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PREFACE 

This monograph develops a theory of grammatical covers, normal forms and 

parsing. Covers, formally defined in 1969, describe a relation between the sets 

of parses of two context-free grammars. If this relation exists then in a formal 

model of parsing it is possible to have, except for the output, for both grammars 

the same parser. 

Questions concerning the possibility to cover a certain grammar with grammars 

that conform to some requirements on the productions or the derivations will be 

raised and answered. Answers to these cover problems will be obtained by introduc- 

ing algorithms that describe a transformation of an input grammar into an output 

grammar which satisfies the requirements. 

The main emphasis in this monograph is on transformations of context-free 

grammars to context-free grammars in some normal form. However, not only transforma- 

tions of this kind will be discussed, but also transformations which yield grammars 

which have useful parsing properties. 

Organization of the monograph 

This monograph can be viewed as consisting of four parts. 

The first part, Chapters 1 through 3, introduces the cover concept, the moti- 

vation of our research, the problems and, moreover, it reviews previous research. 

The second part, Chapters 4 through 7, provides cover results for normal form 

transformations of context-free and regular grammars. 

The third part, Chapters 8 through I0, is devoted to cover results for three 

classes of deterministically parsable grammars, viz. LL(k), strict deterministic 

and LR(k) grammars. In this part, a discussion of some syntactic aspects of compiler 

writing systems is included. 

The fourth and final part of this monograph consists of Chapters I| and 12. 

Chapter II contains a detailed discussion on simple chain grammars. Chapter 12 sur- 

veys parsing strategies for context-free grammars. In this chapter cover properties 

of transformations to LL(k) and some other classes of grammars are considered. 

A Bibliography and an Index appear at the end of the monograph. 

A few sections and notes in this monograph are marked with a star. These starred 

sections and notes can be skipped without loss of continuity. Some of these starred 

sections and notes deal with syntax categories and grammar functors. Others deal with 

technical arguments on parsing at a moment that a reader who is not acquainted with 

some less conventional ideas of parsing will not grasp their significance. 

The sections and notes on syntax categories are included to give the interested 

reader and the reader who is familiar with these concepts a notion of the differ- 

ences and the similarities between these concepts and the grammar cover concept. 



IV 

Moreover, it will become clear that in our grammar cover framework of Chapter 2 we 

have borrowed from ideas of the grammar functor approach. 

We have tried to give full and formal proofs for most of the results which ap- 

pear in this monograph. Only in those cases that proofs are available in publications 

elsewhere or in eases that we had the idea that a certain result should be clear 

because of its simplicity or because of what has been proven in the foregoing parts 

of the monograph, we have omitted a proof or formal detail. 
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CHAPTER 1 

INTRODUCTIONS AND PRELIMINARIES 

|.l. INTRODUCTION 

Two context-free grmr~ars which generate the same language are said to be weakly 

equivalent. Weak equivalence can be considered as a relation of grammatical similar- 

ity of context-free grammars. If two grammars G| and G 2 are weakly equivalent, then 

for each parse tree T! of G! there exists a parse tree T 2 of G 2 which has the same 

frontier, and conversely. Clearly, this relation of weak equivalence does not neces- 

sarily say that the shapes of the trees are closely related. Grarmnatical similarity 

relations have been introduced which describe relationships between the parse trees 

of the two grammars. 

These relations sometimes but not always presuppose weak equivalence. For example, 

there exists the relation of structural equivalence. In that case we demand that, 

except for a relabeling of the internal nodes, the parse trees of the two grammars 

are the same. 

Many other relations have been defined. Only a few will be considered here and 

only one of them, the grammar coverp will be treated in detail. 

In many cases of interest it is quite natural to have weak equivalence between 

two grammars, For example, a grammar can be changed to an other grammar which gener- 

ates the same language. Such a transformation on a grammar may be done for several 

reasons. 

By definition, each context-free/anguage is generated by a context-free grammar. 

Instead of arbitrary context-free grammars one can consider context-free grammars 

which conform to some requirements on, for example, the productions or the derivations 

of the grammar. Then it is natural to ask whether each context-free language has a 

context-free grammar of this form and, if so, how to transform a grammar to this 

(normal) form. 

One reason for consideri.ng normal forms may be the inherent mathematical 

interest in how to generate a family of context-free languages with a grammatical 

description as simple as possible. Moreover, normal forms can simplify proofs and 

descriptions in the field of formal languages and parsing. However, in 1975 it still 

could be remarked (Hotz[65]) : 

'~Resultate uber die strukturelle Verwandschaft verschiedener Sprachen existieren kaum. 

Selbst bei der Herieitung yon Normalformentheoremen f~r Grammatiken hat man sich mit 

der Feststellung der schwachen Aquivalenz begn~gt". 

Some normal form descriptions for context-free grammars, or for gra~m*ars belong- 

ing to the various subclasses of the class of context-free grammars, ean be partieu- 



larly amenable for parsing, and this can be a strong motivation to transform grammars. 

Transforming grammars into normal forms or to grammars which have other parsing 

properties can sometimes lead to faster or more compact parsers for these grammars. 

However, in these cases it is desirable to have a stronger relation than weak equiv- 

alence between the original grammar and the newly obtained grammar. This can be seen 

as follows. 

Consider a very practical situation in which we want to build a compiler for a 

given programming language. We are interested in the part of the compiler which per- 

forms the syntactic analysis. We can consider this analysis as a translation from a 

sentence to a string which consists of procedure calls to perform the code generation. 

One now can try to find a 'better' gran~nar (from the point of view of parsing) 

such that this translation is preserved. If this is possible, then parsing can he 

done with respect to the new grannnar. The concept of grammar cover which is studied 

in this monograph describes a preservation of this translation. 

We confine ourselves to a model of parsing in which each sentence is given a 

'description'of each of its parse trees by means of a string of productions of the 

grammar. The correspondence of two grammars which is described by the grammar cover 

is the relation between the parse tree descriptions for a given sentence. In Chapter 

8 we have a short discussion on the limitations of this model. 

Often a description of a parse tree of a sentence w is given by means of a left 

or right parse, that is, a string of productions which are used in a derivation (left- 

most or rightmost) of the sentence w. Although we will also allow other descriptions 

Of parse trees, ~t will be clear that we are interested in the relationships among 

£he derivations of sentences of the grammars which we want to relate. This idea can 

be recognized in many concepts. 

In the older literature one can find ideas and examples which come close to 

later formal concepts. Transformations on context-free grammars have been defined in 

practically oriented situations of compiler construction. In those cases no general 

definition of the relation between the grarmars was presented. 

Grammar covers, in the sense that we will use them here, were introduced about 

1969 by Gray and Harrison [48]. Their interest in this concept was based on its ap- 

plications in the field of parsing. 

The product of the syntactic analysis, the parse, can be considered as the argument 

of a semantic mapping. In the case that a context-free grammar G' covers a context- 

free grammar G, then each parse with respect to G' of a sentence w can be mapped by a 

homomorphism on a parse w~th respect to G of w. Hence, we can parse with respect to 

G' and use the original semantic mapping. 

Other examples of grannnatical similarity relations are grammar functors and 

grammar forms. Grammar functors (X-functors) were introduced by Hotz [63,64] as spe- 

cial functors on categories associated with (general) phrase structure granmmrs. These 



categories originate from work on switching circuits. The objects of a syntax cate- 

gory are strings over the gramar alphabet. The derivations are then considered as 

morphisms. The main concern has been to find an algebraic framework for describing 

general properties of phrase structure grammars. Later, functors have been considered 

from a more practical point of view and topics related to parsing have been discussed 

within this framework. See, for example, Bertseh [14], Benson [13] and Hotz and Ross 

[68]. 

In the case of gr~nar forms (Cremers and Ginsburg [2]]) the starting point is 

a (master) gra~mmr from which by means of substitutions of the nonterminal and ter- 

minal symbols other grammars are obtained. Observations on the parsing properties 

of the master grammar can be valid for all the grammars in the grammatical family 

which is obtained by these substitutions (cf. Ginsburg, Leong, Mayer and Wotschke ~4 ]). 

There are other examples of gra~mnatical similarity relations. In Hunt and Rosen- 

krantz [69] many of them are discussed from the point of view of complexity. 

In this monograph we will discuss the concept of grammar cover and its usefulness 

for parsing. 

At this point we should mention two approaches which could have been followed 

and which will not be discussed further. 

Firstly, it would be possible to consider transformations on attribute grammars 

(Knuth [78]). Here, attributes are associated with the nodes of a parse tree. These 

attributes (which contain the necessary information for the code generation) are 

obtained from attributes associated with the symbols which appear in the productions 

and from attribute evaluation rules. If an attribute grammar is transformed to, for 

example, some normal foz~ attribute grammar, then we have not only the question of 

language equivalence, but also, explicitly, the question of 'semantic' equivalence. 

Such an equivalence is explored in Bochmann [15] and Anderson [5]. 

Secondly, it would have been possible to discuss translation grammars (Brosgol 

[18]) and transformations on translation grammars. 

There is a third remark which we want to make at this point. We consider trans- 

formations of grammars. If they are applie~ with a view to obtain faster or compact- 

er parsing methods then, instead of transforming the grammar, one can build a parser 

for the grammar and then change (optimize) this parser. This is, for instance, a very 

common method if an LR-parser is constructed. For example, instead of eliminating 

single productions from the grammar, single reductions can be eliminated from the 

parser (ef. e.g. Anderson, Eve and Homing [6]). 

Answers to questions on the existence of a covering grammar can be answers to 

questions whether or not a parser for a given gra~r can be modified in certain ad- 

vantageous ways. 



I .2. OVERVIEW OF THE CONTENTS 

In Chapters l to 6 of this monograph we will be concerned with transformations of 

arbitrary context-free grammars to context-free grammars in some normal form repre- 

sentation. The main normal forms which will be considered are the non-left-recursive 

form and the Greibach normal form. Cover results for these normal forms will be pre- 

sented. 

Throughout this monograph we will pay much attention to what has been said before 

by various authors on these transformations. However, hardly any attention will be 

paid to grammar functors. Grammar covers are much more amenable than grammar functors 

and we think this is shown fairly convincingly. 

This section will be followed by a section in which we review some basic termi- 

nology concerning formal grammars, automata and syntax categories. 

In Chapter 2 grsmsmr covers and functors are introduced. The framework for gram- 

mar covers which is presented is very general. Partly this is done to obtain an ana- 

logy with the grammar functor approach. The second reason, however, is that we need 

this generality to include various definitions of covers which have been introduced 

before and to be able to describe practical situations which appear in the field 

of compiler building. 

Chapter 3 shows the efforts which have been made by other authors to grasp some 

of the 'structure ~ or 'semantic' preserving properties of transformations of context- 

free grammars. 

In Chapter 4 some general properties of grammar covers are shown and a few pre- 

liminary transformations are introduced. 

Chapter 5 contains the main transformations of this monograph. It is shown, 

among others, that any context-free grammar can be covered with a context-free gram- 

mar in Greibach normal form. In Chapter 6 we have collected the cover results for 

normal forms of context-free grammars. Chapter 7 is devoted to some similar results 

for the class of regular grammars. 

In Chapter 8, 9 and 10 we will be concerned with classes of grammars for which 

there exist parsing methods which can be implemented by a deterministic pushdown 

transducer. Especially in these chapters we will pay attention to the usefulness of 

grammar covers for compiler writing systems. Both general cover results and results 

for normal forms for LL(k), strict deterministic and LR(k) grammars will be presented. 

Finally, in Chapter 11 and 12 we discuss a few subclasses of LR(k) gr~,msrs in 

the light of the results which were obtained in the preceeding chapters. In Chapter 

11 a variety of results are shown for the class of simple chain gra=mars. Cover prop- 

erties , parsing properties and properties of the parse trees of simple chain gram- 

mars will be introduced. In Chapter 12 we consider generalizations of the class of 

simple chain grammars. 



!. 3. PRELIMINARIES 

We review some basic definitions and concepts of formal language theory. Most 

of the notation used in this monograph is presented in this section. It is assumed 

that the reader is familiar with the basic results concerning context-free gr~--,ars 

and parsing, otherwise, see Aho and Ullman [ 3,4], Lewis, Rosenkrantz and Stearns ~0~ 

and Harrison [58]. Notations concerning gra~rs and automata and notations concerning 

categories follow closely those of Abe and Ullman [3] and Benson [13], respectively. 

An alphabet is a finite set of symbols (equivalently, letters). The set of all 

strings (or words) over an alphabet V is denoted by V*. If e ¢ V% then lel, the 

length of a, is the number ofoccurrenues of mymbols in ~. The ~pty string (the string 

with length zero) is denoted by £o If e E V*, then R denotes the reverse of e. 

The set of non-negative integers is denoted by ~. If Q is a set, then]Ql stands 

for the number of its elements. The empty set is denoted by 4. If Q and R are sets, 

then Q\R or Q-R denotes the set {x I x ~ Q and x { R}. V* is the free monoid finitely 

generated by V. V + = V*\{e}. A (monoid) homomorphism is a mapping between monoids 

with concatenation as operation. If V* and W* are two free monoids and h : V* ÷ W ~ 

is a homomorphism between them, then h(g) = ~ and h(e~) = h(~)h(~) for all ~, ~ £ V*. 

1 . 3 . 1 .  GRAMMARS, AUTOMA~AND TRANSDUCERS 

DEFINITION 1.I. A context-free grammar G is a four-tuple G = (N,Z,P,S), where 

(i) N and E are alphabets, N n E = ~ and S E N. The elements of N are called nonter- 

minals and those of Z terminals. S is called the start symbol. 

(ii) P is a finite set of ordered pairs (A,e) such that A £ N and @ is a word over 

the vocabulary V = N 0 Z. Elements (A,~) of P are called productions and are 

written A ÷ ~. 

Context-free grammar will be abbreviated to CFG. Elements of N will generally 

be denoted by the Roman capitals A, B, C,...; elements of Z by the smalls a, b, c,... 

from the first part of the Roman alphabet; X, Y and Z will usually stand for elements 

of V; elements of Z* will be denoted by u, v, w, x, y and z and Greek smalls ~, 8, 

y,... will usually stand for elements of V* 

It will be convenient to provide the productions in P with a label. In general 

these labels will be in a set A G (or A if G is understood) and we always take 

AG = {i I ! ~ i s IPI}; we often identify PandA G. 

We write i.A ÷ @ if production A + u has label (or number) i. A is called the 

lefthand side of this production; u is the righthand side of the production and 

is a rule alternative of A. If A has rule alternatives ~], u2' .... ,an, we write 

A f 2t .... 1% 



hence, ~I'~ a symbol not in V, is used to separate rule alternatives. If these pro- 

ductions have labels i|~2, .... ~n' then we use the notation 

ii/i2/.../inO A + alI~21 ..... J~n" 

If A ~ N, then rhs(A) = {~ I A ÷ ~ is in P}. 

V ~ DEFINITION 1.2. Let G = (N~,S) be a CFG. For ~,~ ~ we say that ~ directly 

derives ~, written ~ ~G 8 , if there exist ~1,~2 e V* and A ÷ y in P such that 

= c~IAo~ 2 and ~ = ~iy~2. 

If a, 1 c Z* E* we say that e left derives ~, written e ~G ~" If ~2 6 we say that 

right derives ~, written ~ ~G 8. 

The subscript G denoting the grammar in question is omitted whenever the iden- 

tity of this gray,nat is clear from context. The transitive-reflexive closures of 

these relations are denoted by ~, ~ and ~, respectively. The transitive-irreflexive 
+ + + 

closures are denoted by ~, ~ and ~, respectively. 

A sequence c~ 0 ~ ~I ~ .... ~ ~n is called a derivation of c~ n from (~0" A sequence 

~0 Z ~| Z .... Z ~n (~0 ~ ~] ~ ..... ~ @n ) is called a leftmost (rightmost) deriva- 

tion of a n from ~0" 

If we want to indicate a derivation using a specific sequence 7[ of productions, 

A*. we write ~ (L' ~)' hence, 7[ ~ P* or 7; £ In some cases we will use the notation 

n S (~ ~ S, ~. ~ ~) to indicate that the derivation in question is such that ~ derives 

8 in n steps, that is, (~,8) £ (~)n. 

DEFINITI0 N ].3~ Let G = (N,Z,P,S) be a CFG. The language of G is the set L(G) = 

~* V* E* ~w}. CFG G is said to be = {w ~ j S ~ w}. For any ~ £ , L(~) = {w ~ j 

E* and 7[' A* unambiguous if there does not exist w e 7[, ~ such that S w and 

S ~ w, where ~ # ~'. Otherwise, G is said to be ambiguous. Let w ~ L(G), then w 

is called a sentence of G. L(G) is said to be a context-free language (CFL for short). 

........ V~® DEFINITION ].4. Let G = (N,E,P,S) be a CFG. Let ~ 

a. k : ~ is the prefix of ~ with length k if I~l ~ k, otherwise k : ~ = ~. 

b. e : k is the suffix of d with lengthk if I~l ~ k, otherwise ~ : k = 5. 

E* ~ w}. c .  FIRSTk(~) = ~ : W ~ I ~ 

Index k of FIRST k will be omitted when k = I. 

NOTATION ].1. Let E and A be disjoint alphabets. Homomorphism h E : (E u A)* 

defined by 

hE(X) = X if X E A, and 

hl(X) = g if X e E. 

A* ÷ is 



Homomorphism h Z will be called the E-erasing homomorphism. 

The number of different leftmost derivations from S to w is called the degree 

of ambiguity of w (with respect to G), written <W,G>. By convention, if w ~ L(G), 

V* then <w,G> = 0. We say that ~ ~ is a sentential form, a left sentential form or 
w 

a right sentential form, if S A ~, S ~ ~ and S ~ ~, respectively. 

Derivations (or rather, equivalence classes of derivations) can be represented 

by trees. We distinguish between derivation trees and parse trees. 

DEFINITION ].5. A derivation tree is recursively defined by 

(i) A single node labeled S is a derivation tree. 

(ii) For every derivation tree, let D, labeled A ~ N, be a leaf of the tree. If 

A + XIX2...Xn (X i ~ V, ] ~ i s n) is in P, the tree obtained by appending to D 

n sons with labels X],X2,...,X n in order from the left, is a derivation tree. If 

A ÷ e is in P, the tree obtained by appending to D one son with label e is a 

derivation tree. 

The set PTR(G), the set of parse trees of G, consists of all derivation trees 

where each leaf is labeled with a terminal or with £. The frontier of a derivation 

tree is the string obtained by concatenating the labels of the leaves from lefL to righ~ 

If T is a derivation tree, then fr(T) denotes the frontier of [. 

DEFINITION 1.6. 

a. Let G = (N,Z,P,S) be a CFG. Define P' = {A+ [~] I A ÷ e c P}, where '[' and ']' 

are special brackets that are not terminal symbols of G. [G] = (N,Z u {[,]},P',S), 

the parenthesized version of G, is called a parenthesis grammar (McNaughton~]). 

b. Let G = (N,E,P,S) be a CFG. Define P' = {A ÷ [i~]i I i.A + e ~ P}, where '[i' and 

']i' are special brackets that are not~erminal symbols of G. Grammar G B = 

= (N,Z u {[i I i e A G} u {]i I i e AG} , F', S), the bracketed version of G, is 

called a bracketed grammar (Ginsburg and Harrison [43]). 

DEFINITION ].7. 

a. CFG G and CFG H are said to be weakl9 equivalent if L(G) = L(H). 

b. CFG G and CFG H are said to be strongly equivalent if PTR(G) = PTR(H). 

c. CFG G and CFG H are said to be structurally equivalent if L([G]) = L([H]). 

A symbol X £ V is useless in a CFG G = (N,Z,P,S) wlth P # @, if there does not 
~*. exist a derivation S ~ wXy * wxy, where wxy ~ There exists a simple algorithm to 

remove all useless symbols from a CFG (Aho and Ullman [3]). Throughout this monograph 

we assume that the granmlars under consideration have no useless symbols. Any produc- 

tion of the form A +~with e ~ N is called a single production. 



DEFINITION 1.8. A CFG G = (N,E,P,S) is 

a. reduced, if it has no useless symbols or if P = ~. 

b. e-free, if P ~ N x V + )+ or P e N × (V\{S} u {S + g}. 

c. cycle-free, if, for any A ~ N, a derivation A ~ A is not possible. 

d. proper, if G has no useless symbols, G is g-free and G is cycle-free. 

DEFINITION 1.9. Let G = (N,E,P,S) be a CFG. A nonterminal A e N is said to be left 

V* + recursive if there exists ~ e such that A ~ As. Grammar G is said to be left recur- 

sive if there exists a left recursive nonterminal in N. Otherwise, G is said to be 

non-left-recursive (NLR). 

For any CFG G = (N,Z,P,S) define G R = (N,z,pR, s) with pR = {A + R I A + ~ ~ P}. 

A CFG G is said to he non-right-recursive (NRR) if G R is NLR. 

DEFINITION |.10. A CFG G = (N,Z,P,S) is 

a. in Greibach normal form (~NF) if 

P ~ N × ZN* or P ~ N × E(N\{S})* u {S ÷ ~}. 

b. in quasi Greibach normal form (quasi-GNF) if 

P ~ N × ZV* or P ~ N × E(V\{S})* u {S + e}, 

c. left factored if P does not contain distinct productions of the form A + ~l and 

A ÷ ~2 with ~ # e. 

We say that G is in GN--F if gr~rmnar G R is in GNF . For each CFL one can find a 

CFG which is in one of the forms defined in the Definitions 1.8 to 1.10. Greibach 

normal form is also called standard form. A grammar is said to be in standard 2-form 

if it is in GNF and each righthand side of a production contains at most two non- 

terminals. 

DEFINITION 1.II_~ A CFG G = (N,E,P,S) is said to be 

a. right regular~ if each production in P is of the form A + aB or A ÷ a, where 

A,B e N and a e Z. 

b. left regular, if each production in P is of the form A ÷ Ba or A ~ a, where 

A,B E N and a ~ E. 

A regular grammar is a gramanar which is either left regular or right regular. 

A set L is said to be regular if there exists a regular grammar G such that L = L(G). 

Now we will generalize grammars to (simple) syntax directed translation schemes. 



DEFINITION I.]2. A simple syntax directed translation scheme (simple SDTS) is a 

five-tuple T = (N,E,Z',R,S), where 

(i) N,E and Z' are alphabets, S ~ N, N 0 E = ~ and N N E' = ~. Let V = N U E and 

V' = N u E'. The elements of N are called nonterminals and those of Z and E' 

input symbols and output symbols, respectively. S is called the start symbol. 

(ii) R is a finite set of rules of the form A ÷ e,~, where ~ ~ V*, 8 £ V'* and 

hE(s ) = hE,(8 ). 

We write (e,~) ~ (y,~) if there exist el,~ 2 ~ V*, ~i,~2 ~ V'* and A ÷ ~,~' in 

R such that (e,8) = (elA~ 2, 81A82), hE(el) = hz,(~l) , hz(e2) = hz,(~2) and (~,~) = 

= (el~2, 8|~'82). Closures of '~" are defined analogous to those for a CFG. 

The (syntax directed) translation defined by T, denoted T(T), is the set of 

pairs {(w,w') I (S,S) ~ (w,w') w c and w' ~ E'*}. Grammar G 1 (N,Z,P,S) with 

P = {A ÷ e I A ÷ e,e' is in R for some e' ~ (N u Z'~}, 

is said to be the input grammar of T. Similarly, the output grammar G O = (N,Z',P0,S) 

is defined by the set of productions 

P0 = {A ÷ e' I A ÷ e,e' is in R for some e c (N u E)*}. 

Frequently we will start with a CFG G = (N,E,P,S) and generalize it to a simple 

SDTS T = (N,E,AG,R,S), ~ere A G contains the production numbers and R contains rules 

of the form A + e,e', where A ÷ e is in P and e' is a word over (Nu AG)* which sat- 

isfies hA(e' ) = hE(s ) . 

In such a case we say that simple SDTS T is defined on CFG G. 

DEFINITION ].13. A simple SDTS is semantically unambiguous if there are not two dis- 

tinct rules of the form A ÷ e,8 and A ÷ e,y. 

The final definitions (again from Aho and Ullman [3]) in this subsection deal with 

automata. 

DEFINITION 1.14. A pushdown automaton (PDA for short) is a seven-tuple P =(Q,E,F, 

6,qo,Zo,F), where 

(i) Q is a finite set of state symbols, Z and F are alphabets of input symbols and 

pushdown list synfl~is, respectively; qo c Q is the initial state, Z 0 e F is 

the start symbol and F ~ Q is the set of final states. 

(ii) 6 is a mapping from Q x (E u {~}) x r to the finite subsets of Q x F*. 

A configuration of a PDA P is a triple (q,w,e) in Q x E* x F*. The binary rela- 

tion ~ ('move') on configurations is defined by: 

(q,aw,Ze) ~ (r,w,¥e) 
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if and only if 

Z* ~(q,a,Z) contains (r,y), for any q,r e Q, a ~ E u {e}, w E , z £ r 

and ~,y e r*. 

If a = c, then such a move is called an g-move. An initial configuration of P is a 

configuration of the form (q0,w,Z0) for some w ~ E*. 

The language defined by P is 

L(P) = {w ~ I (qO'W'Z0) ~ (q'g'~) for some q e F and ~ ~ r*}. 

The language accepted with empty pushdown list is the set 

Le(P) = {w ~ Z* I (q0,w,Z0) ~ (q,e,g) for some q ~ Q}. 

It can be shown that each PDA P can be transformed to a PDA P' such that Le(P') = 

= L(P), and conversely. This PDA P' can be constructed in such a way that emptiness 

of the pushdown list is always achieved in the same state. That is, there exists a 

state qe £ Q such that Le(P) = {w £ Z* I (q0,w,Z0) ~ (qe ,e,e)}" 

Any PDA P = (Q,Z,F,~,q0,Z0,F) can be converted to a CFG G = (N,E,P,S) such that 

L(G) = Le(P) and such that any leftmost derivation of w in G directly corresponds to 

a sequence of moves made by P in processing w (el. Le~na 2.26 in Aho and Ullman [3]). 

One of the basic results in the theory of formal languages and automata is the 

following. 

THEOREM I..I. The following two statements are equivalent: 

I. L is L(G) for a CFG G. 

2. L is Le(P) for a PDA P. 

We will be concerned with pushdown automata which can produce output. 

DEFINITION 1.15~ A pushdown transducer (PDT) is an eight-tuple P = (Q,E,F,Z',~,q 0, 

Z0,F), where all symbols have the same meaning as for a PDA except that Z' is an 

alphabet of output symbols and ~ is a mapping from Q x (~ o {e}) x P to finite sub- 

sets of Q x F* x Z'*. 

A configuration of P is a quadruple (q,w,~,w') in Q x Z* x F* × Z'*. The move 

is now defined by: 

(q,aw,Zy,w') ~ (r,w,~7,w'v) 

if ~(q,a,Z) contains (r,~,v), for any q,r e Q, a ~ E u {g}, w e S*, Z e P, ~,y e F* 
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and w'v ~ ~'*. 

The (syntax directed) translation defined by P is 

y(P) = ~w,w') ] (qO,w,Zo,~ ~ (q,~,~,w') for some q c F and ~ c F*}, 

and 

T e(P) = <(w,w') I (q0,w,Z0,e) ~ (q,£,e,w') for some q ~ Q}. 

It can be shown that each PDT P can be transformed to a PDT P' such that Te(P') = 

= T(P), and conversely. Also in this case PDT P' can be constructed in such a way 

that emptiness of the pushdown list is always achieved in the same state. 

Theorem 1.1 has an analogue for simple SDTS's and PDT's. 

THEOREM 1.2. The following two statements are equivalent: 

1. L is T(T) for a simple SDTS T. 

2. L is Te(P) for a PDT P. 

The following construction shows how to transform a PDT P to a simple SDTS T 

such that T(T) = Te(P). We start with a PDT with one final state. 

STANDARD CONSTRUCTION 

Let P = (Q,Z,F,Z',6,qo,Z0,{qe}) be a pushdown transducer which accepts with empty 

pushdown list in state qe" We define a simple SDTS T = (N,Z,E',R,S) such that T(T) = 

= Te(P ) . 

(]) N = {[pAq] I P,q e Q, A c r}, S = [qoZoqe ]. 

(2) R is defined as follows. 

If ~(p,a,A) contains (r,X]X2...~,y), where a c E u (e} and y ~ Z'*, then if 

k > 0, R contains rules 

[pAqk] ~ a[rXlql][qlX2q 2] .... [qk_iXkqk ], 

y[rXlql][qiX2q 2] .... [qk_l~qk] 

for all sequences ql,q2,...,q k of states in Q. 

If k = 0, then the rule is [pAr] ÷ a,y. 

Semantical unambiguity can he defined for a PDT in the following way. 

DEFINITION 1.16. A PDT P = (Q,E,F,E',6,qo,Z0,F) is semantically unambiguous if, for 

F* any q,r ~ Q, a ~ Z u ~£}, Z E F, T ¢ and ~I' ~2 ~ Z'*, 

(r,Y,~l) and (r,Y,~2) in 6(q,a,Z) 
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implies ~] ~ ~2" 

If a PDT P is semantically unambiguous, then the simple SDTS T which is obtained 

from the standard construction is semantically unambiguous. 

As in the case of context-free gra~mmrs, we assume that the rules of a simple 

SDTS T are labeled with labels from an alphabet A T = {i I ] ~ i ~ IRIl 

Let P = (Q,Z,F,Z',6,qo,Zo,{qe}) be a semantically unambiguous PDT which trans- 

lates with empty pushdown list in a final state qe" Simple SDTS T = (N,E,E',R,S) is 

obtained from P by the standard construction. Define a homomorphism ~ : A T + E'* in 

the following way: 

N* If i.A + as, y~' in R, where a ~ E u {~}, y ~ E'*, ~ c and ~' = ~, then ~(i) = y. 

In this situation we have the following observation. 

STANDARD OBSERVAT~Q~ 
w ~ww 

Let PDT P, simple SDTS T and homomorphism ~ : a T ÷ 

(W,X) ~ Te(P) if and only if (S,S) ~ (w,x) 

in T, with ~(~) = x. 

be defined as above. Then 

! • 3.2* SYNTAX CATEGORIES 

Category theory has found wide applications in theoretical computer science. 

For the general theory the reader can consult MacLane []0~ and Arbib and Manes [7]. 

Some of the applications in computer science can be found, among others, in the 

ADJ-papers (see Goguen, Thatcher, Wright and Wagner [45]). For our purposes, the ca- 

tegorical treatment of grammars, Hotz and Claus [67], Benson [12] and Schnorr [151] 

contain useful material. For concepts and terminology we follow Benson []3]. 

The characterization of Chomsky-type graEmars with categories is due to Hotz [63,64] 

and finds its origin in work on switching circuits. GraEmar functors will be defin- 

ed as certain types of functors between categories associated to grammars. 

For the simple reason that graEmar functors give too easily occasion to nega- 

tive results when one tries to describe the preserving of structure under certain 

transformations on grammars, our main interest will be in grammar covers. Therefore, 

we confine ourselves to a few notes-on (syntax) categories and, in section 2.3, on 

grammar functors. 

For the concept of syntax category we follow Benson [13]. Let G = (N,E,P,S) be 

a CFG. Then (V*,P) generates the (free strict monoidal) category S(G), which will be 

called th e s~ntax category of G. Here, objects are elements of V* and morph/sms are 

derivations (or, i~fact, equivalence classes of similar derivations) from one object 

to the other. Clearly, one can take as representative of such an equivalence class a 
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certain type of derivation, for example a leftmost derivation. 

Two operations are defined on the morphisms. Firstly, composition of morphisms~ 

that is, if fl : a + 8 and f2 : 8 ÷ Y, then flof2 : e ÷ y is defined to be the com- 

position 

Secondly, concatenation of morphisms, that is if fl : ~I ÷ 81 and f2 : ~2 ÷ 82' then 

f| + f2 : ~I~2 + 8|82 is (equivalently) described by 

~i~2 

and 

applying f1> 81~2 applying f~> 8182 

applying fg> ~182 applying fl> 8182 , 

For each object e the categorical identity at ~ is denoted by id a : u ÷ e. 

illustrated in Figure I.I. 

gl ~g21 gl + g2 

Figure I.I. Operations on morphisms. 

~1~2 

respectively. 

A well-known relation for morphismsis the following 

(fl~gl) + (f2og2) = (fl+f2) o (gl+g2) 



CHAPTER 2 

GRAMMAR COVERS AND P~LATED CONCEPTS 

2.1. GRA/fl~4/~ COVERS 

This section introduces the framework for grammar covers. This framework is built 

up in a rather formal and general way. Ideas of the grammar functor approach (cf. sec- 

tion 2.3) will be used. We think this general setting is useful because of the fol- 

lowing reasons. 

. Existing grar~nar cover definitions can be obtained from the framework by intro- 

ducing natural restrictions. 

. The framework shows the freedom to choose parses for covers different from the 

left and right parses. 

. The role of ambiguity is made apparent. The framework is such that special pro- 

perties of covers can easily be formulated. A possible comparison with the gram- 

mar functor approach is made more simple. 

this 

Each of the features of the framework will either be given an application in 

monograph or we will refer to a (possible) application elsewhere. 

Let G = (N,Z,P,S) be a CFG with production numbers in A G. The following defini- 

tion is also in Brosgol [18]. However, we distinguish between parse relations and 

proper parse relations. Recall that <w,G> denotes the degree of ambiguity of w. 

DEFINITION 2.!. 

a. A relation fG & E* x A~ is said to be a proper parse relation for G provided that 

(i) if (w,~) ¢ fG and (w',~) e fG then w = w', and 

~ for each w e ~* 

I{~ ! (w,~) e fG}I = <w,G>. 

b. A relation fG ~ Z* x A G is said to be a parse relation for G provided that 

(i) for each w e L(G) there exists at least one element (w~) £ fG, and 

~ for each w c Z* 

I {~ i (w,~) ~ fG}l ~ <w,G>. 

If fG is a parse relation and (w,w) e fG then ~ is said to be an fG-parse of w. It 

follows from the definition that if fG is a proper parse relation, then for each 

fG-parse there is a unique sentence and for each sentence the number of parse trees 

is equal to the number of different fG-parses for this sentence. 
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Index G of fG will be omitted whenever it is clear from the context. 

Our following definitions will be based on parse relations. Clearly, every proper 

parse relation is a parse relation. 

DEFINITION 2.2. Let G' = (N',E',P',S') and G ffi (N,Z,P,S) be CFG's. Let fG' & 

Z'* x AG, and hG~ × A G be parse relations. If f m fG' then a partial parse homo- 

morphism gf : fG' ÷ hG is defined by two homomorphisms ~ : E'* ÷ E* and ~ : AG, ~ A G 

such that (w,~) e f implies (~(w), ~(n)) ~ h G. 

Throughout this section f, fG' and h G refer to the relations in this definitio~ 

The notation gf = <~,~> will be used to denote that gf is defined by the two homo- 

morphisms ~ and ~. We say that gf is a total parse homomorphism or simply a parse 

homomorphism whenever f = fG'" In this case we omit index f from gf. 

If (w,~) c f then gf(w,~) denotes (~(w), ~(~)). For any f' & f we use gf(f') to de- 

note the set {gf(w,~) I (w,~) e f'}. 

We can now describe various properties of (partial) parse homomorphisms. 

DEFINITION 2.3. A partial parse homomorphism gf : fG' ÷ hG is said to be injective 

if for any (Wl,~l) ~ f and (w2,~ ~ ~ f, if gf(wl,~l) = gf(w2,~2) then (Wl,~]) ffi (w2,~2). 

Notice that if a partial parse homomorphism is injective then this does not ex- 

clude the possibility that two different sentences in L(G') will be mapped on the 

same sentence in L(G). 

To describe such a property of a partial parse homomorphism we use the following de- 

finition. 

DEFINITION 2.4. A partial parse homomorphism gf : fG' + hG is said to be properly 
w 

injective if its restrictions to Z'* and AG' are injective, that is, if gf = <~,~> 

then, for any (Wl,Fl) e f and (w2,~2) E f, 

(i) ~(Wl) = ~(w2) implies w I = w2, and 

(ii) ~(~i ) = ~(~2 ) implies ~I = ~2" 

Our next definition deals with surjectivity of partial parse homomorphisms 

DEFINITION 2.5. A partial parse homomorphism gf : fG' ÷ hG is said to be surjective 

if for all (w,~) ~ h G there exists (w',~') ~ f such that gf(w',~') ffi (w,~). 

Hence, gf is surjeetive if gf(f) ffi h G. In analogy with Definition 2.4 we can 

introduce the notion of proper surjectivity. 
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DEFINITION 2.6. A partial parse homomorphism gf 

surjective if for all (w,~) e h G there exists 

(i) (w',z') E f such that ~(w') = w~ and 

(ii) (w',z') e f such that ~(~') = ~. 

: fG' ÷ hG is said to be properly 

However, if h G is a proper parse relation, then there is no difference between sur- 

jective partial parse homomorphisms and properly surjective partial parse homomor- 

phisms. 

THEOREM 2.1. 

a. Any properly injective partial parse homomorphism is injective. 

b. Let h G be a proper parse relation. A partial parse homomorphism from a parse re- 

lation fG' to h G is properly surjective if and only if it is surjective. 

Proof. Part a. of this theorem is trivial. Consider part b. Assume that a partial 

parse homomorphism gf = <%0,4> is properly surjective. From condition (ii) of Defi- 

nition 2.6 it follows that for any (w,~) e h G there exists (w',~') c f such that 

~(~') = ~. Thus, we have (~(w'),~) and (w,~) in h G. From Definition 2.1 (a) it fol- 

lows that ~(w') = w. Hence, gf is surjective. If gf is surjective then, trivially, 

gf is properly surjective. 

Note that if G is unambiguous and h G is a proper parse relation, then any injeetive 

partial parse homomorphism gf : fG' ÷ hG is also a proper injective partial parse 

homomorphism. A,Iso in the case that Z' = Z, ~ is the identity homomorphism and h G 

is a proper parse relation~ both notions coincide. 

Next we introduce (partial) cover homomorphisms. 

DEFINITION 2.7_=. A partial parse homomorphism (a total parse homomorphism) 

gf : fG' ÷ hG is said to be a partial cover homomorphism (a total cover homomorphism) 

if it is surjective. 

Any partial cover homomorphism gf which is an injection is called faithful. If 

the partial cover homomorphism gf is a proper injection then it is called a proper 

partial cover homomorphism. Clearly, in analogy with the remarks above, if G is un- 

ambiguous and h G is a proper parse relation, then the notions of faithfulness and 

properness coincide~ The same ho]ds if ~' = ~, • is the identity homomorphism and 

h G is a proper parse relation. 

Whenever we speak of a cover homomorphism then a total cover homomorphism is 

meant. Notice that in general in the case of a cover homomorphism, without knowledge 

of the specific grammars, we are not able to compare <w,G'> and <~(w),G>. However, 

if ~ is the identity homomorphism and h G is a proper parse relation, then L(G') = L(G) 
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and <w,G'> e <kO(w),G>. 

EXAMPLE 2. I. 

Let G' be defined by 

I./2. S-+ aA 

3./4. A-+ aA 

5./6. B + cB 

and G by 

Define 

and 

cB 

b 

d 

I./2. S -+ Ab Bb 

3./4. A-+ Aa a 

5./6. B ÷ Ba a 

fG' = {(an+Ib'~3n4) I n k 0} u {(cn+Id,25n6) I n e 0} 

h G = {(an+Ib,43nl) ] n >- 0} u {(an+Ib,65n2) ] n >- 0}. 

We can define a parse homomorphism g = <k0,~> by 

%0(a) = a ~0(c) = a ~(]) = 4 ~(3) = 3 

~o(b) = b ~0(d) = b ~(2) = 6 ~(4) = I 

~(5) = 5 

~(6) ffi 2 

Parse homomorphism g is surjective, therefore, g is a cover homomorphism. Although 

homomorphism g is injective, g is not properly injective. Hence, g is a faithful but 

not a proper cover homo~rphism. 

The results in the following table are immediate consequences of the definitions. 

We compare the degrees of ambiguity and the languages of two grammars G' and G with 

proper parse relations between which a parse homomorphism g = <~,~> has been defined. 

PARSE HOMOMO~HISM DEGREE OF AMBIGUITY LANGUAGES 

cover (surjection) 

proper injection 

faithful cover 

proper cover 

Table I. 

<w,G'> -< <%O(w),G> 

<w,G'> -< <~(w),G> 

<w,G'> = <~0(w),G> 

~(L(G')) = L(G) 

~(L(G')) ~ L(G) 

~(L<G')) = L(G) 

~(L(G')) = L(G) 

Properties of parse homomorphisms. 

%In our example graulnars we only list the productions. From our conventions it will 

be clear how to distinguish terminal and nonterminal symbols. 
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If Z' = Z and ~ is the identity homomorphism then the notions of faithful cover 

and proper cover coincide. In this case we have the situation depicted in Table II 

(Again for proper parse relations). 

PARSE HOMOMORPHISM 

cover (surjection) 

proper injection 

faithful cover 

DEGREE OF AMBIGUITY 

<w~GW> ~ <w,G> 

<w~G~> ~ <w~G> 

<w,G'> = <w~G> 

LANGUAGES 

L(G') = L(G) 

L(G') ~ L(G) 

L(G') = L(G) 

Table II. Z' = Z and ~ is the identity homomorphism. 

In the following diagram the definition of a parse homomorphism is illustrated. 

Z ~*' ----- -- Z* 

Figure 2.1. Diagram for the parse homomorphism. 

Now we are sufficiently prepared to define when a grammar G' covers a grammar G. 

DEFINITION 2.8. Let G ~ = (N~,Z',P',S ') and G = ~,Z,P,S) be CFG's. Let fG,~ x AG, 

* be parse relations. Grammar G' is said to f-to-h cover grammar G if and h G ~ Z* x ~G 

there exists a cover homomorphism g : fG' + hG" 

In an obvious way the notions of partial, faithful (partial) and proper (partial) 

cover are defined. 

Let us start to clarify Definition 2.8. For most of our applications it will be 

sufficient to consider a homomorphism gf = <~,~> where Z' = Z and ~ is the identity 

homomorphism. In such cases there is only one homomorphism to consider, namely 

: AG, + A G and we will simply speak of partial cover homomorphism ~. 

Two well-known examples of proper parse relations are the left parse relation 

and the right parse relation. They are defined as follows. Let G = (N,Z,P,S) be a 

CFG. The left parse relation of G is the set 

l G= {(w,~) j s~w} 

The right parse relation of G is the set 
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--{(w,~ R) ] S~w} 

Now we consider a few aspects of our cover framework. If Z ~', ~ is the iden- 

tity homomorphism, gf = <(p,~> is a partial cover homomorphism which satisfies 

f = {(w,~) E fG' I w ~ L(G)} and, moreover, the parse relations are restricted to the 

left and right parse relations then we have the notion of weak cover which is used 

in Ukkonen [164] to show the nonexistence of certain covers. 

There are examples of transformations on context-free grammars for which it is 

useful to have a cover definition with the possibility that ~ is not the identity 

homomorphism. For example, there are classes of CFG's for which a two-pass no-back- 

tracking parsing algorithm has been defined. One pass translates a sentence w of 

L(G) to a sentence w' of L(G'), where G' is a grammar which can be constructed from 

G and the device which performs the first pass (for example, a sequential machine). 

In the second pass w' is parsed with respect to G'. The reader is referred to Culik 

and Cohen [23] and Nijholt [ll4,126] for possible applications. In Figure 2.2 such 

an application is displayed. 

first pass 
E*" > Z'* 

lh = Isecond pass 

I G 1 q r f G ' 
! 

A G ~ A~, 

Figure 2.2. Two pass parsing algorithm. 

For the applications in this monograph the full generality of Definition 2.] 

is not needed. Before me introduce restrictions on this definition we will mention 

examples for which the :genez~al definition is necessary. 

One might think, for example, of the parses which are obtained with the parsing 

methods for the subclasses of the context-free gramm~ars described in Colmerauer [20], 

Szymanski and Williams [159] and Williams [169]. These methods are also called non- 

canonical parsing methods and the parses which are obtained differ from the usual 

(canonical) left and right parses. 

As a second example we discuss how the definition of cover as it was presented 

in Gray and Harrison [ 48 , 49 ] might be dealt with in our formalism. Gray and Harrison 

distinguish between productions of a CFG G = (N,Z,P,S) which do have or do not have 

semantic significance. The idea is that if a production does not have semantic sig- 

nificance then it can be omitted from the parses. (In [49] the programming language 

'Euler' is used as example.) In this way, if we let H ~ P be the set of productions 
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with semantic significance, we can talk about M-sparse derivations and parses. 

DEFINITION 2.9. Let G = (N,Z,P,S) be a CFG with a proper parse relation h G and a 

set ~H~AG of productions with semantic significance. Define a homomorphism 

6H : AG + ~H by ~H(p) = p if p c ~H and ~H(p) = e otherwise. The H-sparse parse re- 

lation hG(H) is defined by 

hG(H) = {(w,6H(~)) I (w,~) e hg}. 

Clearly, if h G is a proper parse relation, then hG(H ) is a parse relation. In 

[49] there is no further discussion on this point. One may choose H in such a way 

that two otherwise different sentences obtain the same H-sparse parse. Another pos- 

sibility is that H reduces the number of parses of a sentence. A ~ove~ in the sense 

of Gray and Harrison is then defined between pairs (G',H') and (G,H) if there exists 

a 'cover' homomorphism g : fG' ÷ hG(H)' where g = <~,~ > satisfies ~(p) = e if 

p e A G, - ~H'" 

If H = P then G' is said to ~ompletely cover' grammar G. 

There are a few restrictions in [49] which should be mentioned. Firstly, only 

right parses are considered. In the second place, Z' = Z and a homomorphism 

: Z'* ÷ Z* is not considered. More interesting, however, is the condition ~(p) £ ~H 

for any p e ~H'" This leads to the following definition. 

DEFINITION 2.10. A partial parse homomorphism gf = <~,~> is said to be fine if 

satisfies ~(p) ~ A G u ~e}, for any p ~ AG,. It is said to be very fine if ~(p) £ A G 

for any p ~ AG,. 

Hence, one can say that the homomorphism which is used in [49] is fine. We shall 

usually consider parse homomorphisms without restrictions on ~. That is, we allow 

each production p to be mapped on a, possibly empty, string of productions. For 

some of the transformations on context-free grammars which will be presented in the 

forthcoming sections it will be shown that the existence of a cover homomorphism 

depends on the way ~ is defined. 

In Hunt, Rosenkrantz and Szymanski [7|] a fine cover homomorphism is called a 

production map~ Aho and Ullman [3] mention the possibility of using transducer mappings 

for ~. In Chapter 9 we consider the use of a deterministic finite transducer to de- 

fine covers for a subclass of the context-free grammars. 

2.2. RESTRICTIONS ON PARSE RELATIONS 

We will now introduce restrictions on the class of parse relations and their 

parses. 
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DEFINITION 2.If. Let G = (N,E,P,S) be a CFG. A parse relation f & E* x A* is said 

to be a sgntax directed parse relation of G if there exists a simple SDTS 

T = (N,E,A,R,S), defined on G, such that T(T) = f. 

EXAMPLE 2.2. 

Let G = (N,E,P,S) be a CFG with P defined by 

l./2. S + BAb I CAc 5. B-~ a 

3./4. A÷ BA I a 6. C + a 

Define a parse relation f by 

f = { ( aah, 154 ), (aaab, | 3-5 4 5 ), (aac, 264), (aaac, 23645) } 

n+4 
u {(a b,15(35)n+24) I n > 0} 

u {(an+4c,26(35)n+24) I n > 0}. 

It can be verified that f is not a syntax directed parse relation of CFG G. 

With our following definition a more amenable class of parse relations is singled 

out. We use the E-erasing homomorphism h E : (N u E u A)* ÷ (N u A)*. 

DEFINITION 2.12. Let G = (N,E,P,S) be a CFG. A relation fG c_ E* x A G is said to be 

a production directed parse relation of G if there exists a simple SDTS T = (N,Z,~,S) 

such that T(T) = fG and where R satisfies the following condition. If A ÷ ~ is the 

ith production in P then R contains exactly one rule of the form A ÷ e, hE(e]ie2) , 

where elc~2 = c~ and R does not contain other rules. 

It will be clear that if each rule of this simple SDTS T has the form A + @, 

hz(ie) then each pair of the translation defined by T consists of a sentence of L(G) 

and a left parse of this sentence. Similarly, if each rule has the form A -~ e, hE(~i ) 

then each sentence is associated with a right parse. 

In these both cases T(T) satisfies the conditions of a proper parse relation. 

Unfortunately, this is not necessarily the case for relations T(T) which are obtain- 

ed by inserting the symbols of A G at arbitrary places in the righthand sides of 

the rules. This has also been observed by Brosgol [17]. The following gr=mmar illus- 

trates this phenomenon. Consider ambiguous grammar GO with productions 

I. S +aS 

2. S-~ Sb 

3. S÷c 

We define R, the set of rules of a simple SDTS T as follows 
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S ÷ aS, IS 

S + Sb,S2 

S ÷ c,3 

It follows that T(To) = {(ancbm, ln32 m) I n,m e 0}. The parses of the form In32 m are 

the so-called left corner parses ([~,p.278], el. also Table III in this section). 

Hence, although G O is ambiguous each sentence has exactly one left corner parse. 

Therefore, Y(T0) is not a proper parse relation of granmar G O . 

In the following subsection, which can be skipped on a first reading, we shall 

discuss a few consequences of this observation for parsing. 

2.2. I*. SOME NOTES ON PARSING 

In this subsection we slightly anticipate on forthcoming sections. 

A parse can be considered as a sequence of productions which are 'recognized ~ 

during the parsing process. In situations of practical interest parsing should pro- 

vide the information which makes it possible to perform error-recovery and code gen- 

eration for a program which has been given as input to a compiler. However, there 

exist 'parsing' methods which can produce the same parse for different sentences 

(programs) and for different parse trees. 

Left corner parsing is a well-known parsing technique. Deterministic left corner 

parsing has been defined for LC(k) grammars (Rosenkrantz and Lewis [143]), generalized 

left corner parsing was introduced by Demers [24] and a nond'eterministic left corner 

parser can be found in [3]. If one considers parsing as the process which yields for 

each parse tree a unique parse, that is, no two different trees have the same parse, 

then one should not call the nondeterministic left corner parser of [3] a parser. 

The following example will be convincing. Consider the grammar G 1 with produc- 

tions 

I .  S -~ a S a  

2 .  S - + A b  

3 .  A ÷ $  

4. S->e 

One can verify that gr~mm~r G I is an LC(1) grammar. This means that grammar G 1 can 

be parsed with a deterministic left corner parsing method with one symbol of look- 

ahead. With this method each sentence of L(GI) is translated to its left corner parse. 

These parses are defined with the following simple SDTS T I with rules 

S ÷ aSa~ ~S A ÷ S, $3 

S ÷ Ab, A2 S ÷ c, 4 
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Now it is simple to verify that different sentences of G I may have the same left 

corner parse. In Figure 2.3 we have displayed two parse trees which have the same 

left corner parse. 

a S a A b 

t 
S a S a 

I 1 
c c 

Figure 2.3. Two trees with left corner parse 1432. 

The following example refers to a simple chain grammar. In Chapter 11 of this 

monograph the class of simple chain grammmrs will be treated in more detail. The 

underlying gran~mar G 2 of the following simple SDTS T 2 is a simple chain grammar. 

S ÷ aSa~ $I 

S + aSh, $2 

S ÷ A, 3A 

A ÷ bS, 4S 

S + c, 5 

T 2 defines the left part parses (cf. Table III) of granmmr G 2. Different sentences 

of G 2 can have the same left part parse, e.g. the string 34521 is a left part parse 

for aabcba and for baacba. 

One can strictly adhere to the point of view that parsing should always be done 

with respect to a proper parse relation. We take a more practical point of view and 

consider the (generalized) left corner parsing methods as parsing methods. Clearly, 

it remains useful to distinguish the subclass of the proper parse relations from the 

arbitrary parse relations. 

The following theorem gives a necessary and sufficient condition for a produc- 

tion directed parse relation to be proper. 

THEOREM 2.2. A production directed parse relation T(T) of a simple SDTS T is a proper 

parse relation if and only if the output grammar of T is unambiguous. 

Proof. Let CFG G and simple SDTS T be as in Definition 2.12. The output grammar of 

T, denoted by GO, is defined by the set of productions 

PO = {i.A ÷ hz(eli~2) I A ÷ e,~(~li~2) is in R}. 
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Assume that G O is unambiguous. Then each x E L(G 0) has exactly one left parse. Now, 

assume that (Wl,X) e T(T) and (w2,x) c T(T) with w I # W2o Clearly, there exist 

~l E A G and z2 ~ AG such that (wl,71) ~ l G (the left parse relation of G) and 

(w2'~2) e £G and, necessarily, 71 # ~2" But then there exist also (X,~l) e £~ and 

(x,~2) e IG0 which is impossible since G O is unambiguous. We conclude that condition 

(i) of Definition 2.1 is satisfied. 

Next we show the existence of an one-to-one mapping between £G and T(T). This 

mapping, together with the trivial property that, for any w £ Z*, 

<w,G> = I{~ I (w,~) c £G}I 

is sufficient to conclude that condition (ii) of Definition 2.1 is also satisfied. 

Firstly, notice that trivially, for any (w,x) e T(T) there exists ~ e A G such that 

(w,~) E £G" Now, assume that (W,~l) e £ G and (w,~2) e £ G for some ~l # 72" In general, 

if (w,~ l) e £ G then there exists exactly one x e L(G 0) which satisfies (w,x) ~ T(T) 

and (x,~|) c £ G . Otherwise we would have a situation in which two different senten- 

would have the same left parse, which is clearly impossible. Hence, oes in L(G0) 0 

if (W,~l) ~ £G and (w,~2) ~ £G then there exist (w,x) ~ %(T) and (w,y) e T(T) with 

x # y. This concludes the proof that T(T) is a proper parse relation. 

Now assume that T(T) is a proper parse relation while G O is ambiguous. In this 

case there exists at least one x £ L(G 8) with left parses ~l and ~2' 71 # ~2" From 

the existence of ~I and ~2 we may conclude the existence of pairs (w;,~i) and (w2,~2) 

in£ G and pairs (Wl,X) and (w2,x) in T(T). Since I(T) is a proper parse relation we 

have that w I = w 2. Hence, in general, each pair (w,x) e T(T) with <x,G0> = n gives 

rise to n elements (w,~l),...(W,~n) in £ G. Thus, a one-to-one mapping between£ G and 

• (T) can not be defined and consequently T(T) is not a proper parse relation. This 

concludes the proof. D 

2.2.2. PRODUCTION DIRECTED PARSES 

We briefly describe various ways in which production directed parses appear in 

the literature. 

It is a well-known trick to insert special symbols (standing for production num- 

bers or, generally , marking the place for semantical information) in the right- 

hand sides of productions to obtain special parses or to activate semantic actions 

(for example, Aho and Ullman [3,4]). In fact, this has also been done by Kurki-Suonio 

[89] who adds a symbol to the right of the righthand sides of the productions and 

Kuno [8~ who adds a symbol to the left of the righthand sides. A related idea is in 

the definition of parenthesis and bracketed grammars (of. McNaughton [I0~ and Ginsburg 

and Harrison [43 ]). The special symbols are sometimes handled as lefthand sides of 

e-productions. For example, this is done by Demers [24] to define generalized left 
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corner parsing. Following Demers, all production directed parses should be called 

generalized left corner parses. In this terminology, if we have a rule A ~ ~, 

hz(~lie2 ) then ~! is called the generalized left corner t of the rule and e2 is its 

trailing part. 

The following table lists a few names of parses which h~ve been introduced before. 

SIMPLE SDTS NAME 

i.A÷ e, hz(i~) left parses 

i.A ÷ ~, hz(ei) right parses 

i.A + ~, hz(~li~2) left corner parses 

~i~2 = ~ and I~ll = 1 (Rosenkrantz and Lewis [143]) 

...... i.A + ~, hz(~li~2) extended left corner parses 

~i~2 = ~, ~ ~ Z* or (Brosgol [17]) 

~ 1  E Z*N 

i.A÷ ~, hZ(~li~2) left part parses 

~]~2 = ~ and le21 = 1 (Nijholt [118]) 

Table III. Types of parses 

It is usual to associate left parses with top-down parsing. In deterministic 

top-down parsing (LL-parsing) each production is recognized before reading its yield, 

that is, at position 1 of the righthand side. In deterministic bottom-up parsing 

(LR-parsing) the recognition is at position n + I. The right parses are associated 

with bottom-up parsing. In (deterministic) generalized left corner parsing each pro- 

duction is recognized i~mediately after its generalized left corner %. Generalized 

left corner parses are associated with generalized left corner parsing. Note that 

left part parses are defined as the'opposit{ of left corner parses. Because we want 

to associate left part parses with left parts (of.Chapter |I) we have not chosen the 

name right corner parse. Moreover left part parses are a special ease of generalized 

left corner parses. Consider the following example. 

In Figure 2.4 we display a gra~mmtical tree T and a particular way in which this 

tree is constructed. The tree is built up with partial subtrees by considering the 

next terminal symbol~ reading from left to right. 

% The left corner of a production is the leftmost symbol of its righthand side. A gen- 

~falized left corner of a production is a prefix of its righthand side. 
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S 

d 
T 

a a B a a 

T I 

a B 
a T2 

a T3 

T4 d 

Figure 2.4. Tree T and its partial subtrees. 

After reading the first terminal symbol we construct tree T 1 . The second ter- 

minal symbol gives rise to tree T 2. After reading the third terminal symbol we have 

obtained tree T 3 and we notice that a production with label 2 is now complete. The 

fourth terminal symbol gives us tree T 4 and two more productions, 2 and 3, are now 

complete. The last terminal symbol which is read makes tree T and the productions I 

and 4 complete. 

The string 22314 of productions, which is obtained in this way is the formally 

defined left part parse for sentence aaadc of a corresponding context-free grammar. 

We will return to these partial trees and the left part parses in the forthcoming 

sections. 

We conclude this section with some notational remarks. In the following table 

some frequently used names and notations are displayed. We use £ to denote left parses 

(and left parse relations) and r to denote the right parses. In general, if f denotes 

a parse relation then f denotes the parse relation {(w,~) I (w, ~R) • f}" Apart from 

£,r,~ and r the abbreviations £p, standing for left part parses, and £c, standing 

for left corner parses, will sometimes be used. 

PARSE RELATION NOTATION NAME 

f f 

left left 

left i right 
i 

right t l e f t  
right right 

G'[f/h]G 

G'[Z/Z]G 

G'[£/~]G 

G'[~/£]G 

G'[r/r]G 

f-to-h cover 

left cover 

left-to-right cover 

right-to-left cover 

right cover 

Table IV. Covers 

In algorithms and examples it is often convenient to use the notations A + ~ <~> 

or i.A ÷ ~ <~> to denote that a production i.A + e of a CFG G' is mapped by a parse 
, 

homomorphism on a (possibly empty) string of productions ~ • A G of a CFG G. 
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We will need a notation to refer to positions in the righthand sides of the 

productions. 

NOTATION 2.I. Let j.A + XIX2...Xn be a production of a CFG G. The positions in the 

righthand side are numbered according to the following scheme: 

j.A ÷ [l]Xl[2]X2...[n]Xn[n+l] 

For a given production directed parse relation each production has a fixed position 

in which its number is inserted, conform Definition 2.12. We use FG(j) , or simply 

F(j) to denote this position, i.e., F G :AG+IN. By definition, FG(j) = 1 if j.A + e is 

a production of G. 

It is convenient to introduce an order relation -< on the parse relations of a 

CFG G. If F G : A G +IN induces a production directed parse relation x c x A G and 

F : A G +IN induces a production directed parse relation y -~ 7" x AG, then we define 

x_<y 

if and only if 

Vj ¢ A G : F~(j) ~ r~(j). 

In this way the production directed parse relations of a gralmnar G induce a finite 

lattice with order ~. 

EXAMPLE 2.3. 

Consider CFG G with productions I. S + AB, 2. A + AB, 3. A ÷ a and 4. B + b. For G 

we can define nine production directed parse relations. In Table V it is shown how 

they can be obtained if we insert production numbers in the righthand sides. 

x 0 x I x2 x3 x4 x5 x6 x7 x8 ..... 

lAB A1B lAB AIB ABI lAB ABI A1B AB| 

2AB 2AB A2B A2B 2AB AB2 A2B AB2 AB2 

3 3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 4 

Table V. Production directed parse relations. 

The corresponding finite lattice is pictured below. 
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x4 ~ x5 

Vx 0 = £ 
Figure 285. Lattice for the production directed parse relations. 

2.3~ GRAMMAR FUNCTORS 

The concept of grammar functor is one of the well-known grammatical similarity 

relations. This section is devoted to a short discussion on grammar functors in order 

to make it possible to compare functors and covers. In later sections examples of 

the use of grammar functors will be given. 

Having introduced syntax categories in section 1.3.2 we will now define functors 

between syntax cauegories. We use a slightly adapted version of the definition in 

Benson []3]. 

DEFINITION 2.13. Let G ~ = (N',E',P',S') and G = (N,E,P,S) be CFG's. A gran=aar functor 

F : S(G') ÷ S(G) 

is a functor which preserves concatenation (for both objects and morphisms) and the 

empty string, and which satisfies 

(i) F(A) e V * for all A ~ N', 

(ii) F(a) ~ E* for all a ~ Z', and 

(iii) F(S') = S . 

F is said to be externa21y fixed if Z' = E and F(a) = a for each a £ E' 

In Benson [13], instead of S and S', start strings in N* and N'*, respectively, 

are used. Moreover, we have F(A) ~ V* instead of F(A) ~ N*. With our definition it 

becomes possible to define a functor in a situation as portrayed in Figure 2.6. 

To define a gr~mm~r functor F : S(G') ÷ S(G) it is sufficient to define F on 

V' = N ~ u E' and on P'. Free generation takes care of the rest. From Definition 2.13 

it follows that F(L(G')) ~ L(G). 

. ~  transformatio~~, " a ~  

H c 
a B c functor 

< 
c 

Figure 2.6. Functor F, F(H c ÷ c) = id c and F(H c) = c. 
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Without further restrictions on F we can not, without further knowledge of G 

and G', compare <w,G'> and <F(w),G>. Grammar functor F can be restricted to the HOM- 

sets of S(G'). Let ~,8c V'* then the HOM-set of (~,8) is denoted by S(G')(~,~) and 

the restriction of F to this HOM-set is denoted by 

F(~,8) : S(G')(e,~) + S(G)(F(~), F(8)). 

It is fairly easy to compare grammar functors and covers. In the case of a cover 

we are only interested in the relation between the parse relations of G' and G. That 

is, in the functor terminology, in the relation between S(G')(S',w') and S(G)(S,F(w')) 

for each w' £ Z'*. Except for S', S, w' and F(w') domains and codomains of derivations 

are not compared when covers are considered. 

A cover homomorphism can now be compared with a gramnar functor F which has the 

property that for each w e Z'* the restriction F(S',w) is a surjection. In this case 

F(L(G')) = L(G) and if F is externally fixed then <w,G'> e <w,G>. 

Clearly, for grammar functors we can go into more details. A granmmr functor 

is said to be full if for each pair of objects ~, 8 e V'*, F(~,~) is surjective; it 

is said to be externally full if for each pair of objects e ~ V'* and w E ~'*, F(~,w) 

is surjective. A grammar functor is faithful if for each pair of objects ~, 8 e V'~ 

F(e,~) is injeetive. If one ~ishes to incorporate these concepts in the cover ap- 

proacha further refinement of the cover framework is necessary. 

Obviously, covers say less about the preserving of syntactic structure than grammar 

functors. However, the definition of cover is much more flexible, cover results can 

be obtained more easily than grammar functor results and from the point of view of 

parsing one can say that covers describe a natural and sufficient representation of 

a parse tree and its changes under a transformation of the grammar. 

2.4. RELATED CONCEPTS 

We mention a few other concepts which have been introduced to express grammat- 

ical similarity. In Gr~ and Harrison [49], Ginsburg and Harrison [43], Hunt and 

Rosenkrantz [69] and Reynolds and Haskell [I41] definitions and results are given 

for grammar homomorphisms, gran~ar isomorphisms, weak Reynolds covers and Reynolds 

covers. In these definitions the emphasis is on the sets of the productions of the 

grammars and not, as in the case of grammar covers, on the sets of derivations or 

parses. 

Structural equivalence was introduced by Paull and Unger [129 ] (el.Definition 

1.7. c . ) .  
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DEFINITION 2.14. Two trees are structurali9 isomorphic if by relabeling their nodes 

they may be made the same. Let w ~ L(Gi) and let Ti(w) be a parse tree for CFG Gi, 

i = I~2~ CFG G 1 is ~tructurally equivalent to CFG G 2 if for every tree Tl(w ) there 

exists a tree T2(w ) such that T|(w) is structurally isomorphic with T2(w) and, con- 

versely, for each tree T2(w) there is at least one tree T](w) such that Tl(w) is 

structurally isomorphic with T2(w ) . 

Notice that with this definition L(G I) = L(G2), while in general, without further 

knowledge of G] and G2~ we can not compare <w,G|> and <w,G2>. Definition 2.]4 is 

equivalent to Definition 1.7. c. 

Structural equivalence is decidable, that is, there exists an algorithm for 

determining whether or not two arbitrary CFG's are structurally equivalent (cf. Paull 

and Unger [129], McNaughton []07] and Knuth [77]). Paull and Unger [129] present an 

algorithm for generating structurally equivalent simple deterministic gran~ars cor- 

responding to a given CFG. If no such granmmr exists the algorithm terminates with 

an indication of this fact. In Paull and Unger [130] this result is extended to 

g-free LL(1) grammars. Other results on structural equivalence appear in Prather 

[134] and in Taniguchi and Kasami [160], who present transformations from a CFG G| 

to a structurally equivalent CFG G 2 which has either a minimal number of nontermi- 

nal symbols or a minimal number of productions. Some decidability results on the 

existence of certain grammar functors appear, for example, in Schnorr ~5]] and Bertsch 

[*4]. 

The notion of weak equivalence of grammars is an equivalence relation (in the 

algebraic sense). Much effort has been made to subclassify weak equivalence by equiv- 

alence relations which are defined with the help of grsmmmr functors (of. Hotz 

and Claus [67], Schnorr [151] and Schepen []46]). 

Decidability results for covers are extensively discussed in Hunt, Rosenkrantz 

and Szymanski [72] and in Hunt and Rosenkrantz [69]. In the latter paper grammatical 

similarity relations are used to generalize the grammar form definition of Cremers 

and Ginsburg [21]. 

Finally, we mention Kuroda [91] who introduces topologies on grammatical trees 

and who defines strong and weak structural homeomorphisms between context-free gram- 

mars to subclassify weak equivalence. 

Oar mai~ motivation in mentioning the literature listed above is to show 

the existence of problems which may again become interesting if the concept of cover 

is used as grammatical similarity relation. 

Attribute grammars (cf. Knuth [?6]) are not dealt with in this monograph. How- 

ever, if we take the point of view that a practical reason to consider covers con- 

cerns compiler construction then attribute grammars should also be discussed. In 

the case of covers we consider a parse as the argument of a semantic mapping. In case 
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CFG G' covers CFG G then we can use the original semantic mapping, corresponding to 

G. In section 3.1 more details are given. Attribute gr~rs form an alternative 

method. Here, attributes (which contain semantic information) are associated with 

the nodes of a parse tree. These attributes are obtained from attributes associated 

with the symbols which appear in the productions and from attribute evaluation rules. 

If an attribute grammar is transformed to, for example~ some normal form attribute 

grammar, then we have not only the question of language equivalence, but also that 

of semantic equivalence. Grammar transformations which yield positive cover results 

should be the first to apply (obviously in an adapted form) for attribute gra~ars. 

Bochman [15] explores this semantic equivalence of attribute grammars. 



CHAPTER 3 

COVERS, PARSING AND NORMAL FORMS 

This chapter contains the motivation of our investigations on grammar covers. 

The first section deals with the grammar cover concept and its use for parsing. In 

section 3.2 we try to give a historical overview of covers and normal forms. Finally, 

in section 3.3 we start our investigations on covers, normal forms and parsing. 

3. I. COVERS AND PARSING 

Apart from the theoretical interest in covers one can view the cover concept 

as a possible tool in the field of parsing. To analyze or to parse a given potential 

sentence is the process of determining whether it is indeed "an element of the language 

defined by the grammmr under consideration and to make the syntactic structure of 

the sentence explicit. This can be the analysis of natural language sentences or of 

sentences (programs) of a formal language such as a programming language. In the lat- 

ter case parsing can be a phase in the structure of a compiler which follows lexical 

analysis and which precedes the code generation and optimization. 

Parses can then be considered as a type of intermediate code from which the 

code generation can be done. It should be observed that with our use of simple SDTS's 

only one possible way of translation (from language to intermediate code) is eons~- 

ered. Other translations make use of more powerful devices such as, for example, 

(not necessarily simple) SDTS's, generalized SDTS's or nondeterministic generalized 

SDTS's (of. Baker [ 9]). 

In the ease of parsing, the following two figures will clarify the intended use 

of covers. Figure 3.] can be considered as a more practically oriented version of 

Figure 2.1. 

G 

w ~ L(G) 

parse 

= ~(w') 

language preserving transformation G' 

w e L(G') 

cover homomorphism parse w' 

Figure 3.1. Covers and parsing 
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The idea is that a CFG G which is hard to parse is transformed to a CFG G' which is 

easier to parse. Parsing is then done with respect to G' and afterwards the parse is 

mapped by the cover homomorphism on the corresponding parse of G. 

Numerous parsing methods for subclasses of the context-free grammars appear in 

the literature. In Chapter ] we already mentioned (el.section ].3.1) that any simple 

syntax directed translation can be obtained by means of a PDT. Therefore, any of the 

syntax directed parse relations can be obtained as a translation defined by a PDT. 

Several important s~classes of the context-free grammars which are based on a 

specific parsing, method have been introduced. For example, the bounded context gram- 

mars (Floyd [33], Graham ~6]), precedence grammars (Floyd [32], Wirth and Weber 

[170]), LR(k) grammars (9~uth [76], DeRemer [25], Geller and Harrison [40]) and LL(k) 

granmmrs (Rosenkrantz and Stearns [144], Lewis and Stearns [101]). Most of these pars- 

ing methods can be 'implemented' by a DPDT. Other parsing methods make use of a de- 

vice which uses two stacks (e.g., Colmerauer [20] and Williams [169]). In Chapter 9 

cover results will be obtained from DPDT's (deterministic pushdown transducers). 

A class of grammars with attractive parsing properties is the class of LL(k) 

grammars. It has been the aim of many authors to transform grammars to LL(k) grammars. 

As we mentioned before this has been the goal in Paull and Unger [129,]30]. In Hunt 

and Rosenkrantz [69] such a transformation for a 'Reynolds cover' is considered, It 

is worth noting that in the latter case the newly obtained grammar is not necessarily 

weakly equivalent with the original grammar. Other methods to obtain LL(k) gra~mmrs 

make use of more or less refined techniques of left factoring. 

Both in Soisalon-Soininen []55] and Hammer [55] transformations are discussed 

from 'bottom-up' parsable grammars (restricted LR(k) gra~nars) to 'top-down' parsable 

grammars (LL(k) grammars). In these cases left-to-right covers can be defined. 

In Figure 3.2, which appears also in a slightly different form in both Kuno[87] 

and Gray and Harrison [49], the situation for parsing is made more explicit. 

.. . . . . . . . . . .  

! 
, [ 
~ parser P' 

- [ 1 for G' 
I 
l 

arser P for G 

parse o[ w 

with respect 
to G' 

7 
J 

~ It varse of w 
v 

Ii with respect~ [lat°r 1 to G 

i 
J 

Figure 3.2. A parser for CFG G. 

For the parser P' in Figure 3.2 one may think of one of the parsing methods mentioned 

above. In the case of covers, the translator is simply a homomorphism. Then it is not 

necessary to consider it as a separate device. Of course, more general devices may 

be chosen. 
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3.2. COVERS AND NORMAL FORMS: HISTORICAL NOTES 

The aim of this section is to show that although not always presented in a for- 

mal way, the idea of grammar covers for transformations to grammars in some normal 

form has attracted attentionfromseveral authors. It should be observed that when the 

grammar cover concept was introduced systematically (see Gray and Harrison [48,49]), 

this link with the older literature was not exposed. Therefore we think it is useful 

to do so. The formal idea of a cover is also due to J.C.Reynolds. 

The original transformation to Greibach normal form (GNF) is due to Greibaeh 

[50]. Her algorithm transforms an E-free CFG without single productians to a CFG 

in this normal form. In Rosenkrantz [142] another transformation is presented to ob- 

tain this normal form. 

In the following quotations 'standard form' stands for GNF. Griffiths and Petrick 

[53] comment on Greibach's paper: 

"We have already observed that Greibach has shown that for any CF grammar without 

cyclic nonterminals an equivalent standard form can be constructed. To date, no ef- 

ficient procedure for relating the structural descriptions of standard form grammars 

to the CF gran~nars from which they were constructed has been foundS. 

In Griffiths and Petrick [54] further remarks can be found. 

The next in line is Kurki-Suonio ~9] who comments on Griffiths and Petrick's 

paper: 

"One way to avoid left recursion is to transform the gran~ar into standard form, but 

the desired structural descriptions are then lost as the authors point out". 

However, this can be repaired. Kurki-Suonio considers a method to eliminate le~t 

recursion for applying top-down parsing to any context-free language. His method co- 

incides with, what we call now, the usual method for eliminating left recursion 

(Aho and Ullman's Algorithm 2o12, [3]). The method appeared before in some informal 

settings, for example, Greibach [51]. Kurki-Suonio remarks: 

"The above removal of left recursion distorts the phrase structure of sentences. In- 

formation on the original phrase boundaries is preserved, however, if a marker is 

attached to the end of each right-hand side of the original rules, and the markers 

are then carried along in the transformation". 

This is a useful observation. In fact, Foster [35] and Kuno [87] have the same 

idea. Foster [34], presenting earlier work, describes a program that, given a CFG 

attempts to transform this grammar into an equivalent CFG which can be parsed by a 

simple one-pass parsing algorithm. Also in this ease, the objective is that semantic 

routines which are associated with the original rules remain unchanged, that is: 
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"Any transformations on the syntax which would produce an equivalent grammar if the 

routines were all ordinary basis symbols, will give a recognizer which will produce 

the same translation as the original". 

One of the transformations which is used in this 'Syntax Improving Device'-program 

is the elimination of left recursion. In Foster [34] more details are given. The 

method is also described in Wood [17]]. 

Kuno [87] converts a given CFG into an 'augmented' standard form gr~m~r, each 

of whose =ules is in standard form, supplemented by additional information describ- 

ing its derivation from the original context-free grammar. Contrary to Kurki-Suonio 

who supplies this information in a marker at the end of each righthand side of the 

original rules, Kuno supplies this information at the beginning of each righthand 

side. Kuno's method to transform a non-left-recursive grammar to a GNF grammar co- 

incides with the usual method (Aho and Ullman's Algorithm 2.|4, [3]). In this case 

the technique for performing the conversion of the structural descriptions is simple. 

However, as soon as this idea is used for the transformation of an arbitrary grammar 

to a non-left-recursive granmmr then the method for undistorting the structural des- 

cription back to the original description becomes very complicated. 

Stearns [158] is another source where we can find similar ideas as were present- 

ed by Foster. 

After we are able to give a fairly complete overview of cover results for con- 

text-free grammars in some normal forms we will (informally) evaluate them in view 

of the remarks presented in this section (cf. Chapter 6). In Chapter 8, where we 

shortly discuss the use of grammar covers for compilers and compiler writing systems, 

we will return to some of the notes of this section. 

3.3. COVERS AND NORMAL FORMS: AN INTRODUCTION 

In this monograph, from now on, unless stated otherwise, we assume that when- 

ever we define a cover homomorphism g = <~,~> between grammars G = (N,Z,P,S) and 

G' = (N',I',P',S') then E = E' and ~ is the identity homomorphism. Rence we only con- 

sider homomorphism ~. Both in Gray and Harrison [49] and in Aho and Ullman [3] results 

and remarks are presented on the existence and nonexistence of certain covers of 

grammars with grammars in some normal form. Some of these remarks are not correct. 

In some case a negative result is caused by the fact that the cover homomorphism is 

assumed to be fine. The following observation shows that if we consider a transfor- 

mation to GNF a fine cover homomorphism is too restrictive. 

OBSERVATION 3.1. Let G = (N,E,P,S) be a proper (cf. Definition 1.8. d.) and unambig- 

uous CFG such that there exist w e L(G) and S ~ w with I~I > lwl. CFG G can not be 
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covered by a CFG in GNF under a fine cover homomorphism. 

It should be noted (cf. Chapter 5) that any proper CFG G can be transformed to 

a NLR grammar G' such that G'[r/r]G under a fine cover homomorphism. In Gray and 

Harrison [49] a grammar G O with productions 

I./2. s ÷ so I sl 

3 . / 4 .  S + 0 ] I 

is used to show that noteveryCFG can be right covered by a CFG in GNF (under a fine 

cover homomorphism). The proof of this result is somewhat difficult to read because 

some details are missing. In J.N.Gray's Ph.D.Thesis a more detailed proof can be 

found. In Chapter 7 we will introduce algorithms for transforming regular grammars 

into grara~ars in GNF. 

It is simple to find for G O a gra~mmr G such that G[r/r]G 0 and G is non-left-recursive. 

Consider, for example, grammar G l defined by 

I. S ÷ C <~> 5. D + 0 <I> 

2. S + CS' <E> 6. D ÷ I <2> 

3, ~÷ D <~> 7. C ÷ 0 <3> 

4. ~÷ DS' <g> 8. C ÷ l <4> 

According to the terminology of Gray and Harrison [49], one can say that the 

productions I. until 4. do not have semantic significance. 

As was first shown in Nijholt [II~, one can find a grammar G' in GNF which satis- 

fies both G'[£/~]G O_ and G'[~/r]G 0 (under the same cover homomorphism). This grammar 

is listed in Table VI. Symbol S' is the new start symbol. 

S' ÷ 0HISS <e> 

HI5 ÷ 0 <31> 

S' ÷ 0HI6S <e> 

HI6 ÷ I <32> 

S' ÷ 0HI7 <e> 

HI7 ÷ 0 <31> 

S' + 0HI8 <e> 

HI8 + t <32> 

S' ÷ IH25 S <~> 

H25 ÷ 0 <41> 

S' + |H26 S <E> 

H26 ÷ I <42> 

S' ÷ IH27 <e> 

H27 ÷ 0 <41> 

S' + IH28 <~> 

H28 + 1 <42> 

S' ~ 0 <3> 

S' ~ l <4> 

S ÷ 0H55 s <~> 

H55 ÷ 0 < t 1 >  

S + 0H56S <¢> 

H56 + l <12> 

S + 0H57 <e> 

H57 ÷ 0 <II> 

S ÷ 0H58 <e> 

H58 ÷ 1 <12> 

S ÷ IH65S <e> 

H65 + 0 <21> 

S + IH66 s <e> 

H66 ÷ l <22> 

S ÷ IH67 <~> 

}167 + O <21> 

S + IH68 <£> 

}{68 + l <22> 

S + 0 <l> 

S ÷ l < 2 >  

Table VI. Productions of gra~m~ar G'. 
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Our aim in the forthcoming sections is to study the existence and nonexistenne 

of grammar covers for some normal forms for context-free grammars. That is, we con- 

sider problems in which we ask: Given classes of gra~,~rs rl and F2, can we find 

for each gr~m_ar G in F I a gran~ar G' in r 2 such that G' covers G ? At some places 

we will also discuss the question of the existence of grammar functors. 

The examples which we gave above will be referred to in the following sections. 

For F 1 we will consider arbitrary context-free grammars and by introducing conditions 

which should be satisfied we consider also some subclasses of the context-free gram- 

mars. For r 2 we will concentrate on the e-free, the non-left-recursive and the Grei- 

bach normal form grammars. 

The next chapter will be devoted to some general results and observations on 

covers. In Chapter 5 transformahions to obtain non-left-recursive and Greihach normal 

form grammars are considered. In Chapter 6 we present a cover-table which gives yes 

and no answers for various cover existence questions. In Chapter 7 we have a short 

discussion on regular grammars. 



CHAPTER 4 

PROPERTIES OF COVERS AND PRELIMINARY TRANSFORMATIONS 

4.1. PROPERTIES OF COVERS 

It is useful to put forward a few general properties of grammar covers. The most 

frequently used property will be the transitivity of covers, that is, if grammar G 2 

covers grammar G 1 and grammar G 3 covers grammar G2, then grammar G 3 covers G I . More 

formally (we assume the parse relations to be understood from the notaLion): 

LEMMA 4.|. If G3[f/g]G 2 and G2[g/h]G 1 then G3[f/h]G I. 

Proof. Trivial. 

For future applications we generalize the idea of transitivity. 

DEFINITION 4.1. Let G and G' be CFG's such that G'[f/h]G for some parse relations 

fG' and h G and a cover homomorphism ~. A partition ~t of AG, is said to be a transi- 

tivity partition of AG, if, for each block B ~ zt' i and j in B implies ~(i) = ~(j). 

'} and a maximal parti- Clearly, there is always a minimal partition {{i} I i e A G 

* by de- tion {B I i,j e B iff ~(i) = ~(j)}. We introduce a homomorphism a t : A~, ÷ ~t 

fining, for any i e AG,, if i £ B then ~t(i) = B. 

OBSERVATION 4.1. Let the three CFG's, GI, G 2 and G 3 have parse relations fG1, gG2 

and h G , respectively. Suppose G2[g/f]G I. Let ~t be a transitivity partition of 
3 , 

AG2. Define a transitivity relation ~G 2 ~ Z x ~ by 

gG2~ = {(w,~) i (w,z') e gG2 and 6t(~') = ~}. 

Now we may conclude that G3[h/f]G l if there exists a homomorphism ~t : A'G3 + ~*t' 

which satisfies 

(i) if (w,~) e hG3 then (w,~t(~)) c gG2- , and 

~ there exists (w,~') (ii) for each (w,~) ¢ gG2 hG3 

End of Observation 4~I. 

such that ~t(~') = ~. 

This observation is illustrated in Figure 4.1o Although we do not necessarily 

have that G 3 covers G 2 we may conclude that G 3 covers G I because of the existence of 

the homomorphism ~t ~ 
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cover 

A* A* 

~t cover 

* ~t A* 
7T t ---- G3 

Figure 4.1. Observation 4.]. 

The notation in the following lemma was explained in section 2.2. 

LEMMA 4.2. Let fG' and h G be parse relations for grammars G' and G, respectively. 

If G'[f]h]G then G'[f/h]G. 

Proof. Let ~ be the cover homomorphism under which G'[f/h]G. Define ~R : AG ' AG 

such that, for any i e AG, , ~R(i) = ~[R if ~(i) = ~[. Then G'[f/h]G under cover homo- 

morphism ~R. D 

Note, if the cover homomorphism ~ is fine then ~R and @ are identical on %,. 

Rather loosely formulated one can say that if a cover is supported t by rules of the 

form A ÷ a or A + e only, then we can treat left and right parses of the covering 

gra~mmr as being identical. This is formalized in the following way. 

LEMMA 4.3. Consider two CFG's, G' = (N',E,P',S') and G = (N,E,P,S). Assume that h G 

i s  a p a r s e  r e l a t i o n  o f  G. I f ,  f o r  each p r o d u c t i o n  i .A  + ~ i n  P ' ,  homomorphism 

: ~G' ÷ AG satisfies @(i) = e if ~ ~ E U {~}, then G'[~/h]G if and only if 

g'[r/h]G. 

Proof. Observe that for any parse tree T E PTR(G') there are unique pairs 

(w,~]) e ~G' and (w,~2) ~ IG,. Define ~ = {i E AG, I i.A ÷ ~ in P' and @ { E u [g}}. 

Now observe that h~(~l) = h~(~2) and therefore, for any cover homomorphism ~, 

~(~1 ) = ~ ( h ~ ( ~ l ) )  = ~ ( h ~ ( ~ 2 ) )  = ~(~2 ) .  D 

As the following result shows, it is fairly simple to convert the problem of 

finding a covering grammar G 3 for a CFG G l such that G3[f/h]G I to the problem of 

# We say that a production rule supports the cover when its homomorphic image is not 

empty, hence, when it ihas semantic significance. 
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finding a grammar G 3 which satisfies G3[f/Z]G 2 or G3[f/r]G 2. Here, G 2 is an interme- 

diate grammar which satisfies both G2[I/h]G | and G2[r/h]G 1 . 

LEMMA 4.4. For any CFG G and production directed parse relation h G there exists a 

CFG G' such that both G'[Z/h]G and G'[~/h]G. 

Proof. Let G = (N,Z,P,S) be the CFG. Define G' = (N',Z,P',S) by the sets N' and P' 

in the fallowing way. We use an auxiliary set P0" 

(i) Initially, set N' = N and P' = P0' where 

PO = {i.A + ~ <i> I e e Z u {~}}. 

(ii) For any i~A + ~ in P - PO' if FG(i ) = k, where F G : A G÷ IN is the mapping 

which defines hG, then 

a. Add A ÷ ethic2 <e> and H i + c <i> to P' where ~I~2 = e and I~iI = k - l 

b. Add H. to N'. It is easily seen that both G'[£/h]G and G'[r/h]G. D 
i 

OBSERVATION4,2_=. If CFG G in Le~mm 4.4 is non-left-recursive, then CFG G' is also 

non-left-recursive. 

It should be noted that in Lemma 4.4 we have restricted ourselves to produc- 

tion directed parse relations. This will also be done in the following observation 

on the symmetry of production directed parse relations. We will frequently refer to 

this symmetry in the cover-table construction of Chapter 6. First we need the follow- 

ing definition. 

DEFINITION 4.2. Let h G be a production directed parse relation for a grammar 

G = (N,Z,P,S). Assume that h G is defined by the mapping F G : A G +IN. Define the pro- 
s 

s by a mapping F G : A G ÷IN, which is defined, for duction directed parse relation h G 

any production ioA + e in P, by 

F~(i) = I~I + 2 - Fg(i). 

S -- --S S 
Notice, that due to this definition Z G = r G, r G = £G and ~PG = ~CG (the left corner 

parse relation of G is denoted by ~CG; the left part parse relation of G is denoted 

by £pG ) . 

OBSERVATION 4~3: (~SYMMETRY') 

Let G = (N,Z,P,S) be a CFG. Define G R = (N,E,pR,s) by defining pR = ~÷ R I A ÷~is 

in P}. Notice that~ for example, a leftmost derivation of w e L(G) coincides with a 

rightmost derivation of w R e L(GR). More generally, any production directed parse 
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S 
relation h G of G coincides with a production directed parse relation hGR Of G R, where, 

for example, h is chosen from {1, r, Ip, Ic}. 

Hence if a grammar G can not be left covered by an E-free grammar, then G R can not 

be right covered by an e-free grammar (Use Lemma 4.2). Another example is the situ- 

ation in which a grammar G does not have a left-to-right covering grammar in GNF. 

It follows that grammar G R does not have a right-to-left covering grammar in G~ 

(Use again Lemma 4.2).End of Observation 4.3. 

4.2. PRELIMINARY TRANSFORMATIONS 

Whenever context-free grammars are involved, the discussion on g-productions and, 

te a lesser extent, single productions (sometimes called unit productions) con- 

sumes a disproportionate amount of space. In this section we single out two transfor- 

mations which deal with these types of productions. In the following lemma, two triv- 

ial cases are considered. 

LEMMA 4.5. Let h G be a parse relation for a CFG G = (N,E,P,S). 

a. If (g,~1) c h G and (g,~2) c hG, with ~! # 72, then G can not be covered by an 

e-free grammar. 

b. For any a e E, if (a,~1) e h G and (a,~2) • hG, with ~! # ~2' then G can not be 

covered by a gran~nar in GNF. 

Proof. 

a. A CFG G' = (N',E,P',S') which is g-free has at most one element (e,~) in any 

parse relation of G'. Therefore, a surjective parse homomorphism can not be de- 

fined. 

b. Similarly. There is at most one element (a,~) in any parse relation of a CFG G' 

in GNF. 0 

In what follows we tacitly assume that each CFG under consideration is reduced, 

cycle-free and it does not have different leftmost derivations of the empty word. 

We continue with some remarks on the elimination of single productions, that 

is, productions of the form A ~ B, with both A and B n6nterminal symbols. 

LEMMA 4.6. Let G = (N,E,P.S) be an E-free grammar which, for each a • E, does not 

have different leftmost derivations from S to a. 

There exists an e-free CFG G' = (N',E,P',S') without single productions such that 

both G'[//I]G and G'[r/r]G. 

Proof. We show how the elimination of single productions can be done. We use auxiliary 
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sets P0' P! and P2" The set P0 is the set of all the single productions in P. Initial- 

ly , P| = {A÷ ~ <i> ! i.A÷ ~ is in P - P0 }, N' = N and P2 = ~" 

(i) For any A £ N, if A~ B ~ y is a derivation in G such that 6 # g and either 

IYI ~ 2 or y ~ S, then add [A6i] ÷ y <~> to P| and [A6i] to N'. To obtain a 

left cover, define ~ = 6i. To obtain a right cover, define ~ = i6 R. Notice 

that since G is cycle-free there are finitely many derivations to consider. 

(ii) Define a homomorphism h : (N' u E)* ÷ (N u E)* by defining h(X) = X for any 

X c N u E u {E} and h([A6]) = A for each [A6] e N' - N. For each production 

H ÷ ~ <~> in P! add the productions in the set 

{H + y' <7> ! H+ y <7> is in P|, ~(Y') = Y and y' e (N' u E)*} 

(iii) 

to P2 ~ 

Initially set P' = P2 o For any ~ c (N' u E)* such that [$6 I] ÷ ~,..~[S6n]÷ 

are all the productions in P2 with a lefthand side of the form [$6], 6 e A G 

and with the same righthand side ~, the following is done. 

(a) Assume ~ = c~ for some c e I and ~ c (N' u E) +. Add the productions 

S' ÷ HiB <~i > and H i ~ c <e> to P', I ~ i N n. Here, H i is a newly intro- 

duced nonterminal symbol which is added to N' and ~i = 6i in the case of 

a left cover and ~. = 6~ in the case of a right cover, ! ~ i ~ n. Symbol 
1 1 

S' will be the start symbol of the newly obtained grammar G' without 

single productions. 

(b) Assume ~ = C~, for some C e N' and ~ E (N' u E) +. Add the productions 

S' ÷ C6i~ ~i > to P', ! ~ i ~ n, with ~i = 6i in the case of a left cover 

and ~. = 6. in the case of a right cover. The newly introduced nontermi- 
1 I 

hal symbols C 6 , | N i ~ n, are added to N'. Moreover, for each y e rhs(~, 

if C ÷ y <7> i~ in P', add the productions C6i ÷ <7>, I ~ i ~ n, to P'. 

(c) Assume ~ = c, c E E. Since there are no different leftmost derivations 

fro~ S to o, we have that n = I. Add S' + c <~|> to P', with ~| = ~I in 

R in the case of a right cover. ~he ease of a left cover and 7! = 61 

(iv) For each production S + ~ <7> in P2 add the production S' ÷ ~ <7> to P'. 

(v) Remove the useless symbols. The newly obtained grammar will be referred to 

as G' = (N',E,P',S'). 

Clearly grammar G' does not have single productions. Grammar G' left covers G. 

Let ~ be the cover homomorphism which is defined in the steps above. After step (ii) 

has been performed the following properties hold. 

A~ w in G' then A~ w in G, with ~(~') = ~. a. If 
L 
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b. If [A~] 9i w in G' then A~ w in G, with ~<~') = ~. 

c. If A w in G then there exists ~' such that either A~ w in G' or [A6] ~ w in 

+ and with ~(~') = ~. G', for some ~ e A G 

These properties can formally be proved by induction on the lengths of the der- 

ivations . Similar properties hold for rightmost derivations. 

In step (iii) and (iv) the new start symbol S' is introduced and the productions with 

lefthand side S' are created in such a way that from S' we can derive 'everything' 

which could be derived from the symbols of the form S and [S~]. From a, b, c and 

simple observations on the definition of ~ in steps (iii) and (iv) it follows that 

G'[I/l]G (and G'[r/r]G). 0 

EXAMPLE 4.1. 

Let G be the CFG with productions 

S ÷ aA aB <1,2> 

A ÷ B a <3,4> 

B ÷ C <5> 

C ÷ aA a <6,7> 

We define a cover homomorphism for a left cover. The productions 3 and 5 are removed 

from P in order to obtain set P]. In step (i) the following productions are added 

to PI" 

[A357] ÷ a <357> [A356] + aA <356> 

[B57] ÷ a <57> [B56] ÷ aA <56> 

In step (ii) the following productions are created. 

S ÷ a[A357] <I> [A356] ÷ a[A356] <356> C ÷ a[A356] <6> 

S ÷ a[A356] <I> [A356] + a[A357] <356> C + a[A357] <6> 

S ÷ a[B57] <2> [B56] ÷ a[A356] <56> 

S ÷ a[B56] <2> [B56] ÷ a[A357] <56> 

Now define S' = S and remove nonterminal C and the productions C ÷ a, C + aA 

C ÷ a[A356] and C -> a[A357] from the grammar. 

It will be clear that the cover which is defined in Lemma 4.6 is faithful. If 

we allow endmarkers for sentences then the condition mentioned in Le~ma 4.5 and in 

Lemma 4.6 does not play a role. 

LEMMA 4.7. For any e-free CFG G = (N,E,P,S) there exists a CFG G' without single 

productions such that both G'[£/£]G and G' [r/r]G. 
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Proof. If L(G) = {g}~ then G' = G. Otherwise, define G O = (N u {So}, ~ u {±}, 

P0' SO) such that 

PO = P U {S O ÷ S i <£>} 

if S ÷ ~ ~ P, and 

PO = (P - {S + e}) u {S O + S± <e>, S O ÷ ± <i>} 

if i.S+ g E P. 

Here ± is an endmarker and S O will be treated as the new start symbol. 

Perform steps (i) and (ii) of the method used in the proof of Lemma 4.6. Then 

remove the useless symbols. Clearly, instead of including S O ÷ ± <i> in P0 it is pos- 

sible to include S O ÷ e <i>. D 

OBSERVATION 4.4. If CFG G in Lemma 4.6 is non-left-recursive then CFG G' is also 

non-left-reeursive. 

~_~_~_~£_m~_E_~e~e~s_*. 

With some simple observations we show the existence of an externally fixed and ex- 

ternally full grammar functor H : S(G') ÷ S(G), where G' and G are as in Lemma 4.6. 

Consider the method which is used in this lemma and assume that a left cover is de- 

fined. Notice that for any production C ÷ y <~> which is in P2 after steps (i) and 

(ii) have been performed, ~ stands for a leftmost derivation from h(C) to h(T). This 

leftmost derivation will be the image morphism of production C ÷ y under H. We use 

to denote this morphism. For example, a leftmost derivation 

A~ BD ~ CcD ~bcD 

for a CFG G has a corresponding left parse 123, while the corresponding morphism of 

S(G) is 

! o (2 + i~) o (3 + idcD). 

This morphism uniquely follows from the string |23. 

LEMMA 4.8. Let G ~ and G be CFG's under the same conditions as in Lemma 4.6. There 

exists an externally fixed, externally full and faithful grammar funetor 

H : S(G') ÷ S(G) o 

Proof. We confine ourselves to the definition of H : S(G') ÷ S(G). Faithfulness and 

external fullness will be clear from the definition of H and the method which is 

used in Lemma 4.6. 
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For the objects it is sufficient to define H on V' = N' u Z, which is done by 

defining: 

(i) H(X) = X for each X E ~. 

(ii) H([A6]) = A for each nonterminal of the form [A6] which is introduced in step 

(i) of the method. 

(iii) H(S') = S. 

(iv) H(Hi) = c for each nonterminal H i introduced in step (iii) (a) of the method, 

with corresponding production H. + c. 
l 

• = in step (iii) (b) (v) H(C~I) C for each newly introduced nonterminal symbol C~i 

of the method. 

For the morphisms it is sufficient to define H on P' which is done as follows. 

(i)' H(A ÷ e <n>) = ~, for each production A ÷ ~ created in step (ii) of the method. 

(ii)' H(S' + e <~>) = W, where @ is either of the form Hi8 or of the form C~iS, 

H(H i + e <e>) = idc, and 

H(C~i + ~ <z>) = ~:, for the productions created in step (iii) of the method. 

(iii)'H(S' + e <~>) = W for each production S' + e <~> created in step (iv) of the 

method. Notice that in this case ~ coincides with S + ~. Q 

End of note. 

Now consider the possibility of eliminating E-productions from a CFG in such a 

way that covers can be defined. The following method is due to Ukkonen [163]. It 

eliminates e-productions from a CFG in such a way that the resulting grammar right 

covers the original grammar. 

DEFINITION 4.3. Let G = (N,E,P,S) be a CFG. If A ~ N, e E rhs(A) and L(~) # {E~ then 

a representation of ~ is a factorization ~ = ~0Xl~iX2...~n_IXn~n , n > 0 which satis- 

fies 

(i) X i c N u I and L(Xi) ~ {E}, I -< i < n. 

(ii) ei c N* and E e L(ei), 0 _< i < n. 

Notice that, in general, a righthand side ~ may have different representations. 

ALGORITHM 4. I. 

Input. A CFG G = (N,E,P,S) such that there is at most one ~ such that S ~ E and 

there is in G no derivation of the form A * ~AS, where ~ + e. 
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Output. An e-free CFG G ~ = (N~,Z,P',S ') such that G'[~/r]G. 

Method. Initially P~ = ¢ and N' = {S'}. If S ~ e, add S' + ~ <~ to P'. If L(G) = 

= {e} then we are done. Otherwise add S' ÷ IS| <e> to P' and [S] to N'. Repeat steps 
-- m 

(I) and (2) until no changes are possible. 

(1) For each element [y~] in N' and for each production j.A ÷ ~ in P such that 

L(~) ¢ {e} add to P', for any representation ~ = ~0XI~|X2...~n_IXn~ n, n > 0 the 

production [yA] ÷ ZIZ2...Z n <j>, where 

(i) Z! = [~oXl~l], if y~0el # ~ or X| c N, and Z 1 = Xl, otherwise. 

(ii) For 2 ~ i ~ n, Z i = [X_iei] , if ~i # e or X i ~ N and Z i = Xi, otherwise. 

Add to N' all newly created nonterminal symbols. 

(2) Let j.B ÷ ~ be a production of G such that e e L(8). For each nonterminal 

r B N' N* LyX~ ] in where ~,~ ~ and X c N u Z, the following is done. 

(i) If Y~B # e or X e N, add the production [7~B] + [yX~] <j> to P' and 

[yX~8] to N'. 

(ii) If Y~6 = e and X ~ Z, add to P' the production [TX~B] ÷ X <j>. 

Similarly, for each nonterminal [yBX_] in N' where X ~ Z and y ~ N*, if Y8 # e, add 

the production [yBX] ÷ [YSX] <J> to P' and the nonterminal [ySX] to N', and otherwise, 

add the production [yB~] + X <j> to P' D 

In this algorithm it is demanded that G has no derivations of the form 
+ 

A ~ aTk6, where ~ ~ e. This condition ensures termination of the method. Notice that 

if G is NLR, then this condition is satisfied. 

A detailed proof for a symmetric version of this algorithm can be found in 

Ukkonen []65]. The proof is basedon the following properties. Let [y_X~] be in N'. 

R 
(a) If [~6] w for some nonempty w in Z , then yX6 w, where 

* zR X ~ w and p = ~( ). 
R 

(b) If yX6 ~ w, where X derives w, then there is a unique derivation 

[yX~] ~ w, with ~(oR) = R. 

The cover which is defined in this way is faithful and, moreover, if G is non- 

left-recursive, then G' is non-left-recursive. Notice that except for a possible pro- 

duction S' ÷ e, the cover homomorphism is very fine. It should also be observed that 

the e-productions are in fact replaced by single productions. 

COROLLARY 4.|~ Any NLR grammar G = (N,Z, P,S), which satisfies the condition that 

is at most one ~ such that S ~ g, has an e-free NLR grsammr G' such that there 

G'[r/r]G. 
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Algorithm 4.1 will be used at various places in this monograph. In Chapter 6 

negative results concerning the possibility to find g-free covering grammars will be 

shown t. 

Before concluding this chapter we want to make one final remark. Not only in 

this chapter but also in the forthcoming chapters transformations will be introduced 

and discussed. For each of these methods it is interesting and useful to investigate 

the efficiency of the method. However, this will not be done in this monograph. The 

interested reader should consult Chapter 4 in Harrison [58] where the appropriate 

notions can be found. 

t (Added in proof) Laufk~tter [177] has independently found the conditions which 

guarantee that elimination of g-productions can be done in such a way that a right 

covering grammar will be obtained. In his 'Diplomarbeit' many other results concer- 

ning E-free covers cart be found. 



CHAPTER 5 

NORMAL FOF~M COVERS FOR CONTEXT-FREE GRAMMARS 

In this chapter we will present results on the existence and nonexistence of 

certain covers for some normal forms. The emphasis will be on the non-left-recursive 

grammars and the grammars in Greibach normal form. Except for a few notes the exis- 

tence of grammar functors will not be discussed. In, e.g., Hotz [ 66], Benson [13] and 

Reichardt [139] grammar functor results for these normal forms can be found. 

Any CFG can be transformed to a weakly equivalent CFG in GNF. Transformations 

to obtain grammars in GNF are in Greibach ~0,5~ , Rosenkrantz [14~ and Hotz [66]. 

Sometimes the transformation is performed in two steps. In the first step a NLR gram- 

mar is constructed, in the second step this grammar is transformed to a GNF grammar 

(of. Aho and Ullman [3] and Wood []71]). 

We investigate transformations which lead to Greibach normal form grammars. It 

should be noted ~hat in the definition of an e-free grammar and in the definition 

of a Greibach normal form grammar we have allowed a production S ÷ e (cfo section 1.3). 

Since this production, if it is in the grammar, remains unchanged under all forthcoming 

transformations we omit mentioning it. 

The organization of this chapter is as follows. In section 5.1 transformations 

to non-left-recursive grammars are considered. Section 5.2 deals with transformations 

from non-left-recursive to grammars in GNF. Section 5.3 discusses transformations on 

grammars which are already in ~F or in GNF. 

5.1. FROM PROPER GRAMMARS TO NON-LEFT-RECURSIVE GRAMMARS 

There are several methods to obtain non-left-recursive grammars from proper con- 

text-free grammars. The most wellknownmethod which is described in e.g. Aho and 

Ullman [ 3 ] (Algorithm 2.13) will be referred to as the standard method for elimi- 

nating left recursion. It appeared before, in different versions, in e.g. Greibach 

[51], Kurki-Suonio [89] and in Kuno [87]. Another method is due to Foster [34 ,35]. 

This method was used in Wood []71] . A similar method was used in Anderson [5] to elim- 

inate left recursion from attribute grammars. Other transformations are in Rosenkrantz, 

Lewis and Stearns [100] (cf. Appendix C7, the 'goal corner transformation'), Soisalon- 

Soininen and Ukkonen []57], Soisalon-Soininen [155 ,156], Ukkonen [|62] and Nijholt 

[115]. 

Our investigations on the existence of non-left-recursive covering grammars for 

proper context-free grammars started with the observation that some remarks concern- 

ing this problem in Gray and Harrison [49] and in Aho and Ullman [3] were not correct 

(of. Nijholt []15]). That is, we showed that for any proper CFG G there exists a 
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CFG G' which is NLR and G'[r/r]G. Moreover, the existence of a NLR grammar G' such 

that G'[I/~]G was verified (of. Le~mla 4.4.). In both cases the cover can be defined 

in such a way that the cover homomorphism is fine. 

In the case of direct left recursion, that is, if A ~A~, with 191 = I, these 

results can easily be sh~n. For general left recursion, if we follow the method of 

[I15], the generalization becomes rather complicated. A simpler method, based 

on a trick of Kurki-Suoni0 [89], is presented in Soisalon-Soininen [156]. 

Similar 'tricks' are in Foster [35] and in Kuno [87]. We illustrate the method 

with the following example. 

EXAMPLE 5.1. (Foster) 

Let G F be the grammar with productions 

S ÷ T I S + T <p,q> 

T ÷ id I T x id <r,s> 

Add to the right of each righthand side a new 'terminal' symbol. For convenience we 

use the labels p, q, r and s. In this way we obtain 

S+Tp I S+Tq 

T ÷ idr I T x ids 

The new gran~mar can be considered as a translation grammar (Brosgol [ 17]); the new 

symbols can then be considered as semantic actions. 

If the standard method for eliminating left recursion is applied to this granmmr, we 

obtain the NLR grammar 

S ÷ Tp I TpX 

X -> + Tq ] + TqX 

T ~" idr I idrY 

y + x ids] x idsY 

Now define a gra~nar G' = (N'~Z,P' ,S) as follows. The set N' consists of the symbols 

S, T, X, Y, p, q, r and s, 

and the set P' of the productions 

S ÷ Tp I TpX <C,g> p + g <p> 

X-~ + Tq I + TqX <e,g> q-> g <q> 

T -> idr I idrY <g,g> r -> g <r> 

Y -~ x ids I × idsY <g,g> s ÷ g <s> 

It is straightforward to verify that G'[r/r]GF, and (with the help of Le~ 4.3) 



50 

G' [£/r]GF. This example will be continued later in this section. 

The argument in this example can be formalized (of. [|56]) and, obviously, this idea 

of adding special symbols to the right of the righthand sides is independent of the 

method which is used to eliminate left recursion. Therefore, also methods different 

from the standard method may be used to obtain the same cover results. This 'trick' 

always yields a faithful cover and a fine cover homomorphism. 

COROLLARY 5.1. Any proper CFG G can he given a NLR gra=mmr G' such that G'[r/r]G 

and G'[£/~]G under a fine and faithful cover homomorphism. 

Notice that this method introduces g-productions. With Algorithm 4.1 they can be 

eliminated in such a way that the right cover is preserved. Unfortunately the left- 

to-right cover can not be preserved (of. Chapter 6). 

EXAMPLE 5.1 • 

If Algorithm 

(continued) 

4.1 is applied to G w, then we obtain the grammar with productions 

If the single 

shperfluous 

S' + [S] <~> 

[s] * IT_p] <~> IT_p] ÷ IT] <p> 

[_S] + [T_p][X] <e> IT_q] ÷ [I] <q> 

IX] ÷ + IT_q] <g> 

IX] + + [T_q][X] <~> 

IT] + [id__r] <~> [iJr] ÷ id <r> 

[Y] + [idr][Y] <~> [~d__s] ÷ id <s> 

[Y] ÷ × [ijs] <~> 

[Y] ÷ × [ids][Y] <E> 

productions are eliminated from this grammar (Lemma 4.6), we delete some 

productions a~d we rename the nonterminal symbols, then we obtain 

S ÷ AB I DC Iid <g,p,rp> 

A + De Iid <p,rp> 

B ÷ + E I + EB <g,g> 

E -> DC ! id <q,rq> 

C ÷ x F I x FC <g,e> 

D + id <r> 

F ~+ id < s> 

This grammar right covers grammar GF. In section 5.2.2 we will return to this grammar. 

End of Example 5, ;. 
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5.2. FROM NON-LEFT-RECURSIVE TO GREIBACH NORMAL FORM GRAMMARS 

Each GNF grammar is NLR. In this section transformations from NLR to GNF grammars 

are considered. There are numerous instances of this transformation. Clearly, any 

transformation to GNF which is defined for proper context-free grammars can be used 

for proper NLR grarmnars as well. 

Algorithm 2.14 in Aho and Ullman [3] (attributed by them to M.Paul) has become 

known as the standard method for transforming NLR grammars to GNF grammars. Other 

methods are sometimes defined for special subclasses of the (non-left-recursive) con- 

text-free grammars. E.g., the strict deterministic grammars (Geller, Harrison and 

Havel [42]), the simple chain grsamnars (Nijholt [122]) and the LL(k) grammars (Rosen- 

krantz and Stearns [144], Aho and Ullman [3]). 

In section 5.2.1 we use an adaptation of the standard method to obtain covering 

context-free grammars in GNF. In section 5.2.2 transformations are described which 

are based on the concept of 'chain'. 

5.2.1. THE 'SUBSTITUTION' TRANSFORMATION 

The standard method to produce a GNF grammar from a proper NLR grammar consists 

of repeated substitutions in the righthand sides of the productions. This process 

does not preserve ambiguity. More precisely, there is the possibility that there 

exists w ~ L(G') such that <w,G'> < <w,G>, where G' is the GNF grammar which is ob- 

tained from gr~mm~r G. It follows that due to the surjectivity condition of the cover 

definition a cover can not be defined. 

This 'loss' of ambiguity which is caused by the process of substitution is simply 

illustrated in Figure 5.It. In this figure we use a CFG G with productions 

]. S ~ AC 

2. S ÷ BC 

3. A÷a 

4. B÷a 

5. C÷c 

The transformation to GNF of this grammar with the standard method is portrayed 

in Figure 5.1. a. Our adaptation of this method gives the situation of Figure 5.1. b. 

The standard method is also used in Benson [ 13]. There it is said that the 

transformation depicted in Figure 5.1. a is ambiguity preserving by providing the 

production S ~ aC with two different indexes. In this way we obtain the situation of 

Figure 5.1. c. One may say that in this way syntactical ambiguity is replaced by 

semantical ambiguity. With our adaptation of the standard method this replacement of 

ambiguity is not necessary. 
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A ~ C  B / ~ C  

a c a c 

a. Decrease of ambiguity 

a•C 
c 

A C B C 

a c a c 

b. Preserving of ambiguity 

A C B C 

a c a c 

, ...... > 

c. Indexed rules 

a• C1 
c 

a• C2 

c 

c 

Figure 5.1~ Transformations to Greibach normal form. 

The following algorithm will produce a left covering granmmr in GNF for a proper 

NLR grammar. We may assume (of. Chapter 4) that the input grammar has no single pro- 

ductions. Moreover, it is assumed that in the righthand sides of the productions of 

the input grammar a terminal symbol can only occur in the leftmost position. This 

can be done without loss of generality; for example, a production i.A + ~aS, ~ # e, 

can be replaced by productions A + eHa~ <i> and H a + a <e>. 

ALGORIT}IM5.1. 

Input. A proper NLR grammar G = (N,Z,P,S) such that eaah production is of the form 

A ÷ a, ~ E ZN* u NN +. 

Output. A CFG G' = (N',Z,P',S) in GNF, G'[I/£]G and the cover is faithful. 

Method. Let PO be the subset of P which consists of all the productions of the form 

N*. A + a~ with a c Z and ~ 6 Initially, set P1 = P0 and N' = N. There are three 

steps. 

(i) For each A ~ N and a ~ Z, if 

A ~ Ca' ~ a s  
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N + z, G with C c N, ~,a' e and # e, then add 

A ÷ a[(l:e)z] 8 <7> 

to PI" Here, ~ = ~:(r-l), r = [~I, ~ = ~'i and [(l:a)w] is a newly created non- 

terminal which is added to N'. 

(ii) Set P' = Pl" For each newly created nonterminal symbol [An] do the following. 

If y ~ ZN' such that A + y <~> is in Pl' then add the production [Awl ÷ y <0> 

to P'. 

(iii) Remove the useless symbols. 

EXAMPLE 5.2. 

Let G be the CFG with productions 

S÷AS I BSl c <1,2,3> 

A ÷ a <4> 

B ÷ a <5> 

For example <aac,G> = 4. The standard method produces a CFG G I with <aac,G1> = I. 

Algorithm 5.1 yields a CFG G' in GNF with <aac,G'> = 4. Initially P] = {S + c<3>, 

A ÷ a<4>, B ÷ a<5>}. In s15ep (i) the productions S ÷ a[Sl4] <14> and S ÷ a[$25] <25> 

are obtained from the derivations 

and 

S I AS4aS 

S 2 BS 5 aS, 

respectively. 

In step (ii) the following productions are obtained. 

[Sl4] ÷ a[Sl4] <14> [$25] ÷ a[Sl4] <14> 

[Sl4] + a[$25] <25> [$25] ÷ a[$25] <25> 

[S14] ~ c <3> [S25] + c <3> 

In step (iii) the nonterminals A and B and the productions A ÷ a and B + a are removed 

from the gr~-~r. 

IEMM~ 5.1. Algorithm 5.1, when applied to a proper ~ grammar G = (N,Z,P,S) without 

single productions, yields a GNF granmmr G' = (N',Z,P',S) such that G'[I/Z]G under 

a faithful cover homomorphism. 
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Proof. Let ~ be the homomorphism which is defined in the algorithm. The proof is 

based on the following observations. Both of them can he proved by induction on 

the lengths of the derivations. 
, ~[w 

Assume that X e N', X = A or X = [Ay] for some A e N and y e A G. If X~ w in G', 
, n 

then there exists ~ E A G such that A~ w and ~(~') = z. 

Conversely, consider the grammar which is obtained before step (iii) is executed. 

If A w in G, then there exists (a unique) ~' e AG, such that X w and ~(g') = ~. D 

§e~ond_n~e_2nsrarmm~r functors~ 

This note is a continuation of the note on grammar functors in section 4.2. As 

mentioned above, using the standard method for producing a GNF grammar does not neceS- 

sar~y lead to a cover. Neither do we have that, if F : S(G') ÷ S(G) is a grammar 

functor, F(S',w) is surjective, where S' is the start symbol of G'. 

If we use the idea illustrated in Figure 5.1. c, then, as is shown in Benson 

[13] an externally fixed grammar functor can be defined which is faithful and exter- 

nally full. However, here we will use Algorithm 5.1 .(hence, Figure 5.1. b) to obtain 

this result. 

Notice that faithfulness and external fullness are preserved under functor compo- 

sition. Therefore, if we have a proper NLR grammar G, we may first eliminate the 

single productions (cf. the note in section 4.2) and then, as presently will be shown, 

apply Algorithm 5.1 to obtain a grammar G' in GNF such that a faithful and external 

full grammar functor H : S(G') ÷ S(G) can be defined. 

Notice that the condition mentioned before Algorithm5.! can also be handled 

functorially. For example, for the given example the functor H should satisfy 

H(Ha) = a, H(A÷ ~Ha~) = A ÷ ~a~ and H(H a + a) = id a . This can be generalized in an 

obvious way, and clearly, such a functor is faithful and externally full. 

LEMMA 5.2. Algorithm 5.1, when applied to a proper NLR grammar G without single 

productions, yields a GNF grammar G' such that there exists an externally fixed, 

externally full and faithful grammar functor H : S(G') ÷ S(G). 

Proof. The method which is used in Algorithm 5.1 is functorial as well. We confine 

ourselves again to the definition of H : S(G') ÷ S(G). 

For each newly created nonterminal symbol of the form [AT] define H([A~]) = A. 

Furthermore, define for each newly created production A ÷ a[B~]~ <n> in step (i), 

H(A ÷ a[B~]~) = 9. For each newly created production [An] ÷ 7 <P> in step (ii), define 

H([Aw] ÷ y) = O. For all the other nonterminals and productions H is the identity 

functor. D 

End of note. 
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5.2.2. THE LEFT PART TRANSFORMATION 

The key concept in ~,e left part transformation is that of a 'chain'. Chains 

were first used in the definition of simple chain grammars (cf. []19,|22]). 

DEFINITION 5.1. Let G = (N,Z,P,S) be a proper CFG. Define a relation CH ~ V x N*Z 

as follows. If X 0 • N then CH(~), the set of chains of X 0 is defined by 

cN(x 0) = {x0x,...x n ~ N*Z I x0 ~ x,~ l'"l X~n' ~i ~ V*, I ~ i ~ n}, 
a~d for c • Z, 

c~(c)  : { c } .  

In the following theorem some properties of chains are listed. Quasi-GNF was 

defined in Definition 1.10. b. 

THEOREM 5.1. Let G = (N,Z,P,S) be a proper CFG. 

(i) For each X • V, CH(X) is a regular set. 

(ii) Grammar G is NLR if and only if, for all X • V, CH(X) is a finite set. 

(iii) Grammar G is in quasi-GNF if and only if, for each X • V and for each ~ • CH(X), 

Proof. (i) If X • Z then CH(X) = {X}, which is a regular set. Assume X • N. We con- 

struct a (right) regular grammar G X = (Nx,%x,Px,[X]) such that L(Gx) = CH(X). Three 

auxiliary sets, N',Z' and P', are used. Define 

(I) N' = {[z] t z~ v} 

(2) Z' = v 

(3) P' = {[a] ÷a i a • Z} 

u 

{[C] ÷ C[Z] I C ÷ Z~ in P, Z • V, ~ • V*}. 

For each X E N, grammar G X = (Nx,Zx,Px,[X]), which is right regular and which satis- 

fies L(Gx) = CH(X), is obtained by removing the useless symbols from G~ = (N',Z',P', 

[x]). 

Properties (ii) and (iii) follow immediately from the definitions. D 

Chains will be used for the construction of the righthand sides of productions 

of a grammar in GNF. Before discussing the 'structure preserving' left part trans- 

formation we present a simpler version which preserves the original language. The 

degree of ambiguity f~r each sentence is not necessarily preserved. 

To avoid a possible complication we demand that the set of productions of the 

original grammar is prefix-free, that is, if A ÷ ~ and A + ~ are in P then ~ = e. 
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Obviously, this can be done without loss of generality. For example, if both A + 

and A ÷ s8 are in P then replace them by A ÷ s, A + H ~ and H + s. 

The righthand sides of the newly ohtained productions will now be finite length 

strings which are obtained with a homomorphism ~ from E[N]*. Homomorphism ~ and alpha- 

bet [N] are defined below. 

DEFINITION 5°2. Let G = (N,E,P,S) be a proper CFG. Assume that P is prefix-free. 

Define 

IN] = {[As] I A e N, s e V* and A + ~B in P for some ~ e V*} 

and deP[ne homomorphism ~ : IN]* + [N]* by 

(i) ~([As]) = g if A + ~ is in P, and 

(ii) $([Ae]) = [As] if A + s8 is in P, ~ # e. 

Now we are sufficiently prepared to present the algorithm. 

ALGORITHM 5.2~ (Left part transformation) 

Input. A proper NLR granmmr G = (N,E,P,S) such that P is prefix-free. 

Output. A weakly equivalent CFG G' = (N',Z~P'~[S]) in GNF. 

Method. Initially, N' = P' = @. N' will consist of all the symbols of [N] which 

appear in the productions introduced below. 

(i) For each SXI"'°Xn ~ CH(S), add 

Is] ÷ x~([~_iXnl[X_2X_~l...[sx1~) 

to P'. 

(ii) For each A + sX0~ in P, where s # e and XoXI...Xn e CH(X0), add 

[~] ÷ Xn~(Cx _~x] o[XoX,][A~Xo]) 

to P'. 

In Figure 5.2, which we hope is self-explanatory we have illustrated 

in (a) and (b) the algorithm for productions S ÷ As l, A + B~ 2 and B + a~ 3. The arcs 

of chain SABa can be considered as the new nonterminals. In (c) and (d) the situ- 

ation is portrayed for productions A + BCB O, C + DE! and D + c~ 2. 
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.... I 

I a [Ba] 

"~2 L(e3) 

a ~-3 
(a) 

L(~2) L(@|) / ~  L(8 2) 

c 8 2 

(b) (c) 

[CD] [ABe] 

L(8 l) L(g o) 

(d) 

Figure 5.2. Transformation to Greibach normal form. 

The proof that L(G') = L(G) is based on the following lemma. We omit the proof 

since similar proofs will be given for other versions of the transformation. 

LE~4A 5.3. 

a. If [A~] m w then A* ~w. 

b. Let A + ~ he a production in P such that if A # S then u # e. Assume that 

XoXI...X n E CH(X0) , n > 0. Then, for each Xi, 0 -< i -< n, if X i ~ y, where 

y e l*, then [A~] ~ y~([Xi_iXi]...[AeX0]). 

Proof. Straightforward induction on the length m of the derivations. 

Note. It is possible to drop in Algorithm 5.2 the input condition that P is prefix- 

free. In that case ~ should be taken as a substitution which satisfies 

(i) ~([A~]) contains ~ if A ÷ ~ is in P, and 

(ii) ~([A~]) contains [A~] if A~ ~8 is in P, 8 # e. 

Hence, ~ maps [A~] to a subset of {e,[A~]} ar~Algorithm 5.2 should be adapted 

in such a wa~ that sets of productions are added to P'. 

End of the note. 

Consider the following property of this left part transformation, which is valid 

for less simple versions as well. 

If Algorithm 5.2 is applied to a CFG G which satisfies the input conditions 

then a CFG G' in GNF is obtained. Subsequently, apply Algorithm 5.2 to grammar G'. 

The newly obtained grammar G" is again in GNF and, moreover, each production is of 

the form A+ ay, with IYI ~ 2 (standard 2-form). 

A second property of the left part transformation which will only be mentioned 
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here is the following. Suppose G is a proper CFG. For each X e V we have that CH(X) 

is a regular set~ Therefore, we can adapt Algorithm 5.2 in such a way that the right- 

hand sides of the productions of G' will become regular expressions (or equivalently, 

regular sets or finite automata). 

In this way we obtain an extented CFG (of. e.g. Heilbrunner [62]). Each exten- 

ded CFG can be transformed to a CFG by replacing each righthand side by a subgram- 

mar which generates the regular set represented by the righthand side. If we use 

the straightforward method which is described in Heilbrunner [62], then the newly 

obtained grammar is proper NLR. A second application of the left part transformation 

yields a grammar in GNF. Hence, the left part transformation can be used, in an adapt- 

ed version, for arbitrary proper CFG's as well. 

Both the special alphabet [N] and the algorithm to obtain a GNF grammar will 

become slightly more complicated in the 'structure preserving' case. It is assumed 

that, if necessary, first the single productions of the input gran~nar are eliminated° 

Due to the special alphabet [N] we do not have to bother about P being prefix-free. 

The transformation which is described is such that the new grammar G' in GNF 

left-to-x covers grammar G, where, informally, x may 'run' from left to left part. 

That is, if G = (N,Z,P,S) then, for each production i.A ÷ ~ in P, F G satisfies 

! ~ FG(i) N I~I. In accordance with the notation introduced in section 2.2 we write 

~ x ~ £p. Hence, x is the production directed parse relation induced by F G. 

Unfortunately, the algorithm does not yield a left-to-right cover. Surprisingly, 

this is not a 'shortcoming' of the algorithm but, as will be shown in Chapter 6, 

this is a general negative result. 

DEFINITION 5.3. Let G = (N,Z,P,S) be a CFG. Define 

IN] = {[Ai~] I i.A+ ~8 is in P for some ~ e V*} 

anddefine a homomorphism ~ : IN]* + IN]* by 

(i) ~([Ai~]) = g if i.A + ~ is in P, and 

(ii) ~([Ai~]) = [Ai~] if i.A÷ ~8 is in P, ~ # e. 

DEFINITION 5.4° Let G = (N,Z,P,S) be a CFG. Define a relation LP & N*Z × A G as fol- 

lows: 

Let m = XoXI..oX n e N+Z. LP(m), the set of left production chains of ~, is defined 

by 

. i 0 i I i~-! . 
LP(~) = {i0il...in_| ~ A G I X 0 ~ XI~ I ~ "'" L Xn~n, ~j E V , ! ~ j ~ n}. 

If ~ ~ Z then LP(~) = {g}. 
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ALGORITHM 5.3. 

Input. A proper NLR graz~nar G = (N,E,P,S) without single productions. 

Output. A weakly equivalent CFG G' = (N',E,P',[S]) in GNF. 

Method. Initially, N' = {[S]} and P' = ~. 

All the elements of IN], which appear in the productions introduced below, will be 

added to N'. 

(i) For each pair (m,0), ~ = SXI...X n e CH(S) and p = i0i|...in_ I e LP(m), add 

[S] ÷ Xn~([Xn_lin_IXn]...[SioXl] ) 

to P'. 

(ii) For any production i.A + ~X0~ in P, ~ # e, and for each pair (m,p), 

= XoXI...Xn e CH(~) and O = ioil.-.in_ I e LP(~), add 

[Ai~] ~Xn~([Xn_lin_iXn]...[X0ioXl][Ai~Xo ] ) 

to P' D 

Notice that for this algorithm the condition thah the input grammar G does not 

have single productions is not a necessary condition. To obtain the cover result of 

Theorem 5.2 it would have been sufficient to demand that, for any A E N and X e V, 

if A~ X and A~)X, then ~ = ~'. Clearly, this condition is satisfied for any unam- 

biguous grammmr G. 

As we have shown, the single productions can be eliminated in a simple way and 

we can avoid the introduction of new conditions. 

THEOREM 5.2. Let G = (N,E,P,S) be a proper and NLR grammar. There exists a CFG G' 

in GNF such that, for any production directed parse relation x, £ s x s £p, G'[£/x]G. 

Proof. We assume that the single productions have been eliminated. Use Algorithm 

5.3 to transform the proper and NLR gran~mar G to a grammar G' = (N',E,P',[S])which 

is in GNF. 

Let T = (N,Z,AG,R,S) be the simple SDTS, defined on G = (N,Z,P,S), which per- 

forms the translation x. 

Define T' = (N',E,AG,R',[S]) on G' by the rules: 

(i) [S] + Xn~([Xn_lin_iXn]...[SioXl]), 

JoJl.-'Jn_l~([Xn_lin_iXn]"'[SioXl ]) 

for each corresponding production introduced in step (i) of the algorithm. The 

Jk'S are defined by, for 0 ~ k ~ n-l, Jk = ik if FG(ik) = I and Jk = ~' other- 

wise. Here, F G : AG +IN is as in Notation 2.1. 
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(ii) [Aia] ~ Xn~([Xn_iin_IXn]...[X0i0Xl][AiaX0]), 

J J0 j i "° o Jn_ 1 ~([xn_li n_ iXn ].-- [~i0x I ] [Ai0~X 0 ] ) 

for each corresponding production introduced in step (ii) of the algorithm. The 

Jk'S and j are defined by, for 0 ~ k ~ n-i, 

Jk = ik if FG(i k) = I and Jk = ~' otherwise, and 

j = i if la~I = FG(i) and j = e, otherwise. 

Cover homomorphism ~ is defined by mapping each production of P' on the string 

j0Jl...jn_ l or jjoJl...Jn_l of its corresponding rule in R', obtained in (i) or (ii), 

respectively. Clearly, T' is semantically unambiguous (of. also the note immediately 

preceeding this theorem) and therefore ~ is well-defined. 

The main task is now to prove that T(T') = T(T). Then, if (w,~') ~ £G' it fol- 

lows immediately that (w,~(~')) E x G. Moreover, from the definitions of T' and 

it follows also that if (w,~) ~ x G = T(T) then there exists (w,w') e £G' such that 

(w,~(~')) = (w,~)~ In fact, this ~' is unique and therefore cover homomorphism ~ is 

faithful. Thus we may conclude that G'[Z/x]G. Two claims are used in the proof that 

T(T') = T(T). The following notation will be useful. 

NOTATION 5.1. Let G = (N,E,P,S) be a CFG. For any string e c V* the notation 6k(e), 

where k ~ A G, is used as follows. (It is assumed that A G n V = ~.) 

(a) If I ~ FG(k) ~ I~l + I then ~k(~) denotes the string ~ika2 , where ~1~2 = ~ and 

I ~ 1 ]  = rC(k) - I. 

(b) If rG(k) > 16[ + I then ~k(~) denotes ~. 

CLAIM i. Consider a production p.A ÷ 0~0~ in P with a~p e V , X 0 e V and if ~ = g 

then A = S. Let p = XoXI...Xn_IX n e CH(X0), n e 0. Then, for each Xi, 0 ~ i ~ n, the 

existence of a derivation 

(Xi,hE(Xi)) ~ (Y,~), 

for some m a 0, y ¢ and ~ e AG, implies that there exists p0Pl...Pi_l e LP(p) 

such that either 

(a) if a = E, then 

([s],[s]) 

(Y~([Xi_IPi_IXi]-..[XoPoXI][SpXo]), 

j jo., oJi_ |~([Xi_iPi_iXi]... [XoPoXl ] [SpXo])), or 
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(b) if, ~ # g, then 

( [Ap~], [Ap~] ) 

m~ 

(Y~ ([ Xi_ iPi_ 1Xi] - • • [~P0XI ] [ApeX0]), 

• x [A~X0])). JJo'" "3i-1 g~([" i-IPi-IXi ] '"  "[XoPoXI ] 

Here, j and Jk' 0 <- k <_ i-I are defined as in (i) and (ii). 

Proof of Claim I. The proof proceeds by induction on m. Suppose m = 0, then 

y = X. ~ E and ~ = g. 
i 

In case (a), with ~ = e, we have p.S-~ X0~9 in P and 

PO P~- l 
X 0 ~ X171 ~'''~ Xi_lTi_ 1 XiY i' 

for some p0Pl...pi_! E LP(p) and yk c V*, ] < k < i. 

From the construction of P' it follows that 

[S] + Xi~([Xi_IPi_iXi ] ...[X0P0XI][SpX0 ]) 

and from the construction of R' the desired result follows. 

Case (b) with e # ~ follows in an analogous way. Now let m > 0 and assume the 

claim holds for all m' < m (induction hypothesis). Let 

k. Y + Y1Y2 . . .gq,  hE(~k(glY2...Yq)) 

be the first of the m rules which are used in the leftmost derivation 

(Xi,h~(Xi)) ~ (Y,g)" 

Thus, we have 

Y = Xi' Y1 = Xi+l and hl(Xi) = X i 

and we have the derivation 

(Y,Y) ~ (YIY2 .... Yq, h~(~k(glY2.--Yq))) 

~ (YlY2 .... Yq, ~1~2 ' ' '~F(k)_lk~F(k) '''~q), 

where YIY2""Yq = y' ~I~T2 "''~F(k)-|kTfF(k)'''~q = ~ and where 

(Yr,hl(Yr)) ~r (yr,~r), 
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where ! ~ r N q, Yr 6 ' ~r £ AG and m r < m. 

We confine ourselves with a proof of the induction step for case (b). Case (a) 

follows along similar lines and therefore its proof is omitted. 

For the derivation 

m 1 
(YI'hE(YI)) ~ (Yl'nl) 

we can use the induction hypothesis to obtain 

([Ap~],[Ape]) 

(yl$([YkYl][Xi ip i X ~...[X0P0XI][AI~X0 ]) - -1  i ~ 

J Jo .o • Ji_ik|~l~ ([YkY~[Xi_ iPi_ IXi]... [X0P0XI ] [ApeX0])), 

where k I = k if PG(k) = ! and k! 

Analogously, for 

mr 
(Yr'hE(Yr)) ~ (Yr'~r) 

= ~, otherwise. 

, r > I 

we obtain from the induction hypothesis that 

([YkY|o..Yr_I], [YkY]...Yr_I]) 

(yr~([YkYlo.~Yr]), krgr~([Ykgl.-.Yr])), 

where k r = k if FG(k) = IYIY2...Yr I and k r = ~ otherwise 

Combining these results yields 

I <r-<q. 

([Ap~],[Ap~]) 

(YlY2o..yq~([Xi_IPi_IXi]'o-!X0P0XI][Ap~X~), 

JJ0...Ji_iki~ik2g2-.'kq_Igq-lkqgq~([Xi-lPi-lXi]'"[X0P0Xl][Ap~X0 ]))° 

Notice that only kF(k) = k and all other kr'S, r # F(k), are equal to e. This 

concludes the induction proof of part (b) and therefore the proof of Claim I. 

Now let (S,S) ~ (w,~) and assume that k.S ÷ ZIZ2...Zn, hE(~k(ZiZ2...Zn)) is the 

first rule which is used in this derivation. Hence, k.S ÷ ZIZ2...E n is in P. If we 

use a similar partition of w and ~ as in the induction proof of Claim I, we obtain 

from this claim 
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( [s] , [s])  

(Wl~([SkZ l],kl~l~([SkZ1])) 

(wlw2...Wn,Zl~2 ...~r(k)_lk~F(k)...~n ) = (w,~). 

Consequently, T(T) ~ r(T'). 

For the converse, the following claim is used. 

CLAIM 2. Suppose that ([ApeX],[Ap~X]) L (w,jz), where j = p if leXl = FG(P)-I and 

j = £, otherwise, Then (A,A) * (~Xw,hl(6p(eX))~). 

Proof of Claim 2. Notice that in this claim e may he the empty word. Write w = av, 

hence, a E 7 and v E l*. If m = I, then v = e and w = a. In this case we have a rule 

[ApeX] ÷ a,j~ 

in T', where 

j = p if leE[ = rG(P)-l, and 

j = e, otherwise. 

This rule is obtained from either a production 

p.A + ~Xa (*) 

in P, hence, z = e, or from productions 

p.A + eXX0, and 

P0" X0 ÷ a (**) 

in P such that ~ = PO" 

Therefore, in the case of (*) we have, according to the definition of T, A ÷ 0~Xa, 

hE(~p(CLXa)) in R, that is, we have 

(A,A) ~ (aXa,h~(~p(eX))~), 

as desired. 

In the case of (**) we have in R, 

A ÷ 0UXXo,hE(~p(C~XX0)), and 

X 0 ÷ a,p 0 

that is, we have 



64 

(A,A) ~ (~XX0,hE(6p(~XX0))) ~ (~Xa,hE(6p(~XP0))), 

where hE(~p(~XPo)) = hE(6p(~X))~ , as desired. 

This concludes the basis of the induction proof. Induction. Assume m > 1 and 

assume that the claim holds for all m' < m. Let the first rule which is used in the 

derivation be 

([Ap~X],[Ap~X]) 

(a~([Xn_IPn_IXn]...[X0P0XI][Ap~XX0]), 

JJoJl -. • Jn_ 1 ~ ([Xn_ iPn_ iXn ]" . • [X0PoXI ] [ApeXXo])), 

Z*. under the assumption that w is written as av, a e Z and v E Notice that by con- 

struction of T' the rules of R' are of this form. 

Here, J'J0' .... Jn-I are again as previously defined. In this case we have the 

leftmost derivation 

([Ap~X], [Ap~X]) 
I 

(a~([Xn_IPn_IXn]-..[XoPoXl][Ap~XXo]), 

OJ0JI.o.Jn_I~([Xn_IPn_IXn]..'[X0P0XI][Ap~XX0 ])) 

l 
(av,j~). 

Z* * = " ~ Obviously, there exist vz £ and ~£ £ A G, 0 < 1 s n, Write j~ jjoJl.oO3n_1~ • 

such that 

(i) v = VnVn_l..VlV0 and ~' = ~'~'n n-l'''~l~O' '" 

(ii) Vn = ~'n = e, if ~([Xn_iPn_|Xn]) = g 

and 

v0 = ~0 g, if ~([ApeXXo]) = e. 

(iii) for each £, I S £ s n and ~([Xl_iPl_iXl]) # e 

we have 

([xt_~pl_~xz], [xz_~pt_~xz]) 
t t  

(~z'kz- i ~t )' 
where t I < m, kl_lw I = ~ and kl_ I ffi Pl-I if Ixll = FG<Pl_1)-I and K-I = ~' 

otherwise. 
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(iv) if ~([ApaXX0]) # E, then 

([A~XXo], [A~XX 0 ] ) 

t o 

(v0,k%), 
where t O < m, k~ 0 = ~ and k = p if I~XXo] = rG(p)-I and k = ¢ otherwise. 

If ~([Xl_IPl_iX1]) # E, 1 ~ I ~ n, then, since tl< m, we obtain from the induc- 

tion hypothesis 

(xl_ 1 ,x~_ z) ~ (xovo,ho(~ ~ ~ pl_l (x l ) )~S ) 

and otherwise, in which case I = n, it follows from the construction of T' that 

(Xn_l,Xn_ I) -- (Xn,hz(SPn_l (Xn)))" 

Analogously, if g([ApaXXo]) # E, then, since t O < m, we obtain 

(A,A) ~ (~XX0v0,hE(6p(~XX0))~0) 

and otherwise, it follows that 

(A,A) o (~XX0,hE(6p(~XX0))). 

If we combine these results the desired result follows. Notice that due to our 

notations we have 

6p/_l(X/) = Jl_iXlkl_l , 1 ~ 1 ~ n, 

and 

6p(aXX0) = ~p(~X)X0k. 

Therefore, 

(A,A) * 

m 

= 

(c~XX0 v 0 ,h E (~p (~XX 0) )~I 0) 

(~XX0v 0,h z (6p (~X) X0k)T o) 

(~xXX i Vl v 0 ,h E (6p (c~X) hy. (~Po (xl)  ) ~r 1 k)'n'O) 

(~XXIV I v0,hE (6p (~X)hE (J 0Xlk0)~ I k)~ 0 ) 

~* (~XX/v/...v0,hx(6p(C~X)hz(J0.. "hE(Jl_iXlkl_l)~lkl_2...~ik)~ O) 
. , . . °  
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(eXavn..,v0,hz(6p(~X))J0...Jn_ikn_1~nkn_2...k0n]k~0) 

= (~Xw,h~ (~p (~x))~), 

which had to be proved. This completes the proof of Claim 2. 

Let ([S],[S]) ~ (w,~) in T'. Let w = av and assume that the first step of this 

derivation is done with a rule 

([S],[S]) ~ (a~([Xn_lPn_iXn]...[X0PoXl][SpX0]), 

JJ0-..Jn_I~([Xn_lPn_~n]...EX0P~I][Spxo]), 

where again X = a and the other notations are as usual. Strings v and ~ can again 

" ' ' ' ' = ~ respectively be partitioned in VnVn_1o..VlV 0 = v and jj0Jl~..jn_l~n_|...~l~0 , 

as we did in the proof of Claim 2. Application of this claim then gives the result 

(s,s) ~ (w,~)o 

This completes the proof that T(T) = T(T') and therefore the proof of the theo- 

rem. D 

The algorithm is illustrated with the following example. 

EXAMPLE 5.3_. 

Let G = (N,Z,P,S) be the CFG with productions 

I.S ÷ AaB, 2.A ÷ cB, 3.B + AB and 4°B ÷ b. 

Define 

rG(1) = I, FG(2) = 2, rG(3) = 2 and FG(4) = I. 

Step (i) of the algorithm yields 

IS] ÷ e~([A2c][SIA]), 

and from step (ii) we obtain 

[A2c] + c~([A2c][B3A][A2cB]), 

[A2c] * b~([B4b][A2cB]), 

and 

[B3A] + e~([A2c][B3A][B3AB]), 

[B3A] * b~([B4h][B3AB]), 
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and 

[SIA] ÷ a~([SlAa]), 

[SIAa] ÷ c~([A2c][B3A][SIAaB]), 

[SIAa] -~ b~([B4b][SIAaB]). 

Performing ~ and listing the image of each production under the cover homomor- 

phism ~ (such that G'[Z/x]G, where x is defined by FG) after each production, we 

obtain the following productions 

[S] + e[A2c][SIA] <I> 

[A2c] + c[A2c][B3A] <2> 
[A2c] ÷ b <24 

[B3A] ÷ c[A2c][B3A] <3> 

[B3A] + b <34> 

[SIA] ÷ a[SIAa] <e> 

[SlAa] + c[A2c][B3A] <~> 

[SlAa] ÷ b <~> 

End of Exanrple 5.3. 

Before we turn our attention to right covers we have a final remark on the 

theorem. It is demanded that, for each production i.A ÷ ~ in P, F G satisfies 

rG(i) ~ l~I. We can slightly weaken this condition by letting rG(i) ~ lel if 

: I ~ N and FG(i) ~ I~I + i if ~ : ! ~ E. 

In section 5.3 and in Chapter 6 we will return to the problem of finding left- 

to-right covers. 

Next we consider the ~oss~bilityof obtaining a CFG in GNF which right covers the 

c-free NLR granrnar. We use two transformations. Me transform g-free NLR grammars to 

grammars which are almost-GNF. For convenience of description we assume that the 

input grammar is such that terminal symbols in the righthand sides of the productions 

can only appear at the leftmost positions of the righthand sides. 

This can be done without loss of generality. For example, if a grammar has a 

production i.A ÷ ~a~, with ~ # g, then we can replace this production by A ÷ ~Ha~ <i> 

and H a + a <e> and the new grammar right covers the original grammar. 

The second transformation will produce GNF grammars from almost-GNF grammars. 

DEFINITION 5.5. A CFG G = (N,E,P,S) is said to he an almost-GNF grammar if for any 

production A + e in P either 

(i) e e Z, or 

NN + (ii) ~ £ and rhs(l:e) c__ Z. 
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ALGORITHI4 5,4~ 

Input. A NLR grammar G = (N,E,P,S) such that P ~ N x (EN* u NN+). 

Output. An almost-GNF grammar G' = (N',E,P',[S]), such that G'[r/r]G. 

Method. The set p' will contain all productions introduced below. The set N' will 

contain [S], all symbols of [N] which appear in the productions and some special 

indexed symbols H. Initially set P' = ~. 

(i) For each production of the form i.S ÷ a in P with a e E, add [S] ÷ a <i> to P'. 

(ii) For each pair (m,p), ~ = SXI...X n e CH(S) and p = i0il...in_ I ~ LP(m), n > I, 

add 

[S] "+ Rin l~([Xn_lin_IXn]...[Si0Xl]) 
<~> 

and 

H. ÷ X <p> 
l n -  1 n 

to P'. Here, p = in_ I if in_l.Xn_l + X n £ P and p = g otherwise. 

(iii) Let i.A + eXo~ be in P, ~ # g. For each pair (~,p), ~ = XoXI...Xn ~ CH(X 0) and 

p = i0il...in_ ! £ LP(~), the following two cases are distinguished: 

(Notice that always n > 0.) 

(I) n = I, ~ = g and iolo+ X 1 is in P; add [Ai~] ÷ X 1 <ioi> to P' 

(2) otherwise, add 

[Ai~] ÷ Hin_l~([Xn_lin_iXn]...[X0i0Xl][Ai~X0]) <P> 

and 

H. ÷ X <q> 
in_ ! n 

to P~, where p = i if i.A-> euX 0 is in P and p = g otherwise, and q = in_ I" 

if in_ |oXn_ | -~ X n £ P and q = ~ otherwise. [] 

I.F&IMA 5.4. Any e-freeNLR grammar G can be transformed to an almost-GNF grammar G' such 

that G'[r/r]G. 

Proof. Without loss of generality we may assume that G does not have single produc- 

tions. We use Algorithm 5.4 to transform G to a gr~r G'. By construction G' is 

almost-GNF. 

CLAIM ]~ The eoverhomomorphis~, implicitly defined in the algorithm, is well defined. 
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Proof of Claim I. To 

lows that if ~(p) = 

forward to verify and 

verify that for any pair p and p' of productions in P' it rol- 

and ~(p') = w', with w # ~', then p # p'. This is straight- 

therefore it is omitted. 

* is defined by letting, for any p E AG, , In the following claims ~ : A~, ÷ ~G 

~(p) = R if and only if ~(p) = w. 

CLAIM 2. If [Ai~] ~ w then A uw. 

Proof of Claim 2. The proof is by induction on [~'[. 

Basis. If [~'[ = I then "~' = [Aiu] ÷ a <ji>. In this case there is a derivation 

A~Xo~a, for X0 ~ N. 

Induction. Assume I~'I -- m, m > I and assume the property holds for all rightmost 

derivations with length less than m. Let p'.[Aie] + H. ~([X .i .X ]...[X0i0X I] 
~n-l n-i n-l n~, 

[Alum]) be the first production which is used in the derivation [Aic~ w. Hence, 

we may write w = X x and ~' = P'Yq', where q' = H. ÷ X . Then we have 
n Xn- I n 

[Aiu] ~' Hin l~([Xn_lin_iXnl...[X0i0Xll[Aiu~l ) ~R "'" 

"'" ~R H. XnXn-l'"XlX0~ ~' XnXnXn-l"'XlX0 = w, 
Xn- 1 

such that 

(a) if ~([Ai~X0] ) # g then [AicX~ ~0 x0) otherwise x 0 = T 0 = e, 

~k 
(b) [xk_llk_ixk] ~ x k, I ~ k ~ n-l, 

~7 n 
(C) if ~([Xn_lin_iXn ]) # e then [Xn_lin_iXn] ~ Xn, otherwise ~n = Xn = g) and 

(d) q'.H. -~ X with p'~0Wl ...~nq' = p'yq' = ~'. 
in- l n 

It follows from the induction hypothesis that 

~(p'~o) 
(a)' A R -> uX0x0) with either ~0(p') = e or ~0 = x0 = e' 

(b)' ~-I ~°(Rk)'> ~Xk) 1 < k -< n-l, and 

(c)' Xn_ l ~0(~q')> XnXn' with either ~0(q') = g or ~n = Xn = ~" 

Thus A ~ >  uw. 
' R 

CLAIM 3. Assume that, i.A ÷ uX0~ is in P and A ~w. Then there exists ~' ~ AG, 

such that [Ai~] ~ w and ~0(~') = i~. 

Proof of Claim 3. The proof is by induction on [wI. 

Basis. If Iw[ = I then, with w.X0÷ w in P, w E Z, we have 



70 

A~X o ~w 

in G, and by construction of G ~ 

[Ai~] ~ w, 

with ~(i') = iT. 

Induction. Assume i~l > ]. We factorize 

into 

i 

Pl 
~ Vl, and 

~0 
X0 ~ av 0, 

where av0v I = w. Since X 0 £ N we have 1Oil < I~l and from the induction hypothesis 

we obtain, if ~ # e, 

[Ai~X O] ~ vl, with ~(p~) = i01. 

Moreover, there exist productions ik. ~ + ~+]~k' 0 E k ~ n-I and X n 

that 

= a, such 

with 0 -< k _< n-l and such that IT~kl < l'~i, hence 

[~ikxk+ 11 ~ w k 

and tp(~) = ik~ k 

(ii) i 1 ~ aWn- I x~ ~a% ~ 

s~ch that I~-II ~ i~l, hence, if ~n # ~' 

n-I 
[Xn-lin-la] ~ Wn-l' 

and ~(~n_i ) = in_]Xn_ I 
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(iii) Wn_l...w]w0 = v 0 and i0~0il~l...in_lT[n_ 1 = 00. 

It follQws that in P' there exists a production 

p' .[Aie] ÷ Hin_l~([Xn_lin_la]...[X0i0X0][AieX0] ) 

and a derivation 

[Aie] ~ w, 

such that 

(a) w = av0v], 7' = ' ' ' ' ' with q' is H. ÷ a. 
P Ol~0 ,..~n_lq , in_l 

(b) ~(p'0~) = i0~, 

qO(g~...g'n_, ") = i0g0il'''in-2~n-2' 

q0(TTn_lq' ) ffi in_l~n_l, and 

i07[0i I "" ' in-2~n-2in- 17[n- 1 = P0" 

Hence, ~0(~') = iPlP0 = i~. D 

Now it is not difficult to verify that G'[r/r]G. Therefore we omit the 
7[ I 

details and only mention that if IS] ~ w then one should distinguish the first 

production from the remainder of the derivation. A similar argument can be used to 

show the surjectivity of the cover homamorphism. This concludes the proof of Lemma 

5 . 4 .  

Next  we show t h a t  a n y  a l m o s t - ( ~ / F  g r a r m a r  can  be  t r a n s f o r m e d  t o  a GNF grammar .  

This is done in the following algorithm. The newly obtained grammar will right cover 

the original grammar. 

ALGORITHM 5.5. 

Input. 

Output. 

Method. 

Step I. 

is done. 

An almost-GNF grammar G = (N,E,P,S). 

A GNF grammar G' = (N',E,P',S) such that G'[r/r]G. 

We use two auxiliary sets, N O and P0" Initially set N' = N, N O = @ and 

P0 = {A÷ ~ <i> I i.A÷ u is in P and ~ ~ E}. 

For each production i.A + BC~ in P (with B,C E N and ~ £ N*) the following 
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(i) If j.C + DEE is in P (with D,E e N and 8 ~ N*) then, for any pair of produc- 

tions k.B ÷ a and £.D ÷ b in P add 

and 

A ÷ a%~[Ej]e <i> 

Hk£+ b <kl> 

to P0" Add [EO] to N O and [Ej] and Hk£ to N'. 

(ii) If j.C ÷ b is in P, then, for any production k.B ÷ a add 

A ÷ aHkj~ <i> 

and 

~j ÷ b <kj> 

to P0" Add ~j to N'. 

Step 2. Set P' = PO" For each [Ej] in N O add [Ej] ÷ ~ <ij> to P' for each production 

E ÷ e <i> in P0 o 

Step 3. Remove the useless symbols. D 

The general idea of the transformation is displayed in Figure 5.3. 

B 
I 

a 
D B E 

b 
Figure 5.3. 

a Hk£ ~ LE3 J 

l<k£> l<.j> 

b 

Step ] of Algorithm 5.5. 

LEMMA 5.5. ~y almost-GNF grsmmar G can be transformed to a GNF grammar G' such that 

G'[~/~]G. 

Proof. Let ~ : d~, ÷ A G be the cover homomorphism which is defined in the algorithm. 

As we did in the proof of Lemma 5.4 we will use homomorphism ~ instead of ~. Two claims 

are used in the proof of Lemma 5.5. For any triple of strings 6, 8 and y with u = 8Y 

we have that ~/8 denotes y. 



73 

CLAIM 1. Assume A ~ N. 

(i) If A R w in G' then A w in G. 

(ii) If [Ak] ~ w in G' then A w in G, with ~ = ~0(~')/k. 

Proof of Claim ]. The proof is by induction on I~'I. 

Basis. If IT'] = I then we have 

(i) Production A + w is both in P and P', hence the claim is tri~ially satisfied. 

(ii) Production ~'.[Ak] + w is in P'. From step 2 of the algorithm ~t follows that 

~(~') = ki, where i.A ÷ w is in P. Therefore A ~w in G, with 6 = ~(~')/k. 

Induction. Consider case (i). Assume A ~ w in G', with I~'I > 1. The first produc- 

tion which is used in this derivation is either of the form i'.A ÷ aHkl~[Ej]~ <i> 

or i'.A ÷ a~j~ <i>. Notice that in both cases we can completely determine from which 

two productions of P such a production has been constructed. We continue with the 

former case. The case in which A ÷ a~j~ is the first production can be treated simi- 

larly and is therefore omitted. Now we can factorize the derivation in the following 

way: 

(a) i'.A + aBI~8[Ej]~ , with ~(i') ffi i.A + BCc~, where B is the lefthand side of pro- 

duction k in P and C is the lefthand side of production j in P. 
! 

(b) ~ w0, and from the induction hypothesis it follows that ~=~w 0 in G, where 

~0 = ~(~)" 
(c) [Ej] R Wl' and from the induction hypothesis it follows that E ~w I in G, where 

~' ~2 
(d) 8 ~w2, and from the induction hypothesis it follows that 8 ~w 2 in G, where 

~2 ffi ~(~2)" 

(e) q'.Hk~+ b, where we assume that b ~ Z is the righthand side of production 1 in 

P. Moreover) ~(q') ffi Zk. 

It follows that ""' ' ' ' z ~0~i~2 q ffi ~', ahw2wlw 0 = w and ~(~') = i~0J~1~21k , such 

that <if we assume that D is the lefthand side of production ~) 

~0 ~l ~2 1 k ffi 
A ~ BC~ ~ BCw 0 ~ BD~Ew 0 ~ BDSWlW 0 ~ BDW2WlW 0 ~ BbW2WlWo ~ abW2WlW0 w 

This concludes the verification of ease (i). Case (ii) can be verified along 

similar lines and therefore this case is omitted. This concludes the induction part 

of the proof and therefore the claim is proved. D 

CLAIM 2. Consider CFG G' before step 3 of the algorithm is executed. If A ~ w in G 

then there exists ~' E G' such that A ~ w in G' and ~(~') ffi ~. 
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Proof of Claim 2. In the proof which may proceed by induction on I~I one should 

distinguish that A w in G can also imply [Ak] ~ w, for some k ~ A G and with 

~(~')/k = ~. We omit the proof since it proceeds along the same lines as the proof 

of Claim 1. 

From these two claims it is now clear that G'[r/r]G. 

The next theorem follows from the previous results. 

THEOREM 5.3. Any e-free CFG G can be transformed to a CFG G' in GNF such that 

G'[r/r]G. 

Proof. For any e-free CFG G we can find an e-free NLR grammar G O (Corollary 5.1) 

such that G0[r/r]G. The single productions of G O can be eliminated in such a way 

that the right cover is preserved (Lemma 4.6) and the new grammar, which is also 

non-left-recursive (Observation 4.4) can be transformed with Algorithm 5.4 followed 

by Algorithm 5.5 to a grammar G' which is in GNF and which has the property G'[r/r]G.~ 

Now that we have seen this positive cover result one can ask for an anologous 

result for left covers° Unfortunately, as we will see in Chapter 6, this is not pos- 

sible. 

We conclude this section with an example. 

EXAMPLE 5.4~ 

In Example 5.! we introduced granmmr G F and we transformed it to a proper NLR gram- 

mar without single productions. Hence, we can transform it to an almost-GNF grammar. 

Assume that the productions are numbered from I to 13 (el. p.49). 

In step (i) and (ii) of Algorithm 5.4 we obtain 

[S] + id <rp> 

IS] + H|2[A4D][SIA] 

[S] ÷ Hs[SIA] <e> 

IS] ÷ HI2[S2D] <e> 

HI2 + id <r> 

H 5 ÷ id <rp> 

<e> 

In step (iii) the following productions are obtained: 

[A4D] +Hl0[Ct0×]  <p> 

[A4D] ÷ H l l [ C t t X ]  <p> 

H]0 ÷ x <e> 

HI1 + x <e> 
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[SIA] ÷ H6[B6+] <E> 

[SIA] ÷ HT[BT+] <~> 

H 6 + + <e> 

H 7 ÷ + <e> 

[S2D] ÷ HI0[CI0X] <p> 

[S2D] ÷ Hil[CllX] <p> 

[ClOX] ÷ id <s> 

[Cllx] + HI3[CIIxF] <e> 

HI3 ÷ id <s> 

[CIIxF] ÷ HIo[CI0×] <e> 

[CllxF] + Hll[Cllx]  <e> 

[B6+] + H|2[E8D] <£> 

[B6+] + id <rq> 

[B7+] ÷ HI2[E8D][B7+E] 

[B7+] + ~[B7+E] <e> 

H 9 ÷ id <rq> 

<g> 

[E8D] ÷ HI0[C][Ox] <q> 

[E8D] + Hll[C]llx] <q> 

[B7+E] + H6[B6+] <e> 

[B7+E] ÷ H7[B7+] <e> 

Clearly, this gra~nar is in almost-GNF. Moreover, it right covers G F under the 

cover homomorphism which is indicated after each production displayed above. 

Since it is already sufficiently clear that our methods will transform the four 

productions of the example graram~rG F to an unattractively long list of productions 

for a right covering gr~mmmar in GNF, we will not bother the reader with the trans- 

formation from almost-GNF to GNF for this example. Instead we consider a more simple 

example. 

EXAMPLE 5~5~ 

Consider CFG G with productions 

I. S ÷ AS, 2. S + b, 3. A÷ a. 

Grammar G is in almost-GNF. Therefore it can be transformed to a CFG G' in GNF such 
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that G'[ r/r] G. 

In step | of Algorithm 5.5 the following productions are added to P0 = 

= {S+ b <2>, A÷ a <3>}: 

S + aH33[Sl] <I> 

H33 ÷ a <33> 

S + all32 < I> 

H32 -+ b <32> 

In step 2 the following productions are added in order to obtain P'. 

[Sl] ÷ aH33[Sl] <11> 

[Sl] + aH32 <II> 

[Sl] ÷ b <21> 

In step 3 production A + a is removed from P' and A is removed from N'. 

5.3. TRANSFORMATIONS ON GREIBACH NORMAL FORM GRAMMARS 

In this section we consider transformations on context-free gra,,~rs which are 

in GNF or in GNF. 

As we already mentioned in section 5.2, if we apply the left part transformation 

(Algorithm 5.2 or Algorithm 5.3) to a CFG which is already in GNF then the newly 

created grammar is in standard 2-form. 

Once we have a CFG in GNF we can use the following algorithm to convert left 

parses into right parses. This algorithm is a slight generalization of a method which 

was first used in[121]. 

ALGORITHM 5.6. 

Input. A CFG G = (N,E,P,S) in GNF. 

Output. A CFG G' = (N~,E,P',S) in GNF such that G'[r/~]G. 

Method. Initially, P' = ~ ÷ a <i> I i.A ÷ a ~ P, a ~ E) and N' = N. The indexed 

symbols H which are created below are added to N'. Each newly created production is 

followed by its image under the cover homomorphism @. 

(i) For each production of the form i.A ÷ a~ in P, c~ # ~, the following is done. 

N*. Assume ~ = By, y ~ For any Jk" B ÷ bkY k in P, ! ~ k ~ Irhs(B)[ add 

A + aHiJkYkY <~> 

and 

H. ÷ b k <ijk> 
ZJk 
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tO P'. 

(ii) Remove all useless symbols. 

THEOREM 5.4. Any CFG G in GNF can be transformed to a CFG G' in GNF such that 

G'[~/~]G. 

D 

in G. 

CLAIM I. If A ~ w in G', then A w in G. 

Proof of Claim ]. Notice that A ~ N. The proof is by induction on I~'I. 

Basis. If I~'I = ] then ~(~') = ~' and the result is clear. 

Induction. Assume I~,I = m, m > ]. For A ~ w we may write 

i' 

zJ k 

where i'p'j' = ~' and ahw' = w. 

N* Since JP'I < m and yk Y e it is easily verified with the help of the induction 

hypothesis that 

Yk ~ L~w ' 

in G'. Moreover , ~(i') = E and ~(j') = jk i, where Jk.B ÷ bTk and i.A ÷ aBy are in 

P. Hence, 

~f 
CLAIM 2. If A ~ w in G, then there exists ~' ~ d~, such that A 

~(~') = ~. 

Proof of Claim 2. The argument is similar to that of Claim I. Notice that if I~I > i 

we can write 

The details are left to the reader. D 

In both claims we can take A - S and we can conclude that G'[~/~]G. 0 

If a gra=~ar is in GNF, then there exists a very simple proof to show the existence 

D 

w in G' and 

Proof. Two claims are used to prove the theorem. Homomorphism ~0 : AG' ÷ ~G is defined 

by letting~ for any p ~ ;~G' ~0(p) = ~R iff ~(p) = ~, where ~ is as in Algorithm 5.6. 
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of a left-to-ripest covering grammar in GNF. 

THEOREM 5.5. Any CFG G in GNF can be transformed to a CFG G' in GNF such that 

G'[I/r]G. 

Proof. Let G = <N,Z,P,S) be the CFG in GNF. Define a grammar G R = (N,AG,PR,S) by 

the set of productions 

PR = {A-~ ei I i.A ÷ ~a is in P, a e Z}o 

* Z* Define homomorphism ~ : A G ÷ by letting ~(i) = a if i.A + ~a is in P. 

Notice that G R is unambiguous. Find for G R a weakly equivalent CFG 

G L = (N',AG,PL~S') in GNF. Grammar G' and the associated cover homomorphism ~ are ob- 

tained from G L by defining 

P~ = {i' .A' ÷ a~' ~> I i' .A' ÷ j~' is in PL and ~(j) = a}. 

We may conclude that G'[Z/r]G if we have verified that ~ is well-defined. That 

is, if i'.A' + is' and j'.A' ÷ j~' are in PL' then i # j implies ~(i) # ~(j). But 

this property is trivially satisfied since otherwise G L can generate sentences of 

the form~li~ 2 and zlj~ 2. Hence, there exists w £ L(G) such that ~(~|i~2) = ~(~lj~2) =w, 

and we have two different right parses for the same sentence. Since these right parses 

only differ in one production, this is impossible. 

The usefulness of this theorem will become clear from the following observation. 

We know (Theorem 5.2 and 'symmetry') that any proper NRR grammar G can be transformed 

-- G0[~/~]G" to a CFG G O in GNF such that From the above theorem it follows that we can 

transform G O to a grammar G' in GNF such that G'[£/r]G 0 and from transitivity it 

follows that G'[I/~]G. 

COROLLARY 5.2. Any proper NRR gra~nar can be transformed to a CFG G' in GNF such 

that G'[Z/r]G. 

A similar result was obtained in Ukkonen [16~ • 

We conclude this section with some observations on production directed parses 

which are different from the left and right parses. 

In section 5.2.2 it was shown that for any proper NLR grammar G there ~xist a 

CFG G ~ in GNF such that G'[£/x]G, £ ~ x ~ £p. From transitivity and Theorem 5.4 of 

this section one can immediately conclude that any proper NLR grammar G can be given 

a CFG G' in GNF such that G'[~/x]G, £ ~ x ~ £p. 

However, it is fairly simple to obtain more general results. 
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LEMMA 5.6. Let G = (N,E,P,S) be a NLR grammar. Let x G be a production directed parse 

relation. Then there exists a CFG G' in GNF such that G'[r/x]G. 

Proof. From Lemma 4.4 and Observation 4.2 it follows that there exists a grammar 

G l such that G l is NLR and Gl[r/x]G. Grammar G] can be transformed to an e-free NLR 

grammar G 2 (Corollary 4.~) such that G2[r/r]G I. Finally, for G 2 we can find a CFG 

G' in GNF such that G'[r/~]G 2 (Theorem 5.3). Hence, G'[~/x]G. 

Another interesting result is obtained from the following argument. Consider a 

proper CFG G with a production directed parse relation x which satisfies lc ~ x ~ ~. 

Define a proper CFG G I in the following way. 

For each production i.A + ~ of G with I~I > 1 and PG(i) = Is{ + l define pro- 

ductions A ÷ HiE <e> and H i ÷ ~ <i> for granmmr G I. If I~I = l, then A + ~8 is 

also production of grammar G l . 

Clearly, GI[~/x]G. Hence, with the hel~ of Theorem 5.3 and transitivity, it 

follows that there exists a CFG G' in GNF such that G'[~/x]G. 

COROLLARY 5.3. 

(a) If G is a proper NLR grammar, then there exists a CFG G' in ~F su~ that 

G'[I/x]G, 1 ~ x ~ lp. 

(b) If G is a NLR grammar, then ~ere ~ists a CFG G' in ~F such that G'[r/x]G, 

l ~ x ~ .  
(c) If G is a proper CFG, then there exists a CFG G' in GNF su~ that G'[r/x]G, 

Note. Observe that if G is in GNF, then le G coincides with 1 G. Analogously, if G 

is in GN--~ then /PG coincides with rG° 



CHAPTER 6 

THE COVER-TABLE FOR CONTEXT-FREE GRAMMARS 

Once more we mention that the context-free grammars which we consider are cycle- 

free, they do not have useless symbols, and if the empty word is in the language then 

there is exactly one leftmost derivation for this word. Such a grammar is referred 

to as an amenable (AME9 grammar. We will not pay attention to the special produc- 

tion S O ÷ S± which may be introduced in the case of the elimination of single produc- 

tions. 

The cover-table, which is presented below, has five rows (AME, g-FREE, NLR, 

E-FREE NLR, GNF) and seven columns (AI~, e-FREE, NLR, e-FREE NLR, GNF, NRR, g-FREE 

NRR). Each row has four subrows, one for each type of cover which is considered, viz., 

I/l-, g/r-, ~/£- and ~/~-covers. For each of these covers a yes~no-answer is present- 

ed to t_he question whether certain types of grammars (indicated by the name of the 

column) can be covered by a grammar in some normal form (indicated by the name of 

the row). 

A simple reference system to the entries of the table is used. Except for the 

AME-row all places are labeled with either letters (~,...,p.) o?r numbers (I.,.,.,96;). 

Example. Entry 25. is no, hence, not every g-free grammar (satisfying rheA ME- 

conditions) can be left covered with a NLR grammar. 

We have a short discussion on a negative cover result. In Ukkonen [164 it is 

shown, among others, that grammar G with productions 

÷ OSL i ORL S 

R ÷ I R L  i 1 

L + g  

can not be left covered with an g-free CFG. Now, consider CFG G O with productions 

1. S + 0SL 

2. S +  IRL 

3. R ÷  1RL 

4. R÷2 

5. L+g 

Clearly, if G does not have an g-free CFG which left covers G, then G O does not 

have such a grammar. Gran~ar G O will be useful in the construction of the cover-table. 

Next we list the productions of a CFG GN which has the property that GN[r/£]G 0. 
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s ÷ OHo0S <55> H00 ÷ 0 <II> 

S ÷ 0HoIR <55> H01 ÷ I <12> 

S ÷ IHIIR <55> HII ÷ 1 <23> 

S ÷ IHI2 <5 > HI2 + 2 <24> 

R÷ ]Q]I R <55> QI] ÷ I <33> 

R + IQ]2 <5> QI2 + 2 <34> 

R + 2 <4 > 

Grammar G N is in GNF and since GN[r/Z]G 0 we may immediately conclude that G N 

does not have an e-free CFG G' such that G'[~/r]%. 

Now we are sufficiently prepared to present the cover-table (Table VII) and the 

way it is obtained. 

(6.1) All the Z/£ and ~/r entries of the AMB-row are trivially yes. The £/r and r/£ 

entries are yes because of Le~na 4.4. 

~6.2) Trivially yes are also the entries Ix, 4., 9., 12., 13., 16., 21., 24., 29.,32., 

33., 36., 37. and 40. Because of Lenmm 4.4 and Observation 4.2 the entries 

30., 31., 34., 35., 38. and 39. are yes. Trivially yes are also the entries 

57., 60., 61., 64., 85. and 88~ 

(6.3) Due to grammar G O we have that entry a. is no and from 'symmetry' it follows 

that entry d. is no. Therefore, also i., ~., m. and p. are no. Since G O is 

NLR it follows that entry 5. is no and again from 'symmetry' entry 20. is no. 

Thus, entries 68. and 92. are no. 

Next we consider grammar G N. This grammar has the property that GN[~/Z]G 0. (6.4) 

Since G O has no e-free grammar which left covers G O it follows that G N does 

not have an e-free grammar which left-to-right covers G N. Moreover, G N is in 

GNF, hence, the entries 14., 10., 6., 2. and b. are all no. Because of 'symme- 

try' it follows that the entries c., 3., 19. and 23. are no. 

We 

(i) 

(ii) 

(iii) 

(iv) 

have the following irmnediate consequences. 

Since entries b. and c. are no it follows that entries j., k., n. and o. 

are no. 

Since entries 2. and 3. are no it follows that entries 50., 51., 74. and 

75. are no. 

Since entries 5. and 6. are no it follows that entries 53., 54., 77. and 

78. are no. 

Since entries 10. and 14. are no it follows that entries 58., 82., 62. 

and 86. are no. 



82 

AME 

g-FREE 

~CO~ER 

Z/l 

r/r 

Z/l 

r/r 

e-FREE e-FREE 
AME E-FREE NLR GNF NRR 

NLR NRR 

yes yes yes yes yes yes yes 

yes yes yes yes yes yes yes 

yes yes yes yes yes yes yes 

yes yes yes yes yes yes yes 

!a. no ]. yes 5. no 19. yes 13. yes 17. yes 21. yes 

b. no 2. no 6. no lO. no ]4. no 18. ~es 22. yes 

ic. no 3. no 7. yes ||. yes 15. yes |9. no 23. no 

!d. no 4. yes 8. ~es ]2. yes 16. yes 20. no 24. yes 

NLR 

e-FREE 

NLR 

1/l ie. no i25. no 29. yes i33. yes 37. ges ~I. no ~5. no 

I/~ if. no ~6, yes 30. yes 34. yes 38. ges ~2. no ~6. yes 

~/l ig, no ~7. no 3l. yes 35. yes 39, yes !43. no ~7. no 

r/r !h. no i28. yes 32. yes 36. yes 40. yes i44. no ~8, yes 

Z/1 i. no ~9. no 53. no 57. yes 6l. yes 65. no 69. no 

I/r j. no 50. no 54. no ~8. no 62. no 66. no 70. yes 

~/Z k. no 51. no 55, yes 59. yes 63. yes 167. no 7[. no 

r/r Z. no 52, yes 56. yes 60. yes 64. yes 68. no 72. yes 

G ~  
~/~ 

r / r  

m. no 73. no 77. no iSl. yes 85, yes 89. no 93. no 

n. no 74, no 78. no 82. no 86. no 90. no 94, ges 

o, no 75, no 79. yes 83. ye~ 87. yes 91. no 95. no 

p. no 76. yes 80. yes 84. ye~ 88. yes 192. no 96. yes 

Table VII. Cover-table. 
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(v) Since entries 19. and 23. are no it follows that entries 67., 93., 73. 

and 95. are no. 

(6.5) Due to the Corollaries 5.1 and 4.3 the entries 26., 28. and 52. are yes. From 

Theorem 5.2 it follows that entry 83. is yes. From Theorem 5.3 it follows that 

entries 76., 84. and 96. are yes. Since entry 96. is yes it follows that en- 

tries 72. and 48. are yes. From Corollary 5.2 it follows that entry 94. is yes 

and, consequently, entries 70., 46. and 22. are yes. Since the entries 8]. and 

85. are yes Theorem 5.4 tells us that entries 83. and 87. are yes and, conse- 

quently, entries 59., 31., 63. and 35. are yes. 

With some simple observations, in which Theorem 5.4 can be used to obtain 

contradictions, it follows that the entries 73., 90., 93. and 89. are no. 

Since the entries 73.,89., 93., and 90. are no, the entries 49., 69., 65. 

and 66. are no. Otherwise a contradiction with Theorem 5.2 can be obtained. 

(6.6) Because of Corollary 4.] we have that entry 8. is yes and from 'symmetry' it 

follows that entry 17. is yes. The assumption that entries h. and g. are yes 

leads, with the help of Corollary 4.1, to a contradiction with entries d. and 

c.which are no, respectively. 

Similarly, with Corollary 4,3 and since entry 31. is yes, we must conclude 

that entries f. and e. are no in order to avoid contradictions with h. and g., 

respectively. Since both entry39, and entry 20. are no we obtain with the same 

type of argument that entries 4l., 42., 43. and 44. are no. 

(6.7) Entry 56. is yes ~fnce the entries 8. and 52. are yes. The entries 25. and 

27. are both no since otherwise a contradiction can be obtained (via entry 31. 

and 56. in the case of entry 25. and via entry 56. in the case of entry 27.) 

with entry 3. which is no. 

For any NLR grammar G there exists a NLR grarmnar G' such that G'[~/I]G. 

Grs/mnar G' has an e-free NLRgrammar G" such that G"[r/Z]G. Hence, entry 55. 

is yes and therefore also entry 7. is yes and ('symmetry') entry ]8. is yes. 

Since entries 55. and 56. are yes it follows (with entry 84.which isyes) that en- 

tries 79. and 80. are yes. 

Both entries 45. and 47. are no because otherwise, with the help of 55. and 

5~., a contradiction with entry 71. is no is obtained. This concludes the con- 

struction of the cover-table. 

We conclude this chapter with a few remarks on the cover-table in relation with 

section 3.2 ('Historical notes'). 

Our right cover result (entry 76.) deals with the comment of Griffiths and 

Petrick. That is, we have found a procedure for relating the structural descriptions 

of a standard form grammar (GNF graa~nar) to the context-free grammar from which it 
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was constructed. 

Both Kurki-Suonio and Foster solve (in their formalism) the problem of relating 

the structural descriptions in the case of elimination of left recursion. In the 

cover formalism (Soisalon-Soininen [156] and Nijholt ~1~) there are corresponding 

right cover results (entry 28.) 

Kuno's attempts are also illustrated in the table. He has no problem to relate 

a GNF grammar to the NLR grammar from which it is constructed (cf.entry 81.). How- 

ever, his attempt to relate a NLR grammar to the context-free grammar from which 

it is obtained gives rise to a complicated procedure. It follows from our cover- 

table (cf. entry 25.) that a cover homomorphism is not strong enough to express this 

relation. 



CHAPTER 7 

NORMAL FORM COVERS FOR REGULAR GRAMMARS 

In this chapter we present two techniques to transform left and right regular 

grammars into covering GNF grammars. 

Given a left regular gr~-~nar G, the method described in the proof of Theorem 

5.5 is adequate to obtain a grammar G' in GNF such that G'[Z/r]G. However, the first 

algorithm of this section shows that we can always find a right regular grammar G' 

such that G'[Z/r]G. The method in this algorithm is a slight adaptation of a method 

which is sometimes used to show that the classes of languages of left regular and 

right regular gra~rs coincide. 

ALGORITHM 7.1. 

Input. A left regular gr~-n~r G = (N,E,P,S). 

Output. A right regular gr~,r G' = (N~E,P',S') such that G'[Z/~]G under a very 

fine and faithful cover homomorphism. 

Method. Initially, set P' = @. Each production in P' will be followed by its image 

under the cover homomorphism. Set N' will consist of the nonterminal symbols which 

occur in the productions. Start symbol S' is the only newly introduced nonterminal 

symbol. 

(i) For any A ¢ N, A # S, if i.A ÷ a is in P, then add S' ÷ aA <i> to P'. Moreover, 

if i.A + Ba is in P, add B + aA<i> to P'. 

(ii) a. If i.S + a is in P, add S' + a <i> to P'. Moreover, if S is left recursive, 

add S' + aS <i> to P'. 

b. If i.S ÷ Aa is in P, add A ÷ a <i> to P'. Moreover, if S is left recursive, 

add A + aS <i> to P'. D 

TI~EOREM 7.1. Any left regular grammar G can be transformed to a right regular gram- 

mar G' such that G'[Z/~]G under a very fine and faithful cover homomorphism. 

Proof. Use Algorithm 7.~. Obviously, G' is right regular and the homomorphism which 

is defined is very fine. Call this homomorphism ~. Two claims are used. 

~t 
CLAIM I. Assume B ~ S', If B ~ wA in G', then there exists a derivation A ~Bwin 

G, with ~(~') = R. 

Proof of Claim |. The proof is by induction on [w]. Assume lwI = |. Hence, w ~ E 

and we write w = a and ~' = i'. In this case there is a production i'.B ÷ aA in P' 

and there exists a production i.A + Ba in P with ~(i') = i. 
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Now assume lwj > ! If we write w = au, with a E Z and u e Z +, and ~' = i~p ~ 

where i'.B ÷ aC is in P', then we have a derivation 

i' ~' 
B ~ aCL auA 

in G'. 

Notice that~ due to the construction of G', S' does not occur in a righChand 
v 

side °f a pr°ducti°n" Theref°re' ~n#Gi'w::~eS~:)C=~L uA:~ ::~ ~°~ee~:st~e 

induction hypothesis that A ~ Cu O R e r 

production i.C ÷ Ba in P with ~(i') = i and it follows that A ~ Bw in G, with ~ = oi 

and @(~') = R. This concludes the proof of Claim I. 

It should be observed that if S is left recursive in G, then the existence of 

derivation S ~ Bw in G implies that the following derivations exist in G': a 

~T 
(a) B ~ wS for some sequence ~ of productions such that ~(~') = R and ~' can be 

written as 7' = p'i' for a production i' in P' which is of the form A ÷ aS, 

(b) B ~ w for the sequence 6' = p'j' such that production j' is of the form A ÷ a 
R 

and ~(i') = ~(j'), hence ~(~') = ~(6') = ~ . 

If S is not left recursive, then only situation (b) occurs. Formally, 

CLAIM 2. Assume that S is not left recursive. For any A ~ N, A # S, if A~ Bw in 
~' R 

G, then there exists ~ such that B ~ wA in G' and ~(~') = ~ . 

The proof of Claim 2 proceeds again by induction on lwl and since it goes along 

the same lines as the proof of Claim | we omit it. 

Now consider a derivation S' ~ w in G'. This derivation can be written as 

a' £ 
S ~ ~ aA auB aub, 

L L L 

where w = aub and ~' = i'p'j'. From the construction of G' it follows that there 

exist productions j.S + Bb and i.A ÷ a in P with ~(i') = i and ~(j') = j. From Claim 

I it follows that 

B ~ Au, with ~(0') = O R. 

Hence, S ~ w in G with ~ = jpi and ~(~') = R. 

Now consider the second condition of the cover definition. Assume S ~ w in G. 

We can wrine, with a, b c Z and u e Z , 

$ ~R Ab ~ Bub ~ aub, 

where w = aub and jpi = 7. Notice that if S is no~ left reeursive then A # S. Hence, 
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~' pR. 
from Claim 2 it follows that B uA in G', with ~(p') = From the construction 

of G' it follows that there exist i'.S' ÷ aB and j'.A ÷ b in P', with ~(i') = i and 
7' R 

~(j') = j. Hence, S' ~ w, with 7' = i'p'j' and ~(~') = ~ . 

Since the construction is such that for any (rightmost) derivation S ~ w in G 

there exists exactly one (leftmost) derivation S' ~ w in G' with ~(~') = ~R, we 

can conclude that the cover is faithful. 0 

EXAMPLE 7. l. 

Consider the well-known left regular grammar G O with productions 

1. S + SO 

2. S ÷ Sl 

3. S + 0 

4. S ÷ 1 

If we apply Algorithm 7.1, then step (i) is void and in the second step we obtain 

productions 

(ii) a. S' ÷ 0 <3> (ii) b. S ÷ 0 <I> 

S' ÷ ] <4> S ÷ ] <2> 

S' ~ 0S <3> S ÷ 0S <]> 

S' ÷ iS <4> S + IS <2> 

Since any right regular grammar is in GNF, Algorithm 5.6 can be used to obtain 

a GNF grammar which right covers the input grammar of Algorithm 7.1. If this is done 

for the grammar of Example 7.1, then grammar G', displayed in Table V (section 3.3), 

is obtained. 

Notice that it would have been sufficient, in order to conclude that there exists 

a right regular grammar which left-to-right covers the left regular input grammar, 

to prove that Algorithm 7.1 is language preserving. Then we could have used the 

method of Theorem 5.5. For the unspecified transformation to GNF in this method one 

may use Algorithm 7.1. 

Another method which preserves regularity is the Rosenkrantz method [ ]42]. 

Before we can present a table which shows the possibilities of covering reg- 

ular grammars with grammars in Greihach normal form we need one more algorithm. 

In Chapter 6 we saw that not every GNF granmmr G can be left-to-right covered 

with a GNF grsammr G'. However, if GNF grammar G is right regular, then a GNF grammar 

G' such that G'[I/~]G exists. 

ALGORITHM 7.2. 

Input. A right regular grammar G = (N,E,P,S). 
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Output. A grammar G ~ = (N',E,P',S ') in GNF such that G'[£/r]G under a faithful and 

very fine cover homomorphism. 

Method. We construct a (nondeterministic) pushdown transducer R = (Q,E,F,AG,~,q,S,~) 

which translates With empty pushdown stack, without e-moves, and which satisfies 

Te(R ) = r G. 

Here, Q = {q,r}, A G is the output set, F = {S} u {[ij] I i,j c A G} and S is the 

start symbol. Let A G {i I i.A + a is in P, a ~ E}. Define the mapping 5 as follows: 

a. For each a g E, 5(q,a,S) contains 

(i) (p,[ij],j), if p g Q, j ~ A~ and, for some B ~ N, i. S + aB is in P. 

If p = r, then production j has lefthand side B. 

(ii) (r,e,i), if i.S ÷ a is in P. 

b. For each a e E, 6(q,a,[ij]) contains 

' and there exist X,Z,U ~ N and Y ~ Z (i) (p,[mn][ij],n), if p e Q, n £ AGkA G 

such that i.x ÷ YZ and m.Z ÷ aU are in P. If p = r, then production n has 

lefthand side U. If n.X' -~ hV is in P, then production j has lefthand side V. 

(ii) (r,[ij],n), if there exist X,Z,U e N and Y e E such that i.X ÷ YZ and n.Z ÷ aU 

are in P and production j has lefthand side U. 

c. For each a ~ E, 8(r,a,[mn]) = (r,e,m) if there exist X ~ N and Y ~ N u {e} such 

that n.X ÷ aY is in P. 

This concludes the construction of PDT R. Now construct, using the Standard 

Construction (of. section 1.3.|), a simple SDTS T| = (N!,Z,AG,R !,S') from pushdown 

transducer R. 

All the rules of T] are of the form A ÷ ac~, ~[~ with a e %, ~ ~ A G and (~ ¢ N|. 

The desired GNF grsmm~r G' = (N',F.,P',S) is obtained by removing the useless symbols 

from the input grammar of T IO 

Homomorphism ~ is defined by mapping each production A ÷ a~ on ~ if A ÷ a~, 7[~ 

is a rule of T I. 

Our first observation concerning this algorithm deals with the definition of ~. 

We have to verify that ~ is well-defined, that is, there do not exist rules A ÷ a~, 

~I¢~ and A ÷ a@, ~2~ in R with ~! # 7 2 . This follows from the following le~ma. 

I/EMMA 7. I. Pushdown transducer R is semantically unambiguous. 

Proof. We have to verify that there do not exist p ~ Q, a £ Z and X e F such that 

~(p,a,X) contains elements which only differ in their output symbol. For the cases 

a., b.(i) and c. this is i~mlediate. For step b.(ii) this property follows from the 

fact that the productions i and j, together with the input symbol a, uniquely deter- 
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mine production n. D 

The following observation will clarify the behaviour of pushdown transducer R. 

OBSERVATION 7.1. Assume R translates w c L(G) by empty pushdown list. If lw[ is 

even and lwl > 2, then translation of w can only take place in the following way: 

A. one application of a step of the form a. (i), followed by 

B. (lwl/2) - 2 applications of steps of the form b. (i) with p = q, followed by 

C. one application of a step of the form b. (i) with p = r, followed by 

D. (lwl/2) applications of steps of the form c.. 

Translating starts with one symbol on the stack. Each of the steps of b. (i) lets 

the stack grow with one symbol. After the application of a step b. (i) with p = r, 

there are lwl/2 symbols on the stack. Each of the lwl/2 steps of the form c. reduces 

the number of symbols on the stack with one. 

Similar observations hold for lwl is odd and some trivial eases (lwl N 2). 

Other ways of translating do not lead to acceptance. Either the stack is empty where 

there is still input to be read, or the input is read and the stack is not yet empty. 

End of Observation 7.1. 

Now we are sufficiently prepared to present the following theorem. 

THEOREM 7.2. Any right regular grammar G can be transformed to a CFG G' in GNF such 

that G'[£/r]G under a very fine and faithful cover homomorphism. 

Proof. The proof is based on the following claim. This claim is used to prove that 

Te(R) = rG, where R is the pushdown transducer of Algorithm 7.2. 

CLAn4. Let u ¢ E*, lul e I, c e E and i.A ÷ aB and j.C ÷ cX in P with X E N u {g}. 

Then, 

(q,uc,[ij],g) I*- (r,g,e,~i) 

in R if and only if 

R 
B ~ uC ~ ucX 

is a derivation in G. 

Proof of the claim. The proof is by induction on lu]. 

Basis. Assume lul = I. Write u = b, b e E. In this case the computation 

(q,bc,[ij],£) ~ (r,g,~,~i) 
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is done with two moves and we must conclude the existence of 

(r,[ij],~) ~ ~(q,b,[ij]) 

obtained from seep b. (ii) of the algorithm, and of 

(r,g,i) e ~(r,c,[ij]) 

obtained from step c. of the algorithm. It follows that there exists a production 

~.B + bC in P and we have a derivation 

B ~ DC ~ bcX 

R 
which had to be proved. Notice that ~ = ~. In a similar way the other direction of 

the basis of the induction can be proved. 

Induction. Assume lul > I .  If 

(q,uc,[ij],c) I ~ (r,e,e,~i) 

then, if we write u = bv (with b e E and v ~ E*) and ~ = ny (with n e A G and y e A~), 

we can factor this computation into 

(q,bvc,[ij],g) ~ (p,vc,[mn][ij],n) ~ (r,e,c,nyi), 

where p ~ Q. 

First consider the case p = r. Then there exists 

(r,[mn][ij],n) E 6(q,b,[ij]) 

obtained from step b (i) of the algorithm, 

(r,e,m) ~ ~(r,v,[mn]) 

and 

(r,e,i) ~ ~(r,c,[ij]) 

obtained frcm st~p c. of the algorithm, with m = y, m ~ A G and v e E. Hence, there exist 

productions m.B ÷ bU and n.U * vC in P and we have a derivation 

B ~ bU ~ bvC ~ bvcX 

with (mn) R = ny as had to be proved. 

Now consider the case p = q. In this case we have 
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(q,[mn][ij],n) ~ ~(q,b,[ij]) 

which is obtained in step b. (i) of the algorithm. Hence, we have a production m 

of the form m.B + bU. Moreover, we have a computation 

(q,vc,[mn][ij],c) ~ (r,e,g,yi). 

Clearly, we can write v = vlv 2 and y = YiY2 such that 

(q,vl,[mn],c) L (p,~,g,yl) 

and 

(P,V2c,[ij],c) ~ (r,~,e,Y2i). 

From the construction of ~ it follows that p = r and the last symbol of string YI 

is m. Moreover, since p = r we have also v 2 = ~ and Y2 = ~" Therefore v I = v and 

~I = Y" Hence, we may write y = y'm and 

and 

(q,v,[nn~,~) ~ (r,g,g,y'm) 

(r,c,[ij],c) ~ (r,e,e,i). 

We distinguish between two cases. 

(a) Iv] > I. Write v = v'd,.d ~ E. Since, by asst)mption, production j is of the form 

j.C ÷ cX we have by construction of ~ (cf. the conditions mentioned in step b. 

(i)) that production n is of the form n.X' ÷ dC. It follows from the induction 

hypothesis that 

u y~Rv,x , 

and since nuB + bU, n.X' + dC and j.C + cX are productions in P, we have a deri- 

vation 

B ~ bU ¥4 R bv'X' n bv'dC ~ bv'dcX, 

that is, 

uc ucx 

where bv'd = u and ~ = ny'm, which had to be proved. 

(b) Ivl = I. This would mean that 
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with y' = ~. However, with our definition of ~ such a move is not possible. 

Therefore, this ease does not occur. This concludes the 'only if'-part of the 

induction proof. 

The 'if'-part of the proof is a straightforward reversal of the argument used 

in the 'only if'-proof. Therefore it is omitted. Moreover, we assume that it is clear 

that for any (rightmost) derivation 

R 
B ~ uC ~ ue~K 

in the claim there is exactly one sequence of moves 

(q,uc, [ij ]~) ~ (r,~,g,~i). 

This concludes the proof of the claim. 0 

With the help of this claim it is now fairly simple to verify that 

R 

SLW 

if and only if 

~q,w,S,g) ~ (r,g,e,n), 

that is, Te(R) = rG" 

Now we want to show that G'[£/r]G. However, this is an inm~ediate consequence 

of the Standard Observation (cf. section 1.3.1). We know that simple SDTS T I performs 

the same translation as R, that is, T(T I) = Te(R) = rG" All the rules of T I are of 

the form i.A ÷ ~, be where b ~ A G. Hence, if we define ~(i) = b, then (w,~') ~ £G' 

implies (w,~(~')) ~ rG o It is also clear that (w,~) e rG = T(TI) implies that there 

exists ~' such that (w,~') £ £ G, and ~(~') = ~. Therefore, G'[I/r]G and by definition 

of ~ the cover homomorphism is very fine. 

For each derivation S ~ w in G there is exactly one sequence of moves 
L 

(q,w,S,s) ~ (r,g,e,~ R) 

(el. the concluding remark in the proof of the claim.) Then it follows from the 

Standard Construction of a simple SDTS from a PDT that there is also exactly one 

derivation 

(s,s) I (w'~R)" 

Hence, if (w,~ R) e rG' then there is exactly one element (w,~') £ £ G, such that 
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~(~,) = R. Therefore the cover is faithful. This concludes the proof of Theorem 

7.2. 

In T~le VIII we h~ve collected the GNF cover results for regular grammars. 

~ G i 

GNF 

LEFT RIGHT 
COVER REGULAR REGULAR 

£/£ I. ges 5. ges 

£/~ 2. yes 6. yes 

r/£ 3. yes 7. yes 

~/r 4. yes 8. yes 

Table VIII. Cover-table for regular grammars. 

The entries in this table are numbered from I to 8. The table shows that for any 

(left- or right-) regular grammar G a grammar G' in GNF can be found which covers 

G for each of the types of cover. The answers in this table are found in the following 

way. 

(7.|) The entries 5. and 8. follow trivially. Entry 2. is yes because of Theorem 

7.1. Entry 6. is 9es because of Theorem 7.2. 

(7.2) Since entry 2. is yes we may conclude, with the help of Algorithm 5.6 (transi- 

tivity), that entry 4. is yes. Similarly, via entry 5., entry 7. is yes. 

(7.3) Let G be a left regular grammar. Algorithm 7.1 yields a right regular grammar 

G' such that G'[I/~]G. Hence, we have also that G~/r]G, where we use ~ and 

r to denote the reverse of left parses and right parses,- respectively. Since 

for regular gr~-,,=rs the leftmost and the rightmost derivations coincide, we 

obtain G'[r/£]G. Therefore, entry 3. is yes. 

(7.4) Let G be a left regular gramar. From the argument in (7.3) we know that there 

exists a right regular gr~m~r G' such that G'[r/l]G. 

Since entry 6. is yes it follows that there exis=s a GNF grammar G" such that 

G"[£/r]G '~. From transitivity it follows "~hat G"[£/I]G. TherefOre entry I. is 

ges. 
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It is worth noting that the GNF grammars of entries 2. and 3. are in fact right 

regular grammars, Moreover, except for entries 4. and 7., the cover homomorphisms 

are very fine° In particular the result that any left regular grammar can be trans- 

formed to a left covering GNF grammar under a very fine cover homomorphism (entry I.) 

is interesting. 

We illustrate Algorithm 7.2 with the following example. 

EXAMPLE 7.2. 

Consider the CFG G which is obtained in Example 7.1. If we apply Algorithm 7.2 to 

this grammar, then we obtain a grammar in GNF which left covers gra~auar G O under a 

very fine cover homomorphism. Notice that for right covers a similar result can not 

be obtained (cf. Chapter 3 and Gray and Harrison [49]). That is, grammar G O can not 

be right covered under a very fine cover homomorphism by a context-free grammar in 

Greibaeh normal form. 

We start with grammar G with productions 

I. S' ~ 0 <3> 5. S ÷ 0 <I> 

2. S ~ + I <4> 6. S + I <2> 

3. S' + OS <3> 7. S ÷ 0S <I> 

4. S ~ ÷ IS <4> 8. S + IS <2> 

Grammar G is such that G[r/£]G 0. If we perform Algorithm 7.2  with input grammar G, 

then we obtain, after a suitable renaming of the nonterminal symbols, the GNF grammar 

with the following 98 (I) productions: 

S ÷ 0 I I <1,2> 

S-~ 0Ao I OBo I OA I I OB 1 <5,5,6,6> 

S ÷ IA 2 ]IB 2 I IA 3 IIB 3 <5,5,6,6> 

B 0 + 0A 0 I IA 0 <7,8> 

B 0 + 0%% i ODIAO t ID2Ao 
B 0 ÷ 0EoA 0 I 0EIA 0 I IE2A 0 

I53% 
IE3A 0 

<7,8,7,8> 

<7,8,7,8> 

B 1 + 0A 1 I ]A I <7,8> 

B 1 ÷ 0DoA 1 I ODIA 1 [ ID2A I 

B I ÷ 0EoA I I 0EIA I ] IE2A I 

ID3A 1 

IE3A 1 

<7,8,7,8> 

<7,8,7,8> 

B 2 + 0A 2 ! IA 2 <7,8> 

B 2 + 0DoA 2 I OD]A 2 I ID2A 2 

B 2 + 0EoA 2 I OE]A 2 I IE2A 2 

m3A 2 
IE3A 2 

<7,8,7,8> 

<7,8,7,8> 
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B 3 

B 3 

B 3 

+ 0A 3 I 
÷ ODoA 3 

0EoA 3 

IA 3 <7,8> 

I ODIA 3 

I OEIA 3 

ID2A 3 

IE2A 3 

]D3A 3 

|E3A 3 

<7,8,7,8> 

<7,8,7,8> 

E 0 ÷ 0EoD 0 

E 0 ÷ ODoD 0 

E 0 + 0D 0 I 

[ 0EID 0 IE2D 0 

I ODID 0 ID2D 0 

]D O <7,8> 

IE3D 0 
1D3D 0 

<7,8,7,8> 
<7,8,7,8> 

E l ÷ 0EoD l I OEID 1 I IE2D | 

E l ÷ 0DoD] I ODID 1 I ID2D 1 

E l ÷ 0D l I IDl <7,8> 

1E3D 1 
ID3D 1 

<7,8,7,8> 

<7,8,7,8> 

E 2 ÷ 0EoD 2 I 0EID 2 I IE2D 2 

E 2 ÷ 0DoD 2 I 0D|D 2 I ID2D 2 

E 2 ÷ 0D 2 I ID 2 <7,8> 

IE3D 2 

ID3D 2 

<7,8,7,8> 

<7,8,7,8> 

E 3 ÷ 0EoD 3 I OEID 3 I IE2D 3 

E 3 + 0DoD 3 I 0DID 3 I ID2D 3 

E 3 + OD 3 I ID 3 <7,8> 

IE3D 3 

ID3D 3 

<7,8,7,8> 

<7,8,7,8> 

A0+ 0 <3> D O + 0 <7> 

A I ÷ | <3> D 1 ÷ 1 <7> 

A2 ÷ 0 <4> D 2 ÷ 0 <8> 

A 3 + ! <4> D 3 ÷ ] <8> 

The reader may verify with a few examples that this GNF grsr, mar indeed left covers 

grammar G O . End of Example 7.2. 

The transformation from a right regular granmmr G to a GNF grammsr G' such that 

G'[£/~]G is defined in terms of a PDT. We have not~ied to give a grammatical char- 

acterization of this transformation. However, the idea in this transformation can 

be simply used in examples to obtain left covering or left-to-right covering gram- 

mars in GNF. This is illustrated in the following two examples. 

EXAMPLE 7.3. 

Consider again left regular granmmr G 0. In Figure 7.1 we have displayed a typical 

parse tree for a sentence of G O and the way this tree is transformed to a parse tree 

of a gran~ar G in GNF such that G[Z/I]G 0 and G[I/~]G 0. 
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] .  

2. 

3. 

4. 

S "+ 

S->" 

S '+  

S +  

SO 
$1 

0 
l 

S 

S 1 

0 

1 

s 

s / / ' e ' "  1 o s 

1 $ 21 
S ~ 1 

0 l i 22° 
0 1 

Figure 7.1. A left and left-to-right cover for G O . 

The indices of the symbols H23 , H12 and H22, in this order, reflect the produc- 

tions which are used in the parse tree with respect to G O . The first index of H is 

used to describe the upper part of the tree of G O in a top-down manner (212). The 

second index describes the lower part of the tree of G O in a bottom-up manner (322). 

Rather mechanically we can obtain all the productions of G. Each production 

of G is followed by its image under a left cover and a left-to-right cover, res- 

pectively. 

St + OSH23 ISH24 [ 0SHI3 I ISHI4 <2,2,1,I> <3,4,3,4> 

S + OSH2I !SH22 I 0SHll I 1SHI2 <2 ,2 ,1 , I>  <1,2 ,1 ,2> 

S' + 0H23 1H24 I 0H13 'l 1HI4 <2~2,1,.1> <3,4 ,3 ,4> 

S ÷ 0H21 |H22 I 0HII I 1H12 <2,2 ,1 ,1> <1,2 ,1 ,2> 

@f ÷ 0 I I < 3 , 4 >  < 3 , 4 >  

S + 0 I 1 <1,2> <1,2> 

H23 ~ ! <3> <2> H21 ÷ I <I> <2> 

H24 + I <4> <2> H22 ÷ 1 <2> <2> 

HI3 ÷ 0 <3> <I> HIt + 0 <I> <I> 

HI4 ~ 0 <4> <I> HI2 + 0 <2> <I> 
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EXAMPLE 7.4. 

Consider right regular grammar G with productions 

I. S+ 0S 3. S+O 

2.  S ÷ lS 4. S ÷ 1 

In Figure 7.2 we have illustrated how a parse tree with respect to G can be 

converted to a parse tree with respect to a GNF gra~mmr G' such that a left-to-right 

and a left cover can be defined. The complete definition of G' is left to the reader. 

S 

I S 

0 

, > 

S 

1 S 

o/l \s 
1 S 

S I 

0 ~ H I 3  

1 S H22 0 

1 '  S 

0 i l  2 0 

1 

Figure 7.2. A left-to-right and left cover for G. 

With this example we conclude Chapter 7. 



CHAPTER 8 

DETERMINISTICALLY PARSABLE GRAMMARS 

8.1. INTRODUCTION 

Various parsing methods for general context-free languages have been developed. 

However, for most of the practical applications the attention can be restricted to 

subclasses of the deterministic languages. The main parts of the syntactic struc- 

~uresofprogramming languages describe deterministic languages. Therefore it is not 

only legal to do so but also, since the time and space requirements for the parsing 

methods for the class of deterministic languages and its subclasses are modest in 

comparison with the methods for the general context-free languages, preferable to 

do so. Moreover, many of these methods can be easily implemented. 

Suppose we have a language which is described by a context-free grammar. We want 

to build a parser for this grammar. This can be done by hand or with a compiler 

writing system. % If it is done by hand and a certain parsing method has been chosen, 

then one may expect that one has to manipulate the grammar, change it, apply trans- 

formations to it, etc. in order to make it suitable for this parsing method. The 

same may hold in the case of a compiler writing system. Such a system takes as input 

the syntactic rules of a grammar (together with semantic information) and produces 

as output a parser or, more generally, a compiler for this grammar. In a compiler 

writing system a choice has been made for a certain type of parsing method. If the 

system is provided with the syntactic rules then it will try to generate a parser 

of this specific type. 

In their 'state-of-the-art' paper on 'Translator Writing Systems'Feldman and 

Gries [30] describe, among others, compiler writing systems where the syntactic anal- 

ysis ~ is based on ~recedence techniques'~ Grammars which can he parsed with these 

techniques are called 'precedence grammars'. Feldman and Gries remark : 

"Moreover, one must manipulate a grammar for an average progranm~ng language consi- 

derably before it is a precedence grammar ..... The final grammar could not be 

presented to a programmer as a reference to the language". 

Also in other situations where the chosen parsing method is based on other than 

precedence techniques one will need transformations to make the grammar suitable for 

the parsing method. Clearly, there is no need to worry about the final form of the 

grammar if the necessary transformations are done by the system itself. 

t A lot of other names have been used, including translator writing system, parser 

generator and compiler-compiler. 
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These transformations can change the structure of the grammar. This can mean 

that the newly obtained grammar does not necessarily perform the same translation 

to semantic actions (which lead to code generation) as the original gran~aar. However, 

as the reader already did expect, if the transformations are done i~ such a way 

that a covering gra=mmr is obtained, then we can 'fool' the user of a compiler writ- 

ing system. This idea is illustrated in Figure 8.l. 

r 
I 
I 

type X- I 
_ I 

grammar I 
I 
I 
L 

COMPILER WRITING 

TRANSFOR~ I type Y- SYSTEM 

MATIONS I grammar based on the type Y 

parsing method 

compiler for 

type X-gra~nar 

-2 

Figure 8.1. Compiler writing system for type X-grammars. 

In the following chapters we will frequently refer to grammars which are LL(k) 

and LR(k). We will not confine ourselves to the formal introduction of these classes 

of grammars but we will give some introductory considerations on parsing. Moreover, 

these preliminaries make it possible to discuss a number of recent compiler writing 

systems and to mention those aspects which are of interest for our investigations 

in this monograph. 

It is customary to distinguish between top-down and bottom-up parsing methods. 

The most important feature of (deterministic) top-down parsing is its simplicity. 

Consider a leftmost derivation 

P 
P0 P nL=~ 

~0 ~ ~! ~ .... ~n-I n 

where ~0 = S and ~n e E*. 

In top-down parsing the aim is to find the string PoPI...Pn_I of productions 

which have been used to derive ~n from ~0" If we know ~j_! then the problem is how 

to find mj. Since we consider leftmost derivations we may write ~j_] = wAe. If we 

know how A is rewritten at this point in order to obtain ~ at the end, then the 
n 

problem is solved. In deterministic (one-pass) top-down parsing this can be done, 

after we have seen ~0,~i~ .... '~j-2 and ~j-I = wA~, by looking at the symbols of.~ n 

which appear to the right of w. Notice that ~n can be written as wv, where v is also 
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a string of terminal symbols. If we allow a 'look-ahead' of at most k symbols then 

the class of grammars for which this method works is the class of LL(k) grammars. 

Hence, if we have a leftmost derivation 

S ~ wAs 

and productions A ÷ B and A ~ y, then 

F~RSTk(~=) n FIRSrk(y=) # 

should imply B =Y. 

LL-parsers and LL(k) gran~nars have been discussed in e.g. Lewis and Stearns [10g, 

Rosenkrantz and Stearns [144], Culik [ 22 ], Rnd Wood [173]. 

Because of the simplicity of the LL-parsing method much effort has been made 

to transform grammars into LL(k) or LL(1) grarm~ars. For instance, in Wood [173], 

Foster [34], Stearns [158], Paull and Unger [130] and Lewis, Rosenkrantz and Stearns 

[I00], algorithms are described to transform grammars into LL(1) form. In Paull and /- 

Unger [129] a transformation to simple deterministic gran~ars (a subclass of the 

LL(1) grits) is described. Transformations into LL(k) grammars appear in Rosen- 

krantz and Lewis [143], Soisalon-Soininen and Ukkonen [157], Hunt and Rosenkrantz 

[69], Nij holt and Soisalon-Soininen [128] (cf. also Chapter 12) and Bamer [56]. 

In Beatty [I0] various definitions of LL(k) granmmrs have been discussed and 

compared. 

_B_O_TT_O~_U_P 

Many methods especially those which are used in compiler writing systems, are 

based on bottom-up techniques. Consider a rightmost derivation 

P 
P ~ oo I ~I co 0 ~n ~ con-! ~ ..... ~2 R 

where m = S (the start symbol) and co £ Z*. 
n 0 

In bottom-up parsing the goal is to find the string PIP2o0.Pn of productions 

which have been used (in the reversed order) to derive co o from con ° If we write 

co. = c~Aw and co. = ~w, then the problem becomes to determine ~ and I~I (the posi- 
.1 J - |  

Lion of ~) in coj-l' and by which symbol the substring ~ at position Ic~l in ~j-I 

should be replaced in order to obtain co.. 
J 

The pair (A -~ ~,I~l) will be called the handle of coj-l" Bottom-up parsing starts 

with coo and the process of determining the handle and replacing substring ~ by A 
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('reducing') should be continued, if possible, until the start symbol has been reached. 

In the deterministic one pass bottom-up parsing methods ~. can be uniquely determined 
3 

after having seen ~0,~i ..... '~j-2 and ~j-l" The handle (A ÷ 8,[~81) of ~j-I is de- 

termined from the uniqueness of the context of 8. In these methods the context to 

the right of 8 which will be considered is restricted to a fixed number of k symbols 

(k ~ 0). 

In the most general case, if we have rightmost derivations. 

and 

s ~ sAw ~ ~Sw = ~w 

S ~ ='A'x ~ ='8'x = yw' 

and the first k symbols of w and w' are the same, then the handles of yw and yw' 

should be the same. This conclusion implies that ~ = e', A = A', 8 = 8' and x = w'. 

Granmmrs which satisfy this condition are called LR(k) granmmrs. ConsulLsection 8.2 

for the formal definition. In Geller and Harrison [40] a detailed study of LR(k) 

grammars and languages is given. Numerous papers have appeared in which parsing 

methods for LR(k) grits are described (e.g. in Knuth [76], DeRemer [25], Aho and 

Johnson [ ] ] and Geller and Harrison [41]). Two subclasses, the SLR(]) granmmrs 

(simple LR(I)) and the LALR(I) grammars (look-ahead LR(I)) have become popular since 

they can he implemented efficiently and they can describe most of the usual program- 

ming language constzucts. The context of 8 in ~j_] can be used in a more restricted 

way. Other subclasses of the LR(k) grammars are then obtained. For example, the 

bounded (right) context grammars and the various classes of precedence granm~rs (cf. 

Aho and Ullman [3]). 

The bottom-up parsing methods for these classes of grammars are also called shift- 

reduce methods. The reason is that in the implementation of these methods a stack 

is used and the operations of the parser are either 'shift the next input symbol 

to the top of the stack' or 'reduce' if a handle has been found and 8, which is then 

on the top of the stack, will be replaced by A. For non-LR-grammsrs there will be 

action conflicts. That is, there will be situations where the parser can not decide 

whether a shift action or a reduce action should be done (a shift~reduce conflict) 

or the parser can not decide which reduce action has to be made (a reduce~reduce 

conflict). 

STRICT DETERMINISM 

There is a third class of grammars, the class of strict deterministic gr~-,n=rs 

(Harrison and Havel ~9,60,6]]), which has turned out to be useful. This class is a 

subclass of the class of LR(0) grammars. Observations on the strict deterministic 
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grammars and their parsing method, which has a hybrid character, that is, between 

top-down and bottom-up parsing, have lead to many useful ideas on parsing and trans- 

lation (ef. Geller and Harrison [39,41], Lewis, Rosenkrantz and Stearns [99], Ukkonen 

[166] and Nijholt [116]). The definition of strict deterministic grammars (ef. Defi- 

nition 8.5) is based on the productions of the grammar and not on the derivations. 

Therefore it is rather simple to decide whether a grammar is strict deterministic. 

In Chapter 9 the strict deterministic gr~,~ars will play an important role when we 

consider cover results for LR(k) grammars. 

Before we will introduce the reader to the issues which will be treated in the 

following chapters we have a few remarks on developments in the theory of parsing 

and translation of context-free grammars. 

Several authors have tried to generalize the ideas which are used in the parsing 

methods for LR(k) grammars, LL(k) grammars and some of their subclasses. For instance, 

deterministic context-sensitive parsing has been introduced for a subclass of the 

context-sensitive grammars (Waiters [167]). Similarly, the class of indexed grammars 

has been subelassified into LL(k)- and LR(k)-type indexed grammars (Sebesta and 

Jones [152]). 

Other authors have tried to define deterministic parsing methods for other than 

the well-known left and right parses. One may consult Colmerauer [20], Szymanski and 

Williams [ 159], Williams [169] and Kuo-Chung Tai [88]. In Demers [24], Brosgol [18 ] 

and Rosenkrantz and Lewis [143] parsing methods are defined which yield production 

directed parses. Semi-top-down parsing methods are discussed in Kr~l and Demner 

[84] and in Kretinsk@ [85]. 

Straightforward generalizations of the LL- and LR- grammar definitions are the 

LL-regular (Jarzabek and Krawnzyk [73], Nijholt [114,126], Poplawsky [133]) and the 

LR-regular (Culik and Cohen [23]) gran~ar definitions. 

Another approach in the theory of deterministic parsing has been the introduc- 

tion of parsing methods for extended context-free grammars. In an extended context- 

free grammar each righthand side of a production consists of a regular expression 

(or, equivalently, a regular set or a finite automaton). In DeRemer [26], LaLonde 

[92,93], Madsen and Kristensen [105] and Thompson [161] extended LR-parsing is con- 

sidered. In Lewi.et aL[96,97] and in Heilbrunner [62] extended LL-granmmrs are dis- 

cussed. 

These ample discussions on parsing methods and gran~ar definitions are meant to 

give the reader some insight in the areas where the concept of grammar cover can be 

used. Many cover results, practically useful for parsing, have been obtained in Gray 

and Harrison [49]. As mentioned before, cover results can be used in compiler writing 

systems. Therefore we will consider some existing compiler writing systems. 
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Assume that the user of such a system provides the system with a set of pro- 

ductions (syntactic rules). The system will try to build a parser. This parser will 

be based on a specific parsing method. This may be, for example, a precedence method, 

an LALR-method or an LL-method. 

If the syntactic rules, which are given as input, do not specify a grammar for 

which this type of parser can be built then the following may happen: 

- the system reports its failure to build a parser to the user; it gives informa- 

tion why it failed and this information can be used by the user to change the 

syntactic rules (and the associated semantics) to make thanappropriate for this 

system. 

the system can apply transformations to the input grarmnar in order to make it 

suitable for this method; clearly, it should be expected that this is done in 

such a way that the original semantics are preserved. 

- although the syntactic rules do not specify a grammar which is suitable for the 

underlying parsing method of the compiler writing system, supplementary infor- 

mation, provided by the user as input to the system, will suffice to construct 

a correct parser. 

Clearly, it is possible to combine the second and third alternative. Moreover, 

it is also possible that the system itself takes decisions which lead to a construc- 

tion of a parser if the syntactic rules (whether or not with supplementary informa- 

tion) do not specify a graimar of the desired kind. In that case it remains for the 

user to verify that the parser has been built conform his intentions. 

It should be mentioned that due to the latter possibilities it is possible to 

'parse' ambiguous grammars. As was mentioned in Chapter 2 we use the name parser 

and parsing method even if the parser does not define a proper parse relation for 

a given grammar. Deterministic parsing of ambiguous grammars has been discussed by 

Aho, Johnson and Ullman [ 2 ]. Their ideas have not only been used in compiler writing 

systems but have also lead to more theoretical considerations (e.g., Ruzicka [145] 

Wharton [168] and Earley [29]). 

We now want to mention a few examples of compiler writing systems. Feldman and 

Gries [30] gave an extensive survey of these systems until 1968. It is by no means 

our intention to give a new survey. In R~ih~ [135] and in R~ih~ and Saarinen [136] 

recent surveys can be found. Depending on the underlying top-down or bottom-up parsing 

method one can distinguish between the compiler writing systems. 

TOP-DOWN 

In Foster [34,35] a compiler writing system is described which is based on a 

top-down parsing method. The input grarm~ar is made suitable for the top-down method 
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by a special program SID (Syntax Improving Device)' which performs some transformations 

on the grammar. One of these transformations is the elimination of left recursion. 

As we mentioned in section 5.1 this transformation yields a left-to-right and a 

right cover, thus preserving the original semantics. 

Other examples of compiler writing systems which are based on LL(1) parsing 

methods can be found in Lewi et ai.[96,97] (based on extended LL(1) grammars), 

Bochmann and Ward [16] and Milton, Kirchhoff and Rowland [112]. This latter system 

can use supplementary information) in this case obtained from the so-called 'inherit- 

ed attributes w) to build the parser. A consequence is that parsers can be construct- 

ed for non-LL(1) grammars. Cf. also Madsen and Jones [104]. 

BOTTOM-UP 

In Lecarme and Bochmann [95] transformations are mentioned in their compiler 

writing system which make the input granm~r suitable for the underlying precedence 

parsing method. 

In Mickunas and Schneider [III] a parser generating system is described where 

the first phase of the system converts the input gr~mm~r into a simplified normal 

form for internal use. The transformation to this normal form preserves the original 

semantics. In fact, the authors give a definition of what we call a right cover. It 

is announced that an approach for their system is being developed which will involve 

transforming LR(k) grarmnars into grammars that can be parsed without considering 

look-ahead. These transformations to SLR(1) and LALR(1) grammars have been described 

in Mickunas and Schneider [II0], Mickunas, Lancaster and Schneider [I0~ and Mickunas 

[108]. These transformations yield right covers. 

Building compiler writing systems based on an LALR(1) parsing method has become 

a popular occupation. The Yacc (Yet another compiler-compiler) system of Johnson 

[74] is, due to its availability on the UNIX time sharing system, probably the most 

wide-spread system which is based on the LALR(1) method. The syntactic rules which 

are given as input to the system are converted to an LALR(1) parsing algorithm. If 

the input grammar is not LALR(1), then there will be parsing actions conflicts. 

Supplementary information provided by the user can help to resolve these conflicts 

and to produce a correct parser. Otherwise the system uses some built-in rules to 

resolve these conflicts. Hence, non-LALR(1) grammars can be convert~d to parsers 

and these parsers do not necessarily define proper parse relations. 

The first LALR(|) based system is described in LaLonde, Lee and Homing [94]. 

Joliat [75] describes another LALR(1) based compiler writing system. In the compiler 

writing system HLP(Helsinki Language Processor), described in R~ih~ et ai.[137], 

it is also required that the input grammar is LALR(1). The system produces diagnostic 

information to help the user to change his grammar to an LALR(1) grammar if the LALR 

(I) condition is not satisfied. Similar ideas ash ave been used in the Yacc system 
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can be found in the system described by Kron, Hoffmann and Winkler [861. In Lewi 

et ai.[98] another system based on the LALR(1) method is described. Druseikis [28 ] 

has designed an SLR(1) parser generator. 

Because of the popularity of the LALR(1) parsing method much effort has been 

made to investigate 'error-recovery' techniques for LR- and LALR-grammars (cf. 

Sippu and Soisalon-Soininen [153,154] and Graham, Haley and Joy ~7]) and to obtain 

methods for efficient implementations for their parsing methods (cf. Thompson [16~, 

DeRemer and Pennello [2~ and Fisher and Weber [31]). 

This section is concluded with a few remarks on the contents of the forthcoming 

sections. 

In Harrison [57] and in Aho and Ullman [3] the question was raised whether each 

LR(k) grammar can be (right) covered with an LR(1) grammar. Starting form their 

work on the development of a compiler-compiler this question was answered affirmative- 

ly by Mickunas and Schneider [II0], Mickunas, Lancaster and Schneider [109] and 

Mickunas []08]. In Nijholt [I]6] a more simple proof was given and some more general 

results were obtained. The following chapter is based on the latter paper. However, 

our treatment here will be more general. 

In Chapter 9 we will introduce the concept of a valid DPDT (deterministic push- 

down transducer). This transducer will be the model for the parsing methods which 

we will consider. Grammars will be called parsable with respect to a certain parse 

relation. We shall have the convention that the parsing methods assign one parse to 

each sentence. We can deterministically parse ambiguous grammars since the parse re- 

lation may be chosen in such a manner that for each sentence w in the language there 

is exactly one element (w,~) in the parse relation. For example, in Aho, Johnson and 

Ullman [2] LL(k) and LR(k) parsing methods are used to parse ambiguous grammars. The 

parse relations which are used are subclasses of the left and right parse relations. 

If a gra~ar G is parsable with respect to a certain parse relation fG' then it will 

be shown that we can obtain a strict deterministic grammar or LR(1) grammar G' and 

a cover homomorphism ~ which is defined between ZG' or rG, and fG" 

In Chapter 10 we continue our discussion on cover results for normal forms of 

context-free grammars. Instead of arbitrary context-free grammars we will now con- 

sider the classes of LR-, LL-, and strict deterministic grammars. 

8.2. PRELIMINARIES 

We shall reproduce below a few definitions of grammars and automata which will 

frequently be referred to in the forthcoming sections. From now on we will only con- 

sider automata and transducers which are deterministic. 

DEFINITION 8. I. A deterministic pushdown automaton (DPDA for short) is a pushdown 
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automaton P = (Q,E,~,~,q0~Z0,F) w~ich has the property that ~ is a partial function 

from Q × (E u {g}) x F to Q × F* and, for any q ~ Q and Z c F, if ~(q,g,Z) is de- 

fined then, for all a ~ E, 6(q,a,Z) is undefined. 

A CFL is said to be deterministic if it is accepted by some DPDA. 

DEFINITION 8.2. A deterministic pushdown transducer (DPDT for short) is a pushdown 

transducer (Q,Z,F,E',~,qo,Zo,F) which has the property that 6 is a partial function 

F* from Q x (Z u {£}) x F to Q × x Z'* and, for any q £ Q and Z E F, if ~(q,g,Z) 

is defined then, for all a ~ Z, ~(q,a,Z) is undefined. 

DEFINITION 8.3. A deterministic finite transducer (DFT for short) is a six-tuple 

M = (Q,E,E',6,qo,F), where 

(i) Q is a finite set of state symbols, ~ and ~ are alphabets of input symbols 

and output symbols, respectively; qo c Q is the initial state and F ~ Q is the 

set of final states. 

(ii) ~ is a partial function from Q × (E u {8}) to Q × E'* such that, for any q E Q, 

~(q,g) is defined implies ~(q,a) is undefined for all a ~ E. 

Definitions similar to those for a PDT (Definition 1.15) can be given for a 

configuration and a binary relation ~ on the configurations of a DFT. Likewise we 

define a translation 

T(M) = {(w,w') i (q0 ,w,~) ~ (q,g,w') for some q ~ F}. 

For any set L ~ E* we define 

M(L) = {y I x ~ L and (x,y) E T(M)}. 

We need three definitions of subclasses of the context-free grammars. Again, 

we assume that each grammar which is considered is reduced. Our definition of LR(k) 

grammars is the same as the one used in Geller and Harrison [40]. 

DEFINITION 8.4. Let k e 0 and G = (N,E,P,S) be a CFG such that S ~ S is not possi- 

ble in G. Granm~r G is LR(k) if for each w,w',x ~ E*; y,~,~',$,~? c V*; A,A' £ N, if 

(i) s ~w~ ~Sw = ~, 

(ii) S ~ ~'A'x ~ ~'~'x = yw', 

(iii) k : w = k: w', 

then (A + B,I~$1) = (A t + 8',l~v~'l). 
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For any k ~ I, the class of LR(k) languages coincides with the class of deter- 

ministic languages. A language L is said to be prefix-free if u and uv in L implies 

v = g. The class of prefix-free deterministic languages is a proper subclass of the 

class of LR(O) languages. Let G = (N,E,P,S) be an LR(k) grammar. If S' is a symbol 

not already in N and ± is a symbol not already in E, then 

G' = (N u {S'}, ~ u (±}, P u {S' ÷ S~, S') 

is LR(k) and L(G') is a prefix-free deterministic language (of. Geller and Harrison 

[40]). The strict deterministic grammars (Harrison and Havel [59] generate exactly 

the prefix-free deterministic languages. 

DEFINITION 8.5. A CFG G = (N,E,P,S) is strict deterministic if there exists a par- 

tition ~ of V such that 

or 

(i) E ¢ 7, 

(ii) For any A, A' ~ N and e,8,8' • V*, if A ÷ eS, A' + ~8' and A i A' 

(mod ~), then either 

(a) both 8, ~' # e and 1 : 8 ~ I : 8' (mod ~) 

(b) 8 = 8' = e and A = A'. 

The class of strict deterministic grammars is a proper subclass of the class 

of LR(0) grammars. No strict deterministic grammar is left recursive. Moreover, if 

A, B £ N and~ • V*, then A~ B~ implies A # B. Any partition of V which satisfies 

(i) and (ii) is called a strict partition. 

In general a strict deterministic grammar can have more than one strict parti- 

tion. The set of strict partitions of a strict deterministic grammar is a semi-lattice 

under the meet operation. Therefore there exists a minimal strict partition. An algo- 

rithm which is presented in Harrison and Havel [59] computes this minimal strict 

partition. We recall this algorithm since it can be used to check our example gram- 

mars on strict determinism. 

V* Let G = (N,Z,P,S) be a CFG. Let ~, 8 E and let A, B ~ V such that A # B and 

we have ~ = yA~ I and 8 = YB81 for some y, ~I' 81 e V*° Then the pair (A,B) is said 

tO be the distinguishing pair of ~ and 8. 

ALGORITHM8.1. 

Input. A CFG G = (N,Z,P,S). The productions of P are denoted in the following way 

P = {Ai + ~i I i = 1 ..... IPI} 
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Output. If G is strict deterministic, then the minimal strict partition is computed. 

Method. [A] will denote the (unique) block of the partition which contains A. 

Step !. Initially define ~ = {{A} I A c N} u {E}. Set i = 0. 

Step 2. Set i = j = i + I. If i > IPI go to step 8. 

Step 3. Set j = j + ~. If j > IPI go to step 2. 

Step 4. If A i ~ Aj go to step 3. If ei and ej have no distinguish pair go to 

step 7. 

Step 5. Let (B,C) be the (unique) distinguishing pair of ~i' ej" If B ~ C go to 

step 3. If B ~ E or C E E go to step 7. 

Step 6. Replace [B] and [C] in ~ by one new block [B] u [C]. Set i = 0 and go 

to step 2. 

Step 7. Halt. G is not a strict deterministic grammar. 

Step 8. Halt. G is strict deterministic under ~. 

End of the algorithm. 

There are three subclasses of the class of strict deterministic grammars which 

will be referred to in the forthcoming sections. 

DEFINITION 8.6. 

a. (Korenjak and Hopcroft [80]) A CFG G = (N,Z,P,S) is said to be a simple determi- 

nistic grammar if it is in GNF and, for each A E N, if A + a~ and A + a8 are in 

P, then ~ = ~ 

b. (Pittl []3]]) A CFG G = (N,Z,P,S) is said to be a uniform grammar if it is in GNF 

and there exists a strict partition ~ of V which satisfies: For all A, A' e N, 

a¢ Z and e, ~' E N*, if A ÷ a~ and A' + a~' are in P, then A m A' (mod~) implies 

c. (Barrison and Havel [61]) A CFG G = (N,Z,P,S) is said to be a real-time strict 

deterministic grssmmr if it is g-free and it has a minimal strict partition ~ such 

that, for all A,A',B,B' e N and ~, 8 e V*, if A + ~B and A' + ~B'8 ar~ in P, then 

A - A' (mod 7) implies 8 = c. 

Any simple deterministic grammar G = (N,E,P,S) is strict deterministic with re- 

spect to the partition ~ = {Z,N} and with respect to the minimal partition 

70 = {Z} u {{A} I A ~ N}. Any simple deterministic grammar is a uniform grammar, 

since 70 is a uniform strict partition. Clearly, any uniform grammar is a real-time 

strict deterministic grammar. The following relation between these classes of grammars 

can be shown: 

SIMPLE DET. ~ UNIFORM ~ REAL-TIME ~ STRICT.DET. 
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The third class of grammars which we will consider is the class of LL(k) gram- 

mars. 

DEFINITION 8.7. Let k -> 0 and G = (N,E,P,S) a CFG. Grammar G is LL(k) if for each 

w E E*, A ¢ N and ~,~,y c V*, if A÷ ~ and A ÷ ~ are in P and 

SLWA~ 

then FIRSTk(~) n FIRSTk(Y~) ¢ ~ implies g = y. 

Each LL(k) grammar is an LR(k) grammar. The class of LL(k) languages is properly 

included in the class of deterministic languages. For each k -> 1 there exists an 

LL(k) language which is not LL(k-I), Clearly, the classes of simple deterministic 

grammars and LL(1) grammars in GNF coincide (except for a possible production S -~ e). 

Whenever we speak of an LL- or an LR-gra~nar, then we mean a graE~ar for which 

there exists a non-negative integer k such that it is LL(k) or LR(k), respectively. 

It should be noted that instead of Definition 8.7 we could have given the following 

equivalent definition: 

Let k > 0 and G = (N,E,P,S) be a CFG. Gra,~ar G is LL(k) if for each w,x,y ~ E*, 

A c N and ~,B,Y E V*, if A-~ B and A ÷ y are in P and 

(i) s w~,~wB~wx 

(ii) S ~ W ~ C ~ w y  

( i i i )  k ; x = k : y 

then ~ = y. 

This definition can easily be changed to a definition of strong LL(k) grammars. 

DEFINITION 8.8, Let k -> O and G = (N,~,P,S) a CFG. Grammar G is strong LL(k) if for 

each Wl,W2,x,y ~ E*, A e N and Ul,U2,B,y ~ V , if A÷ B and A÷y are in P and 

, , 
(i) s ~ wiA % ~ wl~= l ~ wlx 

(ii) S ~ w2A~ 2 ~ w2Y~ 2 ~ w2Y 

(iii) k : x = k : y 

then ~ = y. 

It can be shown (of. Rosenkrantz and Stearns [144]) that any LL(k) grammar can 

be converted into a structurally equiyalent strong LL(k) graE~mr (cf. Definition 
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1.7. c). For k = ~ the notices of LL(k) and strong LL(k) coincide. Each simple deter- 

ministic grammar is LL(1) and instead of simple deterministic grammars they are also 

called simple LL(1) gra/mnars. Cf. section 10.2 for a further discussion on LL(k) 

and strong LL(k) grammars. 



CIIAPTER 9 

COVERS AND DETERMINISTICALLY PARSABLE GRAMMARS 

9.1. DETERMINISTICALLY PARSABLE GRAMMARS 

The well-known parsing methods for deterministic languages can be implemented 

by a DPDT. In Aho and Ullman [3] this has been made clear for a k-predictive parsing 

algorithm (for LL(k) grammars) and for a shift-reduce parsing algorithm (e.g. for 

LR(k) grammars). In Harrison and Havel [59,60] the same has been done for strict 

deterministic parsing. For other methods, although not always explicitly shown, it 

is mostly intuitively clear that the method can be implemented by a DPDT. 

For LL(k) and LR(k) grammars this means that the proper parse relations l G and 

~G' respectively, are obtained as the translation of a DPDT. Clearly, each of these 

translations can also be obtained from a simple SDTS which has the LL(k) or LR(k) 

grammar as underlying grammar. Lewis and Stearns [101] have investigated this type 

of (simple) syntax directed translations. We list the two main theorems. The termi- 

nology is of Aho and Ullman [ 3 ]. The symbol ± is used as an endmaker. 

THEOREM 9.1. Let T = (N~Z,A,R,S) be a semantically unambiguous simple SDTS with an 

underlying LL(k) gran~ar~ Then {(xl,y) I (x,y) c ~(T)} can be defined by a DPDT. 

Proof. See Aho and Ullman [ 3 ,p.731]. 

It follows that any production directed parse relation fG of an LL(k) grammar 

G can be defined by a DPDT. 

This is not the case for LR(k) grammars. We have to restrict the notion of a 

simple SDTS such that its translation can be defined by a DPDT. A simple SDTS 

T = (N,Z,A,R,S) where each rule is of the form A ÷ ~,8 with 8 in N'A*, is called a 

simple postfix SDTS. 

THEOREM 9.2. Let T = (N,Z,A,R,S) be a semantically unambiguous simple postfix SDTS 

with an underlying LR(k) grammar. Then {(x±,y) I(x,y) c T(T)} can be defined by a 

DPDT. 

Proof. See Aho and Ullm~n [ 3 ,p.733]. D 

It follows from this theorem that the right parse relation rG of an LR(k) gram- 

mar G can be defined by a DPDT. 

There exist classes of grm~mars which properly include the class of LL(k) gram- 

mars and which are properly included in the class of LR(k) grammars. For these classes 
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less severe restrictions on the simple SDTS than are necessary for LR(k) grammars 

need to be introduced. Cf. Soisalon-Soinine~ []55] and Kosenkrantz and Lewis [143] 

for such classes of grammars. 

These observations motivate us to consider deterministic pushdown transducers 

as a model for parsers. If fG is a parse relation for CFG G, then we call DPDT P a 

parser for G and fG if T(P) = fG" A more formal definition will be given shortly. 

We require that at most one parse will be given to each sentence of L(G). This 

condition restricts the class of deterministic pushdown transducers. This can be 

seen with the help of the following example. 

EXAMPLE 9. I. 

Consider gra~s~ar G with productions 

I .  $ - > S  

2. S + a  

A production directed parse relation is the set 

rG = {(a'2|k) I k ~ 0} 

A DPDT for G and rG is defined by 

p = ({qo,qe},{a},{S},{1,2},~,q0,S,{qe}) 

such  that 

and 

~(q0,a,S) = (qe,S,2) 

~(qe,g,S) = (qe,S,])o 

Here we have E(P) = {(a,21 k) I k a 0} = ~G" We do not want to consider this DPDT as 

a deterministic parser. End of Example 9.|. 

A DPDT will he called a parser for G and fG if and only if it is valid for G 

and fG" 

DEFINITION 9. I. A DPDT P is valid for CFG G and parse relation fG 

(i) T(P) = {(xl,y) I (x,y) ~ fg } 

(ii) no moves can be made in the final states of P. 

if 
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LEMMA 9.1. Let P be a =alid DPDT for CFG G and parse relation fG" If (W,~l) e fG 

and (w,z2) E fG' then 71 = 72 . 

Proof. Assume that pushdown transducer P is a valid DPDT for CFG G and parse rela- 

tion "fG" Suppose (w,~l) and (w,~2) are in fG" Since P is deterministic all the 

moves which are made to reach a final state with w are the same for a translation 

from w± to 7] and a translation from w to ~2" Since there are no possible moves in 

this final state it follows that ~I = 72" 

Let us call a parse relation fG unambiguous if (w,71) and (w,72) in fG implies 

71 = ~2" 

LEMMA 9.2. If fG is an unambiguous parse relation of CFG G, then any DPDT P with 

%(P) = [(wi,z) I (w,z) ~ fG } can be converted to a valid DPDT for G and fG" 

Proof. Suppose that 

(q0,w±,Z0 ,~) ~ (qe,e,Y, u) 

in P = (Q,Z,r,~,q0,Z0,F), where qe ~ F and qe is the first final state which is 

reached after the symbols of w± have been read. Hence, (w±,u) ~ T(P). It is possible 

' However, during these that e-moves are made from qe to an other final state qe" 

moves no output can be given. Otherwise fG would not be unambiguous. It follows that 

we can delete ~(qe,e,l:y) from the definition of 5. This can be done for each final 

state. The modified DPDT is a valid DPDT for G and fG" D 

Any LR(k) grammar G is unambiguous. Therefore the parse relation rG is unam- 

biguous. Since, by Theorem 9.2, for any LR(k) grammar G and parse relation rG there 

exists a DPDT P which satisfies T(P) = {(wl,x) I (w,x) ¢ ~G } it follows from Lemma 

9.2 that G and rG have a valid DPDT. 

Notice that any CFG G which generates a deterministic language has a DPDT which 

is valid for G and parse relation {(w,e) I w ~ L(G)}. If DPDT P is valid for G and 

parse relation fG' then, necessarily, L(G) is deterministic. 

Now classes of grammars can be defined with respect to parse relations. 

DEFINITION 9.2. A CFG G is an fG-parsable graLwaar if there exists a DPDT which is 

valid for G and fG" 

With this definition we can introduce, among others, left parsable grammars 

(fG = ZG ) " right parsable grammars (fG = rG)' left corner parsable grammars (fG = 

= ZCG) and left part parsabl.e grammars (fG = IPG)" 
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In Aho and Ullman [3] the left and right parsable gran~ars were introduced with the 

help of a simple SDTS. 

Notice that if G is an fG-parsable grammar, then it is not necessarily the case 

that G is unambiguous since we have not required that fG is a proper parse relation. 

Therefore we can deterministically parse ambiguous grammars in the sense described 

in Aho, Johnson and Ullman [2]. It follows from the discussion before Definition 

9.2 that each fG-parsable grammar generates a deterministic language. 

The left parsable and the right parsable grammars are also discussed in Aho and 

Ullman [3]. There we can find the following inclusion diagram 

m 

left parsable 

right parsable 

Figure 9.1. Diagram for the left and right parsable grammars. 

Clearly, anN- LL(k) grammar is left parsable and any LR(k) grammar is right 

parsable. The classes of LR-granmmrs and left parsable grammars are incomparable. 

Examples showing this and showing the proper inclusions in the diagram can be found 

in [ 3]. 

To show that, e.g. an ~xample grammar G is not left parsable one can use the 

argument of [3,p.272]. That is, try to construct a (valid) DPDT for G and l G. If 

this turns out to be impossible~ then G is not left parsable. 

We show some results which are not in the diagram. Mostly these results are of 

the form: Grammar G is fG-parsable but not hG-parsable, thus establishing incompara- 

bility of classes of grammars. Except for the first example we will confine ourselves 

to the presentation of some example grammars and mention their properties. This is 

justified by the simplicity of the examples. The properties of each grammar can be 

checked by using the type of argument mentioned above. 

Consider the grammar G with productions 

I .  S + IS I  

2.  S + IS2 

3 .  S ~ l  
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Grammar G is not left parsable. Suppose there is a valid DPDT P for G and Z G. 

In translating P can only start with emitting output after the last symbol of a 

sentence u e L(G) has been read. (Formally this can be seen as follows. Consider 

two sentences w] and w2 in L(G). Translation of wl with P leads to a sequence of 

moves such that 

(q0,wll,z~c) ~ (r,1±,y,%)~ (qe,~,~',~') 

where q0 is the initial state, r is an intermediate state and qe is a final state. 

Suppose that ~w # e. Necessarily, I : nw = I. Now consider the translation of w2 

with P. Here we have 

(qO,w2±,Z0,e) ~ (r,2±,Y,~w). 

Since 1 : ~ = 1 we can not have that a final state is reached form the configura- 
w 

tion (r,2±,Y,~w). Since P is deterministic there is no other way for w2± to reach 

a final state via (r,2±,Y,~w). It follows that ~w = E. End of the formal argument.) 

To recognize a sentence of the form Inllk2v with k + | + Ivl = n we have to 

verify that ]2v[ ~ n. To make this possible we should have shifted the symbols I on 

the stack. Verification can now be done by popping one symbol from the stack for 

this first symbol and for each following symbol until the endmarker is read. (It 

is left to the reader to formalize this argument.) It follows that when we have read 

the endmarker we do#~tot have available the information on the stack which is neces- 

sary to give the correct output (It is left to the reader to formalize this argument.) 

Therefore grammar G is not left parsable. 

In a similar way it can be shown that G is not right parsable. Since the left 

corner parses coincide with the left parses and the left part parses with the right 

parses it follows that G is not left corner parsable and not left part parsable. 

However, G is parsable with respect to the proper parse relation 

fG = {(Imu'u31n) I u ~ {~} u 2{I,2}*, m > 0, n ~ 0 

lul~m-1 
l ul + m is odd" 

lul + n = (m + lul - I)/2}. 

Informally, read l's and shift them onto the stack until the first 2 (if any) 

is encountered. Continue reading, emit for each symbol 2 (including the first 2) 

the symbol 2 and for each symbol I the symbol I and pop for each symbol which is 

read (including the first 2) one symbol from the stack. If the endmarker is read, 

emit the symbol 3 and pop one symbol from the stack. It remains to check whether 

the stack contains an even number of l's. For each pair of 1's the symbol I should 

be emitted. 



EXAMPLE 9.2. 

(a) GO: S ÷ AEa 

A÷a 

D+a 

E ÷ bEc 

B ÷ bBc 

DBd 

Grarmnar G O 

bc 

hc 

exist a proper parse relation fG such that G O 

(b) G]: S ÷ IA I |B 0 

A ÷ SO 

B ~ Sl 

is unambiguous. L(G O) is a deterministic language. There does not 

is fG-parsable. 

Gran~ar G; is strlct deterministic. G! 

left corner parsable or left part parsable. 

(c) G2: S + OSO ! 0S| 

S ÷ BAb I CAe 

C~ a 

B÷a 

A÷BA I a 

is right parsable but not left parsable, 

Grammar G 2 is left part parsable (for a proper parse relation £pG ) but not left 

parsable, left corner parsable or right parsable. 

(d) G3: S ~ AH I BCD i DC¢ 

A÷S 

H~O 

C÷BC I a 

D÷a 

Grammar G 3 is left corner parsable (for a proper parse relation £e G) but not 

left parsable, left part parsable or right parsable. 

(e) G4: S ÷ AO i AI ! BDb I CD¢ 

A÷S 

B+a 

C~ a 

D ÷ E I a  
E ÷ BD 

Grammar G 4 is left parsab!e, but not left corner parsable, left part parsable 

or right parsableo 
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Notice that for all these examples the parse relations ~c G and ~PG are proper. 

The properties of the grm,,mrs are collected in Table IX. 

left parsable 

left corner parsable 

left part parsable 

right parsable 

G O G 1 G 2 G 3 G 4 

no no no no yes 

no no no yes no 

no no yes no no 

no yes no no no 

Table IX. Parsability and proper parse relations. 

9.2. ON THE COVERING OF DETERMINISTICALLY PARSABLE GRAMMARS. 

In this section we show that the part of the grammar which is parsed by the 

DPDT is covered with a strict deterministic or LR(1) grammar. The part of the grammar 

which is parsed is defined by the parse relation. The proof of this cover result is 

in fact well-known. Any DPDA which satisfies a few simple conditions can be convert- 

ed to a strict deterministic gr~m~r. The generalization of this conversion to a 

DPDT is the 'Standard Construction' of section 1.3.1 when applied to a DPDT. In this 

way we obtain a simple SDTS T with an underlying gra~r G which has the property 

that each leftmost derivation (left parse) of a sentence w £ L(G) can be mapped on 

the translation of w by T. This observation (the 'Standard Observation' of section 

1.3.1) is well-known; it can be concluded from the results in Aho and Ullman [3] 

and it is explicitly mentioned in Brosgol [17]. This observation was related to 

covers in Nijholt [116] by considering parsing as a restricted way of translating. 

We need a few technical preliminaries before we can give the full argument. 

Many of the transformations which will be used in the forthcoming sections are 

well-known or have been treated in the preceding sections. This means that we already 

know that they preserve language. Now consider two grm~rs G' and G, and parse re- 

lations fG' and h G. We will mostly be in a situation where L(G') = L(G), g = <~,~> 

is a (total) parse homomorphism and ~ is the identity homomorphism. 

LEMMA 9.3. Let G' and G be grammars with parse relations fG' and hG, respectively. 

Let g = <~,~> be a parse homomorphism, g : fG' ÷ ~' such that ~ is the identity 

homomorphism. If L(G') = L(G) and G is unambiguous then g is a cover homomorphism. 

Proof. Trivial. 0 
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Hence, if we know that G is unambiguous, L(G ~) = L(G) and we restrict ourselves 

to parse homomorphisms g = <~,~> where ~ is the identity homomorphism, then we may 

conclude that G' covers G if (w,~') ~ fG' implies (w,~(z')) £ h G. Now we return to 

our discussion on valid DPDT's. As we mentioned in section 3.3 we will no longer 

consider homomorphism ~. 

We will convert an arbitrary valid DPDT to a valid DPDT which is more amenable 

for a conversion to a strict deterministic grammar. 

LEMMA 9.4. Let P be a valid DPDT for CYG G and parse relation fG" Then we can con- 

struct a valid DPDT P' for G and fG which accepts with empty pushdown list in one 

final state. 

Proof. 

DPDT 

Let P = (Q,Z,F,A,~,q0,Z0,F) be valid for CFG G and parse relation fG" Define 

P' = (Q u Q1 u {qe},Z,r u {Zo0},A,~',qo,Z00,{qe}) 

where Q] = {q~ i q ~ F} and where qe and the states q' in Q! are newly introduced 

states. ZOO is a new pushdown symbol not already in r and ~' is equal to ~ except 

for the following cases: 

(i) Define ~'(qo,£,Zo0) = (qo,ZoZo0,e) 

(ii) For all q ~ F, for all corresponding q' ~ Q] and for all X c F, define 

~'(q,g,Z00 ) = (qe,e,~) 

6' (q,c,X) = (q~ ,~,e), 

~'(q',c,x) = (q~,c,c), 

x # Zoo 

x # Zoo 

~'<q',~,z00) = (qe,~,~). 

It can easily be verified that P' satisfies the desired conditions. 

LEMMA 9.5. Let P be a valid DPDT for CFG G and parse relation fG" Suppose that 

L(G) is prefix-free. Then we can construct a DPDT P' which accepts with empty push- 

down list in one final state such that T(P') = fG" 

Proof. Let P = (Q,Z,F,A,6,qo,Z0,{qe}) be valid for CFG G and parse relation fG o 

Due to Lemma 9.4 we may assume that P accepts with empty pushdown list in one final 

state. P defines the set T(P) = {(w±,~) I (w,~) E fG }. If (w±,~[) ~ ~(P), then 

I* 
(qO,W±,Zo,e) F- (q,i,y,u) ~ (q',e,y',u ~) ~ (qe,C,e,~). 
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Since 6(q,i,|:y) is defined, ~(q,e,]:y) is undefined. Otherwise P would be non- 

deterministic. If 6(q,a,l:y) is defined for a # ±, then since L(G) is prefix-free, 

application of this step can never lead to a final state. Therefore, for each a e E, 

a # ± we can. delete 6(q,a,1:~) from the definition of 6. If we replace in the 

definition of 6 

by 

6(q,±,z) = (q',~,8) 

6(q,¢,z) = (q',~,8), 

for any q, q' in Q, Z in F, ~ in F* and ~ in A , then T(P) = fG" D 

For convenience we repeat the 'Standard Construction' of section 1.3.1. If it 

is applied to a DPDT which accepts with empty pushdown list in one final state, then 

a simple SDTS is obtained which has an underlying strict deterministic grammar. Only 

the productions of the underlying grammar are given. Each production is followed 

by the output which is given in the rule of the DPDT from which this production has 

been obtained. 

ALGORITHM 9.1. 

Input. A DPDT P = (Q,Z,F,A,6,qo,Z0,{qe}) which accepts with empty pushdown list in 

one final state. 

Output. A strict deterministic granm~ar G' = (N',~,P',S'). 

Method. (]) Define N' = {[pAq] I P,q £ Q,A £ F} and S' = [qoZoqe ]. 

(2) P is defined as follows. Let ~(p,a,A) = (r,X1...~,y), with a ~ Z u {~}. 

If k > O, then P' contains the productions 

[pAqk] ÷ a[rX1qll...[qk_IXkqk ] <y> 

for all sequences of states q1' .... 'qk in Q. If k = 0, then P' will 

contain [pAR] ÷ a <y>. 

It follows from Harrison and Havel [59] that G' is a strict deterministic gram- 

mar. In the sequel we assume that in a grammar obtained with this construction all 

useless symbols and productions are removed. This removal can be done such that 

strict determinism is preserved (Harrison and Havel [59 ]). Grammar G' simulates with 

leftmost derivations the moves of the DPDT, Therefore we have the following theorem. 

THEOREM 9.3. Let G be an fG-parsable grammar. Assume that L(G) is prefix-free. Then 

there exists a strict deterministic grammar G' such that G'[I/f]G. 
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Proof. If G is fG-parsable then there exists a valid DPDT P for G and fG" We may 

assume that P accepts with empty pushdown list in one final state. Moreover, since 

L(G) is prefix-free we may assume that T(P) = fG" 

With the help of Algorithm 9.! P can be converted into a strict deterministic grammar 

G' with label set AG~. Define a homomorphism ~ : AG, ÷ A G such that each #~oduction 

which is obtained from a step 

6(p,a,A) = (r~XIX2...Xk,Y), 

where a e E u {e}, k a 0, is mapped on the string y £ A G. 

Now, if (w,~ ~) e %' then (w,~(~')) e T(P). Hence (w,~(~')) c fG" Moreover, due 

to the construction, for each (w,~) E fG there exists a ~' such that (w,~') ~ ZG' 

and ~(~') = ~. Notice that this is the 'Standard Observation' of section 1.3.1. We 

conclude that G'[~/f]G. D 

It follows that each right parsable grammar (e.g. an LR(k) grammar) with a 

prefix-free language is left-to-right covered with a strict deterministic grammar. 

Any left parsable grammar (e.g. an LL(k) grarmnar) with a prefix-free language is 

left covered with a strict deterministic grammar. We will deal with the prefix-free 

condition shortly. 

First we notice that this result is not quite satisfactory from the point of 

view of our model of parsing. A strict deterministic or LR-parsing method yields 

right parses. Moreover, there exist strict deterministic grammars which are not 

left parsab!e. Therefore we try to change Theorem 9.3 so that the right parse rela- 

tion of the strict deterministic grammar can be considered. 

THEOREM 9.4. Let G be an fG-parsable grammar. Assume that L(G) is prefix-free. Then 

there exists a strict deterministic grammar G" such that G"[r/f]G. 

Proof. Our starting point is the valid DPDT P in the proof of Theorem 9.3 from which 

a strict deterministic grammar G' is constructed. Hence, G'[£/f]G. We will construct 

a strict deterministic grammar G" such that G' will play the role of the intermediate 

grammar of Observation 4.1. 

Let P = (Q,E,r,A,6,q0,Zo,{qe}) be the DPDT. We assume that the elements of 6 

are uniquely labeled by numbers from: the set H = {1,2,...,h}, where h is the total 

number of three-tuples for which 6 is defined. From P we construct a new DPDT P', 

also valid for G and fG" Define 

P' = (Q,E,F o {H i I i ~ H}, A,~',qo,Zo,{qe}) 

with {H i I i ~ H} n F = ~ and ~ is defined as follows. 
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(i) If in P, for k > 0 and a E E u {E} 

i.6(p,a,A) = (r,Xl...Xk,Y) 

then define in P' 

(1) 

i'.~'(p,a,A) = (r,HiXl...~,g) (2) 

and 

i".6'(r,e,Hi) = (r,g,y). (3) 

(ii) If in P, for a E E u {~} 

j.~(p,a,A) = (r,E,z) (4) 

then define in P' 

j'.6'(p,a,A) = (r,g,z). (5) 

Notice that for any input string the final state of P is reached with an appli- 

cation of a step of the form 6(p,a,A) = (qe,E,z) with a E E u {E}. Such a step 

remains unaltered and P' accepts with empty pushdown list in one final state and 

T(P') = T(P). If P' is converted to a CFGthen a strict deterministic grammar G" is 

obtained. Clearly, G"[~/f]G. We show that also G"[~/f]G. 

Define a partition ~t of AG, as follows. Two productions of G' are in the same 

block of ~t if and only if they are obtained from the same step 6(p,a,A) = (r,X]...Xk,Y) 

of P (a E E u {e},k ~ 0). Clearly all the productions in a block B of ~t are mapped 

on the same string y ~ A~ by the cover homomorphism ~. Therefore ~t is a transi- 

tivity partition. Define 6 t : A~, + ~ by 6t(i) = B, for i E B. We have the tran- 

sitivity relation 

~G' = {(w,~) I (w,~') c IG, and 6t(~' ) = ~}. 

It remains to verify that there exists a homomorphism ~t : A~,, ~ ~ such that, 

if (w,~) E rG"' then (w,~t(~)) ~ __~G'" Notice that ~G' can play the role of parse 

relation h G in Lemma 9.3. Therefore we do not have to verify the surjectivity 

of ~t (the second condition of Observation 4.1). 

The verification can be done by induction on the length of the derivations 

using an argument almost similar to that of the proof of Theorem 5.4. We confine 

ourselves to the definition of ~t" We refer to the situations (i) and (ii) displayed 

above. 



(i) Productions of the form 

[pAqk] ~ a [ r X l q  1 ] . . . .  [qk_]Xkqk ] 

t22 

<y> 

are Qhtained from (|) (for CFG G') and productions of the form 

[pAqk] + a[rHir][rXlql~...[qk_l~q k] <g> 

[rHir] ÷ g <y> 

are obtained from (2) and (3) (for CFG G"). Define 

~t([pAqk] ÷ a[rHir][rXlal]...[qk_l~qk]) = ¢, 

for any sequence of states ql,...,qk, and 

~t([rHi r] ~ s) = {[pAq k] + a[rX1ql]'-'[qk_iXkq k] I ql ...... qk ~ Q}" 

(ii) A production 

[pAr] + a <z> 

is obtained from (4) for CFG G', and a production 

[pAr] ÷ a <z> 

is obtained from (5) for CFG G". Define 

~t([pAr] ÷ a) = {[pAr] + a}. 

With this definition of ~t : AG" ÷ ~t we conclude from Observation 4.1 that 

G [r/f]G. 

Up to this point we have been concerned with context-free grammars with prefix- 

free languages. In the following theorem we show the existence of an LR(1) grammar 

G' which covers an fG-parsable grammar G. 

THEOREM 9.5. Let G be an fG-parsable grammar. Then there exists an LR(]) grammar 

G' such that G'[Z/f]G and G'[r/f]G. 

Proof. Let G = (N,Z,P,S) be an fG-parsable grammar. Define gran~ar G O = (N u IS0}, 

E u {±},P u {S O ÷ S±},S 0) where S O is a newly introduced nonterminal and ± is the 

endmarker. Production S O ÷ S± will be given label 0. L(G O) is prefix-free. The set 

hGo = ~(w±,~O) I (w,~) e f~ is a parse relation for G O . Since G is fG-parsable there 
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exists a valid DPDT P' = (Q,E u (±},F,A,6,q0,Z0,(qe}) such that 

~(e') = ((w±,~) I (w,~) ~ EG }. 

Notice that P' has steps of the form 6(q,X,Z) = (qe,g,p), where q 6 Q, 

, ~*. X e Z u {e} u {±} z e F, qe is a final state and p e Each of these steps may 

be replaced by 6(q,X,Z) = (qe,e,p0). In this way we obtain a DPDT 

P0 = (Q'Z u (±},F,A u (0},~',q0,Z0,(qe}), where 6' represents the modified ~. Clearly, 

T(P0) = hG " P0 can be converted to a strict deterministic gra~mmr G] such that 
- 0 

Gi[r/h]G 0 and Gl[I/h]G 0. We modify grammar G I in such a way that an LR(1) grammar 

G' is obtained which satisfies G'[r/f]G and G'[I/f]G. 

Grammar G! = (NI,E u (±},PI,SI) has productions with ± in the righthand side. 

These productions are of the form A + ±BIB2...Bn, n Z 0 and A,BI,B2,...,B n ~ N I. 

Necessarily, BIB2...B n ~ e. Let P± be the subset of PI which contains only productions 

of this form. Define 

R = {A + BIB2...Bn I A ÷ ±BIB2...Bn ~ P±}, 

Let ~ : AGI ÷ AGo 

GI[Z/h]G 0. Define ~' : 

For each p E P', 

where each production in R has the same label as the corresponding production in P±. 

Notice that, due to the fact that PO is deterministic, if A ÷ ±BIB2...B n is in P|, 

then there does not exist A + BIB2...Bn in PI" Let R' be the complement of P± in PI" 

Define G' = (N',E',P',S'), where N' = NI, E' = E, P' = R u R' and S' = S|. Clearly, 

L(G') = L(G). 

be the cover homomorphism for which we have G1[r/h]G 0 and 

AG, ÷ A G as follows: 

~'(p) = Wl~2 if ~(p) = wl0w2, for some ~I' w2 ~ AG' and 

~' (p) = ~(p), otherwise. 

Now it should be clear that G'[r/f]G and G'[I/f]G. We prove that G' is an LR(1) 

gr~n-n~r. Suppose that G' is not LR(1). Then there exist y,~,~',~,~' ~ (N' u E')*; 

w,w',x £ E'*; A,A' ~ N' such that 

(I) s' ~Aw ~ ~w = yw, 

(2) S' ~ ~'A'x~ ~'~'x = yw', and 

(3) I : w = I :~w' and (A ÷ ~,I~]) # (A' ~ ~',I~'B'I). 

We prove that this assumption leads to a contradiction with G 1 being strict 

deterministic (and hence LR(O)). Notice that the only difference between G' and G! 

is the sets R and P . For the derivations (I) and (2) we have corresponding deriva- ± 
tions (I') and (2'9 in G I. That is, if in (I) or (2) a production of R is used, then 

the corresponding production of P is used in (I') or (2'). Otherwise the same £ 
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productions are used° We distinguish between two cases. 

Case i. Assume I : w = ~. Then w = w' = ~ and G' is ambiguous. The corresponding 

derivations for (I) and (2) can be written as 

(1 ~) S~ ~ Y' 

and 

(2 ~) S' ~ y~' 

where 

y~ = YliY2 , with YIY2 = y, if a production of R is used in (|), 

y~ = y, if no production of R is used in (I)~ 

y~' = y3±Y4 , with Y3Y4 = y, if a production of R is used in (2), 

y" = y, if no production of R is used in (2). 

It is sufficient to consider the following three cases. 

a. The case y~ = y~' = y is impossible since G 1 is unambiguous. 
w 

b. Let y' = yl±y2 and y" = y = YiY2. Notice that Y2 ~ e" If v ~ L(Yl) then both v 

and vi in L(G]). This is impossible. 

c. Let y' = YllY2 and y" = Y3iY4 , Assume that Y1 is a proper prefix of Y3" The symmet- 

ric case, Y3 is a proper prefix of YI' is omitted. We can write y' = YI±PY4 and 

y" = ylply4° For any w e L(yl) we have w± ~ L(y') and w± E L(y"). Therefore, 

since G] is unambiguous, either y' ~y" or y" ~ y'. We consider the first case. 

The second case needs a similar argument. If yl±py 4 ~ YlOl~4, then Y1 ~ YI p" 

Since p ~ g, we have a derivation Y1 ~ Y|O ~ Y]' which means that G 1 is ambiguous. 

Contradiction. 

There remains the situation y' = y" = yl±y2. In this case it should be verified 

that the pairs in g I which correspond with the pairs (A÷ 8,1~81) and (A' ÷ 8',I~'8'I) 

of G' are also different. This can easily be done and therefore we obtain a contra- 

diction with GlbeingLK(0). 

Case 2. Assume I : w ~ Z. The derivations in G 1 corresponding to (I) and (2) are 

(i v) S' ~w± ~Sw± = ywl, 

and 

(Za ~) S' ~ ~'A~x± ~ ~B'xz = yw'~, 
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or 

(2b') S' ~ ~'A' ~ ~'± = yw'±. 

Since G 1 is LR(O) it follows that we can not have (A ÷ ~,I~I) ~ (A' ÷ ~',[u'~'l) 

for these derivations. 

We may conclude from Case I and Case 2 that the assumption that G' is not LR(1) 

leads to a contradiction with G 1 being LR(0). 0 

A consequence of this theorem is that any LR(k) grammar is right covered and 

left-to-right covered by an LR(1) granmmr. 

We conclude this section with a few observations on the relation between parsa- 

bility and covers. 

THEOREM 9.6. Let h G be a parse relation for CFG G. If G is not an hG-parsable gram- 

mar, then there does not exist an fG,-parsable grammar G' such that G'[f/h]G. 

Proof. If G' is fG,-parsable then there exists a DPDT P such that 

T(P) = {(w±,~) I (w,~) ¢ fG,}. Assume that G'[f/h]G under a cover homomorphism 

: A~, ÷ A~. A DPDT P' is obtained from P by changing any rule ~(q,X,Z) = 

= (r,Xl...Xk,y) from P to 6(q,X,Z) = (r,Xl...~,~(y)). DPDT P' is valid for G and 

h G. -However, this is in contradiction with G is not hG-parsable. Therefore G'[f/h]G 

is not possible. Q 

This theorem is simple but useful. Consider e.g. the CFG G with productions 

A+~blb 

Grammar G can be simply transformed to LL(1) grammar G' with productions 

S÷aAH 

A ~ b l b  

H÷cld 

However, since G is not a left parsable gr~mar, it follows from Theorem 9.6 

that there does not exist an LL(1) grammar which left covers G. 

Suppose that we are in a situation as described in Theorem 9.6. Hence G'[f/h]G 

is not possible. Can we obtain the result that G' covers G for these two parse re- 

lations if we use, instead of a homomorphism, a DFT to map the parses of fG' on the 

parses of hG? The answer is negative because of the following argument. If G' is 
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fG,-parsable then there exists a valid DPDT P for G' and fG~. If M is the DFT which 

maps the parses of fG' on the parses of hG, then we can combine DPDT P and DFT M to 

a DPDT P' which is valid for G and h G. Since grammar G is not hG-parsable , we have 

obtained a contradiction. 

The construction of P' is defined below. Without loss of generality we may as- 

sume that DFT M has no ~-moves. We assume that it is clear from the construction 

that P~ has the desired properties. 

ALGORITHM 9.2 .  

Input. A DPDT P = (Q,E,F,AG,6,q0,Z0,F) and a DFT M = (QM,AG,AG,,~M,Po,~). 

Output. A DPDT P~ such that T(P') = {(w±,M(~)) I (w±,~) E T(P)}. 

Method. Define 

p' = (Q x ~i,X,r,aG,,~' , (q0,Po),Zo,F × QM), 

where 6' is defined as follows. 

For each step ~(q,a,Z) = (r,e,~) in P, with a e E u {~}, define 

(i) ~'((q,p),a,Z) = ((r,t),~,~'), if I~I ~ ! and (p,~,g) ~ (t,g,~') in M 

(ii) ~'((q,p), a,Z) = ((r,p),~ ,g) if I~l = O. This concludes the construction of P'.~ 

It follows that replacing the homomorphism in the cover definition by a DFT- 

mapping does not help in finding a left covering grammar for the example gran~nar G 

displayed above. 



CHAPTER I0 

NORMAL FORM COVERS FOR DETE~,ilNISTICALLY PARSABLE GRAMMARS 

In the three sections of this chapter we will frequently refer to the algorithms 

which were introduced in the Chapters 4 and 5. The cover properties of the transfor- 

mationsdefined by these algorithms were proved in these chapters. 

To obtain similar cover properties for LL(k), strict deterministic and LR(k) 

grammars one has to prove that these algorithms preserve LL-ness, strict determinism 

and LR-ness, respectively. This is done in the forthcoming sections. Cover-tables 

will be constructed for these three classes of grammars. 

|0. l. NORMAL FORM COVERS FOR LL(k) GRAMMARS 

As we did in Chapter 6 for context-free grammars, here we will construct a cover- 

table for LL(k) grammars. We start with some general results and then we will actually 

construct the table. This section is concluded with a short evaluation of the results 

from a more practical point of view. 

Our first lemma is in fact Lemma 4.4, but now formulated for LL(k) grammars. 

LEMMA 10. I. For any LL(k) grammar G and production directed parse relation h G there 

exists an LL(k) grammar G' such that both G'[I/h]G and G'[r/h]G, (k z 0). 

Proof. It is sufficient to show that CFG G' of Lemma 4.4 is LL(k) if grammar G is. 

CFG G' is obtained from G by inserting new nonterminal symbols in the righthand sides 

of the productions. For each production the inserted nonterminal symbol is unique. 

The argument that this does not change the LL(k) property is elementary and is there- 

fore omitted. 

We do not know whether E-productions in an LL(k) grammar can be eliminated in 

such a way that a right covering LL-gran~nar is obtained. It is well-known that any 

LL(k) language can be given an LL(k+|) granmuar without g-productions. This change 

from k to k + I is necessary, since there exist LL(k) languages which can not be gen- 

erated by g-free LL(k) grammars. We will consider a subclass of the LL(k) grammara. 

DEFINITION I0. I. Let G = (N,Z,P,S) be a CFG which has g-productions. Grammar G is 

said to have strict g-productions if, for any A c N,E e L(A) implies L(A) = {g}. 

We re=all the definition of a representation of a righthand side of a produc- 

tion (Definition 4.3). If A + ~ is a production, L(~) # {e}, then a representation 

of ~ is a factorization ~ = eoXIeIX2 .... ~n_lXnen , n > 0, which satisfies 



(i) X i c N u Z and L(Xi) # {E}, I ~ i ~ n. 

N* (ii) ~i ~ and g ~ L(~i) , 0 ~ i ~ n. 
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LEMMA 10.2. Let G = (N,Z,P,S) be a CFG with strict g-productions. Each righthand 

side ~, with L(~) # {g}, of a production A + ~ in P has exactly one representation. 

Proof. Straightforward and therefore omitted. 

THEOREM I0. Io Any LL(k) grammar with strict ~-productions can be right covered with 

an E-free LL(k) graxmnar (k a 0). 

Proof. Since each LL(k) gra~mmr is non-left-recursive, we can use Algorithm 4.1 to 

eliminate the g-productions of an LL(k) grammar G. Grammar G' which is obtained by 

this algorithm is E-free and G'[r/r]G. We show that if G has strict c-productions, 

then G' is LL(k). 

Assume for the sake of contradiction that G' is not LL(k). Then there exists a 

derivation 

and productions C ÷ ~ and C + ~ in G' such that e' # 8' and 

FIRSTk(~'~') n FIRSTk(8'~') # @. 

Hence, Irhs(C) i z 2. Suppose C is of the form [yX~] with ~ # c. It follows from step 

(2) of the algorithm that there exist productions of the form B ÷ 81 and B ÷ 82 in 

P with 81 # B 2 and g e L(8 I) n L(82). This implies that G is ambiguous which is im- 

possible for an LL(k) gra~nar. Therefore C =an not be of the form [TX~] with ~ # g. 

Similarly, C can not be of the form [yX] with y # e and X ~ Z. 

There remains the case that C = [yA] with A ~ N and y ~ N*. Therefore, we can 

write 

S' ~ w[TA]~ ~ 

A straightforward induction on the lengths of the derivations learns that 

implies 

s~w~ 



129 

where ~ is obtained from ~' by deleting the square brackets '[' and ']' 

We consider possible righthand sides for the nonterminal [y~]. If A + ~ and 

A ÷ 8 are in P, with ~ # 8, L(~) # {g} and L(8) # {g}, then we have productions 

[yA] ÷ ~' and [yA] ÷ 8' in P', where ~' is the unique representation of ~ and 8' is 

the unique representation of 8. Any nonterminal symbol [yX~] of N' has th~ property 

that if [yX~] ~ w for some w c E +, then yX6 ~ w in G, and w is derived from X (of. 

the remarks which follow Algorithm 4.1). It immediately follows that if in G' the 

condition 

FIRSTk(e'~') n FIRSTk(8'~') = 

is not satisfied then we obtain a corresponding situation in G with e # 8 and 

FIRSTk(C~0) n FIRSTk(80~) # @, 

which is not possible since G is LL(k). It follows that G' is LL(k). 0 

When applied to an arbitrary LL(k) grammar, Algorithm 4.1 does not necessarily 

produce an LL-grammar. 

The next transformation which we want to consider is the left part transforma- 

tion (Algorithm 5.3). Since any LL(k) gralmnar is unambiguous, we do not have to 

bother about single productions (of. the remark following Algorithm 5.3). 

It should be noted that the usual transformation from an g-free LL(k) grammar 

to an LL(k) grammar in GNF gives rise to a more simple proof. However, apart from 

including this proof for completeness sake, we will also use it in the proof of 

Lema 10.4 

THEOREM ]0.2. For any e-free LL(k) grammar G there exists an LL(k) grammar G' in 

GNF such that G'[Z/x]G, £ s x s £p and k e 0. 

Proof. From Theorem 5.2 we may conclude that Algorithm 5.3, when applied to an e-free 

NLR grammar G, yields a CFG G' in GNF such that G'[£/x]G. Since any g-free LL(k) 

grarmnar is g-free NLR, it remains to verify that G' is LL(k) when G is LL(k). 

Assume for the sake of contradiction that G' is not LL(k). Then there exists 

a derivation 

Is] ~ w[Ai~]~ 

and productions 

[Ale] -+ 
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[Ai~] ÷ y 

with 8 # ¥, such that 

FIRSTk(~) N FIRSTk(7m) # 0. 

Let A ÷ ~X0~ be the ith production of P. Since 8 # T, there exist chains 

= XoXIo..Xn_~Xn 

and 

~2 = YoYI=°.Ym_~Ym 

with X 0 = Y0' in CH(X O) and left production chains 

= i0il.~.in_l in LP(Zl) Pl 

and 

02 = joJl...Jm_l in LP(~ 2) 

such that 01 # 02 and 

[Ai~] ÷ Xn~([Xn_~in_iXn]...[X0ioXl][Ai~Xo]) = [Aie] + 

and 

[Aie~ ÷ Y-$([Ym 'j- IY-]"'[YoJoYI][Ai~Yo]) = [Ai~] ÷ y. 

Write m = [C0ko~0][Glkl61]...[Clk£~£]. 

We omit the proof of the following claim. 

CLAIM 1. If 

IS] ~ w[Aie][C~ 0 0 ok ~][C,k,~,]...[C£k£~£], i , 

where 



i. A + ~Xoq) 

k 0. C O ÷ 60q~ 0 

k I. C I ÷ 61£o I 
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kZ. Cl %£O z 

are productions in P, then 

S ~ uA£ooq~ I . "'£OZ ~ uc~Xoq~o£ol " " "£O~ ~ uvX0qXP0'" "q)z 

where uv = w. 

The following claim, which is also independent of the fact that G is LL(k), fol- 

lows from the two more general claims which are used in the proof of Theorem 5.2. 

Compare also the remark which follows Lemma 5.3. 

CLAIM 2. If i.A ÷ oA0 in P, ~ ¢ ~, then 

[Aie] ~ w if and only if £O~ w. 

Since 

FIRSTk (Xn~ ([ Xn_ 1 in_ I Xn ] .... [X0i0X l ] [AieX 0 ] )~0) 

n 

FIRSTk (Ym~ ([Ym_ I jm_ iYm ] . . . .  [YoJ0YI ] [Ai~¥0])~0) 

there exist 

x 1 • L(Xn~([Xn_lin_iXn]...[X0i0Xl][AioX0])), 

Yl • L(~), 

x 2 • L(Ym~([Ym_IJm_|Ym]...[Y0JoYI][AieYo])), and 

Y2 • L(e), 

such that k : xlY 1 = k : x2Y 2. 

From the two claims it follows that there exist x I • L(X0£O), x 2 • L(Yo£O), 

Yl • L(~0~I'''£O£) and Y2 E L(£O0~ l...~£) such that k : XlY | = k : x2Y 2. However, 
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since p| # P2 it follows that we have obtained a contradiction with G being LL(k). 

We conclude that G ~ is LL(k). 

Next we consider the possibility to obtain a right covering LL(k) grammar in 

GNF from an E-free LL(k) grammar. We use Algorithm 5.4 to obtain an almost-GNF gram- 

mar which is LL(k) and Algorithm 5.5 to transform an almost-GNF LL(k) grammar to a 

GNF LL(k+I) gram~nar. However, first we have to show that any E-free LL(k) grammar 

can be made to satisfy the input conditions of Algorithm 5.4. 

Notice that if a grammar is LL(k) and we replace a production of the form 

A + ~a~, ~ ~ E, by the productions A + ~Ha~ and H a ÷ a, then the newly obtained gram- 

mar is also LL(k). We now have to verify that the elimination of single productions 

does not change the LL(k) property of a grammar. 

LEMMA 10o3. For any E-free LL(k) grsmmmr G there exists an E-free LL(k) grammar G' 

without single productions such that G'[£/I]G and G'[r/r]G (k e 0). 

Proof. 

in the proof of Len~na 4.6. However, since any LL(k) grammar is unambiguous, we can 

simplify this method. Only step (i) of this method needs to be considered. 

Let G = (N,~,P,S) be an E-free LL(k) grammar. Define 

We can use the method for eliminating single productions which is described 

PI = {A + c~ <i> ! i.A + ~ is in P - P0 } 

where PO is the subset of P which contains all the single productions. 

For any A ~ N, if A ~ B ~ y is a derivation in G such that ~ ~ E and either 

IYi ~ 2 or y ~ Z, then add A ÷ y <~> to the set PI" To obtain a left cover, define 

= ~i. To obtain a right cover, define ~ = i6 R. The desired grammar G' is now ob- 

tained by reducing the grammar (N,Z,PI,S). Clearly, G' is LL(k) when grammar G is 

EL(k). 

It follows that we can use Algorithm 5.4 to obtain an almost-GNF grammar G' 

such that G' is LL(k). 

LEMMA 10.4. Any E=free LL(k) grom~nar G can be transformed to an almost-GNF grammar 

G' such that G'[r/r]G and G' is LL(k) (k e 0). 

Proof. If Algorithm 5.4 is applied to an LL(k) grammar G which satisfies the input 

conditions, then an almost-GNF grammar G' which right covers G is produced. We show 

that G' is LL(k). The following trick is used. 

If Algorithm 5.3 is applied to an LL(k) grammar G with P ~ N x (ZN* u NN+), then 

we obtain a grammar G! which is LL(k) and which has productions which are of the 
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following forms: 

(i) IS] ÷ Xn~([Xn_lin_iXn]...[X]i]X2][Si0Xl ]) 

and 

(ii) [Ai~] ÷ Xn~([Xn_]in_|Xn]...[X0i0Xl][Ai~X0]). 

Grammar G' which is obtained by using Algorithm 5.4 can be constructed from G] 

the following way. 

(a) If in (i) ~([Xn_lin_IXn]...[SioXl]) = e (hence, i 0* S + X n 

in P'. If in (i) ~([Xn_]in_|Xn]...[Si0Xl]) # e, then 

IS] ÷ Hin_]~([Xn_]in_lXn]...[Si0Xl]) 

and 

H. +X 
in_ 1 n 

are in P'. 

(b) If in (ii) ~([Xn_lin_iXn]...[X0i0Xl][Ai~X0]) ffi ~, then [Ai~] ÷ X n 

in (ii) ~([Xn_lin_]Xn]...[X0i0X]][Ai~X0]) & e, then 

[Aie] ÷ Hin_l~([Xn_]in_iXn]...[X0i0Xl][Ai~X0]) 

and 

}{o + X 
in- 1 n 

are in P'. 

in 

in P), then [S] ÷ X 
n 

is in P'. If 

It follows that either we have the same productions for G 1 and G' (viz. IS] ÷ X n 

or [Ai~] ÷ Xn) or we have a simple change of a production of the form C ÷ cY for LL(k) 

grammar G| to productions C + HT and H + c. It is easily verified that a situation 

C + Hiy , C + H2Y, H I + c and H 2 + c can never be introduced because of our choice 

of nonterminal symbols H. . This simple transformation on the productions of an 
in-I 

LL(k) grammar does not change the LL(k) property. This concludes the proof of Le~ma 

10.4. D 

Any almost-GNF LL-grs-T, ar can be transformed to a GNF LL-grammar which right 
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covers the original grammar. Algorithm 5.5 is used to show this. 

LEMMA I0.5. Any almost-GNF LL(k) grammar G can be transformed to a GNF LL(k+I) 

grarmaar G' such that G'[r/r]G (k e 0). 

Proof. When Algorithm 5.5 is applied to an almost-GNF LL(k) grammar G, then a GNF 

grammar G' is obtained which satisfies G'[r/r]G. We show that G' is LL(k+l). 

Consider Figure 10.] where, once more, the general idea of the transformation 

is displayed. In this figure the part of the transformation which changes the parse 

B 

a 

A A 

C a a Hk£ ~ [Ej ] 

i 
D ~ E b 

b 

Figure 10.!. Step I of Algorithm 5.5, 

trees is displayed. In step 2 of the algorithm it is possible that the production 

A ÷ aHk£~[Ej]~ 

of this figure is changed to a production 

[Ap] ÷ aHk£B[Ej]a 

for some p ~ AGO Now consider a derivation 

S ~wC'm ~ 

in G' and two productions C' ÷ ~' and C' ÷ y' in P' with B' # Y'. 

For the nonterminal symbols of N' we can distinguish the following forms: 

(i) lAp] with A ¢ N and p ~ A G 

(ii) A with A £ N 

(iii) HI~ with k, £ in A G 

Any nonterminal symbol of the form Hk£ can only be lefthand side of one produc- 



tion. It follows that A' is of the form [Ap] or A. Let N" be the subset of N' which 

contains the nonterminal symbols of the form A and [Ap]. Define a homomorphism 

f : N"* ÷ N* by defining f(A) = A and f([Ap]) = A. 

CLAIM. Let C ~ N". If S ~ wC'~' in G', then S ~ wC~ in G, where Cx0 = f(C'~'). 

Proof of the Claim. The proof can be done by a straightforward induction on the 

lengths of the derivations. Instead of doing the proof for startsymbol S, the proof 

should be done for an arbitrary nonterminal symbol A' ~ N". 

Notice that in this claim~' is always in N"*. It follows from Claim 1 of the 

proof of Le~ma 5.5 that, for any A' £ N", if A' ~ w in G', then f(A') ~ w in G. 

with 

Now suppose that G' is not LL(k+l). Then we can have a situation described above 

FIRSTk+I(8'~') n FIRSTk+I(y'~' ) # @o 

Now it should be verified that for all possible occurences of ~' and ~' this 

situation gives rise to a contradiction with G being LL(k). We confine ourselves to 

the verification of the situation where 

C' ÷ T' = C ÷ aHmn82[FJ]~ 2. 

and 

It follows that in G we have a derivation S ~wC~ and productions C + DIQI~I, 

C ÷ D2Q2~2, D! + a, D 2 ÷ a, Ql + D3~IE' Q2 ÷ D4~2F' D3 + b and D 4 ÷ c. 

This situation is illustrated in Figure I0.2. 

C C 

i mi 
a £D 3[ E l E a hi4 ~2 F 

b c 

Figure I0.2. Productions of grammar G. 
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Due to our assumption we have strings 

x I E L(abSl[Ei]~l) 

Yl ¢ L(~') 

X 2 ¢ L(ac82[FJ]e 2) 

Y2 £ L(~') 

such that k + ~ ; xiy ! = k + I : x2Y 2. 

It follows that in G we can not distinguish the productions C ÷ DIQI~ 1 and 

C + D2Q2~ 2. Therefore, C ÷ DIQI~ I = C + D2Q2e 2. This implies that in G we have a 

derivation 

S ~ waQ~ 0 

with Q = Q1 = Q2 and ~0 = ale = ~2 m" Moreover) we have productions q ÷ D381E and 

Q ÷ D482F. Since k + I : x|y I = k + I : x2Y 2 we have that 

FIRSTk(D381F~o) n FIRSTk(D482F~0 ) # @. 

Since G is LL(k) we must conclude that D381E = D482F. But this implies that 8' = Y', 

contradicting 8' # Y'. 

The verification of the other possibilities for 8' and y' nan be done along 

similar lines. It follows chat G' is LL(k+]). D 

From Lemma ]0.4 and Lemma 1 0 . 5  we obtain the following corollary. 

COROLLARY 10.1. Any g-free LL(k) grammar G can he transformed to an LL(k+|) grammar 

G' in GNF such that G'[r/r]G (k ~ 0). 

THEOREM 10.3. Any LL(k) gran~mar G with strict e-productions can be transformed to 

an LL(k+]) grammar G' in GNF such that G'[r/r]G (k ~ 0). 

Proof. Combine Theorem 10.1 and Corollary 10.1. 

Notice that for any LL(k) grammar G with strict g-productions we can find an 

LL(k) grammar G' such that G'[~/x]G, with £ S x ~ ~ (Lemma I0. I). Grammar G' has 

also strict e-productions and we can use Theorem 10.3 to obtain the following corol- 

lary. 

COROLLARY 10.2. Any LL(k) gramnar G with strict e-productions can be transformed 

to an LL(k+]) grammar G' in GNF such that G'[r/x]G, with £ ~ x ~ r and k ~ O. 
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Note. There remain two problems which have not been investigated. Firstly, can we 

eliminate e-productions from an arbitrary LL(k) gran~mr in such a way that a right 

covering LL(k+I) gran~nar is obtained? Secondly, can the transformation from almost- 

GNF LL(k) to GNF LL(k+l) be done in such a way that the right covering grammar is 

LL(k) instead of LL(k+l)? 

We now show negative cover results for LL(k) gran~nars. In Chapter 6 we presen:- 

ed a gr~rm~ar G O with productions 

S -~ OSL I IRL 

R ~ I R L ]  2 

L + g  

Grammar G O has the property that there does not exist an g-free CFG G' by which 

it is left covered. Since gran~nar G O is LL(1) we have the following corollary. 

COROLLARY I0.3. Not every LL(k) grammar (k -> |) can be left covered with an g-free 

gran~ar. 

the grammar G N with productions Consider 

S ÷ 0H00S H00 ÷ 0 

S + OH 0 IR H01 ÷ | 

S ÷ IH fIR Hl l ÷ l 

S + 1HI2 H12 ->" 2 

R "+ IQl lR  Ql l  "+ 1 

R "+ lQ12 QI2 "+ 2 

R - + 2  

This granm~r was introduced in Chapter 6. Grammar G N satisfies GN[~/I]G O. Notice 

that G N is LL(2) and, moreover, G N is in GNF. From the transitivity of the cover 

relation we obtain the following corollary. 

COROLLARY 10.4. Not every LL(k) grammar (k e 2) in GNF can be left-to-right covered 

with an c-free CFG. 

Now we are sufficiently prepared to construct the cover-table for LL(k) gray,tars. 
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ARB 
LL 

g-FREE 
LL 

GNF 
LL 

COVER 

Zl l  
l l r  

711 
r / r  

l/1 

t/r 

r/Z 

r/r 

l / 1  

1 / r  

r / l  

r / r  

ARB LL 

1. yes 

2. yes 

3. yes 

4. ges 

17. no 

18. no 

19. ? 

20. ? 

33. no 

34. no 

35. ? 

36. ? 

STRICT 
g-LL 

5. yes 

6. y e s  

7. yes 

8. yes 

21. no 

22. no 

23. yes 

24. yes 

37. no 

38. no 

39. y e s  

40. yes 

e-FREE 
LL 

9. yes 

lO. yes 

t i .  ~es 

12. ges 

25. yes 

26. no 

27. yes 

28. yes 

GNF 
LL 

13.  yes 

14. yes 

15 .  yes 

16. yes 

29. yes 

30. no 

31. yes 

32. yes 

4;. yes 145. yes 

42. no ~6. no 

43. yes ~7. yes 

44. yes ~8. 9es 

Table X. Cover-table for LL-granmmrs. 

In Table X we have collected the cover results. The entries in this table are 

numbered from I. to 48. The column with name STRICT e-LL indicates the LL(k) grammars 

with strict g-productions. In the table it is not displayed that in some cases the 

necessary look-ahead may change from k to k + 1. The answers in this table can be 

found in the following way. 

Construction of the cover-table 

(10. l.l) Trivially yes are the entries I., 4., 5., 8., 9., 12., 13., 16., 25., 28., 

29., 32., 45. and 48. Because of Lemma 10.1 we may conclude that the entries 

2., 3., 6., 7., I0., II., 14. and 15. are yes. 

(I0. I.2) From Corollary 10.2 it follows that the entries 40., 39°, 24., 23., 44., 

43., 27., 47. and 31. are yes. 

(10.1.3) Due to Theorem |0.2 we have that entry 41. is yes. 
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(10.1.4) From Corollary ]0.3 it follows that entry 17. is no. Since grammar G O has 

strict g-productions we have also that entry 21. is no. Therefore, entries 

33. and 37. are no. From Corollary ]0.4 we may conclude that entry 30. is 

no. Therefore, the entries 26., 22., 18., 46., 42., 38. and 34. are no. 

(]0.l.5) The entries 19., 20., 35. and 36. are open. Cf. the note which follows Cor- 

ollary~ 10.2. 

This concludes the construction of the cover-table. It should be observed that 

all the no-entries in this table are no because of a more general negative cover 

result. That is, we do no obtain positive results if we relax the condition that 

the covering grammar should be an LL-gra~mar. 

Let us consider transformations which deal with LL(k) grammars from a more prac- 

tical point of view. If we have a CFG which should be made suitable for a top-down 

parsing method (for example as the first phase in a compiler writing system), then 

there exist transformations which can be applied and which sometimes, depending on 

the starting grammar, yield an LL(k) grammar. Some of these transformations can be 

found in Stearns [158 ] and in Appendix A of Lewis, Rosenkrantz and Stearns [100 ]. 

As remarked in Stearns: 

"Although these transformations are not guaranteed to make grammaz~LL(1) they seem 

to work out when applied to real progranm~ng languages". 

The two most well-known transformations which can be used to obtain an LL(k) 

grammar are the elimination of left recursion and left factorisation. The elimination 

of left recursion (cf. Table VII) can yield a right covering and a left-to-right 

covering grammar. Now consider left factorisation. If a grammar is not left factored 

(Definition I.]O), then there exist productions of the form i.A + ~ and j.A + ~¥ 

with ~ # g and 8 # y. A straightforward process of left factorisation consists of 

replacing these productions by the productions A ÷ ~H <g> and H ÷ 8 I Y <i,j>, where 

H is a newly introduced nonterminal symbol. This can be repeated for all such pairs 

A + e8 I ~Y until the grammar is left factored. In this way a right covering grammar 

is obtained. However, in our model of parsing we prefer a left-to-right covering 

grammar. If the newly obtained grammar is LL(k), then the LL-parsing method can yield 

a left parse and this parse can be mapped on the right parse of the original grammar. 

In Chapter 12 a process of left factoring will be introduced which yields a left- 

to-right cover. 

Now, if we consider the results of this section then we see that for each g-free 

LL-grammar G we can obtain a GNF LL-grammar G' such that G'[r/~]G. 

One might think that this result, like other right cover results, is not useful 

for practical applications. Grammar G' is constructed to be parsed top-down and in 
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our model of parsing top-down parsing is assumed to yield left parses. Therefore 

one might expect results of the form G'[£/r]G. However, it follows from Theorem 

9.1 that any production directed parse relation of an LL-grammar G' can be defined 

by a DPDT. Therefore right parses can be obtained from parsing (in a top-down manner) 

LL-grammars. The intuitive idea is as follows (cf. Aho and Ullman [3] for the whole 

story). 

If A is a nonterminal symbol at the top of the stack then it should be replaced 

by a righthand side ~ of a production i.A ÷ ~ and i should be emitted as the next 

symbol in the left parse° This righthand side is uniquely determined by the look- 

ahead which is allowed. Now we can obtain a right parse if A is replaced by ei (the 

top of the stack is assumed to be on the left) and i is emitted in a DPDT-step of 

the form ~(q,~,i) = (r,~,i). 

It should be observed that if we 'translate' this way of parsing to the gram- 

matical model in the case of GNF LL-grammars, then it would have been sufficient to 

have a grammar G' which has productions of the form A ÷ asH <~> and H + e <~>instead 

of A + a~ <~>, to make this type of parsing possible. That is we could have trans- 

formed the original grammar G to a less restricted normal form than GNF and still 

have the same practical result. 

Now we turn to the last topic of this section, the relation between LL(k) and 

strong LL(k) grammars. As mentioned in section 8.2 it has been shown in Rosenkrantz 

and Stearns [144] that each LL(k) grammar can be converted into a structurally equiv- 

alent strong LL(k) grammar. 

The property G| ~ G 2 (G l is structurally equivalent with G2) does not necessarily 

imply that G 1 covers G 2. Consider the following counter-example: 

G! : S l -~ aB G2: S 2 + aB i aC IaD 

B + aB B + aB I aC [aD 

B +b I c C ÷b 

D -~ c 

In this case we have that both G] and G 2 are LL-grammars and G l ~ G 2. However, 

we do not have GI[I/Z]G 2 or Gl[r/r]G 2. 

The conversion from an LL(k) grammar to a strong LL(k) grammar as described in 

Rosenkrantz and Stearns is such that a left and a right cover is obtained. 

THEOREM I0.4, Any LL(k) grammar ~ G can be transformed to a strong LL(k) grammar G' 

such that G'[Z/£]G and G' [r/r]G (k > 0). 
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We use the following notation. Let L be a set of strings. Use the notation 

k : L = {x I k : w = x for some w ~ L} 

2k:L 

for the set of all subsets of k : L. 

Let G = (N,E,P,S) be an LL(k) grammar. Define 

E" = E × 2 k:E*, 

N" = N x 2 k:E*, 

s" = (s,{~)), 

p" = p x 2 k:Z* 

The pair (p,R) represents the production 

(A,R) ÷ (Xn, Rn) .... (Xl,Rl) 

where A ÷ X n .... X l is the production p and Ri+ | 

Ri+ l = k : (L(Xi...XI)R) 

satisfies the condition 

This section is concerned with the construction of a cover-table for strict 

10.2. NORMAL FORM COVERS FOR STRICT DETERMINISTIC G ~  

for all n > i ~ I. Define R I = R and if p = A ÷ ~ then (A,R) + g. Reduce gram~,~r 

G" = ~",E",P",S") and replace each occurrence of a terminal (a,R) by terminal symbol 

a. In this way we obtain grammar G' = (N',E,P',S'). 

Given a leftmost (rightmost) derivation in G' a corresponding leftmost (right- 

most) derivation in G is obtained by replacing each nonterminal (A,R) by A. Instead 

of applying production p to an instance of A one can apply (p,R) to the corresponding 

(A,R) in order to obtain a leftmost (rightmost) derivation of G" from a leftmost 

(rightmost) derivation of G. A corresponding derivation in G' is immediate. 

The cover homomorphism ~ : AG' + AG is defined by ~p,R)) = p, for each (modi- 

fied) production (p,R) of P'. Rence, G'[I/l]G and G'[r/r]G. In [144] it is shown 

that G' is strong LL(k). This concludes the proof. D 
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deterministic grammars. 

Just like the LL(k) grammars, the strict deterministic grammars are non-left- 

recursive. Therefore, the construction of the table does not differ very much from 

the construction of the LL cover-table in section ]0.1. 

For strict deterministic gra~mlars we have the following version of Lemma 4.4. 

LEMMA 10.6. For any strict deterministic gra~ar G there exists a strict determi- 

nistic granm~ar G v such that G'[£/~]G. 

Proof. This is a direct consequence of Theorem 9.3. However, it is more simple to 

construct grammar G ' in the following way. Suppose that grammar G is strict deter- 

ministic with partition ~. Define G' by introducing productions A ÷ ~H i <g> and 

H i + e <i> for each production i.A + ~ in P. Symbol H i is a newly introduced non- 

terminal symbol. Clearly, G'[£/r]G. 

Notice that for any pair of productions A + ~ and A' ÷ ~B of G with A ~ A' 

(mod ~), we have ~ = g and A = A'. Therefore, the new nonterminal symbols do not 

interfere with the original nonterminal symbols. Thus, we can define a strict parti- 

tion ~' for G' by ~' = ~ u {{H i } I ] ~ i ~ [el}. D 

Notice that we can slightly generalize this result. If strict deterministic 

grammar G is hG-parsable, then it follows from Theorem 9.3 that there exists a strict 

deterministic grammar G' such that G'[Z/h]G. Moreover,from Theorem 9.4 it follows 

that there exists a strict deterministic grammar G' such that G'[r/h]G. 

Since not every strict deterministic grammar G is left parsable, we can not 

have the general result G'[~/Z]G, where G' is strict deterministic. 

We want to show that g-productions in a strict deterministic gra~ar can be elim- 

inated in such a way that a right covering strict deterministic grammar is obtained. 

Before doing so we need a few preliminaries on strict deterministic grammars. 

It is clear that the set of productions of a strict deterministic grammar is 

prefix-free. That is, if A + e and A ÷ ~8 are in P, then ~ = ~. Clearly, this proper- 

ty holds for all nonterminals in a block of the strict partition. That is, if 

A + ~ and A' ÷ ~, then A e A' (mod z) implies 8 = g. 

LEMMA ]0.7. Let g = (N,E,P,S) be a CFG with strict partition ~. For any A, A' e N, 

if A m A' (mod ~), then L(A) u L(A') is prefix-free and, if moreover A # A', 

L(A) n L(A') = ~o 

Proof. Do the proof of Theorem 2.2 from Harrison and Havel [ 59 ] for A and A ~ in- 

stead of for S. This gives the result L(A) u L(A') is prefix-free. The property 
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L(A) n L(A') = ~ can be proved by a simple induction on the lengths of the deriva- 

tions starting from A and A'. 

LE~4A I0.8~ A strict deterministic grammar can only have strict e-productions. 

Proof. It follows from Lemma 10.7 that for any nonterminal A the set L(A) is prefix- 

free. Thus, if e £ L(A), then L(A) = {g}. 

It follows directly from Lemma 10.2 that each righthand side a, L(a) # {e}, of 

a production A ÷ a of a strict determinisitic grammar, has exactly one representa- 

tion. 

LEMMA 10.9. Let G = (N,E,P,S) be a CFG with strict partition x. Let A +~ and 

A' +Sbe productions in P with L(e) # £, L(8) # e and A m A' (mod ~). If 

e0Xl...Xi_l~i_iXi...Xn~n and ~0Xl...Xi_1~i_iYi...Y~m are representations of ~ and 

8, respectively, then ai_ 1 = 8i-I" 

Proof. We have that i ~ l, i ~ n and i s m. Consider the case i < n and i < m. If 

ai-I # 8i-1' then there are two possibilities. 

(i) ai_ 1 is a prefix of 8i_ 1 (or the symmetric case, which we omit). Hence, 

8i_ 1 = ~i_iP and we have I : p m X i (mod ~). However, e e L(1:p) and L(Xi) # {e}. 

Therefore, L(l:p) u L(X i) is not prefix-free which contradicts Lemma 10.7. 

(ii) ~i-1 can be written as OQI61 and 8i_ 1 as pQ262 , with Q1 # Q2" Since e ~ L(QI), 

g e-L~Q2) and QI s Q~ (mod ~) we have again a contradiction with Lemma 10.7. 

We conclude that in this case ai_ 1 = ~i-l" 

Now consider the case i = n and i < m (or the symmetric case, which we omit). 

Then we have e = ~0Xl...~n_iXn~n and 8 = a0Xl...~n_iXnSnYn+l..,YmSm. Since 

L(a) u L(~) should be a prefix-free set, we can conclude that Yn+l...YmSm = e. Assume 

en # 8n" If a n is a prefix of 8 n (or the symmetric case), then we obtain an immediate 

contradiction with the definition of a strict deterministic grammar. With a similar 

argument as used above we can conclude that a situation a n = pQl~l and 8 n = pQ262 

with QI # Q2 can not occur. It follows that a n = 8 n. This concludes the proof of 

Lemma 10.9. 0 

We can now show that g-productions can be eliminated in such a way that strict 

determinism is preserved. 

T~OREM 10.5. Any strict deterministic grammar can be right covered with an e-free 

strict deterministic grammar. 

Proof. Since any strict deterministic grammar is non-left-reeursive, we can use 
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Algorithm 4.1 to eliminate the E-productions from a strict deterministic grammar 

G. Gram~nar G' which is obtained by this algorithm is E-free and G'[~/~]G. Unfortu- 

nately, we do not necessarily have that G' is strict deterministic. We will modify 

the input grammar G such that G' will be strict deterministic. 

Let G = (N,E,P,S) be a CFG with strict partition ~. Let j°A + ~ he a production 

in P with L(~) # {g}. If ~0X|~iX2...Xn~n is a representation of ~, then replace this 

rule by 

where each 

A ÷ H oXIHIX2oo.XnH n <j> 

H. , 0-<i-<n 

is a newly inLroduced nonterminal symbol, and introduce the productions 

if 

H . + g <~.>, 0 <- i ~ n 
ctl i 

R 

~i ~>e. 

If ~. = s, then define ~. = g. This can be done for each production A ÷ ~ in P. 
l i 

Clearly, the newly obtained grammar G' = (N',Z,P',S) right covers the original gram- 

mar. 

Notice, that if for some ~ and ~ the productions H ÷ g <~|> and H~ ÷ g <~2 > 

are introduced and ~ = B, then ~! = ~2" 

Let H be the set of all newly introduced nonterminal symbols. The new grammar 

is strict deteministic under a partition ~' which is defined by the following con- 

ditions: 

(i) ~ ~ ~' 

(ii) For any A, A ~ in N such that A m A' (mod ~) we have A m A' (mod ~v). 

(iii) For each newly introduced nonterminal symbol H i we have that {Hai} is a block 

of the partition ~. 

We verify that ~' is a strict partition. Consider two productions 

and 

A÷~ 

A v -~ ~ 
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in P', with A ~ A' (mod ~'). If both A and A' are newly introduced nonterminal sym- 

bols, then 8 = 8' = e, ~ = e and A = A', as is required. Now consider the case that 

both A and A' are in N. We distinguish two subcases. 

(i) Write ~ H~0XlH~i, 8 = Xi+ 1 .XnH n and 8' = .. = Yi+l...YmHsm. By considering the 

corresponding productions in P, it imediately follows that either 8 and 8' 

are not empty and Xi+ I E Yi+l (mod ~') or 8 = 8' = E and A = A'. 

(ii) Write ~ H~0XIH I o.X i, 8 II iXi+ 1 ..XnH n and 8' = . = . = HsiYi+l...YmH~m. Due to 

the construction of G' it follows that 8, 8' # £- It follows from Leamna 10.9 

that Hc~ i = Hsi and, therefore, H i m Hsi (mod ~'). This concludes the proof that 

~' is strict. 

We now show that G' can be transformed to a strict deterministic grammar G" which 

has no e-productions and which right covers G'. From transitivity it then follows 

that G"[r/r]G. 

Apply Algorithm 4.1 to grammar G'. The newly obtained grammar G" = (N",Z,P",S') 

right covers G' and has no E-productions. We show that G" is strict deterministic 

under a partition ~" which is defined as follows: 

(i) E E ~" 

(ii) [y_X~] i [Y'~8] (rood z") if and only if 

- T = Y' 

- X ~ Y (mod ~) 

- both ~ and ~ are in H or ~ = ~ = e 

- if X = Y, then ~ = 

We show that this partition is strict. We distinguish the following five cases. 

(I) Consider nonterminal symbols [y~] and [yB] with A ~ B (mod ~) and A, B in N. 

Hence, [yA] ~ [~B] (mod ~"). Suppose we have productions 

and 

[~B] ~ ~ '  

in P". These productions have been introduced in step (I) of Algorithm 4.1. If 

¢ E, then we can write 

= [YHoXIHI][X2H 2] .... [X_iH i] 

= [Xi+IHi+l ] .... [XH n] 

! T 

8'= [X~÷IHi+I ] .... [X'H'_mm] 
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Assume ~ = ~ = e. Then there exist productions 

A + HoXIHIX2H 2 .... XiH i 

B ÷ HoXIHIX2E 2 .... XiH i 

in pr and necessarily A = B. Hence, [yA] = [yB], as is required. 

Assume ~ # e and 8 ~ # e. In this case we have that Xi+ 1 ~ X~+ I (mod 3') in G'. 

' then = H' since otherwise G' can not be strict de- Moreover, if Xi+ 1 = Xi+l, Hi+l i+l' 

IX' H' ] (mod ~"), as is required. terministic. Therefore, [Xi+iHi+l ] m ~=i+] i+l 

It is left to ~he reader to verify that the case 8 = e and 8' # E (or the sym- 

metric case) can not occur. 

Consider the case ~ = e. Since G" does not have e-productions, it follows that 

~, ~' # e. We can write I : 8 = [YHoXIH I] and I : 8' = [¥H~IHI]. Since G' is strict 

deterministic it follows that H~ = H 0 (H 0 and H~ are equivalent and they are left- 

hand sides of g-productions) and X! ~ X; (mod ~). Moreover, if X 1 = XI, then H I = H I. 

Therefore, [THoXIH I] m [yH~lB ~] (mod ~"), as is required. 

(2) Consider nonterminal symbols [_XH I] and [[H 2] with X, Y E E. If [XH I] ~ [[H 2] 

(mod ~") and we have (unique) productions [_XH I] ÷ X and [[H 2] ÷ Y, then X ~ Y 

(mod ~"), as is required. Moreover, it follows from the definition of ~" that if 

X = Y, then H I = H 2 and [_XH I] = [~H2],as is required. 

(3) Consider nonterminal symbols [y_XH l] and [y[H 2] with X m Y (mod ~) and y # E or 

X ~ N. If [y_XH I] ~ [y[H 2] (mod ~") and we have (uniqu~productions 

[~_.x~ 1 ] ÷ [y_x] 

[yYH 2] ÷ [yXl 

then [yX] ~ [y~] (mod ~") as is required. ~oreover. If [TX] = [y~] then it follows 

from the definition of ~" that HI = H2" Thus, [yX}{ I] = [~Y_H2], as is required. 

(4) Consider nonterminal symbols [THIX] and [THI[] with X, Y ~ Z and y ~ Then 

[YHIX] m [yH1[] (mod ~') and we have unique productions 

[YHIX] ÷ [~X] 

Clearly, [y~] ~ [y~] (mod ~") and if [T~] = [YY__], then [THIX] = [yHl~],as is re- 

quired. 

(5) Consider nonterminal symbols [HIX] and [Hl~] with X, Y ~ X. Then [HIll ~ [HI~] 
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(mod ~") and we have unique productions 

[HiX] + X 

[HIX] ÷ y 

Clearly, X m Y (mod v") and if X = Y, then [HIX] = [HIll , as is required. 

The cases (1) to (5) cover all possible pairs of equivalent nonterminal symbols. 

Therefore we can conclude that G" is strict deterministic under partition ~". 

The next transformation which will be considered is the left part transformation 

(Algorithm 5.3). Due to the fact that strict deterministic grammars are unambiguous 

and due to the remark which follows Algorithm 5.3, we do not have to bother about 

single productions. 

In Nijholt [123] we used Algorithm 5.2 to show that any e-free strict determinis- 

tic grammar can be transformed to a weakly equivalent strict deterministic grammar 

in GNF. In Geller, Harrison and Havel [42] another algorithm was presented to show 

the same result. They use this result to show that any deterministic language can 

be generated by an LR(1) grammar in GNF. Their algorithm modestly utilizes properties 

of strict deterministic grammars. 

The result that any deterministic language is generated by an LR(1) grammar in 

GNF was first shown by Lomet [102]. 

Here we show that the left part transformation (which does not make use of spe- 

cific properties of strict deterministic grammars) when it is applied to a strict 

deterministic grammar G, will produce a GNF grammar G' which is strict deterministic 

and which has the property that G'[I/x]G, Z S x ~ Ip. 

IZ{EOREM I0.6. For any e-free strict deterministic grammar G there exists a strict 

determini~ic gramm~ar G' in GNF such that G'[Z/x]G, I S x ~ Ip. 

Proof. Apply Algorithm 5.3 to the e-free strict deterministic grammar G = (N,Z,P,S) 

with strict partition ~. The newly obtained grammar G' = (N',Z,P',[S]) is in GNF and 

G'[Z/x]G. We show that G' is strict deterministic under the following partition ~': 

(i) Z E ~',{[S]} E ~'. 

(ii) For any [Ai~], [BjS] in N', with A, B e N and ~, 8 ~ V +, [Ai~] E [BjS] (mod ~') 

if and only if e = ~ and A ~ B (mod ~). 

In the following observations we will show some properties of the productions of 

G'. These properties are needed to show that ~' is strict. 
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Consider two productions in P' which are of the form 

[Aiy] ÷ ap 

[Bjy] ~ a6 

where A, B c N, y ~ V +, a e ~, O, 6 E N'* and A ~ B (mod ~). Because of the construc- 

tion of P' it follows that there exist productions i. A + YX0~ and j. B + yY0~ in 

P with Xo,Y 0 ~ V and ~, ~ e V*. Moreover, there exist chains XoXI°..Xn_IXn and 

YoYI...Y_IYm in CH(X0) and CH(Y0), respectively, where X n = Ym = a and associated 

left production chains ioil...in_ I and joJl...Jm_l , such that 

and 

p = ~([Xn_lin_la]...[X0ioXl][AiyX0] ) 

6 = ~([Ym_IJm_Ia]..°[Y0J0YI][BJYY0] ). 

Since grammar G is strict deterministic we have X 0 ~ Y0 (mod ~) and it follows also 

that m = n and X k ~ Yk (mod ~)~ I ~ k ~ n. 

Notice that a similar observation holds for productions of the form [S] ÷ ap 

and IS] + a~. Since our observations can easily be converted to similar observations 

for the cases that the productions in question have lefthand sides IS], we will not 

treat this nonterminal separately. Notice that [S] can not occur in the righthand 

sides of the productions of G'. 

We will need the following claim. 

CLAIM I. If ~([Ciy]} = ~([Djy]), where C E D (mod ~), then C = D and i = j. 

Proof of Claim |o For some ~, ~ ~ V* there exist productions L C + y~ and j. D + y~, 

in P. Since C m D (mod ~) we may distingu~hbetween two cases: 

(a) either both ~ and ~ are empty, hence C = D and i = J, or 

(b) both ~ and ~ are not empty and by definition of ~ it follows that ~([Ciy]) = [Ciy] 

and ~([Djy]) = [Djy], hence C = D and i = j. D 

OBSERVATION I0.2_=. Let C ÷ ~ and C' + ~' be in P', with C ~ C' (mod ~'). From Ob- 

servation I0, I and the definition of ~' it follows that we may write 

C ÷ ~8 = [Aiy] + a~([Xn_lin_la]...[X0i0Xl][AiyX0]) 
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and 

C' ÷ ~8' = [Bjy] + a~([Yn_IJn_Ia]...[Y0J0YI][BjYY0]). 

Consider a situation in which we have 

~([Xn_lin_iXn]...[~Xk] ) = ~([Yn_lJn_IYn]...[~'Yk ]) 

where X ffi Y ffi a, k satisfies 0 s k s n and either 
n n 

(i) ~ = AiT, ~' = Bjy and k ffi 0, or 

(ii) ~ = Xk_lik_l, ~' = Yk_lJk_l and k ~ I. 

In this situation we have the following result. 

CLAIM 2. [Xn_lin_lX]...[~] = [Yn_lJn_iYn]...[~'Yk ]. 

Proof of Claim 2. If n = 0, then the situation amounts to showing that ~([~a]) = 

= ~([~'a]) implies ~ = ~' and this follows i~m~ediately from Claim I. Assume n > 0. 

= First we show, by induction on m where k ~ m < n, that Xm = Ym and i m Jm" As basis 

we take m = n - I. Since X n = Yn one can easily verify, using Claim I, that Xn_ I = 

= Yn-I and in_ 1 = Jn-l" Assume inductively that Xp = Yp and ip = jp for all p such 

= Y and i = j In this case the situation can that k s m < p < n. We show that X m m m m" 

be reduced to 

~([XmiJm+l]...[~Xk]) ffi ~([YmJJm+l]...[~'Yk] ). 

Use of Claim 1 and its proof yields again Xm = Y and i = Jm" This concludes the in- 
m m 

d u c t i o n .  I t  f o l l o w s  t h a t  X k = Yk and a g a i n  w i t h  Claim 1 we c o n c l u d e  ~ = ~ ' .  Th i s  c o n -  
'L 

eludes the proof of Claim 2. D 

We continue with Observation 10.2. Now we consider a situation in which we have 

8, 8' # e. Then there exist p and q, 0 s p, q s n such that 

I : 8 = ~([~Xp]) = [~Xp], 

where either ~ = Xp_lip_ 1 or ~ = AiT and p = 0, and 

I : 8' = ~([~'Yq]) = [~'Yq], 

where either ~' = Yq_ljq_ 1 or ~' = Bjy and q = O. 

In this situation we have the following result. 
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CLAIM 3. ~ : $ m ] : ~ (mod ~) and p = q. 

Proof of Claim 3. Assume p > q (the case p < q is symmetric and therefore omitted). 

In this case we have 

= a~([Xn_lin_~Xn]...[XpipXp+l]) = a~([Yn_lJn_iYn].oo[YqjqYq+1]). 

It follows (see also Claim 2.) that 

$([Yp_!jp_iYp].oo[Yq_lJq_iYq]) = e 

so that necessarily, ~([Yp_lJp_IYp]) = g. This means that we have productions in P 

of the form ip 1 + Xp~ for some ~ c V + and Jp-l" Yp-l ÷ Yp" Notice that Xp = Yp and 

Xp_ 1 m Yp_] (mod ~). But then we have a contradiction with condition (ii) of Defini- 

tion 8.5. Therefore p = q. Since p = q we have that ! : 8 = [~Xp], I : 8' = [~'Yp] 

with X = Y and either 
P P 

(i) ~ = Xp_llp_ ! and ~' = Yp_lJp_ | with Xp_ l m Yp-I (mod ~) and by definition of ~' 

it follows that [¢~Xp] ~ [~'Yp] (mod ~'), or 

(ii) ~ = Aiy and ~' = Bjy with A m B (mod ~) and also in this case, by definition 

of ~', it follows that [~Xp] m [~'Y ]p (mod z'). 

Thus l : 8 ~ I : 8'. This concludes ~he proof of Claim 3. 

With the proof of this claim we conclude Observation I0.2. 

Now it is straightforward to show that ~' is strict. By definition of ~' we have 

~ ~[. It remains to verify that ~' satisfies condition (ii) of Definition 8.5. 

First we consider case (a) of this condition. Consider two productions C ÷ e8 and 

C' + ~' in P' where C ~ C' (mod ~') and ~,~' # g. If ~ = ~, then I : 8, ! : 8' ~ Z 

hence I : 8 ~ l : 8' (mod ~'). Case (b) of condition (ii) follows immediately from 

Claim 2. Since G is strict deterministic, other cases are not possible. 

Before examining other cover properties of strict deterministic grammars we 

shortly discuss the strict partition ~'. The set of strict partitions of a strict 

deterministic grammar forms a semi-lattice under the meet operation. Therefore there 

exists a minimal strict partition. In seetion 8.2 we presented the algorithm which 

computes this minimal strict partition. If the algorithm is applied to CFG G', which 

is obtained by the left part transformation, then n~ is obtained. That is, indepen- 

dent of the definition of ~ we have that ~' is the minimal strict partition of G'. 

It can be verified that if the input grammar G is a real-time strict determinis- 

tic grammar (Definition 8.6.c), then the left part transformation produces a grammar 

which is not only real-time strict deterministic but also uniform (Definition 8.6.b). 
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As we mentioned in section 5.2.2, if the left part transformation is applied twice, 

then the newly obtained gra~anar is at the same time in standard 2-form. 

We want to consider the possibility of obtaining a right covering almost-GNF 

strict deterministic gra~aaar from an e-free strict deterministic gra=mar. Algorithm 

5.4 will be slightly adapted in order to make it suitable for strict deterministic 

gra~mmrs. However, first we have to show that any e-free strict deterministic grammar 

can be made to satisfy the input conditions of Algorithm 5.4. Notice that if a grammar 

is strict deterministic and we replace each production of the form A ÷ ~a~, ~ # e, 

by the productions A ÷ C~Ha8 and H a ÷ a, then the newly obtained grammar is also strict 

deterministic. That is, if 7r is the original strict partition, then the new partition 

is ~ u {{H a I a c E}}. 

Unfortunately s the single productions of a strict deterministic grarmnar can not 

be eliminated in a straightforward way. The reason is that, whenever we have two non- 

terminal symbols A and A' with A ~ A', then 7! E CH(A) and F2 ~ CH(A') implies 

l~ll = t~2t. However, if we have a derivation 

A~a 

and 

A' ~2 

with ]~ll > I, then eliminating the single productions in the 'usual' way yields a 

production A ÷ a, while, if ~0 # e, the derivation which uses ~2 does not necessarily 

change under the elimination of single productions. Hence, such an elimination does 

not preserve strict determinism. Therefore we will include this elimination in the 

algorithm which transforms an g-free strict deterministic grammar into a strict de- 

terministic grammar in almost-GNF. It should be noted that if a grammar is real-time 

strict deterministic, then we can eliminate the single productions in the same way 

as was described for the LL(k) grammars (cf. Lena 10.3). 

One more remark should be made. We need to adapt the definition of almost-GNF 

in order to be able to deal with strict deterministic grammars. This is done in the 

following definition. 

DEFINITION I0.2. (Almost-GNF, second "version) A CFG G = (N,E,P,S) is said to be 

an almost-GNF grammar if for any production A + ~ in P either 

(i) ~ e E, or 

(ii) ~ e N + and rhs(]:~) ~ Z. 

Notic% that in Definition 5.5 we had the condition 
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NN + (ii) ~ ~ and rhs(1 :~) c__ Z. 

Therefore, the new definition is slightly more general. 

LEMMA 10.]0. Each c-free strict deterministic grammar G can be transformed to an 

almost-GNF grammar G' such that G'[~/r]G and G' is strict deterministic. 

Proof. We have to adapt Algorithm 5.4 in order to deal with the single productions 

and the strict determinism. As we did for LL(k) grammars, we will first consider 

Algorithm 5.3. If this algorithm is applied to a strict deterministic grammar G with 

P ~ N x (ZN* u N+), then we obtain a grammar G 1 which is strict deterministic and 

which has productions with the following forms: 

(i) IS] ÷ Xn~([Xn_lin_]X n] .... [XIiIX2][Si0XI]) 

and 

(ii) [Ai~] ÷ Xn~([Xn_lin_|Xn] .... [XoioX|][Ai~Xo]) 

We will proceed in the following way. Firstly, we construct a strict determinis- 

tic grammar G' which is in almost GNF. In this construction we do not have to bother 

about single productions. At the same time a homomorphism will be defined under 

which G'[r/r]G if G has no single productions. Secondly, we will slightly change 

grammar G' and the definition of the homomorphism in order to deal with the case that 

G has single productions. 

Consider the strict partition ~ of grammar G. Let ~ = {Z} u {V|,V2,..~,Vm}. Let 

V k ~ ~ - {Z}. For each a c Z, define 

Q~ = {i i i. A ÷ as in P, A ~ V k and ~ E N*}. 

a 
Clearly, for each i,j ~ Qk such that i. A + a~ and j. B + a8 are in P, we have that 

either ~ = ~ = E and i = j, or both ~ and ~ are not equal to e. 

Grammar G], which is obtained by Algorithm 5.3, is strict deterministic under 

a partition ~l which is defined by 

(2) [Ai~] m [Bj~] (mod 71) if and only if A m B (mod ~) and ~ = ~. 

Grammar G ~ = (N',Z,P'~[S]) is obtained from grammar G 1 = (NI,Z,PI,[S]) in the 
a 

following way. Initially, set P' = ~. The symbols Qk which denote the sets defined 

above will be used as nonterminal symbols. They will be added to N 1 in order to 

obtain N'. 
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Now we define the productions of G'. Each production is followed by its image 

under a mapping of which it will be shown that it is a cover homomorphism. 

(a) If in (i) ~([Xn_lin_IX n] .... [Si0Xl]) = E (hence, with our assumption that G has 

no single productions, i 0. S ÷ X n is in P), then 

X 
n 

[S] + Qk <~> 

~here S c Vk, and 

X 
n 

Qk -> Xn <io> 

are added to P'. 

(b) If in (i) ~([Xn_lin_iXn]...[Si0Xl]) # g, then 

[S] ÷ Qk Xn ~([Xn_lin_iXn]...[Si0Xl]) <e>, 

where Xn_ 1 ~ Vk, and 

X 
n 

Qk ÷ Xn <P> 

are added to P'. Here, p = in_ l if in_ I. Xn_ 1 + X n is in P and p = ~ otherwise. 

(c) If in (ii) ~([Xn_lin_]Xn]...[X0i0Xl][Ai~X0] ) = ~ (hence, with our assumption 

that G has no single productions, i. A ÷ ~X 0 and i 0. X 0 ÷ X I are in P and n = I), 

then 

X 
[Ai~] ÷ Qk n <i> 

where X 0 e Vk, and 

Qk Xn ÷ X n <i0> 

are added to P'. 

(d) If in (ii) ~([Xn_lin_IXn]...[X0i0Xl][Ai0uX0] ) # E, then 

X 

[Ai~] ÷ qk n ~([Xn_lin_IXn]...[x0i0Xl][AieX0] ) <p>, 

where Xn_ 1 e Vk, and 
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X 
n <q> 

Qk ÷ Xn 

are added to P'. Here, p = i, if i. A + c~X 0 is in P and p = g otherwise, and 

q = in_ ~ if in_IO Xn_ ] ~ X n ¢ P and q = ~, otherwise. 

CLAIM 1. Graam~ar G' is strict deterministic. 

Proof of Claim 1. Grammar G' is strict deterministic under a partition ~' which 

is defined as follows 

(1 ' )  ~1 ~ ~ '  

(2') For each k, I ~ k ~ m, the set { a a Qk I a ¢ E and Qk # #} is a block of the parti- 

tion. 

We prove that ~' is strict. Since we know that G! is strict deterministic under 

partition ~| it is sufficient to notice that the new nonterminal symbols do not inter- 
a b 

a b (mod ~'), then if Qk + aard Q k + b are fete with this partition. Moreover, if Qk ~ Qk 
a b 

in P', then a = b implies that Qk = Qk as is desired. We conclude that G' is strict 

deterministic. 

CLAIM 2. If G has no single productions, then G'[r/r]G. 

Proof of Claim 2. We should compare grammar G' with the grammar which is obtained 

in the proof of Lemma 5.4. The grammar of Lemma 5.4 right covers grammar G. It should 
a 

clear from the definition of the sets Q~ that the mapping defined by Qk + Xn <q> be 
• R 

coincides with the mapping defined by the productions H. ÷ X <q> with in_ ! ~ Qk" 

Therefore, G'[~/r]G. in-! n 0 

Now suppose that G has single productions. Grammar G! which is obtained by Algo- 

rithm 5.3 is strict deterministic. We show how to modify the steps (a), (b), (c) and 

(d) in order to obtain a right covering strict deterministic grammar G'. 

First consider case (a). If G has single productions and ~([Xn_lin_iXn] .... [S~XI])= 

= g, then 

X 
IS] + Qk n <g> 

where Xn_ 1 ~ V k, and 

X 
n . ° 

Qk ÷ Xn <in-~''~lO > 
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are added to P'. Notice that since G is strict deterministic, a situation 
÷ Xn ÷ 

QXnk X n <pl > and QR X n <p2 > with 01 # P2 can not occur. 

A similar modification is done in case (c). If 

~([Xn_lin_lXn]...[X0i0X1][Ai~X0 ]) = E, then 

X 
[Ai~] ÷ Qk n <i> 

where Xn_ l ¢ Vk, and 

X 
n . . 

Qk + Xn <in-l"'10> 

are added to P'. 

The situations described under (b) and (d) are more complicated. Consider the 

situation described under (d). Situation (b) can be treated similarly and therefore 

it is omitted. We assume that the detailed proof of Theorem 10.6 has provided the 

reader with sufficient insight in the properties of the strings of the form 

([Xn-lin-IXn ] .... [X0i0XI ] [Ai~X0] )" Therefore we omit detailed proof of the proper- 

ties which will be used. First we show how to treat some special single productions. 

If 

~([Xn_lin_iXn]...[X0i0Xl][~i~X0]) # ~, 

then we have 

~([x_lin_iX]) # s 

or there exists an integer ~, 0 -< ~ < n - ! such that 

i - 

and 

where 

and 

~([Zj~]) # s 

Z = A, j = i and ~ = ~X 0 if £ = 0 

Z = X~_|, j = i~_! and ~ = X l , otherwise. 
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Since G is strict deterministic, for any other production 

X 

n ~([Xn_l  in_ lXn]  . . . . . . .  ) [A'i'a] ÷ qk ...[X010XI][A z aX0] ) 

with A --- A' (mod ~), we have the same situation. That is, if ~([Xn_lin_IXn]) # e, 

then ~([Xn_lin_iX ] ) # e and otherwise we have 

~ ( [ X n - t l ; , - l X n ~ "  ° ' [ X ' i ' X : £  L X..+I " ] )  = ~ 

and 

where 

and 

Z' = A', j~ = i ~ and ~ = ~X~ if £ = 0 

Z' = X~_~, j' = i~_ I and ~ '  = X~ , otherwise. 

Moreover, in the latter ease, i s ~. " = " n_l~ .l~ in_l...il~ It follows that we can handle 

these single productions if we define 

X 
n qk ÷ X  <p> 

where 0 = £ if ~([Xn_lin_IXn]) # g and O = in_ l .... iz otherwise, where £ is as above. 

Next we consider situations (d) (and similarly (b)) where we have a nonterminal 

[Xz_jiz_~X£] , n ~ Z ~ 2 

(hence, ~([Xl_lil_iXl] ) # g) and =here exists an integer Z', 0 ~ ~' ~ Z - 2, such 

that 

~([Xz_2iz_2X£_ 1 ] .... [Xz,i£,XZ,_l] ) = E 

and 

z' = 0 or ~([xz,_lil, ix£,_2]) # E. 

Now we have the following two s~eps. Define P to be the set of productions which 

are obtained in step (a) or (e) together with the productions of the form Q~ ÷ a <p>. 
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Step 1 (Righthand sides). 

For each production 

X 

[Ai~] ÷ Qk n ~([Xn_lin_iX n] .... [X0i0XII[Ai~X0]) 

which is defined in step (d) (or, similarly, (b)) add to P the production which is 

obtained if each of the described occurences of [Xz_liz_IX l] in the righthand side 

is replaced by a nonterminal [Xl_liz_IXzP], with p = iz_2...il,. 

Step 2 (Lefthand sides)~ 

Set P' = i. For each nonterminal [X l ]iz |Xlp] and for each ~ which is righthand side 

of a production [Xz_Iiz_IX] ÷ 6 < p'> in P add [Xz_I~_IXzP] + ~ <p'p> t o  P'. 

We assume that it is clear that grammar G' with the set of productions P' right 

covers grammar G. It remains to verify that G' is strict deterministic. 

Define a partition ~' in the following way: 

(I") ~ E ~', {Is]} ~ #' 

{Qk a 
(2") For each k, I S k S m, the set a I a c E and Qk # ~} is a block of 7' 

W 
(3") [Ai~p] m [BjS~0] (mod ~'), with p, ~ ~ AG, if and only if A m B (mod ~), ~ = 

and if A = B, then p = ~. 

Now it is straightforward (since we know that ~l is strict and since the nonter- 
a 

minals of the form Qk can be treated as in Claim I) to show that partition n' is 

strict. This concludes the proof of Lemma 10.10. 0 

It is not difficult to verify that if gra~ar G is real-time strict determinis- 

tic, then grammar G' is also real-time strict deterministic. Notice that partition 

~' is a minimal partition since nonterminals are defined to be equivalent if and only 

if it is necessary. 

We can transform grammar G' with the same method. Then a right covering grammar 

G" is obtained with productions of the form A ÷ ~, with ~ e E or ~ ~ N U N z u N 3 and 

rhs(l:~) ~E (almost-standard 2-form). This almost-standard 2-formwill be used when 

transforming an almost-GNF strict deterministic grammar to a GNF strict deterministic 

grammar. 

LE~Cu~ I0. II. Any almost-GNF strict deterministic grammar G can be transformed to a 

GNF strict deterministic grammar G' such that G'[r/r]G. 

Proof. We may assume that G is in almost-standard 2-form. We need a preliminary 

transformation on G before we can use Algorithm 5.5. 
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Let G = (N,E,P,$) be strict deterministic under a partition ~ = {Z,~,V 2 .... ~n }. 

For each k, I ~ k ~ n and for each ~ e N u N 2 define 

Qk = IA ÷ ~ [ A ÷ ~ in P, A ~ Vk, ~ ~ N u N2}. 

Let Q = (Q~ I I ~ k ~ n, ~ ~ N u N 2 and Q~ # ~. Each element Q~ in Q will be given 

a unique number, denoted by i(Q~). 

We now transform grammar G = (N,E,P,S) into a strict deterministic grammar 

G| = (NI,E,PI,S) such that G l is in almost-GNF and G1[r/r]G. The transformation is 

such that the nonterminals of G 1 will contain information on the productions of G. 

Initially, set PI = [A ÷ X <i> I i.A ÷ X in P, X ~ V} and set N I = N. There are the 

following three steps. 

B B 
(I) For each rule i. A + BC in P such that A + BC in Qk and j = L(Qk), add the rule 

A ÷ B[jC] <i> 

to PI" Add the newly introduced symbol [jC] to N I. 

B BC B 
(2) For each rule i. A +BCD in P such that A +BCD in Qk n Qk ' j = i(Qk) and 

BC 
= L(Q k ), add the rule 

B[3C] [ZD~ <i> 

to PI o The newly introduced nonterminal symbols [jC] and [F_D] are added to N]. 

(3) For each nonterminal symbol [jC] (hence, C ~ N) and for each ~ su¢h that 

C ÷ 6 <i> is in P|, add the rule 

[jC] + 6 <i> 

to PI o 

We show that grammar G] 

removed from G I. 

has the desired properties. The useless symbols may be 

CLAIM I. Grammar G! is in almost-standard 2-form and G l [r/riG. 

Proof of Claim I. The argument is straightforward and therefore omitted. 

CLAIM 2. Grammar GI is strict deterministic. 

Proof of Claim 2. Define a partition ~] of V 1 = N! u Z in the following way: 
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(i) E ~ 
1 

(ii) For each A, B ~ N, A m B (mod ~i) if and only if A ~ B (mod ~). 

(iii) For each [iC], [jD] e N I - N, [iC] ~ [jD] (mod #i) if and only if i = j and 

C ~ D (mod ~). 

The verification that ~I is a strict partition is straightforward and therefore 

omitted. 

The third claim shows why we are interested in grammar G 1 . 

CLAIM 3, Let [jC] ~ N 1 - N. There exists a function f, f : N 1 - N ÷ A G u {C} such 

that 

f([jC]) = i, 

if j -- L(Q ) and i. A + ~C is in Qk and 

f([jC]) = e, 

otherwise. 

Proof of Claim 3. Consider a nonterminal [jC] in N] - N. If j ffi i(Q[), then there 
B 

K 

exists a production in Qk from which [jC] is obtained. We want to determine this 

production. Consider the case 8 £ N. Assume that there are productions A ÷ 8C and 

B ÷ 8CD in Qk" However, A m B (mod ~), therefore this is not possible. Suppose that 

there exist different productions A + ~C and B ÷ 8C in Q~. Also in this case, since 

A E B (mod ~), this can not happen. 

It follows that we can uniquely determine whether [jC] is obtained from a pro- 

duction of the form A ÷ 8C or from a production of the form A + 8CD. In the former 

case the production is completely determined and we define f([jC]) = i if it is the 

ith production of P. In the latter case we define f([jC]) = e. If 8 ~ N 2, then, with 

a similar argument, there exists exactly one production of the form i. A ÷ 8C in Qk 

and we define f([jC]) = i. 

We extend f : N 1 - N ÷ A G u {3 to f : N 1 + AG u {£} by defining f(A) = e for 

each A c N. We continue the proof with the steps of Algorithm 5.5. Grammar 

G I = (NI,E,PI,S) will be transformed to a GNF grammar G' = (N',E,P',S) such that 

G'[r/r]G. 

Initially, set P' = {A + a <~(i)f(A)> ] i. A ÷ a ~ P1 } and N' = N I. Let ~ be the 

cover homomorphism under which Gilt/riG. 

Step i. For each production i. A ÷ BC~ in PI (with B, C £ NI and ~ ~ N] u {~}) the 
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following is done. 

(i) If C + D~E is in P1 (with D, E e N 1 and ~ e N| 

productions k. B + a and I. D + b in PI add 

A ÷ aHk~E~ < p l  > 

with Pl = ~(i)f(A) if a = e and Pl 

(ii) 

HI~÷ b <p2 > 

with P2 = ~(kl), to P'. Add % to N'. 

u {c}), then, for any pair of 

(iii) For each production k. B + a in Pl 

~. D ÷ b add 

A + aHkj~ <pl > 

with Pl = ~(i)f(A) if ~ = E and Pl 

~kj ~ b <p2> 

with O 2 = ~(k~j) to P t. Add Hkj to N'. 

= f(A) otherwise, and 

For each pair of productions j. C ~ b and k. B + a in PI add 

A ÷ a~j~ <pl> 

with O I = ~(i)f(A) if ~ = E and Pl = f(A) otherwise, and 

Hkj + b <p2 > 

with O 2 = ~(kj), to P'. Add Hkj to N'. (Notice that in the granmmr which is 

obtained in Lena 10.10 this situation does not occur.) 

and pair of productions i. C ÷ D and 

= f(A) otherwise, and 

Step 2. For each pair of productions i. A ÷ B and jr B ÷ a in PI 

A ~ a <p> 

with p = ~(ji)f(A), to P~. 

add the production 

It is not difficult to verify that the cover homomorphism is well-defined. That 

is, since G 1 is strict deterministic and because of our cha~2e of nonterminal symbols, 



161 

a situation A ÷ ~ <91> and A + ~ <92> with 91 # 92 can not occur. In order to con- 

clude that G'[r/r]G the proof which follows Algorithm 5.5 should be slightly modi- 

fied. 

The algorithm preserves strict determinism. Let ~I be a strict partition for 

grammar G I. Define a partition ~' for grammar G' in the following way. 

(ii) The set H of newly introduced nonterminal symbols (of the form Ek~ ) is partition- 

ed as follows. For each pair of productions A + BCe and A' + BC'~' in P] and 

for each production k. B + a in P1 such that Am A' (mod ~i ), define 

if and only if one of the following situations does occur: 

(a) Productions of the form C ÷ DBE, C' ÷ D~'E', Z. D + b and m. D' ÷ c are in 

P]. 

(b) Productions of the form l. C + b and m. C' + d are in PI" 

(c) Productions of the form j. C + D, D + b, m. C' + D' and D' + c are in P|. 

Clearly, relation E which is defined in this way is an equivalence relation. 

Symmetry, reflexivity and transitivity can easily be verified. Therefore we have a 

partition ~' of V' = N' u Z. The verification that ~' is strict is straightforward 

and therefore omitted. This concludes the proof that G'[r/r]G and G' is strict de- 

terministic. D 

It can be verified that if G is real-time strict deterministic, then both G] 

and G' are real-time strict deterministic. From Len~a 10.10 and Lemma I0. I| we obtain 

the following corollary. 

COROLLARY ]0.5. Any g-free strict deterministic granmmr G can be transformed to a 

strict deterministic grammar G' in GNF such that G'[r/r]G. 

THEOREM 10.7. Any strict deterministic grammar G can be transformed to a strict 

deterministic grammar G' in GNF such that G' [r/riG. 

Proof. Combine Theorem 10.5 and Corollary I0.5. 

Finally we consider negative results for the covering of strict deterministic 

grammars. Consider the following CFG G with productions 

S + aCB I aCD B + c 

C-~ aCb [ b D ÷ d 

D 
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Grammar G is strict deterministic under a partition w = {{a,b,c,d}, {S}, {C}, 

{B,D}}. Grammar G is in GNF, and with the argument presented in Chapter 9 it can be 

shown that G is not a left parsable grammar. 

It follows that there does not exist a right parsable gram~mr G' such that G'[r/£]G. 

Hence, there does not exist a strict deterministic or LR-granm~ar G' which right-to- 

left covers G. 

COROLLARY 10.6. Not every strict deterministic gran~nar in GNF can be right-to-left 

covered with a right parsable grammar. 

Now consider grammar G O (also presented in Chapter 6 and section 10.1) with 

productions 

S -~ OSL i IRL 

R + I R L I  2 

Grammar G O is strict deterministic under a partition ~ = {{0, 1,2},{S},{R},{L}}. 

We know (cf. Chapter 6) that G O does not have an g-free left covering CFG. 

COJ~OL~ARY 10.7. Not every strict deterministic grammar can be left covered with 

an s-free grammar. 

Consider grammar G N (also presented in Chapter 6 and in the preceding section) 

with productions 

S -+ OHooS H00 -+ 0 

S ÷ 0HoIR %1 -~ I 

S "+ !HI]R Hl l "+ I 

S "+ 1HI2 H12 "+ 2 

R "+ ]Ql lR  Ql l  + 1 

R + 1Q12 QI2 + 2 

R ÷ 2  

Grammar G N is strict deteministic under partition 

= {{0,1,2},{S},{H00,H0]},{HII,HI2},{QII,QI2},{R}}. Since gN[r/l]G0, we may conclude 

that there does not exist a left-to-right covering c-free grammar for G N. 

COROLLARY 10.8. Not every strict deterministic grammar in GNF can be left-to-right 

covered with an e-free context-free grammar. 
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We can now construct the cover-table for strict deterministic grammars. In 

Table XI the cover results are collected. The entries of the table are numbered from 

I. to 36. The answers in this table can be found in the following way. 

Construction of the cover-table. 

(lO.2.1) Trivially yes are the entries l., 4., 5., 8., 9., 12., 17., 20., 21., 24., 

33. and 36. 

G,• COVER ARB e-FREE GNF 
SD SD SD 

Z/£ I. yes 5. yes 9. yes 

ARB Z/~ 2. yes 6. yes 10. yes 

SD ~/£ !3. no 7. no II. no 

r/r [4. yes 8. yes 12. yes 

Z/Z 13. no 17. yes 21. yes 

e-FREE Z/~ 14. no 18. no 22. no 

SD ~/£ 15. no i19, no 23. no 

r/~ 16. yes 20. yes 24. yes 

Z/£ 25. no 29. yes 33. yes 

GNF £/~ !26. no !30. no 34. no 

SD ~/Z 27, no !31. no 35. no 

r/r 28. yes 132. yes 36. yes 

(10.2.2) 

(10.2.3) 

(10.2.4) 

Table XI. Cover-table for strict deterministic grammars. 

Because of Lemma I0o6 we may conclude that the entries 2., 6. and I0. are yes. 

From Theorem I0.5 it follows that entry 16. is yes. Because of Theorem 10.6 

we may conclude that entry 29. is yes. 

From Theorem I0.7 it follows that the entries 28. and 32. are yes. 
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(I0.2.5) The entries 3., 7., 11., 15., 19., 23., 27., 31. and 35. are no because of 

Corollary I0.6. 

(I0.2.6) From Corollary 10.7 it follows that the entries 13. and 25. are no. From 

Corollary 10.8 it follows that the entries 14., 18., 22., 26., 30. and 34. 

are no. 

This concludes the construction of the cover-table. The results in this table 

can be compared with those in Table VI. 

I0.3. NORMAL FORM COVERS FOR LR(k) GRAMMARS 

This section is devoted to the construction of the LR cover-table. At some 

points we will be less detailed than in the preceeding sections. We make systematic 

use of the results of Chapter 9. Therefore our treatment and the sequence of results 

will be different from that of the previous two sections. Our only concern is to fill 

the LR cover-table and we do not bother about direct transformations on LR-grammars. 

Moura [113] has found similar results as are presented in this section by directly 

transforming LR-grammars. 

THEOREM I0.8. Any LR(k) gra~nar can be right covered with an LR(1) gran~nar in GNF. 

Proof. Let G = (N,E,P,S) be an LR(k) grammar. Define 

G O = (~ u {So}, ~ v {±), F u {s o + s±}, So).  

Provide production S 0 + Si with label O. For G O we can find a strict deterministic 

grammar GI such that Gl[r/r]G 0 (Theorem 9.4). Grammar G 1 can be transformed to a 

strict deterministic grammar G 2 in GNF (Theorem 10.7) such that G2[r/~]G I. Hence, 

G2[~/r]G 0- 

Let ~ be the corresponding cover homomorphism. Since G 2 is in GNF, each produc- 

tion whose righthand side contains i is of the form A + ± <~l >. Each production 

which has A in its righthand side is of the form C + aeA <~2 >, for some C • N2, 
, 

a • Z and e • N 2. 

If we replace each of the productions of the form A ÷ ± <~l > by a production 

A ÷ e <~l>, then (modified) grammar G 2 is LR(1) (of. the proof of Theorem 9.5) and 

G2[r/~]G under a cover homomorphism ~' which is defined by 

~'(p) = z, if ~(p) = ~0 

~'(p) = ~(p)~ otherwise. 

If, moreover, for each production C ~ a0Uk <~2 > discussed above, with A ~ g <~i > 
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obtained from A + ± <~l>~ we let also C ÷ ae <~]~2 > be a production rule and we delete 

the rule A + E <~i>, then the resulting grammar is LR(1), in GNF and it right covers 

grammar G. 

Notice that we do not delete the production C ÷ a~A from the set of productions 

since it is not necessarily the case that Irhs(A)I = 1. Since L(G 2) is prefix-free 

we can not have that in G 2 there already existed a production C ÷ as. 

This change in the productions does not change the LR(|) property of the gram- 

mar. If it is possible, before the transformation, to determine by one symbol of look- 

ahead the productions A + E and C ÷a~A, then it is also possible, after the transfor- 

mation, to determine production C + a~ by one symbol of look-ahead~ D 

The next theorem deals with the left cover result for E-free and NLR LR(k) gram- 

mars° 

THEOREM I0.9. Any E-free NLR LR(k) grammar G can be transformed to an LR(k) grammar 

G' in GNF such that G'[£/£]G. 

Proof. We assume that it is sufficiently clear that a simple substitution in the 

left corner of a production preserves the LR(k) property of a grammar. 

That is, if C + AB and A + ~j are productions in an LR(k) grammar G, then re- 

placing these productions by 

C ÷ aj~, j = 1 ..... Irhs(A) l 

will yield a grammar which is also LR(k). One possible way to show this is to con- 

struct the sets of LR(k)-items (Aho and Ullman [3]) and observe that they can not 

contain inconsistent items. 

Once we have observed this we can use the usual algorithm to transform an e-free 

and NLR LR(k) grammar to a GNF grammar. Since any LR(k) grammar is unambiguous, it 

is not necessary to use the more complicated algorithm of section 5.1. A left cover 

is obtained if we define C + ej8 <ikj> for each substitution of productions 

i. C ÷ A8 and kj. A + ~j, j = I ...... I rhs(A) I. 

This concludes the proof of Theorem 10.9. D 

Before passing to cur negative cover results for LR(k) grammars we observe that 

the LR(]) grammar which is obtained in Theorem 9.5 is NLR. Thus we have the following 

corollary. 

COROLLARY I0.9. Any LR(k) grammar G can be transformed to a NLR LR(1) graummr G' 

such that G'[£/r]G and G'[r/r]G. 
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Finally, we turn our attention to some negative results for LR(k) grammars. 

Grammar G O with productions 

S ÷ OSL I ]RL 

R ÷ IRL i 2 

L ÷ g 

has the property that there does not exist an g-free CFG G' such that G'[£/£]G. Gram- 

mar G O is strict deterministic (el. section 10.2) and therefore LR(O). 

COROLLARY i0. I0. Not every LR(O) grammar can be left covered with an g-free grammar. 

Grammar G N with productions 

S ÷ 0H00S H00 + 0 

S ÷ 0H0iR H0! ÷ 

S * IHl lK H1] + 1 

S ÷ 1H12 HI2 ÷ 2 

R + IQI |R  Ql l  ÷ | 

R ÷ IQI2 Q12 ~ 2 

R ÷ 2 

has the property that there does not exist an g-free CFG G' such that G'[~/~]G N. 

Grammar G N is strict deterministic (of. section 10.2) and therefore LR(0). 

COROLLARY 10.1|. Not every LR(0) grammar in GNF can be left-to-right covered with 

an c-free grammar. 

Grammar G with productions 

S + aCB I aCD 

C÷aCb I b 

B+c 

D+d 

is not left parsable (of.section |0.2). Since granmmr G is strict deterministic and 

therefore LR(0), the following corollary is immediate. 

COROLLARY 10.12. Not every LR(0) grammar i~ GNF can be right-to-left covered with 

a right parsable g=mmmar. 
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Now we come to a less straightforward obtainable negative result. We want to 

show that not every LR-grammar can be left covered with a non-left-recursive (LR-) 

grammar. 

Consider grananar G O . Since there does not exist an E-free CFG G' such that 

G'[~/£]Go, we know that there does not exist an c-free graaaaar G' such that G'[r/r]G~. 
R . ! ! . 

Here, G O xs the s3amnetric versxon of grammar GO, conform Observation 4.3. Grammar 
R f R - R G N saris ies GN[£/r]G O. It follows that there does not exist an E-free CFG G' such 

that G'[r/Z]G~. 

Now suppose that there exists a NLR gran~aar G' such that G'[Z/Z]G~. However, 

due to entry 7 of Cover-Table VII we must conclude that then there exists an E-free 

gra~nar G" such that G"[r/Z]G', thus G"[~/Z]G~, and we have a contradiction. However~ 

grammar G~ is not ahLR-grammar. If we want to use this argument, then we need to 

construct an LR-gran~ar which can play the role of G~ in this argument. This is done 

below. 

We start with a CFG G with productions 

I. S+ 0AL 

2. A÷ ISL 

3. S+ 3RL 

4. A÷ 2RL 

5. R ÷ 4BL 

6. B÷ .SRL 

7. R+6 

8. B-~7 

9. L÷E 

Grammar G can not be left covered with an E-free CFG. This should be clear by 

comparing grammar G with grammar G 0. From G we can construct a grammar G M such that 

GM[r/£]G. Grammar GMhaS the following productions 

S -+ 0H01S <99> H01 '+ 1 412> 

S + 0Ho2R <99> H02 + 2 <t4> 

S ÷ 3A <9> B "+ 4 <3.5> 

S -+ 3BC <99> C -+ 7 <8> 

S + 3D <9> D + 6 <37> 

A + 4ER <99> E ÷ 5 <356> 

R + 4H45 R <99> }{4.5 -~ 5 <56> 

R + 4F <9> F + 7 <.58> 

R ~ 6 <7> 
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It is not difficult to verify that GM[r/I]G and, moreover, G~ is an LR(k) gram- 

mar. Thus, we may conclude that there does not exist a NLR grammar G' such that 

G'[Z/I]G~. 

COROLLARY 10.13o Not every LR-grammar (in GNF) can be left covered with a NLR gram- 

mar. 

In Table XIi we have collected the cover results for LR-grammars. The entries 

in this table are numbered from I. to I00. The answers can be found in the following 

way. 

(10.3.1) Trivially yes are the entries I., 4., 5., 8., 9., 12., 13., 16., 17., 20., 

25., 28., 32., 36., 37., 40., 49., 52., 53., 56., 57., 60., 73., 76., 77., 

80., 97. and I00. 

(10.3.2) From Corollary 10.9 it follows that for any LR-grammar G we can find a N~R 

grammar G' which is LR(1) such that G'[I/~]G and G'[~/r]G. Hence, we have 

ges for the entries 2., 6., I0., 14., 18., 42., 46., 50., 54., 58., 44. and 

48. 

(10.3.3) From Corollary 10.10 it follows that the entries 21., 29., 61., 69., 8l. and 

89. are no. 

Due to Corollary i0.11 we may conclude that the entries 38., 34., 30., 26., 

22., 78., 74., 70., 66., 62., 98., 94., 90., 86. and 82. are no. 

From Corollary 10.12 we may conclude that we have no for the entries 3., 

7., II., 15., 19., 23., 27., 31., 35., 39., 43., 47., 51., 55., 59., 63., 

67., 71o, 75., 79., 83., 87., 91., 95. and 99. 

(10.3.4) From Theorem 10.8 it follows that the entries 84., 64., 24., 88., 68., 92., 

72., 32. and 96. are yes. 

From Theorem 10.9 it follows that entry 93. is yes. We may conclude from 

Corollary 10.13 that the entries 45., 65., 85. and 4~. are no. 



ARB 

LR 

ARB E-FREE NLR g-FREE GNF 
COVER 

LR LR LR NLR LR LR 

Z/Z  1. ges  5. ges  ]9. y e s  

Z /~  2 .  y e s  6. ges  !10. yes  

r/Z 3. no 7. no !ll. no 

~/r ~. yes 8. yes if2. yes 

!3. yes 

!14. yes 

15. no 

16. yes 

17. yes 

18. yes 

19. no 

120. ges 

g-FREE 

LR 

Z/Z 21. no 25. yes 29. no 33. ges i37. yes 

I/~ 22. no 26. no 30. no 34. no 38. no 

r/Z 23. no 27. no !31. no 35. no 39. no 

r/r 24. yes 28. yes 32. yes 36. ges 40. yes 

NLR 

LR 

Z/Z ~|. no 45. no 149. yes 53. yes 57. yes 

Z/~ ~2. ges 46. yes 50. yes 54. yes 58. yes 

~/£ $3. no 47. no 51. no 55. no !59. no 

r/r !44. yes 48. yes 52. yes 56. yes ;60. ges 

t-FREE 

NLR 

LR 

Z/Z !61. no 65. no 69. no 73. yes !77. yes 

Z/~ i62. no 66. no 70. no 74. no 78. no 

~/£ 63. no 67. no 71. no 75. no 79. no 

~/~ 64. yes 68. yes 72. yes 76. yes 180. yes 

GNF 

LR 

Z/£ 81. no 85. no 89. no )3. yes 97. yes 

Z/~ 82. no 86. no 90. no )4. no 98. no 

~/Z 83. no 87. no 9]. no )5. no 99. no 

r/r 84. 9es 88. yes 92. yes )6. yes IO0.ges 

Table XII. Cover-table for LR-grammars, 
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Except for the negative results which are caused by the property that not every LR- 

grammar is left parsable, the main difference between this table and Table VI is the 

possibility of a right cover of an arbitrary LR-grammar with a GNF grammar. Notice 

that not every g-free LR-grammar can be left covered with a NLR (LR-) grammar. 



CHAPTER 11 

COVER PROPERTIES OF SIMPLE CHAIN GRAMMARS 

In the preceeding chapters we have been concerned with transformations of con- 

text-free grammars. One of the key-concepts has been the 'chain'. We have used 'left 

part' transformations (Algorithms 5.2 and 5.3) and we have introduced 'left-part' 

parses. 

In this chapter we show the origins of these concepts. Historically seen, the 

results in this chapter precede most results of the preceeding chapters. Most results 

in this chapter were first published in Nijholt [118 ,119,122]. 

We consider a subclass of the LR(O) grammars. This class of grammars, called 

the simple chain grammars has a very simple and natural bottom-up parsing method. 

The definition of a simple chain grammar was originally motivated by the parsing 

method for production prefix grsmmmrs, as introduced by Geller, Graham and Harrison 

[38]. However, they start by constructing a parsing graph for a context-free gra~ar 

and give conditions which ensure that the parsing algorithm works correctly. In our 

approach we start with a grammatical definition and, as can be shown, a slightly 

adapted version of their parsing method can be used. 

This chapter is concerned with the properties of simple chain grammars, their 

languages, their grammatical trees and their parsing and covering properties. For 

the time being we consider only simple chain grammars for which no look-ahead is 

allowed. An extension with look-ahead is straightforward and in Chapter 12 a few 

notes will be spent on this extension. The class of simple chain grammars is such 

that it properly contains the class of simple deterministic grammars (Korenjak and 

Hopcroft [80]). However, each simple chain grammar can be transformed to a weakly 

equivalent simple deterministic grammar. Thus, the simple chain graamars generate 

exactly the simple deterministic languages. 

Material which is closely related to the parsing method which can be used for 

simple chain grarmars appears in the work of Kr~l [82] and Kr~l and Demner [83]. 

They consider top,down properties of DeRemers LR(O~ parsing method. A comparison of 

this work will not be given here. 

The organization of this chapter is as follows. In section II.I we introduce 

the simple chain grammars. We develop some of their properties and give examples 

of simple chain grammars which are not, for any k, LL(k), LC(k) or left parsable. 

Section 11.2 is devoted to relationships with some other classes of gra~m, ars and in 

section 11.3 simple chain languages are discussed. We present transformations to 

Greibach normal form and to simple deterministic grammars. Section I].4 is concerned 

with the grammatical trees of simple chain grammars. In analogy with Harrison and 
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Havel [60] a left part property for simple chain grammars is obtained. With the help 

of this left part property we can (in section 11.5) introduce left part parses and 

discuss the parsing and covering properties of simple chain grammars. 

It should be noted that until Chapter 8 we have been using simple SDTS's (or 

equivalently, pushdown transducers) without further restrictions. In Chapter 8, 9 

and 10 we used deterministic pushdown transducers (DFDT) to obtain cover results. In 

this chapter we use a simple DPDT to obtain cover results for simple chain grammars. 

]1.I. SIMPLE CHAIN GRAMMARS 

In this section we introduce the class of simple chain grammars and discuss 

some of their properties. 

DEFINITION ll.L An e-free CFG G = (N,E,P,S) is said to be a simple chain gra~aar 

V* if P is prefix-free and for any A c N, ~,~,~ ~ and~Y c V with X # Y, if A ÷ ~X~ 

and A ÷ ~Y~ are in P, then FIRST(X) n FIRST(Y) = ~. 

Our first task is to prove that each e-free LL(1) grammar is a simple chain 
\ 

grammar. After that we will be concerned with a definition of simple chain grammars 

which is equivalent to Definition 11.! but in which some useful properties of simple 

chain grammars are explicitly mentioned. 

LEMMA 11.1. Every g-free LL(1) grammar is a simple chain grammar. 

Proof. 

chain grar~nar. If P is not prefix-free then there is A ~ N and ~,8 £ V* such that 

A + ~, A + ~8 and 8 # ~. This obviously contradicts the LL(]) definition. Now sup- 

pose there exist A c N,0%~,~ e V*, X,Y E V and rules A ÷ ~X~, A ÷ ~Y~ with X # Y 

and FIRST(X) n FIRST(Y) # ~. Since eX~ # ~Y~ and FIRST(~X~) n FIRST(~Y~) # @ this 

contradicts the LL(1) definition. 

Let G = (N,E,P,S) be an e-free LL(1) grammar and assume that G is not a simple 

0 

In Definition 5.1 chains were introduced. We recall this definition. Let 

G = (N,E,P,S) be an e-free CFG. If X 0 ~ N, then CH(X0) , the set of chains of X0, 

is defined by CH(Xo) - IXoXI...X c N Z I X 0 ~ XI~ ! Z"'~X~n , @i c V , I ~ i s n} 

and, for each X 0 ~ E, CH(X O) = {Xo}. For each ~ c CH(Xo), let Z(~) denote the last 

element of z. Thus, if ~ = XoXI...X n, then Z(~) = X and Z(~) e Z. 

DEFINITION |1.2. Let X ~ V. X is said to be chain-independent if for each pair ~I' 

~2 in CH(X), if ~l # ~2 ~ then £(~I) # £(z2 ). If each element of V is chain-indepen- 

dent, then V is said to be chain-independent. 
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Clearly, each terminal symbol is chain-independent. Some other properties are 

listed in the following lemma. 

LEMMA 11.2. 

a. Let X 6 V. If V is chain-independent, then CH(X) is a finite set. 

b. If V is chain-independent, then G is NLR. 

Proof. Part a. is trivial. Part b. follows from Theorem 5.1. 

DEFINITION 11.3. Let X,Y ¢ V, X # Y. The symbols X and Y are said to be mutually 

chain-independent, and we write X ~ Y, if for each pair 71 ~ CH(X) and ~2 e CH(Y), 

/ (~1 ) # / (~2  ).  

Recall that if k = l then we omit the index k of the notation FIRST k. 

LEMMA 11.3. Let X,Y ¢ V, X # Y. Then X ~ Y if and only if FIRST(X) n FIRST(Y) = ~. 

Proof. Trivial. D 

Notice that for each pair a,b in E with a # b we have a ~ b. The following cor- 

ollary will be obvious. Recall that a set P of productions is said to be prefix-free 

if for each pair A ÷ ~ and A ÷ ~ in P, ~ = g. 

COROLLARY II.I. CFG G = (N,E,P,S) is a simple chain grsammr if and only if P is 

prefix-free and for any ~,~,~ ¢ V*, A ¢ N and X,Y E V with X # Y, if A ÷ ~X~ and 

A ÷ ~Y~ are in P, then X ~ Y. 

LEMMA 11.4. If FIRST(X) N FIRST(Y) = ~ for each pair A + ~X~, A ~ ~Y~ with 

~,~,~ E V*, X,Y ¢ V and X # Y, then V is chain-independent. 

Proof. Assume that V is not chain-independent. Hence there exist A E N and 

~i,~2 ¢ CH(A) such that ~I # ~2 and l(~l) = ~(~2). Let ~I = XoXI'''Xn and 

~2 = YoYI"'Ym ' where X 0 = Y0 = A and X n = Ym" Then there exists a maximal i ~ 0 such 

XoXI...X i = YoYI...Yi , there exists a derivation A ~ Xi~ i for some ~i E V* and there 

exist productions X i ÷ Xi+l~i+l, X i + Yi+l~+ I , for some ~i+l' ~i+l E V such that 

Xi+l ~ Yi+l" By hypothesis FIRST(Xi+I) N FIRST(Yi+I) = ~. But this contradicts the 

assumption that l (~ l )  = ~(~2 ) • D 

From Corollary 11.1 and Lemma 11.4 the following corollary is now immediate. 
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COROLLARY I:.2. ~.n g-free CFG G = (N,Z,P,S) is a simple chain grammar if and only 

if the following three conditions are satisfied. 

(i) V is chain-independent. 

(ii) If there exist ~ a V +, ~,~ e V*, A e N and X,Y e V with X # Y such that 

A ÷ ~X~0 and A ÷ ~Y~ are in P, then X ~ Y. 

(iii) P is prefix-free° 

Hence, the three conditions in this corollary can be used as a definition of 

a simple chain grammar. These three conditions will be useful in proofs of proper- 

ties of simple chain grammars. 

To illustrate the definition of a simple chain gra~m~ar we consider a few exam- 

pieso 

EXAMPLE 11.I. 

Consider grammar G with productions 

S-~AF C÷dF ] dD 

A ÷ Ba G ÷ Cb 

B÷Cd D+b 

F÷Ga I a 

For example, CH(C) = {Cd}, CH(a) = {a} and CH(F) = {Fa,FGCd}. One can easily verify 

that G satisfies the conditions of a simple chain grammar. 

In the following two examples we list simple chain grammars which are not LL(k) 

or LC(k) (for any k > 0) and left parsable, respectively. For the definitions of 

these classes of gran~nars the reader should consult Chapter 8 and 9. The proofs are 

straightforward from these definitions. 

EXAMPLE I I. 2. 

CFG G with productions 

S + aEc i aEd 

E ÷ aE I ah 

is a simple chain grammar. However, there is no k such that G is LL(k) or LC(k). 

EXAMPLE 1 1.3. 

CFG G with productions 

S + aEc ! aEd 

E + aEb I ab 
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is a simple chain grammar. However, G is not left parsable, that is, there does not 

exist a DPDT which acts as a left parser for G. 

The grammar of Example 11.2 is not g-free LL(1). Therefore the classcfe-freeLL(l) 

grammars is properly included in the class of simple chain grammars. 

V* DEFINITION 11.4. Let G = (N,E,P,S) be a CFG. String ~ e is said to be prefix- 

E* ~ w! and ~ ~ wlw 2 implies w 2 = e. Grammr G is said free if, for any Wl,W 2 c , 

to be prefix-free if all the nonterminal symbols are prefix-free. 

Notice that if a grsammr G is prefix-free, then L(G) is prefix-free. That is, 

if w] e L(G) and wlw 2 e L(G), then w 2 = ~o 

THEOREM 11.I. Every simple chain grammar is prefix-free. 

Proof. We have to prove that every nonterminal of a simple chain granmmr is prefix- 

free. Let G = (N,Z,P,S) be a simple chain grammar. By induction on the length of 

V + the derivations we prove that any ~ ~ is prefix-free. 

Basis. Consider two derivations of length 1 which can be used to obtain w I and WlW 2 

in Z*; the case in which one derivation is of length] and the other is of length 0 

cannot occur. If ~ ~ w I and ~ ~ WlW Z then there exists a nonterminal C ~ N and 

v Tv ~ *  strings w ,w ,Zl,Z 2 c such that 

= wVCw" ~ WvZlW" = w]~ 

and 

= w'Cw" ~ w'z2w" = wlw 2 

If w 2 # e then z I is a prefix of z 2 and P is not prefix~free, whence w 2 = g. 

V + * , Induction. Assume for all ~ ~ and derivations~,w] and ~ ~,w]w 2 with lengths 

less than n, we have w 2 = E. Now consider derivations ~ ~ w I and ~ ~ WlW 2 with lengths 

less than or equal to n. Then there exist C ~ N, p,p1,~l,~2 c V*, vl,v2,w' ¢ and 

X,Y ~ V such that C + p]X~ 1 and C ÷ P]Y~2 are in P, ¥ith X # Y and 

and 

pp1  2w p ,Yv2w wlw 

where ~Cw' is the last right sentential form which these two derivations have in 
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common. Since FIRST(X) n FIRST(Y) = ~ we must have PPl # ~" Moreover, to obtain both 

w I and WlW 2 there exist w # e and w # £ such that PPl ~ ww and pp] ~ w, where both 

w and ww are prefixes of wl, and both derivations are of length less than n. Since 

this contradicts the induction hypothesis we must conclude w 2 = e. This concludes 

V + the proof that every ~ ~ and hence every A ~ N is prefix-free. 0 

THEOREM II.2. Every simple chain grammar is unambiguous. 

Proof. We have to prove that each w e L(G), where G = (N,E,P,S) is a simple chain 

grammar, has exactly one (rightmost) derivation from S. Suppose S ~w by at least 

V* two rightmost derivations. Then there exists A c N, p,~l,~ 2 ~ and X~Y ~ V, where 

X # Y, such that there are derivations 

A ~ p~A01 ~ w' 

and 

A ~ PY~2 ~ w~ 

where w' # ~ is a substring of w. Since X ~ Y we must conclude that p is not prefix- 

free which is in contradiction with Theorem 11.1. Therefore there are no two such 

derivations. D 

A characteris=ic feature of simple chain grammars is mentioned in the following 

theorem. The notation ~ is used to indicate that the derivation is of length n. 
L 

THEOREM ]1.3. Let G = (N,E,P,S) be a simple chain grammar. Suppose there exist n z I, 

V* V and e,~,@ ~ such that S ~ c~X~ and S ~ ~Y~. If X # Y, then X # Y. X,Y 

Proof. The proof is by induction on the length of the derivations. To facilitate 
+ 

the induction proof we take an arbitrary string ~ ~ V instead of the start symbol S. 

Basis. Let ~ ~eX~ and ~ ~eY~. Suppose B = yCp, C 6 N, y e E * and p ~ V*. Then 

there are productions C + Y|XO! and C ÷ Y]YP2 in P such that YYI = ~' Plp = ~ and 

p2 p = ~. Since X ~ Y we obtain X # Y. 

Induction. Let ~ ~ cu~ and ~ ~ ~Y~ where X # Y and assume the property holds 

V* for all ~ ~ and leftmost derivations with leith less than n. There exist ~! ~ Z*, 

6, ~I' ~l 'p c V*, XI,Y I ~ V and C E N such that C + ~XI~ 1 and C + 6YI~ I, where 

XI # YI' and 
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and 

k m 
]J ~ C~lC 0 ~ O~l~Xlq)lp ~ c~X~o 

k m ~y~ 
V ~ ~iCP ~ (~I6YI~IP L 

with n = k + m + I. If m = 0 then X 1 = X, Y1 = Y and since X 1 @ Y1 we have also 

X ~ Y. Otherwise, since e]~ is prefix-free, there are two possibilities: 

(i) ~16 ~ ccX~O], where ~O]Xlq~lp = kO, 

and 

~16 ~ ~Y~:, where ~IYI~I0 = ~. 

(ii) 

Since m < n we have X $ Y. 

~i ~ ~', where ~' is a prefix of ~, that is ~ = ~'~", 

and 

and 

• X~ 1 where ~! XI " ', ' is a prefix of ~, 

Y1 ~* ~"Y~I' where ~I' is a prefix of ~. 

Since X 1 # Y| we have G" = e and X # Y. 

It follows that S ~ wX~ and S ~ wY~ with X # Y implies X # Y. 

In the remainder of this section we present some resu~s on the rightmost deri- 

D 

vations of a simple chain grammar. First we have the following resul~s. In this le~una 

denotes the concatenation of the productions in the rightmost derivation. 

LEMMA !!.5. Let G = (N,E,P,S) be a simple chain grammar. Assume A ~ N, X ~ V, ~0E V* 

and v!,v 2 ~ E* such that 

S ~q~Avl ~£°Xv 2 

where A # X. Then there  is v '  E Z* such tha t  vlv 1 = v 2 and 

A ~ Xv'. 

Proof. Notice that we can not have %0 q~Xu for some u c since %o is prefix-free. 
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Neither can we have ~ ~ ~, where ~' is a proper prefix of ~ since there are no 

g - p r o d u c t i o n s .  ' f h e r e f o r e  we m u s t  c o n c l u d e  t h a t  A ~ Xv'  f o r  v '  ~ Z* and v ' v  I = v 2. 

THEOREM t l . 4 .  Let G = (N,Z,P,S) be a simple chain grammar. Let ~ e V*, X,Y E V 

Z* and w l,w 2 e such that S ~ ~Xw I and S ~ aYw2, where X # Y. Then, either X ~ Y or 

Z* there is a string u e such that 

S ~ (~Xu ~ c~Yw 2 

(or the symmetric case: 

S ~ ~Yu ~ aXw l) 

V +" Proof. The proof is by induction on the length of the derivations. Let D ~ As 

basis we consider derivations of length one or less. 

and 

Basis. First consider derivations 

~ aXw 1 

~ ~Yw 2 

where X # Y. Then there exist p e V ~, C E N, w ~ Z and C + plXvl, C + oiYv 2 in P, 

such that pp! = ~, vlw = w I and v2w = w2. Since G is a simple chain grammar, X ~ Y. 

Now suppose that ~ = o.Xwl and ~ ~ ~Yw 2. Then ~Xw I ~ ~Yw 2. It follows that we 

have a derivation 

~ caXwl R ~Yw2 

which is of the desired form. The basis of the induction is now satisfied. 

and 

Induction. Now suppose we have derivations 

~c~Xw I 

~ ~Yw 2 

with X # Y and the lengths of the derivations are less than or equal to n. Assume 
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the property holds for all derivations with lengths less than n. There exist 
. 

p,pl,~l,~ 2 e V , C e N, XI,Y l c V such that C + PiXl~l and C + PlYl~2 are in P, 

with X l # Yl and there exist derivations 

and 

Since X l 

(i) 

and 

]/ ~ oCw ~ PPlXlqOlW ~ c~Xw I 

p ,~ pCw~ oPiYl~02w ~ (~Yw 2. 

Yl and OPl is prefix-free there are two possibilities: 

OPl ~ aXVl 

OPl ~ gYv2 

where v I is a prefix of w I and v 2 is a prefix of w 2. But then, since the lengths 

of these derivations are less than n, we have by the induction hypothesis either 

X # Y or there is v E Z* such that 

0~I ~ ~v ~ ~Yv 2 

where v 2 is a prefix of w 2. If 

PPl ~ aYv2 

then there is a derivation 

g ~ PPlY¿~2 w ~ PPl w' ~ aYv2w' = aYw 2. 

Moreover, since 

PPl ~ c~Xv ~ aYv 2 

we can write 

~ ~piYe2w ~ op~w ~ ~ ~ ~Yv2w ° ~w~ 

Therefore there is u = vw' e Z* such that 



180 

(ii) X 1 ~ p~Xw I 

and 

YI 

r where p' is a suffix of ~ and w I and w~ are prefixes of w I and w2, respectively. 

But then, since X~ ~ Y; we have 0' = e and X ~ Y. 

The proof of the theorem is now complete if we take ~ = S. 

Note. It follows from this theorem that, if S ~ ~Xw I and S ~ ~Yw2, where X # Y 

Z* and we do not have X # Y, then there exists v ~ such that 

S ~ ~Xv ~R ~Yw2 

where X R Yw' and w ~ is such that w'v = w 2 (or the symmetric case) l 

The following corollary is immediate from Theorem 11.4. We use the following 

V* notation. For X,Y ~ V we write X ± Y if there does not exist ~ ~ such that either 

X ~ Y~ or Y *~ X~. Notice that if X # Y, then X ~ Y implies X ± Y. If X ± Y, then 

x#Y. 

COROLLARY 11.3. Let G = (N,E,P,S) be a simple chain grammar. Suppose there exist 

~ V*, X,Y e V and wl,w 2 e such that S ~Xw I and S ~ ~Yw 2. If X ± Y, then X # Y. 

Note. Notice that we do not have S ~ eXw I and S ~ ~Yw 2 implies X ~ Y. A counter- 

example is grammar G with productions S ÷ aXb, X ÷ Yc and Y + a. Grammar G is a 

simple chain grammar, S ~ aXb and S ~ aYcb but we do not have X ~ Y. 

Another example is the grammar with productions S ÷ aXD [ aXe, X + Y, Y + b 

and D ÷ d, which is also a simple chain grammar. Here we have derivations S ~ aXd 

and S ~ aYe, but we do not have X ~ Y. 

11.2 .  RELATIONSHIPS BETWEEN SIMPLE CHAIN GRAMMARS AND OTHER CLASSES OF GRAHMARS 

We already saw that each g-free LL(1) grammar is a simple chain grammar. More- 

over, there exist simple chain grammars which are not LL(k) or LC(k), for any k e 0. 

In Chapter 12 we will return to the relation between simple chain grammars and LC- 

grammars. Here we will compare the class of simple chain grammars with the classes 

of grammars that are simple precedence, strict deterministic or LR(O). For the 
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definition of simple precedence the reader is referred tQ [ 3 ]. The definition of 

strict deterministic grsm~rs can be found in section 8.2. 

The CFG with productions S + Ab I Bc, A + a and B + ad is not a simple chain 

grammar. By constructing the ~irth-Weber precedence matri~ one can easily verify 

that there are no precedence conflicts. Since the gra~nar is also uniquely invertible 

(i.e., if A ÷ u and B ÷ e are in P, then A = B) it follows that the grammar is simple 

precedence. On the other hand, the CFG with only productions S ÷ aA I bB, A ÷ dc, 

B + dC and C ÷ c is a simple chain grammar and not a simple precedence gr~r. 

COROLLARY 11.4. The classes of simple chain grammars and of (g-free) simple prece- 

dence grammars are incomparabl~. 

The CFG with only productions S + cb I Ab and A + a is a simple chain grammar 

but not a strict deterministic grammar. The CFG with only productions S ÷ Ab I Be, 

A + ad and B + ae is a strict deterministic granmmr hut not a simple chain grammar. 

COROLLARY 11.5. The classes of simple chain gra--,ars and of (e-free) strict deter- 

ministic grammars are incomparable. 

There is a nontri~ial hierarchy of strict deterministic grammars and their 

languages according to their degree (el. Harrison and Havel [59]). The simplest class 

in this hierarchy is the class of strict deterministic grammars of degree I. The 

following definition is a reformulation of Theorem 3.1 of [6]]. 

DEFINITION 1 1.5. A CFG G = (N,E,P,S) is said to he strict deterministic of degree 

one if P is prefix-free and if A ÷ cave0 and A ÷ aY~ are in P (hence, ~,~0 and ~ in V 

and X and Y in V), with X # Y, then X and Y are in Y. 

LEMMA 1 ].6. Any g-free strict deterministic grammar of degree 1 is a simple chain 

gra,mar. 

Proof. Trivial. 

if 

and 

In order to prove that every simple chain grammar is LR(O) we have to show that 

S R aAw ~ aSw = yw 
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then A÷ $ = A ~ + ~ and l~I = i a ' ~ ' l .  

N o t i c e  t h a t  S ~ S i s  n o t  p o s s i b l e  i n  a s i m p l e  c h a i n  grammar.  

One p o s s i b l e  way to  do t h i s  i s  t o  a s s ~ a e  t h a t  t h e r e  e x i s t s  a s i m p l e  c h a i n  

grammar w h i c h  i s  n o t  LR(O) and t o  do a t e d i o u s  c a s e  a n a l y s i s  b a s e d  on t h e  f o l l o w i n g  

four situations: 

(i) l s ' ]  ~ I~I 

(ii) lal < I~'{ < I~81 

(iii) J 'I > and 

(iv) = 

Each of these cases can actually occur for a non-LR(0) grammar and it can be 

shown that for each of these cases the assumption that G is not LR(0) leads to a 

contradiction with G being a simple chain grammar. 

The following proof, however, which was suggested by a referee of [122], uses 

the construction of the state sets of the usual LR(0) parsing algorithm. It is shown 

that if a CFG G is a simple chain gr~mm~r, then these state sets do not contain in- 

consistent items. Therefore we may conclude that G is LR(O). 

We recall a few definitions. However, to avoid too much repetition of terminol- 

ogy we assume that the reader is familiar with the construction of the LR(0) parsing 

algorithm ([3,58]). 

DEFINITION 11.7. Suppose that S _ ~0~kw ~ ~8w in a CFG G. String y is a viable prefix 

of G if y is a prefix of eS. We say that [A + ~1.$2] is an LR(O) item for G if 

A ÷ 81~2 is a production in P. LR(0) item [A ÷ ~i.~2 ] is valid for ~81 (a viable 

prefix of G) if there is a derivation S ~ ~Aw ~o81~2w. 

For any viable prefix y of G define V(y) to be the set of LR(0) items valid for 

y. Define 

S = {~ i ~ = V(y) for some viable prefix y of G}, 

the collection of LR(O) state sets for G. 

In the construction of S each ~ e S is obtained as the union of a basis set and 

a set which is achieved by taking the 'closure' of this basis set. We denote the 

basis set of a set o e S by basis(u). 

THEOREM i|.5~ Every simple chain grammar is an LR(0) grammar. 

Proof. Let S be the collection of state sets for simple chain grammar G = (N,Z,P,S). 

First we have the following claim. 
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CLAIM. Let G e S. If [A÷ el.e2] and [B ÷ 81.82 ] are any two distinct items in basis 

(G), then A = B and el = 81" 

V ~ Proof of the Claim. By definition of S there exists y ~ such that G = V(T ). It 

is convenient to prove the claim by induction on ITI. 

Basis. IYI = 0. By convention (see Algorithm 5.8 [ 3]) basis(V(e)) = 

= {[S + .~] I S + e is in P} for which the claim is easily verified. Notice that 

for every state set G other than V(E) an item [A ÷ ~i.~2] can only be in basis(~) 

if ~| # e. 

Induction. Consider a string 7X where y e V* and X ~ V. Assume that the claim 

is true for G = V(T); we will show that it is likewise true for o' = V(yX). Let 

[A + eiX.~ 2] and [B + 8|X.82] be any two items in basis(~'). Then both [A + @I.X~2] 

and [B ÷ 81.X~ ~ are in G. There are now several eases: 

(1) 

( i f )  

(in) 

(iv) 

~I # e # 81: By the induction hypothesis A = B and ~| = 8], as desired since 

both items belong to basis(o). 

el # e and 81 = e: In this case [B ÷ .X82] is obtained from some item 

TI-Y¥ 2 ] , so some ~ £ V* [C ÷ e basis(g) that Y~X~ for and because of the 

induction hypothesis, C = A and Y1 = ~]" Hence we have productions A ÷ ~iYY2 

and A ÷ ~iXe2 . If X = Y then X is left recursive, which is not possible in 

a simple chain granmmr. If X # Y then, since FIRST(X) a FIRST(Y) # ~, we obtain 

a contradiction with the definition of a simple chain grapher. 

~! = E and 8] # E: This case is symmetric to (II). 

el = e = ~|: Then either A = B = S, hence the claim is satisfied, or [A+ .X~ 2] 

and [B ÷ .X82] are obtained from items [C ÷ TI.UY2] and [C ÷ Yl.U'y'~, respec- 

tively, in basis(o). If U = U' then either U is not chain-independent, which 

is impossible, or A = B, as desired. If U # U' then, since FIRST(U) 0 FIRST(U') 

# @, G is not a simple chain grammar. 

This concludes the proof of the claim. 

Now suppose that G is not LR(0). Then there is some LR(0) state set G of G which 

contains two ore more inconsistent items. There are two cases (see Definition 2.4 

in Geller and Harrison [41]) 

(i) A shift~reduce conflict: There are two items [A + ~l.a~2] and [B + ~.] in G, 

V* where ei,~,8 ~ and a ~ Z. Since 8 = £ we have that [B ÷ 8~ is in basis(o). 

There are two cases: 

(a) el # e: It follows that ~I = 8, A = B and P is not prefix-free which is impos- 

sible. 
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(b) ~I = g: In this case there exists a production B + 8X~ in P, where X~ E NV* 

and X ~A~ for ~ome ~ e V*, and also in this case we have that P is not prefix- 

free, which is impossible° 

~i) A reduce~reduce conflict: There are two items [A + ~.] and [B ÷ 8.] in ~. 

Since G is g-free ~ # e # 8 and both items belong to basis(~). It follows 

from the claim that A = B and ~ = 8, so that, in fact, no conflict exists in 

It follows that every simple chain grammar is an LR(0) gr~mm~r. 

Observe that, since we are only concerned with g-free grammars, the combination 

of Lemma 11.1 and Theorem |1.5 does not lead to the incorrect result that any LL(|) 

grammar (not necessarily g-free) is an LR(0) grammar. Clearly, every simple deter- 

ministic grammar is a simple chain grammar. The class of simple chain grammars is 

properly included in the LR(O) grammmrs since the CFG with only productions S ÷ aB, 

S + eB, B ÷ cD, B ÷ cF, D ÷ b and F ÷ b is LR(0) but it is not a simple chain grammar. 

In Reichardt [139] and in Schlichtiger [147,148] (cf. also Chapter 12) simple 

chain grammars are compared with some other classes of grammars. 

11.3 .  SIMPLE CHAIN LANGUAGES 

In this section we show that the class of simple chain languages coincides with 

the class of simple deterministic languages. First we show that every simple chain 

grammar can be transformed to an equivalent simple chain grammar in Greibach normal 

form. A transformation which is similar to ours can be found in [42] where it is 

shown that each strict deterministic grammar can be transformed to a strict deter- 

ministic grammar in GNF. 

OBSERVATION 11.I. Let G = (N,Z,P,S) be a simple chain grammar. Let A ~ N and 

a ~ FIRST(A). The chain from A to a in CH(A) is uniquely determined and therefore 

also its length. Denote this lengthby nA(a ). Hence, if A as for some ~ ~ V , then 

n >_ nA(a). 

THEOREM ll.6. Bach simple chain grammar can be transformed to a weakly equivalent 

simple chain grammar in GNF. 

Proof. Let G = (N,Z,P,S) be a simple chain grammar. Let P' = {A ~ as I A c N,~ c V* 
n ~ 

and a ~ Z such that A ~ as with n' = nA(a)} and let G' = (N,Z,P',S). In this way 

G' is well-defined, G' has no g-productions and moreover, G' is in quasi-GNF. CFG G ~ 

can be reduced in the usual way. 
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CLAIM I. G' is a simple chain grammar. 

Proof of Claim 1. Consider Definition II.I. Assize P' is not prefix-free, so that 

there exist productions A + ~ and A ÷ ~ in P' with 8 # c. Then, by definition of 

P' there exist derivations A~ e and A@ ~B in G with 8 # ~. Since G is a simple 

chain grammar it follows from Theorem II.I that this is not possible. Thus P' is 

prefix-free. 

Now assume there exist A c N, ~,~,@ ~ V* and X,Y c V with X # Y such that 

A ÷ ~Y<0 and A+ ~Y@ are in P'. Let e # £ and assume 1 : ~ = a. Then both derivations 

in G can be written as 

and 

n T 

A T ~X~ 

n v 

A t ~Y~ 

where n' = hA(a). 

Then, by Theorem 11.3, X @ Y. If ~ = e, then X and Y are in Z, X # Y and therefore 

also in this case X ~ Y. This completes the proof of Claim I. 

It is not difficult to see that transforming G' in quasi-GNF to a CFG in GNF 

by replacing terminals inside the righthand sides of the productions in the usual 

way does not disturb the simple chain properties of G'. Therefore we may assume that 

G' is in GNF. 

CLAIM 2. L(G') = L(G). 

Proof of Claim 2. It is clear that for any w £ E*, S ~ w in G' implies S~ w in G. 

For the converse, consider A ~ w in G. If n = I, then trivially, also A ~ w in G'o 

Suppose that A ~ w in G implies A ~ w in G' be true for all derivations of 
! 

length less than n in G. Factor the derivation A ~ w in G to get A ~ as, where 

n '= nA(a ) and it is assumed that I : w = a. By construction, A ÷ as is in P'. Let 

= AIA2...A ~ N*. 
m 

assume ~ ~ N*. Each 

and w = awlwp...w . 

G' .  The c o m b i n a t i o n  

Therefore, S ~ w in 

Notice that according to the remark following Claim I we may 

derives a subword of w, that is~ A i ~ ~ w i in G for I ~ i A i m 

Since these derivations are of length less than n, A. ~ w. in 

of A + aAIA2...A m is in P' and A i ~ w i xn G' gives A ~ w in G'. 

G implies S ~ w in G'. It follows that L(G') = L(G). 0 

With these two claims the proof of Theorem 11.6 is complete. 0 

Grammar G' which is now in GNF is not necessarily a simple deterministic grammar. 
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The second transformation of this section will produce a simple deterministic grammar 

from a simple chain grmmnar in GNF. In section 11.5 we will give an immediate trans- 

formation from a simple chain grammar to a simple deterministic grammar. There we 

will also discuss the cover properties of these transformations. 

The transformation which we are now to present is in fact a simple process of 

left factoring. That is, we are going to replace productions A ÷ ~8 and A ÷ ~y with 

# ~ and 8 # y by productions A ÷ ~H, H ÷ 8 and H + y. However, since we want to 

preserve the Greibach normal form we need to adapt the process of left factoring. 

• V* NOTATION 11.1 Let G = (N,E,P,S) be a CFG. For any A ¢ N and ~ ¢ , 

QA ~ = {A ÷ ~0 ¢ =~ i %0 ~ V*}. 

V ~ Let A ÷ ~| and A + ~2 be two productions. The longest string ~ ¢ such that 

is both a prefix of ~I and ~2 is called the congnon prefix of A + el and A ÷ ~2" 

Similarly, we can define the cormnon prefix of a set of productions• 

ALGORITHM II.I. 

Input. A simple chain granmar G = (N,E,P,S) in GNF. 

Output. A weakly equivalent simple deterministic granmmr G' = (N',E,P',S). 

Method. Initially, set N' = N and P' = ~. Define R = [(A,a) ] A + as e P for some 

E V*}. The elements of R are numbered in an arbitrary way. Starting with the first 
a a 

element we shal consider for each element (A,a) ¢ R the set QA " The set Q~ is not 

fixed but will change in the course of the computation. Initially, 

QA = {A-~ aq) ~ P ! %0 ¢ N*}. 

Step I. 
a p 

(i) Let ]Q = I. Then add the only production of QA to . If all the elements of 

R have been considered go to Step 2. Otherwise, start again with the next ele- 

ment of R. 

(ii) Let IQ~] > I. Consider ~ 6 {a}N'* such that ~ satisfies: 

a. ~ is a common prefix of at least two productions in Q~, and 
a 

b. there are no productions A + a%0 and A + a~ with %0 # ~ in QA with common pre- 

fix a' such that G is a proper prefix of a'. 

If I = n) then denote the elements of QA by (A ÷ ~Xi%0 i I 1 ~ i -< n}. Replace 

in QA the subset ~A by the only production A ÷ ~[A~,XI%01 ..... Xn%0n] , where 

[A~,XI~01,.~. ,Xn%0 n] is a newly introduced hOt, terminal which is added to N'. 

Repeat Step I. 
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Step 2. 

For each newly introduced nonterminal of the form Q = [B~,YI~I, .... ,Ym~m ] add to P', 

for each i, I ~ i ~ m, the set of productions {Q + Y~i I Yi + Y ¢ P'}" 

Step 3. 

Remove the useless symbols. 

Note. In general, string a in Step I (ii) is not uniquely determined. If there 

is more than one such ~ then it does not matter which one is taken first. Notice, 

that since G is in GNF the strings Yi~i, I E i ~ m, are in N'*. A newly introduced 

nonterminal symbol [B~,YI~I, .... ,Y~m ] is associated by B~ with the productions 
o 

in Q~ from which it is obtained. 

EXAMPLE 11.4. 

Consider the simple chain grammar in GNF with the following list of productions. 

S ÷ cA A ÷ aBD A + aAB D ÷ e 

A ÷ aBCBD A ÷ aBA A +  f B + b 

A ~ aBCBA A ~ aACA D + d C + c 

The subsequent results of Step 1 on Q~ can be given in the following order: 

I. For ~ = aBCB. A ÷ aBCBD and A + aBCBA are replaced by 

A + aBCBQo, where QO = [AaBCB,D,A]. 

2. For ~ = aB. A + aBCBQ0 , A + aBD and A ÷ aBA are replaced by 

A + aBQI, where Q1 = [AaB'CBQo'D'A]" 

3. For ~ = aA. A ÷ aACA and A ÷ aAB are replaced by A + aAQ2, 

where Q2 = [AaA,CA,B]. 

4. For ~ = a (the common prefix of Q~). A ÷ aAQ2 and A ÷ aBQI are replaced by 

A ÷ aQ3 , where Q3 = [Aa'AQ2'BQI]" 

The result of Step 2 for Q0,QI,Q 2 and Q3 are: 

QO ÷ d Q1 ÷ CBQo Q1 ÷ f 

QO + e Qt ÷ d Q2 + cA 

QO ÷ aQ3 Q1 + e Q2 ÷ b 

Q0 ÷ f QI + aQ3 Q3 ÷ aQ3Q2 

Q3 + fQ2 

Q3 ÷ bQl 

THEOREM 1 1.7. Each simple chain gr~mm~r can be transformed to a weakly equivalent 

simple deterministic granm~r. 
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Proof. By Theorem ll.6 we may assume that G = (N,Z,P,S) is a simple chain grammar 

in GNF. Let G' = (NT,E,P',S) be the CFG which is obtained by Algorithm 11.]. The 

proof that G~ is a simple deterministic grammar which is weakly equivalent to G is 

divided into three claims. 

CLAIM I. Let Q = [~k~,Xi~ l ..... ,Xn~ n] be a newly introduced nonterminal symbol. Each 

Xi, I ~ i s n, is in N and if i # j, where ! s i, j ~ n, then X i # Xj and X i @ Xj. 

Proof of Claim I. Observe that the prefix ~ in step I (ii) is always in ZN* (that 

is, it does not contain newly introduced nonterminals). Moreover, since all the 
a 

productions in QA are considered at the same time we can not have productions 

A ÷ ~Q'~ for some newly introduced Q' and ~ c N'* and A + ~B~ for some B ~ N and 

~ N'*. Thus, each Xi~ i which is mentioned in Q has X i e N. Moreover, X i # Xj since 

otherwise the ~ which was chosen was not the longest applicable prefix as is demand- 

ed in part b of Step I (ii). Since X i, X. e N there exist productions A ÷ eXi~ and 
J 

A + ~Xj~ in P, for some ~ and ~ in V*. For i # j we have X i # Xj and since P is the 

set of productions for simple chain grammar G, we have X. ~ X.. 0 
I j 

CLAIM 2. G' is a simple deterministic grammar. 

Proof of Claim 2o We have to show that for each A e N' and a e Z there is at most 

one production A ÷ a~ in pV for some ~ ~ V'* 

A set Q~, where A c N and a ~ Z, is reduced to only one production whose right- 

hand side has as prefix the common prefix of Q~. Therefore, after step ] has been 

performed, for each A ~ N and a E Z there is at most one production A + as in P' 

for some ~ ~ N'*. 

In step 2 productions are introduced for the new nonterminals of the form 

Q = [A~,XI~ l ..... Xn~n]. Since, by Claim l, X i ~ Xj for i # j, we can not have X i ÷ ay 
V W 

and X. + aT' for some a e Z and ~,7' e V . Therefore, for any newly introduced Q 
3 

and for any a ~ Z there is also at most one production in Q~. This concludes the 

proof that G' is simple deterministic. 

CLAIM 3. L(G ~) = L(G). 

Proof of Claim 3. In Figure l|.l the transformation is illustrated. Only local trans- 

formations as presented in this figure are performed. Therefore the transformation 

is language preserving. D 

From Claim 2 and Claim 3 it follows that Theorem |1.7 is proved. 
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A 

X /- . .  
Y 

A 

Q 

Y~ 

Figure ll.l. Transformation to simple deterministic grammars. 

Since each simple deterministic grammar is a simple chain grammar and since it 

is decidable whether two simple deterministic grammars are weakly equivalent we have 

the following corollary. 

~OROLLARY 11.6. 

a. The class of simple chain languages coincides with the class of simple determi- 

nistic languages. 

b. It is decidable whether two simple chain gramars are weakly equivalent. 

! 1.4. A LEFT PART THEOREM FOR SIMPLE CHAIN GRAMMARS 

In this section we consider a global property of the grammatical trees of con- 

text-free grammars. This property can be considered as a restricted version of the 

left part property for the trees of strict deterministic grammars (Harrison and 

Havel [60]). It will be shown that this left part property is satisfied by the set 

of grammatical trees of a left part grammar, a type of context-free grammar which 

is a slight generalization of a simple chain grammar. 

If a context-free grammar is unambiguous, then each terminal string generated 

by this gran~nar has a unique parse tree. Informally, our left part property requires 

that every prefix of such a terminal string has a unique 'partial'tree. This notion 

of 'partial' tree will be specified. 

To present the left part property and to describe grammatical trees we use the 

notations and definitions from Harrison and Havel [60]. For convenience we repeat, 

as far as necessary, some of these notions here. For more details the reader is 

referred to [60]. 

Among others, an intuitive assumption on 'translations' of prefixes of sentences 

which is discussed in Kr~l [82] motivated us to introduce this left part property. 
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The organization of this section is as follows. We continue with some defini- 

tions and notational conventions on trees and granmmtical trees. Then we present 

the left part property and we introduce the left part grammars. We show that a con- 

text-free granmmr is a left part grammar if and only if its set of grammatical trees 

satisfies the left part property. 

PRELIMINARIES ON TREES 

To introduce the concepts of the theory of trees which we need here we will 

frequently refer to the tree T given in Figure |].2. This introduction goes along 

similar lines as in [60]. 

k > 

A C x 1 x 3  

x x 8 

x 9 x |  0 c d 

Figure t | . 2 .  Tree T ~nd its labeling. 

Tree T has nodes (Xo,X 1 ...... x;0 ) and it has a root (Xo). The relation of ira~e- 

diate descendancy is denoted by [ (for example x 5 is an irmnediate descendant of x2, 

x2[xb). The transitive closure of [ is denoted by [+ and the reflexive and transitive 

closure by [*. If x [*y then there is a path from x to y, which is the sequence of 

all nodes, including x and y, between x and y. For example, x0,x2,x6,Xlo is the path 

in T from x 0 to xl0. A leaf is a node x in [ for which there is no y in T such that 

x[y; in Figure 11.2 the leaves are Xd,X5,Xg,Xl0,X7,Xs, given here in the left-right 

order, which is iBgeneral, for a tree T with m leaves, denoted by Y|'Y2 .... 'Ym" We 

introduce the binary relation [ as follows; x[y if and only if: 

(i) x and y are not on the s~e path and 

(ii) for some lea~es yi,Yi+l in the left-right order we have x [* Yi and y I* Yi+|" 

Thus, for instance, x 4 tx 2 and, by introducing transitive and transitive-reflexive 

closures of [ in an obvious way, x 4 [* x 8. 

Two trees T, T T are structurally isomorphic, T ~ T', if and only if there is a 

bijection g: T ÷ T' such that x [y if and only if g(x) [ g(y) and x [ y if and only 

if g(x) [ g(y), that is~ except for a possible re/abeling the trees are identical. 
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GRAMMATICAL TREES 

Let T be a tree. Then every node x of T has a label %(x). For instance, in 

Figure ll.2 x 3 has label C. We will be concerned with gr~r~m~tical trees, therefore 

%(x) E V, where V = N u E for a given CFG G = (N,E,P,S). The root label of tree T 

is denoted by rt(T) (in Figure ll.2 rt(T) = S) and the frontier of tree T is the 

concatenation of the labels of the leaves (in the left-right order) of T, notation: 

fr(T). In Figure ll.2 fr(T) = abcdcd. We write T = T' when T ~ T' and T and T' will 

be treated as identical. The productions in P are elementary subtrees (see Figure 

]1.3 for a production A + XIX2...Xn). 

> 

x I x 2 x X l X 2 X n n 

Figure ]1.3. 2~n elementary subtree. 

Formally, T is said to be a grammatical tree for a CFG G = (N,E,P,S) iff 

(i) for every elementary subtree T' of T there exists a production in P corresponding 

to T', and 

(ii) fr(T) £ Z*. 

The set of grammatical trees for a CFG G is denoted by JG" Define JG(A) = 

= {T ~ JG I rt(T) = A} and trees in JG(S) are the parse trees of G (cf.Definition 1.5). 

Having introduced the necessary preliminaries we now can turn our attention to 

the left part property. 

Let G = (N,E,P,S) be a CFG. Informally, the left part property says that for 

each A e N and for each prefix u of w = uv e L(A), u uniquely determines the "left 

part" (up to the first symbol of v) of the grammatical tree which corresponds to 

the derivation of w from A. Clearly such a property can only be satisfied (take for 

instance v = g and A = S) by gr~tical trees for which the CFG is unambiguous. The 

following definition of left part is from Harrison and Havel [ 60]. 

DEFINITION II.8. Let T be a grammatical tree of some gramsmr G. For any n e 0 define 

(n)T, the left n-part of T(or the left part when n is understood) as follows. Let 

(x., .... ,x ) be the sequence of all leaves in T (from the left to the right). Then 
m > (n) 

(n~T = {x e T ] x [* [* x n} if n ~ m and (n)T = T if n m. T is considered to 

be a tree under the same relations [, [ and the same labeling ~ as T. 
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For instance, in Figure ll~2 (3)T is the subtree with the nodes Xo,Xl,Xl,X4,X5, 

x 6 and x 9. In the following definition we introduce our simple left part property 

for a set of grammatical trees. 

DEFINITION II.9. Let J ~ JG' for some CFG G. J is said to satisfy the left part 

property if for any n > 0 and T,T' e J, if rt(T) = rt(T') and (n)fr(T) = (n)fr(T') 

then (n)T = (n)T'. 

This definition is illustrated in Figure ll.4 where two trees T and T' in a 

set J ~ J_ are given with their labeling. In this figure we have (2)T = (2)/,. How- 

ever, sin~e (3)T # (3)T' and (3)fr(T) = (3)fr(T') we ~y conclude that J does not 

satisfy the left part property. Clearly, not for every CFG G we have that JG satis- 

fies the left part property. We introduce the left part grammars, a modest general- 

ization of simple chain grammars, defined in such a way that CFG G is a left part 

grammar if and only if JG satisfies the left part property. 

Len G = (N,Z,P,S) be a CFG. Set P is said to be prefix(l) if for each pair 

V* A + ~, A + BY in P, with y # g and for a ~ and w ~ E*, if S ~ wAa, then 

FIRST(y) n FIRST(a) = #. To avoid an empty a we add, if necessary, the production 

S' ÷ S± to P, where S' is a new start symbol and ± is an endmarker, ± ~ V. 

DEFINITION II.!0_o An s-free CFG G = (N,E,P,S) is said to be a left part grammar if 

P is prefix(1) and FIRST(X) n FIRST(Y) = @ for each pair A + aXe0, A -~ aYk0 in P, with 

x#Y. 

The following corollary is now self-evident (cf. Corollary 11.2). 

A A 

B f g 

e a e b 

Figure 11.4. Two trees, (3)T ~ (3)T'. 

COROLLARY ii.7. A CFG G = (N,Z,P,S) is a left part grammar if and only if 

(i) P is prefix(1) 

(ii) V is chain-independent 

(iii) X ~ Y for each pair A ~ c~X~, A + aY~ in P with X # Y and a # ~. 
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EXAMPLE 11.5. 

Grammar G with only productions S + Ac and A ÷ a Iab is a left part grammar. G is 

not a simple chain grammar. 

The class of simple deterministic languages is properly included in the class 

of left part languages. Consider CFG G with productions 

S ÷ aSa ] aA 

A÷bd [ b [ c 

Obviously, G is a left part grammar. However the language generated by G is 

not a simple deterministic language, since L(G) can not be generated by an g-free 

LL(1) granm~ar (see Aho and Ullman [3]). Since each simple deterministic grammar is 

an g-free LL(1) grammar, the proper inclusion follows. 

From Definition 1 1 . 9  and Definition 1 1 . 1 0  we now can achieve the main result 

of this section. 

THEOREM 11.8. Let G = (N,E,P,S) be a CFG. The set JG of the grammatical trees of 

G satisfies the left part property if and only if G is a left part grammar. 

Proof. (The 'if'-direetion). Let G be a left part grammar. To prove: JG satisfies 

the left part property. Assume JG does not satisfy the left part property. Hence 

there exist n > 0 and trees T. and T 2 in Jc with rt(T1) = rt(T?), (n)fr(T1) = 

= (n)fr(T2) and (n)T 1 ~ (n)T21 Suppose n =-I, then (lIT 1 # (1)T 2 and (1)fr(Tl) = 

= (1)fr(T2) hence, since rt(rl) = rt(T2) we must conclude that V is not chain-inde- 

pendent. Contradiction. 

Now consider the case n > I. For T 1 and T 2 we can choose n such that 

(n-l)T 1 = (n-l)T 2 and (n)T 1 ~ (n)T 2. Let T 1 be labeled by ~I and T 2 ~ T~. The re- 

striction of ~I to (n-l)T 1 which is equal to t~e restriction of ~2 to (n-lYT 2 is 

denoted by %. We use the same convention for the relations [I' [I on T 1 and [2' L2 

on T^. Let the leaves of (n)T 1 have a left-right order Xl,X2,... Since 
~X n" 

(n)fr(T,) = (n)fr(T~) we have the same order and labels for the leaves of (n)T 2. 

Since (n-l)T I = (n-$)T2, the path in T 1 from the root of T I to Xn_ 1 is the same 

(including the labeling) as the path in T 2 from the root of T 2 to Xn_ I. Let this 

path be p ~ (yO,Yl, .... ym ), where YO is the root, Ym = Xn-land Yo[YI["'[Ym" Since 

(n)T 1 ~ In)T 2 there exist nodes Yi and yj on p (0 ~ i, j < m) such that 

a. Yi [I Xn in T I and not Yi+l [I Xn in T I 

b. yj [2 Xn in T 2 and not Yj+I [2 Xn in T 2. 
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First we show that i = j. Suppose i > j (the case i < j is sy~mnetric). See also 

Figure 11.5. Since T] and T 2 are grarmnatical trees and since we have no e-productions 

there exist X(yi) + ~%(Yi+l ) and %(yi) + ~%(Yi+l)~ in P, for some ~ • V + and 8 e ~*. 

Notice that ~ # ~ since %l(Xn) • FIRST(~). 

Tree T l corresponds with a derivation 
* ( n - l )  * Z* 

rt(Tl) ~ wi(Yi)~ i ~ wSl(yi+i)~0C~l ~ fr(Tl)~ 1 ~ fr(Tl) , for some w • and 

~l • V*. 

Tree T 2 corresponds with a derivation 

w (y i) so e and V*. 

Since Xi(Xn) = %2(Xn) we have that FIRST(~ 2) n FIRST(~) # ~. Since the CFG is 

reduced and since rt(Tl) = rt(T2) it immediately follows that if P contains 

X(yi) + S%(yi+l) and X(yi) + BX(Yi+l)~ 

then P is not prefix(1). Therefore we must conclude that i = j. 

rt(T I ) rt(T 2) 

x 1 Xn- I Xn x I Xn- 1 x n 

Figure 11.5. Trees T 1 and T 2. 

We proceed with i. There are corresponding nodes, z; in T I and z 2 in T2, which 

will again be treated as identical, hence we omit the indexes, such that Yi []z, 

Yi [2 z' Yi+! Ll z' Yi+l L2 z and z [l Xn and z [2 Xn" Left part (n)T. is obtained by 

adding in an obvious way the path from Yi to x n to (n-l)T I. Left part (n)T 2 is 

obtained in an analogous way. Hence there are paths Yi[iz[l...[IXn and Yi[2z[2...[2Xn . 

)T 2 and # these labeled paths are different. Since Since  (n -1)T!  = (n-1 (n)T1 (n)T2 

T l and T 2 are grammatical trees there exist productions X(yi) + ~X(Yi+l)Xl(Z)~l and 

l(yi) ÷ BX(Yi+l)12(z)~2, for some ~,~1 and ~2 in V*. If Xl(z) = %2(z2) then V is 

not chain-independent. If %l(Z) # 12(z) then the necessary condition that %](z) # X2(z) 

is not satisfied. We must conclude that also the case n > I leads to a contradiction. 

This concludes the 'if'-part of the proof. 
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(The 'only if'-direction). Let G be a CFG such that JG satisfies the left part 

property. Assume that G is not a left part grammar, then, according to Corollary 

11.7 there are three possibilities: 

(i) V is not chain-independent. Then there is A ~ N and ~I' ~2 ~ CH(A), ~I # ~2 

such that l(~l) = £(~2 ). Then we can construct trees T I and T 2 in JG with 

rt(T1) = rt(T2) = A and where the first leaf of each of the trees has label 

l(~l). Let the path (and the labeling) from the root of T I to the first leaf 

of T l be according to ~I and the path (and the labeling) from the root of T 2 

to the first leaf of T 2 be according to ~2' then (1)fr(T1) = (|)fr(T 2) and 

(1)T 1 # (I)T 2. Contradiction. 

(ii) Suppose there exist productions A ÷ ~X~ and A ÷ ~Y~ in P, X # Y, ~ # e and 

X and Y are not mutually chain-independent. Let w e L(~), where Iwl = n - I. 

Let ~ c CH(X), no c CH(Y) and I(~i) = £(~o)" Obviously there exist trees 

T| and T 9 in Jg wlth rt(T1) = rt(T2) = A, ~n-1)fr(T1) = (n-1)fr(T2) = w and 

(n-l)T. ~ (n-l~T^. By adding paths corresponding to the chains ~I and 72 to 

(n-1)T I and to (~-I)T? respectively we obtain a situation such that (n)fr(T1) = 

= (n)fr(T2) and (n)Tl'# (n)T 2. Contradiction. " 

(iii) Suppose P is not prefix(1). Then there exist productions A ÷ ~ and A ÷ ~y, 

E* V* y # E and there is a E E , w ~ and ~ c such that S ~ wA~ and 

a e FIRST(y) N FIRST(~). Also in this case we can construct trees T I and T 2 

in JG' rt(Tl) = rt(T2) = S. Let w I e e(~) and let lww, l be n - I. Then we con- 

struct T I and T~ such that (n)fr(T1) = (n)fr(T 2) = wwla and where (n)T I # (n)T2, 

since (n)T I is ;brained from (n-l)T I by adding the (rightmost~ path from the 

node corresponding to (1)~ to the nth leaf of TI, and (n)T 2 is obtained by 

adding to (n-l)T I (= (n~l)T 2) the path from the node corresponding ~o A to the 

(n)T, (n)T2 nth leaf of T 2. Since i # we have again a contradiction with the left 

part property. This concludes the 'only if' part of the proof and therefore 

the proof of Theorem 11.8 is now complete. D 

We may conclude that the grammatical trees of a simple chain grammar satisfy 

the left part property. 

In Harrison and Havel [60] the left part property for strict deterministic 

grammars is used to prove relationships between strut deterministic grammars and 

other classes of grammars. Moreover, the property is used to develop an iteration 

theorem for deterministic languages. In Beatty [10,11] a left part property of 

LL(k) grammars is considered and iteration theorems for LL(k) languages are obtained. 
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11.5. LEFT PART PARSING AND COVERING OF SIMPLE CHAIN GRAMMARS 

In section ;1.3 we have seen that each simple chain grammar can be transformed 

to a weakly equivalent simple deterministic grammar. Unfortunately, this transfor- 

mation can not be done in such a way that always a left cover or a left-to-right 

cover can be defined. This will be shown in the present section. 

With the help of the simple left part property we will then show that a positive 

cover result can be obtained if we use the left part parse. The method which will 

be used to show this does not differ from the methods use in Chapter 7 and Chapter 

9. That is, we construct a (left part) parser for a simple chain grammar and then 

convert it into a (simple deterministic) grammar. 

The first algorithm of this section, however, shows how right parsing can be 

done for simple chain grammars. From the proof of Theorem ]1.5 it will already be 

clear that a simplified version of the LR(0) parsing method can be used. Moreover, 

it is possible to modify I the construction of the parsing-graphs for production prefix 

gra~ars (Geller, Graham and Harrison [38]) so that they are suitable for a parsing 

method for simple chain grammars. We will confine ourselves to the presentation of 

a DPDT which acts as a right parser for the simple chain grammar from which it is 

constructed. 

ALGORITHM 11.2. 

Input. A simple chain grammar G = (N,E,P,S). 

Output. A DPDT R = (Q,E,F,A,~,q0,Z,F) which is a right parser for G. 

Method. Define Q = {q}, qo = q' F = {q}, A = AG~ F = {[A~] I A + e8 in P, A e N 

and ~,8 e V*}, Z = [S] and the function 6 is defined in the following way: 

(i) For each i.A ÷ ~ in P~ define ~(q,s,[A~]) = (q,e,i). 

(ii) For any [A~] £ F, with A + ~8 in P and ~ # e, and any chain XoXI...X n 

define: 

(a) ~(q,Xn~[A~]) = (q,[A~Xo],e) if X 0 = & ~ E and otherwise 

(b) 6(q,X,[A@]) = (q,[Xn_iX n] .... [XoXI][A~/(O],£). 

This concludes Algorithm 11.2. D 

Define a simple SDTS T on simple chain grammar G = (N,E,P,S) such that if 

i.A + ~ is in P, then A ÷ ~, hz(~i) is a rule of T. We have to show that Algorithm 

11.2 yields a right parser for G, that is, it should be proved that T(R) = T(T) = rG" 

This proof can be based on the following two claims. Since the proofs of the claims 

and the proof of T(R) = ~(T) hardly differ from the proofs which are used for a 

more interesting result stated in Corollary 11o7, we confine ourselves to the presen- 

tation of the two claims. 

CH(I:~), 
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CLAIM I. Let A + ~X0~ be in P and let XoX]...Xn_IY ~ N*V be a prefix of a chain in 

CH(X0). Then 

(Y,hz(Y)) ~ (Y,~) 

~+ 
for some m z 0, y ~ and z E A*, implies 

(q,y,[A~],e) ~ (q,~,[ Xn_IY]...[XoX~][A~Xo]:). 

CLAIM 2. If (q,w,[A~X],C) l ~ (q,e,e,~), then 

(A,A) ~ (~Xw,hE(~X~)). 

In the preceding chapters pushdown transducers (PDT) and deterministic pushdown 

transducers (DPDT) have been used. The class of simple deterministic languages is 

exactly the class of languages which can be accepted with a simple deterministic 

pushdown automaton. Here we immediately define the notion of a simple deterministic 

pushdown transducer (simple DPDT). 

DEFINITION ll.ll. A simple DPDT is a five-tuple R = (E,A,F,6,S), where Z is the 

input alphabet, A is the output alphabet, F is the alphabet of pushdown list symbols, 

is a mapping from Z x F to F* x A* and S e r is the initial pushdown list symbol. 

A configuration of a simple DPDT is a triple (w,~,y) in Z* x F* x A*, where w 

will stand for the unused portion of the input string, ~ represents the contents 

of the pushdown list and y is the output string emitted sofar. The binary relation 

on configurations is defined by 

(aw,Z~,y) ~ (w,y~,yz) 

if and only if ~(a,Z) = (y,z), for some a £ Z, Z E F, y ~ F* and z £ A*. An initial 

configuration of R is of the form (w,S,g) for some w E Z*. 

The transitive and transitive-reflexive closures of~ are denoted by~ and C, 

respectively. The translation defined by a simple DPDT R is the set T(R) = 

= {(w,x) I (w,S,~) ~ (e,E,X)}. If (W,x) E T(R), then x is said to be a translatfon 

of w. We will always have that A = A G for some gran~nar G. 

Observe that if a simple DPDT is converted into a simple SDTS, then the under- 

lying input grammar is simple deterministic. Note also that a simple DPDT can act 

as a left parser for a simple deterministic grammar; define ~(a,A) = (~,i) for each 

production i.A ÷ a@. It will be clear that we do not have to bother about an end- 

marker. 
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DEFINITION i|~2. A simple DPDT R is valid for CFG G and parse relation fG if 

T(R) = fG" 

Instead of fG-parsable grammars (of.Definition 9.2) we can now introduce simple 

fG-parsable grammars for a parse relation fG" We will not repeat definitions and 

theorems of Chapter 9, but observations similar to those in that chapter will be 

used. 

Each simple deterministic grammar is both left parsable and right parsable. 

Now consider the simple chain grammar G with productions: 

S ÷ aEc I aEd 

E ÷ aEb I ab 

Grammar G is not left parsable. This will be clear from the arguments present- 

ed in Chapter 9. It follows that there does not exist a left parsable grammar G' 

such that G'[£/Z]G or G'[~/Z]G (cf.Theorem 9.6). Since any simple deterministic 

grammar is left parsable, we may conclude that a transformation from a simple chain 

grammar G to a simple deterministic grammmr G' will not always satisfy G'[ l/fiG or 

G'[~/£]G. Now consider simple chain gran~mar G with productions: 

I. S÷aB 3. B÷b 

2. B-~aB 4. B+c 

Notice that G is not only a simple chain grammar but also a simple determinis- 

tic gran~nar. However, G is not simple right parsable. That is, there does not exist 

a simple DPDT which is valid for G and ~G" This follows from the following claim. 

CLAIM. There does not exist a valid simple DPDT for G and ~G" 

Proof. If a simple DPDT is valid, then no E-moves can be made. For G we have parse 

relation rG = {(anb'32n-11) I n ~ 1} u {(ane,42n-;]) I n ~ 1}. For any DPDT which 

performs the translation rG the first symbol on the output tape should be 3 or 4, 

depending on whether a string anb or ane is parsed. 

In both cases the DPDT can not emit this first symbol until symbol b or c has 

been read. After a n has been read there is only one symbol left on the input tape 

while an unbounded amount of output symbols must be generated. Therefore c-moves 

are needed. 

W~ may conclude that there does not exist a simple deterministic grammar G' 

such that G'[£/r]G. 

It is possible to construct a left part parser for each simple chain grammar. 



The intuitive idea behind the method is as follows. In Figure 11.6 it is displayed 

how a parse tree T is obtained from partial sub~rees (left parts) by eo=sidering the 

next terminal symbol, reading from left to right. 

S 

/ 
a 

S S 

a B 

a 

S S 

4r 
d d 

Figure 11.6. Tree T and its left parts. 

The left part parse of tree T is 33416. In (1)T and in (2)T there are only 

'partial' productions. In (3)T it can be seen that production 3 is completely dis- 

played. In (4)T the following production 3 and production 4 are complete. Finally, 

in (5)T the productions ! and 6 follow. 

The left parts of a simple chain granmmr are unique. That is, each string u 

which is prefix of a sentence w has exactly one left part. It follows that for simple 

chain grammars parsing can be done in the following way: Suppose the nth terminal 

symbol has been read. Now read the next terminal symbol. The productions which are 

complete in (n+|)T and which are partial in (n)T can now be given as output. Due to 

the uniqueness of the left parts these productions are unique. 

In the following algorithm, which is a modification of Algorithm I}.2, this 

idea is formalized and a left part parser is constructed. The algorithm, which takes 

as input a simple chain grammar G = (N,E,P,S), will use two special alphabets F and 

F' and a homomorphism ~: F'* + P*. 

Define 

and 

F' = {[S]} U {[Ak~] I i.A + ~8 in P for some a # e, k = i if 8 = c and 

k = e, otherwise} 

F = {[S]} U {[A~] I A ÷ ~ is in P for some ~,~ # g}. 

Define homomorphism ~: F'* ÷ F* by defining ~([S]) = [ S] and, for any [Ak~] in F', 

~([A/c~]) = E if [Ak~] in F' - F 
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~([Ak~]) = [ A~], otherwise. 

Notice that for a simple chain grammar P is prefix-free. Therefore~ if 

lAke] ~ F' with k # s, then [A~] is not in r', and conversely. 

ALGORITHM ! 1.3. 

Input. A simple chain grammar G = (N,E,P,S). 

Output. A simple DPDT R = (E,A,F,6,[ S]) which is a left part parser for G. 

Method. Set r is defined as above,[ S]e F, A = A G and 8 is specified below. 

(i) For each XoXI...X n ~ CH(Xo), with X 0 = S, define 

(Xn,[S]) = (g([Xn_IknX n] .... [XIk2X2][X0klX l]),kl...kn). 

(ii) For each A + ~X0~0 in P, ~ # a and XoX].o .X n e CH(X0), define 

6 (Xn,[ An] ) = (~ ([ Xn_ iknX n] .... [ X0kIX ] ][ Ak0~X 0 ] ) ,k0k ! .... kn). 

This concludes Algorithm I 1.3. 

Obviously, R has no e-rules. It is an in~nediate consequence of the definition 

of a simple chain grammar that, for each Xn, l~(Xn,[S]) I = I and for each X n and 

[As], I~(Xn,[A~]) 1 = I. Therefore ~ is well-defined and R is indeed deterministic. 

That R transduces with empty pushdown list follows from the lemma which will be prov- 

ed below. 

Let Q be the simple SDTS which is defined on simple chain grammar G and which 

satisfies T(Q) = Ip G. We have to show ~(R) = T(Q). The proof of the following lenmm 

resembles the proof of Theorem 5.2. 

LEMMA II.7. Lee G, R and Q be as above. Then 

(s,s) * (w,~) 

in Q if and only if 

(w,[ s] ,s)  ~- (~ ,~ ,~ )  

in R. 

Proof. For the ~only if part ~ of the proof the following claim is used. 
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CLAI M I. Let A ÷ ~X0~ be in P and let X0~l...Xn_|Y c N*V be a prefix of a chain in 

CH(X0). Then 

(Y,hE(Y)) ~ (y,~) 

Z + A* for some m a 0, y E and ~ ¢ , implies 

(y,[A~] ,e) ~- (g ,~ ( [Xn_lk 'X] . . . [Akc~X0]) ,k . . .k '~ )  

where X = Y. 
n 

Proof of Claim I. The proof is by induction on m. If m = 0, then y = Y ~ E and 

= e. In this case we have a production A ÷ @X0~ and a chain XoXl...Xn_]y ~ CH(Xo). 

Thus, by construction, 

6(y,[A~]) = (~([Xn_Ik'Y]...[AkaXo]),k...k'). 

Therefore, 

(y,[Ac~],g) b (e ,~( [Xn_lk 'Xn] . . . [Ak~X0]) ,k . . .k '~ )  

with X = Y = y. 
n 

Now assume m > 0 and assume the claim holds for  a l l  m' < m ( induct ion hypothes is ) .  

If j. Y + YIY2...Y is the first production which is used, then we can write q 

(Y,Y) ~ (YIY2...Yq,h~(YIY2...Yq_IJYq)) ~ (ylY2...yq,~l~2...~q_lJ~ q) 

where ylY2...y q = y, ~l~2...~q_lJ~q = ~ and 

m. 

(Yi,h~(Yi)) ~ (yi,~i) 

for Yi e Z*, m i < m and I ~ i ~ q. From the induction hypothesis it follows that we 

may conclude 

(yI,[Ao~],£) ~ ( e ,~ ( [Yk lYl ] [Xn_ lk 'Xn] . . . [Ako /0 ] ) , k . . . k ' k l~ l )  

and 

(yi,[YYl...Yi_l],e) ~ (g,~([YkiYl...Yi_iYi]),kizi) 

for I < i ~ q. Notice that k. = e, I ~ i < q and k = j. We may conclude that 
i q 

(YlY2-.-Yq,[A~],E) ~ (~,~([Xn_ik'Xn]...[Ak0uX0]),k...k'~l..~q_lJ~q) 



202 

which had to be proved. 

Now let A ÷ ~X~0 in P and suppose (X,X) ~ (x,~). It follows from Claim 1 that 

<x,[~],~) ~ (c,~([Ak~X]),k~). 

Notice that Claim l holds for ~ = c and A = S. Let l~ S + ZIZ2o..Z n be the first 

Z*, where production which is used in a derivation of w = zlz2...z n 

(Zi,hl(Zi)) ~ (zi,~ i) 

for I ~ i S n. It follows that 

(S,S) ~ (ZIZ2o.oZn,hZ(Z]Z2...Zn_]IZn)) ~ (w,~|...~n_ll~n) 

implies 

(A,A) ~ (C~LX0,hz(~XkoXo)) ~ (~Xa,hz(c~XkoW')) 

Now let m > I. Let the first step be done with the transition 

~(a,[Ac~X]) = (~([Xn_iknXn]...[XoklXi][Ak0cOCXo]),kokl..°kn) 

with X = a. Then we have 
n 

implies 

(w,[ j,~) r- (~,~,~lO.O~n_llITn), 

which had to be proved for the 'only if part '. Now we show the 'if part' of the proof. 

CLAIM 2. If (w~[A~X],c) I m (g,E,W), then 

(A,A) ~ (c~Xw,hz(~XIT))o 

Z ~ 
Proof of Claim 2. The proof is by induction on m. Write w = ax, a ~ Z and x ~ . 

If m = I, then w = a. In that case we have 

6(a,[A~X]) = (~([Xn_IknXn]...[XoklXI][Ako~XX 0]),kOkl.o.k n) 

with XoXI.0.X n e CH(X 0), X n = a, $([Xn_iknXn]..~ [X0klXI ] [Ak0~XXO ] ) = ~ and ~' = kl o.k n 

is the left part parse associated with X 0 ~ X n, Thus, 

[~,[Ac~X],g) p- (g,e,koIT') 
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(ax,[A0~X],g) k- (x,~([Xn_ikXn]...[X0klXl][Ak0~XX0]),k0kl...kn)~ (c,g,~). 

Obviously, there exist x i ~ Z*, 0 ~ i ~ n, such that x = XnXn_l...X2XlX0 and 

~i ~ A*, 0 ~ i ~ n, such that ~ = k0kl...kn~n~n_l...~2~l~O, with ~i = xi = g if 

k i # E, and such that, for those k i equal to E, 

m. 

(xi,[Xi_lX i],e) I -l (~,g,~i) 

and 

(x0,[A~XX0],E) ~ (e,g,~0). 

Since mo, m i < m, we obtain 

(Xi_l,hz(Xi_1)) ~ (Xixi,kihz(Xi)~ i) 

for 1 ~ i ~ n, and 

(A,A) ~ (~XX0x0,hz(~XX0)~0). 

It follows that 

(A,A) ~ (~Xax,hz(~X)~). 

This concludes the proof of Claim 2. 

Now let (w,[S],g) ~ (g,g,~). The first step, with w = ax can be written as 

(ax,[S],g) ~ (x,~([Xn_iknXn]...[X0klXl][Sk0X0]),k0k|...kn) 

where X n = a and the other notations are as usual. From Claim 2, with an analogous 

partition of x and ~ as in its proof, we obtain 

(S,S) ~ (X0x0,k0hz(X0)~0) 

and for l ~ i ~ n, 

(Xi_l,Xi_l) ~ (Xixi,kihz(Xi)~i) . 

Hence, 

(S,S) ~ (XnXn...XlX0,k0kl...kn~n...~l~0) = (w,~) 

which had to be proved. 
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This concludes the proof of Lema |1.7. 

The following corollary is immediate 

COROLLARY 11.7. Each simple chain gramar G has a simple DPDT R such that T(R) = ipG. 

Corollary 11°7 has the following consequence. 

COROLLARY 11.8. For each simple chain grammar G there exists a simple determinis- 

tic grammar G' such that G'[I/~p]G. 

Recall that not for every CFG G the parse relation ~PG is proper (of.Chapter 2). 

it should be observed that when Algorithm 5.3 is applied to a simple chain gram- 

mar G, then a CFG G' in GNF is obtained such that G'[~/x]G, ~ ~ x ~ ~p. However, 

grammar G' is not necessarily a simple chain grammar and therefore not a simple de- 

terministic grammar. The construction of the simple DPDT should be compared with 

the transformation presented in Algorithm 5.2. This algorithm, when applied to a 

simple chain grarmnar, yields a simple deterministic grammar. 



CHAPTER 12 

TRANSFORMATIONS AND PARSING STRATEGIES: A CONCRETE APPROACH 

12.1.  INTRODUCTION 

In this chapter we study classes of grammars which can be transformed to gram- 

mars with 'better' parsing properties. This notion of 'better' will not be made expli- 

cit. However, in many cases it will just mean that for the new grammars we can make 

use of a simpler parsing technique than is possible for the original grammar. Ob- 

viously, this does not necessarily imply that parsing will be done faster or that 

less space is required. 

In general we have the following point of view. Consider a well-amenable class 

of grammars F O. We are interested in the question which grammars can be transformed 

to grammars belonging to F O. Moreover, the necessary transformations have to be 

language preserving and, preferably, it should be possible to define a cover homomor- 

phism between the grammars. Hence, we are looking for a class of grammars F 1 for 

which we can find covering grammars in F O- 

As a first approach, one can try to find a new parsing method. This will lead 

to a definition of a class of grammars for which this method can be used. Clearly, 

in finding a new method we can use ideas and techniques of existing methods. Maybe 

this new class of grammars can be transformed to the existing class r 0 of well-ame- 

nable grammars. If we can find such a transformation T, then we have 

~(r I) ~ r 0 

Transformation T is an already existing or a newly introduced transformation. In 

both cases we can try to find the largest class F of grammars such that 

• (r) a r 0 

If we can find this class F, then we have the situation that grammar G is in F if and 

only if G can be transformed by T to a grammar in F O. A next step in this process 

could possibly be finding a parsing method for r and, maybe, by taking instead of 

r 0 the class r or r I as starting point, start a new c~cle. 

In a second approach it is not the parsing method but the transformation which 

is the source for the definition of a new class of grammars. Suppose we have a sub- 

class F 0 of the class of context-free grammars. There exist many well-known trans- 

formations of context-free grammars. If T is such a transformation, then we can 
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~ ~ F0, the class try to characterize the class T-~(F0) or, for some subclass I 0 

T-I(F~). Consider for example Hotz [66] where three transformations T|, T 2 and T 3 

to Greibach normal form grammars are studied and where it is observed that these 

transformations may transform non-LR(k) grammars into LR(k) grammars. 

From a theoretical point of view one will always be interested in a precise 

characterization, that is, in the form of a grammatical definition, of r I and T-~(F0 ) 

and in parsing methods for these classes of grammars. Examples will be given in this 

chapter. 

Clearly, if we have a grammatical definition and a transformation, then, in the 

case of a cover, we may say that we have enlarged the 'domain' of a given parsing 

method to the class which satisfies this definition. In a more practical environment 

one is not always interested in such a precise characterization. For example, the 

first phase of a compiler writing system can contain one or more transformations 

which try to make the input grammar suitable for the parser generating part of the 

system. This can be done without knowledge Sf a grammatical definition of the class 

of grammars to which the input grammar belongs. The system recognizes whether these 

transformations succeed, in which case automatically a correct parser will be eonstru~- 

ed , or whether these transformations fail. In the latter case it depends on the 

design philosophy of the system what will happen (of. Chapter 8). 

Not only enlarging the domain of a given parsing method but also other consider- 

ations can lead to transformations of gr~ars. For example, it can be done to improve 

the error-correcting capabilities or one can consider transformations, often performed 

on the parser instead of on the grammar, which improve the time and space require- 

ments of the parsing algorithms. Another example can be found in the description of 

the Yacc system (Johnson [74]), where the user is advised to use, 'wherever possible', 

left recursion in the syntax of a programming language. Instead of this advice it 

would have been possible to include an elimination of right recursion in the system. 

In this final chapter of this monograph we will illustrate the above given re- 

marks with some grammatical definitions and transformations. The results mentioned 

here are a sampling of recent results which have been obtained by various authors. 

Because of this recentness we are not yet able to give a thorough investigation of 

this area. However, the reader will recognize that the approaches which we give here 

are useful. 

The class of grammars which will play the role of F 0 in the forthcoming two 

sections will be the class of LL(k) grammars. A first step to a discussion on LL(k) 

grammar transformations has been given in section |0.| immediately after the con- 

struction of the cover-table for LL(k) grammars. As mentioned in that section, LL(k) 

grammars can be transformed to covering strong LL(k) grammars. 
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In section 12.2 we have an informal discussion on parsing strategies which lead 

to classes of grammars 'between' the LL(k) and LR(k) grammars. The formal approach 

will be given in section 12.3. Most of the results in these sections first appeared 

in Rosenkrantz and Lewis [143], Soisalon-Soininen and Ukkonen [157] and Nijholt and 

Soisalon-Soininen [128]. In section 12.4 we informally introduce an analogous re- 

search area where, instead of LL(k) grammars strict deterministic grammars play 

a central role. 

12.2. FROM LL(k) TO LR(k) GRAMMARS: PARSING STRATEGIES 

Especially from the point of view of parsing the LL(k) gramars constitute a 

very attractive class of context-free gram~nars. For each LL(k) grammar a top-down 

parsing algorithm can be devised which is essentially an one-state deterministic 

pushdown transducer, Efficient implementations of LL-parsing algorithms are known 

(either by a table or by recursive descent), there exist compiler writing systems 

which are based on LL-parsing methods and error-recovery algorithms for LL-grammars 

have been developed. Consult Wood [175] for a general overview and an associated 

bibliography. 

There are many reasons why it is interesting to focus on the gap between LL(k) 

and LR(k) grammars and languages. We mention four of them. 

(i) Parsing methods for LL(k) gram~nars are easy to understand and efficiently im- 

plementable. Therefore it is desirable to find subclasses of the LR(k) grammars 

which can be transformed to the LL(k) grammars. 

(if) It is interesting to study the different parsing properties of LL(k) and LR(k) 

grammars. Every LL(k) grammar is left parsable (cf.Chapter 9) while not every 

LR(k) grammar is left parsable. 

(iii) The definitions and parsing strategies which can be found for classes of gram- 

mars between the LL(k) and LR(k) grammars can, hopefully, be generalized in 

order to find and investigate parsing methods for more general classes of gram- 

mars (cf. section 12.4). 

(iv) It is decidable whether two LL(k) grammars generate the same language. The an- 

swer is unknown for LR(k) (and LR(0)) grammars. Therefore, in order to obtain 

an answer for LR-grammars, it seems to be useful to define more general classes 

of grammars than the LL(k) grammars for which the decidability question can be 

answered affirmatively. 

Many authors have contributed to the research which deals with the 'gap' between 

LL(k) and LR(k) grammars. At this point we want to mention Rosenkrantz and Lewis [143], 
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Brosgol [17], Hammer [56], Rechenberg [138], Cho [19], Demers [24] and Soisa lon-  

Soininen and Ukkonen [157]. 

In order to intuitively characterize the different classes of grammars to be 

defined we give an intuitive idea of their parsing strategies. In Figure 12.1 we 

have displayed a parse tree of a context-free grammar G = (N,Z,P,S). In this tree 

we have described the following situation. There exist terminal strings w, x, y and 

z, a nonterminal A and symbols XI,...,X p 

and there exist derivations 

S ~ wAz, 

X 1 ~ x, 

and 

in V, such that A * XI...X p is a production 

x2..ox p ~ y. 

S 

w x y z 

Figure I2.1. Parsing strategies. 

In the following table we have collected six parsing strategies which are illustrated 

with the help of Figure 12.1o The following abbreviations are used: 

LL : reading from the left using left parses 

PLC: predictive left corner grammars 
t LP : left part grammars 

t In Nijho!t and Soisalon-Soininen [128] the left part grammars were called chain-k 
(or Ch(k)-) grammars. 
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LC : left corner grammars 

PLR: predictive LR-grammars 

LR : reading from the left using right parses 

RECOGNITION RECOGNITION 
GRAMMAR READ of A READ of A ÷ X 1 .... 

LL w k : xyz w k : xyz 

PLC w k : xyz wx k : yz 

LP w k : xyz wxy k : z 

LC wx k : yz wx k : yz 

PLR wx k : yz wxy k : z 

LR wxy k : z wxy k : z 

Table XIII. Parsing strategies. 

With the help of Figure 12.1 the table should be read as follows. Consider the ter- 

minal string wxyz. The production A ÷ XIX2...X p depicted in this parse tree of wxyz 

can be recognized with certainty after scanning 

(i) w and k : xyz if the grammar is LL(k) 

(ii) wx and k : yz if the gran~aar is PLC(k) or LC(k) 

(iii) wxy and k : z if the granm~ar is LP(k), PLR(k) or LR(k). 

However~ if the grammar is PLC(k) or LP(k), then the lefthand side A of the pro- 

duction A + XIX2...X p is already recognized after scanning w and k : xyz. If the 

grammar is PLR(k), then A is recognized after scanning wx and k : yz. 

In Table XIII we have distinguished between the recognition of the lefthand side 

of a production and the recognition of the whole production rule. In Demers [24] this 

distinction is not made. He considers a generalization of the LC(k) parsing method. 

In his approach it is possible to specify arbitrarily for each production rule the 

position in the righthand side at which that rule is to be recognized. 

Clearly, this idea can also be used if we want to distinguish between recogni- 

tion of the lefthand side of a production and recognition of the whole production. In 

Table XIII we have only considered a left corner which consists of one symbol. In 

general we can define strategies and classes of gralm~ars as depicted in Figure 12.2. 
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w x I xi xj Xp z 

recognition of A -~ X I .... X 
P 

recognition of A 

Figure 12.2. Generalized parsing strategies. 

In Figure 12.2 we have that for each i, 0 ~ i ~ p, we can specify where A has to 

be recognized (by considering FIRSTk(Xi+I..~XpZ)) and for each j, i ~ j ~ p, we can 

specify where the production A ÷ X! .... Xp has to be recognized. 

It should be noted that when grammar G is in Chomsky normal form, that is, with 

production which are of the form, A ÷BC or A÷ a, then the generalization of Figure 

12.1 to Figure 12.2 does not play a role. Moreover, it will be clear that if a gram- 

mar is in Chomsky normal form then the strategies for LP-parsing and PLC-parsing 

coincide. This observation was first made, in a less general setting, by Reichardt 

[139]. 

Unfortunately, the representation of classes of grammars in Table XIII does not 

really expose the differences between LP(k) grammars on the one side and PLR(k) and 

LR(k) grammars on the other side° In the next section we will return to this draw- 

back of our table-representation of classes of grammars. 

12.3. TRANSFORMATIONS TO LL(k) GRAMMARS 

We introduce classes of grammars which are properly included in the class of 

LR(k) gra~m~ars and which properly include the class of LL(k) grammars. First we re- 



call the definition of an LL(k) gra~muar. 

A grammar G = (N,E,P,S) is said to be an LL(k) grammar if, for a terminal string 

w, a nonterminal A and strings y, 6! and 62 in (N u E)* such that A ~ 6| and 

A ÷ 62 are distinct productions of G, the condition 

S ~ wAy 

implies that 

FIRSTk(~Iy ) n FIRSTk(~2y ) = ~. 

It is instructive to consider the following characterization of LL(k) grammars. 

L EMMA ]2.]. Let k e O. Grammar G = (N,~,P,S) is an LL(k) graa~nar if and only if 

, V* for n ~ 0 and for any w c E*, A, A' c N, y, y', 6] 62 ~ such that 61 # 62, the 

conditions 

S ~wAy rw61Y 

and 

S ~ wA'y' ~ w62Y' 

always imply that FIRSTk(~Iy ) n FIRSTk(62y ) = ~. 

Proof. The 'if'-part is trivially satisfied. For the 'only if'-part we use the fol- 

lowing claim. 

V* n n CLAIM. Let v,w ~ Z*, A E N, ~,8,Y ~ and n z O. If S ~ wA~, A ~ v~ and A ~ vy, 

then FIRSTk(8~ ) n FIRSTk(Y~ ) # ~ implies that 8 = Y. 

Proof of the Claim. Induction on n. If n = 0, then A = v8 = vy, whence 8 = Y. 

Let n > 0 and assume that the claim holds for derivations of length n - I. We can 

write 

uB6 n~l uz8 = v~ A 

n~l u'z'y = vy A utB~6t 

V*. for some u, u', z, z' ~ E*, B, B' ~ N and 6, ~' c Since FIRSTk(~) n FIRSTk(Y~ ) ~ 
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we have also FIRSTk(UB~ ) N FIRSTk(U'B'6~) # ~. Since G is LL(k) it follows that 

uB6 = u'B'6'. We obtain 

S ~ wuB6~ 

B zl3| 

n-1 
B ~ zy t 

, V* for some B 1 y! ~ such that ~ = Bl~, y = yl~ and FIRSTk(~I6~) n FIRSTk(YI~) # ~. 

From the induction hypothesis it follows that ~; = yl . Therefore the claim is proved.D 

This Claim and its proof is also in Pittl [132]. Now assume that G is LL(k) and we 

have derivations 

S ~ way ~ w~ 1 ~ 

and 

S ~ wA'y ~ ~ w~2Y~ 

with 61 # ~2" That is, we have derivations S ~ S, S L wAy and S ~ wA"('. Assume for 

the sake of contradiction that FIRSTk(~Iy) n FIRSTk(~2y') # ~. It follows from the 

Claim that A% = A'y'. That is, A = A' and T = Y'. However, if A = A' and y = ~' then 

it follows from the LL(k) definition that FIRSTk(~Iy) n FIRSTk(62T') = ~. Contradic- 

tion. 

In Lemma |2.1 it is more clearly displayed that in Figure |2.1, once we have 

seen w and k : xyz, the next production in the left parse is uniquely determined 

since for any pair of productions A + 61 and A + 62 in this situation we have that 

A = A' and ~I = 62" In what follows we will also refer to the class of strong LL(k) 

grammars (of. Definition 8.8). The following !emma gives a useful characterization 

of strong LL(k) grammars. The function FOLLOW k which is used is defined as follows. 

DEFINITION 12.1. Let G = (N,Z,P,S) be a CFG and let k e O. For any A ~ N, define 

= V* FOLLOWk(A) {k : w I S ~ oAw for some ~ c and w ~ E*}. 

LEMMA ]2.2. Let k ~ 0. A CFG G = (N,Z,P,S) is a strong LL(k) grammar if and only if 

for distinct productions A + ~ and A ÷ ~ the condition 

FIRSTk(~ FOLLOWk(A)) n FIRSTk(~ FOLLOWk(A)) = 
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holds. 

Proof. Trivial. D 

Our first definition of a new class of grammars concerns the so-called PLC(k) 

grammars (predictive left corner grammars). 

DEFINITION 12.2. Let k ~ 0. A CFG G = (N,Z,P,S) is said to be a PLC(k) grammar if, 

for a terminal string w, a nonterminal A and strings ~, y, y', ~l and 62 in (N u Z)* 

such that A ÷ e~l and A + ~2 are distinct productions of G and ~ is the longest 

common prefix of ~6 1 and ~62 with length less than or equal to one, the conditions 

S ~ wAy ~W~dly 

and 

S ~ wAy' ~ w~2¥' 

always imply that 

FIRSTk(~Iy) n FIRSTk(~2y') = ~. 

This definition is included for completeness sake. Clearly, we can also intro- 

duce strong PLC(k) granmmrs. Then we have for distinct productions A ÷ ~61 and 

A + ~62 with ~ is the longest common prefix of ~61 and ~82 with length less than or 

equal to one, the condition 

FIRSTk(61FOLLOWk(A)) n FIRSTk(~ 2 FOLLOWk(A)) = ~. 

We immediately turn our attention to the class of LP(k) grammars. This class includes 

the PLC(k) grammars. 

DEFINITION 12.3. A CFG G = (N,Z,P,S) is said to be an LP(k) grammar if, for a termi- 

nal string w, a nonterminal A and strings ~, y, y', ~I and 62 in (N u Z)* such that 

A ÷ ~81 and A + ~62 are distinct productions of G and ~ is the longest com~non prefix 

of aSl and ~62, the conditions 

S ~ wAy ~ w~61y 

and 

S ~ way' ~ w~2y' 
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always imply that 

FIRSTk(~Iy) n FIRSTk(62y ~) = ~. 

Observe the obvious difference with the characterization of LL(k) grammars in 

Len~na 12.1. In that case the implication 

F!RSTk(~Iy ) n FIRSTk(~2y' ) = 

is used. Thus, in the case of LP(k) gran~nars it is not necessary to consider the 

terminal string which can be derived from the longest common prefix a of the right- 

hand sides of two distinct productions A ÷ a~l and A ÷ a~2" 

In [128] we have tried to characterize LP(k) grammars by saying that if 

S ~ wAy 

and A + ~l' A ÷ ~62 are ~wo distinct productions such that ~ is the longest common 

prefix of ~I and a~2' then 

FIRSTk(61y) n FIRSTk(~2y) = ~. 

This seems to be the straightforward generalization of the LL(k) definition. However, 

it is not what we want since such a characterization allows ambiguous grammars. This 

can be seen as follows. Consider the grammar with productions 

I 
S + Ac i Aac 

A÷a I aa 

This grar~aar is ambiguous. Moreover, we have 

(i) S ~ S, S ÷ Ac ! Aac and FIRST2(c) n FIRST2(ac) = ~. 

(ii) S ~ Ac, A ~ a Iaa and FIRST2(c) n FIRST2(ac) = ~. 

(iii) S ~ Aac, A ÷ a Iaa and FIRST2(ac) N FIRST2(aac) = ~. 

Hence, the condition which is given above is satisfied. However, this grammar does 

not satisfy Definition 12.3 since we have productions A ÷ a and A + aa and derivations 

S ~ Ac ~ aac 

and 

S ~ Aac ~ aaa 
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while 

FIRSTk(ac) 0 FIRSTk(ac) # 

for any k ~ 0. 

The class of strong LP(k) grammars is now defined by demanding that 

FIRSTk(61FOLLOWk(A)) n FIRSTk(~ 2 FOLLOWk(A)) = 

for any pair of distinct, productions A ÷ ~] and A + ~62" where e is the longest co~on 

prefix of ~61 and ~2" 

We consider the possibility of obtainisg.asimilar characterization for LP(k) gram- 

mars as is displayed in Lemma 12.1 for LL(k) grammars. Therefore it is necessary to 

generalize two resul~sfor simple chain grammars. 

LEMMA 12.3. Let G = (N,E,P,S) be an LP(k) grammar, k -> O. For any w, Wl, w 2 ~ Z* and 

v* if s aod  w]w  with then 

FIRSTk(~0) n FIRSTk(W2~) = @. 

Proof. The proof is by induction on the lengths of the derivations from ~ to w 1 

from ~ to WlW 2. 

Basis. Consider two derivations of length ] which can be used to obtain w 1 

w]w 2 from ~ e V +. The case in which one derivation is of length 0 and the other is 

of length ] can not occur. If ~ ~ w] and ~ ~ w]w 2 then there exist a nonterminal 

C ~ N and strings w', w", Zl, z 2 ~ Z* such that 

and 

~/ = wICw" ~ wVziw '' = w] 

= w'Cw" ~ w'z2w" = WlW 2. 

It follows that z I is a proper prefix of z 2. We write z 2 = zlz~, 

' and derivations S * ww'Cw"0~ and ductions C ÷ z I and C -> z]z 2 L S 

G is LP(k) we have 

FIRSTk(W"~0 ) n FIRSTk(Z~W"t0' ) = @. 

Moreover, since w" is a prefix of z~w" such that w"w 2 

FIRSTk(~0 ) n FIRSTk(W2L0 ') = @, 

and 

and 

Hence, we have pro- 

ww' Cw"m'. Since 

' " it follows that = Z2W 
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which had to be proved. 
+ 

Induction. Assume for all ) E V 

lengths less than n, we have 

and derivations ~ w I and g ~ WlW 2 with 

FIRSTk(~) n FIRSTk(W2m') = ~. 

Now consider derivations g ~ w I and g ~ WlW 2 with lengths less than or equal to n. 

, ~* Z* Then there exist C e N, a, P, ~l ~2 E and w' e such that ~l # g2 and G is the 

longest common prefix of ~l and a~ 2 and 

~ w~Co ~ w~iP ~ Wl 

and 

L w~Cp ~ w'~2 ~ WlW2 

where w'Cp is the last left sentential form which these two derivations have in 

common. Now consider the following two derivations: 

C~6lpm ~ wlco (1) 

and 

C~2p03~ ~ WlW2CO~ (2) 

for some u| e ~*. Hence, we can Suppose that both in (]) and in (2) we have G ~ ul, 

write w I = UlV 1 where v| E Since G is LP(k) it follows that 

FiRSTk(~Ip~ ) n FIRSTk(62@~') = 

and we can conclude that 

FIRSTk(Vlm ) n FIRSTk(VlW2~') = ~. 

Thus, 

FIR~Tk(~ ) n FIRSTk(W2~') = 

which had to be proved° Now suppose that ~ ~ u I in derivation (I) and ~ ~ UlU 2 in 

derivation (2), with u 2 # e. From the induction hypothesis we can conclude that 

FIRSTk(81p~) n FIRSTk(U2~2P~') = ~. 
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~° We can write w I = UlVl, for some v I ~ It follows that 

FIRSTk(V]~ ) n FIRSTk(VlW2m') = 

and therefore 

FIRSTk(~ ) n FIRSTk(W2~' ) : ¢ 

which had to be proved. The symmetric case with e ~ UlU 2 in (I) and ~ ~ u] in (2) 

can be t r e a t e d  s i m i l a r l y  and t h e r e f o r e  i t  i s  o m i t t e d .  This  conc ludes  t he  p r o o f  o f  

Lemma 12.3. 

Notice that Lepta 12.3 can be considered as a generalization of Theorem ]].I. 

We can also obtain an analogue for Theorem 11.3. 

LEMMA 12.4. Let G : (N,E,P,S) be an LP(k) grammar, k >_ 0. For any n > 0, X, Y ( V 

with X # Y and ~, ~0, ~ ~ V , if S ~X~0 and S ~Y~, then FIRSTk(X%0 ) n FIRSTk(Y~) = ~. 

Proof. We prove the slightly=re general result that if S ~w~ and S ~w~m', 

where w £ E*, and ~, ~, ~' £ V*, then for any n ~ 0, X, Y ~ V with X # Y and ~, ~, 

E V*, if ~ ~ c~ and ~ ~ eye, then FIRSTk(~0) n FINSTk(Y~m') = ~. The proof is done 

by induction on n. 

Basis. Assume that ~ ~ ~X~ and ~ ~ ~Y~. We can write ~ : vCp for some v ~ ~*, 

C E N and p ~ V*. Then there exist productions C + y~] and C + y62, where 61 # ~2' 

Y' ~]' ~2 e V* and 7 is the longest common prefix of y~] and Y~2" Since G is LP(k) 

we have that 

FIRSTk(6]p~ ) n FIRSTk(62pm') : @. 

There exists a prefix 8 of 6]p~ and of 62pm' such that v~ = ~, 8X~ = ~and 

8Y~' = ~2Oe '. It follows that 

FIRSTk(X~x0) n FIRSTk(Y ~') : @. 

Induction. Let ~ ~ [~X~ and D ~ ~Y~, where X # Y and assume the property holds 

for all D e V* and leftmost derivations with length less than n. Then there exist 
~* * 

v ~ ' ~' ~l' ~2' P ~ V , C c N and productions C ÷ Y~I' C ÷ Y~2 in P where y is 

the longest common prefix of 7~ I and Y62' such that 

k m ~ vCp ~ ~y61p ~ ~x~ (~) 

and 
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with n = k + m + ]. Now consider the following possibilities: 

* ~I (i) vy ~ ~X%0' in (I), with ~'61p = ~ and xry ~ in (2), such that ~ can be written 

as a'~" for ~' ~" V*. , ~ It follows from Lemma 12.3 that 

FIRSTk(~"X~ ) n FIRSTk(~"Y~') = ~. 

Hence, 

FIRSTk(X~ ) n FIRSTk(Y~') = @. 

* ~v m 
The symmetric case with vy~ in (|) and vy ~ ~Y~' in (2) can be treated sim- 

ilarly and therefore it is omitted. 

(ii) vy ~ ~X~' in (I), with ~'~10 = 

and 
m 

v~ ~Y~' in (2), with ~'~2 p = ~. 

Since m < n, we may conclude that 

FIRSTk(X~'610~ ) N FIRSTk(Y~'~2p~') = 

that is, 

FIRSTk(Xq~0) n FIRSTk(Y@~') = ~. 

* V* (iii) vy ~ ~1 in (I), with ~ = ~|~2 for ~I' ~2 ~ 

and 

vy ~* ~I' in (2), with ~ = ~i~2~ ' for ~i' ~2 e V*. 

, ' or conversely. With the same type of argument ' then ~I is a prefix of ~I 

as used above it can again be shown that the desired property holds. If ~I = ~' then 

V* there exists ~" ~ such that ~i ~'' = ~i~" = ~ and 

61p ~ ~"X~ in (I) 

and 

~2p ~ ~"Y~ in (2). 

However, since G is LP(k) and y is the longest co,on prefix of Y61 

lows that 

and Y~2' it fol- 
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FIRSTk(61p~) n FIRSTk(62p~') = ~. 

Therefore, 

FIRSTk(~"X~) n FIRSTk(~"Y ~) = 

and it follows that 

FIRSTk(X~) n FIRSTk(Y ~) = ~. 

This concludes the induction proof. For w = ~ = ~' = g and ~ = S, we obtain the 

result which is mentioned in Lemma 12.4. 

Now we are sufficiently prepared to present the following theorem. 

THEOREM 12.1. Let k ~ 0 and let G = (N,Z,P,S) be an LP(k) grammar. For any n e 0, 

w e Z*, A, A' c N, ~'Y'Y"~I' 82 ~ V* such that 61 # 82 and ~ is the longest co~on 

prefix of ~61 and ~62, the conditions 

S ~ wAy ~ w~61y 

and 

S ~ wAVy ' ~ w~2y' 

always imply that 

FIRSTk(61y) n FIRSTk(~2y') = ~. 

Proof. If A = A', then the theorem is only a restricted version of the LP(k) defi- 

nition. If A # A' then it follows from Le~ma 12.4 that 

FIRSTk(AY) n FIRSTk(A'y') = ~. 

Hence, 

FIRSTk(~|y) n FIRSTk(~62y') = 

and it follows that 

FIRSTk(~Iy) n FIRSTk(~2y' ) = 

which had to be proved. 
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Clearly, with this theorem in mind we can again consider Figure 12. I. Notice 

that in Lemma 12.1 we have changed the LL(k) definition (in which we use the condition 

S L way) into a characterization with S ~ way and S ~ wA'y'. Also in Theorem 12.1 for 

LP(k) grammars we have used a superscript n. It is rather inviting to omit n from 

the derivations. However, consider the following LL(0) grammar with productions 

S ÷ a A b  

A+ Bc 

B.+ a 

Here we have derivations 

and 

while 

S ~ aAb~ aBcb 

S ~ aBeb ~ aacb 

FIRSTk(BCb ) n FIRSTk(aCb) # 

for any k ~ 0. It follows that we can not omit superscript n from the derivations 

in Lemma 12. I and in Theorem 12.1. 

THEOREM 12.2. Every LL(k) grammar is an LP(k) grammar, k 2 0. 

Proof. Assume that a gramm~ar G = (N,E,P,S) is LL(k) but not LP(k). Then there exist 

a terminal string w, a nonterminal A and strings ~'Y'Y"~I and 62 in V* such that 

A + ~I and A ÷ ~2 are two distinct productions in P, with ~ is the longest common 

prefix of ~I and ~2' such that 

s g way ~ w~61y 

S ~ wA~ "~ ~ ~62y~  

and 

FIRSTk(~Iy ) n FIRSTk(62y') # ~. 

It follows that 

FIRSTk(~I¥ ) N FIRSTk(~2y') # ~. 
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It is straightforward to verify that in the case of LL(k) gran~nars we have that 

y = y'. Hence, we obtain a contradiction with the LL(k) definition. Therefore we 

must conclude that G is also LP(k). 

The definition of LP(k) gra-~nars can be considered as a generalization with 

'look-ahead' of the definition of the simple chain and left part grammars of Chapter 

II. The following corollary is an immediate consequence of the definitions. 

COROLLARY 12.1. A grammar G = (N,~,P,S) is a simple chain grammar if and only if 

P is prefix-free and G is an c-free LP(1) grammar. 

Context-free grammar G with productions 

S+ a 

S÷ ab 

is an example of a grammar which is not a simple chain grammar. However, grammar 

G is LP(1). 

Since there exist simple chain gr0xmars which are not LL(k) for any k (of. 

Example 11.2) we conclude that the class of LL(k) grammars is properly contained 

in the class of LP(k) grammars. 

Justas in the case of LL(k) grammars one may conclude that if k = 0, then the 

language of an LP(k) grammar does exist of one element only. 

The following two theorems are also immediate consequences of the LP(k) defini- 

tion. The proofs are analogous to corresponding proofs for the LL(k) case and they 

are slight generalizations of corresponding proofs for simple chain gr~-,,ars. Notice, 

once more, that the grammars under consideration are assumed to be reduced. 

THEOREM 12.3. Each LP(k) grammar is unambiguous. 

Proof. We show that each w E L(G), where G is an LP(k) grammar, has exactly one 

leftmost derivation from S. Suppose that S ~ w by at least two leftmost derivations. 

We can write 

and 

s ~ ua~ ~ u~1~ ~ uv = w (*) 

S ~ uA~0~ u~2~ ~ uv = w (**) 

* V* where u, v c E , A ~ N, ~,~i,~2, ~ ~ and ~ is the longest common prefix of the 

distinct strings ~I and ~2" 
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Assume that in (*) we have used ~ ~ ul, 6! x and ~ ~ v! and in (**) we have 
, , , 

used ~ ~ u2, 6 2 ~ y and ~ ~ v2, such that ulxv ! = u2Yv 2 = v. Since k : xv I # k : yv 2 

we can not have u| = u2, If u] is a proper prefix of u 2 (or the symmetric case which 

we omit) and we write u 2 = u]u~ then, since k : ulyv 2 = k : xv], we have that 

does not satisfy Lemma 12.3. We must conclude that G is unambiguous. 

THEOREM 12.4c LP(k) grammars are not left recursive. 

Proof. The proof is a straightforward adaptation of the corresponding proof for LL(k) 

grammars. 

Clearly, as we did in Chapter 11 for simple chain granmmrs, we now can obtain 

properties for the leftmost and rightmost derivations of LP(k) grammars. We will, 

however, turn our attention to transformations of LP(k) grammars. We shall show that 

the LP(k) grammars are exactly those grammars which can be transformed into LL(k) 

grammars by left factoring the grammar until it has no two productions of the form 

A + co2 and A ÷ ~ with ~ ~ ~. 

The definitions of LL(k) and LP(k) granmmrs immediately imply the following 

theorem. 

THEORE~ 12.5. A left factored gra~snar is LL(k) if and only if it is LP(k). 

Proof. Trivial. 

The process of left factoring cons~ts of consecutively replacing productions 

of the form A ÷ ~k0 and A* ~ , where ~ # ~ and ~ is the longest common prefix of 

0~4) and ~, by the productions 

A~ ~H 

H÷~ 

where H is a newly introduced nonterminal symbol, until the grammar is left factored. 

Clearly, this transformation preserves the original language. 

THEOREM 12.6. The grammar obtained by the left factoring process is LL(k) if and 

only if the original grammar is LP(k). 

Proof. By Theorem 12.5 it is sufficient to show that the process of left factoring 

does not affect the LP(k) property and that this process can not produce an LP(k) 

grammar from a non-LP(k) grammar. It is clear from the definition that this is true 
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as regards one individual step in the left factoring process. Since the whole pro- 

cess is just a consecutive sequence of these individual steps, we thus conclude the 

theorem. 

COROLLARY 12.2. The families of LP<k) and LL(k) languages coincide. 

As we already showed in section 10.1, if we have productions i. A ÷c~0 and 

j. A+ ~ and we define 

A + ~H <g>  

H + qO <i> 

H ÷ ~ <j> 

then it will also be clear that the newly obtained left factored granmmr right covers 

the original gra~nar. Moreover, also shown in section I0. I and a consequence of Theo- 

rem 9.1, top-down parsing of LL-grammars can be done in such a way that right parses 

are obtained and therefore this right cover result is not only of theoretical value. 

It is also possible to obtain an LL(k) grammar which left-to-right covers the 

original LP(k) grammar. 

THEOREM 12.7. 

Proof. 

and 

Each LP(k) grammar can be left-to-right covered by an LL(k) grammar. 

Let G 1 = (NI,E,PI,S) be an LP(k) gratmaar. Define G I = (NI,E,PI,S) with 

T NI = Sl u {[A~] I A÷~ is inP1} 

' = {A-~ c~[Ae] } A ÷ ~ is in Pl } u {[A~x] ÷ E I A ÷ ~ is in P1 }. Pl 

Clearly, Gi is LP(k) if and only if G 1 is LP(k) and the grammar which is obtained 

by the left factoring process from G I is LL(k) if and only if any gra~nar obtained 

by the left factoring process from G 1 is LL(k). Hence, if G 2 = (N2,Z,P2,S) is the 

grammar which is obtained by the left factoring process from G~, then G 2 is LL(k). 

Now define a homomorphism ~l : Pi* ÷ PI such that 

and 

~ I ( A  ÷ o.) = C.  
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Clearly, GI[Z/r]G | (of. Lemma 4.4) where the cover is supported by the productions 

of the form [A~] + e. These productions remain unchanged in the left factoring pro- 

cess and, moreover, this process does not affect the order in which these productions 

appear in a left parse. Therefore, if we define ~2 : ~2 ÷ P] such that 

and 

~2 (C ÷ T) = S 

where C ~ N 1 - NI, then we can conclude that G 2 left-to-right covers grammar G] with 

respect to homomorphism ~2 o 

The next class of grammars which we want to consider is the class of LC(k) or 

left corner grammars. There are two ways to characterize LC(k) grammars. The first 

definition we present makes use of rightmost derivations° The second, original, def- 

inition uses leftmost derivations. 

In order to present the first characterization we recall the definition of an 

LR(k) grammar as it was presented in section 8.2. 

A grammar G = (N,Z,P,S) is said to be an LR(k) grammar if S S is not possible 

in G and for each w, w', x ~ Z*; y,e,~',~ and 8' in V* and A,A' ~ N, if 

(i) S ~Aw~ ~w and 

(ii) S ~ ~'A'x ~ ~'x = ~Sw ~ and 

(iii) k : w = k : w ~ 

then A ÷ ~ = A' ~ 8' and i~81 = l~'~wi. 

An equivalent definition is obtained if we conclude from (i), (ii) and (iii) that 

~A = e'A' and x = w'. Moreover, it is useful to say that a fixed production A + ~ of 

CFG G satisfies the LR(k) condition if, whenever we have derivations (i) and (ii), 

then k : w = k : w' implies ~A = ~'A' and x = w'. We use the notation ~_8 ~Y or 

~ y~ to denote that in the specific derivations ~ ~y and 8~ ~ Ye which are 

considered, respectively, the displayed string ~ is not rewritten. 

+ 
DEFINITION 12.4. A CFG G = (N,Z,P,S) is said to he an LC(k) granmmr if S ~ S is 

not possible in G~ each E-production of G satisfies the LK(k) condition and if for 

V* each w,w',y,y' ~ Z*; ~,~'~",8,Y ~ ; X ~ V; A,A' ~ N and production A ÷ X8 in P, 

the zonditions 
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(i) s 

(ii) S ~ ~'A'w' ~ ~'~"X~w' ~ ~'~"Xy'w' 

(iii) ~'~" = ~ and k : yw = k : y'w',always imply that ~A = ~'A' and B = y. 

included the condition that S ~ S is not possible for an LC(k) We have grammar. 

Otherwise, the following ambiguous grammar with productions 

S ÷ S I a 

is to be called LC(0). Another possibility would have been to extend the granmmr by 

adding an 'initial production" S' ÷ iS, with ± is a symbol not in V and S' is a 

newly introduced start symbol. This latter method has been used in [157]. We have, 

in accordance with our definition of LR(k) gran~ars, excluded the possibility S ~ S 

from the definition of LC(k) grammars. 

In Geller and Harrison [40] the following context-free grammar G with produc- 

tions 

S ÷ S a  [ a 

is given as an example to show that there exist gram=ars which are LR(0) according 

to the LR(k) definition which is used here, but which are not LR(0) according to the 

definition in Aho and Ullman [3]. Moreover, it follows easily that G is not LR(O), 

PLR(0) or LC(0) according to the definitions which are given in Soisalon-Soininen 

and Ukkonen [157]. However, the grammar G is LC(0), PLR(0) and LR(0) according to 

the definitions which are used in this chapter. 

We now want to show that any LC(k) grammar is an LR(k) grammar. We use the 

following le~mmwhich tells us when a grammar is not LR(k). 

12.5. Let G = (N,Z,P,S) be a (reduced) CFG such that S ~ S is impossible in LEM~ 

G. G is not LR(k) if and only if there exist w,w',x ~ Z*; A,A' ~ N; y',y,~,~',B,~' £ V* 

such that 

(i) s ~ ~Aw ~ ~w, 

(ii) S ~ ~'A'x ~ e'8'x = ~w', 

(iii) k : w = k : w', and 

(iv) ~A # ~'A' or x # w', with 
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Proof. This lem~a is a slight modification of Lemma 2.5 of Geller and Harrison 

[40]. 

THEOREM 12.8. Every LO(k) grammar is an LR(k) grammar. 

Proof. Assume that an LC(k) grammar G = (N,Z,P,S) is not LR(k). Then there exist 

derivations (cf. Lemma 12.5) 

(i) s ~Aw ~ ~w, 

(ii) S ~ ~'A'x ~ ~'8'x = ~Sw' 

such that k : w = k : w ~, I~'~'I e I~I, and ~A # ~'A' or x # w'. Notice, that due 

to the definition of LC(k) grammars we do no have to consider the possibility that 

the production A + 8 which is displayed in (i) is an g-production. Moreover, since 

(i) and (ii) can be reversed, we do not have to consider the possibility 8' # ~. 

Hence, we may assume 8 ~ g and 8' # ~. Since I~'8'I ~ I~81 we can distinguish the 

three cases depicted in Figure |2.3. 

case ] I ~ 

case 2 I 

case 3 _ _  

18--x~ 

6, 

z E Z* 

6, 

,I 

8 ' .......... 1 

Figure 12.3. Three cases for Theorem 12.8. 

It is straightforward to show that each of these three cases violates the conditions 

of an LC(k) grammar. 

This inclusion of LC(k) grammars in LR(k) grammars is proper. Context-free gram- 

mar G with productions 

S ÷ aB aC 

B ÷ aB b 

C + aC c 

is a granmlar which is LR(O) while G is not, for any k a O, LC(k). 

In the original definition of LC(k) gran~nars (Rosenkrantz and Lewis [143]) con- 

ditions are imposed on the leftmost derivations of a grammar. As mentioned in [155, 
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157], in the original definition the look-ahead is used in a slightly different way 

since distinction is made between the cases that the left corner of a production is 

a terminal or a nonterminal. 

THEOREM |2.9. Every LL(k) grammar is an LC(k) grannnar. 

Proof. See Soisalon-Soininen [155]. Although our definition of an LC(k) grammar does 

not use an 'initial production' S' ÷ iS it can be easily seen that the proof in 

[|55] can be used for the case that our definition is used. 

We have a short discussion on the original definition of LC(k) grammars. If we 

use the abbreviation LCsu to denote LC-grammars according to Soisalon-Soininen and 

Ukkonen (el. Definition 12.3) and LCRL to denote LC-gramm~rs according to Rosenkrantz 

and Lewis, then it can be shown that there exist LCsu(k ) grammars which are LCRL(k+I ) 

but not LCRL(k ). 

In [lO0] and in a revised form in [143] a method is presented which transforms 

LCRL(k) grammars into LL(k) grammars. A rigorous proof that the method indeed does 

what it is supposed to do is not available. However, such a proof has been given for 

the following class of grammars which can be transformed into LL(k) grammars. 

DEFINITION ]2.5. A CFG G = (N,E,P,S) is said to be a PLR(k) grammar if G is LR(k) 

and if for each w,w',y,y' • E*; ~,~',~",~,y • V*; X E V; A,A' e N and production 

A + X8 in P, the conditions 

(i) s 

(ii) S ~ ~'A'w' ~ ~'~"XYw' ~ ~'e"Xy'w' 

(iii) ~'~" = e and k : yw = k : y'w' 

always imply that ~ = e'A'. 

Notice that any LL(k) grammar is also LC(k) (Theorem 12.9), any LC(k) grammar 

is PLR(k) (cf. Definition 12.4 and 12.5 and Theorem 12.8) and, by definition, any 

PLR(k) grammar is also an LR(k) grammar. These inclusions are proper (of.[157]). 

Theorem 12.5 has the following analogue. 

THEOREM 12.10. A left factored grammar is LC(k) if and only if it is PLR(k). 
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Proof. See [157]. 

Moreover, there is an analogue for Theorem ]2.6. 

THEOREM 12.11. The grammlar obtained by the left factoring process is LC(k) if and 

only if the original grammar is PLR(k). 

Proof. See [157, p. 349]. D 

Maybe it is not yet clear that every LP(k) grarmmar is also PLR(k). This can be 

seen as follows. 

THEOREM ]2.12. Every LP(k) gra~mmr is a PLR(k) grammar. 

Proof. Any LP(k) grammar can be made LL(k) by left factoring (Theorem ]2.6). Since 

LL(k) grammars are also LC(k) grammars we can say that any LP(k) gra~nar can be made 

LC(k) by left factoring. It follows from Theorem |2.;] that every LP(k) grammar is 

also PLR(k). 

Context-free grammar G with productions 

S + abe 

S ÷ aBd 

B + aB 

B+c 

is a context-free grammar which is LP(1). However, there does not exist k ~ 0 such 

that G is LC(k). Since there exist LC(k) grammars which are left recursive and, by 

Theorem 12.4 LP(k) grammars can not be left recursive we conclude that the classes 

of LP(k) and LC(k) grammars are incomparable. Hence, we have the situation displayed 

in Figure 12.4. 

PLR 
factoring 

LP - - ~ ~ ~  ~Left actoring 

LL 

Figure 12.4. Inclusion diagram. 
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In this figure we have also displayed the role of the left factoring process. 

The reader is asked to recall the cover properties of this transformation. 

Soisalon-Soininen and Ukkonen [157] present a transformation T from PLR(k) 

gra~nars to LL(k) grammars. It is necessary for this transformation to provide the 

grammar with an 'initial production' S' ÷ iS. If we use the notation T(G) to denote 

the transformed gra~ar, then the following result can be shown. 

THEOREM 12.13~ Let k > 0. A grammar G is PLR(k) if and only if T(G) is LL(k). 

Proof. See [157]. 0 

Moreover, it is shown in [157] that transformation T has the following property. 

THEOREM 12~]4~ Every PLR(k) grammar G can be transformed to an LL(k) grammar T(G) 

such that T(G)[Z/~]G and T(G)[~/r]G. 

Proof. The proof that T(G)[Z/~]G can be found in [157]. The cover-homomorphism 

which is defined to show that T(G)[I/r]G is such that, for each i E AT(G) , ~(i) # E 

only if the production with label i is an E-production. It follows from Lemma 4.3 

that T(G)[~/r]G. 0 

In summary, if we use the notation %LF for the left factoring process and TSU 

for the transformation of Soisalon-Soininen and Ukkonen [|57], then: 

(i) TLF(LP) a LL 

TL$(LL) = LP 

(ii) TLF(PLR) ~ LC 

-i 
TLF(LC ) = PLR 

(iii) Tsu(PLR) ~ LL 

-I 
Tsu(LL ) = PLR 

(iv) 

and, if we ~onsider a specific amount of look-ahead k, 

Tsu(PLR(k)) ~ LL(k), k > 0 

Tsu(PLR(O)) ~ LL(]) 

-i 
Tsu(LL(k)) = PLR(k), k a O. 
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This section is concluded with a note on Table XIIi and a general note an the 

possibility to transform grammars to LL(k) grammars. 

Note I. In Table XIII we have that for LP(k) and for LR(k) grammars the produc- 

tion A ÷ XI..oX p is recognized with certainty after seeing ~ symbols of look-ahead 

of the string z. However, for LP(k) grammars we need this look-ahead only to disting- 

uish productions of the form A + ~ and A ÷ ~ with ~ # £. If the set of productions 

is prefix-free (i.e., if A ÷ ~ and A+ ~ in P, then ~ = ~) then it is only neces- 

saryto consider k symbols of the terminal str~ng which is obtained from X in order 
P 

to be able to recognize the production A + XI...X p. Notice that this remark is of 

the same type as the remark which was made on Chomsky normal form in section 12.2. 

That is, due to a special form of the productions it is possible to modify a parsing 

strategy. 

Note 2. In Hsm~er [56] there is a thorough discussion on 'k-transformable' 

grammars. The class of k-transformable grammars is a subclass of the class of LR(k) 

grammars. Each k-transformable grammar can be transformed to an LL(k) grammar in 

such a way that a left-to-right cover is obtained. There is an interesting conjecture 

in [56] concerning this transformation. This conjecture, which is attributed to R.E. 

Stearns, says that for any CFG G, if there is some LL(k) grammmr which is as useful 

for parsing as G then that gra~nar can be found by application of this transformation. 

'As useful' means e.g. that a left-to-right cover can be defined. In [56] it is shown 

that the LC(k) grammars are k-transformable. In [155] it is mentioned that the PLR(k) 

grammars are k-transformable. 

12.4. PARSING STRATEGIES REVISITED: A SURVEY OF RECENT RESEARCH 

In the proceeding sections we have distinguished between two main techniques 

for recognizing a production during the parsing process. The first technique assumes 

that each production has a position in its righthand side where the whole production 

should be recognized. The second technique distinguishes between recognition of the 

lefthand side of a production and recognition of the whole production. The first 

technique leads to definitions of LL-, LC- and LR-grammars. The second technique 

gives rise to definitions of PLC-, LP- and PLR-grammarso 

Other approaches, w~ich give rise to new classes of grammars, are possible. 

Ukkonen [162,166] considers a slight extension of the definition of PLR(k) grammars. 

Due to this extension the class of corresponding languages is not the class of LL(k) 

languages but the class of deterministic languages. 

Consider again Figure 12.1. The LL-, PLC-, 12-, LC- and PLR-grammars have in 

comon that for each of their productions the lefthand side is recognized before 

the recognition of the righthand side. However, for these classes of grammars it is 

not only the lefthand side A which is certainly known after scanning k : yz but also 

symbol X! is known as being the left corner of the next production which is going 
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to be recognized. Hence, here we see the possibility to introduce a new parsing strat- 

egy in which we distinguish the recognition of the left corner (or a generalized 

left corner) from the recognition of the complete production. This has been done in 

the definition of 'weak' PLR(k) grammars. It is required that each left corner of 

a non-E-production can be recognized with certainty after scanning at most k termi- 

nal symbols of string yz in Figure 12.|. The definition follows below. 

DEFINITION 12.6. A grammar G = (N,E,P,S) is said to be weak PLR(k) if it is LR(k)~ 

and if for each a,a',~",~,y ~ V*; w,w',y,y' ~ Z*; A,A' E N, X e V and for each pro- 

duction A ÷ X~, the conditions 

(ii) S ~ a'A'w' ~ ~'~"Xyw' ~ ~'a"Xy'w' 

(iii) a'~" = ~ and k : yw = k : y'w' 

always imply that ~ = ~'. 

It is intuitively clear that every LR(k) grammar such that the length of each 

righthand side of the productions is less than or equal to two is weak PLR(k). It 

follows (cf. [166]) that any LR(k) grammar G can be transformed to a weak PLR(k) 

grammar G'. This can be seen as follows. Every production i. A ÷ XIX2...X p of G such 

that Ixlx2...Xpl ~ 2 is also a production of G'. If IXIX2...X I~ > 2, then add the 

productions 

A + XI[X2...Xp] <i> 

[X2...X p] + X2[X3...X p] <e> 

[Xp_IX p] + Xp_IX p <g> 

to P'. Clearly, in this case a right cover homomorphism can be defined. 

There is another consequence of this definition. In general we =an not recognize 

the lefthand side of a production of a weak PLR(k) gr~mm~r before we have seen the 

next k terminal symbols after the yield of this lefthand side. That is, in Figure 

12. l, after we have seen k : z. However, once we have recognized a left corner then 

in general not all the nonterminal symbols in N will deserve consideration for being 

a lefthand side of the production. That is, once we have recognized the left corner 

X of a production then we know that the lefthand side of the production is in the 
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set {A i A ÷ ~ in P, for some ~ ~ ~*}. These sets form a so-called weak partition 

of the set of nonterminal symbols. That is, a family of nonempty subsets of N is 

called a wea~ partition of N if for each element A ~ N there is a subset in this 

family which contains A. Notice that in the usual definition of a partition we have 

also the condition that the subsets are pairwise disjoint~ For weak partitions we 

will use the same notation as for partitions. Hence, if z is a weak partition of a 

set V, then we write x m y (mod ~) if x and y are in the same subset of the weak 

partition 7. Notice that for a weak partition we do not necessarily have that x m y 

and y ~ z implies that x ~ z. 

Recently various classes of grammars have been introduced for which a (weak) 

partition of the set V of grammar symbols plays an essential role. Clearly, in 

Chapter 8 we have already given a definition of such a class of grammars, viz. the 

strict deterministic grammars. We recall this definition since we want to generalize 

it. 

A granmmr G = (N,Z,P,S) is said to be a strict deterministic grammar if there 

exists a partition w of V such that 

(i) Z ~ ~, 

(ii) For any A,A ~ ~ N and ~,~,~' ~ V*, if A ÷ ~, A ~ ÷ ~B' and A m A'(mod ~), then 

either 

(a) both ~,$' # £ and ~ : B m I : ~'(mod ~), or 

(b) ~ = $' = g and A = A'~ 

In Harrison and Havel [60] some remarks on the parsing procedure for strict 

deterministic grammars are given. The strategy can be explained by specifying a 'work- 

ing set' which consists of the nodes of the parse tree that are currently under 

processing. The nodes enter this set in a top-down order and the nodes exit from the 

working set in a bottom-up order. 

In Friede [36,37] a definition for strict deterministic grammars with look-ahead 

is given. We use the name strong SD(k) to denote these grammars. 

DEFINITION 12.7. A CFG G = (N,Z,P,S) is said to be a strong SD(k) granmmr for some 

k ~ 0, if there exists a partition w of V such that 

(i) Z ~ ~, 

(ii) For any A,A' e N and ~,~,B' e V*, if A ÷ ~, A' + ~$' are productions in P, 

A m A'(mod ~) and 

FIRSTk( ~ FoLLOW, A)) n FIKSTk(~' FOLLOW~(A')) # 
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then either 

(a) both 8,~' # g and ] : 8 -= I : 8' (mod ~), or 

(b) ~ = B' = ~ and A = A'. 

We will present the relations between the classes of grarmmars which have ~ean 

defined in section 12.3 and those which will be defined here. We start with the strong 

LP(k) gra~=nars and we show that any strong LP(k) grammar is a strong SD(k) grammar, 

with that also accomplishing the inclusion of the class of strong LL(k) gra~m~ars in 

the class of strong SD(k) grammars. 

THEOREM ]2.]5. For any k e 0, if G is a strong LP(k) grammar then G is a strong 

SD(k) grammar. 

Proof. Let G = (N,E,P,S) be a strong LP(k) grammar. Define a partition ~ of V by 

= {{A} I A c N} u {Z}. 

We prove that w satisfies the conditions of Definition ]2.7. Consider two productions 

A ~ ~ and A + aS'. If 8 = 6' then the conditions are trivially satisfied. Otherwise, 

if G is not the longest common prefix of ~ and G~', then both ~ # g, ~' # g and 

] : 8 = ] : 8', whence ] : 8 ~ ] : 8'(mod w). If G is the longest common prefix of 

a~ and ~8', then by definition of a strong LP(k) grammar we have that 

FIRSTk(~ FOLLOWk(A)) n FIRSTk(8' FOLLOWk(A)) = ~. 

Therefore, any strong LP(k) grammar is also a strong SD(k) grammar. D 

However, and therefore we have used the name strong SD(k), it is not the case 

that every LL(k) or LP(k) grammar is SD(k). Consider t~e following LL(2) grammar with 

productions 

S +aAa 

S ÷ bAba 

A÷b 

A ÷ E 

If we follow the definition of a strong SD(k) grammar, then we see that for the pro- 

ductions A ÷ b and A + c we have A m A and 

ba E FIRST2(b FOLLOW2(A)) n FIRST2(g FOLLOW2(A)) 

and the conditions (a) and (b) are not satisfied. 
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Pittl [132] introduced another generalization of the class of strict determi- 

rdst~ grammars. However, instead of a partition of V, a weak partition of the set 

Mk(C ) = {(A,u) I A e N and u e FOLLOWk(A)} 

is defined. 

DEFINITION ]2.8. Let G = (N,E,P,S) be a CFG, let k e 0 and let ~ be a weak partition 

of Mk(G). Then ~ is called admissible if for any (A,u), (A',u v) ~ Mk(G), with ~,8, 

~' ~ V ~, if A ~ ~ and A' + ~' are in P and (A,u) ~ (A',u')(mod 7), then 

FIRSTk(~U) n FIRSTk(~'u') # 

implies that either 

(i) ! : B c E and l : 8' ~ E, or 

(ii) ~ = C~, 8' = C'y' for some C,C' ~ N, y,y' ~ V* and (C,Z) ~ (C',z')(mod ~) for 

all z ~ FIRSTk(YU), z' e F!KSTk(Y'u'), or 

(iii) ~ = 8' = g and A = A'. 

In Pittl [132] this definition is obtained as the result of his efforts to give 

a simple characterization of a class of grammars which had only been defined, until 

then, in a rather obscure way. In the framework of this chapter we prefer to use 

the name weak SD(k) grammars for grammars which have an admissible partition. 

DEFINITION ]2.9. Let k e O. A grammar G = (N,~,P,S) is said to be a weak SD(k) gram- 

mar if there exists an admissible partition of Mk(G). 

The classes of strict deterministic grammars, strong SD(O) grammars and weak SD(O) 

grammars coincide. The adjectives strong and weak are justified as follows. 

THEOREM 12.16. Let k e 0. If CFG G is a strong SD(k) grammar then G is a weak SD(k) 

grammar. 

Proof. Assume that G = (N,E,P,S) is a strong SD(k) grammar with a partition ~ of V 

which satisfies Definition 12.7. Define ~a' an admissible partition of Mk(G) in the 

following way. For any (A,u), (A',u') c Mk(G), define 

(A,u) ~ (A~,u ~) (mod ~a ) 

if and only if 
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A E A' (mod ~). 

Clearly, ~a is a partition of Mk(G). Reflexivity, sy~netry and transitivity are 

trivially satisfied since ~ is a partition of V. Moreover, ~a is admissible. This 

can be seen as follows. Let (A,u), (A'u') E Mk(G) and let A + ~8, A + ~B' ~ P, for 

V*o some ~,~,8' e If (A,u) m (A',u')(mod Za ) and 

FIRSTk(SU) n FIRSTk(~'u') # ~, 

then also 

FIRSTk(8 FOLLOWk(A)) n FIRSTk(8' FOLLOWk(A)) # 

and it follows from Definition ]2.7 that we can have the following two cases: 

(1) 8,8' # e and l : 8 ~ l : 8' (mod ~). Hence, ] : B E ~ and I : 8' ~ E or ~ = Cy 

V* C' and 8' = C'y' for some C,C' E N, y,y' c and C m (mod ~). In the latter case, 

if z ~ FIRSTk(YU) and z' ~ FIRSTk(Y'u') , then z e FOLLOWk(C) and z' ~ FOLLOWk(C') 

and it follows from the definition of ~a that (C,z) ~ (C',z') (mod ~a ). 

(2) ~ = 8' = g and A = A'. 

Hence, any strong SD(k) grau~nar is a weak SD(k) grat~ar. 

We emphasize that the admissible partition ~ which is defined in Theorem 12.]6 a 
is a partition (without the adjective weak) Of Mk(G ) . The question can be raised 

whether each weak SD(k) grammar with an admissible partition ~a which is in fact a 

partition of Mk(G) is a strong SD(k) grammar. However, this is not the case. The 

intuitive reason is that for strong SD(k) grammars the look-ahead is not used in a 

'context-dependent' way. That is, for strong SD(k) grammars there exist situations in 

which nonterminal symbols are forced to be equivalent due to some look-ahead which 

can only appear in other situations. 

Our LL(2) example grarmnar with productions 

S÷ aAa 

S -~ bAba 

A÷b 

A+E 

is a grammar which is not strong SD(k) but it is weak SD(2) for the partition 

= {{(S,e)}, {(A,a)}, {(A,ba)} 
a 

of M2(G). In [132] an example of a grammar G can be found which is weak SD(k) and 
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for which only a weak partition of ~(G) can be found. Therefore it is possible to 

define a proper subclass of the class of weak SD(k) grammars which properly includes 

the class of strong SD(k) grammars and which is defined by the restriction that the 

admissible partition should be a partition of Mk(G). We will not investigate this 

class of gr~rs here. 

Next we show that any LP(k) gran=nar is a weak SD(k) grammar, with that also ac- 

cunplishing the inclusion of the class of LL(k) grammars in the class of weak SD(k) 

grammars. A few preliminaries are needed. 

Let G = (N,S,P,S) be a CPG and let k e 0. For any A ~ N, define 

E* * OLLk(A ) = {L L = FIRSTk(U) for some u c V* and w E such that S ~ wA~} 

and define 

~* * 
OLPk(A) = ~L L = ~ FIRSTk(~ i) for some w ~ such that S ~ wA~i, ~i ~ V*}. 

Notice that, due to Lemma 12.1, for LL(k) grammars both sets coincide. In Aho and 

Ullman [3] the sets OLLk(A) are used for LL(k) testing. 

THEOREM 12.17. For any k e 0, if G is an LP(k) grammar then G is a weak SD(k) grauunar. 

Proof. Let G = (N,E,P,S) be an LP(k) grammar. Define a weak partition ~ of Mk(G) 

as follows. For any (A,u), (A,u') e Mk(G) define (A,u) ~ (A,u') (mod ~) if and only 

if there exists a set L ~ OLPk(A) such that u, u' ~ L. Clearly, in this way a weak 

partition of Mk(G) is defined. We show that ~ is an admissible partition. Let (A,u), 

(A,u v) ~ Mk(G) such that (A,u) ~ (A,u') (mod ~). Then we know that there exist left- 

most derivations 

and 

s 

S ~ wA~ ~ 

such that u E FIRSTk(~) and u' £ FIRSTk(~'). Let, for some ~,B,B' ~ V , the produc- 

tions A ~ ~ and A ~ ~' be in P. 

Suppose ~ # ~' and ~ is the longest cormnon prefix of u~ and ~'. Since G is 

LP(k) we have that 

FIRSTk(~U ) n FIRSTk(~u') = @. 

Suppose ~ ~ ~ and ~ is not the longest common prefix of ~ and ~'. Then 
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l : 8 = l : 8' and either I : 8 ¢ E and ] : 8' ~ E or 8 = Cy and 8' = CT' for some 

V*. C,C' E N, y,y' ~ Since there exist derivations 

and 

S ~ w'Cy~ 

S ~ w'CT'w' 

for some w' E l*, we may conclude that for all z e FIRSTk(YU ) and z' e FIRSTk(Y'u' ) 

we have that (C,z) -= (C,z') (mod 7[). 

It remains to verify that if 8 = 8' then the conditions of an admissible parti~ 

t~on are also satisfied. If 8 = 8' and 8 # g, then we have exactly the situation 

(l : 8 ffi I : 8') which was described above. If 8 = 8' = E then condition (iii) of 

the implication is trivially satisfied. 

This concludes the proof that ~ is an admissible partition and therefore grammar 

G is a weak SD(k) grammar. D 

We are now in a position to present the inclusion diagram of Figure ]2.5. The 

drawn lines in this figure denote proper inclusions. The interrupted line denotes 

a conjecture. That is, we conjecture that any weak SD(k) graamar is a weak PLR(k) 

graamar. Because LC(k) grammars can be left recursive and weak SD(k) grammars can 

not be left recursive (cf. Pittl []32]) we can not have the inclusion of the class 

of LC (or PLR) grammars in the class of weak SD grammars. 

s ~ "~ ~r" weak PLR 

s ! weak" SD 

strong SD 

~trong LP 

J 

~trong PLC / 

strong LL 

Figure 12.5. Inclusion diagram. 
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We conclude this section wi~h some notes on possible future research. Moura 

(cf. [I13]) has announced results and transformations which deal with the relation- 

ships between the classes of LR(k), weak SD(k) and strong SD(k) grammars. Ukkonen 

[162] has presented a transformation from weak PLR(0) grammars to strict determinis- 

tic grammars. The question arises whether this transformation can be used for weak 

PLR(k) grammars. Unfortunately the transformation is rather complicated. It would 

be useful if we had more insight in the class of k-transformable grammars (el. Hammer 

[56]). No formal proof is available for the inclusion of the class of PLR(k) grarmnars 

in the class of k-transformable grammars. Moreover, is every k-transformable grammar 

a weak PLR(k) grammar ? 

Sehlichtiger [147,148] has introduced the class of 'par~ion~dchain gra~mlars~° 

Partitioned chain gramanars are defined with the help of chains (cf. Definition 5.1.) 

and a partition of the set of nonterminal symbols. Schlichtiger uses the names PC(k) 

(partitioned chain) grammars and EPC(k) (extended PC(k)) grammars. In the framework 

of this chapter and, moreover, to avoid confusion with the extended context-free gram- 

mars, it would be better to use the names strong PC(k) grammars and PC(k) grammars. 

In [148] relationships between the partitioned chain grammars and the PLR(k) grammars 

are mentioned. Moreover, it is mentioned that the class of PC(k) grammars (which we 

prefer to call strong PC(k) grammars) properly includes the class of strong SD(k) 

grammars. 

It is our belief that the classes of grammars which have been mentioned in this 

chapter can be put together in a framework and in an inclusion diagram in which the 

relationships and the parsing strategies can be shown in a rather natural way. 
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