

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for un-
dergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and mod-
ern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored
by established experts in their fields, reviewed by an international advisory board, and contain numer-
ous examples and problems. Many include fully worked solutions.

For other volumes:

http://www.springer.com/series/7592

Gilles Dowek � Jean-Jacques Lévy

Introduction
to the Theory
of Programming
Languages

Gilles Dowek
Labo. d’Informatique
École polytechnique
route de Saclay
91128 Palaiseau
France
gilles.dowek@polytechnique.edu

Jean-Jacques Lévy
Centre de Recherche Commun
INRIA-Microsoft Research
Parc Orsay Université
28 rue Jean Rostand
91893 Orsay Cedex
France
jean-jacques.levy@inria.fr

Series editor
Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, Oxford, UK
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Lungby, Denmark
Steven Skiena, Stony Brook University, Stony Brooks, USA
Iain Stewart, University of Durham, Durham, UK

The work was first published in 2006 by Les editions de l’École polytechnique with the following ti-
tle: ‘Introduction à la théorie des langages de programmation’. The translator of the work is Maribel
Fernandez.

ISSN 1863-7310
ISBN 978-0-85729-075-5 e-ISBN 978-0-85729-076-2
DOI 10.1007/978-0-85729-076-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

What Is the Theory of Programming

Languages?

The ultimate, definitive programming language has not been created yet, far from it.
Almost every day a new language is created, and new functionalities are added to
existing languages. Improvements in programming languages contribute to making
programs more reliable, shorten the development time, and make programs easier
to maintain. Improvements are also needed to satisfy new requirements, such as the
development of parallel, distributed or mobile programs.

The first thing that we need to describe, when defining a programming language,
is its syntax. Should we write x := 1 or x = 1? Should we put brackets after
an if or not? More generally, what are the strings of symbols that can be used as
a program? There is a useful tool for this: the notion of a formal grammar. Using
a grammar, we can describe the syntax of the language in a precise way, and this
makes it possible to build programs to check the syntactical correctness of programs.

But it is not sufficient to know what a syntactically correct program is in order to
know what is going to happen when we run the program. When defining a program-
ming language, it is also necessary to describe its semantics, that is, the expected
behaviour of the program when it is executed. Two languages may have the same
syntax but different semantics.

The following is an example of what is meant (informally) by semantics. Func-
tion evaluation is often explained as follows. “The result V of the evaluation of an

expression of the form f e1 ... en, where the symbol f is a function defined by

the expression f x1 ... xn = e’, is obtained in the following way. First, the

arguments e1, ..., en are evaluated, returning values W1, ..., Wn. Then,

these values are associated to the variables x1, ..., xn, and finally the expres-

sion e’ is evaluated. The value V is the result of this evaluation.”
This explanation of the semantics of the language, expressed in a natural lan-

guage (English), allows us to understand what happens when a program is executed,
but is it precise? Consider, for example, the program

f x y = x
g z = (n = n + z; n)
n = 0; print(f (g 2) (g 7))

v

vi What Is the Theory of Programming Languages?

Depending on the way we interpret the explanation given above, we can deduce that
the program will result in the value 2 or in the value 9. This is because the natural
language explanation does not indicate whether we have to evaluate g 2 before or
after g 7, and the order in which we evaluate these expressions is important in this
case. Instead, the explanation should have said: “the arguments e1, ..., en are
evaluated starting from e1” or else “starting from en”.

If two different programmers read an ambiguous explanation, they might under-
stand different things. Even worse, the designers of the compilers for the language
might choose different conventions. Then the same program will give different re-
sults depending on the compiler used.

It is well known that natural languages are too imprecise to express the syntax of a
programming language, a formal language should be used instead. Similarly, natural
languages are too imprecise to express the semantics of a programming language,
and we need to use a formal language for this.

What is the semantics of a program? Let us take for instance a program p that
requests an integer, computes its square, and displays the result of this operation. To
describe the behaviour of this program, we need to describe a relation R between
the input value and the associated output.

The semantics of this program is, thus, a relation R between elements of the set E
of input values and elements of the set S of output values, that is, a subset of E × S.

The semantics of a program is then a binary relation. The semantics of a pro-
gramming language is, in turn, a ternary relation: “the program p with input value e
returns the output value s”. We denote this relation by p, e →֒ s. The program p
and the input e are available before the execution of the program starts. Often, these
two elements are paired in a term p e, and the semantics of the language assigns a
value to this term. The semantics of the language is then a binary relation t →֒ s.

To express the semantics of a programming language we need a language that
can express relations.

When the semantics of a program is a functional relation, that is, for each input
value there is at most one output value, we say that the program is deterministic.
Video games are examples of non-deterministic programs, since some randomness
is necessary to make the game enjoyable. A language is deterministic if all the pro-
grams that can be written in the language are deterministic, or equivalently, if the
semantics is a functional relation. In this case, it is possible to define its semantics
using a language to define functions instead of a language to define relations.

Acknowledgements

The authors would like to thank Gérard Assayag, Antonio Bucciarelli, Roberto Di
Cosmo, Xavier Leroy, Dave MacQueen, Luc Maranget, Michel Mauny, François
Pottier, Didier Rémy, Alan Schmitt, Élodie-Jane Sims and Véronique Viguié
Donzeau-Gouge.

vii

Contents

1 Terms and Relations . 1
1.1 Inductive Definitions . 1

1.1.1 The Fixed Point Theorem 1
1.1.2 Inductive Definitions . 4
1.1.3 Structural Induction . 6
1.1.4 The Reflexive-Transitive Closure of a Relation 6

1.2 Languages . 7
1.2.1 Languages Without Variables 7
1.2.2 Variables . 7
1.2.3 Many-Sorted Languages 9
1.2.4 Free and Bound Variables 10
1.2.5 Substitution . 10

1.3 Three Ways to Define the Semantics of a Language 12
1.3.1 Denotational Semantics 12
1.3.2 Big-Step Operational Semantics 12
1.3.3 Small-Step Operational Semantics 12
1.3.4 Non-termination . 13

2 The Language PCF . 15
2.1 A Functional Language: PCF . 15

2.1.1 Programs Are Functions 15
2.1.2 Functions Are First-Class Objects 15
2.1.3 Functions with Several Arguments 16
2.1.4 No Assignments . 16
2.1.5 Recursive Definitions . 16
2.1.6 Definitions . 17
2.1.7 The Language PCF . 17

2.2 Small-Step Operational Semantics for PCF 18
2.2.1 Rules . 18
2.2.2 Numbers . 19
2.2.3 A Congruence . 20
2.2.4 An Example . 21

ix

x Contents

2.2.5 Irreducible Closed Terms 22
2.2.6 Non-termination . 23
2.2.7 Confluence . 24

2.3 Reduction Strategies . 24
2.3.1 The Notion of a Strategy 24
2.3.2 Weak Reduction . 26
2.3.3 Call by Name . 26
2.3.4 Call by Value . 27
2.3.5 A Bit of Laziness Is Needed 27

2.4 Big-Step Operational Semantics for PCF 27
2.4.1 Call by Name . 28
2.4.2 Call by Value . 29

2.5 Evaluation of PCF Programs . 31

3 From Evaluation to Interpretation 33
3.1 Call by Name . 33
3.2 Call by Value . 35
3.3 An Optimisation: de Bruijn Indices 36
3.4 Construction of Functions via Fixed Points 38

3.4.1 First Variation: Recursive Closures 38
3.4.2 Second Variation: Rational Values 40

4 Compilation . 43
4.1 An Interpreter Written in a Language Without Functions 44
4.2 From Interpretation to Compilation 44
4.3 An Abstract Machine for PCF . 45

4.3.1 The Environment . 45
4.3.2 Closures . 46
4.3.3 PCF Constructs . 46
4.3.4 Using de Bruijn Indices 47
4.3.5 Small-Step Operational Semantics 48

4.4 Compilation of PCF . 48

5 PCF with Types . 51
5.1 Types . 51

5.1.1 PCF with Types . 52
5.1.2 The Typing Relation . 53

5.2 No Errors at Run Time . 54
5.2.1 Using Small-Step Operational Semantics 55
5.2.2 Using Big-Step Operational Semantics 55

5.3 Denotational Semantics for Typed PCF 56
5.3.1 A Trivial Semantics . 56
5.3.2 Termination . 57
5.3.3 Scott’s Ordering Relation 58
5.3.4 Semantics of Fixed Points 59

Contents xi

6 Type Inference . 63
6.1 Inferring Monomorphic Types . 63

6.1.1 Assigning Types to Untyped Terms 63
6.1.2 Hindley’s Algorithm . 64
6.1.3 Hindley’s Algorithm with Immediate Resolution 66

6.2 Polymorphism . 68
6.2.1 PCF with Polymorphic Types 68
6.2.2 The Algorithm of Damas and Milner 70

7 References and Assignment . 73
7.1 An Extension of PCF . 74
7.2 Semantics of PCF with References 75

8 Records and Objects . 81
8.1 Records . 81

8.1.1 Labelled Fields . 81
8.1.2 An Extension of PCF with Records 82

8.2 Objects . 85
8.2.1 Methods and Functional Fields 85
8.2.2 What Is “Self”? . 86
8.2.3 Objects and References 88

9 Epilogue . 89

References . 93

Index . 95

Chapter 1

Terms and Relations

1.1 Inductive Definitions

Since the semantics of a programming language is a relation, we will start by intro-
ducing some tools to define sets and relations.

The most basic tool is the notion of an explicit definition. We can, for exam-
ple, define explicitly the function that multiplies its argument by 2: x �→ 2 * x,
the set of even numbers: {n ∈ N | ∃p ∈ N n = 2 * p}, or the divisibility
relation: {(n,m) ∈ N

2 | ∃p ∈ N n = m * p}. However, these explicit def-
initions are not sufficient to define all the objects we need. A second tool to define
sets and relations is the notion of an inductive definition. This notion is based on a
simple theorem: the fixed point theorem.

1.1.1 The Fixed Point Theorem

Let ≤ be an ordering relation—that is, a reflexive, antisymmetric and transitive
relation—over a set E, and let u0, u1, u2, ... be an increasing sequence, that
is, a sequence such that u0 ≤ u1 ≤ u2 ≤ ... The element l of E is called limit

of the sequence u0, u1, u2, ... if it is a least upper bound of the set {u0,
u1, u2, ...}, that is, if

– for all i, ui ≤ l
– if, for all i, ui ≤ l’, then l ≤ l’.

If it exists, the limit of a sequence (ui)i is unique, and we denote it by limi ui.
The ordering relation ≤ is said to be weakly complete if all the increasing se-

quences have a limit.
The standard ordering relation over the real numbers interval [0, 1] is an ex-

ample of a weakly complete ordering. In addition, this relation has a least element 0.
However, the standard ordering relation over R

+ is not weakly complete since the
increasing sequence 0, 1, 2, 3, ... does not have a limit.

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_1, © Springer-Verlag London Limited 2011

1

2 1 Terms and Relations

Let A be an arbitrary set. The inclusion relation ⊆ over the set ℘(A) of all
the subsets of A is another example of a weakly complete ordering. The limit of
an increasing sequence U0, U1, U2, ... is the set

⋃
i∈N

Ui. In addition, this
relation has a least element ∅.

Let f be a function from E to E. The function f is increasing if

x ≤ y ⇒ f x ≤ f y.

It is continuous if, in addition, for any increasing sequence

limi (f ui) = f (limi ui).

First Fixed Point Theorem Let ≤ be a weakly complete ordering relation over a

set E that has a least element m. Let f be a function from E to E. If f is continuous

then p = limi (fi m) is the least fixed point of f.

Proof First, since m is the smallest element in E, m ≤ f m. The function f is in-
creasing, therefore fi m ≤ fi+1 m. Since the sequence fi m is increasing, it has
a limit. The sequence fi+1 m also has p as limit, thus, p = limi (f (fi m))
= f (limi (fi m)) = f p. Moreover, p is the least fixed point, because if q
is another fixed point, then m ≤ q and fi m ≤ fi q = q (since f is increas-
ing). Hence p = limi (fi m) ≤ q.

The second fixed point theorem states the existence of a fixed point for increasing
functions, even if they are not continuous, provided the ordering satisfies a stronger
property.

An ordering ≤ over a set E is strongly complete if every subset A of E has a least
upper bound sup A.

The standard ordering relation over the interval [0, 1] is an example of a
strongly complete ordering relation. The standard ordering over R

+ is not strongly
complete because the set R

+ itself has no upper bound.
Let A be an arbitrary set. The inclusion relation ⊆ over the set ℘(A) of all

the subsets of A is another example of strongly complete ordering. The least upper
bound of a set B is the set

⋃
C∈B C. �

1.1 Inductive Definitions 3

Exercise 1.1 Show that any strongly complete ordering is also weakly complete.
Is the ordering weakly complete? Is it strongly complete?

Note that if the ordering ≤ over the set E is strongly complete, then any subset A
of E has a greatest lower bound inf A. Indeed, let A be a subset of E, let B be the
set {y ∈ E | ∀ x ∈ A y ≤ x} of lower bounds of A and l the least upper
bound of B. By definition, l is an upper bound of the set B

– ∀y ∈ B y ≤ l

and it is the least one

– (∀y ∈ B y ≤ l’) ⇒ l ≤ l’

It is easy to show that l is the greatest lower bound of A. Indeed, if x is an
element of A, it is an upper bound of B and since l is the least upper bound,
l ≤ x. Thus, l is a lower bound of A. To show that it is the greatest one, it is
sufficient to note that if m is another lower bound of A, it is an element of B and
therefore m ≤ l.

The greatest lower bound of a set B of subsets of A is, of course, the set
⋂

C∈B C.

Second Fixed Point Theorem Let ≤ be a strongly complete ordering over a set

E. Let f be a function from E to E. If f is increasing then p = inf {c |
f c ≤ c} is the least fixed point of f.

Proof Let C be the set {c | f c ≤ c} and c be an element of C. Then p ≤ c
because p is a lower bound of C. Since the function f is increasing, we deduce

4 1 Terms and Relations

that f p ≤ f c. Also, f c ≤ c because c is an element of C, so by transitivity
f p ≤ c.

The element f p is smaller than all the elements in C, it is therefore also smaller
than or equal to its greatest lower bound: f p ≤ p.

Since the function f is increasing, f (f p) ≤ f p, thus f p is an element
of C, and since p is a lower bound of C, we deduce p ≤ f p. By antisymmetry,
p = f p.

Finally, by definition, all the fixed points of f belong to C, and they are therefore
greater than p. �

1.1.2 Inductive Definitions

We will now see how these fixed point theorems can be used to define sets and
relations.

Let A be a set, f a function from An to A and E a subset of A. The set E is closed

under the function f if for all a1, ..., an in E, f a1 ... an is also in E. For
example, the set of all the even numbers is closed under the function n �→ n + 2.

Let A be a set. An inductive definition of a subset E of A is a family of partial
functions f1 from An1 to A, f2 from An2 to A, The set E is defined as the
smallest subset of A that is closed under the functions f1, f2,

For example, the subset of N that contains all the even numbers is inductively
defined by the number 0—that is, the function from N

0 to N that returns the value
0—and the function from N to N n �→ n + 2. The subset of {a, b, c}∗ con-
taining all the words of the form anbcn is inductively defined by the word b and the
function m �→ a m c. In general, a context free grammar can always be specified
as an inductive set. In logic, the set of theorems is defined as the subset of all the
propositions that is inductively defined by the axioms and deduction rules.

The functions f1, f2, ... are called rules. Instead of writing a rule as
x1 ... xn �→ t, we will use the notation

x1 ... xn
t

For example, the set of even numbers is defined by the rules

0

n
n + 2

Let P be the set of even numbers. We will sometimes write the rules as follows:

0 ∈ P

1.1 Inductive Definitions 5

n ∈ P
n + 2 ∈ P

In order to define a language inductively, we will sometimes use a notation bor-
rowed from language theory, where, for example, the set of words of the form
anbcn is defined as follows

m = b
| a m c

To show that there is indeed a smallest subset of A that is closed under the func-
tions f1, f2, ..., we define a function F from ℘(A) to ℘(A)

F C = {x ∈ A | ∃i ∃y1... yni ∈ C x = fi y1 ... yni}

A subset C of A is closed under the functions f1, f2, ... if and only if
F C ⊆ C.

The function F is trivially increasing, that is, if C ⊆ C’ then F C ⊆ F C’.
In addition, it is continuous, that is, if C0 ⊆ C1 ⊆ C2 ⊆ · · · then F (

⋃
j Cj)

=
⋃

j(F Cj). Indeed, if an element x of A is in F (
⋃

j Cj), then there exists
a number i and elements y1, ..., yni in

⋃
j Cj such that x = fi y1 ...

yni . Each of these elements is in one of the Cj. Since the sequence Cj is increasing,
they are all in Ck, which is the largest of these sets. Therefore, the element x belongs
to F Ck and also to

⋃
j(F Cj). Conversely, if x is in

⋃
j(F Cj), then it belongs

to some F Ck, and there is therefore a number i and elements y1, ..., yni of
Ck such that x = fi y1 ... yni . The elements y1, ..., yni are in

⋃
j Cj,

and therefore x is in F (
⋃

j Cj).
The set E is defined as the least fixed point of the function F. This is the smallest

set that satisfies the property F E = E and, according to the second fixed point
theorem, it is also the smallest set that satisfies the property F E ⊆ E. Thus, it is
the smallest set that is closed under the functions f1, f2,

The set of even numbers is not the only subset of N that contains 0 and is
closed under the function n �→ n + 2—the set N, for example, also satisfies
these properties—but it is the smallest one. It can be defined as the intersection
of all those sets. The second fixed point theorem allows us to generalise this ob-
servation and define E as the intersection of all the sets that are closed under the
functions f1, f2,

The first fixed point theorem shows that an element x is in E if and only if there
is some number k such that x is in the set Fk ∅. That is, if there is a function fi
such that x = fi y1 ... yni where y1, ..., yni are in Fk−1

∅. Iterating,
that is, by induction on k, we can show that an element x of A is in E if and only if
there exists a tree where the nodes are labelled by elements of A, the root is labelled
by x, and if a node is labelled by c, then its children are labelled by d1, ...,
dn such that for some rule f, we have c = f d1 ... dn. Such a tree is called
a derivation for a. This notion of a derivation generalises the notion of proof in
logic. We can then define the set E as the set of elements x of A for which there is a
derivation.

6 1 Terms and Relations

We will use a specific notation for derivations. First, the root of the tree will be
written at the bottom, and the leaves at the top. Then, we will write a line over each
node in the tree and we will write its children over the line.

The number 8, for example, is in the set of even numbers, as the following deriva-
tion shows

0
2
4
6
8

If we call P the set of even numbers, we can write the derivation as follows

0 ∈ P
2 ∈ P
4 ∈ P
6 ∈ P
8 ∈ P

1.1.3 Structural Induction

Inductive definitions suggest a method to write proofs. If a property is hereditary,
that is, if each time it holds for y1, ..., yni , then it also holds for fi y1 ...
yni , then we can deduce that it holds for all the elements of E.

One way to show this, is to use the second fixed point theorem and to observe
that the subset P of A containing all the elements that satisfy the property is closed
under the functions fi and thus it includes E. Another way is to use the first fixed
point theorem and to show by induction on k that all the elements in Fk ∅ satisfy
the property.

1.1.4 The Reflexive-Transitive Closure of a Relation

The reflexive-transitive closure of a relation is an example of inductive definition.
If R is a binary relation on a set A, we can inductively define another relation R∗,
called the reflexive-transitive closure of R

if x R y
x R∗ y

x R∗ x

x R∗ y y R∗ z
x R∗ z

1.2 Languages 7

If we see R as a directed graph, then R∗ is the relation that links two nodes when
there is a path from one to the other.

1.2 Languages

1.2.1 Languages Without Variables

Now that we have introduced inductive definitions, we will use this technique to
define the notion of a language. The notion of language that we will define does not
take into account superficial syntactic conventions, for instance, it does not matter
whether we write 3 + 4, +(3,4), or 3 4 +. This term will be represented in
an abstract way by a tree. Each node in the tree will be labelled by a symbol. The

number of children of a node depends on the node’s label—2 children if the label is
+, 0 if it is 3 or 4,

A language is thus a set of symbols, each with an associated number called arity,
or simply number of arguments, of the symbol. The symbols without arguments are
called constants.

The set of terms of the language is the set of trees inductively defined by

– if f is a symbol with n arguments and t1, ..., tn are terms then
f(t1, ..., tn)—that is, the tree that has a root labelled by f and subtrees
t1, ..., tn—is a term.

1.2.2 Variables

Imagine that we want to design a language to define functions. One possibility
would be to use constants sin, cos, ... and a symbol with two arguments
◦. We could, for instance, build the term sin ◦ (cos ◦ sin) in this language.

However, we know that, to specify functions, it is easier to use a notion invented
by F. Viète (1540–1603): the notion of a variable. Thus, the function described above
can be written sin (cos (sin x)).

Since the 1930’s, we write this function x �→ sin (cos (sin x)) or λx
sin (cos (sin x)), using the symbol �→ or λ to bind the variable x. By in-
dicating explicitly which variables are bound, we can distinguish the arguments of
the function from potential parameters, and we also fix the order of the arguments.

8 1 Terms and Relations

The symbol �→ appears to have been introduced by N. Bourbaki around 1930,
and the symbol λ by A. Church around the same time. The notation λ is a simplified
version of a previous notation x̂ sin (cos (sin x)) used by A.N. Whitehead
and B. Russell since the 1900’s.

The definition f = x �→ sin (cos (sin x)) is sometimes written f x
= sin (cos (sin x)). The advantage of writing f = x �→ sin (cos
(sin x)) is that in this way we can distinguish two different operations: the con-

struction of the function x �→ sin (cos (sin x)) and the definition itself,
which gives a name to an object previously constructed. It is often important, in
computer science, to have notations that allow us to build objects without necessar-
ily giving them a name.

In this book, we use the notation fun x -> sin (cos (sin x)) to spec-
ify this function.

The term fun x -> sin (cos (sin x)) specifies a function. However,
its subterm sin x does not specify anything: it is not a real number and it is not a
function, because it contains a free variable whose value we do not know.

To bind variables in terms, we need to extend the notion of term to include free
variables, which will be bound later. This requires also new symbols, such as fun,
which act as binders for the variables in some of their arguments. Other examples of
binders are the symbol { | }, the symbol ∂/∂ , the symbol

∫
d, the symbols

∑
and∏

, the quantifiers ∀ and ∃, . . . In this book we will use several binders: the symbol
fun above, the symbols fix, let, fixfun

The arity of a symbol f will no longer be a number n, instead, we will use a finite
sequence of numbers (k1, ..., kn) that will indicate that f binds k1 variables
in its first argument, k2 variables in the second, . . . , kn variables in the nth.

In this way, when a language is defined—that is, a set of symbols with their
arities—and an infinite set of variables is given, we can define the set of terms
inductively as follows

– variables are terms,
– if f is a symbol with arity (k1, ..., kn), t1, ..., tn are terms and x11,
..., x1k1, ..., xn1, ..., xnkn are variables, then f(x11 ... x1k1 t1,
..., xn1 ... xnkn tn) is a term.

The notation f(x11 ... x1k1 t1, ..., xn1 ... xnkn tn) denotes the tree

This definition can be better understood with an example. We build a language in
which terms specify real numbers and functions over the reals, and which includes

1.2 Languages 9

two constants sin and cos to represent the functions sine and cosine, a symbol α,
called application, such that α(f,x) is the object obtained by applying the function
f to the object x and a symbol fun to build functions. This language includes then
four symbols: the constants sin and cos, α with arity (0,0) and fun with arity
(1); the set of terms is inductively defined by

– variables are terms,
– sin is a term,
– cos is a term,
– if t and u are terms then α(t,u) is a term,
– if t is a term and x is a variable then fun(x t) is a term.

We will adopt a simplified notation, writing t u for the term α(t,u) and fun
x -> t for the term fun(x t).

For example, fun x -> sin (cos (sin x)) is a term in this language.

1.2.3 Many-Sorted Languages

In this book, we will sometimes use more general languages, called many-sorted

languages. For instance, the language that is used to describe vectors with a finite
number of constants, addition and scalar multiplication. In this language, there are
two sorts of terms: terms describing a vector, and terms describing a scalar. In the
definition of the language we indicate that the symbol + has two arguments, that

are both vectors and that the symbol . has two arguments, which are a scalar and

a vector.
For this, we introduce a set with two elements {vect, scal}, called sorts,

and we associate to the symbol . the arity (scal, vect, vect). This arity
indicates that in a term of the form λ.v, the term λ must be of sort scal, the term
v of sort vect, and the term λ.v is itself of sort vect.

When, in addition, there are bound variables, the arity of a symbol f is a fi-
nite sequence ((s11, ..., s1k1, s’1), ..., (sn1, ..., snkn, s’n),
s”) indicating that the symbol has n arguments, the first one of sort s’1 and bind-
ing k1 variables of sorts s11, ..., s1k1, ..., and that the resulting term is
itself of sort s”.

Given a language—that is, a set of sorts and a set of symbols each with an as-
sociated arity—and a family, indexed by sorts, of infinite, pairwise disjoint, sets of
variables, we can inductively define terms as follows:

– variables of sort s are terms of sort s,
– if f is a symbol of arity ((s11, ..., s1k1, s’1), ..., (sn1, ...,

snkn, s’n), s”), x11, ..., x1k1, ...,xn1, ..., xnkn are variables
of sort s11, ..., s1k1, ..., sn1, ..., snkn and t1, ..., tn are
terms of sort s’1, ..., s’n then f(x11 ... x1k1 t1, ..., xn1 ...
xnkn tn) is a term of sort s”.

10 1 Terms and Relations

1.2.4 Free and Bound Variables

The set of variables of a term is defined by structural induction:

– Var(x) = {x},
– Var(f(x11 ... x1k1 t1, ..., xn1 ... xnkn tn)) = Var(t1) ∪

{x11, ..., x1k1} ∪ · · · ∪ Var(tn) ∪ {xnn, ..., xnkn}.

We can also define the set of free variables of a term:

– FV(x) = {x},
– FV(f(x11 ... x1k1 t1, ..., xn1 ... xnkn tn)) = (FV(t1) \ {x11,

..., x1k1}) ∪ · · · ∪ (FV(tn) \ {xnn, ..., xnkn})

For example, Var (fun x -> sin (cos (sin x))) = {x} and FV
(fun x -> sin (cos (sin x))) = ∅.

A term without free variables is said to be closed.
The height of a term is also defined by structural induction:

– Height(x) = 0,
– Height(f(x11 ... x1k1 t1, ..., xn1 ... xnkn tn)) = 1 +
max(Height(t1), ..., Height (tn)).

1.2.5 Substitution

The first operation that we need to define is substitution: indeed, the rôle of variables
is not only to be bound but also to be substituted. For example, when we apply the
function fun x -> sin (cos (sin x)) to the term 2 * π , at some point
we will need to substitute in the term sin (cos (sin x)) the variable x by
the term 2 * π .

A substitution is simply a mapping from variables to terms, with a finite domain.
In other words, a substitution is a finite set of pairs where the first element is a
variable and the second a term, and such that each variable occurs at most once as
first element in a pair. We can also define a substitution as an association list—θ =
t1/x1 ... tn/xn.

When a substitution is applied to a term, each occurrence of a variable x1,
..., xn in the term is replaced by t1, ..., tn, respectively.

Of course, this replacement only affects the free variables. For example, if we
substitute the variable x by the term 2 in the term x + 3, we should obtain the
term 2 + 3. However, if we substitute the variable x by the term 2 in the term
fun x -> x which represents the identity function we should obtain the term
fun x -> x and not fun x -> 2.

The first attempt to define the application of a substitution to a term is as follows:

– 〈θ〉xi = ti,
– 〈θ〉x = x if x is not in the domain of θ ,

1.2 Languages 11

– 〈θ〉f(y11 ... y1k1 u1, ..., yn1 ... ynkn un) = f(y11 ...

y1k1 〈θ|(V\{y11, ..., y1k1
})〉u1, ..., yn1 ... ynkn 〈θ|(V\{yn1, ..., ynkn })〉un)

where we use the notation θ|V\{y1, ..., yk} for the restriction of the substitution θ

to the set V \ {y1, ..., yk}, that is, the substitution where we have omitted
all the pairs where the first element is one of the variables y1, ..., yk.

This definition is problematic, because substitutions could capture variables. For
example, the term fun x -> (x + y) represents the function that adds y to its
argument. If we substitute y by 4 in this term, we obtain the term fun x ->
(x + 4) representing the function that adds 4 to its argument. If we substitute y
by z, we get the term fun x -> (x + z) representing the function that adds
z to its argument. But if we substitute y by x, we obtain the function fun x ->
(x + x) which doubles its argument, instead of the function that adds x to its
argument as expected. We can avoid this problem if we change the name of the
bound variable: bound variables are dummies, their name does not matter. In other
words, in the term fun x -> (x + y), we can replace the bound variable x by
any other variable, except of course y. Similarly, when we substitute in the term
u the variables x1, ..., xn by the terms t1, ..., tn, we can change the
names of the bound variables in u to make sure that their names do not occur in
x1, ..., xn, or in the variables of t1, ..., tn, or in the variables of u, to
avoid capture.

We start by defining an equivalence relation on terms, by induction on the height
of terms. This relation is called alphabetic equivalence—or α-equivalence—and it
corresponds to variable renaming.

– x ∼ x,
– f(y11 ... y1k1 t1, ..., yn1 ... ynkn tn) ∼ f(y’11 ... y’1k1 t’1,
..., y’n1 ... y’nkn t’n) if for all i, and for any sequence of fresh vari-
ables z1, ..., zki (that is, variables that do not occur in ti, t’i), we have
〈z1/y

i
1, ..., zki/y

i
ki

〉ti ∼ 〈z1/y’
i
1, ..., zki/y’

i
ki

〉t’i.

For example, the terms fun x -> x + z and fun y -> y + z are α-
equivalent.

In the rest of the book we will work with terms modulo α-equivalence, that is,
we will consider implicitly α-equivalence classes of terms.

We can now define the operation of substitution by induction on the height of
terms:

– θxi = ti,
– θx = x if x is not in the domain of θ ,
– θf(y11 ... y1k1 u1, ..., yn1 ... ynkn un) = f(z11 ...

z1k1 θ〈z11/y
1
1, ..., z1k1/y

1
k1

〉u1, ..., zn1 ... znkn θ〈zn1/y
n
1, ...,

znkn/y
n
kn

〉un) where z11, ..., z1k1, ..., zn1, ..., znkn are variables
that do not occur in f(y11 ... y1k1 u1, ..., yn1 ... ynkn un) or in θ .

For example, if we substitute the variable y by the term 2 * x in the term fun
x -> x + y, we obtain the term fun z -> z + (2 * x). The choice of

12 1 Terms and Relations

variable z is arbitrary, we could have chosen v or w, and we would have obtained
the same term modulo α-equivalence.

The composition of the substitutions θ = t1/x1 ... tn/xn and σ =
u1/y1 ... up/yp is the substitution

θ ◦ σ = {θ(σz)/z | z ∈ {x1, ..., xn, y1, ..., yp}}

We can prove, by induction on the height of t, that for any term t

(θ ◦ σ)t = θ(σt)

1.3 Three Ways to Define the Semantics of a Language

The semantics of a programming language is a binary relation over the set of terms
in the language. Since we have already defined the notion of a language and intro-
duced tools to define relations, we are ready to describe the three main techniques
used for semantic definitions. The semantics of a language is usually given as a func-
tion, as an inductive definition, or as the reflexive-transitive closure of an explicitly
defined relation. They are called denotational semantics, big-step operational se-

mantics and small-step operational semantics, respectively.

1.3.1 Denotational Semantics

Denotational semantics is useful for deterministic languages. In this case, for each
program p, the input-output relation defined by a program is a function, written �p�.
The relation →֒ is then defined by

p,e →֒ s if and only if �p� e = s

Of course, this simply moves the problem further down: we now need to define the
function �p�. For this, we will use two tools: explicit definitions of functions, and
the fixed point theorem. . . but we will leave this for later.

1.3.2 Big-Step Operational Semantics

The big-step operational semantics is also called structural operational semantics

(S.O.S.) or natural semantics. It gives an inductive definition of the relation →֒.

1.3.3 Small-Step Operational Semantics

The small-step operational semantics is also called reduction semantics. It defines
the relation →֒ by means of another relation ⊲ that describes the basic steps to
transform the initial term t into the final term s.

1.3 Three Ways to Define the Semantics of a Language 13

For example, when we run the program fun x -> (x * x) + x with input
4, we obtain the result 20. But the term (fun x -> (x * x) + x) 4 does
not become 20 in one step, it is first transformed into (4 * 4) + 4, then 16 +
4, and finally 20.

The most important relation is not the one that links (fun x -> (x * x) +
x) 4 with 20, but ⊲, which relates the term (fun x -> (x * x) + x) 4
with (4 * 4) + 4, then the term (4 * 4) + 4 with 16 + 4 and finally the
term 16 + 4 with the term 20.

Once the relation ⊲ is given, →֒ can be derived from the reflexive-transitive
closure ⊲

∗ of the relation ⊲

t →֒ s if and only if t⊲
∗ s and s is irreducible

The fact that the term s is irreducible implies that there is nothing else to compute
in s. For example, the term 20 is irreducible, but the term 16 + 4 is not. A term s

is irreducible if there is no term s’ such that s ⊲ s’.

1.3.4 Non-termination

The execution of a program may produce a result, produce an error, or never termi-
nate. Errors can be seen as particular kinds of results. For non-terminating programs,
there are several ways to define a semantics. A first alternative is to consider that if
the term t does not terminate, then there is no pair (t,s) in the relation →֒. An-
other alternative is to add a specific element ⊥ to the set of output values, and to state
that the relation →֒ contains the pair (t,⊥) when the term t does not terminate.

The difference may seem superficial: it is easy to delete all the pairs of the form
(t,⊥), or to add such a pair if there is no pair of the form (t,s) in the relation.
However, readers who are familiar with computability problems will notice that, if
we add the pairs (t,⊥), the relation →֒ is no longer recursively enumerable.

Chapter 2

The Language PCF

We will illustrate the various styles of semantics of programming languages with an
example: the language PCF—Programming language for computable functions—,
also called Mini-ML.

2.1 A Functional Language: PCF

2.1.1 Programs Are Functions

We observed in the previous chapter that a deterministic program computes a func-
tion, and from this observation we derived the principles of denotational semantics.
This remark is also the basis of a class of programming languages: functional lan-
guages, such as Caml, Haskell or Lisp, which are traditionally used to begin the
study of programming languages.

In these languages, the goal is to shorten the distance between the notion of a
program and the notion of a mathematical function. In other words, the idea is to
bring programs closer to their denotational semantics.

The basic constructions in the language PCF are the explicit construction of a
function, written fun x -> t, and the application of a function to an argument,
written t u.

PCF includes also a constant for each natural number, the operations +, -,
*, /, and a test to detect zero ifz t then u else v. Addition and multi-
plication are defined for all natural numbers, and similarly for subtraction using
the convention n - m = 0 if n < m. Division is the standard Euclidean division,
division by 0 produces an error.

2.1.2 Functions Are First-Class Objects

In many programming languages, it is possible to define a function that takes another
function as argument, or that returns another function, but often this requires the use

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_2, © Springer-Verlag London Limited 2011

15

16 2 The Language PCF

of a syntax that is different from the syntax used for a standard argument such as an
integer or a string. In a functional language, functions are defined in the same way
whether they take numbers or functions as arguments.

For example, the composition of a function with itself is defined by fun f ->
fun x -> f (f x).

To highlight the fact that functions are not considered different, and thus they can
be used as arguments or returned as results for other functions, we say that functions
are first class objects.

2.1.3 Functions with Several Arguments

In PCF, there is no symbol to build a function with several arguments. These func-
tions are built as functions with one argument, using the isomorphism (A × B)
-> C = A -> (B -> C). For instance, the function that associates to x and y
the number x * x + y * y is defined as the function associating to x a func-
tion, which in turn associates to y the number x * x + y * y, that is, fun x
-> fun y -> x * x + y * y.

Then, to apply the function f to the numbers 3 and 4we need to apply it first to 3,
obtaining the term f 3, which represents the function that associates 3 * 3 +
y * y to y, and then to 4, obtaining the term (f 3) 4. Since, by convention,
application associates to the left, we will write this term simply as f 3 4.

2.1.4 No Assignments

In contrast with languages such as Caml or Java, the main feature of PCF is a total
lack of assignments. There is no construction of the form x := t or x = t to
assign a value to a “variable”. We will describe, in Chap. 7, an extension of PCF
with assignments.

2.1.5 Recursive Definitions

In Mathematics, some functions cannot be defined explicitly. For example, in a high-
school textbook, the power function is often defined by

x, n �→ x× · · · × x
︸ ︷︷ ︸

n times

or through a definition by induction.
In programming languages, we use similar constructs: iterations and recursive

definitions. PCF includes a special construct to define recursive functions.

2.1 A Functional Language: PCF 17

It is often said that a function is recursive if the function is used in its own defi-
nition. This is absurd: in programming languages, as everywhere else, circular def-
initions are meaningless. We cannot “define” the function fact by fun n ->
ifz n then 1 else n * (fact (n - 1)). In general, we cannot define
a function f by a term G which contains an occurrence of f. However, we can define
the function f as the fixed point of the function fun f -> G. For example, we can
define the function fact as the fixed point of the function fun f -> fun n ->
ifz n then 1 else n * (f (n - 1)).

Does this function have a fixed point? and if it does, is this fixed point unique?
Otherwise, which fixed point are we referring to? We will leave these questions for
a moment, and simply state that a recursive function is defined as a fixed point.

In PCF, the symbol fix binds a variable in its argument, and the term
fix f G denotes the fixed point of the function fun f -> G. The function
fact can then be defined by fix f fun n -> ifz n then 1 else n *
(f (n - 1)).

Note, again, that using the symbol fix we can build the factorial function with-
out necessarily giving it a name.

2.1.6 Definitions

We could, in theory, omit definitions and replace everywhere the defined symbols by
their definitions. However, programs are simpler and clearer if we use definitions.

We add then a final construct in PCF, written let x = t in u. The occur-
rences of the variable x in u are bound, but those in t are not. The symbol let is a
binary operator that binds a variable in its second argument.

2.1.7 The Language PCF

The language PCF contains

– a symbol fun with one argument, that binds a variable in its argument,
– a symbol α with two arguments, which does not bind any variables in its argu-

ments,
– an infinite number of constants to represent the natural numbers,
– four symbols +, -, * and / with two arguments, which do not bind any variables

in their arguments,
– a symbol ifz with three arguments, which does not bind any variables in its

arguments,
– a symbol fix with one argument, which binds a variable in its argument,
– a symbol letwith two arguments, which binds a variable in its second argument.

In other words, the syntax of PCF is inductively defined by

18 2 The Language PCF

t = x
| fun x -> t
| t t
| n
| t + t | t - t | t * t | t / t
| ifz t then t else t
| fix x t
| let x = t in t

Despite its small size, PCF is Turing complete, that is, all computable functions
can be programmed in PCF.

Exercise 2.1 Write a PCF program that takes two natural numbers n and p as inputs
and returns np.

Exercise 2.2 Write a PCF program that takes a natural number n as input and re-
turns the number 1 if the input is a prime number, and 0 otherwise.

Exercise 2.3 (Polynomials in PCF) Write a PCF program that takes a natural num-
ber q as input, and returns the greatest natural number u such that u (u + 1) /
2 ≤ q.

Cantor’s function K is a function from N
2 to N defined by fun n ->

fun p -> (n + p) (n + p + 1) / 2 + n. Let K’ be the function from
N to N

2 defined by fun q -> (q - (u (u + 1) / 2), u - q +
u (u + 1) / 2) where u is the greatest natural number such that u (u +
1) / 2 ≤ q.

Show that K ◦ K’ = id. Let n and p be two natural numbers, show that
the greatest natural number u such that u (u + 1) / 2 ≤ (n + p) (n +
p + 1) / 2 + n is n + p. Then deduce that K’ ◦ K = id. From this fact,
deduce that K is a bijection from N

2 to N.
Let L be the function fun n -> fun p -> (K n p) + 1. A polynomial

with integer coefficients a0 + a1 X + · · · + ai Xi + · · · + an Xn can be
represented by the integer L a0 (L a1 (L a2 ... (L an 0) ...)).

Write a PCF program that takes two natural numbers as input and returns the
value of the polynomial represented by the first number applied to the second.

2.2 Small-Step Operational Semantics for PCF

2.2.1 Rules

Let us apply the program fun x -> 2 * x to the constant 3. We obtain the term
(fun x -> 2 * x) 3. According to the principles of small-step operational
semantics, let us try to evaluate this term step by step, to obtain a result: 6 if all

2.2 Small-Step Operational Semantics for PCF 19

goes well. The first step in this simplification process is parameter passing, that
is, the replacement of the formal argument x by the actual argument 3. The initial
term becomes, after a first small-step transformation, the term 2 * 3. In the second
step, the term 2 * 3 is evaluated, resulting in the number 6. The first small step,
parameter passing, can be performed each time we have a term of the form (fun
x -> t) u where a function fun x -> t is applied to an argument u. As a
consequence, we define the following rule, called β-reduction rule

(fun x -> t) u −→ (u/x)t

The relation t −→ u should be read “t reduces—or rewrites—to u”. The second
step mentioned above can be generalised as follows

p ⊗ q −→ n (if p ⊗ q = n)

where ⊗ is any of the four arithmetic operators included in PCF. We add similar
rules for conditionals

ifz 0 then t else u −→ t

ifz n then t else u −→ u (if n is a number different from 0)

a rule for fixed points

fix x t −→ (fix x t/x)t

and a rule for let

let x = t in u −→ (t/x)u

A redex is a term t that can be reduced. In other words, a term t is a redex if
there exists a term u such that t −→ u.

2.2.2 Numbers

It could be said, quite rightly, that the rule p ⊗ q −→ n (if p ⊗ q = n), of
which 2 * 3 −→ 6 is an instance, does not really explain the semantics of the
arithmetic operators, since it just replaces the multiplication in PCF by that of Math-
ematics. This choice is however motivated by the fact that we are not really inter-
ested in the semantics of arithmetic operators, instead, our goal is to highlight the
semantics of the other constructs in the language.

To define the semantics of the arithmetic operators in PCF without referring to
the mathematical operators, we should consider a variant of PCF without numeric
constants, where we introduce just one constant for the number 0 and a symbol S—
“successor”—with one argument. The number 3, for instance, is represented by the
term S(S(S(0))). We then add small-step rules

0 + u −→ u
S(t) + u −→ S(t + u)
0 - u −→ 0

20 2 The Language PCF

t - 0 −→ t
S(t) - S(u) −→ t - u
0 * u −→ 0
S(t) * u −→ t * u + u
t / S(u) −→ ifz t - u then 0 else S((t - S(u)) / S(u))

Note that, to be precise, we should add a rule for division by 0, which should raise
an exception: error.

Exercise 2.4 (Church numerals) Instead of introducing the symbols 0 and S, we
can represent the number n by the term fun z -> fun s -> s (s (...
(s z)...)) rather than S(S(...(0)...)). Show that addition and multi-
plication can be programmed on these representations. Show that the function that
checks whether a number is 0 can also be programmed.

Exercise 2.5 (Position numerals) It could be said that the representations of num-
bers using the symbols 0 and S, or using Church numerals, are not efficient, since
the size of the term representing a number grows linearly with the number—as the
representation in unary notation, where to write the number n we need n symbols—
and not logarithmically, as it is the case with the usual position-based notation. An
alternative could be to use a symbol z for the number 0 and two functions O and I
to represent the functions n �→ 2 * n and n �→ 2 * n + 1. The number 26
would then be represented by the term O(I(O(I(I(z))))), and reversing it we
obtain IIOIO, the binary representation of this number.

Write a small-step operational semantics for the arithmetic operators in this lan-
guage.

2.2.3 A Congruence

Using the rules of the small-step semantics we obtain

(fun x -> 2 * x) 3 −→ 2 * 3 −→ 6

Thus, denoting by −→∗ the reflexive-transitive closure of −→, we can write
(fun x -> 2 * x) 3 −→∗ 6.

However, with this definition, the term (2 + 3) + 4 does not reduce to the
term 9 according to −→∗. Indeed, to reduce a term of the form t + u the terms
t and u should be numeric constants, but our first term 2 + 3 is a sum, not a
constant. The first step should then be the evaluation of 2 + 3, which produces the
number 5. Then, a second step reduces 5 + 4 to 9. The problem is that, with our
definition, the term 2 + 3 reduces to 5, but (2 + 3) + 4 does not reduce to
5 + 4.

We need to define another relation, where rules can be applied to any subterm of
a term to be reduced. Let us define inductively the relation ⊲ as follows

if t −→ ut ⊲ u

2.2 Small-Step Operational Semantics for PCF 21

t ⊲ u
t v ⊲ u v

t ⊲ u
v t ⊲ v u

t ⊲ u
fun x -> t ⊲ fun x -> u

t ⊲ u
t + v ⊲ u + v

...

It is possible to show that a term is a redex with respect to the relation ⊲ if and
only if one of its subterms is a redex with respect to −→.

2.2.4 An Example

To illustrate PCF’s small-step semantic rules, let us compute the factorial of 3.

(fix f fun n -> ifz n then 1 else n * (f (n - 1))) 3
⊲ (fun n -> ifz n then 1 else n * ((fix f fun n ->
ifz n then 1 else n * (f (n - 1))) (n - 1))) 3
⊲ ifz 3 then 1 else 3 * ((fix f fun n -> ifz n then 1
else n * (f (n - 1))) (3 - 1))
⊲ 3 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (3 - 1))
⊲ 3 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) 2)
⊲ 3 * ((fun n -> ifz n then 1 else n * ((fix f fun n ->
ifz n then 1 else n * (f (n - 1))) (n - 1))) 2)
⊲ 3 * (ifz 2 then 1 else 2 * ((fix f fun n -> ifz n
then 1 else n * (f (n - 1))) (2 - 1)))
⊲ 3 * (2 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (2 - 1)))
⊲ 3 * (2 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) 1))
⊲ 3 * (2 * ((fun n -> ifz n then 1 else
n * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (n - 1))) 1))
⊲ 3 * (2 * (ifz 1 then 1 else 1 * ((fix f fun n ->
ifz n then 1 else n * (f (n - 1))) (1 - 1))))
⊲ 3 * (2 * (1 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (1 - 1))))

22 2 The Language PCF

⊲ 3 * (2 * (1 * ((fix f fun n -> ifz n then 1
else n * (f (n - 1))) 0)))
⊲ 3 * (2 * (1 * ((fun n -> ifz n then 1 else
n * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (n - 1))) 0)))
⊲ 3 * (2 * (1 * ((ifz 0 then 1 else
0 * ((fix f fun n -> ifz n then 1 else
n * (f (n - 1))) (0 - 1))))))
⊲ 3 * (2 * (1 * 1)) ⊲ 3 * (2 * 1) ⊲ 3 * 2 ⊲ 6

2.2.5 Irreducible Closed Terms

A term t is irreducible if it cannot be reduced by ⊲, that is, if there is no term u
such that t ⊲ u.

We can now define the relation “the term u is the result of the evaluation of term
t”, where t is a closed term, by: t →֒ u if and only if t ⊲

* u and u is irreducible.
In this case, the term u must be closed. Finally, the relation “the program p with
inputs e1, ..., en produces the output s” is simply written p e1 ... en
→֒ s.

Exercise 2.6 (Classification of irreducible closed terms) Show that a term is irre-
ducible and closed if and only if it is of one of the following forms

– fun x -> t where t is irreducible and does not contain any free variables
except possibly x,

– n where n is a number,
– V1 V2, where V1 and V2 are irreducible closed terms and V1 is not of the form
fun x -> t,

– V1 ⊗ V2, where V1 and V2 are irreducible closed terms and are not both numeric
constants,

– ifz V1 then V2 else V3 where V1, V2 and V3 are irreducible closed
terms and V1 is not a number.

Numbers and irreducible closed terms of the form fun x -> t are called val-

ues. When the result of a computation is a value, we associate the value to the initial
term, and we say that the term evaluates to this value.

Unfortunately, values are not the only possible results. For example, the term
(fun x -> x) 1 2 can be reduced to the term 1 2, which is irreducible and
closed, and thus the term 1 2 is the result of the computation of (fun x ->
x) 1 2. This result is meaningless, because we cannot apply the object 1, which
is not a function, to 2. An irreducible closed term that is not a value is said to
be stuck. Stuck terms have the form V1 V2, where V1 and V2 are irreducible
closed terms and V1 is not a function fun x -> t (for example 1 2), V1 ⊗ V2,
where V1 and V2 are irreducible and closed and are not numbers (for example 1 +

2.2 Small-Step Operational Semantics for PCF 23

(fun x -> x)), and ifz V1 then V2 else V3 where V1, V2 and V3 are
irreducible and closed and V1 is not a number (for example, ifz (fun x ->
x) then 1 else 2).

Exercise 2.7 Which are the values associated to the terms

(fun x -> fun x -> x) 2 3

and

(fun x -> fun y -> ((fun x -> (x + y)) x)) 5 4

according to the small-step operational semantics of PCF?

Exercise 2.8 (Static binding) Does the small-step operational semantics of PCF
associate the value 10 or the value 11 to the term

let x = 4 in let f = fun y -> y + x
in let x = 5 in f 6?

The first versions of the language Lisp produced the value 11 instead of 10 for
this term. In this case, we say that the binding is dynamic.

2.2.6 Non-termination

It is easy to see that the relation →֒ is not total, that is, there are terms t for which
there is no term u such that t →֒ u. For example, the term b = fix x x re-
duces to itself, and only to itself. It does not reduce to any irreducible term.

Exercise 2.9 Let b1 = (fix f (fun x -> (f x))) 0. Show all the terms
obtained by reducing this term. Does the computation produce a result in this case?

Exercise 2.10 (Curry’s fixed point operator) Let t be a term and u be the term
(fun y -> (t (y y)))(fun y -> (t (y y))). Show that u reduces
to t u.

Let t be a term and v be the term (fun y -> ((fun x -> t)
(y y)))(fun y -> ((fun x -> t) (y y))). Show that v reduces to
(v/x)t.

Thus, we can deduce that the symbol fix is superfluous in PCF. However, it is
not going to be superfluous later when we add types to PCF.

Write a term u without using the symbol fix and equivalent to b = fix x x.
Describe the terms that can be obtained by reduction. Does the computation produce
a result in this case?

24 2 The Language PCF

2.2.7 Confluence

Is it possible for a closed term to produce several results? And, in general, can a
term reduce to several different irreducible terms? The answer to these questions
is negative. In fact, every PCF program is deterministic, but this is not a trivial
property. Let us see why.

The term (3 + 4) + (5 + 6) has two subterms which are both redexes.
We could then start by reducing 3 + 4 to 7 or 5 + 6 to 11. Indeed, the term
(3 + 4) + (5 + 6) reduces to both 7 + (5 + 6) and (3 + 4) + 11.
Fortunately, neither of these terms is irreducible, and if we continue the computation
we reach in both cases the term 18.

To prove that any term can be reduced to at most one irreducible term we need to
prove that if two computations originating in the same term produce different terms,
then they will eventually reach the same irreducible term.

This property is a consequence of another property of the relation ⊲: confluence.
A relation R is confluent if each time we have a R∗ b1 and a R∗ b2, there exists
some c such that b1 R∗ c and b2 R∗ c.

It is not difficult to show that confluence implies that each term has at most one
irreducible result. If the term t can be reduced to two irreducible terms u1 and u2,
then we have t ⊲

∗ u1 and t ⊲
∗ u2. Since ⊲ is confluent, there exists a term v

such that u1 ⊲
∗ v and u2 ⊲

∗ v. Since u1 is irreducible, the only term v such that
u1 ⊲

∗ v is u1 itself. Therefore, u1 = v and similarly u2 = v. We conclude that
u1 = u2. In other words, t reduces to at most one irreducible term.

We will not give here the proof of confluence for the relation ⊲. The idea is that
when a term t contains two redexes r1 and r2, and t1 is obtained by reducing r1
and t2 is obtained by reducing r2, then we can find the residuals of r2 in t1 and
reduce them. Similarly, we can reduce the residuals of r1 in t2, obtaining the same
term. For example, by reducing 5 + 6 in 7 + (5 + 6) and reducing 3 + 4 in
(3 + 4) + 11, we obtain the same term: 7 + 11.

2.3 Reduction Strategies

2.3.1 The Notion of a Strategy

Since in PCF each term has at most one result (due to the unicity property men-
tioned above), it does not matter in which order we reduce the redexes in a term:
if we reach an irreducible term, it will always be the same. However, it may be
the case that one sequence of reduction reaches an irreducible term whereas an-
other one does not. For example, let C be the term fun x -> 0 and let b1
be the term (fix f (fun x -> (f x))) 0. The term b1 reduces to b2 =
(fun x -> (fix f (fun x -> (f x)) x)) 0 and then again to b1.
The term C b1 contains several redexes, and it can be reduced to 0 and to C b2
which in turn contains several redexes and can be reduced to 0 and C b1 (amongst

2.3 Reduction Strategies 25

other terms). By reducing always the innermost redex, we can build an infinite re-
duction sequence C b1 ⊲ C b2 ⊲ C b1 ⊲ · · · , whereas reducing the outermost
redex produces the result 0.

This example may seem an exception, because it contains a function C that does
not use its argument; but note that the ifz construct is similar, and in the example
of the factorial function, when computing the factorial of 3 for instance, we can
observe the same behaviour: The term ifz 0 then 1 else 0 * ((fix f
fun n -> ifz n then 1 else n * (f (n - 1))) (0 - 1)) has
several redexes. Outermost reduction produces the result 1 (the other redexes disap-
pear), whereas reducing the redex fix f fun n -> ifz n then 1 else
n * (f (n - 1)) we get an infinite reduction sequence. In other words, the
term fact 3 can be reduced to 6, but it can also generate reductions that go on
forever.

Both C b1 and fact 3 produce a unique result, but not all reduction sequences
reach a result.

Since the term C b1 has the value 0 according to the PCF semantics, an evalu-

ator, that is, a program that takes as input a PCF term and returns its value, should
produce the result 0 when computing C b1. Let us try to evaluate this term using
some current compilers. In Caml, the program

let rec f x = f x in let g x = 0 in g (f 0)

does not terminate. In Java, we have the same problem with the program

class Omega {
static int f (int x) {return f(x);}
static int g (int x) {return 0;}
static public void main (String [] args) {
System.out.println(g(f(0)));}}

Only a small number of compilers, using call by name or lazy evaluation, such as
Haskell, Lazy-ML or Gaml, produce a terminating program for this term.

This is because the small-step semantics of PCF does not correspond to the se-
mantics of Caml or Java. In fact, it is too general and when a term has several
redexes it does not specify which one should be reduced first. By default, it imposes
termination of all programs that somehow can produce a result. An ingredient is
missing in this semantic definition: the notion of a strategy, that specifies the order
of reduction of redexes.

A strategy is a partial function that associates to each term in its domain one of its
redex occurrences. Given a strategy s, we can define another semantics, replacing
the relation ⊲ by a new relation ⊲s such that t ⊲s u if s t is defined and u is
obtained by reducing the redex s t in t. Then, we define the relation ⊲

∗
s as the

reflexive-transitive closure of ⊲s, and the relation →֒s as before.
Instead of defining a strategy, an alternative would be to weaken the reduction

rules, in particular the congruence rules, so that only some specific reductions can
be performed.

26 2 The Language PCF

2.3.2 Weak Reduction

Before defining outermost or innermost strategies for the term C b1, let us give
another example to show that the operational semantics defined above is too liberal,
and to motivate the definition of strategies or weaker reduction rules. Let us apply
the program fun x -> x + (4 + 5) to the constant 3. We obtain the term
(fun x -> x + (4 + 5)) 3 that contains two redexes. We can then reduce
it to 3 + (4 + 5) or to (fun x -> x + 9) 3. The first reduction is part of
the execution of the program, but not the second. Usually, if we execute a function
before passing arguments to it, we say that we are optimising or specialising the
program.

A weak reduction strategy never reduces a redex that is under a fun. Thus, weak
reduction does not specialise programs, it just executes them. It follows that with a
weak strategy all terms of the form fun x -> t are irreducible.

Alternatively, we can define weak reduction by weakening the reduction rules,
more precisely, by discarding the congruence rule

t ⊲ u
fun x -> t ⊲ fun x -> u

Exercise 2.11 (Classification of weak irreducible closed terms) Show that, under
weak reduction, a closed irreducible term must have one of the following forms:

– fun x -> t, where t has at most x free,
– n where n is a number,
– V1 V2, where V1 and V2 are irreducible closed terms and V1 is not a term of the

form fun x -> t,
– V1 ⊗ V2, where V1 and V2 are irreducible closed terms and are not both numbers,
– ifz V1 then V2 else V3 where V1, V2 and V3 are irreducible closed

terms and V1 is not a number.

What is the difference with Exercise 2.6?

Numbers and closed terms of the form fun x -> t are called values.

2.3.3 Call by Name

Let us analyse again the reductions available for the term C b1. We need to decide
whether we should evaluate the arguments of the function C before they are passed
to the function, or we should pass to the function the arguments without evaluating
them.

The call by name strategy always reduces the leftmost redex first, and the weak
call by name strategy always reduces the leftmost redex that is not under a fun.
Thus, the term C b1 reduces to 0. This strategy is interesting due to the following

2.4 Big-Step Operational Semantics for PCF 27

property, called standardisation: if a term can be reduced to an irreducible term,
then the call by name strategy terminates. In other words, →֒n = →֒. Moreover,
when we evaluate the term (fun x -> 0) (fact 10) using a call by name
strategy, we do not need to compute the factorial of 10. However, if we evaluate
the term (fun x -> x + x) (fact 10), using a call by name strategy, we
will compute it twice, because this term reduces to (fact 10) + (fact 10).
Most call by name evaluators use sharing to avoid this duplication of computation,
and in this case we call it lazy evaluation.

2.3.4 Call by Value

Call by value, in contrast, always evaluates the arguments of a function before pass-
ing them to the function. It is based on the following convention: we can only reduce
a term of the form (fun x -> t) u if u is a value. Thus, when we evaluate the
term (fun x -> x + x) (fact 10), we start by reducing the argument to
obtain (fun x -> x + x) 3628800, and then we reduce the leftmost redex.
By doing this, we only compute the factorial of 10 once.

All the strategies that evaluate arguments before passing them are in this class.
For instance, the strategy that reduces always the leftmost redex amongst those that
are authorised. Thus, call by value is not a unique strategy, but a family of strategies.

This convention can also be defined by weakening the β-reduction rule: the term
(fun x -> t) u is a redex only if the term u is a value.

A weak strategy is said to implement call by value if it reduces a term of the form
(fun x -> t) u only when u is a value and is not under a fun.

2.3.5 A Bit of Laziness Is Needed

Even under a call by value strategy, a conditional construct ifz must be evaluated
under call by name: in a term of the form ifz t then u else v, we should
never evaluate the three arguments. Instead, we should first evaluate t and depend-
ing on the result, evaluate either u or v.

It is easy to see that if we evaluate the three arguments of an ifz then the evalu-
ation of the term fact 3 does not terminate.

Exercise 2.12 Characterise the irreducible closed terms under weak call by name,
then characterise the irreducible closed terms under weak call by value.

2.4 Big-Step Operational Semantics for PCF

Instead of defining a strategy, or weakening the reduction rules of the small-step
operational semantics, we can control the order in which redexes are reduced by
defining a big-step operational semantics.

28 2 The Language PCF

The big-step operational semantics of a programming language provides an in-
ductive definition of the relation →֒, without first defining −→ and ⊲.

2.4.1 Call by Name

Let us start by the call by name semantics for PCF. Consider a term of the form t
u that is reduced under call by name to obtain an irreducible term V. We will start
by reducing the redexes that occur in t until we obtain an irreducible term. If this
term is of the form fun x -> t’, then the whole term reduces to (fun x ->
t’) u and the left-most redex is the term itself. It reduces to (u/x)t’, which in
turn reduces to V. We can say that the term t u reduces under call by name to the
irreducible term V if t reduces to fun x -> t’ and (u/x)t’ reduces to V.

This can be expressed as a rule

t →֒ fun x -> t’ (u/x)t’ →֒ V
t u →֒ V

which will be part of the inductive definition of the relation →֒ (without first defin-
ing −→ and ⊲).

Other rules state that the result of the computation for a term of the form fun is
the term itself, that is, we are defining a weak reduction relation

fun x -> t →֒ fun x -> t

and that the result of the computation of a term of the form n is the term itself

n →֒ n

Also, there is a rule to give the semantics of arithmetic operators

u →֒ q t →֒ p if p ⊗ q = n
t ⊗ u →֒ n

two rules to define the semantics of the ifz construct

t →֒ 0 u →֒ V
ifz t then u else v →֒ V

t →֒ n v →֒ V if n is a
number �= 0ifz t then u else v →֒ V

a rule to define the semantics of the fixed point operator

(fix x t/x)t →֒ V
fix x t →֒ V

2.4 Big-Step Operational Semantics for PCF 29

and finally a rule to define the semantics of a let

(t/x)u →֒ V
let x = t in u →֒ V

We can prove by structural induction on the evaluation relation that the result
of the computation of a term is always a value, that is, a number or a closed term
of the form fun. There are no stuck terms. The computation of a term such as
((fun x -> x) 1) 2, which gave rise to the term 1 2 (stuck) with the small-
step semantics, does not produce a result with the big-step semantics, since none
of the rules can be applied to this term. Indeed, there is no rule in the big-step
semantics that explains how to evaluate an application where the left part evaluates
to a number.

2.4.2 Call by Value

The rules defining the call by value semantics are similar, except for the application
rule: we compute the value of the argument before passing it to the function

u →֒ W t →֒ fun x -> t’ (W/x)t’ →֒ V
t u →֒ V

and the let rule

t →֒ W (W/x)u →֒ V
let x = t in u →֒ V

Summarising, we have the following rules

u →֒ W t →֒ fun x -> t’ (W/x)t’ →֒ V
t u →֒ V

fun x -> t →֒ fun x -> t

n →֒ n

u →֒ q t →֒ p if p ⊗ q = n
t ⊗ u →֒ n

t →֒ 0 u →֒ V
ifz t then u else v →֒ V

t →֒ n v →֒ V if n is a
constant �= 0ifz t then u else v →֒ V

30 2 The Language PCF

(fix x t/x)t →֒ V
fix x t →֒ V

t →֒ W (W/x)u →֒ V
let x = t in u →֒ V

Notice that, even under call by value, we keep the rules for the ifz

t →֒ 0 u →֒ V
ifz t then u else v →֒ V

t →֒ n v →֒ V if n is a
constant �= 0ifz t then u else v →֒ V

that is, we do not evaluate the second and third arguments of an ifz until they are
needed.

Note also that, even under call by value, we keep the rule

(fix x t/x)t →֒ V
fix x t →֒ V

We must resist the temptation to evaluate the term fix x t to a value W before
substituting it in t, because the rule

fix x t →֒ W (W/x)t →֒ V
fix x t →֒ V

requires, in order to evaluate fix x t, to start by evaluating fix x t which
would create a loop and the term fact 3 would never produce a value—its evalu-
ation would give rise to an infinite computation.

Note finally that other rule combinations are possible. For example, some variants
of the call by name semantics use call by value in the let rule.

Exercise 2.13 Which values do we obtain under big-step semantics for the terms

(fun x -> fun x -> x) 2 3

and

(fun x -> fun y -> ((fun x -> (x + y)) x)) 5 4?

Compare your answer with that of Exercise 2.7.

Exercise 2.14 Does the big-step semantics associate the value 10 or the value 11
to the term

let x = 4 in let f = fun y -> y + x
in let x = 5 in f 6?

Compare your answer with that of Exercise 2.8.

2.5 Evaluation of PCF Programs 31

2.5 Evaluation of PCF Programs

A PCF evaluator is a program that takes a closed PCF term as input, and produces
its value as output. When read in a bottom-up fashion, the rules in the big-step
semantics can be seen as the kernel of such an evaluator: To evaluate an application
t u one starts by evaluating u and t, . . . this is easy to program in a language like
Caml

let rec eval p = match p with
| App(t,u) -> let w = eval u

in let v = eval t
in ...

| ...

In the case of an application, the rules of the big-step semantics leave us the
freedom to evaluate u first or t first—call by value is not a strategy, but a family of
strategies—, but the term (W/x)t’ must be the third to be evaluated, because it is
built out of the results of the first two evaluations.

Exercise 2.15 Write a call by name evaluator for PCF, that is, a program that takes
as input a closed term and computes its value. Write a call by value evaluator. Eval-
uate the term fact 6 and the term C b1 in both cases.

PCF’s denotational semantics is more difficult to define. This may seem a para-
dox, since PCF is a functional language and it should be easy to interpret its pro-
grams as functions. However, in PCF, any object can be applied to any object, and
nothing stops us writing for instance the term fun x -> (x x). In contrast with
mathematical functions, PCF functions do not have a domain. For this reasons, we
will give a denotational semantics for PCF after we add types, in Chap. 5.

Chapter 3

From Evaluation to Interpretation

3.1 Call by Name

Using the rules of the big-step operational semantics, we can build an evaluator for
PCF where a term of the form (fun x -> t) u is evaluated by first substituting
the variable x by the term u everywhere in the body t of the function. For example,
to evaluate the term (fun x -> (x * x) + x) 4, we substitute x by 4 in the
term (x * x) + x and then we evaluate the term (4 * 4) + 4. Substitutions
are costly operations; to increase the efficiency of the evaluator we could instead
keep the association x = 4 in a separate structure called an environment, and eval-
uate the term (x * x) + x in that environment. A program that evaluates terms
in this way is called an interpreter.

An environment is a function from variables to terms, with a finite domain. It is in
essence the same thing as a substitution, but different notations are used. We write
an environment as a list of pairs x1 = t1, ..., xn = tn, where the same
variable x may occur several times and in that case the rightmost pair has priority.
Thus, in the environment x = 3, y = 4, x = 5, z = 8 we only consider
x = 5, not x = 3, which is said to be hidden by the pair x = 5. Finally, if e is
an environment and x = t a pair, we denote by e, x = t the list obtained by
extending e with the pair x = t.

During the evaluation of a term we might reach a free variable x. In this case, we
will look for the term associated to this variable in the environment. It can be shown
that, if we start with a closed term, then each time we reach a variable we will find
an associated term in the environment.

In fact, the situation is slightly more complicated, because in addition to the
term u associated to the variable in the environment, we will also need to find the
environment associated to u. A pair of a term and an environment is called a thunk.
We will write it 〈u, e〉.

Similarly, when we interpret a term of the form fun x -> t in an environ-
ment e, the result cannot simply be the term fun x -> t, because it might con-
tain free variables and when interpreting the term t we will need the thunks asso-
ciated to these variables in e. We introduce then a new notion of value, called a

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_3, © Springer-Verlag London Limited 2011

33

34 3 From Evaluation to Interpretation

closure, consisting of a term that must be of the form fun x -> t and an envi-
ronment e. We will write such values as follows 〈x, t, e〉. Values are no longer
a subset of terms, and we will have to define a language of values independently
from the language of terms.

As a consequence, we will need to rewrite the rules for the call by name big-
step operational semantics of PCF, in order to consider a relation of the form e ⊢

t →֒ V, read “t is interpreted as V in e ”, where e is an environment, t a term
and V a value. When the environment e is empty, this relation will be written ⊢ t
→֒ V. The rules that extend the environment are the application rule, which adds a
pair consisting of a variable x and a thunk 〈u, e〉, the let rule, which adds a pair
consisting of the variable x and the thunk 〈t, e〉 and the fix rule, which adds a
pair consisting of the variable x and the thunk 〈fix x t, e〉. In the latter rule,
the term t is duplicated: one of the copies is interpreted and the other is kept in the
environment for any recursive calls arising from the interpretation of the first one.

e’ ⊢ t →֒ V if e contains x = 〈t,e’〉
e ⊢ x →֒ V

e ⊢ t →֒ 〈x, t’, e’〉 (e’, x = 〈u, e〉) ⊢ t’ →֒ V
e ⊢ t u →֒ V

e ⊢ fun x -> t →֒ 〈x, t, e〉

e ⊢ n →֒ n

e ⊢ u →֒ q e ⊢ t →֒ p if p ⊗ q = n
e ⊢ t ⊗ u →֒ n

e ⊢ t →֒ 0 e ⊢ u →֒ V
e ⊢ ifz t then u else v →֒ V

e ⊢ t →֒ n e ⊢ v →֒ V if n is a
number �= 0e ⊢ ifz t then u else v →֒ V

(e, x = 〈fix x t, e〉) ⊢ t →֒ V
e ⊢ fix x t →֒ V

(e, x = 〈t, e〉) ⊢ u →֒ V
e ⊢ let x = t in u →֒ V

Exercise 3.1 Write a call by name interpreter for PCF.

Exercise 3.2 Which values will be obtained for the following terms according to
the interpretation rules given above for PCF?

(fun x -> fun x -> x) 2 3

3.2 Call by Value 35

and

(fun x -> fun y -> ((fun x -> (x + y)) x)) 5 4

Compare with Exercises 2.7 and 2.13.

Exercise 3.3 Will the interpretation rules for PCF compute the value 10 or the
value 11 for the term

let x = 4 in let f = fun y -> y + x
in let x = 5 in f 6?

Compare with Exercises 2.8 and 2.14.

3.2 Call by Value

The situation is simpler with a call by value semantics. Indeed, when interpreting
a term of the form (fun x -> t) u, we start by interpreting the term u. The
result is a value, that is, a number or a closure, and it suffices to bind the variable x
to this value in the environment. Similarly, to interpret a term of the form let x
= t in u, we start by interpreting the term t. The result is a value and it suffices
to bind the variable x to this value in the environment. Thus, the environments will
associate to variables values instead of thunks (which are suspended until they can
be interpreted). We no longer need the notion of a thunk.

However, the evaluation rule for fix, unlike the application rule or the let rule,
requires a variable to be substituted by a term of the form fix x t, which is not
a value, and to evaluate such a term before substituting it or before storing it in
the environment will give rise to infinite computations (as mentioned above). The
environment will have to include then extended values, which are either values or
thunks containing a term of the form fix x t and an environment e. When we
access such an extended value, we will need to interpret it if it is a thunk. This leads
us to the following rules

if e contains x = Ve ⊢ x →֒ V

e’ ⊢ fix y t →֒ V if e contains
x = 〈fix y t,e’〉e ⊢ x →֒ V

e ⊢ u →֒ W e ⊢ t →֒ 〈x, t’, e’〉 (e’, x = W) ⊢ t’ →֒ V
e ⊢ t u →֒ V

e ⊢ fun x -> t →֒ 〈x, t, e〉

e ⊢ n →֒ n

e ⊢ u →֒ q e ⊢ t →֒ p if p ⊗ q = n
e ⊢ t ⊗ u →֒ n

36 3 From Evaluation to Interpretation

e ⊢ t →֒ 0 e ⊢ u →֒ V
e ⊢ ifz t then u else v →֒ V

e ⊢ t →֒ n e ⊢ v →֒ V if n is a
number �= 0e ⊢ ifz t then u else v →֒ V

(e, x = 〈fix x t, e〉) ⊢ t →֒ V
e ⊢ fix x t →֒ V

e ⊢ t →֒ W (e, x = W) ⊢ u →֒ V
e ⊢ let x = t in u →֒ V

Exercise 3.4 When we compute the value of the term (fact 3) where the func-
tion fact is defined by fix f fun n -> ifz n then 1 else
n * (f (n - 1)), we start by calling recursively the function fact with ar-
gument 2, which will create an association between the variable n and the value 2.
When we come back from the recursive call to compute the value of n and perform
the multiplication, is the variable n associated to the value 2 or the value 3? Why?

Exercise 3.5 Write a call by value interpreter for PCF.

3.3 An Optimisation: de Bruijn Indices

In the big-step operational semantic rules, environments are lists of pairs consisting
of a variable and an extended value. We could replace this structure by a pair of
lists of the same length, one containing the variables and the other the values. Thus,
the list x = 12, y = 14, z = 16, w = 18 could be replaced by the list of
variables x, y, z, w and the list of extended values 12, 14, 16, 18. To
find the extended value associated to a variable, we just need to search through the
first list to find the variable’s position, and then find in the other list the element at
the same position. The position of a variable in the first list is a number, called the
de Bruijn index of the variable in the environment. In general, we can associate the
number 0 to the last element of the list—the rightmost element—, 1 to the previous,
. . . , n - 1 to the first element of the list—the leftmost one.

The list of variables which will be needed for the interpretation of each sub-
term can be computed before starting the process of interpretation. In fact, we
can associate a de Bruijn index to each occurrence of a variable before inter-
preting the term. For example, if we interpret the term fun x -> fun y ->
(x + (fun z -> fun w -> (x + y + z + w)) (2 * 8) (14 + 4))
(5 + 7) (20 - 6) the variable y will necessarily be interpreted in an environ-
ment of the form x = ., y = ., z = ., w = ., that is, to find the value
associated to y we need to find the value with index 2. We can then associate this
index to the variable from the start.

To compute the de Bruijn indices of the variables we simply need to traverse
the term maintaining a variable environment, that is, a list of variables, where we

3.3 An Optimisation: de Bruijn Indices 37

associate the index p to the variable x in the environment e, if p is the position of
the variable x in the environment e, starting from the end.

– |x|e = xp where p is the position of x in the environment e
– |t u|e = |t|e |u|e
– |fun x -> t|e = fun x -> |t|e,x

– |n|e = n
– |t + u|e = |t|e + |u|e
– |t - u|e = |t|e - |u|e
– |t * u|e = |t|e * |u|e
– |t / u|e = |t|e / |u|e
– |ifz t then u else v|e = ifz |t|e then |u|e else |v|e
– |fix x t|e = fix x |t|e,x

– |let x = t in u|e = let x = |t|e in |u|e,x

For example, the term above will be written fun x -> fun y -> (x1 +
(fun z -> fun w -> (x3 + y2 + z1 + w0)) (2 * 8) (14 + 4))
(5 + 7) (20 - 6).

It is easy to show that an occurrence of a subterm translated in the variable envi-
ronment x1, ..., xn will always be interpreted in an environment of the form
x1 = ., ..., xn = . For this reason, to find the value of the variable associ-
ated to the index p we will just look for the pth element in the environment.

This suggests an alternative way to interpret a term: we start by computing the
de Bruijn index for each occurrence of a variable; once the indices are known,
we no longer need to keep in the environment the list of variables. The environ-
ment will simply be a list of extended values. Similarly, we can dispose of vari-
able names in closures and in thunks. Indeed, variable names are useless now
and we could for instance rewrite the term above as follows: fun _ -> fun _
-> (_1 + (fun _ -> fun _ -> (_3 + _2 + _1 + _0)) (2 * 8)
(14 + 4)) (5 + 7) (20 - 6).

The big-step operational semantic rules can now be defined as follows

if V is the pth element of e
e ⊢ _p →֒ V

e’ ⊢ fix _ t →֒ V if the pth element of e
is 〈fix _ t,e’〉e ⊢ _p →֒ V

e ⊢ u →֒ W e ⊢ t →֒ 〈t’, e’〉 (e’, W) ⊢ t’ →֒ V
e ⊢ t u →֒ V

e ⊢ fun _ -> t →֒ 〈t, e〉

e ⊢ n →֒ n

e ⊢ u →֒ q e ⊢ t →֒ p if p ⊗ q = n
e ⊢ t ⊗ u →֒ n

38 3 From Evaluation to Interpretation

e ⊢ t →֒ 0 e ⊢ u →֒ V
e ⊢ ifz t then u else v →֒ V

e ⊢ t →֒ n e ⊢ v →֒ V if n is a
number �= 0e ⊢ ifz t then u else v →֒ V

(e, 〈fix _ t, e〉) ⊢ t →֒ V
e ⊢ fix _ t →֒ V

e ⊢ t →֒ W (e, W) ⊢ u →֒ V
e ⊢ let _ = t in u →֒ V

Exercise 3.6 Write a program to replace each variable by its De Bruijn index. Write
an interpreter for this language.

Exercise 3.7 Write the rules of the call by name big-step operational semantics
using de Bruijn indices.

We will highlight the advantages of this notation, which eliminates the names of
variables, when we study compilation in the next chapter.

In the meantime, notice that two terms have the same de Bruijn translations if
and only if they are α-equivalent. This gives us a new definition of alphabetical
equivalence. Replacing variables by indices that indicate the position where they
are bound can be seen as a radical point of view that highlights the fact that bound
variables are “dummies”.

3.4 Construction of Functions via Fixed Points

In most programming languages, only functions can be recursively defined. The
fix construct applies to a term of the form fun, or we could also replace the sym-
bol fix by a symbol fixfun f x -> t that binds two variables in its argument.
The call by value big-step semantic rule for the latter can be derived from the rules
given above for fix and fun

e ⊢ fixfun f x -> t →֒ 〈x, t, (e, f = 〈fixfun f x -> t, e〉)〉

In this case, we could define simpler variations of the rules for the call by value
interpreter.

3.4.1 First Variation: Recursive Closures

We will distinguish closures of the form 〈x, t, (e, f = 〈fixfun f x ->
t, e〉)〉, which we will write 〈f, x, t, e〉 and call recursive closures.

3.4 Construction of Functions via Fixed Points 39

The rule that we have given to interpret the construction fixfun f x -> t
can be reformulated as follows

e ⊢ fixfun f x -> t →֒ 〈f, x, t, e〉

When we interpret an application t u under a call by value semantics, if the
term t is interpreted as the recursive closure 〈f, x, t’, e’〉, that is, 〈x, t’,
(e’, f = 〈fixfun f x -> t’, e’〉)〉 and the term u as the value W, then
to interpret the term t u, the application rule requires to interpret the term t’ in
the environment e’, f = 〈fixfun f x -> t’, e’〉, x = W.

We can anticipate the interpretation of the thunk 〈fixfun f x -> t’, e〉

that appears in this environment, and this gives rise to the rule fixfun, the recur-
sive closure 〈f, x, t’, e’〉. In the case of recursive closures, the application
rule can then be specialised as follows

e ⊢ u →֒ W
e ⊢ t →֒ 〈f, x, t’, e’〉

(e’, f = 〈f, x, t’, e’〉, x = W) ⊢ t’ →֒ V

e ⊢ t u →֒ V

Thunks are no longer used in this rule; thus, under call by value, by introducing
recursive closures we eliminate thunks and we no longer need the rule to interpret
them.

A final simplification: standard closures 〈x, t, e〉 can be replaced by recur-
sive closures 〈f, x, t, e〉 where f is an arbitrary variable that does not occur
in t. We can then discard the application rule for the case of standard closures.

Finally, we obtain the rules

if e contains x = V
e ⊢ x →֒ V

e ⊢ u →֒ W
e ⊢ t →֒ 〈f, x, t’, e’〉

(e’, f = 〈f, x, t’, e’〉, x = W) ⊢ t’ →֒ V

e ⊢ t u →֒ V

e ⊢ fun x -> t →֒ 〈f, x, t, e〉

where f is an arbitrary variable, different from x, that does not occur in t or e

e ⊢ fixfun f x -> t →֒ 〈f, x, t, e〉

e ⊢ n →֒ n

e ⊢ u →֒ q e ⊢ t →֒ p if p ⊗ q = n
e ⊢ t ⊗ u →֒ n

40 3 From Evaluation to Interpretation

e ⊢ t →֒ 0 e ⊢ u →֒ V
e ⊢ ifz t then u else v →֒ V

e ⊢ t →֒ n e ⊢ v →֒ V if n is a
number �= 0e ⊢ ifz t then u else v →֒ V

e ⊢ t →֒ W (e, x = W) ⊢ u →֒ V
e ⊢ let x = t in u →֒ V

Exercise 3.8 Write a call by value interpreter for PCF, using recursive closures.

Exercise 3.9 How will the rules of the big-step operational semantics with recursive
closures change if variables are replaced by de Bruijn indices—see Sect. 3.3?

3.4.2 Second Variation: Rational Values

In the rule

e ⊢ fixfun f x -> t →֒ 〈x, t, (e, f = 〈fixfun f x -> t, e〉)〉

we can anticipate the interpretation of the thunk 〈fixfun f x -> t, e〉. Of
course, the value of this thunk is the term 〈x, t, (e, f = 〈fixfun f x ->
t, e〉)〉 where the thunk occurs again. We could decide to interpret it again, and
again. . . .

As previously said, this kind of interpretation of a term of the form fix f t be-
fore substituting it or storing it in the environment leads to an infinite computation.
Here, it leads to the construction of the infinite value 〈x, t, (e, f = 〈x, t,
(e, f = 〈x, t, (e, f = 〈x, t, (e, f = ...)〉)〉)〉)〉, which is an
infinite term, but a rational one. There are well-known techniques for the representa-
tion of rational trees in the computer’s memory. Here, we could represent this value
by the structure.

3.4 Construction of Functions via Fixed Points 41

Using the notation FIX X 〈x, t, (e, f = X)〉 for this rational value, we
can replace the rule above by

e ⊢ fixfun f x -> t →֒ FIX X 〈x, t, (e, f = X)〉

and again thunks will no longer be needed.
Note that it is sometimes better to represent such rational value in an equivalent

way

and in this case we could instead define rational environments.

Exercise 3.10 Write a call by value interpreter for PCF using rational values.

Exercise 3.11 How do these big-step operational semantic rules change if we re-
place variables by their de Bruijn indices—see Sect. 3.3?

Exercise 3.12 Could the technique of rational values be used to design an inter-
preter for the full PCF, that is, where we could define via fixed points not only
functions but also arbitrary objects? Hint: what is the rational representation of the
value of the term fix x x?

To summarise, in this section we have seen that if a variable x has an oc-
currence in the term t, the reduction rule fix x t −→ (fix x t/x)t can
be applied an infinite number of times starting from the term fix x t, be-
cause the term (fix x t/x)t contains again the term fix x t as a sub-
term. This corresponds to the replacement, in a recursive definition f = G(f),
of f by G(f) an infinite number of times, which leads to the infinite program

42 3 From Evaluation to Interpretation

f = G(G(G(...))). In a sense, this explains the intuition that recursive pro-
grams are infinite programs. For example, the term fact could be written fun x
-> ifz x then 1 else x * (ifz x - 1 then 1 else (x - 1)
* (ifz x - 2 then 1 else (x - 2) * · · ·)). This replacement must
only be done on demand: in a lazy way.

We have seen that there are several ways to express this behaviour in the seman-
tics of PCF—and finally in the code of a PCF interpreter: substitute x by fix x
t and freeze this redex if it is under a fun or an ifz, store this redex as a thunk
or a recursive closure and “unfreeze” the thunk on demand, represent the term f =
G(G(G(...))) as a rational tree and traverse it on demand. A final method could
be to use the encoding of fix given in Exercise 2.10, and only reduce this term
(which requires the duplication of a subterm) when needed.

Exercise 3.13 (An extension of PCF with pairs) We extend PCF with the following
constructions: t,u represents the pair where the first component is t and the second
is u; fst t and snd t are, respectively, the first and second component of the
pair t. Write small-step and big-step operational semantic rules for this extension
of PCF. Write an interpreter for this extension of PCF.

Exercise 3.14 (An extension of PCF with lists) We extend PCF with the following
constructions: nil denotes the empty list, cons n l denotes a list where the first
element is the natural number n and l is the rest of the list, ifnil t then u
else v checks whether a list is empty or not, hd l returns the first element of
the list l and tl l the list l without its first element. Write small-step and big-
step operational semantic rules for this extension of PCF. Write an interpreter for
this extension of PCF. Write a program to implement a sorting algorithm over these
lists.

Exercise 3.15 (An extension of PCF with trees) We extend PCF with the following
constructions: L n denotes a tree that consists of one leaf labelled by the natural
number n, N t u denotes a tree with two subtrees t and u, ifleaf t then
u else v checks whether its first argument is a tree of the form L n or N t u,
content t denotes the content of the tree t if it is a leaf, left t and right
t denote, respectively, the left and right subtrees of t if it is not a leaf. Write small-
step and big-step operational semantic rules for this extension of PCF. Write an
interpreter for this extension of PCF.

Chapter 4

Compilation

When a computer comes out of the factory, it is not capable of interpreting a PCF
term, not even a Caml or Java program. For a computer to be able to run a PCF,
Caml or Java program, we need to have an interpreter for the language, which must
be written in the machine language of the computer. In the previous chapter we
described the principles underlying PCF interpretation, and we wrote an interpreter
in a high-level language, such as Caml. We could continue this line of thought, and
try to write now an interpreter in machine language. . . .

One possibility is to leave the realm of interpretation and move towards a com-

piler. An interpreter takes a PCF term as input and returns its value. A compiler,
instead, is a program that takes a PCF term as argument and returns a program, in
machine language, whose execution returns the value of the term. In other words, a
PCF compiler is a program that translates PCF terms into machine language, that is,
into a language which can be directly executed by the machine.

One of the advantages of using a compiler is that the program is translated once
and for all, when it is compiled, rather than each time it is executed. Once compiled,
the execution is usually faster. Another advantage comes from the fact that a com-
piler can compile itself, we call this bootstrapping (see Exercise 4.4), whereas an
interpreter cannot interpret itself.

The implementation of a compiler should be guided by the rules of the opera-
tional semantics of the language (as was the case for the interpreter). To simplify,
we will focus on a fragment of PCF where only functions can be defined recursively,
and we will use the big-step semantics with recursive closures—see Sect. 3.4.

The machine language that we will use is not a commercial one: it is the machine
language of an imaginary computer. This kind of machine is called an abstract ma-

chine. We will write a program that will simulate the behaviour of this machine.
The use of an abstract machine is not only motivated by pedagogical reasons, there
are practical reasons too: the main compilers for Caml and Java, for instance, use
abstract machines. Compiled programs are executed by a program that simulates the
workings of the abstract machine, or are further translated (in a second compilation
phase) to the machine language of a concrete machine.

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_4, © Springer-Verlag London Limited 2011

43

44 4 Compilation

4.1 An Interpreter Written in a Language Without Functions

In Chap. 2, we gave a big-step operational semantics for PCF and we used it to
derive an interpreter for this language. For example, the rule

e ⊢ u →֒ q e ⊢ t →֒ p if p + q = n
e ⊢ t + u →֒ n

results in the following piece of Caml code for the PCF interpreter

let rec interp env p = match p with
| Plus(t,u) ->

let w = interp env u
in let v = interp env t

in (match (v,w) with | (Const(n), Const(m)) ->
Const(n + m)

| ...)
| ...

Since Caml allows us to write local definitions, we can compute the value of the
term interp env t and recover the value w after the computation, even if the
variable w is bound to other values during the computation.

If we tried to write the interpreter in machine language, or in any language that
does not permit local definitions, then we would need to devise a mechanism to
memorise the value w, for example using a stack: we could interpret the term u, put
the result in the stack, then interpret the term t and finally pop the top of the stack
and add it to the result of the interpretation.

In this way, to interpret the term ((((1 + 2) + 3) + 4) + 5) + 6 we
need to put the number 6, then the number 5, . . . , then the number 2 in the stack,
then pop the number on the top of the stack (that is, 2) and add it to the number 1,
then pop the number 3 and add it to the previous result, then. . . pop the number 6
and add it to the previous result, to obtain the final result: 21.

4.2 From Interpretation to Compilation

This interpreter can be decomposed into two programs. The first one can be seen as
an object with two fields: a field that contains a natural number and that we call an
accumulator, and a field that contains a list of natural numbers, called the stack. We
have the following operations

– Ldi n: puts the number n in the accumulator,
– Push: puts the contents of the accumulator on the top of the stack,
– Add: adds the top of the stack and the accumulator, leaves the result in the accu-

mulator, and pops the top of the stack.

This object is our abstract machine, and the three instructions above constitute its
machine language. The fields are called registers.

4.3 An Abstract Machine for PCF 45

The second program takes a PCF term as input and, depending on the term, pro-
duces machine instructions, which will be executed by the machine, one by one. If
t is a PCF term, we denote by |t| the sequence of abstract machine instructions
generated by this program during the interpretation of the term. For instance, for
the term ((((1 + 2) + 3) + 4) + 5) + 6, the machine instructions gen-
erated are: Ldi 6, Push, Ldi 5, Push, Ldi 4, Push, Ldi 3, Push, Ldi 2, Push,
Ldi 1, Add, Add, Add, Add, Add.

Exercise 4.1 Which instructions will be executed by the abstract machine when
interpreting the term 1 + (2 + (3 + (4 + (5 + 6))))?

This way of sharing the work resembles the behaviour of a car driver and a pas-
senger in an unfamiliar city: the passenger reads the map and gives instructions to
the driver, who follows the instructions without really knowing where the car is.

If the passenger could generate the instructions just by looking at the map, it
would be possible to record the list of instructions in a compact disk, which the
driver could then listen to in the car. In this scenario, the passenger does not need
to be in the car to guide the driver. Similarly, the interpreter could leave the se-
quence |t| of instructions in a file, and the file could then be executed later by the
abstract machine. We have just transformed the interpreter into a compiler.

In general, we consider that the abstract machine contains, in addition to the
accumulator and the stack, a third register: the code, the list of instructions that have
to be executed. At the beginning, the abstract machine looks for an instruction in the
code register, executes it, then looks for another instruction. . . until the code register
becomes empty. As we will see, the fact that the execution of an instruction may
add new instructions to the code register will allow us to write loops and recursive
definitions.

4.3 An Abstract Machine for PCF

4.3.1 The Environment

So far we have only compiled a fragment of PCF: numbers and addition. Can this
principle be generalised to the full language?

First, recall that in PCF a term has to be interpreted in an environment. In addi-
tion to the accumulator, stack, and code, our abstract machine needs a fourth reg-
ister: the environment. The machine must also include an instruction Extend x to
extend the environment, adding the definition x = V where V is the content of the
accumulator, and an instruction Search x to look for the value associated to x in the
environment and put it in the accumulator.

When the machine executes the code generated by the compilation of several
nested applications, the environment will change several times, and at the end of the
execution the initial environment should be restored. The abstract machine needs

46 4 Compilation

then instructions Pushenv and Popenv to put the contents of the environment in
the stack and recover it. These operations are often further decomposed into several
operations to push and pop individual elements of the environment, but here we will
not decompose them in this way.

4.3.2 Closures

In PCF it is also necessary to define closures as values. In addition to the instruction
Ldi n, we will need an instruction Mkclos(f,x,t), with two variables f and x
and a term t as arguments. This instruction will build the closure 〈f, x, t, e〉,
where e is the content of the environment register, and put the closure in the accu-
mulator.

4.3.3 PCF Constructs

It is not difficult to compile a term of the form fun x -> t or fixfun f x ->
t since we can simply generate the instruction Mkclos(f,x,t) to build a closure,
which is the value of this kind of term.

In the same way, it is easy to compile a term of the form x, we just need to gener-
ate the instruction Search x to look for the value associated to x in the environment.

Let us consider now the compilation of a term of the form t u. The correspond-
ing big-step semantics rule is

e ⊢ u →֒ W
e ⊢ t →֒ 〈f, x, t’, e’〉

(e’, f = 〈f, x, t’, e’〉, x = W) ⊢ t’ →֒ V

e ⊢ t u →֒ V

To interpret the term t u in the environment e, we start by interpreting u in the
environment e, which returns the value W. We then interpret the term t in the en-
vironment e, obtaining the closure 〈f, x, t’, e’〉, and finally we interpret t’
in the environment (e’, f = 〈f, x, t’, e’〉), x = W, to obtain the final
result.

Now, let us see how an interpreter running in an abstract machine will deal
with that term: to interpret the term t u, the abstract machine starts by interpret-
ing u, and puts the result in the stack. Then, it interprets the term t, resulting in the
closure 〈f, x, t’, e’〉, and puts in the environment register the environment
e’, f = 〈f, x, t’, e’〉, x = W, where W is the value at the top of the
stack, which will then be removed from the stack. Finally, the machine interprets
the term t’. To ensure that the contents of the environment register are restored
at the end of the operations, it should be put in the stack at the beginning of the
interpretation, and recovered from the stack at the end.

4.3 An Abstract Machine for PCF 47

Let us consider now the compilation process for such a term. The interpretation
of the term u is replaced by the execution of the sequence |u| of instructions, and
similarly the interpretation of the term t is replaced by the execution of the sequence
|t| of instructions. The interpretation of t’ has to be replaced by the execution of
the sequence |t’| of instructions. However, there is a difficulty here: t’ is not a
subterm of t u, it is provided by the closure resulting from the interpretation of t.
We then need to modify the notion of closure, and replace the term t in 〈f, x,

t, e〉 by a sequence i of instructions. Thus, terms of the form fun x -> t and
fixfun f x -> t should not be compiled into Mkclos(f, x, t), instead,
they should be compiled into Mkclos(f, x, |t|) to build the closure 〈f, x,

|t|, e〉 where e is the content of the environment register.
Finally, we need to include in the machine an instruction Apply that takes

a closure 〈f, x, i, e〉 from the accumulator, puts the environment e, f =

〈f, x, i, e〉, x = W, where W is the top of the stack, in the environment reg-
ister, discards the top of the stack and adds to the code register the sequence i of
instructions.

The term t u can then be compiled as the sequence of instructions Pushenv,
|u|, Push, |t|, Apply, Popenv.

Summarising, the abstract machine has the set of instructions Ldi n, Push, Add,
Extend x, Search x, Pushenv, Popenv, Mkclos(f,x,i) and Apply. To com-
plete it, we just need to add the arithmetic operations Sub, Mult, Div and the test
Test(i,j) to compile the operators -, *, / and ifz.

4.3.4 Using de Bruijn Indices

To simplify the machine we can use De Bruijn indices—see Sect. 3.3. Recall that
the instruction Search x is generated by the compilation of variables, and we have
already seen that it is possible to determine the index of each variable occurrence
statically. We could then compile a variable x using the instruction Search n, where
n is a number, instead of earch x.

De Bruijn indices can be computed at the same time as the compilation is per-
formed, it suffices to compile a term in a variable environment, and compile the
variable x in the environment e by the instruction Search n, where n is the position
of the variable x in the environment e, starting by the end.

This mechanism allows us to dispose of variables in environments, closures, and
instructions Mkclos and Extend. Our abstract machine includes the instructions
Ldi n, Push, Extend, Search n, Pushenv, Popenv, Mkclos i, Apply, Test(i,j),
Add, Sub, Mult and Div.

48 4 Compilation

4.3.5 Small-Step Operational Semantics

The machine state, the contents of its registers, is a tuple consisting of a value (the
accumulator), a list where each element is either a value or a list of values (the
stack), a list of values (the environment), and a sequence of instructions (the code).

A small execution step consists of getting an instruction from the code register
and executing it. The small-step semantics of the machine can be easily defined:

– (a,s,e,((Mkclos i),c)) −→ (〈i,e〉,s,e,c)
– (a,s,e,(Push,c)) −→ (a,(a,s),e,c)
– (a,s,e,(Extend,c)) −→ (a,s,(e,a),c)
– (a,s,e,((Search n),c)) −→ (V,s,e,c) if V is the nth value in e

(starting from the end)
– (a,s,e,(Pushenv,c)) −→ (a,(e,s),e,c)
– (a,(e’,s),e,(Popenv,c)) −→ (a,s,e’,c)
– (〈i,e’〉,(W,s),e,(Apply,c)) −→ (〈i,e’〉,s,(e’, 〈i,e’〉, W),
i c)

– (a,s,e,((Ldi n),c)) −→ (n,s,e,c)
– (n,(m,s),e,(Add,c)) −→ (n + m,s,e,c)
– (n,(m,s),e,(Sub,c)) −→ (n - m,s,e,c)
– (n,(m,s),e,(Mult,c)) −→ (n * m,s,e,c)
– (n,(m,s),e,(Div,c)) −→ (n / m,s,e,c)
– (0,s,e,((Test(i,j)),c)) −→ (0,s,e,i c)
– (n,s,e,((Test(i,j)),c)) −→ (n,s,e,j c) if n is a number differ-

ent from 0

An irreducible term is a tuple where the fourth component—the contents of
the code register—is empty. If i is a sequence of instructions and if the term
(0,[],[],i) reduces to an irreducible term of the form (V,_,_,[]), then
we say that V is the result of the execution of i, and we write i ⇒ V.

4.4 Compilation of PCF

We can now give the compilation rules for PCF

– |x|e = Search n where n is the position of x in the environment e
– |t u|e = Pushenv, |u|e, Push, |t|e, Apply, Popenv

– |fun x -> t|e = Mkclos |t|e,_,x
– |fixfun f x -> t|e = Mkclos |t|e, f, x

– |n|e = Ldi n
– |t + u|e = |u|e, Push, |t|e, Add

– |t - u|e = |u|e, Push, |t|e, Sub

– |t * u|e = |u|e, Push, |t|e, Mult

– |t / u|e = |u|e, Push, |t|e, Div

– |ifz t then u else v|e = |t|e, Test(|u|e,|v|e)

4.4 Compilation of PCF 49

– |let x = t in u|e = Pushenv, |t|e, Extend, |u|e, x, Popenv

For example, the compilation of

let f = fixfun f x ->(ifz x then 1 else
(x * (f (x - 1)))) in f 6

generates the sequence of instructions Pushenv, Mkclos [Search 0, Test([Ldi 1],
[Pushenv, Ldi 1, Push, Search 0, Sub, Push, Search 1, Apply, Popenv, Push,
Search 0, Mult])], Extend, Pushenv, Ldi 6, Push, Search 0, Apply, Popenv,
Popenv and the result of its execution is the number 720.

The correctness of the compilation, and of the semantics of the abstract ma-
chine, can be stated as follows: if V is a numeric value, then ⊢ t →֒ V if and only
if |t| ⇒ V.

Exercise 4.2 Write an abstract machine and a compiler for PCF.

The state of the abstract machine at the beginning of the 14th execution step for
the program Pushenv, Ldi 1, Extend, Ldi 6, Push, Ldi 5, Push, Ldi 4, Push,
Ldi 3, Push, Ldi 2, Push, Search 0, Add, Add, Add, Add, Add, Popenv.

Exercise 4.3 We extend PCF with the tree operators described in Exercise 3.15.
Write a compiler and an abstract machine for this extension of PCF.

Exercise 4.4 (A bootstrapping compiler) Many kinds of data structures can be rep-
resented using the trees described in Exercise 3.15. To start with, we can represent
a natural number n as a tree L n. The character c can be represented by the tree
L n where n is a code, for instance the ASCII code of the character c. If t1, t2,
..., tn are trees, the list t1, t2, ..., tn can be represented by the tree
N(t1, N(t2, ..., N(tn, L 0)...)). Finally, values of a type defined by
constructors that are themselves representable could be defined by enumerating the
constructors and representing the value C(V1, V2, ..., Vn) by the list L p,
t1, t2, ..., tn where p is the number associated to the constructor C and t1,
t2, ..., tn represent the values V1, V2, ..., Vn.

50 4 Compilation

We could, in particular, represent in this way programs written in the extended
PCF language, or in the language of the abstract machine in Exercise 4.3. Modify the
compiler and the abstract machine in Exercise 4.3 to accept programs represented
by binary trees. The abstract machine will take two inputs: a compiled program,
represented by a tree, and a value, and will apply the program to the value.

Translate the compiler in Exercise 4.3 to PCF. After writing the compiler, com-
pile it with the compiler defined in Exercise 4.3. The result is the first compiler
executed by the PCF abstract machine. Compile this compiler (it will compile it-
self). Verify that the code produced is the same that was obtained with the compiler
in Exercise 4.3. If this is true, we can destroy the first compiler and use instead the
second: this is the bootstrap process.

Chapter 5

PCF with Types

In Chap. 2, we remarked that, in contrast with mathematical functions, the domain
of PCF functions is not specified. For this reason, it is possible to apply the function
fun x -> x + 1 to the function fun x -> x + 2, even if this application
is meaningless.

It is sometimes convenient to be able to apply any object to another object. For
example, we can apply the identity function fun x -> x to itself, using the term
(fun x -> x) (fun x -> x) that reduces to fun x -> x. More gener-
ally, the identity function in PCF is defined for any object, whereas in Mathematics
it always has to be restricted to a specific domain. The ability to apply an object to
itself was essential to show that the fix construct can be simulated in PCF using
application and fun—see Exercise 2.10.

However, the unrestricted application of an object to another may rise a number
of problems. For example, we saw that the terms 1 2, 1 + (fun x -> x), ifz
(fun x -> x) then 1 else 2 were irreducible closed terms according to
the small-step semantics of PCF, but they are not values.

The big-step operational semantics instead does not associate any result to a term
such as (fun x -> x) 1 2. In practice, if we interpret a term of the form t u
where t results in a number instead of a term of the form fun, an error is raised.
This error will be detected at run time, instead of being detected statically (before
execution) as one would expect.

The fact that the domain of a PCF function is not specified also makes it more
difficult to give a denotational semantics for PCF.

The goal of this chapter is to define a version of PCF where functions come with
associated domains, and to show that if a program is well-formed in this language,
its interpretation cannot produce the errors mentioned above. We will also give a
simple denotational semantics for this language.

5.1 Types

In Mathematics, the domain of a function is a set (any set). For example, we can
define a function m from 2N to N that associates to each even number its half. Then,

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_5, © Springer-Verlag London Limited 2011

51

52 5 PCF with Types

to check whether the expression m (3 + (4 + 1)) is well-formed or not, that
is, to check whether the argument is in the domain of the function, we need to check
whether 3 + (4 + 1) is even or not. For arbitrary sets, the problem of deciding
whether a given element belongs to the set is undecidable in general. Therefore, the
problem of checking the validity of terms is also undecidable in general. Besides,
to know whether a term such as ifz t then u else v will produce an error
or not, we need to know whether the value of t is a natural number or a term of the
form fun (the parity of the number is not relevant in this case).

These two remarks lead us to restrict the class of sets used to define the domains
of functions. The sets in this restricted class will be called types.

5.1.1 PCF with Types

In PCF, types are inductively defined by

– nat—that is, N—is a type,
– if A and B are types then A -> B—that is, the set of all the functions from A to
B—is a type.

Types can then be defined using a language that includes the constant nat and
the symbol -> with two arguments that do not bind any variables. Such a term is
also called a type.

Functions in PCF were written fun x -> t, but will now include the type of
the variable x. Thus, we will write fun x:nat -> x for the identity function on
the natural number, and fun x:(nat -> nat) -> x for the identity function
on functions from natural numbers to natural numbers. In general, the symbol fun
will now have two arguments, a type and a term; it will bind a variable in the second
argument. The typed version of the language PCF is a language with two sorts of
objects: terms and types, and the arity of the symbol fun is ((type), (term,
term), term). Also the symbols fix and let must now indicate the type of
the bound variable.

Summarising, typed PCF includes

– a term symbol fun with a type argument and a term argument, which binds a
variable in the second argument,

– a term symbol α with two term arguments, that does not bind any variable,
– an infinite number of term constants to represent the natural numbers,
– four term symbols +, -, * and /, each with two arguments which do not bind any

variables in their arguments,
– a term symbol ifz with three term arguments which do not bind any variables,
– a term symbol fix with a type argument and a term argument, which binds a

variable in the second argument,
– a term symbol let with three arguments, where the first is a type and the others

terms, binding a variable in the third argument,
– a type constant nat,

5.1 Types 53

– a type symbol -> with two type arguments and which does not bind any variable
in its arguments.

Alternatively, we can define the syntax of the typed version of PCF inductively

A = X
| nat
| A -> A

t = x
| fun x:A -> t
| t t
| n
| t + t | t - t | t * t | t / t
| ifz t then t else t
| fix x:A t
| let x:A = t in t

5.1.2 The Typing Relation

We can now define by induction the relation t : A, read “the term t has type A”.
More precisely, we will define by induction a ternary relation e ⊢ t : A, as we
did for the interpretation relation, where t is a term that might have free variables
and e is a typing environment that associates a type to each variable. This is an
inductive definition, similar to the inductive definition of PCF’s big-step operational
semantics. We could imagine that it is the operational semantics of a language with
the same syntax as PCF but where the interpretation of a term returns a type instead
of a value—for this reason, it is called an abstract interpretation of the term.

if e contains x : Ae ⊢ x : A

e ⊢ u : A e ⊢ t : A -> B
e ⊢ t u : B

(e, x : A) ⊢ t : B
e ⊢ fun x:A -> t : A -> B

e ⊢ n : nat

e ⊢ u : nat e ⊢ t : nat
e ⊢ t ⊗ u : nat

e ⊢ t : nat e ⊢ u : A e ⊢ v : A
e ⊢ ifz t then u else v : A

(e, x : A) ⊢ t : A
e ⊢ fix x:A t : A

54 5 PCF with Types

e ⊢ t : A (e, x : A) ⊢ u : B
e ⊢ let x:A = t in u : B

In the first rule only the rightmost declaration for x is taken into account, the others
are hidden.

The language includes variables of various sorts, in particular type variables for
which we will use capital letters. Since no symbol can bind a type variable, a closed
term will not contain type variables. Moreover, if a closed term t has the type A in
the empty environment, then the type A must be closed too. So, type variables are
not really used here; they will be used in the next chapter.

Let e be an environment and t a term. Reasoning by induction on t, we can
show that the term t has at most one type in the environment e.

We can build a type checking algorithm based on the typing rules given above.
The algorithm will check whether a term t has a type in an environment e, and if it
does, it will give the type as a result. It will do this by typing recursively the direct
subterms of the given term, and will then compute the type of term using the types
of the subterms.

Exercise 5.1 Write a type checker for PCF.

Reduction is still confluent on the typed language, and types bring us an ad-
ditional property: all the terms that do not contain the operator fix terminate—
Tait’s Theorem. It will be impossible to build a term such as (fun x -> (x x))
(fun x -> (x x)), which does not terminate and does not contain fix.

Exercise 5.2 Write typing rules for the version of PCF that uses de Bruijn indices
instead of variable names—see Sect. 3.3.

Exercise 5.3 We extend PCF with the constructs described in Exercise 3.13 to de-
fine pairs, and we introduce a symbol × to denote the Cartesian product of two
types. Write typing rules for this extension of PCF. Write a type-checker for this
extension of PCF.

Exercise 5.4 We extend PCF with the constructs described in Exercise 3.14 to de-
fine lists, and we introduce a type natlist for these lists. Write typing rules for
this extension of PCF. Write a type-checker for this extension of PCF.

Exercise 5.5 We extend PCF with the constructs described in Exercise 3.15 to de-
fine trees, and we introduce a type nattree for these trees. Write typing rules for
this extension of PCF. Write a type-checker for this extension of PCF.

5.2 No Errors at Run Time

We will now show that the interpretation of a correctly typed term cannot produce a
type error at run time. For this we can use the small-step or the big-step semantics;
the proof is slightly different depending on the semantics we use.

5.2 No Errors at Run Time 55

5.2.1 Using Small-Step Operational Semantics

Using the small-step operational semantics of the language, the property can be
formulated as follows: the result of the computation of a typed closed term, if it
exists, is a value. In other words, a typed closed term evaluates to a natural number
or a closed term of the form fun x -> t; it can never be a stuck term: V1 V2,
where V1 and V2 are irreducible closed terms and V1 is not a term of the form fun
x -> t, V1 ⊗ V2, where V1 and V2 are irreducible closed terms which are not
both numbers, or a term of the form ifz V1 then V2 else V3 where V1, V2
and V3 are irreducible closed terms and V1 is not a number.

The first lemma, which we will not prove here, is usually called subject reduction.
It says that if a closed term t of type A reduces in one step to the term u (t ⊲ u),
then u also has type A. We can deduce that if a closed term t of type A reduces to u
in any number of steps (t ⊲

∗ u), then u also has type A.
The next step in the proof consists of showing that a term of the form fun cannot

have the type nat and similarly a numeric constant cannot have a type of the form
A -> B. This is done by a simple structural induction over the typing relation.

The proof proceeds by showing that an irreducible closed term t of type nat is
a constant representing a natural number and an irreducible closed term t of type
A -> B has the form fun. This is done by structural induction on t.

Since t is a closed term, it cannot be a variable. Since it is irreducible, it cannot
be a fix or a let.

We show that t cannot be an application, an arithmetic operator or a conditional.
If t is an application t = u v then u has a type of the form C -> D. By in-
duction hypothesis, this term must be of the form fun, and therefore t is a redex,
contradicting our assumption (t is irreducible). If t is an arithmetic operator t =
u ⊗ v then u and v have type nat. By induction hypothesis, they are numeric
constants and therefore t is a redex, contradicting our assumption (t is irreducible).
If t is a term of the form t = ifz u then v else w then u has type nat.
By induction hypothesis, u is a numeric constant and therefore t is a redex, contra-
dicting our assumption (t is irreducible).

An irreducible closed term t is then either a numeric constant or a term of the
form fun. If it has type nat, it is a constant; if it has type A -> B, it is a fun.

If a well-typed closed term can be reduced to an irreducible closed term, this irre-
ducible term will also be well typed, and will therefore be either a numeric constant
or a term of the form fun.

5.2.2 Using Big-Step Operational Semantics

The property is formulated differently using the big-step operational semantics of
the language. This is because in this style of semantics only values can be associated
to terms (even if the terms are ill typed). One could say that the rules of the big-step
operational semantics are incomplete, since they do not specify how to associate a

56 5 PCF with Types

value to an application whose left-hand side has a value that is a numeric constant,
or how to associate a value to an arithmetic operation where the value of one of
the arguments is a term of the form fun, or a value to a conditional where the first
argument has a value that is of the form fun. However, for well-typed terms the
rules are complete. In other words, the three examples that we have just mentioned
cannot arise.

We start by showing a type-preservation-by-interpretation lemma, which states
that if a closed term t has type A then its value, if it exists, also has type A. This
lemma corresponds to the subject reduction lemma of the small-step operational
semantics.

Then we show, as for the small-step semantics, that a term of the form fun
cannot have type nat and, similarly, that a numeric constant cannot have a type of
the form A -> B.

Since we know that the value of a term is either a number or a term of the form
fun, we deduce that the value of a term of type nat is a numeric constant, and
the value of a term of type A -> B is a term of the form fun. Therefore, when
interpreting a well-typed term, the left-hand side of an application will always be
interpreted as a term of the form fun, the arguments of arithmetic operators will
always be interpreted as numeric constants, and the first argument of an ifz will
always be interpreted as a numeric constant.

Exercise 5.6 (Equivalent semantics) Show that the computation of a well-typed
term produces a result under call by name small-step operational semantics if and
only if it produces a result under call by name big-step operational semantics. More-
over, the result is the same in both cases. Show that the same property is true of the
call by value semantics.

Does this result hold also for the untyped version of PCF? Hint: what is the result
of ((fun x -> x) 1) 2?

5.3 Denotational Semantics for Typed PCF

5.3.1 A Trivial Semantics

We mentioned above that one of the goals of functional languages is to shorten the
distance between the notion of a program and the notion of a function. In other
words, the goal is to bring the program closer to its denotational semantics.

We also said that it was difficult to give a denotational semantics for PCF without
types, because functions did not have a domain of definition. Now that we have a
type system for PCF, it is easier to give a denotational semantics.

We associate to each type a set

– �nat� = N,
– �A -> B� = �A� -> �B�

and to each term t of type A an element �t� of �A�. If the term t has free variables,
we will associate meanings to these variables via a semantic environment e.

5.3 Denotational Semantics for Typed PCF 57

– �x�e = a, if e includes the pair x = a,
– �fun x:A -> t�e = fun a:�A� -> �t�e,x=a,
– �t u�e = �t�e �u�e,
– �n�e = n,
– �t + u�e = �t�e + �u�e, �t - u�e = �t�e - �u�e,

�t * u�e = �t�e * �u�e, �t / u�e = �t�e / �u�e,
– �ifz t then u else v�e = �u�e if �t�e = 0 and �v�e otherwise,
– �let x:A = t in u�e = �u�e,x=�t�e

.

This is really trivial: a program is a function and its semantics is the same func-
tion. Achieving this “triviality” is one of the goals in the design of functional lan-
guages.

Two remarks are in order. First, division by 0 produces an error in PCF, whereas
it is not defined in Mathematics. To be precise, we should add a value error to
each set �A� and adapt the definition given above. Second, in this definition we have
forgotten the construction fix.

5.3.2 Termination

The only construct with a non-trivial denotational semantics is fix, because this
construct is not usually found in everyday definitions of functions in Mathematics.
Unlike PCF, mathematical definitions can only use fixed points of functions that do
have a fixed point, and even then if there are several fixed points it is essential to
specify which one we are taking. We left these issues aside when we defined PCF,
it is now time to deal with them.

Consider a function that does not have a fixed point: the function fun x:nat
-> x + 1. In PCF, we can build the term fix x:nat (x + 1). Similarly,
the function fun f:(nat -> nat) -> fun x:nat -> (f x) + 1 does
not have a fixed point but we can build the term fix f:(nat -> nat) fun
x:nat -> (f x) + 1. On the other hand, the function fun x:nat -> x, has
many fixed points, and still we can build the term fix x:nat x.

When we defined the operational semantics of PCF, we gave a reduction rule

fix x:A t −→ (fix x:A t/x)t

that explains the idea of a fixed point. Using this rule, we can see that the term
a = fix x:nat (x + 1) reduces to a + 1, then to (a + 1) + 1, ...
without ever reaching an irreducible term. Similarly, if g = fix f:(nat ->
nat) fun x:nat -> (f x) + 1, the term g 0 can be reduced in two steps
to (g 0) + 1 and then ((g 0) + 1) + 1, ... and again will never reach
an irreducible term. The same thing happens with the term b = fix x:nat x,
which reduces to b, and again to b, . . . and will never reach an irreducible term. In
other words, it appears that in PCF, when we take the fixed point of a function that
does not have any, or that has more than one, the program does not terminate.

58 5 PCF with Types

The situation is similar in Caml, where the program

let rec f x = (f x) + 1 in (f 0)

loops, or in Java with the program

class Loop {
static int f (int x) {return f(x) + 1;}
static public void main (String [] args) {
System.out.println(f(0));}}

There are even functions, such as fun x:nat -> x + x, which have a
unique fixed point but for which the fix construct in PCF produces a non-
terminating computation: fix x:nat (x + x).

In other words, to understand the denotational semantics of the fixed point oper-
ator, we need to understand first the semantics of terms that do not terminate.

The small-step operational semantics does not associate any result to these terms:
there is no term V such that fix x:nat (x + 1) →֒ V. And the big-step op-
erational semantics does not give us more information. As we have already said, we
could complete the relation →֒ by adding a value ⊥ such that fix x:nat (x +
1) →֒ ⊥.

We have the same options in denotational semantics. We could define a partial
function � �, and leave �fix x:nat (x + 1)� undefined, or we could add a
value ⊥ to �nat� and define �fix x:nat (x + 1)� = ⊥.

If we include the value ⊥, the interpretation of a term of the form t + u will
be obtained by interpreting first u and t, and if one of these terms loops, then the
whole term t + u does. Thus, the denotational semantics of a term of the form t
+ u is defined as follows

– �t + u� = �t� + �u� if �t� and �u� are natural numbers,
– �t + u� = ⊥ if �t� = ⊥ or �u� = ⊥.

We can now remark that the function �fun x:nat -> x + 1�, which did
not have a fixed point when ⊥ was not included, now has one: ⊥. This value is
precisely the one we will define as semantics for the term fix x:nat (x + 1),
which does not terminate. The function �fun x:nat -> x�, which had several
fixed points, now has an additional one ⊥, and we will choose this one as semantics
for the term fix x:nat x. The function �fun x:nat -> x + x�, which had a
unique fixed point 0 now has two: 0 and ⊥, and again we will choose ⊥ as semantics
for the term fix x:nat (x + x) that does not terminate.

All the functions that we had mentioned have fixed points now, and if they have
more than one, including ⊥, we will choose the latter as our privileged value.

5.3.3 Scott’s Ordering Relation

To make the ideas discussed above more precise, we define an ordering relation,
called Scott’s ordering relation, on the set �nat� as follows

5.3 Denotational Semantics for Typed PCF 59

and we define �fix x:nat t� as the least fixed point of the function �fun
x:nat -> t�, forcing the use of the fixed point ⊥ when more than one fixed point
exist. It remains to prove that the least fixed point exists; we will use the fixed point
theorem for this. To apply this theorem, we must show that the ordering relation that
we defined on �nat� is weakly complete, and that the semantics of a program of
type nat -> nat is a continuous function.

More generally, we will build for each type A a set �A� endowed with a weakly
complete ordering relation, and we will show that the semantics of a program of
type A -> B is a continuous function from �A� to �B�.

We start by defining the sets �A�. The set �nat� will be defined as N ∪ {⊥}, with
the ordering relation given above. The set �A -> B� is defined to be the set of all
continuous functions from �A� to �B�, with the ordering relation f ≤ g if for all x
in �A�, f x ≤ g x.

We can show that these ordering relations are weakly complete. The ordering on
�nat� is weakly complete because any increasing sequence is either constant or has
the form ⊥, ⊥, ..., ⊥, n, n, ... and in both cases there is a limit.

We will now show that if the ordering relations on �A� and �B� are weakly
complete, then so is the ordering on �A -> B�. Let us consider an increasing se-
quence fn over �A -> B�. Using the definition of the ordering on �A -> B�, for
all x in �A�, the sequence fn x, whose values are in �B�, is also increasing, and
therefore has a limit. Let us call F the function that associates to x the element
limn (fn x). We can show—but we will not do it here—that the function F is
in �A -> B�, that is, it is a continuous function (this requires a lemma to permute
limits). By construction, the function F is greater than all the functions fn, and it is
the least such function. Therefore it is the limit of the sequence fn. Any increasing
sequence has a limit and the ordering relation on �A -> B� is therefore weakly
complete.

Each set �A� has a least element, written ⊥A. The least element of �nat� is ⊥,
and the least element of �A -> B� is the constant function that returns the value
⊥B for all arguments.

5.3.4 Semantics of Fixed Points

We can now go back to the denotational semantics of PCF, and add to the definition
the missing case for fix

– �x�e = a, if e contains the definition x = a,
– �fun x:A -> t�e = fun a:�A� -> �t�e,x=a,

60 5 PCF with Types

– �t u�e = �t�e �u�e,
– �n�e = n,
– �t ⊗ u�e = �t�e ⊗ �u�e, if �t�e and �u�e are natural numbers, ⊥ otherwise,
– �ifz t then u else v�e = �u�e si �t�e = 0, �v�e if �t�e is a natural

number different from 0 and ⊥A, where A is the type of this term, if �t�e =
⊥nat.

– �fix x:A t�e = FIX (fun a:�A� -> �t�e,x=a) where FIX(f) is the
least fixed point of the continuous function f,

– �let x:A = t in u�e = �u�e,x=�t�e
.

To show that this definition is correct, we need to prove that if t is a term of type
A then �t� is in �A�, that is, we need to prove that the function is continuous. This
is true, but we will not prove it here.

Exercise 5.7 What is the semantics of the term fun x:nat -> 0? And the se-
mantics of fix x:nat x and (fun x:nat -> 0) (fix x:nat x)?

Exercise 5.8 What is the value of �ifz t then u else v�e, if �t�e = 0,
�u�e = 0 and �v�e = ⊥nat?

We can now state the equivalence theorem for the two semantics. Let t be a
closed term of type nat and n a natural number: t →֒ n under call by name if and
only if �t� = n. The direct implication is not difficult to prove, but the converse is
not trivial.

Exercise 5.9 Show, using the equivalence theorem, that if t is a closed term of type
nat such that �t� = ⊥, there is no natural number n such that t →֒ n.

Exercise 5.10 Let G be the denotational semantics of the term fun f:(nat ->
nat) -> fun n:nat -> ifz n then 1 else n * (f (n - 1)).

The denotational semantics of the term fix f:(nat -> nat) fun n:nat
-> ifz n then 1 else n * (f (n - 1)) is the least fixed point of G.
By the first fixed point theorem, this is the limit of the sequence Gn(⊥nat -> nat).
Which function is denoted by ⊥nat -> nat? And by Gn(⊥nat -> nat)? Identify
the limit of this sequence.

Show that for any natural number p, there exists a natural number m such that
Gm(⊥nat -> nat)(p) = limn G

n(⊥nat -> nat)(p).

Exercise 5.11 We consider the following elements in the set �nat -> nat�: the
function u that maps ⊥ to ⊥ and all other elements to 0, the function vi that maps
⊥ to ⊥, i to 1 and all other elements to 0, and the function wi that maps ⊥ to ⊥,
0, 1, ..., i-1 to 0 and all other elements to ⊥.

Let F be an increasing function from �nat -> nat� to �nat�, such that F u
= 0 and for all i, F vi = 1. Show that for all i, F wi = ⊥. Show that the
function F is not continuous.

Show that it is not possible to write a PCF function that takes as argument a func-
tion g of type nat -> nat and returns 0 if for all n, g n = 0 and 1 otherwise.

5.3 Denotational Semantics for Typed PCF 61

Exercise 5.12 (An information-based approach to continuity) It might seem sur-
prising that the notion of continuity is used to define the semantics of PCF, even
though PCF works only with natural numbers, not with real numbers. In fact, the set
of functions from N to N, or the set of sequences of natural numbers, is very similar
to the set of real numbers.

The intuition is that a real function f is continuous if to compute the initial n
decimal places of f x it is sufficient to know a finite number of decimals in x.
Unfortunately, this is technically false if x or f x are decimal numbers. We will
say that a decimal number approximates a real number to the nth decimal place if
the distance between the two is smaller than 10−n. Thus, the number π has two
approximations to the second decimal place: 3.14 and 3.15, and it makes sense
to say that the function f is continuous if to compute a decimal approximation of f
x to the nth place it is sufficient to have some decimal approximation of x.

The goal of this exercise is to show that, similarly, a function f from sequences
of natural numbers to sequences of natural numbers is continuous if to compute the
first n terms in f x it is sufficient to have an initial segment of x. If we agree to call
a finite initial segment of the sequence a finite approximation, then we can rephrase
it as follows: to compute an approximation of f x with n terms, it is sufficient to
have a certain approximation of x.

Let u be a sequence of natural numbers, and let U be the element of �nat ->
nat� that associates ⊥ to ⊥ and ui to i.

Let V be a sequence with elements in �nat -> nat�

[⊥ 	→ ⊥, 0 	→ ⊥, 1 	→ ⊥, 2 	→ ⊥, 3 	→ ⊥, ...],

[⊥ 	→ ⊥, 0 	→ u0, 1 	→ ⊥, 2 	→ ⊥, 3 	→ ⊥, ...],

[⊥ 	→ ⊥, 0 	→ u0, 1 	→ u1, 2 	→ ⊥, 3 	→ ⊥, ...],

[⊥ 	→ ⊥, 0 	→ u0, 1 	→ u1, 2 	→ u2, 3 	→ ⊥, ...],

...

Show that the sequence V converges to U. Let F be a continuous function on
�nat -> nat�. Show that the sequence F Vi converges to F U. Show that the
sequence F Vi p converges to F U p. Show that there exists a natural number k
such that F Vk p = F U p. Show that to compute F U p, it suffices to have the
first k terms in U. Show that to compute the first n terms in F U it is sufficient to
know a finite number of terms in U.

Consider the function that associates to a sequence u the number 0 if u is always
0, and 1 otherwise. Is this function continuous? Can it be written in PCF?

Finally, notice that in these two examples, the approximations—decimal numbers
or finite sequences—contain a finite amount of information, whereas the objects that
they approximate—real numbers or infinite sequences—contain an infinite amount
of information.

Exercise 5.13 (Gödel’s System T) To avoid non-terminating computations, we can
replace fix by a rec construct to define functions by induction. All the programs
in this language terminate, but the language is no longer Turing complete. Still, it is

62 5 PCF with Types

not easy to find a program that cannot be represented in this language, you need to
be an expert logician to build such a program.

The function f defined by f 0 = a and f (n + 1) = g n (f n) is writ-
ten rec a g. The small-step operational semantic rules for this construct are

rec a g 0 −→ a

rec a g n −→ g (n - 1) (rec a g (n - 1))

if n is a natural number different from 0.
Program the factorial function in this language. Give typing rules for rec. Give

a denotational semantics for this language.

Chapter 6

Type Inference

In many programming languages, for instance Java and C, programmers must de-
clare a type for each of the variables used in the program, writing for example fun
x:nat -> x + 1. However, if we know that + can only work with numbers, it
is not difficult to show that in the term fun x -> x + 1 the variable x has to
be of type nat. We can then let the computer infer the types, rather than asking the
programmer to write them. This is the goal of a type inference algorithm.

6.1 Inferring Monomorphic Types

6.1.1 Assigning Types to Untyped Terms

We will now use the original syntax of PCF, where variables are not explicitly typed.
Instead of writing fun x:nat -> x + 1, we will write fun x -> x + 1 as
in Chap. 2.

We can now define the language of terms and the language of types indepen-
dently. The language of terms in PCF is defined as in Chap. 2 and the language of
types consists of

– a constant nat, and
– a symbol -> with two arguments which does not bind any variable in its argu-

ments.

A = X
| nat
| A -> A

As before, the relation e ⊢ t : A (read “the term t has type A in the environ-
ment e”) can be defined by induction.

if e contains x : A
e ⊢ x : A

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_6, © Springer-Verlag London Limited 2011

63

64 6 Type Inference

e ⊢ u : A e ⊢ t : A -> B
e ⊢ t u : B

(e, x : A) ⊢ t : B
e ⊢ fun x -> t : A -> B

e ⊢ n : nat

e ⊢ u : nat e ⊢ t : nat
e ⊢ t ⊗ u : nat

e ⊢ t : nat e ⊢ u : A e ⊢ v : A
e ⊢ ifz t then u else v : A

(e, x : A) ⊢ t : A
e ⊢ fix x t : A

e ⊢ t : A (e, x : A) ⊢ u : B
e ⊢ let x = t in u : B

Some terms, for example the term fun x -> x, may have more than one
type in this system. For instance, we can derive the judgement ⊢ fun x -> x :

nat -> nat and also the judgement ⊢ fun x -> x : (nat -> nat) ->
(nat -> nat). A closed term may have a type with free variables, for example
the term fun x -> x has type X -> X in the empty environment.

We can prove that if a closed term t has a type A which contains variables in the
empty environment, then t also has type θA for any substitution θ . For example, if
we substitute the variable X by the type nat -> nat in X -> X, we obtain the
type (nat -> nat) -> (nat -> nat) and this is one of the possible types
for the term fun x -> x.

6.1.2 Hindley’s Algorithm

We can now describe the type inference algorithm. We will first describe a version
of the algorithm that has two phases. The first phase is similar to the type checking
algorithm: it traverses the term, recursively, checking that the type constraints are
satisfied, and computes the type of the term. There are however two important dif-
ferences: first, when we are trying to type a term of the form fun x -> t in an
environment e, since we do not know the type of the variable x we need to create
a type variable X, extend the environment e with the declaration x : X, and type
the term t in this extended environment. The second difference is that when typing
an application t u, after computing types A and B for u and t, respectively, we
cannot simply check that the type B has the form A -> C. Indeed, these two types
might have variables. For this reason, at this point an equation between the types is
generated B = A -> X. The second phase of the type inference algorithm solves
these equations.

Let us illustrate the idea with an example: to type the term fun f -> 2 +
(f 1) we must type the term 2 + (f 1) in the environment f : X. For this,

6.1 Inferring Monomorphic Types 65

we need to type the term 2, which has type nat, and the term f 1. The term 1
has type nat and the term f has type X. We generate the equation X = nat ->
Y and the type of f 1 is Y. Once the terms 2 and f 1 are typed, we generate the
equations nat = nat and Y = nat, and the type of the term 2 + (f 1) is
nat. Finally, the type of the term fun f -> 2 + (f 1) is X -> nat and the
equations that we need to solve are

X = nat -> Y
nat = nat
Y = nat

This system of equations has a unique solution X = nat -> nat, Y = nat,
and therefore the only type that we can assign to the term fun f -> 2 + (f 1)
is (nat -> nat) -> nat.

We can describe the first part of the algorithm using a set of rules in the style of
the big-step operational semantics (as we did for the type checking algorithm), but
in this case the result of the interpretation of a term will not be a value or a type, it
will be a pair of a type and a set of equations on types. We write e ⊢ t � A, E
to denote the relation between the environment e, the term t, the type A and the set
of equations E.

if e contains x : Ae ⊢ x � A, ∅

e ⊢ u � A, E e ⊢ t � B, F
e ⊢ t u � X, E ∪ F ∪ {B = A -> X}

(e, x : X) ⊢ t � A, E
e ⊢ fun x -> t � (X -> A), E

e ⊢ n � nat, ∅

e ⊢ u � A, E e ⊢ t � B, F
e ⊢ t ⊗ u � nat, E ∪ F ∪ {A = nat, B = nat}

e ⊢ t � A, E e ⊢ u � B, F e ⊢ v � C, G
e ⊢ ifz t then u else v � B, E ∪ F ∪ G ∪ {A = nat, B = C}

(e, x : X) ⊢ t � A, E
e ⊢ fix x t � A, E ∪ {X = A}

e ⊢ t � A, E (e, x : A) ⊢ u � B, F
e ⊢ let x = t in u � B, E ∪ F

In the application rule, the variable X is an arbitrary variable that does not occur in
e, A, B, E and F. In the rules for fun and fix, it is an arbitrary variable that does
not occur in e.

Let t be a closed term and let A and E be the type and the set of equations
computed by this algorithm, that is, we have ⊢ t � A, E. A substitution σ =
B1/X1, ..., Bn/Xn is a solution of E if, for each equation C = D in E, the
types σC and σD are identical. We can show that if a substitution σ is a solution of
the set E, then the type σA is a type for t in the empty environment. In general, if e

66 6 Type Inference

⊢ t � A, E, then for any solution σ of E, σA is a type for t in the environment
σe. Conversely, if A’ is a type for t in the empty environment, then there exists a
substitution σ such that A’ = σA and σ is a solution of the set E of equations.

The second part of the algorithm deals with the type equations. The language of
types does not have binders, it is a language generated by a constant nat and a sym-
bol -> with two arguments. To solve the type equations, we use Robinson’s unifi-
cation algorithm, which solves equations in any arbitrary language without binders.
This algorithm is in some respects similar to Gauss’s algorithm to solve systems of
equations. It proceeds by a series of transformations, defined as follows

– if an equation in the system is of the form A -> B = C -> D, it is replaced
by the equations A = C and B = D,

– if an equation in the system is of the form nat = nat, it is removed from the
system,

– if an equation in the system is of the form nat = A -> B or A -> B = nat,
the algorithm fails,

– if an equation in the system is of the form X = X, it is removed from the system,
– if an equation in the system is of the form X = A or A = X, where X occurs in
A and A is different from X, the algorithm fails,

– if an equation in the system is of the form X = A or A = X, where X does not
occur in A and X occurs in other equations in the system, then X is substituted by
A in all the other equations in the system.

This algorithm terminates, but the proof is not trivial. If the algorithm fails, then
the system does not have a solution. If it terminates without failure, then the final
system is of the form X1 = A1, ..., Xn = An, where the Xi are different
variables and do not occur in the Ai. In this case, the substitution σ = A1/X1,
..., An/Xn is a solution of the initial system. We can prove that this substitution
is a principal solution of this system, in other words, for any solution θ of the initial
system, there is some substitution η such that θ = η ◦ σ . We write σ = mgu(E)—
most general unifier: principal solution.

Let t be a closed term, and let A and E be such that ⊢ t � A, E. Let σ be
a principal solution of E. Then the term t has type σA in the empty environment.
Moreover, σA is a principal type of t, that is, for any other type B of t , there exists
a substitution η such that B = ησA.

6.1.3 Hindley’s Algorithm with Immediate Resolution

There is a variant of Hindley’s algorithm where instead of waiting until the end
of the first phase to start solving the equations, the equations are solved as they
are generated. In this case, instead of returning a type and a set of equations, the
algorithm returns a type A and a substitution ρ that is a principal solution of the
equations. We can also apply the substitution ρ to the type A as it is built.

6.1 Inferring Monomorphic Types 67

The algorithm has the following property: if e ⊢ t � A, ρ, then A is a prin-
cipal type of t in the environment ρe. The algorithm is defined below.

if e contains x : Ae ⊢ x � A, ∅

e ⊢ u � A, ρ ρe ⊢ t � B, ρ′

e ⊢ t u � σX, σ ◦ ρ′ ◦ ρ

if σ = mgu(B = ρ ′A -> X)

(e, x : X) ⊢ t � A, ρ

e ⊢ fun x -> t � (ρX -> A), ρ

e ⊢ n � nat, ∅

e ⊢ u � A, ρ σρe ⊢ t � B, ρ′

e ⊢ t ⊗ u � nat, σ ′ ◦ ρ′ ◦ σ ◦ ρ

if σ = mgu(A = nat) and σ ′ = mgu(B = nat)

e ⊢ t � A, ρ σρe ⊢ u � B, ρ′ ρ ′σρe ⊢ v � C, ρ′′

e ⊢ ifz t then u else v � σ ′ C, σ ′ ◦ ρ′′ ◦ ρ ′ ◦ σ ◦ ρ

if σ = mgu(A = nat) and σ ′ = mgu(ρ′′ B = C)

(e, x : X) ⊢ t � A, ρ if σ = mgu(A = ρX)
e ⊢ fix x t � σA, σ ◦ ρ

e ⊢ t � A, ρ (ρe, x : A) ⊢ u � B, ρ′

e ⊢ let x = t in u � B, ρ′ ◦ ρ

Again, in the application rule X is an arbitrary variable that does not occur in e, A,
B, ρ and ρ’, and in the rules for fun and fix, it is a variable that does not occur
in e.

Exercise 6.1 Give a principal type for the term fun x -> fun y ->
(x (y + 1)) + 2. Describe all of its types.

Give a principal type for the term fun x -> x. Describe all of its types.

Exercise 6.2 (Unicity of principal types) A substitution σ is called a renaming if it
is an injective map associating a variable to each variable. For example, the substi-
tution y/x, z/y is a renaming. Let A be a type and σ , σ ′ two substitutions. Show
that if σ ′σA = A then σ|FV(A) is a renaming.

Deduce that if A and A’ are two principal types of a term t then there exists a
renaming θ , with domain FV(A), such that A’ = θA.

Exercise 6.3 In the general case of a language without binders, we can replace the
first three rules in Robinson’s unification algorithm by the two rules

– if an equation is of the form f(u1, ..., un) = f(v1, ..., vn), re-
place it by u1 = v1, ..., un = vn,

68 6 Type Inference

– if an equation is of the form f(u1, ..., un) = g(v1, ..., vp) where
f and g are different symbols, fail.

In a language that consists of a symbol + with two arguments and integer con-
stants, does the equation (2 + (3 + X)) = (X + (Y + 2)) have a solu-
tion? And the equation X + 2 = 4?

What is the difference between the equations in this language and the equations
over integers studied at high school?

Define the high school notion of solution using the small-step operational seman-
tics of PCF. Does the equation X + 2 = 4 have a solution in this case?

6.2 Polymorphism

We have seen that the principal type of the term id = fun x -> x is X -> X.
This means that the term id has type A -> A for any type A. We could give it a
new type ∀X (X -> X) and add a rule so that if a term t has type ∀X A then
it has the type (B/X)A for any type B. A type language that includes a universal
quantifier is polymorphic.

In the system presented in the previous section, the term let id =
fun x -> x in id id was not typeable. Indeed, the typing rule for let re-
quires that we type both fun x -> x and id id, but the latter is not typeable
because we cannot assign the same type to both occurrences of the variable id.
For this reason the term let id = fun x -> x in id id cannot be typed.
This could be seen as a flaw in the type system, because the term (fun x -> x)
(fun x -> x), obtained by replacing id by its definition, is typeable. Indeed,
to type this term it is sufficient to assign type nat -> nat to the first occurrence
of the bound variable x and type nat to the second.

If we give the type ∀X (X -> X) to the symbol id in the term let id =
fun x -> x in id id we can then use a different type for each occurrence of
id in the term id id, and the term becomes typeable.

Typing the term let id = fun x -> x in id id might seem a minor
issue, and adding quantifiers to the type language might seem a high price to pay
to obtain a marginal increase in power. However, this is a wrong impression. In
fact, in the extension of PCF with lists—see Exercise 3.14—, this feature allows
us to develop a unique sorting algorithm and apply it to all the lists, irrespective of
the type of their arguments: let sort = t in u. Polymorphism entails more
code reuse, and therefore more concise programs.

We will therefore give a quantified type to the variables bound in a let, but use
a standard type for variables that are bound in a fun or fix.

6.2.1 PCF with Polymorphic Types

We need to distinguish between types without quantifiers—we will continue to use
the word types for these—and quantified types, which we will call type schemes.

6.2 Polymorphism 69

A scheme has the form ∀X1 ... ∀Xn A where A is a type. We will then define
a language with two sorts: a sort for types and a sort for schemes. Since the sets of
terms of each sort are disjoint in a many-sorted language, the set of types cannot be
a subset of the set of schemes, and we will need to use a symbol [] to inject a type
in the sort of the schemes. Thus, if A is a type, [A] will be the scheme consisting
of the type A without any quantified variable.

The language of types and schemes is defined by

– a type constant nat,
– a type symbol -> with two type arguments, which does not bind any variable in

its arguments,
– a scheme symbol [] with one type argument, which does not bind any variable

in its argument,
– a scheme symbol ∀ with one scheme argument, which binds a variable in its

argument.

A = X
| nat
| A -> A

S = Y
| [A]
| ∀X S

This language includes variables for every sort, in particular scheme variables. How-
ever, these variables will not be used.

An environment is now a list associating a scheme to each variable. We define
inductively the relation “the term t has the scheme S in the environment e”

if e contains x : Se ⊢ x : S

e ⊢ u : [A] e ⊢ t : [A -> B]
e ⊢ t u : [B]

(e, x : [A]) ⊢ t : [B]
e ⊢ fun x -> t : [A -> B]

e ⊢ n : [nat]

e ⊢ u : [nat] e ⊢ t : [nat]
e ⊢ t ⊗ u : [nat]

e ⊢ t : [nat] e ⊢ u : [A] e ⊢ v : [A]
e ⊢ ifz t then u else v : [A]

(e, x : [A]) ⊢ t : [A]
e ⊢ fix x t : [A]

e ⊢ t : S (e, x : S) ⊢ u : [B]
e ⊢ let x = t in u : [B]

e ⊢ t : S
if X does not occur free in ee ⊢ t : ∀X S

70 6 Type Inference

e ⊢ t : ∀X S
e ⊢ t : (A/X)S

This inductive definition assigns a scheme to each term, in particular to variables.
This is why variables are associated to schemes in the environment. However, when
we type a term of the form fun x -> t or fix x t, we type t in an extended
environment where the variable x is associated to a scheme [A]without quantifiers.
A scheme can be associated to a term t only during the typing of a term of the form
let x = t in u, and then this scheme is associated to the variable x.

To introduce quantifiers in the scheme associated to t we use the penultimate
rule, which allows us to quantify a variable in the scheme S if the variable does not
occur free in e. Thus, in the empty environment, after assigning the scheme [X ->
X] to the term fun x -> x we can assign the scheme ∀X [X -> X] to it. Note
that in the environment x : [X], after assigning the scheme [X] to the variable x
we cannot assign the scheme ∀X [X].

Finally, note that if we have assigned a quantified scheme to a variable, or to an
arbitrary term, we can remove the quantifier and substitute the free variable using
the last rule. For example, in the environment x : ∀X [X -> X] we can assign
the scheme [nat -> nat] to the variable x.

6.2.2 The Algorithm of Damas and Milner

We are now ready to define the inference algorithm. We will solve the equations
on the fly, as we did in the second variant of Hindley’s algorithm. The algorithm
will be applied to a term t and an environment e, and it will return a type A and a
substitution ρ such that the term t has the scheme [A] in the environment ρe. The
only difference with respect to the second variant of Hindley’s algorithm is in the
first two rules

e ⊢ x � (Y1/X1 ... Yn/Xn)A,∅

if e contains x : ∀X1 ... ∀Xn [A] and Y1, ..., Yn are new variables

e ⊢ t � A,ρ (ρe, x : Gen(A,ρe) ⊢ u � B,ρ′

e ⊢ let x = t in u � B, ρ′ ◦ ρ

where Gen(A,e) is the scheme obtained by quantifying in [A] all the type vari-
ables that are free in [A] but not in e.

We can prove that if t is a closed term, the type A computed by this algorithm is
a principal type of t, that is, if ⊢ t:[B] then B is an instance of A.

Exercise 6.4 Consider the extension of PCF with a type symbol list with one
argument, which is a type. We write nat list for the type of lists of natural
numbers, (nat -> nat) listwill be the type of lists of functions from natural
numbers to natural numbers, and (nat list) list will be the type of lists
where the elements are lists of natural numbers.

6.2 Polymorphism 71

We add the following constructs to the language: a constant nil of type
(A list) for any type A, representing the empty list, cons a l of type
(A list) for any type A such that a has type A and l has type A list, which
will represent a list where the first element is a and l is the rest of the list, ifnil
t then u else v of type A if t has type B list and u, v are terms of type A,
to check whether the list t is empty or not, hd l of type A if l is of type A list,
that returns the first element of the list l, and tl l of type A list if l is of type
A list, that returns the list l without the first element. Write typing rules for this
extension of PCF. Write a type checker for this extension of PCF.

Program the function map that associates to a function f and a list t1, ...,
tn the list f t1, ..., f tn. What is the type of this function?

Program a sorting algorithm. What is the type of this algorithm?

In the type system described in this chapter, we can use quantified types for
variables that are bound in a let. We could try to give a quantified type to variables
that are bound in a fun. For example, we could give the type ∀X (X -> X) to
the variable x in the term fun x -> x x, which will allow us to type this term.
The language obtained in this way is called System F, and was defined by Girard
and Reynolds. However, the typing relation is undecidable in System F, as shown
by Wells, and we cannot hope to have a type inference algorithm for System F.
Similarly, if we allow the variable bound by a fix to be polymorphic, the system
becomes undecidable, as shown by Kfoury. Restricting the polymorphic aspects of
the system to the let construct can be seen as a good compromise, it offers a good
level of code reuse and type inference.

Chapter 7

References and Assignment

Consider two numbers: π and the temperature in Paris. Today, the number π has
a value between 3.14 and 3.15 and the temperature in Paris is between 16 and
17 degrees. Tomorrow, π will have the same value, but the temperature in Paris will
probably change. In Mathematics, numbers are entities that do not change over time:
the temperature in Paris is not a number that changes, it is a function that varies over
time.

However, formalising the temperature of a system as a function of time is perhaps
too general. It does not take into account the fact that the variation in temperature
at a given point in time depends, in general, of the temperature at this point and
not the temperature ten seconds earlier or ten seconds later. In general, a system
does not have access to the full temperature function, just the current value of the
function. This is why equations in Physics are generally differential equations and
not arbitrary equations on functions.

In Computer Science, programs also use objects that vary over time. For example,
in the program that manages the sale of tickets for a concert, the number of seats
available varies over time: it decreases by one each time a ticket is sold. From the
mathematical point of view, it is a function of time. However, to know whether
it is possible or not to sell a ticket, or whether booking is no longer possible, the
program only needs to know the current value of this function, not the full function:
at a certain point t in time, it needs the value of the function at t.

For this reason, when we write such a program, we do not represent the number
of places available for the concert as a function, that is, as a term of type nat ->
nat—assuming a discrete clock—, which would mean that at each instant t we
know the number of seats still available for the concert at each instant t’. This is
clearly impossible, since it requires to know the number of seats available at each
instant t’ in the future. We cannot express this number by a term of type nat
either, because as a number the value of a term of type nat in PCF cannot change
over time. We have to introduce another sort of terms for the values that change over
time: references, also called variables but we prefer not to use the word variable in
this context, since the notion of a reference is very different from the notion of a
variable in Mathematics and in functional languages.

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_7, © Springer-Verlag London Limited 2011

73

74 7 References and Assignment

If x is a reference, we can do two things with it, get its current value !x and
modify its value x := t, that is, contribute to the construction of the function that
we mentioned above, asserting that the value of the function is now, and until further
notice, the current value of the term t.

The issue of equality of “numbers that vary over time” is subtle. We could com-
pare such a number, the temperature in Paris for instance, with a leaf in a tree: small,
green and flexible in Spring, it becomes bigger, yellow and brittle in Autumn. There
is clearly a change, but we know that it is the same leaf: nobody would believe that
the little green leaf disintegrated and suddenly the big yellow leaf appeared ex nihilo.
Although there is a transformation, the same leaf remains in the tree from March till
October. This is an instance of the old paradox, that something can change while re-
maining the same. Similarly, the notion of temperature in Paris is always the same,
even if the temperature changes over time. On the other hand, we can easily distin-
guish the temperature in Paris from the temperature in Rome: these are two different
things, even if from time to time the temperature is the same in both cities.

One way to deal with this paradox is to consider the temperature in Paris and
the temperature in Rome as functions: a function may take different values at two
different points and remain the same function, and two different functions might
take the same value at a given point.

In a program, if x and y are two references and we need to compare them, we
should distinguish carefully between their equality as references, that is, whether x
and y are the same thing or not—in mathematical terms: whether they are the same
function of time—and equality of their contents, that is, whether the numbers !x
and !y are the same at a particular point in time. In particular, equality of references
implies that if we modify the value of x then the value of y also changes, but this is
not the case if they are different references with the same value.

7.1 An Extension of PCF

We will now extend the language PCF with two new term constructors, written !
and :=.

The term x := 4 denotes an action: it updates the value associated to the ref-
erence x. Compare with the term fact 3, that we have already seen, and which
also denotes an action: the computation of the factorial of 3. There is a difference
between these two actions: the effect of the computation of the factorial of 3 is a
value, whereas the effect of the action x := 4 is a change in the “global state” of
the universe. Before this action, the reference x had, for instance, the value 0, and
after this action it has the value 4. When we add references to PCF, the interpreta-
tion of a term is not just a value, but a value and a new state of the universe. This
modification of the state is a side effect of the interpretation of a term.

The formal semantics of references in PCF defines the global state as a function
from a finite set R to the set of values of PCF terms. The elements of the set R are
called references. In the native programming language of a computer, its machine

language, the set of references is fixed: it is the set of memory addresses of the

7.2 Semantics of PCF with References 75

computer. In other languages, the set R is arbitrary. In particular, when we define the
semantics of a language, we do not distinguish between sets R and R’ of the same
cardinality (i.e., with the same number of elements). This means that programmers
cannot know the exact set of memory addresses used to store the data.

In PCF, as well as in most programming languages, the values associated to ref-
erences may change over time. Moreover, the set R itself may vary over time: it is
possible to create a reference during the execution of the program. To do this, the
language includes a construct ref. The side effect associated to the interpretation
of the term ref t is the creation of a new reference whose initial value is the cur-
rent value of the term t. The value computed by this interpretation is the reference
itself.

Since the interpretation of the term ref t produces a value which is a reference,
it is clear that references must be values in this extension of PCF.

7.2 Semantics of PCF with References

In the big-step operational semantics of this extension of PCF, the relation is of the
form e, m ⊢ t →֒ V, m’ where t is the term to be interpreted, e the environ-
ment where it will be interpreted, m the global state in which the interpretation will
take place, V the value produced by the interpretation, and m’ the new global state
produced by the interpretation.

if e contains x = V
e, m ⊢ x →֒ V, m

e’, m ⊢ fix y t →֒ V, m’ if e contains
x = 〈fix y t, e’〉e, m ⊢ x →֒ V, m’

e, m ⊢ u →֒ W, m’
e, m’ ⊢ t →֒ 〈x, t’, e’〉, m”

(e’, x = W), m” ⊢ t’ →֒ V, m”’

e, m ⊢ t u →֒ V, m”’

e, m ⊢ fun x -> t →֒ 〈x, t, e〉, m

e, m ⊢ n →֒ n, m

e, m ⊢ u →֒ q, m’ e, m’ ⊢ t →֒ p, m” if p ⊗ q = n
e, m ⊢ t ⊗ u →֒ n, m”

e, m ⊢ t →֒ 0, m’ e, m’ ⊢ u →֒ V, m”
e, m ⊢ ifz t then u else v →֒ V, m”

76 7 References and Assignment

e, m ⊢ t →֒ n, m’ e, m’ ⊢ v →֒ V, m” if n is a
number �= 0e, m ⊢ ifz t then u else v →֒ V, m”

(e, x = 〈fix x t, e〉), m ⊢ t →֒ V, m’
e, m ⊢ fix x t →֒ V, m’

e, m ⊢ t →֒ W, m’ (e, x = W), m’ ⊢ u →֒ V, m”
e, m ⊢ let x = t in u →֒ V, m”

We can now give rules for the three new constructs, ref, ! and :=

e, m ⊢ t →֒ V, m’
e, m ⊢ ref t →֒ r, (m’, r = V)

if r is any reference not occurring in m’

e, m ⊢ t →֒ r, m’
if m’ contains r = V

e, m ⊢ !t →֒ V, m’

e, m ⊢ t →֒ r, m’ e, m’ ⊢ u →֒ V, m”
e, m ⊢ t := u →֒ 0, (m”, r = V)

The construction t; u whose semantics is obtained by interpreting t, throwing
away the value obtained, then interpreting u, is not very interesting in a language
without side effects, because in that case the value of the term t; u is always the
same as the value of u, assuming t terminates. We can now add it to PCF

e, m ⊢ t →֒ V, m’ e, m’ ⊢ u →֒ W, m”
e, m ⊢ t; u →֒ W, m”

We can also add now constructions whilez, for, . . . which were of no interest in
a language without side effects.

Exercise 7.1 Write an interpreter for the language PCF with references.

The uncertainty that we mentioned at the beginning of the book regarding the
evaluation of nested functions is finally elucidated.

Exercise 7.2 Consider the term

let n = ref 0
in let f = fun x -> fun y -> x
in let g = fun z -> (n := !n + z; !n)
in f (g 2) (g 7)

What is the value of this term? In which order will the arguments be interpreted in
PCF? Why?

Modify the rules given above to obtain the value 2 instead of the value 9 for this
term.

7.2 Semantics of PCF with References 77

In Sect. 2.5 we remarked: “In the case of an application. . . ”. What do you think
of this remark?

What is the value of this term in Caml?
Consider the following Java program

class Reference {
static int n;
static int f (int x, int y) {return x;}
static int g (int z) {n = n + z; return n;}
static public void main (String[] args) {
n = 0; System.out.println(f(g(2),g(7)));}}

What is the value of this term?
In which order does Caml interpret its arguments? and Java?

Exercise 7.3 Is the value of the term

let x = ref 4 in let f = fun y -> y + !x
in (x := 5; f 6)

10 or 11? Compare with the answer for Exercise 2.8.

Exercise 7.4 Give the big-step operational semantics of the construction whilez.
What is the value of the term given below?

let f = fun n ->
(let k = ref 1
in let i = ref 1
in (whilez (!i - n) do k := !k * !i;

i := !i + 1 done; !k))
in f 3

Exercise 7.5 (The quirks of references under call by name) Consider the rules given
above to define the big-step semantics of references. Do they follow a call by name
or a call by value strategy? Give a similar rule for application under call by name, but
keep the let in call by value. What is the value of the term let n = ref 0 in
((fun x -> x + x) (n := !n + 1; 4)); !n in call by value? And in
call by name? What is the value of the term let n = ref 0 in ((fun x ->
2 * x) (n := !n + 1; 4)); !n in call by value? And in call by name?

Exercise 7.6 (Typing references) To type terms in the extension of PCF with refer-
ences, we extend the language of types with a symbol ref, so that nat ref, for
instance, is the type of references to a natural number. Thus, if t is a term of type A
ref then !t is a term of type A.

Extend the typing rules given in Sect. 5.1 in order to type the language PCF with
references.

Write a type-checking program for PCF with references.
The combination of references and polymorphism is subtle; we will not attempt

to mix them in this exercise.

78 7 References and Assignment

Exercise 7.7 (From imperative to functional programs) Consider a term t defining
a function from natural numbers to natural numbers, with p arguments and a free
variable n of type nat ref. We associate to this term a function with p + 1
arguments that returns a pair of natural numbers—see Exercise 3.13—such that the
image of a1, ..., ap, m is the pair of natural numbers consisting of the value
of the term let n = ref m in (t a1 ... ap) and the value of the term
!n at the end of the interpretation. Which function will be associated to the term

– fun z -> (n := !n + z; !n)?

And to the term

– (fun z -> (n := !n + z; !n)) 7?

And to the term

– (fun x -> fun y -> x) ((fun z -> (n := !n + z; !n)) 2)
((fun z -> (n := !n + z; !n)) 7)?

Is it possible to program these functions in PCF without references?
More generally,

– which function is associated to the term fun y1 -> ... -> fun yp ->
2?

– And to the term fun y1 -> ... -> fun yp -> y1?
– And to the term fun y1 -> ... -> fun yp -> !n?
– If t is a term of type nat and f is the function associated to the term fun y1
-> ... -> fun yp -> t, which function is associated to fun y1 ->
... -> fun yp -> n := t?

– If t and u are terms of type nat, and f and g are the functions associated to
the terms fun y1 -> ... -> fun yp -> t and fun y1 -> ... ->
fun yp -> u, which function is associated to fun y1 -> ... -> fun
yp -> (t + u)?

– If t and u are terms of type nat and f and g are the functions associated to
the terms fun y1 -> ... -> fun yp -> t and fun y1 -> ... ->
fun yp -> u, which function is associated to fun y1 -> ... -> fun
yp -> (t; u)?

– If t is a term of type nat -> ... -> nat -> nat—with q arguments
of type nat—u1, ..., uq are terms of type nat, and f, g1, ...,
gq the functions associated to the terms fun y1 -> ... -> fun yp ->
t and fun y1 -> ... -> fun yp -> u1, ..., fun y1 -> ...
-> fun yp -> uq, which function is associated to fun y1 -> ... ->
fun yp -> (t u1 ... uq)?

Is it possible to program these functions in PCF without references?
Write a program to transform a PCF term containing these symbols and a free

variable of type nat ref into a program without it and with the same semantics.

Exercise 7.8 (For those who prefer to write x := x + 1 instead of x := !x +
1) Consider now a finite set of references, and let us extend PCF by introducing

7.2 Semantics of PCF with References 79

a constant for each of these references. These references will be called mutable

variables. The symbol := applies now to a mutable variable and a term, written
X := t.

If X is a mutable variable, the value that the operational semantics associates to
the term X is the value associated to the reference X in the state available at the time
of interpretation.

Give a big-step operational semantics for this extension of PCF.
Write an interpreter for this extension of PCF.

Exercise 7.9 (A minimal imperative language) Consider a language including inte-
ger constants, arithmetic operations, mutable variables—see Exercise 7.8—, assign-
ment :=, sequence ;, a conditional ifz and a whilez loop (but without the usual
notion of variable, fun, fix, let or application).

Give rules to define the operational semantics of this language. Write an inter-
preter for this language. Write a program to compute factorial in this language. What
can we program in this language?

To conclude this chapter, we remark that in most programming languages there
are two different ways to program the factorial function. For example, in Java, we
can program it recursively

static int fact (int x) {
if (x == 0) return 1; return x * (fact (x - 1));}

or iteratively

static int fact (int x) {
int k = 1;
for (int i = 1; i <= x; i = i + 1) k = k * i;
return k;}

Should we prefer the first version or the second?
Of course, the theory of programming languages does not give us an answer to

“moral” questions of the form “Should we. . . ?” We could nevertheless say a few
words about the way this question has evolved.

In the first programming languages—machine languages, assembly languages,
Fortran, Basic, . . . —only the second version could be programmed. Indeed, a pro-
gram with loops and references is easier to execute in a machine that is itself, in

fine, a physical system with a mutable state, than a program that requires evaluating
a function defined via a fixed point.

Lisp was one of the first languages to promote the use of recursive definitions.
With Lisp, for the first time, programs did away with references and side effects,
and this simplified the semantics of the language, brought it close to mathematical
language, allowed programmers to reason over programs in an easier way, and fa-
cilitated the task of writing complex programs. For example, it is much easier to
write a program to compute the derivative of an algebraic expression using recur-
sion than keeping track of a stack of expressions that are waiting to be treated. It was

80 7 References and Assignment

then natural to contrast the pure functional style of programming with the “impure”
imperative one.

But the first implementations of functional languages were very slow in compar-
ison with those of imperative languages, precisely because, as we have said, it is
more difficult to execute a functional program on a machine, which is a physical
system, than it is to execute an imperative program. During the 1990’s, the compila-
tion techniques for functional languages made such a huge progress that efficiency
is no longer a valid argument against functional programming today, except in the
domain of intensive computation.

Moreover, all modern languages include both functional and imperative features,
which means that today the only valid argument to justify the choice of a particular
style should be its simplicity and ease of use.

From this point of view, it is clear that not all problems are identical. A program
that computes derivatives for functional expressions is easier to express in functional
style. In contrast, when we program the Logo turtle it is more natural to talk about
the position of the turtle, its orientation, . . . —that is, its state at a given instant. It
is also natural to talk about the actions that the turtle does: to move, to write a line,
. . . , and it is not easy to express all this in a functional way: in fact, it is not natural
to think of the turtle’s actions as functions over the space of drawings.

There is still one point that remains mysterious: programs, whether functional or
imperative, are always functions from inputs to outputs. If imperative programming
brought us new ways of defining functions, which in certain cases are more practical
from a Computer Science point of view than the mathematical definitions that are
typical of functional languages, we could wonder whether they would also be more
practical for mathematicians. However, so far the mathematical language has not
adopted the notion of reference.

Chapter 8

Records and Objects

8.1 Records

In the equations describing the movement of two bodies that exert a force on each
other, for example, a star and a planet, their positions are represented by three co-
ordinates (functions of time). This leads to a system of differential equations with
six variables. However, instead of “flattening” them, we can group them in two
packages of three variables each, obtaining a system of differential equations with
vector variables. There are mathematical tools to pack several values into one: the
notion of a pair, which can be iterated to build tuples, and the notion of a finite
sequence.

In programming languages we also need tools to pack several values into one.
The tools that we have for this are the notion of a pair, the notion of an array,
the notion of a record, the notion of an object and the notion of a module. The
components of those structures are called fields.

8.1.1 Labelled Fields

To represent the position of an object on Earth by latitude, longitude and altitude, we
can use a tuple with three components: the first one is the latitude of the object, the
second its longitude and the third its altitude. If we decide that the tuple (a,b,c)
is the pair (a,(b,c)), then the element in the left-hand side is the latitude, the
one in the left-hand side of the right-hand side component is its longitude and the
one on the right of the right-hand side component is its altitude. There are several
other combinations, and our choice here is clearly arbitrary.

If instead we decide that the tuple (a,b,c) is represented by a function from
{0,1,2} to R that associates a to 0, b to 1 and c to 2, then the latitude of the
object is the real number associated by this function to 0, its longitude is the number
associated to 1 and its altitude is the number associated to 2. Again, there are other
alternatives, and our choice is arbitrary.

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_8, © Springer-Verlag London Limited 2011

81

82 8 Records and Objects

There is no reason to place these values in a specific position in the tuple, or to
associate them with one number rather than another. Moreover, if in a program we
need to change the data structure to add another field, we will have to update the
program in several places. These modifications are likely to introduce errors, and
we might end up confusing longitude and temperature. . .

Since it is more convenient for programmers to identify the fields by using a
name—“latitude”, “longitude”, . . . —instead of a position or a number, program-
ming languages offer this possibility. This leads us to a notion of tuple with labelled
fields, called record. From a mathematical point of view, a record is a function
whose domain is an arbitrary finite set (rather than an initial segment of N), and the
elements of the set are the labels of the record.

The idea of referring to the fields by a name instead of using their position
in the tuple can also be used in the context of a function call. In some exper-
imental languages, instead of writing f(4,2) we write f(abscissa = 4,
ordinate = 2) or equivalently f(ordinate = 2, abscissa = 4).

8.1.2 An Extension of PCF with Records

To extend PCF with records, we add three symbols to the language: a symbol {} to
build records, a symbol . to access a field in a record, and a symbol <- to build a
new record identical to one previously constructed except for the value of one field.

Before introducing these symbols we need to introduce a new sort for labels and
an infinite set of constants, one for each label. Notice that there is no symbol to
bind a variable of sort label, therefore there will be no such variables in a closed
term. Moreover, the language does not include any other symbol to build terms of
sort label, just the constants. Therefore, in a closed term the only subterms of sort
label are constants. We can then add to PCF

– a symbol {} with 2n arguments that does not bind any variables; the arguments
at odd positions are labels and the ones at even positions are terms,

– a symbol . with two arguments, where the first is a term and the second a label,
which does not bind any variable,

– a symbol <- with three arguments where the first is a term, the second a label and
the third a term, which does not bind any variable.

Exercise 8.1 In the definition of language that we gave in Chap. 1, each symbol has
a fixed number of arguments. We cannot have then a symbol like {} which could
have for instance 6 or 8 arguments. How could we fix the definition given above to
make it compatible with the notion of language defined in Chap. 1? Hint: What is a
list?

The term {}(l1,t1, ..., ln,tn) will be written {l1 = t1, ...,
ln = tn}, the term .(t,l) will be written t.l and the term <-(t,l,u) will
be written t(l <- u).

8.1 Records 83

The small-step operational semantics of PCF will now include the following rules

{l1 = t1, ..., ln = tn}.li −→ ti

{l1 = t1, ..., ln = tn}(li <- u) −→

{l1 = t1, ..., li−1 = ti−1, li = u,

li+1 = ti+1, ..., ln = tn}

Similarly, the big-step operational semantics is extended with the following rules

t1 →֒ V1 · · · tn →֒ Vn
{l1 = t1, ..., ln = tn} →֒ {l1 = V1, ..., ln = Vn}

t →֒ {l1 = V1, ..., ln = Vn}
t.li →֒ Vi

t →֒ {l1 = V1, ..., ln = Vn} u →֒ W

t(li <- u) →֒ {l1 = V1, ..., li−1 = Vi−1, li = W,
li+1 = Vi+1, ..., ln = Vn}

Notice that in these rules the terms of sort label are not interpreted. This is be-
cause, as mentioned above, these terms are constants.

Exercise 8.2 Write an interpreter for PCF with records.

Exercise 8.3 The goal of this exercise is to represent a Logo turtle with a record
containing an abscissa, an ordinate, and an angle. The turtle should have an inter-
nal state so that it can move without changing its identity—see the introduction to
Chap. 7. There are two alternatives: the turtle can be defined as a record of ref-
erences to real numbers, or as a reference to a record of real numbers. Write the
function move-forward in both cases.

In this exercise we assume that there is a type of real numbers and all the neces-
sary operations.

In the big-step operational semantics that we gave for PCF with records, the in-
terpretation of the term {a = 3 + 4, b = 2} requires to perform the addition
of 3 and 4. In contrast, once the value {a = 7, b = 2} is built, an access to the
field a does not require to perform an arithmetic operation.

An alternative would be to delay the addition and assume that the term {a =
3 + 4, b = 2} is a value that can be interpreted as itself. In this case, we will
need to interpret the term 3 + 4 each time there is an access to the field a. We
could say that this semantics is a call by name one, as opposed to the semantics we
gave above, which follows the call by value strategy.

In call by name, the rules of the operational semantics are

{l1 = t1, ..., ln = tn} →֒ {l1 = t1, ..., ln = tn}

84 8 Records and Objects

t →֒ {l1 = t1, ..., ln = tn} ti →֒ V
t.li →֒ V

t →֒ {l1 = t1, ..., ln = tn}

t(li <- u) →֒ {l1 = t1, ..., li−1 = ti−1, li = u,
li+1 = ti+1, ..., ln = tn}

Exercise 8.4 Write an interpreter for PCF with records following the call by name
semantics.

If we compare these two semantics of records, we are lead to make the same
comments as for the semantics of functions in call by value vs. call by name: the
interpretation of let x = {a = fact 10, b = 4} in x.b requires the
computation of the factorial of 10 in call by value, but not in call by name. On
the other hand, the interpretation of let x = {a = fact 10, b = 4} in
x.a + x.a under call by name triggers twice the computation of the factorial 10.
The interpretation of let x = {a = fix y y, b = 4} in x.b produces
an infinite loop under call by value, whereas it successfully returns 4 under call by
name. Finally, when we also have references, the side effects of the interpretation
of a field could be repeated several times if we access the filed several times—see
Exercise 7.5.

For example, if we build a record x with a field a that is a reference to a natural
number, initially 0, and a function inc that increases this number by one, and then
we write a term that increases this value and returns it, we obtain

let x = {a = ref 0}
in let inc = fun y -> (y.a := 1 + !(y.a))
in (inc x; !(x.a))

Under call by value, this term produces the result 1, as one expects. However, a call
by name interpretation will access three times the field a of the record x, that is, it
will interpret three times the term ref 0, creating three references that point to the
value 0. The third reference, created by the interpretation of the term !(x.a), is
never updated and therefore the interpretation of the programme above under call
by name produces the result 0.

To make sure that the call by value and the call by name interpretations produce
the same result, we should avoid side effects—such as the creation of a reference in
the example above—during the interpretation of fields. We can rewrite the term as
follows

let r = ref 0
in let x = {a = r}
in let inc = fun y -> (y.a := 1 + !(y.a))
in (inc x; !(x.a))

which guarantees that the value will be 1, whether in call by value or call by name.

Exercise 8.5 (Types for records) Consider a type person for records with three
fields: surname, name and telephone. Show that we can program the three

8.2 Objects 85

functions x(surname <- y), x(name <- y) and x(telephone <- y)
without using the symbol <-, which means that this symbol is superfluous.

Will this symbol be still superfluous if we have a type contactable including
all the records which contain at least the field telephone?

If we have a type person and a type contactable, do we still have unicity
of types?

8.2 Objects

Programs usually deal with various kinds of data, often structured as records. For ex-
ample, a company’s computer system might deal with order forms from customers,
invoices, pay slips. . . . A customer order might be represented as a record including
the identification of the object ordered, the quantity requested. . . To print the data
there are several alternatives. We could write a unique function print that starts by
checking which kind of data we want to print—order form, pay slip. . . —and then
prints it in a different format depending on the kind of data. Or we could write sev-
eral functions: print_order_form, print_pay_slip. . . Alternatively, we
could define a record print where each field is a printing function. Yet another
option would be to make each printing function a part of the type. Such a data type
is called a class, and its elements are called objects.

In the most radical object-oriented programming style, each object, for instance,
each order form, includes a different function print. An order form is then a record
that contains, in addition to the standard fields—identification of the item requested,
number of items ordered, . . . —a field print defining the printing function that
should be used to print the object.

Some languages, for instance Java, associate a print function to each class
rather than each object. Thus, all the objects in the class share the printing
function—whether static or dynamic. If we do not want to share the printing func-
tion for two objects t and u in the same class C, we need to define two sub-classes
T and U of C, which inherit all the fields of C but redefine print differently.

8.2.1 Methods and Functional Fields

An object is simply a record where some fields are functions. In Java, where func-
tions are not first-class objects, we must distinguish the fields that are functions from
those that are not; the functional ones are called methods.

In a language where functions are first-class objects, like PCF, this distinction is
not necessary. Objects are then simply records, and we can program in an object-
oriented style in the extension of PCF with records defined previously in this chapter.

Exercise 8.6 The program that manages the sale of tickets for a concert is an object
with the following fields

86 8 Records and Objects

– a reference to a natural number: the number of orchestra seats available,
– a reference to a natural number: the number of balcony seats available,
– a function that takes an object and a natural number as arguments—0 for orches-

tra and 1 for balcony—and returns the number 0 or the number 1 to indicate
whether the booking is closed or there are still seats in that area,

– a function that takes an object and a natural number as arguments—0 for orches-
tra and 1 for balcony—, and reserves a seat by decreasing the number of seats
available in that area; by convention it returns the value 0.

Program this object in PCF with records.

Typing systems for records and objects are out of the scope of this book. We will
only say that if we give type A to the object defined in Exercise 8.6, then A must be
the Cartesian product of nat ref, nat ref, A -> nat -> nat and A ->
nat -> nat. We cannot define the type A as (nat ref) × (nat ref) ×

(A -> nat -> nat) × (A -> nat -> nat), because this is a circular
definition. To define this type, we need to introduce a fixed point operator on types.

If X -> Y denotes the space of functions from X to Y and B is a set with at least
two elements, then the recursive equation A = (A -> B) does not have a solu-
tion. Indeed, it follows from Cantor’s theorem that the cardinal of the set A -> B
is strictly greater than that of A. The equation A = (nat ref) × (nat
ref) × (A -> nat -> nat) × (A -> nat -> nat) does not have
a solution either. As with the construction fix in PCF, it is not trivial to give a
denotational semantics for the fixed point operator on types.

8.2.2 What Is “Self”?

If t is the object built in Exercise 8.6, to know whether the booking is closed or there
are still orchestra tickets, we need to interpret the term t.free t 0. Indeed, the
function t.free takes an object u and a natural number n and indicates whether
the field associated to n in u—orchestra if n = 0, balcony if n = 1—is zero or
not. In other words, the method free is static, as defined for example in Java.

We now want the method free of the object t to apply to the object t it-
self, that is, we want to invoke it by interpreting the term t#free 0 instead of
t.free t 0. In other words, we want this method to be dynamic.

One way to achieve this is to consider the term t#l as an abbreviation for
t.l t. The difficulty here is that if t is an object and l a label in this object,
we can only use the term t#l if the field l is a function of type A -> ... where
A is the type of t itself. In other words, we can only use the term t#l if l is the
label of a method. If l is the label of a field that is not a method, we still need to
write t.l.

To avoid this distinction, we can state that all fields are functions. If a field a of
an object t has the value 3, we transform it into a field with functional value fun

8.2 Objects 87

s -> 3. Thus, the term t#a, that is, t.a t or (fun s -> 3) t, is interpreted
as the value 3.

The first argument of each method in the object is then a bound variable, which
is usually called self or this. In fact, most programming languages use a special
variable self or this which is implicitly bound in the object, and which denotes
the object itself.

When all methods in a record are terms of the form fun x -> ..., they can
be interpreted as themselves, and we can simplify the rule

fun x1 -> t1 →֒ V1 ...
{l1 = fun x1 -> t1, ...} →֒ {l1 = V1, ...}

by using

{l1 = fun x1 -> t1, ...} →֒ {l1 = fun x1 -> t1, ...}

Similarly, the rule

t →֒ {l1 = V1, ...}
t.li →֒ Vi

specialises to

t →֒ {l1 = fun x1 -> t1, ...}
t.li →֒ fun xi -> ti

and finally the rule

t →֒ {l1 = V1, ...} u →֒ W
t(li <-u) →֒ {l1 = V1, ..., li = W, ...}

can be replaced by

t →֒ {l1 = fun x1 -> t1, ...}

t(li <- (fun y -> v)) →֒

{l1 = fun x1 -> t1, ..., li = (fun y -> v), ...}

To force all fields to be functions, we can modify the language of records, passing
from a record language to an object-oriented language. The symbol {} now binds a
variable in each even argument—terms—, the symbol . is replaced by the symbol #,
the symbol <- now binds a variable in the third argument.

The term {}(l1, s1 t1, ..., ln, sn tn) is written {l1 = ςs1 t1,
..., ln = ςsn tn}, the term #(t,l) is written t#l and the term <-(t,l,
s u) is written t(l <- ςs u). The rules of the big-step operational semantics
are now

{l1 = ςs1 t1, ...,ln = ςsn tn} →֒

{l1 = ςs1 t1, ...,ln = ςsn tn}

t →֒ {l1 = ςs1t1, ..., ln = ςsntn} (t/si)ti →֒ V
t#li →֒ V

t →֒ {l1 = ςs1t1, ...}

t(li <- ςs u) →֒ {l1 = ςs1t1, ..., li−1 = ςsi−1 ti−1,
li = ςs u, li+1 = ςsi+1ti+1, ...}

88 8 Records and Objects

Exercise 8.7 Write an interpreter for the language PCF with objects.

Exercise 8.8 (Late binding) Consider the term

(({x = ςs 4, f = ςs fun y -> y + s#x} (x <- ςs 5))#f) 6

Is the value of this term 10 or 11? Compare this result with that of Exercise 2.8.

8.2.3 Objects and References

The standard definition of object includes a notion of internal state, which evolves
in time. Thus, it combines the notion of object and reference, which are clearly
separate in the definition of functional object given above.

In a language with objects and references, when a non-functional field a = u
is transformed into a = fun x -> u, the interpretation of fun x -> u does
not produce the side effects produced by the interpretation of u. It is only when we
access the field that the side effects will be visible. Thus, the behaviour is similar to
that of records under call by name. The term

let x = {a = fun s -> ref 0}
in let inc = fun s -> (s#a := 1 + !(s#a))
in (inc x; !(x#a))

is interpreted as the value 0 and not 1 as the term

let x = {a = ref 0}
in let inc = fun s -> (s.a := 1 + !(s.a))
in (inc x; !(x.a))

in call by value. We need to rewrite this term as follows

let r = ref 0
in let x = {a = fun s -> r}
in let inc = fun s -> (s#a := 1 + !(s#a))
in (inc x; !(x#a))

if we want the interpretation to be the value 1.

Exercise 8.9 When we interpret a term of the form t#l, how many times is the
term t interpreted? If the interpretation of t includes side effects, how many times
will they take place? How can we force the term t to be interpreted only once?

Chapter 9

Epilogue

The first goal of this book was to present the main tools to define the semantics
of a programming language: small-step operational semantics, big-step operational
semantics, and denotational semantics.

We have stressed the fact that these three tools have the same purpose. In the
three cases, the goal is to define a relation →֒ between a program, an input value
and an output value. Since the goal is to define a relation, the question that arises
naturally is: how do we define relations in mathematical language?

The answer is the same in the three cases: the means to achieve the goal is the
fixed point theorem. However, the similarity is superficial, because the fixed point
theorems are used in different ways in the three semantics. By giving rise to in-
ductive definitions, and hence reflexive-transitive closures, the fixed point theorem
plays a major rôle in operational semantics. In contrast, it plays a minor rôle in
denotational semantics, because it is only used to give the meaning of the construc-
tion fix. The denotational semantics of a language without fixed point, such as
Gödel’s System T—see Exercise 5.13—can be defined without using the fixed point
theorem.

To highlight the differences, we can look at the rôle of derivations. To establish
that a term t has the value V in operational semantics, it is sufficient to show a
derivation, or a sequence of reductions, that is, finite objects. In contrast, in denota-
tional semantics the meaning of a term of the form fix is given as the least fixed
point of a function, that is, a limit. For this reason, to establish that the value of
a term t is V we sometimes need to compute the limit of a sequence, that is, we
sometimes need to deal with an infinite object.

Operational semantics have an advantage over denotational ones, because the re-
lation →֒ can be defined in a more concrete way operationally. But on the other
hand, operationally we can only define relations that are recursively enumerable,
whereas denotationally we can define arbitrary relations. For this reason, in oper-
ational semantics we cannot complete the definition of the relation →֒ by adding
a value ⊥ for the terms that do not terminate, because the resulting relation is not
recursive, it cannot be effectively defined by induction. In contrast, denotationally it
is not a problem to add such a value.

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2_9, © Springer-Verlag London Limited 2011

89

90 9 Epilogue

We see here the dilemma that arises from the undecidability of the halting prob-
lem: we cannot complete the relation →֒ by adding ⊥ for the non-terminating terms,
and at the same time define it inductively. We have to choose between completing
the relation or defining it inductively, which leads to two different semantics. The
readers who have followed logic courses before will recognise here the same issues
that distinguish the truth judgements that are inductively defined, by the existence
of a proof, from those that are defined by their validity in a model.

The second goal of this book was to give the semantics of some program-
ming language features: explicit definitions of functions, functions defined by fixed
points, assignment, records, objects. . . . Here again, since the goal is to define func-
tions, it is useful to start by looking at the ways in which functions are defined in
Mathematics. In general, the comparison between the mathematical language and
programming languages is fruitful, since the mathematical language is the closest
we have to programming languages. This comparison shows some common points,
but also some differences.

The purpose of the study of programming language features is not to be exhaus-
tive, but to show some informative examples. The point to remember is that, in the
same way that Zoology is not the study of all the animal species one after the other,
the study of programming languages should not consist of studying all languages
one after the other. They should be organised according to their main features.

We could continue this study by defining data types and exceptions. The study
of data types would give us the opportunity to use again the fixed point theorem,
and Robinson’s unification algorithm, of which matching is a particular case. Going
forward in this direction we could study the notion of backtracking which leads to
Prolog. Other important points that we have left aside are the polymorphic typing
of references, the notion of array, imperative objects, modules, type systems for
records and objects (and in particular the notion of sub-type), concurrency. . . .

The final goal of this book was to present a number of applications of these
tools, in particular for the design and implementation of interpreters and compilers,
and also the implementation of type inference systems. The main point here is that
the structure of a compiler is derived directly from the operational semantics of
the language to be compiled. The next step would be the study of implementation
techniques for abstract machines, and this would lead us to the study of memory
management and garbage collection. We could also study program analysis, and
design systems to deduce in an automatic or interactive way properties of programs,
for instance, the property that states that the value returned by a sorting algorithm is
a sorted list.

The last point that remains to discuss is the rôle of the theory of programming
languages, and in particular whether its purpose is to describe the existing program-
ming languages, or to propose new languages.

Astronomers study the galaxies that exist, and do not build new ones, whereas
chemists study the existing molecules and build new ones. We know that in the lat-
ter case, the order in which theories and production techniques appear may vary: the
transformation of mass into energy was achieved long time after the theory of rela-
tivity, whereas the steam engine appeared before the principles of thermodynamics
were established.

9 Epilogue 91

The theory of programming languages has enabled the development of new fea-
tures, such as static binding, type inference, polymorphic types, garbage collection,
. . . which are now available in commercial languages. In contrast, other functional-
ities, such as assignments and objects, were introduced in programming languages
wildly, and the theory has been slow to follow. The development of a formal seman-
tics for these constructs led in turn to new proposals, such as the recent extensions
of Java with polymorphic types.

The theory of programming languages has neither an exclusively descriptive rôle
nor an exclusively leading rôle. It is this going backwards and forwards between the
description of existing features and the design of new ones that gives the theory of
programming languages its dynamics.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Berlin (1998)
2. Dybvig, R.K.: The Scheme Programming Language, 2nd edn. Prentice Hall, New York (1996).

www.scheme.com/tspl2d/
3. Gunter, C.A.: Semantics of Programming Languages: Structures and Techniques. MIT Press,

Cambridge (1992)
4. Kahn, G.: Natural semantics. In: Proceedings of the Symp. on Theoretical Aspects of Com-

puter Science, TACS, Passau (1987)
5. Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge (1996)
6. Mitchell, J.C.: Concepts in Programming Languages. Cambridge University Press, Cambridge

(2002)
7. Peyton Jones, S., Lester, D.: Types and Programming Languages. Prentice Hall, New York

(1992)
8. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
9. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci. 5, 223–255

(1977)
10. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN–

19, Computer Science Department, Aarhus University, Aarhus, Denmark, September 1981
11. Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press, Cam-

bridge (1998)
12. Scott, D.: Continuous Lattices. Lecture Notes in Math., vol. 274, pp. 97–136. Springer, Berlin

(1972)
13. Weis, P., Leroy, X.: Le langage Caml, 2nd edn. Dunod, Paris (1999)
14. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge

(1993)

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2, © Springer-Verlag London Limited 2011

93

Index

A

Abstract machine, 43
Algorithm

Damas and Milner, 70
Hindley’s, 64
Robinson’s, 66

α-equivalence, 11
Alphabetic equivalence, 11
Arity, 7
Array, 81

B

β-reduction, 19
Binding

dynamic, 23
late, 88
static, 23

C

Call by name, 26, 28, 33
Call by value, 27, 29, 35
Church numeral, 20
Closed set, 4
Closure, 34

recursive, 38
Compiler, 43

bootstrapping, 43
Composition, 12
Confluence, 24
Constant, 7
Continuous function, 2

D

De Bruijn index, 36
Definition

explicit, 1
inductive, 4

Derivation, 5
Deterministic, vi

E

Environment, 33
semantic, 56
typing, 53

Evaluate, 22
Evaluator, 25

F

Fields, 81
Fixed point

Curry, 23
first theorem, 2
function construction via, 38
in PCF, 17
second theorem, 3

Functionalisation, 78

H

Height, 10

I

Interpreter, 33

L

Label, 82
Language, 7
Limit, 1
List, 42

M

Method, 85
dynamic, 86
static, 86

Module, 81

G. Dowek, J.-J. Lévy, Introduction to the Theory of Programming Languages,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-076-2, © Springer-Verlag London Limited 2011

95

96 Index

N

Number of arguments, 7

O

Object, 85
Ordering, 1

Scott’s, 58
strongly complete, 2
weakly complete, 1

P

Pair, 42, 81
PCF (Programming language for computable

functions), 15
Polymorphism, 68
Position numerals, 20

R

Record, 82
in call by name, 83
in call by value, 83

Redex, 19
Reduction

call by name, 26
call by value, 27
lazy, 27
weak, 26

Reference, 73
Register, 44

accumulator, 44
code, 45
environment, 45
stack, 44

Renaming, 67
Result, 22
Rule, 4

S

Semantics
big-step operational, 12

denotational, 12
small-step operational, 12

Side effect, 74
Solution, 65

principal, 66
Sort, 9
Strategy, 25
Subject reduction, 55
Substitution, 10
System

F, 71
T, 61

T

Term, 7
closed, 10
irreducible, 22
stuck, 22

Thunk, 33
Tree, 42
Type, 52

checking, 54
inference, 63
principal, 66

Type preservation
by interpretation, 56

Type scheme, 68

U

Unification, 66

V

Value, 22, 26
extended, 35
rational, 40

Variable, 8
capture, 11
environment, 36
mutable, 79

	Cover
	Undergraduate Topics in Computer Science
	Introductionto the Theoryof ProgrammingLanguages
	ISBN 9780857290755
	What Is the Theory of Programming Languages?
	Acknowledgements
	Contents

	Chapter 1Terms and Relations
	Inductive Definitions
	The Fixed Point Theorem
	Inductive Definitions
	Structural Induction
	The Reflexive-Transitive Closure of a Relation

	Languages
	Languages Without Variables
	Variables
	Many-Sorted Languages
	Free and Bound Variables
	Substitution

	Three Ways to Define the Semantics of a Language
	Denotational Semantics
	Big-Step Operational Semantics
	Small-Step Operational Semantics
	Non-termination

	Chapter 2The Language PCF
	A Functional Language: PCF
	Programs Are Functions
	Functions Are First-Class Objects
	Functions with Several Arguments
	No Assignments
	Recursive Definitions
	Definitions
	The Language PCF

	Small-Step Operational Semantics for PCF
	Rules
	Numbers
	A Congruence
	An Example
	Irreducible Closed Terms
	Non-termination
	Confluence

	Reduction Strategies
	The Notion of a Strategy
	Weak Reduction
	Call by Name
	Call by Value
	A Bit of Laziness Is Needed

	Big-Step Operational Semantics for PCF
	Call by Name
	Call by Value

	Evaluation of PCF Programs

	Chapter 3From Evaluation to Interpretation
	Call by Name
	Call by Value
	An Optimisation: de Bruijn Indices
	Construction of Functions via Fixed Points
	First Variation: Recursive Closures
	Second Variation: Rational Values

	Chapter 4Compilation
	An Interpreter Written in a Language Without Functions
	From Interpretation to Compilation
	An Abstract Machine for PCF
	The Environment
	Closures
	PCF Constructs
	Using de Bruijn Indices
	Small-Step Operational Semantics

	Compilation of PCF

	Chapter 5PCF with Types
	Types
	PCF with Types
	The Typing Relation

	No Errors at Run Time
	Using Small-Step Operational Semantics
	Using Big-Step Operational Semantics

	Denotational Semantics for Typed PCF
	A Trivial Semantics
	Termination
	Scott's Ordering Relation
	Semantics of Fixed Points

	Chapter 6Type Inference
	Inferring Monomorphic Types
	Assigning Types to Untyped Terms
	Hindley's Algorithm
	Hindley's Algorithm with Immediate Resolution

	Polymorphism
	PCF with Polymorphic Types
	The Algorithm of Damas and Milner

	Chapter 7References and Assignment
	An Extension of PCF
	Semantics of PCF with References

	Chapter 8Records and Objects
	Records
	Labelled Fields
	An Extension of PCF with Records

	Objects
	Methods and Functional Fields
	What Is "Self"?
	Objects and References

	Epilogue
	References
	Index

