CONCEPTS OF

Programming
Languages

TENTH EDITION

CONCEPTS OF
PROGRAMMING LANGUAGES

TENTH EDITION

This page intentionally left blank

CONCEPTS OF
PROGRAMMING LANGUAGES

TENTH EDITION

ROBERT W. SEBESTA

University of Colorado at Colorado Springs

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS:

Marcia Horton
Editor in Chief: Michael Hirsch
Executive Editor: Matt Goldstein
Editorial Assistant: Chelsea Kharakozova
Vice President Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferrant
Marketing Assistant: Emma Snider
Vice President and Director of Production:
Vince O’Brien
Managing Editor: Jeff Holcomb

Senior Production Project Manager: Marilyn Lloyd

Manufacturing Manager: Nick Sklitsis

Operations Specialist: Lisa McDowell

Cover Designer: Anthony Gemmellaro

Text Designer: Gillian Hall

Cover Image: Mountain near Pisac, Peru;
Photo by author

Media Editor: Dan Sandin

Full-Service Vendor: Laserwords

Project Management: Gillian Hall

Printer/Binder: Courier Westford

Cover Printer: Lehigh-Phoenix Color

This book was composed in InDesign. Basal font is Janson Text. Display font is I'TC Franklin Gothic.

Copyright © 2012, 2010, 2008, 2006, 2004 by Pearson Education, Inc., publishing as Addison-Wesley.

All rights reserved. Manufactured in the United States of America. This publication is protected by Copy-
right, and permission should be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Sebesta, Robert W.
Concepts of programming languages / Robert W. Sebesta.—10th ed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-13-139531-2 (alk. paper)
1. Programming languages (Electronic computers) 1. Title.
QA76.7.543 2009

005.13—dc22 2008055702

10987654321

PEARSON

ISBN 10: 0-13-139531-9

—
ISBN 13:978-0-13-139531-2

www.pearsonhighered.com

New to the Tenth Edition

¢ Chapter 5: a new section on the let construct in functional pro-
gramming languages was added

* Chapter 6: the section on COBOL’ record operations was removed;
new sections on lists, tuples, and unions in F# were added

* Chapter 8: discussions of Fortran’s Do statement and Ada’s case
statement were removed; descriptions of the control statements in
functional programming languages were moved to this chapter from
Chapter 15

¢ Chapter 9: a new section on closures, a new section on calling sub-
programs indirectly, and a new section on generic functions in F# were
added; the description of Ada’s generic subprograms was removed

* Chapter 11: a new section on Objective-C was added, the chapter
was substantially revised

¢ Chapter 12: a new section on Objective-C was added, five new fig-
ures were added

* Chapter 13: a section on concurrency in functional programming
languages was added; the discussion of Ada’s asynchronous message
passing was removed

* Chapter 14: a section on C# event handling was added

¢ Chapter 15: a new section on F# and a new section on support for
functional programming in primarily imperative languages were added;
discussions of several different constructs in functional programming
languages were moved from Chapter 15 to earlier chapters

Preface

Changes for the Tenth Edition

vi

of Programming Languages remain the same as those of the nine ear-

lier editions. The principal goals are to introduce the main constructs
of contemporary programming languages and to provide the reader with the
tools necessary for the critical evaluation of existing and future programming
languages. A secondary goal is to prepare the reader for the study of com-
piler design, by providing an in-depth discussion of programming language
structures, presenting a formal method of describing syntax and introducing
approaches to lexical and syntatic analysis.

The tenth edition evolved from the ninth through several different kinds
of changes. To maintain the currency of the material, some of the discussion
of older programming languages has been removed. For example, the descrip-
tion of COBOLs record operations was removed from Chapter 6 and that of
Fortran’s Do statement was removed from Chapter 8. Likewise, the description
of Ada’s generic subprograms was removed from Chapter 9 and the discussion
of Ada’s asynchronous message passing was removed from Chapter 13.

On the other hand, a section on closures, a section on calling subprograms
indirectly, and a section on generic functions in F# were added to Chapter 9;
sections on Objective-C were added to Chapters 11 and 12; a section on con-
currency in functional programming languages was added to Chapter 13; a
section on C# event handling was added to Chapter 14; a section on F# and
a section on support for functional programming in primarily imperative lan-
guages were added to Chapter 15.

In some cases, material has been moved. For example, several different
discussions of constructs in functional programming languages were moved
from Chapter 15 to earlier chapters. Among these were the descriptions of the
control statements in functional programming languages to Chapter 8 and the
lists and list operations of Scheme and ML to Chapter 6. These moves indicate
a significant shift in the philosophy of the book—in a sense, the mainstreaming
of some of the constructs of functional programming languages. In previous
editions, all discussions of functional programming language constructs were
segregated in Chapter 15.

Chapters 11, 12, and 15 were substantially revised, with five figures being
added to Chapter 12.

Finally, numerous minor changes were made to a large number of sections
of the book, primarily to improve clarity.

T he goals, overall structure, and approach of this tenth edition of Concepts

The Vision

Preface vii

"This book describes the fundamental concepts of programming languages by
discussing the design issues of the various language constructs, examining the
design choices for these constructs in some of the most common languages,
and critically comparing design alternatives.

Any serious study of programming languages requires an examination of
some related topics, among which are formal methods of describing the syntax
and semantics of programming languages, which are covered in Chapter 3.
Also, implementation techniques for various language constructs must be con-
sidered: Lexical and syntax analysis are discussed in Chapter 4, and implemen-
tation of subprogram linkage is covered in Chapter 10. Implementation of
some other language constructs is discussed in various other parts of the book.

"The following paragraphs outline the contents of the tenth edition.

Chapter Outlines

Chapter 1 begins with a rationale for studying programming languages. It then
discusses the criteria used for evaluating programming languages and language
constructs. The primary influences on language design, common design trade-
offs, and the basic approaches to implementation are also examined.

Chapter 2 outlines the evolution of most of the important languages dis-
cussed in this book. Although no language is described completely, the origins,
purposes, and contributions of each are discussed. This historical overview is
valuable, because it provides the background necessary to understanding the
practical and theoretical basis for contemporary language design. It also moti-
vates further study of language design and evaluation. In addition, because none
of the remainder of the book depends on Chapter 2, it can be read on its own,
independent of the other chapters.

Chapter 3 describes the primary formal method for describing the syntax
of programming language—BNE. This is followed by a description of attribute
grammars, which describe both the syntax and static semantics of languages.
The difficult task of semantic description is then explored, including brief
introductions to the three most common methods: operational, denotational,
and axiomatic semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to
those colleges that no longer require a compiler design course in their curricula.
Like Chapter 2, this chapter stands alone and can be read independently of the
rest of the book.

Chapters 5 through 14 describe in detail the design issues for the primary
constructs of programming languages. In each case, the design choices for several
example languages are presented and evaluated. Specifically, Chapter 5 covers
the many characteristics of variables, Chapter 6 covers data types, and Chapter 7
explains expressions and assignment statements. Chapter 8 describes control

viii

Preface

statements, and Chapters 9 and 10 discuss subprograms and their implementa-
tion. Chapter 11 examines data abstraction facilities. Chapter 12 provides an in-
depth discussion of language features that support object-oriented programming
(inheritance and dynamic method binding), Chapter 13 discusses concurrent
program units, and Chapter 14 is about exception handling, along with a brief
discussion of event handling.

The last two chapters (15 and 16) describe two of the most important alterna-
tive programming paradigms: functional programming and logic programming.
However, some of the data structures and control constructs of functional pro-
gramming languages are discussed in Chapters 6 and 8. Chapter 15 presents an
introduction to Scheme, including descriptions of some of its primitive functions,
special forms, and functional forms, as well as some examples of simple func-
tions written in Scheme. Brief introductions to ML, Haskell, and F# are given
to illustrate some different directions in functional language design. Chapter 16
introduces logic programming and the logic programming language, Prolog.

To the Instructor

In the junior-level programming language course at the University of Colorado
at Colorado Springs, the book is used as follows: We typically cover Chapters 1
and 3 in detail, and though students find it interesting and beneficial reading,
Chapter 2 receives little lecture time due to its lack of hard technical content.
Because no material in subsequent chapters depends on Chapter 2, as noted
earlier, it can be skipped entirely, and because we require a course in compiler
design, Chapter 4 is not covered.

Chapters 5 through 9 should be relatively easy for students with extensive
programming experience in C++, Java, or C#. Chapters 10 through 14 are more
challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior level.
Ideally, language processors for Scheme and Prolog should be available for
students required to learn the material in these chapters. Sufficient material is
included to allow students to dabble with some simple programs.

Undergraduate courses will probably not be able to cover all of the mate-
rial in the last two chapters. Graduate courses, however, should be able to
completely discuss the material in those chapters by skipping over parts of the
early chapters on imperative languages.

Supplemental Materials

The following supplements are available to all readers of this book at www
.pearsonbighered.com/cssupport.

* Asetof lecture note slides. PowerPoint slides are available for each chapter

in the book.

¢ PowerPoint slides containing all the figures in the book.

www.pearsonhighered.com/cssupport
www.pearsonhighered.com/cssupport

Preface ix

A companion Website to the book is available at www.pearsonbighered.com/sebe-
sta. This site contains mini-manuals (approximately 100-page tutorials) on a
handful of languages. These proceed on the assumption that the student knows
how to program in some other language, giving the student enough informa-
tion to complete the chapter materials in each language. Currently the site
includes manuals for C++, C, Java, and Smalltalk.

Solutions to many of the problem sets are available to qualified instruc-
tors in our Instructor Resource Center at www.pearsonhighered.com/irc.
Please contact your school’s Pearson Education representative or visit
www.pearsonhighered.com/irc to register.

Language Processor Availability

Processors for and information about some of the programming languages
discussed in this book can be found at the following Websites:

C, C++, Fortran, and Ada gee.gni.org

Ci# and F# microsoft.com

Java JAva.SUn.com

Haskell haskell.org

Lua www.lua.org

Scheme www.plt-scheme.org/software/drscheme
Perl www.perl.com

Python www.python.org

Ruby www.ruby-lang.org

JavaScript is included in virtually all browsers; PHP is included in virtually all
Web servers.
All this information is also included on the companion Website.

Acknowledgments

The suggestions from outstanding reviewers contributed greatly to this
book’s present form. In alphabetical order, they are:

Matthew Michael Burke

I-ping Chu DePaul University
Teresa Cole Boise State University
Pamela Cutter Kalamazoo College
Amer Diwan University of Colorado
Stephen Edwards Virginia Tech

David E. Goldschmidt
Nigel Gwee Southern University—Baton Rouge

www.pearsonhighered.com/sebesta
www.pearsonhighered.com/sebesta
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc
www.lua.org
www.plt-scheme.org/software/drscheme
www.perl.com
www.python.org
www.ruby-lang.org

Preface

Timothy Henry
Paul M. Jackowitz
Duane J. Jarc

K. N. King

Donald Kraft

Simon H. Lin

Mark Llewellyn
Bruce R. Maxim
Robert McCloskey
Curtis Meadow
Gloria Melara
Frank J. Mitropoulos
Euripides Montagne
Serita Nelesen

Bob Neufeld
Charles Nicholas
Tim R. Norton
Richard M. Osborne
Saverio Perugini
Walter Pharr
Michael Prentice
Amar Raheja
Hossein Saiedian
Stuart C. Shapiro
Neelam Soundarajan
Ryan Stansifer
Nancy Tinkham
Paul Tymann

Cristian Videira Lopes

Sumanth Yenduri
Salih Yurttas

University of Rhode Island

University of Scranton

University of Maryland, University College
Georgia State University

Louisiana State University

California State University—Northridge
University of Central Florida

University of Michigan—Dearborn
University of Scranton

University of Maine

California State University—Northridge
Nova Southeastern University
University of Central Florida

Calvin College

Wichita State University

University of Maryland-Baltimore County
University of Colorado-Colorado Springs
University of Colorado-Denver
University of Dayton

College of Charleston

SUNY Buffalo

California State Polytechnic University—Pomona

University of Kansas

SUNY Buffalo

Obio State University

Florida Institute of Technology
Rowan University

Rochester Institute of Technology
University of California—Irvine
University of Southern Mississippi
Texas A& M University

Numerous other people provided input for the previous editions of
Concepts of Programming Languages at various stages of its development. All
of their comments were useful and greatly appreciated. In alphabetical order,
they are: Vicki Allan, Henry Bauer, Carter Bays, Manuel E. Bermudez, Peter
Brouwer, Margaret Burnett, Paosheng Chang, Liang Cheng, John Crenshaw,
Charles Dana, Barbara Ann Griem, Mary Lou Haag, John V. Harrison, Eileen
Head, Ralph C. Hilzer, Eric Joanis, Leon Jololian, Hikyoo Koh, Jiang B. Liu,
Meiliu Lu, Jon Mauney, Robert McCoard, Dennis L. Mumaugh, Michael G.
Murphy, Andrew Oldroyd, Young Park, Rebecca Parsons, Steve J. Phelps,
Jeftery Popyack, Raghvinder Sangwan, Steven Rapkin, Hamilton Richard,
Tom Sager, Joseph Schell, Sibylle Schupp, Mary Louise Soffa, Neelam
Soundarajan, Ryan Stansifer, Steve Stevenson, Virginia Teller, Yang Wang,
John M. Weiss, Franck Xia, and Salih Yurnas.

Preface xi

Matt Goldstein, editor; Chelsea Kharakozova, editorial assistant; and,
Marilyn Lloyd, senior production manager of Addison-Wesley, and Gillian
Hall of The Aardvark Group Publishing Services, all deserve my gratitude for
their efforts to produce the tenth edition both quickly and carefully.

About the Author

Robert Sebesta is an Associate Professor Emeritus in the Computer Science
Department at the University of Colorado—Colorado Springs. Professor Sebesta
received a BS in applied mathematics from the University of Colorado in Boulder
and MS and PhD degrees in computer science from Pennsylvania State University.
He has taught computer science for more than 38 years. His professional interests
are the design and evaluation of programming languages.

Contents

xii

Chapter 1 Preliminaries 1
1.1 Reasons for Studying Concepts of Programming Languages............... 2
1.2 Programming DOMAINScocueeeeeeeeeeeeeeeeee e e 5
1.3 Language Evaluation CHEEIIa ..coueeeereeeeeee oo 7
1.4 Influences on Language DeSIGN ..c..eeeeueeeeeeeeeeeeeeeeeeeeeeee e, 18
1.5 Language Categories ..o muemoueeeeee e 21
1.6 Language Design Trade-0FfSocoueeeeeeeeeee oo, 23
1.7 Implementation MethodS.....c.cooiieeueieieeeie e 23
1.8 Programming ENVIFONMENSeoeueeeeeeeeeeeeeeeee e 31
Summary ¢ Review Questions ® Problem Set.....ccooveeiiiiieiiiiiiiiiieeiieeeenn. 31

Chapter 2 Evolution of the Major Programming Languages 35
2.1 Zuse’s Plankalkil c...ccveeeeeuieieeeeeeie et 38
2.2 PSEUAOCOUES ...ttt ettt ettt ettt et ens 39
2.3 The IBM 704 and FOrtran....ccooeererieieieieiceieieiesieeee e 42
2.4 Functional Programming: LISP......cooiiioiiiiiieeeeee e e 47
2.5 The First Step Toward Sophistication: ALGOL 60ccveevvveeveeenennee. 52
2.6 Computerizing Business Records: COBOL....cuivvvieeereerieeeeereecneenne. 58
2.7 The Beginnings of Timesharing: BASIC ...cuoovvouiiieoiieieeieeeeieeeeeeeane 63
Interview: ALAN COOPER—User Design and Language Design................. 66
2.8 Everything for Everybody: PL/T .oovoiiiiieiiiieceeeeeeeeeeeeeee e 68
2.9 Two Early Dynamic Languages: APL and SNOBOL ...cc.ocvveveeveennnene. 71
2.10 The Beginnings of Data Abstraction: SIMULA 67 .ecoevveveeeeeeenennn. 72
2.11 Orthogonal Design: ALGOL 68ueiiieuiieieiieeeeee e eeeee e 73
2.12 Some Early Descendants of the ALGOLSccuvvveveeeeeeeieeeieereeeeeenee 75

Chapter 3

Chapter 4

Chapter 5

2.13 Programming Based on Logic: Prol0gccoueeeeeeeeeeeeeeeeeeeeeeeeee, 79
2.14 History’s Largest Design Effort: Ada......cccoeeeeeeeeeeeeeeieeieeeeeeeen. 81
2.15 Object-Oriented Programming: Smalltalkc..cooveeeueeeeieioeeiieeenne. 85
2.16 Combining Imperative and Object-Oriented Features: C++................ 88
2.17 An Imperative-Based Object-Oriented Language: Java 91
2.18 SCripting LANGUAGES.....vevveevereeieteeteeeeeee ettt 95
2.19 The Flagship .NET Language: C#ccoeveeveereeeeeieieieeeieereeaeenenes 101
2.20 Markup/Programming Hybrid Languagescccveevevvevveereeuenenne. 104
Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEFCISES . .ciuuuniiiiiieeiiiieeetiieeeeiee e et ee e et e e eri e e eaaeeeeaeeeaaannns 106
Describing Syntax and Semantics 113
3.1 INtPOAUCHION. cutitietietieiieit ettt 114
3.2 The General Problem of Describing SYyNtaX......occeeeeeveeeevveeeeveeeennne. 115
3.3 Formal Methods of Describing SYNtaX.....eeeeveeeeeeeeeeeeeeeieeeeeeeeannes 117
3.4 AtriDULE GrAMMALS...eciiieieiecteereete ettt e e 132
HISEOFY NOE e eveetneenieti ettt eiie et e e e et et et e eaieeaie e eaeeaaeenaeenaeenaes 133
35 Describing the Meanings of Programs: Dynamic Semantics............ 139
HISEOFY NOE e eveetneenieti ettt eiie et e e e et et et e eaieeaie e eaeeaaeenaeenaeenaes 154
Summary ¢ Bibliographic Notes ¢ Review Questions ¢ Problem Set........... 161
Lexical and Syntax Analysis 167
4.1 INtrodUCHION..cvi ittt ettt ettt 168
4.2 LeXiCal ANAIYSIS cuveeieeeireeeeeeeeeeeee ettt 169
4.3 The Parsing Problem....cccuee oo 177
4.4 Recursive-Descent Parsing.....c..ccceeeeeeeeeeeeeeeieeeeeeeeeeeeeeee e 181
45 Bottom-Up Parsingccueeeueeeeeeeeeeeeeeeeeeeeeeeee et e 190
Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises..... 197
Names, Bindings, and Scopes 203
5.1 INtrOdUCTION. cvii ittt 204
D2 NAMES et 205

HISEOFY NOTE «enereneneeeeneneeeeneneneeseneneeseseneesasenenseseseneesesenensesensnsnsenenensnns 205

xiv

Contents

Chapter 6

5.3 VariabIes cueeiiceiiiieeeeee e 207
5.4 The Concept of BiNdiNG ..cccueeeueeeeueeeeeeeeeeeeeeeeeeeeee e et 209
o8 e o -SSR TURSROTR 218
5.6 Scope and LIifEtiMe ...ceevvieeeeieerieeeeeeeeie ettt 229
5.7 Referencing ENVIrONMENtScueeieviiiiiieeeeeeeeeee e 230
5.8 Named ConStantS........coieieieierieieieieeeiee ettt 232
Summary ¢ Review Questions ® Problem Set ¢ Programming Exercises..... 234
Data Types 243
6.1 INtrodUCHION. . cueiticiicteete ettt 244
6.2 Primitive Data TYPES ..eevveeeeeereeerieteeeeieteeteeeteeeeeteeeeeeeeeaeeaeeaeeaes 246
6.3 Character String TYPES ..cecueeeieeeeeeeeeeeeee e et et 250

HISEOFY NOLE 4 euenrnteneneesasenereeseneneeeeneneneeseneneeseseneeseseneseseseneosesenensenenenes 251
6.4 User-Defined Ordinal TYPES ..ecveeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeee et eaeeeneen 255
0.5 AITAY TYPES e 259

HISEOFY NOLE +uererereteteteteenen et eteteteseseseenenenenasasesesasasnsnsnenanenesesasasnsnnes 260

HISEOFY NOLE 4 euenrnsereneeraseneeeseneneeeenenenseneneneesesenessesenenseseseneasesenensenenenes 261
6.6 ASSOCIALIVE AFTAYS..ecieveieieeeie ettt 272

Interview: ROBERTO IERUSALIMSCHY —Lua....cccccvvvvveeenneeennn. 274
0.7 RECOIA TYPES . cuviereeieteeetee et eeee e e e e ee e e e eneeereeeaeeeaeens 276
6.8 TUPIE TYPES ettt ettt 280
6.9 LISt TYPES weeueiieeieti ettt ettt ettt ettt ettt ettt 281
6.10 UNIONTYPES ettt ettt 284
6.11 Pointer and Reference TYPES ..veeveeereeeeeeeeeeeeeeeeee e et 289

HISEOFY NOLE 4 euenrnsereneeeeseneeeseneneeeeneneneeneneneeseseneeseseneasesesenensesenensenenenes 293
6.12 TYPE CRECKING e 302
0.13 StrONG TYPING ettt et 303
6.14 Type EQUIVAIENCE ..oivieeeieeeeeceee et 304
6.15 Theory and Data TYPES ..cocuveeieeeeeeeieeeeee e 308

Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEICISES ..uuiiuniiiiiii e e e e e e aaaas 310

Contents XV

Chapter 7 Expressions and Assignment Statements 317
7.1 INtrOdUCHION..ctiitiictieiecticete ettt ettt 318

7.2 Arithmetic EXPreSSIONS ...ccveeveereerreerreireesteeeeereeieeereeeseeseeneesseeneens 318

7.3 0verloaded OPEratorscceeeceeeeeeeereeeeeeeeeeeeeeereeeeeeeereeeeeeeaeeeneeens 328

T4 TYPE CONVEISIONS .eetieireeeteeeeeeeteeeeteeeteeeeeeeeteeeereeeaeeeeaeeeaeeeaeeeneeens 329

HISEOFY NOTE wuvneneneneneneteteeeteneenenenesasasesasasasnenenenanenesesasesesnsnsnenanenesanns 332

7.5 Relational and Boolean EXPressions.......coveeeeeereeeeeeiueeeveeereeenens 332

HISEOFY NOTE wutneneneneneneteteeeteeneenenenesanesesasesenenenenasanesesasesnsnsnsnenanenesanns 333

7.6 Short-Circuit Evaluationocceeveevievierieieeieeeieeeeeeeeeeveeae e 335

7.7 Assignment Statements ..c..oeoveueeiveeee it 336

HISEOFY NOTE wuvntneneneneneteteteseeneenenenesasasesesesnenenenenesenesesesasnsnsnsnenenenesanns 340

7.8 Mixed-Mode ASSIGNMENt c..eevvviieieeeeeeeie et 341

Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises..... 341

Chapter 8 Statement-Level Control Structures 347
8.1 INtrOdUCTION...cuiieieeieieieieeteete ettt 348

8.2 SeleCtion StAteMENTS.....ccvivveevieeeereeteeieeteeee ettt 350

8.3 Iterative STAteMENTS....cociciievieieerieiicieeieeee ettt 362

8.4 Unconditional BranChingooueveeeiiiniiiiiiiieiieeieeeeeeeeeeeeeeean 375

HISEOFY NOE e eveetneenieti ettt eiie et e e e et et et e eaieeaie e eaeeaaeenaeenaeenaes 376

8.5 Guarded COMMANGScveviverictietieie ettt 376

8.6 CONCIUSIONS. cuevirieiieiieeieteet ettt ettt ettt nas 379

Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises..... 380

Chapter 9 Subprograms 387
Q.1 INtrodUCHION...ceieeieeeeeeeeeeeee e 388

9.2 Fundamentals of SUDPrOGIaMSeevvivveeeiieiieieeeeceeeeee e eeeeeee e 388

9.3 Design Issues for SUDPrOGIAMSco.veeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 396

9.4 Local Referencing ENVIFONMENTS.......eeueeeeeeeeeeeeeeeeeeeeeeeee e 397

9.5 Parameter-Passing Methodscocueeeeeeeeeeeeeeeeeeee e 399

HISEOFY NOLE +uentnenenen ettt ettt ettt e e et ettt e e e eaea et e et e eneneneneaeaaans 407

HISEOFY NOTE «eueseneneeeeneneeteseneneeseneneesesenensesenensesesenensesenensnsenenensenenensnns 407

xvi

Contents

Chapter 10

Chapter 11

9.6 Parameters That Are SUDPIrOGramsceeveeveeveeeereieeeeeeeeeeneenean 417
9.7 Calling Subprograms INAIFCtIY.....ccueeueeeeeeeeeeeee e 419
HISEOFY NOLE +ueueretetetetteenen et eteuesesesseeenenenenesasesesasasnsnsnenenenssesnsnsnsnens 419
9.8 Overloaded SUDPIOGIAMS.....ccvvievieeeereeeieeeeeeteeeeeete e eee e eae e 421
9.9 GENEric SUDPIOGIAMS .ecvvieeveveeereeeeeeteeeee ettt 422
9.10 Design Issues for FUNCLIONS ...vveeeveeeeee e 428
9.11 User-Defined Overloaded OPerators.........cceeeeveeereeveeeeeereeeeeneennas 430
Q.12 CIOSUIES ettt ettt ettt ettt enis 430
Q.13 COPOULINES wvevvietieriticte ettt ettt et 432
Summary * Review Questions ® Problem Set ¢ Programming Exercises..... 435
Implementing Subprograms 441
10.1 The General Semantics of Calls and RetUrnS........ccccveeveeveereeueeneanee. 442
10.2 Implementing “Simple’” SUbProOgramscccocvveeveeeeeeeevieeeeeeeennas 443
10.3 Implementing Subprograms with Stack-Dynamic Local Variables... 445
10.4 Nested SUDPrOGIAMS ...cvveviieeieeieeieeieeeeeeie ettt 454
L0.5 BIOCKS cvtetieeteetee ettt 460
10.6 Implementing Dynamic SCOPING ..cc.ueeeueeeeeeeeee e 462
Summary * Review Questions ® Problem Set ¢ Programming Exercises..... 466
Abstract Data Types and Encapsulation Constructs 473
11.1 The Concept of ABStraCtion ...ccueeeeeeeueeiieeeeee e 474
11.2 Introduction to Data AbStractionccccceveeeievuieieireecieeeeereenea, 475
11.3 Design Issues for Abstract Data TYPESceveevveeereeeiveeeeeereeeneene. 478
11.4 Language EXAmMPIES ...ccocueiioouieeeeiee e 479
Interview: BJARNE STROUSTRUP —C++: Its Birth,
Its Ubiquitousness, and Common CritiCiSmscccveeeeeeiiiieeeenniiiieeeennee, 480
11.5 Parameterized Abstract Data TYPES......ccoueevreeevueeereeiieeeeeeeereeeneeenn. 503
11.6 Encapsulation CONStIUCTS ...cvvieviieereeieeeieeeeee e 509
11.7 Naming Encapsulationscc.ceceeeeeeceeeieeeeeeeeeeeeeeeeeeeee e e e 513

Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises..... 517

Chapter 12

Chapter 13

Contents Xvii

Support for Object-Oriented Programming 523
121 INtrOdUCTION...cuiitiieticieieteeeet e 524
12.2 Object-Oriented Programmingcc.coeeeeeeeeeeeeeeeeeeeeeeeeeee e 525
12.3 Design Issues for Object-Oriented Languages........ccceeuveeveeeueeennens 529
12.4 Support for Object-Oriented Programming in Smalltalk................. 534
Interview: BJARNE STROUSTRUP —On Paradigms and Better

PrOGramMmMINGeeeeeeeeieiiieeeeeeeeeeeeeceer et 536
12.5 Support for Object-Oriented Programming in C++....ccueevveeeueeennnns 538
12.6 Support for Object-Oriented Programming in Objective-C 549
12.7 Support for Object-Oriented Programming in Java.........ccccceueeune.... 552
12.8 Support for Object-Oriented Programming in C# ..c.ooeovveeuveeueeennnne 556
12.9 Support for Object-Oriented Programming in Ada 95c...ccuveunee.. 558
12.10 Support for Object-Oriented Programming in RUbYccoceeuvennne.n. 563
12.11 Implementation of Object-Oriented CONStIUCES.....evvvevviereiirieieenens 566

Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises 569

Concurrency 575
13,1 INtrOTUCHION.ccuiitieie ittt ettt ettt ettt et eve e e 576
13.2 Introduction to Subprogram-Level CONCUFIENCY...ccuveeereeeeeeeeeneee 581
13,3 SEMAPNOIES .eeieeeeeeeeeeeeeee et 586
13,4 MIONIOIS. ieuiictieteeie ettt ettt ettt ettt eaeeeve e eaneas 591
13.5 MESSAGE PaSSING ..eeiiurieiiiiiiieeiee et et ettt eee e e 593
13.6 Ada Support for CONCUIIENCY ..cuveeeveeeeeeeeeeeereeeee e e ens 594
13.7 JAVA TRIEAUS ...ecvieeiicveete ettt ettt 603
13.8 CHTIIEAUS c.vevieieeiieieeteeee ettt 613
13.9 Concurrency in Functional Languagesccueeeveeeeeeeueeeeeeeeeeeenns 618
13.10 Statement-Level CONCUIENCY w..uveeeeeeeeeeeeeeeeeeeee e 621

Summary ¢ Bibliographic Notes ¢ Review Questions ¢ Problem Set ¢
Programming EXEICISES .uuiuniiiiiie et e ettt e et e e e e e e e eaaeeaanes 623

xviii Contents

Chapter 14 Exception Handling and Event Handling 629
14.1 Introduction to Exception Handlingccceeveeeeveeeeeeineeceeeereeenene, 630
HISEOFY NOLE +ueueretetetetteenen et eteuesesesseeenenenenesasesesasasnsnsnenenenssesnsnsnsnens 634
14.2 Exception Handling in Adacc.ocveevveeeeeieeieieeeeeeeeceeee e, 636
14.3 Exception Handling in Ca+.ueeeieeueeeeeeee et 643
14.4 Exception Handling in JAVA c...ccveeeveeeueeeeeeeeee e, 647
14.5 Introduction to Event Handling.......cccceeeveuiiieiiieicineeicieeeeeee e 655
14.6 Event Handling With JaVacecueeeueeeeueeeeeeeee e, 656
14.7 Event Handling in CH# .eovveriieeeeeceiee et 661
Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEICISES ... iiuuuiiiiiiiee i e et e e et e e e e et e e e e e eaae e e eaeeeaanns 664
Chapter 15 Functional Programming Languages 671
15 1 INtrOdUCHION.cviiiictieie ettt ettt 672
15.2 Mathematical FUNCHIONS......cveevieuierieeieeieeieeeieieete et 673
15.3 Fundamentals of Functional Programming Languages................... 676
15.4 The First Functional Programming Language: LISPcccceevneeee. 677
15.5 An Introduction to SChEME.....ceevvieeiiiiieie et 681
15,6 ComMmON LISP ittt 699
15,7 MLt 701
15.8 HASKEIl cuvviieieeieeeeeeeeeeeeee et 707
150 e 712
15.10 Support for Functional Programming in Primarily
Imperative LangUAGES c.uuuevuniiineiieeiieeeieeeie et e e e e e e e eaeeereeeens 715
15.11 A Comparison of Functional and Imperative Languages................. 717
Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEICISES ..uuiiuniiieiie e e e e ea e eaanas 720
Chapter 16 Logic Programming Languages 727
16.1 INtrodUCHION. cviieiiceieie ettt 728
16.2 A Brief Introduction to Predicate CalCulus.....ccoeeveeereecieerieereennnne. 728

16.3 Predicate Calculus and Proving TheOremsc..eeeeueeeeeueeeeeieeeeeenn 732

Contents Xix

16.4 An Overview of Logic Programmingccceeeeeeeeeeeeeeeeeeeeeeeeeeeenns 734
16.5 The OFigins 0f Prolog c...ceeieceeeeeeeee et 736
16.6 The Basic Elements of Prolog......ccoueeeueeeeeeeeeeieeeeeeee e 736
16.7 Deficiencies 0f Prol0g ...cc i e eeeeeeeeee et 751
16.8 Applications of Logic Programmingc.ceeeeeeueeeeeeeeeeeeeeeeeeeenns 757
Summary ¢ Bibliographic Notes ¢ Review Questions ¢ Problem Set

Programming EXEFCISES ...ciuuuniiiiieeeeiiiee et e et e e e tee e et e e eri e e eaaeeeeaeeeaannnns 758
BibliOgraphy cccceeeeeeeeeeeeee e 763

This page intentionally left blank

Preliminaries

11
1.2
1.3
14
1.5
1.6
1.7
1.8

Reasons for Studying Concepts of Programming Languages
Programming Domains

Language Evaluation Criteria

Influences on Language Design

Language Categories

Language Design Trade-Offs

Implementation Methods

Programming Environments

Chapter 1 Preliminaries

consider a few preliminaries. First, we explain some reasons why computer

science students and professional software developers should study general
concepts of language design and evaluation. This discussion is especially valu-
able for those who believe that a working knowledge of one or two programming
languages is sufficient for computer scientists. Then, we briefly describe the major
programming domains. Next, because the book evaluates language constructs and
features, we present a list of criteria that can serve as a basis for such judgments.
Then, we discuss the two major influences on language design: machine architecture
and program design methodologies. After that, we introduce the various categories
of programming languages. Next, we describe a few of the major trade-offs that
must be considered during language design.

Because this book is also about the implementation of programming languages,
this chapter includes an overview of the most common general approaches to imple-
mentation. Finally, we briefly describe a few examples of programming environments
and discuss their impact on software production.

B efore we begin discussing the concepts of programming languages, we must

1.1 Reasons for Studying Concepts of Programming Languages

It is natural for students to wonder how they will benefit from the study of pro-
gramming language concepts. After all, many other topics in computer science
are worthy of serious study. The following is what we believe to be a compel-
ling list of potential benefits of studying concepts of programming languages:

* [Increased capacity to express ideas. It is widely believed that the depth at
which people can think is influenced by the expressive power of the lan-
guage in which they communicate their thoughts. Those with only a weak
understanding of natural language are limited in the complexity of their
thoughts, particularly in depth of abstraction. In other words, it is difficult
for people to conceptualize structures they cannot describe, verbally or in
writing.

Programmers, in the process of developing software, are similarly con-
strained. The language in which they develop software places limits on
the kinds of control structures, data structures, and abstractions they can
use; thus, the forms of algorithms they can construct are likewise limited.
Awareness of a wider variety of programming language features can reduce
such limitations in software development. Programmers can increase the
range of their software development thought processes by learning new
language constructs.

It might be argued that learning the capabilities of other languages does
not help a programmer who is forced to use a language that lacks those
capabilities. That argument does not hold up, however, because often, lan-
guage constructs can be simulated in other languages that do not support
those constructs directly. For example, a C programmer who had learned
the structure and uses of associative arrays in Perl (Wall et al., 2000) might
design structures that simulate associative arrays in that language. In other

1.1 Reasons for Studying Concepts of Programming Languages 3

words, the study of programming language concepts builds an appreciation
for valuable language features and constructs and encourages programmers
to use them, even when the language they are using does not directly sup-
port such features and constructs.

Improved background for choosing appropriate languages. Many professional
programmers have had little formal education in computer science; rather,
they have developed their programming skills independently or through in-
house training programs. Such training programs often limit instruction to
one or two languages that are directly relevant to the current projects of the
organization. Many other programmers received their formal training years
ago. The languages they learned then are no longer used, and many features
now available in programming languages were not widely known at the time.
The result is that many programmers, when given a choice of languages for a
new project, use the language with which they are most familiar, even if it is
poorly suited for the project at hand. If these programmers were familiar with
awider range of languages and language constructs, they would be better able
to choose the language with the features that best address the problem.

Some of the features of one language often can be simulated in another
language. However, it is preferable to use a feature whose design has been
integrated into a language than to use a simulation of that feature, which is
often less elegant, more cumbersome, and less safe.

Increased ability to learn new languages. Computer programming is still a rela-
tively young discipline, and design methodologies, software development
tools, and programming languages are still in a state of continuous evolu-
ton. This makes software development an exciting profession, but it also
means that continuous learning is essential. The process of learning a new
programming language can be lengthy and difficult, especially for someone
who is comfortable with only one or two languages and has never examined
programming language concepts in general. Once a thorough understanding
of the fundamental concepts of languages is acquired, it becomes far easier
to see how these concepts are incorporated into the design of the language
being learned. For example, programmers who understand the concepts of
object-oriented programming will have a much easier time learning Java
(Arnold et al., 2006) than those who have never used those concepts.

The same phenomenon occurs in natural languages. The better you
know the grammar of your native language, the easier it is to learn a sec-
ond language. Furthermore, learning a second language has the benefit of
teaching you more about your first language.

The TIOBE Programming Community issues an index (http: //www
.tiobe.com/tiobe index/index.htm) that is an indicator of the
relative popularity of programming languages. For example, according to
the index, Java, C, and C++ were the three most popular languages in use
in August 2011." However, dozens of other languages were widely used at

1. Note that this index is only one measure of the popularity of programming languages, and

its accuracy is not universally accepted.

http://www.tiobe.com/tiobe_index/index.htm
http://www.tiobe.com/tiobe_index/index.htm

Chapter 1

Preliminaries

the time. The index data also show that the distribution of usage of pro-
gramming languages is always changing. The number of languages in use
and the dynamic nature of the statistics imply that every software developer
must be prepared to learn different languages.

Finally, it is essential that practicing programmers know the vocabulary
and fundamental concepts of programming languages so they can read and
understand programming language descriptions and evaluations, as well as
promotional literature for languages and compilers. These are the sources
of information needed in order to choose and learn a language.

Better understanding of the significance of implementation. In learning the con-
cepts of programming languages, it is both interesting and necessary to touch
on the implementation issues that affect those concepts. In some cases, an
understanding of implementation issues leads to an understanding of why
languages are designed the way they are. In turn, this knowledge leads to
the ability to use a language more intelligently, as it was designed to be used.
We can become better programmers by understanding the choices among
programming language constructs and the consequences of those choices.

Certain kinds of program bugs can be found and fixed only by a pro-
grammer who knows some related implementation details. Another ben-
efit of understanding implementation issues is that it allows us to visualize
how a computer executes various language constructs. In some cases, some
knowledge of implementation issues provides hints about the relative effi-
ciency of alternative constructs that may be chosen for a program. For
example, programmers who know little about the complexity of the imple-
mentation of subprogram calls often do not realize that a small subprogram
that is frequently called can be a highly inefficient design choice.

Because this book touches on only a few of the issues of implementa-
tion, the previous two paragraphs also serve well as rationale for studying
compiler design.

Better use of languages that are already known. Many contemporary program-
ming languages are large and complex. Accordingly, it is uncommon for
a programmer to be familiar with and use all of the features of a language
he or she uses. By studying the concepts of programming languages, pro-
grammers can learn about previously unknown and unused parts of the
languages they already use and begin to use those features.

Overall advancement of computing. Finally, there is a global view of comput-
ing that can justify the study of programming language concepts. Although
it is usually possible to determine why a particular programming language
became popular, many believe, at least in retrospect, that the most popu-
lar languages are not always the best available. In some cases, it might be
concluded that a language became widely used, at least in part, because
those in positions to choose languages were not sufficiently familiar with
programming language concepts.

For example, many people believe it would have been better if ALGOL
60 (Backus et al., 1963) had displaced Fortran (Metcalf et al., 2004) in the

1.2 Programming Domains 5

early 1960s, because it was more elegant and had much better control state-
ments, among other reasons. That it did not, is due partly to the program-
mers and software development managers of that time, many of whom did
not clearly understand the conceptual design of ALGOL 60. They found its
description difficult to read (which it was) and even more difficult to under-
stand. They did not appreciate the benefits of block structure, recursion,
and well-structured control statements, so they failed to see the benefits of
ALGOL 60 over Fortran.

Of course, many other factors contributed to the lack of acceptance of
ALGOL 60, as we will see in Chapter 2. However, the fact that computer
users were generally unaware of the benefits of the language played a sig-
nificant role.

In general, if those who choose languages were well informed, perhaps
better languages would eventually squeeze out poorer ones.

1.2 Programming Domains

1.21

1.2.2

Computers have been applied to a myriad of different areas, from controlling
nuclear power plants to providing video games in mobile phones. Because of
this great diversity in computer use, programming languages with very different
goals have been developed. In this section, we briefly discuss a few of the areas
of computer applications and their associated languages.

Scientific Applications

The first digital computers, which appeared in the late 1940s and early 1950s,
were invented and used for scientific applications. Typically, the scientific appli-
cations of that time used relatively simple data structures, but required large
numbers of floating-point arithmetic computations. The most common data
structures were arrays and matrices; the most common control structures were
counting loops and selections. The early high-level programming languages
invented for scientific applications were designed to provide for those needs.
Their competition was assembly language, so efficiency was a primary concern.
"The first language for scientific applications was Fortran. ALGOL 60 and most
of its descendants were also intended to be used in this area, although they were
designed to be used in related areas as well. For some scientific applications
where efficiency is the primary concern, such as those that were common in the
1950s and 1960s, no subsequent language is significantly better than Fortran,
which explains why Fortran is still used.

Business Applications

The use of computers for business applications began in the 1950s. Special
computers were developed for this purpose, along with special languages. The
first successful high-level language for business was COBOL (ISO/IEC, 2002),

Chapter 1

1.2.3

1.2.4

Preliminaries

the initial version of which appeared in 1960. It is still the most commonly
used language for these applications. Business languages are characterized by
facilities for producing elaborate reports, precise ways of describing and stor-
ing decimal numbers and character data, and the ability to specify decimal
arithmetic operations.

There have been few developments in business application languages out-
side the development and evolution of COBOL. Therefore, this book includes
only limited discussions of the structures in COBOL.

Artificial Intelligence

Artificial intelligence (AI) is a broad area of computer applications charac-
terized by the use of symbolic rather than numeric computations. Symbolic
computation means that symbols, consisting of names rather than numbers,
are manipulated. Also, symbolic computation is more conveniently done with
linked lists of data rather than arrays. This kind of programming sometimes
requires more flexibility than other programming domains. For example, in
some Al applications the ability to create and execute code segments during
execution is convenient.

The first widely used programming language developed for Al applications
was the functional language LISP (McCarthy et al., 1965), which appeared
in 1959. Most Al applications developed prior to 1990 were written in LISP
or one of its close relatives. During the early 1970s, however, an alternative
approach to some of these applications appeared—logic programming using
the Prolog (Clocksin and Mellish, 2003) language. More recently, some
Al applications have been written in systems languages such as C. Scheme
(Dybvig, 2003), a dialect of LISP, and Prolog are introduced in Chapters 15
and 16, respectively.

Systems Programming

The operating system and the programming support tools of a computer sys-
tem are collectively known as its systems software. Systems software is used
almost continuously and so it must be efficient. Furthermore, it must have low-
level features that allow the software interfaces to external devices to be written.

In the 1960s and 1970s, some computer manufacturers, such as IBM,
Digital, and Burroughs (now UNISYS), developed special machine-oriented
high-level languages for systems software on their machines. For IBM main-
frame computers, the language was PL/S, a dialect of PL/I; for Digital, it was
BLISS, a language at a level just above assembly language; for Burroughs, it
was Extended ALGOL. However, most system software is now written in more
general programming languages, such as C and C++.

The UNIX operating system is written almost entirely in C (ISO, 1999),
which has made it relatively easy to port, or move, to different machines. Some
of the characteristics of C make it a good choice for systems programming.
It is low level, execution efficient, and does not burden the user with many

1.3 Language Evaluation Criteria 7

safety restrictions. Systems programmers are often excellent programmers
who believe they do not need such restrictions. Some nonsystems program-
mers, however, find C to be too dangerous to use on large, important software
systems.

1.2.5 Web Software

The World Wide Web is supported by an eclectic collection of languages,
ranging from markup languages, such as HI'ML, which is not a programming
language, to general-purpose programming languages, such as Java. Because
of the pervasive need for dynamic Web content, some computation capability
is often included in the technology of content presentation. This functionality
can be provided by embedding programming code in an HTML document.
Such code is often in the form of a scripting language, such as JavaScript or
PHP. There are also some markup-like languages that have been extended to
include constructs that control document processing, which are discussed in
Section 1.5 and in Chapter 2.

1.3 Language Evaluation Criteria

As noted previously, the purpose of this book is to examine carefully the under-
lying concepts of the various constructs and capabilities of programming lan-
guages. We will also evaluate these features, focusing on their impact on the
software development process, including maintenance. To do this, we need a set
of evaluation criteria. Such a list of criteria is necessarily controversial, because
it is difficult to get even two computer scientists to agree on the value of some
given language characteristic relative to others. In spite of these differences,
most would agree that the criteria discussed in the following subsections are
important.

Some of the characteristics that influence three of the four most impor-
tant of these criteria are shown in Table 1.1, and the criteria themselves
are discussed in the following sections.” Note that only the most impor-
tant characteristics are included in the table, mirroring the discussion in
the following subsections. One could probably make the case that if one
considered less important characteristics, virtually all table positions could
include “bullets.”

Note that some of these characteristics are broad and somewhat vague,
such as writability, whereas others are specific language constructs, such as
exception handling. Furthermore, although the discussion might seem to imply
that the criteria have equal importance, that implication is not intended, and
it is clearly not the case.

2. The fourth primary criterion is cost, which is not included in the table because it is only
slightly related to the other criteria and the characteristics that influence them.

Chapter 1

131

Preliminaries

Table 1.1 Language evaluation criteria and the characteristics that affect them

CRITERIA
Characteristic READABILITY WRITABILITY RELIABILITY
Simplicity i . .
Orthogonality . . .
Data types . . .
Syntax design o . .
Support for abstraction . .
Expressivity] .
Type checking .
Exception handling .
Restricted aliasing .

Readability

One of the most important criteria for judging a programming language is the
ease with which programs can be read and understood. Before 1970, software
development was largely thought of in terms of writing code. The primary
positive characteristic of programming languages was efficiency. Language
constructs were designed more from the point of view of the computer than
of the computer users. In the 1970s, however, the software life-cycle concept
(Booch, 1987) was developed; coding was relegated to a much smaller role, and
maintenance was recognized as a major part of the cycle, particularly in terms
of cost. Because ease of maintenance is determined in large part by the read-
ability of programs, readability became an important measure of the quality of
programs and programming languages. This was an important juncture in the
evolution of programming languages. There was a distinct crossover from a
focus on machine orientation to a focus on human orientation.

Readability must be considered in the context of the problem domain. For
example, if a program that describes a computation is written in a language not
designed for such use, the program may be unnatural and convoluted, making
it unusually difficult to read.

The following subsections describe characteristics that contribute to the
readability of a programming language.

1.3.1.1 Overall Simplicity

The overall simplicity of a programming language strongly affects its readabil-
ity. A language with a large number of basic constructs is more difficult to learn
than one with a smaller number. Programmers who must use a large language
often learn a subset of the language and ignore its other features. This learning
pattern is sometimes used to excuse the large number of language constructs,

1.3 Language Evaluation Criteria 9

but that argument is not valid. Readability problems occur whenever the pro-
gram’s author has learned a different subset from that subset with which the
reader is familiar.

A second complicating characteristic of a programming language is feature
multiplicity—that is, having more than one way to accomplish a particular
operation. For example, in Java, a user can increment a simple integer variable
in four different ways:

count = count + 1
count += 1
count++

++count

Although the last two statements have slightly different meanings from each
other and from the others in some contexts, all of them have the same mean-
ing when used as stand-alone expressions. These variations are discussed in
Chapter 7.

A third potential problem is operator overloading, in which a single oper-
ator symbol has more than one meaning. Although this is often useful, it can
lead to reduced readability if users are allowed to create their own overloading
and do not do it sensibly. For example, it is clearly acceptable to overload +
to use it for both integer and floating-point addition. In fact, this overloading
simplifies a language by reducing the number of operators. However, suppose
the programmer defined + used between single-dimensioned array operands
to mean the sum of all elements of both arrays. Because the usual meaning of
vector addition is quite different from this, it would make the program more
confusing for both the author and the program’s readers. An even more extreme
example of program confusion would be a user defining + between two vector
operands to mean the difference between their respective first elements. Opera-
tor overloading is further discussed in Chapter 7.

Simplicity in languages can, of course, be carried too far. For example,
the form and meaning of most assembly language statements are models of
simplicity, as you can see when you consider the statements that appear in the
next section. This very simplicity, however, makes assembly language programs
less readable. Because they lack more complex control statements, program
structure is less obvious; because the statements are simple, far more of them
are required than in equivalent programs in a high-level language. These same
arguments apply to the less extreme case of high-level languages with inad-
equate control and data-structuring constructs.

1.3.1.2 Orthogonality

Orthogonality in a programming language means that a relatively small set of
primitive constructs can be combined in a relatively small number of ways to
build the control and data structures of the language. Furthermore, every pos-
sible combination of primitives is legal and meaningful. For example, consider

10

Chapter 1

Preliminaries

data types. Suppose a language has four primitive data types (integer, float,
double, and character) and two type operators (array and pointer). If the two
type operators can be applied to themselves and the four primitive data types,
a large number of data structures can be defined.

The meaning of an orthogonal language feature is independent of the
context of its appearance in a program. (the word orthogonal comes from the
mathematical concept of orthogonal vectors, which are independent of each
other.) Orthogonality follows from a symmetry of relationships among primi-
tives. A lack of orthogonality leads to exceptions to the rules of the language.
For example, in a programming language that supports pointers, it should be
possible to define a pointer to point to any specific type defined in the language.
However, if pointers are not allowed to point to arrays, many potentially useful
user-defined data structures cannot be defined.

We can illustrate the use of orthogonality as a design concept by compar-
ing one aspect of the assembly languages of the IBM mainframe computers
and the VAX series of minicomputers. We consider a single simple situation:
adding two 32-bit integer values that reside in either memory or registers and
replacing one of the two values with the sum. The IBM mainframes have two
instructions for this purpose, which have the forms

A Regl, memory cell
AR Regl, Reg2

where Regl and Reg2 represent registers. The semantics of these are

Regl <« contents(Regl) + contents (memory cell)
Regl ¢« contents(Regl) + contents (Reg2)

The VAX addition instruction for 32-bit integer values is

ADDL operand 1, operand 2

whose semantics is

operand_ 2 < contents (operand 1) + contents(operand 2)

In this case, either operand can be a register or a memory cell.

The VAX instruction design is orthogonal in that a single instruction can
use either registers or memory cells as the operands. There are two ways to
specify operands, which can be combined in all possible ways. The IBM design
is not orthogonal. Only two out of four operand combinations possibilities are
legal, and the two require different instructions, A and AR. The IBM design
is more restricted and therefore less writable. For example, you cannot add
two values and store the sum in a memory location. Furthermore, the IBM
design is more difficult to learn because of the restrictions and the additional
instruction.

1.3 Language Evaluation Criteria 11

Orthogonality is closely related to simplicity: The more orthogonal the
design of a language, the fewer exceptions the language rules require. Fewer
exceptions mean a higher degree of regularity in the design, which makes the
language easier to learn, read, and understand. Anyone who has learned a sig-
nificant part of the English language can testify to the difficulty of learning its
many rule exceptions (for example, i before e except after ¢).

As examples of the lack of orthogonality in a high-level language, consider
the following rules and exceptions in C. Although C has two kinds of struc-
tured data types, arrays and records (structs), records can be returned from
functions but arrays cannot. A member of a structure can be any data type
except void or a structure of the same type. An array element can be any data
type except void or a function. Parameters are passed by value, unless they
are arrays, in which case they are, in effect, passed by reference (because the
appearance of an array name without a subscript in a C program is interpreted
to be the address of the array’s first element).

As an example of context dependence, consider the C expression

a + b

This expression often means that the values of a and b are fetched and added
together. However, if a happens to be a pointer, it affects the value of b. For
example, if a points to a float value that occupies four bytes, then the value of b
must be scaled—in this case multiplied by 4—before it is added to a. Therefore,
the type of a affects the treatment of the value of b. The context of b affects
its meaning.

Too much orthogonality can also cause problems. Perhaps the most
orthogonal programming language is ALGOL 68 (van Wijngaarden et al.,
1969). Every language construct in ALGOL 68 has a type, and there are no
restrictions on those types. In addition, most constructs produce values. This
combinational freedom allows extremely complex constructs. For example, a
conditional can appear as the left side of an assignment, along with declarations
and other assorted statements, as long as the result is an address. This extreme
form of orthogonality leads to unnecessary complexity. Furthermore, because
languages require a large number of primitives, a high degree of orthogonality
results in an explosion of combinations. So, even if the combinations are simple,
their sheer numbers lead to complexity.

Simplicity in a language, therefore, is at least in part the result of a com-
bination of a relatively small number of primitive constructs and a limited use
of the concept of orthogonality.

Some believe that functional languages offer a good combination of sim-
plicity and orthogonality. A functional language, such as LISP, is one in which
computations are made primarily by applying functions to given parameters.
In contrast, in imperative languages such as C, C++, and Java, computations
are usually specified with variables and assignment statements. Functional
languages offer potentially the greatest overall simplicity, because they can
accomplish everything with a single construct, the function call, which can be

12

Chapter 1

Preliminaries

combined simply with other function calls. This simple elegance is the reason
why some language researchers are attracted to functional languages as the
primary alternative to complex nonfunctional languages such as C++. Other
factors, such as efficiency, however, have prevented functional languages from
becoming more widely used.

1.3.1.3 Data Types

The presence of adequate facilities for defining data types and data structures
in a language is another significant aid to readability. For example, suppose a
numeric type is used for an indicator flag because there is no Boolean type in the
language. In such a language, we might have an assignment such as the following:

timeOut = 1

The meaning of this statement is unclear, whereas in a language that includes
Boolean types, we would have the following:

timeOut = true

The meaning of this statement is perfectly clear.

1.3.1.4 Syntax Design

The syntax, or form, of the elements of a language has a significant effect on
the readability of programs. Following are some examples of syntactic design
choices that affect readability:

* Special words. Program appearance and thus program readability are strongly
influenced by the forms of a language’s special words (for example, while,
class, and for). Especially important is the method of forming compound
statements, or statement groups, primarily in control constructs. Some lan-
guages have used matching pairs of special words or symbols to form groups.
C and its descendants use braces to specify compound statements. All of
these languages suffer because statement groups are always terminated in the
same way, which makes it difficult to determine which group is being ended
when an end or a right brace appears. Fortran 95 and Ada make this clearer
by using a distinct closing syntax for each type of statement group. For
example, Ada uses end if to terminate a selection construct and end loop
to terminate a loop construct. This is an example of the conflict between
simplicity that results in fewer reserved words, as in C++, and the greater
readability that can result from using more reserved words, as in Ada.

Another important issue is whether the special words of a language can
be used as names for program variables. If so, the resulting programs can
be very confusing. For example, in Fortran 95, special words, such as Do
and End, are legal variable names, so the appearance of these words in a
program may or may not connote something special.

1.3.2

1.3 Language Evaluation Criteria 13

* Form and meaning. Designing statements so that their appearance at least
partially indicates their purpose is an obvious aid to readability. Semantics,
or meaning, should follow directly from syntax, or form. In some cases, this
principle is violated by two language constructs that are identical or similar
in appearance but have different meanings, depending perhaps on context. In
C, for example, the meaning of the reserved word static depends on the
context of its appearance. If used on the definition of a variable inside a func-
ton, it means the variable is created at compile time. If used on the definition
of a variable that is outside all functions, it means the variable is visible only in
the file in which its definition appears; that is, it is not exported from that file.

One of the primary complaints about the shell commands of UNIX
(Raymond, 2004) is that their appearance does not always suggest their
function. For example, the meaning of the UNIX command grep can be
deciphered only through prior knowledge, or perhaps cleverness and famil-
iarity with the UNIX editor, ed. The appearance of grep connotes nothing
to UNIX beginners. (In ed, the command /regular_expression/ searches for a
substring that matches the regular expression. Preceding this with g makes
it a global command, specifying that the scope of the search is the whole
file being edited. Following the command with p specifies that lines with
the matching substring are to be printed. So g/regular_expression/p, which
can obviously be abbreviated as grep, prints all lines in a file that contain
substrings that match the regular expression.)

Writability

Writability is a measure of how easily a language can be used to create programs
for a chosen problem domain. Most of the language characteristics that affect
readability also affect writability. This follows directly from the fact that the
process of writing a program requires the programmer frequently to reread the
part of the program that is already written.

As is the case with readability, writability must be considered in the con-
text of the target problem domain of a language. It is simply not reasonable to
compare the writability of two languages in the realm of a particular application
when one was designed for that application and the other was not. For example,
the writabilities of Visual BASIC (VB) and C are dramatically different for
creating a program that has a graphical user interface, for which VB is ideal.
Their writabilities are also quite different for writing systems programs, such
as an operation system, for which C was designed.

The following subsections describe the most important characteristics
influencing the writability of a language.

1.3.2.1 Simplicity and Orthogonality

If a language has a large number of different constructs, some programmers
might not be familiar with all of them. This situation can lead to a misuse of
some features and a disuse of others that may be either more elegant or more

14

Chapter 1

Preliminaries

efficient, or both, than those that are used. It may even be possible, as noted
by Hoare (1973), to use unknown features accidentally, with bizarre results.
Therefore, a smaller number of primitive constructs and a consistent set of
rules for combining them (that is, orthogonality) is much better than simply
having a large number of primitives. A programmer can design a solution to a
complex problem after learning only a simple set of primitive constructs.

On the other hand, too much orthogonality can be a detriment to writ-
ability. Errors in programs can go undetected when nearly any combination of
primitives is legal. This can lead to code absurdities that cannot be discovered
by the compiler.

1.3.2.2 Support for Abstraction

Briefly, abstraction means the ability to define and then use complicated
structures or operations in ways that allow many of the details to be ignored.
Abstraction is a key concept in contemporary programming language design.
This is a reflection of the central role that abstraction plays in modern pro-
gram design methodologies. The degree of abstraction allowed by a program-
ming language and the naturalness of its expression are therefore important to
its writability. Programming languages can support two distinct categories of
abstraction, process and data.

A simple example of process abstraction is the use of a subprogram to
implement a sort algorithm that is required several times in a program. With-
out the subprogram, the sort code would need to be replicated in all places
where it was needed, which would make the program much longer and more
tedious to write. Perhaps more important, if the subprogram were not used, the
code that used the sort subprogram would be cluttered with the sort algorithm
details, greatly obscuring the flow and overall intent of that code.

As an example of data abstraction, consider a binary tree that stores integer
data in its nodes. Such a binary tree would usually be implemented in a language
that does not support pointers and dynamic storage management with a heap,
such as Fortran 77, as three parallel integer arrays, where two of the integers are
used as subscripts to specify offspring nodes. In C++ and Java, these trees can be
implemented by using an abstraction of a tree node in the form of a simple class
with two pointers (or references) and an integer. The naturalness of the latter
representation makes it much easier to write a program that uses binary trees
in these languages than to write one in Fortran 77. It is a simple matter of the
problem solution domain of the language being closer to the problem domain.

The overall support for abstraction is clearly an important factor in the
writability of a language.

1.3.2.3 Expressivity

Expressivity in a language can refer to several different characteristics. In a
language such as APL (Gilman and Rose, 1976), it means that there are very
powerful operators that allow a great deal of computation to be accomplished

1.3.3

1.3 Language Evaluation Criteria 15

with a very small program. More commonly, it means that a language has
relatively convenient, rather than cumbersome, ways of specifying computa-
tions. For example, in C, the notation count ++ is more convenient and shorter
than count = count + 1. Also, the and then Boolean operator in Ada is a
convenient way of specifying short-circuit evaluation of a Boolean expression.
The inclusion of the for statement in Java makes writing counting loops easier
than with the use of while, which is also possible. All of these increase the
writability of a language.

Reliability

A program is said to be reliable if it performs to its specifications under
all conditions. The following subsections describe several language fea-
tures that have a significant effect on the reliability of programs in a given
language.

1.3.3.1 Type Checking

Type checking is simply testing for type errors in a given program, either
by the compiler or during program execution. Type checking is an impor-
tant factor in language reliability. Because run-time type checking is expen-
sive, compile-time type checking is more desirable. Furthermore, the earlier
errors in programs are detected, the less expensive it is to make the required
repairs. The design of Java requires checks of the types of nearly all variables
and expressions at compile time. This virtually eliminates type errors at run
time in Java programs. Types and type checking are discussed in depth in
Chapter 6.

One example of how failure to type check, at either compile time or run
time, has led to countless program errors is the use of subprogram parameters
in the original C language (Kernighan and Ritchie, 1978). In this language,
the type of an actual parameter in a function call was not checked to determine
whether its type matched that of the corresponding formal parameter in the
function. An int type variable could be used as an actual parameter in a call to
a function that expected a £loat type as its formal parameter, and neither the
compiler nor the run-time system would detect the inconsistency. For example,
because the bit string that represents the integer 23 is essentially unrelated to
the bit string that represents a floating-point 23, if an integer 23 is sent to a
function that expects a floating-point parameter, any uses of the parameter in
the function will produce nonsense. Furthermore, such problems are often
difficult to diagnose.” The current version of C has eliminated this problem
by requiring all parameters to be type checked. Subprograms and parameter-
passing techniques are discussed in Chapter 9.

3. In response to this and other similar problems, UNIX systems include a utility program
named lint that checks C programs for such problems.

16

Chapter 1

1.3.4

Preliminaries

1.3.3.2 Exception Handling

The ability of a program to intercept run-time errors (as well as other unusual
conditions detectable by the program), take corrective measures, and then
continue is an obvious aid to reliability. This language facility is called excep-
tion handling. Ada, C++, Java, and C# include extensive capabilities for
exception handling, but such facilities are practically nonexistent in many
widely used languages, including C and Fortran. Exception handling is dis-
cussed in Chapter 14.

1.3.3.3 Aliasing

Loosely defined, aliasing is having two or more distinct names that can be
used to access the same memory cell. It is now widely accepted that aliasing
is a dangerous feature in a programming language. Most programming lan-
guages allow some kind of aliasing—for example, two pointers set to point to
the same variable, which is possible in most languages. In such a program, the
programmer must always remember that changing the value pointed to by one
of the two changes the value referenced by the other. Some kinds of aliasing,
as described in Chapters 5 and 9 can be prohibited by the design of a language.

In some languages, aliasing is used to overcome deficiencies in the lan-
guage’s data abstraction facilities. Other languages greatly restrict aliasing to
increase their reliability.

1.3.3.4 Readability and Writability

Both readability and writability influence reliability. A program written in a
language that does not support natural ways to express the required algorithms
will necessarily use unnatural approaches. Unnatural approaches are less likely
to be correct for all possible situations. The easier a program is to write, the
more likely it is to be correct.

Readability affects reliability in both the writing and maintenance phases
of the life cycle. Programs that are difficult to read are difficult both to write
and to modify.

Cost

The total cost of a programming language is a function of many of its
characteristics.

First, there is the cost of training programmers to use the language, which
is a function of the simplicity and orthogonality of the language and the experi-
ence of the programmers. Although more powerful languages are not neces-
sarily more difficult to learn, they often are.

Second, there is the cost of writing programs in the language. This is a
function of the writability of the language, which depends in part on its close-
ness in purpose to the particular application. The original efforts to design and

1.3 Language Evaluation Criteria 17

implement high-level languages were driven by the desire to lower the costs
of creating software.

Both the cost of training programmers and the cost of writing programs in
a language can be significantly reduced in a good programming environment.
Programming environments are discussed in Section 1.8.

Third, there is the cost of compiling programs in the language. A major
impediment to the early use of Ada was the prohibitively high cost of run-
ning the first-generation Ada compilers. This problem was diminished by the
appearance of improved Ada compilers.

Fourth, the cost of executing programs written in a language is greatly
influenced by that language’s design. A language that requires many run-time
type checks will prohibit fast code execution, regardless of the quality of the
compiler. Although execution efficiency was the foremost concern in the design
of early languages, it is now considered to be less important.

A simple trade-off can be made between compilation cost and execution
speed of the compiled code. Optimization is the name given to the collection of
techniques that compilers may use to decrease the size and/or increase the execu-
tion speed of the code they produce. If little or no optimization is done, com-
pilation can be done much faster than if a significant effort is made to produce
optimized code. The choice between the two alternatives is influenced by the
environment in which the compiler will be used. In a laboratory for beginning
programming students, who often compile their programs many times during
development but use little code at execution time (their programs are small and
they must execute correctly only once), little or no optimization should be done.
In a production environment, where compiled programs are executed many
times after development, it is better to pay the extra cost to optimize the code.

The fifth factor in the cost of a language is the cost of the language imple-
mentation system. One of the factors that explains the rapid acceptance of
Java is that free compiler/interpreter systems became available for it soon after
its design was released. A language whose implementation system is either
expensive or runs only on expensive hardware will have a much smaller chance
of becoming widely used. For example, the high cost of first-generation Ada
compilers helped prevent Ada from becoming popular in its early days.

Sixth, there is the cost of poor reliability. If the software fails in a critical sys-
tem, such as a nuclear power plant or an X-ray machine for medical use, the cost
could be very high. The failures of noncritical systems can also be very expensive
in terms of lost future business or lawsuits over defective software systems.

The final consideration is the cost of maintaining programs, which includes
both corrections and modifications to add new functionality. The cost of software
maintenance depends on a number of language characteristics, primarily read-
ability. Because maintenance is often done by individuals other than the original
author of the software, poor readability can make the task extremely challenging.

The importance of software maintainability cannot be overstated. It has
been estimated that for large software systems with relatively long lifetimes,
maintenance costs can be as high as two to four times as much as development
costs (Sommerville, 2005).

18

Chapter 1

Preliminaries

Of all the contributors to language costs, three are most important: program
development, maintenance, and reliability. Because these are functions of writabil-
ity and readability, these two evaluation criteria are, in turn, the most important.

Of course, a number of other criteria could be used for evaluating program-
ming languages. One example is portability, or the ease with which programs
can be moved from one implementation to another. Portability is most strongly
influenced by the degree of standardization of the language. Some languages,
such as BASIC, are not standardized at all, making programs in these languages
very difficult to move from one implementation to another. Standardization is
a time-consuming and difficult process. A committee began work on producing
a standard version of C++ in 1989. It was approved in 1998.

Generality (the applicability to a wide range of applications) and well-
definedness (the completeness and precision of the language’s official defining
document) are two other criteria.

Most criteria, particularly readability, writability, and reliability, are neither
precisely defined nor exactly measurable. Nevertheless, they are useful concepts
and they provide valuable insight into the design and evaluation of program-
ming languages.

A final note on evaluation criteria: language design criteria are weighed
differently from different perspectives. Language implementors are concerned
primarily with the difficulty of implementing the constructs and features of the
language. Language users are worried about writability first and readability
later. Language designers are likely to emphasize elegance and the ability to
attract widespread use. These characteristics often conflict with one another.

1.4 Influences on Language Design

141

In addition to those factors described in Section 1.3, several other factors influ-
ence the basic design of programming languages. The most important of these
are computer architecture and programming design methodologies.

Computer Architecture

The basic architecture of computers has had a profound effect on language
design. Most of the popular languages of the past 50 years have been designed
around the prevalent computer architecture, called the von Neumann archi-
tecture, after one of its originators, John von Neumann (pronounced “von
Noyman”). These languages are called imperative languages. In a von Neu-
mann computer, both data and programs are stored in the same memory. The
central processing unit (CPU), which executes instructions, is separate from the
memory. Therefore, instructions and data must be transmitted, or piped, from
memory to the CPU. Results of operations in the CPU must be moved back
to memory. Nearly all digital computers built since the 1940s have been based
on the von Neumann architecture. The overall structure of a von Neumann
computer is shown in Figure 1.1.

Figure 1.1

The von Neumann
computer architecture

1.4 Influences on Language Design 19

Memory (stores both instructions and data)

ReSUItS. of Instructions and data
operations

Arithmetic and Control .
logic unit unit Input and output devices

Central processing unit

Because of the von Neumann architecture, the central features of impera-
tive languages are variables, which model the memory cells; assignment state-
ments, which are based on the piping operation; and the iterative form of
repetition, which is the most efficient way to implement repetition on this
architecture. Operands in expressions are piped from memory to the CPU,
and the result of evaluating the expression is piped back to the memory cell
represented by the left side of the assignment. Iteration is fast on von Neumann
computers because instructions are stored in adjacent cells of memory and
repeating the execution of a section of code requires only a branch instruction.
"This efficiency discourages the use of recursion for repetition, although recur-
sion is sometimes more natural.

The execution of a machine code program on a von Neumann architecture
computer occurs in a process called the fetch-execute cycle. As stated earlier,
programs reside in memory but are executed in the CPU. Each instruction to
be executed must be moved from memory to the processor. The address of the
next instruction to be executed is maintained in a register called the program
counter. The fetch-execute cycle can be simply described by the following
algorithm:

initialize the program counter

repeat forever
fetch the instruction pointed to by the program counter
increment the program counter to point at the next instruction
decode the instruction
execute the instruction

end repeat

20

Chapter 1

1.4.2

Preliminaries

The “decode the instruction” step in the algorithm means the instruction is
examined to determine what action it specifies. Program execution terminates
when a stop instruction is encountered, although on an actual computer a stop
instruction is rarely executed. Rather, control transfers from the operating sys-
tem to a user program for its execution and then back to the operating system
when the user program execution is complete. In a computer system in which
more than one user program may be in memory at a given time, this process
is far more complex.

As stated earlier, a functional, or applicative, language is one in which
the primary means of computation is applying functions to given parameters.
Programming can be done in a functional language without the kind of vari-
ables that are used in imperative languages, without assignment statements, and
without iteration. Although many computer scientists have expounded on the
myriad benefits of functional languages, such as Scheme, it is unlikely that they
will displace the imperative languages until a non-von Neumann computer is
designed that allows efficient execution of programs in functional languages.
Among those who have bemoaned this fact, the most eloquent is John Backus
(1978), the principal designer of the original version of Fortran.

In spite of the fact that the structure of imperative programming languages
is modeled on a machine architecture, rather than on the abilities and inclina-
tions of the users of programming languages, some believe that using imperative
languages is somehow more natural than using a functional language. So, these
people believe that even if functional programs were as efficient as imperative
programs, the use of imperative programming languages would still dominate.

Programming Design Methodologies

The late 1960s and early 1970s brought an intense analysis, begun in large part
by the structured-programming movement, of both the software development
process and programming language design.

An important reason for this research was the shift in the major cost of
computing from hardware to software, as hardware costs decreased and pro-
grammer costs increased. Increases in programmer productivity were relatively
small. In addition, progressively larger and more complex problems were being
solved by computers. Rather than simply solving sets of equations to simulate
satellite tracks, as in the early 1960s, programs were being written for large
and complex tasks, such as controlling large petroleum-refining facilities and
providing worldwide airline reservation systems.

The new software development methodologies that emerged as a result
of the research of the 1970s were called top-down design and stepwise refine-
ment. The primary programming language deficiencies that were discovered
were incompleteness of type checking and inadequacy of control statements
(requiring the extensive use of gotos).

In the late 1970s, a shift from procedure-oriented to data-oriented pro-
gram design methodologies began. Simply put, data-oriented methods empha-
size data design, focusing on the use of abstract data types to solve problems.

1.5 Language Categories 21

For data abstraction to be used effectively in software system design, it
must be supported by the languages used for implementation. The first lan-
guage to provide even limited support for data abstraction was SIMULA 67
(Birtwistle et al., 1973), although that language certainly was not propelled
to popularity because of it. The benefits of data abstraction were not widely
recognized until the early 1970s. However, most languages designed since the
late 1970s support data abstraction, which is discussed in detail in Chapter 11.

The latest step in the evolution of data-oriented software development,
which began in the early 1980s, is object-oriented design. Object-oriented
methodology begins with data abstraction, which encapsulates processing with
data objects and controls access to data, and adds inheritance and dynamic
method binding. Inheritance is a powerful concept that greatly enhances the
potential reuse of existing software, thereby providing the possibility of signifi-
cant increases in software development productivity. This is an important factor
in the increase in popularity of object-oriented languages. Dynamic (run-time)
method binding allows more flexible use of inheritance.

Object-oriented programming developed along with a language that
supported its concepts: Smalltalk (Goldberg and Robson, 1989). Although
Smalltalk never became as widely used as many other languages, support for
object-oriented programming is now part of most popular imperative lan-
guages, including Ada 95 (ARM, 1995), Java, C++, and C#. Object-oriented
concepts have also found their way into functional programming in CLOS
(Bobrow etal., 1988) and F# (Syme, et al., 2010), as well as logic programming
in Prolog++ (Moss, 1994). Language support for object-oriented programming
is discussed in detail in Chapter 12.

Procedure-oriented programming is, in a sense, the opposite of data-
oriented programming. Although data-oriented methods now dominate soft-
ware development, procedure-oriented methods have not been abandoned.
On the contrary, in recent years, a good deal of research has occurred in
procedure-oriented programming, especially in the area of concurrency.
These research efforts brought with them the need for language facilities for
creating and controlling concurrent program units. Ada, Java, and C# include
such capabilities. Concurrency is discussed in detail in Chapter 13.

All of these evolutionary steps in software development methodologies led
to new language constructs to support them.

1.5 Language Categories

Programming languages are often categorized into four bins: imperative,
functional, logic, and object oriented. However, we do not consider languages
that support object-oriented programming to form a separate category of
languages. We have described how the most popular languages that support
object-oriented programming grew out of imperative languages. Although
the object-oriented software development paradigm differs significantly from
the procedure-oriented paradigm usually used with imperative languages, the

22

Chapter 1

Preliminaries

extensions to an imperative language required to support object-oriented pro-
gramming are not intensive. For example, the expressions, assignment state-
ments, and control statements of C and Java are nearly identical. (On the other
hand, the arrays, subprograms, and semantics of Java are very different from
those of C.) Similar statements can be made for functional languages that sup-
port object-oriented programming.

Another kind of language, the visual language, is a subcategory of the impera-
tive languages. The most popular visual languages are the NET languages. These
languages (or their implementations) include capabilities for drag-and-drop gen-
eration of code segments. Such languages were once called fourth-generation
languages, although that name has fallen out of use. The visual languages provide
a simple way to generate graphical user interfaces to programs. For example, using
Visual Studio to develop software in the .NET languages, the code to produce a
display of a form control, such as a button or text box, can be created with a single
keystroke. These capabilities are now available in all of the .NET languages.

Some authors refer to scripting languages as a separate category of pro-
gramming languages. However, languages in this category are bound together
more by their implementation method, partial or full interpretation, than by
a common language design. The languages that are typically called scripting
languages, among them Perl, JavaScript, and Ruby, are imperative languages
in every sense.

A logic programming language is an example of a rule-based language.
In an imperative language, an algorithm is specified in great detail, and the
specific order of execution of the instructions or statements must be included.
In a rule-based language, however, rules are specified in no particular order,
and the language implementation system must choose an order in which the
rules are used to produce the desired result. This approach to software devel-
opment is radically different from those used with the other two categories of
languages and clearly requires a completely different kind of language. Prolog,
the most commonly used logic programming language, and logic programming
are discussed in Chapter 16.

In recent years, a new category of languages has emerged, the markup/
programming hybrid languages. Markup languages are not programming
languages. For instance, HTML, the most widely used markup language, is
used to specify the layout of information in Web documents. However, some
programming capability has crept into some extensions to HTML and XML.
Among these are the Java Server Pages Standard Tag Library (JSTL) and
eXtensible Stylesheet Language Transformations (XSLT). Both of these are
briefly introduced in Chapter 2. Those languages cannot be compared to any
of the complete programming languages and therefore will not be discussed
after Chapter 2.

A host of special-purpose languages have appeared over the past 50 years.
These range from Report Program Generator (RPG), which is used to produce
business reports; to Automatically Programmed Tools (APT), which is used for
instructing programmable machine tools; to General Purpose Simulation Sys-
tem (GPSS), which is used for systems simulation. This book does not discuss

1.7 Implementation Methods 23

special-purpose languages, primarily because of their narrow applicability and
the difficulty of comparing them with other languages.

1.6 Language Design Trade-Offs

The programming language evaluation criteria described in Section 1.3
provide a framework for language design. Unfortunately, that framework is
self-contradictory. In his insightful paper on language design, Hoare (1973)
stated that “there are so many important but conflicting criteria, that their
reconciliation and satisfaction is a major engineering task.”

"Two criteria that conflict are reliability and cost of execution. For example, the
Java language definition demands that all references to array elements be checked
to ensure that the index or indices are in their legal ranges. This step adds a great
deal to the cost of execution of Java programs that contain large numbers of refer-
ences to array elements. C does not require index range checking, so C programs
execute faster than semantically equivalent Java programs, although Java programs
are more reliable. The designers of Java traded execution efficiency for reliability.

As another example of conflicting criteria that leads directly to design
trade-offs, consider the case of APL. APL includes a powerful set of operators
for array operands. Because of the large number of operators, a significant
number of new symbols had to be included in APL to represent the operators.
Also, many APL operators can be used in a single, long, complex expression.
One result of this high degree of expressivity is that, for applications involv-
ing many array operations, APL is very writable. Indeed, a huge amount of
computation can be specified in a very small program. Another result is that
APL programs have very poor readability. A compact and concise expression
has a certain mathematical beauty but it is difficult for anyone other than the
programmer to understand. Well-known author Daniel McCracken (1970)
once noted that it took him four hours to read and understand a four-line APL
program. The designer of APL traded readability for writability.

The conflict between writability and reliability is a common one in lan-
guage design. The pointers of C++ can be manipulated in a variety of ways,
which supports highly flexible addressing of data. Because of the potential reli-
ability problems with pointers, they are not included in Java.

Examples of conflicts among language design (and evaluation) criteria
abound; some are subtle, others are obvious. It is therefore clear that the task
of choosing constructs and features when designing a programming language
requires many compromises and trade-offs.

1.7 Implementation Methods

As described in Section 1.4.1, two of the primary components of a computer
are its internal memory and its processor. The internal memory is used to
store programs and data. The processor is a collection of circuits that provides

24

Chapter 1

1.7.1

Preliminaries

a realization of a set of primitive operations, or machine instructions, such as
those for arithmetic and logic operations. In most computers, some of these
instructions, which are sometimes called macroinstructions, are actually imple-
mented with a set of instructions called microinstructions, which are defined
at an even lower level. Because microinstructions are never seen by software,
they will not be discussed further here.

The machine language of the computer is its set of instructions. In the
absence of other supporting software, its own machine language is the only
language that most hardware computers “understand.” Theoretically, a com-
puter could be designed and built with a particular high-level language as its
machine language, but it would be very complex and expensive. Furthermore,
it would be highly inflexible, because it would be difficult (but not impossible)
to use it with other high-level languages. The more practical machine design
choice implements in hardware a very low-level language that provides the
most commonly needed primitive operations and requires system software to
create an interface to programs in higher-level languages.

A language implementation system cannot be the only software on a com-
puter. Also required is a large collection of programs, called the operating sys-
tem, which supplies higher-level primitives than those of the machine language.
These primitives provide system resource management, input and output oper-
ations, a file management system, text and/or program editors, and a variety of
other commonly needed functions. Because language implementation systems
need many of the operating system facilities, they interface with the operating
system rather than directly with the processor (in machine language).

The operating system and language implementations are layered over the
machine language interface of a computer. These layers can be thought of as
virtual computers, providing interfaces to the user at higher levels. For exam-
ple, an operating system and a C compiler provide a virtual C computer. With
other compilers, a machine can become other kinds of virtual computers. Most
computer systems provide several different virtual computers. User programs
form another layer over the top of the layer of virtual computers. The layered
view of a computer is shown in Figure 1.2.

The implementation systems of the first high-level programming lan-
guages, constructed in the late 1950s, were among the most complex software
systems of that time. In the 1960s, intensive research efforts were made to
understand and formalize the process of constructing these high-level language
implementations. The greatest success of those efforts was in the area of syn-
tax analysis, primarily because that part of the implementation process is an
application of parts of automata theory and formal language theory that were
then well understood.

Compilation

Programming languages can be implemented by any of three general methods.
At one extreme, programs can be translated into machine language, which
can be executed directly on the computer. This method is called a compiler

Figure 1.2

Layered interface of
virtual computers,
provided by a typical
computer system

1.7 Implementation Methods 25

Virtual Virtual C#
VB .NET computer
computer

C#
Compiler
Virtual

Scheme

-NET computer

common

) language

Virtual run time Scheme

C interpreter
computer

Operating system

Operating
system

command
interpreter

Macroinstruction
interpreter

Bare
machine

Virtual Java
computer

Java Virtual
Machine

Assembler

Ada
compiler

Virtual
assembly
language

Virtual computer
Ada

computer

implementation and has the advantage of very fast program execution, once
the translation process is complete. Most production implementations of lan-
guages, such as C, COBOL, C++, and Ada, are by compilers.

The language that a compiler translates is called the source language. The
process of compilation and program execution takes place in several phases, the
most important of which are shown in Figure 1.3.

The lexical analyzer gathers the characters of the source program into lexi-
cal units. The lexical units of a program are identifiers, special words, operators,
and punctuation symbols. The lexical analyzer ignores comments in the source
program because the compiler has no use for them.

The syntax analyzer takes the lexical units from the lexical analyzer and uses
them to construct hierarchical structures called parse trees. These parse trees
represent the syntactic structure of the program. In many cases, no actual parse
tree structure is constructed; rather, the information that would be required to
build a tree is generated and used directly. Both lexical units and parse trees are
further discussed in Chapter 3. Lexical analysis and syntax analysis, or parsing,
are discussed in Chapter 4.

26 Chapter 1 Preliminaries

Figure 1.3

Source

The compilation process program

Lexical
analyzer

Lexical units

Syntax
analyzer

Parse trees

Intermediate
Symbol code generator Optimization
table and semantic (optional)

analyzer
|

Intermediate
code

Code
generator

Machine

Ianguagi/‘mPUt data

Computer

Results

The intermediate code generator produces a program in a different lan-
guage, at an intermediate level between the source program and the final out-
put of the compiler: the machine language program.* Intermediate languages
sometimes look very much like assembly languages, and in fact, sometimes are
actual assembly languages. In other cases, the intermediate code is at a level

4. Note that the words program and code are often used interchangeably.

1.7 Implementation Methods 27

somewhat higher than an assembly language. The semantic analyzer is an inte-
gral part of the intermediate code generator. The semantic analyzer checks for
errors, such as type errors, that are difficult, if not impossible, to detect during
syntax analysis.

Optimization, which improves programs (usually in their intermediate
code version) by making them smaller or faster or both, is often an optional part
of compilation. In fact, some compilers are incapable of doing any significant
optimization. This type of compiler would be used in situations where execu-
tion speed of the translated program is far less important than compilation
speed. An example of such a situation is a computing laboratory for beginning
programmers. In most commercial and industrial situations, execution speed is
more important than compilation speed, so optimization is routinely desirable.
Because many kinds of optimization are difficult to do on machine language,
most optimization is done on the intermediate code.

The code generator translates the optimized intermediate code version of
the program into an equivalent machine language program.

The symbol table serves as a database for the compilation process. The
primary contents of the symbol table are the type and attribute information
of each user-defined name in the program. This information is placed in the
symbol table by the lexical and syntax analyzers and is used by the semantic
analyzer and the code generator.

As stated previously, although the machine language generated by a com-
piler can be executed directly on the hardware, it must nearly always be run
along with some other code. Most user programs also require programs from
the operating system. Among the most common of these are programs for input
and output. The compiler builds calls to required system programs when they
are needed by the user program. Before the machine language programs pro-
duced by a compiler can be executed, the required programs from the operating
system must be found and linked to the user program. The linking operation
connects the user program to the system programs by placing the addresses of
the entry points of the system programs in the calls to them in the user pro-
gram. The user and system code together are sometimes called a load module,
or executable image. The process of collecting system programs and linking
them to user programs is called linking and loading, or sometimes just link-
ing. It is accomplished by a systems program called a linker.

In addition to systems programs, user programs must often be linked to
previously compiled user programs that reside in libraries. So the linker not
only links a given program to system programs, but also it may link it to other
user programs.

The speed of the connection between a computer’s memory and its proces-
sor usually determines the speed of the computer, because instructions often
can be executed faster than they can be moved to the processor for execution.
This connection is called the von Neumann bottleneck; it is the primary
limiting factor in the speed of von Neumann architecture computers. The von
Neumann bottleneck has been one of the primary motivations for the research
and development of parallel computers.

28 Chapter 1

1.7.2

Figure 1.4

Pure interpretation

Preliminaries

Pure Interpretation

Pure interpretation lies at the opposite end (from compilation) of implementa-
tion methods. With this approach, programs are interpreted by another program
called an interpreter, with no translation whatever. The interpreter program
acts as a software simulation of a machine whose fetch-execute cycle deals with
high-level language program statements rather than machine instructions. This
software simulation obviously provides a virtual machine for the language.

Pure interpretation has the advantage of allowing easy implementation of
many source-level debugging operations, because all run-time error messages
can refer to source-level units. For example, if an array index is found to be out
of range, the error message can easily indicate the source line and the name
of the array. On the other hand, this method has the serious disadvantage that
execution is 10 to 100 times slower than in compiled systems. The primary
source of this slowness is the decoding of the high-level language statements,
which are far more complex than machine language instructions (although
there may be fewer statements than instructions in equivalent machine code).
Furthermore, regardless of how many times a statement is executed, it must be
decoded every time. Therefore, statement decoding, rather than the connec-
tion between the processor and memory, is the bottleneck of a pure interpreter.

Another disadvantage of pure interpretation is that it often requires more
space. In addition to the source program, the symbol table must be present during
interpretation. Furthermore, the source program may be stored in a form designed
for easy access and modification rather than one that provides for minimal size.

Although some simple early languages of the 1960s (APL, SNOBOL, and
LISP) were purely interpreted, by the 1980s, the approach was rarely used on
high-level languages. However, in recent years, pure interpretation has made
a significant comeback with some Web scripting languages, such as JavaScript
and PHP, which are now widely used. The process of pure interpretation is
shown in Figure 1.4.

Source
program

Input data

Interpreter

Results

1.7.3

Figure 1.5

Hybrid implementation
system

1.7 Implementation Methods 29

Hybrid Implementation Systems

Some language implementation systems are a compromise between compilers
and pure interpreters; they translate high-level language programs to an inter-
mediate language designed to allow easy interpretation. This method is faster
than pure interpretation because the source language statements are decoded
only once. Such implementations are called hybrid implementation systems.

The process used in a hybrid implementation system is shown in
Figure 1.5. Instead of translating intermediate language code to machine
code, it simply interprets the intermediate code.

Source

program

Lexical
analyzer

Lexical units

Syntax
analyzer

Parse trees

Intermediate
code generator

Intermediate

code
/— Input data

Interpreter

Results

30

Chapter 1

1.7.4

Preliminaries

Perl is implemented with a hybrid system. Perl programs are partially com-
piled to detect errors before interpretation and to simplify the interpreter.

Initial implementations of Java were all hybrid. Its intermediate form,
called byte code, provides portability to any machine that has a byte code
interpreter and an associated run-time system. Together, these are called the
Java Virtual Machine. There are now systems that translate Java byte code into
machine code for faster execution.

A Just-in-Time (JI'T) implementation system initially translates programs
to an intermediate language. Then, during execution, it compiles intermediate
language methods into machine code when they are called. The machine code
version is kept for subsequent calls. JI'T systems are now widely used for Java
programs. Also, the .NET languages are all implemented with a JI'T system.

Sometimes an implementor may provide both compiled and interpreted
implementations for a language. In these cases, the interpreter is used to develop
and debug programs. Then, after a (relatively) bug-free state is reached, the
programs are compiled to increase their execution speed.

Preprocessors

A preprocessor is a program that processes a program immediately before the
program is compiled. Preprocessor instructions are embedded in programs.
The preprocessor is essentially a macro expander. Preprocessor instructions
are commonly used to specify that the code from another file is to be included.
For example, the C preprocessor instruction

#include "myLib.h"

causes the preprocessor to copy the contents of myLib. h into the program at
the position of the #include.

Other preprocessor instructions are used to define symbols to represent
expressions. For example, one could use

#define max (A, B) ((A) > (B) ? (A) : (B))

to determine the largest of two given expressions. For example, the expression
X =max(2 * vy, z / 1.73);

would be expanded by the preprocessor to

x = ((2*7y) > (z/1.73) 2 (2 *7v) : (z / 1.73);

Notice that this is one of those cases where expression side effects can cause
trouble. For example, if either of the expressions given to the max macro have
side effects—such as z++—it could cause a problem. Because one of the two
expression parameters is evaluated twice, this could result in z being incre-
mented twice by the code produced by the macro expansion.

Summary 31

1.8 Programming Environments

A programming environment is the collection of tools used in the development of
software. This collection may consist of only a file system, a text editor, a linker, and
a compiler. Or it may include a large collection of integrated tools, each accessed
through a uniform user interface. In the latter case, the development and mainte-
nance of software is greatly enhanced. Therefore, the characteristics of a program-
ming language are not the only measure of the software development capability of
a system. We now briefly describe several programming environments.

UNIX is an older programming environment, first distributed in the middle
1970s, built around a portable multiprogramming operating system. It provides a
wide array of powerful support tools for software production and maintenance in
avariety of languages. In the past, the most important feature absent from UNIX
was a uniform interface among its tools. This made it more difficult to learn and
to use. However, UNIX is now often used through a graphical user interface
(GUI) that runs on top of UNIX. Examples of UNIX GUIs are the Solaris Com-
mon Desktop Environment (CDE), GNOME, and KDE. These GUIs make the
interface to UNIX appear similar to that of Windows and Macintosh systems.

Borland JBuilder is a programming environment that provides an inte-
grated compiler, editor, debugger, and file system for Java development, where
all four are accessed through a graphical interface. JBuilder is a complex and
powerful system for creating Java software.

Microsoft Visual Studio .NET is a relatively recent step in the evolution
of software development environments. It is a large and elaborate collection
of software development tools, all used through a windowed interface. This
system can be used to develop software in any one of the five NET languages:
C#, Visual BASIC .NET, JScript (Microsoft’s version of JavaScript), F# (a func-
tional language), and C++/CLIL

NetBeans is a development environment that is primarily used for Java
application development but also supports JavaScript, Ruby, and PHP. Both
Visual Studio and NetBeans are more than development environments—they
are also frameworks, which means they actually provide common parts of the
code of the application.

SUMMARY

The study of programming languages is valuable for some important reasons: It
increases our capacity to use different constructs in writing programs, enables
us to choose languages for projects more intelligently, and makes learning new
languages easier.

Computers are used in a wide variety of problem-solving domains. The
design and evaluation of a particular programming language is highly depen-
dent on the domain in which it is to be used.

32 Chapter 1 Preliminaries

Among the most important criteria for evaluating languages are readability,
writability, reliability, and overall cost. These will be the basis on which we
examine and judge the various language features discussed in the remainder
of the book.

The major influences on language design have been machine architecture
and software design methodologies.

Designing a programming language is primarily an engineering feat, in
which a long list of trade-offs must be made among features, constructs, and
capabilities.

The major methods of implementing programming languages are compila-
tion, pure interpretation, and hybrid implementation.

Programming environments have become important parts of software
development systems, in which the language is just one of the components.

REVIEW QUESTIONS

1. Why is it useful for a programmer to have some background in language
design, even though he or she may never actually design a programming

language?
2. How can knowledge of programming language characteristics benefit the
whole computing community?

3. What programming language has dominated scientific computing over
the past 50 years?

4. What programming language has dominated business applications over
the past 50 years?

5. What programming language has dominated artificial intelligence over
the past 50 years?

6. In what language is most of UNIX written?
7. What is the disadvantage of having too many features in a language?

8. How can user-defined operator overloading harm the readability of a
program?

9. What is one example of a lack of orthogonality in the design of C?
10. What language used orthogonality as a primary design criterion?

11. What primitive control statement is used to build more complicated
control statements in languages that lack them?

12. What construct of a programming language provides process
abstraction?

13. What does it mean for a program to be reliable?
14. Why is type checking the parameters of a subprogram important?
15. What is aliasing?

16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.
30.

Problem Set 33

What is exception handling?
Why is readability important to writability?

How is the cost of compilers for a given language related to the design of
that language?

What have been the strongest influences on programming language
design over the past 50 years?

What is the name of the category of programming languages whose
structure is dictated by the von Neumann computer architecture?

What two programming language deficiencies were discovered as a
result of the research in software development in the 1970s?

What are the three fundamental features of an object-oriented program-
ming language?

What language was the first to support the three fundamental features of
object-oriented programming?

What is an example of two language design criteria that are in direct
conflict with each other?

What are the three general methods of implementing a programming
language?

Which produces faster program execution, a compiler or a pure
interpreter?

What role does the symbol table play in a compiler?

What does a linker do?

Why is the von Neumann bottleneck important?

What are the advantages in implementing a language with a pure
interpreter?

PROBLEM SET

1.

Do you believe our capacity for abstract thought is influenced by our
language skills? Support your opinion.
What are some features of specific programming languages you know
whose rationales are a mystery to you?

. What arguments can you make for the idea of a single language for all

programming domains?
What arguments can you make against the idea of a single language for
all programming domains?

Name and explain another criterion by which languages can be judged
(in addition to those discussed in this chapter).

34

Chapter 1

Preliminaries

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

What common programming language statement, in your opinion, is
most detrimental to readability?

. Java uses a right brace to mark the end of all compound statements.

What are the arguments for and against this design?

Many languages distinguish between uppercase and lowercase letters in
user-defined names. What are the pros and cons of this design decision?

Explain the different aspects of the cost of a programming language.

What are the arguments for writing efficient programs even though
hardware is relatively inexpensive?

Describe some design trade-offs between efficiency and safety in some
language you know.

In your opinion, what major features would a perfect programming lan-
guage include?

Was the first high-level programming language you learned imple-
mented with a pure interpreter, a hybrid implementation system, or a
compiler? (You may have to research this.)

Describe the advantages and disadvantages of some programming envi-
ronment you have used.

How do type declaration statements for simple variables affect the read-
ability of a language, considering that some languages do not require
them?

Write an evaluation of some programming language you know, using the
criteria described in this chapter.

Some programming languages—for example, Pascal—have used the
semicolon to separate statements, while Java uses it to terminate state-
ments. Which of these, in your opinion, is most natural and least likely
to result in syntax errors? Support your answer.

Many contemporary languages allow two kinds of comments: one in
which delimiters are used on both ends (multiple-line comments), and
one in which a delimiter marks only the beginning of the comment (one-
line comments). Discuss the advantages and disadvantages of each of
these with respect to our criteria.

Evolution of the Major
Programming Lanquages

2.1 Zuse’s Plankalkul

2.2 Pseudocodes

2.3 The IBM 704 and Fortran

2.4 Functional Programming: LISP

2.5 The First Step Toward Sophistication: ALGOL 60

2.6 Computerizing Business Records: COBOL

2.7 The Beginnings of Timesharing: BASIC

2.8 Everything for Everybody: PL/I

2.9 Two Early Dynamic Languages: APL and SNOBOL
2.10 The Beginnings of Data Abstraction: SIMULA 67
2.11 Orthogonal Design: ALGOL 68
2.12 Some Early Descendants of the ALGOLs
2.13 Programming Based on Logic: Prolog
2.14 History’s Largest Design Effort: Ada
2.15 Object-Oriented Programming: Smalltalk
2.16 Combining Imperative and Object-Oriented Features: C++
2.17 An Imperative-Based Object-Oriented Language: Java
2.18 Scripting Languages
2.19 The Flagship .NET Language: C#
2.20 Markup/Programming Hybrid Languages

36

Chapter 2

Evolution of the Major Programming Languages

guages. It explores the environment in which each was designed and focuses

on the contributions of the language and the motivation for its development.
Overall language descriptions are not included; rather, we discuss only some of the
new features introduced by each language. Of particular interest are the features
that most influenced subsequent languages or the field of computer science.

This chapter does not include an in-depth discussion of any language feature or
concept; that is left for later chapters. Brief, informal explanations of features will
suffice for our trek through the development of these languages.

This chapter discusses a wide variety of languages and language concepts that
will not be familiar to many readers. These topics are discussed in detail only in
later chapters. Those who find this unsettling may prefer to delay reading this chap-
ter until the rest of the book has been studied.

The choice as to which languages to discuss here was subjective, and some
readers will unhappily note the absence of one or more of their favorites. However,
to keep this historical coverage to a reasonable size, it was necessary to leave out
some languages that some regard highly. The choices were based on our estimate of
each language’s importance to language development and the computing world as a
whole. We also include brief discussions of some other languages that are referenced
later in the book.

The organization of this chapter is as follows: The initial versions of languages
generally are discussed in chronological order. However, subsequent versions of lan-
guages appear with their initial version, rather than in later sections. For example,
Fortran 2003 is discussed in the section with Fortran I (1956). Also, in some cases,
languages of secondary importance that are related to a language that has its own
section appear in that section.

This chapter includes listings of 14 complete example programs, each in a
different language. These programs are not described in this chapter; they are meant
simply to illustrate the appearance of programs in these languages. Readers familiar
with any of the common imperative languages should be able to read and understand
most of the code in these programs, except those in LISP, COBOL, and Smalltalk.

(A Scheme function similar to the LISP example is discussed in Chapter 15.) The same
problem is solved by the Fortran, ALGOL 60, PL/I, BASIC, Pascal, C, Perl, Ada, Java,
JavaScript, and C# programs. Note that most of the contemporary languages in this
list support dynamic arrays, but because of the simplicity of the example problem,

we did not use them in the example programs. Also, in the Fortran 95 program, we
avoided using the features that could have avoided the use of loops altogether, in
part to keep the program simple and readable and in part just to illustrate the basic
loop structure of the language.

Figure 2.1 is a chart of the genealogy of the high-level languages discussed in
this chapter.

T his chapter describes the development of a collection of programming lan-

1957
58

08
09
10
11

Fortran | —=$
Fortran Il ——

Fortran IV ==

N

I ALGOL 58

Chapter 2 Evolution of the Major Programming Languages 37

I FLOW-MATIC

Prolog e

Fortran 77—

MODULA-

Fortran 90— ¢

Fortran 95_5_ 4

Fortran 2003 ¢

Fortran 2008 ¢

Figure 2.1

ALGOL W

SIMULA 67

? LISP

SNOBOL

B¢ éOberon QuickBASIC T ® Haskell
NSI C (C89)
Visual BASIC ¢
e«Python
e Lua PHPJ \ eJava
Ada 95 Ruby
Javascript
»C99
Python 2.0
Visual Basic.NET ©
JRuby 1.8 Java 5.0
[
Ada 2005
Java 6.0 C# 2.0 Python 3.0
C# 3.0
3 Ri 1.9
{Ruby C#4.0
Java 7.0

Genealogy of common high-level programming languages

38

Chapter 2

Evolution of the Major Programming Languages

2.1 Zuse’s Plankalkiil

211

2.1.2

The first programming language discussed in this chapter is highly unusual
in several respects. For one thing, it was never implemented. Furthermore,
although developed in 1945, its description was not published until 1972.
Because so few people were familiar with the language, some of its capabilities
did not appear in other languages until 15 years after its development.

Historical Background

Between 1936 and 1945, German scientist Konrad Zuse (pronounced “Tsoo-
zuh”) built a series of complex and sophisticated computers from electrome-
chanical relays. By early 1945, Allied bombing had destroyed all but one of his
latest models, the Z4, so he moved to a remote Bavarian village, Hinterstein,
and his research group members went their separate ways.

Working alone, Zuse embarked on an effort to develop a language for
expressing computations for the Z4, a project he had begun in 1943 as a pro-
posal for his Ph.D. dissertation. He named this language Plankalkiil, which
means program calculus. In a lengthy manuscript dated 1945 but not published
until 1972 (Zuse, 1972), Zuse defined Plankalkiil and wrote algorithms in the
language to solve a wide variety of problems.

Language Overview

Plankalkiil was remarkably complete, with some of its most advanced features
in the area of data structures. The simplest data type in Plankalkiil was the
single bit. Integer and floating-point numeric types were built from the bit
type. The floating-point type used twos-complement notation and the “hid-
den bit” scheme currently used to avoid storing the most significant bit of the
normalized fraction part of a floating-point value.

In addition to the usual scalar types, Plankalkiil included arrays and records
(called structs in the C-based languages). The records could include nested
records.

Although the language had no explicit goto, it did include an iterative state-
ment similar to the Ada for. It also had the command Fin with a superscript
that specified an exit out of a given number of iteration loop nestings or to the
beginning of a new iteration cycle. Plankalkiil included a selection statement,
but it did not allow an else clause.

One of the most interesting features of Zuse’s programs was the inclusion
of mathematical expressions showing the current relationships between pro-
gram variables. These expressions stated what would be true during execution
at the points in the code where they appeared. These are very similar to the
assertions of Java and in those in axiomatic semantics, which is discussed in

Chapter 3.

2.2 Pseudocodes 39

Zuse’s manuscript contained programs of far greater complexity than any
written prior to 1945. Included were programs to sort arrays of numbers; test
the connectivity of a given graph; carry out integer and floating-point opera-
tions, including square root; and perform syntax analysis on logic formulas that
had parentheses and operators in six different levels of precedence. Perhaps
most remarkable were his 49 pages of algorithms for playing chess, a game in
which he was not an expert.

If a computer scientist had found Zuse’s description of Plankalkiil in the
early 1950s, the single aspect of the language that would have hindered its
implementation as defined would have been the notation. Each statement con-
sisted of either two or three lines of code. The first line was most like the state-
ments of current languages. The second line, which was optional, contained
the subscripts of the array references in the first line. The same method of
indicating subscripts was used by Charles Babbage in programs for his Ana-
lytical Engine in the middle of the nineteenth century. The last line of each
Plankalkiil statement contained the type names for the variables mentioned in
the first line. This notation is quite intimidating when first seen.

The following example assignment statement, which assigns the value of
the expression A[4] +1 to A[5], illustrates this notation. The row labeled v is
for subscripts, and the row labeled s is for the data types. In this example, 1.n
means an integer of # bits:

| + 1 =>
v
s |

[N 9
oo

.n .n

We can only speculate on the direction that programming language design
might have taken if Zuse’s work had been widely known in 1945 or even 1950.
Itis also interesting to consider how his work might have been different had he
done it in a peaceful environment surrounded by other scientists, rather than
in Germany in 1945 in virtual isolation.

2.2 Pseudocodes

First, note that the word pseudocode is used here in a different sense than its
contemporary meaning. We call the languages discussed in this section pseudo-
codes because that’s what they were named at the time they were developed and
used (the late 1940s and early 1950s). However, they are clearly not pseudo-
codes in the contemporary sense.

The computers that became available in the late 1940s and early 1950s
were far less usable than those of today. In addition to being slow, unreliable,
expensive, and having extremely small memories, the machines of that time
were difficult to program because of the lack of supporting software.

There were no high-level programming languages or even assembly lan-
guages, so programming was done in machine code, which is both tedious and

40

Chapter 2

221

Evolution of the Major Programming Languages

error prone. Among its problems is the use of numeric codes for specifying
instructions. For example, an ADD instruction might be specified by the code
14 rather than a connotative textual name, even if only a single letter. This
makes programs very difficult to read. A more serious problem is absolute
addressing, which makes program modification tedious and error prone. For
example, suppose we have a machine language program stored in memory.
Many of the instructions in such a program refer to other locations within the
program, usually to reference data or to indicate the targets of branch instruc-
tions. Inserting an instruction at any position in the program other than at
the end invalidates the correctness of all instructions that refer to addresses
beyond the insertion point, because those addresses must be increased to make
room for the new instruction. To make the addition correctly, all instructions
that refer to addresses that follow the addition must be found and modified. A
similar problem occurs with deletion of an instruction. In this case, however,
machine languages often include a “no operation” instruction that can replace
deleted instructions, thereby avoiding the problem.

These are standard problems with all machine languages and were the
primary motivations for inventing assemblers and assembly languages. In addi-
tion, most programming problems of that time were numerical and required
floating-point arithmetic operations and indexing of some sort to allow the
convenient use of arrays. Neither of these capabilities, however, was included in
the architecture of the computers of the late 1940s and early 1950s. These defi-
ciencies naturally led to the development of somewhat higher-level languages.

Short Code

The first of these new languages, named Short Code, was developed by John
Mauchly in 1949 for the BINAC computer, which was one of the first success-
ful stored-program electronic computers. Short Code was later transferred to
a UNIVAC I computer (the first commercial electronic computer sold in the
United States) and, for several years, was one of the primary means of pro-
gramming those machines. Although little is known of the original Short Code
because its complete description was never published, a programming manual
for the UNIVAC I version did survive (Remington-Rand, 1952). It is safe to
assume that the two versions were very similar.

The words of the UNIVAC I's memory had 72 bits, grouped as 12 six-bit
bytes. Short Code consisted of coded versions of mathematical expressions that
were to be evaluated. The codes were byte-pair values, and many equations
could be coded in a word. The following operation codes were included:

01 - 06 abs value In (n+2)nd power
02) 07 + 2n (n+2)nd root
03 = 08 pause 4an if <= n

04 / 09 (58 print and tab

2.2.2

2.2.3

2.2 Pseudocodes 41

Variables were named with byte-pair codes, as were locations to be used as
constants. For example, X0 and Y0 could be variables. The statement

X0 = SQRT(ABS(YO0))

would be coded in a word as 00 X0 03 20 06 Y0. The initial 00 was used
as padding to fill the word. Interestingly, there was no multiplication code;
multiplication was indicated by simply placing the two operands next to each
other, as in algebra.

Short Code was not translated to machine code; rather, it was implemented
with a pure interpreter. At the time, this process was called automatic program-
ming. It clearly simplified the programming process, but at the expense of
execution time. Short Code interpretation was approximately 50 times slower
than machine code.

Speedcoding

In other places, interpretive systems were being developed that extended
machine languages to include floating-point operations. The Speedcoding
system developed by John Backus for the IBM 701 is an example of such a
system (Backus, 1954). The Speedcoding interpreter effectively converted the
701 to a virtual three-address floating-point calculator. The system included
pseudoinstructions for the four arithmetic operations on floating-point
data, as well as operations such as square root, sine, arc tangent, exponent,
and logarithm. Conditional and unconditional branches and input/output
conversions were also part of the virtual architecture. To get an idea of the
limitations of such systems, consider that the remaining usable memory after
loading the interpreter was only 700 words and that the add instruction took
4.2 milliseconds to execute. On the other hand, Speedcoding included the
novel facility of automatically incrementing address registers. This facility did
not appear in hardware until the UNIVAC 1107 computers of 1962. Because of
such features, matrix multiplication could be done in 12 Speedcoding instruc-
tions. Backus claimed that problems that could take two weeks to program in
machine code could be programmed in a few hours using Speedcoding.

The UNIVAC “Compiling” System

Between 1951 and 1953, a team led by Grace Hopper at UNIVAC developed a
series of “compiling” systems named A-0, A-1, and A-2 that expanded a pseudo-
code into machine code subprograms in the same way as macros are expanded
into assembly language. The pseudocode source for these “compilers” was still
quite primitive, although even this was a great improvement over machine code
because it made source programs much shorter. Wilkes (1952) independently
suggested a similar process.

42

Chapter 2

2.2.4

Evolution of the Major Programming Languages

Related Work

Other means of easing the task of programming were being developed at about
the same time. At Cambridge University, David J. Wheeler (1950) developed
a method of using blocks of relocatable addresses to solve, at least partially, the
problem of absolute addressing, and later, Maurice V. Wilkes (also at Cam-
bridge) extended the idea to design an assembly program that could combine
chosen subroutines and allocate storage (Wilkes et al., 1951, 1957). This was
indeed an important and fundamental advance.

We should also mention that assembly languages, which are quite different
from the pseudocodes discussed, evolved during the early 1950s. However, they
had little impact on the design of high-level languages.

2.3 The IBM 704 and Fortran

231

Certainly one of the greatest single advances in computing came with the
introduction of the IBM 704 in 1954, in large measure because its capabilities
prompted the development of Fortran. One could argue that if it had not been
IBM with the 704 and Fortran, it would soon thereafter have been some other
organization with a similar computer and related high-level language. How-
ever, IBM was the first with both the foresight and the resources to undertake
these developments.

Historical Background

One of the primary reasons why the slowness of interpretive systems was tol-
erated from the late 1940s to the mid-1950s was the lack of floating-point
hardware in the available computers. All floating-point operations had to be
simulated in software, a very time-consuming process. Because so much pro-
cessor time was spent in software floating-point processing, the overhead of
interpretation and the simulation of indexing were relatively insignificant. As
long as floating-point had to be done by software, interpretation was an accept-
able expense. However, many programmers of that time never used interpre-
tive systems, preferring the efficiency of hand-coded machine (or assembly)
language. The announcement of the IBM 704 system, with both indexing and
floating-point instructions in hardware, heralded the end of the interpretive
era, at least for scientific computation. The inclusion of floating-point hard-
ware removed the hiding place for the cost of interpretation.

Although Fortran is often credited with being the first compiled high-
level language, the question of who deserves credit for implementing the first
such language is somewhat open. Knuth and Pardo (1977) give the credit to
Alick E. Glennie for his Autocode compiler for the Manchester Mark I com-
puter. Glennie developed the compiler at Fort Halstead, Royal Armaments
Research Establishment, in England. The compiler was operational by Sep-
tember 1952. However, according to John Backus (Wexelblat, 1981, p. 26),

2.3.2

2.3.3

2.3 The IBM 704 and Fortran 43

Glennie’s Autocode was so low level and machine oriented that it should not
be considered a compiled system. Backus gives the credit to Laning and Zierler
at the Massachusetts Institute of Technology.

The Laning and Zierler system (Laning and Zierler, 1954) was the first
algebraic translation system to be implemented. By algebraic, we mean that it
translated arithmetic expressions, used separately coded subprograms to com-
pute transcendental functions (e.g., sine and logarithm), and included arrays.
The system was implemented on the MIT Whirlwind computer, in experi-
mental prototype form, in the summer of 1952 and in a more usable form by
May 1953. The translator generated a subroutine call to code each formula,
or expression, in the program. The source language was easy to read, and the
only actual machine instructions included were for branching. Although this
work preceded the work on Fortran, it never escaped MIT.

In spite of these earlier works, the first widely accepted compiled high-
level language was Fortran. The following subsections chronicle this important
development.

Design Process

Even before the 704 system was announced in May 1954, plans were begun for
Fortran. By November 1954, John Backus and his group at IBM had produced
the report titled “The IBM Mathematical FORmula TRANGslating System:
FORTRAN” (IBM, 1954). This document described the first version of For-
tran, which we refer to as Fortran 0, prior to its implementation. It also boldly
stated that Fortran would provide the efficiency of hand-coded programs and
the ease of programming of the interpretive pseudocode systems. In another
burst of optimism, the document stated that Fortran would eliminate coding
errors and the debugging process. Based on this premise, the first Fortran
compiler included little syntax error checking.

The environment in which Fortran was developed was as follows: (1) Com-
puters had small memories and were slow and relatively unreliable; (2) the
primary use of computers was for scientific computations; (3) there were no
existing efficient and effective ways to program computers; and (4) because of
the high cost of computers compared to the cost of programmers, speed of
the generated object code was the primary goal of the first Fortran compilers.
The characteristics of the early versions of Fortran follow directly from this
environment.

Fortran | Overview

Fortran 0 was modified during the implementation period, which began in
January 1955 and continued until the release of the compiler in April 1957. The
implemented language, which we call Fortran I, is described in the first Fortran
Programmer’s Reference Manual, published in October 1956 (IBM, 1956). For-
tran [included input/output formatting, variable names of up to six characters
(it had been just two in Fortran 0), user-defined subroutines, although they

44

Chapter 2

2.3.4

Evolution of the Major Programming Languages

could not be separately compiled, the I£ selection statement, and the Do loop
statement.

All of Fortran I's control statements were based on 704 instructions. It is
not clear whether the 704 designers dictated the control statement design of
Fortran I or whether the designers of Fortran I suggested these instructions
to the 704 designers.

There were no data-typing statements in the Fortran I language. Variables
whose names began with I, J, K, L, M, and N were implicitly integer type, and all
others were implicitly floating-point. The choice of the letters for this conven-
tion was based on the fact that at that time scientists and engineers used letters
as variable subscripts, usually 7, j, and k. In a gesture of generosity, Fortran’s
designers threw in the three additional letters.

The most audacious claim made by the Fortran development group during
the design of the language was that the machine code produced by the compiler
would be about half as efficient as what could be produced by hand.! This, more
than anything else, made skeptics of potential users and prevented a great deal
of interest in Fortran before its actual release. To almost everyone’s surprise,
however, the Fortran development group nearly achieved its goal in efficiency.
The largest part of the 18 worker-years of effort used to construct the first com-
piler had been spent on optimization, and the results were remarkably effective.

The early success of Fortran is shown by the results of a survey made in
April 1958. At that time, roughly half of the code being written for 704s was
being written in Fortran, in spite of the skepticism of most of the programming
world only a year earlier.

Fortran 1l

The Fortran II compiler was distributed in the spring of 1958. It fixed many
of the bugs in the Fortran I compilation system and added some significant
features to the language, the most important being the independent com-
pilation of subroutines. Without independent compilation, any change in a
program required that the entire program be recompiled. Fortran I's lack of
independent-compilation capability, coupled with the poor reliability of the
704, placed a practical restriction on the length of programs to about 300 to
400 lines (Wexelblat, 1981, p. 68). Longer programs had a poor chance of
being compiled completely before a machine failure occurred. The capability
of including precompiled machine language versions of subprograms shortened
the compilation process considerably and made it practical to develop much
larger programs.

1. In fact, the Fortran team believed that the code generated by their compiler could be no
less than half as fast as handwritten machine code, or the language would not be adopted by
users.

2.3.5

2.3.6

2.3 The IBM 704 and Fortran 45

Fortrans IV, 77, 90, 95, 2003, and 2008

A Fortran IIT was developed, but it was never widely distributed. Fortran IV,
however, became one of the most widely used programming languages of its
time. It evolved over the period 1960 to 1962 and was standardized as For-
tran 66 (ANSI, 1966), although that name was rarely used. Fortran IV was an
improvement over Fortran II in many ways. Among its most important addi-
tions were explicit type declarations for variables, a logical I£ construct, and
the capability of passing subprograms as parameters to other subprograms.

Fortran IV was replaced by Fortran 77, which became the new standard
in 1978 (ANSI, 1978a). Fortran 77 retained most of the features of Fortran IV
and added character string handling, logical loop control statements, and an
If with an optional Else clause.

Fortran 90 (ANSI, 1992) was dramatically different from Fortran 77. The
most significant additions were dynamic arrays, records, pointers, a multiple
selection statement, and modules. In addition, Fortran 90 subprograms could
be recursively called.

A new concept that was included in the Fortran 90 definition was that of
removing some language features from earlier versions. While Fortran 90 included
all of the features of Fortran 77, the language definition included a list of con-
structs that were recommended for removal in the next version of the language.

Fortran 90 included two simple syntactic changes that altered the appearance
of both programs and the literature describing the language. First, the required
fixed format of code, which required the use of specific character positons for spe-
cific parts of statements, was dropped. For example, statement labels could appear
only in the first five positions and statements could not begin before the seventh
posidon. This rigid formatting of code was designed around the use of punch cards.
The second change was that the official spelling of FORTRAN became Fortran.
This change was accompanied by the change in convention of using all uppercase
letters for keywords and identifiers in Fortran programs. The new convention was
that only the first letter of keywords and identifiers would be uppercase.

Fortran 95 (INCITS/ISO/IEC, 1997) continued the evolution of the lan-
guage, but only a few changes were made. Among other things, a new iteration
construct, Forall, was added to ease the task of parallelizing Fortran programs.

Fortran 2003 (Metcalf et al., 2004), added support for object-oriented pro-
gramming, parameterized derived types, procedure pointers, and interoper-
ability with the C programming language.

The latest version of Fortran, Fortran 2008 ISO/IEC 1539-1, 2010) added
support for blocks to define local scopes, co-arrays, which provide a parallel
execution model, and the DO CONCURRENT construct, to specify loops without
interdependencies.

Evaluation

The original Fortran design team thought of language design only as a nec-
essary prelude to the critical task of designing the translator. Furthermore,
it never occurred to them that Fortran would be used on computers not

46

Chapter 2

Evolution of the Major Programming Languages

manufactured by IBM. Indeed, they were forced to consider building Fortran
compilers for other IBM machines only because the successor to the 704, the
709, was announced before the 704 Fortran compiler was released. The effect
that Fortran has had on the use of computers, along with the fact that all sub-
sequent programming languages owe a debt to Fortran, is indeed impressive
in light of the modest goals of its designers.

One of the features of Fortran I, and all of its successors before 90, that allows
highly optimizing compilers was that the types and storage for all variables are
fixed before run time. No new variables or space could be allocated during execu-
tion time. This was a sacrifice of flexibility to simplicity and efficiency. It elimi-
nated the possibility of recursive subprograms and made it difficult to implement
data structures that grow or change shape dynamically. Of course, the kinds of
programs that were being built at the time of the development of the early versions
of Fortran were primarily numerical in nature and were simple in comparison
with more recent software projects. Therefore, the sacrifice was not a great one.

The overall success of Fortran is difficult to overstate: It dramatically
changed the way computers are used. This is, of course, in large part due to its
being the first widely used high-level language. In comparison with concepts
and languages developed later, early versions of Fortran suffer in a variety
of ways, as should be expected. After all, it would not be fair to compare the
performance and comfort of a 1910 Model T Ford with the performance and
comfort of a 2013 Ford Mustang. Nevertheless, in spite of the inadequacies of
Fortran, the momentum of the huge investment in Fortran software, among
other factors, has kept it in use for more than a half century.

Alan Perlis, one of the designers of ALGOL 60, said of Fortran in 1978,
“Fortran is the /ingua franca of the computing world. It is the language of the
streets in the best sense of the word, not in the prostitutional sense of the word.
And it has survived and will survive because it has turned out to be a remarkably
useful part of a very vital commerce” (Wexelblat, 1981, p. 161).

The following is an example of a Fortran 95 program:

! Fortran 95 Example program

! Input: An integer, List Len, where List Len is less
! than 100, followed by List Len-Integer values
I Output: The number of input values that are greater

! than the average of all input values

Implicit none

Integer Dimension(99) :: Int_ List

Integer :: List_Len, Counter, Sum, Average, Result
Result= 0

Sum = 0

Read *, List Len
If ((List_Len > 0) .AND. (List Len < 100)) Then
! Read input data into an array and compute its sum
Do Counter = 1, List Len
Read *, Int List (Counter)
Sum = Sum + Int List (Counter)

2.4 Functional Programming: LISP 47

End Do
! Compute the average
Average = Sum / List Len
! Count the wvalues that are greater than the average
Do Counter = 1, List Len
If (Int List(Counter) > Average) Then
Result = Result + 1

End If
End Do
! Print the result
Print *, 'Number of values > Average is:', Result

Else

Print *, 'Error - list length value is not legal'
End If
End Program Example

2.4 Functional Programming: LISP

241

The first functional programming language was invented to provide language
features for list processing, the need for which grew out of the first applications
in the area of artificial intelligence (AI).

The Beginnings of Artificial Intelligence and List Processing

Interest in Al appeared in the mid-1950s in a number of places. Some of this
interest grew out of linguistics, some from psychology, and some from math-
ematics. Linguists were concerned with natural language processing. Psycholo-
gists were interested in modeling human information storage and retrieval, as
well as other fundamental processes of the brain. Mathematicians were inter-
ested in mechanizing certain intelligent processes, such as theorem proving.
All of these investigations arrived at the same conclusion: Some method must
be developed to allow computers to process symbolic data in linked lists. At the
time, most computation was on numeric data in arrays.

The concept of list processing was developed by Allen Newell, J. C. Shaw,
and Herbert Simon at the RAND Corporation. It was first published in a clas-
sic paper that describes one of the first Al programs, the Logic Theorist,” and
a language in which it could be implemented (Newell and Simon, 1956). The
language, named IPL-I (Information Processing Language I), was never imple-
mented. The next version, IPL-II, was implemented on a RAND Johnniac
computer. Development of IPL continued until 1960, when the description
of IPL-V was published (Newell and Tonge, 1960). The low level of the IPL
languages prevented their widespread use. They were actually assembly lan-
guages for a hypothetical computer, implemented with an interpreter, in which

2. Logic Theorist discovered proofs for theorems in propositional calculus.

48

Chapter 2

2.4.2

Evolution of the Major Programming Languages

list-processing instructions were included. Another factor that kept the IPL
languages from becoming popular was their implementation on the obscure
Johnniac machine.

The contributions of the IPL languages were in their list design and their
demonstration that list processing was feasible and useful.

IBM became interested in Al in the mid-1950s and chose theorem prov-
ing as a demonstration area. At the time, the Fortran project was still under-
way. The high cost of the Fortran I compiler convinced IBM that their list
processing should be attached to Fortran, rather than in the form of a new
language. Thus, the Fortran List Processing Language (FLPL) was designed
and implemented as an extension to Fortran. FLPL was used to construct a
theorem prover for plane geometry, which was then considered the easiest area
for mechanical theorem proving.

LISP Design Process

John McCarthy of MIT took a summer position at the IBM Information
Research Department in 1958. His goal for the summer was to investigate
symbolic computations and to develop a set of requirements for doing such
computations. As a pilot example problem area, he chose differentiation of
algebraic expressions. From this study came a list of language requirements.
Among them were the control flow methods of mathematical functions: recur-
sion and conditional expressions. The only available high-level language of the
time, Fortran I, had neither of these.

Another requirement that grew from the symbolic-differentiation inves-
tigation was the need for dynamically allocated linked lists and some kind of
implicit deallocation of abandoned lists. McCarthy simply would not allow his
elegant algorithm for differentiation to be cluttered with explicit deallocation
statements.

Because FLPL did not support recursion, conditional expressions, dynamic
storage allocation, or implicit deallocation, it was clear to McCarthy that a new
language was needed.

When McCarthy returned to MIT in the fall of 1958, he and Marvin
Minsky formed the MI'T Al Project, with funding from the Research Labora-
tory for Electronics. The first important effort of the project was to produce
a software system for list processing. It was to be used initially to implement
a program proposed by McCarthy called the Advice Taker.’ This application
became the impetus for the development of the list-processing language LISP.
The first version of LISP is sometimes called “pure LISP” because it is a purely
functional language. In the following section, we describe the development of
pure LISP.

3. Advice Taker represented information with sentences written in a formal language and used
a logical inferencing process to decide what to do.

2.4.3

2.4 Functional Programming: LISP 49

Language Overview

2.4.3.1 Data Structures

Pure LISP has only two kinds of data structures: atoms and lists. Atoms are
either symbols, which have the form of identifiers, or numeric literals. The con-
cept of storing symbolic information in linked lists is natural and was used in
IPL-II. Such structures allow insertions and deletions at any point, operations
that were then thought to be a necessary part of list processing. It was eventu-
ally determined, however, that LISP programs rarely require these operations.

Lists are specified by delimiting their elements with parentheses. Simple
lists, in which elements are restricted to atoms, have the form

(A B C D)
Nested list structures are also specified by parentheses. For example, the list
(A (B C) D (E (FG)))

is composed of four elements. The first is the atom A; the second is the sublist
(B C); the third is the atom D; the fourth is the sublist (E (F G)), which has
as its second element the sublist (F G).

Internally, lists are stored as single-linked list structures, in which each
node has two pointers and represents a list element. A node containing an
atom has its first pointer pointing to some representation of the atom, such
as its symbol or numeric value, or a pointer to a sublist. A node for a sublist
element has its first pointer pointing to the first node of the sublist. In both
cases, the second pointer of a node points to the next element of the list. A list
is referenced by a pointer to its first element.

The internal representations of the two lists shown earlier are depicted in
Figure 2.2. Note that the elements of a list are shown horizontally. The last
element of a list has no successor, so its link is NIL, which is represented in
Figure 2.2 as a diagonal line in the element. Sublists are shown with the same
structure.

2.4.3.2 Processes in Functional Programming

LISP was designed as a functional programming language. All computation in a
purely functional program is accomplished by applying functions to arguments.
Neither the assignment statements nor the variables that abound in imperative
language programs are necessary in functional language programs. Furthermore,
repetitive processes can be specified with recursive function calls, making itera-
tion (loops) unnecessary. These basic concepts of functional programming make
it significantly different from programming in an imperative language.

50 Chapter 2

Figure 2.2

Internal representation
of two LISP lists

244

Evolution of the Major Programming Languages

—*IIH—»IIH—»IIH—»III/I

—*IIH—»I"H—»IIH—»I"I/I
IIM—»III/I IIH—»I"I/I

|I|°-|—>|'r|/|

2.4.3.3 The Syntax of LISP

LISP is very different from the imperative languages, both because it is a func-
tional programming language and because the appearance of LISP programs is
so different from those in languages like Java or C++. For example, the syntax
of Java is a complicated mixture of English and algebra, while LISP’s syntax
is a model of simplicity. Program code and data have exactly the same form:
parenthesized lists. Consider again the list

(A B C D)

When interpreted as data, it is a list of four elements. When viewed as code, it
is the application of the function named 2 to the three parameters B, C, and D.

Evaluation

LISP completely dominated Al applications for a quarter century. Much of
the cause of LISP’s reputation for being highly inefficient has been eliminated.
Many contemporary implementations are compiled, and the resulting code is
much faster than running the source code on an interpreter. In addition to its
success in Al, LISP pioneered functional programming, which has proven to
be a lively area of research in programming languages. As stated in Chapter 1,
many programming language researchers believe functional programming is a
much better approach to software development than procedural programming
using imperative languages.

2.4.5

2.4 Functional Programming: LISP 51
The following is an example of a LISP program:

; LISP Example function
; The following code defines a LISP predicate function
; that takes two lists as arguments and returns True
; 1f the two lists are equal, and NIL (false) otherwise
(DEFUN equal lists (lisl 1lis2)
(COND
((ATOM 1lisl) (EQ 1lisl 1lis2))
((ATOM 1lis2) NIL)
((equal lists (CAR 1lisl) (CAR lis2))
(equal lists (CDR 1lisl) (CDR 1lis2)))
(T NIL)

Two Descendants of LISP

"Two dialects of LISP are now widely used, Scheme and Common LISP. These
are briefly discussed in the following subsections.

2.4.5.1 Scheme

The Scheme language emerged from MIT in the mid-1970s (Dybvig, 2003).
It is characterized by its small size, its exclusive use of static scoping (discussed
in Chapter 5), and its treatment of functions as first-class entities. As first-class
entities, Scheme functions can be assigned to variables, passed as parameters,
and returned as the values of function applications. They can also be the ele-
ments of lists. Early versions of LISP did not provide all of these capabilities,
nor did they use static scoping.

As a small language with simple syntax and semantics, Scheme is well suited
to educational applications, such as courses in functional programming and
general introductions to programming. Scheme is described in some detail in
Chapter 15.

2.4.5.2 Common LISP

During the 1970s and early 1980s, a large number of different dialects of LISP
were developed and used. This led to the familiar problem of lack of portabil-
ity among programs written in the various dialects. Common LISP (Graham,
1996) was created in an effort to rectify this situation. Common LISP was
designed by combining the features of several dialects of LISP developed in the
early 1980s, including Scheme, into a single language. Being such an amalgam,
Common LISP is a relatively large and complex language. Its basis, however,
is pure LISP, so its syntax, primitive functions, and fundamental nature come
from that language.

52

Chapter 2

2.4.6

Evolution of the Major Programming Languages

Recognizing the flexibility provided by dynamic scoping as well as the
simplicity of static scoping, Common LISP allows both. The default scoping
for variables is static, but by declaring a variable to be special, that variable
becomes dynamically scoped.

Common LISP has a large number of data types and structures, including
records, arrays, complex numbers, and character strings. It also has a form of
packages for modularizing collections of functions and data providing access
control.

Common LISP is further described in Chapter 15.

Related Languages

ML (MetaLanguage; Ullman, 1998) was originally designed in the 1980s by
Robin Milner at the University of Edinburgh as a metalanguage for a program
verification system named Logic for Computable Functions (LCF; Milner et
al., 1990). ML is primarily a functional language, but it also supports impera-
tive programming. Unlike LISP and Scheme, the type of every variable and
expression in ML can be determined at compile time. Types are associated with
objects rather than names. Types of names and expressions are inferred from
their context.

Unlike LISP and Scheme, ML does not use the parenthesized functional
syntax that originated with lambda expressions. Rather, the syntax of ML
resembles that of the imperative languages, such as Java and C++.

Miranda was developed by David Turner (1986) at the University of Kent
in Canterbury, England, in the early 1980s. Miranda is based partly on the
languages ML, SASL, and KRC. Haskell (Hudak and Fasel, 1992) is based in
large part on Miranda. Like Miranda, it is a purely functional language, having
no variables and no assignment statement. Another distinguishing character-
istic of Haskell is its use of lazy evaluation. This means that no expression is
evaluated until its value is required. This leads to some surprising capabilities
in the language.

Caml (Cousineau et al., 1998) and its dialect that supports object-oriented
programming, OCaml (Smith, 2006), descended from ML and Haskell. Finally,
F# is a relatively new typed language based directly on OCaml. F# (Syme etal.,
2010) is a NET language with direct access to the whole .NET library. Being a
NET language also means it can smoothly interoperate with any other .NET
language. F# supports both functional programming and procedural program-
ming. It also fully supports object-oriented programming.

ML, Haskell, and F# are further discussed in Chapter 15.

2.5 The First Step Toward Sophistication: ALGOL 60

ALGOL 60 has had much influence on subsequent programming languages
and is therefore of central importance in any historical study of languages.

2.5.1

2.5.2

2.5 The First Step Toward Sophistication: ALGOL 60 53

Historical Background

ALGOL 60 was the result of efforts to design a universal programming language
for scientific applications. By late 1954, the Laning and Zierler algebraic system
had been in operation for over a year, and the first report on Fortran had been
published. Fortran became a reality in 1957, and several other high-level languages
were being developed. Most notable among them were I'T, which was designed
by Alan Perlis at Carnegie Tech, and two languages for the UNIVAC computers,
MATH-MATIC and UNICODE. The proliferation of languages made program
sharing among users difficult. Furthermore, the new languages were all grow-
ing up around single architectures, some for UNIVAC computers and some for
IBM 700-series machines. In response to this blossoming of machine-dependent
languages, several major computer user groups in the United States, including
SHARE (the IBM scientific user group) and USE (UNIVAC Scientific Exchange,
the large-scale UNIVAC scientific user group), submitted a petition to the Asso-
ciation for Computing Machinery (ACM) on May 10, 1957, to form a commit-
tee to study and recommend action to create a machine-independent scientific
programming language. Although Fortran might have been a candidate, it could
not become a universal language, because at the time it was solely owned by IBM.

Previously, in 1955, GAMM (a German acronym for Society for Applied
Mathematics and Mechanics) had formed a committee to design one universal,
machine-independent algorithmic language. The desire for this new language
was in part due to the Europeans’ fear of being dominated by IBM. By late
1957, however, the appearance of several high-level languages in the United
States convinced the GAMM subcommittee that their effort had to be widened
to include the Americans, and a letter of invitation was sent to ACM. In April
1958, after Fritz Bauer of GAMM presented the formal proposal to ACM, the
two groups officially agreed to a joint language design project.

Early Design Process

GAMM and ACM each sent four members to the first design meeting. The
meeting, which was held in Zurich from May 27 to June 1, 1958, began with
the following goals for the new language:

® The syntax of the language should be as close as possible to standard math-
ematical notation, and programs written in it should be readable with little
further explanation.

* It should be possible to use the language for the description of algorithms
in printed publications.

® Programs in the new language must be mechanically translatable into
machine language.

The first goal indicated that the new language was to be used for scientific
programming, which was the primary computer application area at that time.
The second was something entirely new to the computing business. The last
goal is an obvious necessity for any programming language.

54

Chapter 2

2.5.3

Evolution of the Major Programming Languages

The Zurich meeting succeeded in producing a language that met the stated
goals, but the design process required innumerable compromises, both among
individuals and between the two sides of the Atlantic. In some cases, the com-
promises were not so much over great issues as they were over spheres of
influence. The question of whether to use a comma (the European method) or
a period (the American method) for a decimal point is one example.

ALGOL 58 Overview

The language designed at the Zurich meeting was named the International
Algorithmic Language (IAL). It was suggested during the design that the lan-
guage be named ALGOL, for ALGOrithmic Language, but the name was
rejected because it did not reflect the international scope of the committee.
During the following year, however, the name was changed to ALGOL, and
the language subsequently became known as ALGOL 58.

In many ways, ALGOL 58 was a descendant of Fortran, which is quite
natural. It generalized many of Fortran’s features and added several new con-
structs and concepts. Some of the generalizations had to do with the goal of
not tying the language to any particular machine, and others were attempts to
make the language more flexible and powerful. A rare combination of simplicity
and elegance emerged from the effort.

ALGOL 58 formalized the concept of data type, although only variables
that were not floating-point required explicit declaration. It added the idea of
compound statements, which most subsequent languages incorporated. Some
features of Fortran that were generalized were the following: Identifiers were
allowed to have any length, as opposed to Fortran I’s restriction to six or fewer
characters; any number of array dimensions was allowed, unlike Fortran I's
limitation to no more than three; the lower bound of arrays could be specified
by the programmer, whereas in Fortran it was implicitly 1; nested selection
statements were allowed, which was not the case in Fortran I.

ALGOL 58 acquired the assignment operator in a rather unusual way.
Zuse used the form

expression => variable

for the assignment statement in Plankalkiil. Although Plankalkil had not yet
been published, some of the European members of the ALGOL 58 committee
were familiar with the language. The committee dabbled with the Plankalkiil
assignment form but, because of arguments about character set limitations,” the
greater-than symbol was changed to a colon. Then, largely at the insistence of
the Americans, the whole statement was turned around to the Fortran form

variable : = expression

The Europeans preferred the opposite form, but that would be the reverse of
Fortran.

4. The card punches of that time did not include the greater-than symbol.

2.5.4

2.5.5

2.5 The First Step Toward Sophistication: ALGOL 60 55

Reception of the ALGOL 58 Report

In December 1958, publication of the ALGOL 58 report (Perlis and Samelson,
1958) was greeted with a good deal of enthusiasm. In the United States, the new
language was viewed more as a collection of ideas for programming language
design than as a universal standard language. Actually, the ALGOL 58 report
was not meant to be a finished product but rather a preliminary document for
international discussion. Nevertheless, three major design and implementation
efforts used the report as their basis. At the University of Michigan, the MAD
language was born (Arden et al., 1961). The U.S. Naval Electronics Group pro-
duced the NELIAC language (Huskey et al., 1963). At System Development
Corporation, JOVIAL was designed and implemented (Shaw, 1963). JOVIAL,
an acronym for Jules’ Own Version of the International Algebraic Language,
represents the only language based on ALGOL 58 to achieve widespread use
(Jules was Jules I. Schwartz, one of JOVIALs designers). JOVIAL became
widely used because it was the official scientific language for the U.S. Air Force
for a quarter century.

The rest of the U.S. computing community was not so kind to the new lan-
guage. At first, both IBM and its major scientific user group, SHARE, seemed
to embrace ALGOL 58. IBM began an implementation shortly after the report
was published, and SHARE formed a subcommittee, SHARE IAL, to study the
language. The subcommittee subsequently recommended that ACM standard-
ize ALGOL 58 and that IBM implement it for all of the 700-series computers.
The enthusiasm was short-lived, however. By the spring of 1959, both IBM
and SHARE, through their Fortran experience, had had enough of the pain
and expense of getting a new language started, both in terms of developing and
using the first-generation compilers and in terms of training users in the new
language and persuading them to use it. By the middle of 1959, both IBM and
SHARE had developed such a vested interest in Fortran that they decided to
retain it as the scientific language for the IBM 700-series machines, thereby
abandoning ALGOL 58.

ALGOL 60 Design Process

During 1959, ALGOL 58 was furiously debated in both Europe and the United
States. Large numbers of suggested modifications and additions were published
in the European ALGOL Bulletin and in Communications of the ACM. One of the
most important events of 1959 was the presentation of the work of the Zurich
committee to the International Conference on Information Processing, for
there Backus introduced his new notation for describing the syntax of program-
ming languages, which later became known as BNF (Backus-Naur form). BNF
is described in detail in Chapter 3.

In January 1960, the second ALGOL meeting was held, this time in Paris.
The purpose of the meeting was to debate the 80 suggestions that had been
formally submitted for consideration. Peter Naur of Denmark had become
heavily involved in the development of ALGOL, even though he had not been

56

Chapter 2

2.5.6

2.5.7

Evolution of the Major Programming Languages

a member of the Zurich group. It was Naur who created and published the
ALGOL Bulletin. He spent a good deal of time studying Backus’s paper that
introduced BNF and decided that BNF should be used to describe formally
the results of the 1960 meeting. After making a few relatively minor changes to
BNE, he wrote a description of the new proposed language in BNF and handed
it out to the members of the 1960 group at the beginning of the meeting.

ALGOL 60 Overview

Although the 1960 meeting lasted only six days, the modifications made to
ALGOL 58 were dramatic. Among the most important new developments
were the following:

¢ The concept of block structure was introduced. This allowed the program-
mer to localize parts of programs by introducing new data environments,
or scopes.

e ‘Two different means of passing parameters to subprograms were allowed:
pass by value and pass by name.

* Procedures were allowed to be recursive. The ALGOL 58 description was
unclear on this issue. Note that although this recursion was new for the
imperative languages, LISP had already provided recursive functions in
1959.

* Stack-dynamic arrays were allowed. A stack-dynamic array is one for which
the subscript range or ranges are specified by variables, so that the size of
the array is set at the time storage is allocated to the array, which happens
when the declaration is reached during execution. Stack-dynamic arrays
are described in detail in Chapter 6.

Several features that might have had a dramatic impact on the success or
failure of the language were proposed and rejected. Most important among
these were input and output statements with formatting, which were omitted
because they were thought to be machine-dependent.

The ALGOL 60 report was published in May 1960 (Naur, 1960). A num-
ber of ambiguities still remained in the language description, and a third meet-
ing was scheduled for April 1962 in Rome to address the problems. At this
meeting the group dealt only with problems; no additions to the language were
allowed. The results of this meeting were published under the title “Revised
Report on the Algorithmic Language ALGOL 60” (Backus et al., 1963).

Evaluation

In some ways, ALGOL 60 was a great success; in other ways, it was a dismal
failure. It succeeded in becoming, almost immediately, the only acceptable
formal means of communicating algorithms in computing literature, and it
remained that for more than 20 years. Every imperative programming language
designed since 1960 owes something to ALGOL 60. In fact, most are direct

2.5 The First Step Toward Sophistication: ALGOL 60 57

or indirect descendants; examples include PL/I, SIMULA 67, ALGOL 68, C,
Pascal, Ada, C++, Java, and C#.

The ALGOL 58/ALGOL 60 design effort included a long list of firsts. It
was the first time that an international group attempted to design a program-
ming language. It was the first language that was designed to be machine inde-
pendent. It was also the first language whose syntax was formally described.
This successful use of the BNF formalism initiated several important fields of
computer science: formal languages, parsing theory, and BNF-based compiler
design. Finally, the structure of ALGOL 60 affected machine architecture. In
the most striking example of this, an extension of the language was used as the
systems language of a series of large-scale computers, the Burroughs B5000,
B6000, and B7000 machines, which were designed with a hardware stack to
implement efficiently the block structure and recursive subprograms of the
language.

On the other side of the coin, ALGOL 60 never achieved widespread use
in the United States. Even in Europe, where it was more popular than in the
United States, it never became the dominant language. There are a number
of reasons for its lack of acceptance. For one thing, some of the features of
ALGOL 60 turned out to be too flexible; they made understanding difficult
and implementation inefficient. The best example of this is the pass-by-name
method of passing parameters to subprograms, which is explained in Chapter
9. The difficulties of implementing ALGOL 60 are evidenced by Rutishauser’s
statement in 1967 that few, if any, implementations included the full ALGOL
60 language (Rutishauser, 1967, p. 8).

The lack of input and output statements in the language was another major
reason for its lack of acceptance. Implementation-dependent input/output
made programs difficult to port to other computers.

Ironically, one of the most important contributions to computer science
associated with ALGOL 60, BNE, was also a factor in its lack of acceptance.
Although BNF is now considered a simple and elegant means of syntax descrip-
tion, in 1960 it seemed strange and complicated.

Finally, although there were many other problems, the entrenchment of
Fortran among users and the lack of support by IBM were probably the most
important factors in ALGOL 60’ failure to gain widespread use.

The ALGOL 60 effort was never really complete, in the sense that ambi-
guities and obscurities were always a part of the language description (Knuth,
1967).

The following is an example of an ALGOL 60 program:

comment ALGOL 60 Example Program
Input: An integer, listlen, where listlen is less than
100, followed by listlen-integer values
Output: The number of input values that are greater than
the average of all the input values ;
begin
integer array intlist [1:99];

Chapter 2 Evolution of the Major Programming Languages

integer listlen, counter, sum, average, result;
sum := 0;
result := 0;
readint (listlen) ;
if (listlen > 0) A (listlen < 100) then
begin
comment Read input into an array and compute the average;
for counter := 1 step 1 until listlen do
begin
readint (intlist [counter]) ;
sum := sum + intlist [counter]
end;
comment Compute the average;
average := sum / listlen;
comment Count the input values that are > average;
for counter := 1 step 1 until listlen do
if intlist[counter] > average
then result := result + 1;
comment Print result;
printstring ("The number of values > average is:");
printint (result)
end
else
printstring ("Error—input list length is not legal";
end

2.6 Computerizing Business Records: COBOL

"The story of COBOL is, in a sense, the opposite of that of ALGOL 60. Although
it has been used more than any other programming language, COBOL has had
little effect on the design of subsequent languages, except for PL/I. It may
still be the most widely used language,’ although it is difficult to be sure one
way or the other. Perhaps the most important reason why COBOL has had
little influence is that few have attempted to design a new language for busi-
ness applications since it appeared. That is due in part to how well COBOL’s
capabilities meet the needs of its application area. Another reason is that a great
deal of growth in business computing over the past 30 years has occurred in
small businesses. In these businesses, very little software development has taken
place. Instead, most of the software used is purchased as off-the-shelf packages
for various general business applications.

5. In the late 1990s, in a study associated with the Y2K problem, it was estimated that there
were approximately 800 million lines of COBOL in use in the 22 square miles of Manhattan.

2.6.1

2.6.2

2.6.3

2.6 Computerizing Business Records: COBOL 59

Historical Background

The beginning of COBOL is somewhat similar to that of ALGOL 60, in the
sense that the language was designed by a committee of people meeting for
relatively short periods of time. At the time, in 1959, the state of business
computing was similar to the state of scientific computing several years earlier,
when Fortran was being designed. One compiled language for business appli-
cations, FLOW-MATIC, had been implemented in 1957, but it belonged to
one manufacturer, UNIVAC, and was designed for that company’s computers.
Another language, AIMACO, was being used by the U.S. Air Force, but it was
only a minor variation of FLOW-MATTIC. IBM had designed a programming
language for business applications, COMTRAN (COMmercial TRANGslator),
but it had not yet been implemented. Several other language design projects
were being planned.

FLOW-MATIC

The origins of FLOW-MATIC are worth at least a brief discussion, because
it was the primary progenitor of COBOL. In December 1953, Grace Hopper
at Remington-Rand UNIVAC wrote a proposal that was indeed prophetic.
It suggested that “mathematical programs should be written in mathematical
notation, data processing programs should be written in English statements”
(Wexelblat, 1981, p. 16). Unfortunately, in 1953, it was impossible to convince
nonprogrammers that a computer could be made to understand English words.
It was not until 1955 that a similar proposal had some hope of being funded
by UNIVAC management, and even then it took a prototype system to do the
final convincing. Part of this selling process involved compiling and running a
small program, first using English keywords, then using French keywords, and
then using German keywords. This demonstration was considered remarkable
by UNIVAC management and was instrumental in their acceptance of Hop-
per’s proposal.

COBOL Design Process

The first formal meeting on the subject of a common language for business
applications, which was sponsored by the Department of Defense, was held
at the Pentagon on May 28 and 29, 1959 (exactly one year after the Zurich
ALGOL meeting). The consensus of the group was that the language, then
named CBL (Common Business Language), should have the following general
characteristics: Most agreed that it should use English as much as possible,
although a few argued for a more mathematical notation. The language must
be easy to use, even at the expense of being less powerful, in order to broaden
the base of those who could program computers. In addition to making the
language easy to use, it was believed that the use of English would allow man-
agers to read programs. Finally, the design should not be overly restricted by
the problems of its implementation.

60

Chapter 2

2.6.4

Evolution of the Major Programming Languages

One of the overriding concerns at the meeting was that steps to create this
universal language should be taken quickly, as a lot of work was already being
done to create other business languages. In addition to the existing languages,
RCA and Sylvania were working on their own business applications languages.
It was clear that the longer it took to produce a universal language, the more
difficult it would be for the language to become widely used. On this basis, it
was decided that there should be a quick study of existing languages. For this
task, the Short Range Committee was formed.

There were early decisions to separate the statements of the language into
two categories—data description and executable operations—and to have state-
ments in these two categories be in different parts of programs. One of the debates
of the Short Range Committee was over the inclusion of subscripts. Many com-
mittee members argued that subscripts were too complex for the people in data
processing, who were thought to be uncomfortable with mathematical notation.
Similar arguments revolved around whether arithmetic expressions should be
included. The final report of the Short Range Committee, which was completed
in December 1959, described the language that was later named COBOL 60.

The language specifications for COBOL 60, published by the Government
Printing Office in April 1960 (Department of Defense, 1960), were described
as “initial.” Revised versions were published in 1961 and 1962 (Department of
Defense, 1961, 1962). The language was standardized by the American National
Standards Institute (ANSI) group in 1968. The next three revisions were standard-
ized by ANSI in 1974, 1985, and 2002. The language continues to evolve today.

Evaluation

The COBOL language originated a number of novel concepts, some of
which eventually appeared in other languages. For example, the DEFINE verb
of COBOL 60 was the first high-level language construct for macros. More
important, hierarchical data structures (records), which first appeared in Plan-
kalkiil, were first implemented in COBOL. They have been included in most
of the imperative languages designed since then. COBOL was also the first
language that allowed names to be truly connotative, because it allowed both
long names (up to 30 characters) and word-connector characters (hyphens).

Overall, the data division is the strong part of COBOLs design, whereas
the procedure division is relatively weak. Every variable is defined in detail in
the data division, including the number of decimal digits and the location of the
implied decimal point. File records are also described with this level of detail,
as are lines to be output to a printer, which makes COBOL ideal for printing
accounting reports. Perhaps the most important weakness of the original pro-
cedure division was in its lack of functions. Versions of COBOL prior to the
1974 standard also did not allow subprograms with parameters.

Our final comment on COBOL: It was the first programming language
whose use was mandated by the Department of Defense (DoD). This mandate
came after its initial development, because COBOL was not designed specifi-
cally for the DoD. In spite of its merits, COBOL probably would not have

2.6 Computerizing Business Records: COBOL 61

survived without that mandate. The poor performance of the early compilers
simply made the language too expensive to use. Eventually, of course, compilers
became more efficient and computers became much faster and cheaper and had
much larger memories. Together, these factors allowed COBOL to succeed,
inside and outside DoD. Its appearance led to the electronic mechanization of
accounting, an important revolution by any measure.

The following is an example of a COBOL program. This program reads
a file named BAL-FWD-FILE that contains inventory information about a
certain collection of items. Among other things, each item record includes
the number currently on hand (BAL-ON-HAND) and the item’s reorder point
(BAL-REORDER-POINT). The reorder point is the threshold number of items
on hand at which more must be ordered. The program produces a list of items
that must be reordered as a file named REORDER-LISTING.

IDENTIFICATION DIVISION.
PROGRAM-ID. PRODUCE-REORDER-LISTING.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. DEC-VAX.
OBJECT-COMPUTER. DEC-VAX.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT BAL-FWD-FILE ASSIGN TO READER.
SELECT REORDER-LISTING ASSIGN TO LOCAL-PRINTER.

DATA DIVISION.

FILE SECTION.

FD BAL-FWD-FILE
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS.

01 BAL-FWD-CARD.

02 BAL-ITEM-NO PICTURE IS 9(5).
02 BAL-ITEM-DESC PICTURE IS X (20)
02 FILLER PICTURE IS X(5).
02 BAL-UNIT-PRICE PICTURE IS 999V99.
02 BAL-REORDER-POINT PICTURE IS 9(5).
02 BAL-ON-HAND PICTURE IS 9(5)

02 BAL-ON-ORDER PICTURE IS 9(5).
02 FILLER PICTURE IS X(30)

FD REORDER-LISTING
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 132 CHARACTERS.

01 REORDER-LINE.

Chapter 2 Evolution of the Major Programming Languages

02 RL-ITEM-NO PICTURE IS Z(5).
02 FILLER PICTURE IS X(5).
02 RL-ITEM-DESC PICTURE IS X(20)
02 FILLER PICTURE IS X(5).
02 RL-UNIT-PRICE PICTURE IS ZZZ.99.
02 FILLER PICTURE IS X(5).
02 RL-AVAILABLE-STOCK PICTURE IS Z(5).
02 FILLER PICTURE IS X(5).
02 RL-REORDER-POINT PICTURE IS Z(5).
02 FILLER PICTURE IS X(71).

WORKING-STORAGE SECTION.

01 SWITCHES.
02 CARD-EOF-SWITCH PICTURE IS X.

01 WORK-FIELDS.
02 AVAILABLE-STOCK PICTURE IS 9(5).

PROCEDURE DIVISION.
000-PRODUCE-REORDER-LISTING.

OPEN INPUT BAL-FWD-FILE.

OPEN OUTPUT REORDER-LISTING.

MOVE "N" TO CARD-EOF-SWITCH.

PERFORM 100-PRODUCE-REORDER-LINE

UNTIL CARD-EOF-SWITCH IS EQUAL TO "Y".

CLOSE BAL-FWD-FILE.

CLOSE REORDER-LISTING.

STOP RUN.

100-PRODUCE-REORDER-LINE.
PERFORM 110-READ-INVENTORY-RECORD.
IF CARD-EOF-SWITCH IS NOT EQUAL TO "Y"]
PERFORM 120-CALCULATE-AVAILABLE-STOCK
IF AVAILABLE-STOCK IS LESS THAN BAL-REORDER-POINT
PERFORM 130-PRINT-REORDER-LINE.

110-READ-INVENTORY-RECORD.
READ BAL-FWD-FILE RECORD
AT END
MOVE "Y" TO CARD-EOF-SWITCH.

120-CALCULATE-AVAILABLE-STOCK.
ADD BAL-ON-HAND BAL-ON-ORDER
GIVING AVAILABLE-STOCK.

130-PRINT-REORDER-LINE.
MOVE SPACE TO REORDER-LINE.

2.7 The Beginnings of Timesharing: BASIC 63

MOVE BAL-ITEM-NO TO RL-ITEM-NO.
MOVE BAL-ITEM-DESC TO RL-ITEM-DESC.
MOVE BAL-UNIT-PRICE TO RL-UNIT-PRICE.

MOVE AVAILABLE-STOCK TO RL-AVAILABLE-STOCK.
MOVE BAL-REORDER-POINT TO RL-REORDER-POINT.
WRITE REORDER-LINE.

2.7 The Beginnings of Timesharing: BASIC

2.71

BASIC (Mather and Waite, 1971) is another programming language that
has enjoyed widespread use but has gotten little respect. Like COBOL, it
has largely been ignored by computer scientists. Also, like COBOL, in its
earliest versions it was inelegant and included only a meager set of control
statements.

BASIC was very popular on microcomputers in the late 1970s and early
1980s. This followed directly from two of the main characteristics of early ver-
sions of BASIC. It was easy for beginners to learn, especially those who were
not science oriented, and its smaller dialects can be implemented on comput-
ers with very small memories.® When the capabilities of microcomputers grew
and other languages were implemented, the use of BASIC waned. A strong
resurgence in the use of BASIC began with the appearance of Visual Basic
(Microsoft, 1991) in the early 1990s.

Design Process

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was originally
designed at Dartmouth College (now Dartmouth University) in New Hamp-
shire by two mathematicians, John Kemeny and Thomas Kurtz, who, in
the early 1960s, developed compilers for a variety of dialects of Fortran and
ALGOL 60. Their science students generally had little trouble learning or
using those languages in their studies. However, Dartmouth was primarily a
liberal arts institution, where science and engineering students made up only
about 25 percent of the student body. It was decided in the spring of 1963 to
design a new language especially for liberal arts students. This new language
would use terminals as the method of computer access. The goals of the system
were as follows:

1. It must be easy for nonscience students to learn and use.
2. It must be “pleasant and friendly.”

3. It must provide fast turnaround for homework.

6. Some early microcomputers included BASIC interpreters that resided in 4096 bytes of
ROM.

64

Chapter 2

2.7.2

2.7.3

Evolution of the Major Programming Languages

4. It must allow free and private access.

5. It must consider user time more important than computer time.

The last goal was indeed a revolutionary concept. It was based at least partly
on the belief that computers would become significantly cheaper as time went
on, which of course they did.

The combination of the second, third, and fourth goals led to the time-
shared aspect of BASIC. Only with individual access through terminals by
numerous simultaneous users could these goals be met in the early 1960s.

In the summer of 1963, Kemeny began work on the compiler for the first
version of BASIC, using remote access to a GE 225 computer. Design and
coding of the operating system for BASIC began in the fall of 1963. At 4:00
A.M. on May 1, 1964, the first program using the timeshared BASIC was typed
in and run. In June, the number of terminals on the system grew to 11, and by

the fall it had ballooned to 20.

Language Overview

The original version of BASIC was very small and, oddly, was not interactive:
There was no way for an executing program to get input data from the user.
Programs were typed in, compiled, and run, in a sort of batch-oriented way.
The original BASIC had only 14 different statement types and a single data
type—tloating-point. Because it was believed that few of the targeted users
would appreciate the difference between integer and floating-point types, the
type was referred to as “numbers.” Overall, it was a very limited language,
though quite easy to learn.

Evaluation

The most important aspect of the original BASIC was that it was the first
widely used language that was used through terminals connected to a remote
computer.” Terminals had just begun to be available at that time. Before then,
most programs were entered into computers through either punched cards or
paper tape.

Much of the design of BASIC came from Fortran, with some minor influ-
ence from the syntax of ALGOL 60. Later, it grew in a variety of ways, with
little or no effort made to standardize it. The American National Standards
Institute issued a Minimal BASIC standard (ANSI, 1978b), but this represented
only the bare minimum of language features. In fact, the original BASIC was
very similar to Minimal BASIC.

Although it may seem surprising, Digital Equipment Corporation used a
rather elaborate version of BASIC named BASIC-PLUS to write significant

7. LISP initially was used through terminals, but it was not widely used in the early 1960s.

2.7 The Beginnings of Timesharing: BASIC 65

portions of their largest operating system for the PDP-11 minicomputers,
RSTS, in the 1970s.

BASIC has been criticized for the poor structure of programs written in
it, among other things. By the evaluation criteria discussed in Chapter 1, spe-
cifically readability and reliability, the language does indeed fare very poorly.
Clearly, the early versions of the language were not meant for and should not
have been used for serious programs of any significant size. Later versions are
much better suited to such tasks.

The resurgence of BASIC in the 1990s was driven by the appearance of
Visual BASIC (VB). VB became widely used in large part because it provided
a simple way of building graphical user interfaces (GUIs), hence the name
Visual BASIC. Visual Basic .NET;, or just VB.NET, is one of Microsoft’s NET
languages. Although it is a significant departure from VB, it quickly displaced
the older language. Perhaps the most important difference between VB and
VB.NET is that VB.NET fully supports object-oriented programming.

The following is an example of a BASIC program:

REM BASIC Example Program
REM Input: An integer, listlen, where listlen is less

REM than 100, followed by listlen-integer values
REM Output: The number of input values that are greater
REM than the average of all input values

DIM intlist (99)

result = 0

sum = 0

INPUT listlen
IF listlen > 0 AND listlen < 100 THEN
REM Read input into an array and compute the sum
FOR counter = 1 TO listlen
INPUT intlist (counter)
sum = sum + intlist (counter)
NEXT counter
REM Compute the average
average = sum / listlen
REM Count the number of input values that are > average
FOR counter = 1 TO listlen
IF intlist (counter) > average
THEN result = result + 1
NEXT counter
REM Print the result
PRINT "The number of values that are > average is:";
result
ELSE
PRINT "Error—input list length is not legal"
END IF
END

User Design and Language Design
ALAN COOPER

SOME INFORMATION ON THE BASICS

How did you get started in all of this? I'm a high
school dropout with an associate degree in program-
ming from a California community college. My first job
was as a programmer for American President Lines
(one of the United States’ oldest ocean transportation
companies) in San Francisco. Except for a few months
here and there, I’ve remained self-employed.

What is your current job? Founder and chairman
of Cooper, the company that humanizes technology
(www.cooper.com).

What is or was your favorite job? Interaction
design consultant.

You are very well known in the fields of lan-
guage design and user interface design. Any
thoughts on designing languages versus design-
ing software, versus designing anything else? It’s
pretty much the same in the world of software: Know
your user.

ABOUT THAT EARLY WINDOWS RELEASE

In the 1980s, you started using Windows and
have talked about being lured by its plusses: the
graphical user interface support and the dynami-
cally linked library that let you create tools that
configured themselves. What about the parts of
Windows that you eventually helped shape? I was
very impressed by Microsoft’s inclusion of support

for practical multitasking in Windows. This included
dynamic relocation and interprocess communications.

66

Best-selling author of About Face: The Essentials of User Interface Design, Alan
Cooper also had a large hand in designing what can be touted as the language with
the most concern for user interface design, Visual Basic. For him, it all comes down
to a vision for humanizing technology.

MSDOS.exe was the shell program for the first few
releases of Windows. It was a terrible program, and I
believed that it could be improved dramatically, and I
was the guy to do it. In my spare time, I immediately
began to write a better shell program than the one
Windows came with. I called it Tripod. Microsoft’s
original shell, MSDOS.exe, was one of the main stum-
bling blocks to the initial success of Windows. Tripod
attempted to solve the problem by being easier to use
and to configure.

When was that “Aha!” moment? It wasn’t until

late in 1987, when I was interviewing a corporate cli-
ent, that the key design strategy for Tripod popped into
my head. As the IS manager explained to me his need
to create and publish a wide range of shell solutions

to his disparate user base, I realized the conundrum
that there is no such thing as an ideal shell. Every user
would need their own personal shell, configured to their
own needs and skill levels. In an instant, I perceived the
solution to the shell design problem: It would be a shell
construction set; a tool where each user would be able
to construct exactly the shell that he or she needed for
a unique mix of applications and training.

What is so compelling about the idea of a shell
that can be individualized? Instead of me telling
the users what the ideal shell was, they could design
their own, personalized ideal shell. With a customiz-
able shell, a programmer would create a shell that was
powerful and wide ranging but also somewhat danger-
ous, whereas an IT manager would create a shell that
could be given to a desk clerk that exposed only those
few application-specific tools that the clerk used.

www.cooper.com

(44

How did you get from writing
a shell program to collabo-
rating with Microsoft? Tripod
and Ruby are the same thing.
After I signed a deal with Bill
Gates, I changed the name of
the prototype from Tripod to
Ruby. I then used the Ruby

MSDOS.exe was the shell program for the first few
releases of Windows. It was a terrible program, and
I believed that it could be improved dramatically,
and I was the guy to do it. In my spare time, I
immediately began to write a better shell program
than the one Windows came with.

prototype as prototypes should

be used: as a disposable model

for constructing release-quality
code. Which is what I did. MS took the release version
of Ruby and added QuickBASIC to it, creating VB. All
of those original innovations were in Tripod/Ruby.

RUBY AS THE INCUBATOR FOR VISUAL BASIC

Let’s revisit your interest in early Windows and
that DLL feature. The DLL wasn’t a thing, it was a
facility in the 0S. It allowed a programmer to build
code objects that could be linked to at run time as
opposed to only at compile time. This is what allowed
me to invent the dynamically extensible parts of VB,
where controls can be added by third-party vendors.

The Ruby product embodied many significant
advances in software design, but two of them stand
out as exceptionally successful. As I mentioned, the
dynamic linking capability of Windows had always
intrigued me, but having the tools and knowing what
to do with them were two different things. With Ruby,
I finally found two practical uses for dynamic linking,
and the original program contained both. First, the
language was both installable and could be extended
dynamically. Second, the palette of gizmos could be
added to dynamically.

Was your language in Ruby the first to have a
dynamic linked library and to be linked to a
visual front end? As far as I know, yes.

Using a simple example, what would this enable a
programmer to do with his or her program? Pur-
chase a control, such as a grid control, from a third-
party vendor, install it on his or her computer, and have
the grid control appear as an integral part of the lan-
guage, including the visual programming front end.

Why do they call you “the father of Visual
Basic”? Ruby came with a small language, one suited
only for executing the dozen or so simple commands
that a shell program needs. However, this language was
implemented as a chain of DLLs, any number of which
could be installed at run time. The internal parser
would identify a verb and then pass it along the chain
of DLLs until one of them acknowledged that it knew
how to process the verb. If all of the DLLs passed,
there was a syntax error. From our earliest discussions,
both Microsoft and I had entertained the idea of grow-
ing the language, possibly even replacing it altogether
with a “‘real” language. C was the candidate most
frequently mentioned, but eventually, Microsoft took
advantage of this dynamic interface to unplug our
little shell language and replace it entirely with Quick-
BASIC. This new marriage of language to visual front
end was static and permanent, and although the origi-
nal dynamic interface made the coupling possible, it
was lost in the process.

SOME FINAL COMMENTS ON NEW IDEAS

In the world of programming and programming
tools, including languages and environments,
what projects most interest you? I'm interested in
creating programming tools that are designed to help
users instead of programmers.

What's the most critical rule, famous quote, or
design idea to keep in mind? Bridges are not built
by engineers. They are built by ironworkers.

Similarly, software programs are not built by engi-
neers. They are built by programmers.

67

68

Chapter 2

Evolution of the Major Programming Languages

2.8 Everything for Everybody: PL/I

2.8.1

PL/I represents the first large-scale attempt to design a language that could
be used for a broad spectrum of application areas. All previous and most sub-
sequent languages have focused on one particular application area, such as
science, artificial intelligence, or business.

Historical Background

Like Fortran, PL/I was developed as an IBM product. By the early 1960s, the
users of computers in industry had settled into two separate and quite dif-
ferent camps: scientific and business. From the IBM point of view, scientific
programmers could use either the large-scale 7090 or the small-scale 1620 IBM
computers. This group used floating-point data and arrays extensively. Fortran
was the primary language, although some assembly language was also used.
They had their own user group, SHARE, and had little contact with anyone
who worked on business applications.

For business applications, people used the large 7080 or the small 1401
IBM computers. They needed the decimal and character string data types, as
well as elaborate and efficient input and output facilities. They used COBOL,
although in early 1963 when the PL/I story begins, the conversion from assem-
bly language to COBOL was far from complete. This category of users also
had its own user group, GUIDE, and seldom had contact with scientific users.

In early 1963, IBM planners perceived the beginnings of a change in this
situation. The two widely separated computer user groups were moving toward
each other in ways that were thought certain to create problems. Scientists
began to gather large files of data to be processed. This data required more
sophisticated and more efficient input and output facilities. Business applica-
tions people began to use regression analysis to build management information
systems, which required floating-point data and arrays. It began to appear that
computing installations would soon require two separate computers and techni-
cal staffs, supporting two very different programming languages.®

These perceptions naturally led to the concept of designing a single univer-
sal computer that would be capable of doing both floating-point and decimal
arithmetic, and therefore both scientific and business applications. Thus was
born the concept of the IBM System/360 line of computers. Along with this
came the idea of a programming language that could be used for both business
and scientific applications. For good measure, features to support systems pro-
gramming and list processing were thrown in. Therefore, the new language was
to replace Fortran, COBOL, LISP, and the systems applications of assembly

language.

8. At the time, large computer installations required both full-time hardware and full-time sys-
tem software maintenance staff.

2.8.2

2.8.3

2.8 Everything for Everybody: PL/I 69

Design Process

The design effort began when IBM and SHARE formed the Advanced Lan-
guage Development Committee of the SHARE Fortran Project in October
1963. This new committee quickly met and formed a subcommittee called the
3 x 3 Committee, so named because it had three members from IBM and three
from SHARE. The 3 x 3 Committee met for three or four days every other
week to design the language.

As with the Short Range Committee for COBOL, the initial design was
scheduled for completion in a remarkably short time. Apparently, regardless
of the scope of a language design effort, in the early 1960s the prevailing belief
was that it could be done in three months. The first version of PL/I, which
was then named Fortran VI, was supposed to be completed by December, less
than three months after the committee was formed. The committee pleaded
successfully on two different occasions for extensions, moving the due date back
to January and then to late February 1964.

The initial design concept was that the new language would be an exten-
sion of Fortran IV, maintaining compatibility, but that goal was dropped
quickly along with the name Fortran VI. Until 1965, the language was known
as NPL (New Programming Language). The first published report on NPL
was given at the SHARE meeting in March 1964. A more complete descrip-
tion followed in April, and the version that would actually be implemented
was published in December 1964 (IBM, 1964) by the compiler group at the
IBM Hursley Laboratory in England, which was chosen to do the imple-
mentation. In 1965, the name was changed to PL/I to avoid the confusion
of the name NPL with the National Physical Laboratory in England. If the
compiler had been developed outside the United Kingdom, the name might
have remained NPL.

Language Overview

Perhaps the best single-sentence description of PL/I is that it included what
were then considered the best parts of ALGOL 60 (recursion and block struc-
ture), Fortran IV (separate compilation with communication through global
data), and COBOL 60 (data structures, input/output, and report-generating
facilities), along with an extensive collection of new constructs, all somehow
cobbled together. Because PL/I is no longer a popular language, we will not
attempt, even briefly, to discuss all the features of the language, or even its
most controversial constructs. Instead, we will mention some of the lan-
guage’s contributions to the pool of knowledge of programming languages.

PL/I was the first programming language to have the following facilities:

® Programs were allowed to create concurrently executing subprograms.
Although this was a good idea, it was poorly developed in PL/L

* It was possible to detect and handle 23 different types of exceptions, or
run-time errors.

70

Chapter 2

2.8.4

Evolution of the Major Programming Languages

* Subprograms were allowed to be used recursively, but the capability could
be disabled, allowing more efficient linkage for nonrecursive subprograms.

¢ Pointers were included as a data type.

* Cross-sections of arrays could be referenced. For example, the third row
of a matrix could be referenced as if it were a single-dimensioned array.

Evaluation

Any evaluation of PL/I must begin by recognizing the ambitiousness of the
design effort. In retrospect, it appears naive to think that so many constructs
could have been combined successfully. However, that judgment must be tem-
pered by acknowledging that there was little language design experience at the
time. Overall, the design of PL/I was based on the premise that any construct
that was useful and could be implemented should be included, with insufficient
concern about how a programmer could understand and make effective use
of such a collection of constructs and features. Edsger Dijkstra, in his Turing
Award Lecture (Dijkstra, 1972), made one of the strongest criticisms of the
complexity of PL/I: “I absolutely fail to see how we can keep our growing
programs firmly within our intellectual grip when by its sheer baroqueness
the programming language—our basic tool, mind you!—already escapes our
intellectual control.”

In addition to the problem with the complexity due to its large size, PL/I
suffered from a number of what are now considered to be poorly designed
constructs. Among these were pointers, exception handling, and concurrency,
although we must point out that in all cases, these constructs had not appeared
in any previous language.

In terms of usage, PL/I must be considered at least a partial success. In the
1970s, it enjoyed significant use in both business and scientific applications. It
was also widely used during that time as an instructional vehicle in colleges,
primarily in several subset forms, such as PL/C (Cornell, 1977) and PL/CS
(Conway and Constable, 1976).

The following is an example of a PL/I program:

/* PL/I PROGRAM EXAMPLE
INPUT: AN INTEGER, LISTLEN, WHERE LISTLEN IS LESS THAN
100, FOLLOWED BY LISTLEN-INTEGER VALUES
OUTPUT: THE NUMBER OF INPUT VALUES THAT ARE GREATER THAN
THE AVERAGE OF ALL INPUT VALUES *x/
PLIEX: PROCEDURE OPTIONS (MAIN) ;
DECLARE INTLIST (1:99) FIXED.
DECLARE (LISTLEN, COUNTER, SUM, AVERAGE, RESULT) FIXED;
SUM = 0;
RESULT = 0;
GET LIST (LISTLEN) ;
IF (LISTLEN > 0) & (LISTLEN < 100) THEN

2.9 Two Early Dynamic Languages: APL and SNOBOL 71

DO;
/* READ INPUT DATA INTO AN ARRAY AND COMPUTE THE SUM */
DO COUNTER = 1 TO LISTLEN;
GET LIST (INTLIST (COUNTER)) ;
SUM = SUM + INTLIST (COUNTER) ;
END;
/* COMPUTE THE AVERAGE */
AVERAGE = SUM / LISTLEN;
/* COUNT THE NUMBER OF VALUES THAT ARE > AVERAGE */
DO COUNTER = 1 TO LISTLEN;
IF INTLIST (COUNTER) > AVERAGE THEN
RESULT = RESULT + 1;
END;
/* PRINT RESULT */
PUT SKIP LIST ('THE NUMBER OF VALUES > AVERAGE IS:');
PUT LIST (RESULT) ;
END;
ELSE
PUT SKIP LIST ('ERROR—INPUT LIST LENGTH IS ILLEGAL') ;
END PLIEX;

2.9 Two Early Dynamic Languages: APL and SNOBOL

29.1

"The structure of this section is different from that of the other sections because
the languages discussed here are very different. Neither APL nor SNOBOL
had much influence on later mainstream languages.” Some of the interesting
features of APL are discussed later in the book.

In appearance and in purpose, APL and SNOBOL are quite different.
They share two fundamental characteristics, however: dynamic typing and
dynamic storage allocation. Variables in both languages are essentially untyped.
A variable acquires a type when it is assigned a value, at which time it assumes
the type of the value assigned. Storage is allocated to a variable only when it
is assigned a value, because before that there is no way to know the amount of
storage that will be needed.

Origins and Characteristics of APL

APL (Brown et al., 1988) was designed around 1960 by Kenneth E. Iverson at
IBM. It was not originally designed to be an implemented programming language
but rather was intended to be a vehicle for describing computer architecture.

9. However, they have some influence on some nonmainstream languages (J is based on APL,

ICON is based on SNOBOL, and AWK is partially based on SNOBOL).

72

Chapter 2

2.9.2

Evolution of the Major Programming Languages

APL was first described in the book from which it gets its name, A Programming
Language (Iverson, 1962). In the mid-1960s, the first implementation of APL
was developed at IBM.

APL has a large number of powerful operators that are specified with a
large number of symbols, which created a problem for implementors. Initially,
APL was used through IBM printing terminals. These terminals had special
print balls that provided the odd character set required by the language. One
reason APL has so many operators is that it provides a large number of unit
operations on arrays. For example, the transpose of any matrix is done with a
single operator. The large collection of operators provides very high expressiv-
ity but also makes APL programs difficult to read. Therefore, people think of
APL as a language that is best used for “throw-away” programming. Although
programs can be written quickly, they should be discarded after use because
they are difficult to maintain.

APL has been around for nearly 50 years and is still used today, although
not widely. Furthermore, it has not changed a great deal over its lifetime.

Origins and Characteristics of SNOBOL

SNOBOL (pronounced “snowball”; Griswold et al., 1971) was designed in the
early 1960s by three people at Bell Laboratories: D. J. Farber, R. E. Griswold,
and I. P. Polonsky (Farber et al., 1964). It was designed specifically for text
processing. The heart of SNOBOL is a collection of powerful operations for
string pattern matching. One of the early applications of SNOBOL was for
writing text editors. Because the dynamic nature of SNOBOL makes it slower
than alternative languages, it is no longer used for such programs. However,
SNOBOL is still a live and supported language that is used for a variety of
text-processing tasks in several different application areas.

2.10 The Beginnings of Data Abstraction: SIMULA 67

2.10.1

Although SIMULA 67 never achieved widespread use and had little impact on
the programmers and computing of its time, some of the constructs it intro-
duced make it historically important.

Design Process

Two Norwegians, Kristen Nygaard and Ole-Johan Dahl, developed the lan-
guage SIMULA I between 1962 and 1964 at the Norwegian Computing Cen-
ter (NCC) in Oslo. They were primarily interested in using computers for
simulation but also worked in operations research. SIMULA I was designed

exclusively for system simulation and was first implemented in late 1964 on a
UNIVAC 1107 computer.

2.10.2

2.11 Orthogonal Design: ALGOL 68 73

As soon as the SIMULA I implementation was completed, Nygaard and
Dahl began efforts to extend the language by adding new features and modify-
ing some existing constructs in order to make the language useful for general-
purpose applications. The result of this work was SIMULA 67, whose design
was first presented publicly in March 1967 (Dahl and Nygaard, 1967). We will
discuss only SIMULA 67, although some of the features of interest in SIMULA
67 are also in SIMULA L

Language Overview

SIMULA 67 is an extension of ALGOL 60, taking both block structure and the
control statements from that language. The primary deficiency of ALGOL 60
(and other languages at that time) for simulation applications was the design of
its subprograms. Simulation requires subprograms that are allowed to restart
at the position where they previously stopped. Subprograms with this kind of
control are known as coroutines because the caller and called subprograms
have a somewhat equal relationship with each other, rather than the rigid
master/slave relationship they have in most imperative languages.

"To provide support for coroutines in SIMULA 67, the class construct was
developed. This was an important development because the concept of data
abstraction began with it. Furthermore, data abstraction provides the founda-
tion for object-oriented programming.

It is interesting to note that the important concept of data abstraction was
not developed and attributed to the class construct until 1972, when Hoare
(1972) recognized the connection.

2.11 Orthogonal Design: ALGOL 68

2.11.1

ALGOL 68 was the source of several new ideas in language design, some of
which were subsequently adopted by other languages. We include it here for
that reason, even though it never achieved widespread use in either Europe or
the United States.

Design Process

The development of the ALGOL family did not end when the revised report
on ALGOL 60 appeared in 1962, although it was six years until the next design
iteration was published. The resulting language, ALGOL 68 (van Wijngaarden
etal., 1969), was dramatically different from its predecessor.

One of the most interesting innovations of ALGOL 68 was one of its pri-
mary design criteria: orthogonality. Recall our discussion of orthogonality in
Chapter 1. The use of orthogonality resulted in several innovative features of
ALGOL 68, one of which is described in the following section.

74

Chapter 2

2.11.2

2.11.3

Evolution of the Major Programming Languages

Language Overview

One important result of orthogonality in ALGOL 68 was its inclusion of user-
defined data types. Earlier languages, such as Fortran, included only a few basic
data structures. PL/I included a larger number of data structures, which made
it harder to learn and difficult to implement, but it obviously could not provide
an appropriate data structure for every need.

"The approach of ALGOL 68 to data structures was to provide a few primi-
tive types and structures and allow the user to combine those primitives into
a large number of different structures. This provision for user-defined data
types was carried over to some extent into all of the major imperative languages
designed since then. User-defined data types are valuable because they allow
the user to design data abstractions that fit particular problems very closely. All
aspects of data types are discussed in Chapter 6.

As another first in the area of data types, ALGOL 68 introduced the
kind of dynamic arrays that will be termed imsplicit heap-dynamic in Chapter 5.
A dynamic array is one in which the declaration does not specify subscript
bounds. Assignments to a dynamic array cause allocation of required storage.
In ALGOL 68, dynamic arrays are called £lex arrays.

Evaluation

ALGOL 68 includes a significant number of features that had not been previ-
ously used. Its use of orthogonality, which some may argue was overdone, was
nevertheless revolutionary.

ALGOL 68 repeated one of the sins of ALGOL 60, however, and it was an
important factor in its limited popularity. The language was described using an
elegant and concise but also unknown metalanguage. Before one could read the
language-describing document (van Wijngaarden et al., 1969), he or she had
to learn the new metalanguage, called van Wijngaarden grammars, which were
far more complex than BNF. To make matters worse, the designers invented
a collection of words to explain the grammar and the language. For example,
keywords were called indicants, substring extraction was called #rimming, and
the process of a subprogram execution was called a coercion of deproceduring,
which might be meek, firm, or something else.

It is natural to contrast the design of PL/I with that of ALGOL 68, because
they appeared only a few years apart. ALGOL 68 achieved writability by the
principle of orthogonality: a few primitive concepts and the unrestricted use
of a few combining mechanisms. PL/I achieved writability by including a large
number of fixed constructs. ALGOL 68 extended the elegant simplicity of
ALGOL 60, whereas PL/I simply threw together the features of several lan-
guages to attain its goals. Of course, it must be remembered that the goal
of PL/I was to provide a unified tool for a broad class of problems, whereas
ALGOL 68 was targeted to a single class: scientific applications.

PL/Tachieved far greater acceptance than ALGOL 68, due largely to IBM’s
promotional efforts and the problems of understanding and implementing

2.12 Some Early Descendants of the ALGOLs 75

ALGOL 68. Implementation was a difficult problem for both, but PL/I had
the resources of IBM to apply to building a compiler. ALGOL 68 enjoyed no
such benefactor.

2.12 Some Early Descendants of the ALGOLs

2.12.1

All imperative languages owe some of their design to ALGOL 60 and/or
ALGOL 68. This section discusses some of the early descendants of these
languages.

Simplicity by Design: Pascal

2.12.1.1 Historical Background

Niklaus Wirth (Wirth is pronounced “Virt”) was a member of the International
Federation of Information Processing (IFIP) Working Group 2.1, which was
created to continue the development of ALGOL in the mid-1960s. In August
1965, Wirth and C. A. R. (“Tony”) Hoare contributed to that effort by present-
ing to the group a somewhat modest proposal for additions and modifications
to ALGOL 60 (Wirth and Hoare, 1966). The majority of the group rejected the
proposal as being too small an improvement over ALGOL 60. Instead, a much
more complex revision was developed, which eventually became ALGOL 68.
Wirth, along with a few other group members, did not believe that the ALGOL
68 report should have been released, based on the complexity of both the lan-
guage and the metalanguage used to describe it. This position later proved
to have some validity because the ALGOL 68 documents, and therefore the
language, were indeed found to be challenging by the computing community.

The Wirth and Hoare version of ALGOL 60 was named ALGOL-W. It
was implemented at Stanford University and was used primarily as an instruc-
tional vehicle, but only at a few universities. The primary contributions of
ALGOL-W were the value-result method of passing parameters and the case
statement for multiple selection. The value-result method is an alternative to
ALGOL 60’ pass-by-name method. Both are discussed in Chapter 9. The
case statement is discussed in Chapter 8.

Wirth’s next major design effort, again based on ALGOL 60, was his most
successful: Pascal.'’ The original published definition of Pascal appeared in
1971 (Wirth, 1971). This version was modified somewhat in the implemen-
tation process and is described in Wirth (1973). The features that are often
ascribed to Pascal in fact came from earlier languages. For example, user-
defined data types were introduced in ALGOL 68, the case statement in
ALGOL-W, and Pascal’s records are similar to those of COBOL and PL/I.

10. Pascal is named after Blaise Pascal, a seventeenth-century French philosopher and mathema-
tician who invented the first mechanical adding machine in 1642 (among other things).

76

Chapter 2

Evolution of the Major Programming Languages

2.12.1.2 Evaluation

The largest impact of Pascal was on the teaching of programming. In 1970,
most students of computer science, engineering, and science were introduced
to programming with Fortran, although some universities used PL/I, languages
based on PL/I, and ALGOL-W. By the mid-1970s, Pascal had become the
most widely used language for this purpose. This was quite natural, because
Pascal was designed specifically for teaching programming. It was not until
the late 1990s that Pascal was no longer the most commonly used language for
teaching programming in colleges and universities.

Because Pascal was designed as a teaching language, it lacks several features
that are essential for many kinds of applications. The best example of this is
the impossibility of writing a subprogram that takes as a parameter an array
of variable length. Another example is the lack of any separate compilation
capability. These deficiencies naturally led to many nonstandard dialects, such
as Turbo Pascal.

Pascal’s popularity, for both teaching programming and other applications,
was based primarily on its remarkable combination of simplicity and expres-
sivity. Although there are some insecurities in Pascal, it is still a relatively safe
language, particularly when compared with Fortran or C. By the mid-1990s,
the popularity of Pascal was on the decline, both in industry and in universi-
ties, primarily due to the rise of Modula-2, Ada, and C++, all of which included
features not available in Pascal.

The following is an example of a Pascal program:

{Pascal Example Program
Input: An integer, listlen, where listlen is less than
100, followed by listlen-integer values
Output: The number of input values that are greater than
the average of all input values }
program pasex (input, output) ;
type intlisttype = array [1..99] of integer;
var
intlist : intlisttype;
listlen, counter, sum, average, result : integer;
begin
result := 0;
sum := 0;
readln (listlen);
if ((listlen > 0) and (listlen < 100)) then

begin
{ Read input into an array and compute the sum }
for counter := 1 to listlen do
begin
readln (intlist [counter]) ;
sum := sum + intlist [counter]

end;

2.12.2

2.12 Some Early Descendants of the ALGOLs 77

{ Compute the average }
average := sum / listlen;
{ Count the number of input values that are > average }
for counter := 1 to listlen do
if (intlist[counter] > average) then
result := result + 1;
{ Print the result }
writeln ('The number of values > average is:',
result)
end { of the then clause of if ((listlen > 0 ... }
else
writeln ('Error—input list length is not legal')
end.

A Portable Systems Language: C

Like Pascal, C contributed little to the previously known collection of language
features, but it has been widely used over a long period of time. Although origi-
nally designed for systems programming, C is well suited for a wide variety of
applications.

2.12.2.1 Historical Background

C’s ancestors include CPL, BCPL, B, and ALGOL 68. CPL was developed at
Cambridge University in the early 1960s. BCPL is a simple systems language,
also developed at Cambridge, this time by Martin Richards in 1967 (Richards,
1969).

"The first work on the UNIX operating system was done in the late 1960s by
Ken Thompson at Bell Laboratories. The first version was written in assembly
language. The first high-level language implemented under UNIX was B, which
was based on BCPL. B was designed and implemented by Thompson in 1970.

Neither BCPL nor B is a typed language, which is an oddity among
high-level languages, although both are much lower-level than a language
such as Java. Being untyped means that all data are considered machine
words, which, although simple, leads to many complications and insecuri-
ties. For example, there is the problem of specifying floating-point rather
than integer arithmetic in an expression. In one implementation of BCPL,
the variable operands of a floating-point operation were preceded by peri-
ods. Variable operands not preceded by periods were considered to be inte-
gers. An alternative to this would have been to use different symbols for the
floating-point operators.

This problem, along with several others, led to the development of a
new typed language based on B. Originally called NB but later named C,
it was designed and implemented by Dennis Ritchie at Bell Laboratories in
1972 (Kernighan and Ritchie, 1978). In some cases through BCPL, and in
other cases directly, C was influenced by ALGOL 68. This is seen in its for

78

Chapter 2

Evolution of the Major Programming Languages

and switch statements, in its assigning operators, and in its treatment of
pointers.

The only “standard” for C in its first decade and a half was the book by
Kernighan and Ritchie (1978).!" Over that time span, the language slowly
evolved, with different implementors adding different features. In 1989, ANSI
produced an official description of C (ANSI, 1989), which included many of
the features that implementors had already incorporated into the language.
This standard was updated in 1999 (ISO, 1999). This later version includes a
few significant changes to the language. Among these are a complex data type,
a Boolean data type, and C++-style comments (//). We will refer to the 1989
version, which has long been called ANSI C, as C89; we will refer to the 1999
version as C99.

2.12.2.2 Evaluation

C has adequate control statements and data-structuring facilities to allow its
use in many application areas. It also has a rich set of operators that provide a
high degree of expressiveness.

One of the most important reasons why C is both liked and disliked is its
lack of complete type checking. For example, in versions before C99, functions
could be written for which parameters were not type checked. Those who like
C appreciate the flexibility; those who do not like it find it too insecure. A major
reason for its great increase in popularity in the 1980s was that a compiler for it
was part of the widely used UNIX operating system. This inclusion in UNIX
provided an essentially free and quite good compiler that was available to pro-
grammers on many different kinds of computers.

The following is an example of a C program:

/* C Example Program
Input: An integer, listlen, where listlen is less than
100, followed by listlen-integer values
Output: The number of input values that are greater than
the average of all input values */
int main () {
int intlist[99], listlen, counter, sum, average, result;
sum = 0;
result = 0;
scanf ("%d", &listlen) ;
if ((listlen > 0) && (listlen < 100)) {
/* Read input into an array and compute the sum */
for (counter = 0; counter < listlen; counter++) {
scanf ("%d", &intlist[counter]) ;
sum += intlist [counter];

}

11. This language is often referred to as “K & R C.”

2.13 Programming Based on Logic: Prolog 79

/* Compute the average */

average = sum / listlen;
/* Count the input values that are > average */
for (counter = 0; counter < listlen; counter++)

if (intlist[counter] > average) result++;
/* Print result */
printf ("Number of values > average is:%d\n", result) ;
}
else
printf ("Error—input list length is not legal\n");

2.13 Programming Based on Logic: Prolog

2.13.1

2.13.2

Simply put, logic programming is the use of a formal logic notation to commu-
nicate computational processes to a computer. Predicate calculus is the notation
used in current logic programming languages.

Programming in logic programming languages is nonprocedural. Pro-
grams in such languages do not state exactly how a result is to be computed but
rather describe the necessary form and/or characteristics of the result. What is
needed to provide this capability in logic programming languages is a concise
means of supplying the computer with both the relevant information and an
inferencing process for computing desired results. Predicate calculus supplies
the basic form of communication to the computer, and the proof method,
named resolution, developed first by Robinson (1965), supplies the inferenc-
ing technique.

Design Process

During the early 1970s, Alain Colmerauer and Phillippe Roussel in the Artifi-
cial Intelligence Group at the University of Aix-Marseille, together with Robert
Kowalski of the Department of Artificial Intelligence at the University of Edin-
burgh, developed the fundamental design of Prolog. The primary components
of Prolog are a method for specifying predicate calculus propositions and an
implementation of a restricted form of resolution. Both predicate calculus and
resolution are described in Chapter 16. The first Prolog interpreter was devel-
oped at Marseille in 1972. The version of the language that was implemented
is described in Roussel (1975). The name Prolog is from programming Jogic.

Language Overview

Prolog programs consist of collections of statements. Prolog has only a few
kinds of statements, but they can be complex.

80

Chapter 2

2.13.3

Evolution of the Major Programming Languages

One common use of Prolog is as a kind of intelligent database. This appli-
cation provides a simple framework for discussing the Prolog language.

The database of a Prolog program consists of two kinds of statements: facts
and rules. The following are examples of fact statements:

mother (joanne, jake).
father (vern, joanne).

These state that joanne is the mother of jake, and vern is the father of
joanne.
An example of a rule statement is

grandparent (X, Z) :- parent(X, Y), parent (Y, Z).

This states that it can be deduced that X is the grandparent of z if it is true
that X is the parent of Y and Y is the parent of Z, for some specific values for
the variables X, Y, and Z.

The Prolog database can be interactively queried with goal statements, an
example of which is

father (bob, darcie).

This asks if bob is the father of darcie. When such a query, or goal, is
presented to the Prolog system, it uses its resolution process to attempt to
determine the truth of the statement. If it can conclude that the goal is true, it
displays “true.” If it cannot prove it, it displays “false.”

Evaluation

In the 1980s, there was a relatively small group of computer scientists who
believed that logic programming provided the best hope for escaping from
the complexity of imperative languages, and also from the enormous prob-
lem of producing the large amount of reliable software that was needed.
So far, however, there are two major reasons why logic programming has
not become more widely used. First, as with some other nonimperative
approaches, programs written in logic languages thus far have proven to
be highly inefficient relative to equivalent imperative programs. Second, it
has been determined that it is an effective approach for only a few relatively
small areas of application: certain kinds of database management systems and
some areas of Al

There is a dialect of Prolog that supports object-oriented programming—
Prolog++ (Moss, 1994). Logic programming and Prolog are described in
greater detail in Chapter 16.

2.14 History's Largest Design Effort: Ada 81

2.14 History’s Largest Design Effort: Ada

2.14.1

2.14.2

The Ada language is the result of the most extensive and expensive language
design effort ever undertaken. The following paragraphs briefly describe the
evolution of Ada.

Historical Background

The Ada language was developed for the Department of Defense (DoD), so the
state of their computing environment was instrumental in determining its form.
By 1974, over half of the applications of computers in DoD were embedded sys-
tems. An embedded system is one in which the computer hardware is embedded in
the device it controls or for which it provides services. Software costs were rising
rapidly, primarily because of the increasing complexity of systems. More than 450
different programming languages were in use for DoD projects, and none of them
was standardized by DoD. Every defense contractor could define a new and differ-
ent language for every contract.'? Because of this language proliferation, applica-
tion software was rarely reused. Furthermore, no software development tools were
created (because they are usually language dependent). A great many languages
were in use, but none was actually suitable for embedded systems applications.
For these reasons, in 1974, the Army, Navy, and Air Force each independently
proposed the development of a single high-level language for embedded systems.

Design Process

Noting this widespread interest, in January 1975, Malcolm Currie, director of
Defense Research and Engineering, formed the High-Order Language Work-
ing Group (HOLWG), initially headed by Lt. Col. William Whitaker of the
Air Force. The HOLWG had representatives from all of the military services
and liaisons with Great Britain, France, and what was then West Germany. Its
initial charter was to do the following:

¢ Identify the requirements for a new DoD high-level language.

¢ Evaluate existing languages to determine whether there was a viable
candidate.

* Recommend adoption or implementation of a minimal set of programming
languages.

In April 1975, the HOLWG produced the Strawman requirements docu-
ment for the new language (Department of Defense, 1975a). This was distrib-
uted to military branches, federal agencies, selected industrial and university
representatives, and interested parties in Europe.

12. This result was largely due to the widespread use of assembly language for embedded sys-
tems, along with the fact that most embedded systems used specialized processors.

82

Chapter 2

2.14.3

Evolution of the Major Programming Languages

The Strawman document was followed by Woodenman (Department of
Defense, 1975b) in August 1975, Tinman (Department of Defense, 1976) in
January 1976, Ironman (Department of Defense, 1977) in January 1977, and
finally Steelman (Department of Defense, 1978) in June 1978.

After a tedious process, the many submitted proposals for the language
were narrowed down to four finalists, all of which were based on Pascal. In
May 1979, the Cii Honeywell/Bull language design proposal was chosen from
the four finalists as the design that would be used. The Cii Honeywell/Bull
design team in France, the only foreign competitor among the final four, was
led by Jean Ichbiah.

In the spring of 1979, Jack Cooper of the Navy Materiel Command rec-
ommended the name for the new language, Ada, which was then adopted. The
name commemorates Augusta Ada Byron (1815-1851), countess of Lovelace,
mathematician, and daughter of poet Lord Byron. She is generally recognized
as being the world’s first programmer. She worked with Charles Babbage on
his mechanical computers, the Difference and Analytical Engines, writing pro-
grams for several numerical processes.

The design and the rationale for Ada were published by ACM in its
SIGPLAN Notices (ACM, 1979) and distributed to a readership of more than
10,000 people. A public test and evaluation conference was held in October
1979 in Boston, with representatives from over 100 organizations from the
United States and Europe. By November, more than 500 language reports
had been received from 15 different countries. Most of the reports suggested
small modifications rather than drastic changes and outright rejections. Based
on the language reports, the next version of the requirements specification,
the Stoneman document (Department of Defense, 1980a), was released in
February 1980.

A revised version of the language design was completed in July 1980 and
was accepted as MIL-STD 1815, the standard Ada Language Reference Manual.
The number 1815 was chosen because it was the year of the birth of Augusta
Ada Byron. Another revised version of the Ads Language Reference Manual
was released in July 1982. In 1983, the American National Standards Insti-
tute standardized Ada. This “final” official version is described in Goos and
Hartmanis (1983). The Ada language design was then frozen for a minimum
of five years.

Language Overview

This subsection briefly describes four of the major contributions of the Ada
language.

Packages in the Ada language provide the means for encapsulating data
objects, specifications for data types, and procedures. This, in turn, provides
the support for the use of data abstraction in program design, as described in
Chapter 11.

The Ada language includes extensive facilities for exception handling,
which allow the programmer to gain control after any one of a wide variety

2.14.4

2.14 History's Largest Design Effort: Ada 83

of exceptions, or run-time errors, has been detected. Exception handling is
discussed in Chapter 14.

Program units can be generic in Ada. For example, it is possible to write
a sort procedure that uses an unspecified type for the data to be sorted.
Such a generic procedure must be instantiated for a specified type before
it can be used, which is done with a statement that causes the compiler to
generate a version of the procedure with the given type. The availability
of such generic units increases the range of program units that might be
reused, rather than duplicated, by programmers. Generics are discussed in
Chapters 9 and 11.

The Ada language also provides for concurrent execution of special pro-
gram units, named tasks, using the rendezvous mechanism. Rendezvous is the
name of a method of intertask communication and synchronization. Concur-
rency is discussed in Chapter 13.

Evaluation

Perhaps the most important aspects of the design of the Ada language to con-
sider are the following:

* Because the design was competitive, there were no limits on participation.

® The Ada language embodies most of the concepts of software engineer-
ing and language design of the late 1970s. Although one can question the
actual approaches used to incorporate these features, as well as the wisdom
of including such a large number of features in a language, most agree that
the features are valuable.

* Although most people did not anticipate it, the development of a compiler
for the Ada language was a difficult task. Only in 1985, almost four years
after the language design was completed, did truly usable Ada comp