. with the implementation of the 
reversible structures using quantum logic circuits. This will be a 
second step, after the reversibility step from Chapts. 6, 7, and 8, 
towards quantum computing of such structures (that will be 
introduced in Chapt. 11). The main contribution of this Chapt. is the 
introduction of the quantum circuits for two-valued and multiple-
valued reversible structures using the corresponding quantum 
notation. 
       The fact that the tendency of current technologies is towards the 
nano-scale (i.e., dimensions of a single atom in the order of 10-10 m 
= 1 Angestrom) will have, and already having, disaster effects on the 
signal integrity in classical designs of processing and transmitting 
information bits. The higher packing of devices in increasingly 
smaller and smaller areas will have, and is already having, 
tremendous power consumption effects. Thus, one possible solution 
for both problems is the implementation of logic functionalities 
using quantum circuits and the associated quantum technology. This 
Chapt. uses the quantum notation from [95,167] that emphasizes the 
use of control lines to activate the classical logical operations on 
other inputs. This is important since this can realize physical 
processes where there are specific physical control variables which 
one would like to use to obtain logical operations form other wires 
using such processes. Another important advantage of using the 
operational quantum notation is that the quantum notation shows the 
one-dimensional left-to-right time-based evolution of the physical 
process which is realized by the reversible circuits, and also shows 
the composition of the circuit as number of inputs that are equal to 
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the number of outputs, and the propagation of the input signals from 
input lines to output lines throughout the gates. The main 
contributions of this Chapt. are: 
• Multiple-valued quantum gates and their operational quantum   
   notation. This includes for example the multiple-valued quantum   
   Swap and controlled-Swap gates. 
• Showing that minimum two-valued and multiple-valued reversible   
   logic structures lead to minimum size two-valued and multiple-  
   valued quantum logic circuits, respectively. 
       The remainder of this Chapt. is organized as follows. Section 
10.1 presents the important quantum notation that is used for 
quantum circuits. Section 10.2 introduces the quantum circuits that 
correspond to the previously introduced reversible structures in 
Chapts. 6, 7, and 8. Summary is provided in Sect. 10.3.  
       The content of this Chapt. will be computationally implemented 
using the two-valued and multiple-valued quantum computing 
methods that will be introduced in Chapt. 11. 

 
10.1 Notation for Two-Valued and Multiple-Valued 
Quantum Circuits 
 
In quantum computing, usually a set of “quantum” notations are 
used for the corresponding reversible gates. The quantum notation 
for some basic logic primitives are shown in Fig. 10.1. This notation 
is very useful to explain the two-valued and multiple-valued 
quantum evolution (i.e., time-based) processes. We will follow here 
the two-valued quantum notation introduced in [95] and [167]. 
       The primitive in Fig. 10.1a is a two way AND which is a dot on 
an intersection. Two-way OR gate in Fig. 10.1b is a box on an 
intersection. NOT gate is represented as an “X” on a wire. No 
connection is represented with a simple crossing in Fig. 10.1d, and 
control wire is an “O” on a wire in Fig. 10.1e. Using the quantum 
notation in Fig. 10.1, one can obtain two-valued and multiple-valued 
quantum gates using such notation as demonstrated in Fig. 10.2. 
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                                                                                       f 
 
Fig. 10.1. Quantum notation of quantum circuits for: a two way AND which is a dot on an 
intersection, b two way OR which is a box on an intersection, c Not which is an “X” on a 
wire, d no connection which is simple crossing, e control wire which is an “O” on a wire, 
and f multiple-valued shift by (k). 

 
       This quantum notation is easier to use and conveys the 
important information regarding the “control lines” which control 
the operations of C-NOT gate, C-C-NOT gate, and C-Swap gate. 
The “X” (in Fig. 10.2) denotes a NOT operation, however, this NOT 
operation is not a conventional one; it is controlled by the input to 
the O-wire. Specifically, if the input to the O-wire is 1, then the 
input to the X-wire is inverted; if the O-input is zero, then the NOT 
gate does not work, and the signal on the X-wire goes through 
unchanged. In other words, the input to the O-line activates the NOT 
gate on the lower line. The O-output, however, is always the same as 
the O-input (i.e., the upper line is identity). In CCN gate, we have 
two control lines A and B, each marked by an O, and as with the CN 
gate, the signals on this line are unchanged on passage through the 
gate: A’ = A, and B’ = B. The remaining line, again, has a NOT on 
it, but this is only activated if both A = 1 and B = 1: then: C’ = NOT 
C. 

       c                                                    d                                   e 

    a                                                                 b 

≡  ≡ 

≡ 

(k) 
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Fig. 10.2. Quantum notation for: a two-valued Controlled-NOT gate (Feynman gate), b 
two-valued Controlled-Controlled-NOT gate (Toffoli gate), c two-valued Swap gate, d 
two-valued Controlled-Swap gate (Fredkin gate), e multiple-valued Galois Controlled-NOT 
gate (Feynman gate), f multiple-valued Galois Controlled-Controlled-NOT gate (Toffoli 
gate), g multiple-valued Swap gate, and h multiple-valued Galois Controlled-Swap gate 
(Fredkin gate). 
 
       Notice that this single gate is very powerful. If we keep both A 
and B equal to one then the CCN gate is just a NOT gate. If we keep 
just A = 1, then the gate is just a CN gate with B and C as inputs. So, 
if we have a CCN gate and a source of 1’s and 0’s, we can 
implement both N (NOT) and CN gates, besides the CCN gate 
which is a universal gate. Thus the control lines just activate a more 
conventional operation on other inputs. In the case of Fredkin gate, 
the operation that is been controlled is exchange (swap): if A = 0, B 

        a                                                           b 

           e                                                           f 

         c                                                           d 

        g                                                            h 

…   … 
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and C are not exchanged. However, if A = 1 then B and C are 
exchanged. 
       Many of the two-valued and multiple-valued quantum circuit 
implementations in this Chapt. use two-valued and multiple-valued 
quantum Swap-based and NOT-based gates. This can be important, 
since the Swap and NOT gates are basic primitives in quantum 
computing, from which many other gates are built, such as (1) two-
valued NOT gate, (2) two-valued Controlled-NOT gate (Feynman 
gate), (3) two-valued Controlled-Controlled-NOT gate (Toffoli 
gate), (4) two-valued Swap gate, (5) two-valued Controlled-Swap 
gate (Fredkin gate), (6) multiple-valued NOT gate, (7) multiple-
valued Controlled-NOT gate (multiple-valued Feynman gate), (8) 
multiple-valued Controlled-Controlled-NOT gate (multiple-valued 
Toffoli gate), (9) multiple-valued Swap gate, and (10) multiple-
valued Controlled-Swap gate (multiple-valued Fredkin gate). 

 
10.2 Quantum Logic Circuits 
 
Using the upper quantum notation one can obtain a half adder and 
full adder as shown in Fig. 10.3. The half adder and full adder are 
described by the following Boolean Eqs.: (1) Half Adder (HA): Sum 
= S = a ⊕ b and Carry = C = ab, and (2) Full Adder (FA): Sum = a 
⊕ b ⊕ c and Carry = C = (a⊕b)c ⊕ ab. Note that the dashed CN gate 
(in Fig. 10.3d) is used to produce the inputs a and b from the output 
garbage. 
       The quantum notation introduced in Sect. 10.1 emphasizes the 
use of control lines to activate conventional operations on other 
inputs. This is important since this can realize physical processes 
where there are specific physical control variables which we would 
like to use to obtain logic operations from such processes.  
       Using such operational quantum notation, one can realize the 
reversible structures that were introduced previously (in Chapts. 6, 
7, and 8) using the form of quantum circuits. 
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Fig. 10.3. Quantum circuits of adders: a a truth table for half adder, b truth table for full 
adder, c quantum circuit for half adder, and d quantum circuit for full adder. 

 
       For instance, Fig. 10.4 illustrates the quantum notation for the 
reversible lattice structure from Fig. 6.2. Here, another importance 
of the quantum notation is readily apparent: (1) the quantum 
notation shows the one-dimensional left-to-right time-based 
evolution of the process realized by the lattice structures, (2) it  
shows the composition of the circuit as number of inputs that are 
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equal to the number of outputs, and (3) the propagation of the input 
signals from input lines to output lines throughout the gates. 
 

 

 

 

 

 

 

 

 
Fig. 10.4. One-dimensional left-to-right time-based evolution quantum circuit that realizes 
the process implemented by the 2-D lattice structure in Fig. 6.2. 

 
       Using the same quantum notation, one obtains the one-
dimensional left-to-right time-based evolution quantum circuit in 
Fig. 10.5 that realizes the process which is implemented by the 
multiple-valued reversible lattice structure from Fig. 6.4.  
       It is observed that when the quantum lattice structure is of a big 
size, one can utilize the ISID decomposition from Chapt. 4 to 
decompose the total structure into multiple parts and thus potentially 
reducing the total size of the quantum lattice structure (and 
consequently reducing the total number of quantum operations that 
are needed to perform quantum computations using such structures 
as will be shown in Chapt. 11).  
       Using the two-valued operational quantum notation, one obtains 
the quantum logic circuits in Figs. 10.6a and 10.6b for the reversible 
Cascade circuits in Figs. 8.13a and 8.13b, respectively. 
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Fig. 10.5. One-dimensional left-to-right time-based evolution quantum circuit that realizes 
the process implemented by the lattice structure in Fig. 6.4. 

 
 
 
 
 
 
                                                                           a 
 
 
 
 
 
 
                                                                            b 
 
Fig. 10.6. One-dimensional left-to-right time-based evolution two-valued quantum logic 
circuits: a the implementation of the reversible cascade circuit in Fig. 8.13a, and b the 
implementation of the reversible cascade circuit in Fig. 8.13b. 
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       From Fig. 10.6, one notes that while the quantum logic circuit in 
Fig. 10.6a requires a total of 7 quantum primitives (4 N gates, 2 CN 
gates, and 1 CCN gate), the quantum logic circuit in Fig. 10.6b 
requires a total of three quantum primitives (2 N gates, and 1 CCN 
gate).  
       Using the multiple-valued quantum notation, one obtains the 
following quantum logic circuits in Figs. 10.7a and 10.7b for the 
reversible Cascade circuits in Figs. 8.15a and 8.15b, respectively. 
       From Fig. 10.7, one notes that while the quantum logic circuit in 
Fig. 10.7a requires a total of 7 ternary quantum primitives (2 N(1) 
gates, 2 N(2) gates, 2 CN gates, and 1 CCN gate), the quantum logic 
circuit in Fig. 10.7b requires a total of five ternary quantum 
primitives (2 N(1) gates, 2 N(2) gates, and 1 CCN gate). 
 
 
 
 
 
 
 
 
 
                                                             a 
 
 
 
 
 
 
 
                                                             b 
 
Fig. 10.7. One-dimensional left-to-right time-based evolution ternary quantum logic 
circuits: a the implementation of the reversible cascade circuit in Fig. 8.15a, and b the 
implementation of the reversible cascade circuit in Fig. 8.15b. 

 
       The examples from Figs. 10.6 and 10.7 show very clearly that 
the result of minimum reversible logic circuit will lead to a 
minimum quantum logic circuit, in terms of minimizing the length 
(number of levels) and the width (number of gates per level) of the 
corresponding quantum logic circuit. (The size of the quantum logic 
circuit will be reflected in the size of the quantum (scratchpad) 
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register, as will be shown in the next Chapt.) This is illustrated in 
Fig. 10.8. 
 

 

 
 
            Chapters (6), (7), and (8)                   Chapter (10) 
 
Fig. 10.8. Relationship between the size of the reversible circuit and the corresponding size 
of the quantum logic circuit. 

 
       Also, one can note the difference between the reversible 
notation in Figs. 8.13 and 8.15 and the corresponding operational 
quantum notation from Figs. 10.6 and 10.7, respectively. The 
difference is not only in the fact that the quantum notation reflects 
the 1-D quantum evolution from left-to-right, but also the quantum 
notation will lead to different number of primitives than the 
corresponding reversible notation, which are needed to show the 
implementation of the reversible circuit using garbage-free quantum 
logic circuit.  
       Although the conclusion in Fig. 10.8 has a common sense 
ground, it can be of limited importance. This is because another very 
important factor besides the size of the quantum logic circuit is the 
cost of the physical quantum processes that implement the 
corresponding quantum logic circuits, and thus smaller size quantum 
logic circuit is not necessarily implemented by a less complex 
quantum physical processes, and vice versa. This issue is an open 
subject with very little, if none, literature available, and needs much 
further future investigations. 

 
10.3 Summary 
 
This Chapt. has inroduced the quantum notation and the 
corresponding quantum logic circuits for the previously invented 
reversible circuits. The quantum notation introduced emphasizes the 
use of control lines to activate conventional operations on other 

Minimum Size of  
Reversible Logic 
Circuit 

 Minimum Size of  
 Quantum Logic 
 Circuit 
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inputs. This is important since this can realize physical processes 
where there are specific physical control variables which one would 
like to use to obtain logical operations from other wires within such 
processes.  
       Using such operational quantum notation one can realize the 
reversible structures that were introduced previously in quantum 
logic circuits. Other good properties of the operational quantum 
notation can be observed when implemented upon reversible 
structures from Chapts. 6, 7, and 8 as follows: (1) the quantum 
notation shows the one-dimensional left-to-right time-based 
evolution of the process realized by the reversible circuits, (2) it 
shows the composition of the circuit as number of inputs that are 
equal to the number of outputs, and (3) it shows the propagation of 
the input signals from input lines to output lines throughout the 
quantum gates (primitives).  
       Besides the circuits shown in Sect. 10.2 of this Chapt., other 
quantum circuits could be created as well, such as for the general 
synthesis of multiple-output multiple-valued quantum Cascades that 
use serial, parallel, or mix of serial and parallel interconnects of 
multiple-valued quantum n-ary operators (e.g., the equivalent 
quantum counterparts of the reversible 3-valued unary shift 
operators from the mathematical formalisms that were introduced in 
Sect. 2.1 in Chapt. 2 such as: (1) Wire (Buffer; zero shift): x = x, (2) 
first shift: x’ = x + 1, (3) second shift: x” = x + 2, and (4) other shifts 
of x by: 2⋅x, 2⋅x + 1, 2⋅x + 2, etc). (Methods of quantum 
computations using similar Cascades will be shown in the next 
Chapt.) 
       Next Chapt. will introduce the two-valued and multiple-valued 
quantum computing methodologies for the two-valued and multiple-
valued quantum circuits that were introduced in this Chapt. 
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11 Quantum Computing: Basics and New Results 
 
 
 
 
 
Trends in computer hardware are leading toward higher density and 
lower energy dissipation. Ultimately, some approaches should result 
in packing extremely high densities in excess of 1017 logic devices 
in a cubiccentimeter. The trend towards higher packing density 
strongly influences energy dissipation. Conventional devices must 
dissipate more than K⋅T⋅ln(2) Joules in switching (cf. Fig. 1.1), and 
thus enormous amounts of power will be needed for computing 
using classical methods of computations [116]. Even an idealized 
device, which uses a one Volt power supply and dissipatively 
discharges a single electron to ground during the switching 
operation, would dissipate one electron Volt per switching 
operation. At T = 300 Kelvins, this is 40⋅K⋅T per switching 
operation or about 160,000,000 Watts for a computer with 1017 logic 
elements operating at 10 GHz. If each switching operation involves 
hundreds of electrons then the energy dissipation enters the multi 
gigaWatt range. 
       New thermodynamically reversible circuits (e.g., CMOS, 
nMOS, CCD-based logic circuits, etc) would be far better [116], but 
these circuits still have some amount of dissipative losses that are 
caused by the unavoidable parasetic resistance that exists in the 
circuit. Thus quantum computing technology, which is naturally 
reversible, offers a very promising solution for this big problem.  
       Logic circuits within the quantum barrier (nano-scale) have 
already been fabricated using nanotechnology [111,112,196]. 
Figures 11.1 and 11.2 from [111] show the electron microscope 
images of a two-dimensional lattice-like structure which was 
fabricated using nanotechnology. 
       The nano circuits in Figs. 11.1 and 11.2 are very similar to the 
(2,2) two-dimensional lattice structures from Chapt. 4. Figures 11.1 
and 11.2 implement at the nano scale a binary adder, where s1 and s0 
represent the sum outputs, and c1 represents the output carry. 

A. N. Al-Rabadi, Reversible  Logic  Synthesis

© Springer-Verlag Berlin Heidelberg 2004
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Fig. 11.1. Circuit fabricated using nanotechnology: a logic circuit diagram, b nanowire 
layout, and c image of the physical nano circuit. 
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Fig. 11.2. The (2,2) 2-D lattice-like structure from Fig. 9.1: a image, and b 
visualization. 
 
       Due to the anticipated failure of Moore’s law around the year 
2020, quantum computing will play an important role in building 
smaller size and less power-consuming computers 
[40,107,115,167,168,170]. Because all quantum computer gates 
(i.e., building blocks) must be reversible, reversible computing will 
also be increasingly important in the future design of regular, 
minimal size, and universal (complete) systems. Due to the fact that 
higher power consumption occurs at higher frequencies of operation, 
and due to the fact that minimal power consumption is needed for 
mobile and remote tele-communications (as cellular phones) and 
computing (as laptops), two major solutions have been proposed for 
this increasing power consumption problem: (1) asynchronous 
design of sequential machines, and (2) adiabatic design of circuits 
and systems, which is related to reversible logic [206]. Reversible 
computing can be considered a necessary but not sufficient step 
towards quantum computing, where no power is consumed for 
internal information processing, and the power is only consumed 
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when reading and writing quantum bits (quantum data) from and 
into the quantum computer, respectively [93,122,160,167,205]. 
       While some logic systems are non-linear (like fuzzy logic), 
quantum logic (QL) is linear, since all the evolutions (operations) of 
input quantum bits are performed using linear unitary 
transformations (evolution processes). Quantum computing requires 
the following main constraints that distinguish it from classical 
computing (The notation that is used in this Chapt. follows the well-
known “Dirac notation” of quantum mechanics [81]): 
(1) Quantum operations are done on vectors of bits called qubits 
(quantum bits). 
(2) Quantum functions are complex-weighted probability-based 
linear combinations (superpositions) of orthonormal basis states 
[167] as follows: �=

i
iic ϕψ , where the coefficients ci are called 

probability amplitudes, and |ci|
2 produces the probability of the 

quantum state ψ  collapsing into the state iϕ , and the unitarity 

condition 1
2 =�

i
ic . Some of the basis states that are used in a 1-

qubit binary quantum systems include [95,107,115,167,253,254]: (a) 
the computational basis states { }1,0 , and (b) the composite basis 

states 
�
�
�

�
�
� −

=−
+

=+
2
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,

2
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. Some of the basis states that 

are used in a 2-qubit binary quantum systems include: (a) Einstein-
Podolsky-Rosen (EPR) basis states 

�
�
�
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� −+−+

2

1001
,

2

1001
,

2

1100
,

2

1100
, and (b) the 

computational basis states { }11,10,01,00 .  

(3) Quantum computations, algorithms, and circuits must be 
reversible.  
(4) Linear and Unitary operations (evolutions; transformations). 
These operations are performed in n-dimensional Hilbert space, 
which is in general a linear complex vector space. The states |0> and 
|1> are the computational basis states that form an orthonormal basis 
set in Hilbert space. Two-valued single qubits exist in 2-D Hilbert 

 232      11 Quantum Computing: Basics and New Results 



 

space, and three-valued single qubits exist in 3-D Hilbert space. The 
quantum operators in Hilbert space describe how one wave function 
is changed into another wave function. In the formalism as an 
eigenvalue Eq. (problem), one obtains the following eigenvalue Eq.: 

iii bB ϕϕ =ˆ , where bi is the eigenvalue, and the solutions to the 

eigenvalue Eq. are iϕ , which are called eigenstates that can be 

used to construct the basis states of a Hilbert space. Consequently, 
the Hilbert space has a set of basis states iϕ  and the quantum 

system is described by a quantum state ψ  as: �=
i

iic ϕψ , 

where in general the coefficients ci may be complex. In Dirac 
notation [81], the probability that a quantum state ψ  will collapse 

into an eigenstate iϕ  is equal to 
2ψϕ i  which is the dot (inner; 

scalar) product (projection) of the two vectors iϕ  and ψ . The 

unitarity of operators (matrices) (cf. Sect. 11.1) implies reversibility. 
(5) The quantum register, which is an array of qubits, can be in any 
of the individual states of its qubits at any instant of time or at all of 
the states at the same time, thus allowing for parallelism at the 
quantum level. When the quantum states exhibit correlations that 
cannot be accounted for classically, then the quantum state is said to 
be in entanglement. 
       Quantum computing has important advantages in comparison to 
classical computing as follows: 
(1) Transforming highly complex problems from the real domain to 
other domains (like Fourier domain, Walsh domain, etc) does not 
reduce the problem complexity, but transforming such complex 
problems to the quantum domain does reduce the problem 
complexity. Due to this fact, some problems that are not solvable in 
polynomial time in classical domains can be solvable in polynomial 
time in the quantum domain, and a well-known example is the 
factoring problem [226,228]. Solving the factoring problem results 
in the ability to penetrate encrypted messages utilizing any 
communication channels like the internet for instance, which makes 
it a vital issue for national security of any country [162,163], and 
thus quantum cryptography becomes very important. Fast quantum 
algorithms for database search have been also created [105,106]. 
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(2) Quantum logic (QL) permits intensive parallel computations. 
(3) QL executes on 2-valued as well as many-valued logics, as was 
shown in [54,165]. Thus by utilizing the physical properties of 
atoms, one can use the same aperture to perform two-valued or 
multiple-valued quantum computing. This is different from classical 
computing where different complex devices have to be designed for 
two-valued and multiple-valued logics. This can be performed using 
the polarization of light for binary and multiple-valued computing, 
spin of particles for two-valued computing [79,167], the energy 
(eigen) state transitions of cold trapped ions for two-valued 
computing [54] and multiple-valued computing [165]. (This is 
illustrated in Fig. 11.3.) 
       In Fig. 11.3a, for the equally distributed quantum states (Ei), the 
eigenstates that are obtained by solving Schrodinger Eq. for the 
simple harmonic oscillator (SHO), can be considered as the 
positions where an electron can be found purely in any of the 
eigenstates or as entangled states where the electron exists in 
intermediate (superimposed) eigenstates and not in any individual 
eigenstate. Figure 11.3b illustrates the famous Stern-Gerlach 
experiment [167] where the quantum number, which is associated 
with the spin of particles, was discovered. Such quantum spin 
number, in the case of an electron, proton, or neutron for example, 

has two possible values: (
2

1+ ) for spin-up and (
2

1− ) for spin-down, 

and thus two-valued quantum computations can be achieved using 
such unique spins [107,167]. (Quantum spin numbers for other 
particles such as a photon (+1 and -1) can be different). Figure 11.3c 
illustrates the potential use of light polarization ( E

�
) as quantum 

states for two-valued and multiple-valued quantum computations. 
Figure 11.3d illustrates the multiple-valued quantum computing 
using linear ion trap scheme from [165], where by using d-level ions 
in this scheme, (d-1) neighboring transitions occur by illuminating 
(d-1) distinct laser beams on the linearly trapped ions, and thus 
multiple-valued quantum computing can be accomplished. 
(4) The requirement of reversible algorithms/codes on quantum 
machines, thus very little power is needed (theoretically zero). This 
issue is important in mobile and remote communications (as in 
cellular phones) and computing (such as laptops). 
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(5) The size of a future quantum computer (QC) will be extremely 
small (nano-scale), since all the quantum operations are performed 
on the level of atoms. 
(6) In teleportation (e.g., teleporting quantum state of an object to a 
distant object and thus teleporting the encoding (qubit)) the quantum 
effects are vital, thus the need for quantum computers [44,107,167]. 
(7) A quantum computer is a true random number generator [253]. 
       As was discussed in Chapt. 5, while the physical constraints 
allow for some reversible gates to have the number of inputs to be 
not equal to the number of outputs like in the case of optical 
computing using the Interaction and Switch gates [62], other 
physical constraints allow for reversible gates only to have the 
number of inputs equal to the number of outputs like in the case of 
quantum computing. 
       Three layers of abstraction are distinguished in investigating 
quantum logic design. The first layer is the quantum algorithmic 
(mathematical) level where algorithms (procedures) are developed 
that use fundamental concepts from the quantum domain such as the 
entanglement and quantum transforms (e.g., the quantum Fourier 
transforms (QFT) on dyadic and p-adic groups) to efficiently solve 
problems that were previously thought to be unsolvable in the 
classical domain. The second layer is the quantum logic synthesis 
level where methodologies for the synthesis of circuits using 
quantum primitives are created. This includes synthesis methods 
such as various mathematical decompositions, factorizations, etc. 
The third layer is the quantum physical (device) level which consists 
of device modeling, simulation, and fabrication in the nano scale 
(i.e., less or equal to 10-10 m = 1 Angestrom).  
       In general, two methodologies exist to synthesize quantum 
computers: (1) quantum Turing machine [167] which requires: (a) 
“infinite” memory, (b) read/write head, (c) information encoding 
(0,1,-), and (d) set of instructions (i.e., program or code) that 
specify: (1) the output, (2) next state of the head as a function of the 
present state of the head and inputs, and (3) shift-left or shift-right 
operation of the head, or (2) a combination of interconnections 
between (universal) logic primitives [95,107,167]. In this Chapt. the 
focus will be on synthesizing quantum circuits using the second 
approach of interconnections between quantum logic primitives. 
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Fig. 11.3. Various physical realization methodologies for the implementation of two-valued 
and multiple-valued quantum computing: a energy states for Simple Harmonic Oscillator 
(SHO) potential for two-valued and multiple-valued quantum computing, b particle spin 
angular momentum in Stern-Gerlach experiment for two-valued quantum computing, c 
light polarization for two-valued and multiple-valued quantum computing, and d cold 
trapped ions for two-valued and multiple-valued quantum computing. 

 
       Many types of quantum computers have been proposed that 
utilize a combination of interconnections between quantum logic 
primitives: Feynman quantum computer [93,253], Deutsch quantum 
computer [69], Czerny quantum computer, Benhoff quantum 
computer, Chuang-Yamamoto quantum computer [53], and others in 
[41,169]. Physical devices have been proposed for quantum 
computing like the ½ spin particles [248], and Nuclear Magnetic 
Resonance (NMR) machines [167]. NMR is one of the main 
quantum engines that have been proposed and can currently operate 
on up to seven qubits. 
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       Since little has been developed towards the analysis and 
synthesis of multiple-valued quantum logic circuits, this Chapt. 
serves as a first step to fill this gap. This Chapt. provides the 
theoretical background for multiple-valued quantum logic, 
especially that multiple-valued quantum primitives have been 
constructed [165], and quantum hardware devices have been built 
[54,162,163,165] that can utilize such theories. Figure 11.4 
illustrates the analogy graph that motivates the developments for the 
various quantum circuits in this Chapt. 
 
 
 
 
 
 
 
                 Fig. 11.4. Analogy graph that motivates the developments in this Chapt. 

 
       So far, not much has been published on multiple-valued 
quantum logic gates and especially their characterization and 
representation formalisms. It is the main goal of this Chapt. to start 
building a systematic theory of multiple-valued quantum gates, 
structures, and synthesis methods. This Chapt. introduces the 
following new results: 
• New two-valued and multiple-valued quantum primitives and   
   evolution processes. 
• New multiple-valued composite basis states and Einstein-   
   Podolsky-Rosen (EPR) basis states. 
• Generalized multiple-valued quantum permuters. 
• Two-valued and multiple-valued canonical quantum decision trees   
   (QDTs) and decision diagrams (QDDs). 
• Introducing the mathematical operations for the analysis and   
   synthesis of serial, parallel, and mixture of serial and parallel   
   multiple-valued quantum circuits. 
• Showing that minimum two-valued and multiple-valued quantum   
   logic circuits, that result from minimum size two-valued and   
   multiple-valued reversible logic structures, lead to minimum   
   complexity of two-valued and multiple-valued quantum   
   computing,  respectively. 

 
 
Reversible Primitive                             Quantum Representation 
 
 
 
Reversible Structure                              Quantum Computation 
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       Items 1 and 3 are necessary for the automated analysis and 
verification of netlists of the corresponding quantum gates. They are 
also necessary for the automated synthesis of a netlist described as 
an evolution matrix from quantum gates, especially for try-and-
check (i.e., try-and-error) methods such as evolutionary 
computations [100,110,207,236,237,249,252,255,258]. Since 
decision diagrams allow for efficient representation of large sparse 
matrices, they found applications in many computer aided design 
(CAD) algorithms, and we believe that their quantum counterparts 
will be useful for quantum logic synthesis and analysis. Finally, item 
2 is important because new forms (representations) of quantum 
decision trees and diagrams can be produced for the new quantum 
multiple-valued Einstein-Podolsky-Rosen (EPR) basis states, and 
thus allowing for further possible optimizations in the design of 
quantum circuits, analogous to the classical (non-quantum) case 
where different forms of decision trees and diagrams lead to 
different scales of optimizations in the design of logic circuits 
[213,217,219]. 
       The remainder of this Chapt. is organized as follows: 
Background and preliminaries on two-valued quantum evolution 
processes and synthesis are included in Sect. 11.1. Different types of 
mathematical decompositions that can be used for quantum 
computing and for the synthesis of quantum logic circuits using 
basic quantum primitives are presented in Sect. 11.1.1. New two-
valued quantum evolution processes are introduced in Sect. 11.2. 
Two-valued quantum decision trees and diagrams are presented in 
Sect. 11.3. Fundamentals of multiple-valued quantum computing are 
presented in Sect. 11.4. New multiple-valued composite and EPR 
basis states and quantum Chrestenson evolution process are 
presented in Sect. 11.5. New multiple-valued generalized quantum 
permuters and evolution processes are presented in Sect. 11.6. Novel 
representations of multiple-valued quantum decision trees and 
diagrams for multiple-valued quantum computing are introduced in 
Sect. 11.7. A methodology of the automatic synthesis of quantum 
circuits based on evolutionary algorithms is presented in Sect. 11.8. 
Quantum computations using reversible structures (from Chapts. 5, 
6, 7, and 8) and initial comparison for such synthesis methods are 
presented in Sect. 11.9. Chapter Summary is presented in Sect. 
11.10. 
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11.1 Fundamentals of Two-Valued Quantum Evolution 
Processes and Synthesis 
 
In general, the dynamical behavior of quantum systems is governed 
by the solution of Ψ in the time-dependent Shrodinger Eq. (TDSE) 

[81,208]. The following is the 1-D TDSE [81,208]: 
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where h is Planck constant (6.626⋅10-34 J⋅s), V(x,t) is the potential, m 

is particle mass, i is the imaginary number ( 1−=i ), ),( txΨ is the 
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       A general solution to TDSE is the expansion of a stationary 
(time-independent; spatial) basis functions (eigen states) 

)(rU e

�
using a time-dependent (i.e., temporal) expansion coefficients 

Ce(t), as follows: 
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       The expansion coefficients Ce(t) are a scaled complex 
exponentials as follows:       
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       Most of the proposed quantum computers [95,167], and the 
proposed quantum algorithms to solve (time-independent) 
optimization problems (e.g., Traveling Slaseman problem, Graph 
Coloring problem, Maximum Clique problem, etc) are systems that 
evolve according to the time-independent Shrodinger Eq. (TISE): 
 

       Ψ=Ψ HE ,                                                                     (11.2) 
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where E is the system energy, H is the system Hamiltonian operator 
(which is related to the total energy of the quantum system, and can 
be thought of as the quantum computer hardware that evolves the 
input quantum state vector or quantum data), and |ψ|2 is the wave 
Eq. (probability density). (For a complete example for obtaining ψ 
and |ψ|2 = ψψ* please refer to Example K.1 and Fig. K.1 in 
Appendix K.) 
       Thus, and according to Fig. 11.3a for instance, if one considers 
the eigen states )(rU e

�
 to be the qubits e of the quantum system, 

then the expansion coefficients Ce are the square roots of the 
probability density functions (PDFs) as follows: 
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Where PDFe is the probability of finding the state Ψ  in the state 

eU , and:      
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       The evolution operator (transformation; process) U is a unitary 
operator like the Walsh-Hadamard operator [167]. This operator is a 
function of the Hamiltonian (H), which is obtained by solving 
Shrodinger Eq., and thus: 
 

       ∴ U = f (H).                                                                         (11.3) 
 

       If the initial quantum state of a quantum system is: 
 

       � Ψ=Ψ
k

kkμ ,                                                                (11.4) 

 

then the quantum system evolves over time, using the linear and 
unitary operator U, to the following state: 
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Where the unitarity condition holds: ,1')'(, == μμ �� HH IUU  and H 
is the Hermitian (i.e., transpose of the conjugate). 
       As stated previously, quantum logic incorporates physical 
axioms into the abstract mathematical axioms in order to make the 
resulting logic a true representation of the natural physical reality, an 
ability the classical irreversible logics lack. Thus, in the quantum 
domain, the issues of: interference, entanglement, decoherence, and 
measurement (observation) are essential. These quantum-based 
phenomena have been experimentally verified.  
       The quantum interference exists to explain the 2-slot 
experiment: when a beam is projected into a plane through two 
“tiny” slots, a detector on the projected plane detects a varying 
amplitude wave-like beam [81,208]. This varying amplitude wave-
like beam can be constructed by super-imposing two waves, called 
“probability waves”. Mathematically, this quantum interference 
corresponds to the fact that when a unitary operator is applied upon 
an input, some “amplitudes” increase while others decrease (i.e., 
they interfere with each other). Therefore, when the linear unitary 
operator is applied upon the wave function, the wave function 
interferes with itself, and consequently different parts of the wave 
function interfere constructively or destructively according to their 
relative phases, and thus the interference pattern occurs, where for 
the total amplitudes cj some amplitudes ci increase and other 
amplitudes cj-i decrease. The physical phenomenon of interference is 
illustrated as shown in Fig. 11.5. 
       The quantum entanglement means that a quantum state cannot 
be written as the tensor product of individual states (i.e., non-
decomposable). When the quantum states iϕ  exhibit correlations 

that cannot be accounted for classically, then the quantum state ψ  

is said to be in entanglement. (Further explanation of two-valued 
and multiple-valued entanglement will be shown in Examples 11.1 
and 11.5, respectively.) 
       The quantum measurement (observation) means that while the 
state of the quantum register can be in general in any of the 
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individual states at any instant of time or at all of the states at the 
same time, the state of the binary quantum register “collapses” into 
either the quantum state 0  or quantum state 1  when 

measurement is conducted. Measurement in the quantum domain is 
governed by Heisenberg’s “uncertainty principle” [81] which states 
that one cannot measure with absolute certainty specific multiple 
quantum quantities (i.e., observable variables) at the same time since 
a measurement of one variable affects the measurement of the other 
variable (e.g., the measurement of the pairs: (position, momentum) 
and (time, energy)). Because in measuring the state of a quantum 
system ψ  the superposition, in which quantum state exists, 

collapses into a single state iϕ , and because this measurement is 

governed by the uncertainty principle, the collapsing of the quantum 
state ψ  into a single state iϕ , through measurement in the 

quantum domain, changes the state of the quantum register 
according to the uncertainty principle. 
       The physical process of decoherence (dephasing) [117] (or the 
loss of phase coherence) indicates the tendency of a quantum system 
(such as a quantum computer) to decay from a given quantum state 
into an incoherent state as it interacts, or entangles, with the state of 
the environment in which that specific quantum system exists. A 
quantum system is said to be coherent if it exists in a linear 
superposition of its basis states. Yet, as a result of quantum 
mechanics, if the quantum system interacts in any means with its 
environment (i.e., the surrounding or outer system), then the linear 
superposition of that specific quantum system will be destroyed. 
When the quantum system ψ  is coherent, one cannot decide the 

state iϕ  in which the quantum system exists, since the state of 

such quantum system is the probabilistic superposition of basic 
orthogonal quantum basis states. On the other hand, when the 
quantum system ψ  decoheres, then one can decide which state 

iϕ  the system ψ  will be in with a probability according to the 

scalar projection 
2ψϕ i .  
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Fig. 11.5. The quantum interference experiment, which by analogy to quantum computing
implies that when a unitary quantum operator is applied, some amplitudes increase while
others decrease (i.e., they interfere with each other). The probability density function PDF

2 *=P12 = IPI =PP . Thus, ~2 =rl~ +r2P2'

These interactions between the environment and the states of
the quantum system are unavoidable, and induce the breakdown of
information stored in the quantum system (computer), and thus
errors in computation. Other types of quantum noise also appear in
the nano scale besides the noise from decoherence [261].
Consequently, error correction methods have to be used to obtain the
phase coherence and to counteract the effects of noise [48,227,241].
The phenomena of decoherence is one of the biggest obstacles that
prevent us today from building a quantum computer, or more
precisely, building a quantum computer that can rival today's
modern digital computer, and still need to be solved to obtain
reliable quantum computations.
Conservation law states that matter cannot be created or

vanished but can be transformed from one form to another.
Conservative logic implements the physical law of conservation by



 

having the number of ones in the input vector equal to the number of 
ones in the output vector for binary reversible logic, and number of 
ones and twos in the input vector equal to the number of ones and 
twos in the output vector for ternary reversible logic, etc.  
       Thus, in general, the axiomatic algebraic systems, which are 
used in quantum logic, incorporate the following set of physical 
phenomena: uncertainty principle, interference, entanglement, 
decoherence, linear evolution, conservativeness, and reversibility. 
       In binary quantum logic, two qubits can be represented by the 
vector corresponding to the spin of atomic particles as follows: 
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       Figure 11.6 illustrates the spin-up and spin-down for particles to 
perform two-valued quantum computing. A qubit can be 
mathematically modeled in the spherical coordinate system using 
the Bloch sphere [167,270], where a vector of fixed length rotates 
with angles inside the sphere and each of these rotations correspond 
to a specific quantum gate (primitive). For example, the core of 
quantum Fourier transform (QFT) (i.e., n = 1) that will be presented 
in Sect. 11.1.1 is performed by the composition of two vectors 
(qubits) in 2-D (vector or function) Hilbert space: (1) quantum state 
0  and (2) a specific rotation equal to ijeπ of quantum state 1 . (In 

the case of p-adic groups the core of QFT is performed by the 
composition of p vectors each with different rotation in p-
dimensional space. For example, in the case of ternary logic [268], 
the core of QFT is generated by the composition of three vectors 
(qubits) in 3-D space: (1) quantum state 0 , (2)  rotation1 of 

quantum state 1 , and (3) rotation2 of quantum state 2 .) 

       An n-qubit binary quantum register (also called a scratchpad 
register [95,98,167]) is an array of n binary qubits. For a quantum 
register that is composed of 2 binary qubits, one obtains 4 possible 
states of the register. These states are as follows: 
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                                    a                                                b 
 
Fig. 11.6. a Atomic particle spin-up  that represents qubit |0>, and b atomic particle spin-
down that represents qubit |1>. An m-qubit binary quantum register consists of m of such 
spins, and thus can have up to 2m distinct states. Any quantum state is a linear combination 
(superposition) of the orthonormal computational basis states |0> and |1>. 

 
Where ⊗ is the tensor (Kronecker) product [217]. For a scratchpad 
register composed of three binary qubits, one obtains 8 possible 
states of the quantum register. These states are generated as follows: 
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       In general, a binary quantum register that is composed of k 
binary qubits can have up to 2k possible states. The quantum register 
can be in any of the individual states at any instant of time or in all 
of the states at the same time. The fact that the scratchpad register 
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can be in all of the states at the same time is the reason for the 
binary parallelism that exists at the binary quantum level. Due to 
this parallelism, a binary quantum processor can operate on all of 
the states of the quantum register at the same time (i.e., it can be 
modeled like application-specific 2k binary parallel processors). 
       For a register composed of 1 qubit, the evolution state ( Ψ ) is 

represented as follows: 
 

       qubitbinary −Ψ = 10 10 pp + ,                                   (11.5) 
 

where in general: 
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       1≥ pi≥ 0, i∈{0,1}, and p0 + p1 = 1. 
       Here p0 is the probability of the qubit being in state |0>, and p1 
is the probability of the qubit being in state |1>, α and β are complex 
numbers called “probability amplitudes”, and in general αα* + ββ* = 
|α|2 + |β|2 = 1. Thus, if {|α| = 0, |β| = 1}, {|α| = 1, |β| = 0}, {|α| = 
1/√2, |β| = 1/√2}, or {|α| = 1/√4/3, |β| = 1/√4}, etc, then |α|2 + |β|2 = 
p0 + p1 = 1. 
 

       ∴ qubitbinary −Ψ  = 10 10 pp + = 10 βα + .   (11.6) 
 

Eq. (11.6) is the amplitude Eq. that describes two-valued quantum 
computing. The more general Eq. that includes the phase as well is 
as follows [167]:  
 

       qubitbinary −Ψ   = 1)
2

sin(0)
2

cos( )( θθ ϕγγ ++ ii ee ,                (11.7)      

where {γ,ϕ,θ}∈ R. Equation (11.6) can be re-written as: 
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E10 ,                                         (11.8) 
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where [E] is an evolution matrix.  
       In general, the size of the evolution matrix [E] for (k,k) 
reversible gates over any radix and for an arbitrary number of inputs 
is governed by the following Eq. [15]: 
 

       ||E|| = radix #inputs = #outputs ⋅ radix #inputs = #outputs,                  (11.9) 
 

where the radix indicates the radix of logic which is used for 
reversible and quantum computing.  
       For a two-valued quantum register that is composed of two 
binary qubits, the quantum state Ψ  is represented using the 

computational basis states { 1,0 }, as follows: 

       1qubitbinary −Ψ  = 10 10 pp + ,  

       2qubitbinary −Ψ = 10 32 pp + , 

       qubitbinary −−Ψ 2   = Ψ 1 ⊗ Ψ 2     

                                   = ( 10 10 pp + )⊗( 10 32 pp + ), 

        

                = 11100100 31213020 pppppppp +++ . 

Given that: 
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One obtains qubitbinary −−Ψ 2  equals to:  
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       Specifically, given the orthonormalization conditions: |α1|
2 + 

|β1|
2 = 1 and |α2|

2 + |β2|
2 = 1, one obtains: 

       (|α1|
2 + |β1|

2)(|α2|
2 + |β2|

2)= 1,  
       α1α2|

2 + |α1β2|
2 +|β1α2|

2 +|β1β2|
2 = 1. 

     qubitbinary −−Ψ∴ 2 = Ψ 1 ⊗ Ψ 2 = )10()10( 2211 βαβα +⊗+ , 

                              = 11011000 21212121 ββαββααα +++ , 

                              = 11100100 21212121 ββαββααα +++ . 
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where [E] is the quantum evolution process. 
       It is interesting to note that the binary 2-qubit orthonormal 
computational  basis states: }11,10,01,00{ in Eq. (11.10) is just 

one possible set of orthonormal basis states. Other possible 
orthonormal basis states for a binary 2-qubit quantum register 
include the Einstein-Podolsky-Rosen (EPR) basis states [167]: 
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(Example 11.1 will 

illustrate the quantum circuit that creates the EPR set of orthonormal 
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basis states). The following represents the unitary evolution matrices 
for some quantum gates that are used in quantum computing 
[36,167,230,253] (quantum gates, such as the Pauli gates, can be 
obtained using quantum mechanical formalisms [81]): 
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(2,2) gates: 
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where α, φ, and θ are constant irrational multiples of π and one 
another. 
 

(3,3) gates: 
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. 

       The size of each evolution matrix is governed by Eq. (11.9). For 
example, for (2,2) two-valued gate, the size of the evolution matrix 
is equal to 22⋅22 = 4⋅4 = 16 elements. Note that the orthogonal 

Walsh-Hadamard transform �
�

�
�
�

�
−11

11
is normalized by 

2

1
to make 

the matrix unitary (i.e., the columns are orthogonal to each other and 
the Euclidian length of each column is one).  
       It has been shown [167] that any quantum computer can be 
constructed using only the Barenco-DiVincenzo gates, quantum 
XOR (Feynman gate) and one generalized quantum inverter (i.e., 
single-input single-output gates), or only using Toffoli gate together 
with (1,1) gates. This stems from the fact that a complete (universal) 
system should consist of at least a linear part and a non-linear part, 
not only a linear part. Since a Feynman gate is only made of a linear 
part (XOR gate) then it cannot be a universal gate on its own. On the 
contrary is the Toffoli gate, which consists of a linear part (XOR 
gate) and a non-linear part (AND gate) that qualify the gate to be 
universal (complete) (i.e., all possible 256 3-variable binary 
functions are produced using the quantum Toffoli gate). 
       From the matrix representation of the quantum gates, the matrix 
representation is equivalent to the input-output (I/O) mapping 
representation of quantum gates, as follows: If one considers each 
row in the input side of the I/O map as an input vector represented 
by the natural binary code of 2index with row index starting from 0, 
and similarly for the output row of the I/O map, then the matrix 
transforms the input vector to the corresponding output vector by 
transforming the code for the input to the code for the output. One 
notes from this example, that the Feynman gate is merely a 
permuter, i.e., it produces output vectors, which are permutations of 
the input vectors. 
       Although some quantum gates like Feynman gates are merely 
permuters, not all quantum gates do simple permutations. For 
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example the Walsh-Hadamard quantum gate is a transformer and not 
only a permuter. The mapping of a set of inputs into any set of 
outputs can be obtained using quantum computing methods.  
       According to the principles of quantum mechanics, the 
combination of quantum state qubits can be in either (1) 
decomposable or (2) in entangled states [167]. While each 
individual state qubit can be observed in the former case, the same is 
impossible in the later. The combination of two systems with the 
bases { }nxxx ,...,, 21  and { }myyy ,...,, 21  is described as a pair 

( )ji yx , , and the composite quantum state is expressed as: 
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       In quantum logic, one defines a state to be decomposable if it 
can be expressed as: 
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Otherwise, the state is entangled. The speedups in quantum 
computations seem to be due to the entanglement, by which many 
computations are performed in parallel. The following example 
illustrates the concept of two-valued quantum entanglement. 
Example 11.1. This example demonstrates the concept of two-
valued entanglement. 
11.1a. Consider a two-valued quantum system of two qubits, given 
as: 

                              ( )11100100
2

1 +++ , 

           = ( ) ( )10
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2

1
10

2

1 ++ . 
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This system is decomposable, as the functions of the first and 
second qubits are disentangled according to Eq. (11.12). 
11.1b. Consider now the two-valued quantum system: 

( )1001
2

1 + . 

This system is entangled, as no decomposition according to Eq. 
(11.12) is possible.  
       Among the previous quantum gates, the Walsh-Hadamard gate 
and Feynman gate are the most important quantum gates that are 
often used in binary quantum computing and synthesis. Analogous 
to the classical non-quantum operators (e.g., optical systems 
[49,261]), each quantum evolution matrix represents a unique 
quantum gate. For an evolution matrix of the size given by Eq. 
(11.9), the input qubit to the quantum gate corresponds to the 
column index of the evolution matrix, and the output qubit of the 
quantum gate corresponds to the row index of the evolution matrix. 
The column and row indices of the evolution matrix are in the 
following order for 1-input 1-output gates, 2-input 2-output gates, 
and 3-input 3-output gates, respectively: 

.111,110,101,100,011,010,001,000:33

.11,10,01,00:22

.1,0:11

gateoutputinput

gateoutputinput

gateoutputinput

−−
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−−

       

Quantum circuits are synthesized using interconnects between 
quantum primitives. Interconnects can be serial-like interconnects, 
parallel-like interconnects, or a mixture of serial-like and parallel-
like inter-connects. 
Example 11.2. This example illustrates a number representation and 
qubit transformation in binary quantum computing. 
11.2a. Number representation:  
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11.2c. Normalized Walsh-Hadamard transformation:   
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Thus, two serially inter-connected Walsh-Hadamard gates lead to 
the Identity transformation. 
11.2d. Figure 11.7 illustrates the quantum logic circuit that creates 
the EPR basis states [167]:  
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Fig. 11.7. a Input-Output quantum truth table, and b the corresponding quantum circuit that 
creates the orthonormal EPR basis states. 

 
Utilizing Fig. 11.7.b, and the shift operator over GF(2): 
{0→1,1→0}, one obtains the following Eqs.: 
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where )'(' 12 2
Ψ=Ψ ΨShift  means to shift the value of the basis 

states of '1Ψ  by the amount 2Ψ  over GF(2). 

 

   Input qubits        Output qubits 

   |00>         (|00> + |11>)/√2 

   |01>         (|01> + |10>)/√2 

   |10>         (|00> - |11>)/√2 

   |11>         (|01> - |10>)/√2 

                     a                                                                             b 

GF(2) Shift Operator 

 
Normalized  
Walsh- 
Hadamard 
gate 
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Then: For {α1 = 1, β1 = 0}: 
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11.2e. The following is the derivation of the orthonormal composite 

basis states: 
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Assuming the normalization of the “probability amplitudes”, and 
using the quantum signal Ψ  = 10 βα +  as an input to the 

normalized Walsh-Hadamard circuit in Fig. 11.8. 
 
 
 

 
 
                                     Fig. 11.8. Walsh-Hadamard logic circuit. 
 
One obtains the following quantum signal at the output of the gate: 

 	



�
�



�
−11

11

2

1       |Ψ> = α |0> + β |1>        |Ψ>’ 

  254      11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis        



 

[ ] [ ]

[ ]

[ ] .

,
2

10

2

10

11

11

2

1
10'

.1
2

0
2

,

2

210
11

11

2

1
10'

−++=�
�

�
�
�

�
−+=

�
�

�
�
�

�
�
�

�
�
�

� −+
=�

�

�
�
�

�
�
�

�
�
�

�
−

=Ψ

−++=

�
�
�
�

�

�

�
�
�
�

�

�

−

+

=�
�

�
�
�

�
�
�

�
�
�

�
−

=Ψ

βα
β
α

β
α

β
α

βαβα

βα

βα

β
α

 

Where:  

�	

�


�

��

�


� −

=−
+

=+
2

10
,

2

10
and 

�	

�


�

��

�


� −−+

=
−++

=
2

1,
2

0 .             

Therefore, one obtains, at the input side of the quantum Walsh-
Hadamard gate, the following quantum signal: 
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Therefore: {
2

,
2

βαβα −=+= −+ pp }.  

       Consequently, measuring Ψ  with respect to the new basis 

{ }−+ ,  will result in the state (basis) { }+  with probability 

2

|| 2βα +
and the state (basis) { }−  with probability 

2

|| 2βα −
. 

Example 11.3. The following circuits illustrate the process of 
evolving the input binary quantum bits using a composite of binary 
quantum primitives in serial-like, parallel-like, and a mixture of 
serial-like and parallel-like interconnects, respectively. 
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11.3a. Figure 11.9 illustrates the process of evolving the input 
binary qubits using the corresponding quantum circuits. Let us 

evolve the input binary qubit 11  = [ ]T1000
1

0

1

0
=�
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�
�
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�
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�
. 

 
 
 
 
 
 
 
 
 
 
Fig. 11.9. a Quantum circuit composed of a serial interconnect of two Feynman gates and a 
Swap gate, and b quantum circuit composed of serial and parallel interconnects of a single 
Feynman gate, two Wires (Buffers), and a single Swap gate. 

 
The evolution of the input qubit using cascaded (i.e., serially-
interconnected) quantum gates can be viewed in two equivalent 
perspectives. The first perspective is to evolve the input qubit step 
by step using the serially interconnected gates. The second 
perspective, is to evolve the input qubit using the total quantum 
circuit at once, since the total evolution transformation [ ]netM  is 

equal to the multiplication of the individual evolution matrices [ ]qM  
that correspond to the individual quantum primitives: 
∴[ ] [ ]∏=

q

qserialnet MM . 
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Perspective #2: 
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Thus, the quantum circuit shown in Fig. 11.9a evolves the qubit 11  

into the qubit 01 . 

       The quantum circuit in Fig. 11.9b is composed of a serial 
interconnect of two parallel circuits as follows: dashed boxes 
((1),(2)) and ((3),(4)) are parallel interconnected, and dotted boxes 
(5) and (6) are serially interconnected. The total evolution 
transformation [ ]netM  of the total parallel-interconnected quantum 

circuit is equal to the tensor (Kronecker) product of the individual 
evolution matrices [ ]qM  that correspond to the individual quantum 

primitives: ∴[ ] [ ]qparallelnet MM ⊗= . Thus, analogously to the 

operations of the circuit in Fig. 11.9a, the evolution of the input 
qubit, in Fig. 11.9b, can be viewed in two equivalent perspectives. 
The first perspective is to evolve the input qubit stage by stage. The 
second perspective is to evolve the input qubit using the total 
quantum circuit at once. Let us evolve the input binary qubit 111  

using the quantum circuit in Fig. 11.9b. The evolution matrices of 
the parallel-interconnected dashed boxes in (5) and (6), are as 
follows (where the symbol || means parallel connection): 

input = [ ]T00000001
1

0

1

0

1

0
111 =		




�
��



�
⊗		



�
��



�
⊗		



�
��



�
=⊗⊗ . 

       The evolution matrix for (5) = (1) || (2) is: 
 

Feynman⊗Wire=
,
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       The evolution matrix for (6) = (3) || (4) is: 
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Perspective #1: input� (5) � output1, input2 ( = output1) � (6) � 
output2. 
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Perspective #2: input� ((6)(5)) � output2. 
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       Thus, the quantum circuit shown in Fig. 11.9b evolves the qubit 
111  into the qubit 110 . 

       (Note here the reason for the name “tensor product”; the form of 
the matrix for a parallel interconnect is in the form of matrix of 
matrix elements (i.e., tensor) generated by this type of product.)   
11.3b. Let us evolve the input qubit |1111> using the following 
parallel-like interconnected quantum circuit. 

         11.1 Fundamentals of Two-Valued Quantum Evolution Processes and Synthesis      259   



 

 
                     a                                                                 x  

 
                     b                                                                 y  

 
                     c                                                                 z                       

 
                     d                                                                w  
 

 
Fig. 11.10. Quantum circuit composed of parallel-like interconnect of three Feynman gates. 

 
       It can be shown the qubit |1111> evolves using the quantum 
circuit in Fig. 11.10 into the qubit |1010>. 
11.3c. Let us evolve the input qubit |100> using the following 
mixture of interconnected quantum circuits: 
 

    a                                                                                              x  

 
    b                                                                                              y  

 
     c                                                                                              z  
 
 
Fig. 11.11. Quantum circuit composed of parallel-like and serial-like interconnects of five 
Feynman gates and one controlled-Swap gate. 

 
       It can be shown the qubit |101> evolves using the quantum 
circuit in Fig. 11.11 into the qubit |101>. 
11.3d. Since, in logic design, the replacement of one “large” circuit 
with an equivalent smaller size circuit, using components from 
library, is very important because it reduces the cost of synthesis, the 
same reasoning would hold in  the synthesis of quantum logic 
circuits. The following shows an example of quantum circuit 
equivalence of two quantum logic circuits, where the first circuit is a  
binary quantum Swap gate and the second equivalent circuit is made 
of three serially-interconnected binary Feynman gates. 
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    a                                       x  

 
    b                                       y  
 

                          a                                                                 b 
 
Fig. 11.12. a Binary quantum Swap gate, and b its equivalence in terms of three 
serially-interconnected binary Feynman gates. This equivalence in structural 
transformation is important since Swap, as crossing wires, can be realizable in 
quantum logic using Feynman gates. 

 
11.1.1 Mathematical Decompositions for Quantum Computing 
 
Factorization of the evolution process leads to the serial 
decomposition of the total quantum circuit into serially inter-
connected quantum sub-circuits. Utilizing Example 11.3, it is 
interesting to solve for the following binary evolution process 
factorization (or equivalently quantum circuit decomposition) 
problem: given the output (evolved) qubit, factorize the total 
composite evolution process into known evolution sub-processes. 
This type of quantum decomposition can be very useful in the 
synthesis of quantum logic circuits.  
       Quantum Analysis means to take the total synthesized quantum 
circuit of interconnected quantum sub-circuits and produce the total 
evolution matrix from it. Quantum Synthesis is the opposite; by 
having the total evolution matrix we want to produce within specific 
design constraints certain topological quantum circuit made up of 
either totally serial interconnects (i.e., using only matrix product), 
totally parallel interconnects (i.e., using only Kronecker product), or 
a hybrid of serial and parallel interconnects (i.e., using both matrix 
product and Kronecker product). The definitions of quantum 
analysis and quantum synthesis are illustrated in Fig. 11.13. 
       Consequently, many decompositions that are commonly used in 
linear algebra have been proposed [15,167] for the decomposition of 
the unitary evolution matrices, like: spectral theorem, Z-Y 
decomposition, Polar decomposition, LDU decomposition, Jordan 
decomposition, fast Fourier-like decomposition [123], and Singular 
Value Decomposition (SVD) [15]. 
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              Fig. 11.13. Demonstration of Quantum Analysis versus Quantum Synthesis. 

 
Example 11.4. This example illustrates the use of factorization to 
decompose the total evolution processes into quantum-realizable 
sub-processes, and to find quantum circuit equivalences. 
11.4a. For a complex matrix [M], in general, M is said to be 
symmetric iff [M] = [M]H, where H is the Hermitian (i.e., transpose 
of the conjugate). If [M] is symmetric, then the spectral theorem (in 
geometry and mechanics this is also known as “principal axis 
theorem”) is as follows: 
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where eve is the eigenvector of [M], and eva is the eigenvalue of 
[M], [Q] is an orthonormal matrix, and [ ]Λ  is a diagonal matrix. The 
following is the result of the application of spectral theorem on the 

evolution matrix �
�

�
�
�

� −
ττ
ττ

cossin

sincos
, which is unitary and symmetric. 
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Where: �
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is Walsh-Hadamard gate, �
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is Phase gate, 
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This result is presented in Fig. 11.14. 
 

 
 
 
Fig. 11.14. Cascade of quantum circuits using the decomposition from the spectral 
theorem. 

 
11.4b. The following illustrates finding serially-interconnected 
quantum sub-blocks which is equivalent to a single quantum 
evolution process using the SVD decomposition. For any matrix 
[N]mxn, the Singular Value Decomposition (SVD) is as follows: 
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where eve is the eigenvector, and eva is the eigenvalue of [NNH] and 
[NHN], [Q1] and [Q2] are orthogonal matrices, and [ ]Ξ  is a diagonal 
matrix of r singular-value elements. Let’s use the SVD 
decomposition to decompose the normalized Walsh-Hadamard 
operator into an equivalent cascade of serially-interconnected sub-
operators. 
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Phase   Walsh   Uθθθθ  Walsh   Phase 
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Where: �
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�
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�
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−10

01
 is Pauli-Z, �
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�
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�
10

01
 is a wire (Buffer), and �

�

�
�
�

�
01

10
 is 

Pauli-X. This is presented in Fig. 11.15. 
 
 
 
 
 
           Fig. 11.15. Cascade of quantum circuits using the decomposition from SVD. 

 
       Other types of classical (not quantum) mathematical expansions 
have been also developed to fit the context of quantum computing. 
One important example is the quantum Fourier transform (QFT) 
[167,226,228,249]. Analogously to the classical discrete Fourier 
transform (DFT) with its crucial role in so many real-world data 
processing applications (e.g., in computer speech recognition), QFT 
has many important application such as in the attempt to solve the 
factoring problem [226,228].  
       The derivation of the quantum Fourier expansion (transform) is 
performed as follows [167]: having the mathematical notation for 

DFT as follows: 
N

ijk
N

j
jk ex

N
y

π2
1

0

1 	
−

=

≡ , then the quantum Fourier 

transform is exactly the same as the classical discrete Fourier 
transform, except it is written in the quantum notation instead of the 
conventional notation. This is done in the quantum notation as a 
linear combination (operator, superposition) of the orthonormal 
computational basis set { 1,...,1,0 −N } of an n qubit quantum 

computer, where N= 2n, as follows: 

Pauli-Z  Walsh Pauli-X ≡  Walsh 
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where the following two-valued representation (notation) of the 
quantum state j  has been used:   

       02
2

1
121 2...22... n

nn
n jjjjjjj +++== −− ,  

and the two-valued fraction 
1

1

2
...

42 +−
+ +++

lm
mll jjj  is represented 

using the following quantum notation (representation):    
       )1(2

1
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mllmll jjjjjj .  

       Efficient quantum circuit for the product representation of the 
quantum Fourier transform has been shown [167] using the Walsh-

Hadamard gate �
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(which is a generalization for the family that includes the phase gate 
and the π/8 gate). For example, one obtains the following unitary 
QFT matrix [ℑ] for a three qubit quantum Fourier transform (i.e., n 

= 3), where ie
i

== 32

2π

ν :  
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       An example of the use of the QFT in quantum computing is as 
follows [249]. A two-valued (bipolar-valued) binary function f: 
{0,1}n→ {-1,1} can be represented as a Fourier expansion (two-
valued Fourier expansion is called the Walsh-Hadamard expansion) 

as follows, where )(ˆ af
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 are the Fourier spectral coefficients and 
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conjugate transpose (adjoint). The quantum formulation of the 
Walsh-Hadamard transform (QWHT) is as follows: 
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ic 1|| 2 , ]ˆ[B  is the linear and 
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unitary (quantum; normalized) Walsh-Hadamard transform matrix 
(operator; gate), and  is the inner (dot; scalar) product 

(projection) of the Bra component  and the Ket component . 

       The comparative use of QWHT as a quantum computational 
learning algorithm for complete data versus quantum computational 
learning algorithm for incomplete (noisy) data was also shown 
[249]. 

 
11.2 New Two-Valued Quantum Evolution Processes 
 
In the following theorems, the subscripts without parenthesis for 
evolution matrices resemble the order of the inputs and outputs that 
are used to generate the quantum evolution processes of the 
corresponding reversible gates from Chapt. 5. 
 

Theorem 11.1. The following transformations represent the binary 
quantum processes for Fredkin1 (Fig. 5.24b), Margolus0 (Fig. 5.4h), 
Margolus1 (Fig. 5.4i), and Margolus2 (Fig. 5.4j), respectively. 
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Proof: Utilizing Figs. 5.24b, 5.4h, 5.4i, and 5.4j for (3,3) qubit 
binary primitives, one obtains the following set of linearly 
independent Eqs. for each reversible gate: 
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Then by solving the set of linearly independent Eqs. over GF(2) for 
each reversible gate, one obtains the binary quantum evolution 
processes for the corresponding reversible gates: F1 (F1 from Fig. 
5.24b), Margolus0 (M0 from Fig. 5.4h), Margolus1 (M1 from Fig. 
5.4i), and Margolus2 (M2 from Fig. 5.4j), respectively.           Q.E.D. 
 

       The theorems that are introduced in this Sect. are necessary for 
automated analysis and verification of netlists of quantum gates. 
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They are also necessary for automated synthesis of a netlist 
described as an evolution matrix from quantum gates, especially for 
try-and-check (i.e., trial-and-error) methods such as evolutionary 
computations [252]. 

 
11.3  Novel Representations for Two-Valued Quantum 
Logic: Two-Valued Quantum Decision Trees and 
Diagrams 
 
Since decision diagrams [217] allow for efficient representation of 
large sparse matrices, they have found applications in many 
computer aided design algorithms, and we believe that their 
quantum counterparts will be useful for quantum logic synthesis and 
analysis. Utilizing the binary Feynman and Swap evolution matrices 
that were presented previously, the following represents the binary 
initial state (Buffer) (which is equivalent to two wires), binary final 
state of a 2-qubit Feynman register, and binary final state of a 2-
qubit Swap register using the binary computational basis states 
[ ]11100100 : 
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       SwapFinal −Ψ =    [ ]
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       Since various types of decision trees and diagrams are of 
fundamental importance in binary, multiple-valued (MV Reed-
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Muller, Galois, arithmetic, etc) and fuzzy logic [215,217], it is 
obvious that they will be also useful in binary quantum logic.  
       Figures 11.16a and 11.16c illustrate examples of the 
computational quantum decision trees (CQDT) [15,26], and Fig. 
11.16b illustrates an example of the computational decision diagram 
(CQDD) [15,26]. When traversing the tree in Fig. 11.16b two paths 
01  and 10  lead to two leaves with same values, that is values 

α1β2 and β1β2, respectively. Since the two paths lead to the same 
leaf then the two nodes are combined as a single leaf and thus a 
more compact representation of CQDD is created. 
       The new quantum representations can be useful in future 
algorithms for the synthesis of quantum circuits, analogous to the 
already existing algorithms that depend on such representations for 
the optimized synthesis of classical (non-quantum) circuits. This is 
because in order to perform complex operations one has to choose 
(1) a specific type of representation and (2) the corresponding set of 
basic operations that are associated with that particular 
representation. Since decision diagrams has proven in the classical 
domain their suitability as a representation that leads to efficient 
manipulation of large varieties of logic functions in terms of using 
minimal amount of space (memory) and minimal amount of time 
[45], the quantum decision diagrams would have the same effect for 
the representation and manipulation of functions in the quantum 
domain.         
       One notes that for a specific order of variables, the resulting 
CQDT (e.g., Figs. 11.16a and 11.16c) and CQDD (e.g., Fig. 11.16b) 
are canonical. Obviously, from the software implementation side, 
and similar to the tools for classical logics, quantum decision 
diagrams (Fig. 11.16b) can be realized on top of standard binary 
decision diagram (BDD) packages [231].  
       Figure 11.17 shows the binary quantum evolution decision tree 
for a serially-interconnected Swap gate followed by a Feynman gate 
[15,26]. One observes that the evolution matrices in Eqs. (11.13) 
through (11.15) force the quantum states }11,10,01,00{  and 

the probability amplitudes {αi, βj} to be in specific combinations 
(permutations) that are unique for the specific gates that are used. 
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Fig. 11.16. Binary computational quantum decision tree (CQDT) and decision diagram 
(CQDD): a Buffer CQDT, b Feynman CQDD, and c Swap CQDT, for the binary quantum 
computational basis states { 11,10,01,00 }, where {αi, βj} are the probability 

amplitudes. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11.17. Binary quantum evolution decision tree for Swap gate serially-interconnected 
with a Feynman gate, respectively, for the 2-qubit orthonormal computational basis states: 
{ }11,10,01,00 , where ρi are the probability amplitudes. 
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       Note that the leaves in Fig. 11.17 represent the probability to 
obtain the state of the Swap-Feynman quantum register after 
measurement. So, for instance, by utilizing Fig. 11.17, one obtains 
the following states with the corresponding normalized probabilities: 
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       One notes that for the condition � =

i
ic 1|| 2 , the denominators 

in the upper Eqs., for Fig. 11.17, will be equal to the value one. The 
quantum evolution decision tree in Fig. 11.17 can be computed for 
the composite basis states { }−−+−−+++ ,,,  (that were 

produced in Example 11.2e), for which the states 
{ }11,10,01,00  are replaced by the states 

{ }−−+−−+++ ,,, , respectively. For the composite basis 

states decision tree, the leaves represent the new probability 
amplitudes to obtain the state of the Swap-Feynman quantum 
register after measurement. So, for instance, one obtains the 
following state ++++  with the corresponding probability 

++++P  for the composite basis states quantum evolution 
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decision tree as follows (For more clarification, please refer to 
Example 11.2e): 
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       One can note that, similar to the CQDD, although the values of 
the leaves in the CoQDT are not equal to each other in general, a 
binary composite quantum decision diagram (CoQDD) can be 
constructed for the corresponding CoQDT. The rules for such 
quantum decision diagrams are the same as in classical decision 
diagrams: (1) join isomorphic nodes, and (2) remove redundant 
nodes [45].  
       Also, one may note that having a variety of quantum decision 
diagrams can have an effect on the size of the representations of the 
corresponding quantum netlists and thus can lead to efficient 
quantum operations on such compact representations similar to the 
case of classical logic design [217].  
       In the following Sects., fundamentals of multiple-valued 
quantum computing are presented in Sect. 11.4, and new multiple-
valued quantum evolution processes and orthonormal basis states 
are developed in Sect. 11.5. This includes the development of new 
multiple-valued 1-qubit and 2-qubit orthonormal quantum basis 
states called multiple-valued composite basis states, and multiple-
valued Einstein-Podolsky-Rosen (EPR) basis states, respectively. 
This is achieved by using the new quantum Chrestenson transform 
(gate) (QChT) introduced in Sect. 11.5. (Further use of QChT in the 
generation of multiple-valued QFT will be discussed in Sect. 11.6.) 
Multiple-valued canonical quantum decision trees (QDTs) and 
quantum decision diagrams (QDDs) as efficient representations for 
multiple-valued quantum computations are also introduced.      
       Although the following Sects. are developed for GF(3), 
extensions to higher radices is very similar.  
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11.4 Fundamentals of Multiple-Valued Quantum 
Computing 

 
In Sect. 11.1 of this Chapt., it was shown that in two-valued (binary) 
quantum logic, two qubits 0  and 1  are used. Similarly, in ternary 

quantum logic, the 0 , 1 , and 2  qubits are used. These qubits 

are represented by the vector that corresponds to the following 
[15,19,23,165]: 
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       As was shown previously, Figs. 11.3a, 11.3c, and 11.3d 
implements such multiple-valued quantum computations (MVQC). 
In ternary logic, an n-qubit ternary quantum register is an array of n 
ternary qubits. For a ternary quantum register composed of 2 ternary 
qubits, one obtains 9 possible states of the ternary quantum register 
{ 22,21,20,12,11,10,02,01,00 }, where ⊗ is the tensor 

(Kronecker) product. 
       In general, a ternary quantum register that is composed of k 
ternary qubits can have up to 3k distinct possible states. The ternary 
quantum register can be in any of the individual states at any instant 
of time or at all of the states at the same time. Due to the fact that 
the multiple-valued quantum register can be at all of the states at the 
same time is the major reason of the multi-valued parallelism that 
exists at the quantum level, and due to this parallelism, a ternary 
quantum processor can operate on all of the states of the quantum 
register at the same time (it can be modeled like having application-
specific 3k ternary parallel processors).  
       As was shown in Fig. 11.3, a physical system consisting of 
trapped ions under several laser excitations can be used to reliably 
apply MVQC. Also, a physical system in which a particle is exposed 
to a specific potential function can be used to implement MVQC. In 
such implementation, the resulting distinct energy levels are used as 
the set of orthonormal basis states (e.g., Fig. K.1 in Appendix K). 
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       For a quantum register composed of 1-ternary qubit, and 
assuming, as in binary, the orthonormalization of the computational 
basis states, the evolution state ( Ψ ) is represented as follows: 

       qubitternary −Ψ = 210 γβα ++ ,                                 (11.16) 
 

where α, β, and γ are complex numbers called “probability 
amplitudes”, and in general: αα* + ββ* + γγ* = |α|2 + |β|2 + |γ|2 = 1. 
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Where: 1≥ pi≥ 0, i∈{0,1,2}, p0 is the probability of the system being 
in state |0>, p1 is the probability of the system being in state |1>, and 
p2 is the probability of the system being in state |2>, and p0 + p1 + p2 
= 1. The quantum orthonormalization condition requires that |α|2 
+|β|2 + |γ|2 = 1. Thus, if {|α| = 0, |γ| = 0, |β| = 1}, {|α| =0 , |γ| = 1, |β| = 
0},  {|α| =1 , |γ| = 0, |β| = 0}, {|α| = 1/√3, |γ| = 1/√3, |β| = 1/√3}, or 
{|α| = 1/√9/4, |γ| = 1/√9/2, |β| = 1/√3}, …etc, then |α|2 +|β|2 + |γ|2 = 
p0 + p1+ p2 = 1. 
       ∴∴∴∴ qubitternary −Ψ =      

                          210 210 ppp ++ = 210 γβα ++ . 

Equation (11.16) can be written as: 
 

       qubitternary −Ψ = [ ][ ]
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E210 ,                               (11.17) 

 

where [E] is the evolution matrix. For a 2-qubit ternary quantum 
register and giving the orthonormalization conditions |α1|

2 + |β1|
2 + 

|γ1|
2 = 1 and |α2|

2 + |β2|
2 + |γ2|

2 = 1, one obtains: 
       (|α1|

2 + |β1|
2 + |γ1|

2)( |α2|
2 + |β2|

2 + |γ2|
2) = 1, 

    ∴∴∴∴|α1α2|
2 + |α1β2|

2 +|α1γ2|
2 + |β1α2|

2 +|β1β2|
2 + |β1γ2|

2 + |γ1α2|
2   

                    +|γ1β2|
2 +|γ1γ2|

2 = 1. 
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       Thus, for a ternary quantum register which is composed of two 
ternary qubits, the evolution quantum state Ψ  is represented as 

follows: 
 

       
1qubitternary−

Ψ = 210 111 γβα ++ ,  

       2qubitternary −Ψ = 210 222 γβα ++ . 
 

       For two ternary qubits, and by using the tensor (Kronecker) 
product , one obtains:  
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       Therefore, for the case of two ternary qubits, and similarly to 
the matrix-based method that is used for two-valued representation 
in Eq. (11.10), Ψ  can be represented using matrix-based form as 

follows: 
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where [E] is the evolution matrix, which is obtained through the 
solution of Schrodinger Eq. 
       For an N-ary quantum logic system the definition of quantum 
entanglement for multiple-valued quantum logic is a straightforward 
extension of Eq. (11.12). As the entanglement in the case of two-
valued quantum systems seems to be the major factor behind the 
speedups of quantum computations by which many computations 
are performed in parallel, the same role of entanglement is expected 
to be observed in the case of multiple-valued quantum systems. In 
this aspect, entanglement will be a special new resource in multiple-
valued quantum computing. 
Example 11.5. 
11.5a. Consider a ternary quantum system of two qubits, given as: 

       ( )222120121110020100
3

1 ++++++++ ,                           

       = ( ) ( )210
3

1
210

3

1 ++⊗++ , 

       = ( ) ( )210
3

1
210

3

1 ++++ . 

This system is decomposable, as the functions of the first and 
second qubits are disentangled according to Eq. (11.12). 

11.5b. Consider now the ternary quantum system: ( )1002
3

1 + . 

This system is entangled, as no decomposition according to Eq. 
(11.12) is possible. 

 
11.5 New Multiple-Valued Quantum Chrestenson 
Evolution Process, Quantum Composite Basis States, 
and the Multiple-Valued Einstein-Podolsky-Rosen (EPR) 
Basis States 
 
So far, not much has been published on multiple-valued quantum 
logic gates and especially their characterization and representation 
formalisms. It is the main goal of this Sect. and the following Sects. 
to start building a systematic theory of multiple-valued quantum 
gates, structures, and synthesis methods. Theorems 11.2 and 11.3 
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establish the ternary quantum composite basis states and the ternary 
quantum Einstein-Podolsky-Rosen (EPR) basis states, respectively. 
Although the results that are presented in the following Sects. are for 
the ternary case, generalization to higher radices is straightforward. 
 

Theorem 11.2. The following represents the ternary composite basis 
states: 

{ },
3

210
,

3

210
|,

3

210 1221 dddd ++
=−

++
=

++
=+

where: 

.)31(
2

1
)1(,)31(

2

1
)1(

,
3

|
2,

3

|
1,

3

|
0

3

2

3

4

2112

2112

ii

eiddeidd

dddd

ππ

=−−=+−==+−=+−=

−+++
=

−+++
=

−+++
=

 

Proof. Utilizing the orthogonal ternary Chrestenson spectral 
transform [120,159,166] (ternary Walsh-Hadamard transform ) for a 
single variable [15]: 
 

�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111
)3(

)1(

dd

ddC , 

 

and due to the fact that the evolution process must be unitary, one 
obtains the following quantum (normalized) Chrestenson spectral 
transform (QChT) [15]: 
 

                             

�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111

3

1)3(
)1(

dd

ddC
normalized

, 

 

where 
normalized

C )3(
)1(  means that QChT is for ternary radix (i.e., 

superscript is equal to 3) and a single variable (i.e., subscript is equal 
to 1).  
       By using the normalized Chrestenson transformation as the 
evolution matrix as follows in Fig. 11.18: 
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Fig. 11.18. Ternary quantum Chrestenson evolution matrix. 

 
One obtains the corresponding output composite basis states in 
Theorem 11.2, for the corresponding ternary input: 

210 γβα ++=Ψ .                                                          Q.E.D.  
 

Theorem 11.3. For the following ternary inputs: 
                     22,21,20,12,11,10,02,01,00 , 

and by utilizing the QChT from Theorem 11.2, the following 
represents the set of ternary 2-qubit orthonormal Einstein-Podolsky-
Rosen (EPR) basis states, respectively. 
 

,
3

211002
,

3

201201
,

3

221100
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,
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221100

,
3
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221100

121212

212121

dddddd

dddddd

++++++

++++++

++++++

 

 

where: 
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2
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4

)31(
2

1
)1(,)31(

2

1
)1( 2112

ii

eiddeidd
ππ

=−−=+−==+−=+−= . 

 

Proof. Analogously to the binary case (Fig. 11.7b) (where QWHT 
has been used), and by using the QChT in the following ternary 
quantum circuit: 
 
 
 
 
 

�
�
�

�

�

�
�
�

�

�

12

21

1

1

111

3

1

dd

dd |Ψ> = α |0> +  
           β |1> + γ |2> 

  |Ψ>’ = 

3

210

3

210

3

210

12

21

dd

dd

++

+
++

+
++

γ

βα
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Fig. 11.19. Ternary quantum logic circuit for EPR production. 

 
Where: 

3

2

3

4

)31(
2

1
)1(,)31(

2

1
)1( 2112

ii

eiddeidd
ππ

=−−=+−==+−=+−= . 

By utilizing the shift operation over GF(3): {0→1, 1→2, 2→0}, one 
obtains the corresponding ternary EPR basis states as follows: 

210,210 22221111 γβαγβα ++=Ψ++=Ψ , 

).'('

,
3

210

3

210

3

210
'1

12

12
1

21
11

2
Ψ=Ψ

++
+

++
+

++
=Ψ

ΨShift

dddd
γβα

 
Where )'(' 12 2

Ψ=Ψ ΨShift means to shift the value of the basis 

states of '1Ψ  by the amount 2Ψ  over GF(3). 

For {α1 = 1, β1 = 0, γ1 = 0}: 
3

210
'1

++
=Ψ , 

      For {α2 = 1, β2 = 0, γ2 = 0} 

       ∴ 02 =Ψ � 
3

210
'2

++
=Ψ ���� Ψ =         

                                                                '' 21 ΨΨ =
3

221100 ++
. 

      For {α2 = 0, β2 = 1, γ2 = 0} 

       ∴ 12 =Ψ � 
3

021
'2

++
=Ψ  ���� Ψ =  

GF(3) Shift Operator  

|Ψ1> = α1 |0> + β1 |1> + γ1 |2> |Ψ1>’  

  |Ψ2>’  |Ψ2> = α2 |0> + β2 |1> + γ2 |2> 

�
�
�

�

�

�
�
�

�

�

12

21

1

1

111

3

1

dd

dd
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                                                                '' 21 ΨΨ =
3

201201 ++
.    

      For {α2 = 0, β2 = 0, γ2 = 1} 

       ∴ 22 =Ψ � 
3

102
'2

++
=Ψ ���� Ψ =  

                                                                '' 21 ΨΨ =
3

211002 ++
. 

For {α1 = 0, β1 = 1, γ1 = 0}: 
3

210
' 21

1

dd ++
=Ψ , 

      For {α2 = 1, β2 = 0, γ2 = 0} 

   ∴ 02 =Ψ �
3

210
' 21

2

dd ++
=Ψ ���� Ψ = 

                                                       '' 21 ΨΨ = 
3

221100 21 dd ++
. 

      For {α2 = 0, β2 = 1, γ2 = 0} 

  ∴ 12 =Ψ �
3

021
' 21

2

dd ++
=Ψ ���� Ψ =                                                

                                                        '' 21 ΨΨ =
3

201201 21 dd ++
.    

      For {α2 = 0, β2 = 0, γ2 = 1} 

  ∴ 22 =Ψ �
3

102
' 21

2

dd ++
=Ψ ���� Ψ =   

                                                        '' 21 ΨΨ =
3

211002 21 dd ++
. 

For {α1 = 0, β1 = 0, γ1 = 1}: 
3

210
' 12

1

dd ++
=Ψ , 

      For {α2 = 1, β2 = 0, γ2 = 0} 

∴ 02 =Ψ �
3

210
' 12

2

dd ++
=Ψ ���� Ψ =   
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                                                        '' 21 ΨΨ =
3

221100 12 dd ++
. 

      For {α2 = 0, β2 = 1, γ2 = 0} 

  ∴ 12 =Ψ �
3

021
' 12

2

dd ++
=Ψ ���� Ψ =   

                                                        '' 21 ΨΨ =
3

201201 12 dd ++
.    

      For {α2 = 0, β2 = 0, γ2 = 1} 

  ∴ 22 =Ψ �
3

102
' 12

2

dd ++
=Ψ ���� Ψ =   

                                                        '' 21 ΨΨ =
3

211002 12 dd ++
. 

                                                                                                  Q.E.D. 
 

       One observes that, while in the two-valued case in Example 11. 
2 and Fig. 11.7 the set of two-valued 2-qubit orthonormal Einstein-
Podolsky-Rosen (EPR) basis states using QWHT consists of four 
basis states, the set of ternary 2-qubit orthonormal EPR basis states 
(from Theorem 11.3 and Fig. 11.19) consists of nine basis states. 
Therefore, in general, for N-valued 2-qubit EPR, one would have a 
set that contains N2 of N-valued orthonormal basis states by 
performing the corresponding transformations on input qubits using 

normalized

NC )(
)1(  gate in a circuit topology similar to the one shown in 

Fig. 11.19 and by utilizing a shift operator over general Galois field 
of Nth radix.  
Example 11.6. The following is a derivation of the probability 
amplitudes of the ternary composite basis states that were introduced 
in Theorem 11.2. Assuming the normalization of the probability 
amplitudes, and by using the ternary quantum signal Ψ  = 

210 γβα ++ as an input to the ternary normalized quantum 

Chrestenson gate 
�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111

3

1)3(
)1(

dd

ddC
normalized

, one obtains the 

following quantum signal at the output of the gate: 
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Where:  
 

{ }
3

210
,

3

210
|,

3

210 1221 dddd ++
=−

++
=

++
=+

, and:      
    

{
3

|
2,

3

|
1,

3

|
0

2112 −+++
=

−+++
=

−+++
=

dddd
}.          

 

Thus, one obtains at the input of the quantum Chrestenson gate the 
following quantum state: 
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       Consequently, measuring Ψ  with respect to the new basis 

{ }−+ ,,|  will result in the state (basis) { }|  with probability 

equals to 
3

|| 2γβα ++
, will result in the state (basis) { }−  with 

probability equals to 
3

|| 2
21 γβα dd ++

, and will result in the state 

(basis) { }+  with probability equals to 
3

|| 2
12 γβα dd ++

, where:    

       

.)31(
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1
)1(

,)31(
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1
)1(
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4

21
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i

i

eidd

eidd

π

π
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       Figure 11.20 shows several factorizations of serially 
interconnected evolution processes that resemble equivalences 
between some ternary quantum logic circuits, using the ternary 

quantum Chrestenson operator 
�
�
�

�

�

�
�
�

�

�
=

12

21

1

1

111

3

1)3(
)1(

dd

ddC
normalized

, which 

was presented in Theorem 11.2.  
       The equivalences of serially interconnected quantum 
Chrestenson primitives can be utilized in the synthesis of quantum 
circuits by replacing long serial gate interconnections with their 
equivalent circuits (i.e., technology mapping). For instance, such 
transformations can be applied to a quantum circuit that is created 
by a genetic algorithm (GA) or other evolutionary algorithms 
[207,252]. 
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Fig. 11.20. Multiple-valued quantum logic circuit equivalences using quantum Chrestenson 
gate. 

 
11.6 New Multiple-Valued Quantum Evolution Processes, 
Generalized Permuters, and their Circuit Analysis 
 
The following presents theorems to obtain the ternary logic 
evolution processes for the ternary Feynman, Swap, Fredkin 
(Shannon), and Davio quantum gates (transformations), 
respectively.  
       The size of the following evolution matrices is governed by Eq. 
(11.9). For example, for a (2,2) ternary quantum gate 
(transformation) (as in Theorems 11.4 and 11.5), the size of the 
evolution matrix is equal to 32 rows ⋅ 32 columns = 9⋅9 = 81 
elements, and for a (4,4) ternary quantum gate (transformation) (as 
in Theorems 11.6, 11.7, and 11.8), the size of the evolution matrix is 
equal to 34 rows ⋅ 34 columns = 81⋅81 = 6,561 elements.  
       Analogously to the binary case, the input qubit to the ternary 
quantum gate is the column index of the ternary evolution matrix, 
and the output qubit of the ternary quantum gate is the row index of 
the ternary evolution matrix. The column and row indices of the 
ternary evolution matrix take the following order for 1-input 1-
output, 2-input 2-output, and 3-input 3-output gates, respectively. 
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.222,221,220

,212,211,210,202,201,200,122,121

,120,112,111,110,102,101,100,022

,021,020,012,011,010,002,001,000:33

.22,21,20,12,11,10,02,01,00:22

.2,1,0:11

gateoutputinput

gateoutputinput

gateoutputinput

−−�

−−�

−−�

 

       The following multiple-valued evolution matrices in Theorems 
11.4 through 11.8 will be useful in the synthesis of multiple-valued 
quantum circuits. For instance, by using evolutionary algorithms for 
the synthesis of minimal size multiple-valued quantum circuits 
[252], one can consider the fitness function of the evolutionary 
algorithms (such as genetic programming or genetic algorithms from 
Appendix E) to contain two components: (1) first component is for 
the correctness of the resulting function (e.g., error is zero), and (2) 
the second component is for the cost of the resulting quantum circuit 
(e.g., number of gates). The synthesis of such multiple-valued 
quantum circuits, using evolutionary algorithms, is done through the 
calculation of the final evolution matrix of the whole circuit by 
using normal matrix multiplication (serial logic interconnects) and 
tensor multiplication (parallel logic interconnects) of the individual 
multiple-valued evolution matrices (i.e., gates). (Example 11.7 will 
illustrate such serial, and parallel algebraic manipulations for the 
analysis of the corresponding multiple-valued quantum logic 
circuits).  
       The representation of such evolutionary computations for the 
synthesis of multiple-valued quantum circuits can be done by using 
the evolutionary matrics as the chromosome of the evolutionary 
algorithm that was shown in Fig. 3.16. 
 

Theorem 11.4. The following is the ternary Galois field Feynman 
evolution matrix: 
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Proof. Utilizing the algebraic addition and multiplication operations 
over Galois field, one obtains the following quantum 
transformations of the ternary input qubits into the output qubits 
using GF(3) Feynman quantum register: 
 

2122,2021,2220,1012

1211,1110,0202,0101,0000

→→→→

→→→→→
 

 

Then by solving for the following set of linearly independent Eqs. 
over ternary Galois field: 
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|b> 

|c> 
 
|d> 
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One obtains the GF(3) Feynman evolution matrix: 
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.                                                          Q.E.D. 

 

Theorem 11.5. The following is the ternary Galois field Swap 
evolution matrix: 
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Proof. Utilizing the algebraic addition and multiplication operations 
over Galois field, one obtains the following quantum 
transformations of the ternary input qubits into the output qubits 
using the ternary Swap quantum register: 
 

2222,1221,0220,2112

1111,0110,2002,1001,0000

→→→→

→→→→→
 

 

Similar to Theorem 11.4, by solving for the set of linearly 
independent Eqs. over a ternary Galois field, one obtains the ternary 
Swap Galois field evolution matrix.                                         Q.E.D. 
 

       Using the previous approach in Theorems 11.4 and 11.5, one 
can construct the ternary evolution matrices for ternary reversible 
Fredkin gates, Toffoli gates, Davio gates, and Margolus gates that 
were presented in Chapt. 5. Since the ternary 4-qubit evolution 
matrices will be according to Eq. (11.9) of size: 34 ⋅ 34 = 81 ⋅ 81 = 
6,561 elements, the documentation of the evolution process in a 
matrix form will be very difficult since the size of the matrix is very 
big. Alternatively, we write the evolution matrices in terms of the 
indices where the elements are of value “1”, where the remaining of 
the elements are understood to be of value “0”. 
 
 

|a> 
 
|b> 

|c> 
 
|d> 
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Theorem 11.6. The following is the ternary Galois field evolution 
matrix for a ternary Galois field reversible Shannon ( )3(

)1(1S ) which is 

represented in Eq. (5.6) in the order of inputs/outputs 
cf0f1f2/cfr0fr1fr2, respectively. 
 
 

 

 

 

 

 

 

 

 

 

 
Proof. Utilizing the algebraic addition and multiplication operations 
over a Galois field, one obtains the following quantum 
transformations of the ternary reversible Shannon decomposition 
(Eq. (5.6) and Fig. 5.26): 

Row index    Column index   

0                       0      
1                       1      
2                       2      
3                       3      
4                       4              
5                       5      
6                       6              
7                       7                  
8                       8              
9                       9 
10                     10                     37                    31                
11                     11                     38                    34   
           
13                     13    
14                     14                
15                     15                
16                     16            
17                     17                
18                     18            
19                     19            
20                     20            
21                     21            
22                     22            
23                     23            
24                     24            
25                     25            
26                     26            

Row index    Column index   

27                    27       
28                    30   
29                    33       
30                    36   
31                    39               
32                    42   
33                    45               
34                    48               
35                    51               
36                    28 

40                    40   
41                    43           
42                    46               
43                    49           
44                    52           
45                    29               
46                    32               
47                    35               
48                    38           
49                    41           
50                    44           
51                    47           
52                    50       
53                    53               

Row index     Column index  

54                    54      
55                    63  
56                    72  
57                    55      
58                    64              
59                    73  
60                    56              
61                    65                  
62                   74           
63                    57 
64                    66  
65                    75              

      12                     12                     39                    37                     66                    58              
67                    67      
68                    76          
69                    59                  
70                    68          
71                    77          
72                    60          
73                    69              
74                    78          
75                    61          
76                    70          
77                    79              
78                    62              
79                    71          
80                    80              
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1012,11101011,11001010,10201002,10101001,10001000,02220222

,02210221,02200220,02120212,02110211,02100210,02020202,0201

0201,02000200,01220122,01210121,01200120,01120112,01110111

,01100110,01020102,01010101,01000100,00220022,00210021,0020

0020,00120012,00110011,00100010,00020002,00010001,00000000

→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

 
Then the proof follows the same method from Theorem 11.4.Q.E.D. 
 

Theorem 11.7. The following is the ternary Galois field evolution 
matrix for a ternary Galois field reversible Shannon ( )3(

)1(4S ) which is 

represented in Eq. (5.9) in the order of inputs/outputs 
cf0f1f2/cfr0fr1fr2. 
 

 

 

 

 

 

 

 

 

 Row index    Column index   

0                        0  
1                        9  
2                        18  
3                        3  
4                        12         
5                        21  
6                        6           
7                        15            
8                        24         
9                        1 
10                      10  
11                      19            
12                      4           
13                      13  
14                      22         
15                      7              
16                      16         
17                      25         
18                      2           
19                      11         
20                      20         
21                      5           
22                      14         
23                      23         
24                      8           
25                      17       
26                      26         

 Row index    Column index   

27                      27  
28                      30  
29                      33  
30                      28  
31                      31         
32                      34  
33                      29         
34                      32            
35                      35         
36                      36 
37                      39  
38                      42            
39                      37         
40                      40  
41                      43         
42                      38            
43                      41           
44                      44         
45                      45         
46                      48         
47                      51         
48                      46         
49                      49         
50                      52           
51                      47          
52                      50       
53                      53         

 Row index    Column index   

54                      54  
55                      55  
56                      56  
57                      63  
58                      64         
59                      65  
60                      72         
61                      73            
62                      74         
63                      57 
64                      58  
65                      59            
66                      66         
67                      67  
68                      68         
69                      75            
70                      76         
71                      77         
72                      60         
73                      61         
74                      62         
75                      69         
76                      70         
77                      71         
78                      78         
79                      79       
80                      80         
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Proof. Using GF, one obtains the following quantum 
transformations: 

.22222222,22212221,2220

2220,21222212,21212211,20212120,20222202,20212201,20202200

,22122122,22112121,22102120,21122112,21112111,21102110,2012

2102,20112101,20102100,22022022,22012021,22002020,21022012

,21012011,21002010,20022002,20012001,20002000,12221222,1212

1221,12021220,12211212,12111211,12011210,12201202,12101201

,12001200,11221122,11121121,11021120,11211112,11111111,1101

1110,11201102,11101101,11001100,10221022,10121021,10021020,1021

1012,10111011,10011010,10201002,10101001,10001000,02220222

,01220221,00220220,02120212,01120211,00120210,02020202,0102

0201,00020200,02210122,01210121,00210120,02110112,01110111

,00110110,02010102,01010101,00010100,02200022,01200021,0020

0020,02100012,01100011,00100010,02000002,01000001,00000000

→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

 

Then the proof follows the same method from Theorem 11.4.Q.E.D. 
 

Theorem 11.8. GF(3) evolution matrix for  ternary  reversible 
Davio0 ( )3(

)1(0D ) (Eq. (5.15)) in the order of cf0f1f2/cfr0fr1fr2 is as 

follows:  
 

 

 

 

 

 

 

 

 

0                        0  
1                        3  
2                        6  
3                        1  
4                        4           
5                        7  
6                        2           
7                        5              
8                        8           
9                        9 
10                      12  
11                      15            
12                      10         
13                      13  
14                      16         
15                      11            
16                      14         
17                      17         
18                      18         
19                      21         
20                      24         
21                      19         
22                      22         
23                      25         
24                      20         
25                      23       
26                      26         

 Row index   Column index   

27                      27  
28                      28  
29                      29  
30                      36  
31                      37         
32                      38  
33                      45         
34                      46            
35                      47         
36                      30 
37                      31  
38                      32            
39                      39         
40                      40  
41                      41         
42                      48            
43                      49                   70                      70    
                       44                      50         
45                      33         
46                      34         
47                      35         
48                      42         
49                      43         
50                      44         
51                      51         
52                      52         
53                      53             

 Row index   Column index   

54                      54  
55                      63  

57                      57  
58                      66         
59                      75  
60                      60         
61                      69            
62                      78         
63                      55 
64                      64  
65                      73            
66                      58         
67                      67  
68                      76         
69                      61            

71                      79         
72                      56         
73                      65         
74                      74         
75                      59         
76                      68         
77                      77         
78                      62         
79                      71       
80                      80         

 Row index   Column index   

56                      72  
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Proof. Using GF, one obtains the following quantum 
transformations: 

.22222222,21222221,2022

2220,22122212,21122211,20122210,22022202,21022201,20022200

,22212122,21212121,20212120,22112112,21112111,20112110,2201

2102,21012101,20012100,22202022,21202021,20202020,22102012

,21102011,20102010,22002002,21002001,20002000,12221222,1221

1221,12201220,11221212,11211211,11201210,10221202,10211201

,10201200,12121122,12111121,12101120,11121112,11111111,1110

1110,10121102,10111101,10101100,12021022,12011021,12001020,1102

1012,11011011,11001010,10021002,10011001,10001000,02220222

,02120221,02020220,02210212,02110211,02010210,02200202,0210

0201,02000200,01220122,01120121,01020120,01210112,01110111

,01010110,01200102,01100101,01000100,00220022,00120021,0002

0020,002120012,00110011,00010010,00200002,00100001,00000000

→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→

→→→→→→→

→→→→→→→

→→→→→→

 
Then the proof follows the same method from Theorem 11.4.Q.E.D. 
 

       Theorems 11.4, 11.5, 11.6, 11.7, and 11.8 provide the quantum 
computations of the reversible gates that were developed previously 
in Chapt. 5. Figure 11.21 shows the extensions for quantum 
computations of the gates that were provided in Fig. 5.28.  
 
 
 
 
                                  (Ch. 2) 
 
 
 
 
 
                                                                           (Ch. 5) 
 
(Ch. 11)                                                                                                       (Ch. 11) 
                                                                                 (Ch. 2) 
 
 
                                                                                            (Ch. 5) 
 
                                                                            (Ch.11) 

 
 
             Fig. 11.21. A tree-based relationship between various decompositions. 

… 

 

Invariant1  Invariant2   Invariantn 

Davio0    …  Davioz 

 
Davio0    …  Davioz 

 

Fundamental Multi-Valued Shannon Decomposition 

… 

 

Reversible1  …  Reversiblew 

 
Reversible1  …Reversiblew 

 
… 

 
Quantum Quantum 

Quantum Quantum 

Reversible 
Invariant1 

 

Reversible 
Invariantm 

 
… 

 
Reversible 
Invariant1 

 

Reversible 
Invariantm 

 
… 

 
Quantum Quantum 

  294      11.6 New Multiple-Valued Quantum Processes and their Circuit Analysis        



 

       Note in Fig. 11.21 that the quantum Shannon and Quantum 
Davio primitives, which are the extensions of the reversible 
Shannon and reversible Davio primitives from Sect. 5.4, are 
produced, and consequently quantum computations that use such 
quantum primitives can be implemented. 
       The quantum representations of reversible multiple-valued 
Shannon primitives, reversible multiple-valued Davio primitives, 
and other multiple-valued reversible primitives will be used to 
perform the multiple-valued quantum computing to analyze the 
multiple-valued quantum circuits and structures as will be shown in 
the following examples. 
Example 11.7. The following circuits represent serial-like, parallel-
like, and mixture of serial-like and parallel-like interconnects 
between multiple-valued quantum primitives. 
11.7a. Let us evolve the input qubit |12> using the following serial-
like interconnected multiple-valued quantum circuit: 
 
                          a                                               x  

                          b                                               y                                                      
                                                   GF(3)                      GF(3) 
 
Fig. 11.22. Ternary Galois field quantum circuit composed of a Feynman gate 
interconnected serially with a Swap gate and then a Feynman gate, respectively. 

 
       Similar to two-valued quantum computing, the evolution of the 
input ternary qubit in Fig. 11.22 can be viewed in two equivalent 
perspectives, respectively. The first perspective is to evolve the 
input qubit step-by-step using the serially interconnected gates. The 
second perspective is to evolve the input qubit using the total 
quantum circuit at once. The second perspective is due to the fact 
that the total multiple-valued quantum evolution transformation [ ]M  
of the total serially interconnected quantum circuit is equal to the 
normal matrix multiplication of the individual evolution matrices 
[ ]qN  that correspond to the individual quantum primitives, i.e. 

[ ] [ ]∏=
q

qserial NM . 
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Perspective #1: 
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So, the quantum circuit that is shown in Fig. 11.22 evolves the input 
qubit |12> into the output qubit |01>. 
 
Perspective #2: 
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Identical to the result from perspective #1, the quantum circuit 
shown in Fig. 11.22 evolves the qubit |12> into the qubit |01>. 
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11.7b. Let us evolve the input qubit |122> using the multiple-valued 
quantum circuit in Fig. 11.23. 
The total evolution transformation [ ]M  of the total parallel-
interconnected quantum circuit is equal to the tensor (Kronecker) 
product of the individual evolution matrices [ ]qN  that correspond to 

the individual quantum primitives, i.e., [ ] [ ]qparallel NM ⊗= . The 

evolution of the input ternary qubit, in Fig. 11.23, can be viewed in 
two equivalent perspectives, respectively. One perspective is to 
evolve the input qubit stage by stage. The second perspective is to 
evolve the input qubit using the total quantum circuit at once. The 
evolution matrices of the parallel-connected dashed boxes in (5) and 
(6), are as follows, respectively (Where the symbol || means parallel 
connection): 
 
 
               a                                                                                 x  

                                                  (1)                         (3) 
 
               b                                                                                 y  
                                              GF(3)       
               c                                                                                 z  

                                                  (2)                         (4) 
                                                       (5)                           (6) 
 
Fig. 11.23. Ternary Galois-field quantum circuit composed of serial interconnect of two 
parallel ternary Galois-field circuits: dashed boxes ((1),(2) and (3),(4)) in each sub-circuit 
are parallel connected, and dotted boxes (5) and (6) are serially interconnected. 

 

� (5) = (1) || (2): Feynman ⊗ Wire = �
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� input = input1 = 

[ ]T000000000100000000000000000221 =⊗⊗ . 
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Perspective #1: input1� (5) � output1, output1= input2 � (6) � output2. 
 

Utilizing the same method in perspective #1 in Example 11.7a, the 
quantum circuit that is shown in Fig. 11.23 evolves input qubit 
|122> into the output qubit |120>. 
 

Perspective #2: input1� ((6)(5)) � output2. 
 

Utilizing the same method in perspective #2 in Example 11.7a, the 
quantum circuit shown in Fig. 11.23 evolves the qubit |122> into the 
qubit |120> (which is the same result obtained in perspective #1). 
       The following are new multiple-valued quantum permuters that 
can be used in the future synthesis of multiple-valued quantum logic 
circuits, where 1± and i± means that any combination of positive 
and negative 1 and any combination of positive and negative i can 
occur. 
 

Theorem 11.9. The following are the ternary generalized inverters 
(permuters): 
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Proof. By performing all possible permutations of unitary 3-by-3 
matrices that have each row and column composed of one element 
of value “1”, one obtains the ternary generalized inverters 
(permuters) that are given in Theorem 11.9                             Q.E.D. 
 

       While every quantum operator must be unitary, it is not claimed 
here that every unitary matrix is realizable as a quantum operator. 
Therefore, it might be possible that while some of the generalized 
unitary operators in Theorem 11.9 are realizable in quantum circuits, 
other unitary operators might be realizable only in other 
technologies. 
       Similar to the two-valued case, it is interesting to solve for the 
following multi-valued evolution process factorization (which is 
equivalent to multi-valued quantum circuit decomposition) problem: 
given the output (evolved) qubit, factorize the total composite multi-
valued evolution process into a corresponding multi-valued 
evolution sub-processes. This type of quantum multi-valued 
decomposition can be very useful in the synthesis of multi-valued 
quantum logic circuits. Thus, similar to the binary case, 
decompositions that are commonly used in linear algebra can be 
utilized for the decomposition of multi-valued unitary evolution 
matrices, like: spectral theorem, Z-Y decomposition, LDU 
decomposition, fast Fourier-like decomposition, Jordan 
decomposition, Polar decomposition, Chinese Remainder Theorem 
(CRT) decomposition, and Singular Value Decomposition (SVD) 
[15].  
       Also, using the quantum Chrestenson operator [15,19,23], the 
theoretical development of the multiple-valued quantum Fourier 
transform (QFT) and the multiple-valued quantum circuit that 
generates the multiple-valued QFT have been shown [268].  
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       The idea of performing super-fast multiple-valued operations 
(transformations) in quantum computing using the entanglement of 
several quantum Chrestenson operators, analogously to the role of 
the Walsh-Hadamard operator in super-fast two-valued quantum 
computing [167], has been also discussed [268]. 

 
11.7 Novel Representations for Multiple-Valued Quantum 
Logic: Multiple-Valued Quantum Decision Trees and 
Diagrams 
 
Utilizing Theorems 11.4 and 11.5, the following is the GF(3) 
quantum Buffer (which is equivalent to two wires), Feynman 
(Theorem 11.4), and Swap (Theorem 11.5) evolution processes, for 
the ternary computational basis states 
{ 22,21,20,12,11,10,02,01,00 }, respectively: 
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       Since various types of multiple-valued decision trees and 
diagrams are of fundamental importance in various algebraic 
systems [96,216], it is obvious that they will be also useful in 
multiple-valued quantum logic which is a generalization of multiple-
valued logic, where the concepts of quantum decision trees and 
diagrams have not been introduced so far in the known literature.    
       Figures 11.24a and 11.24b represent the corresponding ternary 
Feynman gate (Eq. (11.20)) and ternary Swap gate (Eq. (11.21)) 
multiple-valued quantum decision trees (MvQDTs) for the ternary 
computational basis states, { 22,21,20,12,11,10,02,01,00 }, 

respectively. One observes that the evolution matrices in Eqs. 
(11.19) through (11.21) force the quantum states  
{ 22,21,20,12,11,10,02,01,00 } and the probability 

amplitudes {αi, βj, γk} to be in specific combinations (permutations) 
that are unique for the specific gates that are used. 
       The new quantum evolution decision tree representation can be 
useful in the future algorithms for the synthesis of quantum logic 
circuits, analogous to the already existing algorithms that depend on 
such multiple-valued representations for the optimized synthesis of 
classical multiple-valued (non-quantum) logic circuits. 
       Fig. 11.24c illustrates an example of the multiple-valued 
computational decision diagram (MvCQDD) [15,26]. When 
traversing the tree in Fig. 11.24c three paths: 10 , ,11  and 12  

lead to three leaves with same values: α1β2, β1β2, and γ1β2, 
respectively. Since the three paths lead to the same leaf value then 
the three nodes are combined as a single leaf and thus a more 
compact representation of MvCQDD is created. 
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                                                                                                     c 
 
Fig. 11.24. Ternary quantum decision trees: a Feynman, b Swap, and c Swap decision 
diagram for the ternary computational basis states, where {αi, βj, γk} are the probability 
amplitudes. 

  α1α2         α1β2         α1γ2          β1 γ2             β1 α2         β1 β2         γ1 β2              γ1 γ2         γ1 α 2 

|ψ> 

|0> |1> |2> 

|0> |1> |2> |0> |1> |2> |0> |1> |2> 

 α1α2           β1 α2        γ1 α 2          α1β2            β1 β2         γ1 β2          α1γ2        β1γ2           γ1 γ2  

|ψ> 

|0> |1> |2> 

|0> |1> |2> |0> |1> |2> |0> |1> |2> 

α1α2  =  β1 α2  = γ1 α 2       α1β2      β1 β2       γ1 β2         α1γ2  =  β1 γ2  =   γ1 γ2  

|ψ> 

|0> |1> |2> 

|0> |1> |2> |0> |1> |2> |0> |1> |2> 
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       The ternary quantum decision trees in Figs. 11.24a and 11.24b 
can be computed for the ternary composite basis states 
{ }−−+−−−++++−+ ||,|,|,||  (that were produced in 

Theorem 11.2), for which the states 
22,21,20,12,11,10,02,01,00  are replaced by the states 

{ }−−+−−−++++−+ ||,|,|,|| , respectively. Although the 

values in the leaves of the MvQDT in Figs. 11.24a and 11.24b are 
not equal to each other in general, multiple-valued quantum decision 
diagrams (MvQDDs) can be constructed for the corresponding 
multiple-valued quantum decision trees. The rules for such quantum 
decision diagrams are the same as in classical decision diagrams 
[45]: (1) join isomorphic nodes, and (2) remove redundant nodes. 
Figure 11.24c illustrates one case for the concept of ternary quantum 
evolution decision diagrams. 
       One notes that for specific orders of variables, the resulting 
MvQDTs (Figs. 11.24a and 11.24b) and MvQDDs (Fig. 11.24c) are 
canonical. Obviously, from the software implementation point of 
view, and similar to the tools for classical multiple-valued logic, 
quantum decision diagrams (Fig. 11.24c) can be realized on top of 
standard binary decision diagram (BDD) packages [231]. 

 
11.8 Automatic Synthesis of Two-Valued and Multiple-
Valued Quantum Logic Circuits Using Evolutionary 
Algorithms 
 
In order to design a quantum circuit that performs a desired quantum 
computation, it is necessary to find a decomposition of the unitary 
matrix that represents that computation in terms of a sequence of 
quantum gate operations. To date, such designs have either been 
found by hand or by exhaustive enumeration of all possible circuit 
topologies. It has been shown in [207,252] an automated approach 
to quantum circuit design using search heuristics based on principles 
abstracted from evolutionary genetics, which uses a genetic 
programming algorithm adapted specially for this problem. The 
method has been demonstrated on the task of discovering quantum 
circuit designs for quantum teleportation. It has been shown [207] 
that to find a given known circuit design (one which was hand-
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crafted by a human), the method considers roughly an order of 
magnitude fewer designs than naive enumeration. In addition, the 
method was shown to find novel circuit designs superior to those 
previously known. 
       The difficulties of applying GA for designing correct and 
minimal quantum circuits are the following: (1) a high time is 
needed for the of evaluation of the quantum circuit evolution matrix, 
especially when calculating the Kronecker product with matrices 
that possess sizes that grow exponentially for larger quantum 
circuits, (2) if the population is composed of high number of 
individuals then the synthesis result can be found in less number of 
generations but with longer times for the evaluation of fitness, and 
(3) using certain encodings for quantum gates leads to a big loss of 
time. To avoid extreme time consumption for calculations, one, for 
example, can limit the GA to a population that contains a relatively 
small number of individuals, and maintain the iterations of the 
algorithm to be limited to relatively small quantum circuits (i.e., 
with limited number of wires). 

 
11.9 Quantum Computing for the New Two-Valued and 
Multiple-Valued Reversible Structures 
 
As was demonstrated in previous Sects., the input qubits to any type 
of quantum circuit can be evolved from input to output by using the 
normal matrix product for serial interconnects and the Kronecker 
product for the parallel interconnects. These quantum evolutions are 
performed on the quantum matrix representations of the 
corresponding quantum primitives. Such matrix representations are 
a pure mathematical representation that can be realized physically 
using the corresponding quantum devices. The evolution operations 
can be implemented using the matrix representation or the 
corresponding QDTs or QDDs representations. This quantum 
evolution of the input qubits can be performed using the quantum 
counterparts of the reversible lattice structures from Chapt. 6, 
reversible Modified Reconstructability Analysis for Chapt. 7, and 
reversible Nets, Decision Diagrams, and Cascades from Chapt. 8, 
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respectively. For this purpose, the quantum logic circuits from 
Chapt. 10 can be used. 
       The minimization of the quantum logic circuits from Chapt. 10 
will lead to a minimum size of the quantum (scratchpad) register and 
thus to a minimum number of quantum computations. This 
reasoning is demonstrated in Fig. 11.25. 
 

 
 

 

Chapters (6), (7), and (8)        Chapter (10)                     Chapter (11) 
 
Fig. 11.25. The effect of minimization of the size of quantum logic circuits on the 
complexity of quantum computing. 

 
       The following example illustrates the point that was shown in 
Fig. 11.25. 
Example 11.8. This example will demonstrate the effect of 
minimization of the size of two-valued quantum logic circuits on the 
total complexity of two-valued quantum computing (i.e., the total 
number of quantum arithmetic (addition and multiplication) 
operations that are needed). The method of functional minimization 
can be implemented using, for instance, the evolutionary algorithm 
for the minimization of general GFSOP forms using the IF polarity 
from the S/D trees that was introduced in Sect. 3.7. The effect of 
minimization is illustrated using the quantum logic circuits from 
Fig. 11.26. The quantum logic circuits in Fig. 11.26 are the same 
from Fig. 10.6, and thus one would observe the validity of the 
reasoning in Fig. 11.25. 
 

 
 
 
 

 
                                              a                                                            b 
 
                       Fig. 11.26. Two equivalent two-valued quantum logic circuits. 

     Minimum Size                               Minimum Size  
     Reversible Logic                            Quantum Logic      
     Circuit                                            Circuit 

 Minimum Number 
 of Quantum 
 Computations 
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       The quantum evolution matrix for the circuit in Fig. 11.26a is 
obtained using 4 N (NOT) operations using the quantum primitive 
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evolution matrix for the circuit in Fig. 11.26b is obtained using 2 N 
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. Consequently, it is obvious that 

the total number of operations needed for evolving qubits using Fig. 
11.26b is much less than the total number of operations that are 
needed for evolving qubits using Fig. 11.26a. This conclusion is also 
valid for the case of multiple-valued quantum computing as can be 
seen in Fig. 11.27 for example, where the notation follows from 
Chapt. 10. 
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                Fig. 11.27. Two equivalent ternary quantum logic circuits. 
 
       Analogous to the classical domain where (computational) 
complexity theory studies whether or not the total number of 
operations that are needed to execute certain computational task can 
be done in a polynomial time with respect to the increasing size of 
the problem (e.g., function), the domain of quantum complexity 
theory investigates whether or not the total number of quantum 
operations that are needed to execute certain quantum computational 
task can be done in a polynomial time with respect to the increasing 
size of the quantum problem (e.g., quantum function) [167].  
       Some of the quantum computing structures that have been 
introduced in Chapts. 10 and 11 possess certain advantages over the 
other quantum computing structures. Table 11.1 shows an initial 
evaluation that have been observed so far when performing quantum 
computing using such structures. 
       One observes that while in reversible circuits garbage do appear 
in the outputs, and thus one counts (1) number of garbage outputs, 
and (2) number of internal gates as the cost of the reversible circuit 
(Chapt. 9) and consequently as an efficiency measure of the method 
used for reversible logic synthesis, in quantum circuits garbage do 
not appear in the outputs, and thus one counts only number of 
internal gates (i.e., size of the quantum register) as the cost of the 
quantum circuit (i.e., as an efficiency measure of the method used 
for quantum logic synthesis). 
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Table 11.1. Initial evaluation for the use of the various two-valued and multiple-valued 
quantum structures to perform the corresponding two-valued and multiple-valued quantum 
computations. 
 
    Type                               Advantages                                Disadvantages 

 
Quantum          (1) Utilizes exclusively the NOT          (1) Since quantum circuits do not 
Shannon             gate and Controlled-Swap gate             allow for garbage, it needs the 
Lattices               which are basic primitives for               mirror image to cancel the garbage  
                                 quantum circuits.                                   and thus requires more of the total 
                                                                                                number of basic quantum                        
                                                                                                operations using the garbageless         
                                                                                                circuit, (2) requires big width of the   
                                                                                                scratchpad register. 
 
Quantum          (1) Good for quantum symmetric         (1) For highly non-symmetric quantum 
Nets                         functions, and thus for highly               functions, it requires large number of 
                                 symmetric functions can need less        the total basic quantum operations to 
                                  of  total number of basic quantum        perform quantum computations on the 
                                  operations to perform quantum            garbageless circuit, since the variable 
                                  computations.                                       repetition is required and mirror image 
                                                                                                circuit is needed to eliminate the   
                                                                                                garbage, (2) requires big width of the   
                                                                                                scratchpad register. 
 
Quantum          (1) Structurally fits quantum circuits    (1) The quantum cascade circuit can be 
Cascades          since on avg. no garbage is created       very long to realize quantum functions 
                      and the inputs propagate to the              with many inputs, and thus need large  
                                 outputs thus requires less number of     number of basic quantum ops. to perform 
                                 total number of basic quantum ops.      quantum computations for such functions. 
                                 to perform quantum computations,   
                                 (2) the use of EXOR in cascades has   
                                 strong relation to quantum structures,  
                                 (3) requires relatively small width of  
                                 the scratchpad register, (4) can be  
                                 used for efficient realization of  
                                 MIMO type of quantum functions 
                                 (circuits). 
 
Quantum         (1) Very useful as good quantum data     (1) create garbage, and thus it needs  
DDs                structure to perform fast simulations       mirror image to cancel garbage and thus  
                      and ops.  for quantum computing,          requires  more of the total number of basic  
                                (2) big variety of quantum DDs               quantum ops. to perform quantum comps. 
                                for the two-valued and multiple-              using the garbageless circuit. 
                                valued  computational basis states,  
                                composite basis states, and EPR basis  
                                states, besides the big  types of  DDs,  
                                to achieve both minimal size circuits  
                                and faster  ops. on quantum data. 
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Table 11.1. (cont.) 
 
           
 
Quantum      (1) Due to its four circuit topologies,           (1) Does not realize yet ESOP of quantum  
MRA            it can possess advantages to design            functions, (2) in general needs mirror  
                   quantum circuits by utilizing quantum       image to cancel garbage and thus                              
                            processes that are low in cost and thus        needs more number of basic quantum ops. 
                            need less number of  quantum ops.,            using the garbageless circuit. 
                            (2) in some cases it produces  
                            minimum size quantum circuits.   
 

 
11.10 Summary 
 
This Chapt. has introduced the following new results: (1) New two-
valued and multiple-valued quantum primitives and evolution 
processes, (2) new multiple-valued composite basis states and 
Einstein-Podolsky-Rosen (EPR) basis states, (3) generalized 
multiple-valued quantum permuters, (4) various types of two-valued 
and multiple-valued canonical quantum decision trees (QDTs) and 
quantum decision diagrams (QDDs), and (5) the introduction of the 
mathematical operations for the analysis and synthesis of serial, 
parallel, and mixture of serial and parallel multiple-valued quantum 
circuits. 
       Results (1) and (3) are necessary for the automated analysis of 
netlists of quantum primitives. They are also necessary for 
automated synthesis of a netlist described as an evolution matrix 
from quantum gates, especially for try-and-check methods such as 
evolutionary algorithms [207,252]. Since decision diagrams allow 
for efficient representation of large sparse matrices, they found 
applications in many CAD algorithms, and we believe that their 
quantum counterparts in item (4) will be useful for quantum logic 
synthesis and analysis. Finally, result (2) is important because new 
forms of quantum decision trees and diagrams can be produced for 
the new multiple-valued EPR basis states, and thus allowing for 
further possible optimizations in the design of quantum circuits, 
analogous to the classical (non-quantum) case where different forms 
of decision trees and diagrams lead to different scales of 
optimizations in the design of logic circuits.  
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       The new multiple-valued quantum EPR basis states have been 
achieved by utilizing the new quantum Chrestenson operator 
introduced in this Chapt. The new Galois-based quantum gates, 
evolution processes, and the corresponding canonical quantum 
decision trees and decision diagrams were introduced as a first 
attempt of developing a comprehensive set of (1) complete system 
of quantum logic elements (gates; primitives), (2) quantum 
representations, and (3) quantum synthesis methods. It has been also 
demonstrated that by minimizing the size of the two-valued and 
multiple-valued quantum circuits one would need minimum number 
of the corresponding arithmetic operations needed to perform the 
corresponding two-valued and multiple-valued quantum computing, 
respectively. 
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12 Conclusions 
 
 
 
 
 
The biggest problems in system design today, and in the future, are 
the high rate of power consumption and the emergence of quantum 
effects for highly dense ICs. The real challenge is to design reliable 
systems that consume as little power as possible and in which the 
signals are processed and transmitted at very high speeds with very 
high signal integrity. The tools that are used to design ICs using the 
conventional design methodologies apply the area, delay, and power 
constraints. The synthesis approaches that are implemented using 
such computer-aided design tools are only for the classical type of 
synthesis.  
       This Book has proposed new methodologies for the synthesis of 
reversible binary and multiple-valued logic circuits and their 
implementations using quantum computing. The methodology 
presented for the proposed quantum computations evolved from the 
creation of necessary reversible primitives, then the structures to 
synthesize logic functions, binary and multiple-valued, using such 
primitives, next quantum logic circuits were constructed, and finally 
the quantum computations using such circuits were conducted. 
       First, Chapt. 4 provided the regular lattice structures for two-
dimensional and three-dimensional synthesis to logic functions. 
Such structures exhibited high regularity that makes them fit for 
many applications, especially as such structures are synthesized on 
the nano-scale, which was shown in Chapt. 11. When the functions 
are deeply non-symmetric, one has to repeat variables so many times 
in order to realize the non-symmetric function using the lattice 
structure, and consequently lattices will grow larger very fast such 
that they do not fit the specific conventional layout boundaries any 
more. To solve this problem, a new algorithm called Iterative 
Symmetry Indices Decomposition (ISID) for two-valued and 
multiple-valued lattice structures was developed. 
       The development of new reversible primitives was 
accomplished in Chapt. 5. This development was necessary as such 

A. N. Al-Rabadi, Reversible  Logic  Synthesis

© Springer-Verlag Berlin Heidelberg 2004



 

primitives were used later to synthesize more complex structures. 
The new reversible gates implement the Latin Square Property in 
their basis functions and consequently the permutation of cofactors. 
       Chapters 6 through 8 provided the foundation for synthesizing 
binary and multiple-valued logic functions using the reversible 
primitives that were introduced and developed in Chapt. 5. It was 
shown that among the proposed reversible structures, the reversible 
Cascade stands as one good method for synthesizing reversible logic 
functions without producing on average garbage in the outputs that 
are needed only for the purpose of reversibility. The disadvantage of 
such structures was shown to be the fact that they produce single-
outputs where other reversible structures as the Nets can produce 
multiple-output functions, but this production of multiple-output 
functions is at the expense of having garbage in the outputs, and thus 
the mirror image reversible circuit has to be cascaded with the 
forward reversible circuit for the elimination of such garbage. This 
is important because in the quantum computations, that were 
provided in Chapt. 11, the garbage in outputs is not allowed. 
       The synthesis of logic functions using the reversible structures 
such as reversible Cascades requires the minimization of logic 
functions for optimal realization in such circuits, which is obtained 
for example in the case of reversible Cascades through the use of a 
minimal number of stages for the synthesis of binary and multiple-
valued logic functions. The GFSOP minimizer that was proposed in 
Chapt. 3 uses the most general polarity of Inclusive Forms (IFs), 
where an evolutionary algorithm that implements the IF polarity 
chromosome was also introduced. 
       This Book started with a motivating research guidline that 
regularity in two-valued and multiple-valued reversible logic 
structures have an effect on the final complexity of the 
corresponding two-valued and multiple-valued quantum computing, 
respectively. Consequently, and to achieve this goal, the Book 
started with the invention of new methodologies for regular and 
semi-regular reversible structures and reversible logic synthesis 
methodologies, which was missing largely from the known previous 
literature, and then the exploration of the effect of such new 
methods on the total size of quantum logic circuits and consequently 
on the complexity of two-valued and multiple-valued quantum 
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computing in terms of the count of the total number of operations 
required. 
       From the body of this Book, the conclusion was that, for small 
functions, highly regular reversible structures, such as the reversible 
lattice structures and reversible Nets, will require larger size of 
quantum logic circuits and thus more operations for the 
corresponding two-valued and multiple-valued quantum computing, 
as if compared to the size of the circuits in semi-regular reversible 
structures, such as reversible Cascades, and their corresponding 
quantum computations. Therefore, as the process of producing 
reversible structures will lead to specific internal symmetries in 
terms of certain levels of regularities, due to the implementation of 
the reverse as well as the forward lossless information retrieval 
process, regularity itself will lead by necessity in most cases to 
larger size structures that possess high internal symmetries, which 
can be good for many applications, such as testing, similar to the 
results in [221]. 
       The main contributions of this Book can be summarized as 
follows: 
• A generic methodology of generating new types of multi-valued   
   Shannon and Davio expansions called the invariant Shannon and   
   Davio spectral transforms, and the classification of the new types   
   of multi-valued invariant Shannon and Davio spectral transforms   
   into their corresponding families. 
• The application of the new expansions into regular three- 
   dimensional lattice structures, and the process of realizing non- 
   symmetric ternary functions in three-dimensional lattice structures   
   using a new 3-D joining operator. This was implemented for the   
   regular and the new invariant Shannon and Davio 3-D lattice   
   structures. 
• The invention of a new methodology to generate and classify  
   reversible multiple-valued Shannon decompositions that includes   
   the binary case as a special case. This methodology implements   
   the idea of the Latin Square Property of the Generalized Basis   
   Function Matrix, which leads to the process of permutation of   
   cofactors. The exhaustive classification of all possible reversible   
   multi-valued Shannon gates into the corresponding classes was   
   also provided. 

  314      12 Conclusions        



 

• The generation of binary and multiple-valued reversible Davio   
   decompositions, and the exhaustive classification of all possible  
   reversible multi-valued Davio gates into the corresponding classes. 
• The creation of new reversible structures including: (1) binary and   
   multiple-valued reversible Lattice Structures, (2) reversible   
   Modified Reconstructability Analysis (RMRA), (3) reversible   
   Nets, (4) reversible Decision Diagrams (RDDs), and (5) multiple-  
   Valued reversible Cascades. 
• The invention of a new 2-valued decomposition: the Modified  
   Reconstructability Analysis (MRA) decomposition. Two variants   
   of  binary MRA: 1-MRA and 0-MRA were also introduced. The   
   extension to the multi-valued case is also achieved. The   
   demonstration of the superiority of the Modified  
   Reconstructability Analysis (MRA) decomposition to the  
   Conventional Reconstructability Analysis (CRA) decomposition,   
   in terms of complexity reduction for all 256 NPN-classified   
   Boolean functions of three input variables has also been  
   demonstrated. 
• New multiple-valued 1-qubit and 2-qubit orthonormal quantum  
   basis states: multi-valued composite basis states, and multi-valued  
   Einstein-Podolsky-Rosen (EPR) basis states, respectively. The  
   new quantum Chrestenson gate that produces such new multiple- 
   valued basis states is also introduced. 
• Two-valued and multiple-valued canonical quantum decision trees  
   (QDTs) and quantum decision diagrams (QDDs).  
• The serial interconnect and parallel interconnect operations for  
   multiple-valued quantum computing, and the demonstration of  
   these operations for the analysis of multiple-valued quantum logic  
   circuits. 
• New multiple-valued quantum gates and evolution processes  
   including Feynman, Swap, Shannon (Fredkin), and Davio   
   evolution processes, and generalized multi-valued inverters  
   (permuters) were created. Synthesis of the new multi-valued  
   quantum primitives in serial and parallel interconnects’ topologies  
    was also shown. 
• The invention of several reversible combinational circuits like the   
   reversible concurrent shift-left and shift-right Barrell shifter,  
   reversible Sorter, reversible MIN/MAX tree, reversible pipelined  
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   circuits, reversible systolic circuits, and reversible code converters. 
• A novel Iterative Symmetry Indices Decomposition (ISID) needed  
   for layout optimization. 
• The creation of multiple-valued Shannon/Davio (S/D) trees, and  
   their corresponding multiple-valued Inclusive Forms (IFs) and  
   Generalized Inclusive Forms (GIFs). The very general count   
   formula and the IFn,2 triangles for the count of the total number of  
   all binary and multiple-valued S/D forms that are generated have  
   been also introduced. 
• The synthesis of regular Boolean and multiple-valued optical  
   classical and reversible circuits using: (1) total internal reflection,  
   (2) optical polarizers, and (3) optical frequency shifters (See   
   Appendix J). 
• The implementation of Artificial Neural Networks using multiple- 
   valued quantum computing (See Appendix K). 
       During the course of investigating new types of reversible logic 
methods and their corresponding two-valued and multiple-valued 
quantum computations, some secondary results were obtained 
(Appendices A through I provide such results). Although these 
contributions are not directly related to the theme of this Book, we 
provide their listing as follows: 
• New theorems to count all possible families of the invariant  
   multiple-valued Shannon and Davio expansions. 
• Very general count formula that count the total number of  
   multiple-valued Inclusive Forms that result from the  
   corresponding S/D trees for any radix and an arbitrary number of  
   variables. 
• The invention of a new pattern for the count of IF forms for an   
   arbitrary radix and two variables. We call it the IFn,2 triangles. The  
   relation of these triangles to the important Pascal triangle was also  
   demonstrated. 
• The creation of new types of Galois circuits. 
• The creation of the multiple-valued Universal Logic Modules  
   (ULMs) for ternary and quaternary S/D trees. 
• An evaluation of the complexities of the new two-valued MRA  
   decomposition versus the complexities obtained using Ashenhurst- 
   Curtis (AC) like decompositions for all NPN classified Boolean  
   functions of three vaiables. The evaluations are performed using   
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   the log-functionality complexity measure which is suitable for  
   machine learning, and using the complexity measure which is  
   defined as the count of the total number of two-input primitives  
   which is suitable for circuit design. 
• The count of reversible Net structures. 
       In this Book, the goal was to explore the relationship between 
regularity and reversibility, which resulted in the development of 
new reversible logic synthesis techniques in order to synthesize 
functions using minimum size quantum logic circuits that will 
require minimum number of operations for quantum computing. 
However, one important factor for the evaluation of such reversible 
methods is the final total cost of the physical quantum circuits that 
will implement such reversible structures. While in conventional 
circuit design the cost of the design is measured by the total number 
of two-input gates that are used, in quantum circuits this is not the 
case, since in quantum circuits physical processes implement the 
quantum operations rather than simple hardware gates (e.g., CMOS) 
as in the case of the classical logic design. Quantum cost 
characterizes the physical process complexity that is needed to 
realize physically the corresponding reversible structures. Since 
little, if none, has been published on this quantum cost for the 
realization of the reversible structures, one very important question 
is still open on how much complex the quantum realization of the 
structures will be, and the answer to this question may very well 
lead to new cost-benefit conclusions. 
       This Book showed that the level of regularity in reversible logic 
structures has a direct effect on the size of the corresponding 
quantum circuits and their corresponding quantum computations. 
Thus this conclusion should be further explored with more 
quantitative analysis (i.e., numerical results) and qualitative analysis 
based on well-known two-valued and multiple-valued benchmarks. 
Since symmetries exist in reversible structures, due to the 
reversibility of lossless information retrieval, group-theoretic 
formulations of reversible primitives [243] from Chapt. 5, and 
reversible structures from Chapts. 6, 7, and 8 have to be further 
explored. Future work will include the construction of a 
comprehensive Computer-Aided Design (CAD) system [269] for 
reversible logic synthesis using various nano-based technologies as 
shown in Fig. 12.1. 
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Fig. 12.1. Comprehensive CAD system for nano computing. 

 
       The design and fabrication of adiabatic (low-power) CMOS 
VLSI ICs using the new reversible logic synthesis methods will be 
conducted. Also future work will include the systematic 
methodology for the extension of current reversible logic synthesis 
methodologies to different types of quantum systems such as: 
multiple-input multiple-output (MIMO) quantum circuits, multiple-
input single-output (MISO) quantum circuits, single-input multiple-
output (SIMO) quantum circuits, and single-input single-output 
(SISO) quantum gates like Walsh, Phase, Pauli, etc, as shown in Fig. 
12.2. The synthesis of a cascade of quantum gates to realize a 
quantum circuit for a specific length of a total quantum scratchpad 
register, as shown in Fig. 12.2, will be also investigated. 
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Fig. 12.2. Cascade of quantum circuits (QCts) for a specific length of a total scratchpad 
register. 
 
       Future work will include the implementation of the 
representations of binary and multiple-valued computational 
quantum decision trees (CQDTs) and diagrams (CQDDs), and 
binary and multiple-valued composite quantum decision trees 
(CoQDTs) and diagrams (CoQDDs), that are introduced in this 
Book, using the standard BDD packages [231]. Further research to 
find minimum and complete set of two-valued and multiple-valued 
quantum operators, from which complex two-valued and multiple-
valued quantum circuits can be synthesized, will be conducted. 
       Making improvements of tasks to an existing system or 
synthesizing a new system to perform specific functions or tasks 
(e.g., recognition, prediction, diagnosis, robot control, planning, etc) 
is the main goal of Machine Learning (ML). Information retrieval 
from large data bases (sets) and finding data patterns in a data 
environment (i.e., extracting useful information from data, and 
fitting theories to data or enumerating patterns from data) is studied 
within specific ML area called Data Mining (DM). Knowledge 
Discovery in Database (KDD) is the field that focuses on the total 
process of information retrieval and data analysis (e.g., selection, 
preprocessing, and data transformation) [108]. Since the new two-
valued and multiple-valued reversible and quantum computing 
methods, that are developed in this Book, were used for the purpose 
of circuit design, the use of these new methods for ML, DM, and 
KDD will be also investigated. 
       While mathematical formalisms can solve wide variety of 
synthesis problems (e.g., two-valued and multiple-valued reversible 
Shannon and Davio expansions from Chapt. 5), the solution and 
optimization of many two-valued and multiple-valued reversible and 
quantum synthesis problems (e.g., optimal variable ordering for the 
minimization of the total size of reversible lattice structure that 
reversibly realize large logic functions, in terms of minimization of 
the number of levels and minimization of the number of nodes in 
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each level) are still very difficult to solve mathematically, and thus 
one has to rely on search algorithms to synthesize and optimize 
these two-valued and multiple-valued reversible and quantum 
synthesis problems. Since exhaustive search methods are suitable to 
solve algorithmically for a small dimension problem (that has none, 
little, or impractical mathematical formalisms), these exhaustive 
methods are not practical to synthesize and optimize large multi-
input multi-output dimension problems. Consequently, future work 
will investigate the creation of suitable heuristics to perform 
heuristic search for the automatic synthesis and optimization of large 
multi-input multi-output dimension problems [269]. 
       Future investigation should also involve the creation of 
systematic theories and formalisms for sequesntial reversible circuit 
synthesis; a problem that has not been yet totally resolved. 
       Further research on the realization of various abstract quantum 
primitives using other physically-realizable quantum primitives 
(such as the case in [230]) should also be conducted.  
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Appendix A 
 
Count of the New Invariant Shannon and Davio 
Expansions 
 
 
 
 
 
This Appendix provides the counts for the invariant Shannon and 
Davio Families of spectral transforms, that were presented in Chapt. 
2, over an arbitrary Galois field. The following theorems provide 
counts for the new transform families, members per family, and total 
number of transforms, that belong to the sets of αβ…γ IS/D, αβ…γ 
ID/S, α1β1…γ1IS/α2β2…γ2ID families of spectral transforms, and 
αβ…γ IfS spectral transforms that are generated by the application 
of Theorems 2.2, 2.3, and 2.4, respectively. These counts can be 
used as a heuristic parameter and thus can play an important role in 
the search for optimal invariant expansions to create the 
corresponding minimal size three-dimensional lattice structures 
from Chapt. 4 [5,13] (For more clarifications, please refer to 
Definitions 2.1 through 2.7 in Chapt. 2, respectively). 
 

Theorem A.1. For {α, β, …, γ} ∈ GF(n), and for: 
φ is the number of αβ…γ IS/D spectral transform families. 
Θ is the number of members of Shannon transforms per family. 
Γ is the number of members of Davio transforms per family. 
Ω is the number of all members per αβ…γ IS/D transform family. 
ϕ is the total number of spectral transforms for ∀αβ…γ IS/D 

families. Then we obtain: 
 

       φ =  (n - 1)n,                                                                          (A.1) 
       Θ = 1,                                                                                    (A.2) 
       Γ = n,                                                                                    (A.3) 
       Ω = n + 1,                                                                             (A.4) 

       ϕ = φ + Ω - 1 = (n - 1)n + n.                                                (A.5) 
 



 

Proof. Utilizing the transform matrix for Generalized Shannon 
expansion (i.e. the identity matrix) over GF(n), the size of such a 
matrix is (n⋅n). In such matrix, there are n number of positions for 
nonzero-element and each position can take in general a number 
from (n-1) numbers (excluding the zero that leads to the trivial 
singular matrix). Consequently the total number of the resulting 
invariant Shannon transforms would be: φ = (n-1) (n-1) (n-1) … (n-
1) = (n - 1)n. For GF(n), for each multi-valued fundamental Shannon 
expansion there are n corresponding multi-valued fundamental  
Davio expansions. By defining the invariant multi-valued Shannon 
transform and the corresponding multi-valued Davio transforms to 
be belonging to one Family, the number of transform members per 
family will be Ω = (n + 1). Consequently, the total number of 
transforms per Galois radix is ϕ = φ + Ω - 1 = (n - 1)n + n.     Q.E.D. 
 

Theorem A.2. For {α, β, …, γ} ∈ GF(n), and for: 
Χ  is the number of αβ…γ ID/S spectral transform families. 
Δ  is the number of members of Shannon transforms per family. 
ϑ  is the number of members of Davio transforms per family. 
Ξ  is the number of all members per αβ…γ ID/S transform family. 
Ψ is the total number of transforms for ∀αβ…γ ID/S families. 
Then we obtain: 
 

       Χ = )1(
2

−n n ,                                                                        (A.6) 

       Δ = 1,                                                                                    (A.7) 
       ϑ = n,                                                                                    (A.8) 
       Ξ = n + 1,                                                                             (A.9) 
       Ψ = n(n - 1)n + 1.                                                                (A.10) 
 

Proof. Using the transform matrix for any type of Generalized 
Davio expansion over GF(n), the size of such a matrix is n⋅n. In such 
matrix, there are (n2-2n+3) number of positions for nonzero-element 
and (2n-3) of zero positions. Each position can take a number from 
(n-1) numbers (excluding the zero that leads to the trivial singular 
matrix). There are n basic Davio for GF(n). By multiplying the rows 
of each Davio type by {α, β, …, γ} ∈ GF(n),  we get consequently 
the total number of the resulting invariant Davio transforms per 
Davio type as: φ = (n-1)…(n-1) = (n - 1)n. So the total number of 
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transforms for all Davio is n(n - 1)n . For GF(n), for each MV Davio 
family there is one corresponding MV Shannon family. By defining 
the invariant Davio transforms and the corresponding Shannon 
transform to be belonging to one family, the number of transform 
members per family is Ω = (n + 1). Consequently, the total number 
of transforms is Ψ =  n(n - 1)n + 1.                                           Q.E.D. 
 

Theorem A.3. For {α, β, …, γ} ∈ GF(n), and for: 
χ is the number of αβ…γ ID/αβ…γIS spectral transform families. 
δ is the number of members of Shannon transforms per family. 
ε is the number of members of Davio transforms per family. 
η is the number of all members per αβ…γ ID/αβ…γIS family. 
ψ is the total number of  transforms for ∀ αβ…γ ID/αβ…γIS 

families. 
Then we obtain: 
 

       χ = (n-1)n(n+1),                                                                     (A.11) 
       δ = 1,                                                                                   (A.12) 
       ε = n,                                                                                   (A.13) 
       η = n + 1,                                                                            (A.14) 
       ψ = (n+1)(n-1)n.                                                                 (A.15) 
 

Proof. Since φ = (n - 1)n and Χ = )1(
2

−n n , then the total number of  

αβ…γ ID/αβ…γIS spectral transform families is equal to  χ = φ ⋅ Χ 
= (n-1)n(n+1). Since there exists over GF(n), by definition, one 
Shannon transform and n Davio transforms per family, then the total 
number of transforms for all αβ…γ ID/αβ…γIS families is the union 
of all transforms. This will lead to the non-repetition of the existing 
transforms within the same set of total spectral transforms, and thus 
to the total number of ψ = ϕ  + Ψ - n - 1 = (n+1)(n-1)n.         Q.E.D. 
 

Theorem A.4. For {α, β, …, γ} ∈ GF(n), and for ∂ is the number of 
αβ…γ IfS spectral transform families then we obtain: 
 

       ∂ =  (n - 1)n.                                                                        (A.16) 
 

Proof. Utilizing the transform matrix for Generalized flipped 
Shannon expansion over GF(n), the size of such a matrix is (n)(n). 
In such matrix, there are n number of positions for nonzero-element 
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and each position can take in general a number from (n-1) numbers 
(excluding the zero that leads to the trivial singular matrix). Thus, 
the total number of the resulting invariant flipped Shannon 
transforms would be: ∂ = (n-1) (n-1) … (n-1) = (n - 1)n.         Q.E.D. 
 

       The following example illustrates the various counts of the new 
set of spectral transforms. 
Example A.1. Let us produce the counts of the new set of spectral 
transforms {φ, ∂, ϕ, Χ, Ψ, χ, ψ} for Galois field of radices equal to 
2, 3, 4, and 5, respectively.  
For GF(2), one obtains: 
φ  = ∂ = 1, ϕ = 3, Χ = 1, Ψ = 3, χ = 1, ψ = 3 (i.e., this is the familiar 
family of binary Shannon expansion, flipped Shannon expansion, 
and Davio expansions). 
For GF(3), one obtains: 
φ = ∂ = 8,  ϕ =11, Χ = 512, Ψ = 25, χ = 4,096,  ψ = 32.  
For GF(4), one obtains: 
φ = ∂ =81, ϕ = 85, Χ = 43,046,421, Ψ = 325, χ = 3.4868⋅10 9,  
ψ = 405. 
For GF(5), one obtains: 
φ = ∂ = 1,024, ϕ = 1,029, Χ = 1.1259⋅1015 , Ψ = 5,121, χ = 
1.1529⋅1018, ψ = 6,144.  
       Table A.1 provides a comparison of the spectral transforms: φ, 
∂, ϕ, Χ, Ψ, χ, ψ and the total number of singular transforms ξ for 
various radices of Galois fields GF(pk) (where p is a prime number 
and k is a natural number of value k ≥ 1).  
       In general, the total number of the nonsingular spectral 
transforms will be much less than ξ. ξ is used in Table A.1 as an 
upper-extreme (Bound) reference to obtain an idea of how large the 
counts of the new families and their transforms are if compared to 
the whole space of spectral transforms. 
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Table A.1. Counts of the new invariant Shannon and Davio families of transformations for 
GF(pk). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

    GF   φ, ∂          ϕ            Χ            Ψ           χ         ψ+∂             ξ      

3 

4 

 5 

7 

8 

    2     1                    3                1                    3               1                  4                   16 

8                   11              512                25            4,096             40              19,683 

 81                 85           43,046,421      325         3.487x109           486             ≅ 4295x106 

       1024               1029        1.126x1015      5,121      1.153x1018        7,168          ≅ 2.98x1017 

9 

  279,936         279,943    1.347x1038     1,959,553    3.77x1043    2,519,424     ≅ 2.57x1041  

  5,764,801    5,764,809    1.22x1054    46,118,409   7.032x1060    57,648,010   ≅ 6.28x1057 

    134,217,728   134,217,737   1.4135x1073    1.2080x109        1.897x1081       ≅1.34x109            ≅ 1.97x1077 
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Appendix B  
 
Circuits for Quaternary Galois Field Sum-Of-
Product (GFSOP) Canonical Forms 
 
 
 
 
 
One interesting logic synthesis of quaternary GFSOPs are various 
circuit and filter implementations, similar to the work in [125], of 
which FIR filter is the simplest case. Higher radix extensions of this 
kind of filters can be useful for digital signal processing of 1-D 
multi-valued I/O signals or 2-D multi-valued I/O blocks of images 
(e.g., 4x4, and 8x8 blocks of a still image).  
       A general FIR filter for single variable GF(4) GFSOP-based 
expansion can be produced as in Fig. B.1 [125]. This realization is a 
direct implementation of the Shannon and Davio expansions that 
were obtained in Chapt. 2. Such realization can be useful in various 
applications such as applications that involve multi-valued I/O bio-
medical signals. The addition and multiplication performed in Fig. 
B.1 are the Galois addition and multiplication operations defined in 
Chapt. 2. These additions and multiplications can be implemented 
using quaternary circuits, or using binary circuits. Yet, another 
implementation of GF(4) logical multiplication gate can be achieved 
by utilizing a third radix Galois addition operation. This can be 
achieved by utilizing the GF(3) addition which is presented in 
Chapt. 2, and noticing the relationship between the multiplication 
operation over GF(4) and the addition operation over GF(3). This 
relationship can be stated as follows: Excluding the first row of 
zeros and the first column of zeros in the GF(4) multiplication, then 
by subtracting one from the remaining rows and columns, the GF(3) 
addition operation is obtained, but next a value of “1” must be added 
to every entry of the GF(4) multiplication in order to obtain GF(3) 
addition. 



 

 
 
 

 

 

 

 

 

 
 
          Fig. B.1. FIR Filter realization of four-valued GF(4) GFSOP canonical forms. 

 
This can be formulated formally as follows: 
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Where ⊕  is either GF(3) addition or mod-3 addition, + is either a 
shift up operation or mod-3 addition, and - is a shift down operation. 
       For simplicity of implementation, shift-up operation is used 
instead of mod-3 addition for + operation, and mod-3 addition is 
used instead of GF(3) addition for the ⊕ operation.  
       Figures B.2 and B.3 illustrate an implementation of the GF(4) 
addition and multiplication operations. Note that multi-input 
addition and multiplication circuits can be realized as trees of two-
input addition and multiplication circuits as shown in Figs. B.2b and 
B.3b, respectively. Similar approaches can be used to realize 
addition and multiplication operators for higher radices of Galois 
fields. 
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             a                                                b                                                   c 

 
Fig. B.2. a Implementation of three input single GF(4) addition gate as two decomposed 
two-input tree-structured GF(4) addition gates as in b, and c consequently as quadruple 
two-input tree-structured vector of GF(2) EXORs. 
                                                          a 
                      a                               
                    b                                              b 
 
                   c                  a                          c                                    b 
 
 
 

 
 
        a                                                                                                               a+b                           
 
       b 
 
 
                                                                          c 
 
Fig. B.3. a Implementation of a 3-input single GF(4) logic multiplication gate as 
decomposed 2-input two tree-structured GF(4) multiplication gates as in b, and c the 
implementation of a single GF(4) logic multiplication using mod-3 addition and shift 
operations. 
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Where: 
 
                 Is a –1 shifter 
 
                 Is a +1 shifter 
 
                 Is a modulo-3 addition 
         
 
                 Is a comparator to value “0” 
 
                 Is a 1/0 binary multiplexer 
 
 
 
       Logical addition and multiplication gates are used in many 
applications such as the realization of 2r-bit arithmetic addition and 
2r-bit arithmetic multiplication operations, which are the 
fundamental arithmetic operations by which the complex arithmetic 
and logic unit (ALU) is designed.  
       Complex arithmetic operations such as the convolution 
operation are the base of linear transformations used in many digital 
signal processing and digital image processing applications. Instead 
of standard arithmetics, Galois logic can be used for fast and 
efficient realizations which use linear algebra.  
       The physical implementation of the circuit in Fig. B.3 can be 
implemented utilizing various choices of technologies: micro 
technologies, deep sub-micron technologies, or nano technologies. 
One of the options is the pass transistor logic (PTL) that have 
recently found popularity within the CMOS technologies due to 
circuit optimization issues. Also, other future technologies such as: 
(1) single electron transistors (SET), (2) Josephson junction, and (3) 
low-power VLSI design [206,262] technologies require efficient 
realization of multiple-valued Shannon and Davio canonical 
expressions and Galois gates. 
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Appendix C 
 
Count of the Number of S/D Inclusive Forms and 
the Novel IFn,2 Triangles 
 
 
 
 
 
This Appendix provides the count for the numbers of Inclusive 
Forms (IF) in Chapt. 3, and provide a generic way of counting such 
forms when the number of variables is very large in a way such that 
an ordinary computer routine will not perform such counts in a 
polynomial time, and thus the need for the IFn,2 triangles as a 
pattern-based way for performing a count. These counts can be used 
as numerical parameters (e.g., upper-bounds) in search heuristics 
that search for minimum GFSOP expressions from Chapt. 3. 
 

Theorem C.1. For GF(3) and N variables, the total number of TIFs  
per variable order is: 
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Proof. The following is the derivation of the general formula (C.1) 
to calculate #TIFs per variable order: the total number of nodes for 
any GF(3) tree with N levels (i.e., N variables) equals to: 
 

       �
−

=

1

0

)3(
N

k

k .                                                                                    (C.2) 

For any S-type node there is only one type of nodes (as the branches 
have the possibility of single value each). Yet, for D-type node there 
are N possible types of nodes (where N is the number of variables, 
which is equal to the number of levels). The highest possible 



 

number of forms for the D-type node is when the D-type node exists 
in the first (highest) level, and the lowest possible number of forms 
for the D-type node is when the D-type node exists in the Nth-level 
(lowest level).  
       Therefore, for certain number (M) of S-type nodes the following 
formula describes the number of the D-type nodes for N variables: 
 

       # S = M    �    # D =  [�
−

=

1

0

)3(
N

k

k  -  M ].                                 (C.3) 

 

       It can be shown that for GF(3) (i.e., ternary decision tree (TDT)) 
and N-levels (i.e., N-variables), the general formulas that count the 
number of D-type nodes, and the number of all possible forms  for 
the D-type node in the kth level of the Nth-level TDT are, 
respectively:  
 

       # Dk = )3(
)1( −K
,                                                                    (C.4) 

       | Dk | per node = )3( )3.(2
)( KN −

,                                             (C.5) 
 

where: 
# Dk: is the number of D-type nodes in the kth level,  
|Dk|: is the number of all possible forms for the D-type node in the    
        kth level.  
       Let us define S/D tree category to be: the S/D trees that have in 
common the same number of S-type nodes and the same number of 
D-type nodes within the same variable order. Also, let us define the 
following: 
 

       ψ = number of variable orders.                                         (C.6) 

       Ω = number of S/D tree categories per variable order.    (C.7) 

       φ  = number of S/D trees per category.                             (C.8) 

       Φ = number of TIFs per variable order.                           (C.9) 
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       From Eqs. (C.2) through (C.5), and using some elementary 
count rules, we can derive by mathematical induction the following 
general formulas for N being the number of variables: 
 

       ψ  = N!,                                                                           (C.10) 
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                                                                                                    (C.13) 
                                                                                                  Q.E.D. 
 

       From Eqs. (C.10) through (C.13), it can be noticed that the total 
number of TIFs for all variable orders is equal to {[N!][#TIFs per 
order]}, and the number of TGIFs is bounded according to the 
inequality {#TIFs per variable order < #TGIFs < #TIFs for all 
variable orders}. 
Example C.1. For number of variables equal to two (N = 2), Eq. 
(C.12) reduces to: 
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Φ = Φ|
0,0 21 == kk
+ Φ |

0,1 21 == kk
 +Φ |

0,2 21 == kk
+ 

       Φ |
0,3 21 == kk
+Φ|

1,0 21 == kk
+ Φ |

1,1 21 == kk
 + Φ |

1,2 21 == kk
+ 

       Φ |
1,3 21 == kk
, 

    = Φ 00 + Φ 10 + Φ 20 + Φ 30 + Φ 01 + Φ 11 + Φ 21   
        + Φ 31, 

      = 1 + 27 + 243 + 729 + 729 + 19683 + 177147 + 531441, 

      = 730,000 . 
       Utilizing multi-valued map representation, there are, in general, 
for Nth-valued input-output logic: (N)#Minterms different functions. 
Therefore, for ternary logic, there are 39 = 19,683 different ternary 
functions of two variables, and 730,000 ternary Inclusive Forms 
generated by the S/D trees. Thus, on the average every function of 
two variables can be realized in approximately 37 ways. 
 

Theorem C.2. For GF(4) and N variables, the total number of QIFs 
per variable order is equal to: 
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Proof. A general proof that will include the quaternary Galois field 
as a special case will be provided later in this Appendix.        Q.E.D. 
 

       Properties and extended Green/Sasao hierarchy for quaternary 
S/D trees and their corresponding forms can be developed similar to 
the work in [4] and the properties of ternary S/D trees shown in 
Chapt. 3. The extension of the concept of S/D trees to higher radices 
of Galois fields (i.e., higher than four) is a systematic and direct 
process that follows the same methodology developed for the 
ternary case [3,4] and the quaternary case. 
       The following example demonstrates the counts of QIFs using 
Theorem C.2. 
Example C.2. For number of variables equal to two (N=2), Eq. 
(C.14) reduces to: 
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     = Φ |
0,0 21 == kk
+ Φ |

0,1 21 == kk
+  Φ |

0,2 21 == kk
+   Φ |

0,3 21 == kk
+ Φ |

0,4 21 == kk
+    

        Φ |
1,0 21 == kk
+ Φ |

1,1 21 == kk
+ Φ |

1,2 21 == kk
+  Φ |

1,3 21 == kk
+   Φ |

1,4 21 == kk
,                      

     = Φ 00 +Φ 10 + Φ 20 + Φ 30 + Φ 40 + Φ 01 + Φ 11 + Φ 21 + Φ 31   

             + Φ 41, 
     = 1 + 256 + 24,576 + 1,048,576 + 16,777,216 + 16,777,216 +   
         4,294,967,296 + 412,316,860,416 + 1.75921860444* 1013  
        +2.81477976711*1014,   
     = 2.99483809211*1014. 
       Utilizing MVL map representation, we can easily prove that 
there are 416 = 4,294,967,296 quaternary functions of two variables, 
and 2.99483809211*1014 quaternary Inclusive Forms generated by 
the S/D trees. Thus, on the average every function of two variables 
can be synthesized (realized) in approximately 69,729 ways. This 
high number of realizations means that most functions of two 
variables are realized with less than five expansions, and all 
functions with at most five expansions. 
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C.1 General Formula to Compute the Number of IFs for an 
Arbitrary Number of Variables and Arbitrary Galois Field 
Radix  
 
Although the S/D trees and Inclusive Forms that were developed in 
Chapt. 3 are for GF(4), the same concept can be directly and 
systematically extended to the case of nth radix of Galois fields and 
N variables. Theorem C.3 provides the total number of IFs per 
variable order for N variables (i.e., N decision tree levels) and nth 
radix of any arbitrary algebraic field, including GF(pk) where p is a 
prime number and k is a natural number ≥ 1. The generality of 
Theorem C.3 comes from the fact that algebraic structures specify 
the type of operations (e.g., addition and multiplication operations) 
in the functional expansions but do not specify the counts which are 
an intrinsic property of the tree structure and are independent of the 
algebraic operations performed. Thus, Theorem C.3 is valid, among 
others, for Galois fields of arbitrary radix (pk) where p is a prime 
number and k is a natural number ≥ 1 (e.g., 3, 4, 5, 7, 8, 9, 11, 13, 
etc). 
 

Theorem C.3. The total number of Inclusive Forms for N variables 
and nth radix Galois field logic is equal to: 
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Proof. The following is the derivation of the general Eq. to calculate 
the number of IFs per variable order: The total number of nodes for 
any nth radix Galois field (GF(n)) tree with N levels (i.e., N 
variables) equals to: 
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For any S-type (i.e., Shannon type) node there is only one type of 
nodes as the branches of the Shannon node have the possibility of 
single value each. Yet, for D-type (i.e., Davio type) node there are N 
possible types of nodes (where N is the number of variables, which 
is equal to the number of levels). The highest possible number of 
forms for the D-type node exists when the Davio node exists in the 
first (highest) level, and the lowest possible number of forms for the 
D-type node is when the Davio node exists in the Nth-level (lowest 
level). Therefore, for certain number (M) of S-type nodes the 
following formula describes the number of the D-type nodes for N 
variables: 
 

       # S = M � # D = �
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0
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N

k

k

n  -  M.                                        (C.17) 

 

It can be shown that for GF(n) (n-ary decision tree with N-levels 
(i.e., N variables), the general formulas that count the number of D-
type nodes, and the number of all possible forms for the D-type node 
in the kth level (where k is less than or equal the total number of 
levels N) are, respectively: 
 

       # Dk = )(
)1(

n
k−
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       |Dk| = )( )).(1(
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n nn
KN− −

,                                                    (C.19) 
 

where # Dk  is the number of D-type nodes in the kth level, |Dk| is the 
number of all possible forms (per node) for the D-type node in the 
kth level, Let us define the S/D tree category to be the S/D trees that 
have in common the same number of S-type nodes and the same 
number of D-type nodes within the same variable order. Let us 
define the following entities for nth radix Galois field and N 
variables (i.e., N decision tree levels): 
 

       ψ n,N  = number of variable orders.                                  (C.20) 

       Ω n,N = number of S/D tree categories per variable   
                       order.                                                                   (C.21) 
       φ n,N   = number of S/D trees per category.                       (C.22) 

       Φ n,N  = number of IFs per variable order.                       (C.23) 
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From the previous Eqs., and using elementary count rules, one can 
derive by mathematical induction the following general formulas for 
N being the number of variables, and n being the field radix:  
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                                                                                                  Q.E.D. 
 

       One can note that the formula in Eq. (C.27) used to obtain the 
total number of Inclusive Forms for N variables and nth radix of 
Galois field is a very general fomula that includes the ternary case 
(Eq. (C.1)) and the quaternary case (Eq. (C.14)) as special cases.  
       Numerical counting results that are obtained from Eq. (C.27) 
can be used in search heuristics as numerical bounds that could be 
incorporated into efficient search of S/D trees (from Chapt. 3) in 
order to obtain minimal GFSOP forms for specific multiple-valued 
logic functions. Since such search for minimal forms is already a 
difficult problem in two-valued logic (for example using binary S/D 
trees) especially when the number of variables is large, the search 
for minimal GFSOP forms in multiple-valued Galois logic will be 
very difficult. Thus, further numerical evaluations have to be 
conducted in order to estimate the usefulness of numerical bounds 
obtained from Eq. (C.27) in such multiple-valued search heuristics.   
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Example C.3. Let us produce the number of QIFs over GF(4) for 
two variables (i.e., N=2 and n = 4), then one obtains: 
Φ 4,2 =  
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= Φ 00|4,2 +Φ 10|4,2 + Φ 20|4,2 + Φ 30|4,2 + Φ 40|4,2 + Φ 01|4,2 +  
   Φ 11|4,2 + Φ 21|4,2 +    Φ 31|4,2 + Φ 41|4,2, 
= 1 + 256 + 24,576 + 1,048,576 + 16,777,216 + 16,777,216 +   
   4,294,967,296 + 412,316,860,416 + 1.75921860444* 1013 +   
   2.81477976711*1014,    
 = 2.99483809211*1014. 
 

Corollary C.1. From [52] and Eq. (C.15), the following 
mathematical corollary can be obtained to count the number of 
Inclusive Forms for N variables and second radix: 
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       In general, expansions of functions can be produced over basis 
functions of a single variable, two variables, or any number of 
variables. The interesting case of expansions of functions utilizing 
pairs of variables can be produced using the general procedure for 
expansions over Linearly Independent (LI) logic. This can be 
achieved by the recursive expansions of a multi-variable function 
over bases of two variables. The advantage of such expansions is the 
regular usage of universal blocks with two control variables that 
generalize multiplexers (data selectors) with two control variables 
(i.e., variables of control functions) and four data inputs (data 
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functions). The following Sect. introduces a fast method to calculate 
the number of IFs (that are special cases of Linearly Independent 
(LI) logic) for an arbitrary Galois field logic for functions with two 
variables. 

 
C.2 A Fast Method to Calculate the Number of IFs for an 
Arbitrary Radix of Galois Field GF(pk) for Functions of 
Two Variables Using IFn,2 Triangles 
 
The count of the number of IFs is important in many applications, 
especially in providing upper numerical boundaries for efficient 
search of a minimum GFSOP. Calculating the numbers of Inclusive 
Forms (IFs) can be very time consuming due to the time required to 
perform the mathematical operations in the general Eq. (C.15). This 
is why a fast method to generate the number of IFs is needed. 
Because functions with two variables find an important application 
in the ULMs for pairs of variables, the following subsection 
provides a fast method to calculate the number of IFs over an 
arbitrary radix of Galois field GF(pk) for two variable functions (i.e., 
N = 2). 

 
C.2.1 IFn,2 Triangles 
 
Functions with two variables are attractive in logic synthesis since 
many functional decomposition methods exist that produce two 
control inputs for primitive cells in a standard library of standard 
cells (such as in a multiplexer with two address lines). It is shown in 
[3,4] how to produce ULMs for pairs of control variables that 
generalize Shannon and Davio expansion modules. Theorem C.4 
will introduce a fast method to calculate the number of Inclusive 
Forms for functions with two input variables over an arbitrary radix 
of Galois field [3].  
       These triangles are important because the complexity of count 
using Eq. (C.15) for high dimensions is very high, and thus the 
ability of a personal computer to compute the counts for number of 
variables greater than five in a reasonable amount of time becomes 
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questionable. Consequently, the IFn,2 triangles provide an alternative 
numerical and geometrical pattern of computing [3]. 
 

Theorem C.4. The following IFn,2 Triangles provide a fast method 
to calculate the number of IFs over an arbitrary nth radix of Galois 
field (GF(pk)) for two variable functions (N=2). 
 
 
 
 
 
 
 
 
 
 
 
 
                                                         a 
 
 
 
 
 
 
 
 

 

                                                                    b 
 
Fig. C.1. IFn,2 Triangles: a the Triangle of Coefficients, and b the Triangle of Values for a 
fast calculation of the number of Inclusive Forms for an arbitrary radix Galois field and 
functions of two input variables (N=2). 
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Proof. The proof of Theorem C.4 follows directly from the 
mathematical induction of the number of IFs over an arbitrary radix 
of Galois field GF(pk) for two variable functions. This can be 
deduced directly from Eq. (C.15); if the IFn,2 Triangles are valid for 
n = q then they will be also valid for n = q + 1, where n = pk (p is a 
prime number and k is a natural number ≥ 1).                          Q.E.D. 
 

       It can be observed that the IFn,2 Triangle of Coefficients 
possesses a close similarity to the well known Pascal Triangle. This 
occurs as follows: if one omits the first two rows of the Pascal 
Triangle and duplicates each row into another horizontally adjacent 
row, the IFn,2 Triangle of Coefficients will be obtained. This fact 
helps in creating computer algorithms that generates the IFn,2 
Triangle of Coefficients since many efficient and optimized 
algorithms already exist to generate the Pascal Triangle. The 
following example illustrates the concept of count of the number of 
IFs over an arbitrary radix of Galois field GF(pk) for two variable 
functions through the IFn,2 Triangles that were demonstrated in Fig. 
C.1. 
Example C.4. Utilizing the IFn,2 Triangles from Fig. C.1, we can 
calculate the number of Inclusive Forms for GF(2), GF(3), and 
GF(4) for two variables: 
Φ 2,2 = 1⋅ 20+2⋅ 21+1⋅ 22+1⋅ 22+2⋅ 23+1⋅ 24 = 1 + 4 + 4 + 4 + 16 +   
              16 = 45.    
Φ 3,2 = 1⋅ 30+3⋅ 32+3⋅ 34+1⋅ 36+1⋅ 36+3⋅ 38+3⋅ 310+1⋅ 312 = 730,000.                
Φ 4,2 = 1⋅ 40+4⋅ 4 3+6⋅ 46+4⋅ 49+1⋅ 412+1⋅ 412+4⋅ 415+6⋅ 418+4⋅ 421+1⋅  
              424, 
              = 2.99483809211*1014.                                                                             
       One can observe that the results from Eqs. (C.29), (C.30), and 
(C.31) are the same results that were obtained previously. 

 
C.2.2 Properties of IFn,2 Triangles 
 
(1) The number of positions (elements) in each row of the triangles 
in Figs. C.1a and C.1b are even starting from six. 
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(2) The sum of elements in each row in Fig. C.1a equals to the 
number of S/D trees per variable order. 
(3) The triangle in Fig. C.1a possesses even symmetry around an 
imaginary vertical axis in the middle of the triangle. 
(4) The minimum number of columns required to generate the whole 
triangle in Fig. C.1a is equal to three (due to even symmetry): one 
wing, one column neighbor to the middle column, and one middle 
column. 
(5) The triangle in Fig. C.1a can be generated by the process of 
“Shift Diagonally and Add Diagonally” (SDAAD); shift the left 
wing diagonally from west to southeast direction and add two 
numbers diagonally from east to southwest direction, and shift the 
right wing diagonally from east to southwest direction and add two 
numbers diagonally from west to southeast direction. 
(6) The difference in powers in the triangle in Fig. C.1b per row 
element is (N-1). 
(7) The first number in each row of the triangle in Fig. C.1b is N0 
and the last number per row is N2N(N-1), where N is the number of 
variables. 
(8) The middle two numbers in each row of the triangle in Fig. C.1b 
are always equal to NN(N-1), where N is the number of variables. 
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Appendix D 
 
Universal Logic Modules (ULMs) for Circuit 
Realization of Shannon/Davio (S/D) Trees 
 
 
 
 
 
This Appendix provides logic circuit realizations of Universal Logic 
Modules (ULMs) for the S/D expansions of multiple-valued 
Shannon and Davio spectral transforms from Chapt. 3. 

 
D.1 S/D Universal Logic Modules for Ternary Radix 
 
The nonsingular expansions of Ternary Shannon (S) and Ternary 
Davio (D0, D1, and D2), can be realized using a “Universal Logic 
Module” (ULM) with control variables corresponding to the 
variables of the basis functions (i.e., the variables we are expanding 
upon). We call it a universal logic module, because similarly to a 
multiplexer, all functions of two variables can be realized with two-
level trees of such modules using constants on the second-level data 
inputs. ULMs are complete systems, because they can implement all 
possible functions with certain number of variables. The concept of 
the universal logic module was used for binary RM logic (over 
GF(2)), as well as the very general case of Linearly Independent (LI) 
logic [172,174], that includes R-M logic as a special case. Binary LI 
logic extended the universal logic module from just being a 
multiplexer (Shannon Expansion), AND/EXOR gate (positive Davio 
expansion), and AND/EXOR/NOT gate with inverted control 
variable (negative Davio expansion), to the universal logic modules 
for any expansion over any linearly independent basis functions. 
Analogously to the binary case, Figs. D.1 and D.2 present the 
universal logic modules for ternary Shannon (S), and ternary Davio 
(D0, D1, and D2), respectively. 
       We can note, as seen from Chapt. 3, that any function f can be 
produced by the application of the independent variable {x} and the 



 

cofactors {fi, fj, and fk } as inputs to a ULM. The form of the 
resulting function depends on our choice of the shift and power 
operations that we choose inside the ULM for the input independent 
variable, and on our choice of the weighted combinations of the 
input cofactors. Utilizing this note, we can combine all Davio ULMs 
to create the single all-Davio ULM. Figure D.3 illustrates this ULM. 
An even more general Universal Logic Module can be generated to 
implement all Ternary Shannon and Davio expansions over GF(3). 
Figure D.4 illustrates such a ULM. 
       In general, the gates in the ULMs can be implemented, among 
other circuit technologies, by using binary logic over GF(2) [3,4], or 
using multi-valued circuit gates. Each ternary ULM corresponds to a 
single node in the nodes of TDTs that were illustrated in Chapt. 3. 
The main advantage of such powerful ULMs is in high layout 
regularity that is required by future nano technologies. The trees can 
be realized in layout because they do not grow exponentially for 
practical functions. For instance, assuming a ULM from Fig. D.4, 
although every function of two variables can be realized with four 
such modules, it is highly probable that most of the functions of two 
variables will require less than four modules. Because of these 
properties, this approach should give very good results when applied 
to incompletely specified functions and multi-valued relations.    
       Multiplexers and Davio gates are used to design new 
reconfigurable structures, such as FPGAs with their well-known 
applications in memory-based Ping-Pong architectures and parallel 
processing systems (such as DEC-PERLE system), and regular data 
path blocks, besides many of the multi-level structures that are based 
on them. Similarly, the new ULMs can find various implementations 
in different sorts of regular structures, such as: iterative circuits, 
Cellular Automata (CA), Lattices (or Pseudo-Symmetric Decision 
Diagrams (PSDDs) from Chapt. 4), Pipelining, and Systolic 
Architectures. One important implementation is one-to-one mapping 
of regular layout of functions into Lattices. Regular structures are 
most favorable in circuit design as they allow the ease of many 
tasks, such as: (1) fault detection (circuit diagnosis; circuit testing), 
(2) fault localization, (3) circuit self-repairing, (4) evolvable 
hardware, and (5) circuit manufacturing. Such properties are 
essential in the future advanced technologies for sensitive 
applications such as space-oriented applications (e.g., satellite 
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circuits that are immune to galactic/cosmic radiation) and bio-
medical applications (e.g., human-IC interface). ULMs can be also 
created for pairs of variables and their larger sets. 
 

 
 
 
 
 
 
 
 

     Fig. D.1. ULM of ternary Shannon over GF(3). 
 

 
 
 
 
 
 

                                                                                 a 

 
 
 
 
 
 
                                                                                 b 
 
 
 
 
 
 
 
                                                                                 c 
 
                                Fig. D.2. ULMs of Davio over GF(3): a D0, b D1, and c D2. 
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Fig. D.4. Ternary S/D ULM over GF(3). 

                   Fig. D.3. Universal Logic Module for all ternary Davio expansions over GF(3). 
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D.2 Logic Synthesis of Quaternary GFSOPs 
 
The nonsingular expansions of quaternary Shannon and Davio 
expansions, can be realized using a quaternary Universal Logic 
Module (ULM) with control variables corresponding to the variables 
of the basis functions (i.e., the variables that are expanded upon).    
       Similarly to the ternary case, quaternary ULMs (i.e, ULMs with 
quaternary gates) for quaternary Shannon and quaternary Davio 
expansions can be designed. Yet, because of the “maturity” and the 
intensive usage of the binary-based (i.e., Boolean) technologies, we 
will illustrate the implementation of the quaternary ULMs as binary-
based logic circuits. This can be done through the encoding of a 
single 4-valued variable into two 2-valued variables. 
        Analogously to the ternary case, the general ULM that covers 
the quaternary Shannon and all Davio expansions can be created. 
Note that by utilizing Figs. D.5 and D.6, all the quaternary logical 
addition and multiplication gates in Fig. D.7 can be converted into 
the corresponding binary logical addition and multiplication gates, 
respectively, similar to the encoding of a single 4-valued variable 
into two 2-valued variables presented in (for simplicity of 
illustration, the internal 4/2 encoders and 2/4 decoders in Fig. D.7 
are cancelled and the internal structure is simplified). It also can be 
observed in Fig. D.7 that Shannon ULM is a two level circuit, Davio 
ULM (i.e., per Davio) is a two level circuit, all Davio ULM (i.e., 
ULM for all Davio types) is a four level ULM circuit, and all 
Shannon and Davio ULM is a five level circuit (excluding the levels 
of literals’ generators as seen in Fig. D.7). 
       In general, each quaternary ULM corresponds to a single node 
of QuDTs that were illustrated in Chapt. 3. The main advantage of 
such powerful ULMs is in high layout regularity that will be 
required by future nano-technologies. The trees can be realized in 
layout because they do not grow exponentially for practical 
functions. For instance, although every function of two variables can 
be realized with five such modules, it is highly probable that most of 
the functions of two variables will require less than five modules. 
Because of these properties, this approach should give very good 
results when applied to incompletely specified functions and multi-
valued relations.  
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Fig. D.5. Realization of GF(4) addition in a as GF(2) addition in b (i.e., vector of EXORs). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           a                                                                      b 
 
          Fig. D.6. Realization of GF(4) multiplication in a using GF(2) operations from b. 
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Fig. D.7. Quaternary ULM that produces quaternary Shannon expansion (Eq. (2.27)), and 
all quaternary Davio expansions (Eqs. (2.44), (2.45), (2.46), and (2.47)). 
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       The ULM shown in Fig. D.7 is used repeatedly (systematically) 
as the processing node in the corresponding canonical multi-level 
QuDTs. Also, nodes of the corresponding optimized (minimized), 
non-canonical, and non-regular Reduced Quaternary Decision 
Diagrams (RQuDDs) can be implemented using the ULM in Fig. 
D.7. RQuDD circuits are important in the case when they are one-to-
one mapped into an isomorphic hardware. 
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Appendix E 
 
Evolutionary Computing: Genetic Algorithm (GA) 
and Genetic Programming (GP) 
 
 
 
 
 
This Appendix provides a basic background for the evolutionary-
based algorithms in Chapts. 3, 8, and 11, respectively. Evolutionary 
Computing (EC) is one type of “black box” global optimization 
methods that has been successfully implemented to solve for many 
nonlinear difficult problems [102].  
       EC implements the idea which was proposed by Darwin as an 
explanation of the biological world surrounding us: Evolution by 
Natural Selection [66]. By evolution we mean the change of the 
genes that produce a structure. The result of this evolution is the 
Survival of the Fittest and the Elimination of the Unfit. Darwin's 
theory of evolutionary selection holds that variation within species 
occurs randomly and that the survival or extinction of each organism 
is determined by that organism's ability to adapt to its environment.   
       This very simple but very powerful idea has been implemented 
in algorithms which are called Genetic Algorithms (GA) and 
Genetic Programming (GP). The only difference between GA and 
GP is the representation of the problem and consequently the set of 
genetic operators used to obtain the solution. This is because GA 
uses string representation and the consequent genetic operators 
[102], and GP uses tree representation and the consequent genetic 
operators [137].  
       Figure E.1 represents the general optimization or synthesis EC 
method, where iterations on this flow diagram are made until the 
actual output matches exactly the desired output (i.e., no error) or 
the actual output mismatches the desired output within an acceptable 
range of error. 



 

 
 
 

 
Fig. E.1. Block diagram that illustrates the mechanism of solving a problem using 
Evolutionary Computing (EC). 
 
       The main operations that are used in EC are copying, mutation 
(or copying error), and crossover. By copying we mean a 
reproduction of an exact copy of the individual. Mutation means a 
reproduction of an erroneous copy of the individual. Crossover 
means the combination of genes from two parents to produce 
offsprings. Figure E.2 demonstrates a general flow diagram of an 
EC, where Run is the current run number, N is the maximum 
number of runs, Gen. is the current generation number, M is the 
population size, i is the current individual in the population, Pr is the 
probability of reproduction, Pc is the probability of crossover, Pm is 
the probability of mutation, and Pr + Pc + Pm = 1.0. 
       In Fig. E.2, the result of looping over� Gen. is best-of-run 
individual, the result of looping over�Run is best-of-all individual, 
and the result of looping over i is the best-of-generation individual. 
Iterations in Fig. E.2 continues until optimal solution is obtained. EC 
algorithms are try-and-check (try-and-error) probabilistic search 
algorithms (i.e., depends on the reduction of error in the search 
process to produce a solution), and the EC program may have to 
perform so many iterations (as in Fig. E.2) to produce the desired 
solution to a problem. Thus, and although EC methods produce in 
many occasions new solutions that humans never made before, it is 
in general highly advisable to consider EC as one final option for 
problem solving (i.e., when other methods fail to solve the problem), 
since EC acts like a “black box” that produces solutions without 
showing methodology (i.e., EC does not provide a detailed step-by-
step algorithm (analytical or procedural) to solve a problem and it 
only shows the final solution). 

EC 
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                      Fig. E.2. Flowgraph of a general GA and GP. 
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       The evolutionary algorithm from Fig. E.2 has many variants. 
Yet, a canonical form in all these variants exist. Figure E.3 
illustrates one possible canonical diagram for evolutionary 
computing, where select survivors means the selection of (1) 
parents, and (2) generation of offspring. 
 
 
 
 
                                                        
                                                        
 

 

 

 

 

 

                              Fig. E.3. Canonical flow diagram for evolutionary methods. 

 
       The canonical diagram for EC (shown in Fig. E.3) characterizes 
the canonical implementation of various types of EC such as GA 
and GP, and (as stated previously) the only difference will be in (1) 
the internal representation of chromosomes operated upon and (2) 
the types of internal operations used accordingly. 
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Appendix F 
 
Count for the New Multiple-Valued Reversible 
Shannon and Davio Decompositions 
 
 
 
 
 
This Appendix provides the count for the new families of reversible 
Shannon and Davio spectral transforms from Chapt. 5. These counts 
can be used as a heuristic for efficient search for specific families of 
multiple-valued reversible Shannon and Davio expansions. 

 
F.1 Counts for the new families of reversible spectral 
transforms 
 
The following theorems count the number of the new reversible 
Shannon and Davio spectral transforms over GF(n) where n = pk, 
where p is a prime number and k is a natural number of value k ≥ 1. 
 

Theorem F.1. There exists n! reversible fundamental Shannon 
expansions over GF(n). 
 

Proof. To obtain reversible Shannon expansions we should have 
reversible basis functions matrices (as was shown in Chapt. 5). This 
implies that the total count of correct permutations of the rows in the 
basis functions matrix that satisfy the Cyclic Group Property for 
GF(n) is equal to:  

!)!1()!1(
1

0

nnnn
n

k

=−=−�
−

=

.                                              Q.E.D. 



 

Theorem F.2. For each type of reversible invariant multi-valued 
Davio expansion Dn there exists n reversible invariant multi-valued 
Davio expansions of that type (Dn). There exists n2 total reversible 
fundamental Davio expansions of all types per reversible 
fundamental Shannon expansion, and total of n2n! for all possible 
reversible fundamental Shannon expansions. 
 

Proof. Since each row of the reversible fundamental Shannon 
expansion over GF(n) corresponds to n possible fundamental Davio 
expansions, then the total reversible fundamental Davio expansions 
for the whole rows in the basis functions matrix per reversible 
Shannon expansion is equal to n⋅n = n2. Since there exists n! total 
reversible fundamental Shannon expansions, so the total number of 
reversible fundamental Davio expansions is equal to n2n!.      Q.E.D. 
 

       For the generation of the total number of counts for all 
reversible invariant multi-valued Shannon and Davio expansions 
one just needs to refer to the results presented previously. 
Example F.1. The following are counts of the corresponding 
reversible fundamental Shannon and Davio expansions: 
GF(2): there exists 2 possible reversible Shannon expansions and 8 
possible reversible Davio expansions. 
GF(3):  there exists 6 possible reversible Shannon expansions and 
54 possible reversible Davio expansions. 
GF(4): there exists 24 possible reversible Shannon expansions and 
384 possible reversible Davio expansions. 
       Table F.1 provides counts for the new reversible families of 
fundamental multi-valued Shannon and Davio spectral transforms. 
The large numbers of the new reversible multi-valued spectral 
transforms that are shown in Table F.1 imply that one can have a 
very large space of total reversible spectral transforms to choose 
from for any applications that involve spectral methods (like 
constructing 3-D regular structures as was shown in Chapt. 4). 
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Table F.1. Counts of the new reversible multi-valued GF-based classes of decompositions. 
 
 

 

 

 

 

 

       This can be good on one hand in the sense that one can have 
wide variety of reversible spectral transforms to choose from to 
meet certain optimization criteria such as reduction of area, delay, 
and power, and improving testability, but can be challenging on the 
other hand in that one needs “smart” search heuristics and strategies 
to search such large space for the optimal spectral transforms that 
meet certain optimization criteria. 
 
 

GF(n) 
Reversible Fundamental 
Multi-Valued Shannon  
Expansions 

Total Reversible  
Fundamental Multi-Valued 
Davio Expansions 

          2                                  2                                8 

          3                                  6                               54 

          4                                 24                             384 

          5                                120                           3,000 

          7                               5,040                       251,460 
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Appendix G 
 
NPN Classification of Boolean Functions and 
Complexity Measures 
 
 
 
 
 
This Appendix provides the NPN-classifification of Boolean 
functions and the complexity measures that were used in Chapt. 7 
and Appendix H. 

 
G.1 NPN-Classification of Logic Functions 
 
There exist many classification methods to cluster logic functions 
into families of functions [118,164]. Two important operations that 
produce equivalence classes of logic functions are negation and 
permutation. Accordingly, the following classification types result: 
(1) P-Equivalence class: a family of identical functions obtained by 
the operation of permutation of variables. 
(2) NP-Equivalence class: a family of identical functions obtained 
by the operations of negation or permutation of one or more 
variables.  
(3) NPN-Equivalence class:  a family of identical functions obtained 
by the operations of negation or permutation of one or more 
variables, and also negation of function. 
       NPN-Equivalence classification is used in this Book. Table G.1 
lists 3-variable Boolean functions, for the non-degenerate classes 
(i.e., the classes depending on all three variables). 
Example G.1. The following steps produce the sets of all possible 
Boolean functions that are included in class #1 in Table G.1 for the 
representative function: F = x1x2 + x2x3 + x1x3. 



 

Table G.1. NPN equivalence classes for non-degenerate Boolean functions of three binary 
variables. 
 

 
          NPN Class                    Representative Function                  Number of Functios 

 
              1                                F = x1x2 + x2x3 + x1x3                                    8 
                   2                                F = x1⊕ x2 ⊕  x3                                            2 
                   3                                F = x1+ x2 +  x3                                            16 
                   4                                F = x1(x2 +  x3 )                                            48 
                   5                                F = x1x2x3 + x1′x2′x3′                                     8 
                   6                                F = x1′x2x3 + x1x2′+ x1x3′                             24  
                   7                                F = x1(x2x3 + x2′x3′)                                     24   
                   8                                F = x1x2 + x2x3 + x1′x3                                 24     
                   9                                F = x1′x2x3 + x1x2′x3  + x1x2x3′                    16  
                  10                               F = x1x2′x3 ′+ x2x3                                        48 

 
(1) Negation of variables (N): {F1 = x1

’x2 + x2x3 + x1
’x3, F2 = x1x2

’ + 
x2

’x3 + x1x3, F3 = x1x2
 + x2x3

’ + x1x3
’, F4 = x1

’x2
’ + x2

’x3 + x1
’x3, F5 = 

x1
’x2 + x2x3

’ + x1
’x3

’, F6 = x1x2
’ + x2

’x3
’ + x1x3

’, F7 = x1
’x2

’ + x2
’x3

’ + 
x1

’x3
’}. 

(2) Permutation of variables (P): {F8 = x1x2 + x2x3 + x1x3}. 
(3) Negation of functions (N): {F9 = x1

’x2
’ + x2

’x3
’ + x1

’x3
’}. 

Thus the union of the three types of sets from steps 1-3 (which 
produces a set with irredundant functions as its elements) is {F1 = 
x1

’x2 + x2x3 + x1
’x3, F2 = x1x2

’ + x2
’x3 + x1x3, F3 = x1x2

 + x2x3
’ + 

x1x3
’, F4 = x1

’x2
’ + x2

’x3 + x1
’x3, F5 = x1

’x2 + x2x3
’ + x1

’x3
’, F6 = x1x2

’ 
+ x2

’x3
’ + x1x3

’, F7 = x1
’x2

’ + x2
’x3

’ + x1
’x3

’, F8 = x1x2 + x2x3 + x1x3}, 
which encompasses a total of eight functions. 

 
G.2 Complexity Measures 
 
Decomposability means complexity reduction. Many complexity 
measures exist for the purpose of evaluating the efficiency of the 
decomposition of complex systems into simpler sub-systems. Such 
complexity measures include: (1) the Cardinality complexity 
measure (DFC), (2) the Log-Functionality (LF) complexity measure 
[108], and (3) the Sigma complexity measure [271]. In the first two 
measures, complexity is a count of the total number of possible 
functions realizable by all of the sub-blocks; the third just indicates 
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the level of decomposition in the lattice of possible structures. The 
complexity of the decomposed structures is always less or equal to 
the complexity of the original Look-Up-Table (LUT) that represents 
the mapping of the non-decomposed structure. That is, if a 
decomposed structure has higher complexity than the original 
structure, then the original structure is said to be non-decomposable. 
Although the DFC measure is easier and more familiar, LF is a 
better measure because it more properly deals with non-disjoint 
systems [108]. Consequently, the LF measure is used in Chapt. 7 
and Appendix H. The DFC and LF complexity measures are 
illustrated using Fig. G.1, which exemplifies an example of 
Ashenhurst-Curtis (AC) decomposition, as follows: 
 
 

 
 

 
Fig. G.1. Generic non-disjoint decomposition. 

 
       In Fig. G.1, for the first block, the total number of possible 
functions for three 2-valued input variables is 223 = 256. Also, for the 
second block, the total number of possible functions is similarly 
256. The total possible number of functions for the whole structure 
is equal to 256⋅256 = 65,536. The DFC measure is defined as: 
 

       DFC = O⋅ 2I,                                                                                                     (G.1) 
       CDFC = �

n

nDFC ,                                                                   (G.2) 

 

where O is the number of outputs to a block, I is the number of 
inputs to the same block, Eq. (G.1) is the complexity for every 
block, and Eq. (G.2) is the complexity for the total decomposed 
structure. For instance, the DFC for Fig. G.1 is: CDFC = 1⋅23 + 1⋅23 = 
log2 (65,536) = 16. It was shown in [108] that, for Fig. G.1, the Log-
Functionality complexity measure (CLF) for Boolean functions can 
be expressed as follows: 
 
       )(log2 FFL CC = ,                                                                                      (G.3) 
where: 
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where X1 is the set of input variables to the first block, X2 is the set 
of input variables to the second block, X3 is the set of overlapping 
variables between sets X1 and X2, PXi is the product of cardinalities 
of the input variables in set Xi, and PYi is the product of cardinalities 
of output variables in set Yi. For example, the LF for Fig. G.1 is: 
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       Figure G.1 shows a four input function, where the variable sets 
for the first and second blocks are not disjoint. Note that the variable 
sets for the two blocks with outputs g and F are necessarily disjoint, 
because if the two blocks shared one input variable, F would have 
three inputs and the decomposed structure would be more complex 
than the original non-decomposed 3-input function. 
Example G.2.  

 
 
 
 

 
Fig. G.2. A decomposed structure. 
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       The Log-Functionality complexity measure of the structure in 
Fig. G.2 is obtained as follows: Each sub-block in Fig. G.2 has a 

total of 162
22 = possible Boolean functions. Figure G.3 illustrates 

all of the possible 16 two-variable Boolean functions per sub-block 
in Fig. G.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. G.3. Maps of all 16 possible Boolean functions of two variables. 

 
       By allowing g and F in Fig. G.2 to take on all possible maps 
from Fig. G.3, one obtains the following count of total non-repeated 
(irredundant) 3-variable functions, as follows: CF = 88 � CLF = 6.5. 
This answer agrees with the result which is obtained previously 
[108]. 
Example G.3. RA produces decompositions for 3-variable functions 
that resemble the structures shown in Fig. G.4. 
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                                         Fig. G.4. Some RA decomposed structures. 

 
       The Log-Functionality complexity measure for the structures in 
Fig. G.4, is obtained as shown in Fig. G.5. Figure G.5 represents a 
tree that generates all possible functions for the structures in Figs. 
G.4a and G.4b, respectively. (Superscripts of functions denote the 
specific edge between two nodes in the tree). 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. G.5. All possible combinations of sub-functions f1 

(i), f2 
(j), and f3 

(k) in Figs. G.4a and 
G.4b, respectively. Log-functionality complexity measure represents the count of all 
possible irredundant functions, that is all different sub-functions and F(i,j) within Fig. G.4a, 
and all different sub-functions and F(i,j,k) within Fig. G.4b, where two nodes of the tree are 
superposed (*), they are counted only once. At level 2, 100 of the (16)2 possible nodes are 
irredundant, and at level 3, 152 out of (16)3 are irredundant. 

 
       Utilizing this methodology of removing redundant functions, 
one obtains the following results for Log-Functionality: for Fig. 
G.4a, the total number of irredundant sub-functions is CF = 100 � 
∴ CLF = log2 (100) = 6.6, and for Fig. G.4b, the total number of 
irredundant sub-functions is CF = 152 � ∴ CLF = log2 (152) = 7.2. 
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Appendix H 
 
Initial Evaluation of the New Modified 
Reconstructability Analysis and Ashenhurst-
based Decompositions: Ashenhurst, Curtis, and 
Bi-Decomposition 
 
 
 
 
 
This Appendix provides the necessary background for Ashenhurst-
Curtis (AC) decomposition and Bi-decomposition (BD). This 
Appendix also introduces the comparisons between the Modified 
Reconstructability Analysis (MRA) (Chapt. 7), Ashenhurst-Curtis 
(AC) decomposition, and Bi-decomposition for the decomposition 
of 3-variable NPN-classified Boolean functions from Table G.1. 
Although the evaluation results provided in this Appendix are only 
for all NPN-classified Boolean functions of three variables, and thus 
the results are a big simplification if compared to real life problems 
which have hundreds of inputs and hundreds of outputs, the results 
serve as an important initial insight into the comparative various 
complexities of MRA and AC-like decompositions. 

 
H.1 Binary Ashenhurst-Curtis Decomposition 
 
Ashenhurst-Curtis (AC) decomposition [32,33,34,59,60,61] is one 
of the major techniques for the decomposition of functions that is 
commonly used in the field of logic synthesis. Other decompositions 
exist, such as the Bi-decomposition, composition (or Bottom-Up 
decomposition), and others [175]. The main idea of AC 
decomposition is to decompose logic functions into simpler logic 
blocks using the compression of the number of cofactors in the 
corresponding representation. This compression is achieved through 
exploiting the logical compatibility (i.e., redundancy) of cofactors 
(i.e., column multiplicity). As a result of AC decomposition (i.e., as 



 

a result of column compression), intermediate constructs (latent 
variables) are created, and learning is achieved as a result of these 
variables [96,108]. A general algorithm of the AC decomposition 
utilizing map representation, for instance, is as follows: 
(1) Select the type of the variant of AC decomposition required: 
Ashenhurst, Curtis, generalized Curtis, etc. 
(2) Specify the optimization criterion (i.e., termination condition) to 
be optimized by the process of decomposition. Such optimization 
criterion can be: area, speed, power, or testability. 
(3) Remove the vacuous (redundant) variables. 
(4) Decompose (partition) the input set of variables into free set and 
bound set. 
(5) Label columns (cofactors) of the map. 
(6) Decompose the bound set and create a new map for the 
decomposed bound set. Utilizing minimum graph coloring, 
maximum clique, or any other algorithm, combine similar cofactors 
into single cofactor. Each cell in the new map represents a labeled 
column in the original map. 
(7) Encode the columns (cofactors) in the cells of the new map. This 
stage will produce the input decomposed sub-block. These 
intermediate variables are shown as g and h in Example H.1 (Fig. 
H.1). 
(8) Using the intersection of the cell values of the compatible 
columns produce the output decomposed sub-block (Express the 
intermediate variables as functions of the bound set variables). 
(9) Produce the total decomposed structure. 
(10) Iterate until decomposed blocks, within the optimization 
criterion, are obtained.  
       In general, steps (4) and (7) determine the optimality of the AC 
decomposition (i.e., whether the resulting decomposed blocks are of 
minimal complexity or not).  
Example H.1. For the following logic function: F = x2x3 + x1x3 + 
x1x2, let the sub-set of variables {x2, x3} be the Bound Set, and the 
sub-set of variables {x1} be the Free Set. The following is the 
disjoint AC decomposition of F (where {–} means don’t care). 
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                      (4)                            (6)                   (7)                                 (9) 
 
 
 
 
 
 
 

Fig. H.1. AC decomposition. Steps (4), (6), (7), and (9) are discussed in the text. 

 
       In Example H.1, the first block of the decomposed structure has 
two outputs (i.e., intermediate variables g and h). The DFC measure 
of the decomposed structure is equal to 2⋅22 + 1⋅23 = 16, while the 
DFC of the original LUT is = 1⋅23 = 8.  
       The calculation of the DFC complexity measure in Example H.1 
shows the inadequacy of DFC as a measure of complexity because 
the decomposition produces a more complex structure than the non-
decomposed LUT (which should be considered as the most complex 
data model).  
       By contrast, the log-functionality (LF) complexity measure for 
the decomposed structure in Fig. H.1 is 8, which does not exceed the 
complexity of the LUT (which is equal to 8). Therefore, for the AC 
decomposition of Boolean functions with three variables, if the first 
block of the decomposed structure has two outputs, then the 
decomposed structure is at least as complex as the LUT, and 
consequently, the decomposition is rejected. For other NPN 
functions, the AC decomposition produces only one output in the 
first block, and the decomposed structure is less complex than the 
LUT (which should be considered as the most complex model since 
it involves the original non-decomposed data), and thus these 
decompositions are not rejected. 
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H.2 Multiple-Valued AC decomposition 
 
This Sect. provides the AC decomposition for multiple-valued logic 
functions. Since every function which is non-decomposable using 
disjoint decomposition can be decomposed by the process of 
repetition (sharing) of variables in bound and free sets (i.e., non-
disjoint decomposition), AC decomposition, in general, can be 
found in both its disjoint and non-disjoint variants. In general, the 

process of repeating a single n-valued variable will produce 
n

n )1( −
 

don’t cares of the total number of cells of the n-valued map of the 
corresponding n-valued function with repeated variables. As a result 
of AC decomposition, intermediate constructs are created. The new 
variables (constructs) correspond to new induced concepts, and 
therefore learning is achieved.  
       The following example illustrates the use of multi-valued AC 
decomposition. 
Example H.2. Let us produce the AC decomposition for the 
following logic function: 
 
 
 
 
 
 
 
                                                                                         F 
 
For the sub-set of variables {x2, x3} to be the Bound Set, and the 
sub-set of variable {x1} to be the Free Set, by applying the 
previously mentioned AC procedure for the AC decomposition, one 
obtains the following disjoint AC decomposition of the function F as 
shown in Fig. H.2. 

x1 

x2x3 

 00  01   02   10   11    12    20  21   22 

0     0     0     1     1     1      0     0     0     1 

1     0     2     2     0     0      2     1     0     2 

2     0     2     0     1     1      2     0     0     0 
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Fig. H.2. Disjoint AC decomposition for the function in Example H.2: a column 
compatibility labeling and variable partitioning into bound set {x2, x3} and free set {x1}, b 
map of bound set, c encoded map of the bound set, d output function f of first sub-block, e 
output function g of the first sub-block, f map of the second decomposed sub-block, and g 
the total resulting structure for AC disjoint decomposition. 
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       The same ternary function F can be equivalently decomposed 
by using the method of the repetition of variables to produce the 
corresponding non-disjoint AC decomposition, as follows: 
 
 
 

 

 

 

  

 

 

 

 

 

 

Fig. H.3. Non-disjoint AC decomposition for the function in Example H.2: a variable 
repetition, column compatibility labeling, and variable partitioning into bound set {x2, x3} 
and free set {x1, x2}, b map of bound set, c encoded map of the bound set and the output 
function of the first decomposed sub-block, d map of the second decomposed sub-block, 
and e the total resulting structure for AC non-disjoint decomposition. 

 
       The decomposition obtained in Fig. H.2 is not the classical 
Curtis decomposition; it is the generalized Curtis decomposition 
[96]. This is due to the fact that in classical Curtis decomposition the 
number of outputs from the predecessor decomposed block must be 
less than the number of inputs to that block (this includes the case of 
having only one output, which is the Ashenhurst decomposition as a 
special case of Curtis decomposition), but in Fig. H.2 the number of 
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outputs of the first sub-block is equal to the number of inputs to the 
same sub-block (i.e., number of outputs = number of inputs = 2). 

 
H.3 Bi-decomposition 
 
This Sect. presents Bi-decomposition (BD) algorithm that is used 
later in this Sect. to be compared to MRA decomposition. Bi-
decomposition is another type of decomposition, which is widely 
used in logic synthesis of Boolean functions. Let x ={x1, x2} be a 
partition of the variables representing a function f(x) such that x1∩x2 
= 0, and x1 is a set of m variables and x2 is a set of (n-m) variables. 
The function, F(x1,x2)=h(g1(x1), g2(x2)), is said to be disjoint bi-
decomposition if f(x) can be realized as shown in Fig. H.4, where h 
is a two input gate (e.g., AND, OR, XOR gates) and g1 and g2 are 
either AND, OR, or EXOR gates. 
 
 
 
 
 

Fig. H.4. Disjoint Bi-decomposition. 

 
       A general algorithm of bi-decomposition utilizing K-map 
representation, for instance, is as follows: 
(1) Partition the input set of variables in the K-map into two sets: 
set1 (bound set) and set2 (free set), and label all the different 
columns and rows. 
(2) Decompose set1 and create a new K-map for the decomposed set 
(utilizing minimum graph coloring, maximum clique, or some other 
algorithm to combine similar columns into a single column). Each 
cell in the new K-map represents a labeled column in the original K-
map. 
(3) Encode the labels in the cells of the new K-map using minimum 
number of intermediate binary variables. Express the intermediate 
variables as functions of the set of variables. 
(4) Decompose set2 and create a new K-map for the decomposed set 
(utilizing minimum graph coloring, maximum clique, or some other 
algorithm to combine similar columns into a single column). Each 
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cell in the new K-map represents a labeled row in the original K-
map. This step is equivalent to making set2 as bound set and set1 as 
free set.  
(5) Encode the labels in the cells of the new K-map using minimum 
number of intermediate binary variables. Express the intermediate 
variables as functions of the set of variables. 
(6) Produce the decomposed structure, i.e., a K-map specifying the 
function (F) in terms of the intermediate variables from steps 3 and 
5, respectively. 
       The following example illustrates the use of BD for 
decomposition of logic functions. Although the following example 
is performed for the case of disjoint BD, non-disjoint BD could be 
also obtained in a manner similar to the method used in Fig. H.3 in 
Example H.2.  
Example H.3. For the logic function F in Fig. H.5 which is 
represented using the K-map, let the sub-set of variables {x1, x2} be 
set2, and the sub-set of variables {x3, x4} be set1. Figure H.5 is the 
disjoint Bi-decomposition of F (where {–} means don’t care). Note 
that the decomposed structure in Fig. H.5 has the following logic 
blocks as a result of BD: g1 is an AND gate: g1 = x3x4, g2 is an AND 
gate: g2 = x1’x2, and h is an AND gate: h = g1’g2. In general, for a 
disjoint BD circuit, h can be a two input gate (e.g., AND, OR, XOR 
gates) and g1 and g2 can consist of AND, OR, or EXOR gates. 

 
H.4 Complexity of the Two-Valued Modified 
Reconstructability Analysis Versus Ashenhurst-Curtis 
Decomposition and Bi-Decomposition 
 
Utilizing the new methods of 1-MRA and 0-MRA decomposition 
that were described in Sect. 7.1, one obtains the following results in 
Table H.1 for the decomposition of 3-variable NPN-classified 
Boolean functions (from Table G.1) using the different 
decompositions of the new Modified Reconstructability Analysis 
(MRA), Ashenhurst-Curtis (AC), and Bi-decomposition (BD), 
respectively. 
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                Fig. H.5. Bi-decomposition. Steps (1) - (6) are discussed in the text. 
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Table H.1. AC and BD decompositions versus MRA for the decomposition of all NPN-
classes of 3-variable Boolean functions (See Table G.1 in Appendix G). (Compare the 
right-most two columns.) 
 

 

       Table H.1 shows that, in terms of the log-functionality 
complexity measure from Appendix G, in three NPN classes (4, 7, 
9) MRA and AC and BD decompositions give equivalent 
complexity decompositions. In two remaining classes (2, 6), which 
encompass 26 functions, AC and BD decompositions are superior, 
but in five classes (1, 3, 5, 8, 10), which encompass 104 functions, 
MRA is superior. Figure H.6 provides a quantitative analysis of the 
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decomposition, of the NPN-classified functions, using MRA, AC, 
and BD decompositions (from Table H.1), respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        a                                                                            b 
 
Fig. H.6. a Comparison of the Log-Functionality complexity measure between CRA versus 
AC/BD decompositions, and b MRA versus AC/BD decompositions, of 3-variable NPN-
classified Boolean functions. 

 
       The analysis, in terms of complexity, of the results in Fig. H.6a 
is as follows: 
Total number of classes that AC and BD is better than CRA: 5 (2,3,4,6,7). 
Total number of functions that AC and BD is better than MRA: 114. 
Total number of classes that CRA is better than AC and BD: 2 (1,8). 
Total number of functions that CRA is better than AC and BD: 32. 
Total number of classes for AC and BD is the same as CRA: 3 (5,9,10). 
Total number of functions for AC and BD is the same as CRA: 72. 
       The analysis, in terms of complexity, of the results in Fig. H.6b 
is as follows: 
Total number of classes that AC and BD is better than MRA: 2 (2,6). 
Total number of functions that AC and BD is better than MRA: 26. 
Total number of classes that MRA is better than AC and BD: 5 (1,3,5,8,10). 
Total number of functions that MRA is better than AC and BD: 104. 
Total number of classes for AC and BD is the same as MRA: 3 (4,9,7). 
Total number of functions for AC and BD is the same as MRA: 88. 
       We can also summarize the results, from Table H.1 and Fig. 
H.6, by comparing the decomposability versus non-decomposability 
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for the various approaches. Figure H.7 shows the number of 
functions decomposable by one method but not by another (upper 
right and lower left cells). 
 
 
 
 
 
 
 
 
                                           a                                                                   b                
 
 
 
 
 
 
 
 
 
                                                                           c 
 
Fig. H.7. a Comparison of the Decomposability (D) versus Non-Decomposability (ND) for 
AC and BD decompositions versus MRA, b CRA versus AC and BD decompositions, and 
c CRA versus MRA, respectively. 

 
       Utilizing the results of decomposability from Fig. H.7, one 
concludes that for NPN-classified 3-variable Boolean functions, 
MRA decomposition is superior to AC and BD decompositions (88 
versus 26), AC and BD decompositions are superior to CRA 
decomposition(66 versus 32), and MRA decomposition is superior 
to CRA decomposition (96 versus 0). 
       While the log-functionality used in Table H.1 and Figs. H.6 and 
H.7, is a good cost measure for machine learning, it is not a good 
measure for circuit design. An alternative acceptable cost measure 
for circuit design will be the count of the total number of 2-input 
gates in the final circuit (C#). Table H.2 presents an initial 
comparison between MRA and AC using the C# complexity 
measure.  
       Table H.2 shows that, using the C# cost measure, in four NPN 
classes (1,2,6,9) which encompass 50 functions AC/BD is superior 
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to MRA for both including and not including the cost of the 
inverters. For two NPN classes (4, 8), which encompass 72 
functions, AC/BD is equivalent to MRA for both including and not 
including the cost of the inverters. For four NPN classes (3,5,7,10), 
which encompass 96 functions, MRA is superior to AC/BD when 
including the cost of the inverters. For two NPN classes (5, 10), 
which encompass 56 functions, MRA is superior to AC/BD when 
not including the cost of the inverters.  
       While the results in Table H.2 are technology-independent, the 
results obtained in Table H.2 can be viewed from technology-
dependent point of view as well. This is because while the 
realization of certain two-input logic primitives (gates) from Fig. 
G.3 need less number of physical primitives (devices) in certain 
technology, the same gates may need more number of devices in 
another technology. 
 
Table H.2. Comparison of AC versus MRA using C# cost measure. 
 
Class   C# with inverters    C# without inverters   C# with inverters   C# without inverters  
                 (AC/BD)                   (AC/BD)                    (MRA)                     (MRA) 

 
1                  4                           4                                  5                              5 
2                  2                           2                                  -                               - 
3                  2                           2                                  1                              1  
4                  2                           2                                  2                              2  
5                  9                           6                                  3                              3 
6                  2                           2                                  -                               - 
7                  3                           2                                  2                              2  
8                  4                           3                                  4                              3 
9                  6                           5                                  -                               - 
10                  7                           5                                  3                              3  
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Appendix I 
 
Count for Reversible Nets 
 
 
 
 
 
This Appendix provides the counts to charaterize the complexity of 
the two-valued reversible Nets from Chapt. 8. 
 

Theorem I.1. Every positive unate symmetric funtion of n variables 

can be realized in 
2

)1(
)1(...321

−=−++++ nn
n  MIN/MAX gates. 

 

Proof. Every positive unate (symmetric) function of 2 variables can 
be realized in 1 gate. Every positive unate function of 3 variables 
can be realized in 1+ 2 gates. Every positive unate function of four 
variables can be realized in 1 + 2 + 3 gates, etc. Thus, the total 

number of gates for n variables will be 
2

)1( −nn
.                    Q.E.D. 

 

Theorem I.2. Every single index totally symmetric function of n 

variables can be realized in 
2

)1( −nn
 MIN/MAX gates, (n-2) fan out 

gates, and (n-1) Feynman gates. 
 

Theorem I.3. Every single-output totally symmetric function of n 

variables can be realized in 
2

)1( −nn
 MAX/MIN gates, (n-2) fan out 

gates, (n-1) Feynman gates in the second plane, and at most (n-1) 
Feynman gates in the third plane. 
 

Theorem I.4. Every m-output totally symmetric function of n 

variables can be realized in 
2

)1( −nn
 MAX/MIN gates, (n-2) fan out 

gates, (n-1) Feynman gates in the second plane, and at most (m ⋅ (n-
1)) gates in the third plane. 



 

Appendix J 
 
New Optical Realizations for Two-Valued and 
Multiple-Valued Classical and Reversible Logics 
 
 
 
 
 
Many optical devices are naturally reversible. When processing 
light, such devices can operate on the inputs as outputs and the 
outputs as inputs. One reversibility aspect of light is illustrated in 
Fig. J.1, which shows that the incident light (I1) can be totally 
reconstructed as the transmitted light (T2), by reversing the input 
light beams to be outputs and the output light beams to be inputs 
[261]. 
 

 

 

 
Fig. J.1. Illustration of reversibility of light: I is incident ray, R is reflected ray, and T is 
transmitted ray. Solid lines are forward rays and dashed lines are reverse rays. Note that I1 
= T2 (Here Absorption (A) is neglected (i.e., A = 0) since in general: T + R + A = 1.0). 

 
       Optical realizations of reversible logic circuits are presented in 
this Appendix. The optical circuits utilize coherent light beams to 
perform the functionality of basic logic primitives. Three new 
optical devices are presented that utilize the properties of frequency, 
polarization, and incident angle that are associated with any light-
matter interaction. The hierarchical implementation of such optical 
reversible primitives results in the synthesis of optical regular 
reversible structures. The synthesis of reversible lattice structures 
using such optical devices is described. The concept of optical 
parallel processing of an array of input laser beams using the new 
optical devices is also presented. This Appendix reports the 
synthesis of regular Boolean and multi-valued optical reversible 

Medium 1 

Medium 2 

Interface 

    I1         T2  R1    I3 

 T1          I2 



 

circuits using: (1) Total internal reflection, (2) Optical polarizers, 
and (3) Optical frequency shifters [17,24]. 
       In general, if the optical properties of the material (i.e., channel 
or medium) through which light is traveling such as material index 
of refraction n (that determines the phase of the traveling field) (or 
material gain or loss (that determines the magnitude of the traveling 
field), etc) are a function of the electric field then light polarization 
is a non-linear function of the electric field and this is called non-
linear optics (and the medium is called non-linear medium). On the 
other hand, if the optical properties of the material through which 
light is traveling such as n (or gain or loss, etc) are constants (i.e., 
not a function of the electric field) then the light polarization is a 
linear function (proportional) of electric field and this is called linear 
optics (and the medium is called linear medium) [261].   
       On the other hand, if the optical properties of the material 
through which light is traveling such as n (or gain or loss, etc) are 
linear function (propotional) of the electric field (or magnetic field) 
then this is called linear electro-optics (or linear magneto-optics). If 
the optical properties of the material through which light is traveling 
such as n (or gain or loss, etc) are non-linear function of the electric 
field (or magnetic field) then this is called non-linear electro-optics 
[261] (or non-linear magneto-optics).  
       This Appendix uses linear optics, but results could also be 
generalizable and extendable to the non-linear optics domain. 

 
J.1 Optical Realization of Two-Valued and Multiple-Valued 
Logic 
 
This Sect. presents the implementation of two-valued and multiple-
valued logics using optical circuits. 

 
J.1.1 Two-to-one optical multiplexers 
 
A laser beam possesses many properties that may be involved in 
light-matter interaction. Such properties include [261]: wavelength 
λ, frequency ν, speed c, polarization, phase front curvature R, spot  
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                     Fig. J.2. Three optical devices that implement the 2-to-1 multiplexer. 

 
size ωs, and incident angle θi. One can construct optical devices 
using transformations of such properties.  
       Figure J.2 presents three optical primitives that realize the 2-to-
1 multiplexer.  
       In Fig. J.2, the input control signal that is used to change the 
electric properties of the devices can be thermal, acoustic, optical, or 
electrical [261]. While thermal and acoustic control signals can 
impose slow changes of the electric properties of the material of the 
device, optical and electrical control signals can impose fast changes 
[261]. In any of the two-to-one optical devices shown in Fig. J.2, the 
(orthogonal) polarization of light serves as the label or ID of that 
light signal. Thus, if the polarization is (  ) then the signal is of value 
“1”, and if the polarization is (  ) then the signal is of value “0”. The 
devices in Fig. J.2 operate as follows: 
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Device 1 (Fig. J.2a): 
       In Fig. J.2a, two laser beams with the same frequency (ω) are 
incident on the device with the same incident angle θi. The design 
specifications of the device are as follows: 
 

       =iθ  constant,                                                                        (J.1) 

       ic θθ < ,                                                                                   (J.2) 

       
2,21,1 tt nn = ,                                                                              (J.3) 

       
1,22,1 tt nn = ,                                                                              (J.4) 

       
1,22,12,21,1 tttt nnnn =>= ,                                                          (J.5) 

       
1,22,12,21,1 ttitt nnnnn =>>= .                                                   (J.6) 

 

Where ni is the incidence index of refraction, θi is the incidence 
angle, θc is the critical angle, nt1,1 is the index of refraction of 
material 1 when  condition 1 is imposed, nt1,2 is the index of 
refraction of material 1 when condition 2 is imposed, nt2,1 is the 
index of refraction of material 2 when condition 1 is imposed, nt2,2 is 
the index of refraction of material 2 when condition 2 is imposed.   
       The Eqs. that govern the behavior of the laser propagation 
through an optical device are as follows [17,24], where nt is the 
transmitting index of refraction, and θt is the transmitting angle. 
(1) Snell’s law for the angle of transmission (θt):  
 

       ttii nn θθ sinsin = .                                                                 (J.7) 
 

(2) Critical angle (θθθθc):  
 

       )(sin 1

i

t
c n

n−=θ .                                                                      (J.8) 

 

(3) Fresnel’s Eqs. for the calculation of the magnitudes and 
polarizations of the transmitted electric field tE

�
and reflected electric 

field rE
�
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(4) The wavelength of a laser beam in a medium is:  
 

       
m

m n
0λλ = .                                                                              (J.13) 

 

where λ0 is the light wavelength in vacuum, and nm is the index of 
refraction of the medium given by:  
 

       
.

0ε
ε m

mn ≈
                                                                           (J.14) 

where εm is the material electric permittivity, and εo is the vacuum 
electric permittivity. 
       A qualitative description of the operation of device 1 in Fig. 
J.2a is as follows: by imposing a certain value of the control 
(modulation) signal, the material changes its electric permittivity εm. 
It can be observed from Eq. (J.14), that this change of the electric 
properties of the material imposes changes on the index of 
refraction. From Eq. (J.8), changing the index of refraction of the 
material results in changing the critical angle. This change of the 
critical angle of the material will make one laser beam totally reflect 
back and the other laser beam propagate through the material. This 
device implements the functionality of a 2-to-1 multiplexer 
( accbf += ). 
Example J.1. The following are design specifications for device 1 
(Fig. J.2a): θi = 60o, ni = 1.5, n t1,1 = n t2,2 =1.8, n t1,2= n t2,1 = 1.2, 
λgreen = 500 nm. Then, by using Eqs. (J.7) and (J.8), the transmitted 
angle (θt) and the critical angle (θc) of the laser beams are: θt = 
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46.24o, and θc = 53.13o. Thus when condition1 is imposed on the 
device, laser beam1 which resembles logic value “1” is transmitted 
through the device with transmitted angle θt = 46.24o, and laser 
beam2 which resembles logic value “0” is totally reflected back. 
When condition2 is imposed on the device, then laser beam2 which 
resembles logic value “0” is transmitted through the device with 
transmitted angle θt = 46.24o, and laser beam1 which resembles 
logic value “1”is totally reflected back. Using Eqs. (J.9) - (J.12), the 
magnitudes and directions of the orthogonal and parallel 
polarizations for the transmitted and reflected laser beams are: 
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Device 2 (Fig. J.2b): 
       A qualitative description of the operation of device 2 is as 
follows: by imposing control (modulation) signal, the polarizer 
changes the polarization of the incident laser beam. This change of 
polarization of laser beams will make one beam totally absorbed 
into the incident material where the other beam propagates through 
the incident material. The polarizations of the transmitted and 
reflected light beams follow Eqs. (J.9)-(J.12), respectively. 
Device 3 (Fig. J.2c): 
       A qualitative description of the operation of device 3 is as 
follows: by imposing certain control (modulation) signal, the 
frequency of the light changes [261]. The up-shift of the frequency 
by Δω for both laser beams will make beam 2 to be totally absorbed 
into the material when its frequency is equal to the resonant 
frequency of that material (i.e., ωlaser2 = ω0 in Eq. (J.17)), and beam 
1 to propagate through the material, and vice versa occurs when the 
frequency is down-shifted by Δω for both laser beams according to 
Eq. (J.16). 
 

       ωmaterial = ω0,                                                                        (J.15) 
       ωlaser1 =  ω0 + Δω,                                                                (J.16) 
       ωlaser2 = ω0 - Δω.                                                                  (J.17) 
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J.1.2 Many-to-one optical multiplexers 
 
The idea of building many-to-one optical multiplexers is possible 
using the basic two-to-one optical multiplexers from Fig. J.2. For 
ternary signals one needs two devices to realize the functionality of 
three-to-one optical multiplexers. This idea is illustrated in Fig. J.3. 
 
 

 

 

 

 

 
                                  Fig. J. 3. 3-to-1 optical multiplexer. 

 
       For N-valued logic signals one needs (N-1) devices to realize 
the functionality of N-to-1 multiplexer. This idea is illustrated in 
Fig. J.4. In the 3-to-1 optical device in Fig. J.3, the rotation of light 
polarization serves as the label of light signal; If polarization is  (   ) 
then this is signal of value “2”, if the polarization is (     ) then this is 
signal of value “1”, and if the polarization is  (     ) then this is signal 
of value “0”. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. J.4. Optical realization of an N-to-1 logic multiplexer. Devices D1,..., DN can be any 
of the three devices in Fig. J.2. 
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       Note that, for instance, in Fig. J.3 that device D1 outputs one 
signal from two input signals and device D2 outputs one signal from 
two input signals thus the overall functionality of the device in Fig. 
J.3 is a three-to-one multiplexer. 

 
J.2 Optical Reversible Lattice Structures 
 
Using the previously introduced three optical devices in Sect. J.1, 
Figs. J.5a and J.5b illustrate the optical realization of the 2-valued 
and 3-valued reversible lattice structures (from Chapt. 6), 
respectively.  
       For example, in Fig. J.5a, two laser beam sources generate two 
distinct laser beams with two distinct (orthogonal) polarizations (as 
was shown in Sect. J.1.1) that correspond to logic values “0” and 
“1”. A beam splitter splits each beam to the desired number of 
beams. These partitioned beams are then directed by the optical 
switch to the desired path at the input nodes (or terminals T1-T9) of 
the two-valued reversible lattice structure. The resulting processed 
light beams are then measured using optical sensors at output nodes 
D1-D9.  
       In Fig. J.5b, the optical switch distributes the logic values of 
“0”, “1”, and “2”, that result from the beam splitter, at it’s output. 
These outputs are denoted by T1-T11. M is a 3-to-1 optical 
multiplexer from Fig. J.3. As was shown in Fig. J.5a, the 
propagation of the laser beam can be guided using a fiber-optic 
cable or propagate freely in the medium (i.e., channel or material), 
and the resulting processed light beams are then measured using 
optical sensors at output nodes D1-D11. 
       Various beam splitters can be used for the purpose of splitting 
the light beam into many light beams. Figure J.6 illustrates three 
methodologies of splitting the light beam [See [24] and references 
therein]. 
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                   Fig. J.5a. Optical realization of two-valued reversible lattice structure. 
 

 

 

 

 

 

 

 

 
               Fig. J.5b. Optical realization of three-valued reversible lattice structure. 
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                                        Fig. J.6. Three possible beam splitters. 

 
       The beam splitter in Figs. J.6a and J.6b utilize the phenomenon 
of evanescent surface waves [261] that result when the incident 
angle of the light beam is greater than the critical angle. On the other 
hand, the beam splitter in Fig. J.6c utilizes the transmission and 
reflection of light at dielectric boundaries governed by Eq. (J.7). The 
compound layer of the beam splitter and the optical switch sub-
layers is used repetitively whenever it is needed for splitting and 
directing the propagating laser beams. The optical switch in Fig. J.5 
can be constructed using an array of reflecting micro-mirrors [See 
[24] and references therein] that direct the laser beam to the desired 
destination. 

 
J.3 Optical parallel processing 
 
One major advantage of optical computing is that optical signals 
don’t experience cross talk to the extent that electrical signals do, 
and thus the optical “signal integrity” is high. This advantage is 
proposed for the optical parallel processing of an array of input laser 
beams as in Fig. J.7. 
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             Fig. J.7. Three 3-D optical devices for parallel processing of logic signals. 

 
       The parallel processing of many input laser beams is done using 
a single optical cell to produce an array of outputs as in Fig. J.7a, 
where C

�
 is the vector of control signals, I

�
 is the vector of inputs, 

and O
�

 is the vector of outputs. While the optical cell in Fig. J.7a 
processes a 1-D input array, the cell in Fig. J.7b processes a 2-D 
input array. Each element of the input and output arrays in Fig. J.7b 
contains two signals: one is the input signal and the other is the 
control signal. Each layer in Fig. J.7a, and each cube in Fig. J.7b, 
represents a single device from Fig. J.2 for two-valued logic, or Fig. 
J.4 for any N-valued logic. Note that each layer and each cube of the 
3-D cells, in Figs. J.7a and J.7b respectively, is an internal node that 
lays in the plane of a single lattice structure. Thus, if one has N 
streams of distinct inputs to each cell then one can construct N 
lattice structures to process N logic functions at the same time. 
Distinct laser beams in Fig. J.7 propagate freely and their 
propagation paths can intersect since no cross talk exists between 
different laser beams. 
       The only constraint is that insulation sheets must be presented 
between the neighbor layers in Fig. J.7a, and neighbor cubes in Fig. 
J.7b to isolate the effects of adjacent non-optical control signals.   
       Further extensions can include the processing of laser beams 
that propagate in three dimensions in an anistropic material [261] 
controlled by a control signal as shown in Fig. J.7c where six sheets 
surround each optical cell to perform reversible beam splitting, 
optical switching, and providing control signals. Further extension 
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can include the application of Fizeau’s effect to double the number 
of processed laser beams that propagate in opposite directions within 
each dimension in a 3-D optical cell from Fig. J.7c. 
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Appendix K 
 
Artificial Neural Network Implementation Using 
Multiple-Valued Quantum Computing 
 
 
 
 
 
This Appendix provides another implementation of multiple-valued 
quantum computing (QC) that was presented in Chapt. 11. Quantum 
neural network (NN) implementation using the general scheme of 
multiple-valued QC is presented in this Appendix. The proposed 
method uses the multiple-valued orthonormal computational basis 
states, that were presented in Chapt. 11, to implement such 
computations. Physical implementation of NNQC is performed by 
controlling the potential V to yield specific wavefunction as a result 
of solving Shrodinger Eq. that governs the dynamics of QC. The 
main contributions of this Appendix are: (1) quantum 
implementation of NNs using multiple-valued QC. This is achieved 
via the use of discrete-grid weight space and making an assignment 
(encoding; mapping) of points on the grid to individual components 
of a many-valued orthonormal set of quantum basis states, (2) show 
the underlying mathematical methodology and formalisms for such 
many-valued QC of NNs, and (3) propose a “reverse engineering” 
method to develop look-up tables (LUTs) for potential functions 
associated with specified many-valued logic functions to be 
performed. 

 
K.1 Neural Networks 
 
The importance of neural networks in application is their ability to 
learn to perform functions in a problem domain, based on interacting 
with data from that domain [See [249] and references therein]. A 
key role in the process is performed by the training set (i.e., a 
collection of input-output pairs from the problem domain). The 
training set can be said to provide problem domain “constraints.”  



 

       The role of learning in the classical domain can be implemented 
in the quantum domain by the dynamics of a physical system 
governed by the Schrodinger Eq. (Eqs. (11.1) and (11.2)). The role 
of training set in classical NN learning can be implemented in the 
quantum domain by the potential function V (also considered as 
“constraints”). Thus, there is motivation to establish a mechanism 
for converting the training set (i.e., collection of input-output pairs) 
from the problem domain into an appropriate V function in the 
quantum domain. (An approach for this is presented in Sect. K.3.) 
       As was shown in Fig. 11.3d in Chapt. 11, a physical system 
comprising trapped ions under multiple-laser excitations can be used 
to reliably implement MVQC. A physical system in which an atom 
(particle) is exposed to a specific potential field (function) can also 
be used to implement MVQC with two-valued being a special case 
(cf. Fig. 11.3a in Chapt. 11). In such an implementation, the 
(resulting) distinct energy states are used as the orthonormal basis 
states which can be further used for neural network realization. The 
latter is illustrated in Example K.1 below.  
Example K.1. We assume the following constraints: (1) spring 
potential V(x) = (1/2) kx2, where m is a particle, k = mω2 is spring 
constant, and  ω is angular frequency ( = 2π⋅frequency), and (2) 
boundary conditions. Also, assuming the solution of SE for these 
constraints is of the following form (i.e., the Gaussian function): 

       2

2
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x
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α

ψ
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= , 

where α = mω/(h/2π). The general solution for the wavefunction 
|ψ> (for a spring potential) is: 
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where Hn(x) are the Hermite polynomials. This solution leads to the 
sequence of evenly spaced energy levels (eigenvalues) En 
characterized by a quantum number (n) as follows: 

       ωπ )2/)(
2

1
( hnEn += . 

The distribution of the energy states (eigenvalues) and their 
associated probabilities are shown in Fig. K.1. 
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                     a                                       b                                     c 
 
Figure K.1. Harmonic oscillator potential and wavefunctions: a wavefunctions for various 
energy levels (subscripts), b spring potential V(x) and the associated energy levels En, and 
c probabilities for measuring particle (m) in each energy state (En). 

 
K.2 Multiple-Valued Quantum Implementation of Neural 
Networks: Methodology and Notation 
 
A classic shortcoming of single-neuron neural networks (e.g., 
perceptron, Adeline) is their inability to implement the XOR 
function [See [249] and references therein]. In [249] on the other 
hand, a single quantum neuron is shown to be capable of solving this 
not-linearly separable (NLS) function. In this Sect., we develop a 
methodology and formalisms for dealing with multiple-valued logic 
functions using multiple-valued quantum neurons. 
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       The notion of linearly separable (LS) and not-linearly separable 
(NLS) mappings in the two-valued context generalizes to the many-
valued case. 
       The following steps describe the notion of associating a 
quantum state to a point in the weight space of a neural network 
(NN) using a two-weight NN as an example (extension to any 
number of weights is straightforward). (See Fig. K.2.) 
(1) Assume each weight can take a finite (discrete) set of values 
(i.e., 0, 1, 2, etc). 
(2) Form a two-dimensional grid of all possible combinations of 
weight value pairs (2-tuples). (In the case of three weight NN this 
generalizes to three-dimensional grid of all possible combinations of 
weight value tuples, and in general for N weight NN this results in 
N-dimensional grid.)  
(3) Assign each of the grid points (i.e., each 2-tuple) to be a 
quantum basis state (in quantum state space). These quantum basis 
states are orthogonal (cf. Chapt. 11), and thus unique operations can 
be implemented on such representation. (For higher dimension 
quantum space, the Kronecker (tensor) product is used to produce all 
possible combinations of grid points as was shown in Sects. 11.1 
and 11.4 in Chapt. 11.) 
(4) If each of the two weights (w1 and w2) can take m values, then 
there will be m2 quantum basis states, each with dimension m2 (to 
yield an orthonormal basis set). (Thus, for the general case of N-
weight NN, if each weight can take m values then there will be mN 
quantum basis states each with dimension mN to yield a unique 
(orthonormal) quantum basis set.) 
(5) Let: 
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represent the m2 points in the 2-dimensional weight space, where 
(i,j) are position indices for the vector wij and the components of wij 
are weight values at the corresponding positions (i,j). 
(6) Then define: 
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where the superscript refers to 2 dimensions, with m (discrete) 
values in each dimension. (To reference a subset of all these 
possibilities, an appropriate subscript may be provided.)  
       For example, by letting each weight take three values from the 
set {a,b,c} where a, b, c are any discrete real values (i.e., m = 3) then 
one would have nine grid points {00,01,02,10,11,12,20,21,22}, and 
Eq. (K.2) becomes: 
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       Thus, one can perform MVQC by making the following 
assignments (maps; encodings) between the weight space and the 
quantum space: 
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       Using the notation from Chapt. 11, the above may be written as 
follows: 
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       Note that each component of the tensor product (in Eq. (K.4) is 
associated with a product of two probabilities. The coefficients of 
the quantum basis functions (i.e., probabilities) are the system 
parameters, obtained by solving the waveequation with the specified 
potential function V applied. We note that different Vs will 
(normally) result in different solutions (i.e., different probabilities) 
for each of the quantum basis states. Upon measurement of an 
observable variable in a physical quantum implementation, by 
definition, the highest probability state is the most likely one to 
occur. In the context of neural networks (NNs) with an assignment 
such as the one given in Eq. (K.3), each basis state corresponds to a 
particular combination of weight values. These weight values 
determine the mapping performed (e.g., logic function) by the NN. 
(See Fig. K.2.) 
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                                     1 
                                                            w0(Bias) 
                                    x1                     w1 
                                    …              …             �     f                   y 
                                    xN-1                   wN-1 
 
                           
                                         Fig. K.2. A simple neuron. 

 
Where f is the activation (transfer) function, and:      
 

       y = f (w0⋅1 + w1x1 + w2x2 +…+ wN-1xN-1).                            (K.5) 
 

and f can be an appropriate mapping (such as threshold function, 
sigmoid, etc). The manner in which the MVQC is implemented for 
neural computing (NC) is illustrated in Fig. K.3.  
 
                                            Constriants: {V, I.C.} 
 
 
                                            |α1α2|

2 |α1β2|
2  …   |γ1γ2|

2                      
                                                                                                         wij 
 
                                            |00>    |01>    …   |22>                                                   
 
                                                 Dynamics: SE 
 
Fig. K.3. MVQC scheme to implement a NN using a ternary 2-qubit QC system. (All 
possible quantum states are shown in different colors.) 

 
Example K.2. For a quantum neuron, let the following unitary 
ternary quantum operator A [15,23] perform a function analogous to 
the activation function (AF) and summing junction (SJ) in classical 
artificial neurons. 
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Let us denote a ternary 2-weight quantum neuron as in Fig. K.4. 
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                                 Fig. K.4.  Ternary quantum neuron. 

 
Then, for instance, for binary inputs {x1,x2}, the MVQC would 
proceed as follows to produce the following ternary function f*: 
 
 
  
 
 
 
 
The quantum weights will be determined by a suitable learning 
algorithm utilizing the operator A (e.g., the algorithm using bipolar 
quantum Fourier operater in [249]), which is equivalent to solving 
the TISE with an appropriate potential V. In the notation of Fig. K.4, 
an example result would be {w1 = |2>, w2 = |1>}, where in the MV 
quantum space (as shown in Chapt. 11): 
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Then the MVQC (in Fig. K.4) is performed in the following manner: 
the matrix of inputs {x1,x2} is transformed, before being processed 
by the activation function (AF), to a new matrix of inputs by 
multiplying the set of inputs by the values of the corresponding 
weights {w1 = 2, w2 = 1} as follows: 

x1 x2 f* 
0 0 0 
0 1 2 
1 0 0 
1 1 2 
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Encoding the new matrix of inputs in the MV quantum space H will 
lead to: 
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By using the 2-qubit ternary operator: 
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the matrix of the output functions will be obtained from the matrix 
of the weighted inputs as follows: 
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but in MV quantum space, the matrix of outputs correspond to the 
following values:                         
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Then by measuring the second output one obtains the function f*. 
(Note that in this example another function f1 is naturally obtained, 
and thus this adds a possibility of utilizing such additional output in 
a separate computation.) The generation of other multiple-valued 
logic functions, at the output of the quantum neuron in Fig. K.4, is 
performed using the same topology and same AF (and SJ) by 
changing the values of the weights.  
       Other varieties of quantum operators from [15,23] could be used 
as well to perform the functionality of the AF (and SJ) in Fig. K.4.                      
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       For instance, one could use the quantum Chrestenson operator 
(that was introduced in Theorem 11.2 in Chapt. 11 [15,23]): 
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where the superscript indicates the radix, the subscript indicates 
number of variables, and d1 and d2 are complex numbers. The 
quantum Chrestenson operator used here is the quantum multiple-
valued Fourier operator (which is equivalently called the quantum 
multiple-valued Walsh-Hadamard operator), which is the 
generalization (extension) of the quantum bipolar Fourier operator 
(which is equivalently called the quantum (two-valued) Walsh-
Hadamard operator). Consequently, the (quantum) learning 
algorithm proposed in [249] for the quantum Walsh operator could 
be extended to be used for the quantum Chrestenson operator as 
well. 

 
K.3 Further NN Implementations Using MVQC 
 
As noted earlier, the quantum analog of a training set in the classical 
NN context is the potential function V, and the quantum analog for 
the training process are the dynamics described by the SE. An 
approach to implement a quantum NN suggested here is as follows 
(cf. Fig. K.5a): (1) specify a set of functions, Fi, and train a separate 
neural network (in the first stages of this work, think in terms of a 
single-neuron NN, e.g., perceptron) for each function; (2) construct 
a table that associates the trained NN weight vector for each 
function Fi; (3) construct a separate wavefunction ψi in the MV 
quantum space for each Fi such that its highest probability is at the 
weight vector in the table, and relatively low at all other weight 
values as illustrated in Fig. K.5b; (4) substitute this ψi into the TISE 
(Eq. (11.2) in Chapt. 11) and solve for Vi. After the above 
information has been generated and tabulated (as a look-up table) as 
indicated in Fig. K.5c, one could implement a full quantum NN as 
shown in Fig. K.6. 
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                     I/O (map)          wij          |ΨΨΨΨ>           V 
     
 
                                       Quantum Domain         a 
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Fig. K.5. a Possible MVQC strategy to implement a NN, b MV Quantum-Weight space to 
obtain |Ψ>, and c Look-Up-Table to implement a NN for all logic functions.  

 
       In this more general case (in Fig. K.6), we specify a single V for 
an entire weight vector going into a single quantum neuron 
(corresponding to a single neural element of a NN). Such a quantum 
neuron (QN) is here represented as shown in Fig. K.6a. A full 
network would be a collection of such QNs, connected in a specified 
topology, as in Fig. K.6b.    
       So far in this Sect., we proposed a methodology of 
implementing a NN using a multiple-valued quantum computation 
(MVQC). This method uses the encoding of multiple-valued 
orthonormal computational basis states in the quantum space to be 
the weights in a NN. The potential plays the role of a training (I/O) 
set and the dynamics of the solution of SE to be the training process. 
Future work will involve (1) simulations for various designs of 
potential distributions (Vs) that correspond to specific logic 
functions, (2) determine MVQC equivalents of (a) supervised, (b) 
reinforcement, and (c) unsupervised learning strategies, and (3) for 
storing given number of patterns Si in Auto-Associative memory (as 
in a Hopfield NN), where i = 1, 2, …, N, and  the pattern vector Si is 
of dimension D. 
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Fig. K.6. An MVQC implementation of a NN: a a quantum neuron (QN), which is a 
dynamical system governed by TISE constrained by Vp

qr, where I is the interface 
mechanism, superscript p is the number of incoming weights, subscript q is the layer 
number, and subscript r is the element number in layer q, and b a 3-layer NN. 

 
       This is done conceptually as follows:  
(1) Construct a state-space grid (equivalent to weight-space grid 
discussed in Sect. K.2). Each point on the grid corresponds to a 
specific pattern Si. 
(2) Design a wavefunction ψi for each given pattern to be stored. 
Then solve the TISE for the corresponding potential function Vi. 
(3) For a query that is a “dirty” version of a stored pattern Si

*, 
construct a corresponding ψi

*
 and Vi

*, where the designed ψi
* 

corresponds to the query pattern, and Vi
* is obtained by solving 

TISE.  
(4) If the original ψi was crafted such that probability is maximum at 
Si and gradually decreases for nearby patterns, then the application 
of  Vi

* should yield the quantum state Si (i.e., the “clean”/complete 
pattern). 
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