

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex

�

�

�

�

�

�

Alexis De Vos

Reversible Computing

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page II — le-tex

�

�

�

�

�

�

Related Titles

Weidemüller, M., Zimmermann, C. (eds.)

Cold Atoms and Molecules
Concepts, Experiments and Applications to Fundamental Physics

2009
ISBN: 978-3-527-40750-7

Wolf, E. L.

Quantum Nanoelectronics
An Introduction to Electronic Nanotechnology and Quantum Computing

2009

ISBN: 978-3-527-40749-1

Morsch, O.

Quantum Bits and Quantum Secrets
How Quantum Physics is Revolutionizing Codes and Computers

2008
ISBN: 978-3-527-40710-1

Stolze, J., Suter, D.

Quantum Computing
A Short Course from Theory to Experiment

2008

ISBN: 978-3-527-40787-3

Imre, S., Balazs, F.

Quantum Computing and Communications
An Engineering Approach

2004
ISBN: 978-0-470-86902-4

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page III — le-tex

�

�

�

�

�

�

Alexis De Vos

Reversible Computing

Fundamentals, Quantum Computing, and Applications

WILEY-VCH Verlag GmbH & Co. KGaA

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page IV — le-tex

�

�

�

�

�

�

The Author

Prof. Dr. Alexis De Vos
Universiteit Gent
elektronika en informatiesystemen
Sint Pietersnieuwstraat 41
9000 Gent
Belgium

All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information
contained in these books, including this book, to
be free of errors. Readers are advised to keep in
mind that statements, data, illustrations,
procedural details or other items may
inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data:
A catalogue record for this book is available
from the British Library.

Bibliographic information published by the
Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this
publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the
Internet at http://dnb.d-nb.de.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation
into other languages). No part of this book may
be reproduced in any form – by photoprinting,
microfilm, or any other means – nor transmitted
or translated into a machine language without
written permission from the publishers. Regis-
tered names, trademarks, etc. used in this book,
even when not specifically marked as such, are
not to be considered unprotected by law.

Typesetting le-tex publishing services GmbH,
Leipzig
Printing and Binding Fabulous Printers
Pte Ltd, Singapore
Cover Design Formgeber, Eppelheim

Printed in Singapore
Printed on acid-free paper

ISBN 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page V — le-tex

�

�

�

�

�

�

V

Contents

Preface IX

Introduction 1

1 Boolean Algebra 5

1.1 Boolean Functions of One Variable 5

1.2 Boolean Functions of Two Variables 6

1.3 Boolean Functions of n Variables 8

1.3.1 The Minterm Expansion 9

1.3.2 The Maxterm Expansion 9

1.3.3 The Reed–Muller Expansion 10

1.3.4 The Minimal ESOP Expansion 11

1.4 Linear Functions 11

1.5 Affine Linear Functions 12

1.6 Monotonic Functions 13

1.7 Boolean Derivative 13

1.8 Boolean Decompositions 14

1.9 Exercises for Chapter 1 15

2 Group Theory 17

2.1 Introduction 17

2.2 Permutation Groups 19

2.3 Matrix Groups 21

2.4 Group Generators 22

2.5 Subgroups 23

2.6 Young Subgroups 23

2.7 Sylow p-Subgroups 24

2.8 Cyclic Subgroups 25

2.9 Closing Remarks 25

2.10 Exercises for Chapter 2 26

3 Reversible Computing 29

3.1 Introduction 29

3.2 Reversible Circuits 32

3.3 Conservative Circuits 33

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page VI — le-tex

�

�

�

�

�

�

VI Contents

3.4 Monotonic Circuits 34

3.5 Linear Circuits 34

3.6 Affine Linear Circuits 36

3.7 Exchange Gates 37

3.8 SWAP Gates 39

3.9 Affine Exchange Gates 39

3.10 Control Gates 42

3.11 Sylow Circuits 47

3.12 Gate Cost and Logic Depth 49

3.13 Methods of Synthesis 51

3.14 Cosets 52

3.15 Double Cosets 55

3.16 The Synthesis Algorithm 57

3.16.1 Basic Idea of the Algorithm 58

3.16.2 Working Out the Algorithm 60

3.16.3 Results 61

3.17 Variable Ordering 64

3.18 Templates 65

3.19 The Linear Synthesis Algorithm 69

3.20 Preset Bits and Garbage Bits 72

3.20.1 Duplicating Circuit 72

3.20.2 Controlled NOT 73

3.20.3 An Application: the Majority Circuit 74

3.21 Another Application: the Full Adder 77

3.22 Avoiding Garbage 80

3.23 Exercises for Chapter 3 82

4 Low-power Computing 85

4.1 Entropy 85

4.2 Permutation Matrices 88

4.3 Landauer’s Theorem 89

4.4 Thermodynamics 90

4.5 An Application: Prototype Chips 93

4.6 Switch Cost 101

4.7 Moore’s Law 103

4.8 Quasi-adiabatic Addressing 105

4.9 Exercises for Chapter 4 110

5 Analog Computing 113

5.1 Computing with Real Numbers 113

5.2 Synthesis 115

5.3 An Application: the Color Transform 117

5.4 About Determinants 119

5.5 LIFT Gates versus SCALE Gates 120

5.6 Conclusion 122

5.7 Computations with Complex Numbers 123

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page VII — le-tex

�

�

�

�

�

�

Contents VII

5.8 An Application: the Fourier Transform 124

5.9 Nonlinear Computations 126

5.10 Exercises for Chapter 5 130

6 Computing in Modulo 2b 131

6.1 Addition in Modulo 2b 131

6.2 Multiplication by a Constant 135

6.3 Scaling by �1 136

6.4 Scaling by 1/2 or by 2 137

6.5 Lifting 139

6.6 Exercises for Chapter 6 141

7 Quantum Computing 143

7.1 Doubly Stochastic Matrices 143

7.2 Unitary Matrices 144

7.3 Entropy in the Quantum World 147

7.4 Entanglement 148

7.5 Control Circuits and Control Gates 149

7.6 Synthesis 151

7.7 Decomposition 152

7.8 Discussion 154

7.9 Bottom-Up and Top-Down 156

7.10 Bottom-Up Approach 157

7.10.1 One-(Qu)bit Calculations 157

7.10.2 Two-(Qu)bit Calculations 159

7.10.3 Three- and Multi-(Qu)bit Calculations 161

7.11 Top-Down Approach 162

7.12 An Application: the Quantum Fourier Transform 163

7.13 Nonlinear Computations 166

7.14 Exercises for Chapter 7 167

8 Reversible Programming Languages 169

8.1 The if-then-else Structure 170

8.2 The do-until Structure 175

8.3 Exercises for Chapter 8 177

Appendix A The Number of Linear Reversible Circuits 181

Appendix B Bounds for the q-Factorial 183

Appendix C A Theorem about Universal Reversible Gates 185

C.1 Universality in Conventional Logic Circuits 185

C.2 Preliminary Concepts 186

C.3 No-Fan-Out Theorem and Its Consequences 187

C.4 Final Theorem 190

C.5 Discussion 191

C.6 Exercises for Appendix C 192

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page VIII — le-tex

�

�

�

�

�

�

VIII Contents

Appendix D Synthesis Efficiency 193

D.1 Exercises for Appendix D 195

Appendix E Birkhoff’s Theorem 197

E.1 Exercises for Appendix E 201

Appendix F Microentropy and Macroentropy 205

F.1 Exercises for Appendix F 207

Appendix G Computing the Successive Powers of a Matrix 209

G.1 Exercises for Appendix G 210

Post Scriptum 211

References 213

Solutions to the Exercises 223

Index 247

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921f01 — 2010/8/5 — 13:36 — page IX — le-tex

�

�

�

�

�

�

IX

Preface

The present book is dedicated to Dr. Rolf Landauer, whose early work on the sub-
ject of reversible computing inspired me to begin more than 15 years of research
in this special corner of computer science. Twice I had the privilege to meet him
personally: once in West Berlin (1992) and once in Boston (1996). Twice he encour-
aged me to continue my investigations. My research became a fascinating jour-
ney, exploring the various aspects of reversible computing. The present book aims
to illustrate how the subject is interwoven with many different sections of math-
ematics, physics, electronics, and informatics. Reversible computers are related
to low-power computing, digital electronics, analog and neural computing, quan-
tum mechanics, as well as Boolean algebra, group theory, Lie groups and many
more.

I wish to thank the three people whose support has been fruitful for many years,
and without whom the book would never have been written:

� Prof. Herman Pauwels,
� Prof. Marc Vanwormhoudt,
� Prof. Andreas De Leenheer,

all three from the Universiteit Gent. I especially wish to thank people whose de-
tailed comments, contributions and suggestions have been a continuing inspira-
tion and encouragement:

� Prof. Leo Storme of the Universiteit Gent,
� Dr Stijn De Baerdemacker and Dr Jan De Beule of the Universiteit Gent,
� Prof. Paweł Kerntopf of the Politechnika Warszawskiego,
� Prof. Robert Glück of the Københavns Universitet, and
� Prof. Bernd Steinbach of the Bergakademie Freiberg.

The following institutions gave invaluable support:

� the v.z.w. Imec (i.e., the Flemish Interuniversity Microelectronics Center), and
� the Universiteit Gent.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page X — le-tex

�

�

�

�

�

�

X Preface

In particular,

� the Invomec division of v.z.w. Imec, and
� the Eurochip and Europractice consortia

gave invaluable aid with the realization of prototype chips at Alcatel Microelectron-

ics (Oudenaarde, Belgium), Austria Mikro Systeme (Unterpremstätten, Austria),
and AMI Semiconductor (Oudenaarde, Belgium). Finally, the following people are
thanked for their direct help with the accomplishment of the book:

� Ph.D. students Bart Desoete, Filip Beunis, and Yvan Van Rentergem for their
precious scientific contributions,

� Jean Bekaert for drawing all figures (the scientific and technical diagrams as
well as the artist’s impressions and the cover),

� Michael Thomsen for carefully checking the text of Chapter 8, and
� the staff of Wiley-VCH Verlag for their valuable help in editing the book.

Gent, 28 June 2010 Alexis De Vos

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921f02 — 2010/8/5 — 13:36 — page 1 — le-tex

�

�

�

�

�

�

1

Introduction

We are living in a world with an ever-increasing hunger for energy. Human energy
consumption continues to grow. This evolution is not without problems, such as
fuel depletion, waste disposal and climate change. Therefore, huge efforts are being
made to appease our hunger for energy in a manner that generates as little dam-
age to our environment as possible. We try to harvest renewable energy sources.
We try to convert one kind of energy into another as smoothly as possible. We try
to transport energy as efficiently as possible. When searching for ideal equipment
to do this, engineers often refer to the Carnot engine (named after the young but
visionary French engineer Sadi Carnot) as the ideal standard. This engine consti-
tutes the ideal limit of a heat engine that converts heat into work, and attains the
ultimate efficiency, known as the Carnot efficiency. Such an engine, which in the
real world can only be approximated by a real engine, has the peculiar property of
being reversible. This means that it runs so slowly and gently, that, at any moment,
we may, by an infinitesimally small intervention, decide to reverse its sense of op-
eration. By making an infinitely small change to an external parameter, all inside
velocities, revolutions, heat flows, work flows, and so on are reversed. Produced
power becomes consumed power; heat engine becomes heat pump; clockwise be-
comes counterclockwise; forward becomes backward.

While reversible heat engines have long been conceived (and approximated in
technology), this is also true of reversible chemical engines. Conventional motors
are based on the internal combustion of fuel. In the combustion chamber, a chem-
ical reaction occurs in the form of a deflagration. Once the combustion has been
initiated (by either a spark or compression), little control over it is possible, and it
is very difficult to stop or reverse the burning reaction. In contrast, when it is per-
formed in a so-called fuel cell, the same chemical reaction (oxidation) occurs in a
reversible way. By applying an appropriate (external) electric voltage, we can control
the direction (forward or reverse) of a chemical reaction and how swiftly it occurs.
In the case of an ideal fuel cell, an infinitely small change in the external voltage
is sufficient to change the direction of the chemical reaction: associations between
atoms become dissociations of molecules; oxidation becomes reduction. It is no
surprise that fuel cells display a much higher efficiency than internal combustion
engines.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921f02 — 2010/8/5 — 13:36 — page 2 — le-tex

�

�

�

�

�

�

2 Introduction

11

00

Figure 1 The simplest possible reversible computer.

Figure 2 Computation.

Besides an ever-increasing hunger for energy, our society also displays an ever-
increasing hunger for information. People are constantly harvesting, transport-
ing and processing information. Little attention has been paid to the efficiency of
these processes. Little effort has been expended to make these processes reversible.
A loudspeaker converts electrical information into acoustic signals. For the inverse
operation, we use another device: a microphone. However, the laws of physics al-
low the construction of devices that perform both conversions, according to an
outside signal that we can influence. Current computer hardware and software are
designed to perform computations in a definite direction, from input information
to output information, from questions to answers. However, we can also conceive
systems that can compute in either direction (forward or backward), and where the
direction of computation can be chosen by the user. Indeed, at any moment (e.g.,
in the middle of a calculation), the user could change his or her mind and decide
to alter the direction of computation. Such reversible computing models allow us
to explore the fundamentals of computation, independent of any particular choice
of computer hardware and computer language.

An example is shown in Figure 1, which depicts the simplest possible reversible
computer. This is a mechanical computer that computes with one bit. It computes
the inverse of an input number, which either is 0 or 1. In the former case (see
Figure 2), the result is NOT(0) D 1; in the latter case, the result is NOT(1) D 0. The
computation is triggered by gently raising the hand so that the bit (i.e., the marble)
slowly descends from the input side (left) to the output side (right).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921f02 — 2010/8/5 — 13:36 — page 3 — le-tex

�

�

�

�

�

�

Introduction 3

Figure 3 Decomputation.

After the marble arrives, we can change the direction of the slope in order to
‘undo’ the calculation and reproduce the original starting situation. Moreover, if
we apply a very shallow slope, we can reverse this slope at any moment (e.g., in the
middle of a computation) by exerting an infinitesimally small mechanical effort,
resulting in a decomputation (see Figure 3).

Reversible energy conversion and reversible information conversion are not in-
dependent subjects. In our example, the gradient in the gravitational potential ener-
gy dictates the direction of computing. On the other hand, it is important to realize
that about 10% of the world’s electricity consumption is dissipated in computers. If
we also consider audio and video equipment to be information processing systems,
more than 20% of all electrical power is consumed in information transport and
information manipulation (the rest is used for lighting, cooking, . . .).

The toy computer in the above figures demonstrates that bit manipulation hap-
pens through the manipulation of physical objects. In the words of Landauer, “in-
formation is physical”. There is no such thing as a ‘bare’ information particle (in-
formaton). Bits piggyback on material objects (marbles, electrons, ions, photons,
. . .). The reversible manipulation of information and the reversible manipulation
of information carriers cannot be separated. It is thus no surprise that the key to
energy-efficient computing is reversible computing.

We can therefore state that the study of reversible computing leads to two ben-
efits: on the one hand, it leads to an understanding of the basic principles; on the
other hand, it leads to recipes for efficient implementations. We should not forget
that Carnot’s 1824 book Réflexions sur la puissance motrice du feu et sur les machines

propres à développer cette puissance1) was the foundation for both a new science (ther-
modynamics) and a new technology (steam power).

1) Reflections on the Motive Power of Fire and on the Machines Fitted to Develop this Power.

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 5 — le-tex

�

�

�

�

�

�

5

1
Boolean Algebra

The vast majority of computers are digital computers; that is, computers based on
a set of two numbers: B D f0, 1g. We call the mathematics based on these two
numbers Boolean algebra (named after the Irish mathematician George Boole).
A Boolean variable or bit can thus take only two different values: either 0 or 1. We
call f (A 1, A 2, . . . , A n) a Boolean function of n independent Boolean variables A 1,
A 2, . . . , A n�1, and A n. It takes either the value 0 or the value 1, depending on the
values of its arguments A 1, A 2, . . . , A n . This dependency is fully described using a
truth table, which tells us which value f takes for each of the 2n different values of
the (Boolean) vector (A 1, A 2, . . . , A n).

In the present chapter, we will survey some properties of Boolean functions,
which will allow us to gain a good understanding of binary reversible logic circuits.
First, we will take a close look at Boolean functions f (A) of a single variable, then at
Boolean functions f (A 1, A 2) of two variables, before we discuss Boolean functions
f (A 1, A 2, . . . , A n) of an arbitrary number of Boolean variables. Besides recording a

Boolean function unambiguously by writing down its truth table, we can also fully
define a Boolean function by means of a (Boolean) formula. There are many ways
to write down such a formula. We will discuss some standard ways: the minterm
expansion, the maxterm expansion, the Reed–Muller expansion, and the minimal
ESOP expansion. Finally, we will define a few special classes of Boolean functions:
true functions and balanced functions, linear functions, affine linear functions,
and monotonic functions.

1.1
Boolean Functions of One Variable

There are only four Boolean functions f (A) of a single Boolean variable A. Table 1.1
shows the four corresponding truth tables. However, two of these functions are not
really dependent on A; they are constants:

f (A) D 0 (Table 1.1a)

f (A) D 1 (Table 1.1b) .

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 6 — le-tex

�

�

�

�

�

�

6 1 Boolean Algebra

Table 1.1 Truth table of the four Boolean functions f (A): (a) the constant function 0, (b) the
constant function 1, (c) the identity function, and (d) the NOT function.

A f

0 0
1 0

(a)

A f

0 1
1 1

(b)

A f

0 0
1 1

(c)

A f

0 1
1 0

(d)

We thus have only two true functions (or proper functions) of A:

f (A) D A (Table 1.1c)

f (A) D A (Table 1.1d) .

Here, we have introduced the following shorthand notation for the inverting func-
tion or NOT function:

X D NOT X .

1.2
Boolean Functions of Two Variables

There are 24 D 16 different Boolean functions of two variables2). Table 1.2 shows
them all. However, some of these functions f (A, B) are not actually functions of A

and B; two functions are independent of both A and B. They are constants:

f0(A, B) D 0

f15(A, B) D 1 .

Another four functions are in fact functions of a single variable; f3 and f12 are
independent of B, whereas both f5 and f10 are independent of A:

f3(A, B) D A

f5(A, B) D B

f10(A, B) D B

f12(A, B) D A .

This leaves only 16 � 2 � 4 D 10 functions that are truely dependent on both A

and B. We call them true functions of A and B.

2) Besides using the notation A1, A2, . . . , A n for the variables, we will also use the letters A, B, C, . . .
whenever this is more convenient.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 7 — le-tex

�

�

�

�

�

�

1.2 Boolean Functions of Two Variables 7

Table 1.2 Truth table of all sixteen Boolean functions f i (A, B).

AB f 0 f 1 f2 f3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f11 f 12 f 13 f 14 f 15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1.3 Truth tables of three basic Boolean functions: (a) the AND function, (b) the OR func-
tion, and (c) the XOR function.

AB f

0 0 0
0 1 0
1 0 0
1 1 1

(a)

AB f

0 0 0
0 1 1
1 0 1
1 1 1

(b)

AB f

0 0 0
0 1 1
1 0 1
1 1 0

(c)

Three out of the ten true functions of two variables (i.e., f1, f7, and f6) are well
known: the AND function, the OR function, and the XOR function (also known as
the EXCLUSIVE OR). Table 1.3 gives the corresponding truth tables. We will use the
following shorthand notations for these basic Boolean functions:

X Y D X AND Y

X C Y D X OR Y

X ˚ Y D X XOR Y .

The remaining 10 � 3 D 7 functions are considered a combination of the NOT,
AND, OR, and XOR functions. For example,

f2(A, B) D A AND (NOT B) D AB .

For convenience, the NOT of an AND is called a NAND, the NOT of an OR is called a NOR,
and the NOT of a XOR is called a NXOR. For example,

f8(A, B) D NOT (A OR B) D A C B D A NOR B .

NXOR is also called XAND, with the shorthand notation X ˇ Y .
We observe that all six functions AND, OR, XOR, NAND, NOR, and NXOR are commu-

tative:

X AND Y D Y AND X ,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 8 — le-tex

�

�

�

�

�

�

8 1 Boolean Algebra

and there are similar identities for the other five functions. This is not the case for
any function f (X , Y). For example, the function f2 is not commutative:

f2(X , Y) ¤ f2(Y, X) but f2(X , Y) D f4(Y, X) .

We end this section by stressing that there is no fundamental difference between
the functions AND, OR, NAND, and NOR. They all are true functions that have either
one 0 and three 1s or three 0s and one 1 in their truth tables. The functions XOR
and NXOR are fundamentally different: they display two 0s and two 1s in their truth
tables. This important distinction between AND, OR, NAND, and NOR on the one hand
and XOR and NXOR on the other was stressed by Yokoyama et al. [1]. The function A

XOR B is injective in its first argument, as is NXOR. This means that, for each value
of B, the equality A XOR B D A0 XOR B necessarily implies A D A0. The reader
can easily verify that this is not the case with the AND function for example: A AND
0 D A0 AND 0 does not imply A D A0 (as we could have A D 0 and A0 D 1). These
facts will have far-reaching consequences.

1.3
Boolean Functions of n Variables

There are 22n
different Boolean functions of n variables. Each is represented by a

truth table consisting of n C 1 columns and 2n rows. Table 1.4 gives an example
for n D 3. This function is just one of the 28 D 256 possible for n D 3. Among
these, only 218 are true functions of the three variables A, B, and C. Among the
256 functions for n D 3, seventy are so-called balanced functions; that is, functions
that have an equal number of 1s and 0s in the output column. The function shown
in Table 1.4 is both true and balanced.

It is important to use the expressions true and balanced carefully. For example,
the function AB is a true function of A and B, but is an untrue function of A, B,

Table 1.4 Truth table of a function f (A, B, C) of three variables.

ABC f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 9 — le-tex

�

�

�

�

�

�

1.3 Boolean Functions of n Variables 9

and C. It is not a balanced function of A and B, but it is a balanced function of the
three variables A, B, and C. The reader may also notice the following property: all
untrue functions are balanced.

A truth table can be summarized by a single Boolean formula. However, there
are multiple ways to write a given table as a Boolean expression [2]. We will now
discuss a few of them.

1.3.1
The Minterm Expansion

Using the truth table, it is immediately possible to deduce the Boolean formula
called the minterm expansion. For example, Table 1.4 yields:

f (A, B, C) D A BC C AB C C AB C C AB C .

This consists of the OR of different terms. There are between 0 and 2n different
terms present. Each term is called a minterm and consists of the AND of exact-
ly n literals. Here a literal is a letter, either inverted or not; thus, whereas X is called
a letter, both X and X are called literals.

The algorithm for translating the truth table in the minterm expansion is
straightforward: each row of the truth table with a 1 in the column furthest to
the right yields one minterm. The latter consists of an AND of all input letters;
an overlining is used if a 0 appears in the corresponding column, but not if a 1
appears in the corresponding column.

In the literature, such an expansion is sometimes referred to as a sum of products,
because an OR resembles a sum in a way, while an AND resembles a product to some
extext. The abbreviation SOP is also often used.

1.3.2
The Maxterm Expansion

As there is no fundamental difference between OR and AND, it is no surprise that
there is a function expansion that is like the minterm expansion but has the roles
of OR and AND interchanged. Such an expansion is an AND of ORs, and is called a
maxterm expansion. In our example (Table 1.4), we have

f (A, B, C) D (A C B C C)(A C B C C)(A C B C C)(A C B C C) .

The algorithm for translating the truth table into the maxterm expansion is com-
pletely analogous to the minterm algorithm: each row of the truth table with a 0 in
the column furthest to the right yields one maxterm; the latter consists of an OR of
all input letters, with a bar if a 1 appears in the corresponding column, and not if
a 0 appears in the corresponding column. The maxterm expansion is an example
of a POS or product of sums.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 10 — le-tex

�

�

�

�

�

�

10 1 Boolean Algebra

1.3.3
The Reed–Muller Expansion

A fundamentally different expansion is obtained as follows. We apply to the
minterm expansion the two identities

X D 1 ˚ X

X C Y D X ˚ Y ˚ X Y . (1.1)

This leads to an XOR of ANDs. The result is subsequently simplified by applying the
identities

X ˚ X D 0

0 ˚ X D X .

In our example (Table 1.4), we obtain

f (A, B, C) D A ˚ B ˚ C ˚ AB . (1.2)

A Reed–Muller expansion (named after the American mathematicians Irv-
ing Reed and David Muller) is an example of an ESOP expansion; that is, an
‘EXCLUSIVE-OR sum of products’. Thus, just like the OR, the XOR function is con-
sidered a kind of sum. We note that the Reed–Muller expansion is fundamentally
different from the minterm and maxterm expansions because of the injectivity of
the XOR operation.

In many respects, a Reed–Muller expansion of a Boolean function resembles the
well-known Taylor expansion of ordinary calculus. Let us assume a function f of the
real numbers x, y, and z. Then, the Taylor expansion around the point (x , y , z) D
(0, 0, 0) looks like

f (x , y , z) D c000 C c100x C c010 y C c001z

C c110x y C c101x z C c011 y z C c200x2 C c020 y 2 C c002z2

C c111x y z C c210x2 y C

The Reed–Muller expansion of a function f of the Boolean numbers A, B, and C

looks like

f (A, B, C) D c000 ˚ c100A ˚ c010B ˚ c001C

˚ c110AB ˚ c101AC ˚ c011B C ˚ c111AB C .

There are three main differences:

� The Reed–Muller coefficients c i j k can only be either 0 or 1.
� Each of the exponents i, j, and k in the monomial (also known as the ‘piterm’)

Ai B j C k can only be either 0 or 1; as a result:
� There are only a finite number (i.e., a maximum of 2n) of Reed–Muller terms.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 11 — le-tex

�

�

�

�

�

�

1.4 Linear Functions 11

Once again, we must stress that there is no fundamental difference between AND
and OR, or between XOR and XAND. As the Reed–Muller expansion is an XOR of ANDs,
there is a similar (dual) expansion that is an XAND of ORs [3, 4]. For example, expan-
sion (1.2) can be rewritten as

f (A, B, C) D A ˇ C ˇ (A C C) ˇ (B C C) .

Unfortunately, such expressions are paid little attention in the literature.
We end this section by noting that (at least for n > 1), the Reed–Muller expansion

of a balanced function lacks the highest-degree term A 1A 2 . . . A n. In other words,
the Reed–Muller coefficient c11...1 of a balanced function is zero.

1.3.4
The Minimal ESOP Expansion

In the Reed–Muller expansion, NOT functions are not allowed.3) If we do allow NOT
operations, the ‘XOR of ANDs’ expansion can be shortened. The shortest expansion
(i.e., the one with the fewest literals) is called the minimal ESOP expansion.

The minimal ESOP expansion is quite different from the three above expansions
(i.e., the minterm expansion, the maxterm expansion, and the Reed–Muller expan-
sion) in two respects:

� It is not unique: two or even more minimal ESOP expansions of the same
Boolean function may exist, and

� There is no straightforward algorithm for finding the minimal ESOP expan-
sion(s) (except, of course, for an exhaustive search).

The last fact explains why minimal ESOPs are only known for Boolean functions
with n D 6 or less [5, 6].
Our example function (Table 1.4) has two different minimal ESOPs:

f (A, B, C) D A ˚ C ˚ AB

D B ˚ C ˚ A B .

Whereas the Reed–Muller expansion (1.2) needs five literals, these minimal ESOPs
contain only four literals.

1.4
Linear Functions

A function f (A 1, A 2, . . . , A n) is linear iff (‘iff’ means ‘if and only if’) its Reed–
Muller expansion only contains terms with one letter:

f (A 1, A 2, . . . , A n) D c1A 1 ˚ c2A 2 ˚ � � � ˚ cn A n .

3) In the present book we limit ourselves to so-called ‘positive-polarity Reed–Muller expansions’.
We thus ignore ‘negative-polarity Reed–Muller expansions’ and ‘mixed-polarity Reed–Muller
expansions’ [2].

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 12 — le-tex

�

�

�

�

�

�

12 1 Boolean Algebra

Table 1.5 Truth tables for (a) a linear function, (b) an affine linear function, and (c) a monotonic
function.

ABC f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(a)

ABC f

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

(b)

ABC f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(c)

Because each of the n Reed–Muller coefficients c j can take one of two values
(c j 2 f0, 1g), the reader can easily verify that there are 2n different linear functions
with n arguments. It is clear that the function defined by Table 1.4 is not linear: its
Reed–Muller expansion (1.2) contains a second-degree term AB . In contrast, the
function defined by Table 1.5a is linear, as it equals A ˚ C .

1.5
Affine Linear Functions

A function f (A 1, A 2, . . . , A n) is affine linear4) iff its Reed–Muller expansion con-
tains only terms with either zero or one letter:

f (A 1, A 2, . . . , A n) D c0 ˚ c1A 1 ˚ c2A 2 ˚ � � � ˚ cn A n .

Because each of the n C 1 Reed–Muller coefficients c j can take one of two values,
there are 2nC1 different affine linear functions of n arguments. Among these, 2n

are linear. The function defined by Table 1.5b is an example of an affine linear
function, as it equals 1 ˚ A ˚ B .

4) There seems to be some confusion about the meaning of the word ‘linear’. Let us consider the
ordinary functions f (x) of a real variable x. Sometimes all of the functions f (x) D ax C b are
said to be ‘linear’; sometimes only the functions f (x) D ax are considered ‘linear’. In the present
book, we follow the latter convention, so that the functions ax C b are said to be ‘affine linear’.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 13 — le-tex

�

�

�

�

�

�

1.6 Monotonic Functions 13

1.6
Monotonic Functions

We consider a function of n binary variables A i . We use the different values of
the vector (A 1, A 2, . . . , A n) as the coordinates of an n-dimensional hypercube. We
can represent a Boolean function by giving each corner of the hypercube a label
f (A 1, A 2, . . . , A n). We call a path that travels from the point (0, 0, . . . , 0) to the point

(1, 1, . . . , 1) via consecutive steps that each increase a single coordinate A i from 0
to 1 a climbing path. Such a path necessarily contains n steps, with each being an
edge of the hypercube. Note that:

� There are n possible choices for the first step,
� There are n � 1 possible choices for the second step,
� . . .
� There are n � j C 1 possible choices for the jth step.

This means that there are n! different climbing paths.
A Boolean function f (A 1, A 2, . . . , A n) is monotonic (or monotone or unate) iff

its value increases along each climbing path: f (A0
1, A0

2, . . . , A0
n) � f (A00

1, A00
2 , . . .,

A00
n) as soon as A0

i � A00
i for all i satisfying 1 � i � n. There is no closed formula

for the number of monotonic functions [7]. Neither Table 1.4 nor Table 1.5a nor
Table 1.5b is a truth table of a monotonic function. Indeed, for each of these three
functions, vertex (0, 0, 1) of the hypercube has a label of 1, whereas vertex (1, 0, 1) of
the hypercube has a label of 0, such that f does not increase along the climbing path
(0, 0, 0)–(0, 0, 1)–(1, 0, 1)–(1, 1, 1). In contrast, the function defined by Table 1.5c is
monotonic.

1.7
Boolean Derivative

Besides Boolean algebra, there is also Boolean calculus, which describes time-de-
pendencies for example. At this point, it is sufficient to mention the three so-called
subfunctions of a Boolean function f (A 1, A 2, . . . , A j �1, A j , A j C1, . . . , A n):

f 0(A 1, A 2, . . . , A j �1, A j , A j C1, . . . , A n) D
f (A 1, A 2, . . . , A j �1, 0, A j C1, . . . , A n)

f 00(A 1, A 2, . . . , A j �1, A j , A j C1, . . . , A n) D
f (A 1, A 2, . . . , A j �1, 1, A j C1, . . . , A n)

f 000(A 1, A 2, . . . , A j �1, A j , A j C1, . . . , A n) D f 0 ˚ f 00 .

All three functions are independent of A j , and are thus untrue functions of
A 1, A 2, . . . , A n. Sometimes [8, 9] f 000 is called the partial derivative of f with re-
spect to A j , and it is then denoted @ f

@A j
. The reason for this name may be made

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 14 — le-tex

�

�

�

�

�

�

14 1 Boolean Algebra

Table 1.6 Truth tables of the three subfunctions f 0, f 00 , and f 000 of the function f (A, B, C) of
Table 1.4.

BC f 0

0 0 0
0 1 1
1 0 1
1 1 0

(a)

BC f 00

0 0 1
0 1 0
1 0 1
1 1 0

(b)

BC f 000

0 0 1
0 1 1
1 0 0
1 1 0

(c)

clearer by

@ f

@A j

D f (A j D 1) ˚ f (A j D 0)
1 ˚ 0

,

which is a Boolean variant of the ordinary derivative of a real function f (x1, x2, . . . ,
xn):

@ f

@x j

D lim
a!0

f (x j D a) � f (x j D 0)
a � 0

.

We apply the above to the example function f (A, B, C) of Table 1.4 by choos-
ing A j to be equal to A. The subfunctions f 0 and f 00 are found by merely slic-
ing Table 1.4 into two halves, yielding Table 1.6a and Table 1.6b, respectively. The
subfunction f 000 is subsequently constructed by XORing the columns f 0 and f 00,
yielding Table 1.6c.

1.8
Boolean Decompositions

Subfunctions are particularly useful when implementing a Boolean function. As-
sume that we want to build a hardware circuit that realizes a function f of n vari-
ables. We have the following identities:

f D f 0 A j C f 00A j

D f 0 ˚ f 000A j . (1.3)

The former expression is called the Shannon decomposition (named after the
American engineer Claude Shannon); the latter expression is known as the Davio
decomposition (after the Belgian engineer Marc Davio).5) As the subfunctions f 0,

5) We limit ourselves here to the so-called ‘positive Davio decomposition’. We thus ignore the
‘negative Davio decomposition’ f 00 ˚ f 000 A j .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c01 — 2010/8/5 — 13:36 — page 15 — le-tex

�

�

�

�

�

�

1.9 Exercises for Chapter 1 15

not
and

f ’

’’f

jA for

and

and

f ’

jA
’’’f

forx

(a)

(b)

Figure 1.1 Circuit decompositions: (a) Shannon decomposition, (b) Davio decomposition.

and

and

A

B

C

1
f(A, B, C)xor

xor

B

Figure 1.2 Davio decomposition.

f 00, and f 000 are functions of only n � 1 variables, both identities allow us to re-
duce the original design problem to two smaller design problems. Applying such
a decomposition over and over again (each time with another variable A j) eventu-
ally allows the synthesis problem to be reduced to trivial functions (i.e., literals or
constants). Figure 1.1 shows the two circuit decompositions.

Figure 1.2 shows the result of applying the Davio decomposition to the example
function (Table 1.4) twice: once with A j D A (right side of the figure), and then
with A j D B (left side).

1.9
Exercises for Chapter 1

Exercise 1.1
XOR and XAND are injective in the first argument; OR, NOR, AND, and NAND are non-
injective in the first argument. Verify that the same properties hold in the second
argument (why is this the case?).

Exercise 1.2
Which of the 16 functions f (A, B) is both injective in the first argument and non-
injective in the second argument?

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 16 — le-tex

�

�

�

�

�

�

16 1 Boolean Algebra

Exercise 1.3
Prove the second identity in (1.1). Demonstrate that, if X and Y represent different
minterms, then this simplifies to

X C Y D X ˚ Y .

Exercise 1.4
Apply (1.1) in order to obtain (1.2).

Exercise 1.5
Verify the dual identities of (1.1):

X D 0 ˇ X

X Y D X ˇ Y ˇ (X C Y) .

Exercise 1.6
A Boolean function is said to be ‘even’ if it has an even number of 1s (and thus also
an even number of 0s) in its truth table. Otherwise, it is said to be ‘odd’. In other
words, an even function has an even number of terms in its minterm expansion,
while an odd function has an odd number of terms in its minterm expansion.
Demonstrate the following properties:

� If both f and g are even, then f ˚ g is even.
� If both f and g are odd, then f ˚ g is even.
� If f is even and g is odd, then f ˚ g is odd.

Exercise 1.7
Prove the property mentioned at the end of Section 1.3.3: that all balanced func-
tions lack the highest-degree term A 1A 2 . . . A n in their Reed–Muller expansions.
Demonstrate (with the help of a counterexample) that the inverse theorem (i.e., that
all functions lacking the highest-degree Reed–Muller term are balanced) is false.

Exercise 1.8
Find the minterm expansion, the maxterm expansion, the Reed–Muller expansion,
and the minimum ESOP expansions of the function f2(A, B) of Table 1.2.

Exercise 1.9
Check (1.3).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 17 — le-tex

�

�

�

�

�

�

17

2
Group Theory

2.1
Introduction

One very important mathematical tool for investigating reversible circuits and com-
puters is the group. For mathematicians, a group G is a combination of two things:

� A set S D fa, b, c, . . .g, and
� An operation Ω (involving two elements of the set).

However, the set and operation must fulfil four conditions. Applying the infix no-
tation for the bivariate function Ω, these conditions are:

� S must be closed:
aΩb 2 S .

� Ω must be associative:
(aΩb)Ω c D aΩ(bΩ c).

� S must have an identity element i:
aΩ i D a.

� Each element of S must have an inverse in S:
aΩ a�1 D i .

The number of elements in the set is called the order of the group.
We start with an example. The set of all 22n

Boolean functions of n variables (Sec-
tion 1.3) forms a group with respect to the operation XOR (and thus with Ω D XOR).
All four conditions are fulfilled:

� If f1 and f2 are Boolean functions, then f1 ˚ f2 is too.
� If f1, f2, and f3 are Boolean functions, then (f1 ˚ f2)˚ f3 equals f1 ˚(f2 ˚ f3).

Therefore, we simply write f1 ˚ f2 ˚ f3.
� There is an identity element i: the zero function 0. Indeed, if f is an arbitrary

function, then f ˚ 0 D 0 ˚ f D f .
� If f is an arbitrary function, f is its own inverse, as f ˚ f D 0.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 18 — le-tex

�

�

�

�

�

�

18 2 Group Theory

A counterexample is obtained by combining the same set with the OR operation.
We have:

� If f1 and f2 are Boolean functions, then f1 C f2 is too.
� If f1, f2, and f3 are Boolean functions, then (f1 C f2)C f3 equals f1C(f2 C f3).
� There is an identity element i D 0. If f is an arbitrary function, then f C 0 D

0 C f D f .

However, if f is an arbitrary function that is different from the zero function (and
thus there is at least one 1 in the output column of the truth table), then there is
no function g such that f C g D 0. Thus, the last group condition (existence of
an inverse) is not fulfilled. This once again illustrates the fundamental difference
between the XOR and NXOR operations on the one side, and the OR, NOR, AND, and
NAND operations on the other hand.

We now give a second example of a group. The set S contains only two elements:
the zero function 0 and one particular Boolean function f of n variables, with only
one 1 in the truth table’s output column. In other words, the minterm expansion
of f consists of a single minterm. Therefore, we call it a minterm function. For
a group, besides the set S D f0, f g, we also need a bivariate operation. The op-
eration Ω is again the XOR function. The reader is invited to verify that all group
conditions are fulfilled, such as the first group condition (in other words, that 0˚0,
0 ˚ f , f ˚ 0, and f ˚ f are in f0, f g). We may call the group a minterm group.
The order of the group is 2. Mathematicians call this group the ‘symmetric group
of degree 2’, which is denoted S2. In general, the symmetric group of degree n con-
sists of all possible permutations of n objects. It is denoted Sn and is of order n!
(i.e., the factorial of n). This will occupy center stage in the present book.

Below, we will drop the explicit rendering of the symbol Ω by writing ab instead
of aΩb. We also will call ab the product of a and b, even in cases where Ω is not
a multiplication. Note that ab is often not the same as ba. Groups where ab D
ba for all couples fa, bg are called commutative or Abelian groups (after the young
Norwegian mathematician Niels Abel, pioneer of the theory of finite groups). Most
of the groups we encounter in the present book are not Abelian. The group S2 is
Abelian; the groups Sn with n > 2 are not Abelian.

Two groups, G and H, are said to be isomorphic if they have the same order and
there is a one-to-one relationship g $ h between the elements g of G and the
elements h of H, such that g1 $ h1 and g2 $ h2 automatically implies g1g2 $
h1h2. In other words, the two groups have the same ‘product table’ (or ‘Cayley
table’, after the British mathematician Arthur Cayley).

We make a distinction between three kinds of groups according to group order.
There are:

� Finite groups (i.e., groups with a finite order), and
� Groups of infinite order, where we must distinguish between

– Groups with a denumerable (or countable) infinity of elements, and
– Groups with a nondenumerable (or uncountable) infinity of elements.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 19 — le-tex

�

�

�

�

�

�

2.2 Permutation Groups 19

Groups with a finite order or an order of denumerable infinity are called discrete

groups. Uncountably infinite groups are known as Lie groups (named after another
Norwegian mathematician, Sophus Lie, pioneer of the theory of infinite groups).
The order of an infinite discrete group equals the cardinality of the natural num-
bers N D f0, 1, 2, . . .g, and will be denoted @0, the aleph-null convention introduced
by the German mathematician Georg Cantor. The order of a Lie group equals the
cardinality of the real numbers R, and will be denoted either 1 or 1m , where m

is the dimension of the group space.
The three kinds of groups behave quite differently. In the present book we will

mainly focus on finite groups. We will only encounter infinite groups in Chap-
ters 5 and 7. To learn more about finite groups in general and symmetric groups in
particular, the reader is referred to appropriate textbooks [10–12]. For more on Lie
groups, the reader can consult some other textbooks [13–15]. Books on denumer-
ably infinite groups are rare. Some aspects of the subject are discussed by Kaplan-
sky [16].

We end this section by giving two examples of an infinite group. The first exam-
ple is a discrete group: the set S consists of all rational numbers of the form 2k

(where k is an arbitrary integer number), so S D ˚
. . . , 1

4 , 1
2 , 1, 2, 4, 8, . . .

�
, togeth-

er with the operation of ordinary multiplication. This group is isomorphic to the
infinite cyclic group Z. Its order is @0.

The second example is a Lie group: the set consists of all matrices of the form

�
1 0
0 exp(i θ)

�

(where i is the imaginary unit and θ is an arbitrary real number), together with the
operation of matrix multiplication. This particular group is isomorphic to the Lie
group U(1), i.e., the so-called unitary group of degree 1. Its order is 11.

2.2
Permutation Groups

The study of permutation groups is interesting because any finite group is iso-
morphic to some permutation group. A permutation group consists of a set of
permutations together with the operation of cascading. Tables 2.1a and 2.1b show
two different permutations of the eight objects 1, 2, 3, 4, 5, 6, 7, and 8. Table 2.1c
gives the permutation resulting from the cascading of the previous two permu-
tations. In order to deduce Table 2.1c from Tables 2.1a and 2.1b, we proceed
as follows. The first row of Table 2.1a indicates that ‘1 is mapped to 2’, where-
as the second row of Table 2.1b shows that ‘2 is mapped to 3’. Together, this
says that ‘1 is mapped to 3’ (to be filled in) in the first row of Table 2.1c. We
can equally well say that, according to Table 2.1a, ‘2 is the image of 1’, where-
as, according to Table 2.1b, ‘3 is the image of 2’. Taken together, these indicate
that ‘3 is the image of the image of 1’ (to be filled in) in the first row of Ta-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 20 — le-tex

�

�

�

�

�

�

20 2 Group Theory

ble 2.1c. Proceeding in this manner for all eight rows of Table 2.1a yields the full
Table 2.1c.

The correspondence table notation is usually considered too cumbersome for
permutations, and is therefore replaced by the cycle notation. The latter consists
of a product of disjoint cycles. An example of a cycle is (1,2,3), meaning that 1
is mapped to 2, 2 is mapped to 3, and 3 is mapped to 1. Table 2.1a is written as
(1,2,3)(5,6), whereas Table 2.1b is written as (2,3)(4,8)(5,6), and Table 2.1c
as (1,3)(4,8). Cascading is represented by a multiplication symbol, such as *.
Thus we have the equality:

(1,2,3)(5,6)*(2,3)(4,8)(5,6) D (1,3)(4,8) . (2.1)

Permutations can also be represented by permutation matrices; that is, square
matrices where all entries are either 0 or 1 and the entries on each line sum to 1. By
definition, a line sum is either a row sum or a column sum. Permutations of n ob-
jects are represented by n � n permutation matrices. For example, (2.1) can be
rewritten as a matrix equation:

0
BBBBBBBBBBB@

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

1
CCCCCCCCCCCA

D

0
BBBBBBBBBBB@

0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

1
CCCCCCCCCCCA

.

As an example of a permutation group, we consider the group of all permuta-
tions of three objects 1, 2, and 3. This is of order 3! D 6. Its six elements are the six
permutations (), (1,2), (1,3), (2,3), (1,2,3), and (1,3,2). It is the symmetric
group of degree 3, denoted S3. Note that the element () is the trivial permutation
that maps each object to itself. In other words: no object is ‘moved’ by (). This ele-
ment is the identity element i of the permutation group. Its matrix representation
is a diagonal matrix, with 1s exclusively on the diagonal.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 21 — le-tex

�

�

�

�

�

�

2.3 Matrix Groups 21

Table 2.1 Correspondence tables for three permutations of eight objects.

A P

1 2
2 3
3 1
4 4
5 6
6 5
7 7
8 8

(a)

A P

1 1
2 3
3 2
4 8
5 6
6 5
7 7
8 4

(b)

A P

1 3
2 2
3 1
4 8
5 5
6 6
7 7
8 4

(c)

2.3
Matrix Groups

The study of matrix groups is also of interest, because any finite group is isomor-
phic to some matrix group and many infinite groups too. A matrix group consists
of a set of square matrices together with the operation of matrix multiplication. The
reader is invited to check that the following six 2 � 2 matrices form a group:

�
1 0
0 1

�
,

�
1/2 �p

3/2
�p

3/2 �1/2

�
,

�
1/2

p
3/2p

3/2 �1/2

�
,

��1 0
0 1

�
,

��1/2 �p
3/2p

3/2 �1/2

�
, and

� �1/2
p

3/2
�p

3/2 �1/2

�
. (2.2)

Surprisingly, this group is isomorphic to the group of the six 3 � 3 permutation
matrices of S3:

0
@1 0 0

0 1 0
0 0 1

1
A ,

0
@0 1 0

1 0 0
0 0 1

1
A ,

0
@0 0 1

0 1 0
1 0 0

1
A ,

0
@1 0 0

0 0 1
0 1 0

1
A ,

0
@0 1 0

0 0 1
1 0 0

1
A , and

0
@0 0 1

1 0 0
0 1 0

1
A .

Any matrix group consists of merely invertible matrices (also known as nonsin-
gular matrices). A singular matrix (i.e., a matrix that has a determinant of zero) has
no inverse.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 22 — le-tex

�

�

�

�

�

�

22 2 Group Theory

2.4
Group Generators

Generators of a group consist of any subset fa, b, c, . . .g of the set S such that all the
other elements of S can be written as one of the ‘products’ aa, ab, ac, . . . , ba, . . . ,
aaa, aab, . . . Surprisingly, the whole permutation group Sn can be generated us-
ing only two (well-chosen) generators, such as the two permutations (1,2) and
(1,2,3,... ,n). For example, for the case n D 3, we have the two generators
a D (1,2) and b D (1,2,3). All six members of S3 can be written as a product:

() D 1

(1,2) D a

(1,3) D a*b

(2,3) D b*a

(1,2,3) D b

(1,3,2) D b*b .

Such decomposition is not unique. We may for example, write () D a*a and also
(1,3,2) D a*b*a.

As a second example, we consider all minterm functions f1, f2, f4, and f8 from
Table 1.2, together with the operation XOR. These do not form a group, as the set is
not closed. For example, f1 ˚ f2 equals f3, which is not in the set f f1, f2, f4, f8g.
The four minterms generate the full group f f0, f1, f2, f3, . . . , f15g. In general, the
2n minterms of n variables, together with the operation XOR, generate the group of
all 22n

functions of n variables.
Generators of a group are interesting since they act as building blocks for con-

structing arbitrary elements of the group. With a small set of building blocks (of-
ten called the ‘library’), we can construct a huge number of combinations. It is
sufficient to recall here that all n! permutations can be built by successive applica-
tions of only two bricks: a D (1,2) and b D (1,2,3,...,n). However, choosing
such a small library is not a clever approach, since it can lead to very long cas-
cades when realizing a particular permutation. For example, the permutation of
Table 2.1b (where n D 8) requires at least 23 blocks:

(2,3)(4,8)(5,6) D b2ababab2ababab3ab3ab .

Therefore, it is often convenient to choose larger sets of generators, which guaran-
tee shorter products. The challenge to the designer is to choose a clever generator
set (i.e., not too small, but also not too large). A substantial part of the present
book is devoted to this task. The task of the circuit designer is aided by the avail-
ability of dedicated computer algebra packages. Indeed, besides well-known com-
puter algebra languages (such as Reduce, Maple, Mathematica, etc.), there are spe-
cial-purpose languages that are dedicated to group theory. For finite groups, we
should mention Magma [17, 18], Cayley [18, 19], and GAP [20]. For Lie groups, there
is LiE [21, 22]. Many of the results given in this book were either discovered or
verified by means of GAP.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 23 — le-tex

�

�

�

�

�

�

2.5 Subgroups 23

2.5
Subgroups

One important aspect of a group is its subgroups. For example, the two matrices

�
1 0
0 1

�
and

��1 0
0 1

�
,

which form a subset of the set (2.2), form a group of their own, isomorphic to S2,
the group of permutations of two objects. We say that this two-element group is a
subgroup of the six-element group. We write:

S2 � S3 ,

which we may read as either ‘S2 is a subgroup of S3’ or ‘S3 is a supergroup of S2’.
If G is finite and a supergroup of H, then the ratio

order(G)
order(H)

is called the index of H in G. Lagrange’s theorem (named after the Italian/French
mathematician/astronomer Joseph-Louis Lagrange) says that such an index is al-
ways an integer. In other words, the order of a subgroup divides the order of its
supergroup. This theorem strongly restricts the number of subgroups of a giv-
en group. Nevertheless, most groups have a wealth of subgroups. For example,
the group S4 (of order 4! D 24) has 30 different subgroups, whereas S8 (of order
8! D 40 320) has 151 221 subgroups [23].

2.6
Young Subgroups

Symmetric groups have a special class of subgroups, called Young subgroups (after
the English priest/mathematician Alfred Young). These take advantage of the no-
tion of the direct product of two groups. We introduce this product by giving an
example of a Young subgroup of S5. Assume that we have five objects a, b, c, d,
and e. There are a total of 5! D 120 permutations of these objects. However, let us
also impose a restriction: we will only allow permutations that permute a, b, and c
among each other and (simultaneously) permute d and e among each other. This
allows 3! permutations of three objects, while (independently) allowing 2! permuta-
tions of two objects. The allowed permutations form a permutation group of order
3! � 2! D 12. We are allowed to ‘combine’ each element of S3 with each element of
S2. Therefore, the group is called a direct product of S3 and S2, denoted S3 � S2. We
write

S3 � S2 � S5 .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 24 — le-tex

�

�

�

�

�

�

24 2 Group Theory

The subgroup is based on a particular partition of the number 5:

3 C 2 D 5 .

In general, we may combine any group G1 with any group G2, . . . , with any group
Gm . Of course, we have

order(G1 � G2 � . . . � Gm) D order(G1) � order(G2) � . . . � order(Gm) .

As an example, we consider the group formed by the set of all 22n
Boolean func-

tions of n Boolean variables, together with the operation of XORing (see Sections 2.1
and 2.4). They form a group isomorphic to the direct product S2 �S2 � . . .�S2 with
2n factors, with order

order(S2 � S2 � . . . � S2) D (order(S2))2n D 22n

.

Each factor S2 refers to what was called a minterm group in Section 2.1.
A Young subgroup [24–26] of the symmetric group Sn is defined as any subgroup

that is isomorphic to Sn1 � Sn2 � . . . � Snk
, with (n1, n2, . . . , nk) being a partition of

the number n; that is, with

n1 C n2 C � � � C nk D n .

The order of this Young subgroup is n1!n2! . . . nk !.
The number of different Young subgroups of the group Sn is given by the Bell

number Bn (named after the Scottish/American mathematician Eric Bell). For ex-
ample, the group S4 has B4 D 15 Young subgroups:

� One trivial subgroup isomorphic to S4,
� Three subgroups isomorphic to S2 � S2,
� Four subgroups isomorphic to S1 � S3,
� Six subgroups isomorphic to S1 � S1 � S2, and
� One trivial subgroup isomorphic to S1 � S1 � S1 � S1.

The group S8 has B8 D 4140 Young subgroups.
Because S1 is just the trivial group I with one element (i.e., the identity element i),

Young subgroups of the form S1 �Sk are often simply denoted by Sk . Finally, Young
subgroups of the form Sk � Sk � . . . � Sk (with m factors) will be written as Sm

k
.

2.7
Sylow p-Subgroups

Sylow p-subgroups, named after a third Norwegian group theorist, Ludwig Sylow,
comprise another peculiar kind of subgroup. Let us assume an arbitrary (i.e., not
necessarily symmetric) group G. Its order, G (just like any integer number larger
than 1), can be written as a prime factorization:

G D 2x2 3x3 5x5 . . . p xp . . . ,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 25 — le-tex

�

�

�

�

�

�

2.9 Closing Remarks 25

where all of the exponents xp are integers (either 0 or positive). In this case, any
subgroup H of G, with an order H that satisfies

H D p xp ,

is called a Sylow p-subgroup of G.

2.8
Cyclic Subgroups

We now consider an arbitrary element g of an arbitrary but finite group G, as well
as the sequence g, g2, g3, . . . Because of the closeness property of the group (see
Section 2.1), all of the powers g j are members of the group G. In order to guarantee
the finiteness of G, there must be an exponent n such that gn equals the identity
element i of G. Then, gnC1 is equal to g, whereas gnC2 is equal to g2, etc., and
there are only a finite number of different powers g j . Thus, the infinite sequence
fg, g2, g3, . . .g is periodic with a period of n. We call n the order of the element g. The
finite sequence fg, g2, g3, . . . , gng forms a subgroup of G that is isomorphic to the
group called the ‘cyclic group of degree n’ and denoted Zn . Because of Lagrange’s
theorem, any element g of G has an order that is a divisor of the group order.

The order of Zn is equal to n. We have

Zn � Sn ,

and, in particular,

Z2 D S2 .

All cyclic groups Zn are Abelian.

2.9
Closing Remarks

This book is strongly grounded in a group-theoretical approach. This may sur-
prise some readers. Group theory is sometimes considered to be overkill when dis-
cussing reversible computing. However, it is my feeling that groups in reversible
computing are not introduced, let alone invented. They are merely discovered. In-
deed, they are inherently present, whether one likes it or not. Unearthing them has
two benefits:

� We see reversible computing as an example of more general mathematical
schemes, and

� We can benefit from the many theorems discovered and tools developed by
group theorists.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 26 — le-tex

�

�

�

�

�

�

26 2 Group Theory

We discussed some of these theorems and tools above. More of them will be useful
when investigating reversible computers, such as cosets, double cosets, conjugated
subgroups, . . . In order to ensure that the present chapter is relatively brief, and to
allow us to focus on the subject of this book (i.e., reversible computers) as quickly
as possible, we will introduce these concepts later on, when we actually need them.

One final (practical) remark. In the sections above, we adopted some conventions
regarding group notation. For instance, a finite group is denoted by a bold-faced
capital; the order of a group is denoted by a capital; and an element of a group is
denoted by a lower-case letter. For example:

g 2 G

order(G) D G .

For the rest of this book, we will (whenever possible) respect this convention.

2.10
Exercises for Chapter 2

Exercise 2.1
Prove that, in a group, we do not have to make any distinction between a ‘right
identity element’ and a ‘left identity element’. In other words, if i1 and i2 are two
particular elements of a group, such that for all elements a of the group

both aΩ i1 D a and i2Ω a D a ,

then necessarily i1 D i2. This property also holds for non-Abelian groups!

Exercise 2.2
Prove that a group can only have one identity element. In other words, if i1 and i2

are two particular elements of a group, such that for all elements a of the group

both aΩ i1 D a and aΩ i2 D a ,

then necessarily i1 D i2.

Exercise 2.3
Prove that there is no distinction between ‘right inverse’ and ‘left inverse’.

Exercise 2.4
Prove that an element of a group can have only one inverse.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c02 — 2010/8/5 — 13:36 — page 27 — le-tex

�

�

�

�

�

�

2.10 Exercises for Chapter 2 27

Exercise 2.5
In S3 (see Sections 2.2 and 2.3), what is the inverse of each of the six elements?
In other words, what are ()�1, (1,2)�1, (1,3)�1, (2,3)�1, (1,2,3)�1, and
(1,3,2)�1? Or: what are

�
1 0
0 1

��1

,
�

1/2 �p
3/2

�p
3/2 �1/2

��1

,
�

1/2
p

3/2p
3/2 �1/2

��1

,

��1 0
0 1

��1

,
��1/2 �p

3/2p
3/2 �1/2

��1

, and
� �1/2

p
3/2

�p
3/2 �1/2

��1

?

Or: what are

0
@1 0 0

0 1 0
0 0 1

1
A

�1

,

0
@0 1 0

1 0 0
0 0 1

1
A

�1

,

0
@0 0 1

0 1 0
1 0 0

1
A

�1

,

0
@1 0 0

0 0 1
0 1 0

1
A

�1

,

0
@0 1 0

0 0 1
1 0 0

1
A

�1

, and

0
@0 0 1

1 0 0
0 1 0

1
A

�1

?

Exercise 2.6
In S3, what is the order of each of the six elements?

Exercise 2.7
A derangement is a permutation where no object is mapped to itself. In other
words, all objects are ‘moved’. Demonstrate that the derangements of n objects
do not form a subgroup of the group Sn ; that is, the group of all the permutations
of those n objects.

Exercise 2.8
Demonstrate that S3 is not Abelian, but that Z3 is Abelian.

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 29 — le-tex

�

�

�

�

�

�

29

3
Reversible Computing

3.1
Introduction

What is a reversible computer? Figure 3.1 explains by means of a counterexample.
We see a small calculator that has been designed for one particular task: computing
the sum of two numbers. This computation is logically irreversible because, if we
forget the input values (i.e., 3 and 1), knowledge of the output value (i.e., 4) is not
sufficient to recover the inputs, since 4 could equally well have been generated
from 2 C 2 or 4 C 0 or 0 C 4 or . . .

Figure 3.2 gives an actual example of a reversible computer. Again we have a
pocket calculator, designed for a particular task: computing the sum of and the dif-
ference between two numbers. This computation is reversible because, if we forget
the input values (3 and 1), knowledge of the output values (4 and 2) is sufficient to
recover the inputs. If A and B designate the two input numbers and P and Q the
two output numbers, then the knowledge that

P D A C B

Q D A � B (3.1)

is sufficient to be able to work out that

A D 1
2

(P C Q)

B D 1
2

(P � Q) .

Thus, the outputs contain enough information to reconstruct the inputs. In other
words: the outputs contain the same information as the inputs.

It is important to realize that all of the computers that are currently on the market
are irreversible. Thus, to perform an experiment with a reversible computer, we
must build such a machine ourselves. The building blocks of a digital computer
are called digital circuits. The building blocks of a digital circuit are called logic
gates. To build a reversible computer, the safest approach is to use only reversible
building-blocks, and thus exclusively reversible logic gates.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 30 — le-tex

�

�

�

�

�

�

30 3 Reversible Computing

3

1

4adding
computer

adding
computer 4

?

?

(a)

(b)

Figure 3.1 A logically irreversible computer.

3

1

4

2

3

1 2

4
adding & subtracting

computer

adding & subtracting
computer

(a)

(b)

Figure 3.2 A logically reversible computer.

In the present chapter, we will demonstrate the application of group theory to
the detailed design of reversible circuits from reversible gates. Such reversible logic
gates are distinguished from conventional logic gates by two properties:

� The number of output bits always equals the number of input bits, and
� For each pair of different input words, the two corresponding output words are

different.

For instance, it is clear that an AND gate (see the truth table in Table 1.3a) is not
reversible, as

� It has two input bits but only one output bit, and
� For three different input words (i.e., for 00, 01, and 10), the three corresponding

output words are equal.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 31 — le-tex

�

�

�

�

�

�

3.1 Introduction 31

Table 3.1 Truth tables of three reversible logic circuits of width 2: (a) an arbitrary reversible
circuit r, (b) the identity gate i, and (c) the inverse r�1 of circuit r.

AB P Q

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

(a)

AB P Q

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

(b)

AB P Q

0 0 0 0
0 1 1 1
1 0 0 1
1 1 1 0

(c)

not

Figure 3.3 The NOT gate.

If, for example, we know that the output of the AND gate is 0, but we have forgotten
the input values, knowledge of the output value is not sufficient to recover what
the inputs have been. Indeed, 0 could equally well have been 0 AND 0 or 0 AND 1
or 1 AND 0. Analogously, neither the OR gate (Table 1.3b) nor the NAND gate nor the
NOR gate are reversible.

In contrast, Table 1.1d is an example of a reversible gate: the NOT gate, also known
as the inverter. This building-block is usually represented by a cross; see Figure 3.3.
Table 3.1a gives another example of a reversible gate. Also here, the number of
inputs equals the number of outputs (two). This number is called the width or
logic width w of the reversible circuit r. The table gives all possible input words
(A, B). We can see how all of the corresponding output words (P, Q) are different.
Thus, the four (P, Q) words are merely a permutation of the four (A, B) words. This
particular truth table may be replaced by a set of w Boolean equations:

P(A, B) D A ˚ B

Q(A, B) D A .

This is equally well represented by the cycle notation (2,3,4) of the permutation
of the four objects 1, 2, 3, and 4 (i.e., the four objects 00, 01, 10, and 11).

In contrast to arbitrary logic circuits, reversible logic circuits form a group. Re-
member that, for a group, we need a set (S) as well as an operation under which
each pair (x , y) of elements of the set corresponds to a third element of the set
(written x y). In our case, the operation applied to the two circuits is the cascading
of the two circuits. Table 3.1b gives the truth table of the identity gate i (also known

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 32 — le-tex

�

�

�

�

�

�

32 3 Reversible Computing

as the follower), and Table 3.1c gives r�1; that is, the inverse of circuit r. The reader
can easily verify that both the cascade r r�1 and the cascade r�1r equal i.

Note that, in each of the truth tables of Table 3.1, the functions P(A, B) and
Q(A, B) are both balanced. It is not difficult to prove the general property that,
in a reversible truth table, all w functions P j (A 1, A 2, . . . , A w) are balanced.6) The
restriction that all columns P j are balanced is a necessary, though not sufficient,
condition for reversibility.

3.2
Reversible Circuits

All reversible circuits of the same width w (Figure 3.4) form a group. The truth table
of an arbitrary reversible circuit has 2w rows. As all of the output words have to be
different, they can merely be a repetition of the input words in a different order.
In other words, the 2w output words are a permutation of the 2w input words.
The (2w)! permutations of 2w objects form the reversible group R, isomorphic to
the symmetric group S2w . Thus there are exactly R(w) D (2w)! different reversible
logic circuits of width w. We recall here that the number 2w is called the degree
of the group and the number (2w)! is called the order of the group R. According to
Section 2.3, each element of R can be represented by a 2w �2w permutation matrix.
For example, Table 3.1a is represented by the 4 � 4 matrix0

BB@
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1
CCA .

For small values of w, the order R of the group is given in Table 3.2. It is well
known that the exponential function grows rapidly; it is also well known that the
factorial function grows rapidly. It thus is no surprise that R(w), a factorial of an
exponential, grows very rapidly. Stirling’s asymptotic formula

n! � p
2π nnC1/2e�n

(named after the Scottish mathematician James Stirling) is well known. The fol-
lowing inequalities [27]:

p
2πnnC1/2e�n < n! <

p
2πnnC1/2e�n

�
1 C 1

4n

�

contain somewhat more information. We use them to deduce an interval for the
order of the symmetric group S2w :

2
h

w� 1
log(2)

i
2w C w

2 C1
< (2w)! < 2

h
w� 1

log(2)

i
2w C w

2 C2 , (3.2)

6) Besides using the notation A, B, C, . . . for the input bits and P, Q, R , . . . for the output bits, we
will also use the letters A1, A2, . . . , A n for the inputs and P1, P2, . . . , Pn for the outputs whenever
this is more convenient. See also the footnote in Section 1.2.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 33 — le-tex

�

�

�

�

�

�

3.3 Conservative Circuits 33

A1 P1

P2

P3

2A

3A

PwA w

Figure 3.4 A circuit of logic width w.

Table 3.2 The number R of different reversible circuits, the number C of different conserva-
tive reversible circuits, the number L of different linear reversible circuits, the number AL of
different affine linear reversible circuits, the number E of different exchanging circuits, and the
number AE of different affine exchanging circuits, all as a function of the circuit width w.

w R C L AL E AE

1 2 1 1 2 1 2

2 24 2 6 24 2 8
3 40 320 36 168 1344 6 48

4 20 922 789 888 000 414 720 20 160 322 560 24 384

where ‘log’ stands for the natural logarithm. We note in passing that, in the prime
factorization of the order; that is, in

(2w)! D 2x2 3x3 5x5 . . . (3.3)

the exponent x2 of the prime factor 2 is easily computed: it equals the number of
even factors in the factorial 1 � 2 � 3 � 4 � � � � � (2w � 1) � 2w , augmented by the
number of quadruple factors in it, etc. Thus:

x2 D 2w

2
C 2w

4
C � � � C 1 D 2w � 1 . (3.4)

As discussed in Chapter 2, the symmetric group has a wealth of properties. For
example, it has a lot of subgroups, most of which have been studied in detail. Some
of these subgroups naturally make their appearance in the study of reversible com-
puting.

3.3
Conservative Circuits

One example of a subgroup of R is the subgroup C of conservative logic circuits.
Conservative gates have been studied by Sasao and Kinoshita [28], and conserva-
tive reversible gates have been studied by Fredkin and Toffoli [29] and by Cattaneo

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 34 — le-tex

�

�

�

�

�

�

34 3 Reversible Computing

et al. [30]. Table 3.3a gives the truth table of an example. In each of its rows, the
output (P, Q, R , . . .) contains a number of 1s equal to the number of 1s in the cor-
responding input (A, B, C, . . .). We see how 000 remains 000, whereas the objects
001, 010, and 100 are permuted among each other, and so are the three objects
011, 101, and 110, while 111 is fixed. Such permutations are elements of the direct
product S1 � S3 � S3 � S1, with an order equal to 1!3!3!1! D 36.

The conservative gates thus form a Young subgroup of S2w , isomorphic to S1 �
Sw �Sw(w�1)/2 �� � ��Sw �S1. This is based on the binomial partition of the number
2w :

2w D 1 C

w

1

!
C

w

2

!
C � � � C

w

w � 1

!
C 1 .

Table 3.2 gives C(w), the number of conservative logic circuits of width w.

3.4
Monotonic Circuits

A logic circuit is monotonic iff each of its outputs P, Q, . . . is a monotonic function
of the inputs A, B, . . . (see Section 1.6). The circuit of Table 3.3a is not monotonic.
Indeed, P(A, B, C) is not a monotonic function, as P(1, 1, 0) < P(0, 1, 0). In con-
trast, Table 3.3b is monotonic, as all three functions P(A, B, C), Q(A, B, C), and
R(A, B, C) are monotonic.

The reversible monotonic circuits of width w form a group; that is, a subgroup
of R. We will not discuss it here in detail, for reasons that will become clear later
(in Theorem C.5 of Appendix C).

3.5
Linear Circuits

One important subgroup of R is the subgroup of linear reversible circuits. Linear
reversible circuits have been studied in detail by Patel et al. [31]. A logic circuit is
linear iff each of its outputs P, Q, . . . is a linear function of the inputs A, B, . . . (see
Section 1.4). The reversible circuit of Table 3.3a is not linear. It can be written as a
set of three Boolean equations:

P D B ˚ AB ˚ AC

Q D A

R D C ˚ AB ˚ AC .

While the function Q(A, B, C) is linear, the function P(A, B, C) is clearly not (its
Reed–Muller expansion contains two second-degree terms). Table 3.3c, on the other

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 35 — le-tex

�

�

�

�

�

�

3.5 Linear Circuits 35

Table 3.3 Truth tables of four reversible logic circuits of width 3: (a) a conservative circuit,
(b) a monotonic circuit, (c) a linear circuit, and (d) an affine linear circuit.

ABC P QR

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 1 1 1

(a)

ABC P QR

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 1 1 1

(b)

ABC P QR

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 0 1 1

(c)

ABC P QR

0 0 0 1 0 0
0 0 1 1 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 0 1
1 1 1 1 1 1

(d)

hand, is an example of a linear circuit:

P D A ˚ B

Q D C

R D B .

This relationship may be written in matrix form:

0
@P

Q

R

1
A D

0
@1 1 0

0 0 1
0 1 0

1
A
0
@A

B

C

1
A . (3.5)

The relation between the inputs A, B, C, . . . and the outputs P, Q, R , . . . is thus
fully determined by means of a square w � w matrix (with all entries from B D
f0, 1g).

Linear reversible circuits form a group L that is isomorphic to what is called in
mathematics the general linear group GL(w, B). Its order equals 2(w�1)w/2w !2, where
w !2 is the bifactorial of w; the q-factorial is a generalization of the ordinary factorial
w ! D w !1:

w !q D 1(1 C q)(1 C q C q2) . . . (1 C q C � � � C qw�1) .

Appendix A provides a calculation of the order. Table 3.2 provides the number L(w)
of different linear reversible circuits. For large values of the logic width w, the or-
der of the group is of magnitude a2w2

, where a � 0.29. This is demonstrated in
Appendix B.

The group L of linear reversible circuits is thus isomorphic to the group of w � w

nonsingular square matrices with all entries equal to either 0 or 1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 36 — le-tex

�

�

�

�

�

�

36 3 Reversible Computing

3.6
Affine Linear Circuits

Table 3.3d is an example of an affine linear circuit:

P D 1 ˚ A ˚ B

Q D C

R D B .

All functions P(A, B, . . .), Q(A, B, . . .), . . . are affine linear (see Section 1.5). Such
a circuit is described by two matrices: a w � w square matrix and a w � 1 column
matrix, both containing entries from B D f0, 1g. Table 3.3d may be written as

0
@P

Q

R

1
A D

0
@1

0
0

1
A˚

0
@1 1 0

0 0 1
0 1 0

1
A
0
@A

B

C

1
A ,

where the XORing of two column vectors is simply defined as the bitwise XOR:

0
@X

Y

Z

1
A˚

0
@U

V

W

1
A D

0
@ X ˚ U

Y ˚ V

Z ˚ W

1
A .

Affine linear reversible circuits form a group AL that is isomorphic to what
is called in mathematics the affine general linear group AGL(w, B). Its order is
2(wC1)w/2 w !2. Table 3.2 gives order(AGL(w, B)); that is, the number AL(w) of
different affine linear reversible circuits.

Affine linear circuits are particularly interesting because of a property they do not

have. An arbitrary Boolean function can be synthesized by (loop-free and fanout-
free) wiring together a finite number of identical reversible gates, provided that
this type of gate is not affine linear. Appendix C gives the proof of this remarkable
theorem. The initial part of the proof (Appendix C.3) is due to Kerntopf [32], while
the latter part (Section C.4) is due to De Vos and Storme [33, 34]. In other words:
any reversible circuit that is not affine linear can be used as a universal building
block. Thus, affine-linear reversible circuits are ‘weak’ circuits. Indeed, any wiring
of affine linear circuits (reversible or not, identical or not) can only yield affine
linear Boolean functions as its outputs. We see from Table 3.2 that (at least for
w > 2) the vast majority of the reversible circuits are not affine linear and thus can
act as universal gates.

The group AL is simultaneously a supergroup of L and a subgroup of R:

R � AL � L .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 37 — le-tex

�

�

�

�

�

�

3.7 Exchange Gates 37

3.7
Exchange Gates

We now descend through the hierarchy of subgroups by imposing the rule that
each of the outputs equals one of the inputs. Table 3.4a is such a circuit:

P D B

Q D A

R D C , (3.6)

as depicted in Figure 3.5a. Such circuits are called exchangers (or exchange gates).
They form a subgroup E that is isomorphic to the symmetric group Sw of order w !
(this number is given in Table 3.2 too). The group is also isomorphic to the group
of w �w permutation matrices. This symmetric group should not be confused with
the symmetric group S2w of order (2w)!.

Like any reversible truth table, Table 3.4a can be seen as a permutation of its
2w rows. Because Table 3.4a represents an exchange gate, it can also be interpreted
as a permutaion of the w columns. Thus, the gate defined by the set (3.6) can be
described by a w � w permutation matrix, but also (just like any reversible circuit

Table 3.4 Truth tables of two reversible logic circuits of width 3: (a) an exchange gate and (b) an
affine exchange gate.

ABC P QR

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 1

(a)

ABC P QR

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 1 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 0 1
1 1 0 1 0 0
1 1 1 1 0 1

(b)

(a) (b) (c)

Figure 3.5 Three reversible circuits of width w D 3: (a) an exchange gate, (b) the identity gate,
and (c) an affine exchange gate.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 38 — le-tex

�

�

�

�

�

�

38 3 Reversible Computing

of width w) by a 2w � 2w permutation matrix:

0
@P

Q

R

1
A D

0
@0 1 0

1 0 0
0 0 1

1
A
0
@A

B

C

1
A and

0
BBBBBBBBBBB@

p

q

r

s

t

u

v

w

1
CCCCCCCCCCCA

D

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

a

b

c

d

e

f

g

h

1
CCCCCCCCCCCA

,

where a stands for 000, b stands for 001, . . . , and h stand for 111, and the same
for p , q, . . . Group theorists say that we have two different representations of the
same group here. In order to avoid confusion, in the present book, variables in the
w � w representation are denoted by uppercase letters, whereas variables in the
2w � 2w representation are denoted by lowercase letters. The distinction between
the w � w world and the 2w � 2w world is very important. It will reappear in the
present book again and again.

Because we have a permutation of w objects, we may use the cycle notation (Sec-
tion 2.2). However, in order to distinguish it from the permutation of 2w objects,
we will use semicolumns instead of commas. Thus, Table 3.4a is the permutation
(1;2), as the first and the second bits are interchanged. We may write:

(1;2) = (3,5)(4,6) ,

where (1;2) represents a permutation of the three truth table columns and
(3,5)(4,6) represents a permutation of the eight truth table rows.

Finally, we can impose the rule that each of the outputs equals the corresponding
input:

P D A

Q D B

R D C .

This results in the trivial subgroup I of order 1 (isomorphic to S1) consisting of just
one circuit; that is, the identity gate i (Figure 3.5b).

We have thus constructed a chain of subgroups:

R � AL � L � E � I (3.7)

isomorphic to

S2w � AGL(w, B) � GL(w, B) � Sw � I ,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 39 — le-tex

�

�

�

�

�

�

3.8 SWAP Gates 39

with the subsequent orders

(2w)! > 2(wC1)w/2w !2 > 2(w�1)w/2w !2 > w ! > 1 ,

where we have tacitly assumed w > 1. Here, the symbol � corresponds to is a

proper supergroup of. For the example of w D 3, this becomes:

S8 � AGL(3, B) � GL(3, B) � S3 � I ,

with the subsequent orders

40 320 > 1 344 > 168 > 6 > 1 .

3.8
SWAP Gates

Exchange gates where only two bit wires are interchanged are called SWAP gates.
There are (w

2) D w (w � 1)/2 such gates. In fact, Table 3.4a is a SWAP gate, as (3.6)
reveals that A and B are swapped.
SWAP gates do not form a group. Suffice it to say that the cascade of two SWAP

gates is always an exchanger, but not necessarily a SWAP gate. For example,

(1;3)*(2;3)=(1;2;3) .

The SWAP gates form a set of generators of the exchangers.
Actually, there are two different symbols for the SWAP gate. Figure 3.6a is an icon

that is self-explanatory: two wires crossing each other. Figure 3.6b is an alternative
icon, which may be advantageous in two cases: when a circuit contains a lot of
SWAPs, and when two distant wires are swapped. In the present book, we will only
apply the iconography of Figure 3.6a.

3.9
Affine Exchange Gates

Just as linear circuits (Section 3.5) are generalized to affine linear circuits (Sec-
tion 3.6), we can generalize exchangers (Section 3.7) to affine exchangers. Table 3.4b
and Figure 3.5c is just such a circuit. In matrix notation it looks like0

@P

Q

R

1
A D

0
@0

1
0

1
A˚

0
@0 1 0

1 0 0
0 0 1

1
A
0
@A

B

C

1
A . (3.8)

(a) (b)

Figure 3.6 Two symbols for the same SWAP gate.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 40 — le-tex

�

�

�

�

�

�

40 3 Reversible Computing

They form the subgroup AE of order w !2w (this number AE(w) is also given in
Table 3.2).

This group is a subgroup of the group of affine linear circuits and a supergroup
of the group of exchangers. However, it cannot be inserted into chain (3.7), as it is
neither a subgroup nor a supergroup of the group of linear circuits. Instead of a
chain, we obtain what mathematicians call a partial ordering:

R � AL
�� L �
� AE �

�
E � I . (3.9)

Figure 3.7 illustrates this by means of a Venn diagram (named after the British
logician John Venn). Note that the group E is the intersection of L and AE:

E D L \ AE .

Affine exchangers allow us to illustrate the non-Abelian nature of reversible cir-
cuits. Figure 3.8 shows two circuits, each a cascade of an inverter and an exchanger.
By straightforward construction of the truth tables, we find the 2w � 2w permuta-
tion matrices of the two building-blocks; that is, the matrix I of the inverter and the
matrix E of the exchanger:

I D

0
BBBBBBBBBBB@

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

1
CCCCCCCCCCCA

and

E D

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCA

.

The reader can easily verify that the two matrix products give different results:

I E ¤ E I . (3.10)

Thus, neither matrix multiplication nor the cascading of reversible gates are com-
mutative. We now introduce another inverter (that inverts the first bit, not the sec-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 41 — le-tex

�

�

�

�

�

�

3.9 Affine Exchange Gates 41

R

L

E

I A L

A E

Figure 3.7 Venn diagram of reversible circuits, affine linear reversible circuits, linear reversible
circuits, affine exchange gates, exchange gates, and the identity gate.

(a) (b)

Figure 3.8 Two different cascades (with w D 3) of an inverter and an exchanger, representing
two different affine exchangers.

ond bit):

J D

0
BBBBBBBBBBB@

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

1
CCCCCCCCCCCA

.

The reader can now verify the equality

I E D E J .

See Figure 3.9.
Reading Figure 3.8a in the ‘conventional’ way (from left to right), the exchanger E

comes first and the inverter I comes after. Forward computations are performed in
that order. Thus, circuit schematics are read from left to right, according to en-
gineering tradition. Unfortunately, mathematicians follow the other convention,
writing and reading operations from right to left. This is why, on the left-hand
side of (3.10), the inverter is the matrix furthest to the left in the product and the
exchanger is the matrix furthest to the right. It is no surprise that the difference
between the two order conventions often leads to unpleasant errors. . .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 42 — le-tex

�

�

�

�

�

�

42 3 Reversible Computing

(a) (b)

Figure 3.9 Two different cascades (with w D 3) of an inverter and an exchanger, representing
the same affine exchanger.

Whereas Figure 3.8a can be written with w � w and w � 1 matrices by (3.8),
Figure 3.8b can be written with w � w and w � 1 matrices by0

@P

Q

R

1
A D

0
@0 1 0

1 0 0
0 0 1

1
A
2
4
0
@0

1
0

1
A˚

0
@A

B

C

1
A
3
5 ,

whereas Figure 3.9b can be written0
@P

Q

R

1
A D

0
@0 1 0

1 0 0
0 0 1

1
A
2
4
0
@1

0
0

1
A˚

0
@A

B

C

1
A
3
5 . (3.11)

3.10
Control Gates

We now introduce a special class of reversible logic circuits, called control gates.
They will play a pivotal role in the present book. We define them by means of their
relationship between the w outputs P1, P2, . . . , Pw and the w inputs A 1, A 2, . . . , A w .

In a control gate, we always have P1 D A 1, P2 D A 2, . . . , Pu D A u, where u is an
integer that obeys 0 < u < w . The other outputs, in other words PuC1, PuC2, . . . ,
and Pw , are controlled via some Boolean function f of the u inputs A 1, A 2, . . . , A u:

� If f (A 1, A 2, . . . , A u) D 0, then we additionally have PuC1 D A uC1, PuC2 D
A uC2, . . . , Pw D A w .

� If, however, f (A 1, A 2, . . . , A u) D 1, then the values of PuC1, PuC2, . . . , Pw fol-
low from the values of A uC1, A uC2, . . . , A w by the application of a reversible
circuit g of width v D w � u.

In other words, if f D 0, then we apply the w-bit follower to A 1, A 2, . . . , A w ; oth-
erwise, we apply the u-bit follower to A 1, A 2, . . . , A u, together with v-bit circuit g to
A uC1, A uC2, . . . , A w . See Figure 3.10.

We call A 1, A 2, . . . , A u the controlling bits and A uC1, A uC2, . . . , A uCv the con-
trolled bits. Whereas w is the width, u is the controlling width and v is the controlled
width. We call f the control function and g the controlled circuit.

We stress that any Boolean function f is allowed. There are 22u
Boolean func-

tions f of u binary variables. Together with the XOR operation, they form a group

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 43 — le-tex

�

�

�

�

�

�

3.10 Control Gates 43

g

g

f

f 1=

f 0=

Figure 3.10 A control gate with u D 3 and v D 2 (and thus w D 5).

Table 3.5 Truth tables of three reversible logic circuits of width 3: (a) an arbitrary circuit, (b) a controlled
NOT gate, and (c) a twin circuit.

A1A2 A3 P1P2P3

0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 0 1 1
1 1 0 0 1 0
1 1 1 0 0 1

(a)

A1 A2A3 P1P2P3

0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 1 1 0
1 1 1 1 1 1

(b)

A1 A2A3 P1P2P3

0 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 0 0 0
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(c)

isomorphic to the Young subgroup S2 �S2 �� � ��S2 D S2u

2 (see Section 2.6). There-
fore, the control gates with the same controlled gate g also form a group isomorphic
to S2u

2 . Its order is 22u
. However, the reader is invited to check that the group con-

ditions (Section 2.1) are only fulfilled provided g2 D i , where i denotes the v-bit
identity gate.7) Figure 3.11a illustrates the first group condition: the cascade of two
control gates (with the same controlled circuit g, one with a control function f1,
the other with a control function f2) is also a control gate (with a control function
f1 ˚ f2). Figure 3.11b illustrates the other group conditions: a control gate is its

own inverse, and the identity gate may be interpreted as the control gate with a
control function equal to the zero function.

We assign an icon to the control gate: Figure 3.12b (where u D 4 and
v D 2, such that w D 6). Note that each of the controlling bits is labeled

7) Circuits satisfying g2 D i are sometimes called involutary. For the case where g2 ¤ i, in other
words the case where order (g) ¤ 2, the reader is referred to the ‘control circuits’ of Section 7.5.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 44 — le-tex

�

�

�

�

�

�

44 3 Reversible Computing

gg

f f 0

g

g g

f1 f 2

g

ff1 2

(a)

(b)

Figure 3.11 Group properties of the control gates with u D v D 2 (and thus w D 4).

g g

f

(a) (b) (c)

Figure 3.12 Symbols for reversible circuits of width w D 6: (a) an arbitrary circuit, (b) a control
gate with an arbitrary control function f, and (c) a control gate with an AND control function.

(a) (b) (c) (d) (e)

Figure 3.13 Symbols for control gates: (a) arbitrary controlled NOT gate, (b) specific TOFFOLI
gate, (c) specific FEYNMAN gate, (d) arbitrary controlled SWAP gate, and (e) specific FREDKIN
gate.

with a small black square. However, in the special case where the controlling
function f (A 1, A 2, . . . , A u) is an AND of some controlling bits, whether inverted
or not, then circular tags are used: a filled circle if the variable is not invert-
ed, an open circle if the variable is inverted. Figure 3.12c shows an example:
f (A 1, A 2, A 3, A 4) D A 1A3A 4.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 45 — le-tex

�

�

�

�

�

�

3.10 Control Gates 45

We consider two special cases in detail:

� If v D 1, then there are only two possibilities for the controlled circuit g: either
it is the trivial follower or it is the inverter. We only have to consider the latter
choice. Then, in accordance with Figure 3.3, the controlled circuit g is represent-
ed by a cross: see Figure 3.13a. We call such gates controlled NOTs. An example
is given in Table 3.5b. Its controlling function is f (A 1, A 2) D A1 C A2. This
means: if A1 C A2 D 0 then P3 D A 3, else P3 D A3. Note that, in the truth table
of a controlled NOT, the first two rows are either permuted or not, the second
two rows are either permuted or not, etc. This reminds us of the fact that the
controlled NOTs form a subgroup that is isomorphic to S2 � S2 � � � � � S2 of order
22w�1

[35].
If the controlled NOT’s control function f is an AND function, we call it a TOFFOLI
gate (named after the Italian/American physicist/engineer Tommaso Toffoli, pi-
oneer of reversible computing [29]). In Figure 3.13b, we show an example with
the control function f D A 1A3A 4. Finally, if the control function is a single
variable (i.e., if f D A j), we call it a FEYNMAN gate [36, 37] (after the Ameri-
can physicist Richard Feynman, pioneer of quantum computing [38, 39]). See
Figure 3.13c.

� If v D 2, then, at first sight, there are 4! D 24 possibilities for the controlled
circuit g. However, the restriction g2 D i lowers the number of candidates to 10.
The most interesting case is where g is the SWAP gate. The controlled gate is
then represented by a crossover: see Figure 3.13d. We call such gates controlled
SWAPs. They form a subgroup of order 22w�2

.
If additionally the SWAP’s control function is an AND function, we call it a FREDKIN
gate (named after the American computer scientist Edward Fredkin, pioneer
of reversible computing [29]). In Figure 3.13e, we show an example with the
control function f D A 2A3. In accordance with Figure 3.6, a controlled SWAP
may also be written as in Figure 3.14b. This icon should not be confused with
two controlled NOTs (Figure 3.14c)! Anyway, we will not be using symbols in the
style of Figure 3.14b in this book.

Note that the functionality of the controlled NOT gate can be written as a set
of w Boolean equations:

P1 D A 1

P2 D A 2

. . .

Pw�1 D A w�1

Pw D f (A 1, A 2, . . . , A w�1) ˚ A w , (3.12)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 46 — le-tex

�

�

�

�

�

�

46 3 Reversible Computing

(a) (b) (c)

Figure 3.14 Two different icons for the controlled SWAP gate.

and so can the functionality of the controlled SWAP gate:

P1 D A 1

P2 D A 2

. . .

Pw�2 D A w�2

Pw�1 D f (A 1, A 2, . . . , A w�2)(A w�1 ˚ A w) ˚ A w�1

Pw D f (A 1, A 2, . . . , A w�2)(A w�1 ˚ A w) ˚ A w . (3.13)

Also note that, in (3.12), even if the control function f is not a balanced function
of A 1, A 2, . . . , A w�1, the function f ˚ A w is automatically a balanced function
of A 1, A 2, . . . , A w . Analogously, in (3.13), even if the control function f is not a
balanced function of A 1, A 2, . . . , A w�2, the functions f (A w�1 ˚ A w) ˚ A w�1 and
f (A w�1 ˚ A w) ˚ A w are automatically balanced functions of A 1, A 2, . . . , A w .

So far, we have discussed control gates where the uppermost u wires are the
controlling wires and the lowest v wires are the controlled wires. In particular, we
considered the controlled NOT, where bits #1, #2, . . . , and #w � 1 are the control-
ling bits, whereas bit #w is the controlled bit. However, there is nothing to pre-
vent us from also considering controlled NOTs where wire #k is controlled by wires
1, 2, . . . , k � 1, k C 1, . . . , w � 1, and w. Figure 3.15a shows an example for w D 5:
a controlled NOT where the NOT is on the fourth wire (k D 4) and the controlling
wires are #1, #2, #3, and #5.

Just as controlled NOTs where the controlled bit is equal to bit #w form a group
(of order 22w�1

), controlled NOTs where the controlled bit is equal to bit #k also
form a group (equally of order 22w�1

). If k ¤ w , then these two subgroups of R
are different. Because k can take any value from f1, 2, . . . , wg, we thus have w dif-

(a) (b)

Figure 3.15 A controlled NOT gate.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 47 — le-tex

�

�

�

�

�

�

3.11 Sylow Circuits 47

ferent subgroups Hk of R. Although all different, they greatly resemble each other.
These w subgroups are said to be conjugate to each other. This means that one
subgroup H j can be obtained from another one Hk as follows:

H j D cHk c�1 ,

where c is some particular member of the supergroup R. In our case we have that
c D c�1 is a SWAP gate exchanging the wires #j and #k. Figure 3.15b illustrates how
H4 can be deduced from H5 as the cascade cH5c�1.

We note that the present set of w conjugate subgroups overlap very little, as two
of the conjugate subgroups have only one element in common; that is, the identity
element (or w-bit follower):

H j \ Hk D I if j ¤ k .

This small overlap must nevertheless be taken into account when counting the
number of controlled NOTs with arbitrary controlled wires: there are not w times
22w�1

different control gates, only w (22w�1 �1)C1. These gates do not form a group.
They, in fact, form a set of generators that generate the full group R of reversible
circuits. In the next few sections, these building blocks will play a central role in
the synthesis of an arbitrary reversible circuit.

3.11
Sylow Circuits

We can generalize the idea of the controlled NOT by cascading w controlled NOTs
of ever-decreasing width: a controlled NOT of width w, one of width w � 1, . . . , and
finally one of unit width; see Figure 3.16 (with w D 4). Such a circuit obeys the set
of equations

P j D f j (A 1, A 2, . . . , A j �1) ˚ A j for 1 � j � w ,

where each of the w functions f j is an arbitrary Boolean function of the j � 1
binary variables A 1, A 2, . . . , and A j �1. The w functions f j are called the control
functions of the circuit. Table 3.6a gives an example (where w D 3):

P1 D 1 ˚ A 1

P2 D A 1 ˚ A 2

P3 D A1A 2 ˚ A 3 ,

with three control functions: f1 D 1, f2(A 1) D A 1, and f3(A 1, A 2) D A1A 2.
For the function f1, there are two possible choices (either f1 D 0 or f1 D 1); for

the function f2, there are four possible choices (f2 D 0, f2 D A 1, f 2 D 1 ˚ A 1,
and f2 D 1); for f3, there are 16 possible choices; etc. The total number of possible
combinations is thus

2 � 22 � 222 � � � � � 22w�1 D 21C2C22C���C2w�1 D 22w �1 .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 48 — le-tex

�

�

�

�

�

�

48 3 Reversible Computing

P1

f1

P2

f 2

P3

f 3

P4

f 4

A3

A 2

A1

4A

Figure 3.16 A Sylow cascade of w D 4 control gates.

Table 3.6 Truth table of two Sylow reversible logic circuits of width 3.

ABC P QR

0 0 0 1 0 0
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 0 0 0
1 1 1 0 0 1

(a)

ABC P QR

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

(b)

One can check that each combination gives a different (reversible) truth table. Tak-
en together, all of these circuits form a group [35]. The order of the group is thus
22w �1, which is exactly the factor 2x2 in the prime factorization (3.3)–(3.4). This
proves that the group is a Sylow 2-subgroup of the group R of reversible circuits of
width w. Because of Lagrange’s theorem (Section 2.5), no subgroup of R of order
2y with y > 2w � 1 can exist.

A controlled NOT, as described in the previous section (with a single control func-
tion f), is a special case where the first w � 1 functions f j equal zero but the
last function f w equals f. Thus, the controlled NOTs form a subgroup of the Sylow
group.

Reading from left to right, the crosses in Figure 3.16 are positioned from bottom
to top. Other orders are possible, with each ordering generating another Sylow
subgroup. These w ! Sylow groups are conjugate subgroups of the supergroup R. In
particular, ordering the crosses from top-left to bottom-right leads to an interesting
example: the circuit of Figure 3.17. Here, all control gates are TOFFOLI gates, as all
control functions are AND functions:

P j D A j C1A j C2 . . . A w ˚ A j for 1 � j � w � 1

Pw D 1 ˚ A w .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 49 — le-tex

�

�

�

�

�

�

3.12 Gate Cost and Logic Depth 49

P1

P2

P3A 3

A 2

A 1

Figure 3.17 A w D 3 Sylow cascade of TOFFOLI gates.

This is called the cyclic-shift circuit [40, 41]. The case w D 3 illustrates why:

P1 D A 2A 3 ˚ A 1

P2 D A 3 ˚ A 2

P3 D 1 ˚ A 3 .

Table 3.6b gives the corresponding truth table. It shows how the value of the output
word P QR equals the value of the input word one row below. The 2w words are
thus permuted according to the cyclic permutation (1, 2, 3, ..., 2w).

3.12
Gate Cost and Logic Depth

In the next few sections, we will discuss the synthesis problem in detail. Given a
truth table, synthesis involves constructing a cascade of simple circuits (i.e., gates)
that performs the functionality of the table. There are usually many solutions; there
is no unique synthesis. In order to evaluate the quality of a particular synthesis, we
can use various cost functions. The lower the cost of the design, the more efficient

the synthesis is considered to be.
Numerous cost functions have been defined for both conventional and re-

versible circuits, as well as for quantum circuits. We will present only two of
them here:

� The gate cost, and
� The logic depth.

We will introduce a third at a later stage (Section 4.6):

� The switch cost.

There are different definitions of gate cost in the literature on reversible circuits.
The price of an exchange gate in general and that of a SWAP gate in particular are
matters of debate. Some authors consider any exchange gate to be free of cost.
Other authors decompose an exchange circuit into a cascade of successive SWAP
gates and attribute a gate cost equal to 3 to each SWAP gate. The gate cost of 3
units results from the fact that a SWAP gate can be constructed from three cascaded

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 50 — le-tex

�

�

�

�

�

�

50 3 Reversible Computing

Figure 3.18 The equivalence of a SWAP gate and three FEYNMAN gates.

(a)

(b)

Figure 3.19 The same w D 4 logic circuit (a) before telescoping, (b) after telescoping.

FEYNMAN gates:�
0 1
1 0

�
D
�

1 1
0 1

��
1 0
1 1

��
1 1
0 1

�
(3.14)

where the SWAP and the FEYNMANs, being linear gates, are represented by 2 � 2 D
w � w matrices (Section 3.5); see Figure 3.18. For controlled SWAPs, a similar de-
composition (into three controlled NOTs) exists.

In the present book, we will apply the following simple rules:

� Any exchanger has a gate cost and a logic depth equal to 0.
� Any control gate (NOT gate, FEYNMAN gate, TOFFOLI gate, or other controlled NOT,

or FREDKIN gate, or other controlled SWAP) has a gate cost and logic depth equal
to 1.

Therefore, the total gate cost of a circuit is equal to the number of control gates in
it. Figure 3.19a shows an example: a sequence of twelve gates. We see a TOFFOLI
gate, two FEYNMAN gates, a NOT gate, a controlled NOT gate, a FEYNMAN gate, a NOT
gate, a FEYNMAN gate, a NOT gate, a FEYNMAN gate, a SWAP gate, and a TOFFOLI gate.
Considering that the SWAP gate does not contribute to the gate cost, the circuit has
a gate cost of 11.

Whereas the gate cost is a measure of the fabrication cost (and thus the pur-
chase price) of a circuit, the logic depth is more related to the exploitation cost
of the circuit. It provides a rough estimate of the effort and time necessary to
perform a computation with the computer circuit. We assume that each control
gate takes the same (short) time to perform its task. The logic depth gives a rough

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 51 — le-tex

�

�

�

�

�

�

3.13 Methods of Synthesis 51

estimate of the total time needed by the circuit to perform the full computation.
Nevertheless, the logic depth is not necessarily equal to the number of control
gates. It is an integer that is smaller than or equal to the gate cost. Figure 3.19
explains the difference between gate cost and logic depth. As mentioned above,
the circuit of Figure 3.19a has a gate cost equal to eleven. Nevertheless, the logic
depth is only 6. Indeed, some computations may be performed ‘simultaneously’.
By sliding some of the small gates of Figure 3.19a, we obtain (the completely equiv-
alent) Figure 3.19b. There, two or three simple computations are sometimes per-
formed ‘in parallel’. The whole calculation requires only six subsequent elementary
steps.

3.13
Methods of Synthesis

The task of finding the circuit (i.e., the appropriate cascade of gates) that realizes a
given truth table is known as the synthesis problem. However, we must distinguish
between two different synthesis problems:

� Either we want to implement an arbitrary (but given) Boolean function f (A 1,
A 2, . . . , A n); that is, we want to translate a truth table with n input columns and
one output column,

� Or we want to implement a given reversible Boolean truth table (with w input
columns and w output columns), i.e., we want to realize w Boolean functions
P1(A 1, A 2, . . . , A w), P2(A 1, A 2, . . . , A w), . . . , Pw (A 1, A 2, . . . , A w).

The former problem is discussed in Sections 3.20 to 3.22; we will discuss the latter
first, in Sections 3.14 to 3.19.

A lot of tools are available for the synthesis of conventional logic circuits (i.e.,
not necessarily reversible circuits). These tools can be applied to design reversible
circuits. However, such an approach has a few inconvenient aspects. The result-
ing circuit may provide the requested reversible logic function, but be built from
irreversible building blocks. For example, the (sub)circuits in Figure 1.1 contain
the irreversible AND gate, OR gate, and XOR gate. Such hardware can only be applied
in the forward direction. Backward computation is then impossible. Therefore, we
must take the necessary precautions to ensure that only reversible gates are applied.
For example, the Davio circuit of Figure 1.1b can be replaced by a single TOFFOLI
gate [42, 43]: see Figure 3.20.

f ’

jA

’’’f

f

Figure 3.20 Davio decomposition by means of a TOFFOLI gate.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 52 — le-tex

�

�

�

�

�

�

52 3 Reversible Computing

Even with the above precautions, conventional methods may not be the best
choice. Indeed, assume that we would like to synthesize the circuit of Table 3.5a.
We could apply Davio decompositions to each of the three logic functions
P1(A 1, A 2, A 3), P2(A 1, A 2, A 3), and P3(A 1, A 2, A 3). Then, however, we apply gen-
eral-purpose techniques that do not take advantage of several properties of these
functions P1, P2, and P3. Because Table 3.5a is reversible, the three columns P1,
P2, and P3 contain the same amount of information as the columns A 1, A 2, and
A 3 do. Therefore, P1(A 1, A 2, A 3), P2(A 1, A 2, A 3), and P3(A 1, A 2, A 3) are not in-
dependent functions, and so synthesizing them separately may be a nonoptimal
approach. Standard tools do not take into account that the eight output rows of
Table 3.5a form a permutation of the eight input rows. They not even take into
account that each of the functions P j (A 1, A 2, A 3) is balanced.

A lot of effort has been made to fix the above problems, often leading to suc-
cessful results. In the present book, however, we will start from scratch and look
for synthesis tools that are specially dedicated to reversible logic. Such tools may
exploit the fact that reversible circuits form a group. Indeed, group theory provides
us with a lot of theorems and tools. It would be a waste not to make use of them.
One tool – subgroups – has already been encountered in the previous chapter. In
the next few sections, we will introduce even more powerful tools: cosets and dou-

ble cosets. Analogous to the Davio decomposition (which reduces one big original
problem to two smaller problems; see Section 1.8), (double) cosets will enable us
to decompose the original synthesis problem into one, two, or four smaller prob-
lems.

3.14
Cosets

Subgroups are at the heart of cosets. If H (with order H) is a subgroup of the group
G (with order G), then H partitions G into G

H
classes, all of the same size H. These

equipartition classes are called cosets. The number of cosets is G
H

. Note that G
H

is always an integer because of Lagrange’s theorem (Section 2.5). The number is
called the index.

We can distinguish between left cosets and right cosets. The left coset of the
element a of G is defined as all of the elements of G that can be written as a cascade
ba, where b is an arbitrary element of H. This left coset forms an equipartition
class because of the following property: if c is member of the left coset of a, then a

is member of the left coset of c. Right cosets are defined in an analogous way. Note
that H itself is one of the left cosets of G, as well as one of its right cosets. Moreover,
H is the only coset that is a subgroup of G. Suffice it to say that H is the only coset
containing the identity element.

Why should we want to define cosets? The answer is that they are very handy in
synthesis. Assume that we want to make an arbitrary element of the group G in
hardware. Instead of solving this problem for each of the G cases, we only synthe-
size

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 53 — le-tex

�

�

�

�

�

�

3.14 Cosets 53

� The H circuits b of H, and
� A single representative r j of each of the G

H
�1 other left cosets

�
1 � j � G

H
� 1

�
.

If we can make each of these H C G
H

� 1 circuits, we can make all of the other
circuits of G by merely creating a short cascade br j . If we choose the subgroup H
cleverly, we can guarantee that H C G

H
� 1 is much smaller than G. We call the set

of H C G
H

� 1 building blocks the library for synthesizing the G circuits of G.
Choosing the subgroup H of G cleverly presents a challenge to the designer.

He/she can for example, aim to minimize the size of the library: d(H C G
H

�
1)/dH D 0, which leads to H D p

G . Of course, G will seldom have a subgroup
of order

p
G . In most cases,

p
G is not even an integer; it is an irrational num-

ber. In such cases, the designer has to look for a subgroup with an order that is
‘in the neighborhood’ of

p
G . Note in passing that the condition H D p

G can be
rewritten as

log(G)
log(H)

D 2 .

Ratios of logarithms of sizes will play more important parts in our story; see Ap-
pendix D.

Maslov and Dueck [44] present a method for synthesizing an arbitrary reversible
circuit of width 3. They propose as a subgroup H of the group G D S8 all circuits
with output (P, Q, R) equal (0, 0, 0) in the case of the input (A, B, C) D (0, 0, 0)
(thus having a truth table with the first row equal to 000 j 000). This subgroup is
isomorphic to S7. Thus, the supergroup has order G D 8! D 40 320, whereas the
subgroup has order H D 7! D 5040. The subgroup partitions the supergroup in-
to eight cosets. Interestingly, the procedure can be repeated: to design each of the
5040 members of S7, Maslov and Dueck choose a subgroup of S7. They chose all re-
versible circuits where (P, Q, R) equals (0, 0, 0) in the case (A, B, C) D (0, 0, 0) and
equals (0, 0, 1) in the case (A, B, C) D (0, 0, 1). This is a subgroup that is isomor-
phic to S6 of order 6! D 720, which partitions S7 into seven cosets, etc. Figure 3.21a
illustrates one step in the procedure: the 24 elements of S4 are fabricated by means
of the six elements of its subgroup S3 plus the representatives of the three other
cosets in which S4 is partitioned by S3. Thus, Maslov and Dueck apply the following
chain of subgroups:

S8 � S7 � S6 � S5 � S4 � S3 � S2 � S1 D I , (3.15)

with subsequent orders

40 320 > 5040 > 720 > 120 > 24 > 6 > 2 > 1 . (3.16)

To synthesize all 40 320 members of S8, they need a library of only (7 C 6 C . . .
C 1) C 1 D 29 elements (identity gate included). Their procedure also works for
an arbitrary logic width w. For an arbitrary circuit width w, the synthesis of all (2w)!
members of S2w requires a library of 22w�1�2w�1C1 elements, leading to cascades
that are never longer than 2w � 1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 54 — le-tex

�

�

�

�

�

�

54 3 Reversible Computing

2S x 2S3S

4S 4S

(a) (b)

Figure 3.21 The symmetric group S4 partitioned (a) as the four left cosets of S3, and (b) as the
three double cosets of S2 � S2. Each dot depicts an element of the supergroup, while the bold-
faced dots depict the elements of the subgroup and the representatives of the (double) cosets.

g h
Figure 3.22 A twin circuit of width 4: if A1 D 0 then apply g,
else apply h.

Van Rentergem et al. [41, 45] also present a coset method for synthesis, although
theirs is based on the following subgroup H: all circuits from R D S2w that possess
the property P1 D A 1. In other words, whereas Maslov and Dueck choose H with
truth tables where the first output row equals the first input row, Van Rentergem
et al. choose H with truth tables where the first output column equals the first input
column. Note that, in the truth table of such a circuit, the upper 2w�1 rows are
permuted among themselves, as are the bottom 2w�1 rows. Such circuits consist
of the cascade of two control gates with u D 1 and v D w � 1; see Figure 3.22. If
A 1 D 0, then g is applied to A 2, A 3, . . . , and A w ; otherwise (thus if A 1 D 1) h is
applied. We will call such a circuit a twin circuit. An example is given in Table 3.5c.

The twin circuits form a subgroup that is isomorphic to S2w�1� S2w�1 . The twin
circuits of width 3 form a group isomorphic to S4 � S4 D S2

4 of order (4!)2 D
576. The subgroup S2

4 partitions its supergroup S8 into 70 cosets. Like the Maslov–
Dueck approach, the present decomposition can be applied recursively. Indeed, the
members of S4 are subsequently partitioned into six cosets using its subgroup S2

2,
etc. Thus, finally, Van Rentergem et al. apply the following chain of subgroups:

S8 � S2
4 � S4

2 � S8
1 D I , (3.17)

with subsequent orders

40 320 > 576 > 16 > 1 . (3.18)

The reader can easily generalize to an arbitrary value of w.
If we denote 2w by n, then Dueck et al. apply the subgroup Sn�1 of the group Sn ,

whereas Van Rentergem et al. apply the subgroup S n
2

� S n
2
. We note that both the

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 55 — le-tex

�

�

�

�

�

�

3.15 Double Cosets 55

group Sn�1 (which can also be written Sn�1 �S1) and the group S n
2

�S n
2

are Young
subgroups of Sn . See Section 2.6.

3.15
Double Cosets

Double cosets are even more powerful than cosets. The double coset of a, element
of G, is defined as the set of all elements of G that can be written as a cascade b1ab2,
where both b1 and b2 are members of the subgroup H. One surprising fact is that,
in general, the double cosets into which G is partitioned by H are of different sizes
(ranging from H to H2). Therefore, the number of double cosets into which G is
partitioned by H is not easy to predict. It is some number between G

H2 and G
H

. This
number is much smaller than G

H
, leading to the (appreciated!) fact that there are

far fewer double cosets than there are cosets. This results in smaller libraries for
synthesis. However, there is a price to pay for this small library. Indeed, if the chain
of subgroups considered is of length m, then the length of the synthesized cascade
(i.e., the logic depth) is 2m � 1 (instead of m, as in single coset synthesis).

The subgroup Sn�1 partitions its supergroup Sn into only two double cosets,
a small one of size (n � 1)! and a large one of size (n � 1)!(n � 1). Therefore, a
double coset approach using the Maslov–Dueck subgroup chain (3.15) needs only
2w library elements. However, a synthesized cascade can be 22w � 1 gates long.

To address the problem of synthesizing all members of S8, Van Rentergem, De
Vos and Storme [46] choose the double cosets of the subgroup obeying P1 D A 1

(and discussed in the previous section). They conclude that, to synthesize all 40 320
members of S8, they need a library of only (4 C 2 C 1) C 1 D 8 elements. For an
arbitrary circuit width w, the synthesis of all (2w)! members of S2w requires a library
of 2w elements.

Figure 3.21b illustrates one step in the procedure: the 24 elements of S4 are fabri-
cated by means of the four elements of its subgroup S2 �S2 plus the representatives
of the two other double cosets in which S4 is partitioned by S2 � S2. Figure 3.23a
shows how an arbitrary member g of S16 is decomposed with the help of two mem-
bers (b1 and b2) of S8 � S8 and one representative of the double coset of g. Van
Rentergem et al. have demonstrated that it is always possible to construct a repre-
sentative that is a controlled NOT gate:

P1 D f (A 2, A 3, . . . , A w) ˚ A 1

P2 D A 2

P3 D A 3

.

Pw D A w ,

where A 1 is the controlled bit (k D 1 in Section 3.10). A proof is given in Ap-
pendix E. The proof is based on the following remarkable theorem from combina-
torics:

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 56 — le-tex

�

�

�

�

�

�

56 3 Reversible Computing

(a)

(b)

Figure 3.23 An arbitrary circuit g (member of the group S16), decomposed as b1 ab2 with the
help of double cosets generated by (a) its subgroup S2

8 and (b) its subgroup S8
2.

If an integer n can be factorized as p � q, then any permutation of n objects can
be performed by subsequently applying

� q permutations, each of p objects,
� p permutations, each of q objects, and
� q permutations, each of p objects.

This theorem is (one of the many variants of) Birkhoff’s theorem, named after the
American mathematician Garrett Birkhoff. In particular, the above circuit decom-
position is based on the theorem for the special case n D 2w , p D 2w�1, and thus
q D 2.

We conclude that the present synthesis of an arbitrary circuit of width w consists
of the cascade of

� A first twin circuit,
� A controlled NOT gate, and
� A second twin circuit.

We illustrate the procedure with an example where G D S8 and H is isomorphic
to S2

4, and thus G D 40 320 and H D 242 D 576. We choose the truth table
of Table 3.5a. Figure 3.24a shows the result of repeatedly applying the procedure
until all controlled circuits are members of S2; that is, they are equal to either the
one-bit identity gate or the one-bit inverter. The nested schematic can easily be
translated into a chain of controlled NOTs; in other words, the conventional way of
writing down a reversible circuit;8) see Figure 3.24b. This particular circuit consists
of eight controlled NOT gates, of which seven are simply TOFFOLI gates. Both the
gate cost and the logic depth of circuit 3.24b is therefore 8. When we apply the same
procedure to each of the 8! = 40 320 circuits of the group S8, we obtain a statistical

8) The reader should note that there is a handy special-purpose LATEX package, called Q-Circuit, for
writing such reversible (or quantum) networks [47]. However, that package was not used in this
book.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 57 — le-tex

�

�

�

�

�

�

3.16 The Synthesis Algorithm 57

A
B
C

P
Q
R

B
C

A P

R
Q

(a)

(b)

Figure 3.24 Decomposition of the example circuit of width 3 (Table 3.5a): (a) as nested control
gates; (b) as a chain of controlled NOTs.

Figure 3.25 Photomicrograph (700 µm � 100 µm) of a 0.35-µm constructal reversible adder.

distribution of gate costs, ranging from 0 to 19, with an average gate cost of about
10.1.

The recursive procedure is illustrated by Figure 3.25, which shows a hardware
implementation of a w D 4 circuit in silicon technology [48]. Although the de-
tails of such electronic implementations will be discussed in the next chapter, this
photograph is shown here because it reveals the basic structure of the synthesis
procedure. We see the controlled NOT gate, representative of the double coset, in
the middle. Around it are four satellites that form the two twin circuits (compare
with Figure 3.23a). In the middle of each satellite circuit, we again see a controlled
NOT surrounded by four blocks, etc. The photograph reveals the fractal structure
of the circuit. According to the proposal by Bejan [49], this is termed constructal

geometry (instead of fractal geometry).
Finally, for an arbitrary w, we note that the present double coset approach may

end up with a chain of cost of the order 4w . Detailed calculations [50] reveal that
both the gate cost and the logic depth are 1

3 (4w � 1) or less.

3.16
The Synthesis Algorithm

Instead of applying a subgroup H isomorphic to the Young subgroup S2w�1 �
S2w�1 D S2

2w�1 and taking in each double coset a representative which is a member
of S2 � S2 � � � � � S2 D S2w�1

2 , we can also work the other way around: choose a
subgroup H isomorphic to the Young subgroup S2w�1

2 and check whether there is
a representative that is a member of S2

2w�1 in each double coset; see Figure 3.23b.
Indeed, this is always possible [51–53]. Again, a proof is provided by Birkhoff’s
theorem (Appendix E), but this time with n D 2w , p D 2, and thus q D 2w�1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 58 — le-tex

�

�

�

�

�

�

58 3 Reversible Computing

Therefore, we can conclude that a synthesis of an arbitrary circuit of width w can
consist of the cascade of

� A first controlled NOT gate,
� A twin circuit, and
� A second controlled NOT gate.

Note that Figure 3.23b is like Figure 3.23a inside out. We say that the two circuits
are each other’s dual. They are indeed based on two different Young subgroups.
These subgroups are based on two dual partitions of the number 2w (i.e., the degree
of the supergroup S2w):

2w D 2w�1 C 2w�1

D 2 C 2 C � � � C 2 (2w�1 terms) .

The synthesis based on the former partition is discussed in the previous section,
and its detailed synthesis algorithm is given in [46]. Because the latter partition
leads to a far more efficient synthesis, it is much more important. Therefore, we
now discuss the synthesis algorithm [51, 52] obtained using the latter partition in
detail.

3.16.1
Basic Idea of the Algorithm

In the algorithm, we use notations like A i(j), where the subscript i refers to the
column in the truth table, whereas the number j refers to the row. Thus, these coun-
ters obey 1 � i � w and 1 � j � 2w . To find the three parts of the decomposition
as in Figure 3.23b, we proceed as follows. We add two extra sets of columns F and J

to the given truth table (consisting of w input columns A and w output columns P).
These are filled in three steps:

� First, we fill in the w � 1 columns F2, F3, . . . , Fw by merely copying columns
A 2, A 3, . . . , A w ; analogously, we fill in the w �1 columns J2, J3, . . . , Jw by mere-
ly copying columns P2, P3, . . . , Pw .

� We then fill in the remaining two columns F1 and J1:
– We construct a coil of 0s and 1s, starting from F1(1) D 0;
– Then we construct a second coil, starting from the unfilled F1(j) with the

lowest j, etc., until all F1 (and thus also all J1) are filled in.

The coil referred to above consists of a finite number of ‘windings’. Here, a winding
is a four-bit sequence F1(k) D X , F1(l) D X , J1(l) D X , and J1(m) D X , where
the row number l results from the condition that the string F2(l), F3(l), . . . , Fw (l)
must be equal to the string F2(k), F3(k), . . . , Fw (k), and where the row number m

results from the condition that the string J2(m), J3(m), . . . , Jw (m) must be equal to
the string J2(l), J3(l), . . . , Jw (l).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 59 — le-tex

�

�

�

�

�

�

3.16 The Synthesis Algorithm 59

0 0
0 1
1 0
1 1

1A 2A 1F 2F

0 0
1 1
1 0
0 1

1J 2J

0 1
1 1
1 0
0 0

1P 2P

0 1
1 1
0 0
1 0

Figure 3.26 A synthesis according to the basic algorithm (w D 2): expanded truth table.

Although the above text might suggest that the algorithm is complicated, it
is in fact very straightforward. Figure 3.26 provides an illustration of this fact,
by showing in detail the synthesis of a reversible circuit of width w D 2; that
is, the circuit with two inputs (A 1 and A 2) and two outputs (P1 D A 2 and
P2 D A1 in this particular case). First, we insert the four empty columns (F1, F2)
and (J1, J2) between the columns (A 1, A 2) and (P1, P2) of the truth table. Sub-
sequently, columns F2 and J2 are filled by simply copying columns A 2 and P2,
respectively. This step is displayed in boldface. Next comes the tricky part: filling
the columns F1 and J1. To do this, we start at F1(1). We can set this bit arbitrarily,
but we will choose to set it to 0. This starting choice is marked by a small square
in Figure 3.26. As a consequence, we can automatically fill a lot of other bits into
columns F1 and J1. Indeed, as all computations need to be reversible, F1(1) D 0
automatically leads to F1(3) D 1. Then we impose J1(3) D F1(3); that is, J1(3) D 1.
Again, reversibility requires that J1(3) D 1 infers J1(4) D 0. . . , and so on, until we
come back to the starting point F1(1). The arrows in Figure 3.26 show the order of
filling. Everything is filled in when the route followed closes up, so this synthesis
is finished after a single coil (with two windings). This example illustrates that,
during the application of the algorithm, we ‘walk in circles’ while assigning the bit
sequence

0, 1, 1, 0, 0, 1, 1, . . . , 1, 1, 0, 0, 1, 1, 0 .

If the first coil is closed before the two columns J1 and F1 are completely filled, the
designer just starts a second coil, and so on.

The fact that the above algorithm always comes to an end with the extended
truth table being completely filled provides additional proof that the theorem of
Appendix E is true for the special case p D 2 (and thus q D 2w�1).

As a result, the algorithm yields a decomposition of an arbitrary reversible cir-
cuit a (Figure 3.27a) into the desired cascade (Figure 3.27b) of

� A first controlled NOT gate with the controlled bit on the first wire,
� A twin circuit a1 with the first bit left unaffected (its P1 D its A 1), and
� A second controlled NOT gate with the controlled bit on the first wire.

Note that circuit a1 in Figure 3.27b is simpler than circuit a in Figure 3.27a, as a1

obeys P1 D A 1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 60 — le-tex

�

�

�

�

�

�

60 3 Reversible Computing

2a

3a

a

a1

(a)

(b)

(c)

(d)

(e)

Figure 3.27 Step-by-step decomposition of a reversible logic circuit of width w D 4: (a) original
logic circuit; (b), (c), and (d) intermediate steps; (e) final decomposition.

3.16.2
Working Out the Algorithm

The algorithm can now be ‘deepened’ as follows. By applying the decomposition of
a1 into three circuits, we obtain Figure 3.27c, where the circuit a2 is again simpler
than the circuit a1, because it fulfils both P1 D A 1 and P2 D A 2. We continue like
this, until we obtain Figure 3.27d, where the circuit aw�1 obeys P1 D A 1, P2 D A 2,
. . . , and Pw�1 D A w�1. These properties reveal that aw�1 is simply a control gate
with a controlled bit A w . Therefore, Figure 3.27d is equivalent to Figure 3.27e,
such that we have decomposed a into 2w � 1 controlled NOT gates. This procedure
automatically leads us to the detailed algorithm.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 61 — le-tex

�

�

�

�

�

�

3.16 The Synthesis Algorithm 61

We add to the given truth table (consisting of w input columns A and w output
columns P) not two extra sets of columns, but 2(w � 1) sets of columns. We call
them A1, A2, . . . , Aw�2, Aw�1, P w�1, P w�2, . . . , P2, and P1. Together they make
2(w � 1)w new columns. These are filled in according to the following steps:

� First, we fill all A1 columns except column A1
1 by copying the w � 1 correspond-

ing A columns; analogously, we fill all P1 columns except column P1
1 by copying

the w � 1 corresponding P columns.
� Then we fill the two columns A1

1 and P1
1 by constructing a coil starting from bit

A1
1(1), and then constructing a new coil starting at the unfilled A1

1(j) with the
lowest j, etc., until all A1

1 (and thus also all P1
1) are filled in.

� Then, we fill all A2 columns except column A2
2 by copying the w � 1 corre-

sponding A1 columns; analogously, we fill all P2 columns except column P2
2 by

copying the w � 1 corresponding P1 columns.
� Then we fill the two columns A2

2 and P2
2 by constructing the appropriate number

of coils, starting from bit A2
2(1) until all A2

2 (and thus also all P2
2) are filled in.

� And so on, until all Aw�1
w�1 (and thus also all P w�1

w�1) are filled in. We then have all
2w22w entries of the extended table.

We end the present section with a historical perspective. The Birkhoff theorem,
the basis of the above synthesis procedure, is also the basis for ‘Clos networks’ [54]
(named after the American engineer Charles Clos); or, more precisely, rearrange-
able (nonblocking) Clos networks [55–57]. In the past, this approach has been suc-
cessfully applied to telephone switching systems. Nowadays, it finds use in inter-
net routing [58]. These conventional applications of the Birkhoff theorem are con-
cerned with permutations of wires (or communication channels); that is, with the
decomposition of the members of the subgroup of exchangers (isomorphic to Sw).
Here we apply the theorem not to the w wires, but to the 2w possible messages; in
other words, to the full group S2w . Figure 3.27b is reminiscent of Clos networks, but
the final figure, 3.27e, is reminiscent of so-called ‘banyan networks’ (named after
an Asian tree species), but with n D 2w instead of n D w . Finally, the coil/winding
procedure of Section 3.16.1 is reminiscent of the ‘looping algorithm’, as presented
by Hui [56].

3.16.3
Results

We will illustrate our deepened procedure using the example circuit in Table 3.5a.
By applying the above procedure, we obtain Table 3.7. The first step of the proce-
dure is displayed in bold face, while the second step is emphasized in italic. (The
reader can verify that this step requires two coils; the former with three windings,
the latter with only one winding.) The third step of the algorithm is underlined.

The above procedure thus yields a decomposition of the logic circuit into five
logic circuits (one computing A1 from A, one computing A2 from A1, . . . , and
one computing P from P1). All five subcircuits are automatically controlled NOT

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 62 — le-tex

�

�

�

�

�

�

62 3 Reversible Computing

Table 3.7 Expanded truth table according to the algorithm.

A1 A2A3 A1
1 A1

2A1
3 A2

1 A2
2A2

3 P2
1 P2

2 P2
3 P1

1 P1
2 P1

3 P1P2 P3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1
1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1
1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0
1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1

A1

A 2

A 3

1P

2P

3P

A1

A 2

A 3

1P

2P

3P

(a)

(b)

Figure 3.28 Decomposition of the example circuit of width 3 (Table 3.5a) according to the algo-
rithm: (a) into controlled NOT gates; (b) into TOFFOLI gates.

gates. By merely inspecting Table 3.7, we find their successive control functions:
f (A 2, A 3) D A 3, f

�
A1

1, A1
3

� D A1
1A

1
3, f

�
A2

1, A2
2

� D A2
1A2

2, f
�
P2

1 , P2
3

� D P2
1 ˚ P2

3 ,

and f
�
P1

2 , P1
3

� D P
1
3.

Figure 3.28a shows the final synthesis of Table 3.5a with its five controlled NOT
gates. Note that this gate cost of 5 is lower than the gate cost of 8 in Figure 3.24b.
It is worth noting the automatic V-shape of the positions of the five crosses (i.e.,
controlled NOTs) in the figure. When we apply the same procedure to each of the
8! D 40 320 circuits of the group S8, sometimes one or more of the five control
functions equals 0. This means that one or more of the five controlled NOTs is the
identity gate and so is in fact absent, leading to a total of less than five gates. We
thus obtain a statistical distribution of gate costs ranging from 0 to L D 2w �1 D 5.
The average gate cost is found to be about 4.4. This number is substantially smaller
than 10.1 (the average number found with the method of Section 3.15).

We note that Figure 3.18b is discovered automatically by applying our algorithm
to the truth table of Figure 3.18a. This constitutes an example of a decomposition
of a w D 2 circuit into three controlled NOTs; that is, into three FEYNMAN gates. If

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 63 — le-tex

�

�

�

�

�

�

3.16 The Synthesis Algorithm 63

8S8S

2
4S

2
4S

2
4

S

2
4

S

2
4

S

I
I

(a) (b)

Figure 3.29 Two different sets of efficient subgroups: (a) a subgroup chain, and (b) a subgroup
flower.

we apply the same procedure to each of the 4! = 24 circuits of the group S4, this
yields a statistical distribution of gate costs ranging from 0 to L D 2w � 1 D 3. The
average gate cost is about 1.92.

We stress that a maximum gate cost of 2w � 1 is very close to optimal. No syn-
thesis method can guarantee better than 2w � 3. This is proved in Appendix D.
As subgroups isomorphic to S2w�1

2 thus lead to (almost) optimal decompositions,
we conclude that the controlled NOTs form a natural library for synthesis. We stress
that such library is larger than libraries that only have TOFFOLI gates. The latter
are of the type shown in Figure 3.13b, controlled by AND functions. In the synthesis
approach presented here, we make full use of building blocks of the type shown in
Figure 3.13a, controlled by arbitrary control functions.

While the synthesis method of Section 3.15 is based on a subgroup chain like
(3.17), in other words on a set of w subgroups of ever-decreasing order, the algo-
rithm of the present section is based on a set of w subgroups that are all of the same
order 22w�1

. These w subgroups are conjugate to each other; see the end of Sec-
tion 3.10. Figure 3.29 illustrates the two approaches: the former with ever-smaller
subgroups, and the latter with equally sized subgroups. In order to be efficient, the
conjugate subgroups should overlap as little as possible. In our synthesis method,
the overlap is indeed very small, as two subgroups have only one element in com-
mon: the identity element (or w-bit follower).

Sometimes, for practical purposes, the library of controlled NOT gates is consid-
ered too large. A library consisting only of TOFFOLI gates is then a possibility. In that
case, we may proceed as follows: each controlled NOT is decomposed into TOFFOLI
gates by merely replacing the control function by its Reed–Muller expansion. Such
an expansion may contain up to 2w�1 terms. From Appendix D, we see that this ex-
pansion is not optimal. Better results can be obtained by applying one of the ESOP
expansion algorithms [5, 6]. Figure 3.30 gives an example: the controlled NOT gate
with the control function f D A 1 C A 2; that is, an OR function. The Reed–Muller
expansion (Figure 3.30b) reads

f D A 1 ˚ A 2 ˚ A 1A 2 .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 64 — le-tex

�

�

�

�

�

�

64 3 Reversible Computing

(a) (b) (c)

Figure 3.30 Decomposition of (a) a controlled NOT gate into (b) its Reed–Muller expansion and
into (c) one of its minimal ESOP expansions.

whereas one of the minimal ESOP expansions (Figure 3.30c) is

f D A 1 ˚ A1A 2 .

The minimal ESOP expansion thus often leads to cheaper circuits than the Reed–
Muller expansion. However, it also has a disadvantage: there is no efficient algo-
rithm to find the minimal ESOP for w > 6.

Applying either the Reed–Muller decomposition or a minimal ESOP expansion to
the circuit of Figure 3.28a yields Figure 3.28b, with six TOFFOLI gates.

3.17
Variable Ordering

In Figure 3.27b, we have started the decomposition of Figure 3.27a by applying two
controlled NOTs that control the first bit. Then, in Figure 3.27c, we have applied two
control gates that control the second bit, etc. There really is no reason to follow this
top-to-bottom order. We may equally well apply any other order. This means that in
Figure 3.29b, we can apply the w subgroups in any of the w ! possible orders. This
will lead to w ! (usually different) syntheses of the same truth table. For example,
Figure 3.31 shows the result of applying the bottom-to-top order to Table 3.5a. In
contrast to Figure 3.28a, the crosses in Figure 3.31 are not located in a V-shape but
in a Λ-shape. The gate costs of the two hardware implementations (Figures 3.28a
and 3.31) are the same: five units.

For a particular synthesis problem, the w ! synthesis solutions can have quite dif-
ferent hardware costs. On average, however, solving all (2w)! synthesis problems of
width w, applying the optimum of the w ! wire orders instead of a single constant
wire order, gives a moderate cost gain. For example, synthesizing all 24 circuits of
width 2, trying both wire orderings, yields cascades with an average gate cost of
about 1.83, only 4% better than the 1.92 achieved in the previous section. Synthe-

P1

P2

P3A3

A2

A1

Figure 3.31 Decomposition of the example circuit of width 3 (Table 3.5a) into controlled NOT
gates.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 65 — le-tex

�

�

�

�

�

�

3.18 Templates 65

sizing all 40 320 circuits of width 3, trying all six wire orderings, yields cascades
with an average gate cost of about 3.9; that is, 11% better than the 4.4 achieved
in the previous section. We finally note that variable ordering may also be used in
conjunction with other, for example, quite different synthesis algorithms.

3.18
Templates

Templates are small logic circuits that are used to simplify a given logic circuit. For
an excellent introduction, the reader is referred to the papers by Maslov et al. [59–
61]. Templates play an important role in automatic circuit synthesis. Synthesis algo-
rithms, either straightforward or heuristic, usually do not yield an optimum design.
Even the synthesis method of Sections 3.16 and 3.17 yields only ‘almost optimum’
circuits, which are therefore prone to post-synthesis improvement. Thus, after the
actual circuit design step, a circuit simplification step is appropriate. It is here that
templates are the appropriate tool to use.

Figure 3.32a is an example of a template of width 5 and depth 4. It consists of
four reversible gates (four TOFFOLI gates) in cascade. We call it a template because
it is equal to the five-bit follower or identity gate i:

a1a2a3a4 D i . (3.19)

The dashed lines on the left-hand and right-hand sides of the figure draw our at-
tention to the fact that the figure has neither an actual beginning nor an actual end.
Indeed, by multiplying (3.19) to the left by a�1

1 and to the right by a1, we obtain an
equivalent relation:

a2a3a4a1 D i .

Proceeding further like this, the reader will produce two more such equations.
Thus, Figure 3.32a has neither a head nor a tail, and is thus merely a linear rep-
resentation of the ‘circular’ template of Figure 3.32b. Any partition of Figure 3.32b
into two parts leads to circuit simplification. For example, the three gates on the
right can be replaced by the single gate on the left. Figure 3.32d illustrates the
equality obtained by multiplying (3.19) to the right by a�1

4 :

a1a2a3 D a�1
4 .

However, the template tells us that the three gates at the top of Figure 3.32b can be
equally well replaced by the single gate at the bottom: Figure 3.32e and

a2a3a4 D a�1
1 .

Because, in this example, all ai are TOFFOLI gates, these gates are their own invers-
es, such that a�1

4 equals a4 and a�1
1 equals a1, etc.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 66 — le-tex

�

�

�

�

�

�

66 3 Reversible Computing

(a)

(d) (e)

(b) (c)

Figure 3.32 A template: (a) basic symbol, (b) circular symbol, (c) symbol using busbars, (d)
derived circuit simplification, and (e) another derived circuit simplification.

Following Maslov et al., we compact Figure 3.32a by bringing the lines A 1 and
A 2 together into a set of lines: Figure 3.32c. As in electronics, a thick line thus
represents a ‘bus’, in other words a set of wires (i. e., zero, one, two, or more wires),
whereas a narrow line represents a single wire. Note that Figure 3.32c not only
represents Figure 3.32a but a whole family of (infinitely many) templates, of which
Figure 3.32a is but one representative.

The most obvious template consists of an arbitrary reversible circuit cascaded by
its own mirror image. Figure 3.33a gives a w D 3 example: a cascade of eight gates.
Inspection shows that the latter half of the figure is the mirror image of the former
half. Such a circuit is equivalent to the three-bit identity gate i. The latter half does
indeed perform the backward computation, reconstructing the inputs of the former
half from its outputs. Therefore, the overall circuit has outputs that are equal to its
inputs. We call such a construction a do-undo scheme: Figure 3.33b. If the synthesis
of a circuit contains such a scheme, the do-undo part should be removed, thus re-
placing the overall circuit with an equivalent but cheaper one. Such post-synthesis
optimization is usually performed by an expert artificial-intelligence system that
searches for patterns to be simplified. In our example, the expert system will, for
example, first recognize the presence of the small template of Figure 3.33c and then
replace it by a two-bit identity. Subsequently, the system will detect the presence of
the small template of Figure 3.33d and replace it by a three-bit follower, etc., until
the whole circuit in Figure 3.33a is removed from the design.

Not all templates are of the mirror style. Figure 3.34 shows six templates of depth
6 or less, composed of TOFFOLIs and suggested by Maslov et al. We label them T1
through T6. Only T1 is of the mirror type. Note that our example in Figure 3.32c is
simply template T2.

In order to further compact notation, we generalize TOFFOLI gates to controlled
NOT gates (Section 3.10). It is clear that two control gates (one with a control func-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 67 — le-tex

�

�

�

�

�

�

3.18 Templates 67

do undo

(a)

(b)

(c) (d) (e) (f)

Figure 3.33 Do-undo circuits.

T1 T2 T3

T4 T5 T6

Figure 3.34 The six Maslov templates.

tion f, the other with a control function g) can be merged into a single gate with a
control function f ˚ g. This leads us to the template U1 of Figure 3.35. Note that
both templates, T1 and T2 (of Figure 3.34), can be deduced from this U1. Tem-
plate T1 is the special case of template U1 with f D g; template T2 is obtained by
applying U1 three times.

Combining buses and controlled NOTs leads us to template V1 of Figure 3.36.
Here, f 000 is the partial derivative of f (A 1, A 2, . . . , A w�1) with respect to A w�1:

f 000(A 1, A 2, . . . , A w�2) D f (A 1, A 2, . . . , A w�2, 0)˚ f (A 1, A 2, . . . , A w�2, 1) .

See Section 1.7. We note that template T3 is a special case of template V1, with
f 000 D 0. Template T4 is a consequence of U1 and V1 combined.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 68 — le-tex

�

�

�

�

�

�

68 3 Reversible Computing

U1

U2

f g f g

f gf g

Figure 3.35 The U templates.

V3

V4

f g f gg g

f fgg

V1

f gg ’’’f fg

V2

f gg ’’’f fg

Figure 3.36 The V templates.

We now give an example of the beneficial use of templates: in Section 3.16.3, the
synthesis method of Section 3.16.2 is applied to all reversible circuits of width 3.
Applying post-synthesis optimization (for example, by means of template U1 only)
lowers the gate cost by one unit in 255 of the 40 320 cases, thus reducing the average
gate cost from 4.438 to 4.432.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 69 — le-tex

�

�

�

�

�

�

3.19 The Linear Synthesis Algorithm 69

Finally, there are also templates with controlled SWAP gates [62–65]. Figure 3.35
shows an example: template U2. Figure 3.36 shows three more examples: tem-
plates V2, V3, and V4. We note that Figure 3.18 is an application of template V4
(with f D g D 1).

3.19
The Linear Synthesis Algorithm

In Section 3.16, we presented an efficient synthesis method for an arbitrary re-
versible circuit of width w. It was a cascade of 2w � 1 (or less) controlled NOTs,
with controlled bits located successively on logic lines 1, 2, . . . , w � 1, w, w � 1, w �
2, . . . , 2, 1; see Figure 3.27e. This method is ‘almost optimal’, as we can prove (see
Appendix D) that any synthesis with less than 2w � 3 controlled NOT gates is im-
possible.

As a linear reversible circuit is just a special kind of reversible circuit, the synthe-
sis method is perfectly applicable to an arbitrary linear reversible circuit. However,
this may yield cascades that contain nonlinear control gates. As a linear circuit
can be built from exclusively linear building blocks, we must conclude that the ap-
proach of Section 3.16 is overkill in this case. Thus, there is need for a dedicated
synthesis method for linear reversible circuits.

We will check whether a decomposition of linear reversible circuits into 2w � 1
linear controlled NOTs is possible. To do this, we again follow the reasoning method
of Appendix D; in particular (D1). Section 4 of this Appendix, with N � 2w2

and
B � w2w�1, yields the lower bound

L � log(2)w2

log(2)w
D w .

We conclude that a synthesis method that needs 2w � 1 blocks from the linear
library could work, but would not be efficient: the hardware overhead is of the
order of a factor of 2. Thus, there is room for improvement.

Let Q be the w � w matrix representing the arbitrary linear circuit. We apply a
matrix decomposition according to the scheme of Figures 3.27a and 3.27b. Thus:

Q D LM R

with a left and a right matrix that only affect the first bit:

L D

0
BB@

1 L12 L13 L14

0 1 0 0
0 0 1 0
0 0 0 1

1
CCA and R D

0
BB@

1 R12 R13 R14

0 1 0 0
0 0 1 0
0 0 0 1

1
CCA

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 70 — le-tex

�

�

�

�

�

�

70 3 Reversible Computing

and a middle matrix M that does not affect the first bit:

M D

0
BB@

1 0 0 0
M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

1
CCA .

The 2w � 2 numbers L12, L13, . . . , L1w and R12, R13, . . . , R1w (all 2 B) are called
lifting coefficients. Because this decomposition is overkill, we can do better: it can be
proven [66–68] that the following form of the matrix R, with a single lifting factor,
is sufficient:

R D

0
BB@

1 R12 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA ,

although only on the condition that an extra (very simple) matrix is allowed; that is,
a swap matrix S:

Q D LM R S , (3.20)

where S is either the w � w identity matrix or a w � w permutation matrix that
swaps two bits (i.e., a permutation matrix with only two off-diagonal 1s).

We apply matrix decomposition (3.20) w � 1 times and arrive at the decomposi-
tion into 3w � 2 matrices, each of size w � w :

Q D L1L2 . . . L w�1L w Rw�1Sw�1Rw�2Sw�2 . . . R1S1 . (3.21)

We have thus demonstrated how an arbitrary linear reversible circuit can be decom-
posed into 2w � 1 linear controlled NOT gates, among which w � 1 are particularly
cheap ones. The circuit decomposition contains

� w or less linear controlled NOTs, each with up to w � 1 controlling bits,
� w � 1 or less FEYNMAN gates, and
� w � 1 or less SWAP gates.

Figure 3.37 visualizes the hardware gain, with respect to Figure 3.27e, in a case
without SWAPs. Figure 3.38a shows the case of Table 3.3c, where the matrix decom-
position according to (3.21) is

Q D L1L2L3R2S2R1S1 I
in this particular case, both L1 and S2 are equal to the identity matrix such that0

@1 1 0
0 0 1
0 1 0

1
A

D
0
@1 0 0

1 1 1
0 0 1

1
A
0
@1 0 0

0 1 0
1 1 1

1
A
0
@1 0 0

0 1 1
0 0 1

1
A
0
@1 1 0

0 1 0
0 0 1

1
A
0
@0 1 0

1 0 0
0 0 1

1
A .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 71 — le-tex

�

�

�

�

�

�

3.19 The Linear Synthesis Algorithm 71

Figure 3.37 Decomposition of a linear reversible circuit of width w D 4 into 2w � 1 D 7 linear
control gates.

A 1

2A

3A

1P

2P

3P

A 1

2A

3A

1P

2P

3P

(a)

(b)

Figure 3.38 Decomposition of a linear reversible circuit into: (a) controlled NOTs and SWAPs; (b)
FEYNMAN gates.

We indeed see

� Two (i.e., less than w) controlled NOTs with two controlling bits,
� Two (i.e., w � 1) FEYNMAN gates, and
� One (i.e., less than w � 1) SWAP gate.

The w control gates (each with a linear control function!) can be further decom-
posed into a total of w (w � 1) or less FEYNMAN gates. There are two points of view
regarding SWAP gates (see Section 3.12): either they are considered free of hard-
ware costs, or they can be decomposed into three FEYNMANs (Figure 3.18). In the
former case, we conclude that any linear reversible circuit can be decomposed into
w (w�1)C(w�1) D w2�1 or less FEYNMANs. In the latter case, we see that any linear
reversible circuit can be decomposed into a total of w (w �1)C (w �1)C3(w �1) D
w2 C 3w � 4 or less FEYNMANs. Figure 3.38b shows the case of Table 3.3c. We see
nine (i.e., less than w2 C 3w � 4 D 14) FEYNMAN gates. Post-synthesis optimiza-
tion, such as template matching (Section 3.18), can simplify this circuit. Note that
the two subsequent and identical FEYNMANs may cancel each other (Template T1),
leaving only seven FEYNMANs.

We check whether the above decomposition methodology is efficient. Again ap-
plying (D1), this time with the library of FEYNMANs, in other words with B D

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 72 — le-tex

�

�

�

�

�

�

72 3 Reversible Computing

w (w � 1) C 1, yields (according to Sect. 5 of Appendix D)

L � log(2)
2

w2

log(w)
.

We must conclude that the above synthesis method (which needs a cascade length
of the order w2) is efficient, but not close to optimal. It has the same complexity
as the factorization proposed by Beth and Rötteler [40]. In contrast, Patel et al. [31]
have presented a somewhat different, more efficient algorithm, guaranteeing a de-
composition with an asymptotic size that is proportional to w2/ log(w). However,
the synthesis method presented here is shown in order to serve as comparison with
the related synthesis methods for arbitrary reversible circuits (Section 3.16) and as
a step towards analog reversible linear circuits (Chapter 5) and quantum circuits
(Chapter 7).

3.20
Preset Bits and Garbage Bits

In the above sections, synthesis means ‘finding a hardware implementation for
a given reversible truth table’. However, a synthesis task is often defined by an
irreversible truth table. Three such examples are discussed below:

� A duplicating circuit,
� A circuit calculating a single Boolean function of more than one Boolean vari-

able, and
� A full-adder circuit.

3.20.1
Duplicating Circuit

The first example is the duplicator: see Table 3.8a. It has one binary input: the bit A,
and two outputs: the bits P and Q. Basically, it replaces A with two copies of A; see
Figure 3.39a. The truth table is definitely not reversible:

� The number of output bits is not equal to the number of input bits.

In order to implement this copying in a reversible computer, we have to expand the
table such that the original table is embedded in a larger, reversible one; see, for
example, the two possible embeddings in Tables 3.8b and 3.8c. All bit values from
Table 3.8a are repeated (in boldface) in both Table 3.8b and Table 3.8c.

In order to get an equal number of input and output bits, Table 3.8b has an
extra input column: bit F. By setting it equal to the constant 0, we make sure that
both outputs P and Q are equal to input A: see Figure 3.39b. Table 3.8c has an
extra output column: bit G. This bit is called a garbage bit. It is not required in

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 73 — le-tex

�

�

�

�

�

�

3.20 Preset Bits and Garbage Bits 73

Table 3.8 Duplicators: (a) irreversible, (b) reversible, and (c) reversible.

A P Q

0 0 0
1 1 1

(a)

AF P Q

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(b)

AF1 F2 G P Q

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

(c)

1

1

1A

A

A

A

A

A

A A

A0

(a) (b) (c)

Figure 3.39 Duplicating a Boolean variable A: (a) by conventional fan-out, (b) by a reversible
FEYNMAN gate, and (c) by a reversible gate of width 3.

the first place. Because there are now three output bits, there must be three input
bits too. Therefore, we have added two additional input columns: the preset bits F1

and F2. For the desired application, F1 and F2 will always be placed equal to 1 (see
Figure 3.39c). The fact that we have two different embeddings here indicates that
there is no unique way to embed an irreversible table in a larger reversible table.
The embedding should thus be done carefully, in order to minimize the resulting
reversible hardware cost and hardware width.

In reversible logic circuits, a fan-out (Figure 3.39a) is not allowed. There is an
analog to this ‘no-fan-out theorem’ of classical reversible circuits in quantum cir-
cuits: the ‘no-cloning theorem’ [69].

3.20.2
Controlled NOT

We note that a controlled NOT can be interpreted as a reversible embedding of the
calculation of an irreversible Boolean function. Assume that we would like to cal-
culate the Boolean function f (A, B, C) of three Boolean variables, as defined by its
truth table in Table 3.9a. The table is, of course, irreversible, because:

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 74 — le-tex

�

�

�

�

�

�

74 3 Reversible Computing

Table 3.9 Truth tables of a Boolean function f (A, B, C): (a) irreversible; (b) reversible.

ABC f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(a)

ABC D P QRS

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 1
0 1 1 1 0 1 1 0
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0

(b)

� It has fewer output columns than input colums,
� An output row 0 appears no less than five times and an output row 1 appears

three times.

Table 3.9b shows the truth table of the controlled NOT gate with control function
f (A, B, C), controlling bits A, B, and C, and a controlled bit as an extra input D.

We have the following relations between outputs and inputs: P D A, Q D B ,
R D C , and S D f (A, B, C)˚D , in accordance with (3.12). The output S equals the
desired function f if the input D is preset to zero. The extra outputs P, Q, and R are
garbage outputs. We note that, unfortunately, the reversible embedding (Table 3.9b)
has double the total number of columns of the original problem (Table 3.9a).

3.20.3
An Application: the Majority Circuit

In the previous Section, we needed a circuit with n C 1 inputs and n C 1 out-
puts in order to reversibly implement a single Boolean function f (A 1, A 2, . . . , A n)
of n variables. If the function f is balanced, we can do the job in a slightly cheap-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 75 — le-tex

�

�

�

�

�

�

3.20 Preset Bits and Garbage Bits 75

Table 3.10 Majority blocks: (a) irreversible; (b) reversible.

A1A2 A3 f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(a)

A1 A2A3 G1G2 f

0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 1 0
0 1 1 0 0 1
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 1

(b)

er way: with n inputs and n outputs. Table 3.10 shows an example. The function
f (A 1, A 2, A 3) is the majority function (Table 3.10a). For an arbitrary (but odd) n,

the value of the majority function f (A 1, A 2, . . . , A n) equals 0 iff the majority of the
input bits A 1, A 2, . . . , A n equal 0. In the case n D 3, we obtain the Reed–Muller
expansion

f (A 1, A 2, A 3) D A 1A 2 ˚ A 2A 3 ˚ A 3A 1 . (3.22)

As usual, there are many ways to embed the function in a reversible table of
width n. According to Yang et al. [70], there are 576 ways for n D 3. Table 3.10b
shows one example.

To implement a reversible circuit with a single balanced output function
f (A 1, A 2, . . . , A n), we can proceed as follows. We embed the irreversible truth

table in a larger reversible truth table, with outputs G1, G2, . . . , Gn�1, f . We then
apply the synthesis method of Section 3.16, resulting in a cascade of 2n � 1 con-
trolled NOTs. Figure 3.40a shows an example for n D 3, resulting in five control
functions: g(A 2, A 3), h(A 1, A 3), i(A 1, A 2), j (A 1, A 3), and k(A 2, A 3). We see how
the lowermost bit (yielding the desired output f) is not affected by the last n �1 NOT
gates. We can therefore throw them away. This results in a cascade with a gate cost
of only n (Figure 3.40b). Note that Figure 3.40b results in other garbage outputs
than Figure 3.40a, but that is of no concern here.

In Figure 3.40, both of the garbage outputs G1, G2, . . . , Gn�1 and G 0
1, G 0

2, . . . ,
G 0

n�1 will usually be completely useless functions. Therefore, it may be profitable
to replace them with more useful garbage functions. Sometimes this is performed
by replacing them with the simplest possible functions of A 1, A 2, . . . ; in other
words, A 1, A 2, . . . themselves. This is achieved by undoing the computation; see
Figure 3.40c. To do this, we add to Figure 3.40b its own mirror image (recall the do-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 76 — le-tex

�

�

�

�

�

�

76 3 Reversible Computing

A1

f
g h i j k

G1

A 2 G 2

A 3

f
g h i

A1 ’G1

A 2 ’G 2

A 3

0 f
ghig h i

A1 A1

A 2 A 2

A 3 A 3

do

spy

undo

0 f

A1A1

A 2A 2

A 3A 3

(a)

(b)

(c)

(d)

Figure 3.40 Reversible computation of a balanced Boolean function f (A1, A2, A3).

(a)

(b)

do undo

spy

Figure 3.41 Prototype do-spy-undo circuit: (a) block diagram; (b) photomicrograph
(180 µm � 40 µm).

undo scheme of Figure 3.33). However, so that the desired output f is not lost, we
first copy it using a FEYNMAN gate; see Section 3.20.1. Figure 3.40d shows the result-
ing general scheme, called a do-spy-undo scheme, which was proposed by Fredkin

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 77 — le-tex

�

�

�

�

�

�

3.21 Another Application: the Full Adder 77

and Toffoli [29]. The price we pay for this ‘intelligent garbage’ is a longer (depth
= 2n C 1 instead of n) and wider (width = n C 1 instead of n) circuit. Figure 3.41
shows a hardware example, but with two useful functions of the same four vari-
ables: f1(A 1, A 2, A 3, A 4) and f2(A 1, A 2, A 3, A 4). It applies two ‘spying’ FEYNMAN
gates.

3.21
Another Application: the Full Adder

One famous example of an irreversible truth table is the full adder; see Table 3.11a.
It has three input bits: the augend bit A, the addend bit B, and the carry-in bit Ci;
and two output bits: the sum bit S and the carry-out bit Co. Basically, the table gives
eight different additions of three numbers:

0 C 0 C 0 D 0

0 C 0 C 1 D 1

0 C 1 C 0 D 1

. . .

1 C 1 C 0 D 2

1 C 1 C 1 D 3 .

Analyzing the truth table leads to the Reed–Muller expansions

Co D AB ˚ B Ci ˚ CiA

S D A ˚ B ˚ Ci .

We immediately recognize that Co(A, B, Ci) is a majority function (3.22).
The truth table is definitely not reversible:

� The number of output bits is not equal to the number of input bits, and
� Various output words appear more than once in the table; for example, the out-

put CoS D 10 appears three times in Table 3.11a.

In order to implement this calculation in a reversible computer, we must expand
the table such that the original table is embedded in a large reversible one; see
for example Table 3.11b. All of the bits from Table 3.11a are repeated (in boldface)
in Table 3.11b. The new table has two extra output columns:9) the garbage bits
G1 and G2. These are not requested in the first place, but are added in order to
guarantee that all of the output words are different. Because there are now four

9) By now, the reader will realize that the number of extra columns we need is dlog2(x)e, i.e., the
smallest integer larger than or equal to log2(x), where x is the maximum number of times the
same output word appears in the original (irreversible) truth table. Here x equals 3, so we need
two extra columns.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 78 — le-tex

�

�

�

�

�

�

78 3 Reversible Computing

Table 3.11 Full adders: (a) irreversible and (b) reversible.

ABCi CoS

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(a)

F ABCi CoS G1G2

0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 1 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 0 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 0
1 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
1 1 0 1 0 0 0 1
1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1

(b)

output bits, there must be four input bits as well. Therefore, we have added one
additional input column: the preset bit F. For the desired application, F will always
be placed equal to 0. Again, note that there are many ways to embed the three-input
two-output table (Table 3.11a) in a reversible four-input four-output table. Here we
have chosen Table 3.11b such that the garbage outputs have a simple meaning:
G1 D B and G2 D Ci.

Applying the general synthesis algorithm of Section 3.16 to Table 3.11b leads
to 2w � 1 D 7 control gates, with the following seven control functions: 0, 0, 0,
CiB ˚ B A ˚ ACi, Ci ˚ B , 0, and 0. Because five control functions equal 0, the
circuit actually contains only two control gates; see Figure 3.42a. Inspection of the
circuit reveals that it is a Sylow circuit consisting of two controlled NOTs. The four
Sylow control functions (see Figure 3.16) are

f4(Ci, B, A) D Ci B ˚ B A ˚ ACi

f3(Ci, B) D Ci ˚ B

f2(Ci) D 0

f1(.) D 0 .

Both the gate cost and the circuit depth are equal to 2.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 79 — le-tex

�

�

�

�

�

�

3.21 Another Application: the Full Adder 79

C o

B

C i

A

0

B

C i

A

C o

S
F

M

U
Co

S

(a)

(b)

(c)

Figure 3.42 Three reversible circuits: (a) the full adder, (b) the majority circuit, and (c) the un-
majority circuit.

F

M

M

M

M U

U

U

U

F

F

F

0

0

0

0

Ci
B0

B1

B2

B3

0A

1A

2A

3A
C0

S0

1S

2S

3S

C0

S0

1S

2S

3S

0

Ci
B0

B1

B2

B3

0A

1A

2A

3A

(a)

(b)

Figure 3.43 Four-bit reversible ripple adders: (a) with full adders; (b) with majority and unma-
jority circuits.

An n-bit adder is constructed with the help of n full adders; see Figure 3.43a.
We see how the carry-out of a full adder is the carry-in of the next full adder. Car-
ries thus ‘ripple’ from one full adder to the next, so this circuit is called a ripple

adder.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 80 — le-tex

�

�

�

�

�

�

80 3 Reversible Computing

3.22
Avoiding Garbage

Thus, reversible digital circuits have the disadvantage of generating a lot of garbage
output, which is not desirable for the application. We are not allowed to throw them
away. Therefore, we must take them all the way through the following computation-
al steps. Just two garbage bits in a full adder is already a matter of great concern.
Indeed, such a full adder is just a building block in, say, a 32-bit adder. The lat-
ter circuit will itself be a building block for a 32-bit multiplier. Such a multiplier
is used many times in, for example, a digital filter. Many filters make up a filter
bank; many filter banks make up, for example, a speech processor. Each time we
step from one architectural level to the next, the number of garbage bits explodes.
This proliferation of garbage will result in huge costs due to extra gates and extra
interconnections. Therefore, the challenge is to design, at each level of abstraction,
circuits that generate as little garbage as possible.

The clever adder design by Cuccaro et al. [71] avoids the need for one of the two
garbage bits G1 and G2 in Table 3.11b, and is thus highly recommendable [72].
The trick here is to avoid to calculate the bits Co and S simultaneously, in a sin-
gle circuit. Cuccaro et al. first calculate Co, and subsequently compute S from
Co when the information on Co is not required anymore. Thus, the n-bit adder
of Cuccaro et al. does not consist of n full adders. It is built from 2n blocks, of
which n blocks (called majority blocks) are used to generate the carry-out bits, while
the other n blocks (called unmajority blocks) are used to generate the sum bits. The
two building blocks are shown in Figures 3.42b and c. Both circuits have gate costs
and logic depths equal to 3. In fact, the unmajority block is the application of Tem-
plate T1 (Section 3.18) to the cascade of the mirror image of the majority block
(undoing the computation of Co) and a small additional block that computes the
sum bit S; see Figure 3.44.

U

Figure 3.44 The unmajority circuit as a cascade.

Table 3.12 Two reversible n-bit adders: (a) with n full adders; (b) with n majority and n unmajor-
ity circuits.

Design Gate Logic Logic

Cost Depth Width

(a) 2n n C 1 3n C 1
(b) 6n C 1 5n C 1 2n C 2

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 81 — le-tex

�

�

�

�

�

�

3.22 Avoiding Garbage 81

Table 3.13 Four-bit adder: (a) in binary notation; (b) in decimal notation.

F A3A2 A1A0 B3B2B1 B0 Ci X3 X2 X1 X0 S4S3S2 S1S0 G

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
.
0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0
.
0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0
0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1
0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0
.
1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1

(a)

F A B Ci X S G

0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 0 1 0

.
0 2 4 0 2 6 0
0 2 4 1 2 7 1
0 2 5 0 2 7 0

.
0 5 13 0 5 18 0
0 5 13 1 5 19 1
0 5 14 0 5 19 0

.
1 15 14 1 15 14 1
1 15 15 0 15 14 0
1 15 15 1 15 15 1

(b)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 82 — le-tex

�

�

�

�

�

�

82 3 Reversible Computing

The complete n-bit adder is shown in Figure 3.43b for the case n D 4. Note that
the carry-out of the last M-block is copied using a FEYNMAN gate in order to get a
carry-over bit; that is, the additional (fifth) sumbit S4. From Table 3.12, it is clear that
the Cuccaro adder is more costly in terms of number of gates than the full-adder
adder. The logic depth is also much larger. However, the Cuccaro adder is superior
in terms of logic width. This implies fewer metal interconnections on the chip,
fewer pins on the chip encapsulation, and fewer interconnections on the printed
circuit board. The advantage of the Cuccaro adder eclipses its disadvantages.

If we calculate the corresponding output vector for any input vector of Fig-
ure 3.43b, this analysis results in the full truth table. As the width w of the circuit
is 2n C 2 D 10, the table has 2w D 20 columns and 2w D 1024 rows. Table 3.13a
shows part of the table (i.e., only 12 rows). Table 3.13b shows the same table in
decimal notation:

A D A 0 C 2A 1 C 4A 2 C 8A 3

B D B0 C 2B1 C 4B2 C 8B3

X D X0 C 2X1 C 4X2 C 8X3

S D S0 C 2S1 C 4S2 C 8S3 C 16S4 .

We see that, if input F is preset to 0,

S D A C B C Ci

X D A .

3.23
Exercises for Chapter 3

Exercise 3.1
Check that (3.8) and (3.11) are the same.

Exercise 3.2
Is a TOFFOLI gate conservative? Is it linear? Is a FREDKIN gate conservative? Is it
linear?

Exercise 3.3
Consider all circuits of width w that can be constructed with (an arbitrary number
of) just one type of building block: the (uncontrolled) NOT gate. Demonstrate that
they form a group (say A). What is the order of this group of inverters? Demonstrate
that the group A is a subgroup of the group AE of affine exchangers (Section 3.9).10)

Fit A within the partial ordering (3.9).

10) Because an inverter and an exchanger do not commute, we are not allowed to say that AE is the
direct product A � E of the group A and the group E. We say instead that AE is the semidirect
product of A and E, with notation A W E.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c03 — 2010/8/5 — 13:36 — page 83 — le-tex

�

�

�

�

�

�

3.23 Exercises for Chapter 3 83

Exercise 3.4
Elements of the group R, which satisfy g2 D i (where i is the identity element of R),
are sometimes called ‘involutions’. Do these involutions form a subgroup of R?

Exercise 3.5
Do the TOFFOLI gates form a subgroup of the group of controlled NOT gates?

Exercise 3.6
The controlled NOTs (with order 22w�1

, according to Section 3.10) form a subgroup
of the Sylow circuits (with order 22w �1, according to Section 3.11). Check that these
orders fulfil Langrange’s theorem. What is the index of the subgroup?

Exercise 3.7
Prove the equivalence in Figure 3.18, not by applying the multiplication of w � w D
2 � 2 matrices, but by applying the multiplication of 2w � 2w D 4 � 4 permutation
matrices.

Exercise 3.8
Demonstrate that, if G is an Abelian group and H is an arbitrary subgroup, then
the left cosets, the right cosets and the double cosets are one and the same set of
sets.

Exercise 3.9
Choose a truth table for w D 2 and apply the algorithm of Section 3.16.1 in order
to decompose it into three or less FEYNMAN gates.

Exercise 3.10
Choose a truth table for w D 3 and apply the algorithm of Section 3.16.2 in order
to decompose it into five or less controlled NOTs.

Exercise 3.11
Find the decomposition with three crosses in a Λ-configuration, equivalent to Fig-
ure 3.18, where the crosses are in a V-configuration.

Exercise 3.12
Explain the number 576 in Section 3.20.3.

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 85 — le-tex

�

�

�

�

�

�

85

4
Low-power Computing

Let us now consider a reversible circuit with inputs A 1, A 2, . . . , A w and outputs
P1, P2, . . . , Pw . Let a1 be the probability that the input word A 1A 2 . . . A w�1A w

equals 00 . . . 00; let a2 be the probability that the input word equals 00 . . . 01; . . . ; let
a2w be the probability that the input word equals 11 . . . 11. In general, let ak be the
probability that the input word is the binary representation of the number k � 1.

In the previous chapter, a circuit had one particular input (leading to one par-
ticular output). Thus, all numbers a j were equal to 0, except for one ak which
equalled 1. However, in this chapter, we will consider arbitrary sets of numbers
a1, a2, . . . , a2w

�1, a2w (of course, with the restrictions 0 � a j � 1 for all j andP
a j D 1). Automatically, the output word will also be stochastic, with proba-

bilities p1, p2, . . . , p2w of being equal to 00 . . . 00, 00 . . . 01, . . . , 11 . . . 11. Such an
approach will lead to far-reaching results. No less than an encounter between in-
formatics and physics materializes. The link between these two worlds will be the
quantity known as entropy.

4.1
Entropy

We will first consider a single Boolean variable A. Its value is not known. We donote
the probability11) that A D 0 by a. The probability that A D 1 is denoted by b. We
define the entropy associated with A as

SA D k[�a log(a) � b log(b)] ,

where k is a universal physical constant called Boltzmann’s constant (after the Aus-
trian physicist Ludwig Boltzmann). The value of k is 1.380662 � 10�23 J/K; that is,
about 14 yoctojoules per kelvin.

11) In analogy to the footnotes of Sections 1.2 and 3.1, we switch here from the notations
a1, a2, a3, . . . , a2w and p1, p2, p3, . . . , p2w , to the notations a, b, c, . . . and p , q, r, . . . whenever
appropriate.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 86 — le-tex

�

�

�

�

�

�

86 4 Low-power Computing

If a D b D 1/2, in other words if A D 0 and A D 1 are equally probable, then

SA D k

�
� 1

2
log

�
1
2

�
� 1

2
log

�
1
2

��

D k log(2) .

This quantum of entropy (with a value of about 10 yoctojoules per kelvin) is called
‘one bit of entropy’ or ‘one bit of information’.

Next, we consider two stochastic variables A and B. The probabilities that (A, B)
equals (0,0), (0,1), (1,0), and (1,1) are denoted by a, b, c, and d, respectively. If A

and B are statistically independent and both are either 0 or 1 with equal probability,
then a D b D c D d D 1/4, and we have exactly two bits of information:12)

SA,B D k

�
� 1

4
log

�
1
4

�
� 1

4
log

�
1
4

�
� 1

4
log

�
1
4

�
� 1

4
log

�
1
4

� �

D 2k log(2) .

We recall that there are 24 D 16 different functions P D f (A, B) of the two logic
variables; see Table 1.2. Table 1.3c shows a well-known example: the XOR gate. Its
entropy properties are discussed in detail by Gershenfeld [74]. None of the 16 logic
gates yield two bits of information at the output. The reader can easily verify that
six truth tables (e.g., Table 1.3c) yield exactly 1 bit at the output: if the four possible
inputs (A, B) all have probability 1/4, then the probability that P equals 0 is 1/2,
and so is the probability that P D 1. Thus,

SP D k

�
� 1

2
log

�
1
2

�
� 1

2
log

�
1
2

��

D k log(2) .

Another eight tables (e.g., Tables 1.3a and 1.3b) yield output probabilities of 1
4 and

3
4 , and thus

SP D k

�
� 1

4
log

�
1
4

�
� 3

4
log

�
3
4

��

D k

�
2 log(2) � 3

4
log(3)

�

D
�

2 � 3
4

log(3)
log(2)

�
k log(2) I

that is, only 0.811 bits. The remaining two tables yield zero bits. Anyway, all of
the 16 gates cause information loss: ‘two bits in’ yield at most ‘one bit out’. Thus, at
least one bit of information is destroyed. None of these gates are logically reversible.

12) For the case where the numbers a, b, c, and d form an arbitrary distribution (with, of course, the
restrictions 0 � a � 1, 0 � b � 1, 0 � c � 1, 0 � d � 1, and a C b C c C d D 1), the reader is
referred to [73].

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 87 — le-tex

�

�

�

�

�

�

4.1 Entropy 87

This is a general feature of logic calculations with wi logic inputs and wo outputs:
if wo < wi, then at least wi � wo bits are destroyed.

Even if wo D wi, information may be destroyed. Indeed, let us consider two cases
with wo D wi D 2: Table 4.1 with a reversible truth table and an irreversible truth
table. Again, let a, b, c, and d be the probabilities that (A, B) equals (0,0), (0,1), (1,0),
and (1,1), respectively. Let p, q, r, and s be the probabilities that (P, Q) equals (0,0),
(0,1), (1,0), and (1,1), respectively. Then we have:

0
BB@

p

q

r

s

1
CCA D

0
BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCA

0
BB@

a

b

c

d

1
CCA (4.1)

for Table 4.1a and
0
BB@

p

q

r

s

1
CCA D

0
BB@

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

1
CCA

0
BB@

a

b

c

d

1
CCA (4.2)

for Table 4.1b. The matrix elements in (4.1) and (4.2) can be interpreted as condi-
tional probabilities. For example, the element in the third row and fourth column
is the probability that (P, Q) D (1, 0), under the condition that (A, B) D (1, 1). The
reader can verify that, under the condition a D b D c D d D 1/4 (and thus
SA,B D 2 bits), we obtain SP,Q D 2 bits for Table 4.1a, but only SP,Q D 3

2 bits for
Table 4.1b.

Both of the matrices in (4.1) and (4.2) have the property that all column sums
are equal to 1. We call such matrices stochastic matrices, because each column
resembles a probability distribution. Stochastic matrices may or may not con-
serve entropy. Only stochastic matrices that are permutation matrices conserve
entropy.13)

We note that the square matrix in (4.1) is not only a permutation matrix, but
that its inverse matrix is also a permutation matrix. In contrast, the square matrix
in (4.2) does not even have an inverse, as its determinant is zero. A similar remark
can be made concerning the reversible toy computer described in the ‘Introduc-
tion’. Its stochastic matrix, in

�
p

q

�
D

�
0 1
1 0

� �
a

b

�
,

is an invertible permutation matrix. The backward calculation obeys

�
a

b

�
D

�
0 1
1 0

� �
p

q

�
.

13) Permutation matrices are doubly stochastic, as all column and row sums are equal to 1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 88 — le-tex

�

�

�

�

�

�

88 4 Low-power Computing

Table 4.1 Truth tables of two Boolean circuits: (a) reversible; (b) irreversible.

AB P Q

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(a)

AB P Q

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 0

(b)

11

00

Figure 4.1 An irreversible toy computer.

In stark contrast, the toy computer of Figure 4.1 is irreversible. Its stochastic
matrix, in�

p

q

�
D

�
1 1
0 0

� �
a

b

�
,

has zero determinant and is thus not invertible. One could describe the backward
calculations by the matrix equation�

a

b

�
D

�
π 0

1 � π 0

� �
p

q

�
,

with (according to the details of the figure) π � 1/2. This matrix is not invertible
either; it is not even a stochastic matrix. We can convert it into a stochastic (but no
longer square) matrix by disregarding the variable q:�

a

b

�
D

�
π

1 � π

� �
p

�
.

4.2
Permutation Matrices

The previous section shows us that no entropy is destroyed in a reversible comput-
er. Indeed, any reversible classical circuit of w bits can be represented by a 2w � 2w

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 89 — le-tex

�

�

�

�

�

�

4.3 Landauer’s Theorem 89

permutation matrix:
0
BB@

p1

p2

. . .
p2w

1
CCA D

0
BB@

m11 m12 . . . m12w

m21 m22 . . . m22w

. . .
m2w 1 m2w 2 . . . m2w 2w

1
CCA

0
BB@

a1

a2

. . .
a2w

1
CCA . (4.3)

Subscripts run from 1 to 2w . Remember that both a j and pk can be interpreted as
probabilities:

a j D prob[(A 1, A 2, . . . , A w) D j � 1]

pk D prob[(P1, P2, . . . , Pw) D k � 1] ,

where (A 1, A 2, . . . , A w) and (P1, P2, . . . , Pw) are interpreted as binary representa-
tions of a number between 0 and 2w � 1. The �1 occurs at the end of each equation
due to convention: rows, columns, and objects in general are labeled with the ordi-
nal numbers 1, 2, 3, . . . instead of 0, 1, 2, . . .

We recall that all m j k 2 f0, 1g, and that all line sums (i.e., row sums
P2w

kD1 m j k

and column sums
P2w

j D1 m j k) equal 1. Because the permutation matrix in (4.3)
automatically implies that each pk is equal to some a j , we have

X
pk D

X
a j ,

and because the input probabilities satisfy

2wX
j D1

a j D 1 ,

a similar property for the output words follows:
P2w

j D1 p j D 1. Thus, the property
that the total probability is one is conserved by the permutation matrix. Actually,
there is more: let Φ (x) be an arbitrary function; we then have

2wX
j D1

Φ (p j) D
2wX

j D1

Φ (a j) .

In particular, this property holds for the function Φ (x) D �x log(x), such that

2wX
j D1

�p j log(p j) D
2wX

j D1

�a j log(a j) .

Thus, entropy is also conserved.

4.3
Landauer’s Theorem

Reversible computing [75, 76] is useful in low-power classical computing [77, 78].
According to Landauer’s theorem (named after the German/American physicist

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 90 — le-tex

�

�

�

�

�

�

90 4 Low-power Computing

Rolf Landauer, pioneer of reversible computing), the only way to make classical
digital computing lossless is to ensure that no information is lost at each stage of
the computation. Each bit of information that is thrown away results in the con-
sumption of a quantum of work and the generation of the same quantum of heat
(of magnitude kT log(2), where T is the temperature of the computer hardware).
The fact that consumption of work inevitably causes production of heat is a con-
sequence of the first law of thermodynamics: that energy is conserved. The total
energy U is the sum of the low-quality energy Q and the high-quality energy W:

U D Q C W .

The conversion of work W into heat Q can easily be described using thermody-
namics. For instance, in the previous section, we saw that the single output P(A, B)
of a logic gate (with wi D 2 and wo D 1) contains less entropy than the two bits
of information of the two independent random inputs A and B. Thus, the compu-
tation lowered the (macroscopic) entropy S. For example, the AND gate lowers the
entropy from 2 bits to 0.811 bit. However, because of the second law of thermody-
namics, the total amount of entropy σ in the universe must remain constant or
increase. Therefore, at least 0.189k log(2) of entropy must be created simultane-
ously. This results in the generation of microscopic entropy s in the environment;
that is, in the hardware of the computer. Thus, because of

σ D s C S ,

whenever S decreases (e.g., because of an irreversible computation), s must in-
crease. Microscopic entropy s manifests itself as a heat Q that is equal to Ts,
where T is the temperature of the system. Therefore, 0.189kT log(2) of heat is re-
leased by the AND computation into the computer hardware [79–82]. For a rigorous
analysis, see Appendix F.

As a result, if we want to avoid any heat generation in the computer circuits
(and thus avoid any consumption of work by the computer), we must avoid any
loss of information during the computational process. This means that we need to
construct a logically reversible computer.

4.4
Thermodynamics

As stressed in the title of Landauer’s notorious paper Information is Physical [83],
computation is inevitably done by real physical objects, obeying the laws of physics
in general, and the laws of thermodynamics in particular. Analogously, Nyíri [84]
also remarks that microentropy is not a primitive quantity and thus cannot be trans-
ported alone; that is, without the transport of some extensive quantity. As already
stressed in the ‘Introduction’, bare information particles (informatons) or bare en-
tropy particles (entropons) do not exist. Both macroentropy and microentropy pig-
gyback on other objects (electrons, ions, photons, phonons, . . .).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 91 — le-tex

�

�

�

�

�

�

4.4 Thermodynamics 91

R

U1, ,1 1N E U2 22, ,N E

T1 1, µ T ,2 2µ

Figure 4.2 Thermodynamics.

We consider two thermodynamic reservoirs [85, 86]; see Figure 4.2. These are
characterized by the (constant) values of their intensive parameters T (temperature)
and µ (potential). They exchange fluxes of extensive quantities: energy flow U, par-
ticle flow N, and entropy flow E. We observe that N is the particle flux; that is, the
flow rate of the ‘physical objects’ or ‘material entities’ mentioned at the beginning
of the section. The intensive variable µ is the potential of the particles: either the
chemical potential, the electrical potential, . . .

Because of the laws of conservation (of energy and particles), we have
U1 D U2 and N1 D N2. As there is no entropy conservation law, the entropy
flux E2 entering the latter reservoir need not necessarily equal the entropy flow E1

leaving the former reservoir. The difference is the entropy creation rate:

s D E2 � E1 . (4.4)

Any energy flux U consists of two parts: the high-quality part or work flow and
the low-quality part or heat flow:

U D µN C T E ,

where both parts are now written as a product of an intensive variable (either µ
or T) and the flow of an extensive variable (either N or E). From (4.4), we obtain

s D U2 � µ2N2

T2
� U1 � µ1N1

T1
, (4.5)

where µ1 and T1 are the potential and the temperature of reservoir #1, and µ2 and
T2 are the potential and the temperature of reservoir #2.

In Figure 4.2, the particle flow is restricted by the presence of a resistor R. We
assume a linear transport law: the particle flow is proportional to the potential dif-
ference:

N1 D N2 D 1
R

(µ1 � µ2) .

Assuming additionally that T1 D T2 D T , we obtain from (4.5) that

s D 1
T

1
R

(µ1 � µ2)2 , (4.6)

which is a positive quantity whatever the direction of motion: rightwards (µ1 > µ2)
or leftwards (µ2 > µ1). This is in agreement with our experience (i.e., the second
law of thermodynamics) that entropy always increases.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 92 — le-tex

�

�

�

�

�

�

92 4 Low-power Computing

(a)

a

b

c

d

q

r

s

p

a

b

c

d

q

r

s

p

(b)
Figure 4.3 Thermodynamics of (a) a reversible computer and
(b) an irreversible computer.

In our computer model, we consider 2w left reservoirs (one for each possible
input message (A, B, C, . . .)) and 2w right reservoirs (one for each possible output
message (P, Q, R , . . .)); see Figure 4.3, where w D 2. Each resistor is responsible
for creating

s j D a j

1
T

1
R

(µ1 � µ2)2

of entropy, where 1 � j � 2w . Summing yields

s D
X

s j D 1
T

1
R

(µ1 � µ2)2 .

The total entropy creation rate, however, is not just this quantity s. This sum plays
the role of the microentropy s in the previous section and in Appendix F. The total
entropy σ contains both the microentropy and the macroentropy S. We have

σ D
X

s j C S .

While s has the same value in Figure 4.3a and b, the contribution

S D k[�p log(p) � q log(q) � r log(r) � s log(s)]

� k[�a log(a) � b log(b) � c log(c) � d log(d)]

is different in the two cases; in Figure 4.3a (representing (4.1)) we have S D 0,
whereas in Figure 4.3b (representing (4.2)) we have S D �k(c C d) log(c C d) C
k[c log(c) C d log(d)]. The additional entropy created S is always negative or zero.
It is related to the entropy of mixing in physical chemistry [85].

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 93 — le-tex

�

�

�

�

�

�

4.5 An Application: Prototype Chips 93

Whereas s D P
s j is entropy creation associated with the friction (of the par-

ticles) within the individual resistors (and thus with the transport of information),
S is associated with the topology of the interconnection of the resistors (and thus
with the loss of information).

In our toy model, the particles are marbles and their potentials µ are gravitational
potentials gh (product of the constant gravitational acceleration g and the variable
height h).

4.5
An Application: Prototype Chips

From Chapter 3, we know the following: we can apply either left cosets, right cosets,
or double cosets in the synthesis procedure; we can choose one subgroup or anoth-
er. Whatever choices we make, we obtain a procedure for synthesizing an arbitrary
circuit by cascading a small number of standard cells from a limited library. By
choosing the representatives of the (double) cosets appropriately, we can see to it
that all building blocks in the library are members of either of the two following
special sets:

� The subgroup of controlled NOT gates, with a controlled bit on the wth wire, and
� The set of SWAP gates, which swap an arbitrary wire with the wth wire.

Recall Figure 3.15b. Among the controlled NOT gates, we note three special ele-
ments:

� If the control function f is identically zero, then Pw is always equal to A w . The
gate is then the identity gate i.

� If f is identically one, then Pw always equals 1˚ A w . The gate is then an inverter
or NOT gate: Pw D A w .

� If f (A 1, A 2, . . . , A w�1) equals the (w � 1)-bit AND function A 1A 2 . . . A w�1, the
gate is a TOFFOLI gate: whenever A 1A 2 . . . A w�1 equals 0, Pw simply equals A w ,
but whenever A 1A 2 . . . A w�1 equals 1, Pw equals NOT A w .

Dual logic is very convenient for physically implementing such rules. This means
that, within the hardware, any logic variable X is represented by two physical quan-
tities; the first representing X itself, and the other representing NOTX. Thus, for
example, the physical gate that realizes the logic gate of Table 4.1a has four physical
inputs: A, NOTA, B, and NOTB; or, in shorthand notation: A, A, B, and B . It also has
four physical outputs: P, P , Q, and Q. Such an approach is common in electron-
ics, where it is called dual-line or dual-rail electronics. Some quantum computers
also make use of dual-rail qubits [87]. However, dual engineering is also applied in
everyday mechanics: weight and counterweight, biceps and triceps, . . .

As a result, half of the input pins of the electronic circuit are at logic 0, and
the other half are at logic 1, and the same is true for the output pins. In this way,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 94 — le-tex

�

�

�

�

�

�

94 4 Low-power Computing

dual electronics is physically conservative: the number of 1s at the output equals
the number of 1s at the input (both being equal to w), even if the truth table of
the reversible logic gate is not conservative. As a result, we get the advantages of
conservative logic without having to restrict ourselves to conservative circuits (see
Section 3.3).

Dual-line hardware allows very simple implementation of the inverter. It is suf-
ficient to interchange its two physical lines in order to invert a variable. In other
words, in order to hardwire the NOT gate,

� Output P is simply connected to input A, and
� Output P is simply connected to input A.

Controlled NOTs are implemented as NOT gates, which are controlled by switches. A
first example is the controlled NOT gate with a single controlling bit (here the bit A);
that is, the FEYNMAN gate:

P D A

Q D A ˚ B .

These two logic relationships are implemented in the physical world as follows:

� Output P is simply connected to input A,
� Output P is simply connected to input A,
� Output Q is connected to input B if A D 0, but connected to B if A D 1, and
� Output Q is connected to input B if A D 0, but connected to B if A D 1.

The last two implementations are shown in Figure 4.4a. In the figure, the arrow-
heads show the positions of the switches if the accompanying label is equal to 1. A
second example is a TOFFOLI gate with two controlling bits (i.e., the bit A and the
bit B):

P D A

Q D B

R D AB ˚ C .

Its logic relationships are implemented in the physical world as follows:

� Output P is simply connected to input A,
� Output P is simply connected to input A,
� Output Q is simply connected to input B,
� Output Q is simply connected to input B ,
� Output R is connected to input C if either A D 0 or B D 0, but connected to C

if both A D 1 and B D 1, and
� Output R is connected to input C if either A D 0 or B D 0, but connected to C

if both A D 1 and B D 1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 95 — le-tex

�

�

�

�

�

�

4.5 An Application: Prototype Chips 95

(a) B
_

Q
_

A

Q
A

AA

B

(c) C

RA

Q
A

AA

B

C

RA

Q
A

AA

B

(b)

R
_

C
_

R

C A

A

B

B

A AB B

Figure 4.4 Implementations of (a) a controlled NOT gate (u D 1, v D 1), (b) a controlled NOT
gate (u D 2, v D 1), and (c) a controlled SWAP gate (u D 1, v D 2).

The last two implementations are shown in Figure 4.4b. Note that in both Fig-
ures 4.4a and 4.4b, switches always appear in pairs in which one is closed when-
ever the other is open and vice versa. It is clear that the above design philosophy
can be extrapolated to a controlled NOT gate with an arbitrary control function f. It
is sufficient to write f as a combination of ANDs and ORs and to wire a square circuit
as in Figures 4.4a and 4.4b, with the appropriate series and parallel connections of
switches.

If, for example, we apply such hardware wiring to the controlled NOT with the con-
trol function f D A C B , we realize that the direct implementation of Figure 3.30a
requires eight switches. In contrast, Figure 3.30b requires sixteen switches and Fig-
ure 3.30c twelve switches. This fact illustrates that decomposing a controlled NOT
into TOFFOLIs is not necessarily advantageous.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 96 — le-tex

�

�

�

�

�

�

96 4 Low-power Computing

(a) (c)(b)

Figure 4.5 Schematic icons: (a) n-MOS transistor, (b) p-MOS transistor, (c) c-MOS transmis-
sion gate.

Now that we have an implementation approach, we can realize any reversible cir-
cuit in hardware. This can happen in different technologies. In mechanics, a con-
trolled switch is called a door or a clutch; in hydraulics, a controlled switch is called
a tap; in pneumatics, a controlled switch is called a valve. Here, however, we will
demonstrate some examples of implementation on an electronic chip. In electron-
ic circuits, a switch is realized using a so-called transmission gate; that is, two MOS
transistors in parallel (one n-MOS transistor and one p-MOS transistor) – see Fig-
ure 4.5, where Vs stands for source voltage, Vg stands for gate voltage, Vd stands for
drain voltage, and Vc stands for control voltage. Here, MOS stands for metal oxide
semiconductor, whereas n refers to ‘negative’ type and p to ‘positive’ type. Circuits
containing both n-type transistors and p-type transistors are called c-MOS circuits,
where c stands for complementary. In electronic circuits, the role of the potential µ
of the previous section is played by the electrical potential qV , the product of the
elementary charge q (1.602189�10�19 C) and the voltage V. The role of the particle
current N is played by i/q, where i is the electric current.

Readers familiar with electronics will notice that circuits like those in Figure 4.4
are not of the conventional style, called ‘restoring logic’ or ‘static c-MOS’, but a
less well-known style called ‘pass-transistor logic’ [88–92]. The pass-transistor log-
ic families allow good control of leakage currents and therefore cause less energy
consumption [93]. Figure 4.6 shows a detailed electronic schematic of the build-
ing blocks. We stress that these circuits have no power supply inputs, so there are
neither power nor ground busbars. Note also the complete absence of clock lines.
Thus, all signals (voltages and currents) and all energy provided at the outputs orig-
inate from the inputs. Figure 4.7 illustrates the differences between restoring logic
(Figures 4.7a and c) and pass-transistor logic (Figures 4.7b and d). In conventional
c-MOS circuits, electrical currents flow vertically (from top to bottom), whereas in-
formation currents flow horizontally (from left to right); in pass-transistor c-MOS
circuits, both electrical currents and information currents flow horizontally (either
from left to right or from right to left).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 97 — le-tex

�

�

�

�

�

�

4.5 An Application: Prototype Chips 97

Figure 4.6 c-MOS schematics of basic circuits: (a) the NOT gate, (b) the FEYNMAN gate, (c) the
TOFFOLI gate, and (d) the FREDKIN gate.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 98 — le-tex

�

�

�

�

�

�

98 4 Low-power Computing

(a)

(c) (d)

(b)

A

1

0

A

A

AA

A

A

B

1 1

0

AB

1

0

A

B
A

B

A

B
A

B

AB

AB

Figure 4.7 Schematics of logic gates: (a) conventional NOT gate, (b) reversible NOT gate, (c)
conventional NAND gate, and (d) reversible NAND gate.

As an example, Figure 4.8 shows the actual FEYNMAN and TOFFOLI gates, im-
plemented in silicon technology. An application is shown in Figure 4.9: a four-bit
reversible ripple adder [94], implemented in full-custom 2.4 µm standard c-MOS
technology and consisting of eight FEYNMANs and eight TOFFOLIs, with a total of
8 � 8 C 8 � 16 D 192 transistors. This prototype chip was fabricated in 1998. The
circuit functions equally well from left to right and from right to left. Conventional
digital chips do not have this property. The reader is invited to compare Figure 4.9
to Figure 3.43a.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 99 — le-tex

�

�

�

�

�

�

4.5 An Application: Prototype Chips 99

Figure 4.8 Photomicrograph (24 µm � 36 µm) of a FEYNMAN gate and a TOFFOLI gate.

A second application [95] (Figure 4.10) was fabricated in 2000, in submicron
technology: a four-bit carry-look-ahead adder, implemented in 0.8 µm standard
c-MOS technology, containing four FEYNMANs, four controlled NOTs of width w D 3,
and one complex controlled NOT of width w D 13. It contains a total of 320 transis-
tors.

We can use switches to decide not only whether or not an input variable is in-
verted, but also whether or not two input variables should be swapped. This con-
cept leads to the implementation of the controlled SWAP gate, such as the FREDKIN

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 100 — le-tex

�

�

�

�

�

�

100 4 Low-power Computing

Figure 4.9 Photomicrograph (140 µm � 120 µm) of a 2.4-µm four-bit reversible ripple adder.

Figure 4.10 Photomicrograph (610 µm � 290 µm) of a 0.8-µm four-bit reversible carry-look-
ahead adder.

gate:

P D A

Q D A(B ˚ C) ˚ B

R D A(B ˚ C) ˚ C ,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 101 — le-tex

�

�

�

�

�

�

4.6 Switch Cost 101

where A is the controlling bit and B and C are the two controlled bits. This set of
equations corresponds to (3.13), with a control function f (A) D A. Figures 4.4c
and 4.6d show the physical implementation. The reader can easily extrapolate the
design philosophy to reversible logic gates of width w D uC v , where u controlling
bits decide, by means of a control function f, whether or not the v controlled bits
are subjected to some swapping and/or inverting.

4.6
Switch Cost

In Section 3.12 we introduced the gate cost of a circuit. We will now introduce
another cost function: the switch cost. The switch cost of a circuit is simply the
number of switches in the hardware realization. For example, the gate cost of a
FEYNMAN gate is one unit, but its switch cost is four units; the gate cost of a TOFFOLI
gate is 1, but its switch cost is 4u, where u is the number of controlling bits. As
another example, the gate cost of the full-adder circuit in Figure 3.42a is 2, but its
switch cost [96] is 36. Whether the gate cost or the switch cost is the better cost
function depends on (the economics of) the implementation technology.

In the case of silicon technology, twice the switch cost gives the number of tran-
sistors, and is therefore a good measure of the silicon area and thus the price of the
chip. It is therefore interesting to investigate whether we can find syntheses of the
building blocks F, M, and U other than those in Figure 3.42 that will yield lower
switch costs. This leads to the optimal designs [97] shown in Figure 4.11. Table 4.2
makes a quantitative comparison between the two approaches. Inserting the opti-
mized designs of Figure 4.11 into Figure 3.43 results in Table 4.3, which replaces
Table 3.12.

(a)

(b)

(c)

C o

B

C i

A

0

B

C i

A

C o

S

F

M

U
Co

S

Figure 4.11 Three optimized reversible circuits: (a) the full adder, (b) the majority circuit, and
(c) the unmajority circuit.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 102 — le-tex

�

�

�

�

�

�

102 4 Low-power Computing

Figure 4.12 Photomicrograph (140 µm � 230 µm) of a 0.35-µm eight-bit reversible Cuccaro
adder.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 103 — le-tex

�

�

�

�

�

�

4.7 Moore’s Law 103

Table 4.2 Cost comparison of two different designs of three building blocks.

Building block Cost function Figure 3.42 Figure 4.11

F Gate cost 2 4
Switch cost 36 20

M Gate cost 3 2

Switch cost 16 12
U Gate cost 3 2

Switch cost 16 12

Table 4.3 Two reversible n-bit adders: (a) with n full adders; (b) with n majority and n unmajority
circuits.

Design Gate Logic Logic Switch

cost depth width cost

(a) 4n 2n 3n C 1 20n

(b) 4n C 1 3n C 2 2n C 2 24n C 4

One application [72] (Figure 4.12) is an eight-bit Cuccaro adder, implemented in
0.35 µm standard c-MOS technology, containing 16 FREDKIN and 17 FEYNMAN gates.
It thus contains a total of 16 � 16 C 17 � 8 D 392 transistors. The prototype chip
was fabricated in 2004. We recognize eight majority circuits M at the left and eight
unmajority circuits U at the right. At the bottom, we have one small spy circuit (see
Section 3.20.3).

4.7
Moore’s Law

According to Moore’s law (named after the American engineer Gordon Moore) [98],
electronic chips produced by the semiconductor industry contain an increasing
number of transistors over time, because the transistors become smaller all the
time. From the examples shown in the previous section, the reader will have ob-
served that full-custom prototyping at a university lab also follows Moore’s law,
although with a delay of a couple of years with respect to the semiconductor in-
dustry. Indeed, many commercial chips now use transistors as small as 0.18 or
0.13 µm. Some companies have already entered the nanoscale era by introducing
90 nm, 65 nm, and 45 nm products [99] to the market.

Moore’s law – the continuous decrease in transistor size – also leads to a continu-
ous decrease in the energy dissipation per computational step. This electricity con-
sumption and associated heat generation Q is of the order of magnitude of C V 2

t ,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 104 — le-tex

�

�

�

�

�

�

104 4 Low-power Computing

Table 4.4 Dimensions L, W, and t, and threshold voltage Vt, as well as resulting capacitance C
and heat dissipation Q, of three different standard c-MOS technologies.

Technology L W t Vt C Q

(µm) (µm) (µm) (nm) (V) (f F) (f J)

2.4 2.4 2.4 42.5 0.9 46.8 38

0.8 0.8 2.0 15.5 0.75 3.6 2.0

0.35 0.35 0.5 7.4 0.6 0.82 0.30

where Vt is the threshold voltage of the transistors and C is the total capacitance of
the capacitors in the logic gate [100]. The quantity C is of the order of magnitude
of �0� LW

t
, where L, W, and t are the length, the width, and the oxide thickness of

the transistors, whereas �0 is the permittivity of vacuum (8.854188 � 10�12 F/m)
and � is the dielectric constant of the oxide (either 3.9 for silicon oxide SiO2, or 22
for hafnium oxide HfO2). Table 4.4 gives some typical numbers. Note that a tech-
nology is named after its value for the transistor length L. We see how Q becomes
smaller and smaller as L shrinks. However, this dissipation in electronic circuits is
still about four orders of magnitude greater than the Landauer quantum kT log(2),
which is (for T D 300 K) about 3 � 10�21 J, or 3 zeptojoules.

Shrinking L and W and reducing Vt still further will ultimately lead to a Q

value in the neighborhood of k T log(2). According to the International Technolo-

1000

100

10

1

0.1

0.01

0.001
2000 2010 2020 2030 2040

CV 2
t (attojoules)

Landauer quantum

Figure 4.13 Heat generation Q in different c-MOS generations.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 105 — le-tex

�

�

�

�

�

�

4.8 Quasi-adiabatic Addressing 105

gy Roadmap of Semiconductors [101], Moore’s law will continue to hold in the near
future. Figure 4.13 shows how C V 2

t will continue to decrease, ultimately approach-
ing Landauer’s quantum around the year 2034.

By that point, there will be a strong drive for digital electronics to be reversible, as
logic reversibility is required in order to cross the Landauer barrier. This, however,
does not mean that reversible MOS circuits are useless today. Indeed, as they are
a reversible form of pass-transistor topology, they are particularly well suited for
adiabatic addressing [102], leading to substantial power savings. In practice, such
a procedure leads to a reduction in power of about a factor of 10 [100]; see the next
section. The reduction in power dissipation is even more impressive if standard c-
MOS technology is replaced by SOI (silicon-on-insulator) technology. In the latter
process, the threshold voltage Vt can be controlled more precisely, making low-Vt

technologies possible [103, 104].

4.8
Quasi-adiabatic Addressing

Power dissipation in electronic circuits is attributed to charge transfer [105, 106].
Figure 4.14a shows the basic circuit: a source voltage v (t) charges a capacitor (with
capacitance C) to a voltage u(t). Between the voltage source and the capacitor, we
have a switch. Its off-resistance is assumed to be infinite; its on-resistance is R.
This R is of the order of magnitude of σ W d

L
, where d is the channel thickness

of the transistors, whereas σ is the conductivity of the semiconductor (in most
cases silicon Si). In practice, the switch is a transmission gate; that is, the parallel

(a)

(b)

R
C

w

u

v

C 3
R 3C 2

R 2R 1 C 1

u

1w 2w 3w

v

Figure 4.14 Basic RC model.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 106 — le-tex

�

�

�

�

�

�

106 4 Low-power Computing

connection of an n-MOS transistor and a p-MOS transistor. We call w (t) the control

voltage of the switch.
The analog input signals v (t) and w (t) as well as the analog output signal u(t)

represent binary digital signals: V, W, and U, respectively. Thus, as usual, we de-
note logic values with capital letters. For example, an arbitrary binary variable X is
either 0 or 1. The analog signal (say, the voltage) that represents the logic variable X

is denoted by the lowercase letter x. In the ideal case, X D 0 is materialized by
x D �Vd d/2 and X D 1 by x D Vd d/2. Here, Vd d is the power voltage (e.g., the
battery voltage). Nonideal analog signals are interpreted as follows: if x < 0, it is
interpreted as X D 0; if x > 0, it is interpreted as X D 1.

An ideal switch is open whenever w < 0 and closed whenever w > 0. Unfortu-
nately, a transmission gate is not ideal. It works as follows:

� Whenever the gate voltage w exceeds v C Vt, the switch is closed, because the
n-MOS transistor is on.

� Whenever the gate voltage �w sinks below v � Vt, the switch is closed, because
the p-MOS transistor is on.

Thus the switch is always closed, except if both transistors are off; that is, if

w < min(v C Vt, �v C Vt) .

We compare this rule with the law of the ideal switch: an ideal switch is always
closed except if w < 0.
Let V be an input signal that changes from V D 0 to V D 1 at time t D 0. For this
purpose, let v (t) be a ramp voltage:

v (t) D � Vd d

2
for t � � τ

2

D at for � τ
2

� t � τ
2

D Vd d

2
for t � τ

2
. (4.7)

Thus Vd d is the height of the ramp, τ is the rise time, and a D Vd d/τ is the slope of
the ramp. We stress that such an addressing strategy is not optimal from an energy
consumption perspective [107, 108]. However, among all possible functions v (t)
that rise from the value �Vd d/2 to the value Vd d/2 in a finite time τ, its performance
is very close to being optimal. Because the above v profile is a simple time function
and is independent of the circuit parameters C, R, and Vt, it is very often applied as
the pseudo-optimal addressing of logic [109, 110]. The mathematical tool necessary
to prove this statement is well known in optimal control theory, and is called the
calculus of variations [102, 111–113]. This strategy is often called adiabatic charge
transfer [114], although ‘quasi-adiabatic’ is perhaps a more correct name [115].

Note that it is not only input signals that change their binary values either from 0
to 1 (like in (4.7)) or from 1 to 0 that have to follow a controlled time-dependence,
but also input signals that do not change their Boolean values. Figure 4.15 shows

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 107 — le-tex

�

�

�

�

�

�

4.8 Quasi-adiabatic Addressing 107

(a)

(b)

v

0

0

v

vC

vC

vA

vA

vB

vB

t

t

τ

V 2dd /

V 2dd /

-V 2dd /

-V 2dd /

Figure 4.15 Quasi-adiabatic addressing of three input bits A, B, and C: (a) wrong; (b) right.

an example where the input vector (A, B, C) changes from (0, 0, 1) to (1, 0, 1): ad-
dressing only the input bit A by a smooth voltage function vA(t) (Figure 4.15a) is
not sufficient; the inputs B and C (which remain at 0 and 1, respectively) have to
be addressed by the smooth functions vB (t) and vC (t) (Figure 4.15b).

Power consumption is equal to voltage multiplied by current:

[v (t) � u(t)]i(t) , (4.8)

where the electric current i is assumed to be zero, unless the switch is closed,
in which case it obeys a linear transport law called Ohm’s law (after the German
physicist Georg Ohm) instead:

i D 1
R

(v � u) .

The total energy consumption is found by integrating the power dissipation:

Q D
Z

1
R

[v (t) � u(t)]2 d t , (4.9)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 108 — le-tex

�

�

�

�

�

�

108 4 Low-power Computing

with the integrand 1
R

[v (t) � u(t)]2 reminding us of expression (4.6). By solving the
appropriate differential equation, substituting the result u(t) into formula (4.9),
and evaluating the integral, we obtain Q as a polynomial in τ divided by a polyno-
mial in τ [100]:

Q(τ) � 1
2

C V 2
d d

8 C 2(1 C 2α)z C α2z2

(4 C z)(2 C z)

with z D (1 � α)
τ

R C
,

(4.10)

where α is the ratio

α D Vt/Vd d

between the threshold voltage and the step voltage. Usually this voltage ratio is
about 1/4. We recognize three modes of operation:

Q � 1
2

C V 2
d d if τ � R C

� 1
2

C V 2
d d

2
z

if R C � τ � R C/α2

� 1
2

C V 2
d d α2 D 1

2
C V 2

t if τ � R C/α2 .

It is important to note [91] that this result can also be applied to an R C ladder cir-
cuit; that is, a cascade of m sections, each with a resistance Ri and a capacitance Ci

(see Figure 4.14b for m D 3). It is sufficient to use the following values for the
effective capacitance C and the effective resistance R:

C D
mX

iD1

Ci and R D
Pm

iD1 Ri

�Pm
j Di C j

�2

�Pm
iD1 Ci

�2 .

This theory has been checked using a reversible full adder consisting of a total
of m D 20 switches (Figure 4.11a) in 0.35 µm standard c-MOS technology. The
power voltage Vd d is 3.6 V. Whenever the input signals change from one input
vector to another (according to the procedure of Figure 4.15b), switches open and
close in subsequent gates, like dominoes, transferring the new information from
the inputs to the outputs of the circuit [91]. Figure 4.16 shows an example of a
quasi-adiabatic experiment [116]. We see two transient signals: one from the input
variables and one from the resulting output bits. Figure 4.17 shows, for τ values
ranging from 100 ps to 10 µs, a curve-fit according to (4.10). We clearly recognize
the three modes. Figure 4.16 displays the third regime: an input signal v (t) and an
output signal u(t) for τ D 500 µs.

Only for zero-Vt technologies does the parameter α equal 0. In that case, (4.10)
simplifies to

Q � 1
2

C V 2
d d

2
2 C z

,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 109 — le-tex

�

�

�

�

�

�

4.8 Quasi-adiabatic Addressing 109

CH1 1.00V CH2 1.00V M 250µs

Figure 4.16 Oscilloscope view of a 0.35-µm c-MOS full adder.

10 f

100 f

1 p

10 p

100 p 1 n 10 n 100 n 1 u 10 u

1 CV2
2
t

(joules)Q

(seconds)

Figure 4.17 Heat generation Q as a function of rise time τ.

leaving only two modes [117]:

Q � 1
2

C V 2
d d if τ � R C

� C V 2
d d

R C

τ
if τ � R C . (4.11)

Note that limτ!1 Q D 0 and limR!0 Q D 0. Thus, Q can be made smaller
than any value provided that we choose τ to be long enough or R to be small
enough. This is no surprise, as any physical process can only happen infinitely

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 110 — le-tex

�

�

�

�

�

�

110 4 Low-power Computing

smoothly provided that it either happens infinitely slowly or with infinitely low
friction.

In the slow regime (4.11), both the factor v (t) � u(t) and the factor i(t) in the
product (4.8) are approximately constant during the time interval � τ

2 � t � τ
2 :

i(t) � C Vd d/τ

v (t) � u(t) � R C Vd d/τ .

In finite-time thermodynamics, such a regime is sometimes called equiparti-

tion [108]. In Figure 4.16, we are clearly not in this mode: the voltage difference v�u

is not constant. It remains approximately 3 µV, except when �Vt/2 < v (t) < Vt/2
(i.e., when �0.3 V < v < 0.3 V). During that time interval, v � u is unfortunately
much larger.

4.9
Exercises for Chapter 4

Exercise 4.1
Explain the gate cost of 36 in Section 4.6 for the full adder of Figure 3.42a.

Exercise 4.2
For Figure 3.42a, Section 3.21 mentions that the two garbage outputs have values B

and Ci , respectively. What are the garbage outputs of Figure 4.11a of Section 4.6?

Exercise 4.3
Assume that the transistor parameters L, W, t, and Vt change because of Moore’s
law, but not the parameter �. Also assume that, from one c-MOS generation to the
next, L shrinks by a factor �: if the transistor length is L0 in a certain generation,
then it is L0/� in the next generation (with � > 1). Each time that L is divided
by �, the other parameters are divided by some factor �n . Consider three different
scaling laws [118, 119]:

Table 4.5 Three different scaling laws: (a) constant-voltage scaling, (b) constant-electric-field
scaling, and (c) historic scaling.

Parameter (a) (b) (c)

Length L �1 �1 �1

Width W �1 �1 �1

Oxide thickness t �1 �1 �0.77

Threshold voltage Vt �0 �1 �0.23

Energy consumption Q �? �? �?

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c04 — 2010/8/5 — 13:36 — page 111 — le-tex

�

�

�

�

�

�

4.9 Exercises for Chapter 4 111

(a) The ideal constant-voltage scaling,
(b) The ideal constant-electric-field scaling, and
(c) The historic scaling,

with �n according to Table 4.5.
If the energy dissipation is Q0 in a certain generation, then it is Q0/�m in the

next generation. What is the exponent m for each of the three models?

Exercise 4.4
Consider Table 4.4 as three subsequent generations of MOS transistors. What is
the value of � between the first and the second generations? What is its value when
stepping from the second to the third generations? Does the evolution of the energy
consumption Q follow model (a), (b), or (c) of the previous exercise?

Exercise 4.5
Derive from (4.11), for long τ values, the expression for the product Qτ. What
happens with this result if you replace the charge C Vd d by the elementary charge q

and the resistance R by the von Klitzing constant h/q2 D 25.81281 kΩ (named after
the German physicist Klaus von Klitzing)? Here, h is Planck’s constant 6.626176
�10�34 J s (named after the German physicist Max Planck).

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 113 — le-tex

�

�

�

�

�

�

113

5
Analog Computing

5.1
Computing with Real Numbers

The vast majority of computers are digital computers. In them, input pins and
output pins can have only two distinguishable values: both A j 2 B and P j 2 B,
where B D f0, 1g. Nevertheless, analog computers do exist [120]. In such a ma-
chine, signals can take any real value from �1 to C1; thus, A j 2 R and P j 2 R.
One important kind of analog computer is the neural computer [121, 122], which
mimics the performance of the brain.

Below, we will mostly restrict ourselves to linear relationships between analog
outputs and analog inputs:

0
BB@

P1

P2

. . .
Pw

1
CCA D

0
BB@

M11 M12 . . . M1w

M21 M22 . . . M2w

. . .
Mw1 Mw2 . . . Mw w

1
CCA
0
BB@

A 1

A 2

. . .
A w

1
CCA . (5.1)

In contrast to (3.5), where all matrix elements M j k 2 B, here we have M j k 2 R.
In contrast to (4.3), where the variables p j , m j k , and ak had subscripts running
from 1 to 2w , here we use the uppercase letters P j , M j k , and A k , with subscripts
running from 1 to w. The coefficients M j k are called weight factors. In the case of
neural computing, we may even call them synaptic weights. The matrix elements
can be fixed-point positive numbers, but they can equally well be negative numbers,
irrational numbers, etc.

Instead of a finite number of possible matrices, we now have an infinite number
of possibilities; a continuous spectrum of matrices M. Indeed, all w2 matrix ele-
ments M j k can take all possible real values between �1 and C1, with the only
reversibility restriction being

det(M) ¤ 0 .

Thus, there are 1w2
reversible weight matrices (where 1 stands for a nondenu-

merable infinity, often called ‘the cardinality of the reals’, and where w2 is the di-
mension of the matrix space). Table 5.1 compares the number 1w2

with the finite

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 114 — le-tex

�

�

�

�

�

�

114 5 Analog Computing

Table 5.1 The number of different classical linear reversible circuits as a function of the circuit
width w.

w Digital Analog

1 1 1
2 6 14

3 168 19

4 20 160 116

order L of the digital linear reversible group L (Table 3.2). The nonsingular (i.e.,
invertible) real matrices form a group Λ, spanning a w2-dimensional space. The
infinite group is isomorphic to the Lie group [13, 123] known as the general linear
group GL(w, R). This group is the set of nonsingular real w � w matrices, together
with the standard matrix multiplication.

Analogously to Section 3.10, we introduce control gates:

0
BBBB@

P1

P2

. . .
Pw�1

Pw

1
CCCCA D

0
BBBB@

1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 1 0
L1 L2 . . . L w�1 1

1
CCCCA

0
BBBB@

A 1

A 2

. . .
A w�1

A w

1
CCCCA , (5.2)

where the weights L k are called lifting coefficients. This, of course, is the linear
version of the more general control gate

P1 D A 1

P2 D A 2

. . .

Pw�1 D A w�1

Pw D f (A 1, A 2, . . . , A w�1) C A w , (5.3)

where f stands for an arbitrary real function. Note that the addition sign (C) re-
places the XOR in (3.12). However, as stressed by Yokoyama et al. [1], XOR is its own
inverse, whereas the inverse of C is �. In (5.2), we have a linear control function:

f (A 1, A 2, . . . , A w�1) D L1A 1 C L2A 2 C � � � C L w�1A w�1 .

The linear control gates (with the same controlled wire) form a (w �1)-dimensional
Abelian subgroup � of GL(w, R). The group � is isomorphic to the group of real
w � w matrices with all diagonal elements equal to 1 and all off-diagonal elements
equal to 0, except in one particular row. Whereas in Section 3.19 the linear control
gates (with an arbitrary controlled bit) generate the whole group L, here (in the
case of real numbers) the linear control gates (with an arbitrary controlled wire) do
not generate the whole group Λ, only a subgroup of Λ. Since all control gates have

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 115 — le-tex

�

�

�

�

�

�

5.2 Synthesis 115

a unit determinant, and det(AB) D det(A) det(B), they can only generate circuits
with unit determinants. These circuits form a subgroup of Λ; that is, Σ , isomor-
phic to the so-called special linear group [123] SL (w, R), of dimension w2 � 1:

SL(w, R) � GL(w, R) . (5.4)

The group SL is the set of nonsingular real w � w matrices with determinant equal
to 1, together with the operation of matrix multiplication.

Therefore, in order to generate the whole group Λ, we need extra generators,
which is why we introduce SCALE gates:0

BBBB@
P1

P2

. . .
Pw�1

Pw

1
CCCCA D

0
BBBB@

1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 1 0
0 0 . . . 0 S

1
CCCCA

0
BBBB@

A 1

A 2

. . .
A w�1

A w

1
CCCCA ,

where the weight S is called the scaling coefficient. These form a one-dimensional
group isomorphic to GL(1, R). Thus, the w2-dimensional space of GL(w, R) con-
sists of the (w2 � 1)-dimensional space of SL(w, R) and the one-dimensional space
of GL(1, R).

Besides SCALE gates that scale the number A w , we can also consider SCALE gates
that scale another real input A k .

5.2
Synthesis

We note that the synthesis of an arbitrary circuit from GL(w, R) requires only one
SCALE gate plus the synthesis of an appropriate member from SL(w, R). We can
illustrate this by a w D 4 example:0

BB@
a b c d

e f g h

j k l m

n o p q

1
CCA D

0
BB@

1 0 0 0
0 1 0 0
0 0 ∆ 0
0 0 0 1

1
CCA
0
BB@

a b c d

e f g h
j

∆
k
∆

l
∆

m
∆

n o p q

1
CCA ,

where ∆ is the determinant of the matrix on the left-hand side. The right matrix of
the right-hand side automatically has a unit determinant. Here we have chosen the
input A 3 as the number to be scaled. Of course, any other choice is equally good.

We can now focus on the synthesis of an arbitrary member of SL(w, R). Can it,
like the binary matrices in Section 3.19, be synthesized solely from control gates?
The answer is ‘yes’, provided we are careful with the swap matrix S in the decom-
position (3.20). Can a SWAP gate be decomposed into control gates? This is not
obvious, as, for example, (3.14) does not hold in the real-number field. Indeed, in
that case, we have�

1 1
0 1

��
1 0
1 1

��
1 1
0 1

�
D
�

2 3
1 2

�
. (5.5)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 116 — le-tex

�

�

�

�

�

�

116 5 Analog Computing

(b)

(a)

1

-1

-1

-11 1

1

-1 -1
-1

1

Figure 5.1 Decomposition of (a) an exchange gate and (b) a SWAP gate.

Only even wire permutations can be decomposed into control gates. An example is
shown in Figure 5.1a:

0
@0 1 0

0 0 1
1 0 0

1
A

D
0
@1 0 �1

0 1 0
0 0 1

1
A
0
@ 1 0 0

�1 1 1
0 0 1

1
A
0
@1 0 0

0 1 0
1 �1 1

1
A
0
@1 0 0

0 1 1
0 0 1

1
A
0
@1 1 0

0 1 0
0 0 1

1
A .

Whenever possible, we choose (for decomposition (3.20)) not a swap matrix but an
even permutation for the permutation matrix S. Only when this is not possible do
we resort to a SWAP gate. Because the latter represents an odd permutation, it needs
four gates:

�
0 1
1 0

�
D either

��1 0
0 1

��
1 �1
0 1

��
1 0
1 1

��
1 �1
0 1

�

or
�

1 0
0 �1

��
1 0

�1 1

��
1 1
0 1

��
1 0

�1 1

�

or similar .

In such decompositions, only three blocks are control gates (with lifting coeffi-
cients ˙1), with the remaining one being a SCALE gate (with scaling factor �1). See
Figure 5.1b, which shows the first decomposition possibility.

Thus, we finally obtain a decomposition similar to (3.21), but with extra gates:
one or zero SCALE gates with scaling factors equal to det(M), and possibly some
SCALE gates with scaling factors of �1.

Figure 5.2 summarizes the present section for the case w D 2:

�
M11 M12

M21 M22

�
D
�

1 0
0 S

��
1 0
L1 1

��
1 L2

0 1

��
1 0
L3 1

�
, (5.6)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 117 — le-tex

�

�

�

�

�

�

5.3 An Application: the Color Transform 117

(a) (b)

L1L 3

S

L 2

M11

M12

M 12

M22

Figure 5.2 A linear transformation of two reals: (a) butterfly scheme, (b) lifting scheme.

with one scaling factor and three lifting coefficients:

S D M11M22 � M12M21

L1 D [M22/(M11M22 � M12M21) � 1]/M12

L2 D M12

L3 D (M11 � 1)/M12 . (5.7)

Whereas the conventional circuit of Figure 5.2a is called a butterfly circuit, Fig-
ure 5.2b is sometimes called a ladder circuit [66].

When det(M) D 1, this simplifies to

S D 1

L1 D (M22 � 1)/M12

L2 D M12

L3 D (M11 � 1)/M12 .

An important example of such a unit-determinant transformation is the so-called
Givens rotation (named after the American mathematician Wallace Givens):

�
cos(α) sin(α)

� sin(α) cos(α)

�
D

1 0
cos(α)�1

sin(α) 1

!�
1 sin(α)
0 1

�
1 0

cos(α)�1
sin(α) 1

!
.

Besides its importance in quantum computing [124, 125], it has a number of
classical applications, for example in audio coding [126, 127]. Such decomposi-
tions follow a scheme proposed by Oraintara et al. [128] after Daubechies and
Sweldens [129], following ‘a trick’ by Buneman [130].

5.3
An Application: the Color Transform

We now describe an application with w D 3 taken from everyday life: the trans-
formation from RGB (red–green–blue) color coordinates to XYZ tristimulus val-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 118 — le-tex

�

�

�

�

�

�

118 5 Analog Computing

80.633

4.412 1.000

0.057 -14.404

-0.955

61.368

0.014

A 1

2A

3A

1P

2P

3P

Figure 5.3 Decomposition of a linear reversible circuit into LIFT gates and one SCALE gate.

ues [131]:0
@P1

P2

P3

1
A D

0
@2.769 1.752 1.130

1.000 4.591 0.060
0.000 0.057 5.594

1
A
0
@A 1

A 2

A 3

1
A .

In this example, the determinant is approximately equal to 61.368.
Figure 5.3 shows the decomposition of the color coordinate transform:0

@2.769 1.752 1.130
1.000 4.591 0.060
0.000 0.057 5.594

1
A D

0
@61.368 0 0

0 1 0
0 0 1

1
A
0
@1 �0.955 0.014

0 1 0
0 0 1

1
A
0
@ 1 0 0

1.000 1 �14.404
0 0 1

1
A

0
@ 1 0 0

0 1 0
0.000 0.057 1

1
A
0
@1 0 0

0 1 80.633
0 0 1

1
A
0
@1 4.412 0

0 1 0
0 0 1

1
A .

We see no permutation matrices in this case.
In Figure 5.3, we have decomposed each control gate into w � 1 or less control

gates with a single controlling wire. We call such building blocks LIFT gates. They
play a role similar to the FEYNMAN gates in Section 3.19. Figure 5.3 displays seven
LIFT gates. In general (assuming no permutation matrix is necessary), w2 � 1 or
less LIFT gates appear; see Section 3.19.

The following question arises: is the decomposition of an arbitrary element of
Σ into w2 � 1 LIFT gates efficient? In order to answer this question, we assume
a space of dimension n, to be built with the help of a library of subspaces, each
of dimension b. We postulate that L subspaces of dimension b can span the total
space of dimension n. Therefore, (L � 1)b < n and Lb � n, and thus the lower
bound

L D
l n

b

m
. (5.8)

Comparing (5.8) with (D1), we note that, in an infinite group, the dimensionality
plays a similar role to the logarithm of the order of a finite group. This is not

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 119 — le-tex

�

�

�

�

�

�

5.4 About Determinants 119

surprising. Indeed, if, against better judgement, we treat infinity as an ordinary
number, we obtain

log(N)
log(B)

D log(1n)
log(1b)

D n log(1)
b log(1)

D n

b
.

With n(w) D w2 � 1 for SL(w, R) and b(w) D 1 for the LIFT gates, (5.8) becomes

L D
�

w2 � 1
1

�
D w2 � 1 .

Thus, our synthesis approach for special linear real transformations is particularly
efficient. As synthesis for general linear transformations requires only one extra
(SCALE) gate, that synthesis is also very efficient.

5.4
About Determinants

In the previous section, we introduced the subgroup SL of the the group GL.
Whereas the determinant of the matrices of GL may have any real value (except 0),
the determinant of the matrices of SL can only have the value 1. In the finite
group Sn , however, we made no similar distinction. Since there are ‘special lin-
ear groups’, why aren’t there ‘special symmetric groups’ too? The reason is the
following. Matrix computations happen in a field; that is, a set of numbers and two
operations (one of which is a kind of addition, and the other a kind of multipli-
cation). In binary computing, the set is B D f0, 1g, the addition is XOR, and the
multiplication is AND. Such a field is called the ‘Galois field’ GF(2), after the young
French mathematician Évariste Galois, pioneer of the theory of finite groups. In
this field, all square matrices have a determinant that is equal to either 0 (singular
matrices) or 1 (invertible matrices). Thus: in GF(2), all invertible matrices have unit
determinants and are thus ‘special’. For example,

det
�

0 1
1 0

�
D (0 AND 0) XOR(1 AND 1) D 1 .

If we regard permutation matrices as a subgroup of GL, we can compute their
determinants in the real field; that is, the field with the number set R and ordinary
addition and multiplication. In that case,

det
�

0 1
1 0

�
D (0 � 0) � (1 � 1) D �1 .

Now, in the real field, half of all permutation matrices have determinants equal
to +1, while the other half have determinants of �1. The former correspond to
‘even permutations’, and the latter to ‘odd permutations’. The even permutations
form a subgroup of permutations. Thus, although we have done it by the back-
door route of the real field, we have still discovered a group resembling a ‘special

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 120 — le-tex

�

�

�

�

�

�

120 5 Analog Computing

symmetric’ group. This group has been given the name of alternating group. The
group An is thus the group of even permutations of n objects or (equivalently)
the group of n � n permutation matrices with determinant 1 in the real field. We
have

An � Sn , (5.9)

and the index of An in Sn is 2. The order of An is thus n!/2.

5.5
LIFT Gates versus SCALE Gates

Whereas the LIFT gates in the analog linear computer are the equivalent of the
FEYNMAN gates in the digital linear computer, the SCALE gates have no counterpart
in the digital computer. We stress that these SCALE gates behave quite differently
from the LIFT gates.

The advantage of the LIFT gates over the SCALE gates is the fact that comput-
ing followed by uncomputing is insensitive to errors in the lifting coefficients [66,
67, 128, 132–134]. The inverse of a lifting circuit with lifting coefficient L is a
lifting circuit with a lifting coefficient �L (see the template in Figure 5.4a). The
inverse circuit can, however, also have the lifting factor L, provided the addition
is replaced by a subtraction: see Figure 5.4b. As the Cuccaro subtractor is sim-
ply the mirror image of the Cuccaro adder, the inverse circuit of the lifting gate
is its mirror image. Well, this is no surprise; see the do-undo structure of Sec-
tion 3.18. Thus, if the hardware implementation of the multiplier L has limited
accuracy, the multiplication will lead to a slightly incorrect product; nevertheless,
if we use the same (but mirrored) inaccurate circuit for decomputing, the cascade
of computation and uncomputation will be a noncomputation: the two successive
inaccuracies cancel each other. Inaccurate multiplication does not prevent perfect
reversibility.

The inverse of a SCALE gate with scaling factor S needs a SCALE gate with scaling
factor 1/S . This is illustrated by the template in Figure 5.4c. If S and 1/S have

(c)

S S1/

(b)(a)

L L- L L

Figure 5.4 Three analog templates: (a) lifting circuit, (b) lifting circuit, and (c) scaling circuit.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 121 — le-tex

�

�

�

�

�

�

5.5 LIFT Gates versus SCALE Gates 121

(a)

(b)

(c)

A k

A k

A k S

S

Pk

Pk

Pk

1 S -1

A w +1

A w +1 Pw +1

Pw +1

Figure 5.5 Applying an extra line to substitute (a) a SCALE gate with (b) a LIFT gate or (c) two
LIFT gates.

limited precision, imperfect inversion can result [66]. In our example of Section 5.3,
S equals 61.368. If also 1/S is hardwired with a precision of only 10�3, then 1/S

is approximated by 0.016, leading to imperfect inversion (as 0.016 � 61.368 is not
exactly 1, but 0.981888).

According to Bruekers and van den Enden [66], perfect inversion is only possible
if the scaling factor S is a so-called perfect coefficient;14) that is, it equals ˙2˙ j

for example. If this is not the case, scaling circuits should be avoided for perfect
invertibility. We may convert a SCALE gate into a LIFT gate, provided we introduce
an extra (w C 1)th line with a preset input A wC1 and a garbage output PwC1. See
for example, Figure 5.5, where A wC1 is preset to 0, and where (besides the desired
output S A k), we obtain a garbage output equal to A k :

�
Pk

� D �
S
� �

A k

� !
�

Pk

PwC1

�
D
�

1 0
S 1

��
A k

0

�
.

If we prefer the desired result (S A k) to appear at the output Pk and the garbage
result (A k) to appear at the output PwC1, either two liftings (Figure 5.5c) or one
lifting and one swap are necessary.

We end this section by discussing a simple example: the ˙ circuit, which real-
izes the linear transformation (3.1). Figure 5.6a shows its icon. Its matrix has the

14) The ‘perfect coefficients’ of Bruekers and van den Enden form a discrete group (with a
denumerable infinity of elements); see the end of Section 2.1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 122 — le-tex

�

�

�

�

�

�

122 5 Analog Computing

(a) (c)(b)

1 1

2

-1 1/2

2-

-+-

Figure 5.6 Two circuits that implement the ˙ block.

determinant

det
�

1 1
1 �1

�
D �2 .

Therefore, the synthesis method of Section 5.2 leads to the decomposition

�
1 1
1 �1

�
D
�

1 0
0 �2

��
1 1

� 1
2

1
2

�

D
�

1 0
0 �2

��
1 0

� 1
2 1

��
1 1
0 1

�
.

Figure 5.6b is the resulting circuit. If we prefer to avoid negative scaling factors,
Figure 5.6c gives a possible variant.

5.6
Conclusion

Confronting reversible mappings from f0, 1gw to f0, 1gw with reversible mappings
from Rw to Rw leads to comparisons between finite groups and infinite groups (i.e.,
finite-dimensional Lie groups). In the particular case of linear transformations, we
have confronted GL(w, 2) of order 2(w�1)w/2w !2 with GL(w, R) of dimension w2.
Whereas all members of GL(w, 2) can be generated by control gates and thus by the
building block known as the FEYNMAN gate, the members of GL(w, R) fall into two
categories: the members of the special group SL(w, R), and the others. The former
can be generated solely by control gates and thus by the building block known as
the LIFT gate; the latter need a second kind of building block: the SCALE gate. These
SCALE gates may lead to complications during hardware implementation.

The members of GL(w, 2) and the members of GL(w, R) are both represented by
w � w matrices. Nevertheless, the finite group GL(w, 2) is not simply a subgroup of
the infinite group GL(w, R). Suffice it to note that different matrix multiplication
tables (i.e., Cayley tables) apply, as is illustrated by (3.14) and (5.5). There is, how-
ever, a finite group that is simultaneously a subgroup of GL(w, 2) and a subgroup
of GL (w, R): the group formed by the w ! exchangers. This group is isomorphic
to the symmetric group Sw . It is represented by w � w permutation matrices (see
Section 3.7).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 123 — le-tex

�

�

�

�

�

�

5.7 Computations with Complex Numbers 123

5.7
Computations with Complex Numbers

The reasoning of Section 5.1 barely changes if we postulate A j 2 C, P j 2 C, and
M j k 2 C. Again, we will have LIFT gates like

�
P j

Pk

�
D
�

1 0
L 1

��
A j

A k

�

and SCALE gates like�
Pm

� D �
S
� �

A m

�
,

although both the lifting coefficient L and the scaling coefficient S will be complex.
Practical (classical) analog computers use classical physical quantities (such as

positions, angles, voltages, currents, . . .) to represent numbers. Their information
channels can only transport real numbers. Therefore, we must assume that the
channel A j consists of two subwires, each transporting a real number; that is, one
with A0

j (the real part of A j) and the other with A00
j (the imaginary part of A j). Let

us also make similar assumptions for A k , A m , P j , Pk , and Pm . We can then write0
BBB@

P 0
j

P 00
j

P 0
k

P 00
k

1
CCCA D

0
BB@

1 0 0 0
0 1 0 0
L0 �L00 1 0
L00 L0 0 1

1
CCA
0
BBB@

A0
j

A00
j

A0
k

A00
k

1
CCCA

and �
P 0

m

P 00
m

�
D
�

S 0 �S 00

S 00 S 0

��
A0

m

A00
m

�
,

with L D L0 C i L00 and S D S 0 C i S 00. According to Section 5.2, we have

0
BB@

1 0 0 0
0 1 0 0
L0 �L00 1 0
L00 L0 0 1

1
CCA D

0
BB@

1 0 0 0
0 1 0 0
L0 �L00 1 0
0 0 0 1

1
CCA
0
BB@

1 0 0 0
0 1 0 0
0 0 1 0

L00 L0 0 1

1
CCA

that decomposes the complex LIFT gate into two real LIFT gates, and

�
S 0 �S 00

S 00 S 0

�
D
�

S 0 2 C S 00 2 0
0 1

�
1 S 0�S 0 2�S 00 2

(S 0 2CS 00 2)S 00

0 1

!

�
�

1 0
S 00 1

�
1 S 0�1

S 00

0 1

!

that decomposes the complex SCALE gate into three real LIFT gates and one real
SCALE gate. We obtain exclusively LIFT gates iff the only real scaling coefficient

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 124 — le-tex

�

�

�

�

�

�

124 5 Analog Computing

S S´́1S(´ S´́) / 1S(´ S´́) /--

Figure 5.7 Multiplying a complex input number by a unit-magnitude complex multiplier S D
S 0 C iS 00 .

equals 1; that is, if the complex scaling factor S is on the unit circle of the complex
plane: S 0 2 C S 00 2 D 1. In that case, we have

�
S 0 �S 00

S 00 S 0

�
D

1 S 0�1
S 00

0 1

!�
1 0

S 00 1

�
1 S 0�1

S 00

0 1

!
,

a decomposition that is shown in Figure 5.7.

5.8
An Application: the Fourier Transform

One important example of linear relation (5.1) is the discrete Fourier transform
(named after the French mathematician Joseph Fourier). It is applied in many a
data processor. It is a particularly challenging candidate for reversible computing.
After all, the Fourier-transformed data contain the same information as the orig-
inal data. After all, there is a so-called inverse Fourier transform that allows the
original data to be recovered from the Fourier-transformed data. Therefore, such
computations really beg for a reversible implementation.

The Fourier transform [135] of the w complex input data A(0), A(1), . . . , A(w � 1)
looks like

P(k) D
w�1X
nD0

A(n)Ωk n with 0 � k � w � 1 . (5.10)

Here, Ω is a complex constant:

Ω D exp
�

� 2π
w

i

�

called the twiddle factor. Because of the property Ωw D 1, it is the wth root of unity.
The inverse Fourier transform has a similar expression:

A(n) D 1
w

w�1X
kD0

P(k)Ω�k n .

Because the transformed data P(k) contain exactly the same amount of information
as the original data A(n), and because the inverse transformation exists, the Fourier
transform provides a useful benchmark for reversible computing.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 125 — le-tex

�

�

�

�

�

�

5.8 An Application: the Fourier Transform 125

As, in the present book, we count from 1 to w (instead of counting from 0 to
w � 1), we must first change notation, with A(n) becoming A nC1 and P(k) becom-
ing PkC1. Because of (5.10), the matrix elements M j k of (5.1) are

M j k D exp
�
�i

2π
w

(j � 1)(k � 1)
�

with 1 � j � w and 1 � k � w .

For example, for w D 2, we have

�
P1

P2

�
D
�

exp(0) exp(0)
exp(0) exp(�2π i/2)

��
A 1

A 2

�

D
�

1 1
1 �1

��
A 1

A 2

�
I

that is, the transformation (3.1), also known as the ˙ circuit (Section 5.5). For
w D 3, we have0

@P1

P2

P3

1
A D

0
@exp(0) exp(0) exp(0)

exp(0) exp(�2π i/3) exp(�4π i/3)
exp(0) exp(�4π i/3) exp(�8π i/3)

1
A
0
@A 1

A 2

A 3

1
A

D
0
@1 1 1

1 Ω Ω2

1 Ω2 Ω

1
A
0
@A 1

A 2

A 3

1
A .

The determinant of the Fourier matrix M is not unity [136, 137]:

det M D det

0
BB@

Ω0 Ω0 . . . Ω0

Ω0 Ω1 . . . Ωw�1

. . .
Ω0 Ωw�1 . . . Ω(w�1)(w�1)

1
CCA D w w/2 λ(w) , (5.11)

where λ is either 1, i, �1, or �i, depending on w.
Because the matrix M has very particular symmetry properties, it is not wise

to follow the general-purpose synthesis method of Section 5.2. The so-called fast
Fourier transform (FFT) is an efficient way of calculating a Fourier transform
when w is a power of 2 by exploiting the special properties of the Fourier matrix. It
needs only 1

2 w log2(w) building blocks. Each of these is a circuit with two complex
inputs and two complex outputs, called a butterfly:

P D A C W B

Q D A � W B . (5.12)

The multiplier W is equal to some Ωk (with 0 � k � w � 1), and is thus located
on the unit circle of the complex plane (i.e., W 0 2 C W 00 2 D 1), a fact that is, ac-
cording to Section 5.7, very useful in reversible implementation. Figure 5.8 shows
how to build the butterfly circuit in a reversible way. Here (again), primed symbols

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 126 — le-tex

�

�

�

�

�

�

126 5 Analog Computing

W

Á P´

Q´B´

Á ´

B´́

P´́

Q´́

-+

-+

Figure 5.8 The butterfly circuit.

denote real parts and doubly primed symbols denote imaginary parts. The circuit
consists of one complex scaling circuit like Figure 5.7 and two real ˙ circuits like
Figure 5.6, giving a total of nine gates. Most importantly, the circuit does not gen-
erate garbage [72].

We note that, thanks to the lifting scheme, an inverse Fourier transform cir-
cuit is just the mirror image of the Fourier circuit. Processing the input da-
ta A 1, A 2, . . . , A w by the Fourier chip and subsequently processing its outputs
P1, P2, . . . , Pw by the inverse Fourier chip recovers the original data A 1, A 2, . . . , A w

exactly. Nevertheless, the data P1, P2, . . . , Pw may not constitute the exact Fourier
transform of A 1, A 2, . . . , A w . Indeed, the limited precisions of both the multipli-
ers W and the products W B of the multiplying blocks (5.12) result in a loss of
accuracy. According to Oraintara et al. [128], the Fourier transformation is suf-
ficiently accurate provided all multipliers and products inside the circuit have
f (w) bits more than the input and output numbers, where f is some complicated

function of w that satisfies

f (w) <
3
2

log2(w) .

5.9
Nonlinear Computations

Above, we chose to compare linear reversible gates from the digital world with lin-
ear reversible gates from the analog world. We can also make other, similar com-
parisons. For example, in affine linear transformations, the relationship (5.1) is
generalized to

0
BB@

P1

P2

. . .
Pw

1
CCA D

0
BB@

V1

V2

. . .
Vw

1
CCAC

0
BB@

M11 M12 . . . M1w

M21 M22 . . . M2w

. . .
Mw1 Mw2 . . . Mw w

1
CCA
0
BB@

A 1

A 2

. . .
A w

1
CCA .

If both kinds of parameters (i.e., the vector elements Vj and the matrix ele-
ments M j k) are members of f0, 1g, then we have the finite affine general linear
group of Section 3.6; that is, AGL(w, 2) with order 2w(wC1)/2w !2. If, on the contrary,
both kinds of parameters (Vj and M j k) are elements of R, then we have the infinite
affine general linear group AGL(w, R) with dimension w2 C w .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 127 — le-tex

�

�

�

�

�

�

5.9 Nonlinear Computations 127

One could also envisage investigating analog reversible circuits where the out-
puts are neither linear nor affine linear functions of the inputs. Let us, for example,
look at control gates. In the Boolean case, there are 22w�1

possible functions f for
the relationship

Pw D f (A 1, A 2, . . . , A w�1) ˚ A w .

Their Reed–Muller expansions are a kind of binary polynomials, with the degree of
the polynomial ranging from 0 (if f D 0) to w � 1 (if the Reed–Muller expansion
contains the term A 1A 2 . . . A w�1). In the real case

Pw D f (A 1, A 2, . . . , A w�1) C A w ,

even if we restrict ourselves to polynomial functions f, we already have an infinite
number of coefficients in the polynomial. Thus the dimensionality is infinite. The
order of the group of such polynomial control gates is

11 ,

where the lower infinity is a nondenumerable one (1 being the cardinality of the
reals), whereas the upper infinity is a denumerable one (1 being the cardinality
of the rationals; that is, @0). If we drop the polynomial restriction (that is, if we
accept arbitrary control functions), the upper infinity is not denumerable anymore.
Applying the notation proposed by Wheeler and Penrose [138], the size of the space
is then

11w�1
.

In a final step, if we drop the restriction to only use control gates, we find that the
total number of ways to reversibly transform w reals into w reals is

1w1w

.

We now discuss two examples for w D 1. Thus, there are 11 different com-
putations with one real input A and one real output P. Figure 5.9a shows a simple
example:

P D A3 .

Its inverse exists and is

P D 3
p

A .

Here we assume that 3
p

A denotes the real and positive cube root if A is positive, and
is minus the positive real cube root of �A if A is negative (e.g., 3

p
27 represents 3

and 3
p�27 denotes �3). Figure 5.9b shows a more tricky example:

P D A3 � 3A .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 128 — le-tex

�

�

�

�

�

�

128 5 Analog Computing

(a) (b)

P

A

1

1

2

22-

2-

3-

1-

1-

3

P

A

1

2

22-

2-

3-

1-

1-

3

Figure 5.9 Two cubic functions P(A): (a) P D A3 and (b) P D A3 � 3A.

Its inverse does not exist. This is because the function A3 � 3A is not injective; that
is, A3 � 3A D A0 3 � 3A0 does not necessarily imply A D A0.

In order to see that A3 � 3A is not injective, let us consider the cubic equation

x3 � 3x � y D 0 ,

where y is a given real parameter. If y is in the range �2 < y < 2, then the equation
has three different real solutions x. Following Cardano’s method (named after the
Italian physician/mathematician Girolamo Cardano), these are

x D 3

s
y

2
˙
r

y 2

4
� 1 C 1

3

r
y

2 ˙
q

y 2

4 � 1

.

If, for example, y D p
2 (indicated by the dashed line in Figure 5.9b), then we

find (after some trigonometric manipulations) that the three solutions are x D
�p

2 � �1.41, x D �(
p

6 � p
2)/2 � �0.52, and x D (

p
6 C p

2)/2 � 1.93.
This situation is reminiscent of Figure 3.1. Here, we have an anolog calculator
with input A and output A3 � 3A; see Figure 5.10. The computer is irreversible
because, if we forget the input value (�p

2), knowledge of the output value (
p

2) is
not sufficient to recover the input. For example,

p
2 could equally well have been

generated by �(
p

6 � p
2)/2 or by (

p
6 C p

2)/2.
There are two different ways to make an irreversible computation P D f (A)

reversible. The first approach requires a second wire and applies the general lifting

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c05 — 2010/8/5 — 13:36 — page 129 — le-tex

�

�

�

�

�

�

5.9 Nonlinear Computations 129

√2

√2

√2- A A3 3-

A A3 3-?

Figure 5.10 An irreversible analog calculator.

scheme:

P D A

Q D B C f (A)

where f (A) is an arbitrary (i.e., not necessarily injective) function. Here, f (A) is
the function A3 � 3A. If we apply the preset B D 0, then Q is the desired result
(i.e., A3 � 3A), whereas P is the garbage (equal to A itself). The calculator has two
real inputs and two real outputs. It is reversible. Of course it is: we can recover
the input A from the output values because we simply have remembered it as the
output P. The inverse circuit, by the way, is:

P D A

Q D B � f (A) .

The second approach makes use of the fact that the value of A3 � 3A is sufficient
to recover the value of A provided we know whether A is in the range (�1, �1), in
the range (�1, 1), or in the range (1, C1). Thus, it is not necessary to ‘remember’
A; it is sufficient to remember the sign of A � (�1) and the sign of A � 1. We then
construct a calculator with three outputs:

P D A3 � 3A

Q D sign(A C 1)

R D sign(A � 1) .

This leads to two garbage outputs (i.e., Q and R). However, both are ‘small’ garbage
outputs, as they are merely Boolean numbers that can take only two values (i.e.,
either �1 or 1). Thus, whereas the desired output P is a real, the garbage only
consists of two bits, and two bits contain far less information than a real number –
after all, a real number needs a (countable) infinity of bits to be represented. For this
reason, the outputs Q and R may be considered to represent a very small overhead;
we can call them garbiginoes.

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 130 — le-tex

�

�

�

�

�

�

130 5 Analog Computing

5.10
Exercises for Chapter 5

Exercise 5.1
Prove (5.7).

Exercise 5.2
If M12 equals 0, then (5.7) cannot be the solution of (5.6). What should we do in
this case?

Exercise 5.3
Compute the determinant of the Fourier matrix explicitly in the cases w D 1,
w D 2, w D 3, and w D 4. Compare your results with (5.11).

Exercise 5.4
What are the values of the line sums of the Fourier matrix?

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 131 — le-tex

�

�

�

�

�

�

131

6
Computing in Modulo 2b

In Chapter 3 we performed computations with numbers from B; in Chapter 5 we
performed computations with numbers from R (and from C). However, there are
choices in-between the cases f0, 1g and R, such as the number system where the
numbers A j and the numbers P j are elements of Z; that is, the infinite set of
integers. Reversible integer transformations are important, for example, in signal
processing [67, 128, 132, 133], and find multiple applications in video coding [139–
142].

In the present chapter we will discuss computations with integers from a finite
set, in other words the n members of

Zn D
�

� n

2
, � n

2
C 1, . . . , �1, 0, 1, . . . ,

n

2
� 1

�
.

Here, of course, n is even. In most computers, n is a power of 2, say 2b . Thus
numbers are registers of b bits. We call b the word length. As one of these bits
is a sign bit, integers run from �2b�1 to 2b�1 � 1. Reversible computing in Z2b

(especially in Z16 and Z32) has been discussed by Yokoyama et al. [1, 37].

6.1
Addition in Modulo 2b

In fact, we have already discussed circuits that perform the addition of integer num-
bers with a limited range in Sections 3.21 and 3.22:

P D A

Q D A C B .

There, we tacitly assumed that A and B belong to f0, 1, . . . , 2n � 1g. In Figure 3.43,
all input numbers are from f0, 1, . . . , 15g; in Figure 4.12, all input numbers are
from f0, 1, . . . , 255g.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 132 — le-tex

�

�

�

�

�

�

132 6 Computing in Modulo 2b

S
G

0

1S

0X

1X

2
X 2

S

3
X 3

S

C
M

U

U

U

M

M

B0
i

B1

B2

B3

0A

1A

2A

3A

Figure 6.1 Four-bit reversible ripple adder with majority and unmajority circuits.

Table 6.1 Reversible n-bit adder with n � 1 majority and n � 1 unmajority circuits.

Gate cost Logic depth Logic width Switch cost

4n � 2 3n 2n C 1 24n � 16

In the present chapter, however, A is the binary number A b�1A b�2A b�3 . . . A 0,
with

� A b�1 as the sign bit (either 0 for the C sign or 1 for the � sign),
� A b�2 as the most significant bit,
� . . . , and
� A 0 as the least significant bit,

and so A belongs to Z2b D f�2b�1, �2b�1 C 1, . . . , �1, 0, 1, . . . , 2b�1 � 1g, and sim-
ilarly for B, P, and Q. In order to obtain Q in modulo 2b , we drop the possibility
of the single carry-over bit Co mentioned in Section 3.22. This allows for a small
simplification of the circuit such that we modify Figure 3.43b to Figure 6.1. Ta-
ble 6.1 gives the properties of the new circuit (to be compared with the numbers in
Table 4.3b). The single carry-in bit Ci cannot be deleted and may be considered a
preset. In normal operation it is preset to 0.

If, for any input vector of Figure 6.1, we calculate the corresponding output vec-
tor, this analysis results in the full truth table. As the width w of the circuit is
2n C 1 D 9, the table has 2w D 18 columns and 2w D 512 rows. Table 6.2a shows
part of the table (i.e., only 12 rows). Table 6.2b shows the same table in decimal
notation; any number N satisfies

N D N2 � 4 C N1 � 2 C N0

if its sign bit (i.e., N3) is equal to zero.
Negative numbers, however, are more tricky. Indeed, in case N3 D 1, we do not

have

N D �(N2 � 4 C N1 � 2 C N0) . (6.1)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 133 — le-tex

�

�

�

�

�

�

6.1 Addition in Modulo 2b 133

Table 6.2 Four-bit adder: (a) in binary notation; (b) in decimal notation.

A3A2A1 A0 B3B2B1B0 Ci X3 X2 X1 X0 S3S2S1S0 G

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
.
0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1
0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0
.
0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0
0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1
0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 1 0
.
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a)

A B Ci X S G

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 0

.
2 4 0 2 6 0
2 4 1 2 7 1
2 5 0 2 7 0

.
5 �3 0 5 2 0 (
5 �3 1 5 3 1
5 �2 0 5 3 0

.
�1 �2 1 �1 �2 1
�1 �1 0 �1 �2 0
�1 �1 1 �1 �1 1

(b)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 134 — le-tex

�

�

�

�

�

�

134 6 Computing in Modulo 2b

The reason is as follows. From the upper half of Table 6.2 (where all numbers are
positive), we see that

S D A C B C Ci

X D A

G D Ci ,

as expected. Solving these equations for A, B, and Ci , we obtain the reverse, expres-
sions:

A D X

B D S � X � G

Ci D G .

Using Table 6.2b in reverse, with G D 0 and X > S , yields some negative
number B D S � X . For example, the row with an arrow says that S � X D
2 � 5 is B D �3. The corresponding value B3B2B1B0 D 1101 in the same row
of Table 6.2a denotes the correct value �3 for B, iff it represents B in the so-called
two’s complement notation [143]:

B D �(B2 � 4 C B1 � 2 C B0) � 1

instead of the ‘naive’ notation (6.1). Table 6.3 shows the correspondence table be-
tween the two’s complement notation and the conventional decimal notation for
the case b D 4.

Table 6.3 Two’s complement notation.

�8 1000

�7 1001
�6 1010

�5 1011

�4 1100
�3 1101

�2 1110
�1 1111

0 0000

1 0001
2 0010

3 0011

4 0100
5 0101

6 0110
7 0111

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 135 — le-tex

�

�

�

�

�

�

6.2 Multiplication by a Constant 135

Thus, the modulo 2b adder of Cuccaro et al. functions correctly in both directions
for both positive and negative integers provided that we adopt the two’s comple-
ment convention. Therefore, we will follow this convention below for other com-
putations too.

6.2
Multiplication by a Constant

Assume that we want to multiply a (variable) integer number A 2 Z2b by a constant
real number X, resulting in a new number P 2 Z2b . It is clear that, for most values
of X, we must content ourselves with an approximate result. Table 6.4b gives a
straightforward truth table for b D 4 and X D p

2, albeit incomplete. In order
to complete the table, we must embed it in a larger (reversible) table. Table 6.4c
gives a candidate truth table, where the numbers from Table 6.4b are presented in
boldface.

It is not obvious how we can reconcile accuracy and reversibility. Inspired by the
results of Chapter 5, we will make a distinction between the case where X is a lifting
multiplier and the case where X is a scaling multiplier.

Table 6.4 Multiplying by
p

2 : (a) in R, (b) in Z16 irreversibly, and (c) in Z16 reversibly.

A
p

2 A

�8 �11.313. . .
�7 �9.899. . .
�6 �8.485. . .
�5 �7.071. . .
�4 �5.656. . .
�3 �4.242. . .
�2 �2.828. . .
�1 �1.414. . .

0 0.000. . .
1 1.414. . .
2 2.828. . .
3 4.242. . .
4 5.656. . .
5 7.071. . .
6 8.485. . .
7 9.899. . .

(a)

A P

�6 �8
�5 �7
�4 �6
�3 �4
�2 �3
�1 �1

0 0
1 1
2 3
3 4
4 6
5 7

(b)

A P

�8 �3
�7 �2
�6 �8
�5 �7
�4 �6
�3 �4
�2 �3
�1 �1

0 0
1 1
2 3
3 4
4 6
5 7
6 0
7 2

(c)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 136 — le-tex

�

�

�

�

�

�

136 6 Computing in Modulo 2b

For scaling multipliers, we will restrict ourselves to the so-called perfect scaling
factors ˙2˙ j of Bruekers and van Enden (see Section 5.5). To implement these, it
is sufficient to have a ‘scaling by �1 block’ (which is its own inverse) and a ‘scaling
by 2 block’ (and its inverse, i.e., the ‘scaling by 1/2 block’). We discuss those build-
ing blocks below, in Sections 6.3 and 6.4. Whenever nonideal scaling is necessary,
we rely on extra wires and a lifting procedure (see Figure 5.5). Lifting multipliers
are discussed below, in Section 6.5.

6.3
Scaling by �1

We now discuss the multiplication by �1 block (which is its own inverse); see Ta-
ble 6.5. Computing in two’s complement makes multiplying by �1 a difficult task:
we cannot simply invert the sign bit. First, we note that Table 6.5a (with b D 4) is
reversible but has only 2b � 1 rows instead of 2b rows. Therefore, we must embed
it in a larger table by adding an extra row; see Tables 6.5b and c. Inspection of the
latter table leads to the conclusion that the implementation is a Sylow circuit (see

Table 6.5 Reversibly multiplying by �1 in Z16: (a) incomplete, (b) complete, and (c) complete,
in binary form.

A P

�7 7
�6 6
�5 5
�4 4
�3 3
�2 2
�1 1

0 0
1 �1
2 �2
3 �3
4 �4
5 �5
6 �6
7 �7

(a)

A P

�8 �8
�7 7
�6 6
�5 5
�4 4
�3 3
�2 2
�1 1

0 0
1 �1
2 �2
3 �3
4 �4
5 �5
6 �6
7 �7

(b)

A3A2 A1A0 P3P2P1P0

1 0 0 0 1 0 0 0
1 0 0 1 0 1 1 1
1 0 1 0 0 1 1 0
1 0 1 1 0 1 0 1
1 1 0 0 0 1 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 1 0 1 1 1 0
0 0 1 1 1 1 0 1
0 1 0 0 1 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 0 0 1

(c)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 137 — le-tex

�

�

�

�

�

�

6.4 Scaling by 1/2 or by 2 137

Section 3.11) with OR control functions:

P0 D A 0

Pk D (A 0 OR A 1 OR . . . OR A k�1) ˚ A k for 1 � k � b � 1 .

We conclude that multiplying by �1 is expensive: both the gate cost and the logic
depth are equal to w � 1 D b � 1.

6.4
Scaling by 1/2 or by 2

In conventional computers (i.e., irreversible computers), dividing and multiplying
an integer A D A w�1A w�2A w�3 . . . A 2A 1A 0 by 2 are simple operations. Indeed,
P D A/2 is found by

� Preserving the sign bit,
� Shifting the remaining one bit to the right, and
� Copying the sign bit into the most significant bit:

Pw�1Pw�2Pw�3 . . . P2P1P0 D A w�1A w�1A w�2A w�3 . . . A 2A 1 .

Analogously, P D 2A is found by preserving the sign bit, shifting the remaining
one bit to the left, and writing 0 into the least significant bit:

Pw�1Pw�2Pw�3 . . . P2P1P0 D A w�1A w�3A w�4 . . . A 2A 1A 00 .

It is clear that both operations are irreversible: in the former case, the information
relating to the bit A 0 is thrown away; in the latter case, the information relating to
the bit A w�2 is thrown away.

There are various ways to define a reversible variant for ‘division by 2’ in order
to implement a scaling factor equal to 1/2. Table 6.6 illustrates one of them, for the
case n D 2b D 24 D 16. It is clear that Table 6.6a is an irreversible truth table;

B Q

A 2

A1 P1

0A 0P

3wA -

2wA -

1wA -

3wP -

2wP -

1wP -

4wP -

Figure 6.2 Reversible division by 2.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 138 — le-tex

�

�

�

�

�

�

138 6 Computing in Modulo 2b

Table 6.6 Dividing by 2 in Z16: (a) irreversibly, (b) reversibly, and (c) in binary form.

A P

�8 �4
�7 �4
�6 �3
�5 �3
�4 �2
�3 �2
�2 �1
�1 �1

0 0
1 0
2 1
3 1
4 2
5 2
6 3
7 3

(a)

A B P Q

�8 0 �4 0
�7 0 �4 1
�6 0 �3 0
�5 0 �3 1
�4 0 �2 0
�3 0 �2 1
�2 0 �1 0
�1 0 �1 1

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 0 2 0
5 0 2 1
6 0 3 0
7 0 3 1

�8 1 �8 0
�7 1 �8 1
�6 1 �7 0
�5 1 �7 1
�4 1 �6 0
�3 1 �6 1
�2 1 �5 0
�1 1 �5 1

0 1 4 0
1 1 4 1
2 1 5 0
3 1 5 1
4 1 6 0
5 1 6 1
6 1 7 0
7 1 7 1

(b)

A3 A2A1 A0 B P3P2P1P0 Q

1 0 0 0 0 1 1 0 0 0
1 0 0 1 0 1 1 0 0 1
1 0 1 0 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 1
1 1 0 0 0 1 1 1 0 0
1 1 0 1 0 1 1 1 0 1
1 1 1 0 0 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 1 1
0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 1 0
0 1 1 1 0 0 0 1 1 1
1 0 0 0 1 1 0 0 0 0
1 0 0 1 1 1 0 0 0 1
1 0 1 0 1 1 0 0 1 0
1 0 1 1 1 1 0 0 1 1
1 1 0 0 1 1 0 1 0 0
1 1 0 1 1 1 0 1 0 1
1 1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 0 1 1 1
0 0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 1 0 0 1
0 0 1 0 1 0 1 0 1 0
0 0 1 1 1 0 1 0 1 1
0 1 0 0 1 0 1 1 0 0
0 1 0 1 1 0 1 1 0 1
0 1 1 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 1

(c)

note that, for example, �4 appears twice in the output column. In order to make it
reversible, we embed it in a larger, reversible table. We choose Table 6.6b, where the
numbers from Table 6.6a are repeated in boldface. We have added a one-bit input B,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 139 — le-tex

�

�

�

�

�

�

6.5 Lifting 139

as well as a one-bit output Q. Finally, Table 6.6b is repeated, in two’s complement
notation, in Table 6.6c. The latter table (where w D b C 1 D 5) leads to the Boolean
relationships

Pk D A kC1 for 0 � k � w � 3

Pw�2 D A w�1 ˚ B

Pw�1 D A w�1

Q D A 0 ,

which in turn lead to the implementation shown in Figure 6.2: one FEYNMAN gate
and one exchange circuit. We conclude that dividing by 2 is cheap: both the gate
cost and the logic depth are equal to 1.

For a ‘scaling by 2’ module, the reader should read Table 6.6 and Figure 6.2 once
again, but this time from right to left.

6.5
Lifting

We now discuss multiplication by an arbitrary constant X by means of lifting coef-
ficients. To do this, we design a building block

P D A

Q D X A C B . (6.2)

LIFT gates (in contrast to SCALE gates) may profit from the fact a weight factor
can be decomposed as the sum of simple parts; for example, 382.25 D 28 C27 �2C
2�2 (see also Figure 6.3). Therefore, a LIFT can be built as a cascade of subsequent
LIFTs, each with a perfect lifting coefficient. This is not the case with the SCALE
gate, because two subsequent scaling factors multiply rather than add together; see
the templates in Figure 6.4.

The real number X, just like the integer numbers A and B, is represented
by b bits. If we assume that 2x < X < 2x�1, then X is approximated with an
accuracy of 2x�bC1. For example, for a positive multiplier (Xb�1 D 0), we have

X � Xb�2 2x�1 C Xb�3 2x�2 C � � � C X0 2x�bC1 .

For b D 4, we have for example 382.25 � 1 � 28 C 1 � 27 C 0 � 26. Thus, the
most significant bit is the coefficient of 2x�1, whereas the least significant bit is
the coefficient of 2x�bC1.

A A

B A382.25 + B

28 72 02- 2 2-

Figure 6.3 Decomposed lifting.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 140 — le-tex

�

�

�

�

�

�

140 6 Computing in Modulo 2b

(b)

(a)

1L 2L 1L)(+ 2L-

S1 S 2 S S1 1/ 2

Figure 6.4 Two analog templates: (a) LIFT gates; (b) SCALE gates.

y1 y2

0 0

0 0
0 0

B 0 Q 0
B 1 Q 1
B 2 Q 2
B 3 Q 3

0A 0P
1A 1P
2A 2P
3A 3P

Figure 6.5 Performing a multiplication.

We implement the circuit by applying the decomposition

B C X A D
�

. . .
��

B C Xb�2 (2x�1A)
� C Xb�3 (2x�2A)

� C . . .

CX0 (2x�bC1A)
�

,

where all multipliers X j take the values of either 0, 1 or �1; thus, X j 2 f0, 1, �1g.
This automatically leads to a circuit like Figure 6.5, an example where x D 0.
Actually, when we (i.e., humans) perform multiplication ‘in our heads’, we pro-
ceed in a very similar (but decimal) way, where all successive multipliers X j are in
f0, 1, 2, . . . , 9g. Sometimes we also use the multiplier �1. If, for example, we have
to multiply 1768 by X D 999, we don’t apply 999 D 9 � 102 C 9 � 101 C 9 � 100, but
instead we note that 999 D 103 � 100, leading to the fast computation 1768�999 D
1 768 000 � 1768 D 1 766 232.

In the figure, we see an equal number of division by 2 blocks, Y blocks, and
multiplication by 2 blocks. A block Yj is either:

� An adder (when the bit X j equals 1), or
� A follower (when X j D 0), or
� A subtractor (when the bit X j equals �1).

The bad news is the large width of the circuit: w D 3n � 1. We need n � 1 inputs
preset to 0. At the output, this yields n � 1 garbage bits. Fortunately, they all au-
tomatically equal 0, meaning that they can be recycled; that is, applied as a preset

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c06 — 2010/8/5 — 13:36 — page 141 — le-tex

�

�

�

�

�

�

6.6 Exercises for Chapter 6 141

input for a subsequent circuit. We call such lines (which enter as constants and
exit as constants) ancilla lines, in accordance with standard nomenclature in the
quantum computing community [144, 145].

6.6
Exercises for Chapter 6

Exercise 6.1
What is the switch cost of the Sylow circuit described in Section 6.3?

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 143 — le-tex

�

�

�

�

�

�

143

7
Quantum Computing

There is a vast amount of literature on quantum computing. Excellent introduc-
tions can be found in [38, 39, 146–149]. Detailed discussions are provided by
Nielsen and Chuang [150]. In contrast, (classical) reversible computing is a subject
that has been paid much less attention, and even less has been published on the
relationship between these two computing methods – usually all that is stated
in this regard is that classical reversible computing is a subset of quantum com-
puting. In the present chapter, we demonstrate the relationship between the two
architectures, based on group theory [151].

7.1
Doubly Stochastic Matrices

A doubly stochastic matrix [152] is an n � n square matrix m such that

� All entries m j k are real numbers satisfying 0 � m j k � 1,
� All row sums equal unity:

Pn
kD1 m j k D 1, and

� All column sums equal unity:
Pn

j D1 m j k D 1.

The last two conditions are often merged into a single statement: all line sums
equal unity (see also Section 4.1). Doubly stochastic matrices constitute a general-
ization of permutation matrices: a permutation matrix is a doubly stochastic matrix
where all m j k are equal to either 0 or 1.
The term ‘doubly stochastic’ derives from the fact that the matrix entries look
like probabilities, and each row and column looks like a probability distribution.
Therefore, these matrices are strongly related to the classical scattering matrices
(or S-matrices) of statistical physics. The matrix elements are indeed transition
probabilities [153, 154]. If

0
BB@

p1

p2

. . .
pn

1
CCA D

0
BB@

m11 m12 . . . m1n

m21 m22 . . . m2n

. . .
mn1 mn2 . . . mnn

1
CCA
0
BB@

a1

a2

. . .
an

1
CCA ,

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 144 — le-tex

�

�

�

�

�

�

144 7 Quantum Computing

then the doubly stochastic matrix conserves the total probability becauseX
j

p j D
X

j

X
k

m j k ak D
X

k

ak

X
j

m j k D
X

k

ak .

The condition
P

j a j D 1 automatically implies
P

j p j D 1. Thus, if the a j are in-
terpreted as probabilities, then the p j can also be interpreted as probabilities. How-
ever, in contrast to the particular case of permutation matrices (see Section 4.2), an
arbitrary doubly stochastic matrix does not lead to

P
j Φ (p j) D P

j Φ (a j) for an
arbitrary function Φ . Therefore, for example, entropy is not conserved.

In passing, we will note that in Appendix E we encounter a q � q ‘flow matrix’ F

with all entries equal to a positive or zero integer, and all line sums equal to the
same integer p. In fact, such matrices are sometimes called ‘integer doubly stochas-
tic matrices’ [155]. The matrix 1

p
F has all of its line sums equal to 1 and is thus a

doubly stochastic matrix, albeit with the peculiarity that all entries are rational.
Doubly stochastic matrices do not form a group. It is true that the product of two

doubly stochastic matrices is itself doubly stochastic. It is also true that the identity
element (the unit matrix) is doubly stochastic. However, the inverse of a doubly
stochastic matrix is usually not a doubly stochastic matrix. Consider an example
for n D 2. Any 2 � 2 doubly stochastic matrix has the form�

1 � a a

a 1 � a

�
,

where a is an arbitrary real number that satisfies 0 � a � 1. Its inverse is�
1 � a a

a 1 � a

��1

D
 1�a

1�2a
�a

1�2a

�a
1�2a

1�a
1�2a

!
.

If 0 < a < 1, we have either

� a in the interval (0, 1
2), but then 1�a

1�2a
is greater than 1 and �a

1�2a
is lower than 0;

or
� a in the interval (1

2 , 1), but then 1�a
1�2a

is lower than 0 and �a
1�2a

is greater than 1.

The fact that doubly stochastic matrices neither form a group nor conserve entropy
illustrates that they are a poor description of nature. Indeed, despite the huge mer-
its of statistical mechanics, the basic laws of nature are reversible. Thus, there is
need for a more faithful model of nature. This is provided by quantum mechanics.
Quantum mechanics is described not by doubly stochastic matrices, but by unitary
matrices.

7.2
Unitary Matrices

Whereas classical reversible computing manipulates bits, quantum computers ma-
nipulate qubits. One bit can have two different values: either 0 or 1. However, we

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 145 — le-tex

�

�

�

�

�

�

7.2 Unitary Matrices 145

can also write

either
�

1
0

�
or

�
0
1

�
. (7.1)

This notation makes comparison with a qubit easier. Indeed, there are an infinite
number of values that a qubit can take:

�
a1

a2

�
, (7.2)

where both a1 and a2 are arbitrary complex numbers, although a1a1 C a2a2 D 1
must be obeyed. Here, X denotes the complex conjugate of the complex number X.
It should not be confused with the notation for NOT(X); that is, the inverse of the
Boolean number X, as used in previous chapters.

Whereas a bit can have only two different values, a qubit can have 13 different
values, where 1 represents the number of different real numbers (i.e., the cardi-
nality of R). Note that a1 contributes two degrees of freedom, a2 contributes two
degrees of freedom, while the restriction a1a1 C a2a2 D 1 removes one degree of
freedom. Also note that a bit is a special kind of qubit: both of the vectors in (7.1)
take the form of (7.2), and both 1 � 1 C 0 � 0 and 0 � 0 C 1 � 1 equal 1 (because
1 D 1 and 0 D 0).

A set of w (qu)bits is represented by the vector

0
BB@

a1

a2

. . .
a2w

1
CCA .

In the classical world, all a j equal 0, except for one ak D 1. Therefore, a set of w bits
can have only 2w different values. In the quantum world, all a j are in C, with the
only restriction being a1 a1 C a2 a2 C � � � C a2w a2w D 1. Therefore, w qubits can
have 12wC1�1 different values.

Whereas classical reversible computing is based on 2w � 2w permutation ma-
trices, quantum computing is based on 2w � 2w unitary matrices. A matrix m is
a unitary matrix iff the matrix product mm† equals the unit matrix. Here m† is
the conjugate transpose of m, otherwise known as the adjoint matrix or Hermitian
transpose (after the French mathematician Charles Hermite):

(m†) j k D mk j .

For example, a 3 � 3 matrix m is unitary iff

0
@m11 m12 m13

m21 m22 m23

m31 m32 m33

1
A
0
@m11 m21 m31

m12 m22 m32

m13 m23 m33

1
A D

0
@1 0 0

0 1 0
0 0 1

1
A .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 146 — le-tex

�

�

�

�

�

�

146 7 Quantum Computing

The unitary n � n matrices form a Lie group that is called the unitary group and
denoted U(n). The reader is invited to verify that permutation matrices are a par-
ticular kind of unitary matrix. In fact, the finite group Sn of n � n permutation
matrices forms a subgroup of the Lie group U(n):

Sn � U(n) .

Whereas a permutation matrix:

� Has a determinant equal to 1 or �1, and
� Has all of its line sums equal to 1,

a unitary matrix:

� Has determinant on the unit circle of the complex plane, and
� Does not necessarily have equal line sums (but if it does, then these identical

line sums are on the unit circle).

In spite of these differences, similar (but not identical) synthesis methods can be
applied to build a reversible classical circuit and a quantum circuit.

Figure 7.1 shows an example of a quantum circuit: a full adder [42, 43] real-
ized from six elementary quantum gates: two controlled NOTs (i.e., FEYNMANs) and
four so-called ‘controlled square roots of NOT’ (see Section 7.10 for more details
regarding this gate). Of course, the circuits of Figures 3.42a and 4.11a are equally
valid in a quantum computer. After all, permutation matrices are unitary. However,
whereas the circuit in Figure 4.11a contains a three-(qu)bit gate, and the circuit in
Figure 3.42a has a three-(qu)bit gate and a four-(qu)bit gate, the alternative circuit
of Figure 7.1 is a cascade of exclusively two-qubit gates. This is an illustration of a
general (and powerful) quantum circuit theorem [125, 156]:

Any quantum circuit can be decomposed into a cascade of

� Uncontrolled one-qubit gates, and
� One-qubit gates controlled by a single controlling qubit.

The former gates are a generalization of one-bit inverters; the latter are a general-
ization of two-bit FEYNMAN gates. Figure 7.2 gives another example of this amaz-
ing theorem: the three-qubit TOFFOLI gate may be replaced by an appropriate cas-
cade of two-qubit quantum gates [156, 157]. In classical reversible computing, it is
not possible to build an arbitrary reversible circuit exclusively from inverters and
FEYNMAN gates; we need three-bit building blocks at least (see Section 3.6 and Ap-
pendix C). For example, the three-bit TOFFOLI gate cannot be decomposed into a
cascade of classical two-bit gates.

Just as any w-bit classical reversible circuit is represented by a 2w � 2w permuta-
tion matrix, any w-qubit quantum circuit is represented by a 2w �2w unitary matrix.
When we fill in an n � n square matrix m with n2 entries m j k (2 C), each entry
gives us two degrees of freedom (one for the real part and one for the imaginary

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 147 — le-tex

�

�

�

�

�

�

7.3 Entropy in the Quantum World 147

√ √ √0

B

S

√ *

C i

Co

A

Figure 7.1 A quantum full adder.

√ √√ *

Figure 7.2 Quantum decomposition of a TOFFOLI gate.

Table 7.1 The number R of different classical reversible circuits and the number U of different
quantum circuits as functions of the circuit width w.

w R U

1 2 14

2 24 116

3 40 320 164

4 20 922 789 888 000 1256

part). Thus, there are 2n2 degrees of freedom. The unitarity condition (mm† equals
the unit matrix) leads to n2 restrictions. This leaves us with only n2 degrees of free-
dom. Therefore, there are 1n2

elements in the unitary group U(n). As n D 2w ,
this yields the group orders of Table 7.1, where 1 stands for the cardinality of the
reals. Whereas the number of different classical reversible circuits R(w) grows very
quickly with w (the number of bits), the number of different unitary circuits U(w)
grows very, very quickly with w, the number of qubits.

7.3
Entropy in the Quantum World

Whereas we have
P

p j D P
a j D 1 for permutation matrices (Section 4.2), and

thus the a j as well as the p j can be interpreted as probabilities, we have
P

p j p j DP
a j a j D 1 for unitary matrices, such that the a j a j D ja j j2 and the p j p j D

jp j j2 play the role of probabilities. The quantities a j and p j are complex numbers
and play the role of amplitudes.

A set of w qubits can be in a state
P

a j Ψ j , where the Ψ j are its 2w eigenstates
00 . . . 00, 00 . . . 01, 00 . . . 10, . . . , 11 . . . 10, and 11. . . 11. The 2w complex coefficients
a j are the amplitudes. In quantum computing they can take any value as long as

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 148 — le-tex

�

�

�

�

�

�

148 7 Quantum Computing

P
a j a j D 1. If all a j D 0 except for ak D 1, then the circuit input is in the

eigenstate Ψk (corresponding to the classical input bit string corresponding to the
binary number k � 1). In all other cases, the input is in a quantum-mechanical
superposition (corresponding to no classical input).

Although
P

a j a j is conserved by a unitary transformation,
P

Φ (a j a j) (where
Φ denotes an arbitrary function) is not conserved. In particular, the quantityX

�p j p j log(p j p j)

is not equal toX
�a j a j log(a j a j) . (7.3)

Does this mean that a unitary transformation changes entropy? No: the expres-
sion (7.3) is not the entropy associated with the quantum state (a1, a2, . . . , a2w).

We must be careful not to confuse a ‘quantum superposition’ and a ‘quantum
mixture’ [158, 159]. Although the state (a1, a2, . . . , a2w) is a superposition of the
2w states 000 . . . 00, 000 . . . 01, . . . , and 111 . . . 11, it is nevertheless a pure quantum
state. Therefore, its entropy is zero [160]. Analogously, the output of the unitary
circuit; that is, the state (p1, p2, . . . , p2w), is a pure state and has zero entropy. Thus,
the unitary transformation conserves entropy: 0 D 0.

A mixed quantum state contains uncertainty: we have a probability π1 that
the system is in state (1a1, 1a2, . . . , 1a2w), a probability π2 that the system is
in state (2a1, 2a2, . . . , 2a2w), . . . , and a probability πk that the system is in state
(k a1, k a2, . . . , k a2w). The entropy of such a mixture is relatively classical; it equals

kX
j D1

�π j log(π j) ,

a quantity that is perfectly conserved during unitary transformation.

7.4
Entanglement

The phenomenon of mixing should not be confused with the typical quantum phe-
nomenon of entanglement. Two bits may be entangled but can still be in a pure state
(a1, a2, a3, a4). In fact, most pure states are entangled. States that are not entangled
are termed ‘separable’. A two-qubit state is separable iff it is possible to write the
two-qubit vector (a1, a2, a3, a4)T as a so-called tensor product of two one-qubit vec-
tors; that is, if the equation

0
BB@

a1

a2

a3

a4

1
CCA D

0
BB@

b1

�
c1

c2

�

b2

�
c1

c2

�
1
CCA

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 149 — le-tex

�

�

�

�

�

�

7.5 Control Circuits and Control Gates 149

has a solution b1, b2, c1, c2 (that satisfies both b1b1Cb2 b2 D 1 and c1c1Cc2c2 D 1).
Here, the tensor product is defined as:

�
b1

b2

�
˝
�

c1

c2

�
D

0
BB@

b1

�
c1

c2

�

b2

�
c1

c2

�
1
CCA D

0
BB@

b1c1

b1c2

b2c1

b2c2

1
CCA .

Of course, classical states are separable. For a two-bit circuit, only four classical
input patterns are possible:

0
BB@

1
0
0
0

1
CCA ,

0
BB@

0
1
0
0

1
CCA ,

0
BB@

0
0
1
0

1
CCA , and

0
BB@

0
0
0
1

1
CCA ,

each of which can be written as a tensor product of two one-bit vectors; for example,

0
BB@

1
0
0
0

1
CCA D

0
BB@

1
�

1
0

�

0
�

1
0

�
1
CCA D

�
1
0

�
˝
�

1
0

�
.

7.5
Control Circuits and Control Gates

Assume a circuit of width w; that is, a circuit with w inputs A 1, A 2, . . . , A w ,
and w outputs P1, P2, . . . , Pw (either classical or quantum) – see Figure 3.4. The
outputs are calculated from the inputs by means of a linear transformation de-
scribed by a 2w � 2w matrix.

We will consider a special class of circuits where w D u C v . We have P1 D
A 1, P2 D A 2, . . . , Pu D A u; these (qu)bits will be called the controlling (qu)bits.
The remaining v outputs PuC1, PuC2, . . . , PuCv (called the controlled (qu)bits) are
calculated from the corresponding inputs A uC1, A uC2, . . . , A uCv by means of a
transformation described by a 2v � 2v matrix. However, that matrix is chosen ac-
cording to the value of the vector (A 1, A 2, . . . , A u). Because the latter vector has 2u

eigenstates, there are 2u different 2v � 2v matrices involved. The overall transfor-
mation is described by a 2w � 2w matrix built from 2u blocks, each of size 2v � 2v ,
situated on the diagonal. All matrices and submatrices involved are either permu-
tation matrices (classical reversible computing) or unitary matrices (quantum com-
puting).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 150 — le-tex

�

�

�

�

�

�

150 7 Quantum Computing

(a)

(b)

u v w x

f g g g g

Figure 7.3 Icons for (a) a control circuit and (b) a control gate.

For example, for the case u D 2 and v D 1 (and thus w D 3), the unitary
2w � 2w D 8 � 8 matrix looks like

C D

0
BBBBBBBBBBB@

U11 U12 0 0 0 0 0 0
U21 U22 0 0 0 0 0 0
0 0 V11 V12 0 0 0 0
0 0 V21 V22 0 0 0 0
0 0 0 0 W11 W12 0 0
0 0 0 0 W21 W22 0 0
0 0 0 0 0 0 X11 X12

0 0 0 0 0 0 X21 X22

1
CCCCCCCCCCCA

with 2u D 4 submatrices, each of size 2v � 2v D 2 � 2. Thus, if (A 1, A 2) D (0, 0),
matrix U is applied to A 3; if (A 1, A 2) D (0, 1), matrix V is applied to A 3; etc. Fig-
ure 7.3a shows an example for u D v D 2 (and thus w D 4). Here we follow the
graphical notation by Möttönen et al. [161, 162].

In some cases, only two different submatrices F and G are present, and one of
them (i.e., F) is the 2v � 2v unit matrix. Figure 7.3b shows an example:

C D

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 G11 G12 0 0 0 0
0 0 G21 G22 0 0 0 0
0 0 0 0 G11 G12 0 0
0 0 0 0 G21 G22 0 0
0 0 0 0 0 0 G11 G12

0 0 0 0 0 0 G21 G22

1
CCCCCCCCCCCA

. (7.4)

In this case, the gate g of width v is applied to the controlled (qu)bits iff a particular
Boolean function '(A 1, A 2, . . . , A u) of the controlling (qu)bits equals 1. This spe-
cial control circuit is called a control gate [52]. The function ' is called the control

function. In the example of Figure 7.3b and (7.4), we have '(A 1, A 2) D A 1 OR A 2.
We have already encountered some control gates with u D v D 1 (and thus w D 2)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 151 — le-tex

�

�

�

�

�

�

7.6 Synthesis 151

in Figures 7.1 and 7.2:0
BBB@

1 0 0 0
0 1 0 0
0 0 1Ci

2
1�i

2

0 0 1�i
2

1Ci
2

1
CCCA ,

0
BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCA , and

0
BBB@

1 0 0 0
0 1 0 0
0 0 1�i

2
1Ci

2

0 0 1Ci
2

1�i
2

1
CCCA .

Control gates are particularly important in classical reversible computing, as
there exist only two different 2 � 2 permutation matrices, one representing the
follower, the other representing the inverter. Thus, a classical reversible control cir-
cuit with v D 1 always simplifies to a control gate. In quantum computing, even
when v is as small as 1, as many as 14 different 2 � 2 unitary matrices are allowed;
the probability that two of these 2�2 blocks in a control circuit matrix will be equal
is infinitesimally small.

7.6
Synthesis

Section 3.16 describes the synthesis of an arbitrary classical reversible circuit of
width w. The resulting cascade is shown in Figure 3.27e, with an example present-
ed in Figure 3.28a: a cascade of 2w � 1 control gates. The question then arises as to
whether, in a similar way, an arbitrary quantum circuit of width w can be synthe-
sized as a cascade of 2w � 1 control circuits. In that case, each box in Figure 3.27e
would represent a 2 � 2 unitary matrix (instead of a 2 � 2 NOT matrix).

In order to answer this question, let us recall why the decomposition works for
binary circuits. For the first control gate in the string, there are 22w�1

possibilities
(because there are that many possible control functions). For the second gate in the
string, there are also 22w�1

possibilities, etc. Because there are 2w � 1 control gates,
this yields a total of

N D 22w�1 � 22w�1 � . . . � 22w�1 D
h
22w�1

i2w�1 D 2(w� 1
2)2w

possible choices. Now we have that

2(w� 1
2)2w

> 2
h

w� 1
log(2)

i
2w

for the simple reason that 2 is larger than log(2). Taking (3.2) into account, we may
conclude that

N > (2w)! D R(w) , (7.5)

where R is the number of reversible circuits (Table 7.1). Thus, the number of poten-
tial choices is high enough to synthesize all possible reversible circuits of width w.
The reader should note that inequality (7.5) is a necessary condition but not a suf-
ficient condition. The sufficient condition is provided by Birkhoff’s theorem (Ap-
pendix E).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 152 — le-tex

�

�

�

�

�

�

152 7 Quantum Computing

We now check whether a similar decomposition could also work for quantum
computer synthesis. For each control circuit in the string, there are (14)2w�1 D
12wC1

possibilities. With 2w � 1 of these blocks, we obtain a total of

N D 12wC1 � 12wC1 � . . . � 12wC1 D
h
12wC1

i2w�1 D 12(2w�1)2w

possible combinations. This is far from being sufficient:

N < 1(2w)2 D U(w) ,

where U is the number of quantum circuits (Table 7.1).
Increasing the number of control circuits in the cascade from merely 2w � 1 to

as many as 2w � 1 could remedy the problem. In that case,

N D 12wC1 � 12wC1 � . . . � 12wC1 D
h
12wC1

i2w �1 D 122wC1�2wC1
.

This new N satisfies

N > 1(2w)2 D U(w) .

However, again, the inequality sign is a necessary but not sufficient condition for
the synthesis method to work properly. Is there a theorem about unitary matrices
(similar to the Birkhoff theorem for permutation matrices) that provides us with
the guarantee that such a decomposition always exists? The answer is yes: the co-
sine-sine decomposition of unitary matrices comes to our rescue.

7.7
Decomposition

In order to find the synthesis method of a quantum circuit, we decompose its uni-
tary U(2w)-matrix according to Figure 7.4b. For example, for w D 3:0

BBBBBBBBBBB@

U11 U12 U13 U14 U15 U16 U17 U18

U21 U22 U23 U24 U25 U26 U27 U28

U31 U32 U33 U34 U35 U36 U37 U38

U41 U42 U43 U44 U45 U46 U47 U48

U51 U52 U53 U54 U55 U56 U57 U58

U61 U62 U63 U64 U65 U66 U67 U68

U71 U72 U73 U74 U75 U76 U77 U78

U81 U82 U83 U84 U85 U86 U87 U88

1
CCCCCCCCCCCA

D

0
BBBBBBBBBBB@

L11 L12 L13 L14 0 0 0 0
L21 L22 L23 L24 0 0 0 0
L31 L32 L33 L34 0 0 0 0
L41 L42 L43 L44 0 0 0 0
0 0 0 0 L55 L56 L57 L58

0 0 0 0 L65 L66 L67 L68

0 0 0 0 L75 L76 L77 L78

0 0 0 0 L85 L86 L87 L88

1
CCCCCCCCCCCA

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 153 — le-tex

�

�

�

�

�

�

7.7 Decomposition 153

�

0
BBBBBBBBBBB@

M11 0 0 0 M15 0 0 0
0 M22 0 0 0 M26 0 0
0 0 M33 0 0 0 M37 0
0 0 0 M44 0 0 0 M48

M51 0 0 0 M55 0 0 0
0 M62 0 0 0 M66 0 0
0 0 M73 0 0 0 M77 0
0 0 0 M84 0 0 0 M88

1
CCCCCCCCCCCA

�

0
BBBBBBBBBBB@

R11 R12 R13 R14 0 0 0 0
R21 R22 R23 R24 0 0 0 0
R31 R32 R33 R34 0 0 0 0
R41 R42 R43 R44 0 0 0 0
0 0 0 0 R55 R56 R57 R58

0 0 0 0 R65 R66 R67 R68

0 0 0 0 R75 R76 R77 R78

0 0 0 0 R85 R86 R87 R88

1
CCCCCCCCCCCA

. (7.6)

On the right-hand side of the equation, each of the submatrices (that is, the
two L-submatrices of size 2w�1 � 2w�1, the 2w�1M -submatrices, each of size 2 � 2,
and the two R-submatrices of size 2w�1 � 2w�1) is unitary. In other words, an
arbitrary member of U(2w) is decomposed into two members of U(2w�1)2 and one
member of U(2)2w�1

.
The above decomposition is always possible, and is even far from unique. Where-

as the matrix on the left-hand side of (7.6) is an arbitrary member of U(8), each of
the three matrices on the right-hand side is member of a subgroup of U(8); two
are members of the same subgroup isomorphic to U(4)2, and the middle one is a
member of a subgroup isomorphic to U(2)4. Figure 7.4b shows the resulting three-
part circuit. Note that the middle matrix M represents a control circuit with the
first qubit controlled. Applying such a decomposition w � 1 times (Figure 7.4),
we can demonstrate that this eventually leads to a synthesis consisting of a cas-
cade of exactly L(w) D 2w � 1 control circuits (Figure 7.4d). Figure 7.4 has to be
confronted with Figure 7.5, which basically repeats Figure 3.27. We arrive at the
surprising result that the efficient classical synthesis method of Section 3.16 is not
applicable to quantum computing, while the inefficient classical synthesis method
of Section 3.15 comes to our rescue.

The above quantum synthesis is rather efficient, as one can prove that no syn-
thesis is possible with fewer than 2w�1 control circuits. Indeed, any synthesis
method [53, 68] leads to a cascades of depth L satisfying

L �
l n

b

m
. (7.7)

See Section 5.3. With the dimensions n D (2w)2 D 22w and b D 4 � 2w�1, this
yields

L �
�

22w

2wC1

�
D 2w�1 .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 154 — le-tex

�

�

�

�

�

�

154 7 Quantum Computing

(a)

(b)

(d)

(c)

Figure 7.4 Step-by-step decomposition of a quantum circuit of width w D 4: (a) original logic
circuit, (b) and (c) intermediate steps, (d) final decomposition.

We conclude that the synthesis (which has a depth of 2w �1) is overkill by a factor of
approximately 2. It is thus no surprise that we are allowed to choose the matrices M

from a (small) subgroup of U(2)2w /2. We can choose a controlled ROTATOR as control
circuit. Each of the 2 � 2 blocks within the M-matrix then takes the form�

M j, j M j, j Cm

M j Cm , j M j Cm , j Cm

�
D C(θ j) D

�
cos(θ j) sin(θ j)

� sin(θ j) cos(θ j)

�
, (7.8)

where m is a shorthand notation for 2w�1. Such matrices form a well-known one-
dimensional subgroup of the four-dimensional group U(2). As a result, decom-
position (7.6) is the well-known cosine–sine decomposition [163]. The cosine–sine
decomposition has been applied for quantum circuit synthesis [161, 164, 165].
The attentive reader will also recognize the Givens transformation of Section 5.2
in (7.8).

7.8
Discussion

The above sections have been summarized in a table that compares classical re-
versible computing with quantum computing; see Table 7.2. An additional distinc-
tion between classical reversible logic and quantum logic is the fact that many clas-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 155 — le-tex

�

�

�

�

�

�

7.8 Discussion 155

(a)

(b)

(d)

(c)

Figure 7.5 Step-by-step decomposition of a classical reversible logic circuit of width w D 4:
(a) original logic circuit, (b) and (c) intermediate steps, (d) final decomposition.

Table 7.2 Classical reversible computing versus quantum computing.

Classical reversible computing Quantum computing

Numbers 2 f0, 1g D B Numbers 2 C

Finite groups Infinite groups
w bits ! symmetric group S2w w qubits ! unitary group U(2w)

Birkhoff’s decomposition theorem The cosine-sine decomposition theorem
! 2w � 1 blocks from subgroups S2

2w�1 ! 2w � 1 blocks from subgroups U(2)2w�1

sical fabrication technologies are available (see Section 4.5), whereas quantum logic
technology is unfortunately still missing.

The differences between classical and quantum computing may be explained as
follows. If n is an even integer, then:

� For any factorization n D p � q, an arbitrary member a of the symmetric group
Sn can be decomposed as the product b1cb2, where both b1 and b2 are mem-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 156 — le-tex

�

�

�

�

�

�

156 7 Quantum Computing

(a)

(b)

Figure 7.6 Decomposition of a circuit into three parts: (a) a member of S16 into two members
of S8

2 and one member of S2
8, and (b) a member of U(16) into two members of U(8)2 and one

member of U(2)8.

bers of the same Young subgroup Sq
p , and c is a member of the dual Young

subgroup Sp
q . We make use of this freedom of choice by choosing the most effi-

cient factorization; that is, n D p � q D 2 � n
2 .

� An arbitrary member a of the unitary group U(n) can only be decomposed as
the product b1cb2 (where both b1 and b2 are members of a same subgroup
U(p)q, and c is a member of the dual subgroup U(q)p) for the factorization
n D p � q D n

2 � 2.

This leads to two different decompositions of an arbitrary circuit into three simpler
circuits; see Figure 7.6.

7.9
Bottom-Up and Top-Down

Reversible logic circuits, acting on w bits, form a group isomorphic to the sym-
metric group Sn of degree n and order n!, where n is a shorthand notation for
2w . Quantum circuits, acting on w qubits, form a group isomorphic to the unitary
group U(n). Whereas Sn is finite, U(n) is an infinite group; that is, a Lie group
(with a nondenumerable order; in other words, 1n2

) with dimension n2.
Although Sn is a subgroup of U(n), it is a giant step from Sn to U(n). Therefore,

the question of whether there are groups X that are simultaneously a subgroup of
U(n) and a supergroup of Sn arises; i.e.,

Sn � X � U(n) . (7.9)

Such group may be either:

� A finite group with order > n!, or
� A discrete group with a countable infinity @0 as order, or
� A Lie group with dimension < n2.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 157 — le-tex

�

�

�

�

�

�

7.10 Bottom-Up Approach 157

Each of these possibilities deserves our attention. The larger the group X, the more
difficult it is to implement it in hardware, but the more powerful the resulting
computer. Assuming that the quantum computer based on the whole group U(n)
is overkill for a lot of interesting problems, we must look for a satisfactory compro-
mise between simplicity (found close to Sn) and computational power (found close
to U(n)). Such a computer can be referred to as ‘reversible plus’ or ‘quantum light’.

We can tackle this problem in two ways: either bottom-up or top-down. If we con-
sider it bottom-up, we start from the symmetric group and add some extra group
generators. If we take the top-down approach, we start from the unitary group and
impose some restrictions.

7.10
Bottom-Up Approach

In the bottom-up approach, we take the finite group Sn (with n D 2w) and one or
more extra generators fg1, g2, . . .g. These generators, together with the elements of
Sn , generate a new group G, which is called the closure of Sn and fg1, g2, . . .g. It is
automatically a supergroup of Sn . Below we provide two examples: we add either
one (g1) or two (g1 and g2) generators and consider how much the order G of G
exceeds order(Sn) D n!.

7.10.1
One-(Qu)bit Calculations

A single qubit is in a state a1Ψ1 C a2Ψ2, where Ψ1 and Ψ2 are its two eigenstates
and where a1a1 C a2a2 D 1. If a1 D 1 and a2 D 0, then the input is in the
eigenstate Ψ1 (corresponding to a classical input bit equal to 0). If a1 D 0 and
a2 D 1, then the input is in the eigenstate Ψ2 (corresponding to a classical input bit
equal to 1). In all other cases, the input is in a quantum-mechanical superposition
of 0 and 1.

We introduce the 2 � 2 unitary matrix

σ D 1
2

�
1 C i 1 � i

1 � i 1 C i

�
.

This satisfies σ2 D ν, where ν is the inverter or NOT gate:

ν D
�

0 1
1 0

�
.

Thus, σ is the notorious square root of NOT [166–169]; see Figure 7.7. It plays the
role of the extra generator g1, generating a matrix group of order 4 with elements

' D
�

1 0
0 1

�
, σ D

�
ω ω
ω ω

�
, ν D

�
0 1
1 0

�
, and σ D

�
ω ω
ω ω

�
,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 158 — le-tex

�

�

�

�

�

�

158 7 Quantum Computing

√ √

Figure 7.7 Two square roots of NOT give one NOT.

where ' stands for the follower (the identity gate), ω is the complex number given
by

ω D 1
2

C i
1
2

and ω is its complex conjugate:

ω D 1
2

� i
1
2

.

The matrix σ obeys σ2 D ν and is thus the ‘other’ square root of NOT. Together,
the four matrices form a group with respect to the operation of ordinary matrix
multiplication that is isomorphic to the cyclic group of order 4; that is, to Z4 (Sec-
tion 2.8). We have σ1 D σ, σ2 D ν, σ3 D σ, and σ4 D '. Therefore, we have found
a group X that satisfies (7.9). Indeed,

S2 � Z4 � U(2)

with orders

2 < 4 < 14 .

Any one of the four matrices transforms the input state a1Ψ1 C a2Ψ2 into an
output state p1Ψ1 C p2Ψ2:�

p1

p2

�
D
�

U11 U12

U21 U22

��
a1

a2

�
.

Because the matrix U is unitary, we automatically have p1 p1 C p2 p2 D 1. If the
input is in an eigenstate (either (a1, a2) D (1, 0) or (a1, a2) D (0, 1)), then the output
is in a quantum superposition. For example,�

p1

p2

�
D
�

ω ω
ω ω

��
1
0

�
D
�

ω
ω

�
. (7.10)

However, as the output of one circuit may be the input of a subsequent circuit, we
have to consider the possibility that (a1, a2) is in such a superposition. In fact, we
must consider all possible values of (a1, a2) and (p1, p2), which may be transformed
into one another. These values are found to be either a column or a row of one of
the four matrices. Thus, in total, four and only four states need to be considered:
(1, 0), (0, 1), (ω, ω), and (ω, ω). Such an object that may be in four different states
is intermediate between a bit (which can be in only two different states) and a qubit
(which may be in as many as 13 different states).

Table 7.3 displays how each of the four matrices acts on the column matrix
(a1, a2)T . The tables constitute the truth tables of the four reversible transforma-
tions. Each of these tables expresses a permutation of the four objects (1, 0), (0, 1),
(ω, ω), and (ω, ω). Thus, together they form a permutation group that is a sub-
group of the symmetric group S4, and we have Z4 � S4.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 159 — le-tex

�

�

�

�

�

�

7.10 Bottom-Up Approach 159

Table 7.3 The four members of the group with w D 1: (a) follower, (b) square root of NOT,
(c) NOT, and (d) square root of NOT.

a1a2 p1 p2

1 0 1 0
0 1 0 1

ω ω ω ω
ω ω ω ω

(a)

a1a2 p1 p2

1 0 ω ω
0 1 ω ω

ω ω 0 1
ω ω 1 0

(b)

a1a2 p1 p2

1 0 0 1
0 1 1 0

ω ω ω ω
ω ω ω ω

(c)

a1a2 p1 p2

1 0 ω ω
0 1 ω ω

ω ω 1 0
ω ω 0 1

(d)

7.10.2
Two-(Qu)bit Calculations

Two qubits exist in a superposition a1Ψ1 C a2 Ψ2 C a3 Ψ3 C a4 Ψ4 with
P

ak ak D 1.
The eigenstates Ψ1, Ψ2, Ψ3, and Ψ4 correspond to the classical bit values (A 1, A 2)
of (0, 0), (0, 1), (1, 0), and (1, 1), respectively, whereas the other (i.e., superposition)
states have no classical equivalent.

The subset of two-qubit circuits that we investigate [170] must comprise the cir-
cuit that calculates the square root of NOT of qubit #2. This circuit is represented by
the matrix

σ2 D

0
BB@

ω ω 0 0
ω ω 0 0
0 0 ω ω
0 0 ω ω

1
CCA . (7.11)

The required set of two-qubit circuits should also contain all classical reversible
two-bit circuits. These are generated by two generators:

a D

0
BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1
CCA and b D

0
BB@

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

1
CCA , (7.12)

which generate a group isomorphic to S4 (according to Section 2.4).
Straightforward calculations (performed with the aid of the algebra software

package GAP of Section 2.4) reveal that the group generated by the three generators
fσ2, a, bg has an order equal to 192. Note that the number 192 is an common
order. Indeed, according to Conway et al. [171], there are 6013 different groups
with orders smaller than 200. Among these, no less than 1543 (i.e., about 26%
of them) have orders that are precisely equal to 192. The group constitutes the
closure of the group (isomorphic to Z4) generated by the first generator and the

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 160 — le-tex

�

�

�

�

�

�

160 7 Quantum Computing

(a) (d)(c)
√

√

√

√

√ √

(b)

Figure 7.8 Four representative circuits: (a) follower, (b) square root of NOT, (c) double square
root of NOT, and (d) a more complicated circuit.

group (isomorphic to S4) generated by the two other generators. Let us call this
closure . All 192 different 4 � 4 unitary matrices of have entries from the set
f0, 1, ω, ω, � 1

2 , 1
2 , � i

2 , i
2 g. We have:

� 24 matrices with entries from f0, 1g,
� 72 matrices with entries from f0, ω, ωg,
� 72 matrices with entries from f 1

2 , � i
2 , i

2 g, and
� 24 matrices with entries from f� 1

2 , 1
2 g.

The four classes of matrices are the four double cosets in which the group is
partitioned by its S4 subgroup. Representatives of these double cosets are, for ex-
ample,

0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA ,

0
BB@

ω ω 0 0
ω ω 0 0
0 0 ω ω
0 0 ω ω

1
CCA ,

1
2

0
BB@

i 1 1 �i

1 i �i 1
1 �i i 1

�i 1 1 i

1
CCA , and

1
2

0
BB@

�1 1 1 1
1 1 1 �1
1 1 �1 1
1 �1 1 1

1
CCA .

Figure 7.8 shows the four representative circuits. The group satisfies (7.9):

S4 � � U(4)

with orders

24 < 192 < 116 .

It is worth noting that a matrix like

c D

0
BB@

1 0 0 0
0 1 0 0
0 0 ω ω
0 0 ω ω

1
CCA , (7.13)

which may be interpreted as a ‘controlled square root of NOT’ (or as a ‘square root of
controlled NOT’), is not a member of the group . In contrast, the ‘controlled NOT;’

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 161 — le-tex

�

�

�

�

�

�

7.10 Bottom-Up Approach 161

that is,0
BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCA ,

is a member. The circuit that calculates the square root of NOT of qubit #1:

σ1 D

0
BB@

ω 0 ω 0
0 ω 0 ω
ω 0 ω 0
0 ω 0 ω

1
CCA

is also automatically a member.
If we add the matrix (7.13) as a fourth generator, the group is enlarged into a

new group Ω (i.e., the closure of and c), which surprisingly has infinite order.
We can prove this [170] by investigating one particular element of Ω :

y D abc D

0
BB@

0 0 ω ω
0 1 0 0
0 0 ω ω
1 0 0 0

1
CCA .

The theory of the Z-transform tells us that the matrix sequence fy , y 2, y 3, . . .g is
not periodic; see Appendix G. In other words, all matrices y , y 2, y 3, . . . are differ-
ent. Therefore, the order of the group element y is infinite, which means that the
order of the group Ω itself is also infinite; see Section 2.8. One can additional-
ly prove [170] that order(Ω) is denumerable. Thus, we can finally conclude that
order(Ω) equals @0:

S4 � Ω � U(4) with

24 < @0 < 116 .

7.10.3
Three- and Multi-(Qu)bit Calculations

Using two 8 � 8 matrices, in an analogous manner to (7.12), we generate the group
of all classical reversible circuits of width 3. Adding the single quantum matrix

σ3 D

0
BBBBBBBBBBB@

ω ω 0 0 0 0 0 0
ω ω 0 0 0 0 0 0
0 0 ω ω 0 0 0 0
0 0 ω ω 0 0 0 0
0 0 0 0 ω ω 0 0
0 0 0 0 ω ω 0 0
0 0 0 0 0 0 ω ω
0 0 0 0 0 0 ω ω

1
CCCCCCCCCCCA

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 162 — le-tex

�

�

�

�

�

�

162 7 Quantum Computing

√

√

√

Figure 7.9 Fabricating two controlled
p
NOT gates from a single

p
NOT gate.

Table 7.4 The number of different reversible circuits, as a function of the circuit width w, if
we do not allow square roots of NOT, if we allow square roots of NOT, or if we allow controlled
square roots of NOT.

w Classical Classical plus
p
NOT Classical plus controlled

p
NOT

1 2 4 not applicable
2 24 192 @0

3 40 320 @0 @0

4 20 922 789 888 000 @0 @0

(the square root of NOT of qubit #3) as an extra generator allows us to convert the
finite group into a group of infinite order. Thus, in the case w D 3, we do not
even need to introduce a controlled square root of NOT in order to obtain an infinite
group. Figure 7.9 explains why. From the group of classical circuits, we take two
FREDKIN gates and combine them with a single square root of NOT, thus realizing
Figure 7.9a. The reader will easily verify that this circuit is equivalent to Figure 7.9b.
Subsequent application of Section 7.10.2 to the first and second qubits proves the
infiniteness of the generated group.

As circuits of width 3 form a subgroup of circuits of width n (where n is any inte-
ger larger than 3), the same conclusion holds for any width larger than 3. Table 7.4
summarizes the results.

7.11
Top-Down Approach

In the top-down approach, we start from U(n) and impose restrictions. All unitary
matrices have a determinant on the unit circle. A subgroup is found, for example,
by imposing that the determinant equals 1. The resulting group is called the special
unitary group, a Lie group of dimension n2 � 1, denoted as SU(n):

SU(n) � U(n) ,

which is quite similar to (5.4) and (5.9).
For another example, we draw inspiration from permutation matrices by noting

that all of them have all of their line sums equal to 1. Indeed, all unitary matrices

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 163 — le-tex

�

�

�

�

�

�

7.12 An Application: the Quantum Fourier Transform 163

with line sums equal to 1 form a Lie group of dimension (n � 1)2. Special unitary
matrices with line sums equal to 1 form a Lie group of dimension (n � 1)2 � 1.

The three subgroups above have dimensions of the form n2 � an � b, a num-
ber barely smaller than n2, the dimension of U(n) itself. This is not completely a
surprise, as many well-known subgroups [15, 123] of U(n) have dimensions of the
form An2 C B n C C .

The hunt for appropriate Lie groups, subgroups of U(n), with dimensions that
are substantially smaller than n2 (e.g., of the order n log(n) or n or log(n)) that nev-
ertheless allow powerful quantum computing is ongoing. We will give an example
for n D 2 (i.e., a one-qubit example). The one-dimensional matrix group

1
2

�
1 C exp(i θ) 1 � exp(i θ)
1 � exp(i θ) 1 C exp(i θ)

�

is both a subgroup of the four-dimensional unitary group U(2) and a supergroup
of the symmetric group S2. Once again, we find a group X that satisfies (7.9)

S2 � X � U(2) ,

this time with orders

2 < 11 < 14 .

The two elements of S2 (the one-bit follower and the one-bit inverter) are repre-
sented by the above matrix for θ D 0 and θ D π, respectively. The two square
roots of NOT correspond to θ D π/2 and θ D 3π/2. The matrix with θ D π/ k

represents the kth root of NOT.

7.12
An Application: the Quantum Fourier Transform

Quantum computers are particularly powerful. Their computing power is well il-
lustrated by considering the quantum Fourier transformation [40, 146, 172, 173].
Using only w input qubits and w output qubits, it performs a Fourier transfor-
mation on 2w complex data. In contrast, the classical Fourier transformation of
width w transforms only w complex numbers (Section 5.8). The classical Fourier
transformer realizes the linear transformation0

B@
P1
P2
. . .
Pw

1
CA D

0
B@

exp(0) exp(0) . . . exp(0)
exp(0) exp(�2π i/w) . . . exp(�2(w � 1)π i/w)

. . .
exp(0) exp(�2(w � 1)π i/w) . . . exp(�2(w � 1)(w � 1)π i/w)

1
CA
0
B@

A1
A2
. . .
A w

1
CA .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 164 — le-tex

�

�

�

�

�

�

164 7 Quantum Computing

p

p

2

2

h

h

h

(

(

)

)

1A 1P

2A

3A

2P

3P

θ

θ

p 3()θ

Figure 7.10 A three-qubit Fourier transform circuit.

The quantum Fourier transformer realizes the matrix transformation

0
B@

p1
p2
. . .
p2w

1
CA D 1p

2w

�

0
B@

exp(0) exp(0) . . . exp(0)
exp(0) exp(�2π i/2w) . . . exp(�2(2w � 1)π i/2w)

. . .
exp(0) exp(�2(2w � 1)π i/2w) . . . exp(�2(2w � 1)(2w � 1)π i/2w)

1
CA
0
B@

a1
a2
. . .
a2w

1
CA .

(7.14)

The transformation matrix is thus of size 2w � 2w (instead of merely w � w). More-
over, a normalizing factor 1/

p
2w is applied in order to make the matrix unitary.

We refer to it as the unitary Fourier transform. Its determinant is a power of i.
Just as in Section 5.8, it is unwise to apply general-purpose decomposition meth-

ods (e.g., the cosine-sine decomposition of Section 7.7) here. Indeed, there is a par-
ticularly efficient decomposition based on two simple matrices h and p. The former
matrix, the 2 � 2 unitary matrix

h D 1p
2

�
1 1
1 �1

�
,

represents a one-qubit gate, and is known as the HADAMARD gate [40, 168] (named
after the French mathematician Jacques Hadamard). It equals the two-point unitary
Fourier transform matrix (i.e., matrix (7.14) with w D 1). The latter matrix, the 4�4
unitary matrix

p (θ) D

0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(i θ)

1
CCA , (7.15)

represents a two-qubit circuit; that is, the control gate known as the ‘controlled
PHASE’ [168].

Figure 7.10 shows an example [173] of a Fourier circuit for w D 3. Here, the
phase angles θk take the value 2π/ k. For an arbitrary w, the quantum circuit con-
sists of w HADAMARD gates and (w � 1)w/2 PHASE gates. The total gate count thus

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 165 — le-tex

�

�

�

�

�

�

7.12 An Application: the Quantum Fourier Transform 165

(a) (b)

Figure 7.11 Icons for two different controlled Z gates.

amounts to w (w C 1)/2. Note that this number is significantly smaller than the
logic depth 2w � 1 obtained in Section 7.7 for an arbitrary quantum circuit. The
reason for this is clear: the Fourier matrix is far from an arbitrary unitary matrix: it
shows many remarkable symmetries. It is thus no surprise that we need far fewer
than 2w � 1 gates to implement it. Next, we compare the cost w (w C 1)/2 with the
number of (complex) LIFT gates needed in the classical 2w -point Fourier transform
circuit (Section 5.8), i.e.,

9 � 1
2

2w log2(2w) D 9
2

w2w .

We note that the gate

p (θ2) D p (π) D

0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1
CCA (7.16)

is called the ‘controlled Z gate’. Its symbol is presented in Figure 7.11a [47, 165,
174, 175], and it should not be confused with the icon of the SWAP gate (see Fig-
ure 3.6b). In an analogous manner to the use of open circles in Figure 3.12c, we
can generalize the notation of Figure 7.11a. For example, Figure 7.11b represents
the unitary transformation

0
BB@

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

1
CCA . (7.17)

We close this chapter by noting that the gates (7.15)–(7.17) are special cases of
the unitary transformation

0
BB@

exp(i α) 0 0 0
0 exp(i
) 0 0
0 0 exp(i γ) 0
0 0 0 exp(i δ)

1
CCA .

Figure 7.12 gives two different interpretations of this circuit: a one-qubit gate act-
ing on qubit #2, controlled by qubit #1; and a one-qubit gate acting on qubit #1,

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 166 — le-tex

�

�

�

�

�

�

166 7 Quantum Computing

α β, γ

α ,γ

δ

β , δ

,

Figure 7.12 Two different representations of the same quantum circuit.

controlled by qubit #2, respectively. The former view is based on the decomposi-
tion 0

BB@
exp(i α) 0 0 0

0 exp(i
) 0 0
0 0 1 0
0 0 0 1

1
CCA
0
BB@

1 0 0 0
0 1 0 0
0 0 exp(i γ) 0
0 0 0 exp(i δ)

1
CCA ,

while the latter view is based on the decomposition

0
BB@

exp(i α) 0 0 0
0 1 0 0
0 0 exp(i γ) 0
0 0 0 1

1
CCA
0
BB@

1 0 0 0
0 exp(i
) 0 0
0 0 1 0
0 0 0 exp(i δ)

1
CCA .

This illustrates yet another property that distinguishes quantum circuits from clas-
sical reversible circuits: the ambiguity of controlling and controlled qubits [148]. In
quantum circuits it is not always clear who is controlling whom (after all, in the
quantum world, little is certain!).

7.13
Nonlinear Computations

In Chapter 5 (on classical analog computers), we first investigated the case where
the outputs P1, P2, . . . , Pw were linear functions of the inputs A 1, A 2, . . . , A w (Sec-
tions 5.1 to 5.8). We then considered the case where those w outputs were nonlinear
functions of the w inputs (Section 5.9).

In the present chapter, we have studied quantum computers where the outputs
p1, p2, . . . , p2w are linear functions of the inputs a1, a2, . . . , a2w . The question then
arises of whether we must now study quantum computers where the 2w outputs
are nonlinear functions of the 2w inputs. The answer is no. The laws of quantum
physics are linear. Our quantum-mechanical universe obeys linear (and unitary)
transformations, and so any event can be described by a matrix multiplication.
However, the matrices involved are of size 2w � 2w , not size w � w . We do not have
to investigate a nonlinear case; we do not even have to investigate the affine linear
case.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c07 — 2010/8/5 — 13:36 — page 167 — le-tex

�

�

�

�

�

�

7.14 Exercises for Chapter 7 167

7.14
Exercises for Chapter 7

Exercise 7.1
Check the equality in Figure 7.2 by straightforward matrix multiplication.

Exercise 7.2
In order to demonstrate that most two-qubit states (a1, a2, a3, a4) are entangled,
prove that nonentanglement requires that a1a4 � a3a2 D 0. Is this condition also
sufficient?

Exercise 7.3
In general, a 2 � 2 matrix with complex entries – that is, an arbitrary element of
GL(2, C) – has eight degrees of freedom:�

a exp(i α) b exp(i
)
c exp(i γ) d exp(i δ)

�
,

where each of the eight parameters a, α, b,
, c, γ , d, and δ is real. Show that
introducing the unitarity condition reduces the number of degrees of freedom to
four, and that a possible representation is�

cos(θ) exp(i α) sin(θ) exp(i
)
� sin(θ) exp(i γ) cos(θ) exp(�i α C i
 C i γ)

�
. (7.18)

What is the determinant of this unitary matrix? For what values of θ , α,
, and γ
is this matrix is a permutation matrix?

Exercise 7.4
Apply the cosine-sine decomposition to (7.18).

Exercise 7.5
Prove that the 2�2 NOT matrix has four and only four square roots. Check that they
are all unitary.

Exercise 7.6
Prove that the 2 � 2 identity matrix has an infinite number of square roots.

Exercise 7.7

Check that result (7.10) – in other words,
�

p1

p2

�
D
�

ω
ω

�
– fulfils p1 p1 C p2 p 2 D 1.

Exercise 7.8
What is the 4 � 4 matrix that represents the square root of the SWAP gate?

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 168 — le-tex

�

�

�

�

�

�

168 7 Quantum Computing

Exercise 7.9

Consider the group S2, which is represented by the two matrices ' D
�

1 0
0 1

�

and ν D
�

0 1
1 0

�
. Add two extra generators: the Pauli matrices y D

�
0 �i

i 0

�

and z D
�

1 0
0 �1

�
, named after the Austrian physicist Wolfgang Pauli, in order to

generate the so-called Pauli group. What is the order of this group?

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 169 — le-tex

�

�

�

�

�

�

169

8
Reversible Programming Languages

In the previous chapters, we discussed computer circuits; in other words, com-
puter hardware. Any survey of computer science would not, however, be complete
without also treating the subject of computer software, such as programming lan-
guages. Programming languages that can be run both forwards and backwards
were actually first developed quite some time ago [176]; one of them is known as
Janus [177]. Below, we follow ideas developed by Yokoyama et al. [1, 134, 178, 179].

Let us assume that x_1, x_2, x_3, and x_4 are the names of four registers. Then,
for a reversible computation like (5.3), the software code uses the following assign-
ment:

x_4 := x_4 + f(x_1, x_2, x_3) , (8.1)

where f stands for an arbitrary function. Note that, according to tradition, we do
not explicitly write down the assignments

x_1:= x_1 ;

x_2:= x_2 ;

x_3:= x_3 .

An expression like (8.1) is called either a reversible assignment [180] or a reversible

update [1, 134]. The inverse assignment of (8.1) is of course

x_4 := x_4 - f(x_1, x_2, x_3) . (8.2)

Besides the operations + and -, Yokoyama et al. [1, 178] also consider the operator ^,
which stands for “bitwise XOR” operation. This operation is its own inverse.

As an example, we can translate Figure 5.3 into computer code:

A_1:= A_1 + 4.412 * A_2 ;

A_2:= A_2 + 80.633 * A_3 ;

A_3:= A_3 + 0.057 * A_2 ;

A_2:= A_2 - 14.404 * A_3 ;

A_2:= A_2 + A_1 ;

A_1:= A_1 - 0.955 * A_2 + 0.014 * A_3 ;

A_1:= 61.368 * A_1 .

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 170 — le-tex

�

�

�

�

�

�

170 8 Reversible Programming Languages

Such translations are quite straightforward. However, a computer language should
contain more than mere assignments. In order to achieve a structured computer
language, we need some extra structures: control structures like conditionals and
loops.

8.1
The if-then-else Structure

The conventional conditional (or if-then-else) statement consists of two parts:
a test, and one or two sequences of assignments; see Figure 8.1a. The reversible
jump structure, however, consists of three parts: a test, one or two sequences of
assignments, and an assertion; see Figure 8.1b. The corresponding computer code
looks like:

if e1 then s1 else s2 fi e2 , (8.3)

where e1 is the expression to be tested, s1 and s2 are the assignment sequences
(one of which must be executed), and e2 is the expression to be asserted.

As an example, we consider the following computation that needs to be pro-
grammed. We must compute two unknown variables P and Q from two known
(real) variables A and B. If A < 0, then we must apply the linear transforma-

(b)

(a)

yes

yes

no no

no

if e 1

yes

then s
1

then s
1

else s
2

else s
2

if e 1 f i e 2

Figure 8.1 The jump: (a) irreversible; (b) reversible.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 171 — le-tex

�

�

�

�

�

�

8.1 The if-then-else Structure 171

2 2 2

(b)(a)

Figure 8.2 Two different lifting schemes.

tion

P D 3A C 2B

Q D A C B . (8.4)

Otherwise, we must apply another linear transformation:

P D 5A C 2B

Q D 2A C B . (8.5)

Figure 8.2 shows how both transformations can be hardwired by a lifting scheme.
For the software implementation, we assume two registers: x and y, that initial-
ly contain the values A and B, respectively, but end up containing the results P

and Q, respectively, when the computation is finished. The reversible program is
as follows:

if (x < 0) then f y := y + x ;
x := x + 2*y g

else f y := y + 2*x ;
x := x + 2*y g

fi (x-2*y < 0),

where the appropriate expression e2 was found by solving either the set (8.4) or the
set (8.5) for A:

A D P � 2Q .

In the inverse of (8.3), the assertion becomes the test and the test becomes the
assertion, and all assignments are inverted:

if e2 then s�1
1 else s�1

2 fi e1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 172 — le-tex

�

�

�

�

�

�

172 8 Reversible Programming Languages

yes

yes

no no

nono

if e 2

yes

yes
then s

1
1-

then s
2
1-

else s2
1-

else s
1
1-

if e 2 f i e 1

f i e 1

(b)

(a)

Figure 8.3 Two different ways of reversing Figure 8.1b.

(see Figure 8.3a). For our example, this yields:

if (x-2*y < 0) then f x := x - 2*y ;
y := y - x g

else f x := x - 2*y ;
y := y - 2*x g

fi (x < 0).

Note that in s�1
1 , for example, the order of the assignments is reversed, but C signs

must become � signs too. In order to get an inverse code that looks even more like
the forward code read from bottom to top, we can apply

if NOT(e2) then s�1
2 else s�1

1 fi NOT(e1)

(see Figure 8.3b). For our example, this yields:

if (x-2*y >= 0) then f x := x - 2*y ;
y := y - 2*x g

else f x := x - 2*y ;
y := y - x g

fi (x >= 0).

The reader should, however, note that there is a pitfall: the fact that both s1 and
s2 are reversible statements is not sufficient to conclude that the statement (8.3) is

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 173 — le-tex

�

�

�

�

�

�

8.1 The if-then-else Structure 173

invertible. As an illustration, let us consider the computation

P D A C 3 if A < 3 (8.6)

D 2A � 2 if A � 3 . (8.7)

Both s1 (x := x + 3) and s2 (x := 2*x - 2) are invertible (the inverses s�1
1 and

s�1
2 are x := x - 3 and x := (1/2)*x + 1, respectively). Nevertheless, (8.6), (8.7)

is not invertible, as any value of P in the interval 4 � P < 6 cannot be traced back
to an unambiguous origin A. For example, P D 5 may equally well result from
A D 2 as from A D 7/2; see Figure 8.4a. A garbigino (see Section 5.9) can come to
our rescue here.

In contrast to (8.6) and (8.7), the computation

P D A C 3 if A < 5 (8.8)

D 2A � 2 if A � 5 (8.9)

is perfectly reversible (Figure 8.4b). The computer code for this looks like

if (x < 5) then f x := x + 3 g
else f x := 2*x - 2 g

fi (x < 8).

Of course, the computer that reads the program cannot look at figures in order to
decide whether the program is reversible or not. So how does it see a fundamental
difference between (8.6) and (8.7) and (8.8) and (8.9)? Solving the equation in (8.8)
for A and substituting the result into the inequality in (8.8) yields P < 8; solving
the equation in (8.9) for A and substituting the result into the inequality in (8.9)
yields the dual result P � 8. In contrast, solving the equation in (8.6) for A and
substituting the result into the inequality of (8.6) yields P < 8; solving the equation

5

5

10

P

A

10

15

0
0

5

5

10

P

A

10

15

0
0

(b)(a)

Figure 8.4 Two piecewise affine linear functions P(A): (a) an irreversible one; (b) a reversible
one.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 174 — le-tex

�

�

�

�

�

�

174 8 Reversible Programming Languages

in (8.7) for A and substituting the result into the inequality of (8.7) yields the result
P � 4. Problems arise from the fact that the two conditions P < 8 and P � 4
overlap. Proving the presence or absence of such a conflict, however, only works
when the statements are simple. Finding and checking assertions in the general
case is a difficult task, if it is possible at all.

The story above is reminiscent of reversible hardware; see the twin circuit in
Figure 3.22 of Section 3.14. Assume a reversible logic circuit of the form

if f1 then g1 else g2 ,

where f1 is an arbitrary Boolean function of n binary variables, and both g1 and g2

are reversible Boolean transformations; see, for example, Table 8.1 with n D 3.
The hardware implementation is straightforward provided that we allow an extra

wire with a zero preset and garbage output; see Figure 8.5, where the logic width is
thus w D n C1. Because the circuit contains exclusively reversible building blocks,
it is reversible, and so there is an inverse circuit such as its mirror image. However,
an inverse circuit of the form

if f2 then g�1
1 else g�2

2

only exists provided f1, g1, and g2 are such that the f1 D 1 output rows P, Q, R of
the g1 table do not overlap with the f1 D 0 output rows P, Q, R of the g2 table; that
is, if the 2n words in boldface in Table 8.1 are different.

In that case, the circuit of Figure 8.5 can be supplemented by a second control
gate; see Figure 8.6. The extra gate does not affect the output values P, Q, and R. It
does however change the n C 1 th output bit into 0; that is, into its original input
value. We have termed such a garbage bit that has a value that is always its preset
input value an ‘ancilla bit’ (Section 6.5).

Table 8.1 One Boolean function f1 and two reversible circuits g1 and g2, all with n D 3 vari-
ables.

ABC f 1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(a)

ABC P QR

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 0 1 1

(b)

ABC P QR

0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 0 0 0
1 0 1 1 0 1
1 1 0 0 1 0
1 1 1 0 1 1

(c)

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 175 — le-tex

�

�

�

�

�

�

8.2 The do-until Structure 175

P

R

QB

C

A

0

g1

f1

2g

Figure 8.5 A controlled twin circuit of width 4: if f1(A, B, C) D 1 then apply g1, else apply g2.

The reader could argue that any reversible circuit of width w D n C 1 can be
decomposed as in Figure 8.6. That was exactly the point made in Section 3.16
(Figure 3.23b). However, here we have an extra property: whatever the values
of A, B, . . ., an input of zero for the uppermost wire leads to a zero at its output
(and an input of 1 leads to an output of 1).

8.2
The do-until Structure

The conventional loop (or do-until) structure consists of two parts: a test, and a
sequence of assignments; see Figure 8.7a. The reversible loop structure, however,
consists of three parts: an assertion, one or two sequences of assignments, and a
test; see Figure 8.7b. The corresponding computer code looks like

from e1 do s1 loop s2 until e2 ,

where e1 is the assertion, s1 and s2 are the assignment sequences, and e2 is the
expression to be tested.

As an example, we will calculate the n th Fibonacci number Fn (named after the
Italian mathematician Leonardo Fibonacci Pisano), by applying the linear transfor-
mation

P D B

Q D A C B

P

R

QB

C

A

0 0

f1

g1

f2

2g

Figure 8.6 A symmetric controlled twin circuit of width 4: (a) if f1(A, B, C) D 1 then apply g1,
else apply g2; (b) if f2(P, Q, R) D 1 then apply g�1

1 , else apply g�1
2 .

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 176 — le-tex

�

�

�

�

�

�

176 8 Reversible Programming Languages

yes
while

no

no

no

do s

yes

yes

yes

no

yes

no

do s1

e1

e1

loop s2

e2

e2

loop s
2
1-

do s
1
1-

(b)

(a)

(c)

Figure 8.7 Loops: (a) irreversible, (b) reversible, (c) reversed.

n � 1 times. The forward reversible computer code looks like

from (j = 2) do f y := y + x ;
x := x - y ;
x := -x g

loop f j := j + 1 g
until (j = n),

where we have applied a lift factor of 1, a lift factor of �1, and a scale factor of �1. If
the registers x, y, and j initially contain the numbers a, b, and 1, then, after running
the program, they contain aFn�2 C bFn�1, aFn�1 C bFn , and n. If, in particular,
we preset a to be equal to the Fibonacci number F0 D 0, and b to be equal to
the Fibonacci number F1 D 1, then we ultimately obtain Fn�1 in register x (the
garbage) and Fn in register y (the result).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921c08 — 2010/8/5 — 13:36 — page 177 — le-tex

�

�

�

�

�

�

8.3 Exercises for Chapter 8 177

A possible inverse code (Figure 8.7c) is:

from (j = n) do f x := -x ;
x := x + y ;
y := y - x g

loop f j := j - 1 g
until (j = 2).

8.3
Exercises for Chapter 8

Exercise 8.1
A pocket calculator has to compute your tax T to be paid on your yearly income I,
where both I and T can be considered to be positive real numbers. The (fair) tax
system is as follows: the part of I up to 1000 euros is charged at 10%, the part
between 1000 and 10 000 euros is charged at 30%, and any part above 10 000 euros
is charged at 50%. Write a reversible program that computes T(I). Check that the
program is able to calculate your income from the tax you pay.

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a01 — 2010/8/5 — 13:36 — page 181 — le-tex

�

�

�

�

�

�

181

Appendix A
The Number of Linear Reversible Circuits

There are 2w different linear functions P(A 1, A 2, . . . , A w) of w Boolean variables.
Therefore, the number L of different linear reversible circuits of width w can be
determined as follows:

� For the first linear function, P1(A 1, A 2, . . . , A w), all linear functions are eligible
with one exception: the constant function 0. Therefore, we count:

2w � 1 .

� For the second linear function, P2(A 1, A 2, . . . , A w), all linear functions are eli-
gible except the functions 0 and P1. Therefore, we count:

2w � 2 D 2(2w�1 � 1) .

� For the third linear function, P3(A 1, A 2, . . . , A w), all linear functions are eligible
except the functions 0, P1, P2, and P1 ˚ P2. Therefore, we count:

2w � 4 D 22 (2w�2 � 1) .

� . . .
� For the jth linear function, P j (A 1, A 2, . . . , A w), we count

2w �
�

1 C
�

j � 1
1

�
C

�
j � 1

2

�
C � � � C

�
j � 1
j � 1

��
D 2w � (1 C 1) j �1

D 2 j �1(2w� j C1 � 1)

eligible functions.

Thus, the total number of allowed combinations is:

L D (2w � 1) . 2(2w�1 � 1) . 22(2w�2 � 1) 2w�1(21 � 1)

D 20C1C2C���C(w�1)(2 � 1)(22 � 1)(23 � 1) . . . (2w � 1)

D 2(w�1)w/2
wY

j D1

(2 j � 1)

D 2(w�1)w/2w !2 .

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a02 — 2010/8/5 — 13:36 — page 183 — le-tex

�

�

�

�

�

�

183

Appendix B
Bounds for the q-Factorial

For w > 1, the q-factorial of w, in other words

w !q D 1(1 C q)(1 C q C q2) . . . (1 C q C � � � C qw�1) ,

may be written as follows:

w !q D q2 � 1
q � 1

q3 � 1
q � 1

. . .
qw � 1
q � 1

.

This leads to

w !q D 1
(q � 1)w�1

wY
kD2

qk

wY
kD2

�
1 � 1

qk

�
.

We first calculate the middle factor of the right-hand side:

wY
kD2

qk D qw2/2Cw/2�1 .

We then investigate the logarithm of the last factor (denoted X):

log(X) D log

wY

kD2

�
1 � 1

qk

�!
D

wX
kD2

log
�

1 � 1
qk

�
.

For any x satisfying 0 < x � a < 1, we have

log(1 � a)
a

x � log(1 � x) < 0 .

Choosing a equal to 1
q2 and x equal to 1

q2 , 1
q3 , . . . , etc. successively, we obtain

�q2 log
�

q2

q2 � 1

�
qw�1 � 1
qw (q � 1)

< log(X) < 0

and therefore

� q

q � 1
log

�
q2

q2 � 1

�
< log(X) < 0 .

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 184 — le-tex

�

�

�

�

�

�

184 Appendix B Bounds for the q-Factorial

For the bifactorial (q D 2), this yields

�2 log
�

4
3

�
< log(X) < 0

and thus

9
16

< X < 1 .

We finally obtain

9
16

2w2/2Cw/2�1 < w !2 � 2w2/2Cw/2�1 ,

where an equality sign is introduced in order to incorporate the case w D 1.
As a result, the order 2(w�1)w/2w !2 of GL(w, 2) satisfies

9
32

2w2
< 2(w�1)w/2w !2 � 1

2
2w2

.

The total number of w � w matrices with all w2 entries equal to either 0 or 1 is
2w2

. Thus, the fraction of them with nonzero determinants (i.e., with determinants
equal to 1) is between 27% and 50%. Using numerical computation, we can verify
that this fraction is about 29% for large values of w.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a03 — 2010/8/5 — 13:36 — page 185 — le-tex

�

�

�

�

�

�

185

Appendix C
A Theorem about Universal Reversible Gates

C.1
Universality in Conventional Logic Circuits

Assume that we want to build a logic circuit that can calculate an arbitrary Boolean
function. Such a logic circuit (either conventional or reversible) can be built from
the combination of smaller circuits, all chosen from a small set of different building
blocks. The combination is called a synthesis and the small set is called the library
of the synthesis. The members of this set are called gates. Thus, in practice, gates
are ‘simple’ small circuits. A logic gate is said to be universal if it is sufficient to
synthesize the arbitrary function. In other words, the set consisting of this single
gate can act as a library.

In order to be a universal building block, a gate needs to fulfil some require-
ments. These conditions are different for conventional logic circuits and reversible
logic circuits. It is well known that the NAND gate (with two bits of input and one
bit of output; see Section 1.2) is a universal building block for conventional bina-
ry logic. So is the NOR gate. Their universality is a rather exceptional property. For
example, the NOT, the AND, the OR, the XOR, and the XAND gates are not universal. Fig-
ure C.1a illustrates the universality of the NAND gate by synthesizing the example
function

f (A 1, A 2, A 3) D A1A 2 C A 1A 3 . (C1)

It is clear that neither the NAND nor the NOR gate can function as the universal
reversible building block of a reversible circuit, as they are not reversible in the first
place. For reversible circuits, we thus have to search for new universal gates; that
is, reversible ones. To find out which reversible circuits are universal and which are
not, we start from a well-established theorem of conventional circuits and modify
it, step by step, to deduce a new theorem of reversible circuits.

We rely on a theorem published by both Glushkov [181] (it is called Theorem 5
in Chapter II of his book) and Mukhopadhyay [182] (it is called Theorem 3.3 in
his paper). It is related to conventional (i.e., not necessarily reversible) logic cir-
cuits:

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a03 — 2010/8/5 — 13:36 — page 186 — le-tex

�

�

�

�

�

�

186 Appendix C A Theorem about Universal Reversible Gates

A1

A

2A

3

1
f

A1

A2

A3

1

f

(b)

(a)

Figure C.1 Synthesis of the same Boolean function (a) by NAND gates, and (b) by TOFFOLI
gates.

Theorem C.1

A logic gate is universal iff it is neither affine linear nor monotonic.

For the definition of affine linear circuits and monotonic circuits, the reader is
referred to Sections 3.6 and 3.4, respectively.

C.2
Preliminary Concepts

The Hamming distance, named after the American mathematician Richard Ham-
ming, between two binary vectors (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) is the num-
ber of 1s in the vector (X1 XOR Y1, X2 XOR Y2, . . . , Xn XOR Yn); that is, the number of
places where Xk differs from Yk . Thus, the Hamming distance is an integer be-
tween 0 and n. The Hamming weight of a vector (X1, X2, . . . , Xn) is defined as its
Hamming distance from the zero vector (0, 0, . . . , 0); that is, the number of 1s in
the vector X.

We consider a logic gate with w binary inputs A j and w binary outputs P j . We
use the different values of the input (A 1, A 2, . . . , A w) as the coordinates of a w-di-
mensional hypercube. This solid has 2w corners (or vertices) and w2w�1 edges.
We note that each corner of the hypercube (with Hamming weight p) is connect-
ed by edges to its w neighbors (of which p have weight p � 1 and w � p have
weight p C 1).

We can represent a truth table by giving each corner of the hypercube a label
(P1, P2, . . . , Pw). If the truth table is reversible, all 2w labels are different. Then two
labels have a Hamming distance of at least 1.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a03 — 2010/8/5 — 13:36 — page 187 — le-tex

�

�

�

�

�

�

C.3 No-Fan-Out Theorem and Its Consequences 187

Note that all corners (A 1, A 2, . . . , A w) with the same Hamming weight p lie
in the same hyperplane A 1 C A 2 C � � � C A w D p , perpendicular to the vector
(1, 1, . . . , 1); that is, the hypercube’s diagonal.

We define a ‘climbing path’ as a path that travels, along the hypercube’s edges,
from point (0, 0, . . . , 0) to point (1, 1, . . . , 1) by consecutive steps that each increase
a single coordinate A j from 0 to 1 (Section 1.6). A climbing path thus consists of a
sequence of w edges. There are w ! different climbing paths.

C.3
No-Fan-Out Theorem and Its Consequences

Theorem C.1 is valid for conventional logic circuits, where fan-out is allowed (see
Figure 3.39a). Because fan-out is forbidden in reversible circuits, we are not al-
lowed to apply Theorem C.1 without modification. The interdiction of fan-outs in
reversible circuits needs to be circumvented by using a reversible gate with the so-
called duplicating property and applying at least one constant input to that gate;
see Section 3.20.1. Figure 3.39 illustrates the duplicating property of Tables 3.8b
and 3.8c. In a reversible circuit, a fan-out like that in Figure 3.39a needs to be
replaced with a reversible gate, such as those in Figure 3.39b or in Figure 3.39c.
Thus, in order to be universal, a reversible gate needs this duplicating property;
whenever necessary, it must be able to provide the copying function. This means
that Theorem C.1 has to be amended for reversible circuits:

Theorem C.2

A reversible logic gate is universal iff it is neither affine linear nor monotonic, but
is able to provide the copying function.

So, which reversible circuits have this duplicating property? A reversible circuit
of width w has a duplicating property iff there is a sequence of w � 1 Boolean
constants c1, c2, . . . , c j �1, c j C1, . . . , cw and two outputs Pk (A 1, A 2, . . . , A w) and
Pl (A 1, A 2, . . . , A w) such that

either Pk (c1, c2, . . . , c j �1, A j , c j C1, . . . , cw) D A j and

Pl (c1, c2, . . . , c j �1, A j , c j C1, . . . , cw) D A j ,

or Pk (c1, c2, . . . , c j �1, A j , c j C1, . . . , cw) D A j and

Pl (c1, c2, . . . , c j �1, A j , c j C1, . . . , cw) D A j ,

or Pk (c1, c2, . . . , c j �1, A j , c j C1, . . . , cw) D A j and

Pl (c1, c2, . . . , c j �1, A j , c j C1, . . . , cw) D A j .

See Table C.1 for the case where k < l . As a consequence, a reversible gate has the
duplicating property iff its truth table contains two rows such that

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a03 — 2010/8/5 — 13:36 — page 188 — le-tex

�

�

�

�

�

�

188 Appendix C A Theorem about Universal Reversible Gates

Table C.1 Two rows from the truth tables of three different reversible circuits with the duplicat-
ing property.

(a)

A1A2 . . . A j . . . A w P1P2 . . . Pk . . . Pl . . . Pw

0 0 0
1 1 1

(b)

A1 A2 . . . A j . . . A w P1 P2 . . . Pk . . . Pl . . . Pw

0 1 1
1 0 0

(c)

A1 A2 . . . A j . . . A w P1 P2 . . . Pk . . . Pl . . . Pw

0 0 1
1 1 0

� The Hamming distance between the two input vectors (A 1, A 2, . . . , A w) is 1,
and

� The Hamming distance between the two output vectors (P1, P2, . . . , Pw) is at
least 2.

Note that in the second example of Section 3.20.1, w equals 3, j D 1, k D 2, and
l D 3. Table 3.8c is of the type shown in Table C.1a. The two rows in Table C.1a
correspond to the fourth and eighth rows in Table 3.8c.
We have the following theorem:

Theorem C.3

A reversible gate has the duplicating property iff it is not an affine exchanger.

The proof of this is as follows. We assume that the reversible gate does not have
the duplicating property. Therefore, the Hamming distance between the labels of
any pair of neighboring corners has to be equal to 1. We construct the circuit
by applying labels (P1, P2, . . . , Pw) in hyperplanes of ever-increasing Hamming
weight:

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a03 — 2010/8/5 — 13:36 — page 189 — le-tex

�

�

�

�

�

�

C.3 No-Fan-Out Theorem and Its Consequences 189

p

0

1

2

3Q1 Q2 Q 3

Q1 Q2 Q 3Q1 Q2 Q 3 Q1 Q2 Q 3

Q1 Q2 Q 3Q1 Q2 Q 3 Q1 Q2 Q 3

Q1 Q2 Q 3

Figure C.2 Cube with labels representing a reversible circuit of width 3 without the duplicating
property.

� For p D 0, we have full freedom: we attach an arbitrary label (Q1, Q2, . . ., Q w)
to the corner (A 1, A 2, . . . , A w) D (0, 0, . . . , 0). There are 2w ways to do this.

� For p D 1, we can distribute the w labels (Q1, Q2, Q3, . . . , Q w), (Q1, Q2, Q3,
. . . , Q w), . . . , (Q1, Q2, . . . , Q w�1, Qw) freely among the w corners. This yields
w ! possibilities.

� For p D 2, there is no freedom: as each corner of weight 2 is connected (by
means of two edges) to two corners of weight 1, its label is determined by the
two labels downstream.

� . . .
� For an arbitrary p (with 2 � p � w), there is again no freedom: as each corner

of weight p is connected (by means of p ! different paths) to p different corners
of weight 1, its label is completely determined by the p labels of weight 1.

See the example in Figure C.2, with w D 3. We conclude that there are only
w !2w different reversible circuits without the duplicating property.

On the other hand, we can easily check that all affine exchangers lack the dupli-
cating property. As there are exactly w !2w different affine exchangers (Section 3.9),
we must conclude that all reversible gates that lack the duplicating property are
affine exchangers. This proves Theorem C.3.

Combining the above Theorems C.2, C.3, we obtain the following conclusion:

Theorem C.4

A reversible logic gate is universal iff it is neither affine linear nor monotonic nor
an affine exchanger.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a03 — 2010/8/5 — 13:36 — page 190 — le-tex

�

�

�

�

�

�

190 Appendix C A Theorem about Universal Reversible Gates

C.4
Final Theorem

We will now add a new theorem:

Theorem C.5

A reversible logic gate is monotonic iff it is an exchanger.

If the truth table is reversible, at each step of a climbing path at least one of the la-
bel numbers P1, P2, . . . , Pw must change. Such a change can only be from 0 to 1 if
all the functions P1(A 1, A 2, . . . , A w), P2(A 1, A 2, . . . , A w), etc., are monotonic. Be-
cause there are w steps, exactly one of the numbers P1, P2, . . . , Pw must increase
from 0 to 1 at each step. This reasoning demonstrates that, along a climbing path
of a monotonic reversible gate, both the Hamming weight of (A 1, A 2, . . . , A w) and
the Hamming weight of (P1, P2, . . . , Pw) increase in unit steps from 0 to w. We can
conclude that, in each corner, the weight of (P1, P2, . . . , Pw) equals the weight p

of (A 1, A 2, . . . , A w). In other words, monotonic reversible gates conserve weight.
Thus, all monotonic reversible circuits are conservative reversible circuits. The op-
posite, however, is not true.

We construct a monotonic reversible gate by applying labels (P1, P2, . . . , Pw) in
hyperplanes of ever-increasing Hamming weight:

� For p D 0, there is no freedom: we have to attach the label (P1, P2, . . . , Pw) D
(0, 0, . . . , 0) to the corner (A 1, A 2, . . . , A w) D (0, 0, . . . , 0).

� For p D 1, we can distribute the w labels (1, 0, 0, . . . , 0), (0, 1, 0, 0, . . . , 0), . . . ,
(0, 0, . . . , 0, 1) freely among the w corners. This yields w ! possibilities.

� For p D 2, there is again no freedom: as each corner of weight 2 is connected
(by means of two edges) to two corners of weight 1, its label is determined by
the two labels downstream.

� . . .
� For an arbitrary p (with 2 � p � w), there is again no freedom: as each corner

of weight p is connected (by means of p ! different paths) to p different corners
of weight 1, its label of weight p is completely determined by the p labels of
weight 1.

See the example in Figure C.3, with w D 4. We conclude that there are only w ! dif-
ferent monotonic reversible circuits.

We now remark that all exchangers are monotonic, and that the number of dif-
ferent exchangers equals w !. As the number of exchangers equals the number
of monotonic reversible circuits, and as all exchangers are monotonic, this leads
unavoidably to the conclusion that the only monotonic reversible circuits that ex-
ist are the exchangers. This proves Theorem C.5. Table 3.3b is an example: this
monotonic reversible circuit is indeed an exchanger: P1 D A 3, P2 D A 1, and
P3 D A 2.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a03 — 2010/8/5 — 13:36 — page 191 — le-tex

�

�

�

�

�

�

C.5 Discussion 191

1111

0 11 0 0 1 0 1 11 0 0 0 0 11 1 0 1 0 1 0 0 1

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

0 111 1110 11 0 1 1 0 11

4

p

0

1

2

3

0000

Figure C.3 Four-dimensional hypercube with labels representing a monotonic reversible circuit
of width 4.

Taking Theorem C.5 into account, Theorem C.4 can be simplified:

Theorem C.6

A reversible logic gate is universal iff it is neither affine linear nor an affine ex-
changer.

Noting that all affine exchangers are affine linear, Theorem C.6 can be simplified
further:

Theorem C.7

A reversible logic gate is universal iff it is not affine linear.

C.5
Discussion

Because the two reversible circuits of width 1 and all 24 reversible circuits of width 2
are affine linear, none of them can act as a universal primitive. We need a width of
at least three. Among the 8! D 40 320 different reversible circuits of w D 3, only
1344 are affine linear (see Table 3.2). All the other 38 976 circuits can be used as a
universal building block. The TOFFOLI gate (P1 D A 1, P2 D A 2, P3 D A 1A 2 ˚ A 3)
is often put forward, but any other choice is equally good. Figure C.1b provides an
example: the function f of (C1) realized exclusively with the TOFFOLI gate. However,
38 975 other circuits of width w D 3 can do the job too.

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 192 — le-tex

�

�

�

�

�

�

192 Appendix C A Theorem about Universal Reversible Gates

Table C.2 The number R of different reversible gates and the number U of different universal
reversible gates as functions of the gate width w.

w R U U
R (in %)

1 2 0 0
2 24 0 0

3 40 320 38 976 96.7

4 20 922 789 888 000 20 922 789 565 440 99.999 998 5

For general width, we denote the total number of reversible circuits by R(w) and
the number of affine linear reversible circuits by AL(w); see Table 3.2. For w � 3,
as many as U(w) D R(w) � AL(w) D (2w)! � 2(wC1)w/2w !2 circuits can play the role
of the universal building block. Table C.2 shows that they form the vast majority.
They do not form a subgroup of the group R of reversible circuits. Recall Lagrange’s
theorem and observe that the number U is not a divisor of the number R, the order
of R.

C.6
Exercises for Appendix C

Exercise C.1
Check that both circuits in Figure C.1 do indeed provide the function in (C1).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a04 — 2010/8/5 — 13:36 — page 193 — le-tex

�

�

�

�

�

�

193

Appendix D
Synthesis Efficiency

In this appendix, we follow the reasoning method introduced by Even et al. [183],
Maslov and Dueck [44], and Patel et al. [31]. Let us assume a set of N circuits that are
to be synthesized with the help of a library of B different building blocks (a subset
of the former set, including the trivial identity gate). We build all possible cascades
of length l. We call m(l) the number of different circuits that can be synthesized by
these cascades. Note that these m circuits automatically include all circuits synthe-
sized by a shorter cascade, because we have included the identity building block in
the library.

The question then arises: what cascade length L is needed to guarantee that these
cascades contain the synthesis of all N given circuits; that is, to guarantee that
m(L) � N? A hypothetical ‘most efficient’ library (where all different cascades yield
different circuits) would realize m(l) D B l . Therefore, B L�1 < N and B L � N ,
and thus

L D
�

log(N)
log(B)

�
. (D1)

Here dxe stands for the ceiling of x; that is, the smallest integer larger than or equal
to x. We now apply this general result to five different cases:

1. In a first application, N is the total number of reversible circuits of width w,
and B is the number of controlled NOT gates of width w (with an arbitrary con-
trolled wire). Thus,

N D (2w)!

B D w (22w�1 � 1) C 1 ,

where (in the latter equation) we have taken care to avoid multiple counting of
the identity gate (see Section 3.10). Using Stirling’s inequalities (3.2), we obtain

N > 2[w�
1

log(2)] 2w

B � w22w�1

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a04 — 2010/8/5 — 13:36 — page 194 — le-tex

�

�

�

�

�

�

194 Appendix D Synthesis Efficiency

and finally conclude that

L >

h
w � 1

log(2)

i
2w

2w�1 C log w

log(2)

> 2w � 4 .

Therefore, our decomposition in Section 3.16 (with length 2w � 1) is close to
optimal.

2. If we keep N D (2w)!, but choose B to be the number of controlled SWAP gates
of width w, then B is somewhat smaller:

B D w (w � 1)
2

(22w�2 � 1) C 1 ,

leading to

L > 4w � 10 .

This proves that the synthesis method of Section 3.16 cannot work with 2w � 1
controlled SWAP gates. The reader is kindly invited to verify that this (negative)
result does not conflict with the theorem of Appendix E for n equal to a multiple
of 4 and p D 4 and q D n

4 .
3. If we apply the general result (D1) to the decomposition of controlled NOT gates

into TOFFOLI gates, we have

N D 22w�1

B D 3w�1

and thus obtain

L >
log(2)

2 log(3)
2w

w
.

Therefore, the Reed–Muller decomposition, which needs a cascade of up to
1
2 2w building blocks (Section 3.16.3), is not optimal.

4. We consider all the linear Boolean reversible circuits (w wide): N D a2w2
with

a � 0.29, after Section 3.5. For the building blocks, we choose the linear con-
trolled NOTs (with an arbitrary controlled wire): B D w (2w�1 �1)C1 � w2w�1.
Thus, (D1) yields

L � log(2) w2

log(2) w
D w .

5. We now consider the same N but apply a smaller library: only FEYNMAN gates.
Applying (D1) again, this time with B D w (w � 1) C 1, yields

L � log(2) w2

2 log(w)
D log(2)

2
w2

log(w)
.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a04 — 2010/8/5 — 13:36 — page 195 — le-tex

�

�

�

�

�

�

D.1 Exercises for Appendix D 195

D.1
Exercises for Appendix D

Exercise D.1
We want to build an arbitrary exchange gate (of width w) from a library of all pos-
sible SWAP gates. What are the values of N and B? What is the lower bound L of the
maximum cascade length?

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921a05 — 2010/8/5 — 13:36 — page 197 — le-tex �
�

�
�

�
�

197

Appendix E
Birkhoff’s Theorem

Let n be an integer; that is, the number of objects in the set f1,2,...,ng. Let p be
a divisor of n; in other words we have n D p q, where both p and q are integers.
We arrange the n objects into q rows, each of p objects, in an arrangement called
a Young tableau [184]. We consider an arbitrary permutation a of the n objects.
During such a permutation, the q subsets exchange q2 flows Fi j . These Fi j form a
q � q matrix F with all matrix elements equal to 0, 1, 2, . . ., or p. The matrix element
Fi j denotes the number of objects that move from row #i to row #j:

Fi j D
pX

kD1

pX
mD1

P(i�1)pCk ,(j �1)pCm ,

where P is the n � n permutation matrix representing the original permutation a.
The matrix F has 2q properties:

X
j

Fi j D p

X
i

Fi j D p ,

of which 2q � 1 are independent. As an example, we consider an arbitrary permu-
tation a of the 35 objects f1,2,...,35g. Figure E.1a shows the permutation a as a
mapping in the Young tableau for n D 35, p D 7, and q D 5. The tableau consists
of the five sets f1,2,...,7g, f8,9,...,14g, . . . , and f29,30,...,35g. These sets
exchange a number of objects according to the flow matrix

F D

0
BBBB@

6 0 0 1 0
1 5 0 0 1
0 1 5 0 1
0 0 0 6 1
0 1 2 0 4

1
CCCCA

,

where, for example, F53 D 2 expresses that in Figure E.1a two objects are mapped
from the fifth row f29,30,...,35g to the third row f15,16,...,21g. We can in-
deed see an arrow pointing from case 31 to case 18, and another from case 35 to

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921a05 — 2010/8/5 — 13:36 — page 198 — le-tex �
�

�
�

�
�

198 Appendix E Birkhoff’s Theorem

(c)(a)

(b) (d)

Figure E.1 Decomposition of (a) an arbitrary permutation of 35 objects into (b) a first ‘horizon-
tal’ permutation, (c) a ‘vertical’ permutation, and (d) a second ‘horizontal’ permutation.

case 20. The reader is invited to verify that, for this 5�5 matrix F, all row sums and
all column sums (in short: all line sums) are equal to p D 7.

Note that the q � q flow matrix F contains incomplete information on the permu-
tation a. Complete information on a is given by the n � n D 35 � 35 permutation
matrix P.

Theorem E.1

Each permutation a can be decomposed as

a D h1v h2 ,

where both h1 and h2 only permute objects within rows of the Young tableau, and
where v only permutes objects within columns of the tableau.

Figures E.1b–d show the permutations h1, v, and h2 that are to be performed suc-
cessively:

� The vertical permutation v (Figure E.1c) is found as follows: the cycles of a are
projected onto columns, yielding one or more vertical cycles.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921a05 — 2010/8/5 — 13:36 — page 199 — le-tex �
�

�
�

�
�

Appendix E Birkhoff’s Theorem 199

� The horizontal permutation h1 (Figure E.1b) merely consists of horizontal ar-
rows that map the arrow tails of the vertical and oblique arrows in Figure E.1a to
the corresponding arrow tails of Figure E.1c. Subsequently, additional horizon-
tal arrows are added to form closed horizontal cycles.

� Finally, the horizontal permutation h2 (Figure E.1d) simply equals v�1h�1
1 a.

The fact that it is always possible to construct an appropriate vertical permuta-
tion v is a direct consequence of either Birkhoff’s theorem [163, 185] (also known
as the Birkhoff–von Neumann theorem after the American mathematician Garrett
Birkhoff and the Hungarian/American mathematician John von Neumann), Hall’s
marriage theorem (after the English mathematician Philip Hall), König’s theorem
(after the Hungarian mathematician Dénes König), or the maximum-flow theo-
rem; all of these well-known theorems in combinatorics are equivalent [186]. As an
example, one of the formulations of the Birkhoff theorem says: any matrix of size
q � q and line sum p can be decomposed as the sum of p matrices of the same
size and unit line sum [187]. In other words, any flow matrix with a line sum of p

can be decomposed as the sum of p permutation matrices. For example, the above
matrix F of size 5 � 5 with a line sum of 7 can be decomposed as the following sum
of seven permutation matrices:

F D 4

0
BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1
CCCCA

C

0
BBBB@

0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

1
CCCCA

C

0
BBBB@

1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

1
CCCCA

C

0
BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

1
CCCCA

.

We can apply one of these p permutations to each of the p columns of the Young
tableau in order to obtain the desired vertical permutation v. In Figure E.1c, we do
indeed recognize four empty columns (corresponding to the four identity matrices
in the matrix sum) and three columns that are not empty (corresponding to the
remaining three matrices in the matrix sum). The Birkhoff decomposition thus
gives a precise procedure for what was called the ‘projection of permutation a onto
the p columns’ in the text above.

Thus, the theorem says that one permutation of n objects can be decomposed
into:

� A product of q disjoint subpermutations, each of p objects, followed by
� A product of p disjoint subpermutations, each of q objects, and finally
� A second product of q disjoint subpermutations, each of p objects.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921a05 — 2010/8/5 — 13:36 — page 200 — le-tex �
�

�
�

�
�

200 Appendix E Birkhoff’s Theorem

planes
p

planes
q

planes
q

Figure E.2 Symbolic decomposition of an arbitrary permutation of 35 objects into five ‘horizon-
tal’ subpermutations, seven ‘vertical’ subpermutations, and five ‘horizontal’ subpermutations.

This is symbolically depicted in Figure E.2. In brief, one big spaghetti is decom-
posed into 2q C p small permutations. The theorem can be interpreted in terms of
group theory; if we define

� N as the group of all permutations of the n objects,
� H as the group of all ‘horizontal permutations’ of these objects, and
� V as the group of all ‘vertical permutations’,

then

� N is isomorphic to the symmetric group Sn ,
� H is isomorphic to the Young subgroup Sp � Sp � . . . � Sp D Sq

p , and
� V is isomorphic to the Young subgroup Sq � Sq � . . . � Sq D Sp

q .

Note that the Young subgroups Sq
p and Sp

q are based on two so-called dual partitions
of the number n:

n D p C p C � � � C p (q terms), and

n D q C q C � � � C q (p terms).

Therefore, these two subgroups are referred to as dual Young subgroups. The com-
binatorial theorem says the following: if the group N is partitioned into double
cosets by means of the subgroup H, then we can choose a representative of each
double coset that is a member of V. Determining how many double cosets the su-
pergroup N is partitioned into by the subgroup H is a very difficult problem. We
will call this number X(p , q). Fortunately, it is not important to know the value
of X, while the fact that (thanks to Birkhoff’s theorem) each of the X double cosets
contains (at least) one member of V is essential.

We now consider the special case where n is even. We distinguish between two
special subcases [52]:

� p D 2 and thus q D n/2.
� p D n/2 and thus q D 2.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921a05 — 2010/8/5 — 13:36 — page 201 — le-tex �
�

�
�

�
�

E.1 Exercises for Appendix E 201

In the latter subcase, the group Sn is partitioned by the subgroup isomorphic to
S2

n/2 into exactly

X
� n

2
, 2

�
D n

2
C 1

double cosets [46]. Such partitioning is applied in Section 3.15. In the former sub-
case, the number of double cosets into which Sn is partitioned by the subgroup
Sn/2

2 is surprisingly complicated [188]:

X
�

2,
n

2

�
D

��
n
2

�
!
�2

2n

n/2X
kD0

2k (n � 2k)!��
n
2 � k

�
!
�2

k!
.

This partitioning is applied in Section 3.16.
We end this appendix by noting that the Birkhoff theorem guarantees the exis-

tence of a decomposition of the flow matrix into permutation matrices, but that it
does not tell us how to find it. An algorithm (for arbitrary p and q) is not straight-
forward; this algorithm should be computationally efficient (i.e., not an exhaustive
search!), and should give results in all cases. The history of this problem involves
a lot of failed attempts [189]. Fortunately, fast and reliable algorithms for arbitrary
values of q and p based on coloring bipartite graphs [187, 190] have been found.
For example, Paredes and Hall [191] perform a decomposition with time complexi-
ty O(q p log p), whereas Peng et al. [192] propose an algorithm with time complexity
O(q p). There are simple and efficient dedicated algorithms for small values of p,
as well as for small values of q.

E.1
Exercises for Appendix E

Exercise E.1
If we multiply an n � n matrix with all line sums equal to a by an n � n matrix with
all line sums equal to b, does this result in an n � n matrix where all line sums are
equal? If the answer is yes, what is the value of this sum?

Exercise E.2
Invent an algorithm to find a Birkhoff decomposition of an arbitrary integer q � q

matrix which has all of its line sums equal to 2. Apply your algorithm to the matrix
0
BBBBBBBBB@

1 0 1 0 0 0 0
1 0 0 1 0 0 0
0 0 0 0 0 2 0
0 0 0 0 1 0 1
0 2 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 1

1
CCCCCCCCCA

.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921a05 — 2010/8/5 — 13:36 — page 202 — le-tex �
�

�
�

�
�

202 Appendix E Birkhoff’s Theorem

Exercise E.3
Invent an algorithm to find all Birkhoff matrix decompositions for the same case
with p D 2 and arbitrary q. Apply your algorithm to the matrix of the previous
exercise.

Exercise E.4
Demonstrate that, in the case q D 2, Birkhoff matrix decomposition is both trivial
and unique.

Exercise E.5
Invent an algorithm to find a Birkhoff decomposition of an integer 3 � 3 matrix
that has all of its line sums equal to an arbitrary number p. Apply your algorithm
to the matrix

0
@

2 3 4
1 4 4
6 2 1

1
A .

Is the decomposition unique?

Exercise E.6
We have fifteen objects arranged into three rows of five objects, n D p �q D 5�3 D
15:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2 } 4 } 2 � 5 } 5 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 } 4 � 3 ~ 4 ~ 3 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

5 ~ 2 ~ 3 } 1 ~ 1 �

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921a05 — 2010/8/5 — 13:36 — page 203 — le-tex �
�

�
�

�
�

E.1 Exercises for Appendix E 203

Rearrange the 15 objects such that you obtain the ‘standard’ arrangement:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 ~ 2 ~ 3 ~ 4 ~ 5 ~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 � 2 � 3 � 4 � 5 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 } 2 } 3 } 4 } 5 }

However, you are only allowed to proceed in the ‘Birkhoff way’:

� First move the cards only in the horizontal direction,
� Then move the cards only in the vertical direction, and
� Finally, move the cards only in the horizontal direction.

Exercise E.7
Convince yourself that the case p D 2 is easy. To do this, choose n D p�q D 2�n/2
by taking the 13 cards with hearts and the 13 cards with spades. Create an arbitrary
arrangement with two rows, such as

K K 2 7 6 5 2 4 4 9 3 8 3

1 7 Q 8 J 9 5 10 10 J Q 6 1

The challenge is then to permute the 26 cards in the Birkhoff way in order to
arrive at the standard ordering:

1 2 3 4 5 6 7 8 9 10 J Q K
1 2 3 4 5 6 7 8 9 10 J Q K

Exercise E.8
Amaze your friends by shuffling a full deck of n D p � q D 13 � 4 D 52 cards
and subsequently performing the Birkhoff card permutation. This is a tricky one –
don’t forget to practice!

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a06 — 2010/8/5 — 13:36 — page 205 — le-tex

�

�

�

�

�

�

205

Appendix F
Microentropy and Macroentropy

The phase space of a physical system is divided into N parts. Let pm be the proba-
bility that the system is in part #m of the phase space. We have

PN
mD1 pm D 1. If k

is the Boltzmann constant (see Section 4.1), the entropy of the system is

σ D �k

NX
mD1

pm log(pm) .

This is dependent on the number (N) of sections into which the total phase space
is divided (and on the way it is divided into these N parts). If we initially apply a
coarse graining and divide the phase space into n ‘large’ parts (n < N ; usually
n � N), and then apply a fine graining to each of these macroparts (i.e., divide
part #1 into n1 subparts, part #2 into n2 subparts, . . . , part #n into nn subparts,
such that n1 C n2 C � � � C nn D N), then

σ D �k

nX
iD1

niX
j D1

pi j log(pi j)

can be proven to be exactly the sum of two contributions:

σ D �k

nX
iD1

qi log(qi) � k

nX
iD1

qi

niX
j D1

pi j

q i

log
�

pi j

q i

�
. (F1)

Here qi is a shorthand notation for
Pni

j D1 pi j ; that is, the probability of being in
macrocell #i. The former term in (F1) is called the macroscopic entropy S; the
latter term in (F1) is called the microscopic entropy s [193–196]. Thus, however we
assemble the microcells of the phase space into larger macrocells (see Figure F.1,
where N D 4 C 6 C 4 C 4 D 18), we can always write

σ D S C s .

The contribution S is the entropy associated with how the probabilities are dis-
tributed among the macrocells; the contribution s is the entropy associated with the
way probabilities are distributed among the microcells within the macrocells.

The phase space of an electronic system consists of all possible positions and ve-
locities of the electrons. Because we assign a logic 1 to a positive voltage over a ca-
pacitor and a logic 0 to a negative voltage over the same capacitor, we take a special

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a06 — 2010/8/5 — 13:36 — page 206 — le-tex

�

�

�

�

�

�

206 Appendix F Microentropy and Macroentropy

m=1

m=2

m=3

5 7

8
9

10

6

11
12 13

4

14

15
16

17

18

i= 1

i= 4

i= 2

i= 3

(b)

(a)

Figure F.1 Dividing up a phase space: (a) directly into microcells; (b) into macrocells and then
into microcells.

interest in whether the electrons are in the lower or the upper plate of the capacitor.
We are not interested in their exact position within the capacitor plate, nor in the
velocity or spin of the electrons. This is an example of the coarse graining of phase
space. Figure F.1 is, for example, the phase space of an electronic circuit consisting
of two capacitors. In Figure F.1a we are interested in all details relating to all of
the quantum numbers of all electrons. In Figure F.1b we are only concerned with
which two of the four capacitor plates the electrons are located in. In this example,
it is clear that the macroscopic entropy S is associated with the two bits of informa-
tion we can store into the two capacitors. If q1 D q2 D q3 D q4 D 1

4 , we find that

S D �k

4X
iD1

qi log(qi) D 2k log(2) D 2 bit .

The microscopic entropy s is not associated with information, but with heat. In oth-
er words, s is the Boltzmann entropy (named after Ludwig Boltzmann – the same

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a06 — 2010/8/5 — 13:36 — page 207 — le-tex

�

�

�

�

�

�

F.1 Exercises for Appendix F 207

Boltzmann referred to in Section 4.1), whereas S is the Shannon entropy [197]
(named after the same Shannon referred to in Section 1.8). It is important to rec-
ognize that the way that we split σ into a macroscopic part S that we associate with
information and a microscopic part s that we associate with heat is arbitrary. What
we consider a coarse or a fine division of phase space is determined by the technol-
ogy we choose. Whereas the division of phase space into microcells is based upon
the basic principles of physics (e.g., Heisenberg’s uncertainty principle, named af-
ter the German physicist Werner Heisenberg), its division into macrocells is based
upon the available technology.

F.1
Exercises for Appendix F

Exercise F.1
Assume that Table F.1a gives the probabilities pm of the physical system of Fig-
ure F.1. Check that

P
pm D 1. Calculate the microentropy s, the macroentropy S,

and the entropy σ separately, and check that σ equals s C S .

Table F.1 Two probability distributions.

m pm

1 0.01
2 0.02
3 0.03
4 0.04
5 0.01
6 0.01
7 0.01
8 0.01
9 0.10

10 0.05
11 0.02
12 0.01
13 0.01
14 0.01
15 0.15
16 0.16
17 0.17
18 0.18

(a)

m pm

1 0.01
2 0.02
3 0.03
4 0.04
5 0.00
6 0.02
7 0.01
8 0.01
9 0.10

10 0.05
11 0.02
12 0.01
13 0.01
14 0.01
15 0.15
16 0.16
17 0.17
18 0.18

(b)

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 208 — le-tex

�

�

�

�

�

�

208 Appendix F Microentropy and Macroentropy

Exercise F.2
Perform the same exercise for Table F.1b, and explain how to treat

�p5 log(p5) D �0 � (�1).

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921a07 — 2010/8/5 — 13:36 — page 209 — le-tex

�

�

�

�

�

�

209

Appendix G
Computing the Successive Powers of a Matrix

According to the basic theory of the Z-transform [198], the j th power of a given
n � n matrix y (i.e., the matrix y j) takes the form:

y j D
nX

kD1

ck z
j

k
, (G1)

where z1, z2, . . ., and zn are merely complex numbers, not matrices (i.e., they are
the n solutions of the eigenvalue equation), and where c1, c2, . . ., and cn are suitable
n�n matrices (determined from the initial conditions y , y 2, . . ., and y n). For n D 4,
the eigenvalue equation looks like

det

2
664y �

0
BB@

z 0 0 0
0 z 0 0
0 0 z 0
0 0 0 z

1
CCA

3
775 D 0 .

For

y D

0
BB@

0 0 ω ω
0 1 0 0
0 0 ω ω
1 0 0 0

1
CCA ,

this yields

det

0
BB@

�z 0 ω ω
0 1 � z 0 0
0 0 ω � z ω
1 0 0 �z

1
CCA D 0 .

Considering that ω D (1C i)/2 and ω D (1� i)/2, we then obtain the fourth-degree
equation

(z � 1)2(z2 C ωz C i) D 0 .

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 210 — le-tex

�

�

�

�

�

�

210 Appendix G Computing the Successive Powers of a Matrix

The four solutions of the equation are z1 D z2 D 1, z3 D
p

7�1
4 C i

p
7C1
4 , and z4 D

�p
7�1

4 C i �p
7C1

4 . Because one solution has a multiplicity of 2, expression (G1)
must be replaced by

y j D c1z
j

1 C c2 j z
j

2 C c3z
j

3 C c4z
j

4

with appropriate matrices c1, c2, c3, and c4 (again to be determined from the initial
conditions y , y 2, y 3, and y 4). Note the factor j in the second term on the right-hand
side!

Because y is unitary, its eigenvalues automatically lie on the unit circle of the
complex plane: jz1j D jz2j D jz3j D jz4j D 1. Their phase angles are θ1 D θ2 D 0,

θ3 D π/2�θ , and θ4 D πCθ , where θ D arccos
� p

7�1
4

�
D arctan

�p
7
�

�π/4 �
24ı1704300. After straightforward but laborious calculations, we obtain the values of
the constant matrices c1, c2, c3, and c4. Their precise values are not important; it is
sufficient to note that neither c3 nor c4 is the zero matrix.

Neither z
j

3 nor z
j

4 is periodic, because the angle θ is not a rational multiple
of π. Indeed, according to Jahnel [199], the only rational angles (between 0 and
90ı) with cosines equal to quadratic irrationals are 30ı , 36ı, 45ı, and 72ı (which
have cosines equal to

p
3/2,

p
5/4 C 1/4,

p
2/2, and

p
5/4 � 1/4, respectively).

Similarly, according to Calcut [200], the only rational angles (between 0 and 90ı)
with tangents equal to a quadratic irrational are 15ı, 22ı300, 30ı, 60ı, 67ı300, and
75ı (which have tangents equal to 2 � p

3,
p

2 � 1,
p

3/3,
p

3,
p

2 C 1, and 2 C p
3 ,

respectively). Because neither z
j

3 nor z
j

4 is periodic, the matrix sequence fy j g is
not periodic.

G.1
Exercises for Appendix G

Exercise G.1
In the present book, we have encountered a number of 2 � 2 unitary matrices:

�
cos(θ) sin(θ)

� sin(θ) cos(θ)

�
,
�

1 0
0 1

�
,
�

ω ω
ω ω

�
,
�

0 1
1 0

�
,
�

ω ω
ω ω

�
,

1
2

�
1 C exp(i θ) 1 � exp(i θ)
1 � exp(i θ) 1 C exp(i θ)

�
, and

1p
2

�
1 1
1 �1

�
.

Compute the eigenvalues of these matrices. For each matrix, check whether the
modulus is equal to 1, and compute the phase angle. Deduce the powers and the
order of each matrix.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b02 — 2010/8/5 — 13:36 — page 211 — le-tex

�

�

�

�

�

�

211

Post Scriptum

Rolf Landauer triggered the emergence of the branch of science known as re-
versible computing. The present book attempts to demonstrate how rich this sub-
ject is. In it, we have computed in different worlds W : W was successively the
world B of Boolean numbers 0 and 1, the world Z of integers, the world Z2b of
integers modulo 2b , the world R of real numbers, and the world C of complex
numbers. Besides the numbers in W , we encountered column vectors (in both
W w and W 2w

), as well as square matrices (in both W w2
and W 22w

), where w is the
computing width, in either bits or qubits.

We applied group theory with finite and infinite groups, countable and uncount-
able. We discussed Fourier transforms and Z-transforms. Aside from mathematics,
we visited the fields of physics, engineering, and computer science. We investigated
energy and entropy.

Finally, we find that the subject also leads to some philosophical musing. What
is the difference between forward and backward? What is the difference between
forecasting and remembering? Between computing and memorizing? Between left
and right? Between future and past? And finally: what is computing? What is think-
ing? Is it merely permuting objects?

Although we have visited all of these worlds and encountered all of these ques-
tions, there is still a lot more to explore – we have merely scratched the surface.
Nevertheless, I hope that you enjoyed reading the book as much as I enjoyed writ-
ing it.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 213 — le-tex

�

�

�

�

�

�

213

References

1 Yokoyama, T., Axelsen, H., and Glück,
R. (2008) Principles of a reversible pro-

gramming language. Proceedings of the
Computing Frontiers 2008 Conference,
Ischia, May 2008, pp. 43–54.

2 Sasao, T. and Fujita, M. (1996) Repre-

sentation of Discrete Functions, Kluwer
Academic Publishers, Boston.

3 Bochmann, D. and Steinbach, B. (1991)
Logikentwurf mit XBOOLE, Verlag Tech-
nik, Berlin.

4 Steinbach, B. and Posthoff, C. (2007)
Extended theory of Boolean normal

forms. Proceedings of the 6th Annu-
al Hawaii International Conference
on Statistics, Mathematics and Relat-
ed Fields, Honolulu, January 2007,
pp. 1124–1139.

5 Gaidukov, A. (2002) Algorithm to derive

minimum ESOP for 6-variable function.
Proceedings of the 5th Internation-
al Workshop on Boolean Problems,
Freiberg, September 2002, pp. 141–148.

6 Pogosyan, G., Rosenberg, I., and Taka-
da, S. (2004) Building minimum ESOPs

through redundancy elimination. Proceed-
ings of the 6th International Workshop
on Boolean Problems, Freiberg, Septem-
ber 2004, pp. 201–206.

7 Fidytek, R., Mostowski, A., Somla, R.,
and Szepietowski, A. (2001) Algorithms
counting monotone Boolean functions.
Information Processing Letters, 79, 203–
209.

8 Bochmann, D., Posthoff, C., Shmerko,
V., Stankovíc, R., Tos̆íc, Z̆., and
Yanushkevich, S. (2000) Logic differ-

ential calculus as part of switching theory.
Proceedings of the 4th IEEE Interna-
tional Conference on New Information
Technologies in Education, Minsk, De-
cember 2000, pp. 126–135.

9 Yildiz, B. and Suba̧si, M. (2002) An
interpreter for the Boolean derivative.
Applied Mathematics and Computation,
129, 43–54.

10 Scott, W. (1964) Group Theory, Dover
Publications, New York.

11 Hall, P. (1968) The Theory of Groups,
AMS Chelsea Publishing, Providence.

12 Cameron, P. (1999) Permutation Groups,
Cambridge University Press, Cam-
bridge.

13 Hall, B. (2003) Lie Groups, Lie Algebras,

and Representations, an Elementary Intro-

duction, Springer Verlag, New York.
14 Baker, A. (2007) Matrix Groups, an In-

troduction to Lie Group Theory, Springer
Verlag, London.

15 Stillwell, J. (2008) Naive Lie Theory,
Springer, New York.

16 Kaplansky, I. (1971) Infinite Abelian

Groups, University of Michigan Press,
Ann Arbor.

17 Bosma, W., Cannon, J., and Playoust,
C. (1997) The Magma algebra system I:
the user language. Journal of Symbolic

Computation, 23, 459–484.

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 214 — le-tex

�

�

�

�

�

�

214 References

18 Computational Algebra Group, Uni-
versity of Sydney (2008) MAGMA
computational algebra system. http:
//magma.maths.usyd.edu.au/magma/.

19 Cannon, J. (1984) An introduction to
the group theory language Cayley,
in Computational Group Theory, (ed.
M. Atkinson), Academic Press, London,
pp. 145–183.

20 Schönert, M. (1992) GAP. Computer Alge-

bra Nederland Nieuwsbrief, 9, 19–28.
21 van Leeuwen, M., Cohen, A., and Lisser,

B. (1991) LiE, a package for Lie group
computations. Computer Algebra Neder-

land Nieuwsbrief, 7, 34–35.
22 van Leeuwen, M. (2007) LiE, a soft-

ware package for Lie group computa-
tions. http://www-math.univ-poitiers.
fr/~maavl/LiE.

23 De Vos, A. and Van Rentergem, Y. (2005)
Reversible computing: from mathematical

group theory to electronical circuit exper-

iment. Proceedings of the Computing
Frontiers 2005 Conference, Ischia, May
2005, pp. 35–44.

24 Kerber, A. (1970) Representations of
permutation groups I. Lecture Notes in

Mathematics, Vol. 240, Springer Verlag,
Berlin, pp. 17–23.

25 James, G. and Kerber, A. (1981) The
representation theory of the symmetric
group. Encyclopedia of Mathematics and

its Applications, 16, 15–33.
26 Jones, A. (1996) A combinatorial ap-

proach to the double cosets of the sym-
metric group with respect to Young
subgroups. European Journal of Combi-

natorics, 17, 647–655.
27 Courant, R. (1970) Differential and In-

tegral Calculus, Blackie & Son Limited,
London, p. 361.

28 Sasao, T. and Kinoshita, K. (1979) Con-
servative logic elements and their univer-
sality. IEEE Transactions on Computers,
28, 682–685.

29 Fredkin, E. and Toffoli, T. (1982) Con-
servative logic. International Journal of

Theoretical Physics, 21, 219–253.
30 Cattaneo, G., Leporati, A., and Leporini,

R. (2002) Fredkin gates for finite-val-
ued reversible and conservative logics.
Journal of Physics A: Mathematical and

General, 35, 9755–9785.

31 Patel, K., Markov, I., and Hayes, J.
(2004) Optimal synthesis of linear re-

versible circuits. Proceedings of the
13th International Workshop on Log-
ic and Synthesis, Temecula, June 2004,
pp. 470–477.

32 Kerntopf, P. (2002) On universality of

binary reversible logic gates. Proceedings
of the 5th International Workshop on
Boolean Problems, Freiberg, September
2002, pp. 47–52.

33 De Vos, A. and Storme, L. (2004) All

non-linear reversible logic gates are r-uni-

versal. Proceedings of the 6th Interna-
tional Workshop on Boolean Problems,
Freiberg, September 2004, pp. 25–31.

34 De Vos, A. and Storme, L. (2004) r-Uni-
versal reversible logic gates. Journal of

Physics A: Mathematical and General, 37,
5815–5824.

35 De Vos, A., Raa, B., and Storme, L. (2002)
Generating the group of reversible logic
gates. Journal of Physics A: Mathematical

and General, 35, 7063–7078.
36 Miller, D. and Dueck, G. (2003) Spectral

techniques for reversible logic synthesis.
Proceedings of the 6th Internation-
al Symposium on Representations and
Methodology of Future Computing Tech-
nologies, Trier, March 2003, pp. 56–62.

37 Thomsen, M. (2009) Design and sim-
ulation of a simple reversible micro-
processor (M.Sc. thesis). Københavns
Universitet, København.

38 Feynman, R. (1985) Quantum mechani-
cal computers. Optics News, 11, 11–20.

39 Feynman, R. (1996) Feynman Lectures on

Computation, Addison–Wesley Publish-
ing, Reading.

40 Beth, T. and Rötteler, M. (2001) Quan-
tum algorithms: applicable algebra and
quantum physics, in Quantum Informa-

tion (eds. Alber, G., Beth, T., Horodecki,
M., Horodecki, P., Horodecki, R., Röttel-
er, M., Weinfurter, H., Werner, R., and
Zeilinger, A.), Springer Verlag, Berlin,
pp. 96–150.

41 Van Rentergem, Y., De Vos, A., and De
Keyser, K. (2007) Six synthesis meth-
ods for reversible logic. Open Systems &

Information Dynamics, 14, 91–116.
42 Wille, R. and Drechsler, R. (2009) Effect

of BDD optimalization on synthesis of

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 215 — le-tex

�

�

�

�

�

�

References 215

reversible and quantum logic. Proceedings
of the Workshop on Reversible Compu-
tation, York, March 2009, pp. 33–45.

43 Wille, R. and Drechsler, R. (2009) BDD-

based synthesis of reversible logic for large

functions. Proceedings of the Design
Automation Conference, San Francisco,
July 2009, pp. 270–275.

44 Maslov, D. and Dueck, G. (2004) Re-
versible cascades with minimal garbage.
IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems,
23, 1497–1509.

45 Van Rentergem, Y., De Vos, A., and De
Keyser, K. (2006) Using group theory in

reversible computing. Proceedings of the
IEEE World Congress on Computation-
al Intelligence, Vancouver, July 2006,
pp. 8566–8573.

46 Van Rentergem, Y., De Vos, A., and
Storme, L. (2005) Implementing an ar-
bitrary reversible logic gate. Journal of

Physics A: Mathematical and General, 38,
3555–3577.

47 Eastin, B. and Flammia, S. (2008) Q-Cir-
cuit tutorial. http://info.phys.unm.edu/
Qcircuit/.

48 Denayer, H. (2005) Ontwerp van re-
versibele digitale schakelingen met be-
hulp van Maitrapoorten (M.Sc. thesis).
Universiteit Gent, Gent.

49 Bejan, A. (2000) Shape and Structure,

from Engineering to Nature, Cambridge
University Press, Cambridge.

50 De Vos, A. and Van Rentergem, Y. (2007)
Synthesis of reversible logic for nano-
electronic circuits. International Journal

of Circuit Theory and Applications, 35,
325–341.

51 Van Rentergem, Y. and De Vos, A. (2007)
Synthesis and optimization of reversible

circuits. Proceedings of the Reed–Muller
2007 Workshop, Oslo, May 2007, pp. 67–
75.

52 De Vos, A. and Van Rentergem, Y. (2008)
Young subgroups for reversible comput-
ers. Advances in Mathematics of Commu-

nications, 2, 183–200.
53 De Vos, A., and Van Rentergem, Y.

(2008) Networks for reversible logic. Pro-
ceedings of the 8th International Work-
shop on Boolean Problems, Freiberg,
September 2008, pp. 41–47.

54 Clos, C. (1953) A study of non-blocking
switching networks. Bell Systems Techni-

cal Journal, 32, 406–424.
55 Hwang, F. (1983) Control algorithms

for rearrangeable Clos networks. IEEE

Transactions on Communications, 31,
952–954.

56 Hui, J. (1990) Switching and Traffic The-

ory for Integrated Broadband Networks,
Kluwer Academic Publishers, Boston,
pp. 53–138.

57 Chao, J., Jing, Z., and Liew, S. (2003)
Matching algorithms for three-stage
bufferless Clos network switches. IEEE

Communications Magazine, 41, 46–54.
58 Jajszczyk, A. (2003) Nonblocking,

repackable, and rearrangeable Clos net-
works: fifty years of the theory evolution.
IEEE Communications Magazine, 41, 28–
33.

59 Maslov, D., Dueck, G., and Miller, D.
(2003) Templates for Toffoli networks syn-

thesis. Proceedings of the 12th Interna-
tional Workshop on Logic and Synthesis,
Laguna Beach, May 2003, pp. 320–325.

60 Maslov, D., Dueck, G., and Miller, D.
(2003) Simplification of Toffoli networks

via templates. Proceedings of the 16th
Symposium on Integrated Circuits and
System Design, São Paulo, September
2003, pp. 53–58.

61 Maslov, D., Dueck, G., and Miller, D.
(2005) Toffoli network synthesis with
templates. IEEE Transactions on Comput-

er-Aided Design of Integrated Circuits and

Systems, 24, 807–817.
62 Maslov, D., Dueck, G., and Miller, D.

(2003) Fredkin/Toffoli templates for re-

versible logic synthesis. Proceedings of the
International Conference on CAD, San
Jose, November 2003, pp. 256–261.

63 Maslov, D., Dueck, G., and Miller, D.
(2005) Synthesis of Fredkin–Toffoli re-
versible networks. IEEE Transactions on

Very Large Scale Integration Systems, 13,
765–769.

64 Dick, J., Dueck, G., and Maslov, D.
(2004) Toffoli templates with 8 gates. Pro-
ceedings of the 6th International Work-
shop on Boolean Problems, Freiberg,
September 2004, pp. 41–47.

65 Van Rentergem, Y. (2008) Ontwerp van
digitale reversibele schakelingen (Ph.D.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 216 — le-tex

�

�

�

�

�

�

216 References

thesis). Universiteit Gent, Gent, pp. 153–
170.

66 Bruekers, F. and van den Enden, A.
(1992) New networks for perfect inver-
sion and perfect reconstruction. IEEE

Journal on Selected Areas in Communica-

tions, 10, 130–137.
67 Hao, P. and Shi, Q. (2001) Matrix factor-

izations for reversible integer mapping.
IEEE Transactions on Signal Processing,
49, 2314–2324.

68 De Vos, A. and De Baerdemaecker, S.
(2010) Decomposition of a linear re-
versible computer: digital versus analog.
International Journal of Unconventional

Computing, 6, 239–263.
69 Lo, H. (1998) Quantum cryptology, in

Introduction to Quantum Computation

and Information (eds. Lo, H., Popescu,
S., and Spiller, T.), World Scientific,
Singapore, pp. 76–119.

70 Yang, G., Hung, W., Song, X., and
Perkowski, M. (2005) Majority-based
reversible logic gate. Theoretical Comput-

er Science, 334, 259–274.
71 Cuccaro, S., Draper, T., Kutin, S., and

Moulton, D. (2005) A new quantum rip-

ple-carry addition circuit. Proceedings of
the 8th Workshop on Quantum Infor-
mation Processing, Cambridge, June
2005, arXiv:quant-ph/0410184v1.

72 Skoneczny, M., Van Rentergem, Y., and
De Vos, A. (2008) Reversible Fourier

transform chip. Proceedings of the 15th
International Conference on Mixed De-
sign of Integrated Circuits and Systems,
Poznań, June 2008, pp. 281–286.

73 De Vos, A. (2002) The expectation value
of the entropy of a digital message. Open

Systems & Information Dynamics, 9, 97–
113.

74 Gershenfeld, N. (1996) Signal entropy
and the thermodynamics of compu-
tation. IBM Journal of Research and

Development, 35, 577–586.
75 Markov, I. (2003) An introduction to re-

versible circuits. Proceedings of the 12th
International Workshop on Logic and
Synthesis, Laguna Beach, May 2003,
pp. 318–319.

76 Frank, M. (2005) Introduction to reversible

computing: motivation, progress, and chal-

lenges. Proceedings of the 2005 Comput-

ing Frontiers Conference, Ischia, May
2005, pp. 385–390.

77 De Vos, A. (2003) Lossless computing.
Proceedings of the IEEE Workshop on
Signal Processing, Poznań, October
2003, pp. 7–14.

78 Hayes, B. (2006) Reverse engineering.
American Scientist, 94, 107–111.

79 Landauer, R. (1961) Irreversibility and
heat generation in the computational
process. IBM Journal of Research and

Development, 5, 183–191.
80 Keyes, R. and Landauer, R. (1970) Min-

imal energy dissipation in logic. IBM

Journal of Research and Development, 14,
153–157.

81 Bennett, C. (1973) Logical reversibility
of computation. IBM Journal of Research

and Development, 17, 525–532.
82 Bennett, C. and Landauer, R. (1985) The

fundamental physical limits of compu-
tation. Scientific American, 253, 38–46.

83 Landauer, R. (1991) Information is phys-
ical. Physics Today, 44, 23–29.

84 Nyíri, B. (1991) On the entropy current.
Journal of Non-equilibrium Thermody-

namics, 16, 179–186.
85 Callen, H. (1960) Thermodynamics, John

Wiley & Sons, Inc., New York.
86 De Vos, A. (2008) Thermodynamics of

Solar Energy Conversion, Wiley-VCH,
Weinheim.

87 Chuang, I. and Yamamoto, Y. (1996)
The dual-rail quantum bit and quantum

error correction. Proceedings of the 4th
Workshop on Physics and Computation,
Boston, November 1996, pp. 82–91.

88 Radhakrishnan, D., Whitaker, S., and
Maki, G. (1985) Formal design proce-
dures for pass transistor switching cir-
cuits. IEEE Journal of Solid-State Circuits,
20, 531–536.

89 Shandrakasan, A., Sheng, S., and
Brodersen, R. (1992) Low-power CMOS
digital design. IEEE Journal of Solid-State

Circuits, 27, 473–484.
90 Zimmermann, R. and Fichtner, W.

(1997) Low-power logic styles: CMOS
versus pass-transistor logic. IEEE Jour-

nal of Solid-State Circuits, 32, 1079–1090.
91 Alioto, M. and Palumbo, G. (2002) Anal-

ysis and comparison on full adder block
in submicron technology. IEEE Trans-

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 217 — le-tex

�

�

�

�

�

�

References 217

actions on Very Large Scale Integration

Systems, 10, 806–823.
92 Nikolaidis, S. and Nikolaidis, T. (2007)

Analysing the operation of the basic pass
transistor structure. International Jour-

nal of Circuit Theory and Applications, 35,
1–15.

93 Singh, M., Giacomotto, C., Zeydel, B.,
and Oklobdzija, V. (2007) Logic style

comparison for ultra low power operation

in 65 nm technology. Proceedings of the
17th International Workshop PATMOS,
Göteborg, September 2007, pp. 181–190.

94 Desoete, B., De Vos, A., Sibiński, M.,
and Widerski, T. (1999) Feynman’s re-

versible logic gates, implemented in silicon.
Proceedings of the 6th International
Conference on Mixed Design of Inte-
grated Circuits and Systems, Kraków,
June 1999, pp. 497–502.

95 Desoete, B. and De Vos, A. (2002) A
reversible carry-look-ahead adder us-
ing control gates. Integration, the VLSI

Journal, 33, 89–104.
96 De Vos, A. and Beunis, F. (2003) Op-

timizing reversible chips. Proceedings of
the 10th International Conference on
Mixed Design of Integrated Circuits and
Systems, Łódź, June 2003, pp. 263–267.

97 Van Rentergem, Y. and De Vos, A. (2005)
Optimal design of a reversible full adder.
International Journal of Unconventional

Computing, 1, 339–355.
98 Moore, G. (1965) Cramming more com-

ponents onto integrated circuits. Elec-

tronics, 38, 114–117.
99 Bohr, M., Chau, R., Ghani, T., and Mis-

try, K. (2007) The high-k solution. IEEE

Spectrum, 44, 23–29.
100 De Vos, A. and Van Rentergem, Y. (2005)

Energy dissipation in reversible logic ad-

dressed by a ramp voltage. Proceedings of
the 15th International Workshop PAT-
MOS, Leuven, September 2005, pp. 207–
216.

101 Zeitzoff, P. and Chung, J. (2005) A per-
spective from the 2003 ITRS. IEEE

Circuits & Systems Magazine, 21, 4–15.
102 Patra, P. and Fussell, D. (1996) On

efficient adiabatic design of MOS cir-

cuits. Proceedings of the 4th Workshop
on Physics and Computation, Boston,
November 1996, pp. 260–269.

103 Belleville, M. and Faynot, O. (2001) Low-

power SOI design. Proceedings of the
11th International Workshop PATMOS,
Yverdon, September 2001, pp. 8.1.1–
8.1.10.

104 Nagaya, M. (2003) Fully-depleted type
SOI device enabling an ultra low-power
solar radio wristwatch. OKI Technical

Review, 70, 48–51.
105 Mead, C. and Conway, L. (1980) Intro-

duction to VLSI Systems, Addison-Wesley,
Reading, pp. 333–371.

106 van der Meer, P., van Staveren, A., and
van Roermund, A. (2004) Low-Power

Deep Sub-Micron CMOS Logic, Kluwer,
Boston.

107 Desoete, B. and De Vos, A. (1998) Op-

timal charging of capacitors. Proceedings
of the 8th International Workshop PAT-
MOS, Lyngby, October 1998, pp. 335–
344.

108 De Vos, A. and Desoete, B. (2000)
Equipartition principles in finite-
time thermodynamics. Journal of Non-

equilibrium Thermodynamics, 25, 1–13.
109 Svensson, L. (1999) Energy-recovery

CMOS in the deep-submicron domain.
Proceedings of the 9th International
Workshop PATMOS, Kos, October 1999,
pp. 83–92.

110 Schlaffer, A. and Nossek, J. (1999) Reg-

ister design for adiabatic circuits. Proceed-
ings of the 9th International Workshop
PATMOS, Kos, October 1999, pp. 103–
111.

111 De Vos, A. and Desoete, B. (1999) Opti-
mal thermodynamic processes in finite
time, in Advanced Finite-Time Thermo-

dynamics (ed. C. Wu), Nova Science
Publishing, Middletown, pp. 249–272.

112 Elgerd, O. (1967) Control System Theo-

ry, McGraw–Hill Book Company, New
York, pp. 446–456.

113 Paul, S. (1997) Optimal charging capaci-

tors. Proceedings of the European Con-
ference on Circuit Theory and Design,
Budapest, September 1997, pp. 918–922.

114 Athas, W., Svensson, L., Koller, J.,
Tzartzanis, N., and Chou, E. (1994)
Low-power digital systems based on
adiabatic-switching principles. IEEE

Transactions on VLSI Systems, 2, 398–
407.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 218 — le-tex

�

�

�

�

�

�

218 References

115 Meindl, J. (1995) Low power micro-
electronics: retrospect and prospect.
Proceedings of the IEEE, 83, 619–635.

116 Van Rentergem, Y. and De Vos, A. (2005)
Reversible full adders applying Fredkin

gates. Proceedings of the 12th Inter-
national Conference on Mixed Design
of Integrated Circuits and Systems,
Kraków, June 2005, pp. 179–184.

117 Athas, W., Tzartzanis, N., Svensson, L.,
and Peterson, L. (1997) A low-power mi-
croprocessor based on resonant energy.
IEEE Journal of Solid-State Circuits, 32,
1693–1701.

118 Critchlow, D. (1999) MOSFET scaling –
the driver of VLSI technology, Proceed-

ings of the IEEE, 87, 659–667.
119 Mead, C. (2002) Scaling of MOS tech-

nology to submicron feature sizes, in
Analog VLSI: Circuits and Principles (eds.
Liu, S., Kramer, J., Bergemont, G., Del-
brück, T., and Douglas, R.), MIT Press,
Cambridge, pp. 385–406.

120 Jackson, A. (1960) Analog Computation,
McGraw–Hill Book Company, New York.

121 Mead, C. (1989) Analog VLSI and Neural

Systems, Addison–Wesley Publishing,
Reading.

122 Mead, C. and Ismail, M. (1989) Analog

VLSI Implementation of Neural Systems,
Kluwer, Boston.

123 Gilmore, R. (1974) Lie Groups, Lie Alge-

bras and Some of Their Applications, John
Wiley & Sons, Inc., New York.

124 Bullock, S. and Markov, I. (2003) An
arbitrary two-qubit computation in 23 el-
ementary gates. Physical Review A, 68,
12318–12325.

125 Cybenko, G. (2001) Reducing quantum
computations to elementary unitary
operations. Computing in Science & Engi-

neering, 3, 27–32.
126 Geiger, R. and Schuller, G. (2002) In-

teger low delay and MDCT filter banks.
36th Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove,
November 2002, pp. 811–815.

127 Geiger, R., Yokotani, Y., and Schuller,
G. (2003) Improved integer transforms

for lossless audio coding. 37th Asilomar
Conference on Signals, Systems, and
Computers, Pacific Grove, November
2003, pp. 2119–2123.

128 Oraintara, S., Chen, Y., and Nguyen, T.
(2002) Integer fast Fourier transform.
IEEE Transactions on Signal Processing,
50, 607–618.

129 Daubechies, I. and Sweldens, W. (1997)
Factoring wavelet transforms into lifting
steps. Journal of Fourier Analysis and

Applications, 4, 247–269.
130 Buneman, O. (1973) Inversion of the

Helmholtz (or Laplace–Poisson) op-
erator for slab geometry. Journal of

Computational Physics, 12, 124–130.
131 Wikimedia Foundation (2010) CIE 1931

color space. http://en.wikipedia.org/
wiki/CIE_1931_color_space.

132 Adams, M., Kossentini, F., and Ward, R.
(2002) Generalized S transform. IEEE

Transactions on Signal Processing, 50,
2831–2842.

133 Li, J. (2004) Reversible FFT and MD-

CT via matrix lifting. Proceedings of
the IEEE International Conference on
Acoustics, Speech, and Signal Process-
ing, Montreal, May 2004, pp. IV173–
IV176.

134 Axelsen, H., Glück, R., and Yokoyama,
T. (2007) Reversible machine code and
its abstract processor architecture, in
Computer Science – Theory and Applica-

tion, Vol. 4649 (eds. Diekert, V., Volkov,
M., and Voronkov, A.), Springer Verlag,
Berlin, pp. 56–69.

135 Nussbaumer, H. (1981) Fast Fourier

Transform and Convolution Algorithms,
Springer Verlag, Berlin, pp. 81–111.

136 Wikimedia Foundation (2010) Discrete
Fourier transform. http://en.wikipedia.
org/wiki/Discrete_Fourier_transform.

137 Vargas-Rubio, J. and Santhanam, B.
(2005) On the multiangle centered
discrete fractional Fourier transform.
IEEE Signal Processing Letters, 12,
273–276.

138 Penrose, R. (2004) The Road to Real-

ity – A Complete Guide to the Laws of

the Universe, Vintage Books, London,
pp. 378–380.

139 Malvar, H., Hallapuro, A., Karczewicz,
M., and Kerofsky, L. (2003) Low-com-
plexity transform and quantization in
H.264/AVC. IEEE Transactions on Cir-

cuits and Systems for Video Technology, 13,
598–603.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 219 — le-tex

�

�

�

�

�

�

References 219

140 Wien, M. (2003) Variable block-size
transforms for H.264/AVC. IEEE Trans-

actions on Circuits and Systems for Video

Technology, 13, 604–613.
141 Fan, C. and Su, G. (2009) Efficient fast

1-D 8 � 8 inverse integer transform for
VC-1 application. IEEE Transactions on

Circuits and Systems for Video Technology,
19, 584–590.

142 Fan, C. and Su, G. (2009) Fast algo-
rithm and low-cost hardware-sharing
design of multiple integer transforms
for VC-1. IEEE Transactions on Circuits

and Systems – II: Express Briefs, 56,
788–792.

143 Bartee, T. (1960) Digital Computer Funda-

mentals, McGraw–Hill Book Company,
New York, pp. 166–170.

144 Steane, A. (1998) Quantum error cor-
rection, in Introduction to Quantum

Computation and Information (eds. Lo,
H., Popescu, S., and Spiller, T.), World
Scientific, Singapore, pp. 184–212.

145 Preskill, J. (1998) Fault-tolerant quan-
tum computation, in Introduction to

Quantum Computation and Information

(eds. Lo, H., Popescu, S., and Spiller, T.),
World Scientific, Singapore, pp. 213–
269.

146 Berman, G., Doolen, G., Mainieri, R.,
and Tsifrinovich, V. (1998) Introduction

to Quantum Computers, World Scientific,
Singapore.

147 Yanofsky, N. and Mannucci, M. (2008)
Quantum Computing for Computer Sci-

entists, Cambridge University Press,
Cambridge.

148 Stolze, J. and Suter, D. (2008) Quantum

Computing, Wiley-VCH, Berlin.
149 McMahon, D. (2008) Quantum Comput-

ing Explained, John Wiley & Sons, Inc.,
New York.

150 Nielsen, M. and Chuang, I. (2000) Quan-

tum Computations and Quantum Infor-

mation, Cambridge University Press,
Cambridge.

151 De Vos, A., Boes, M., and De
Baerdemacker, S. (2010) Reversible com-

putation, quantum computation, and

computer architectures in between. Pro-
ceedings of the 2nd Workshop on Re-
versible Computation, Bremen, July
2010, pp. 75–81.

152 Brualdi, R. (1988) Some applications
of doubly stochastic matrices. Lin-

ear Algebra and its Applications, 107,
77–100.

153 de Groot, S. and Mazur, P. (1984) Non-

equilibrium Thermodynamics, Dover Pub-
lications, New York, pp. 213–221.

154 Prigogine, I. (1980) From Being to Be-

coming: Time and Complexity in Physical

Sciences, Freeman, San Francisco, p. 135.
155 Everett, C. and Stein, P. (1971) The

asymptotic number of integer stochastic
matrices. Discrete Mathematics, 1, 55–72.

156 Barenco, A., Bennett, C., Cleve, R., Di-
Vincenzo, D., Margolus, N., Shor, S.,
Sleator, T., Smolin, J., and Weinfurter,
H. (1995) Elementary gates for quantum
computing. Physical Review C, 52, 3457–
3467.

157 Wille, R., Saeedi, M., and Drechsler,
R. (2009) Synthesis of reversible functions

beyond gate count and quantum cost.
Proceedings of the 18th Internation-
al Workshop on Logic and Synthesis,
Berkeley, July 2009, pp. 43–49.

158 Kamara, S. (2001) Quantum information
theory. http://research.microsoft.com/
en-us/um/people/senyk/pubs/qit.pdf.

159 Fowler, M. (2007) The density matrix.
http://galileo.phys.virginia.edu/classes/
752.mf1i.spring03/DensityMatrix.htm.

160 Kak, S. (2007) Quantum information
and entropy. International Journal of

Theoretical Physics, 46, 860–876.
161 Möttönen, M., Vartiainen, J., Bergholm,

V., and Salomaa, M. (2004) Quantum
circuits for general multi-qubit gates.
Physical Review Letters, 93, 130502.

162 Bergholm, V., Vartiainen, J., Möttönen,
M., and Salomaa, M. (2005) Quan-
tum circuits with uniformly controlled
one-qubit gates. Physical Review A, 71,
052330.

163 Bhatia, R. (1997) Matrix Analysis,
Springer, New York.

164 Khan, F. and Perkowski, M. (2005)
Synthesis of ternary quantum logic cir-

cuits by decomposition. Proceedings of
the 7th International Symposium on
Representations and Methodology of
Future Computing Technologies, Tokyo,
September 2005, pp. 114–118.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 220 — le-tex

�

�

�

�

�

�

220 References

165 Shende, V., Bullock, S., and Markov, I.
(2006) Synthesis of quantum-logic cir-
cuits. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and

Systems, 25, 1000–1010.
166 Deutsch, D. (1992) Quantum computa-

tion. Physics World, 5, 57–61.
167 Deutsch, D., Ekert, A., and Lupacchini,

R. (2000) Machines, logic and quantum
physics. The Bulletin of Symbolic Logic, 3,
265–283.

168 Galindo, A. and Martín-Delgado, M.
(2002) Information and computation:
classical and quantum aspects. Review of

Modern Physics, 74, 347–423.
169 Miller, D. (2008) Decision diagram tech-

niques for reversible and quantum circuits.
Proceedings of the 8th Internation-
al Workshop on Boolean Problems,
Freiberg, September 2008, pp. 1–15.

170 De Vos, A., De Beule, J., and Storme, L.
(2009) Computing with the square root
of NOT. Serdica Journal of Computing, 3,
359–370.

171 Conway, J., Dietrich, H., and O’Brien,
E. (2008) Counting groups: gnus, moas,
and other exotica. The Mathematical

Intelligencer, 30, 6–15.
172 Barenco, A. (1998) Quantum computa-

tion: an introduction, in Introduction to

Quantum Computation and Information

(eds. Lo, H., Popescu, S., and Spiller, T.),
World Scientific, Singapore, pp. 143–
183.

173 Vedral, V. (2006) Introduction to Quan-

tum Information Science, Oxford Univer-
sity Press, Oxford, pp. 142–144.

174 Moore, C. and Nilsson, M. (1998) Some
notes on parallel quantum computation.
arXiv:quant-ph/9804034v2.

175 Tucci, R. (2005) Replacing two con-
trolled-U’s with two CNOTs. arXiv:
quant-ph/0509111v1.

176 Ashenhurst, R. (1965) On reversible
subroutines and computers that run
backwards. Communications of the ASM,
8, 557–558 and 578.

177 Lutz, C. and Derby, H. (1982) Janus: a
time-reversible language (unpublished
report). California Institute of Technolo-
gy, Pasadena.

178 Yokoyama, T., Axelsen, H., and Glück,
R. (2008) Reversible flowchart languages

and the structured reversible program
theorem, in Automata, Languages and

Programming (eds. Aceto, L., Damgård,
I., Goldberg, L., Halldórssen, M., In-
gólfsdóttir, A., and Walukiewicz, I.).
Lecture Notes in Computer Science, Vol.
5126, Springer Verlag, Berlin, pp. 258–
270.

179 Yokoyama, T. (2009) Reversible compu-

tation and reversible programming lan-

guages. Proceedings of the Workshop on
Reversible Computation, York, March
2009, p. 17.

180 Stoddart, B., Lynas, R., and Zeyda, F.
(2009) A reversible virtual machine. Pro-
ceedings of the Workshop on Reversible
Computation, York, March 2009, pp. 18–
32.

181 Glushkov, V. (1966) Introduction to Cy-

bernetics, Academic Press, New York,
pp. 39–66.

182 Mukhopadhyay, A. (1971) Complete
sets of logic primitives, in Recent De-

velopments in Switching Theory (ed.
Mukhopadhyay, A.), Academic Press,
New York, pp. 1–26.

183 Even, S., Kohavi, I., and Paz, A. (1967)
On minimal modulo 2 sums of products
for switching functions. IEEE Transac-

tions on Electronic Computers, 16, 671–
674.

184 Yong, A. (2007) What is . . . a Young
tableau? Notices of the AMS, 54,
240–241.

185 Birkhoff, G. (1946) Tres observaciones
sobre el algebra lineal. Universidad Na-

cional de Tucuman: Revista Matematicas y

Fisica Teorica, 5, 147–151.
186 Borgersen, R. (2004) Equivalence of

seven major theorems in combina-
torics. http://robertborgersen.info/
Presentations/GS-05R-1.pdf.

187 de Werra, D. (2005) Path coloring in
bipartite graphs. European Journal of

Operational Research, 164, 575–584.
188 Comtet, L. (1974) Advanced Combina-

torics, Reidel Publishing Company, Dor-
drecht, pp. 124–125.

189 Carpinelli, J. and Oruç, A. (1993) A non-
backtracking matrix decomposition al-
gorithm for routing on Clos networks.
IEEE Transactions on Communications,
41, 1245–1251.

�

�

Alexis De Vos: Reversible Computing — Chap. devos9921b01 — 2010/8/5 — 13:36 — page 221 — le-tex

�

�

�

�

�

�

References 221

190 Cole, R., Ost, K., and Schirra, S. (2001)
Edge-coloring bipartite multigraphs in
O(E log D) time. Combinatoria, 21, 5–
12.

191 Paredes, S. and Hall, T. (2005) Flexible
bandwidth provision and scheduling in
a packet switch with an optical core.
OSA Journal of Optical Networking, 4,
260–270.

192 Peng, C., Bochmann, G., and Hall, T.
(2006) Quick Birkhoff–von Neumann

decomposition algorithm for agile all-pho-

tonic network cores. Proceedings of the
2006 IEEE International Conference on
Communications, Istanbul, June 2006.

193 Landsberg, P. (1978) Thermodynamics

and Statistical Mechanics, Oxford Univer-
sity Press, Oxford, pp. 146–147.

194 Ebeling, W. and Volkenstein, M. (1990)
Entropy and the evolution of biological
information. Physica A, 163, 398–402.

195 Ebeling, W. (1992) On the relation be-
tween various entropy concepts and the
valoric interpretation. Physica A, 182,
108–120.

196 Ebeling, W. (1993) Entropy and informa-
tion in processes of self-organization:
uncertainty and predictability. Physica A,
194, 563–575.

197 Shannon, C. (1948) A mathematical
theory of communication. Bell Systems

Technical Journal, 27, 379–423.
198 Elgerd, O. (1967) Control Systems Theo-

ry, McGraw–Hill Book Company, New
York, pp. 384–411.

199 Jahnel, J. (2004) When is the (co)sine
of a rational angle equal to a rational
number? http://www.uni-math.gwdg.
de/jahnel/linkstopapers.html.

200 Calcut, J. (2008) Rationality and the tan-
gent function. http://www.ma.utexas.
edu/users/jack/tanpap.pdf.

!
!

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page I — le-tex !
!

!
!

!
!

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 223 — le-tex �
�

�
�

�
�

223

Solutions to the Exercises

Solutions for Chapter 1

Exercise 1.1

Each of these six functions are symmetric with respect to their two arguments.
Therefore, if they are injective in their first argument, they are also injective in
their second argument; if they are noninjective in their first argument, they are
also noninjective in their second argument.

Exercise 1.2

Only the functions f3(A, B) D A and f12(A, B) D A are simultaneously injective
in A and noninjective in B. Indeed,

� f3(A, 0) D f3(A0, 0) implies A D A0,
� f3(A, 1) D f3(A0, 1) implies A D A0,
� f3(0, B) D f3(0, B 0) does not imply B D B 0, and
� f3(1, B) D f3(1, B 0) does not imply B D B 0

and analogously,

� f12(A, 0) D f12(A0, 0) implies A D A0,
� f12(A, 1) D f12(A0, 1) implies A D A0,
� f12(0, B) D f12(0, B 0) does not imply B D B 0, and
� f12(1, B) D f12(1, B 0) does not imply B D B 0.

The functions f0, f1, f2, f4, f5, f7, f8, f10, f11, f 13, f14, and f15 are not injective
in A. The functions f6 and f9 are injective in A as well as in B.

Exercise 1.3

In general, we have X C Y D X ˚ Y ˚ X Y . If both X and Y are minterms, then
X Y D 0 and thus X C Y D X ˚ Y .

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 224 — le-tex �
�

�
�

�
�

224 Solutions to the Exercises

Exercise 1.4

f (A, B, C) D A BC C AB C C AB C C AB C

D A BC ˚ AB C ˚ AB C ˚ AB C (see previous exercise)

D (1 ˚ A)(1 ˚ B)C ˚ (1 ˚ A)B(1 ˚ C) ˚ A(1 ˚ B)(1 ˚ C)

˚ AB(1 ˚ C)

D (C ˚ B C ˚ AC ˚ AB C) ˚ (B ˚ B C ˚ AB ˚ AB C)

˚ (A ˚ AC ˚ AB ˚ AB C) ˚ (AB ˚ AB C)

D C ˚ B C ˚ AC ˚ AB C ˚ B ˚ B C ˚ AB ˚ AB C

˚ A ˚ AC ˚ AB ˚ AB C ˚ AB ˚ AB C

D A ˚ B ˚ C ˚ AB .

Exercise 1.5

X ˇ Y ˇ (X C Y) D (X ˇ Y) ˇ (X C Y)

D 1 ˚ (X ˇ Y) ˚ (X C Y)

D 1 ˚ (1 ˚ X ˚ Y) ˚ (X ˚ Y ˚ X Y)

D 1 ˚ 1 ˚ X ˚ Y ˚ X ˚ Y ˚ X Y

D X Y .

Exercise 1.6

Let us assume that the number of 1s in the truth table of f equals ', and that the
number of 1s in the truth table of g equals γ . The number of 1s in the truth table
of f ˚ g then equals ' C γ � 2δ. Here δ denotes the number of rows in the truth
tables where both f and g have a 1. In other words, δ is the number of common
minterms in the minterm expansions of f and g. We now find that

� If both ' and γ are even, then ' C γ � 2δ is also even;
� If both ' and γ are odd, then ' C γ � 2δ is even;
� If ' is even and γ is odd, then ' C γ � 2δ is odd.

Exercise 1.7

Any Reed–Muller monomial with a degree smaller than n (i.e., A 1, A 2, . . ., and
A 2A 3 . . . A n) has a truth table with an even number of 1s, and is thus an even
function. Only the piterm A 1A 2 . . . A n displays an odd number (i.e., 2n � 1) of 0s
and an odd number (i.e., 1) of 1s, and is thus an odd function.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 225 — le-tex �
�

�
�

�
�

Solutions to the Exercises 225

Because of the previous exercise, we can conclude that

� A function with a Reed–Muller expansion lacking the piterm A 1A 2 . . . A n is
even;

� A function with a Reed–Muller expansion containing the piterm A 1A 2 . . . A n is
odd.

Because a balanced function is a special type of even function, it lacks the piterm
A 1A 2 . . . A n .
As an illustration: the balanced functions in Table 1.2 have the following minterm
expansions and Reed–Muller expansions:

f3 D AB ˚ AB D A

f5 D AB ˚ AB D B

f6 D AB ˚ AB D A ˚ B

f9 D A B ˚ AB D 1 ˚ A ˚ B

f10 D A B ˚ AB D 1 ˚ B

f12 D A B ˚ AB D 1 ˚ A .

They do indeed all lack the term AB in the Reed–Muller expansion.
The following functions f (A, B) lack the Reed–Muller term AB but are not bal-

anced:

f0 D 0

f15 D 1 .

Exercise 1.8

f2(A, B) D AB

D (A C B)(A C B)(A C B)

D A ˚ AB

D AB .

Exercise 1.9

f D f 0A j C f 00A j

D f 0A j ˚ f 00A j

D f 0(1 ˚ A j) ˚ f 00A j

D f 0 ˚ f 0A j ˚ f 00A j

D f 0 ˚ (f 0 ˚ f 00)A j .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 226 — le-tex �
�

�
�

�
�

226 Solutions to the Exercises

Solutions for Chapter 2

Exercise 2.1

Because aΩ i1 D a is valid for all a, it is in particular valid for i2:

i2Ω i1 D i2 .

Because i2Ω a D a is valid for all a, it is in particular valid for i1:

i2Ω i1 D i1 .

Combining these two results, we find that i2 D i1.

Exercise 2.2

Because aΩ i1 D a is valid for all a, it is in particular valid for i2:

i2Ω i1 D i2 .

Because aΩ i2 D a is valid for all a, it is in particular valid for i1:

i1 Ω i2 D i1 .

Because of Exercise 2.1, we have i2Ω i1 D i1Ω i2. Combining the three results
together yields i2 D i1.

Exercise 2.3

If aΩ(a�1)1 D i and (a�1)2Ω a D i , then, by multiplying the latter equation by
(a�1)1 to the right, we find that

(a�1)2Ω aΩ(a�1)1 D (a�1)1 .

Now we apply the former equation in order to simplify the left-hand side of this
result, yielding (a�1)2 D (a�1)1.

Exercise 2.4

We assume both aΩ(a�1)1 D i and aΩ(a�1)2 D i . We multiply the former as-
sumption by (a�1)2 to the left and find that

(a�1)2Ω aΩ (a�1)1 D (a�1)2 . (J1)

Because of Exercise 2.3, the latter assumption yields (a�1)2Ω a D i . Therefore,
result (J1) simplifies to

(a�1)1 D (a�1)2 .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 227 — le-tex �
�

�
�

�
�

Solutions to the Exercises 227

Exercise 2.5

()�1 D ()

(1,2)�1 D (1,2)

(1,3)�1 D (1,3)

(2,3)�1 D (2,3)

(1,2,3)�1 D (1,3,2) and

(1,3,2)�1 D (1,2,3) .�
1 0
0 1

��1

D
�

1 0
0 1

�
�

1/2 �p
3/2

�p
3/2 �1/2

��1

D
�

1/2 �p
3/2

�p
3/2 �1/2

�
�

1/2
p

3/2p
3/2 �1/2

��1

D
�

1/2
p

3/2p
3/2 �1/2

�
��1 0

0 1

��1

D
��1 0

0 1

�
��1/2 �p

3/2p
3/2 �1/2

��1

D
� �1/2

p
3/2

�p
3/2 �1/2

�
and

� �1/2
p

3/2
�p

3/2 �1/2

��1

D
��1/2 �p

3/2p
3/2 �1/2

�
.

0
@1 0 0

0 1 0
0 0 1

1
A

�1

D
0
@1 0 0

0 1 0
0 0 1

1
A

0
@0 1 0

1 0 0
0 0 1

1
A

�1

D
0
@0 1 0

1 0 0
0 0 1

1
A

0
@0 0 1

0 1 0
1 0 0

1
A

�1

D
0
@0 0 1

0 1 0
1 0 0

1
A

0
@1 0 0

0 0 1
0 1 0

1
A

�1

D
0
@1 0 0

0 0 1
0 1 0

1
A

0
@0 1 0

0 0 1
1 0 0

1
A

�1

D
0
@0 0 1

1 0 0
0 1 0

1
A and

0
@0 0 1

1 0 0
0 1 0

1
A

�1

D
0
@0 1 0

0 0 1
1 0 0

1
A .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 228 — le-tex �
�

�
�

�
�

228 Solutions to the Exercises

Exercise 2.6

Order(()) D 1

Order((1,2)) D 2

Order((1,3)) D 2

Order((2,3)) D 2

Order((1,2,3)) D 3 and

Order((1,3,2)) D 3 .

Exercise 2.7

It is sufficient to observe that there is no identity element within the set of derange-
ments.

Exercise 2.8

(1,2)*(2,3)=(1,3,2), whereas (2,3)*(1,2)=(1,2,3).

Solutions for Chapter 3

Exercise 3.1

0
@0 1 0

1 0 0
0 0 1

1
A
2
4
0
@1

0
0

1
A˚

0
@A

B

C

1
A
3
5 D

0
@0 1 0

1 0 0
0 0 1

1
A
0
@1

0
0

1
A˚

0
@0 1 0

1 0 0
0 0 1

1
A
0
@A

B

C

1
A

D
0
@0

1
0

1
A˚

0
@0 1 0

1 0 0
0 0 1

1
A
0
@A

B

C

1
A .

Exercise 3.2

A TOFFOLI gate is conservative but not linear.

A FREDKIN gate is conservative but not linear.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 229 — le-tex �
�

�
�

�
�

Solutions to the Exercises 229

Exercise 3.3

Order(A) D 2w

L
� �

R � AL E
� � �

AE I
� �

A

Exercise 3.4

No. Consider an example. We choose n D 3 and thus consider S3. Exercise 2.8
provides an example: (1,2)*(2,3)=(1,3,2), where both (1,2) and (2,3) are in-
volutions, but (1,3,2) is not.

Exercise 3.5

The TOFFOLI gates do not form a subgroup of the group of controlled NOTs. In
order to demonstrate this, let’s take a closer look at, for example, two TOFFOLI
gates of width 5, both of which have the fifth wire as a controlled wire. The former
gate has the control function f1(A 1, A 2, A 3, A 4) D A 1A 2 and the latter gate has
the control function f2(A 1, A 2, A 3, A 4) D A 3A4. The cascade of these two gates
is a controlled NOT with the control function f1 ˚ f2 D A 3 ˚ A 1A 2 ˚ A 3A 4.
This function is not an AND function. Thus, the cascade of two TOFFOLIs is not
necessarily a TOFFOLI. Therefore, the TOFFOLI gates do not form a group. They may
be regarded as generators of a group. Indeed, they generate the group of controlled
NOTs.

Exercise 3.6

Index = 22w �1

22w�1 D 22w �2w�1�1 D 22w�1�1.

Exercise 3.7

0
BB@

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1
CCA
0
BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCA
0
BB@

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1
CCA D

0
BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1
CCA .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 230 — le-tex �
�

�
�

�
�

230 Solutions to the Exercises

Exercise 3.8

Assume that g is an arbitrary element of G. The left coset of g is all of the elements
that can be written h1g with h1 in H; the right coset of g is all of the elements that
can be written gh2 with h2 in H. Because of the Abelian character of G, we have
gh2 D h2g, and so there is a one-to-one relationship between the two sets: h2 D h1.

The double coset of g is all of the elements that can be written h3gh4 with both
h3 and h4 in H. Because G is Abelian, we have h3gh4 D gh3h4. Because H is a
group, we have that h3h4 is some element h5 of H. Thus, h3gh4 D gh5 belongs
to the right coset. Conversely, an element of the right coset, in other words gh2,
belongs to the double coset, as gh2 equals i gh2 and the identity obeys i 2 H.

Exercise 3.9

–

Exercise 3.10

–

Exercise 3.11

Just like the V-configuration, the Λ-configuration consists of three FEYNMAN gates:

0
BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCA
0
BB@

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1
CCA
0
BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCA D

0
BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1
CCA .

Exercise 3.12

Order(S4 � S4) D 4! � 4! D 242 D 576.

Solutions for Chapter 4

Exercise 4.1

According to Section 3.21, we have two control functions:

f4(C, B, A) D C B ˚ B A ˚ AC

f3(C, B) D C ˚ B .

To hardwire, we need a combination of parallel and series connections, and thus a
combination of ORs and ANDs. Rewriting the lower equation with ORs and ANDs is a

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 231 — le-tex �
�

�
�

�
�

Solutions to the Exercises 231

straightforward task:

f3(C, B) D C B C B C .

This expression contains four literals and thus leads to 4�4 D 16 switches. Rewrit-
ing the upper equation with ORs and ANDs gives, for example, the minterm expan-
sion

f3(C, B) D AB C C ABC C AB C C AB C

with 12 literals. This suggests 12 � 4 D 48 switches. We can, however, do better
and cheaper than this by checking that the following Boolean function:

A(B C C) C AB (J2)

is identical to f3. Only five literals leads to only 5 � 4 D 20 switches, and thus a
total of 16 C 20 D 36. Note that (J2) is neither a POS nor a SOP.

Exercise 4.2

Output G1 is the result of a FEYNMAN gate. According to (3.12), we have:

G1 D A ˚ B .

Output G2 is the result of a FREDKIN gate. According to (3.13), we have:

G2 D (A ˚ B)(B ˚ Ci) ˚ Ci

D B ˚ Ci ˚ AB ˚ ACi ˚ B Ci .

Exercise 4.3

If � is constant, then

Q � LW t�1V 2
t

and so

a) Q is divided by �1�1��1�0 D �1,
b) Q is divided by �1�1��1�2 D �3, and
c) Q is divided by �1�1��0.77�0.46 D �1.69.

Exercise 4.4

From the first to second generations:

� D 2.4 µm/0.8 µm D 3

As 38 fF/2.0 fF D 19 D �n , we have n D log(19)/ log(3) D 2.7.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 232 — le-tex �
�

�
�

�
�

232 Solutions to the Exercises

From the second to third generations:

� D 0.8 µm/0.35 µm D 16/7

As 2.0 fF/0.30 fF D 20/3 D �n , we have n D log(20/3)/ log(16/7) D 2.3.
Thus, n � 2.5, so we are between model (b) and model (c).

Exercise 4.5

From (4.11), we obtain

Qτ D (C Vd d)2R D q2 h

q2 D h .

We thus recover the Heisenberg uncertainty limit.

Solutions for Chapter 5

Exercise 5.1

�
M11 M12

M21 M22

�
D
�

1 C L2L3 L2

S L1 C S L3 C S L1L2L3 S C S L1L2

�
.

Thus

M11 D 1 C L2L3 (J3)

M12 D L2 (J4)

M21 D S L1 C S L3 C S L1L2L3 (J5)

M22 D S C S L1L2 . (J6)

From (J4), we obtain L2 D M12. Substitution of this result into (J3) yields L3 D
(M11 � 1)/M12. Rewriting the nonlinear set (J5)–(J6):

(S L1)M11 C S(M11 � 1)/M12 D M21

(S L1)M12 C S D M22

yields a linear set in two unknowns S L1 and S with the solution

S L1 D [M22 � (M11M22 � M12M21)]/M12

S D M11M22 � M12M21 .

Dividing the last two results finally yields

L1 D [M22/(M11M22 � M12M21) � 1]/M12 .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 233 — le-tex �
�

�
�

�
�

Solutions to the Exercises 233

Exercise 5.2

If M12 D 0, then we replace (5.6) by another decomposition:

�
M11 M12

M21 M22

�
D
�

S 0
0 1

��
1 L1

0 1

��
1 0
L2 1

��
1 L3

0 1

�
,

leading to

�
M11 M12

M21 M22

�
D
�

S C S L1L2 S L1 C S L3 C S L1L2L3

L2 1 C L2L3

�

and thus

M11 D S C S L1L2

M12 D S L1 C S L3 C S L1L2L3

M21 D L2

M22 D 1 C L2L3 .

Proceeding in the same way as in the previous exercise, we now find that

S D M11M22 � M12M21

L1 D [M11/(M11M22 � M12M21) � 1]/M21

L2 D M21

L3 D (M22 � 1)/M21 .

When M12 D 0, this simplifies to

S D M11M22

L1 D (1/M22 � 1)/M21

L2 D M21

L3 D (M22 � 1)/M21 .

Because the new decomposition fails when M21 equals 0, we still have to find a
procedure if M12 D M21 D 0. In that case, we cannot avoid a SWAP gate:

�
M11 0

0 M22

�
D
�

0 1
1 0

��
0 M22

M11 0

�
.

We now can apply (5.6 and 5.7) to the last matrix on the right-hand side, and find
the decomposition

�
0 1
1 0

��
1 0
0 �M11M22

��
1 0

�1/M22 1

��
1 M22

0 1

��
1 0

�1/M22 1

�
.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 234 — le-tex �
�

�
�

�
�

234 Solutions to the Exercises

Exercise 5.3

det
�
1
� D 1

det
�

1 1
1 Ω

�
D Ω � 1 D �2 (as Ω D �1)

det

0
@1 1 1

1 Ω Ω2

1 Ω2 Ω

1
A D 3Ω(Ω � 1) D �3

p
3i

as Ω D � 1

2
C i

p
3

2

!

det

0
BB@

1 1 1 1
1 Ω Ω2 Ω3

1 Ω2 1 Ω2

1 Ω3 Ω2 Ω

1
CCA D 8 Ω(Ω2 � 1) D �16 i (as Ω D i)

λ(1) D 1

λ(2) D �1

λ(3) D �i

λ(4) D �i

Exercise 5.4

The first row sum and the first column sum both equal w. All other line sums
equal 0.

Solutions for Chapter 6

Exercise 6.1

The control gate with control function A 0 OR A 1 OR . . . OR A k�1 needs 4k switches.
The whole circuit thus needs 4 C 8 C . . . C 4(w � 1) D 4 w(w�1)

2 D 2w (w � 1)
switches.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 235 — le-tex �
�

�
�

�
�

Solutions to the Exercises 235

Solutions for Chapter 7

Exercise 7.1

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 ω ω 0 0
0 0 0 0 ω ω 0 0
0 0 0 0 0 0 ω ω
0 0 0 0 0 0 ω ω

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 ω ω 0 0 0 0
0 0 ω ω 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 ω ω
0 0 0 0 0 0 ω ω

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

1
CCCCCCCCCCCA

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 ω ω 0 0 0 0
0 0 ω ω 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 ω ω
0 0 0 0 0 0 ω ω

1
CCCCCCCCCCCA

D

0
BBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1
CCCCCCCCCCCA

.

Exercise 7.2

From

a1 D b1c1

a2 D b1c2

a3 D b2c1

a4 D b2c2 ,

we deduce (by dividing the first equation by the third equation) that

a1

a3
D b1

b2

and (by dividing the second equation by the fourth equation) that

a2

a4
D b1

b2
.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 236 — le-tex �
�

�
�

�
�

236 Solutions to the Exercises

Therefore, we need

a1

a3
D a2

a4
,

and thus a1a4 � a3a2 D 0.
The condition a1a4 � a3a2 D 0 (that is, a4 D a2a3/a1) is sufficient, as the set of

four equations

b1c1 D a1

b1c2 D a2

b2c1 D a3

b2c2 D a2a3/a1

has the following solution:

b1 D arbitrary

b2 D a3b1/a1

c1 D a1/b1

c2 D a2/b1

with properties

b1b1 C b2b2 D
�

1 C a3a3

a1a1

�
b1b1

c1c1 C c2c2 D (a1a1 C a2a2)/b1b1 ,

such that it is necessary and sufficient that b1 satisfies both

b1b1 D a1a1/(a1a1 C a3a3)

b1b1 D a1a1 C a2a2 ,

meaning that it is necessary and sufficient that

(a1a1 C a2a2)(a1a1 C a3 a3) D a1a1 .

This condition is fulfilled because

a1a1 C a2a2 C a3a3 C a3a2

a1

a3 a2

a1
D 1 .

Exercise 7.3

The unitarity condition, that is,

�
a exp(i α) b exp(i �)
c exp(i γ) d exp(i δ)

��
a exp(�i α) c exp(�i γ)
b exp(�i �) d exp(�i δ)

�
D
�

1 0
0 1

�
,

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 237 — le-tex �
�

�
�

�
�

Solutions to the Exercises 237

leads to

a2 C b2 D 1 (J7)

ac exp(i α � i γ) C bd exp(i � � i δ) D 0 (J8)

ac exp(�i α C i γ) C bd exp(�i � C i δ) D 0 (J9)

c2 C d2 D 1 , (J10)

where we may disregard (J9) as it simply is the complex conjugate of (J8). Equa-
tion (J8) leads to δ D �α C � C γ and to ac D bd. The latter leads to either

� a D b D 0, which is forbidden because of (J7), or
� a D d D 0, thus yielding b D c D 1, or
� c D bd/a, which, by substitution into (J10), yields (a2 C b2)d2 D a2, and so

(taking into account (J7)) d2 D a2 and thus d D a.

Straightforward computation gives

det
�

cos(θ) exp(i α) sin(θ) exp(i �)
� sin(θ) exp(i γ) cos(θ) exp(�i α C i � C i γ)

�
D exp(i � C i γ) .

We obtain
�

1 0
0 1

�
by imposing θ D 0, α D 0, and � C γ D 0;

we obtain
�

0 1
1 0

�
by imposing θ D π/2, � D 0, and γ D π.

Exercise 7.4

We apply the decomposition�
L11 0
0 L22

��
cos(θ1) sin(θ1)

� sin(θ1) cos(θ1)

��
R11 0
0 R22

�
.

Straightforward multiplication of these three matrices leads to

L11R11 cos(θ1) D cos(θ) exp(i α)

L11R22 sin(θ1) D sin(θ) exp(i �)

L22R11 sin(θ1) D sin(θ) exp(i γ)

L22R22 cos(θ1) D cos(θ) exp(�i α C i � C i γ) .

We try θ1 D θ :

L11R11 D exp(i α)

L11R22 D exp(i �)

L22R11 D exp(i γ)

L22R22 D exp(�i α C i � C i γ) ,

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 238 — le-tex �
�

�
�

�
�

238 Solutions to the Exercises

leading to

L11 D exp(i α)/R11

L22 D exp(i γ)/R11

R22 D exp(�i α C i �)R11 ,

with R11 arbitrary. Choosing R11 equal to exp
� 1

2 i(α � �)
�

leads to�
exp

� 1
2 i(α C �)

�
0

0 exp
� 1

2 i(�α C � C 2γ)
��

�
cos(θ) sin(θ)

� sin(θ) cos(θ)

��
exp

� 1
2 i(α � �)

�
0

0 exp
� 1

2 i(�α C �)
�� .

Further decomposition of the first matrix, in other words�
exp

� 1
2 i(� C γ)

�
0

0 exp
� 1

2 i(� C γ)
���exp

� 1
2 i(α � γ)

�
0

0 exp
�� 1

2 i(α � γ)
��

�
cos(θ) sin(θ)

� sin(θ) cos(θ)

��
exp

� 1
2 i(α � �)

�
0

0 exp
�� 1

2 i(α � �)
�� ,

leads to a bonus: the standard decomposition of U(2):�
exp(i ω) 0

0 exp(i ω)

�
�

exp(i φ) 0
0 exp(�i φ)

��
cos(θ) sin(θ)

� sin(θ) cos(θ)

��
exp(i ψ) 0

0 exp(�i ψ)

�
,

where – by the way – the last three matrices form the standard decomposition of
SU(2).

Exercise 7.5

�
a b

c d

�2

D
�

0 1
1 0

�
leads to

� b(a C d) D 1 and c(a C d) D 1 and therefore to c D b and a C d ¤ 0.
� a2 C bc D 0 and d2 C bc D 0, and thus (taking the previous two results into

account) a D d D ˙ i b.

Substituting the last result in the first equation gives ˙2 i b2 D 1 or b2 D ˙i/2,
leading to b D ˙ 1p

2
1˙ip

2
D 1

2 (˙1 ˙ i).
Thus there are four different square roots:

˙1
2

�
1 C i 1 � i

1 � i 1 C i

�
and ˙ 1

2

�
1 � i 1 C i

1 C i 1 � i

�
.

All are unitary. All have determinants equal to ˙ i .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 239 — le-tex �
�

�
�

�
�

Solutions to the Exercises 239

Exercise 7.6

�
a b

c d

�2

D
�

1 0
0 1

�
leads to

� a2 C bc D 1 and d2 C bc D 1 and thus a2 D d2; that is, a D ˙d.
� b(a C d) D 0 and c(a C d) D 0, and therefore to either c D b D 0 or d D �a.

The set of square roots therefore consists of:

� The set of two matrices

˙
�

1 0
0 1

�
,

both with determinants equal to 1, and
� The four-dimensional space of matrices�

a b

(1 � a2)/b �a

�
,

all with determinants equal to �1.

The set of unitary square roots consists of:

� The set of two matrices

˙
�

1 0
0 1

�
,

both with determinants equal to 1, and
� The two-dimensional space of matrices�

cos(θ) sin(θ) exp(i α)
sin(θ) exp(�i α) � cos(θ)

�
,

all with determinants equal to �1.

Exercise 7.7

p1 p1 C p2 p2 D ωω C ωω D 2 1Ci
2

1�i
2 D 1

2 (1 C i)(1 � i) D 1
2 2 D 1.

Exercise 7.8

0
BB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1
CCA

1/2

D

0
BB@

1 0 0 0
0 ω ω 0
0 ω ω 0
0 0 0 1

1
CCA .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 240 — le-tex �
�

�
�

�
�

240 Solutions to the Exercises

Exercise 7.9

The group consists of ˙', ˙i', ˙ν, ˙i ν, ˙y , ˙i y , ˙z, and ˙i z. Thus the order
is 16.

Solutions for Chapter 8

Exercise 8.1

if (x < 1000) then x := 0.1*x
else if (x < 10000) then x := 0.3*x - 200

else x := 0.5*x - 2200
fi (x < 2800)

fi (x < 100)

Solutions for Appendix C

Exercise C.1

f D (A 3 NAND A 1) NAND[(A 1 NAND 1) NAND A 2]

D A 3A 1[A1A 2]

D A 3A 1 C [A1A 2]

D A 3A 1 C A1 A 2 .

If we denote the third output of the first TOFFOLI block by X, then

X D (1 AND A 3) XOR A 2 D A 3 ˚ A 2 .

If we denote the third output of the second TOFFOLI block by Y, then

Y D (A 1 AND X) XOR A 3 D A 1 X ˚ A 3 D A 1(A 2 ˚ A 3) ˚ A 3

D A 1A 2 ˚ A 1A 3 ˚ A 3 .

We finally obtain the third output of the third TOFFOLI block:

f D (1 AND Y) XOR X D Y ˚ X D (A 2 ˚ A 3) ˚ (A 1A 2 ˚ A 1A 3 ˚ A 3)

D A 2 ˚ A 1A 2 ˚ A 1A 3

D (1 ˚ A 1)A 2 ˚ A 1A 3

D A1A 2 ˚ A 1A 3

D A1A 2 C A 1A 3 .

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 241 — le-tex �
�

�
�

�
�

Solutions to the Exercises 241

Solutions for Appendix D

Exercise D.1

N D w !

B D w (w � 1)/2

L D log(N)
log(B)

D log(w !)
log[w (w � 1)/2]

�
�
w C 1

2

�
log(w) � w

log(w) C log(w � 1) � log(2)

� w log(w)
2 log(w)

D w

2
.

Solutions for Appendix E

Exercise E.1

If matrix A has a constant column sum a, and matrix B has a constant column
sum b, then matrix C D AB has a constant column sum c D ab. Indeed,

nX
iD1

Ci j D
nX

iD1

nX
kD1

A i k Bk j D
nX

kD1

nX
iD1

A i k Bk j D
nX

kD1

Bk j

nX
iD1

A i k

D
nX

kD1

Bk j a D a

nX
kD1

Bk j D ab .

The situation is analogous for the row sums
Pn

j D1 Ci j .

Exercise E.2

We decompose the flow matrix F into two permutation matrices:

F D P C Q .

A possible algorithm is as follows:

� If Fi j D 0, then Pi j D Q i j D 0.
� If Fi j D 2, then Pi j D Q i j D 1.
� If Fi j D 1, then either Pi j D 0 and Q i j D 1 or Pi j D 1 and Q i j D 0.

The choice in the last case happens as follows. Entries Fi j that are equal to 1 are
necessarily located on closed paths with right angles. In our example there are two

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 242 — le-tex �
�

�
�

�
�

242 Solutions to the Exercises

such paths:

0
BBBBBBBBB@

1 1
1 1

1 1

1
CCCCCCCCCA

and

0
BBBBBBBBB@

1 1

1 1

1
CCCCCCCCCA

.

We then follow each path, alternately choosing Pi j D 0, Q i j D 1 and Pi j D 1,
Q i j D 0. If we start each path in its upper left corner, the latter choice leads to

0
BBBBBBBBB@

1 0 1 0 0 0 0
1 0 0 1 0 0 0
0 0 0 0 0 2 0
0 0 0 0 1 0 1
0 2 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 1

1
CCCCCCCCCA

D

0
BBBBBBBBB@

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1

1
CCCCCCCCCA

C

0
BBBBBBBBB@

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

1
CCCCCCCCCA

.

Exercise E.3

Because, for each path, there are two possible choices for the upper left corner, we
have four possible solutions to the previous exercise.

Exercise E.4

Any 2 � 2 matrix with all of its line sums equal to p takes the form

�
a p � a

p � a a

�
.

Trivial and unique decomposition into p permutation matrices yields:

a

�
1 0
0 1

�
C (p � a)

�
0 1
1 0

�
.

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 243 — le-tex �
�

�
�

�
�

Solutions to the Exercises 243

Exercise E.5

Any 3 � 3 matrix with all of its line sums equal to p takes the form

0
@ a b p � a � b

c d p � c � d

p � a � c p � b � d a C b C c C d � p

1
A .

One of these nine numbers is the smallest, for example d. We apply

0
@ a b p � a � b

c d p � c � d

p � a � c p � b � d a C b C c C d � p

1
A D

d

0
@1 0 0

0 1 0
0 0 1

1
AC

0
@ a � d b p � a � b

c 0 p � c � d

p � a � c p � b � d a C b C c � p

1
A .

The last matrix can be decomposed as

(a � d)

0
@1 0 0

0 0 1
0 1 0

1
AC (p � a � b)

0
@0 0 1

1 0 0
0 0 1

1
A

C (p � a � c)

0
@0 1 0

0 0 1
1 0 0

1
AC (a C b C c � p)

0
@0 1 0

1 0 0
0 0 1

1
A .

The latter step is unique, but the former is not.
When the smallest matrix entry is not in the (2, 2) position, decomposition is

completely analogous.

Exercise E.6

We take one of the Birkhoff decompositions of the flow matrix:

0
@0 2 3

2 2 1
3 1 1

1
A D

0
@0 0 1

1 0 0
0 1 0

1
AC

0
@0 0 1

0 1 0
1 0 0

1
A

C
0
@0 1 0

1 0 0
0 0 1

1
AC

0
@0 0 1

0 1 0
1 0 0

1
AC

0
@0 1 0

0 0 1
1 0 0

1
A .

The first (horizontal) step is the difficult step: we must ensure that each of the
five columns ends up containing exactly one heart, one spade, and one diamond. To
achieve this, each permutation matrix tells us the suit order of the corresponding
column. For example, the first permutation matrix tells us that the first column
needs a diamond at the top, a heart in the middle, and a spade at the bottom:

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 244 — le-tex �
�

�
�

�
�

244 Solutions to the Exercises

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2 } 4 } 2 � 5 } 5 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4 ~ 4 � 3 ~ 3 � 1 }

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 � 2 ~ 3 } 1 ~ 5 ~

In the second (vertical) step, we ensure that, in each of the five columns, the
cards arrive in the proper order: heart at the top, spade in the middle, and diamond
at the bottom:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4 ~ 2 ~ 3 ~ 1 ~ 5 ~

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 � 4 � 2 � 3 � 5 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2 } 4 } 3 } 5 } 1 }

The third step is trivial: arranging each of the three rows in the proper horizontal
order: 1 , 2 , 3 , 4 , and 5 .

Exercise E.7

In the first ‘horizontal permutation’, you are allowed to leave the upper row un-
touched. In the lower row, you permute the cards such that each gray card comes
under a black card, for example:

�
�

Alexis De Vos: Reversible Computing — Chap. devos9921b03 — 2010/8/5 — 13:36 — page 245 — le-tex �
�

�
�

�
�

Solutions to the Exercises 245

K K 2 7 6 5 2 4 4 9 3 8 3

7 1 Q J 8 9 10 5 Q 10 J 6 1

In the ‘vertical permutation’, make sure that the gray cards arrive in the upper
row and the black cards in the lower row:

7 K 2 J 6 5 10 4 Q 9 3 8 1
K 1 Q 7 8 9 2 5 4 10 J 6 3

As usual, the final ‘horizontal permutation’ is trivial: arranging each of the two
rows in the proper increasing order.

Exercise E.8

–

Solutions for Appendix F

Exercise F.1

Here, for convenience, we will immediately divide by k log(2), such that all results
are automatically expressed in bits:

σ D 1
log(2)

18X
mD1

�pm log(pm) � 3.36

s D 1
log(2)

�
q1

4X
j D1

� p1 j

q1
log

�
p1 j

q1

�
C q2

6X
j D1

� p2 j

q2
log

�
p2 j

q2

�
C

q3

4X
j D1

� p3 j

q3
log

�
p3 j

q3

�
C q4

4X
j D1

� p4 j

q4
log

�
p4 j

q4

��

� 1.96

where

q1 D p1 C p2 C p3 C p4 D 0.10

q2 D p5 C p6 C p7 C p8 C p9 C p10 D 0.19

q3 D p11 C p12 C p13 C p14 D 0.05

q4 D p15 C p16 C p17 C p18 D 0.66

S D 1
log(2)

4X
iD1

�qi log(qi) � 1.40 .

�
�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 246 — le-tex �
�

�
�

�
�

246 Solutions to the Exercises

Thus,

S C s � 1.40 C 1.96 D 3.36 � σ .

Exercise F.2

We proceed in an analogous manner to the previous exercise, although we take into
account

lim
x!0

x log(x) D 0 .

We obtain

S C s � 1.40 C 1.93 D 3.33 � σ .

Solutions for Appendix G

Exercise G.1

det
�

cos(θ) � z sin(θ)
� sin(θ) cos(θ) � z

�
D z2 � 2 cos(θ)z C 1

det
�

1 � z 0
0 1 � z

�
D (z � 1)2

det
�

ω � z ω
ω ω � z

�
D z2 � 2ωz C i D (z � 1)(z � i)

det
��z 1

1 �z

�
D z2 � 1 D (z � 1)(z C 1)

det
�

ω � z ω
ω ω � z

�
D z2 � 2ωz � i D (z � 1)(z C i)

det

 1
2 C 1

2 exp(i θ) � z 1
2 � 1

2 exp(i θ)

1
2 � 1

2 exp(i θ) 1
2 C 1

2 exp(i θ) � z

!

D z2 � (1 C exp(i θ))z C exp(i θ) D (z � 1)(z � exp(i θ))

det

0
@ 1p

2
� z 1p

2
1p

2
� 1p

2
� z

1
A D z2 � 1 D (z � 1)(z C 1) .

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 247 — le-tex

�

�

�

�

�

�

247

Index

symbols
+/- circuit 29, 121, 125–126

a
Abel 18
Abelian group 18
addend bit 77
adiabatic 106
adiabatic addressing 105
adjoint matrix 145
affine exchanger 189
affine linear circuit 36, 186
affine linear function 12
affine linear group 36
alternating group 120
amplitude 147
analog computing 113
ancilla 141, 174
AND function 7
audio coding 117
augend bit 77

b
balanced function 8, 32
banyan network 61
banyan tree 61
Bell 24
Bell number 24
benchmark 124
bifactorial 35, 184
Birkhoff 56, 199
Birkhoff–von Neumann theorem 199
Birkhoff’s theorem 56, 151, 199
bit 5, 86, 144
Boltzmann 85, 207
Boltzmann entropy 206
Boltzmann’s constant 85
Boole 5
Boolean algebra 5

Boolean calculus 13
Boolean derivative 13
Boolean function 5
bottom-up 157
butterfly 117, 125

c
c-MOS circuit 96
calculus of variations 106
Cantor 19
capacitance 104
Cardano 128
Cardano’s method 128
cardinality of the rationals 127
cardinality of the reals 113, 127, 145
Carnot 1
Carnot efficiency 1
Carnot engine 1
carry-in bit 77
carry-look-ahead adder 99
carry-out bit 77
cascade length 193
cascading 19
Cayley 18, 23
Cayley table 18
ceiling 193
climbing path 13, 187, 190
Clos 61
Clos network 61
coarse graining 205
coil 58
color coordinate 117
complex conjugate 145
complex number 123
computer algebra 22
conjugate subgroup 47, 63
conjugate transpose 145
conservative circuit 33
conservative logic 94

Reversible Computing. Alexis De Vos
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40992-1

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 248 — le-tex

�

�

�

�

�

�

248 Index

control circuit 149
control function 42, 47, 150
control gate 42, 114, 149
controlled bit 42
controlled circuit 42
controlled NOT 45, 63
controlled qubit 149, 166
controlled square root of NOT 146, 160
controlled SWAP 45
controlled width 42
controlling bit 42
controlling qubit 149, 165
controlling width 42
copying function 72, 187
coset 52
cosine-sine decomposition 152, 154
cost function 49
countable infinity 18
cubic equation 128
Cuccaro adder 80, 103
cycle notation 20
cyclic group 19, 25, 158
cyclic-shift circuit 49
cyclic subgroup 25

d
Davio 14
Davio decomposition 14, 51
denumerable infinity 18
depth 49
derangement 27
determinant 115, 119, 146
dimension 19
direct product 23
discrete Fourier transform 124
discrete group 19
division by 2 137
do-spy-undo scheme 76
do-undo scheme 66
do-until 175
double coset 55
doubly stochastic matrix 87, 143
dual logic 93
dual partition 58, 200
dual rail 93
duplicating circuit 72
duplicating property 187

e
eigenstate 147, 157, 159
eigenvalue equation 209
electricity consumption 103
elementary charge 96

energy dissipation 103
entangled state 148
entanglement 148
entropy 85, 89, 148, 205
entropy of mixing 92
equipartition 110
ESOP 10
ESOP expansion 63
even function 16
even permutation 119
exchange gate 37
exchanger 37, 190
EXCLUSIVE OR function 7

f
fan-out 73
fast Fourier transform 125
Feynman 45
Feynman gate 45, 71
Fibonacci 175
Fibonacci number 175
field 119
fine graining 205
finite group 18
finite-time thermodynamics 110
first law 90
flow matrix 144, 197
follower 32
Fourier 124
Fourier transform 124, 163
Fredkin 45
Fredkin gate 45
fuel cell 1
full adder 77, 101, 146

g
Galois 119
Galois field 119
GAP 23
garbage 126
garbage bit 72, 77, 80
garbigino 129, 173
gate cost 49
general linear group 35, 114
generator 22
Givens 117
Givens rotation 117, 154
group 17
group generator 22

h
Hadamard 164
Hadamard gate 164
hafnium oxide 104

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 249 — le-tex

�

�

�

�

�

�

Index 249

Hall 199
Hall’s marriage theorem 199
Hamming 186
Hamming distance 186
Hamming weight 186
heat 90
heat generation 103
heat quantum 90
Heisenberg 207
Heisenberg’s uncertainty principle 207
Hermite 145
Hermitian transpose 145

i
identity circuit 31
identity element 17
if-then-else 170
iff 11
implementation 93
index 23, 52
infinite group 18
injective function 8, 128
integer number 131
inverse 17
inverse circuit 32
inverse Fourier transform 124
inverter 31, 40, 82
invertible matrix 21
involutary circuit 43
involution 83
isomorphic groups 18

j
Janus 169

k
König 199
König’s theorem 199

l
Lagrange 23
Lagrange’s theorem 23, 48, 52
Landauer 90
Landauer quantum 104
Landauer’s theorem 89
left coset 52
letter 9
library 22, 53, 55, 185, 193
LiE 23
Lie 19
Lie group 19
lift gate 120
lifting coefficient 70, 114, 139
line sum 20, 143, 146, 198–199

linear circuit 34
linear function 11
literal 9
logic depth 49
logic width 31
loop 170
looping algorithm 61

m
macroentropy 92, 205
macroscopic entropy 92, 205
Magma 23
majority block 75, 80, 101
matrix group 21
maxterm expansion 9
microentropy 92, 205
microscopic entropy 92, 205
minimal ESOP expansion 11, 64
minterm expansion 9
mixed state 148
mixing 148
monotone function 13
monotonic circuit 34, 186, 190
monotonic function 13, 190
Moore 103
Moore’s law 103
MOS transistor 96
Muller 10
multiplication by –1 136
multiplication by 2 137

n
n-MOS transistor 96, 106
NAND function 7
neural computer 113
no-cloning theorem 73
no-fan-out theorem 73, 187
NOR function 7
NOT function 6
NOT gate 31
NXOR function 7

o
odd function 16
odd permutation 119
off-resistance 105
Ohm 107
Ohm’s law 107
on-resistance 105
optimal control 106
OR function 7
order 17, 25

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 250 — le-tex

�

�

�

�

�

�

250 Index

p
p-MOS transistor 96, 106
parallel connection 95
partition 24, 58
pass-transistor logic 96
Pauli 168
Pauli group 168
Pauli matrix 168
permutation 19
permutation group 19
permutation matrix 37, 88, 143
phase gate 164
phase space 205
piterm 10
Planck 111
Planck’s constant 111
POS 10
potential 91
power voltage 106
preset bit 78
probability 85, 89, 147–148, 205
product of sums 9
programming language 169
proper function 6
pure state 148

q
Q-Circuit 77
q-factorial 35, 183
quantum computing 143
quantum Fourier transform 163
quantum light 157
quantum mechanics 144, 166
quantum mixture 148
quantum superposition 148, 158
quasi-adiabatic 106
qubit 144

r
ramp voltage 106
RC ladder circuit 108
real number 113
Reed 10
Reed–Muller expansion 10, 63
register 131
representative 53
restoring logic 96
reversible circuit 31–32
reversible embedding 73, 135
reversible gate 31
reversible plus 157
right coset 52
ripple adder 79, 98

rise time 106
rotator circuit 154

s
scale gate 115, 120
scaling coefficient 115
scattering matrix 143
second law 90
semidirect product 82
separable state 148
series connection 95
Shannon 14, 207
Shannon decomposition 14
Shannon entropy 207
silicon 105
silicon-on-insulator 105
silicon oxide 104
singular matrix 21
software 169
SOP 9
special linear group 115
special unitary group 162
spy circuit 76
square root of controlled NOT 160
square root of NOT 157
standard c-MOS technology 105
static c-MOS 96
statistical mechanics 144
Stirling 32
Stirling’s formula 32, 193
stochastic matrix 87
subfunction 13
subgroup 23
subgroup chain 38, 53–54
sum bit 77
sum of products 9
supergroup 23
superposition 148, 158
swap gate 39, 71, 116
swap matrix 70
switch 94, 106
switch cost 101
Sylow 24
Sylow 2-subgroup 48
Sylow circuit 47
Sylow p-subgroup 24
symmetric group 18
synaptic weight 113
synthesis 52, 56, 58, 151, 193
synthesis algorithm 58

t
technology roadmap 105

�

�

Alexis De Vos: Reversible Computing — 2010/8/5 — 13:36 — page 251 — le-tex

�

�

�

�

�

�

Index 251

temperature 90
template 65, 120
tensor product 148
thermodynamics 90
threshold voltage 104
Toffoli 45
Toffoli gate 45, 63
top-down 157, 162
transmission gate 96, 105
true function 6
twiddle factor 124
twin circuit 54
two’s complement 134

u
unate function 13
unit circle 124–125, 162, 210
unitary group 147
unitary matrix 144
universal building block 36, 185
unmajority block 80, 101

v
Venn 40

Venn diagram 40
video coding 131
von Klitzing 111
von Klitzing constant 111
von Neumann 199

w
weight 113
weight factor 113
width 31
winding 58

x
XAND function 7
XOR function 7

y
Young 23
Young subgroup 23, 34, 43, 55, 57, 156, 200
Young tableau 197

z
Z gate 165
Z-transform 161, 209

	Cover
	Title Page
	Contents
	Preface
	Introduction
	1 Boolean Algebra
	1.1 Boolean Functions of One Variable
	1.2 Boolean Functions of Two Variables
	1.3 Boolean Functions of n Variables
	1.3.1 The Minterm Expansion
	1.3.2 The Maxterm Expansion
	1.3.3 The Reed–Muller Expansion
	1.3.4 The Minimal ESOP Expansion

	1.4 Linear Functions
	1.5 Affine Linear Functions
	1.6 Monotonic Functions
	1.7 Boolean Derivative
	1.8 Boolean Decompositions
	1.9 Exercises for Chapter 1

	2 Group Theory
	2.1 Introduction
	2.2 Permutation Groups
	2.3 Matrix Groups
	2.4 Group Generators
	2.5 Subgroups
	2.6 Young Subgroups
	2.7 Sylow p-Subgroups
	2.8 Cyclic Subgroups
	2.9 Closing Remarks
	2.10 Exercises for Chapter 2

	3 Reversible Computing
	3.1 Introduction
	3.2 Reversible Circuits
	3.3 Conservative Circuits
	3.4 Monotonic Circuits
	3.5 Linear Circuits
	3.6 Affine Linear Circuits
	3.7 Exchange Gates
	3.8 SWAP Gates
	3.9 Affine Exchange Gates
	3.10 Control Gates
	3.11 Sylow Circuits
	3.12 Gate Cost and Logic Depth
	3.13 Methods of Synthesis
	3.14 Cosets
	3.15 Double Cosets
	3.16 The Synthesis Algorithm
	3.16.1 Basic Idea of the Algorithm
	3.16.2 Working Out the Algorithm
	3.16.3 Results

	3.17 Variable Ordering
	3.18 Templates
	3.19 The Linear Synthesis Algorithm
	3.20 Preset Bits and Garbage Bits
	3.20.1 Duplicating Circuit
	3.20.2 Controlled NOT
	3.20.3 An Application: the Majority Circuit

	3.21 Another Application: the Full Adder
	3.22 Avoiding Garbage
	3.23 Exercises for Chapter 3

	4 Low-power Computing
	4.1 Entropy
	4.2 Permutation Matrices
	4.3 Landauer’s Theorem
	4.4 Thermodynamics
	4.5 An Application: Prototype Chips
	4.6 Switch Cost
	4.7 Moore’s Law
	4.8 Quasi-adiabatic Addressing
	4.9 Exercises for Chapter 4

	5 Analog Computing
	5.1 Computing with Real Numbers
	5.2 Synthesis
	5.3 An Application: the Color Transform
	5.4 About Determinants
	5.5 LIFT Gates versus SCALE Gates
	5.6 Conclusion
	5.7 Computations with Complex Numbers
	5.8 An Application: the Fourier Transform
	5.9 Nonlinear Computations
	5.10 Exercises for Chapter 5

	6 Computing in Modulo 2ᵇ
	6.1 Addition in Modulo 2ᵇ
	6.2 Multiplication by a Constant
	6.3 Scaling by -1
	6.4 Scaling by 1/2 or by 2
	6.5 Lifting
	6.6 Exercises for Chapter 6

	7 Quantum Computing
	7.1 Doubly Stochastic Matrices
	7.2 Unitary Matrices
	7.3 Entropy in the Quantum World
	7.4 Entanglement
	7.5 Control Circuits and Control Gates
	7.6 Synthesis
	7.7 Decomposition
	7.8 Discussion
	7.9 Bottom-Up and Top-Down
	7.10 Bottom-Up Approach
	7.10.1 One-(Qu)bit Calculations
	7.10.2 Two-(Qu)bit Calculations
	7.10.3 Three- and Multi-(Qu)bit Calculations

	7.11 Top-Down Approach
	7.12 An Application: the Quantum Fourier Transform
	7.13 Nonlinear Computations
	7.14 Exercises for Chapter 7

	8 Reversible Programming Languages
	8.1 The if-then-else Structure
	8.2 The do-until Structure
	8.3 Exercises for Chapter 8

	Appendix A: The Number of Linear Reversible Circuits
	Appendix B: Bounds for the q-Factorial
	Appendix C: A Theorem about Universal Reversible Gates
	C.1 Universality in Conventional Logic Circuits
	C.2 Preliminary Concepts
	C.3 No-Fan-Out Theorem and Its Consequences
	C.4 Final Theorem
	C.5 Discussion
	C.6 Exercises for Appendix C

	Appendix D: Synthesis Efficiency
	D.1 Exercises for Appendix D

	Appendix E: Birkhoff’s Theorem
	E.1 Exercises for Appendix E

	Appendix F: Microentropy and Macroentropy
	F.1 Exercises for Appendix F

	Appendix G: Computing the Successive Powers of a Matrix
	G.1 Exercises for Appendix G

	Post Scriptum
	References
	Solutions to the Exercises
	Solutions for Chapter 1
	Solutions for Chapter 2
	Solutions for Chapter 3
	Solutions for Chapter 4
	Solutions for Chapter 5
	Solutions for Chapter 6
	Solutions for Chapter 7
	Solutions for Chapter 8
	Solutions for Appendix C
	Solutions for Appendix D
	Solutions for Appendix E
	Solutions for Appendix F
	Solutions for Appendix G

	Index

