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PREFACE

This monograph develops a theory of grammatical covers, normal forms and
parsing. Covers, formally defined in 1969, describe a relation between the sets
of parses of two context-free grammars. If this relation exists then in a formal
model of parsing it is possible to have, except for the output, for both grammars
the same parser.

Questions concerning the possibility to cover a certain grammar with grammars
that conform to some requirements on the productions or the derivations will be
raised and answered. Answers to these cover problems will be obtained by introduc-
ing algorithms that describe a transformation of an input grammar into an output
grammar which satisfies the requirements.

The main emphasis in this monograph is on transformations of context—free
grammars to context—free grammars in some normal form. However, not only transforma-—
tions of this kind will be discussed, but also transformations which yield grammars

which have useful parsing properties.

Organization of the monograph

This monograph can be viewed as consisting of four pgrts.

The first part, Chapters 1 through 3, introduces the cover concept, the moti-
vation of our research, the problems and, moreover, it reviews previous research.

The second part, Chapters 4 through 7, provides cover results for normal form
transformations of context-free and regular grammars.

The third part, Chapters 8 through 10, is devoted to cover results for three
classes of deterministically parsable grammars, viz. LL(k), strict deterministic
and LR(k) grammars. In this part, a discussion of some syntactic aspects of compiler
writing systems is included.

The fourth and final part of this monograph consists of Chapters 11 and 12.
Chapter 11 contains a detailed discussion on simple chain grammars. Chapter 12 sur-
veys parsing strategies for context-free grammars. In this chapter cover properties
of transformations to LL(k) and some other classes of grammars are considered.

A Bibliography and an Index appear at the end of the monograph.

A few sections and notes in this monograph are marked with a star. These starred
sections and notes can be skipped without loss of continuity. Some of these starred
sections and notes deal with syntax categories and grammar functors. Others deal with
technical arguments on parsing at a moment that a reader who is not acquainted with
some less conventional ideas of parsing will not grasp their significance.

The sections and notes on syntax categories are included to give the interested
reader and the reader who is familiar with these concepts a notion of the differ~

ences and the similarities between these concepts and the grammar cover concept.



v

Moreover, it will become clear that in our grammar cover framework of Chapter 2 we
have borrowed from ideas of the grammar functor approach.

We have tried to give full and formal proofs for most of the results which ap-
pear in this monograph. Only in those cases that proofs are available in publications
elsewhere or im cases that we had the idea that a certain result should be clear
because of its simplicity or because of what has been proven in the foregoing parts

of the monograph, we have omitted a proof or formal detail.
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CHAPTER 1
INTRODUCTIONS AND PRELIMINARIES

I.1. INTRODUCTION

Two context—free grammars which generate the same language are said to be weakly
equivalent. Weak equivalence can be considered as a relation of grammatical similax-
ity of context—free grammars. If two grammars G] and G2 are weakly equivalent, then
for each parse tree T] of G, there exists a parse tree T2 of G2 which has the same
frontier, and conversely. Clearly, this relation of weak equivalence does not neces-—
sarily say that the shapes of the trees are closely related. Grammatical similarity
relations have been introduced which describe relationships between the parse trees
of the two grammars.

These relations sometimes but not always presuppose weak equivalence. For example,
there exists the relation of structural equivalence. In that case we demand that,
except for a relabeling of the internal nodes, the parse trees of the two grammars
are the same.

Many other relations have been defined. Only a few will be considered here and

only one of them, the grammar cover, will be treated in detail.

In many cases of interest it is quite natural to have weak equivalence between
two grammars. For example, a grammar can be changed to an other grammar which gener-
ates the same language. Such a transformation on a grammar may be done for several
reasons.

By definition, each context-freelanguage is generated by a context—free grammar.
Instead of arbitrary context-free grammars one can consider context—free grammars
which conform to some requirements on, for example, the productions or the derivations
of the grammar. Then it is natural to ask whether each context-free language has a
context—free grammar of this form and, if so, how to transform a grammar to this
(normal) form.

One reason for considering normal forms may be the inherent mathematical
interest in how to generate a family of context—free languages with a grammatical
description as simple as possible. Moreover, normal forms can simplify proofs and
descriptions in the field of formal languages and parsing. However, in 1975 it still
could be remarked (Hotz[65]):

“Resultate iiber die strukturelle Verwandschaft verschiedener Sprachen existieren kaum.
Selbst bel der Herleitung von Normalformentheoremen fiir Grammatiken hat man sich mit

der Feststellung der schwachen Aquivalenz begniigt".

Some normal form descriptions for context-free grammars, or for grammars belong-

ing to the various subclasses of the class of context-free grammars, can be particu-



larly amenable for parsing, and this can be a strong motivation to transform grarmmars.

Transforming grammars into normal forms or to grammars which have other parsing
properties can sometimes lead to faster or more compact parsers for these grammars.
However, in these cases it is desirable to have a stronger relation than weak equiv-
alence between the original grammar and the newly obtained grammar. This can be seen
as follows.

Consider a very practical situation in which we want to build a compiler for a
given programming language. We are interested in the part of the compiler which per-
forms the symtactic analysis. We can consider this analysis as a translation from a
sentence to a string which consists of procedure calls to perform the code generation.

One now can try to find a 'better' grammar (from the point of view of parsing)
such that this translation is preserved. If this is possible, then parsing can be
done with respect to the new grammar. The concept of grammar cover which is studied

in this monograph describes a preservation of this tranmslationm.

We confine ourselves to a model of parsing in which each sentence is given a
'description'of each of its parse trees by means of a string of productions of the
grammar. The correspondence of two grammars which is described by the grammar cover
is the relation between the parse tree descriptioms for a given sentence. In Chapter
8 we have a short discussion on the limitations of this model.

Often a description of a parse tree of a sentence W is given by means of a left
or right parse, that is, a string of productions which are used in a derivation (left-
most or rightmost) of the sentence w. Although we will also allow other descriptions
of parse trees, it will be clear that we are interested in the relationships among
the ‘derivations of sentences of the grammars which we want to relate. This idea can

be recognized in many concepts.

In the older literature one can find ideas and examples which come close to
later formal concepts. Transformations on context-free grammars have been defined in
practically oriented situations of compiler comstruction. In those cases no general
definition of the relation between the grammars was presented.

Grammar covers, in the sense that we will use them here, were introduced about
1969 by Gray and Harrison [48]. Their interest in this concept was based on its ap-
plications in the field of parsing.

The product of the syntactic analysis, the parse, can be considered as the argument
of a semantic mapping. In the case that a context-free grammar G' covers a context~
free grammar G, then each parse with respect to G' of a sentence W can be mapped by a
homomorphism on a parse with respect to G of w. Hence, we can parse with respect to
G* and use the original semantic mapping.

Other examples of grammatical similarity relations are grammar functors and
grammar forms. Grammar functors (X-functors) were introduced by Hotz [63,64] as spe-

cial functors on categories associated with (general) phrase structure grammars. These



categories originate from work on switching circuits. The objects of a syntax cate-—
gory are strings over the grammar alphabet. The derivations are then considered as
morphisms. The main concern has been to find an algebraic framework for describing
general properties of phrase structure grammars. Later, functors have been considered
from a more practical point of view and topics related to parsing have been discussed
within this framework. See, for example, Bertsch [14], Benson [13] and Hotz and Ross
[e81].

In the case of grammar forms (Cremers and Ginsburg [21]) the starting point is
a (master) grammar from which by means of substitutions of the nonterminal and ter-
minal symbols other grammars are obtained. Observations on the parsing properties
of the master grammar can be valid for all the grammars in the grammatical family

which is obtained by these substitutions (cf. Ginsburg, Leong, Mayer and Wotschke [44 1),

There are other examples of grammatical similarity relations. In Hunt and Rosen-
krantz [69] many of them are discussed from the point of view of complexity.

In this monograph we will discuss the concept of grammar cover and its usefulness
for parsing.

At this point we should mention two approaches which could have been followed
and which will not be discussed further.

Firstly, it would be possible to consider transformations on attribute grammars
(Knuth [78]). Here, attributes are associated with the nodes of a parse tree. These
attributes (which contain the necessary information for the code generation) are
obtained from attributes associated with the symbols which appear in the productions
and from attribute evaluation rules. If an attribute grammar is transformed to, for
example, some normal form attribute grammar, then we have not only the question of
language equivalence, but also, explicitly, the question of 'semantic' equivalence.
Such an equivalence is explored in Bochmann [15] and Anderson [51].

Secondly, it would have been possible to discuss translation grammars (Brosgol
[18]) and transformations on tramslation gramars .

There is a third remark which we want to make at this point. We consider trans-
formations of grammars. If they are applied with a view to obtain faster or compact-
er parsing methods then, instead of transforming the grammar, ome can build a parser
for the grammar and then change (optimize) this parser. This is, for instance, a very
common method if an LR-parser is constructed. For example, instead of eliminating
single productions from the grammar, single reductions can be eliminated from the
parser (cf. e.g. Anderson, Eve and Horning [6]).

Answers to questions on the existence of a covering grammar can be answers to
questions whether or not a parser for a given grammar can be modified in certain ad-

vantageous ways.



1.2. OVERVIEW OF THE CONTENTS

In Chapters! to 6 of this momograph we will be concerned with transformations of
arbitrary context-free grammars to. context—free grammars in some normal form repre-
sentation. The main normal forms which will be considered are the non~left-recursive
form and the Greibach normal form. Cover results for these normal forms will be pre-
sented.

Throughout this monograph we will pay much attention to what has been said before
by various authors on these transformations. However, hardly any attentiom will be
paid to grammar functors. Grammar covers are much more amenable than grammar functors

and we think this is shown fairly convincingly.

This section will be followed by a section in which we review some basic termi-
nology concerning formal grammars, automata and syntax categories.

In Chapter 2 grammar covers and functors are introduced. The framework for gram—
mar covers which is presented is very general. Partly this is done to obtain an ana-
logy with the grammar functor approach. The second reason, however, is that we need
this generality to include various definitions of covers which have been introduced
before and to be able to describe practical situations which appear in the field
of compiler building.

Chapter 3 shows the efforts which have been made by other authors to grasp some
of the 'structure’ or ‘semantic' preserving properties of transformations of context-
free grammars.

In Chapter &4 some general properties of grammar covers are shown and a few pre-
liminary transformations are introduced.

Chapter 5 contains the main transformations of this monograph. It is shown,
among others, that any context—free grammar can be covered with a context-free gram-
mar in Greibach normal form. In Chapter 6 we have collected the cover results for
normal forms of context-free grammars. Chapter 7 is devoted to some similar results
for the class of regular grammars.

In Chapter 8, 9 and 10 we will be concerned with classes of grammars for which
there exist parsing methods which can be implemented by a deterministic pushdown
transducer. Especially in these chapters we will pay attention to the usefulness of
grammar covers for compiler writing Systems. Both general cover results and results
for normal forms for LL(k), strict deterministic and LR(k) grammars will be presented.

Finally, in Chapter !l and 12 we discuss a few subclasses of LR(k) grammars in
the light of the results which were obtained in the preceeding chapters. In Chapter
11 a variety of results are shown for the class of simple chain grammars. Cover prop~
erties, parsing properties and properties of the parse trees of simple chain gram—
mars will be introduced. In Chapter 12 we consider generalizations of the class of

simple chain grammars.



1.3. PRELIMINARIES

We review some basic definitions and concepts of formal language theory. Most
of the notation used in this monograph is presented in this section. It is assumed
that the reader is familiar with the basic results concerning context-free grammars
and parsing, otherwise, see Aho and Ullman {3,4], Lewis, Rosenkrantz and Stearms [100]
and Harrison [58]. Notations concerning grammars and automata and notations concerning

categories follow closely those of Aho and Ullman [3] and Benson [13], respectively.

An alphabet is a finite set of symbols (equivalently, letters). The set of all
strings (or words) over an alphabet V is denoted by V. Ifa e V% then ]a|, the
length of a, is the number of accurreénces of symhols in 0. The empty string (the string
with length zero) is dencted by €. If o ¢ V*, then GR denotes the reverse of «.

The set of non—negative integers is denoted by N. If Q is a set, then"[Ql stands
for the number of its elements. The empty set is denoted by @¢. If Q and R are sets,
then Q\R or Q-R denotes the set {x | x ¢ Q and x ¢ R}. V¥ is the free monoid finitely
generated by V. V' = V*\{e}. A (monoid) homomorphism is a mapping between monoids
with concatenation as operation. If v and W* are two free monoids and h : V* -+ W*

is a homomorphism between them, then h(€) = € and h(af) = h(a)h(B) for all a, B ¢ v,

1.3.1. GRAMMARS, AUTOMATA AND TRANSDUCERS

DEFINITION 1.1, A context-free grammar G is a four-tuple G = (N,I,P,S), where

(i) N and I are alphabets, Nn I =@ and 5 € N. The elements of N are called nonter-
minals and those of I terminals. S is called the start symbol.

(ii) P is a finite set of ordered pairs (A,0) such that A ¢ N and o is a word over
the vocabulary V=N u Z. Elements (A,n) of P are called productions and are

written A + Q.

Context-free grammar will be abbreviated to CFG. Elements of N will generally
be denoted by the Roman capitals A, B, C,...; elements of I by the smalls a, b, c,...
from the first part of the Roman alphabet; X, Y and Z will usually stand for elements
of V; elements of * will be denoted by u, v, w, X, y and z and Greek smalls a, B,
Ys+.» will usually stand for elements of v*

It will be convenient to provide the productionsin P with a label. In general
these labels will be in a set AG (or A if G is understood) and we always take
a,= i | 1 €is< |P|}; wve often identify P and Ag-

We write i.A + & if production A + @ has label (or number) i. A is called the
lefthand side of this production; & is the righthand side of the production and o
is a rule alternative of A. If A has rule alternatives a, Opyernesd , We write

A>ap oyl o



hence, '!', a symbol mot in V¥, is used to separate rule alternatives. If these pro-

ductions have labels il’iz"""in’ then we use the notation

i/ di oA afa ... .

If A ¢ N, then rhs(a) = {a | A > a is in P}.

DEFINITION 1.2. Let G = (N, P,S) be a CFG. For a,B ¢ v we say that o directly

. . . * .
derives B, written o = B8 , i1f there exist 50, € V and A+ vy in P such that

2

o = ot,IAocz and B8 = Yo,

If o e I* we say that o left derives B, written a »; B. If @

right derives B, written a 6 B.

5 € Z* we say that o

The subscript G denoting the grammar in question is omitted whenever the iden-
tity of this grammar is clear from context. The transitive-reflexive closures of

. *x ok * . s s
these relations are denoted by =, = and =, respectively. The transitive-irreflexive

L R’
+ o+ + .
closures are denoted by =, T and 2 respectively.
A sequence Oy = 0 = cenn =0 is called a derivation of o from %y- A sequence
% f a] f PR ? un (ao 2 al ? feena ? an) is called a leftmost f(rightmost) deriva-

tion of o_ from o,.
n 0
If we want to indicate a derivation using a specific sequence T of productions,
. m .o 7 * * . .
we write = (f, ?), hence, T e P or m ¢ A . In some cases we will use the notation
n n n P . . . . . .
a =R {a 7 B, o ﬁ 8) to indicate that the derivation in question is such that o derives

B8 in n steps, that is, (a,B) € (s)n.

DEFINITION 1.3. Let G = {N,Z,P,S) be a CFG. The language of G is the set L(G) =

= fwelI®| s3w}. For any a ¢ Vi, L) = wel'|a 2 w}. CFG G is said to be

. , * * il
unambiguous if there does not exist w ¢ I and W, m' ¢ A" such that S PV and
1

S % w, where T # T'. Otherwise, G is said to be ambiguous. Let w ¢ L(G), then w

is called a sentence of G. L(G) is said to be a context-free language (CFL for short).
*
DEFINITION 1.4, Let G = (N,I,P,S) be a CFG. Let o ¢ V .

a. k : o is the prefix of o with length k if |a| = k, otherwise k : o = o.
b. o : k is the suffix of o with lenmgthk if |u] > k, otherwise o : k = a.
c. FIRSTk(a) =k :rwel [ o 3wl

Index k of FIRSTk will be omitted when k = 1.

%,
NOTATION 1.1. Let ¥ and A be disjoint alphabets. Homomorphism hE : (Zu A)* + A" is
defined by

hz(x) =X if X € A, and

g if X ¢ Z.

hs (X)



Homomorphism hZ will be called the L-erasing homomorphism.

The number of different leftmost derivations from S to w is called the degree
of ambiguity of w (with respect to G), written <w,G>. By convention, if w ¢ L(G),
then <w,G> = 0. We say that o € V* is a sentential form, a left sentential form or

. * * .
a right sentential form, if S 3 o, S T and S ? 0., respectively.

Derivations (or rather, equivalence classes of derivations) can be represented

by trees. We distinguish between derivation trees and parse trees.

DEFINITION 1.5. A derivation tree is recursively defined by

(i) A single node labeled § is a derivation tree.

(ii) For every derivation tree, let D, labeled A ¢ N, be a leaf of the tree. If
A+ XIXZ"'Xn (Xi € V, 1 £1i<£n) is in P, the tree obtained by appending to D
n sons with labels XI’XZ""’Xn in order from the left, is a derivation tree. If
A > ¢ is in P, the tree obtained by appending to D one son with label € is a

derivation tree.

The set PTR(G), the set of parse trees of G, consists of all derivation trees
where each leaf is labeled with a terminal or with €. The frontier of a derivation
tree is the string obtained by concatenating the labels of the leaves from left to right.

if T is a derivation tree, then f£r(7T) denotes the frontier of 7.

DEFINITION 1.6.

a. Let G = (N,%Z,P,S) be a CFG. Define P' = {A~» [0] | A> a ¢ P}, where '[' and ']"
are special brackets that are not terminal symbols of G¢. [¢] = (8,2 u {[,1},P',S),
the parenthesized version of G, is called a parenthesis grammar (McNaughton[iGd).

b. Let G = (N,%X,P,S) be a CFG. Define P' = {A + [ia]i | i.A > o ¢ P}, where '[i' and
']i' are special brackets that are notterminal symbols of G. Grammar GB =
= (N,Z u {[i | ie AG} u {]i | ie AG}, P', S), the bracketed version of G, is

called a bracketed grammar (Ginsburg and Harrison [43]).

DEFINITION 1.7.

a. CFG G and CFG H are said to be weakly equivalent if L(G) = L(H).
b. CFG G and CFG H are said to be strongly equivalent if PTR(G) = PTR(H).
c. CFG G and CFG H are said to be structurally equivalent if L([G]) = L({[H]).

A symbol X € V is useless in a CFG G = (N,L,P,S) with P # ¢, if there does not
exist a derivation $ 3 wXy 3 wxy, where wxy ¢ I". There exists a simple algorithm to
remove all useless symbols from a CFG (Aho and Ullman [3]). Throughout this monograph

we assume that the grammars under consideration have no useless symbols. Any produc-—
tion of the form A +~awith o € N is called a single production.



DEFINITION [.8. A CFG G = (M,L,P,S) is

a. reduced, if it has no useless symbols or if P = ¢,
b. e-free, if P < Nx V' or P o N x (W{sH' v {s » e}.
¢. cycle-free, if, for any A € N, a derivation A % A is not possible.

d. proper, if G has no useless symbols, G is e-free and G is cycle~free.

DEFINITION 1.9, Let G = (N,Z,P,S) be a CFG. A nonterminal A ¢ N is said to be left

. . . * + . .
recursive 1f there exists o ¢ V such that A = Ag, Grammar G is saild to be left recur-
sive if there exists a left recursive nonterminal in N. Otherwise, G is said to be

non-left-recursive (NLR).

R

For any CFG G = (N,L,P,S) define GR = (N,Z,PR,S) with PR = {a+a A+ o c P,

A CFG G is said to be non-right-recursive (NRR) if GR is NLR.

DEFINITION 1.10. A CFG G = {(N,2,P,S) is
a. in Greibach normal form (GNF) if
* *
Pe NXIN or Pc N x E(N\{8})" v {8 + ¢l.
b. in quasi Greibach normal form (quasi-GNF) if
PeNxIv oorPa N xZW\SH" v (s~ el
c. left factored if P does not contain distinct productions of the form A - uB] and

A+G,Bz with a # €.

We say that ¢ is in GNF if grammar GR is in GNF . For each CFL one can find a
CFG which is in ome of the forms defined in the Definitions 1.8 to 1.10. Greibach
normal form is also called standard form. A grammar is said to be in standard 2-form
if it is in GNF and each righthand side of a production contains at most two nom-

terminals.

DEFINITION 1.}i. A CFG G = (N,I,P,S) is said to be

a. right regular, if each production in P is of the form A > aB or A > a, where
A,B ¢ N and a ¢ Z.
b. left regular, if each productiom in P is of the form A > Ba or A * a, where

A,B e N and a € Z.

A regular grammar is a grammar which is either left regular or right regular.

A set L is said to be regular if there exists a regular grammar G such that L = L(G).

Now we will generalize grammars to (simple) syntax directed translation schemes.



DEFINITION 1.12. A simple syntax directed translation scheme (simple SDTS) is a

five-tuple T = (N,%,I',R,S), where

(i) N,X and I' are alphabets, S ¢ Ny NnZ =@ and Nn ' =@, Let V=N uy I and
V' = N u I'. The elements of N are called nonterminals and those of Z and L'
input symbols and output symbols, respectively. $ is called the start symbol,

(ii) R is a finite set of rules of the form A + a,B, where a € V*, B e v and

hy (@) = hyo (8).

We write (0,B) = (y,8) if there exist a0, € V*, 81,62 e V'™ and A ~+ @,9" in
R such that (a,8) = (a,Aq,, B A8,)), hy(a)) = hy((B)), ho(a)) = hyy(B,) and (v,8) =
= (al¢u2, Blw'BZ). Closures of '"s" are defined analogous to those for a CFG.

The (syntax directed) translation defined by T, denoted T(T), is the set of

pairs {(w,w") ] (S,8) 3 (w,w'), w ¢ £* and w' e Z'*}. Grammar Gl = (N,Z,P,8) with
Pp={a~+aqa ] A~ o,0' is in R for some a' ¢ (N v Z'ﬁ},

is said to be the input grammar of T. Similarly, the output grammar G0 = (N,Z',PO,S)

is defined by the set of productions

PO ={A+a'" | A+0a,a" is in R for some & ¢ (N U Z)*}.

Frequently we will start with a CFG G = (N,Z,P,S) and generalize it to a simple
SDIS T = (N,Z,AG,R,S), where AG contains the production numbers and R contains rules
of the form A + 0,a', where A+ o is in P and o' is a word over (N v AG)* which sat-
PO " oo
isfies hA(a ) hz(a).
In such a case we say that simple SDIS T is defined cn CFG G.

DEFINITION 1.13. A simple SDTS is semantically unambiguous if there are not two dis—

tinct rules of the form A + a,8 and A + o,Yy.

The final definitions (again from Aho and Ullman [3]) in this subsection deal with

automata.

DEFINITION J.14. A pushdown automaton (PDA for short) is a seven-tuple P =(Q,ZI,T,

S,qO,ZO,F), where

(1) Q is a finite set of state symbols, I and I' are alphabets of input symbols and
pushdown list symbols, respectively; 9 € Q is the initial state, ZO el ig
the start symbol and F & Q is the set of final states.

(ii) ¢ is a mapping from @ X (X u {e}) X T to the finite subsets of Q x F*.

A configuration of a PDA P is a triple (q,w,0) in Q X ¥ x I'*. The binary rela-

tion + ('move') on configurations is defined by:

(q,aw,2a) F (r,w,ya)
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if and only if

8(q,a,Z) contains (r,y), for any q,x € Q, ae L u {e}, w e Z*, Zel
and o,Y € T*.

If a = €, then such a move is called an €-move. An initial configuration of P is a
configuration of the form (qo,w,ZO) for some w € £r.

The language defined by P is
* * *
L(P) = wel | (qo,w,ZO) £ (q,e,0) forsomeq ¢ F and o € ' }.
The language accepted with empty pushdown list is the set
Le(P) = fwel" i (qO,W,ZO) ¢'(q,€,€) for some q € Q}.
It can be shown that each PDA P can be transformed to a PDA P' such that Le(P')=
= L(P), and conversely. This PDA P' can be constructed in such a way that emptiness

of the pushdown list is always achieved in the same state. That is, there exists a

state q_ € Q such that Le(P) = fwel® | (qo,w,ZO) £ (qe,e,e)}.

Any PDA P = (Q,Z,P,S,qO,ZO,F) can be converted to a CFG G = (N,I,P,S) such that
L(G) = Le(P) and such that any leftmost derivation of w in G directly corresponds to

a sequence of moves made by P in processing w (cf. Lemma 2.26 in Aho and Ullman [30).

One of the basic results in the theory of formal languages and automata is the

following.

THEOREM 1.!. The following two statements are equivalent:

1. L is L(G) for a CFG G.
2. L is Le(P) for a PDA P.

We will be concerned with pushdown automata which can produce output.

DEFINITION 1.15. A pushdown transducer (PDT) is an eight-tuple P = (Q,Z,P,Z',S,qo,

ZO,F), where all symbols have the same meaning as for a PDA except that L' is an
alphabet of output symbols and § is a mapping from Q x (Z v {€}) x T to finite sub~-

sets of Q@ x T ox o,

. *
A configuration of P is a quadruple {q,w,a,w') in Q X ¥ x ™ x £'". The move
+ is now defined by:
(g,aw,Zy,w") F (r,w,0y,w'v)

* *
if 8(g,a,Z) contains (r,a,v), for amy q,T € Q, a € T u EY,wel,zZel,a,vyel



*
and w'v ¢ I' .

The (syntax directed) translation defined by P is
W) = {w,w') | (qo,w,Zo,e)ri (4,€,0,w') for some q ¢ F and o ¢ I},
and
T, (B) = {w,u") | (gy,w,24,€) & (q,e,6,") for some q ¢ Q}.
It can be shown that each PDT P can be transformed to a PBT P' such that Te(P') =

= 7(P), and conversely. Also in this case PDT P' can be constructed in such a way

that emptiness of the pushdown list is always achieved in the same state.

Theorem |.! has an analogue for simple 3DTS's and PDT's.

THEOREM 1.2. The following two statements are equivalent:

I. L is T(T) for a simple SDTS T.
2, L is Te(P) for a PDT P.

The following construction shows how to transform a PDT P to a simple SDIS T

such that T(T) = Te(P)' We start with a PDT with ome final state.

STANDARD CONSTRUCTION

Let P = (Q,Z,F,Z',d,qo,zo,{qe}) be a pushdown transducer which accepts with empty
pushdown list in state 4q- We define a simple SDTS T = (N,%Z,Z',R,3) such that T(I) =
= Te(P).
(1) N = {[paq) | p,q e Q, AT}, 5= [qyZq].
(2) R is defined as follows.

I1f 8(p,a,A) contains (r’xlXZ"'Xk’Y)’ where a ¢ Z u {e} andy e Z'*, then if

k > 0, R contains rules
[pAq ] > alrX q;1[q,X,q,]....[q_ X q, ],
y[rxlql][qlxzqzl....[qk_Iquk]
for all sequences q],qz,...,qk of states in Q.

If k = 0, then the rule is [pAr] -+ a,y. 0

Semantical unambiguity can be defined for a PBT in the following way.

DEFINITION 1.16., A PDT P = (Q,Z,F,Z',ﬁ,qD,ZO,F) is semantically unambiguous if, for

any q,r e Q, ac Z u {&}, 2e T, vy e '™ and Ty Ty € £,

2

(r,Y,n,) and (r,y,m,) in §(q,a,2)
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implies ﬂl =Ty

If a PDT P is semantically unambiguous, then the simple SDTS T which is obtained
from the standard construction is semantically unambiguous.

As in the case of context-free grammars, we assume that the rules of a simple
SDTS T are labeled with labels from an alphabet AT ={i]1sis lRJl

Let P = (Q,E,T,Z‘,G,qo,zo,{qe}) be a semantically unambiguous PDT which trans-
lates with empty pushdown list in a final state Q- Simple SDTS T = (N,Z,I’',R,S) is
cbtained from P by the standard construction. Define a homomorphism } : A; > I'™ in
the following way:
If i.A > a0, yo' in R, where a ¢ Z v {e}, y ¢ Z'*, o eN and o' = o, then Y(i) = y.

In this situation we have the following observation.

STANDARD OBSERVATION
Let PDT P, simple SDTS T and homomorphism { : A; » I'" be defined as above. Then

(,x) ¢ T_(P) if and only if (S,8) % (w,x)

in T, with ¢(m) = x.

1.3.2% SYNTAX CATEGORIES

Category theory has found wide applications in theoretical computer science.
For the general theory the reader can ccnsult MacLane [103 and Arbib and Manes [7].
Some of the applications in computer science can be found, among others, in the
ADJ-papers (see Goguen, Thatcher, Wright and Wagner [45]1). For our purposes, the ca-
tegorical treatment of grammars, Hotz and Claus [67], Benson [12] and Schnorr [151]
contain useful material. For concepts and terminology we follow Benson [ 13]..

The characterization of Chomsky-type grammars with categories is due to Hotz [63,64]
and finds its origin in work on switching circuits. Grammar functors will be defin-
ed as certain types of functors between categories associated to grammars.

For the simple reason that grammar functors give too easily occasion to nega-
tive results when one tries to describe the preserving of structure under certain
transformations on grammars, our main interest will be in grammar covers. Therefore,
we confine ourselves to a few notes-on (syntax) categories and, in section 2.3, on

grammar functors.

For the concept of syntax category we follow Benson [13]. Let G = (N,Z,P,S) be
a CFG. Then (V*,P) generates the (free strict monoidal) category S(€), which will be
called the syntax category of G. Here, objects are elements of V* and morphisms are
derivations (or, in fact, equivalence classes of similar derivations) from one object

to the other. Clearly, one can take as representative of such an equivalence class a
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certain type of derivation, for example a leftmost derivation.

Two operations are defined on the morphisms. Firstly, composition of morphisms,
that is, if f1 : o> B and f2 : B> v, then f]of2 t o+ Y is defined to be the com
position

o £1 B i2 Y

Secondly, concatenation of morphisms, that is if f1 B a] > B] and f2 o, > Bz, then

2

f] + f2 Py > BIBZ is (equivalently) described by

aa applying f]} 8.a applying f5 8.8
172 172 172
and

a1a2 applying f2> ale applying f]} 5152,

respectively.

A well-known relation for morphismsis the following
(£138)) + (fy08,)) = (£,+£)) = (g +8,)

illustrated in Figure 1.1.

fl f2 f1 + fZ
¢ I+ o = o
8 &,y 8, + 8

Figure 1.1. Operations on morphisms.

For each object a the categorical identity at o is denoted by ida ra-a.



CHAPTER 2
GRAMMAR COVERS AND RELATED CONCEPTS
2.1. GRAMMAR COVERS

This section introduces the framework for grammar covers. This framework is built
up in a rather formal and general way. Ideas of the grammar functor approach (cf. sec-
tion 2.3) will be used. We think this general setting is useful because of the fol-
lowing reasons.

. Existing grammar cover definitions can be obtained from the framework by intro-
ducing natural restrictions.

. The framework shows the freedom to choose parses for covers different from the
left and right parses.

. The role of ambiguity is made apparent. The framework is such that special pro-
perties of covers can easily be formulated. A possible comparison with the gram—

mar functor approach is made more simple.

Each of the features of the framework will either be given an application in

this monograph or we will refer to a (possible) application elsewhere.

Let ¢ = (N,%,P,S) be a CFG with production numbers in AG. The following defini-
tion is also in Brosgol [18]. However, we distinguish between parse relations and

proper parse relations. Recall that <w,G> denotes the degree of ambiguity of w.

DEFINITION 2.1.

*

a. A relation fG‘E LT ox Az is said to be a proper parse relation for G provided that

(i) if (w,m) ¢ fG and (w',m) € fG then w = w', and

@{di) for each w ¢ Z*

] w,m e £} = <w,6>.
G

b. A relation fG < * % AZ is said to be a parse relation for G provided that

(i) for each w ¢ L{(G) there exists at least one element (w,W) ¢ fG,and

({ii) for each w ¢ e

[{m | w,m) ¢ £} < <w,G>.

If fG is a parse relation and (w,m) ¢ fG then T is said to be an fG-parse of w. It
follows from the definition that if fG is a proper parse relation, then for each
fG—parse there is a unique sentence and for each sentence the number of parse trees

is equal to the number of different f parses for this sentence.
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Index G of fG will be omitted whenever it is clear from the context.

Our following definitions will be based on parse relations. Clearly, every proper

parse relation is a parse relation.

DEFINITION 2.2. Let G' = (N',E',P',S$') and G = (N,LZ,P,S) be CFG's. Let fG' =4
=4 5% x AE. and hG & ¥ x AZ be parse relations. If f ¢ fG' then a partial parse homo-
morphism 8g * fG’ > hG is defined by twoc homomorphisms ¢ : AN 2* and § : AZ. > AZ

such that (w,m) ¢ f implies (p(w), Y(m)) € hG.

Throughout this section f, fG' and hG refer to the relations in this definition
The notation gg = <p,P> will be used to denote that B¢ is defined by the two homo~
morphisms ¢ and Y. We say that 8¢ is a total parse homomorphism or simply a parse

homomorphism whenever f = £ In this case we omit index f from e

G'*
If (w,m) ¢ f then gf(w,ﬂ) denotes (P(w), Y(m)). For any f' < £ we use gf(f') to de-
note the set {gf(w,ﬂ) | Gw,m) € £').

We can now describe various properties of (partial) parse homomorphisms.,

DEFINITION 2.3. A partial parse homomorphism g ° £., > hG is said to be injective

]
if for any (wl,ﬂl) € £ and (wz,wi)e f, if gf(wl,wl) 2 gf(wz,ﬂz) then (wl,ﬂl) = (wz,ﬂz}.
Notice that if a partial parse homomorphism is injective then this does not ex~
clude the possibility that two different sentences in L(G') will be mapped on the
same sentence in L(G).
To describe such a property of a partial parse homomorphism we use the following de-
finition.

DEFINITION 2.4. A partial parse homomorphism B ¢ £, hG is said to be properly

Gl
injective if its restrictionms to o and A;, are injective, that is, if 8 = <p,yP>
then, for any (wl,wl) ¢ f and (wz,ﬂz) e £,

(i) w(wl) = w(wz) implies W, =Wy, and

(ii) w(ﬂl) = w(ﬂz) implies m = ,.
Our next definition deals with surjectivity of partial parse homomorphisms

DEFINITION 2.5. A partial parse homomorphism g ¢ £f., > hG is said to be surjective

G'
if for all (w,m) € hG there exists (w%4m) € f such that gf(w',ﬂ') = (w,m).
Hence, B¢ is surjective if gf(f) = hG. In analogy with Defimition 2.4 we can

introduce the notion of proper surjectivity.
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DEFINITION 2.6. A partial parse homomorphism 8g ¢ fG’ > hG is said to be properly

surjective if for all (w,m) € hG there exists

(i) (w',n") ¢ f such that pw')
(ii) (',m') ¢ £ such that P(mw')

i

w, and

e

However, if hG is a proper parse relation, then there is no difference between sur-
jective partial parse homomorphisms and properly surjective partial parse homomor-

phisms.

THEQREM 2.1.

a. Any properly injective partial parse homomorphism is injective.
b. Let hG be a proper parse relation. A partial parse homomorphism from a parse re-

lation fG' to hG is properly surjective if and only if it is surjective.

Proof. Part a. of this theorem is trivial. Consider part b. Assume that a partial
parse homomorphism gp = <p,P> 1is properly surjective. From condition (ii) of Defi-
nition 2.6 it follows that for any (w,T) € hG there exists (w',m') € f such that
P(m') = m. Thus, we have {@(w'),T) and (w,m) in hG. From Definition 2.1 (a) it fol-
lows that @{(w') = w. Hence, &¢ is surjective. If &¢ is surjective then, trivially,

g is properly surjective. O

Note that if G is unambiguous and hG is a proper parse relatiom, then any injective
partial parse homomorphism Be * fG' > hG is also a proper injective partial parse
homomorphism. Also in the case that I' = I, ¢ is the identity homomorphism and hG

is a proper parse relation, both notions coincide.

Next we introduce (partial) cover homomorphisms.

DEFINITION 2.7. A partial parse homomorphism {a total parse homomorphism)
g ¢ fG' %'hG is said to be a partial cover homomorphism (a total cover homomorphism)

if it is surjective.

Any partial cover homomorphism B¢ which is an injection is called faithful. Lf
the partial cover homomorphism B¢ is a proper injection then it is called a proper
partial cover homomorphism. Clearly, in analogy with the remarks above, if G is un-—

ambiguous and h_ is a proper parse relation, then the notions of faithfulness and

properness coingide. The same holds if L' = Z, @ is the identity homomorphism and
hG is a proper parse relatiom.

Whenever we speak of a cover homoworphism then a total cover homomorphism is
meant. Notice that in gemeral in the case of a cover homomorphism, without knowledge
of the specific grammars, we are not able to compare <w,G'> and <@(w),G>. However,

if ¢ is the identity homomorphism and hG is a proper parse relatiom, then L{(G') = L(G)



and <w,G'> 2 <pWw),G6>.

EXAMPLE 2.1.
Let G' be defined i by

1./2. S+ aA | cB

3./4. A->ar | b
5./6. B->cB | d

and G by
1./2. S > Ab | Bb
3./4. A~ Aa l a
5./6. B - Ba i a
Define
+1
fG' = {(a"
and
h = {(an+1

G

We can define a parse homomorphism g = <@,J> by

¢(a) = a w(c)
@) =b ©(d)

a
b

v
v(2)

4 ¥(3)
6 W(4)

3
1

b,13%) | n =0} v {(c®'4,25%) | n = 0}

b,43%1) | n 2 0} v (@™ 'b,65%2) | a = o).

126
V(6)

Parse homomorphism g is surjective, therefore, g is a cover homomorphism. Although

homomorphism g is injective, g is not properly injective. Hence, g is a faithful but

not a proper cover homomorphism.

The results in the following table are immediate consequences of the definitions.

We compare the degrees of ambiguity and the languages of two grammars G' and G with

proper parse relations between which a parse homomorphism g = <@,)> has been defined.

PARSE HOMOMORPHISM DEGREE OF AMBIGUITY LANGUAGES

cover (surjection) - @(L(G")) = L(G)
proper injection <w,G'> < <p(w),G> @L(G')) & L(G)
faithful cover <W,G'> < <p(w),G> P(L(G")) = L(G)
proper cover <w,G'> = <p(w),6> P(L(G")) = L(G)

Table I.

Properties of parse homomorphisms.

+ . : . . .
In our example grammars we only list the productions. From our conventions it will

be clear how to distinguish terminal and nonterminal symbols.
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If L' = L and @ is the identity homomorphism then the notions of faithful cover
and proper cover coincide. In this case we have the situation depicted in Table II

(Again for proper parse relationms).

PARSE HOMOMORPHISM DEGREE OF AMBIGUITY LANGUAGES

cover (surjectiom) <w,G'> 2 <w,G> L(G'") = L(G)
proper injection <w,G'> < <w,G> L(G") = L(G)
faithful cover <w,G'> = <w,6> L(G") = L(G)

Table II. ZI' =1 and ¢ is the identity homomorphism.

In the following diagram the definition of a parse homomorphism is illustrated.

®
Zi'k Z*
fG' he
AV - A
Figure 2.1. Diagram for the parse homomorphism.

Now we are sufficlently prepared to define when a grammar G' covers a grammar G.

DEFINITTON 2.8. Let G' = {N',I',P',S') and G =(N,I,P,S) be CFG's. Let f,, = L' x Af,

and hG = ¥ x AE be parse relations. Grammar G' is said to f-to-h cover grammar G if

there exists a cover homomorphism g : fG' - hG'
In an obvious way the notioms of partial, faithful (partial) and proper (partial)
cover are defined.

Let us start to clarify Definition 2.8. For most of our applications it will be
sufficient to consider a homomorphism g = <@,P> where L' = I and ¢ is the identity
homomorphism. In such cases there is only one homomorphism to comsider, namely

Yo AZ, > AZ and we will simply speak of partial cover homomorphism ¥.

Two well-known examples of proper parse relations are the left parse relation
and the right parse relation. They are defined as follows. Let G = (N,I,P,8) be a
CFG. The left parse relation of G is the set

2g = {aem | s 3wk

The right parse relation of G is the set
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e [, | 5% wl.

Now we consider a few aspects of our cover framework.If I c Z', ¢ is the iden-
tity homomorphism, B = <p,P> 1is a partial cover homomorphism which satisfies
f= {(w,m) € fG‘ [ w ¢ L(G)} and, moreover, the parse relations are restricted to the
left and right parse relations then we have the notion of weak cover which is used
in Ukkonen [164) to show the nonexistence of certain covers.

There are examples of transformations on context-free grammars for which it is
useful to have a cover definition with the possibility that ¢ is not the identity
homomorphism. For example, there are classes of CFG's for which a two-pass no-back-
tracking parsing algorithm has been defined. One pass translates a sentence w of
L(G) to a sentence w' of L{G'), where G' is a grammar which can be constructed from
G and the device which performs the first pass (for example, a sequential machine).
In the second pass w' is parsed with respect to G'. The reader is referred to Culik
and Cohen [23] and Nijholt [114,126] for possible applications. In Figure 2.2 such

an application is displayed.

first pass N
Z* ) 7 Zr*
second pass
hG fG‘
* ¥ *
AG - AG'

Figure 2.2. Two pass parsing algorithm.

For the applications in this monograph the full generality of Definitiom 2.1
is not needed. Before we introduce restrictions on this definition we will mention

examples for which the genexal definition is necessary.

One might think, for example, of the parses which are obtained with the parsing
methods for the subclasses of the context-free grammars described in Colmerauer [20],
Szymanski and Williams [159]) and Williams [169]. These methods are also called non—
canonical parsing methods and the parses which are obtained differ from the usual
(canonical) left and right parses.

As a second example we discuss how the definition of cover as it was presented
in Gray and Harrison [ 48,49 ) might be dealt with in our formalism. Gray and Harrison
distinguish between productions of a CFG G = (N,%,P,5) which do have or do not have
semantic significance. The idea is that if a production does not have semantic sig-
nificance then it can be omitted from the parses. (In [49] the programming language

'Euler’ is used as example.) In this way, if we let H g P be the set of productions
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with semantic significance, we can talk about H-sparse derivations and parses.

DEFINITION 2.9. Let G = (N,L,P,5) be a CFG with a proper parse relation hG and a
set QH 4 of productions with semantic significance. Define a homomorphism

* " .
GH : AG - Q; by SH(p) =p if pe QH and 6H(p) = ¢ otherwise. The H-sparse parse re-

lation hG(H) is defined by
hG(H) = {(w,dH(ﬂ)) [ (w,m) € hG}.

Clearly, if hG is a proper parse relation, then hG(H) is a parse relation. In
[49] there is no further discussion on this point. One may choose H in such a way
that two otherwise different sentences obtain the same H-sparse parse. Another pos-
sibility is that H reduces the number of parses of a sentence. A 'cover' in the sense
of Gray and Harrison is then defined between pairs (G’,H') and (G,H} if there exists

a ‘cover' homomorphism g : f_, + hG(H), where g = <@,y > satisfies Y(p) = € if

GI
P e AG' - QH"
If H= P then G' is said to 'completely cover' grammar G.

There are a few restrictions in [49] which should be mentioned. Firstly, only
right parses are considered. In the second place, £' =X and a homomorphism
@t~ 3* is not considered. More interesting, however, is the condition Y(p) QH

for any p e §i This leads to the following definitionm.

H'"

DEFINITION 2.10. A partial parse homomorphism 8¢ = <p,P> is said to be fine if P
satisfies Y(p) € Ag u {e}, for any p ¢ Age. It is said to be very fine if Y(p) ¢ AL

for any p « AG"

Hence, one can say that the homomorphism which is used in [49] is fine. We shall
usually consider parse homomorphisms without restrictions on §. That is, we allow
each production p to be mapped on a, possibly empty, string of productioms. For
some of the transformations on context-free grammars which will be presented in the
forthcoming sections it will be shown that the existence of a cover homomorphism
depends on the way Y is defined.

In Hunt, Rosenkrantz and Szymanski [71] a fine cover homomorphism is called a
production map. Aho and Ullman [3) mention the possibility of using transducer mappings
for . In Chapter 9 we consider the use of a deterministic finite transducer to de~

fine covers for a subclass of the context—free grammars.
2.2. RESTRICTIONS ON PARSE RELATIONRS

We will now introduce restrictions on the class of parse relationms and their

parses.
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DEFINITION 2.11., Let G = (N,I,P,S) be a CFG. A parse relation f < & x A" is said

to be a syntax directed parse relation of G if there exists a simple SDIS
T = (N,Z,A,R,8), defined on G, such that T(T) = f.

EXAMPLE 2.2,
Let G = (N,Z,P,5) be a CFG with P defined by

1./2. S>BAb | CAc 5. B-=a
3./4. A+3BA | a 6. C~a

Define a parse relation f by

f = {(aab,154),(aaab,13545), (aac,264),(aaac,23645)}

o {@*,15(35)™%) | o

v

o}
v {(@™*c,26(35)™%) | n

v

0}.
It can be verified that f is not a syntax directed parse relation of CFG G.

With our following definition a more amenable class of parse relations is singled

out. We use the I-erasing homomorphism hZ : (Nulku A)* + (Nu A)*.

DEFINITION 2.12. Let G = (N,Z,P,S) be a CFG. A relation fG c 2* X Az is said to be

a production directed parse relation of G if there exists a simple SDTS T = (N,Z,A?R,S)
such that T(T) = fG and where R satisfies the following condition. If A » o is the

ith production in P then R contains exactly one rule of the form A - a, hz(a]iaz),

where a]az = o and R does not contain other rules.

It will be clear that if each rule of this simple SDTS T has the form A - o,
hz(ia) then each pair of the translation defined by T consists of a sentence of L(G)
and a left parse of this sentence. Similarly, if each rule has the form A -+ o, hz(ai)
then each sentence is associated with a right parse.

In these both cases T(T) satisfies the conditions of a proper parse relationm.
Unfortunately, this is not necessarily the case for relations T(T) which are obtain-
ed by inserting the symbols of AG at arbitrary places in the righthand sides of
the rules. This has also been observed by Brosgol [17]. The following grammar illus-—

trates this phenomenon. Consider ambiguous grammar G, with productions

0
1. § -+ a$
2. 8-+ 5b
3. §S~+c¢

We define R, the set of rules of a simple SDTS T as follows
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S =+ aS,15
S - Sb,52
S »c,3

It follows that T(TD) = {(ancbm,1n32m) [ n,m 2 0}. The parses of the form 1"32™ are
the so-called left corner parses ([ 3,p.278)], cf. also Table III in this sectiom).
Hence, although G0 is ambiguous each sentence has exactly ome left corner parse.
Therefore, T(TO) is not a proper parse relation of grammar Gy«

In the following subsection, which can be skipped on a first reading, we shall

discuss a few consequences of this observation for parsing.
2.2.1% SOME NOTES ON PARSING

In this subsection we slightly anticipate on forthcoming sections.

A parse can be considered as a sequence of productions which are 'recognized'
during the parsing process. In situations of practical interest parsing should pro-
vide the information which makes it possible to perform error-recovery and code gen-
eration for a program which has been given as input to a compiler. However, there
exist 'parsing’ methods which can produce the same parse for different sentences
(programs) and for different parse trees.

Left cormer parsing is a well-known parsing technique. Deterministic left corner
parsing has been defined for LC(k) grammars (Rosenkrantz and Lewis [143]), generalized
left cornmer parsing was introduced by Demers [24] and a nondeterministic left corner
parser can be found in [3). If one comsiders parsing as the process which yields for
each parse tree a unique parse, that is, no two different trees have the same parse,

then one should not call the nondeterministic left corner parser of [3] a parser.

The following example will be convincing. Consider the grammar e with produc-—

tions

1. 5= aBa

2. §~=+ Ab
3. A+ S
4, S+ ¢

One can verify that grammar G, is am LC(l) grammar. This means that grammar G1 can

1
be parsed with a deterministic left corner parsing method with one symbol of look-
ahead. With this method each sentence of L(Gl) is tramslated to its left cormer parse.

These parses are defined with the following simple SDIS T, with rules

5 + aBSa, 18 A+ 5, 83
S > Ab, A2 §*c, 4
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Now it is simple to verify that different sentences of G, may have the same left

1
corner parse. In Figure 2.3 we have displayed two parse trees which have the same

N

left cormer parse.

>m

NS 1
a//SRa

|

[«

O e {2 ——lp>
o

Figure 2.3. Two trees with left cormer parse 1432.

The following example refers to a simple chain grammar. In Chapter 11 of this
monograph the class of simple chain grammars will be treated in more detail. The

underlying grammar G2 of the following simple SDTS T2 is a simple chain grammar.

S + aBa, St
S + aSb, S2
S+ A, 3A
A -+ bS, 48
S+ ¢, 5

T2 defines the left part parses (cf. Table III) of grammar G2. Different sentences
of G2 can have the same left part parse, e.g. the string 34521 is a left part parse
for aabcba and for baacba.

One can strictly adhere to the point of view that parsing should always be done
with respect to a proper parse relation. We take a more practical point of view and
consider the (generalized) left cormer parsing methods as parsing methods. Clearly,
it remains useful to distinguish the subclass of the proper parse .relations from the

arbitrary parse relationms.

The following theorem gives a necessary and sufficient condition for a produc-

tion directed parse relation to be proper.

THEOREM 2.2. Aproduction directed parse relation T(T) of a simple SDTS T is a proper

parse relation if and only if the output grammar of T is unambiguous.

Proof. Let CFG G and simple SDTS T be as in Definition 2.12. The output grammar of
I, denoted by Gg» is defined by the set of productioms

Py = {i.A+ho(aio,) | A~ o, ho(e;in,) is in R}.
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Assume that GO is unambiguous. Then each x = L(GO) has exactly one left parse. Now,
assume that (wl,x) e T(T) and (wz,x) e T(T) with W # Wy Clearly, there exist

W] € AZ and T, € 4% such that (wl,ﬂl) € ﬂG (the left parse relation of G) and

(wz,vz) € ZG and, gecessarily, L # M,. But then there exist also (x,ﬂl) ¢ £, and
(x,ﬂz) e £, which is impossible since G0 is unambiguous. We conclude that condition
(i) of Definition 2.1 is satisfied.

Next we show the existence of an one-to-one mapping between KG and T(T). This

mapping, together with the trivial property that, for any w e Z*,
<w,6> = {{r | (w,7) ¢ ZG}I

is sufficient to conclude that condition (ii) of Definition 2.1 is also satisfied.
Firstly, notice that trivially, for any (w,x) € T(T) there exists T ¢ AE such that
(WsT) € Zg. Now, assume that (W,Wl) € ZG and (w,ﬂz) € ZG for some L # Tye In general,
if (w,ﬂl) € ZG then there exists exactly one x ¢ L(GO) which satisfies (w,x) ¢ T(T)
and (x,ﬂl) € ZGO. Otherwise we would have a situation in which two different senten-
ces in L(GO) would have the same left parse, which is clearly impossible. Hence,

if (w,nl) € LG and (W,WZ) € KG then there exist (w,x) ¢ T(T) and (w,y) e T(T) with

% # y. This concludes the proof that T(T) is a proper parse relation.

Now assume that T(T) is a proper parse relation while G0 is ambiguous. In this
case there exists at least one x € L(GO) with left parses m and Tys Ty # Mye From
the existence of ™ and m, we may conclude the existence of pairs (wl,ﬂ]) and (wz,ﬂz)
in ﬂG and pairs (wl,x) and (wz,x) in T(T). Since T(T) is a proper parse relation we
have that Wy SV,
rise to n elements (w,ﬂl),...(w,ﬁn) in ZG. Thus, a one-to-one mapping between LG and

Hence, in general, each pair (w,x) e T(T) with <x,6y> = n gives

T(T) can not be defined and consequently T(T) is not a proper parse relation. This

concludes the proof. 0
2.2.2, PRODUCTION DIRECTED PARSES

We briefly describe varicus ways in which production directed parses appear in
the literature.

It is a well-known trick to imsert special symbols (standing for production num—
bers or, generally , marking the place for semantical information) in the right-
hand sides of productions to obtain special parses or to activate semantic actions
(for example, Aho and Ullman [3,4]). In fact, this has also been done by Kurki-Suonio
[89] who adds a symbol to the right of the righthand sides of the productions and
Kuno [87] who adds a symbol to the left of the righthand sides. A related idea is in
the definition of parenthesis and bracketed grammars (cf. McNaughton [107 and Ginsburg
and Harrison [43]). The special symbols are sometimes handled as lefthand sides of

g-productions. For example, this is done by Demers [24] to define generalized left



25

corner parsing. Following Demers, all production directed parses should be called
generalized left corner parses. In this terminology, if we have a rule A+ q,
is called the generalized left corner? of the rule and Gz is its

hz(allaz) then d]

trailing part.

The following table lists a few nmames of parses which have been introduced before.

SIMPLE SDTS NAME
i.A > a, hz(ﬂm) left parses
i.A~> 0, hz(ui) right parses
i1.A~ 0, hz(aliaz) left corner parses
u}az = o and lall =1 (Rosenkrantz and Lewis [1431)
1.A+ o, hz(aliuz) extended left corner parses
a0, =0, a¢ I* or (Brosgol [171)
al € Z*N
i.A~>a, hZ(aliaz) left part parses
@, = o and |a2[ =1 (Nijholt [1181)

Table III. Types of parses

It is usual to associate left parses with top-down parsing. In deterministic
top—~down parsing (LL-parsing) each production i1s recognized before reading its yield,
that is, at position 1 of the righthand side. In deterministic bottomup parsing
(LR-parsing) the recognition is at position n + 1. The right parses are associated
with bottom-up parsing. In (deterministic) generalized left corner parsing each pro-
duction is recognized immediately after its generalized left corner+. Generalized
left corner parses are associated with generalized left corner parsing. Note that
left part parses are defined as the 'opposite' of left corner parses. Because we want
to associate left part parses with left parts (cf.Chapter 11) we have not chosen the
name right corner parse. Moreover left part parses are a special case of generalized

left corner parses. Consider the following example.

In Figure 2.4 we display a grammatical tree T and a particular way in which this
tree is constructed. The tree is built up with partial subtrees by considering the

next terminal symbol, reading from left to right.

t The left corner of a production is the leftmost symbol of its righthand side. A gen-

exalized left corner of a production is a prefix of its righthand side.
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Figure 2.4. Tree T and its partial subtrees.

After reading the first terminal symbol we construct tree Tl' The second ter-
minal symbol gives rise to tree TZ' After reading the third terminal symbol we have
obtained tree T3 and we notice that a production with label 2 is now complete. The
fourth terminal symbol gives us tree T4 and two more productions, 2 and 3, are now
complete. The last terminal symbol which is read makes tree T and the productions 1
and 4 complete.

The string 22314 of productions, which is obtained in this way is the formally
defined left part parse for sentence aaadc of a corresponding context-free grammar.
We will return to these partial trees and the left part parses in the forthcoming

sections.

We conclude this section with some notational remarks. In the following table
some frequently used names and notations are displayed. We use £ to denote left parses
(and left parse relations) and T to denote the right parsés. In general, if f denotes
a parse relation then f denotes the parse relation {(w,T) | (w,ﬂR) ¢ f}. Apart from
Z,r,L and r the abbreviations £p, standing for left part parses, and {c, standing

for left corner parses, will sometimes be used.

PARSE RELATION NOTATION NAME

f f c'{f/nle f-to-h cover
left left G'iL/Lle left cover
left right G'{e/rlG left-to-right cover
right left ¢'[r/Llc right-to-left cover
right right ¢'[r/rlG right cover

Table IV. Covers

In algorithms and examples it is often convenient to use the notations A * & <m>
or i.A - o <m> to denote that a production i.A » @ of a CFG G' is mapped by a parse

*
homomorphism on a {possibly empty) string of productions T € AG of a CFG G.
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We will need a notation to refer to positions in the righthand sides of the
productions.

NOTATION 2.1. Let j.A-+ X ...Xn be a production of a CFG G. The positions im the

X
172
righthand side are numbered according to the following scheme:

j.A > [1]x1[2]x‘2...[n]xn[n+1]

For a given production directed parse relation each production has a fixed position
in which its number is inserted, conform Definition 2.12. We use PG(j), or simply

I'(j) to denote this position, i.e., T :Adfm. By definition, FG(j) =1 if j.A~> € is

G
a production of G.

It is convenient to introduce an order relation < on the parse relations of a

X
CFG G. I£ I, : A
G G

N *
+IN induces a production directed parse relation x € & X Az and
TZ : AG +IN induces a production directed parse relation y & TF x Az, then we define

X2y
if and only if

. I SN Y, -
Vi € AG H FG(J) < FG(J).

In this way the production directed parse relations of a grammar G induce a finite

lattice with order <.

EXAMPIE 2.3.
Consider CFG G with productions 1. § ~ AB, 2, A~ AB, 3. A~ a and 4. B > b. For G
we can define nine production directed parse relations. In Table V it is shown how

they can be obtained if we insert production numbers in the righthand sides.

XO Xl X2 X3 X4 XS X6 X7 X8

1AB AlB 1AB AIB AB1 1AB ABI AlB ABI

2AB 2AB A2B A2B 2AB AB2 A2B AB? AB2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4

Table V. Production directed parse relations.

The corresponding finite lattice is pictured below.
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x0=£

Figure 2.5. Lattice for the production directed parse relationms.

2.3*% GRAMMAR FUNCTORS

The concept of grammar functor is one of the well-known grammatical similarity
relations. This section is devoted to a short discussion on grammar functors in order
to make it possible to compare functors and covers. In later sections examples of
the use of grammar functors will be given.

Having introduced syntax categories in section !.3.2 we will now define functors
between syntax categories. We use a slightly adapted version of the definitiom 1in
Benson [13].

DEFINITION 2.}3. Let ¢' = (N',Z',P’,8") and G = (N,Z,P,S5) be CFG's. A grammar functor
F: s(6') » 5(G)

is a functor which preserves comcatenation (for both objects and morphisms) and the

empty string, and which satisfies

(i) F) < V" for all & ¢ N',
(ii) F(a) € £ for all a ¢ Z', and
(iii) F(8") = § .

F is said to be externally fixed if L' = L and F(a) = a for each a ¢ L',

In Benson .13}, instead of S and S§', start strings in N* and N'*, respectively,
are used. Moreover, we have F(A) € V* instead of F(A) ¢ N*. With our definition it
becomes possible te define a functor im a situation as portrayed in Figure 2.6,

To define a grammar functor F : S(G') > 8(G) it is sufficient to define F on
V' = N' u I’ and on P'. Free generation takes care of the rest. From Definition 2.13

it follows that F(L(G')) ¢ L(G).

’////Wﬁi\\\\\ transformation A
M
H,

a B ¢ functor

Figure 2.6, Functor ¥, F(H. + ¢) = id, and F(H) = c.
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Without further restrictions on F we can not, without further knowledge of G
and G', compare <w,G" and <F(w),G>. Grammar functor F can be restricted to the HOM-
sets of S(G'). Let a,Be V' then the HOM-set of (o,B) is denoted by S(G')(a,B) and

the restriction of F to this HOM-set is denoted by

Fa,B) : 5(6")(a,B) =~ 5(G)(F(w), F(B)).

It is fairly easy to compare grammar functors and covers. In the case of a cover
we are only interested in the relation between the parse relations of G' and G. That
is, in the functor terminology, in the relation between S(G')(S',w') and S(G)(S,F(w"))
for each w' ¢ ¥, Except for S8', S, w' and F(w') domains and codomains of derivatioms
are not compared when covers are considered.

A cover homomorphism can now be compared with a grammar functor F which has the
property that for each w ¢ £'* the restriction F(s',w) is a surjection. In this case
F(L(G')) = L(G) and if F is externally fixed then <w,G'> 2 <w,G>.

Clearly, for grammar functors we can go into more details. A grammar functor
is said to be full if for each pair of objects a, B « V'*, F(a,B) is surjective; it
is said to be externally full if for each pair of objects & ¢ v and w e Z'*, F(o,w)
is surjective. A grammar functor is faithful if for each pair of objects g, B ¢ V'*
F(a,B) is injective. If one wishes to incorporate these concepts in the cover ap-

proach a further refinement of the cover framework is necessary.

Obviously, covers say less about the preserving of syntactic structure than grammar
functors. However, the definition of cover is much more flexible, cover results can
be obtained more easily than grammar functor results and from the point of view of

parsing one can say that covers describe a natural and sufficient representation of

a parse tree and its changes under a transformation of the grammar.
2.4. RELATED CONCEPTS

We mention a few other concepts which have been introduced to express grammat-—
ical similarity. In Gray and Harrison [49], Ginsburg and Harrison [43], Hunt and
Rosenkrantz [69] and Reynolds and Haskell [141] definitions and results are given
for grammar homomorphisms, grammar isomorphisms, weak Reynolds covers and Reynolds
covers. In these definitions the emphasis is on the sets of the productions of the
grammars and not, as in the case of grammar covers, on the sets of derivations or

parses.

Structural equivalence was introduced by Paull and Unger [129] {cf.Definition
1.7. ¢.).
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DEFINITION 2.14. Two trees are structurally isomorphic if by relabeling their nodes

they may be made the same. Let w ¢ L(Gi)'and let Ti(w) be a parse tree for CFG Gy,
i = L2. CFG G1 is Structurally equivalent to CFG G2 if for every tree Tl(w) there
exists a tree Tz(w) such that Tl(w) is structurally isomorphic with Tz(w) and, con—
versely, for each tree Tz(w) there is at least one tree Tl(w) such that Tl(w) is

structurally isomorphic with Tzﬁw).

Notice that with this definition L(G1) = L(GZ)’ while in general, without further

> and <w,G

2>. Definition 2.14 is

knowledge of Gl and G2, we can not compare <w,Gl
equivalent to Definition !.7. c.

Structural equivalence is decidable, that is, there exists an algorithm for
determining whether or not two arbitrary CFG's are structurally equivalent (cf. Paull
and Unger [129], McNaughton [107] and Knuth [77]). Paull and Unger [129] present an
algorithm for generating structurally equivalent simple deterministic grammars cor-—
responding to a given CFG. If no such grammar exists the algorithm terminates with
an indication of this fact. In Paull and Unger [130] this result is extended to
g-free LL(1) grammars. Other results on structural equivalence appear in Prather
[134] and in Taniguchi and Kasami [160], who present transformations from a CFG Gl
to a structurally equivalent CFG G2 which has either a minimal number of nontermi-
nal symbols or 2 minimal number of productions. Some decidability results on the
existence of certain grammar functors appear, for example, in Schmorr [I51] and Bertsch
[14].

The notion of weak equivalence of grammars is an equivalence relation (in the
algebraic senmse). Much effort has been made to subclassify weak equivalence by equiv-
alence relations which are defined with the help of grammar functors (cf. Hotz
and Claus [67], Schnorr [151] and Schepen [146]).

Decidability results for covers are extensively discussed in Hunt, Rosenkrantz
and Szymanski [72] and in Hunt and Rosenkrantz [69]. In the latter paper grammatical
similarity relatioms are used to generalize the grammar form definition of Cremers

and Ginsburg {21].

Finally, we mention Kuroda [91] who introduces topologies on grammatical trees
and who defines strong and weak structural homeomorphisms between context—free gram-
mars to subclassify weak equivalence.

Qur main motivation in mentioning the literature listed above is to show
the existence of problems which may again become interesting if the concept of cover

is used as grammatical similarity relation.

Attribute grammars (cf. Knuth [78]) are not dealt with in this monograph. How-
ever, if we take the point of view that a practical reason to consider covers con~

cerns compiler construction then attribute grammars should also be discussed. In

the case of covers we consider a parse as the argument of a semantic mapping. In case
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CFG G' covers CFG G then we can use the original semantic mapping, corresponding to
G. In section 3.1 more details are given. Attribute grammars form an alternative
method. Here, attributes (which contain semantic information) are associated with
the nodes of a parse tree. These attributes are obtained from attributes associated
with the symbols which appear in the productions and from attribute evaluation rules.
If an attribute grammar is transformed to, for example, some normal form attribute
grammar, then we have not only the question of language equivalence, but also that
of semantic equivalence. Grammar transformations which yield positive cover results
should be the first to apply (obviously in an adapted form) for attribute grammars.

Bochman [ 15] explores this semantic equivalence of attribute grammars.



CHAPTER 3

COVERS, PARSING AND NORMAL FORMS

This chapter contains the motivation of our investigations on grammar covers.
The first section deals with the grammar cover concept and its use for parsing. In
section 3.2 we try to give a historical overview of covers and normal forms. Finally,

in section 3.3 we start our investigations on covers, normal forms and parsing.

3.1, COVERS AND PARSING

Apart from the theoretical interest in covers one can view the cover concept
as a possible tool in the field of parsing. To analyze or to parse a given potential
sentence is the process of determining whether it is indeed an element of the language
defiped by the grammar under consideration and to make the syntactic structure of
the sentence explicit. This can be the analysis of natural language sentences or of
sentences (programs) of a formal language such as a programming language. In the lat-
ter case parsing can be a phase in the structure of a compiler which follows lexical
analysis and which precedes the code generation and optimizatiom.

Parses can then be considered as a type of intermediate code from which the
code generation can be done. It should be ohbserved that with our use of simple SDTS's
only one possible way of tramslation (from language to intermediate code} is consid-
ered. Other tramslations make use of more powerful devices such as, for example,
(not necessarily simple) SDIS's, generalized SDIS's or nondeterministic gemeralized
SDTIS's (cf. Baker { 91).

In the case of parsing, the following two figures will clarify the intended use
of covers. Figure 3.1 can be considered as a more practically oriented version of

Figure 2.1.

G language preserving transforqggion G'
w < L{G) w e L(G")
H
|
parse cover homomorphism parse 7'
o= P(t)

Figure 3.1. Covers and parsing
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The idea is that a CFG G which is hard to parse is transformed to a CFG G' which is
easier to parse. Parsing is then done with respect to G' and afterwards the parse is

mapped by the cover homomorphism on the corresponding parse of G.

Numerous parsing methods for subclasses of the context—free grammars appear in
the literature. In Chapter | we already mentioned (cf.section 1,3.1) that any simple
syntax directed translation can be obtained by means of a PDT. Therefore, any of the
syntax directed parse relations can be obtained as a translation defined by a PDT.

Several important subclasses of the context-free grammars which are based on a
specific parsing method have been introduced. For example, the bounded context gram-
mars (Floyd [33], Graham [46]), precedence grammars (Floyd [32], Wirth and Weber
[170]), LR(k) grammars (Knuth [76], DeRemer [25], Geller and Harrison [40]) and LL(k)
grammars (Rosenkrantz and Stearns [144], Lewis and Stearns [101]). Most of these pars—
ing methods can be 'implemented' by a DPDT. Other parsing methods make use of a de-
vice which uses two stacks (e.g., Colmerauer [20] and Williams [169]). In Chapter 9

cover results will be obtained from DPDT's {deterministic pushdown transducers).

A class of grammars with attractive parsing properties is the class of LL(k)
grammars. Lt has been the aim of many authors to transform grammars to LL(k) grammars.
As we mentioned before this has heen the goal in Paull and Ungexr [129,130]. In Hunt
and Rosenkrantz [69] such a transformation for a 'Reynolds cover' is considered. It
is worth noting that in the latter case the newly obtained grammar is not necessarily
weakly equivalent with the original grammar. Other methods to obtain LL{k) grammars
make use of more or less refined techniques of left factoring.

Both in Soisalon-Soininen [155] and Hammer [55] transformations are discussed
from 'bottom-up' parsable grammars (restricted LR(k) grammars) to 'top-down' parsable

grammars (LL(k) grammars). In these cases left—to-right covers can be defined.

In Figure 3.2, which appears also in a slightly different form in both Kuno [87]

and Gray and Harrison [49], the situation for parsing is made more explicit,

-
i i
| !
W parser P' parse of w trans- ! parse of w
: for ¢! with respect | lator } with respect
| to G' | to G
|
\parser P for 6 _ _ _ _ _ _ _ __ _ ___ J

Figure 3.2. A parser for CFG G.

For the parser P' in Figure 3.2 one may think of one of the parsing methods mentioned
above, In the case of covers, the translator is simply a homomorphism. Then it is not
necessary to consider it as a separate device. Of course, more general devices may

be chosen.
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3.2. COVERS AND NORMAL FORMS: HISTORICAL NOTES

The aim of this section is to show that although not always presented in a for-
mal way, the idea of grammar covers for transformations to grammars in some normal
form has attracted attentionfsomseveral authors. It should be observed that when the
grammar cover concept was introduced systematically (see Gray and Harrison [48,49]),
this link with the older literature was not exposed. Therefore we think it is useful
to do so. The formal idea of a cover is also due to J.C.Reynolds.

The original transformation to Greibach normal form (GNF) is due to Greibach
{50]. Her algorithm transforms an e-free CFG without single productions to a CFG
in this normal form. In Rosenkrantz [142] another transformation is presented to ob-
tain this normal form.

In the following quotations ’standard form' stands for GNF. Griffiths and Petrick

[53] comment on Greibach's paper:

"We have already observed that Greibach has shown that for any CF grammar without
cyclic nonterminals an equivalent standard form can be constructed. To date, no ef-
ficient procedure for relating the structural descriptions of standard form grammars

to the CF grammars from which they were constructed has been found'.

In Griffiths and Petrick [54] further remarks can be found.
The next in line is Kurki~Suonio [89] who comments on Griffiths and Petrick's

paper:

"One way to avold left recursion is to transform the grammar into standard form, but

the desired structural descriptions are then lost as the authors point out".

However, this can be repaired. Kurki-Suonio considers a method to eliminate left
recursion for applying top-down parsing to any context—free language. His method co-
incides with, what we call now, the usual method for eliminating left recursion
(Aho and Ullman's Algorithm 2.12, [3]). The method appeared before in some informal

settings, for example, Greibach [51]. Kurki-Suonio remarks:

"Phe above removal of left recursion distorts the phrase structure of sentences. In-
formation on the original phrase boundaries is preserved, however, if a marker is
attached to the end of each right-hand side of the original rules, and the markers

are then carried along in the transformation”.

This is a useful observation. In fact, Foster [35] and Kuno [87] have the same
idea. Foster [34], presenting earlier work, describes a program that, given a CFG
attempts to transform this grammar into an equivalent CFG which can be parxsed by a
simple one-pass parsing algorithm. Also in this case, the objective is that semantic

routines which are associated with the original rules remain unchanged, that is:
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"Any transformations on the syntax which would produce an equivalent grammar if the
routines were all ordinary basis symbols, will give a recognizer which will produce

the same translation as the original”.

One of the transformations which is used in this 'Syntax Improving Device’-program
is the elimination of left recursion. In Foster [34] more details are given. The
method is also described in Wood [171].

Kuno [87] converts a given CFG into an 'augmented' standard form grammar, each
of whose rules is in standard form, supplemented by additional information describ~
ing its derivation from the original context-free grammar. Contrary to Kurki-Suonio
who supplies this information in a marker at the end of each righthand side of the
original rules, Kuno supplies this information at the beginning of each righthand
side. Kuno's method to transform a non-left-recursive grammar to a GNF grammar co-
incides with the usual method (Aho and Ullman's Algorithm 2.14, [3]). In this case
the technique for performing the conversion of the structural descriptions is simple.
However, as soon as this idea is used for the transformation of an arbitrary grammar
to a non-left-recursive grammar then the method for undistorting the structural des-
cription back to the original description becomes very complicated.

Stearns [158] is another source where we can find similar ideas as were present—

ed by Foster.

After we are able to give a fairly complete overview of cover results for con-
text-free grammars in some normal forms we will (informally) evaluate them in view
of the remarks presented in this section (cf. Chapter 6). In Chapter 8, where we
shortly discuss the use of grammar covers for compilers and compiler writing systems,

we will return to some of the notes of this section.
3.3. COVERS AND NORMAL FORMS: AN INTRODUCTION

In this monograph, from now on, unless stated otherwise, we assume that when—
ever we define a cover homomorphism g = <@,)> between grammars G = (N,Z,P,S) and
G' = (8',2",P",3") then Z = I' and ¥ is the identity homomorphism. Hence we only con-
sider homomorphism y. Both in Gray and Harrison [49] and in Aho and Ullman [3] results
and remarks are presented on the existence and nonexistence of certain covers of
grammars with grammars in some normal form. Some of these remarks are not correct.
In some case a negative result is caused by the fact that the cover homomorphism is
assumed to be fine. The following observation shows that if we consider a transfor-

mation to GNF a fine cover homomorphism is too restrictive.

OBSERVATION 3.1. Let G = (N,I,P,S) be a proper (cf. Definition 1.8. d.) and unambig-
uous CFG such that there exist w € L(G) and S I witn |} > |w]. CFG G can not be
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covered by a CFG in GNF under a fine cover homomorphism.

It should be noted (cf. Chapter 5) that any proper CFG G can be transformed to
a NLR grammar G' such that G'[r/r]G under a fine cover homomorphism. In Gray and

Harrison [49] a grammar G0 with productions

1./2. 5+ 50 | s1
3./4. s+ 9 |1

is used to show that not every CFG can be right covered by a CFG in GNF (under a fine
cover homomorphism)}. The proof of this result is somewhat difficult to read because
some details are missing. In J.N.Gray's Ph.D.Thesis a more detailed proof can be
found. In Chapter 7 we will introduce algorithms for transforming regular grammars
into grammars in GNF.

It is simple to find for G, a grammar G such that G[E/E]GO and G is non-left-recursive,

Consider, for example, grammar G] defined by

1. §~>2¢C <g> 5., D=+ 0 <I>
2, §-+C8 <> 6. D> 1 <2>
3. §+D <e> 7. C+0 <3

8

4., S+ DS' <e> C+ 1 <&

According to the terminology of Gray and Barrison [49], one can say that the
productions I. until 4. do not have semantic significance.

As was first shown in Nijholt [117, one can find a grammar G' in GNF which satis-
fies both G'[i{;]GO and G'{;/;]Go (under the same cover homomorphism). This grammar

is listed in Table VI, Symbol §' is the new start symbol.

gt > OH S <e> s' > 14,, <g> § > OHgg <g>
HIS + 0 <3P H27 + 0 <41> HSS 1 <12>
s' - OB, 8 <e> §' > IH,g <e> § o+ IH,S <€
H16 - 1 <32 H28 > 1 <42> H65 - 0 <21>
' - 0H17 <g> s' = 0 <3> § > IHg S <e>
H” -+ 0 <3P 1 s' = 1 <4> H66 1 <22>
8" - GHIB <g> s -+ OHSSS <g> s - IH67 <g>
H18 > 1 <32 HSS + 0 <11> H67 + 0 <21>
st - IHZSS <g> s =+ 0H56S <g> s - IH68 <g>
HZS + 0 <41> H56 + 1 <12> H68 - 1 <22>
st - 1H26S <e> s - 0H57 <e> s =+ 0 <1>
H26 + 1 <42 H57 > 0 <1P s > 1 <2>

Tdble VI. Productions of grammar G'.
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Qur aim in the forthcoming sections is to study the existence and nomexistence
of grammar covers for some normal forms for context—free grammars. That is, we con-
sider problems in which we ask: Given classes of grammars Fl and FZ’ can we find
for each grammar G in I‘1 a grammar G' in Fz such that G' covers G ? At some places
we will also discuss the question of the existence of grammar functors.

The examples which we gave above will be referred to in the following sectioms.
For Fl we will consider arbitrary context-free grammars and by introducing conditions
which should be satisfied we consider also some subclasses of the context-free gram—
mars. For FZ we will concentrate on the e~free, the non-left-recursive and the Grei-
bach normal form grammars.

The next chapter will be devoted to some general results and observations on
covers. In Chapter 5 transformations to obtain non-left-recursive and Greibach normal
form grammars are considered. In Chapter 6 we present a cover—table which gives yes
and no answers for various cover existence questions. In Chapter 7 we have a short

discussion on regular grammars.



CHAPTER 4

PROPERTIES OF COVERS AND PRELIMINARY TRANSFORMATIONS
4.1. PROPERTIES OF COVERS

It is useful to put forward a few general properties of grammar covers. The most
frequently used property will be the transitivity of covers, that is, if grammar G2
covers grammar G

and grammar G, covers grammar GZ’ then grammar G, covers G,. More

i 3 3 1
formally (we assume the parse relations to be understood from the notation):

LEMMA 4.1, 1f G,if/gl6, and G,[g/h]G then G,lf/h]G, .
Proof. Trivial. a
For future applications we generalize the idea of tramsitivity.

DEFINITION 4.1, Let G and G' be CFG's such that G'[£/h]G for some parse relatioms
fG' and hG and a cover homomorphism Y. A partition m. of Ab, is said to be a transi-

tivity partition of AG' if, for each block B € Tes i and j in B implies Y(i) = Y(3).

Clearly, there is always a minimal partitiom {{i} | i e Aé} and a maximal parti-
tion {B ] i,j € B iff p(i) = Y(j)}. We introduce a homomorphism dt : Ag, +—ﬂ§ by de-

fining, for any i € A

Gt 1f i € B then Gt(i) = B.

1’ G2 and G3 have parse relations fGl, gGZ

and hG , respectively. Suppose Gz[g/f]Gl. Let 7, be a transitivity partition of

OBSERVATION 4.}1. Let the three CFG's, G

. . s . o *X*
AGZ Define a transitivity relation gGZ ck T by

- ! ® 1y —
gG2 = {(w,m) | (w,T") ¢ ng and § (') = 7},
Now we may conclude that G3[h/f]G] if there exists a homomorphism wt : AY + ﬂ:,

G3
which satisfies

(1) if (w,M) € h, then (w,wt(ﬂ)) € ng’ and

Gy

(ii) for each {w,n} € gGZ there exists (w,m') € hG3 such that wt(w') = 7.

End of Observation 4.1.

This observation is illustrated in Figure 4.1. Although we do not necessarily

have that G3 covers G, we may conclude that G3 covers Gl because of the existence of

the homomorphism wta
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cover
* *
A A
G2 Gl
§ cover
t
Y
* t *
m A
t G3
Figure 4.1. Observation 4.1.

The notation in the following lemma was explained in sectiom 2.2.

LEMMA 4.2, Let fG' and hG be parse relations for grammars G' and G, respectively.
If G'[£/h]G then G'[£/h]G.

*
Gl

- AZ
such that, for any i e Acrs wR(i) - 7t if Y(i} = 7. Then 6'[£/h]G under cover homo-

Proof. Let § be the cover homomorphism under which G'[£/h]lG. Define wR : A

morphism wR. a

Note, if the cover homomorphism ¥ is fine then wR and Y are identical on AG"
Rather loosely formulated one can say that if a cover is supported+ by rules of the
form A+~ a or A + € only, then we can treat left and right parses of the covering

grammar as being identical. This is formalized in the following way.

LEMMA 4.3, Consider two CFG's, G' = (N',Z,P',S') and G = (N,Z,P,S). Assume that hG
is a parse relation of G. If, for each production i.A + o in P', homomorphism
yoe AZ, + A" satisfies Y(i) = e if o ¢ L u {€}, then G'[£/h]G if and only if

" G
G'[r/nlG.

Proof. Observe that for any parse tree T ¢ PTR(G') there are unique pairs
(w,m,) e EG. and (w,m,) ¢ £;y. Define @ = {i ¢ B | i.A+0a inP' and a ¢ T u {e}}.

Now observe that hQ(Wl) = hQ(ﬂz) and therefore, for any cover homomorphism 1,
Yr) = B (m ) = Plhg(my)) = Yiry). 0

As the following result shows, it is fairly simple to convert the problem of

finding a covering grammar G3 for a CFG G1 such that G3[f/h]G1 to the problem of

1+ We say that a production rule supports the cover when its homomorphic image is not

empty, hence, when it has semantic significance.
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finding a grammar Gy which satisfies G3[f/£]G2 or G3[f/;]G2. Here, G, is an interme-~
diate grammar which satisfies both G2[£/h]G1 and Gz[;/h]Gl.

LEMMA 4.4. For any CFG G and production directed parse relation hG there exists a
CFG G' such that both G'[£/h]G and G'[z/nlG.

Proof. Let G = (N,%Z,P,8) be the CFG. Define G' = (N',Z,P',S) by the sets N' and P’

in the fallowing way. We use an auxiliary set PO.
(i) Initially, set N' = N and P' = Po, where

Pg = A a<i> [aelu{e}l.

(i1) For any i.A~> o in P ~ PO’ if FG(i) = k, where : A+ IN is the mapping

T
G G

which defines hG’ then

a. Add A~ alHiaz 2

b. Add H, to N'. It is easily seen that both G'[£/h]G and G'[r/h]G. 5]

<e> and H; > € <i> to P', where a,a, = a and iall =k - 1,

OBSERVATION 4.2. 1If CFG G in Lemma 4.4 is non~left-recursive, then CFG G' is also

non-left-recursive.

It should be noted that in Lemma 4.4 we have restricted ourselves to produc-
tion directed parse relations. This will also be done in the following observation
on the symmetry of production directed parse relations. We will frequently refer to
this symmetry in the cover—table construction of Chapter 6. First we need the follow-

ing definition.

DEFINITION 4.2. Let hG ba a production directed parse relation for a grammar

G = (N,Z,P,S). Assume that h. is defined by the mapping FG : AG +IN. Define the pro~

G
duction directed parse relation hz by a mapping FZ : AG -+ IN, which is defined, for

any production i.A » o in P, by

re@) = fal + 2 - 7).

s=
G
parse relation of G is denoted by ZcG; the left part parse relation of G is denoted

by £pg).

Notice, that due to this definition KZ = ;G’ T ﬂG and Zpé = ZcG (the left corner

OBSERVATION 4.3. ('SYMMETRY')
Let G = (N,I,P,S) be a CFG. Define G~ = (N,I,PX,S) by defining PR = (o~ of | 4 +ais
in P}. Notice that, for example, a leftmost derivation of w ¢ L(G) coincides with a

rightmost derivation of wR € L(GR). More generally, any production directed parse
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. . . . R
relation hG of G coincides with a production directed parse relation hZR of G, where,
for example, h is chosen from {£, r, £p, £Lcl.

. R
Hence if a grammar G can not be left covered by an e-free grammar, then G can not
be right covered by an €-free grammar (Use Lemma 4.2). Another example is the situ-
ation in which a grammar G does not have a left—to-right covering grammar in GNF.
It follows that grammar GR does not have a right~to-left covering grammar in CNF

(Use again Lemma 4.2).End of Observation 4.3.
4.2, PRELIMINARY TRANSFORMATIONS

Whenever context—free grammars are involved, the discussion on £-productions and,
to a lesser extent, single productions (sometimes called unit productions) con-
sumes a disproportionate amount of space. In this section we single out two transfor-
mations which deal with these types of productions. In the following lemma, two triv—

ial cases are considered.

LEMMA 4,5, Let hG be a parse relation for a CFG G = (N,Z,P,S).

a. If (E,ﬂl) ¢ h, and (E,ﬂz) € hG’ with ™ # Ty then G can not be covered by an

G
e—free grammar.
b. For any a ¢ I, if (a,ﬂp € hG and (a,nz) € hG’ with m # Tos then G can not be

covered by a grammar in GNF.

Proof.

a, A CFGG' = (N',L,P',S") which is e-free has at most one element (€,7) in any
parse relation of G'. Therefore, a surjective parse homomorphism can not be de-

fined.

b. Similarly. There is at most one element (a,7) in any parse relation of a CFG G'
in GNF. 0

In what follows we tacitly assume that each CFG under comsideration is reduced,
cycle-free and it does not have different leftmost derivations of the empty word.
We continue with some remarks on the elimination of single productions, that

is, productions of the form 4 » B, with both A and B ndnterminal symbols,

LEMMA 4.6. Let G = (N,Z,P.S) be an e€-free grammar which, for each a ¢ L, does not
have different leftmost derivations from S to a.

There exists an e-free CFG G' = (N',I,P',S') without single productions such that
both G'[£/£]1G and G'[z/TlG.

Proof. We show how the elimination of single productions can be done. We use auxiliary
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sets PO, P] and PZ. The set PO is the set of all the single productions in P. Initial-

ly , P, =fA>a<i>| iA>aisinP - P}, N' =N and P, = ¢.
. . § i . . . .
(i) For any A ¢ N, if A= B 3 Y is a derivation in G such that § # € and either
[Y] 2 2 or v ¢ T, then add [ASi] =+ y <> to P, and [A5i] to N'. To obtain a
left cover, define m = §i. To obtain a right cover, define W = iéR. Notice

that since G is cycle-free there are finitely many derivations to consider.

(ii) Define 2 homomorphism h : (N' u Z)* + (Nu E)* by defining h({(X) = X for any
Xe NuZlvu {e} and h([A8]) = A for each {AS] ¢ N' - N. For each production

H~> Yy <> in P, add the productions in the set

1

{H>y' <«m> | H> vy <> is in P, W(y') = v and Y' ¢ (N' v 0%}
to PZ"

(iii) Initially set P’ = PZ' For any o € (N' U Z)* such that [Sél] > a,..,[Sén]+ o
are all the productions in P, with a lefthand side of the form [S6], § « AE
and with the same righthand side o, the following is dome.

(a) Assume o = cff for some c € Z and f ¢ (N' v )*. Add the productions
s' > HiB <ﬂi> and Hi + c <€> to P', 1 £ i £ n. Here, Hi is a newly intro-
duced nonterminal symbol which is added to N' and m,o= Gi in the case of
a left cover and m, = 6? in the case of a right cover, 1 < 1 £ n. Symbol
8' will be the start symbol of the newly obtained grammar G' without
single productions.

(b) Assume o = CB, for some C ¢ N' and B ¢ (N' U £Y'. Add the productions

§' > ¢, B <w,> toP', 1 £ 1< n, with m,o= 6i in the case of a left cover

and ﬂiai 6? ;n the case of a right cover. The newly introduced nontermi-
nal symbols CGi’ 1 <i<n, are added to N'. Moreover, for each Y ¢ rhs(0),
if C + vy <m> is in P', add the productions Céi > <>, 1 £i<n, toP'.

(¢) Assume 0, = c, ¢ € L. Since there are no different leftmost derivations
from S to ¢, we have that n = 1. Add S' + ¢ <m > to P', with o= 61 in

the case of a left cover and ™= 6? in the case of a right cover.

(iv) For each production 5 -+ o <m> in P2 add the production §' » o <T> to P’.

(v) Remove the useless symbols. The newly obtained grammar will be referred to

as &' = (N",Z,P",S").

Clearly grammar G' does not have single productions. Grammar G' left covers G.
Let § be the cover homomorphism which is defined in the steps above. After step (ii)

has been performed the following properties hold.

1]
a. If Aqf w in G' then A % w in G, with P(w') = 7.
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b. If [AS] % w in G' then A % w in G, with y(n') = 7.

r
c. IfA % w in G then there exists T' such that either A % w in G' or [AS]!% w in

G', for some § € AE and with Y(r") = 7.

These properties can formally be proved by induction on the lengths of the der-
ivations . Similar properties hold for rightmost derivationms.
In step (iii) and (iv) the new start symbol 8' is introduced and the productions with
lefthand side 8' are created in such a way that from 5' we can derive 'everything'
which could be derived from the symbols of the form S and [S6]. From a, b, ¢ and
simple observations on the definition of Y in steps (iii) and (iv) it follows that

¢'[£/e]le (and ¢'[T/TlC). O

EXAMPLE 4.1,
Let G be the CFG with productions

S+ aA | aB <1,2>
A->3B | a <3,
B~ C <5>
C+ah | a <6,7>

We define a cover homomorphism for a left cover. The productions 3 and 5 are removed
from P in order to obtain set Pl' In step (i) the following productions are added

to Pl.

[A357] » a <357> [A356] ~ aA <356>
[B57] =+ a <57> [B56] -+ aA <56>

In step {ii) the following productions are created.

§ » a[A357] <I> [A356] ~ a[A356] <356> C -~ a[A356] <é6>
S » a[A356] <1I> [A356] + a[A357] <356> c ~ alA357]  <6>
§ -+ a[B57) <2> {B56] ~+ a[A356] <56>
s > a[B56] <2> [B56] - alA357] <56>

Now define S' = § and remove nonterminal C and the productions C - a, C * aA

C + a[A356] and C -+ a[A357] from the grammar.

It will be clear that the cover which is defined in Lemma 4.6 is faithful. If
we allow endmarkers for sentences then the condition mentiomed in Lemma 4.5 and in

Lemma 4.6 does not play a role.

LEMMA 4.7. For any e—free CFG G = (N,Z,P,S) there exists a CFG G' without single
productions such that both G'[£/2]G and G'[r/T]C.
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Proof. If L{G) = {e}, then G' = G. Otherwise, define G
PO’ So) such that

0= Muisg, Ty ll,

Py =P {SO -+ 8§ 1 <e>}

if S>¢e 4 P, and

P, = P-{8S+eh)yu {So + S1 <e>, So + 1 <i>}

if 1.8 > € ¢ P,
Here 1L is an endmarker and S0 will be treated as the new start symbol.

Perform steps (i) and {ii) of the method used in the proof of Lemma 4.6. Then
remove the useless symbols. Clearly, instead of including SO + L <i> in PO it is pos-
sible to include Sy~ € <i>. 0
OBSERVATION 4.4, If CFG G in Lemma 4.6 is non-left-recursive then CFG G' is also

non-left-recursive.

*
A note on grammar functors.

With some simple observations we show the existence of an externally fixed and ex-
ternally full grammar functorf : S(G') + S(G), where G' and G are as in Lemma 4.6.
Consider the method which is used in this lemma and assume that a left cover is de-
fined. Notice that for anmy production C + y <m> which is in P2 after steps (i) and
(ii) have been performed, T stands for a leftmost derivation from h(C) to h(y}. This
leftmost derivation will be the image morphism of production C + ¥ under H. We use

F to denote this morphism. For example, a leftmost derivation

3

! BD % CeD f beD

At

for a CFG G has a corresponding left parse 123, while the corresponding morphism of
s(6) is

1o (2 + idD) o (3 + ich).

This morphism uniquely follows from the string 123.

LEMMA 4.8. Let G' and G be CFG's under the same conditions as in Lemma 4.6. There
exists an externally fixed, externally full and faithful grammar fumctor

H : S(G') + s(6).

Proof. We confine ourselves to the definition of H : S(G') - S(G). Faithfulness and
external fullness will be clear from the definition of H and the method which is

used in Lemma 4.6.
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For the objects it is sufficient to define H on V' = N' y I, which is done by
defining:
(i) H({X) = X for each X ¢ V.

(ii) #H([A8]) = A for each nonterminal of the form [AS] which is introduced in step
(i) of the method.

(iii) H(S') = s.

(iv) H(Hi) = ¢ for each nonterminal Hi introduced in step (iii) (a) of the method,

with corresponding production H, > c.

(v) H(CS') = C for each newly introduced nonterminal symbol‘Cd_ in step (iii) (b)
i i
of the method.

For the morphisms it is sufficient to define H on P' which is done as follows.
(i)' H(A » o <m>) = T, for each production A »> o created in step (ii) of the method.
(ii)" H(S' >~ a <m>) = 7, where o, is either of the form HiB or of the form CS.B,

i
H(Hi > ¢ <g>) = idc, and
H(CG- -+ ¥ <m>) = T, for the productions created in step (iii) of the method.
i

(iii)' H(8' » a <m>) = T for each production S' + o <7> created in step (iv) of the

method. Notice that in this case T coincides with S + a. 0

End of note.

Now consider the possibility of eliminating e-productions from a CFG in such a
way that covers can be defined. The following method is due to Ukkonen [163]. It
eliminates €-productions from a CFG in such a way that the resulting grammar right

covers the original grammar.

DEFINITION 4.3. Let G = (N,Z,P,S) be a CFG. If A ¢ N, o € rhs(A) and L(a) # {&} then

a representation of o is a factorization a = o X & X ...an

0%1%1%2 -1 %% > 0 which satis-

fies
(1) xi e Nu I and L(Xi) # {e}, 1 <1i<n.
(ii) a; e N and € ¢ L(@;), 0 = i <,

Notice that, in general, a righthand side a may have different representations.

ALGORITHM 4.1.

Input. A CFG G = (N,I,P,S8) such that there is at most one T such that S % € and

PR . . * +
there is in G no derivation of the form A = 0AB, where o = .
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output. An e-free CFG G° = (N',I,P',S") such that G'[r/zlG.
Method. Imitially P’ = 4 and K' = {S'}. If S % €, add 8" > ¢ > to 'L If L(G) =
= {c} then we are done. Otherwise add S' > [S] <> to P' and [S] to N'. Repeat steps

{1) and (2) until no changes are possible.

(1) For each element [yA] in N' and for each production j.A -+ o in P such that

L{a) # {€} add to P', for any represemtation o = aOX!a X el

1% _lxnun, n > 0 the

production [yA] ~ ZIZZ"'Zn <j>, where

(i) Z] = [Yu0§1a1], if Yooy # € or X] ¢ N, and Zl =X otherwise.
(ii) For 2 < 1 < n, Zi = [§iai], if a; # € or X; < N and Z; = X5 otherwise.

Add to N' all newly created nonterminal symbols.

(2) Let j.B > 8 be a production of G such that € ¢ L(B). For each nonterminal

{y%aB] in N' where o,y ¢ N* and X e N u %, the following is done.

(i) If yaR # € or X ¢ N, add the production [yXaBl + [YX0B] <3> to P' and
[YX%iB] to N'.
(ii) If yoB = € and X ¢ I, add to P’ the production [yXaB] + X <j>.

Similarly, for each nonterminal [YBEJ in N' where X ¢ & and Y ¢ N*, if YB # €, add
the production [yBX] - [yBX] <j> to P' and the nonterminal [yBX] to N', and otherwise,
add the production [YBX] » X <j> to P'. 0

In this algovithm it is demanded that G has no derivations of the form
AL 0AB, where o 3 €. This condition ensures termination of the method. Notice that
if G is HLR, then this condition is satisfied.

A detailed proof for a symmetric version of this algorithm can be found in
Ukkonen [165]. The proof is basedon the following properties. Let [yX8] be in N'.

R
(a) If [yX6] % w for some nomnempty w in Z*, then yX§ F% w, where

X % w and p = w(HR).

(b) If vX§ %,nu where X derives w, then there is a unique derivation
) R

[y%6] & w, with B = w.

The cover which is defined in this way is faithful and, moreover, if G is non-
left-vecursive, then G' is non-left-recursive. Notice that except for a possible pro-
duction S8' » g, the cover homomorphism is very fine. It should also be observed that

the g-productions are in fact replaced by single productions.

COROLLARY 4.}, Any NLR grammar G = (N,I, P,S), which satisfies the condition that

there is at most one m such that § % €, has an e~free NLR grammar G' such that
G'[r/rlG.
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Algorithm 4.1 will be used at various places in this monograph. In Chapter 6
negative results concerning the possibility to find €-free covering grammars will be
shownt

Before concluding this chapter we want to make one final remark. Not only in
this chapter but also in the forthcoming chapters transformations will be introduced
and discussed. For each of these methods it is interesting and useful to investigate
the efficiency of the method. However, this will not be done in this monograph. The
interested reader should consult Chapter 4 in Harrison [58] where the appropriate

notions can be found.

1 (Added in proof) Laufkotter [177] has independently found the conditions which
guarantee that elimination of e-productions can be done in such a way that a right
covering grammar will be obtained. In his 'Diplomarbeit’ many other results concer-

ning e~free covers can be found.



CHAPTER 5
NORMAL FORM COVERS FOR CONTEXT-FREE GRAMMARS

In this chapter we will present results on the existence and nonexistence of
certain covers for some normal forms. The emphasis will be on the non—left-recursive
grammars and the grammars in Greibach normal form. Except for a few notes the exis-—
tence of grammar functors will not be discussed. In, e.g., Hotz [ 66], Benson [13] and
Reichardt [139] grammar functor results for these normal forms can be found.

Any CFG can be transformed to a weakly equivalent CFG in GNF. Transformations
to obtain grammars in GNF are in Greibach [50,521 , Rosenkrantz [142] and Hotz [66].
Sometimes the transformation is performed in two steps. In the first step a NLR gram-
mar is constructed, in the second step this grammar is transformed to a GNF grammar
(cf. Aho and Ullman [3] and Weod [171]).

We investigate transformations which lead to Greibach normal form grammars. It
should be noted that in the definition of an €&~free grammar and in the definition
of a Greibach. normal form grammar:we have allowed a production S + £ (cf. section 1.3).
Since thils production, if it is in the grammar, remains unchanged under all forthcoming

transformations we omit mentioning it.

The organization of this chapter is as follows. In section 5.1 transformations
to non-left-recursive grammars are considered. Section 5.2 deals with transformations
from non-left-recursive to grammars in GNF. Section 5.3 discusses transformations on

grammars which are already in GNF or in GNE.

5.1. FROM PROPER GRAMMARS TO NON-LEFT-RECURSIVE GRAMMARS

There are several methods to obtain non-left-recursive grammars from proper con—
text~free grammars. The most wellknown method which is described in e.g. Aho and
Ullman [ 3] (Algorichm 2.13) will be referred to as the standard method for elimi-
nating left recursion. It appeared before, in different versions, in e.g. Greibach
{511, Kurki-Suonio {89] and in Kuno [87]. Another method is due to Foster [34,35].
This method was used in Wood [171]. A similar method was used in Anderson [5] to elim-
inate left recursion from attribute grammars. Other transformations are in Rosenkrantz,
Lewis and Stearns [100] (cf. Appendix C7, the 'goal corner transformation’), Soisalon-
Soininen and Ukkonen [157], Soisalon—Soininen [155,156] , Ukkonen [162] and Nijholt
[1157,

OQur investigations on the existence of non-left-recursive covering grammars for
proper context~free grammars started with the observation that some remarks concern-
ing this problem in Gray and Harrison [49] and in Aho and Ullman [3] were not correct

(cf. Nijholt [1151). That is, we showed that for any proper CFG G there exists a
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CFG G' which is NLR and G'[T/r)G. Moreover, the existence of a NLR grammar G' such
that G'[2/x]G was verified (cf. Lemma 4.4.). In both cases the cover can be defined
in such a way that the cover homomorphism is fine.

In the case of direct left recursiom, that is, if A S Ao, with Iﬁ] = 1, these
results can easily be shown. For general left recursionm, if we follow the method of
[115], the generalization becomes rather complicated. A simpler method, based
on a trick of Kurki-Suonio [89], is presented in Soisalon-Soininen [ 156].

Similar "tricks' are in Foster [35] and in Kunmo [87]. We illustrate the method

with the following example.

EXAMPLE 5.1. (Foster)
Let GF be the grammar with productions

S+T|S+T <p,g>

T+ id | T X id <r,s>

Add to the right of each righthand side a new 'terminal' symbol. For convenience we

use the labels p, g, r and s. In this way we obtain

S+Tp | S8+ Tq
T + idr | T x ids

The new grammar can be considered as a translation grammar (Brosgol [17]); the new
symbols can then be considered as semantic actions.
If the standard method for eliminating left recursion is applied to this grammar, we

obtain the NLR grammar

S+ Tp | TpX
X+ Tq | + TqX
T + idr | idrY
Y + x ids| X idsY

Now define a grammar G' = (N'2,P',S) as follows. The set N' consists of the symbols
$, T, X, Y, p, g, r and s,

and the set P' of the productioms

S+ Tp | Tpx <g,e> p+ & <p>
X+ +Tqg | + TqX <g,&> q+ & <g>
T - idr I idrY <E,E> r—+ € <r>
Y > x ids| x idsY <g,e> s+ g <s>

It is straightforward to verify that G'[;/;]GF, and (with the help of Lemma 4.3)
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G' EZ/;]GF. This example will be continued later inm this section.

The argument in this example can be formalized (cf. [156}) and, obviously, this idea
of adding spécial symbols to the right of the righthand sides is independent of the
method which is used to eliminate left recursion. Therefore, also methods different
from the standard method may be used to obtain the same cover results. This 'trick’

always yields a faithful cover and a fine cover homomorphism.

COROLLARY 5.1. Any proper CFG G can be given a NLR grammar G' such that G'[z/Tl6

and G'£/r]G under a fine and faithful cover homomorphism.

Notice that this method introduces e-productions.With Algorithm 4.1 they can be
eliminated in such a way that the right cover is preserved. Unfortunately the left-

to-right cover can not be preserved {cf. Chapter 6).

EXAMPLE 5.!. (continued)

If Algorithm 4.1 is applied to G', then we obtain the grammar with productions

3¢ + [8] <e>

+

(8] + [Ip} <e> (xp] - [T] <p>
[s] - iTpllx] <e> [1q] » [1] <@
[X] » + [Iq}  <e>

+

[X] ~ + [Tql{x] <e>

[1] » {idr] <e> [idr] + id <r>
(1] ~ [idr}iY] <e> [idgs] » id  <s>
[¥] » x lids]  <e>

[x] » x [ids][¥] <e>

If the single productions are eliminated from this grammar (Lemma 4.6), we delete some

stiperfluous productions and we rename the nonterminal symbols, then we obtain

s+ a8 | pc| id <e,p,rp>
A-+DC | id  <p,rp>
B++E | +EB <e,e>
E~-DC | id <gq,rg>
C+xXF ‘ x FC <g,€>

D+ id <r>

F -~ id <s>

This grammar right covers grammar GF. In section 5.2.2 we will return to this grammar.

End of Example 5.1.
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5.2. FROM NON-LEFT-RECURSIVE TO GREIBACH NORMAL FORM GRAMMARS

Each GNF grammar is NLR. In this section transformations from NLR to GNF grammars
are considered. There are numerous instances of this transformation. Clearly, any
transformation to GNF which is defined for proper context-free grammars can be used
for proper NLR grammars as well.

Algorithm 2.14 in Aho and Ullman [3] (attributed by them to M.Paul) has become
known as the standard method for transforming NLR grammars to GNF grammars. Other
methods are sometimes defined for special subclasses of the (non-left-recursive) con-
text—free grammars. E.g., the strict deterministic grammars {Geller, Harrison and
Havel [42]), the simple chain grammars (Nijholt [122]) and the LL(k) grammars (Rosen—
krantz and Stearns [144], Aho and Ullman [3]).

In section 5.2.1 we use an adaptation of the standard method to obtain covering
context-free grammars in GNF. In section 5.2,2 transformations are described which

are based on the concept of 'chain'.

5.2.1. THE 'SUBSTITUTION' TRANSFORMATION

The standard method to produce a GNF grammar from a proper NLR grammar consists
of repeated substitutions in the righthand sides of the productions. This process
does not preserve ambiguity. More precisely, there is the possibility that there
exists w ¢ L(G') such that <w,G'> < <w,G>, where G' is the GNF grammar which is ob-
tained from grammar G. It follows that due to the surjectivity condition of the cover
definition a cover can not be defined.

This 'loss' of ambiguity which is caused by the process of substitution is simply

illustrated in Figure 5.1, In this figure we use a CFG G with productions

1. 8=+ AC
2. S -+ BC
3. A+ a
4., B> a
5. C~»c

The transformation to GNF of this grammar with the standard method is portrayed

in Figure 5.1. a. Our adaptation of this method gives the situation of Figure 5.1. b.

The standard method is also used in Benson [ 13]. There it is said that the
transformation depicted in Figure 5.1, a is ambiguity preserving by providing the
production § + aC with two different indexes. In this way we obtain the situation of
Figure 5.1. c. One may say that in this way syntactical ambiguity is replaced by
semantical ambiguity. With our adaptation of the standard method this replacement of

ambiguity is not necessary.
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Figure 5.1. Transformations to Greibach normal form.

The following algorithm will produce a left covering grammar in GNF for a proper
NLR grammar. We may assume {cf. Chapter 4) that the input grammar has no single pro~
ductions. Moreover, it is assumed that in the righthand sides of the productioms of
the input grammar a2 terminal symbol canm only occur in the leftmost position. This
can be done without loss of generality; for example, a preduction i.A + caB, o # €,

can be replaced by productions A - aHaB <i> and Ha + a <e>.

ALGORITHM 5.1.

Input. A proper NLR grammar G = (N,L,P,S) such that each production is of the form
A>a, acIN uN.

OQutput. A CFG G' = (N',L,P',S) in GNF, G'[£/L]G and the cover is faithful.

Method. Let P be the subset of P which consists of all the productions of the form

0

A > ag with a ¢ Z and o ¢ N*. Initially, set Pl = PO and N' = N. There are three

steps.

(i) For each A ¢ N and a ¢ Z, if

A = Co' % an
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G with C € N, a,0' ¢ N and 7' # €, then add
A a[(l:a)n]B <m>

to P,. Here, B=oai(r-1), r = Ial, m=m'li and [(1:a)7] is a newly created non-

terminal which is added to N'.

(ii) Set P' = P;- For each newly created nonterminal symbol [Ar] do the following.

If v € IN' such that A+ y <p> is in P , then add the production [Am] + vy <p>

1
to P'.

(iii) Remove the useless symbols. 0

EXAMPLE 5.2.
Let G be the CFG with productions

S>AS | BS | ¢ <1,2,3>
A>a <f

B> a <5>

For example <aac,G> = 4, The standard method produces a CFG G, with <aac,G>= 1.

1
1= {8 + c<3>,

A + a<4>, B + a<5>}. In step (i) the productions S + a[S14] <14> and § > a[825] <25>

1
Algorithm 5.1 yields a CFG G' in GNF with <aac,G'> = 4, Initially P

are obtained from the derivations

i 4
S T AS 7 as
and
2 5
S f BS f as,
respectively.

In step (ii) the following productions are obtained.

[s14] » a[S14]  <14> [525] + a[S14]  <14>
[s14] - a[825] <25> [825] - a[S§25] <25>
[514] » ¢ <3> [s251 = ¢ <3>

In step (iii) the nonterminals A and B and the productions A > a and B + a are removed

from the grammar.

IEMMA 5.1. Algorithm 5.1, when applied to a proper NLR grammar G = (N,Z,P,S) without
single productions, yields a GNF grammar G' = (N',Z,P',S) such that G'[£/£]G under

a faithful cover homomorphism.



54

Proof. Let y be the homomorphism which is defined in the algorithm. The proof is
based on the following observations. Both of them can be proved by induction on
the lengths of the derivations.

%* 1
Assume that X ¢ N', X = A or X = [Ay]l for some A e N and v ¢ AG. If X_% w in G',
then there exists T ¢ AZ such that A % w and P(7') = 7.

Conversely, consider the grammar which is obtained before step (iii) is executed.

If A.% w in G, then there exists (a unique) 7' ¢ AZ, such that X.% wand P(r') =7. 0

Second nofe on grammar functors’

This note is a continuation of the note on grammar functors in section 4.2. As
mentioned above, using the standard method for producing a GNF grammar does not neces-
sarily lead to a cover. Neither do we have that, if F : S(G') + S§(G) is a grammar
functor, F(S',w) is surjective, where S' is the start symbol of G'.

If we use the idea illustrated in Figure 5.1. ¢, then, as is shown in Benson
[13] an externally fixed grammar functor can be defined which is faithful .and exter-
nally full. However, here we will use Algorithm 5.1 (hence, Figure 5.1. b) to obtain
this result.

Notice that faithfulness and external fullness are preserved under functor compo-
sition. Therefore, if we have a proper NLR grammar G, we may first eliminate the
single productions (cf. the note in section 4.2) and then, as presently will be shown,
apply Algorithm 5.1 to obtain a grammar G' in GNF such that a faithful and external
full grammar functor H ; $(G') + S(G) can be defined.

Notice that the condition menticned before Algorithm 5.1 can\also be handled
functorially. For example, for the given example the functor H should satisfy
H(Ha) = a, H(A + aHaB) = A + gaB and H(Ha + a) = ida. This can be generalized in an

obvious way, and clearly, such a functor is faithful and externally full.

LEMMA 5.2. Algorithm 5.1, when applied to a proper NLR grammar G without single
productions, yields a GNF grammar G' such that there exists an externally fixed,

externally full and faithful grammar functor H :+ S(G') +~ S(G).

Proof. The method which is used in Algorithm 5.1 is functorial as well. We confine
ourselves again to the definition of H : S{G') ~ S(G).

For each newly created nonterminal symbol of the form [Aw] define H([AT]) = A.
Furthermore, define for each newly created production A -~ a[Bmw]lB <m> in step (i),
H(A + a[Br]B) = ¥. For each mewly created production [Am] + 7y <p> in step (ii), define
H([Ar] + v) = §. For all the other nonterminals and productions H is the identity
functor. 0

End of note.
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5.2.2. THE LEFT PART TRANSFORMATION

The key concept in the left part transformation is that of a 'chain'. Chains

were first used in the definition of simple chain grammars (cf. [119,122]).

DEFINITION 5.1, Let G = {N,L,P,S) be a proper CFG. Define a relation CH ¢ V X N'T
as follows. If XO € N then CH(XO), the set of chains of Xo is defined by
¢ * .
CH(X)) = {XX,...X e NI | X, 2 X%, 7.7 XV ¥, €V, 1<1is<n},
gnd for c ¢ I,
CH(c) = {c}.

In the following theorem some properties of chains are listed. Quasi-GNF was

defined in Definition 1.10. b.

THEOREM 5.1. Let G = (N,I,P,5) be a proper CFG.

(i) For each X ¢ V, CH(X) is a regular set.
(ii) Grammar G is NLR if and only if, for all X ¢ V, CH(X) is a finite set.
(iii) Grammar G is in quasi-GNF if and only if, for each X ¢ V and for each w < CH(X),

|w} < 2.

Proof. (i) If X ¢ I then CH(X) = {X}, which is a regular set. Assume X ¢ N. We con-
struct a (right) regular grammar GX = (NX,ZX,PX,[X]) such that L(GX) = CH(X). Three

auxiliary sets, N',L' and P', are used. Define

(1) N' = {[z] | 2 e V}

(2) ' =V
(3) P' = {[al »a | ae L}
v

{f[cl>clz] |[C>Z0inP, Z eV, a e V'),

For each X ¢ N, grammar GX = (N [X]), which is right regular and which satis-

X’ZX’PX’
fies L(GX) = CH(X), is obtained by removing the useless symbols from Gk = (N',2',P',
x.

Properties (ii) and (iii) follow immediately from the definitionms. ad

Chains will be used for the construction of the righthand sides of productions
of a grammar in GNF. Before discussing the 'structure preserving' left part trans-
formation we present a simpler version which preserves the original language. The
degree of ambiguity for each sentence is not necessarily preserved.

To avoid a possible complication we demand that the set of productions of the

original grammar is prefix-free, that is, if A - o and A > aBf are in P then B = €.
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Obviously, this can be done without loss of generality. For example, if both A > o
and A + aB are in P then replace them by A + o, A + HGB and Ha + Q.

The righthand sides of the newly obtained productions will now be finite length
strings which are obtained with a homomorphism £ from Z[N]*. Homomorphism £ and alpha-

bet [N] are defined below.

DEFINITION 5.2. Let G = (N,Z,P,5) be a proper CFG. Assume that P is prefix—free.

Define
v] = {[Aa] | Ac N, ace v* and A ~ a8 in P for some B « v}
. . * *
and de”ine homomorphism £ : [N] = [N] by

(1) &([Aal)
(ii) g(lanl)

¢ if A+ o is in P, and

{An] if A > of is in P, B # €.

Now we are sufficiently prepared to present the algorithm.

ALGORITHM 5.2. (Left part transformation)

Input. A proper NLR grammar G = (N,Z,P,S) such that P is prefix-free.
output. A weakly equivalent CFG ¢' = (N',IZ,P',[S]) in GNF.
Method. Initially, N' = P' = . N' will consist of all the symbols of {N] which

appear in the productions introduced below.

(i) For each le"°xn ¢ CH(S), add

|
(s} »x g(lx _,x 1[x X ,1...0sx,1)
to P'.
(ii) For each A ~ aXOQ in P, where o # € and XOXI"'Xn € CH(XO), add

fae] » x £C(IX _ X 1...0X X, 1 40X, ])
ro P°, a

In Figure 5.2, which we hope is self-explanatory we have illustrated
in (a) and (b) the algorithm for productions $ +’Au1, A > Buz and B - a0,. The arcs
of chain SABa can be considered as the new nonterminals. In (c) and (d) the situ-

ation is portrayed for productions A > BCBO, Cc > DBl and D > ch.
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/7\

a [Bal [AB] [sal [De] [cpl [aBC]

L(ay) L{a,) La)) L(B,) L(B|) L(By)

(® ()

Pigure 5.2, Transformation to Greibach normal form.

The proof that L(G') = L(G) is based on the following lemma. We omit the proof

since similar proofs will be given for other versions of the transformation.

LEMMA 5.3.
d. If [Aa] 3 w then A = aw.

b. Let A~ axnm be a production in P such that if A # S then o # €. Assume that
XOXI"'Xn € CH(XO), n 2 0, Then, for each Xl, 0<1ic<n, if X L y, where
y € L¥, then [Aa] & ye([x, X 1...[80X 1),

Proof. Straightforward induction on the length m of the derivations. 0

Note. It is possible to drop in Algorithm 5.2 the input condition that P is prefix-

free. In that case £ should be taken as a substitution which satisfies

(i) £({An]) contains € if A+ a is in P, and
(ii) £([An]) contains [A0] if A+ oB is in P, B # E.

Hence, £ maps [Ax] to a subset of {e,{Ax]} and Algorithm 5.2 should be adapted
in such a way that sets of productions are added to P'.

End of the note.

Consider the following property of this left part transformation, which is valid
for less simple versions as well.

‘If Algorithm 5.2 is applied to a CFG G which satisfies the imput conditions
then a CFG G' in GNF is obtained. Subsequently, apply Algorithm 5.2 to grammar G'.
The newly obtained grammar G" is again in GNF and, moreover, each production is of

the form A - ay, with |Y| < 2 (standard 2-form).

A second property of the left part transformation which will only be mentioned
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here is the following. Suppose G 1s a proper CFG. For each X ¢ V we have thar CH(X)
is a regular set. Therefore, we can adapt Algorithm 5.2 in such a way that the right-
hand sides of the productions of G' will become regular expressions {or equivalently,
regular sets or finite automata).

In this way we obtain an extented CFG (cf. e.g. Heilbrumner [621). Each exten-
ded CFG can be transformed to a CFG by replacing each righthand side by a subgram
mar which generates the regular set represented by the righthand side. If we use
the straightforward method which is described in Heilbrunner [62], then the newly
obtained grammar is proper NLR. A second application of the left part transformation
yields a grammar in GNF. Hence, the left part transformation can be used, in an adapt-
ed version, for arbitrary proper CFG's as well.

Both the special alphabet [N] and the algorithm to obtain a GNF grammar will
become slightly more complicated in the 'structure preserving' case. It is assumed
that, if necessary, first the single productions of the input grammar are eliminated.
Due to the special alphabet [N] we do not have to bother about P being prefix-free.

The transformation which is described is such that the new grammar G' in GHF
left-to-x covers grammar G, where, informally, x may 'run' from left to left part.
That is, if & = (N,Z,P,5) then, for each production i.A + o in P, FG satisfies
1 < FG(i) < ]a[. In accordance with the notation introduced in section 2.2 we write
2 < x < &p. Hence, x is the production directed parse relation induced by TG.

Unfortunately, the algorithm does not yield a left—to-right cover. Surprisingly,
this is not a 'shortcoming' of the algorithm but, as will be shown in Chapter 6,

this is a general negative result.

DEFINITION 5.3. Let G = (N,%,P,S) be a CFG. Define
[N! = {[aia] | i.A > 0B is in P for some B ¢ v}

and define a homomorphism £ : (NI* -~ [N]™ by

(i) &([aia]) = ¢ if i.A~» a is in P, and
(ii) E([Aic]) = [Aie] if i.A~o0f is in P, B # €.

*
DEFINITION 5.4. Let G = (N,%,P,8) be a CFG. Define a relation LP & N'E x AG as fol-
lows:

Let w = XOXI..EXn e N'L. LP(w), the set of left production chains of w, is defined

by
.. . ig i
LP{w) = {1011"'ln—1 € AG I 5Lt Xlwl T

1 ip-1 * .
% anpn,lpjev,ISan}.

If w € L then LP(w) = {e}.
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ALGORITHM 5.3.
Input. A proper NLR grammar G = (N,I,P,S) without single productions.

Output. A weakly equivalent CFG ¢' = (N',IZ,P',[S]) in GNF.

Method. Initially, N' = {[S8]} and P' = §.

All the elements of [N], which appear in the productions introduced below, will be
added to N'.

(1) For each pair (w,p), w = SXI"'Xn e CH(S) and p = 1 il"'i e LP(w), add

0 n—1

[s] = xna(an_lin_lxn] .. .[SiOX]])

to P'.
(ii) For any production i.A + aX @ in P, a # €, and for each pair (w,p),
0

w=X XI"'Xn € CH(XO) and p = igij-..d € LP(w), add

0 n—1

[Ala] = Xng([xn-lin—lxn]'"[XOiOXl][AmXO])

to P'. 0

Notice that for this algorithm the condition that the input grammar G does not
have single productions is not a mecessary condition. To obtain the cover result of
Theorem 5.2 it would have been sufficient to demand that, for any A € N and X ¢ V,
if AL X and A g’X, then T = 7w'. Clearly, this condition is satisfied for any unam-
biguous grammar G.

As we have shown, the single productions can be eliminated in a simple way and

we can avoid the introduction of new conditions.

THEQOREM 5.2, Let G = (N,X,P,S) be a proper and NLR grammar. There exists a CFG G'

in GNF such that, for any production directed parse relation x, £ < x < £p, G'[&/x]G.

Proof. We assume that the single productions have been eliminated. Use Algorithm
5.3 to transform the proper and NLR grammar G to a grammar G' = (N',Z,P',[S]) which
is in GNF.

Let T = (N,Z,AG,R,S) be the simple SDTS, defined on G = (N,Z,P,S), which per-
forms the translation X.

Define T' = (N',Z,AG,R',[S]) on G' by the rules:

() 81> X ECX i |

JOJ]...Jn_lEL[Xn_lln_]Xn]...[SLOX]])

xn]...[sioxl]),

for each corresponding production introduced in step (i) of the algorithm. The
jk's are defined by, for 0 < k < n-1, jk = ik if FG(ik) = 1 and jk = g, other-

wise. Here, T, : AG +IN is as in Notation 2.l.

G
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(ii) [Aial - an({xn_iin_lxn]..,[xoioxl][Aiaxo]),
Jigd e dpoyBCR iy %) - [XpigX, HAdaXy ])

for each corresponding production introduced in step (ii) of the algorithm. The

Jk's and j are defined by, for 0 < k < n-i,
jk = ik if FG(ik) = | and jk = £, otherwise, and
j=1iif luxoi = Tg(i) and j = €, otherwise.
Cover homomorphism y is defined by mapping each production of P' on the string

P |
01 n-
respectively. Clearly, T' is semantically unambiguous (cf. also the note immediately

or jjojl..._]'n_1 of its corresponding rule in R', obtained in (i) or (ii),

preceeding this theorem) and therefore y is well-defined.
The main task is now to prove that T(T') = T(T). Then, if (w,T') ¢ £G' it fol-

lows immediately that (w,P{7')) ¢ x.. Moreover, from the definitions of T' and

¢
¢ = T(T) then there exists (w,m’') € LG‘ such that

(w,p(r')) = (w,m). In fact, this 7' is unique and therefore cover homomorphism ¥ is

it follows also that if (w,7) € x

faithful. Thus we may conclude that G'[£/x]G. Two claims are used in the proof that
T(T') = 7(T). The following notation will be useful.

NOTATION 5.1. Let G = (N,L,P,S) be a CFG. For any string q ¢ v* the notation Gk(a),

where k ¢ AG’ is used as follows. (It is assumed that Ao 0 V = &)

(a) If 1 < FG(k) < !ai + 1 then Gk(a) denotes the string alkaz, where alaz = 0 and
oy | = TgGe) = 1.

() IE T (k) > @] + 1 then §, () denotes o.

CLAIM 1, Consider a production p.A axom in P with o ¢ V*, Xo € Vand if a = ¢
then A = S. Let p = XOXI"°xn—1Xn € CH(XO), n 2 0. Then, for each Xi’ 0s$1i<n, the
existence of a derivation

m
(xi’hz{xi)) i’ (y’ﬂ) »

for some m =2 0, ¥ € ¥ and 7 ¢ AE, implies that there exists PPy --P;

-1 e LP(p)

such that either

(a) 1if o = g€, then

([sl,IshH

=

(yE([xi_lpi_IXi]...[xopoxl][pro]),

JJO.f.Ji_IWE([Xi_lpi_lxi]-..[Xopoxl][spxol)), or
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(b) if o # €, then

([Apal,[Apa])
*

(yE([X1 11’1—1 5 -.[Xopoxll[AmXG]),

Here, j and jk’ 0 < k £ i-1 are defined as in (i) and (ii).

Proof of Claim 1. The proof proceeds by induction on m. Suppose m = 0, then
y = Xi eLand T = €.
In case (a), with a¢ = €, we have p.S + Xow in P and

X -p-o Xy = X Pirl
oT 1M T T%1i-1 T

for some PgPy+e+Pj_y € LP(p) and Yy € v, 15 k< i.

i-1
From the construction of P' it follows that

(8] » X, E([X;_ %P X, 105pX, 1)

1Pi-1%ide

and from the construction of R' the desired result follows.
Case (b) with o # ¢ follows in an analogous way. Now let m > 0 and assume the

claim holds for all m' < m (induction hypothesis). Let

ke Y YY), LRICRCA AP A

be the first of the m rules which are used in the leftmost derivation
(X,,ho(X)) 3 (y,m)
Ay A T A AL

Thus, we have

= = X =
Y Xi’ Yl hi+1 and hz(Xi) Xi

and we have the derivation
*
(Y,Y) ‘ (Y Y Yq, h (3 (Yl 2...Y ») z
T Ogee Y MMy Tp g (KTp ey s+ <Tgds

where Y ¥ger yq =y, MTyee F(k) 1 F(k)"'"q = 7 and where

mr
(b (L)) 27 LT,
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* ®
where 1 < r £ q, Ve € z, LIS AG and m < m.
We confine ourselves with a proof of the induction step for case (b). Case (a)
follows along similar linmes and therefore its proof is omitted.

For the derivation
( iy
a2 o)
we can use the induction hypothesis to obtain

([Apal,fapal)

#
=

(v, E{IYkY I[X1 1Pir %y 4...[x0pox }[Aan b,

iige-+d; klﬂlE([YkYﬂ[X. P

i1 ioPyo %) e - - [XgpoX, 1lApax 1)),

where k1 =k 1if FG(k) = | and k] = ¢, otherwise.

Analogously, for
Y ,h.(Y)) #F >
(b (1)) 27 LT, £ > 1
we obtain from the induction hypothesis that

i[YkY],..Yr_E], (vky,...Y_ D
Py

(yrg([Yle...Yr]), krwrg([YkY]...Yr])),

where k= Ik if T {k) = iY gt Yt[ and k= ¢ otherwise , | <1 < q.

Combining these results yields

({apal,lapal)

*
=

(¥ oYy E({xi_ x.].n.px pOX]][Aan 1),

1Pi-1%g

JJO...JI 1T Ry e ek a-1 q—lk m g([xl P51 ]...[Xop0 ][Aan M.

Notice that only kF(k) = k and all other kr's, r # I'(k), are equal to €. This

concludes the induction proof of part (b) and therefore the proof of Claim I. a

Now let (S,S5) = (w,ﬂ) and assume that k.S Z 2...Z , h (Gk(Z]ZZ...Zn)) is the

first rule which is used in this derivation. Hence, k.S + leZ"'Zn is in P. If we

use a similar partition of w and 7 as in the induction proof of Claim 1, we obtain

from this claim
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(£s3,[sh

=

fwls([Skzll sk m E([8kZ 1))

=2

(WIWZ' oW ST Ty e e T (k)- ]kwr. " .'nn) = (w,mT).,

Consequently, T(T) ¢ T(T').

Tor the converse, the following claim is used.

CLAIM 2. Suppose that {[ApaXl,[4ApoX]) % (w,jm), where j = p if [oX| = PG(p)—l and
j = €, otherwise. Then (A,A) = (o by (8 (X))«

Proof of Claim 2. Notice that in this claim o may be the empty word. Write w = av,

hence, a ¢ £ and v ¢ ¥, If m = 1, then v = ¢ and w = a. In this case we have a rule
[ApoX] + a,jm

in T',where

[N
i}

p if IaXl = FG(p)—l, and

= g, otherwise.

.
[

This rule is obtained from either a production
p.A + aXa (*)
in P, hence, T = g, or from productions

p.A —+ mXXo,‘and

(%x)
Py* XO + a

in P such that 71 = Py
Therefore, in the case of (*) we have, according to the definition of T, A - oXa,

hZ(GP(uXa)) in R, that is, we have
(A,8) = (aXa,hy (8, (X)),

as desired.

In the case of (x*) we have in R,

A~ aXXo,hE(Gp(aXXO)), and

XO -+ a,pO

that i1s, we have
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(A,4) = (oXX

o"z\5 (0XX,))) = (aXa,hy (8 (aXpo))),

where hz(ﬁp(aXpo)) = hz(ﬁp(ax))ﬂ, as desired.
This concludes the basis of the induction proof. Induction. Assume m > 1 and
assume that the claim holds for all m' < m. Let the first rule which is used in the

derivation be

([apax], {Apax])

(aE([X oPo¥

£ P PR BRI 10 SN SN S PRRI & 4138 X, 1lApaxX, 1)),
01 n—1 n-1"n-l'"n 0°01

L IX }[Apaxx D,

=1 n-l n

. . . * .
under the assumption that w is written as av, 2 € I and v ¢ Z . Notice that by con-
struction of T' the rules of R' are of this form.

Here, j,jo,....jn__1 are again as previously defined. In this case we have the

leftmost derivation

{[apax], [Apaxl)
{,
(aE([x _ n_3xn]...[xopoxl}[Apaxxo]),
Jigiyee-dpe 8K, Py Koo [Xgp X, HApaXXy 1))
q;!
L
(av,3iT).

Write jm = jjojl.,gj iv‘. Obviously, there exist vy € ¥ and Ty € AG’ 0< £<n,

-
such that
(1) v = Yo Va1 and 7' = ﬂéﬂ;_l...ﬂiﬂé.
(ii) v, = wé =g, if g([x —1Pn-1 n]) = ¢
and
vy = ﬁé =g, if E([AanXO]) =€
(iii) for each Z, ! < £ < n and E([X —1P£~IX£}) # €
we have
A L e A
2
1
v ;kz_lﬂz) 5
where t, < m, kp_yTp = né and k, | = P,_ if lXLi = FG(PL—I)—I and k,_, = €,

otherwise.



(iv) if E([AanXO]) # g, then
([APGXXU],[APGXXO])

to
=

L
(VoK) s

=q! = 1 = - = i
where t, < m, km, =, and k = p if !aXXOI FG(p) 1 and k = £ otherwise.

If £([X _lpz_lxlg) #e, 1 £4£ <n, then, since t, < m, ve obtain from the induc-
tion hypothesis

(xz_l s Xﬂ_ 1) = (X’ev’eshz (spz_l (x£)>“£)

and otherwise, in which case £ = n, it follows from the construction of T' that

(oK) = Gipphy(8, ().

Analogously, if E([AanXO]) # €, then, since t, < m, we obtain

0
*
(A,A) = (axxovo,hz(sp(axxo))no)
and otherwise, it follows that

(A,A) =» (aXXO,hZ(Gp(aXXO))).

If we combine these results the desired result follows. Notice that due to our

notations we have

GPZ_I(XZ) = jz_lxzkz_], 1 <4 <n,

and
Gp(axxo) = Gp(ax)xok.
Therefore,

(a,4) 5 (oKX v by (8 (0XK )T

(aXXOVG,hZ(GP(aX)XOk)HO)

§x

(aXlelvo,hZ(Gp(aX)hZ(GPO(XI))ﬂlk)ﬂo)

= (axxlvlvo’hZ(Gp(ax)hz(joxlko)ﬂlk)no)

B

.....

B
.
Q
5

Zvﬂ'"VO’hZ(Gp(ax)hZ(jO"'hZ(jﬂ—lxﬂkﬂ—l)ﬂﬂkﬂ—Z'"“lk)ﬂo)
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§oe

(aXavn. . ,vo,h): (GP (OLX))JO .. 'Jn—lkn—lwnkn—z’ . .koﬂ]kwo)
= (C‘sthz ((SP({XX) ¥,
which had to be proved. This completes the proof of Claim 2. 0

Let ((s],I3]) 3 (w,7) in T'. Let w = av and assume that the first step of this
derivation is done with a rule

(Is1,is])y = (ag(ix _,p__ X 1...0Xp X 1[5pX 1),

jjo. . 'jn—lg([xn—lpn—lxn] - .[XOPOX l][pro]),

where again Xn = a and the other notations are as usual. Strings v and T can again

- . - s . Yy Yot = .
be partitioned in VoVt Vg TV and JJOJI"'Jn—lﬂnnn—l"'nlﬂo m, respectively,

as we did in the proof of Claim 2. Application of this claim then gives the result
(5,8) & (w,m).

This completes the proof that T(T) = T(T’) and therefore the proof of the theo-
rem. O

The algorithm is illustrated with the following example.

EXAMPLE 5.3.

Let G = (N,%,P,S8) be the CFG with productions

1.8 > AaB, 2.4 > cB, 3.B ~ AB and 4.B > b.
Define

FG(i) = 1, FG{Z) =2, FG(3) = 2 and PG(4) = 1.
Step (1) of the algorithm yields

[s] » cg(la2eifsialy,
and from step (ii) we obtain

[A2c]
[A2c]

+

cE([Aa2c][B3al[A2cB)),
bE([B4b][A2cB]),

¥

and

[B3a]
[B3A]

¥

c£{[{A2¢]1{B3A][B3AB]),
»E([B4b][B3ABI},

4
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and

[s1A] » aE([81Aa]),
[StAa] » cE([A2c][B3A][S14aB]),
[siAa] + bE([B4b][S1AaB]).

Performing £ and listing the image of each production under the cover homomor-
phism ¢ (such that G'[£/x]G, where x is defined by FG) after each production, we

obtain the following productions

[s] » c[a2c][s1A]  <1>
[A2¢] + c[A2¢][B3A) <2>
[A2¢] * b <24

[B3A] + c[A2c][B34a] <3>
[B3A] - b <34>

[S1A] » a[SiAa] <e>
[S14a] > c[A2c][B3A] <e>
[SsiAa)] + b <Sg>

End of Example 5.3.

Before we turn our attention to right covers we have a final remark on the
theorem. It is demanded that, for each production i.A > @ in P, T
FG(l) < e
@: teNandTo(i) < [af +1 ifa: 1 ek,

satisfies
G i

. We can slightly weaken this condition by letting FG(i) < |a| if

In section 5.3 and in Chapter 6 we will return to the problem of finding left-
to-right covers.

Next we consider the possibility of obtaining a CFG in GNF which right covers the
g-free NLR grammar. We use two transformations. We transform e-free NLR grammars to
grammars which are almost-GNF. For comvenience of description we assume that the
input grammar is such that terminal symbols in the righthand sides of the productions
can only appear at the leftmost positions of the righthand sides.

This can be done without loss of generality. For example, if a grammar has a
production i.A + gaB, with o # €, then we can replace this production by A - aHaB <i>
and Ha + a <> and the new grammar right covers the original grammar.

The second transformation will produce GNF grammars from almost—GNF grammars.

DEFINITION 5.5. A CFG G = (N,Z,P,5) is said to be an almost-GNF grammar if for any

production A +~ ¢ in P either

(i) aeZ, or

(ii) o € NN’ and rhs(l:a) = I.
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ALGORITHM 5.4,

Tnput. A NLR grammar G = (N,I,P,S) such that P < N x (ZN* y NN').

Qutput. An almost-GNF grammar G' = (N',I,P',{S]), such that G'[¥/T]G.

Method. The set P! will contain all productions introduced below. The set N’ will

contain [8], all symbols of [N} which appear in the productions and some special
indexed symbols H. Initially set P' = @.

(i) For each production of the form i.S + a in P with a ¢ L, add [8) +~ a <i> to P'.

{ii) For each pair {w,p), w = le"'xn ¢ CH{S) and p = iOil"'in-l ¢ LPw), n> 1,
add

fs] - B, !E([x

- i Kyl [81K D) <e>

and

to P'. Here, p = in~§ if in—l'xh-l - Xn € P and p = £ otherwise.

{iii) Let 1.A - ava be in P, o # €. For each pair (w,p), w = XOXI"'xn € CH(XO) and

p= ioil...in_l ¢ LP(w), the following two cases are distinguished:

(Notice that always m > 0.)
{1)n=1,@®=¢c and iojloﬁ-xl is in P; add [Aial - Xl <i i> to P'

0
{2) otherwise, add

{Aia] » Hin_IEC[Xn*lin—lxn]"'[xoioxl][AiaXO]) <p>

and

to P', where p = 1 if 1.4 + aXO is in P and p = £ otherwise, and q = in_1
if i ..%X + X% ¢ P and q = £ otherwise. 0
n-1""n~1 n

LEMMA 5.4 Any efree NLR grammar G can be transformed to an almost-CGNF grammar G' such
that G'{z/rlc.

Proof. Without loss of generality we may assume that G does not have single produc-
tions. We use Algorithm 5.4 to transform G to a grammar G'. By comstruction G' is
almost—-GNF.

CLAIM 1. The cover homomorphism Y, implicitly defined in the algorithm, is well defined.
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Proof of Claim 1. To verify that for any pair p and p' of productions in P' it fol-
lows that if Y(p) = ® and P(p') = w', with ™ # 7', then p # p'. This is straight-

forward to verify and therefore it is omitted. 0

In the following claims @ : A¥, + A" is defined by letting, for any p ¢ A

G G'?

Q(p) = R if and only if Y(p) =
1 ]

CLATM 2. If [Aia] § w then Ag-%éaw
Proof of Claim 2. The proof is by induction on
Basis. If |n'| = 1 then %' = [Aia] + a <ji>. In this case there is a derivation
A-’Riaxo % aa, for X ¢ N.
Induction. Assume [Tr'| =m, m > ] and assume the property holds for all rightmost
derivations with length less than m. Let p'.[Aig] + H, E([X ] =1 X ]...[X 10X]]

[AlaXO]) be the first production which is used in the denvat:.on [Am]-i w. Hence,

we may write w = X x and 7' = p'yq', where q' = H, + X . Then we have
n in-1 n
A
[aia] £ H. g([x ST S 5 PPRe 4 1 ][Amtxg])
1
%Hin_]xnxn—l"'xlxo XX X e XXy =W,
such that
™
. . . 0 . - -
(a) if E([Aw.Xo])w# € then [Amlxo] T %o otherwise Xy =Ty =€,
. k
(b) [xk_llk_]xk] 2 X lsksal,
(c) if E([X i a=1%n 1) # € then [Xn - n] 'ﬁ %, otherwise m, =X, =€, and

(d) q'.l-li I-rx w1thp'n’o ...wnq =p'yq' =1'.
-

It follows from the induction hypethesis that
o (p'm,)
(a)' A T 0X;X,, with either ©(p') =€ or Ty = X
V(1)
(b)'X.k_] k>kak, 1 £k <n1, and

e{myq')
1 A ) U i 1 ' = = =
(c) Xn_1 R > ann’ with either ¢(q') = € or L X = €.

t
Thus, Aggl;=)=> ow. O

0~ &

CLAIM 3. Assume r.hat i.,A > u.XO(p is in P and A % ow. Then there exists W' ¢ A;,

such that [Aia] i w and @(7') = iw.

Proof of Claim 3. The proof is by induction on |w].

Basis. 1If |Tr| = 1 then, with TT.XO +win P, w ¢ I, we have
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A % ocXO % aw
in G, and by construction of G’
i!
[Ain] 2 v,

with @(i') = iw.

Induction. Assume fTri > 1. We factorize
1
A ? OLXO(p % aw
into
i
A _ﬁ aXow,
P
. v and
P =ﬁ 1’

P9
XO ? avo,

where av v, = w. Since X, ¢ N we have [pli < |7| and from the induction hypothesis

we obtain, if @ # g,
T

P]
. . oo s
[Aw.XO] 3 Ve with tp(pl) ip,.

Moreover, there exist productlons lk'Xk + Xk+](pk’ 0<k<n1 and Xn = a, such
that

. ix T
@) % ® et ikxkﬂwk’

with 0 < k £ n-1 and such that ]'nk| < |m], hence

v Tr'
ALY ¥ v

o s
and tp('nk) = im
in-‘l 1Tn«l
(ii) Xn—] R aLDn R -1
such that |m .| < |7|, hence, if @ # e,
)
[ i ]23;]@
=112 TR Yn-1?

1] = 1
and W(ﬁn- i ) ln— lﬂn— 1
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(1i1) wn—l"'wlwo =, and l.oTTOI.lTTl.. .l.n_lTTn_l =

0

It follows that in ?' there exists a production

. . . . .
p'.[Aia] + Hin_lg([xn_lln_la]...[XOI.OXO][A:LG.XO])
and a derivation
_.n.l
[Aia] T v
such that
= [ I A oy [ ' : [
(a) w avavy, T PO T s with q' is Hin—l > a.
(®) o(@'pP)) = ipys
. ' - . .
w(wo...nn_l) LyMglyee el oM oo
1 L} = 1
w(“n—lq ) 112 and
0Tt 1 ta-2"a-2"n-1"n-1 ~ Po°
Hence, @(n') = ip]po =i O

Now it is not difficult to verify that G'[r/r]G. Therefore we omit the
details and only mention that if [S] %' w then one should distinguish the first
production from the remainder of the derivation. A similar argument can be used to
show the surjectivity of the cover homomorphism. This comcludes the proof of Lemma
5.4. 0

Next we show that any almost-GNF grammar can be transformed to a GNF grammar.
This is done in the following algorithm. The newly obtained grammar will right cover

the original grammar.

ALGORITHM 5.5.
Input. An almost—GNF grammar G = (N,I,P,S).
Output. A GNF gragmar ¢' = (N',I,P',S) such that ¢'[t/T]G.

Method. We use two auxiliary sets, NO and PO. Initially set N' = N, NO = @ and

P, ={A+qa <i>| i.A+q is in P anda ¢ 5}.

Step 1. For each production 1.A + BCy in P (with B,C ¢ N and a ¢ N*) the following

is done.
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(i) If j.C » DBE is in P (with D,E ¢ N and B ¢ N*) then, for amy pair of produc—
tions k.B+ a and £.D » b in P add

A~ aHkZSEEj]a <i>

and

ka_ + b <kl>

. . .
to PO. Add [Ejl to NO and [Ej] and sz to N'.

(ii) If j.C~+ b is in P, then, for any production k.B + a add
A al .w <i>
e 50
and

ij + b <kj>

1 A
to Po. Add ﬂkj to NT,

Step 2. Set P' = P.. For each [Ej] in N, add [Ej] + a <ij> to P' for each production

o 0

E->a <i> in Po.

Step 3. Remove the useless symbols. 0

The general idea of the transformation is displayed in Figure 5.3.

A A
/Q/\ ==D Z
i
B c o a Hep (Ej] a
! //\
1 ]
k .
l > 3 E <kl> <.j>
a b
t|
b

Figure 5.3. Step ! of Algorithm 5.5.

LEMMA 5.5. Any almost—GNF grammar G can be transformed to a GNF grammar G' such that
¢'[r/rle.
Proof. Let ¥ : A%

GI
As we did in the proof of Lemma 5.4 we will use homomorphism ¢ instead of §. Two claims

-+ AZ be the cover homomorphism which is defined in the algorithm.

are used in the proof of Lemma 5.5. For any triple of strings o, £ and vy with a = By

we have that a/8 denoctas Y.
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CLAIM 1. Assume A ¢ N.
r L}
(i) IfA% w in G' thenAsp—(%le in G.

(ii) If [Ak] % w in G' then A % w in G, with § = @(1')/k.

Proof of Claim i. The proof is by induction on Iﬂ‘[.

Basis. If |7'| = 1 then we have
(i) Production A + w is both in P and P', hence the claim is trivially satisfied.

(ii) Production 7'.[Ak] - w is in P'. From step 2 of the algorithm it follows that
@(r') = ki, where i.A ~ w is in P. Therefore A %w in G, with § = @(n")/k.

Induction. Consider case (i). Assume A %’ w in G', with [w'[ > 1. The first produc-
tion which is used in this derivation is either of the form i'.A - aHkLB[Ej]G <i>

or i'.A > aiju <i>, Notice that in both cases we can completely determine from which
two productions of P such a production has been constructed. We continue with the
former case. The case in which A + aijq is the first production can be treated simi-
larly and is therefore cmitted. Now we can factorize the derivation in the following

way:

(a) i'.A » aHkI_B[Ej Jo, with @(i') = i.A + BCa, where B is the lefthand side of pro-

duction k in P and C is the lefthand side of production j in P,
T

m iy
(b) (!'=%—?* Vo» and from the induction hypothesis it follows that a%wo in G, where
= 1
Ty (ppro).
m 'ﬂ'l
(c) [Ej] %WI, and from the induction hypothesis it follows that E =Y in G, where

o= tP.('IT;)/J'.

; T

(d) 8 -——Ez#-wz, and from the induction hypothesis it follows that # %wz in G, where
= (]
o(my).

(e) q'.er + b, where we assume that b ¢ I is the righthand side of production £ in

P. Moreover, @(q') =

tor o = " = S 4

It follows that i' rro'rr1 24 T, abwzwlw0 w and @(m') 1TTOJTTITT2!.k_, such

that (if we assume that D is the lefthand side of production £)

a4 nce @ sow %BDBEW U ppgv w2 BDw £ 5 E =
hid b i 0 o ¥ 1o ® VoYY R PPVa¥ o R APV Vg = ¥

This concludes the verification of case (i). Case (ii) can be verified along
similar lines and therefore this case is omitted. This concludes the induction part

of the proof and therefore the claim is proved. ]

CLAIM 2. Considar CFG G' before step 3 of the algorithm is executed. If A i’w in G
then there exists 7' ¢ A ¢ such that A ? w in G' and (') =
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Proof of Claim 2. In the proof which may proceed by induction on [ﬂl one should
distinguish that A % w in G can also imply [Ak] % w, for some k ¢ AG and with
@({r')/k = 7. We omit the proof since it proceeds along the same lines as the proof

of Claim 1. ]
From these two claims it is now clear that G'[r/TlG.

The next theorem follows from the previous results.

THEOREM 5.3. Any £-free CFG G can be transformed to a CFG G' in GNF such that
¢'[r/rlG.

Proof. For any c-free CFG G we can find an e-free NLR grammar GO (Corollary 5.1)
such that Go[r/r]G. The single productions of GO can be eliminated in such a way
that the right cover is preserved (Lemma 4.6) and the new grammar, which is also
non-left-recursive (Observation 4.4) can be transformed with Algorithm 5.4 followed

by Algorithm 5.5 to a grammar G' which is in GNF and which has the property G¢'lr/rlG.O0

Now that we have seen this positive cover result one can ask for an anologous
result for left covers. Unfortunately, as we will see in Chapter 6, this is not pos-—

sible.

We conclude this section with an example.

EXAMPLE 5.4.

In Example 5.! we introduced grammar G_ and we transformed it to & proper NLR gram-

F
mar without single productions. Hence, we can transform it to an almost-GNF grammar.
Assume that the productions are numbered from ! to 13 (cf. p.49).

In step (i) and (ii) of Algorithm 5.4 we obtain

{8] » id <rp>

{sl] - HIZ{A4D][51A] <g>
[s] ~» HS[SIA} <g>

[s] » le[sznl <g>

H,, + id <>

12

HS -+ id <rp>

In step (iii) the following productions are obtained:

[A4D] +Hlo[czo><] <p>
(A4D] ~>H”[cn><] <p>
H > X <g>

10
H” -+ X <g>
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[51A] » H6[36+] <g>

[81A] » H7[B7+] <e>
HG > + <g>

H7 > + <>

[s2p] » HlO[CIOX] <p>
[s2p] » Hll[CIIX] <p>

[C10%] + id <s>
[c11x] > H jlC1IxF] <>

[C11xF] - HIO[CIOX] <g>
[clIxF] » 311[011x] <g>

[B6+] + HIZ[E8D] <e>
[B6+] » id <xq>

[B7+] > HIZ[EBD][B7+E] <g>
[B7+] = Hg[B7+E] <e>

H9 + id <rg>

[E8D] - Hlo[cn0x} <q>

[E8D] - HII[CHIX] <q>

[B7+E] ~» H6[B6+] <e>
[B7+E] - H7[B7+] <e>

Clearly, this grammar is in almost-GNF. Moreover, it right covers GF under the

cover homomorphism which is indicated after each production displayed above.

Since it is already sufficiently clear that our methods will transform the four
productions of the example grammar/GF to an unattractively long list of productions
for a right covering grammar in GNF, we will not bother the reader with the trans-
formation from almost-GNF to GNF for this example. Instead we consider a more simple

example.

EXAMPLE 5.5.

Consider CFG G with productions
I. S>AS, 2, S$~-+b, 3. A->a.

Grammar G is in almost-GNF. Therefore it can be transformed to a CFG G' in GNF such
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that G'[z/r}C.
In step | of Algorithm 5.5 the following productions are added to PO =
={S+b <2, A>a <3P}

S > aH33[S!} <P
H33 - a <33>
S aH32 <>

H32 + b <32

In step 2 the following productions are added in order to obtaim P'.

{si] » aﬂ33§s1] <1i>
.

is1] » aly, <1I>
[st1] = <

In step 3 production A -+ a is removed from P' and & is removed from N'.
5.3. TRANSFORMATIONS ON GREIBACH NORMAL FORM GRAMMARS

In this section we consider transformations on context-free grammars which are
in GNF or in GNE.

As we already mentioned in section 5.2, if we apply the left part transformation
(Algorithm 5.2 or Algorithm 5.3} to a CFG which is already in GNF then the newly
created grammar is in standard 2-form.

Once we have a CFG in GNF we can use the following algorithm to convert left
parses into right parses. This algorithm is a slight generalization of 2 method which

was first used in{121].

ALGORITHM 5.6,

Input. A CFG G = (N,I,P,S) in GNF.

output. A CFG ¢' = (N',%,P',5) in GNF such that G'[r/f]G.

Method. 1Initially, B' = {A+a <i> | i.A+ 2 ¢ P, a ¢ L) and N' = N. The indexed

symbols H which are created below are added to N'. Each newly created production is

followed by its image under the cover homomorphism y.

(i) For each production of the form i.A + a0 in P, a # €, the following is dome.

Assume o = By, y ¢ N'. For any i BbYy in P, 1S ks [rhs(B)] add
A - aHij Yy Y <e>
k
and

.
B, TP S
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to P'. u

(ii) Remove all useless symbols.

THEOREM 5.4, Any CFG G in GNF can be transformed to a CFG G' in GNF such that
¢'[z/L]G.

X
G'
by letting, for any p ¢ AG’ o(p) = TrR iff P(p) = m, where Y is as in Algorithm 5.6.

Proof. Two claims are used to prove the theorem. Homomorphism ¢ : A_, - A; is defined

1 1
CLAIM 1. If A% w in G', thenAi%Ll»w in G.

Proof of Claim 1. Notice that A ¢ N. The proof is by induction on |r'|.
Basis. If |7'| = 1 then @(n') = 7' and the result is clear.

L]
Induction. Assume |r'| =m, m > 1. For A ;{_r’ W we may write

i | ' L '
A X a“ijk‘fk‘f% N d abv',

where i'p'j' = 7' and abw' = w.
Since Jp'] < m and Tfk'y e N it is easily verified with the help of the induction
hypothesis that

1
1
WLV

in G'. Moreover , ®(i') = € and @(j') = jki, where jk'B - bYk and 1.A > aBy are in

P. Hence,
1
AR
L
in G. U

CLAIM 2. If A
e') =m.

¥
%w in G, then there exists 7' ¢ A;, such that A Eﬁ w in G' and

Proof of Claim 2. The argument is similar to that of Claim 1. Notice that if |m| > |

we can write
i i ! v o
A » aBy % abYkY % abw w.

The details are left to the reader. O
In both claims we can take A = 5 and we can conclude that G'[T/2]G. ]

If a grammar is in GNF, then there exists a very simple proof to show the existence
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of a left-to-right covering grammar in GNF.

THEOREM 5.5. Any CFG G in GNF can be transformed to a CFG G' in GNF such thac
G'le/xlG.

Proof. Let G = {(N,Z,P,S) be the CFG in GNF. Define a grammar GR = (N,A S) by

G’ER’
the set of productions

Pp = {A+qi| i.A+>qais in P, a ¢ Z}.
Define homomorphism ¢ s A; +5* by letting @{i) = a if i.A + qa is in P.

Notice that GR is unambiguous. Find for GR

GL = (N"AG’PL*S') in GNF. Grammar G' and the associated cover homomorphism { are ob-

a weakly equivalent CFG

tained from ¢ by defining

P' = {i'.A' » a0’ <> | i".A" + ja' is in P_ and @(j) = al.

L

We may conclude that G'[£/r]G if we have verified that ¥ is well-defined. That
L then i # j implies ©(i) # ¥(j). But

this property is trivially satisfied since otherwise GL can generate sentences of

is, if i'.A' + ia' and j'.A' + jo' are in P

the formnlm2 and ﬁ]]ﬂz

and we have two different right parses for the same sentence. Since these right parses

. Hence, there exists w ¢ L{G) such that w(ﬂliﬂz) = @(Hljﬂ2)= W,

only differ in one production, this is impossible.

The usefulmess of this theorem will become clear from the following observation.
We know {Theorem 5.2 and 'symmetry') that any proper NRR grammar G can be transformed
to a CFG G, in GNF such that GO[;/;]G' From the above theorem it follows that we can

0

transform Go toe a grammar G' in GNF such that G'[K/;]Go and from tramsitivity it

follows that G'[£/Tr]G.

COROLLARY 5.2. Any proper NRR grammar can be transformed to a CFG G' in GNF such
that G'[£/rlG.

A similar result was obtained in Ukkonen [162.

We conclude this section with some observations on production directed parses
which are different from the left and right parses.

In section 5.2.2 it was shown that for any proper NLR grammar G there exist a
CFG G' in GNF such that G'[£/x]G, £ < x < £p. From transitivity and Theorem 5.4 of
this section one can immediately conclude that any proper NLR grammar G can be given
a CFG G' in GNF such that G'[r/x]lG, £ = x < fp.

However, it is fairly simple to obtain more general results.
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IEMMA 5.6, Let G = (N,Z,P,S) be a NLR grammar. Let Xq be a production directed parse
relation. Then there exists a CFG G' in GNF such that G'[r/x]G.

Proof. From Lemma 4.4 and Observation 4.2 it follows that there exists a grammar
G, such that G is NLR and G‘[;/x]G. Grammar G1
grammar G, (Corollary 4.1) such that GZ[;/;]GI' Finally, for G, we can find a CFG

G' in GNF such that G'[;/;]G2 (Theorem 5.3). Hence, G'[r/x]G. a

can be transformed to an £-free NLR

Another interesting result is obtained from the following argument. Consider a
proper CFG G with a production directed parse relation x which satisfies fc < x < T.

Define a proper CFG G, in the following way.

1
For each production i.A -+ af of G with |aB| > 1 and FG(i) = la| + 1 define pro-

ductions A > HiB <g> and Hi + o <i> for grammar G 6. If |aB| = 1, then A + af is

1
also production of grammar Gl'

Clearly, G][;/x]G. Hence, with the help, of Theorem 5.3 and transitivity, it
follows that there exists a CFG G' in GNF such that G'[r/x]G.

COBOLLARY 5.3.

(a) 1f G is a proper NLR grammar, then there exists a CFG G' in GNF such that
G'[(£/x]G, £ = x £ Lp.

(b) If G is a NLR grammar, then there exists a CFG G' in GNF such that G'[r/x]G,
L<x<r.

(c) If G is a proper CFG, then there exists a CFG G' in GNF such that G'[r/x]G,

le € x s T,

Note. Observe that if G is in GNF, then ZCG coincides with ZG. Analogously, if G

is in GNF then ﬂpG coincides with ;G'



CHAPTER 6

THE COVER-TABLE FOR CONTEXT-FREE GRAMMARS

Once more we mention that the context—free grammars which we consider are cycle-
free, they do not have useless symbols, and if the empty word is in the language then
there is exactly one leftmost derivation for this word. Such a grammar is referred
to as an amenable (AME) grammar. We will not pay attention to the special produc-
tion S0 + §1 which may be introduced in the case of the elimination of single produc-

tions.

The cover-table, which is presented below, has five rows (AME, €-FREE, NLR,
e-FREE NLR, GNF) and seven columns (AME, €~FREE, NLR, €-FREE NLR, GNF, NRR, £-FREE
NRR). Each row has four subrows, one for each type of cover which is considered, viz.,
£/8-, £/t-, T/8- and T/r-covers. For each of these covers a yes/no-answer is present-
ed to the question whether certain types of grammars (indicated by the name of the
column) can be covered by a grammar in some normal form (indicated by the name of
the row).

A simple reference system to the entries of the table is used. Except for the

AME~row all places are labeled with either letters (a.,...,p.) or numbers (l.,0..,962).

Example. Entry 25. is no, hence, not every e-free grammar (satisfying the AME-

conditions) can be left covered with a NLR grammar.

We have a short discussion on a negative cover result. In Ukkomen [164] it is

shown, among others, that grammar G with productions

§ -+ 0SL | ORL
R 1RL | 1

L—+c¢
can not be left covered with an e-free CFG. Now, consider CFG GO with productions

-+ 9SL
+ JRL
1RL
> 2

oo o ow
4

* £

Clearly, if G does not have an e-free CFG which left covers G, then G0 does not
have such a grammar. Grammar GO will be useful in the construction of the cover—table.

Next we list the productions of a CFG GN which has the property that GN[;/Z]GO.



Grammar Gy is in GNF and since GN[;IKIGO we may immediately conclude that G
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S =+ OHOOS <53> H00 -0 <1I>
S~ OHy,R <55> Hyy ™ 1 <12>
§- IH R <55> H,~1 <23
S - IH12 <5> le + 2 <24>
R~ 1Q11R <55> Q11 -+ 1 <33>
R~ 1Q12 <5> Q, 2 <34>
R~ 2 <4 >

N

does not have an e-free CFG G' such that G'[Z/;]GN.

Now we are sufficiently prepared to present the cover-table (Table VII) and the

way it is obtained.

Construction of the cover—table

(6.1)

(6.2)

(6.3)

(6.4)

All the £/£ and T/t entries of the AME-row are trivially yes. The £/ and ¥/L

entries are yes because of Lemma 4.4.

Trivially yes are also the entries 1., 4., 9., 12., 13., 16., 21., 24., 29.,32.,
33., 36., 37. and 40. Because of Lemma 4.4 and Observation 4.2 the entries

30., 31., 34., 35., 38. and 39. are yes. Trivially yes are also the entries
57., 60., 61., 64,, 85. and 88.

Due to grammar GO we have that entry a. is no and from 'symmetry' it follows
that entry d. is no. Therefore, alsoc i., £., m. and p. are no. Since G0 is
NLR it follows that entry 5. is no and again from 'symmetry' entry 20. is no.

Thus, entries 68. and 92. are no.

Next we consider grammar GN' This grammar has the property that GN[;/L]GO.

Since GO has no e-free grammar which left covers G0 it follows that GN does

not have an e-free grammar which left—to-right covers GN' Moreover, G is in

CNF, hence, the entries 14., 10., 6., 2. and b. are all no. Because of ! symme~

try' it follows that the entries c., 3., 19. and 23. are no.

We have the following immediate consequences.

(1) Since entries b. and c¢. are no it follows that entries j., k., n, and o.
are no.

(ii) Since entries 2. and 3. are no it follows that entries 50., 51., 74. and
75. are no.

(iii) Since entries 5., and 6. are no it follows that entries 53., 54., 77. and
78. are no.

(iv) Since entries 10. and l4. are no it follows that entries 58., 82., 62.

and 86. are no.
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e-FREE e-FREE
.COY, -
y ER AMF, ¢-FREE NLR NLR GNF NRR NRR.
il yes yes yes yes yes yes yes
2l yes yes yes yes yes yes yes
AME _
r/L yes yes yes yes yes yes yes
;i; yes yes yes yes yes yes yes
/L a. no |l. yes|5. no |9. yes |[13. yes |17. yes ]21. yes
ﬂ/; b. no 2. no 6. no 10. no 14. no 18. yes [22. yes
€-FREE | _
/L c. no 3. no 17, yes {li. yes |15. yes |19. no [23. no
/T d. no |4. yes | 8. yes {12. yes |16. yes |20, no [24. uyes
2/ e. no |25. no {29. yes }33. yes |37. yes |41. no l45. no
2/t f. no [26. yes |30. yes |34. yes {38. yes |42. no |46. yes
NLR
/L g. no |[27. no | 31. yes |35. yes {39. yes |43, no @¥7. no
/T h. no {28. yes |32, yes |36, yes {40. yes [44. no [8. yes
/L i. no 9. no |53. no |57. yes |6l. yes {65. no [69. no
c~FREE L/x j. no |50. no |54. no |58. no |[62. no |66, no [70. vyes
NLR /L kX. no [51. no |55. yes |59. yes |63. yes |[67. no [71. no
*/t 2. no |52. yes |56. yes |60. yes |64, yes |68, no [72. ues
/L m. no |[73. no |[77. no |81. yes [85. yes |89. no {93. no
2/t |n. no 74, no |78. no |82. no |86. no {90. no [94. yes
GNF
r/L o. no |75. no |79. yes |83. yes |87. yes |91. no [95. no
/T p. no 76. vyes | 80. yes {84. yes |88. yes [(92. no 96. yes
Table VII. Cover-table.
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(v) Since entries 19. and 23. are no it follows that entries 67., 91., 71.

and 95. are no.

(6.5) Due to the Corollaries 5.1 and 4.1 the entries 26., 28. and 52. are yes. From
Theorem 5.2 it follows that entry 81. is yes. From Theorem 5.3 it follows that
entries 76., 84. and 96. are yes. Since entry 96. is yes it follows that en-—
tries 72. and 48. are yes. From Corollary 5.2 it follows that entry 94. is yes
and, consequently, entries 70., 46. and 22, are yes. Since the entries 81. and
85. are yes Theorem 5.4 tells us that entries 83. and 87. are yes and, conse-
quently, entries 59., 1l., 63. and 15. are yes.

With some simple observations, in which Theorem 5.4 can be used to obtain
contradictions, it follows that the entries 73., 90., 93. and 89. are no.
Since the entries 73.,89., 93., and 90. are no, the entries 49., 69., 65.

and 66. are no. Otherwise a contradiction with Theorem 5.2 can be obtained.

(6.6) Because of Corollary 4.1 we have that entry 8. is yes and from 'symmetry' it
follows that entry 7. is yes. The assumption that entries h. and g. are yes
leads, with the help of Corollary 4.1, to a contradiction with entries d. and
c.which are no, respectively.

Similarly, with Corollary 4.1 and since entry 31. is yes, we must conclude
that entries f. and e. are no in order to avoid contradictions with h. and g.,
respectively. Since both entry 19. and entry 20. are no we obtain with the same

type of argument that entries 41., 42., 43. and 44. are no.

(6.7) Entry 56. is yes since the entries 8. and 52. are yes. The entries 25. and
27. are both no since otherwise a contradiction can be obtained (via entry 31.
and 56. in the case of entry 25. and via entry 56. in the case of entry 27.)
with entry 3. which is no.

For any NLR grammar G there exists a NLR grammar G' such that G'[T/£]G.
Grammar G' has an £-free NLR grammar G" such that G"[z/£]G. Hence, emntry 55.
is yes and therefore also entry 7. is yes and ('symmetry') entry 18. is yes.
Since entries 55. and 56. are yes it follows (with entry 84.which isyes) that en—
tries 79. and 80. are yes.

Both entries 45, and 47. are no because otherwise, with the help of 55. and
56+, a contradiction with entry 71. is no is obtained. This concludes the con-

struction of the cover-table.

We conclude this chapter with a few remarks on the cover-table in relation with
section 3.2 ('Historical notes').

Our right cover result (entry 76.) deals with the comment of Griffiths and
Petrick. That is, we have found a procedure for relating the structural descriptions

of a standard form grammar (GNF grammar) to the context-free grammar from which it



was constructed.

Both Kurki-Suonio and Foster solve (in their formalism) the problem of relating
the structural descriptions in the case of elimination of left recursion. In the
cover formalism (Soisalon-Soininen [156] and Nijholt [115]) there are corresponding
right cover results (entry 28.)

Kuno's attempts are also illustrated in the table. He has no problem to relate
a GNF grammar to the NLR grammar from which it is comstructed {cf.entry 81.). How-
ever, his attempt to relate a NLR grammar to the context-free grammar from which
it is obtained gives rise to a complicated procedure. It follows from our cover-

table {cf. entry 25.) that a cover homomorphism is not stromg enough to express this

relation.



CHAPTER 7

NORMAL FORM COVERS FOR REGULAR GRAMMARS

In this chapter we present two techniques to transform left and right regular
grammars into vcovering GNF grammars.

‘Given a left regular grammar G, the method described in the proof of Theorem
5.5 is adequate to obtain a grammar G' in GNF such that G'[£/T]G. However, the first
algorithm of this section shows that we can always find a right regular grammar G'
such that G'[£/r]G. The method in this algorithm is a slight adaptation of a method
which is sometimes used to show that the classes of languages of left regular and

right regular grammars coincide.

ALGORITHM 7.1.

Input. A left regular grammar G = (N,I,P,S).

output. A right regular grammar G' = (N%ZI,P',S') such that G'[£/T]G under a very
fine and faithful cover homomorphism.

Method. Initially, set P' = @. Each production in P' will be followed by its image
under the cover homomorphism. Set N' will comsist of the nonterminal symbols which
occur in the productions. Start symbol S' is the only newly introduced nonterminal
symbol.

(i) For any A e« N, A# 5, if i.A» a is in P, then add S' -+ aA <i> to P'. Moreover,
if i.A + Ba is in P, add B + aA <i> to P'.
(ii) a. If i.5 > a is in P, add S' + a <i> to P'. Moreover, if S is left recursive,
add S' + aS <i> to P',
b. If 1.S » Aa is in P, add A + a <i> to P'. Moreover, if S is left recursive,
add A + a§ <i> to P'. 0

THEOREM 7.1. Any left regular grammar G can be transformed to a right regular gram-—

mar G' such that G'[£/T]G under a very fine and faithful cover homomorphism.

Proof. Use Algorithm 7.]. Obviously, G' is right regular and the homomorphism which

is defined is very fine. Call this homomorphism . Twe claims are used.

' . . . . .
CLAIM 1. Assume B # S'. If B ? wA in G', then there exists a derivation A % Bw in
G, with Y(r') = ﬂR-
Proof of Claim I. The proof is by induction on |w|. Assume |w| = 1. Hence, w ¢ £
and we write w = a and 7' = i'. In this case there is a production i'.B » aA in P’

and there exists a production i.A - Ba in P with Y(i') = i.
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Now assume {wj > 1. If we write w = au, with 2 ¢ £ and u ¢ £, and 7! = 1 p's

where 1'.B + aC is in P', then we have a derivation

Notice that, due to the construction of G', $' does mot occur in a righthand
side of a production. Therefore, C # S' and since C %' uA we may conclude from the
induction hypothesis that A % Cu in G, where P(p') = pR. Moreover, there exists a
production i.C + Ba in P with Y(i') = i and it follows that A -g» Bu in G, with m = pi
and YP(r') = 7. This concludes the proof of Claim I. 0

It should ba observed that if S is left recursive in G, then the existence of

a derivation S 3 Bw in G implies that the following derivations exist in G':

1
(a) B % wS for some sequence T' of productions such that Y{n') = WR and ™' can be
written as 7' = p'i' for a production i' in P' which is of the form 4 + aS,
1
(b) B % w for the sequence §' = p'j' such that production j' is of the form &4 -+ a

and $(i') = Y(j'), hence P(r') = Y(8') = .

If S is not left recursive, then only situation (b) occurs. Formally,

. . . T .
CLAIM 2. Assume that S is not left recursive. For any A ¢ N, A # S, if A.? Bw 1in
)
. . R
G, then there exists 7' such that B % wA in G' and §(w') =T

The proof of Claim 2 proceeds again by induction on |w| and since it goes along
the same lines as the proof of Claim ! we omit it.
1
Now comsider a derivation S' % w in G'. This derivation can be written as

e )

v X !
s ? aA.% auB % aub,

where w = aub and ™' = 1'p'j'. From the construction of G' it follows that there
exist productions j.S + Bb and 1.A + a in P with $(i') = 1 and $(j') = j. From Claim

1 it follows that
B % Au, with Y(p') = pR.

. . . . R
Hence, S % w in G with 7 = jpi and (7') = 1.
. .. P T .
Now consider the second condition of the cover definition. Assume S ? w in G.

We can write, with a, b e £ and u « Z*,
S;Ab Bbi b
R % ub 2 aub,

where w = aub and jpi = 7. Notice that if § is not left recursive then A # §. Hence,
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' . . R .
from Claim 2 it follows that B % uA in G', with ¢(p') = p . From the construction

of G' it follows that there exist i'.S' + aB and j'.A + b in P', with Y(i') = 1 and

$(j') = j. Hence, S' %' w, with ' = i'p'j"' and ¢(r') = WR.

Since the construction is such that for any (rightmost) derivation § % w in G
there exists exactly one (leftmost) derivation S' %v w in G' with ¢{(r') = HR, we
can conclude that the cover is faithful. 0

EXAMPLE 7.1.

Consider the well-known left regular grammar G, with productions

0

-+ S0
Sl
-0

¥

(V>N V- R V- R V]

> 1

If we apply Algorithm 7.1, then step (i) is void and in the second step we obtain

productions

(ii) a. S8'=+0 <3> {ii) b. S§->0 <I>
ST + 1 <4> S+1 <2>
s' +~ 08 <3> S - 0S <I>
S' > 1S <4> S -+~ 18 <2>

Since any right regular grammar is in GNF, Algorithm 5.6 can be used to obtain
a GNF grammar which right covers the input grammar of Algorithm 7.1, If this is done
for the grammar of Example 7.1, then grammar G', displayed in Table V (section 3.3),
is obtained.

Notice that it would have been sufficient, in order to conclude that there exists
a right regular grammar which left-to-right covers the left regular input grammar,
to prove that Algorithm 7.1 is language preserving. Then we could have used the
method of Theorem 5.5. For the unspecified transformation to GNF in this method one
may use Algorithm 7.1.

Another method which preserves regularity is the Rosenkrantz method [ 142].

Before we can present a table which shows the possibilities of covering reg—
ular grammars with grammars in Greibach normal form we need one more algorithm.

In Chapter 6 we saw that not every GNF grammar G can be left-to-right covered
with a GNF grammar G'. However, if GNF grammar G is right regular, then a GNF grammar
G' such that G'[£/T]G exists.

ALGORITHM 7.2,
Input. A right regular grammar G = (N,X,P,S).
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Output. A grammar G' = (N',5,P',S') in GNF such that G'[£/T)G under a faithful and
very fine cover homomorphism.
Method. We construct a (nondeterministic) pushdown transducer R = (Q,Z,F,AG,G,q,S,ﬁ)
which translates with empty pushdown stack, without €-moves, and which satisfies
Te(R) = rg.
Here, Q@ = {q,r}, L is the output set, I = {8} u {[ij] | 1,3 ¢ AG} and S is the

start symbol. Let Aé = {i | i.A+ a is in P, a € I}. Define the mapping 6 as follows:

a. For each a ¢ £, 8(q,a,5) contains
(i) ¢p,1ijl,3)s if pe Q, j € Aé and, for some B ¢ N, i. § + aB is in P.
If p = r, then production j has lefthand side B.

(ii) (r,e,i}, if 1.8 + a is in P.

b. For each a ¢ %, 8(qg,a,[ij]) contains
(i) (p,[mn]{ijl,n}, if p e Q, n € AG\Aé and there exist X,Z,0 ¢ N and Y ¢ L
such that i.X - ¥YZ and m.Z -+ all are in P. If p = r, then production n has
lefthand side U. If mn.X' > bV is in P, then production j has lefthand side V.
(ii) {r,iijl,n), if there exist X,Z,U ¢ ¥ and Y ¢ I such that i.X - YZ and n.Z + aU

are in P and production j has lefthand side U.

c. For each a ¢ L, §(r,a,lmn]) = (r,e,m) if there exist X ¢ N and Y ¢ N u {e} such

that n.X »+ a¥ is in P.

This concludes the construction of PDT R. Now comstruct, using the Standard
Construction {cf. sectiom !.3.1), a simple SDTS Tl = (NI,Z,AG,R],S') from pushdown
transducer R.

All the rules of T] are of the form 4 - ax, T with a € Z, T € AG and @ € NT.
The desired GNF grammar G' = (N',I,P',S) is obtained by removing the useless symbols
from the input grammar of T1°

Homomorphism ¢ is defined by mapping each production A + ac on w if A + ax, ™

is a rule of ;- i

Our first observation concerning this algorithm deals with the definition of y.
We have to verify that ¥ is well-defined, that is, there do not exist rules A - aq,

T o and A > aa, T

1 ,® in R with ™ #+ Tye This follows from the following lemma.

LEMMA 7.1. Pushdown transducer R is semantically unambiguous.

Proof. We have to verify that there do not exist p € Q, a ¢ L and X ¢ I such that
8(p,a,X) contains elements which only differ in their output symbol. For the cases
a., b.(i) and ¢. this is immediate. For step b.(ii) this property follows from the

fact that the productions i amd j, together with the input symbol a, uniquely deter-
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mine production n. 0

The following observation will clarify the behaviour of pushdown transducer R.

OBSERVATION 7.1. Assume R translates w ¢ L(G) by empty pushdown list. If |w| is

even and le > 2, then translation of w can only take place in the following way:

A. one application of a step of the form a. (i), followed by

B. (|w|/2) - 2 applications of steps of the form b. (i) with p = q, followed by
C. one application of a step of the form b. (i) with p = r, followed by

D. (!wI/Z) applications of steps of the form c. .

Translating starts with one symbol on the stack. Each of the steps of b. (i) lets
the stack grow with one symbol. After the application of a step b. (i) with p = r,
there are [w|/2 symbols on the stack. Each of the |w'/2 steps of the form c. reduces
the number of symbols on the stack with one.

Similar observations hold for |w| is odd and some trivial cases (|w| < 2).
Other ways of translating do not lead to acceptance. Either the stack is empty where
there is still input to be read, or the input is read and the stack is not yet empty.

End of Observation 7.1.

Now we are sufficiemtly prepared to present the following theorem.

THEOREM _7.2. Any right regular grammar G can be transformed to a CFG G' in GNF such

that G'[£/r]G under a very fine and faithful cover homomorphism.

Proof. The proof is based on the following claim. This claim is used to prove that

Te(R) = ;G’ where R is the pushdown transducer of Algorithm 7.2.

CLAIM. Let u ¢ Z*, |ul 21, cel and 1.A~+ aB and j.C + ¢X in P with X ¢ N v {g}.

(q,uc,[i31,€) ¥ (r,,e,mi)

in R if and only if

R .
B z uC 4 ucX

is a derivation in G.

Proof of the claim. The proof is by induction on [u].

Basis. Assume |ul = 1. Write u=1b, b € Z. In this case the computation

(q;be,[i31,8) P (r,e,e,mi)
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is done with two moves and we must conclude the existence of
(r,[11,7) < 8(q,b,{1j])

obtained from step b. (ii) of the algorithm, and of
(r,e,i) ¢ 8{r,=,[ij])

obtained from step c¢. of the algorithm. It follows that there exists a production

7.B + bC in P and we have a derivation

82 pcd bex

- . R P . .
which had to be proved. Notice that m = 7. In a similar way the other directiom of

the basis of the induction can be proved.
Induction. Assume [u{ > 1, If
{q,uc,{ijl,e) & (r,e,c,mi)

then, if we write u = by (with b € Z and v ¢ Z*) and T = ny (with n € AG and Y € AZ),

we can factor this computation into
(a,bve,[ijl,e) - (p,ve,lmllijl,n) F (r,e,e,nyi),
where p € Q.
First consider the case p = r. Then there exists
(r,fmnl{ij],n) « §(q,b,[1j])
obtained from step b (i) of the algorithm,
(r,e,m) e 6(r,v,lmn])
and
(r,e,1i) « 8(x,c,lijil)

obtained fram step ¢, of the algorithm, with m = v, m ¢ AG and v € I. Hence, there exist

productions m.B -+ bU and n,U + vC in P and we have a derivation

B 3 by 3 bvC 5 bveX

with (mn)R = ny as had to be proved.

Now consider the case p = q. In this case we have
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(¢,{mm][ij],n) e 8(q,b,[ii])

which is obtained in step b. (i) of the algorithm. Hence, we have a production m

of the form m.B + bU. Mcoreover, we have a computation

(q,VC,[mn][ij] ,E) )1 (r,E,E,Yi)-

Clearly, we can write v = vV, and y = Y Yy such that

(@,v;[m],e) & (p,€,€,7))
and

P * .
(vazcs[l.ﬂya) - (r,EsE’Yzl)-

From the construction of § it follows that p = r and the last symbol of string Y4

is m. Moreover, since p = r we have also v, =€ and Yy = €. Therefore v, =v and
Y, = Y- Hence, we may write Yy = y'm and
*
(q,v,[m,e) = (r,e,e,y'm)
and
(r,e,lijl,e) &+ (r,e,6,1).
We distinguish between two cases.
(a) lV] > 1. Write v = v'd,.d ¢ L. Since, by assymption, production j is of the form

j.C > e¢X we have by construction of § (cf. the conditions mentioned in step b.
(1)) that production n is of the form n.X' » dC. It follows from the induction

hypothesis that
R

uls v'x
and sincemB - bU, n.X' + dC and j.C + cX are productions in P, we have a deri-
vation

a Y.R a :

BEbU "= bv'X' 2 bv'dC & bv'dex,

that is,

R .
BE» uC;ch

where bv'd = u and m = ny'm, which had to be proved.

(b) |v|] = 1. This would mean that



(q,v,{mle) - (r,e,e,y'm),

with v’ = €. However, with our definition of § such a move is not possible.
Therefore, this case does not occur. This concludes the 'only if'-part of the

induction proof.

The 'if'-part of the proof is a straightforward reversal of the argument used
in the 'only if'-proof. Therefore it is omitted. Moreover, we assume that it is clear

that for any (rightmost) derivation

TrR .
B = uCﬂl ucX

in the claim there is exactly one sequence of moves
.. % .
(q:uc![lJ ]s£> & (r,e,e,mi).
This concludes the proof of the claim. 0

With the help of this claim it is now fairly simple to verify that

TrR
S =
LW

if and only if
{q,w,5,€) bi (r,€,2,T),

that is, T (R) = ;G‘ i

Now we want to show that G'[£/r]G. Bowever, this is an immediate consequence
of the Standard Observation {cf. section 1.3.1). We know that simple SDT3 Tl performs
the same translation as R, that is, T(Tl) = Te(R) = rge All the rules of Tl are of
the form i.A + an, bo where b e A,. Hence, if we define Y(i) = b, then (W,7') € LG'
implies (w,P{(w')) € te- It is also clear that (w,T) € r, = T(Tl) implies that there
exists T' such that (w,m’) € LG‘ and Y(n') = 7. Therefore, G'[£/r]G and by definition
of | the cover homomorphism is very fine.

s T, . '
For each derivation S ? w in G there is exactly one sequence of moves
* R
(q,w,5,8) = (r,e,e,m)

(cf. the concluding remark in the proof of the claim.) Then it follows from the
Standard Construction of a simple SDTS from a PDT that there is also exactly one

derivation

(5,8) 3 (0,1

Hence, if (w,ﬂR) ¢ r., then there is exactly one element (w,r') € LG' such that

fold
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Ym') = ﬂR. Therefore the cover is faithful. This concludes the proof of Theorem
7.2, |

In Table VIII we have collected the GNF cover results for regular grammars.

G LEFT RIGHT
' COVER | pecurar | RrEGULAR
G
L/ 1. yes 5. yes
GHF L/x 2. yes 6. yes
T/L 3. yes 7. yes
T/t 4. yes 8. yes

Tahle VIII. Cover-table for regular grammars.

The entries in this table are numbered from 1 to 8. The table shows that for any
(left- or right~) regular grammar G a grammar G' in GNF can be found which covers
G for each of the types of cover. The answersin this table are found in the following

way.

Construction of the cover-table,

(7.1) The entries 5. and 8. follow trivially, Entry 2. is yes because of Theorem
7.1. Entry 6. is yes because of Theorem 7.2.

(7.2) Since entry 2. is yes we may conclude, with the help of Algorithm 5.6 (transi-
tivity), that entry 4. is yes. Similarly, via entry 5., entry 7. is yes.

(7.3) Let G be a left regular grammar. Algorithm 7.1 yields a right regular grammar
G' such that G'[{/T]G. Hence, we have also that G'/r]G, where we use £ and
T to denote the reverse of left parses and right parses, respectively. Since
for regular grammars the leftmost and the rightmost derivations coincide, we

obtain G'[T/£]G. Therefore, entry 3. is yes.

(7.4) Let G be a left regular grammar. From the argument in (7.3) we know that there
exists a right regular grammar G' such that G'[T/£]G.
Since entry 6. is yes it fallows that there exists a GNF grammar G" such that
G"[£/T]G". From transitivity it follows ‘that G"[£/2]G. Therefore entry 1. is

yes.
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It is worth noting that the GNF grammars of entries 2. and 3. are in fact right
regular grammars, Moreover, except for entries 4. and 7., the cover homomorphisms
are very fine. In particular the result that anmy left regular grammar can be trams-—
formed to a left covering GNF grammar under a very fine cover homomorphism (enmtry 1.)

is interesting.

We illustrate Algorithm 7.2 with the following example.

EXAMPLE 7.2.

Consider the CFG & which is obtained in Example 7.1. If we apply Algorithm 7.2 to
this grammar, then we obtain a grammar in GNF which left covers grammar G0 under a
very fine cover homomorphism. Notice that for right covers a similar result can not
be obtained (cf. Chapter 3 and Gray and Harrison [49]). That is, grammar G0 can not
be right covered under a very fine cover homomorphism by a context—free grammar in
Greibach normal form.

We start with grammar G with productions

1. §' =0 <3 5. §+0 <>
2. 8"+ 1 <4 6. S~ 1 <2
3. §' + 08 <3> 7. 805 <I>
4, 8 > 18 <&> §. s+ 18 <2>

Grammar G is such that G[;/Z]GO. 1f we perform Algorithm 7.2 with input grammar G,
then we obtain, after a suitable renaming of the nonterminal symbols, the GNF grammar

with the following 98 (!) productions:

S>>0 |1 <1,2>
S -+ 04y | 0B, | 0a | 0B, <5,5,6,6>
5+ 14, | 1B, | 14, | 1By <5,5,6,6>

By -+ 04 ! 14, <7,8

0
By = 0Dy4, ! 0D, Aq | 1D,A, | ID,Ay <7,8,7,8
B, > OEGA, | OEA, | 1E,A, | 1E54, <7,8,7,8>

+~0A | 14 <7,8>
+ OD,A, | OD A, | 1A | DA <7,8,7,8

1 071 3™
: ! >
y > OEgA, | OE A | 18,4, | 1E;A <7,8,7,8
~ 04, | 14, <7,8
B, ~ ODyA, | 0D4, | 1D,A, | DA, <7,8,7,8>

B, + OEqA, | OE,A, | 1EA, | 1E,4, <7,8,7,8



B, > 0A, | 14, <7,8
< >
B, > ODyA, | 0D A, | 1D,A, | D4, <7,8,7,8
>
By * OEpA, | OE A, | IE,A, | IEjA; <7,8,7,8
E, > OE,D, | OE,D, | IE,D, | IEjD, <7,8,7,8>
+ 0DyD, | 0D D, | 1B,D, | DD, 7,8,7,8>
+ 0Dy | 1D, <7,8>
|~ OEgD, | OE D | IE,D, | IE;D, <7,8,7,8>
;> 0DD, ! 0D,D, | ID,D, [ DD, <,8,7,8
E, > 0D, | D1 <7,8>
5 * OE;D, ! OE,D, | IE,D, | IE)D, <,8,7,8>
E, > 0DyD, | op,D, | ID,D, | ID,D, <,8,7,8>
E, > 0D | D, <7,8
E > OE D, | OE Dy | IE,D, | IE,D, <,8,7,8>
E, > 0D,D, | 0D, D, | ID,D., | 1DD; <7,8,7,8>
E, > 0D, | D, <7,8
Ay >0 <3 Dy > 0 <7>
Al*l <3> D]—>1 <7>
A2+0 <4> D2—>0 <8>
A3 > 1 <4> D3 > 1 <8

The reader may verify with a few examples that this GNF grammar indeed left covers

grammar G.. End of Example 7.2.

0

The transformation from a right regular grammar G to a GNF grammar G' such that
G'[£/T]G is defined in terms of a PDT. We have not tried to give a grammatical char-
acterization of this transformation. However, the idea in this transformation can
be simply used in examples to obtain left covering or left-to-right covering gram—

mars in GNF., This is illustrated in the following two examples.

EXAMPLE 7.3.

Consider again left regular grammar G.. In Figure 7.1 we have displayed a typical

0"
parse tree for a sentence of GO and the way this tree is transformed to a parse tree

of a grammar G in GNF such that G[K/K]GO and G[K/;]GO.
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Figure 7.1. A left and left-to-right cover for Go.
The indices of the symbols H23, le and Hy,s in this order, reflect the produc-
tions which are used in the parse tree with respect to G.. The first index of H is

0

used to describe the upper part of the tree of G, in a top-down manner (212). The

0

second index describes the lower part of the tree of G, in a bottom—up manner (322).

0
Rather mechanically we can obtain all the productions of G. Each production

of G is followed by its image under a left cover and a left-to-right cover, res-

pectively.
§' - 0SH,, | ISH,, | 0SH | ISH,, <2,2,1,1> <3,4,3,4>
]
§ - OSH,, | ISH), | OSH,, | I.SHIZ <2,2,1,1>  <1,2,1,2>
s' + OH,. i 1H,, | 0H,, J H, <2;2,1,1>  <3,4,3,4>
§ - OH,y, | 11, | OH,, [ H, <2,2,1,1> <1,2,1,2>
st >0 |1 <3,4> <34
S +~0 |1t <1,2> <1,2>
st > 1 <3 <2> H21 > 1 <> <2>
H24 -~ 1 <4> <2> HZZ -1 <2> <2>
H13 -0 <3> <I> Hl] -0 <I> <1>
H -+ 0 <4> <i> H -0 <2> <1>
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EXAMPLE 7.4.

Consider right regular grammar G with productions

. 8-> 08 3. 8§~+0
2, 8§+ 18 4, 8§+ 1

In Figure 7.2 we have illustrated how a parse tree with respect to G can be
converted to a parse tree with respect to a GNF grammar G' such that a left-to-right

and a left cover can be defined. The complete definition of G' is left to the reader.

Figure 7.2, A left-to-right and left cover for G.

With this example we conclude Chapter 7.



CHAPTER 8

DETERMINISTICALLY PARSABLE GRAMMARS

8.1. INTRODUCTLION

Various parsing methods for genmeral context-free languages have been developed.
However, for most of the practical applications the attention can be restricted to
subclasses of the deterministic languages. The main parts of the syntactic struc-
tures of programming languages describe deterministic languages. Therefore it is not
only legal to do so but also, zince the time and space requirements for the parsing
methods for the class of deterministic languages and its subclasses are modest in
comparison with the methods for the general context-free languages, preferable to
do so. Moreover, many of these methods can be easily implemented.

Suppose we have a languapge which is described by a context-free grammar. We want
to build a2 parser for this grammar. This can be done by hand or with a compiler
writing system.+ If it is done by hand and a certain parsing method has been chosen,
then one may expect that one has to manipulate the grammar, change it, apply trans-
formations to it, etc. in order to make it suitable for this parsing method. The
same may hold in the case of a compiler writing system. Such a system takes as input
the syntactic rules of a grammar (together with semantic information) and produces
as output a parser or, more generally, a compiler for this grammar. In a compiler
writing system a choice has been made for a certain type of parsing method. If the
system is provided with the syntactic rules then it will try to generate a parser
of this specific type.

In their 'state-of-the-art' paper on 'Translator Writing Systems' Feldman and
Gries [30] describe, among others, compiler writing systems where the syntactic anal-
ysis - is based on 'precedence techniques'. Grammars which can be parsed with these

techniques are called 'precedence grammars'. Feldman and Gries remark :

"Moreover, one must manipulate a grammar for an average programming language consi-
derably before it is a precedence grammar ..... The final grammar could nct be

presented to a programmer as a reference to the language”.

Also in other situations where the chosen parsing method is based on other than
precedence technigues one will need transformations to make the grammar suitable for
the parsing method. Clearly, there is no need to worry about the final form of the

grammar if the necessary transformations are done by the system itself.

+ A lot of other names have been used, including translator writing system, parser

generator and compiler~compiler.
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These transformations can change the structure of the grammar. This can mean
that the newly obtained grammar does not necessarily perform the same translation
to semantic actions (which lead to code generation} as the original grammar. However,
as the reader already did expect, if the transformations are done in such a way
that a covering grammar is obtained, then we can 'fool' the user of a compiler writ-

ing system. This idea is illustrated in Figure 8.1.

_}
|
I COMPILER WRITING |
type X- | TRANSFOR= type Y- SYSTEM 'compiler for
grammar : MATIONS grammar based on the type Y }type X-grammar
| parsing method |

Figure 8.1. Compiler writing system for type X-grammars.

In the following chapters we will frequently refer to grammars which are LL(k)
and LR(k). We will not confine ourselves to the formal introduction of these classes
of grammars but we will give some introductory considerations on parsing. Moreover,
these preliminaries make it possible to discuss a number of recent compiler writing
systems and to mention those aspects which are of interest for our investigations

in this monograph.

It is customary to distinguish between top-down and bottom-up parsing methods,

The most important feature of (deterministic) top-down parsing is its simplicity.

TOP-DOWN

*
where wo = 8 and w, € .

In top-down parsing the aim is to find the string POPI"'Pn- of productions

which have been used to derive wy from Wy If we know wj-l then t;e problem is how
to find wj. Since we consider leftmost derivations we may write wj—l = wAa. If we
know how A is rewritten at this point in order to obtain w, at the end, then the
problem is solved. In deterministic (one-pass) top—down parsing this can be done,
after we have seen wo,ml,....,wj_z and wj-l = wAa, by leoking at the symbols Of”wn

which appear to the right of w. Notice that W can be written as wv, where v is also
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a string of terminal aymbols. If we allow a 'look—ahead' of at most k symbols then
the class of grammars for which this method works is the class of LL(k) grammars.

Hence, if we have a leftmost derivation

S = wA
LW(’.

and productions A + 8 and A + Yy, then

FIRSTk(Ba) n FIRST, (ya) # 6

should imply B =v,

LL-parsers and LL(k) grammars have been discussed in e.g. Lewis and Stearms [101,
Rosenkrantz and Stearns [144}, Culik [ 22 ), 2nd Woed [173].

Because of the simplicity of the LL-parsing method much effort has been made
to transform grammars into LL(k)} or LL(!) grammars. For instance, in Wood [173],
Foster [34], Stearns [158], Paull and Unger [130] and Lewis, Rosenkrantz and Stearnms
[100], algorithms are described to transform grammars into LL(1) foEp. In Paull and
Unger [129] a transformation to simple deterministic grammars (a subclass of the
LL(l) grammars) is described. Transformations into LL(k) grammars appear in Rosen—
krantz and Lewis [143], Soisalon-Soininen and Ukkonen [157], Hunt and Rosenkrantz
{69], Nijholt and Soisalon-Soininen [128] (cf. also Chapter 12) and Hammer [56]}.

In Beatty [10] various definitions of LL(k) grammars have been discussed and

compared.

BOTTOM-UP

Many methods especially those which are used in compiler writing systems, are

based on bottomup techniques. Consider a rightmost derivation

% %, 5
Wy R Cp B F 9 %

n wO

where w, = S (the start symbol) and wo e ¥,
In bottomup parsing the goal is to find the string PIPZ"'Pn of productions
which have been used {in the reversed order) to derive Wy from W . If we write

wj = 0Aw and wj_ = afw, then the problem becomes to determine B and |aB] (the posi-

i

tion of £) in mj—l’ and by which symbol the substring 8 at position [aB} in uuj__1

should be replaced in order to obtain wj-
The pair (A ~ Br{'aﬁi) will be called the handle of wj—l' Bottomup parsing starts

with w, and the process of determining the handle and replacing substring B by A

o]
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("reducing') should be continued, if possible, until the start symbol has been reached.
In the deterministic one pass bottom-up parsing methods . can be uniquely determined
after having seen wo,wl,....,wj_z and wj—l' The handle (A + B,IGB[) of wj—l is de-
termined from the uniqueness of the context of B. In these methods the context to

the right of B which will be considered is restricted to a fixed number of k symbols

(k 2 Q).

In the most general case, if we have rightmost derivations.

S % AW 2 ofw = yw

and

S % a'A'x-i a'8'x = yw'

and the first k symbols of w and w' are the same, then the handles of yw and yw'
should be the same. This conclusion implies that o =o', A=A', B =B' and x = w'.
Grammars which satisfy this condition are called LR(k) grammars. Consult section 8.2
for the formal definition. In Geller and Harrison [40] a detailed study of LR(k)
grammars and languages is given. Numerous papers have appeared in which parsing
methods for LR(k) grammars are described (e.g. in Knuth [76], DeRemer [25]), Aho and
Johnson [ 1] and Geller and Harrison [41]). Two subclasses, the SLR(1) grammars
(simple LR(1)) and the LALR(!) grammars (look-ahead LR(1)) have become popular since
they can be implemented efficiently and they can describe most of the usual program—

ming language constructs. The context of B in wj_ can be used in a more restricted

way. Other subelasses of the LR(k) grammars are]then obtained. For example, the
bounded (right) context grammars and the various classes of precedence grammars (cf.
Aho and Ullman [3]).

The bottomup parsing merhods for these classes of grammars are also called shift-
reduce methods. The reason is that in the implementation of these methods a stack

is used and the operations of the parser are either ’'shift the next input symbol

to the top of the stack' or ‘reduce’ if a handle has been found and B, which is then
on the top of the stack, will be replaced by A. For non~LR-grammars there will be
action conflicts. That is, there will be situations where the parser can not decide
whether a shift action or a reduce action should be done (a shift/reduce conflict)

or the parser can not decide which reduce action has to be made (a reduce/reduce

wonflict).

STRICT DETERMINISM

There is a third class of grammars, the class of strict deterministic grammars
(Harrison and Havel [59,60,61]}), which has turned out to be useful. This class is a

subclass of the class of LR(0) grammars. Observations on the strict deterministic
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grammars and their parsing method, which has a hybrid character, that is, between
top-down and bottom—up parsing, have lead to many useful ideas on parsing and trans-—
lation (cf. Geller and Harrison [39,41], Lewis, Rosenkrantz and Stearns [99], Ukkonen
[166] and Nijholt [116]). The definition of strict deterministic grammars (cf. Defi-
nition 8.5) is based on the productions of the grammar and not on the derivations.
Therefore it is rather simple to decide whether a grammar is strict deterministic.

In Chapter 9 the strict deterministic grammars will play an important role when we

consider cover results for LR(k) grammars.

Before we will introduce the reader to the issues which will be treated in the
following chapters we have a few remarks on developments in the theory of parsing
and translation of context—-free grammars.

Several authors have tried to gemeralize the ideas which are used in the parsing
methods for LR(k) grammars, LL(k) grammars and some of their subclasses. For instance,
deterministic context-sensitive parsing has been introduced for a subclass of the
context-sensitive grammars (Walters [167]). Similarly, the class of indexed grammars
has been subclassified into LL(k)- and LR(k)-type indexed grammars (Sebesta and
Jones [152]).

Other authors have tried to define deterministic parsing methods for other than
the well-known left and right parses. One may consult Colmerauer [20], Szymanski and
Williams [ 159}, Williams [169] and Kuo—Chung Tai [88). In Demers [24], Brosgol [18 1]
and Rosenkrantz and Lewis [143] parsing methods are defined which yield preduction
directed parses. Semi-top-down parsing methods are discussed imn Krdl and Demner
[84] and in Kretinsky [85].

Straightforward generalizations of the LL- and LR- grammar definitions are the
LL-regular (Jarzabek and Krawczyk [73], NWijholt [114,126], Poplawsky [133]) and the
LR-regular (Culik and Cohen [23]) grammar definitions.

Another approach in the theory of deterministic parsing has been the introduc-
tion of parsing methods for extended context-free grammars. In an extended context-
free grammar each righthand side of a production consists of a regular expression
(or, equivalently, a regular set or a finite automaton). In DeRemer [26], LalLonde
{92,93], Madsen and Kristensen {105] and Thompson [161] extended LR-parsing is con-
sidered. In Lewi.etal.[96,97] and in Heilbrunner [62] extended LL-grammars are dis-

cussed.

These ample discussions on parsing methads and grammar definitions are meant to
give the reader some insight in the areas where the concept of grammar cover can be
used. Many cover results, practically useful for parsing, have been obtained in Gray
and Harrison [49]. As mentioned before, cover results can be used in compiler writing

systems. Therefore we will consider some existing compiler writing systems.
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Assume that the user of such a system provides the system with a set of pro-
ductions (syntactic rules). The system will try to build a parser. This parser will
be based on a specific parsing method. This may be, for example, a precedence method,

an LALR-method or an LL-method.

If the syntactic rules, which are given as input, do not specify a grammar for

which this type of parser can be built then the following may happen:

- the system reports its failure to build a parser to the user; it gives informa-
tion why it failed and this information can be used by the user to change the
syntactic rules (and the associated semantics) to make themappropriate for this
system.

- the system can apply transformations to the input grammar in order to make it
suitable for this method; clearly, it should be expected that this is done in
such a way that the original semantics are preserved.

- although the syntactic rules do not specify a grammar which is suitable for the
underlying parsing method of the compiler writing system, supplementary infor-
mation, provided by the user as input to the system, will suffice to comstruct

a correct parser.

Clearly, it is possible to combine the second and third alternative. Moreover,
it is also possible that the system itself takes decisions which lead to a comstruc-
tion of a parser if the syntactic rules (whether or not with supplementary informa-
tion) do not specify a grammar of the desired kind. In that case it remains for the
user to verify that the parser has been built conform his intentionms.

It should be mentioned that due to the latter possibilities it is possible to
‘parse’ ambiguous grammars. As was mentioned in Chapter 2 we use the name parser
and parsing method even if the parser does not define a proper parse relation for
a given grammar. Deterministic parsing of ambiguous grammars has been discussed by
Aho, Johnson and Ullman [ 2 ]. Their ideas have not only been used in compiler writing
systems but have also lead to more theoretical comsiderations (e.g., Ruzicka [145]

Wharton [168] and Earley [29]).

We now want to mention a few examples of compiler writing systems. Feldman and
Gries [30] gave an extensive survey of these systems until 1968. It is by no means
our intention to give a new survey. In R&ihi [135] and in R#ih4 and Saarinen [136]
recent surveys can be found. Depending on the underlying top-down or bottom—up parsing

method one can distinguish between the compiler writing systems.

In Foster [34,35] a compiler writing system is described which is based on a

top-down parsing method. The input grammar is made suitable for the top—down method
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by a special program SID (Syntax Improving Device) which performs some transformations
on the grammar. One of these transformations is the elimination of left recursion.

As we mentioned in section 5.1 this transformation yields a left-to-right and a

right cover, thus preserving the original semantics.

Other examples of compiler writing systems which are based on LL(]} parsing
methods can be found in Lewi et al.[96,97] (based on extended LL(]) grammars),
Bochmann and Ward [16] and Milton, Kirchhoff and Rowland { 112]. This latter system
can use supplementary information, in this case obtained from the so-called 'inherit-
ed attributes', to build the parser. A consequence is that parsers can be construct-

ed for non-LL{1) grammars. Cf, also Madsen and Jones [104].

BOTTOM-UP

In Lecarme and Bochmanmn [95] transformations are mentioned in their compiler
writing system which make the input grammar suitable for the underlying precedence
parsing method.

In Mickunas and Schneider [ 111} a parser generating system is described where
the first phase of the system converts the imput grammar into a simplified normal
form for internal use. The transformation to this nprmal form preserves the original
semantics. In fact, the authors give a definition of what we call a right cover. It
is announced that an approach for their system is being developed which will involve
transforming LR(k) grammars into grammars that can be parsed without considering
look-ahead. These transformations to SLR(1) and LALR(]) grammars have been described
in Mickunas and Schneider [110], Mickunas, Lancaster and Schneider [109] and Mickunas
[108). These transformations yield right covers.

Building compiler writing systems based on an LALR(1) parsing method has become
a popular occupation. The Yacc (Yet another compiler-compiler) system of Johnson
[74] is, due to its availability on the UNIX time sharing system, probably the most
wide-spread system which is based on the LALR(]) method. The syntactic rules which
are given as input to the system are converted to an LALR(I) parsing algorithm. If
the input grammar is not LALR(1), then there will be parsing actions conflicts.
Supplementary information provided by the user cam help to resolve these conflicts
and to produce a correct parser. Otherwise the system uses some built-in rules to
resolve these conflicts. Hence, non-LALR(1) grammars can be converted to parsers
and these parsers do not necessarily define proper parse relations.

The first LALR(l) based system is described in Lalonde, Lee and Horning [94].
Joliat [75) describes another LALR(1)} based compiler writing system. In the compiler
writing system HLP(Helsinki Language Processor), described in Raiha et al.[i37],
it is also required that the input grammar is LALR({1). The system produces diagnostic
information to help the user to change his grammar to an LALR(1) grammar if the LALR

(1) condition is not satisfied. Similar ideas as have been used in the Yacc system
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can be found in the system described by Kron, Hoffmann and Winkler [86]. In Lewi
et al.[98] another system based on the LALR(1) method is described. Druseikis [28]
has designed an SLR{1) parser generator.

Because of the popularity of the LALR(1) parsing method much effort has been
made to investigate 'error-recovery' techniques for LR- and LALR-grammars (cf.
Sippu and Soisalon-Soininen [153,154] and Graham, Haley and Joy[47]) and to obtain
methods for efficient implementations for their parsing methods (cf. Thompson [161l,
DeRemer and Pemnello [ 27] and Fisher and Weber [31]).

This section is concluded with a few remarks on the contents of the forthcoming
sections.

In Harrison [57] and in Aho and Ullman [3] the question was raised whether each
LR(k) grammar can be {(right) covered with an LR{1) grammar. Starting form their
work on the development of a compiler-compiler this question was answered affirmative-
ly by Mickunas and Schneider [110], Mickunas, Lancaster and Schneider [109] and
Mickunas [108]. In Nijholt [116] a more simple proof was given and some more general
results were obtained. The following chapter is based on the latter paper. However,
our treatment here will be more general.

In Chapter 9 we will introduce the concept of a valid DPDT (deterministic push-
down transducer). This transducer will be the model for the parsing methods which
we will consider. Grammars will be called parsable with respect to a certain parse
relation. We shall have the convention that the parsing methods assign one parse to
each sentence. We can deterministically parse ambiguous grammars since the parse re-
lation may be chosen in such a manner that for each sentence w in the language there
is exactly one element (w,T) in the parse relation. For example, in Aho, Johnson and
Ullman [2] LL(k) and LR(k) parsing methods are used to parse ambiguous grammars. The
parse relations which are used are subclasses of the left and right parse relationms.

If a grammar G is parsable with respect to a certain parse relation f., then it will

G
be shown that we can obtain a strict deterministic grammar or LR(I) grammar G' and
a cover homomorphism ¥ which is defined between ﬁG‘ or ;G' and fG.

In Chapter 10 we continue our discussion on cover results for normal forms of
context-free grammars. Instead of arbitrary context—-free grammars we will now con-

sider the classes of LR-, LL-, and strict deterministic grammars.

8.2. PRELIMINARIES

We shall reproduce below a few definitions of grammars and automata which will
frequently be referred to in the forthcoming sections. From now on we will only con-~

sider automata and transducers which are deterministic.

DEFINITION 8.1. A deterministic pushdown automaton (DPDA for short) is a pushdown
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automaton P = (Q,Z,T,é,qO,ZO,F) which has the property that § is a partial fumction
from Q x (T u {e}) xT to Q x r and, for any q € Q and Z ¢ ', if 8(q,£,Z) is de-
fined then, for all a ¢ Z, §(q,a,Z) is undefined.

A CFL is said to be deterministic if it is accepted by some DFDA.

DEFINITION 8.2, A deterministic pushdown transducer (DPDT for short) is a pushdown
transducer (Q,Z,F,E',S,qO,ZD,F) which has the property that § is a partial function
from Q x (T u {e}) x T to Q x rox gr* and, for any q € Q and Z ¢ I', if &8(q,c,2)

is defined then, for all a ¢ L, 6(q,a,Z2) is undefined.

DEFINITION 8.3. A deterministic finite transducer (DFT for short) is a six-tuple
M = (Q,%,1%,8,q,,F), where

(i) Q is a finite set of state symbols, I and L' are alphabets of input symbols
and output symbols, respectively; q, © Q is the initial state and P = Q is the
set of final states.

(ii) & is a partial function from Q x (Z u {g}) to Q x %% such that, for any q < 4,

8(q,e) is defined implies &{q,a) is undefined for all a € L.

Definitions similar to those for a PDT (Definition 1.15) cam be given for a
configuration and a binary relation - on the configurations of a DFT. Likewise we

define a translation

i

™M) = {(w,w") | (qo,w,e} d (q,e,w') for some q € F}.
For any set L < I we define

M(L) = {y ; x e L and (%x,y) ¢ T(M)}.

We need three definitions of subclasses of the context-free grammars. Again,
we assume that each grammar which is considered is reduced. Our definition of LR(k)

grammars is the same as the one used in Geller and Harrison [4s01.

DEFINITION 8.4. Let k = O and G = (N,I,P,S) be a CFG such that $ % S is not possi-

ble in G. Grammar G is LR(k) if for each w,w',x ¢ Z*; ¥,a,a',B,B% € V*; AA' ¢ R, if
(i) S%a&wﬁaﬁw—‘—w,
(ii) sga'A'xga'8'x= ',

(iiiY k¥ : w = k: w',

L}

then (4 ~ 8, ]aB|) = (4" + 8", [a'8"]).
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For any k =2 1, the class of LR(k) languages coincides with the class of deter-
ministic languages. A language L is said to be prefix-free if u and uv in 1 implies
v = ¢. The class of prefix-free deterministic languages is a proper subclass of the
class of LR(0O) languages. Let G = (N,L,P,S) be an LR(k) grammar. If S' is a symbol

not already in N and 1 is a symbol not already in I, then
G'= (Nu {s'}, L u {1}, Pu{S'~+ s}, 8")

is LR(k) and L(G') is a prefix-free deterministic language (cf. Geller and Harrison
[40]). The strict deterministic grammars (Harrison and Havel [59] generate exactly

the prefix-free deterministic languages.

DEFINITION 8.5. A CFG G = (N,Z,P,S) is strict deterministic if there exists a par-
tition 7 of U such that

(l) Ler,
(ii) For any A, A' ¢ N and o,B,B' ¢ V*, if A > B, A"+ R’ and A = A'
(mod ), then either

(a) both B, ' #ecand 1l :B=12: 8" (mod m)
or

(b) B=R"=¢and A = A",

The class of strict deterministic grammars is a proper subclass of the class
of LR(0) grammars. No strict deterministic grammar is left recursive. Moreover, if
A, Be Nandg ¢ V*, then A $-Ba implies A # B. Any partition of V which satisfies
(i) and (ii) is called a strict partitionm.

In general a strict deterministic grammar can have more than one strict parti-
tion. The set of strict partitions of a strict deterministic grammar is a semi-lattice
under the meet operation. Therefore there exists a minimal strict partition. An algo-~
rithm which is presented in Harrison and Havel [59] computes this minimal striet
partition. We racall this algorithm since it can be used to check our example gram—

mars on strict determinism.

Let G = (N,I,P,8) be a CFG. Let a, B ¢ v* and let A, B ¢ V such that A # B and
we have a = YAal and B = YBB1 for some Y, s Bl ¢ V*. Then the pair (A,B) is said
to be the distinguishing pair of o and B.

ALGORITHM 8.1.
Input. A CFG G = (N,Z,P,S). The productions of P are denoted in the following way

P={a ra | 1=1,...,]R0
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output. If G is strict deterministic, then the minimal strict partition is computed.
Method. [A] will denote the (unique) block of the partition which contains A.
Step !. Initially define m = {{a} | A e N} v {E}. Set i = 0.

Step 2. Set i = j =i + 1. If i > |P| go to step 8.
Step 3. Set j =j + 1. If § > |P| go to step 2.

Step 4. If Ai # Aj go to step 3. If o and aj have no distinguish pair go to

step 7.

Step 5. Let (B,C) be the (unique) distinguishing pair of o5 aj. If B=C go to
step 3. If B¢ £ or C ¢ L go to step 7.

Step 6. Replace [B] and [C] in 7 by one new block [B] u [C]. Set i = 0 and go
to step 2.

Step 7. Halt. G is mot a strict deterministic grammar.
Step 8. Halt. G is strict deterministic under .

End of the algorithm. 0

There are three subclasses of the class of strict deterministic grammars which

will be referred to in the forthcoming sections.

DEFINITION 8.6.

a. (Korenjak and Hopcroft [801) A CFG ¢ = (N,I,P,S) is said to be a simple determi-
nistic grammar if it is in GNF and, for each A ¢ N, if A+ aa and A -+ aB are in
P, then a = 8,

b. {Pitel [131]) A CFG ¢ = (N,Z,P,S) is said to be a uniform grammar if it is in GNF
and there exists a strict partition 7 of V which satisfies: For all A, A' ¢ N,
ae Land a, o' € N*, if A > ag and A' + aa' are in P, then A = A' (modm ) implies
ol = fa'].

c. (Harrison and Havel [61]) A CFG G = {¥,Z,P,5) is said to be a real-time strict
deterministic grammar if it is e-free and it has a minimal strict partition T such
that, for all A,A',B,B' ¢ N and o, B € V*, if A > aB and A" +~ 0B'R ;;b in P, then

A = A' (mod ) implies B = €.

Any simple detemministic grammar G = (N,I,P,$) is strict deterministic with re-
spect to the partition ™ = {I,N} and with respect to the minimal partition

Ty = {2} u {{a} | A € N}. Any simple deterministic grammar is a uniform grammar,

since 7. is a uniform strict partition. Clearly, any uniform grammar is a real-time

0
strict deterministic grammar. The following relation between these classes of grammars

can be shown:

SIMPLE DET. § UNIFORM 7 REAL~TIME ﬁ_STRICT.DET.



109

The third class of grammars which we will consider is the class of LL(k) gram-

mars.

DEFINITION 8.7. Let k=2 0 and 6 = (N,Z,P,S) a CFG. Grammar G is LL(k) if for each
W€ Z*, A e N and a,B,Y € V*, if A+ B and A+ v are in P and
S % wAQ

then FIRSTk(Ba) n FIRSTk(Ya) # § implies B = v.

Each LL(k) grammar is an LR(k) grammar. The class of LL(k) languages is properly
included in the class of deterministic languages. For each k 2 1 there exists an
LL(k) language which is not LL(k-1). Clearly, the classes of simple deterministic

grammars and LL(1) grammars in GNF coincide (except for a possible production S + g).

Whenever we speak of an LL- or an LR-grammar, then we mean a grammar for which
there exists a non-negative integer k such that it is LL(k) or LR(k), respectively.
It should be noted that instead of Definition 8.7 we could have given the following

equivalent definition:

Let k 2 0 and G = (N,Z,P,5) be a CFG. Grammar G is LL(k) if for each w,x,y ¢ E*,
A e N and a,B,Y € V*, if A> B and A+ vy are in P and

(i) s % who 3 wBa % WX
(i1) 53 wha p wya 3 vy
(lii) k : x =k : y

then B = vy.

This definition can easily be changed to a definition of strong LL(k) grammars.

DEFINITION 8.8, Let k 2 0 and G = (N,Z,P,S) a CFG. Grammar G is strong LL(k) if for

each WiaWy X,y € E*, A e N and al,az,B,Y € V*, if A+ B8 and A + ¥ are in P and

« * *
(i) s T VA T w18a1 T VX
5. * *
(ii) s T VoA, P W,Y0, P W,y

(iii) x t x =k : ¥y
then B = v.

It can be shown (ef. Rosenkrantz and Stearns [144]) that any LL(k) grammar can

be converted into a structurally equivalent strong LL(k) grammar (cf. Definition
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1.7. ¢). For k = ! the notians of LL(k) and strong LL(k) coincide. Each simple deter—
ministic grammar is LL(1) and instead of simple deterministic grammars they are also

called simple LL{1) grammars. Cf. section 10.2 for a further discussion on LL(k)

and strong LL(k) grammars.



CHAPTER 9

COVERS AND DETERMINISTICALLY PARSABLE GRAMMARS
9.1, DETERMINISTICALLY PARSABLE GRAMMARS

The well-known parsing methods for deterministic languages can be implemented
by a DPDT. In Aho and Ullman [3] this has been made clear for a k-predictive parsing
algorithm (for LL(k) grammars) and for a shift-reduce parsing algorithm (e.g. for
LR{k) grammars). In Harrison and Havel [59,60] the same has been done for strict
deterministic parsing. For other methods, although mot always explicitly shown, it
is mostly intuitively clear that the method can be implemented by a DPDT.

For LL(k) and LR(k) grammars this means that the proper parse relations LG and
e respectively, are obtained as the translation of a DPDT. Clearly, each of these
translations can also be obtained from a simple SDTS which has the LL(k) or LR(k)
grammar as underlying grammar. Lewis and Stearns [101] have investigated this type
of (simple) syntax directed translations. We list the two main theorems. The termi-

nology is of Aho and Ullman [ 3 ]. The symbol 1 is used as an endmaker.

THEOREM 9.]1. Let T = (N,Z,A,R,S) be a semantically unambiguous simple SDTS with an
underlying LL(k) grammar. Then {(xi,y) | (x,y) € T(I)} can be defined by a DPDT.

Proof. See Aho and Ullman [ 3 ,p.731]. O

It follows that any production directed parse relation f. of an LL(k) grammar

G can be defined by a DPDT.

G

This is not the case for LR(k) grammars. We have to restrict the notion of a
simple SDTS such that its translation can be defined by a DPDT, A simple SDTS
T = (N,Z,A,R,S) where each rule is of the form A - a,B with R in N*A*, is called a

simple postfix SDIS.

THEOREM 9.2. Let T = (N,X,A,R,S) be a semantically unambiguous simple postfix SDTS
with an underlying LR(k) grammar. Then {(xL,y) |(x,y) € T(T)} can be defined by a
DPDT.

Proof. See Aho and Ullman [ 3 ,p.733]. a

It follows from this theorem that the right parse relation . of an LR(k) gram-

G
mar G can be defined by a DPDT.
There exist classes of grammars which properly include the class of LL(k) gram—

mars and which are properly included in the class of LR(k) grammars. For these classes
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less severe restrictions on the simple SDTS than are necessary for LR(k) grammars

need to be introduced. Cf. Soisalon-Soininen [155] and Rosenkrantz and Lewis [143]

for such classes of grammars.

These observations motivate us to consider deterministic pushdown transducers

as a model for parsers. 1f £

- is a parse relation for CFG G, then we call DPDT P a

parser for G and fG if T(P) = fG’ A more formal definition will be given shortly.

We require that at most one parse will be given to each sentence of L(G). This

condition restricts the class of deterministic pushdown transducers. This can be

seen with the help of the following example.

EXAMPLE 9.1.

Consider grammar G with productions

1. 8-> 8§
2. 8> a

A production directed parse relation is the set

T, - {(a,21% | x 2 0}

A DPDT for G and EG is defined by

P = ({qgs9,},{a},{8},{1,2},8,q4,8,1q })

such that

]

G(qo.a,S) (4,,5,2)

and

8§(q,5e,5) = {q,,5,1).

Here we have t(P) = {(a,Zlk) | k 2 0} = ;G' We do not want to consider this DPDT as

a deterministic parser. End of Example 9.1.

A DPDT will he called a parser for G and £, if and only if it is valid for G

G
and fG'

DEFINITION 9.1. A DPDT P is walid for CFG G and parse relation f

(1) (® = {xLy) | Gy) e £}

(ii) no moves can be made in the final states of P.

¢ if
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LEMMA 9.1. Let P be a walid DPDT for CFG G and parse relation fG. 1f (w,ﬂl) € fG

and (w,ﬂz) € fG, then Ty =T,

Proof. Assume that pushdown transducer P is a valid DPDT for CFG G and parse rela-

tion -fG. Suppose (w,wl) and (w,ﬂz) are in f.. Since P is deterministic all the

G
moves which are made to reach a final state with w are the same for a translation

from wi to m and a translation from w to Mye Since there are no possible moves in

this final state it follows that M= Ty 0
Let us call a parse relation fG unambiguous if (ﬁ,ﬂl) and (w,ﬂz) in fG implies
'IT1 = 71'2-

LEMMA 9.2, 1If fG is an unambiguous parse relation of CFG G, then any DPDT P with
T{P) = {(wi,m) | (w,m) € fG} can be converted to a valid PPDT for G and fG.
Proof. Suppose that

(age¥Ls20,€) F (ag,€,7,u)

in P = (Q,Z,F,S,qo,ZO,F), where q, € F and 9, is the first final state which is
reached after the symbols of wi have been read. Hence, (wl,u) ¢ T(P). It is possible
that e~moves are made from q, to an other final state qé. However, during these
moves no output can be given. Otherwise fG would not be unambiguous. It follows that
we can delete S(qe,E,I:Y) from the definition of 6. This can be done for each final
state. The modified DPDT is a valid DPDT for G and £, 0

Any LR(k) grammar G is unambiguous. Therefore the parse relation ;G is unam-
biguous. Since, by Theorem 9.2, for any LR(k) grammar G and parse relation e there
exists a DPDT P which satisfies ®(P) = {(wi,x) | (w,x) € ;G} it follows from Lemma
9.2 that G and o have a valid DPDT.

Notice that any CFG G which generates a deterministic language has a DPDT which
is valid for G and parse relation {(w,£) | w ¢ L(G)}. 1f DPDT P is valid for G and
parse relation fG, then, necessarily, L(G) is deterministic.

Now classes of grammars can be defined with respect to parse relations.

DEFINITION 9.2. A CFG G is an fG—parsable grammar if there exists a DPDT which is
valid for G and fG.

With this definition we can introduce, among others, left parsable grammars
(fG = ZG), right parsable grammars (fG = ;G)’ left corner parsable grammars (fG =
= KcG) and left part parsable grammars (fG = lpG).
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In Aho and Ullman [3] the left and right parsable grammars were introduced with the
help of a simple SDTS.

Notice that if G is an fG—parsable grammar, then it is not necessarily the case
that G is umambiguous since we bave not required that fG is a proper parse relation.
Therefore we can deterministically parse ambiguous grammars in the sense described
in Ahe, Johnson and Ullman [2]. It follows from the discussion before Definition

9.2 that each fG-parsable grammar generates a deterministic language.

The left parsable and the right parsable grammars are also discussed in Aho and

Ullman [3]. There we can find the following inclusion diagram

left parsable

right parsable

LL LR

Figure 9.1. Diagram for the left and right parsable grammars.

Clearly, any LL(k) grammar is left parsable and any LR(k) grammar is right
parsable. The classes of LR-grammars and left parsable grammars are incomparable.
Examples showing this and showing the proper inclusions in the diagram can be found
in [3].

To show that, e.g. an example grammar G is not left parsable ome can use the
argument of [ 3,p.272). That is, try to construct a (valid) DPDT for G and LG' If
this turns out to be impossible, then G is not left parsable.

We show some results which are not in the diagram. Mostly these results are of
the form: Grammar G is fG—parsable but not hG—parsable, thus establishing incompara-
bility of classes of grammars. Except for the first example we will confine ourselves
to the presentation of some example grammars and mention their properties. This is
justified by the simplicity of the examples. The properties of each grammar can be

checked by using the type of argument mentioned above.
Consider the grammar G with productions

1. § =+ 18]
2. 5+ 182
3. s
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Grammar € is not left parsable. Suppose there is a valid DPDT P for G and ZG.
In translating P can only start with emitting output after the last symbol of a
sentence u ¢ L(G) has been read. (Formally this can be seen as follows. Consider
two sentences wl and w2 in L(G). Translation of wl with P leads to a sequence of

moves such that
*
(agrwis,2ge) F (2, 10,7,m) - (g ,65v'5m")

where 9 is the initial state, r is an intermediate state and 9 is a final state.
Suppose that T # €. Necessarily, [ : T = I. Now consider the translation of w2

with P. Here we have
*
(4gsW2L,Z0,€) | (r,20,Y,7.).

Since I : L 1 we can not have that a final state is reached form the configura-
tion (r,ZL,Y,Ww). Since P is deterministic there is no other way for w21 to reach
a final state via (r,ZL,Y,ﬂw). It follows that M, = €. End of the formal argument.)
To recognize a sentence of the form }nllkZV with k + 1 + |v| = n we have to
verify that ]2v| < n. To make this possible we should have shifted the symbols 1 on
the stack. Verification can now be done by popping ome symbol from the stack for
this first symbol and for each following symbol until the endmarker is read. (It
is left to the reader to formalize this argument.) It follows that when we have read
the endmarker we dosot have available the information on the stack which is neces-
sary to give the correct output (It is left to the reader to formalize this argument.)
Therefore grammar G is not left parsable.
In a similar way it can be shown that G is not right parsable, Since the left
corner parses coincide with the left parses and the left part parses with the right
parses it follows that G is not left corner parsable and not left part parsable.

However, G is parsable with respect to the proper parse relation

£, = {0M,u31™) | uefelva(n,2), m>0,020

Iul <m -1
ju|] + m is odd"
|u| +n=(m+ |u[ - 1)/2}.

Informally, read 1's and shift them onto the stack until the first 2 (if any)
is encountered. Continue reading, emit for each symbol 2 (including the first 2)
the symbol 2 and for each symbol 1 the symbol 1 and pop for each symbol which is
read (including the first 2) one symbol from the stack. If the endmarker is read,
emit the symbol 3 and pop one symbol from the stack. It remains to check whether
the stack contains an even number of 1's. For each pair of 1's the symbol | should

be emitted.
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EXAMPLE 9.2.

(a) 6yr S+ Aka | DBd
A~ a
D> a
E + bEc [ be
B - bBe | be

Grammar Go is unambiguous.L(GO) is a deterministic language. There does not

exist a proper parse relation fG such that Go is fG-parsable.
(b) xS 1a] 1B |0

A+ SO

B+ 51

Grammar G] is strict deterministic. Gl is right parsable but not left parsable,

left corner parsable or left part parsable.

(e) 6,2 s~ 050 | 0SI
S -+ Bib | CAc
C—+ a
B> a
A+BA| a

Grammar G2 is left part parsable (for a proper parse relation lpG) but not left

parsable, left corner parsable or right parsable.

(d) 652 5> AW I Bcb | pCe
A4S
E+ 0
C+BC| a
D+ a

Grammar G3 is left corner parsable (for a proper parse relation ZaG) but not

left parsable, left part parsable or right parsable.

(e) G,: S~ A0 1 Al | BDb | CDe
A+ S

B+ a

> a

+E| a

+ BD

(@]

W

Grammar G& is left parsable, but not left corner parsable, lLeft part parsable

or right parsable.



17

Notice that for all these examples the parse relations ﬂcG and lpG are proper.

The properties of the grammars are collected in Table IX.

Go G} Gy Gy G,
left parsable no no no no yes
left corner parsable no no no yes no
left part parsable no no yes no no
right parsable no yes no no no

Table IX. Parsability and proper parse relatioms.
9,2. ON THE COVERING OF DETERMINISTICALLY PARSABLE GRAMMARS.

In this section we show that the part of the grammar which is parsed by the
DPDT is covered with a strict deterministic or LR(l) grammar. The part of the grammar
which is parsed is defined by the parse relation. The proof of this cover result is
in fact well-known. Any DPDA which satisfies a few simple conditions can be convert-
ed to a strict deterministic grammar. The generalization of this conversion to a
DPDT is the 'Standard Construction' of section 1.3.1 when applied to a DPDT. In this
way we obtain a simple SDTS T with an underlying grammar G which has the property
that each leftmost derivation (left parse) of a sentence w € L(8) can be mapped on
the translation of w by T. This observation (the 'Standard Observation' of section
1.3.1) is well-known; it can be comcluded from the results in Aho and Ullman [31]
and it is explicitly mentioned in Brosgol [17]. This observation was related to
covers in Nijholt [116] by considering parsing as a restricted way of tramslating.
We need a few technical preliminaries before we can give the full argument.

Many of the transformations which will be used in the forthcoming sections are
well-known or have been treated in the preceding sections. This means that we already
know that they preserve language. Now consider two grammars G' and G, and parse re-
lations fG' and hG. We will mostly be in a situation where L(G') = L(G), g = <p,y>

is a (total) parse homomorphism and ¢ is the identity homomorphism.
LEMMA 9.3, Let G' and G be grammars with parse relations fG' and hG, respectively.
Let g = <9,y> be a parse homomorphism, g : fG' + hG’ such that ¢ is the identity

homomorphism. If L(G') = L(G) and G is unambiguous then g is a cover homomorphism.

Proof. Trivial. a



18

Hence, if we know that G is unambiguous, L{G') = L(G) and we Trestrict ourselves
to parse homomorphisms g = <@,)> where ¢ is the identity homomorphism, then we may
conclude that G' covers G if (w,m') ¢ fG' implies (w,P(T')) ¢ hG. Now we return to
our discussion on valid DPDT's. As we mentioned in section 3.3 we will no longer
consider homomorphism ©.

We will convert an arbitrary valid DPDT to a valid DPDT which is more amenable

for a conversion to a strict deterministic grammar.

LEMMA 9.4. Let P be a valid DPDT for CFG G and parse relation fG. Then we can con—
struct a valid DPDT P’ for G and fG which accepts with empty pushdown list in one

final state.

Proof. Let P = (Q,Z,F,A,G,qO,ZO,F) be valid for CFG G and parse relation fG. Define
DPDT

P' = (Q u Ql u {qe};zyr v {ZOO}’A"S"qovzoo’{qe})

where Q, = {q" | q € ¥} and where q, and the states q' in Q, are newly introduced
states. Z00 is a nmew pushdown symbol mot already in I' and 6' is equal to § except

for the following cases:

. . . -
(i) Define § (qO,E,ZOO) (qO,ZOZOO,e)
(ii) For all q ¢ F, for all corresponding q' ¢ Q1 and for all X ¢ ', define

ot -
6'(ase5200) = (q,,€,8)

&§°(q,e,X) = (g',€,€), X # Z00
§'(q7,e,K) = {q’,e,E), X # Zoo
§'(a",e: %) = {q,€5€)-
It cap easily be verified that PY satisfies the desired conditions. a

LEMMA 9.5. Let P be a valid DPDT for CFG G and parse relation fG. Suppose that
L(G) is prefiz-free. Then we can construct a DPDT P' which accepts with empty push-

down list in one final state such that T(P') = fG.

Proof. Let P = (Q,Z,T,A,S,qo,zo,{qe}) be valid for CFG G and parse relation fG'
Due to Lemma 9.4 we may assume that P accepts with empty pushdown list in one final

state. P defines the set T(P) = {(wi,m) I (w,m) € fG}. If (wiL,nm) € T(P), then

*
{qoyw-‘-azose) Ift (q,-Lyqu) “‘ (Q',Qs‘{',u’) I" (qe,E,E,TT).
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Since 8(q,i,1:y) is defined, &(q,e,1l:y) is undefined. Otherwise P would be non-
deterministic. 1f §{q,a,!:y) is defined for a # L, then since L(G) is prefix-free,
application of this step can never lead to a final state, Therefore, for each a ¢ I,
a #1 we can delete §(q,a,1:y) from the definition of §. If we replace in the

definition of §
6(q,L1,2) = (q',a,R)

by

8(g,e,2) (qa',a,B8),

for any g, ¢ inQ, Z in I', o in r* and 8 in A*, then T(P) = fG.
For convenience we repeat the 'Standard Construction' of section 1.3.1. If it

is applied to a DPDT which accepts with empty pushdown list in one final state, then

a simple SDTS is obtained which has an underlying strict deterministic grammar. Only

the productions of the underlying grammar are given. Each production is followed

by the output which is given in the rule of the DPDT from which this production has

been obtained.

ALGORITHM S.1.
Input. A DPDT P = (Q,Z,F,A,G,qo,zo,{qe}) which accepts with empty pushdown list in
one final state.
output. A strict deterministic grammar G' = (N',ZI,P',S').
Method. (1) Define N' = {[pAq) | p,q € Q,A ¢ '} and §' = [qOZOqe]'
(2) P is defined as follows. Let §(p,a,A) = (r,xl...Xk,y), with a € % u {e}.

If k > 0, then P' contains the productions
ir . <y>
[pAqk] - amhxlql].. [qk_lxqu] Vv

for all sequences of states ql,....,qk in Q. If k = 0, then P' will
contain [pAR] ~ a <y>. a

It follows from Harrison and Havel [59] that G' is a strict deterministic gram-
mar. In the sequel we assume that in a grammar obtained with this comstructiom all
useless symbols and productions are removed. This removal can be done such that
strict determinism is preserved (Harrison and Havel [59]). Grammar G' simulates with

leftmost derivations the moves of the DPDT, Therefore we have the following theorem.

THEOREM 9.3. Let G be an fG—parsable grammar. Assume that L(G) is prefix-free. Then

there exists a strict deterministic grammar G' such that G'[L/flG.
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Proof. If G is fG—parsable then there exists a valid DPDT P for G and fG. We may
assume that P accepts with empty pushdown list in one final state. Moreover, since

L(G) is prefix-free we may assume that T(P) = fG
With the help of Algorithm 9.1 P can be converted into a strict determinigtic grammar
G' with label set AG,. Define a homomorphism 3§ : AZ, - AZ such that each production

which is obtained from a step
§(p,a,A) = (I’XIXZ' . -Xk,Y) >

where a ¢ I u {e}, k = 0, is mapped on the string y ¢ AZ.

How, if (w,7’) € ZG. then (w,p(w')) € T(P). Hence (w,P{TW')) € fG. Moreover, due
to the construction, for each (w,m) ¢ fG there exists a m' such that (w,m') ¢ £G,
and P{(r') = m. Notice that this is the 'Standard Observation' of section 1.3.1. We
conclude that G'[L/f]G. 0

It follows that each right parsable grammar (e.g. an LR(k) grammar) with a
prefix-free language is left-to-right covered with a strict deterministic grammar.
Any left parsable grammar (e.g. an LL{k) grammar) with a prefix-free language is
left covered with a strict deterministic grammar. We will deal with the prefix-free
condition shortly.

First we notice that this result is not quite satisfactory from the point of
view of our model of parsing. A strict deteministic or LR-parsing method yields
right parses. Moreover, there exist strict deterministic grammars which are not
left parsable. Therefore we try to change Theorem 9.3 so that the right parse rela-

tion of the strict deterministic grammar can be considered.

THEQREM 9.4. Let G be an fG—parsable grammar. Assume that L(G) is prefix-free. Then

there exists a strict deterministic grammar G" such that e"'[r/flG.

Proof. Our starting peint is the valid DPDT P in the proof of Thecrem 9.3 from which
a strict deterministic grammar §' is constructed. Hence, G'[£/f]G. We will construct
a strict deterministic grammar G'" such that G' will play the role of the intermediate
grammar of Observation 4.1.

Let P = (Q,Z,T,A,S,qo,zo,{qe}) be the DPDT. We assume that the elements of §
are uniquely labeled by numbers from the set H = {1,2,...,h}, where h is the total
number of three-tuples for which § is defined. From P we construct a new DPDT P,

also valid for G and fg' Define

Pi

i

Q2,7 v {H; | i ¢ H}, 4,8",q5,25,1a.})

i

with {Hi i e H} n T = @ and 6' is defined as follows.
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(i) Lf in P, for k> 0 and a ¢ I v {e}

i.6(p,a,A) = (r,X]...Xk,y) n
then define in P'

i'.8"(p,a,A) = (r’Hin"'xk’E) (2)
and

i".87(r,e,H;) = (r,e,5). (3

(ii) If in P, for a ¢ Z v {&}
j.6(p,a,A) = (r,e,z) (4)
then define in P'

j'.8'(p,a,A) = (r,e,z). (5)

Notice that for any input string the final state of P is reached with an appli-
cation of a step of the form 8(p,a,A) = (qe,a,z) with a ¢ Z u {e}. Such a step
remains unaltered and P' accepts with empty pushdown list in onme final state and
T(P') = t(P)., If P' is converted to a CFG then a strict deterministic grammar G" is
obtained. Clearly, G"[£/£]G. We show that also G"[r/f]G.

Define a partition m of AG' as follows. Two productions of G' are in the same
block of m if and only if they are obtained from the same step §(p,a,A) = (r,xl".ng)
of P (ae Zu {e},k > 0). Clearly all the productions in a block B of “t are mapped
on the same string y ¢ A; by the cover homomorphism {. Therefore m_ is a transi-

t

tivity partition. Define 6t : Aé, > W: by Gt(i) =B, for i ¢ B. We have the tran-

sitivity relation

B = {@wm | w,m') e £y, and § (') = 7},

It remains to verify that thfre exists a homomorphism wt : A;u > n: such that,
if (w,m) € Tons then (w,¢t(ﬂ)) € lg,. Notice that ZG' can play the role of parse
relation hG in Lemma 9.3. Therefore we do not have to verify the surjectivity
of wt (the second condition of Observation 4.1).

The verification can be done by induction on the length of the derivations
using an argument almost similar to that of the proof of Theorem 5.4. We confine
ourselves to the definition of wt. We refer to the situations (i) and (ii) displayed

above.
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(1) Productions of zhe form
LpAqk} -+ a[rxiq]}....[qk_lxqu} <y>
are obtained from (i) {for CFG G') and productions of the form
lpAqk} - a[rHir}irxqu}...[qk_lxqu} <e>
{rH;r]l + e <y>
are obtained from {2) and {3) (for CFG G"). Define
ys H 1 =
b (lpAq) ] » alril,rlirX q,1...[q _ X q 1) = ¢,
for any sequence of states Dys=eeabys and
= 1 !
Y (el rl + €} {[pAqu > a[rxlql}...[qk_lxqu] [ Qpserersty € Q.
(i1} A production
IpAr] + a <=z>
is obtained from (4) for CFG G', and a production
{pAr] + a <z>
is obtained from (5) for CFG G". Define
wt([pAr] + a) = {[pAr] » a}.

With this definition of ¢t s A;"

G"[x/£]G. g

* ‘
Ed ﬁt we conclude from Observation 4.1 that

Up to this point we have been concerned with context-free grammars with prefix—
free languages. In the following theorem we show the existence of an LR(1) grammar

G' which covers an fG—parsable grammar G.

THEOREM 9.5. Let G be an waparsable grammar. Then there exists an LR(l) grammar
G' such that G'[£/£16 and G'[T/£]G.

Proof. Let G = (N,Z,P,S) be an fG-parsable grammar. Define grammar GO = (Nu {SO},
L u {1},P u {S0 +~ S1},8,.) where S0 is a newly introduced nonterminal and L is the
endmarker., Production SO + Si will be given label O. L(GO) is prefix—free. The set

hG = {(wi,m0) ‘ (w,m) € fé} is a parse relation for GO.Since G is fG—parsable there
0
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exists a valid DPDT P' = (Q,I u {1},F,A,6,q0,20,{qe}) such that
t(®') = {G,m | (w,m) € fG}.

Notice that P' has steps of the form 6(q,X,Z) = (qe,e,p), where q € Q,
Xertudfelu{s}l,zerT, q, is a final state and p « A*. Each of these steps may
be replaced by §(q,X,Z) = (qe,e,p0). In this way we obtain a DPDT
Po = (Q,% u {L},T,A u {0},6‘,q0,20,{qe}), where §' represents the modified §. Clearly,
T(Pg) = hGO. P0
Gl[r/h]G0 and Gl[ﬂ/h]Go. We modify grammar 6,
G' is obtained which satisfies G'[r/f]G and G'[£/f]G.

can be converted to a strict deterministic grammar Gl such that

in such a way that an LR(l) grammar

Grammar G1 = (NI,Z u {l}’PI’SI) has productions with 1 in the righthand side.
These productions are of the form A =+ LBIBz...Bn, n 2 0 and A’BI’BZ""’Bn € Nl'

Necessarily, B]BZ"'Bn 3 €. Let P~L be the subset of P, which contains only productions

1
of this form. Define

R={A~+ BBy...B | A+ 1BB,...B € PL},

where each production in R has the same label as the corresponding production in PL'

Notice that, due to the fact that Po is deterministic, if A -+ J_BIBZ...Bn is in P],

then there does not exist A -+ BIBZ"'Bn in Pl. Let R' be the complement of Pi in Pl'

Define G' = (¥',2',P",5'), where N' =N, Z' =%, P' = Ru R' and §' = Sl' Clearly,
L(G') = L(G).

' Let § : Azl - AZ be the cover homomorphism for which we have Gl[;/h]G0 and
GI[K/h]GO. Define ' ? AZ, -+ A; as follows:

For each p ¢ P',

]’

y'(p) = ™y if Y(p) = ™,07,, for some Ty, T, € Aé, and

Y'(p) = P(p), otherwise.

Now it should be clear that G'[T/f]G and G'[£/£]G. We prove that G' is an LR(1)
grammar. Suppose that G' is not LR(i). Then there exist v,a,a’',B,B' ¢ (B' u Z')*;

w,w',X € Z'*; A,A" ¢ N' such that

(1) s’ % oAw 2 aBw = yw,
(2) s' % a'A'x 2 a'B'x = yw', and

(3) 1 :rw=1:vu" and (A~ B, |cB]) # @' > 8", ]a'B']).

We prove that this assumption leads to a contradiction with G, being strict

1
deterministic (and hence LR(0)). Notice that the only difference between G' and G1
is the sets R and PL. For the derivations (1) and (2) we have corresponding deriva-

tions (1') and (2'% in Gl' That is, if in (i) or (2) a production of R is used, then

the corresponding production of PL is used in (1') or (2'). Otherwise the same
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productions are used. We distinguish between two cases.

Case 1. Assume ! : w = €. Then w = w' = € and G' is ambiguous. The corresponding

derivations for (i) and (2) can be written as

(st gy
and
(2 5" g y"
where
v o= Yy4Ygs with Yi¥y = Ys if a production of R is used in (1),
Y' =¥, if no production of R is used in (1),
y' = Y3tYys with Y3Y, = Ys if a production of R is used in (2),
v" = y, if no production of R is used in (2).
It is sufficient to consider the following three cases.
a. The case Y' = v" = y is impossible since G, is unambiguous.

1
b. Let ¥' = v,.y, and ¥" = vy = Yy,Y,. Notice that ¥ Se. Ifve L(y,) then both v
1=tz 1'2 2 1

and viL in L(Gl)' This is impossible.

c. Let Y' = YLy, and ¥ = Y34, Assume that vy, is a proper prefix of Yqe The symmet~—
ric case, Y5 is a proper prefix of Yy is omitted. We can write y' = Yi4PY, and
Y"' = Y PLY,- For any w € L(Yl) we have wi € L{Y') and wi ¢ L(Y'"). Therefore,

. . . . * * . .
since G, is unambiguous, either y' e ¥ or y" 2 Y'. We consider the first case.

The seclnd case needs a similar argument. If YILOYA % YIOLYA’ then Yl % Ylp'
Since p 3 €, we have a derivation Y, % P2 Y which means that G1 is ambiguous.
Contradiction.

There remains the situation y' = y" = Y4Y,e In this case it should be verified
that the pairs in G] which correspond with the pairs (A » B,{asl) and (&' » B',Ia'B'l)
of G' are also different. This can easily be done and therefore we obtain a contra-
diction with G, being LR(0).

1
Case 2, Assume ] : w € L. The derivations in Gl corresponding to (1) and (2) are

*
(1) 87 2 OAwL 2 aBwl = ywi,
and

(2a') §7 % ofAtxy 2 a'B'xl = yw'di,
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or
(2b') s' %a'A' 'ﬁa'l = yw'l.

Since G, is LR(0) it follows that we cam not have (a~B,]a|) # (&' > 8", |a"8'])

for these derivationms.

We may conclude from Case | and Case 2 that the assumption that G' is not LR(1)

leads to a contradiction with G] being LR(O). g

A consequence of this theorem is that any LR(k) grammar is right covered and
left-to~right covered by an LR(l) grammar.
We conclude this section with a few observations on the relation between parsa-

bility and covers.

THEOREM 9.6. Let hG be a parse relation for CFG G. If G is not an hG-parsable gram-

mar, then there does not exist an f.,—parsable grammar G' such that G'[£/h]G.

G
Proof. If G' is fG,—parsable then there exists a DPDT P such that

T(P) = {(wi,m) | (w,m) ¢ fG.}. Assume that G'[£/h]G under a cover homomorphism
YA > b5,
= (r,Xl...Xk,y) from P to §(q,X,Z) = (r,Xl...Xk,w(y)). DPDT P' is valid for G and
h.. However, this is in contradiction with G is not h,-parsable. Therefore G'[£/h]G

G G
is not possible. a

A DPDT P' is obtained from P by changing any rule 6§(q,X,Z) =

This theorem is simple but useful. Consider e.g. the CFG G with productions

S + aAc | aad
A=+adb | b

Grammar G can be simply transformed to LL(1) grammar G' with productions

S + aAH
A->aAb | b
H>c | d

However, since G is not a left parsable grammar, it follows from Theorem 9.6

that there does not exist an LL(l) grammar which left covers G.

Suppose that we are in a situation as described in Theorem 9.6. Hence G'[f/h]G
is not possible. Can we obtain the result that G' covers G for these two parse re-
lations if we use, instead of a homomorphism, a DFT to map the parses of fG' on the

parses of hG? The answer is negative because of the following argument. If G' is
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fG,—parsable then there exists a valid DPDT P for G' and fGna If M is the DFT which
maps the parses of fG' on the parses of hG’ then we can combine DPDT P and DFT M to
a DPDT P' which is valid for G and hG. Since grammar G is not hG—parsable, we have
obtained a contradiction.
The construction of P' is defined below. Without loss of generality we may as-—
sume that DFT ¥ has no c-moves. We assume that it is clear from the construction

that P' has the desired properties.

ALGORITHM 9.2.
Input. A DPDT P = (Q,Z,F,AG,G,qO,ZO,F) and a DFT M = (QM’AG’AG"GM’PO’QM)'
Output. A DPDT P’ such that T(P') = {(wi,M(m)) l (wl,m) e T{P)}.

Method. Define
T ?
P = (Q X QM:E:F’AG1 ’6 » (qospo) :ZO’F x QM)’

where 8' is defined as follows.

For each step &(q,a,z) = (r,0,w) in P, with a ¢ I u {e}, define

(1) 6'((4,p)sa,2) = ((r,t),a,0"), if 0| 2 I and (p,w,€) £ (t,e,w’) in M
(ii) 8'({q,p), a,Z) = ({(r,p),0 ,&) if [wl= 0. This concludes the construction of P'.[]

It follows that replacing the homomorphism in the cover definition by a DFT-
mapping does not help in finding a left covering grammar for the example grammar G

displayed above.



CHAPTER 10

NORMAL FORM COVERS FOR DETERMINISTICALLY PARSABLE GRAMMARS

In the three sections of this chapter we will frequently refer to the algorithms
which were introduced in the Chapters 4 and 5. The cover properties of the tramsfor-
mations defined by these algorithms were proved in these chapters.

To obtain similar cover properties for LL{k), strict deterministic and LR(k)
grammars one has to prove that these algorithms preserve LL-ness, strict determinism
and LR-ness, respectively. This is done in the forthcoming sections. Cover-tables

will be constructed for these three classes of grammars.
10.1. NORMAL FORM COVERS FOR LL(k) GRAMMARS

As we did in Chapter 6 for context—free grammars, here we will comstruct a cover-—
table for LL(k) grammars. We start with some general results and then we will actually
construct the table. This section is concluded with a short evaluation of the results

from a more practical point of view,

Our first lemma is in fact Lemma 4.4, but now formulated for LL(k) grammars.

LEMMA 10.1. For any LL(k) grammar G and production directed parse relation hG there
exists an LL(k) grammar G' such that both G'[£/h]G and G'[r/nlG, (k 2 0).

Proof. It is sufficient to show that CFG G' of Lemma 4.4 is LL(k) if grammar G is.
CFG G' is obtained from G by inserting new nonterminal symbols in the righthand sides
of the productions. For each production the inserted nonterminal symbol is unique.
The argument that this does not change the LL(k) property is elementary and is there-

fore omitted. 0

We do not know whether e-productions in an LL(k) grammar can be eliminated in
such a way that a right covering LL-grammar is obtained. It is well-known that any
LL(k) language can be given an LL(k+l) grammar without ¢-productions. This change
from k to k + 1 is necessary, since there exist LL(k) languages which can not be gen-

erated by g-free LL(k) grammars. We will comsider a subclass of the LL{k) grammars.

DEFINITION 10.1. Let G = (N,IZ,P,S) be a CFG which has ¢-productions. Grammar G is

said to have strict e-productions if, for any A ¢ N,€ ¢ L(A) implies L(A) = {e}.

We recall the definition of a representation of a righthand side of a produc-
tion (Definition 4.3). If A + o is a production, L(a) # {e}, then a representation

of o is a factorizationa = g¢.X.a X,....00 X o , n > 0, which satisfies
0717172 n-1"nn
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(i) Xi e Nu £ and L(Xi) #{er, 1 i<

(ii) o; € N and € ¢ L(ai), 0<ic<n.

LEMMA 10.2. Let G = (N,Z,P,8} be a CFG with strict €-productions. Each righthand

side o, with L{a) # {e}, of a production A > & in P has exactly one representation,
Proof. Straightforward and therefore omitted. Q

THEOREM J0.i. Any LL{k) grammar with strict e-productions can be right covered with
an g-free LL(k} grammar (k > Q).

Proof. Since each LL(k) grammar is non-left-recursive, we can use Algorithm 4.1 to
eliminate the e-productions of an LL{k) grammar G. Grammar G' which is obtained by
this algorithm is e~free and G'[;/;]G. We show that if G has strict e-productions,
then G' is LL(k).

Assume for the sake of contradiction that G' is not LL(k). Then there exists a

derivation
5° % wCuw'?
and productions ¢ + o' and C + 8' in G* such that o’ # B' and

FIRSTk(u.‘m‘} n EIRSTk(B'm') £ 8.

Hence, |rhs(C)] z 2. Suppose C is of the form [yXn] with o # €. It follows from step
(2) of the algorithm that there exist productions of the form B ~ Bl and B = 82 in
P with BI ¥ 62 and £ ¢ L(Bl) n L(Bz). This implies that G is ambiguous which is im~
possible for am LL(k) grammar. Therefore C can not be of the form [yXa] with a # €.
Similarly, C can not be of the form [yX] with v # € and X ¢ L.

There remains the case that C = [YA] with A ¢ N and v ¢ N, Therefore, we can

write
8° % wivAlw'

A straightforward induction on the lengths of the derivations learns that
' % wivAlw'

implies
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where w is obtained from w' by deleting the square brackets '{' and ']'.

We consider possible righthand sides for the nonterminal [YAJ. If A+ o and
A+ B are in P, with a # B, L(a) # {e} and L(B) # {e}, then we have productions
[YA] » " and [YA] +~ B' in P', where o' is the.unique representation of a and B' is
the unique representation of B. Any nonterminal symbol [Y§§] of N' has thé property
that if [yX§8] 3 w for some w € Z+, then YX§ 3w in G, and w is derived from X (cf.
the remarks which follow Algorithm 4.1). It inmediately follows that if in G' the

condition

FIRSTk(a’w') n FIRSTk(B'm') =0

is not satisfied then we obtain a corresponding situatiom in G with o # B and

FIRSTk(uw) n FIRSTk(Bw) + ¢,

which is not possible since G is LL(k). It follows that G' is LL(k). 00

When applied to an arbitrary LL(k) grammar, Algorithm 4.1 does not necessarily

produce an LL-grammar.

The next transformation which we want to consider is the left part transforma-
tion (Algorithm 5.3). Since any LL(k) grammar is unambiguous, we do not have to
bother about single productions (cf. the remark following Algorithm 5.3).

It should be noted that the usual transformation from an e-free LL(k) grammar
to an LL(k) grammar in GNF gives rise to a more simple proof. However, apart from
including this proof for completeness sake, we will also use it in the proof of

Lemma 10.4

THEOREM 10.2. For any e-free LL(k) grammar G there exists an LL(k) grammar G' in
GNF such that G'[£/x]G, £ < x < £p and k = 0.

Proof. From Theorem 5.2 we may conclude that Algorithm 5.3, when applied to an e-free
NLR grammar G, yields a CFG G' in GNF such that G'[£/x]G. Since any e~free LL(k)
grammar is e-free NLR, it remains to verify that G' is LL(k) when G is LL(k).

Assume for the sake of contradiction that G' is not LL(k). Then there exists

a derivation

[s] # wlAialy

and productions

[Aia] - B
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and
[Aiad - v
with B # Y, such that

FIRSTk(Bw) n FIRSTk(Yw) # 0.

Let A ~> axow be the ith production of P. Since B # Yy, there exist chains

1 XOxl"'xn—ixn

m
and

LN SR S Y

E
N
[}

with XO = YO’ in CH(X,) and left production chains

Py = igiyeeriy in LP(WI)

and
0y = jojl“’jm—i in LP(WZ)
such that p, # Py and

faiol + x g(Ix i X I. X 1laiox 1) = [Aia] + 8

and

[Aia] +-Ym£([Ym Jm 1Y J...[Y 0Yl][AiaYO]) = [Aia] » v.

Write w = [co 050][0 k,$, 1... [Ctktdtl'

We omit the proof of the follow1ng claim.

CLAIM 1. If

[s1 =°w[A1a1[Co oS0 c]k15]]...[c£k[_5£}

where
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ke Cp 7 3%
are productions in P, then
S 3 uAp @, ...0 i WX GO« - Py > UK P e
jiing /2 IR A0 Al k(20 BRRRS A e MV R4
where uv = w.

The folloving claim, which is also independent of the fact that G is LL(k), fol-
lows from the two more general claims which are used in the proof of Theorem 5.2,

Compare also the remark which follows Lemma 5.3.

CLAIM 2. If i.A-+ o9 in P, @ # €, then

[Aia] 3 w if and only if @ 3w,

Since

FIRST, (X EC(X _,i _ X J....[%;1X, 1[AioX ])w)
n
FIRSTk(YmE({Ym_ljm_lYm]....[YojoYl
# 4,

there exist

1lAiaY, w)

X, € L(xne([x ]"'[xoioxl][Ai“Xo]))’

n—lln-lxn
y, € L),

, ¢ LY E(IY (3 Y 1...0Y

S OJOYl][AiaYO])), and

¥y € L),
such that k : Xy, = k e

From the two claims it follows that there exist X € L(Xow), x, ¢ L(Yow),
Y, € L(wowl...ww) and y, € L(wowl...wz) such that k : Xy, =k %y, However,
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since o, # 0y it follows that we have obtained a contradiction with G being LL(k).
We conclude that G' is LL{k). B

Next we consider the possibility to obtaim a right covering LL(k) grammar in
CNF from an e-free LL(k) grammar. We use Algorithm 5.4 to obtain an almost-GNF gram—
mar which is LL(k) and Algorithm 5.5 to transform an almost-GNF LL(k) grammar to a
GNF LL(k+1) grammar. However, first we have to show that any e-free LL(k) grammar
can be made to satisfy the input conditions of Algorithm 5.4.

Notice that if a grammar is LL(k) and we replace a production of the form
A+ 0aB, o # €, by the productions A > aHaB and Ha + a, then the newly obtained gram-—
mar is also LL(k). We now have to verify that the elimination of single productions

does not change the LL(k) property of a grammar.

LEMMA 10.3. For any s~free LL(k) grammar G there exists an e-free LL(k) grammar G'
without single productions such that G'[£/£]G and G'[r/rle (k = 0).

Proof. We can use the method for eliminating single productions which is described
in the proof of Lemma 4.6. However, since any LL(k) grammar is unambiguous, we can
simplify this method. Only step (i) of this method needs to be considered.

Let G = (N,Z,P,S) be an eg-free LL(k) grammar. Define

Po={A~a<i> | i, +a is inP-—PO}

where PO is the subset of P wbich contains all the single productions.

For any A ¢ H, if A [ B3 vy is a derivation im G such that § # € and either
[Yi > 2 o0r v ¢ L, then add A + y <> to the set P]. To obtain a left cover, define
m = 6i. To obtain a right cover, define T = iéR. The desired grammar G' is now ob-
tained by reducing the grammar (N,Z,P],S). Clearly, ¢' is LL(k) when grammar G is

LL(Kk). 0

It follows that we can use Algorithm 5.4 to obtain an almost-GNF grammar G'

such that G' is LL{k).

LEMMA 10.4. Any g-free LL(k) grammar G can be transformed to am almost-GNF grammar
¢' such that G'[T/r]G and ¢' is LL(k) (k 2 0).

Proof. If Algorithm 5.4 is applied to an LL(k) grammar G which satisfies the input
conditions, then an almost-GNF grammar G' which right covers G is produced. We show
that G' is LL(k). The following trick is used.

If Algorithm 5.3 is applied to an LL(k) grammar G with P S N x (IN" u BN'), then

we obtain a grammar G, which is LL(k) and which has productions which are of the



following forms:

(i) [s] > X E(IX

SEETIE S e 3 %[ 1 35 D

and

(ii) [Aia] » X E(IX _ i X

]...[Xoloxl][AlaXO]).
Grammar G' which is obtained by using Algorithm 5.4 can be constructed from G] in

the following way.

(a) If in (i) B([X _ i _ X
in P'. 1f in (i) E([xn-lin-l

]...[Sioxl]) = g (hence, i,. S =+ X in P), then [S] »+ X

0
Xn]"'[SiOXI]) # ¢, then

[s]»H, (X

ST SIS S PO €19 9 )
n-1

and

are in P',
(b) If in (ii) E(IX _ i X 1...[Xd X J[AiaX;]) = €, then [Aio] > X is in P'. If
in (ii) g([xn_lin_lxn]...[xoioxl][AiaxO]) # €, then

[Aia] ~ H, E([X X 1. (X8 0%, JAioX ])
1n-1

n-11n-1%n 0 Oxl
n

and

are in P'.

It follows that either we have the same productions for G1 and G' (viz. [S8] » Xn

or [Aial » Xn) or we have a simple change of a production of the form C + cYy for LL(k)

grammar G, to productions C - Hy and H > ¢, It is easily verified that a situation

1

c > Hly, c > sz, Hl + ¢ and HZ -+ ¢ can never be introduced because of our choice

of nonterminal symbols Hi . This simple transformation on the productions of an
n-

1LL(k) grammar does not change the LL(k) property. This concludes the proof of Lemma

10.4. 0

Any almost-GNF LL-grammar can be transformed to a GNF LL-grammar which right
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covers the original grammar. Algorithm 5.5 is used to show this.

LEMMA 10.5. Any almost~GNF LL(k) grammar G can be transformed to a GNF LL(k+l)
grammar G' such that G'I[T/T]G (k 2 0).

Proof. When Algorithm 5.5 is applied to an almost-GNF LL{k) grammar G, then a GNF
grammar G' is obtained which satisfies G'[T/r]G. We show that G' is LL(k+}).
Consider Figure 10.1 where, once more, the general idea of the transformation

is displayed. In this figure the part of the transformation which changes the parse

A A
,/’///////;‘::::T\\\\\\\*~\ =
? o o a By B [Ej] a
‘| /J\ l
a D 8 E b
L
b

Figure 10.1. Step 1 of Algorithm 5.5.

trees is displayed. In step 2 of the algorithm it is possible that the production

A aHkLS[Ej]a

of this figure is changed to a production
[4p] > ah BlE]]a

for some p ¢ AG“ Now consider a derivation
5 $ wC'w'

in G' and two productions C' - 8’ and C' + y' in P’ with 8' # y'.

For the nonterminal symbols of N' we can distinguish the following forms:

(i)  [Apl] with A € N and p € A,
(ii) A with A ¢ N
(iii) sz with k, £ in AG

Any nonterminal symbol of the form.Hk£ can only be lefthand side of one produc-
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tion. It follows that A' is of the form [Ap] or A. Let N" be the subset of N' which
contains the nonterminal symbols of the form A and [Ap). Define a homomorphism
£ : N'* > N* by defining £(A) = A and £([Ap]) = A.

CLAIM. Let C ¢ N". If § =*ﬁ wC'w' in G', then S {» wCw in G, where Cw = £(C'w").

Proof of the Claim. The proof can be done by a straightforward induction on the
lengths of the derivations. Instead of doing the proof for startsymbol §, the proof

should be done for an arbitrary nonterminal symbol A' ¢ N". 0

Notice that in this claim w' is always in N"*. It follows from Claim ! of the
proof of Lemma 5.5 that, for any A' ¢ N", if A' Zwin G', then f£(A') % w in G.
Now suppose that G' is not LL(k+l). Then we can have a situation described above

with

FIRSTkH(B‘w') n FIRST, . . (y'w') # 8.

k+1

Now it should be verified that for all possible occurences of B' and y' this
situation gives rise to a contradiction with G being LL(k). We confine ourselves to

the verification of the situation where

Cl_’_B“

C aHkﬂﬁl[Ei]a1
and

1 | - .
c' >y C - aﬂmsz[FJ]az.

It follows that in G we have a derivation S % wCw and productions C =+ DlQlal,

¢ = D,Qa,, D; > a, D, > a, Q > DB E, Q, > D,B,F, Dy > b and D, > c.

This situation is illustrated in Figure 10.2.

D] Q d.l D2 QZ (12
§ A " /J\
a Dy By E a D, By F
{ nl
b c

Figure 10.2. Productions of grammar G.
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Due to our assumption we have strings
X, € L(abB][Ei]al)
v, € L{w")
B, .
5 € H(acBZIFJ]az)

Yy € L{w')

such that k + I ¢ Y, T k+ 1 Xo¥y-
It follows that in G we can not distinguish the productions C = DlQlOL1 and
C - DzQzaz. Therefore, G + DlQla1 =0~ D2Q2a2. This implies that in G we have a

derivation

S % wanO

with @ = Ql = QZ and Wy = 4w = Ay, Moreover, we have productions Q -+ DSBIE and

Q-+ DASZF' Since k + 1 : x,¥, k+1:x

2¥q we have that

FIRSTk(DBBleo) n FIRSTk(DABZFwo) £ 8.

Since G is LL{k} we must conclude that D3BIE =D F. But this implies that B' = y',

4
contradicting B' # v'.
The verification of the other possibilities for B' and y' can be done along

similar lines. It follows that G' is LL{k+1). a

From Lemma 10.4 and Lemma 10.5 we obtain the following corollary.

COROLLARY 10.1. Any c-free LL(k) grammar G can be transformed to an LL(k+l) grammar
G' in GNF such that G'[r/rl¢ (k = 0).

THEOREM 10.3. Any LL(k) grammar G with strict e-productions can be transformed to
an LL(k+]) grammar G' in GNF such that G'[r/rlG (k = 0).

Proof. Combine Theorem 10.! and Corollary 10.1. 0

Notice that for amy LL(k) grammar G with strict £-productions we can find an
LL(k) grammar G' such that G¢'[r/x]G, with £ £ x < T (Lemma 10.1). Grammar G' has
also strict e-productions and we can use Theorem 10.3 to obtain the following corol-

lary.

COROLLARY 10.2. Any LL{k) grammar G with strict e-productions can be transformed
to an LL(k+!) grammar G' in GNF such that G'[r/x]G, with £ < x < r and k = 0.
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Note. There remain two problems which have not been investigated. Firstly, can we
eliminate E-productions from an arbitrary LL(k) grammar in such a way that a right
covering LL(k+1) grammar is obtained? Secondly, can the transformation from almost -
GNF LL(k) to GNF LL(k+1) be done in such a way that the right covering grammar is
LL(k) instead of LL(k+1)?

We now show negative cover results for LL(k) grammars. In Chapter 6 we present-

ed a grammar Go with productions

S+ OSL | IRL
R+ IRL | 2
L+>¢g

Grammar Go has the property that there does not exist an ¢—free CFG G' by which

it is left covered. Since grammar G, is LL(l) we have the following corollary.

0

COROLLARY 10.3. Not every LL(k) grammar (k > 1) can be left covered with an e-free

grammar.

Consider the grammar G, with productions

N

§ > OH, S Hyo > O
S > OH, R Hy, > |
S > I8, R B o>
S - lle le > 2
R>1QR Qy > !
R~>1Q,, Qp > 2
R-»>2

This grammar was introduced ian Chapter 6. Grammar GN

is in GNF. From the transitivity of the cover

satisfies GN[;/Z]GO. Notice
that GN is LL(2) and, moreover, GN
relation we obtain the following corollary.

COROLLARY 10.4. Not every LL(k) grammar (k > 2) in GNF can be left-to~right covered

with an e-free CFG.

Now we are sufficiently prepared to comstruct the cover—table for LL(k) grammars.
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G -
COVER ARB LL STRICT e-FREE GNF

G’ e-LL LL LL
/L 1. yes |5. yes {9. yes |[13. yes
ARB f/r 2. yes 6. yes 10. yes |l4. yes
LL /L 3. yes | 7. yes 11. yes |{15. yes
t/r 4. yes | 8. yes 12, yes |l6. yes
L/L 17. no |21. no [25. yes [29. yes
£-FREE 2l 18. no |22. no |26. no |30. no
LL /L 19. 2 23. yes |27. yes |31. yes
r/t 20, 2 24, yes |28. yes |32, yes
2/L 33, no |37. no |41. yes l45. yes
gﬁF 2/ 34, no |38. no |42, no |46. no
/L 35, ? 39, yes |43. yes [47. yes
r/r 36, 7 |40, yes |44. yes |48. yes

Table X. Cover-table for LL-grammars.

In Table X we have collected the cover results. The entries in this table are
numbered from !. to 48, The column with name STRICT e-LL indicates the LL(k) grammars
with strict e-productions. In the table it is not displayed that in some cases the
necessary look-ahead may change from k to k + 1, The answers in this table can be

found in the following way.

Construction of the cover~table

(10.1.1) Trivially yes are the entries 1., 4., 5., 8., 9., 12., 13., 16., 25., 28.,
29., 32., 45. and 48. Because of Lemma 10.] we may conclude that the entries

2., 3., 6., 7., 10., 1l., l4. and 15. are yes.

(10.1.2) From Corollary 10.2 it follows that the entries 40., 39., 24., 23., 44.,
43., 27., 47. and 31, are yes.

(10.1.3) Due to Theorem 10.2 we have that entry 41. is yes.
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(10.1.4) From Corollary 10.3 it follows that emtry 17. is no. Since grammar GO has
strict e-productions we have also that entry 21. is no. Therefore, entries
33. and 37. are no. From Corollary 10.4 we may conclude that entry 30. is

no. Therefore, the entries 26., 22., 18., 46., 42., 38. and 34. are no.

(10.1.5) The entries 19., 20., 35. and 36. are open. Cf. the note which follows Cor-
ollary . 10.2.

This concludes the construction of the cover—table. It should be observed that
all the no-entries in this table are no because of a more general negative cover
result. That is, we do no obtain positive results if we relax the condition that
the covering grammar should be an LL-grammar.

Let us consider transformations which deal with LL(k) grammars from a more prac-—
tical point of view. If we have a CFG which should be made suitable for a top~down
parsing method (for example as the first phase in a compiler writing system), then
there exist transformations which can be applied and which sometimes, depending on
the starting grammar, yield an LL(k) grammar. Some of these transformations can be
found in Stearns [158] and in Appendix A of Lewis, Rosenkrantz and Stearns [100].

As remarked in Stearns:

"Aalthough these transformations are not guaranteed to make grammars LL{1) they seem

to work out when applied to real programming languages".

The two most well-known transformations which can be used to obtain an LL(k)
grammar are the elimination of left recursion and left factorisation. The elimination
of left recursion (cf. Table VII) can yield a right covering and a left-to-right
covering grammar. Now consider left factorisation. If a grammar is not left factored
(Definition 1.10), then there exist productions of the form i.A -+ B and j.A ~ ay
with o # € and 8 # v. A straightforward process of left factorisation consists of
replacing these productions by the productions A - aH <€> and H + | Y <i,j>, where
H is a newly introduced nonterminal symbol. This can he repeated for all such pairs
A > 0B | ay until the grammar is left factored. In this way a right covering grammar
is obtained. However, in our model of parsing we prefer a left-to-right covering
grammar. If the newly obtained grammar is LL(k), then the LL-parsing method can yield
a left parse and this parse can be mapped on the right parse of the original grammar.
In Chapter 12 a process of left factoring will be introduced which yields a left-

to-right cover.

Now, if we consider the results of this section then we see that for each e-free
LL-grammar G we can obtain a GNF LL-grammar G' such that G'[T/r]G.
One might think that this result, like other right cover results, is not useful

for practical applications. Grammar G' is constructed to be parsed top-down and in
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our model of parsing top-down parsing is assumed to yield left parses. Therefore

one might expect results of the form G'[£/r]G. However, it follows from Theorem

9.1 that any production directed parse relation of an LL-grammar G' can be defined
by a DPDT. Therefore right parses can be obtained from parsing (in a top—down manner)
LL-grammars. The intuitive idea is as follows {cf. Aho and Ullman [3] for the whole
story).

If A is a nonterminal symbol at the top of the stack then it should be replaced
by a righthand side o of a production 1.A + o and i should be emitted as the next
symbol in the left parse. This righthand side is uniquely determined by the look-
ahead which is allowed. Now we can obtain a right parse if A is replaced by wi (the
top of the stack is assumed to be on the left) and 1 is emitted in a DPDI-step of
the form §(q,¢,1i) = (r,e,1i).

It should be observed that if we 'translate' this way of parsing to the gram-
matical model in the case of GNF LL-grammars, then it would have been sufficient to
have a grammar G' which has productions of the form A + aoH <g¢> and H -+ € <% instead
of A » ap <T>, to make this type of parsing possible. That is we could have trans-
formed the original grammar G to a less restricted mormal form than GNF and still

have the same practical result.

Now we turn to the last topic of this section, the relation between LL(k) and
strong LL{k) grammars. As mentioned in section 8.2 it has been shown in Rosenkrantz
and Stearns [144] that each LL(k) grammar can be converted into a structurally equiv-
alent strong LL(k) grammar.

The property G, = G2 (G] is structurally equivalent with G2) does not necessarily

1
imply that G1 covers GZ' Consider the following counter-example:

G: S, » aB Gz:sz-»aniac[an
B -+ aB +~ aB | aC | aD

B +b | e ¢ +b

D »c

are Ll-grammars and G, = G,. However,

In this case we have that both G] and G 1 2

we do not have G1{£/£]G2 or Gl[;/;]GZ°

2z

The conversion from an LL{k) grammar to a strong LL(k) grammar as described in

Rosenkrantz and Stearms is such that a left and a right cover is obtaimed.

THEOREM 10.4. Any LL(k) grammar G can be transformed to a strong LL(k) grammar G'
such that G'[£/21G and G'[r/rIG (k 2 0).
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Proof. We use the following notation. Let L be a set of strings. Use the notation
k:L={x]| k:w=x for some w ¢ L}

and
k:L

2

for the set of all subsets of k : L.
Let G = (N,I,P,S) be an LL(k) grammar. Define

*
"= L x 2%

N"=Nx 2%,

s =

\

-

wm
-
—~
]
e
N
-

P'=Px2
The pair (p,R) represents the production

(A,R) ~ (Xn,Rn) o (X5Ry)

where A »> Xn....X is the production p and Ri+ satisfies the condition

1 i

R.yy =kt (L(X...X)R)

for all n > 1 2 1. Define R1 =R and if p = A > ¢ then (A,R) + €. Reduce grammar
¢" =@",z",P",S") and replace eachoccurrence of a terminal (a,R) by terminal symbol
a. In this way we obtain grammar G' = (N',I,P',S'). _
Given a leftmost (rightmost) derivation in G' a corresponding leftmost (right-
most) derivation in G is obtained by replacing each nonterminal (A,R) by A. Instead
of applying production p to an instance of 4 one can apply (p,R) to the corresponding
(A,R) in order to obtain a leftmost (rightmost) derivation of G" from a leftmost
(rightmost) derivation of G. A corresponding derivation in G' is immediate.
The cover homomorphism { : Aé, -+ Ag is defined by Y{p,R)) = p, for each (modi-
fied) production (p,R) of P'. Hence, G'[£/£]G and G'[r/r)G. In [144] it is shown
that G' is strong LL(k). This concludes the proof. O

10.2. NORMAL FORM COVERS FOR STRICT DETERMINISTIC GRAMMARS

This section is concerned with the construction of a cover-table for strict
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deterministic grammars.
Just like the LL(k) grammars, the strict deterministic grammars are non-left-—
recursive. Therefore, the construction of the table does not differ very much from

the construction of the LL cover—table in section 10.1.

For strict deterministic grammars we have the following version of Lemma 4.4.

LEMMA 10.6. For any strict deterministic grammar G there exists a strict determi-

nistic grammar G' such that G'[£/T]G.

Proof. This is a direct comsequence of Theorem 9.3. However, it is more simple to
construct grammar &' in the following way. Suppose that grammar G is strict deter-
ministic with partition m. Define G' by introducing productioms A - oH, <e> and
Hi -+ £ <i> for each production i.A - o in P. Symbol Hi is a newly introduced non-
terminal symbol. Clearly, G'[£/rlG.

Notice that for any pair of productions A + @ and A' -+ aB of G with A = A’
(mod T), we have B = ¢ and A = A'. Therefore, the new nonterminal symbols do not
interfere with the original nonterminal symbols. Thus, we can define a strict parti-

tion " for G" by T =Ty {{Hi} | 1=1is IP!}. 0

Notice that we can slightly generalize this result. If strict deterministic
grammar G is hG—parsable, then it follows from Theorem 9.3 that there exists a strict
deterministic grammar G' such that G'[£/h]G. Moreover,from Theorem 9.4 it follows
that there exists a strict deterministic grammar G' such that ¢'[r/nle.

Since not every strict deterministic grammar ¢ is left parsable, we can not

have the general result G'[7/L]G, where G' is strict deterministic.

We want to show that €-productions in a strict deterministic grammar can be elim-
inated in such a way that a right cevering strict deterministic grammar is obtained.
Before doing so we need a few preliminaries on strict deterministic grammars.

It is clear that the set of productions of a strict deterministic grammar is
prefix-free. That is, if A > & and A + af are in P, then B = e. Clearly, this proper-
ty holds for all nonterminals in a block of the strict partition. That is, if

A~ g and A' +~ of, then A = A' (mod m) implies B = €.

LEMMA 10.7. Let G = (N,Z,P,S8) be a CFG with strict partition 7. For any A, A' € N,
if A = A' {mod ¥), then L(A) u L{A') is prefix~free and, if moreover A #A',
L(A) n L(A") = @.

Proof. Do the proof of Theorem 2.2 from Harrison and Havel [ 59] for A and A' in-

stead of for 5. This gives the result L(A) v L(A') is prefix-free. The property
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L{A) n L(A') = ¢ can be proved by a simple induction on the lengths of the deriva-

tions starting from A and A'. 0
LEMMA 10.8. A strict deterministic grammar can only have strict €-productions.

Proof. It follows from lLemma 10.7 that for any nonterminal A the set L(A) is prefix-

free. Thus, if € ¢ L(A}, then L{A) = {e}. ]

It follows directly from Lemma 10.2 that each righthand side a, L(a) # {e}, of
a production A + o of a strict determinisitic grammar, has exactly one representa-

tion.

LEMMA 10.9. Let G = (N,Z,P,5) be a CFG with strict partition w. Let A -0 and
A' > Bbe productions in P with L(a) # ¢, L{B) # € and A = A' (mod 7). If
uOXI...Xi_lui_IXi...Xnun and uOXI"'Xi—]Bi—lYi"'YmBm are representations of a and

B, respectively, then oy = Bi—l
Proof. We have that i > 1, i < n and i < m. Consider the case 3 < n and i < m., If

&1

# Bi—l’ then there are two possibilities.
(1) ai_
Bi1
Therefore, L(1:p} v L(Xi) is not prefix-free which contradicts Lemma 10.7.

] is a prefix of Bi—l (or the symmetric case, which we omit). Hence,

=a; P and we have | : p = Xi (mod m). However, € ¢ L(1:p) and L(Xi) # {e}.

(ii) a;_, can be written as leél and Bi—l as pQZGZ, with Q] # Q2. Since € € L(Ql)’
€ e-héQz) and Q1 = Q2 (mod T) we have again a -contradiction with Lemma 10.7,

1= Big

Now consider the case 1 = n and i < m (or the symmetric case, which we omit).

We conclude that in this case a..

Then we have a = L SERTL NI SUN g = uoxl'"an—IXnSnYn+1"'YmBm' Since

L(a) v L(B) should be a prefix-free set, we can conclude that Y ...YmBm = €, Assume

+
o #+ Bn. If o is a prefix of Bn (or the symmetric case), then :e]obtain an immediate
contradiction with the definition of a strict deterministic grammar. With a similar
argument as used above we can conclude that a situation an = leﬁl and Bn = pQZG2
with Q] #+ Q2 can not occur. It follows that un = Bn' This concludes the proof of

Lemma 10.9. ]

We can now show that £-productions can be eliminated in such a way that strict

determinism is preserved.

IHEOREM 10.5. Any strict deterministic grammar can be right covered with an e-free

strict deterministic grammar.

Proof. Since any strict deterministic grammar is non-left-recursive, we can use
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Algorithm 4.1 to eliminate the £—productions from a strict deterministic grammar
G. Grammar G' which is obtained by this algorithm is e~free and G'[T/Tr]G. Unfortu-
nately, we do not necessarily have that G' is strict deterministic. We will modify
the input grammar G such that G' will be strict deterministic.

Let ¢ = (N,%,P,8) be a CFG with strict partition w. Let j.A > o be a production
in P with L{a) # {e}. If aOX]a]XZ...Xnan is a representation of o, then replace this
rule by

.. <j
A HyoX By Xy Ky <97

where each

is a newly introduced nonterminal symbol, and introduce the productions

H.+g <7,> 0<i=sn
ol i’

if

’
ai =§© €.
I1f a; = g, then define T, =& This can be done for each production A + ¢ in P.
Clearly, the newly obtained grammar G' = (N',Z,P',S) right covers the original gram-
mar.
Notice, that if for some o and B the productions Ha + £ <ﬂl> and HB + € <ﬂ2>
are introduced and o = 3, then 7, = T

Let H be the set of all newiy iniroduced nonterminal symbois. The new grammar
is strict deterministic under a partition 7' which is defined by the following con-
ditions:

(i) T oem’
(ii) For any A, A' in N such that A = A' (mod ) we have A = A" (mod w').
(iii) For each newly introduced nonterminal symbol Hai we have that {Hai} is a block

of the partition m'.

We verify that w' is a strict partition. Consider two productions
4 > of
and

A' = GB;‘
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in P', with A = A" (mod ©w'). If both A and A' are newly introduced nonterminal sym-—
bols, then B = B' = €, & =€ and A = A', as is required. Now consider the case that

both A and A’ are in N. We distinguish two subcases.

. . _ - v o . .
(1} Write o Haoleai’ B Xi+1"'xngxn and B Yi+l"'YmHBm' By considering the

corresponding productions in P, it immediately follows that either B and B’

are not empty and Xi+l = Yi+1 (mod ') or B = B' =€ and A = A'.
11 1 = = LI
(ii) Write o HuOXIHal'"'Xi’ B Huixi+]"'XnHun and B HBiYi+1"'YmHBm' Due to

the comstruction of G' it follows that 8, B' # €. It follows from Lemma 10.9

that Hai = HBi and, therefore, H . = HBi (mod 7'). This concludes the proof that

ai
'

m' is strict.

We now show that G' can be transformed to a strict deterministic grammar G" which
has no €-productions and which right covers G'. From transitivity it then follows
that G"[t/r]G.

Apply Algorithm 4.] to grammar G'. The newly obtained grammar G¢" = (N",Z,P",S")
right covers G' and has no e-productions. We show that G" is strict deterministic

under a partition 7" which is defined as follows:

(i) Zen"
(ii) [yXx] = [y'YR) (mod 1") if and only if

-y =y
- X =Y (mod 7)
both oo and B are inHora =5 = ¢

if X=Y, thena =B

We show that this partition is strict. We distinguish the following five cases.
(1) Consider nonterminal symbols [yA] and [YB] with A = B (mod 7) and A, B in N.
Hence, [YA] = [yB] (mod 7"). Suppose we have productions

[va] -+ aB

and
[YB] + a8’

in P, These productions have been introduced in step (1) of Algorithm 4.1. If

o # £, then we can write

a= [YH X H JIXH]... . [XH]

B =X, H, ). .- [x8]

B'= Ix, I, 1. [X'H')
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Assume 8 = B° = €, Then there exist productions
A > HOXIH X H Hy - -XiHi
B » H0X1H1X2H2 Hi

in P’ and necessarily A = B. Hence, [YA] = [yB], as is required.

Assume B # € and B' # £. In this case we have that Xi+l = X£+1 {mod T') in G'.
Moreover, if X1+l = X oy then H. ) = H!+l’ since otherwise G' can not be strict de—
t "
terministic. Therefore, {X1+l 1+l] = [§1+1 1+1] (mod "), as is required.

It is left to the reader to verify that the case B = £ and 8' # € (or the sym-
metric case) cam not occur.

Consider the case o = €. Since G'" does not have e-productions, it follows that

8, B' # €. We can write 1 : B = [y O—lHI] and | : B8' = [YﬂbﬁiHi]. Since G' is strict
deterministic it follows that H! = H, (H, and H' are equivalent and they are left-

0 0 0 0

hand sides of g-productions) and XI = X; (mod ). Moreover, if X] = X;, then H] = Hi.

Therefore, [YH H ]l = [YH ;] (mod ™), as is required.

{2) Consider nonterminal symbols [Eﬂl] and [Xﬂz] with X, Y ¢ L. If [gﬂl]a [XHZ]
(mod 7") and we have (unique) productions [gﬂl] + X and [XHZ] + Y, then X = Y
(mod "), as is required. Moreover, it follows from the defimnition-of 7" that if
X =Y, then H] = H2 and Ezﬂx] = [Xﬂz],as is required.
(3) Consider nonterminal symbols [YEHI] and [YXﬂz] with X 2 Y (mod T) and vy # € or
X ¢ N. If [YEHIJ = [YXHZ] (mod 7") and we have (unique)productions
{YEﬂ]] + [yx]

Iyyu, 1 + [yY]

then {yX]

]

[Y¥] (mod ") as is required. Moreover. If [YX] = [YY] then it follows
from the definition of 7" that H = H,. Thus, [Ygﬁl] = [Ygﬂzl, as is reguired.

{4) Consider nonterminal symbols [YHlﬁ] and [YHIZJ with X, Ye L and Y € H*. Then
[YHIE] = [YHlXJ (mod T"') and we have unique productions

Iy x} - [yxi
tyn,¥j -~ [yx]

Clearly, [yX] = [YY] (mod ") and if [yX] = [y¥], then [YH1§] = [YH ¥, as is re-

quired.

(5) Consider nonterminal symbols [HIEJ and [HIX] with X, Y ¢ Z. Then [Hlﬁ] = [HIZ]
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(mod m') and we have unique productions

(1, > X

[BY] > Y

Clearly, X = Y (mod 7"} and if X = Y, then [le] = [H]X], as 1s required.

The cases (1) to (5} cover all possible pairs of equivalent nonterminal symbols.

Therefore we can conclude that G" is strict deterministic under partition 7", 0

The next transformation which will be considered is the left part transformation
(Algorithm 5.3). Due to the fact that strict deterministic grammars are unambiguous
and due to the remark which follows Algorithm 5.3, we do not have to bother about
single productions.

In Nijholt [123] we used Algorithm 5.2 to show that any e-free strict determinis-
tic grammar can be transformed to a weakly equivalent strict deterministic grammar
in GNF. In Geller, Harrison and Havel [42] another algorithm was presented to show
the same result. They use this result to’show that any deterministic language can
be generated by an LR(!) grammar in GNF. Their algorithm modestly utilizes properties
of strict deterministic grammars.

The result that any deterministic language is generated by an LR(1) grammar in
GNF was first shown by Lomet {102].

Here we show that the left part transformation (which does not make use of spe-
cific properties of strict deterministic grammars) when it is applied to a strict
deterministic grammar G, will produce a GNF grammar G' which is strict deterministic

and which has the property that G'[£/x]G, £ < x < £p.

IHEOREM 10.6, For any e-free strict deterministic grammar G there exists a strict
deterministic grammar G' in GNF such that G'[£/x]G, £ = x < £p.

Proof. Apply Algorithm 5.3 to the e-free strict deterministic grammar G = (N,Z,P,8)
with strict partition 7, The newly obtained grammar G' = (N',Z,P',[S]) is in GNF and

G'[£/x]G. We show that G' is strict deterministic under the following partition T':
(1) % e w',{[8]} e 7.

(ii) For any [Aia)}, [BjB] in N', with A, B e Nand a, B ¢ V', [Aia] = [BjB] (mod ')
if and only if ¢ = B and A = B (mod 7).

In the following observations we will show some properties of the productionsof

G'. These properties are needed to show that 7' is strict.
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OBSERVATION 10.1. Consider two productions in P' which are of the form

[Aiv] » ap
and
[Biy] + aé

+
where A, B e N, Ye V , a e %, p, 8§ ¢ N and A =B (mod ). Because of the construc-
tion of P' it follows that there exist productions i. A > YXOw and j. B~ YYow in

P with X,,¥, ¢ Vand @, V € V*. Moreover, there exist chains X.X X and

N sesX
0*70 071 n~1"n
YOYI"'YmrlYm in CH(XO) and CH(YO), respectively, where Xn = Ym = a and associated
left production chains igiyeendy and ST PEETH SR such that

p=g(ix i ,al...[XiX I{aiyX;1)

and

8 = g(IY

. o s .
mﬁlJm_]&]...LYOJOYI][BJYYO])-

Since grammar G is strict deterministic we have X = YO (mod m) and it follows also

0
that m = n and Xk = Yk {mod T}, | £ k £ n. 8

Notice that a similar observation holds for productions of the form [S] + ap
-and [S] + ad. Since our observations can easily be converted to similar observations
for the cases that the productions in question have lefthand sides [S], we will not
treat this nonterminal separately. Notice that [S] can not occur in the righthand
sides of the productions of G'.

We will need the following claim.
CLATM 1. If E{{Ciy]) = E(IDjY]), where C = D {mod T), then C =D and 1 = j.

Proof of Claim i. For some @, ¥ ¢ ¥" there exist productions i € +~ Y9 and j. D > v

in P. Since € = D {mod m) we may distinguish between two cases:

(a) either both ¢ and ¥ are empty, hence C = D and i = j, or
(b) both ¢ and | are not empty and by definition of § it follows that E([Ciy]l) = [cCiy]
and £([DjY]) = [Djy], hence C =D and i = j. a

OBSERVATION 1G.2. Let C -+ of and C’ + of' be in P', with C = C' {mod 7'). From Ob-

servation 10.1 and the definition of 7' it follows that we may write

c -+ o = [Aly] » aE([xn_lin_]a}...[xoioxll[Aiyxol)
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and

c' > o' = [Bjy] » af(lY__ al...[¥.j,¢,1[B, YY .

lJn—l
Consider a situation in which we have

E([X ]...[CY])

n—lln-l

...[txk]) = E([x

n- l n-1'n

where Xn = Yn = a, k satisfies 0 < k < n and either

i) ¢

Sy oo . v .
(i) g =X _ i _» 2" =Y i,y and k= 1.

Aiy, ¢' = BjY and k = 0, or

In this situation we have the following result.

cLam 2. [x i X J...lexl=10Y 3 Y 1. g'y b

Proof of Claim 2. If n = 0, then the situation amounts to showing that E{[ga]}) =
= £([z'a]l) implies T = T' and this follows immediately from Claim 1. Assume n > 0.
First we show, by induction on m where k £ m < n, that Xm = Ym and im = jm. As basis
we take m = n - 1., Since Xrl = Yrl one can easily verify, using Claim 1, that Xn—] =
. Assume inductively that Xp = Yp and ip = jp for all p such

=Y and i = j
n-1 n-1 n-1
that k £ m < p < n. We show that Xm = Ym and im = jm. In this case the situation can

be reduced to

E(X 1mx .l ...[cxk]) g([Y j 1. .[C'Yk]).

m'm m+1
Use of Claim | and its proof yields again X = Y and i = j . This concludes the in-
duction. It follows that Xk Y and again w1th Clalm 1 we conclude c= C'. This con-—
cludes the proof of Claim 2. ]

We continue with Observation 10.2. Now we consider a situation in which we have

B, B' # €. Then there exist p and q, 0 £ p, ¢ < n such that
1 = X = X 1,
g = &(lz p]) [z p]

where either 7 = X

p—llp—l or [ = Aiy and p = 0, and

1:B' = g([c'Yq]) = [c'Yq],

where either 7' = Yq-qu—l or ' = Bjy and q = 0.

In this situation we have the following result.
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CLAIM 3. 1t :8=1:R" {mod 7') and p = q.

Proof of Claim 3. Assume p > q (the case p < q is symmetric and therefore omitted).

In this case we have

Ty i
= ag (X n—1 n—EXn]""Xplpxp+1] aAE({Yn I n- ] n [YquYq+i‘L
It follows (see also Claim 2.} that
fy 3 .yxl1...0y =€
¢ p=1ip-1 Y [q_qu_l q])

so that necessarily, E([Y 1j Y ]) €. This means that we have productions in P

of the form ip—l + X @ for some @ e v’ and J YP__1 - Yp. Notice that XP = YP and
Xp—l = Yp_1 {mod 7). But then we have a contradlction with condition (ii) of bDefini-
tion 8.5. Therefore p = g. Since p = q we have that | : B = [CXP], 1 : 8" = [C‘Yp]

with ¥ =Y and either
P P

. - . . . e '
(1) ¢ Xp—llp—l and 7 YP_]JP 1 with Xp—l Yp—l (mod T) and by definition of T
it follows that [§XP] = [{z'Y ] (mod T'), or

(ii) ¢ = Aly and ' = Bjy with A = B (mod 7) and also in this case, by definition
of W', it follows that [cxpl = [Q'YP] (mod m').

Thus I ¢ B =1 : B'. This concludes the proef of Claim 3. o
With the proof of this claim we conclude Observation 10.2. 0

Wow it is straightforward to show that m' is strict. By definition of 7' we have
I € m'. It remains to verify that ' satisfies condition (ii) of Definition 8.5.

First we consider case (a) of this condition. Consider two productions C - 0B and

¢' + B’ in P' where € = C' (mod 1') and B,8' # €. If a =€, then I : B, 1| ¢ B' ¢ X
hence 1 : B =1 : B' (mod 7'). Case (b) of condition (ii) follows immediately from
Claim 2. Since G is strict deterministic, other cases are not possible. O

Before examining other cover properties of strict deterministic grammars we
shortly discuss the strict partition m'. The set of strict partitions of a strict
deterministic grammar forms a semi-lattice under the meet operation. Therefore there
exists a minimal strict partition. In section 8.2 we presented the algorithm which
computes this minimal striect partition. If the algorithm is applied to CFG G', which
is obtained by the left part transformation, then ' is obtained. That is, indepen—
dent of the definition of T we have that 7' is the minimal strict partition of G'.

It can be verified that if the input grammar G is a real~time strict determinis—
tic grammar (Definition 8.6.c), then the left part transformation produces a grammar

which is not only real-time strict deterministic but also uniform (Definition 8.6.bh).
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As we mentioned in section 5.2.2, if the left part transformation is applied twice,

then the newly obtained grammar is at the same time in standard 2-form.

We want to consider the possibility of obtaining a right covering almost-GNF
strict deterministic grammar from an £-free strict deterministic grammar. Algorithm
5.4 will be slightly adapted in order to make it suitable for strict deterministic
grammars. However, first we have to show that any e-free strict determimistic grammar
can be made to satisfy the input conditions.of Algorithm 5.4. Notice that if a grammar
is strict deterministic and we replace each production of the form A + caf, o # €,
by the productions A —+ aHaB and Ha ~+ a, then the newly obtained grammar is also strict
deterministic. That is, if T is the original strict partition, then the mew partition
ismTu {{Ha [ ae I}

Unfortunately, the single productions of a strict deterministic grammar can not
be eliminated in a straightforward way. The reason is that, whenever we have two non-

terminal symbols A and A' with A = A', then m, ¢ CH(A) and m, ¢ CH(A') implies

IHII = |ﬂ2]. However, if we have a derivation] ’
™
A T a
and
A’ ;? by

with ]ﬂ]| > 1, then eliminating the single productions in the 'usual' way yields a

production A + a, while, if @ # £, the derivation which uses T, does not necessarily

2
change under the elimination of single productions. Hence, such an elimination does
not preserve strict determinism. Therefore we will include this elimination in the
algorithm which transforms an £-free strict deterministic grammar into a strict de—
terministic grammar in almost~GNF. It should be noted that if a grammar is real-time
strict determimistic, then we can eliminate the single productions in the same way

as was described for the LL(k) grammars (c¢f. Lemma 10.3).

One more remark should be made. We need to adapt the definition of almost-GNF
in order to be able to deal with strict deterministic grammars. This is dome in the

following definition.

DEFINITION 10.2. (Almost-GNF, second 'version) A CFG G = (N,Z,P,S) is said to be

an almost-GNF grammar if for any production A ~ o in P either

(i) o e Z, or
(ii) a e N+ and rhs(l:0) g I.

Notice that in Definition 5.5 we had the condition
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(i) o € NN+ and rhs(l:0) c %.

Therefore, the new definition is slightly more general.

LEMMA 10.10. Each e-free strict deterministic grammar G can be transformed to an

almost -GKF grammar G' such that G'[T/rl]G and G' is strict deterministic.

Proof. We have to adapt Algorithm 5.4 in order to deal with the single productions
and the strict determinism. As we did for LL(k) grammars, we will first consider
Algorithm 5.3, If this algorithm is applied to a strict deterministic grammar G with
PSS NX (ZN* U N+), then we obtain a grammar G1 which is strict deterministic and

which has productions with the following forms:

(i) [8] » X E(X

SHRE S S - 1X1 %] [sloxl])

and

1o 0% i X J[AiaX . 1)

(ii) [Aia] + xng([xn oto¥1 5

—lin—lxn
We will proceed in the following way. Firstly, we construct a strict determinis-
tic grammar G' which is in almost GNF. In this construction we do not have to bother
about single productions. At the same time a homomorphism will be defined under
which G'[r/r]G if G has no single productions. Secondly, we will slightly change
grammar G' and the definition of the homomorphism in order to deal with the case that

G has single productions.

Consider the strict partition T of grammar G, Let m = {I} v {Vl,V ,Vm}. Let

gseen

Vk € T ~ iL}. For each a ¢ £, define

a Lo . *
Q = {i]i.A>a0inP, AcV andacV 3.
Clearly, for each i,j Qz such that i. A » ag and j. B + aB are in P, we have that
either o = 8 = € and i = j, or both & and B are not equal to €.
Grammar Gl’ which is obtained by Algoritbm 5.3, is strict deterministic under

a partition T, which is defined by

1
(1 Lem, {(sI} ¢ o
(2) [aio} = [BjB] (wod ﬂl) if and only if A = B (mod m) and o = 8.

Grammar G' = (K°*,%,P',[5]) is obtained from grammar 6, = (NI,Z,PI,[S}) in the
following way. Initially, set P' = . The symbols Qi which denote the sets defined

above will be used as nonterminal symbols. They will be added to N1 in order to

obtain N'.
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Now we define the productions of G', Each production is followed by its image

under a mapping of which it will be shown that it is a cover homomorphism.

(a) If in (i) E([Xn_lin_lxn]....[SioXI]) = g (hence, with our assumption that G has

no single productions, io. S - Xn is in P), then
Xn
<e>
[s] »q " <e

where S ¢ V., and

k

are added to P'.

(b) If in (i) £(X xn]...[SiOXI]) # €, then

n-1n~1

()~ o £(1xX

n_lln__lxn]...[Slo)(l]) <e>,

where Xn_1 € Vk’ and

X

an - Xn <p>
are added to P'. Here, p = 1 ifi . X + X is in P and p = € otherwise.

n-1 n—-1 n-1 n
(¢) If in (ii) E([Xn_lln_lxn]...[XoloXI][AlaXO]) = £ (hence, with our assumption
that G has no single productions, i. A + aXo and iO' Xo - X1 are in P and n = 1),
then
X

[Aia] + an <i>

where Xo 3 Vk’ and

Q > X <ip

are added to P'.

(d) If in (ii) &(IX i X J...[X;i X J[AioX 1) # €, then

X
[Aia) + Q" &([X _ i _ X T...[X1 X 1[AiaX ))  <p>,

where Xn_ € vk, and

1



are added to P’, Here, p = i, if 1. A+ aX, is in P and p = € otherwise, and

0

g=1i , if iy Xn~l -+ Xn e P and g = €, otherwise.

CLAIM 1. Grammar G' is strict deterministic,

Proof of Claim !. Grammar G' is strict deterministic wunder a partition T’ which

is defined as follows
athym e

(2') For each k, ! £ k € m, the set {Qi ] a el and Qi # ¢} is a block of the parti-

tiomn.

We prove that m' is strict. Since we know that Gl is strict deterministic wunder
partition ™ it is sufficient to notice that the new nonterminal symbols do not inter-
fere with this partition. Moreover, if Q; = QE {(mod m'), then if Qi + aand QE + b are
in P', then a = b implies that Q; = Qz as is desired. We conclude that G' is strict

deterministic. o
CLAIM 2, If G has no single productions, then ¢'[r/rle.

Proof of Claim 2. We should compare grammar G' with the grammar which is obtained

in the proof of Lemma 5.4. The grammar of Lemma 5.4 right covers grammar G. Lt should
be clear from the definition of the sets Qi that the mapping defined by Qi -+ Xn <g>
coincides with the mapping defined by the productions H.i -+ Xn <g> with in—l € Q;.
Therefore, G'[r/rlG. n-i 0

Now suppose that G has single productions. Grammar G, which is obtained by Algo-
rithm 5.3 is strict deterministic. We show how to modify the steps (a), (b), {(c) and
(d) in order to obtain a right covering strict deterministic grammar G'.

First consider case (a). If G has single productions and E([xn_lin_1

xn].. .. [Siox1])=
= ¢, then
X
[s] » an <e>

where Xn-E € Vk’ and
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are added to P', Notice that since G is strict deterministic, a situation
Xn
- <p,”> - <p0.> wi r.
Q X <p,> and Q X <p,> with p # P, can not occu

A similar modification is done in case (c). If

E([Xn_lln_lxn]...[XOLOXI][ALGXO]) = g, then
X
[Aia] ~ an <i>
where X ¢V and
Xn
Qo T Ky Sipyeeiy?

are added to P’.

The situations described under (b) and (d) are more complicated. Consider the
situation described under (d). Situation (b) can be treated similarly and therefore
it is omitted. We assume that the detailed proof of Theorem 10.6 has provided the
reader with sufficient insight in the properties of the strings of the form
E([Xn_]in_lxn]....[XOiOXI][AiaXO]). Therefore we omit detailed proof of the proper—
ties which will be used. First we show how to treat some special single productions.

If

E(x

S SRR 55 PP 0 4% o S 19155 SN D I 8
then we have

gx_ i XD # e

lln-

or there exists an integer £, 0 < £ < n - 1 such that

E([Xn—lin—lxn]"'[Xliﬂxl+l]) =€

and

gdlzitl) # €
where

Z=A,j=1iandzg = oX, ifL=0
and

Z= Xl—l’ j= il—] and ¢ = Kt , otherwise.
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Since G is strict deterministic, for any other production

X
Iy n v st IFET ER P
[atital » q E([Xn_lln_lxn]...[XOLOXI][A ifaxpl)
with & = A" (mod 7}, we have the same situation. That is, if E([Xn_]in_lxn]) # €,
then E([X;_!i;_lxn]) # £ and otherwise we have

B(Ix;_ir xn}..l{xégzxé+1]) =€

n-1
and
gz’ i’'c'l) # e
where
2" = A", 3" = i' and L' = aX6 ifEl=0
and

Z' =Xy s it = ip , and L' = X; , otherwise.

1
n-
these single productions if we define

Moreover, in the latter case, i ,,,..ii =i l""il‘ It follows that we can handle

n~

where p = ¢ if E({Xﬁ_lln_gxn]) #$#€and p = i _y-+..1p otherwise, where £ is as above.

Next we consider situations {d) {and similarly (b)) where we have a nonterminal
Xy ip (Xp}s, n< L<2

(hence, E({X —iilr!xl}) # £) and there exists an integer £', 0 < £' < £ - 2, such
that

E(IXy pip oXp (Jeve [Xpiip Xy, (1) = £
and

£’ =0 or E(IX '-zii'-xxz'—zl) # €.

Now we have the following two steps. Define P to be the set of productions which

are cbtained in step {a) or (¢) together with the productions of the form Qi > a <p>.
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Step 1 (Righthand sides).

For each production
X

[Aia] > Q" E([X i

Xn]....[Xoloxll[AquO])

which is defined in step (d) (or, similarly, (b)) add to P the production which is
obtained if each of the described occurences of [Xl_lie_lxe] in the righthand side
is replaced by a nonterminal [xe_lie_lxlp], with p = iﬂ—z"'iﬂ"

Step 2 (Lefthand sides).

Set P' = . For each nonterminal [X£—1?£—1X£°] and for each § which is righthand side
. 3 [ . o = ] > 1
of a production [xl_lxl_lxj + 48 <p'™ in P add [Xﬂ—lll—lxip] + 8 <p'p> to P'.

We assume that it is clear that grammar G' with the set of productions P' right
covers grammar G. It remains to verify that G' is strict deterministic.

Define a partition 7' in the following way:

(1" Zen', {[S]} eT'

(2") For each k, 1 £ k £ m, the set {Q; l aecl and Q; # ¢} is a block of 7'.

(3") [Aiap] = [Bjfw] (mod T'), with p, w AE, if and only if A= B (mod m), o = 8
and if A = B, then p = w.

Now it is straightforward (since we know that ﬂl is strict and since the nonter-
. a . . .. .
minals of the form Qk can be treated as in Claim 1) to show that partition 7' is

strict. This concludes the proof of Lemma 10.10. 0

It is not difficult to verify that if grammar G is real-time strict determinis-
tic, then grammar G' is also real-time strict deterministic. Notice that partition

,n.l

is a minimal partition since nonterminals are defined to be equivalent if and only
if it is necessary.

We can transform grammar G' with the same method. Then a right covering grammar
G" is obtained with productions of the form A ~ @, with @ ¢ L or @ ¢ N u N? u N? and
rhs(1:0) ¢ £ (almost-standard 2-form). This almost-standard 2-form will be used when
transforming an almost—-GNF strict deterministic grammar to a GNF strict deterministic

grammar.

LEMMA 10.11. Any almost—GNF strict deterministic grammar G can be transformed to a

GNF strict deterministic grammar G' such that G'[r/TlG.

Proof. We may assume that G is in almost-standard 2-form. We need a preliminary

transformation on G before we can use Algorithm 5.5.
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Let G = (N,%,P,3) be strict deterministic under a partition m = {IL,V,V v ).

7?2 n
For each k, ! < k < n and for each B ¢ N u N? define

F-iarpa|a>Buin®, Ac vV, acNuND,

Let Q = {Qﬁ | tsk<n, 8cNubX® and Qi # g} Each element Qi in Q will be given
a unique number, denoted by L(Qi).

We now transform grammar ¢ = (N,I,P,S) into a strict deterministic grammar
G, = (N],Z,Pl,s) such that G

1 1

such that the nonterminals of G1 will contain information on the productions of G.

Initially, set P, = {A+X<i>| i.A> X in P, X ¢ V} and set N =N There are the

is in almost~GNF and Gl[;/;]G' The transformation is

following three steps.

(1) For each rule i. 4 > BC in P such that A > BC in Qﬁ and j = L(Qi), add the rule
4 > B[jC] <i>

to Pl' Add the newly introduced symbol [jC] to N,.
(2) For each rule i. A + BCD in P such that 4 -+ BCD in Qi n Qic, ji= L(Qﬁ) and

L = L(QEC), add the rule

A - BLjC1[&D] <i>

to Pl. The newly introduced nonterminal symbols [jC] and [£D] are added to .
(3) For each nonterminal symbol [j€] (hence, C ¢ N) and for each § such that

C+ § <i> is in Pl’ add the rule
[jc] & <i>
to qu

We show that grammar G, has the desired properties. The useless symbols may be

1
removed from G}.

CLAIM 1. Grammar G, is in almost-standard 2~form and G][;/;]G.
Proof of Claim i. The argument is straightforward and therefore omitted. g

CLAIM 2. Grammar G1 is strict deterministic.

Proof of Claim 2. Define a partition m of V1 = Nl U I in the following way:



159

(i) Z ¢ L

(ii) For each A, B¢ N, A = B (mod WI) if and only if A = B (mod 7).

(iii) Foxr each [iC], [jD] ¢ Nl - N, [i¢] = [jD] (mod ﬁl) if and only if i = j and
C =D (mod 7).

The verification that 7, is a strict partition is straightforward and therefore

1
omitted. 0

The third claim shows why we are interested in grammar Gl'

CLATM 3. Let [jC] ¢ N, - N. There exists a function f, f : N, - N> A, v {e} such
that
f(ljcl) =

if j = L(QE) and i. A~ BC is in Qﬁ and

£(lich =

otherwise.

Proof of Claim 3. ConSLder a nonterminal [jC] in N1 ~N, If j = L(Qk), then there
exists a production in Q from which [jC] is obtained. We want to determine this
production. Consider the case B ¢ N. Assume that there are productions A - BC and

B - BCD in Qﬁ. However, A = B (mod 7), therefore this is not possible. Suppose that
there exist different productions A -+ BC and B » BC in Qﬁ. Also in this case, since
A = B (mod T), this can not happen.

It follows that we can uniquely determine whether [jC] is obtained from a pro-
duction of the form A + BC or from a production of the form A + BCD. In the former
case the production is completely determined and we define £([jC]) = i1 if it is the
ith production of P. In the latter case we define £{[iC]) = €. If B ¢ N?, then, with
a similar argument, there exists exactly one production of the form i. A + BC in QE
and we define f([jCl) = i. ]

We extend £ : N; - N> A, v {ehto £ : N, >4, u {e} by defining f(A) = € for
each A ¢ N. We continue the proof with the steps of Algorithm 5.5. Grammar
G1 = (NI’Z’PI’S) will be transformed to a GNF grammar G' = (N',Z,P’',S) such that
G'[r/rlG.

Initially, set P' = {A > a <¢(i)£(A)> | i. A+ ac Pl} and N' = N,. Let | be the

i
cover homomorphism under which Gl[r/r]G.

Step 1. For each production i. A + BCa in P, (with B, C ¢ N, and o ¢ N, u {€}) the

i i 1
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following is done.

{1) 1f ¢ » DRE is in Pl {with D, E ¢ N] and B ¢ N

productions k. 8+ a and £. D+ b in P, add

J U {e}}, then, for any pair of

A~ aHkESEa <pl>

with P = P(L}£(A) if a = € and Py = f(A) otherwise, and

B b <Py
with P, = Y{kl), to P'. Add sz to N'.

(ii) For each pair of productioms j. C + b and k. B+ a in P1 add

A > aija <pl>

with Py = P(i)£(a) if oo = € and Py = £(A) otherwise, and

H'kj + b <p2>

with 0, = Y(ki), to P', Add ij to N'. (Notice that in the grammar which is

obtained in Lemma 10.10 this situation does not occur.)

(iii) For each production k. B - a in P, and pair of producfions j. C~+D and

L. D+ b add

1

& + aija <pl>

with P P{i)f(a) if o = € and Py = £(A) otherwise, and

Hk_] + h <p2>

with py = P(kli) to P'. Add ij to N'.

Step 2. For each pair of productions i. A + B and j« B> a in P1 add the production
A= a <p>
with p = Y(ii)£(a), to P'.

It is not difficult to verify that the cover homomorphism is well-defined. That

is, since G, is strict deterministic and because of our choice of nonterminal symbols,

1
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a situation A > o <p,> and A > O <p2> with Py # p, can not occur, In order to con-—

1
clude that G'[r/r]G the proof which follows Algorithm 5.5 should be slightly modi-
fied.

The algorithm preserves strict determinism. Let T, be a strict partition for

1
grammar Gl' Define a partition m' for grammar G' in the following way.

(1) LS m'

(ii) The set H of newly introduced nonterminal symbols (of the form sz) is partition—
ed as follows. For each pair of productions A - BCo and A' + BC'a' in P, and

1
for each production k. B+ a in Pl such that A = A' (mod ﬂl), define

sz = Hkm (mod 7')

if and only if one of the following situations does occur:

(a) Productions of the form C -+ DRE, C' - DR'E', £. D+ b and m. D' > ¢ are in

Pl'
(b) Productions of the form £, C >+ b and m. C' > d are in P].
(c) Productions of the form j. C+ D, D> b, m. C' > D' and D' -+ ¢ are in Pl.

Clearly, relation = which is defined in this way is an equivalence relation.

Symmetry, reflexivity and transitivity can easily be verified. Therefore we have a
partition m' of V' = N' u I. The verification that 7' is strict is straightforward
and therefore omitted. This concludes the proof that G'[T/r)G and G' is strict de-

terministic. 0

It can be verified that if G is real—-time strict deterministic, then both G1

and G' are real-time strict deterministic. From Lemma 10.10 and Lemma 10.11 we obtain

the following corollary.

COROLLARY 10.5. Any e-free strict deterministic grammar G can be transformed to a
strict deterministic grammar G' in GNF such that G'{r/rlG.

THEOREM 10.7. Any strict deterministic grammar G can be transformed to a strict

deterministic grammar G' in GNF such that G'[r/TlG.

Proof. Combine Theorem 10.5 and Corollary 10.5. 0

Finally we consider negative results for the covering of strict deterministic

grammars. Consider the following CFG G with productions

S > aCB | aCD B>c
C+aCb | b D~+d
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Grammar G is strict deterministic under a partition w = {{a,b,c,d}, {s}, {C},
{B,D}}. Grammar G is in GNF, and with the argument presented in Chapter 9 it can be
shown that G is not a left parsable grammar.

It follows that there does not exist a right parsable grammar G' such that G'[r/£]G.
Hence, there does not exist a strict deterministic or LR-grammar G' which right-to-

left covers G.

COROLLARY 10.6. Not every strict deterministic grammar in GNF can be right-to-left

covered with a right parsable grammar.

Now consider grammar Go (also presented in Chapter 6 and section 10.1) with

productions

S -+ 0SL | IBRL
R+ IRL | 2
L+eg

Grammar G0 is strict deterministic under a partition T = {{0,1,2},{s},{r},{L}}.

We know (cf. Chapter 6) that G0 does mot have an €-free left covering CFG.

COROLLARY 10.7. Not every strict deterministic grammar can be left covered with

an eg~free grammar.

Consider grammar GN (also presented in Chapter 6 and in the preceding section)

with productions

5 > OH,S Hyp > 0
s ~ OH R Hyy > !
s > 1H, R !
s> 18, Hy, > 2
R> 1R TR
R>1Q, Qy 2
R+ 2

Grammar GN is strict deterministic under partition
T = {{O,1,2},{5},{H00,H01},{H11,le},{Qll,le},{R}}. Since GN[rli]Go, we may conclude

that there does not exist a left—to-right covering e—free grammar for GN'

COROLLARY 10.8. WNot every strict deterministic grammar in GNF can be left-to-right

covered with an e-free context—free grammar.
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We can now construct the cover-table for strict deterministic grammars. In

Table XI the cover results are collected. The entries of the table are numbered from

1. to 36. The answersin this table can be found in the following way.

Construction of the cover-table.

(10.2.1) Trivially yes are the entries 1., 4., 5., 8., 9., 12., 17,, 20., 21., 24.,

33. and 36.
G ARB €~-FREE GNF
G COVER SD SD 8D
L/ l. yes |5. yes 9. yes
ARB L/t 2. yes |6. yes 10. yes
SD /L |3 no |7. no 11. no
r/r 4. yes |8. yes 12. yes
£/L 13. no |17. yes | 21. yes
£-FREE L/ |14.no [18. no |22. no
SD r/e 15. no |19. no 23. no
T/t 16. yes |20. yes | 24. yes
L/L 25, no (29, yes | 33. yes
GNF 2/r |26. no {30. no |34. no
[)) r/e |27. no |31.no |35. no
T/t 28. yes [32. yes | 36. yes
Table XI. Cover-table for strict deterministic grammars.
(10.2.2) Because of Lemma 10.6 we may conclude that the entries 2., 6. and 10. are yes.

(10.2.3)

(10.2.4)

From Theorem 10.5 it follows that entry 16. is yes. Because of Theorem 10.6

we may conclude that entry 29. is yes.

From Theorem 10.7 it follows that the entries 28. and 32. are yes.
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{10.2.5) The euntries 3., 7., ti., 15., 19., 23., 27., 31. and 35. are no because of
Corellary 10.6.

(10.2.6) From Corollary 10.7 it follows that the entries 13. and 25. are no. From
Corollary 10.8 it folleows that the entries 4., 18., 22., 26., 30. and 34.

are no.

This concludes the construction of the cover-table. The results in this table

can be compared with those in Table VI.

10.3. NORMAL FORM COVERS FOR LR(k) GRAMMARS

This section is devoted to the comstruction of the LR cover-table. At some
points we will be less detailed than in the preceeding sections. We make systematic
use of the results of Chapter 9. Therefore our treatment and the sequence of results
will be different from that of the previous two sections. Our only concern is to fill
the LR cover-table and we do not bother about direct transformations on LR-grammars.
Moura [113] has found similar results as are presented in this section by directly

transforming LR-grammars.

THEOREM }0.8, 4Any LR(k) grammar can be right covered with an LR(1) grammar in GNF.

Proof. Let G = (N,Z,P,8) be an LR{k) grammar. Define

Gy = (Mudfs.t, Tulsl,Pu {so+ Sil, so).

Provide production SO + S1 with label 0. For G0 we can find a strict deterministic

i such that G][;/;]GO (Theorem 9.4). Grammar G1 can be transformed to a

strict deterministic grammar G, in GNF (Theorem 10.7) such that GZ[;/;]G]. Hence,
Gzir/r]GO.

Let ¢ be the corresponding cover homomorphism. Since G2 is in GNF, each produc-

grammar G

tion whose righthand side contains L is of the form A > L <ﬁ1>. Each production
which has A in its righthand side is of the form C =+ apa <w2>, for some C ¢ Nz,
*
aecl and o € NZ'
If we replace each of the productions of the form A > L <ﬂ1> by a production

A > g <t >, then (modified) grammar G, is LR(1) (cf. the proof of Theorem 9.5) and

1 2
Gz[r/r]G under a cover homomorphism ¥' which is defined by

)

w, 1f Y{p)} = 70
P(p), otherwise.

¥'(p)
¥ (p)

f

If, moreover, for each production C -+ ama <1Tz> discussed above, with A + € <1Tl>



obtained from A + L <7 >, we let also C + a0 <m,m,> be a production rule and we delete

i 1°2
the rule A+ € <7_>, then the resulting grammar is LR(1), in GNF and it right covers

grammar G. :

Notice that we do not delete the production C + acA from the set of productions
since it is not necessarily the case that [rhs(A)l = |. Since L(G2) is prefix-free
we can not have that in G2 there already existed a production C + aq.

This change in the productions does not change the LR(1) property of the gram-
mar. If it is possible, before the transformation, to determine by one symbol of look-
ahead the productions A + £ and C + a#, then it is also possible, after the transfor-

mation, to determine production C + ag by one symbol of look-ahead. O

The next theorem deals with the left cover result for £-free and NLR LR(k) gram—

mars.

THEOREM 10.9. Any e-free NLR LR(k) grammar G can be transformed to an LR(k) grammar
G' in GNF such that G'[£/£]G.

Proof. We assume that it is sufficiently clear that a simple substitution in the
left corner of a production preserves the LR(k) property of a grammar.
That is, if C - AP and A > aj are productions in an LR(k) grammar G, then re-

placing these productions by
C>aB, = 1,...,|rhs(a)|

will yield a grammar which is also LR(k)}. One possible way to show this is to con-
struct the sets of LR(k)-items (Aho and Ullman [3]) and observe that they can not
contain inconsistent items.

Once we have observed this we can use the usual algorithm to transform an e-free
and NLR LR(k) grammar to a GNF grammar. Since any LR(k) grammar is unambiguous, it
is not necessary to use the more complicated algorithm of section 5.1. A left cover

is obtained if we define C ~+ ajB <ikj> for each substitution of productions
f.C>ABand k. A>ay, j= 1,ee.0,|ths(a)].
This concludes the proof of Theorem 10.9. ad

Before passing to aur negative cover results for LR(k) grammars we observe that
the LR(1) grammar which is obtained in Theorem 9.5 is NLR. Thus we have the following
corollary.

COROLLARY 10.9. Any LR(k) grammar G can be transformed to a NLR LR(1) grammar G'
such that G'[£/¥]G and G'[z/T]G.
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Finally, we turn our attention to some negative results for LR(k) grammars.

Grammar G0 with productions

5§+ OSL | IRL
R+ IRL | 2
L+¢

has the property that there does not exist an t-~free CFG G' such that G'[£/£]G. Gram-

mar GO is strict deterministic (cf. sectionm 10.2) and therefore LR(0).

COROLLARY 10.10. Not every LR{0) grammar can be left covered with an e-free grammar.

Grammar Gy with productions

S > OH S Hyp * O
5+ OHy R Hy !
s - IH R H, > L
s+ 1H,, Hy, > 2
R+ 1QR Q> 1
R> 19, Ry ™ 2
R~ 2

has the property that there does not exist an g-free CFG G' such that G'[Z/;]GN.

Grammar GN is strict deterministic {cf. section 10.2) and therefore LR(D).

COROLLARY 10.11. Not every LR(0) grammar in GNF can be left-to-right covered with

an e-free grammar.

Grammar G with productions

S + aCB | aCD
C-aCb | b
B+

D+d

is not left parsable (cf.sectionm 10.2). Since grammar G is strict deterministic and

therefore LR(0), the following corollary is immediate.

COROLLARY 10,12. Not every LR(Q) grammar in GNF can be right-to-left covered with

a right parsable grammar.
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Now we come to a less straightforward obtainable negative result. We want to

show that not every LR-grammar can be left covered with a non~left-recursive (LR-)

grammar.

Consider grammar GO. Since there does not exist an e-free CFG G' such that
G'[Z/Z]GO, we know that there does not exist an g-free grammar G' such that G’[;/;]Gg.
Here, GE is the 'symmetric' version of grammar GO’ conform Observation 4.3, Grammar

GE satisfies GE[Z/;]GE. It follows that there does not exist an e€-free CFG G' such
that 6'[T/£1Gy.

Now suppose that there exists a NLR grammar G' such that G'[K/KJGE. However,
due to entry 7 of Cover-Table VII we must conclude that then there exists an e-free
grammar G" such that G"[;/ﬂ]G', thus G"[;/ﬂ]Gg, and we have a contradiction. However,
grammar G§ is not am LR-grammar. If we want to use this argument, then we need to
construct an LR-grammar which can play the role of GE in this argument. This is done

below.

We start with a CFG G with productions

1. 8- 0AL
2. A=~ 1SL
3. S =+ 3RL
4, A -+ 2RL
5. R =+ 4BL
6. B~ 5RL
7. R+ 6
8. B~»7
9. L=->¢

Grammar G can not be left covered with an e-free CFG. This should be clear by

comparing grammar G with grammar GO. From G we can construct a grammar GM such that

GM[;/Z]G. Grammar GM has the following productions

S - OHOIS <99> HO] + 1 <12>
S - OHOZR <99> HO2 + 2 <14>
S =+ 3A <9> B =+ 4 <35>
S =+ 3BC <99> c - 7 <8>
S+ 3D <9> D > 6 <37>
A ~ 4ER <99> E =+ 5 <356>
R+ 4H45R <99> H45 + 5 <56>
R =+ 4F <g> F » 7 <58>

R=+6 <7>
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It is not difficult to verify that GM[;/KIG and, moreover, Gﬁ is an LR(k) gram—

mar. Thus, we may conclude that there does not exist a NLR grammar G' such that
c'Le/tlcy.

COROLLARY 10.13. Not every LR-grammar (in GNF) can be left covered with a NLR gram-

mar.

In Table XII we have collected the cover results for LR-grammars. The entries
in this table are numbered from 1. to 100. The answers can be found in the following

way.

Construction of the cover-table.

(10.3.1) Trivially yes are the entries l., 4., 5., 8., 9., 12., 13., 16., 17., 20.,
25., 28., 32., 36., 37., 40., 49., 52., 53., 56., 57., 60., 73., 76., 77.,
80., 97. and 100.

(10.3.2) From Corollary 10.9 it follows that for any LR-grammar G we can find a NLR
grammar G' which is LR(1) such that G'[£/T]¢ and G'[r/r]G. Hence, we have
yes for the entries 2., 6., 10., 14., 18., 42., 46., 50., 54., 58., 44. and
48.

(10.3.3) From Corollary 10.10 it follows that the entries 21., 29., 61., 69., 81. and
89. are mo.
Due to Corollary i0.1! we may conclude that the entries 38., 34., 30., 26.,
22., 78., 74., 70., 6b., 62., 98., 94., 90., 86. and 82. are no.
From Corollary 10.12 we may conclude that we have no for the entries 3.,
7., 1t., 15., 19., 23., 27., 31., 35., 39., 43., 47., 51., 55., 59., 63.,
67., 71., 75., 79., 83., 87., 91., 95. and 99.

(10.3.4) From Theorem 10.8 it follows that the entries 84., 64., 24., 88., 68., 92.,
72., 32. and 96. are yes.
From Theorem 10.9 it follows that entry 93. is yes. We may conclude from
Corollary 10.13 that the entries 45., 65., 85. and 41. are no.
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G ARB €~-FREE NLE €-FREE GNF
a! COVER LR LR LR NLR LR LR
2/L 1. yes 5. yes |9, yes |i3. yes 17. yes
ARB £/t |2. yes 6. yes 10. yes [i4. yes {18, yes
LR r/f |3. no 7. no 11. no [15. no 19. no
T/t |b. ves |B. yes |12, yes [16. yes |20. ves
Lf8  121. no 25. yes [29. no [33. yes |37, yes
e-FREE, L/r |[22. no 26. no |30. no [34. no 38. no
LR r/f |23. no 27. no |31. no B5. no 39. no
T/t |24. yes |28. yes [32. yes [36. yes |40. yes
Li8 |41, no 45. no [49. yes 3. yes |57, yes
NLR L/t 42, yes |46. yes [50. yes EA. yes |58. yes
LR rfl 3. no 47. no {51. no 5. no 59. no
T/t Y44, yes |48. yes [52. yes FS. yes |60. yes
L/2 {61, mo 65. no [69. no V3. yes |77. yes
E-FREE 2/t [62. no 66. no 170, no 4. no 78. no
NLR r/f 163. no 67. no [71. no 5. no 79. no
LR /Tt |64. yes |68. yes |72. yes [6. yes [80. yes
CNF li/l_”_ 81. no 85, no |89, no P3. yes [97. yes
LR £/r B2. no 86. no [90. no B4. no 98. no
r/L PB3. no 87. no |91. no D5. no 99, no
r/r [84. yes |88. yes [o2. yes P6. yes 100.yes

Table XII. Cover-table for LR-grammars.,
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Except for the negative results which are caused by the property that not every LR~
grammar is left parsable, the main difference between this table and Table VI is the
possibility of a right cover of an arbitrary LR-grammar with a GNF grammar. Notice

that not every £-free LR-grammar can be left covered with a NLR (LR-) grammar.



CHAPTER 11

COVER PROPERTIES OF SIMPLE CHAIN GRAMMARS

In the preceeding chapters we have been concerned with transformations of con-
text—free grammars. One of the key~concepts has been the 'chain'. We have used 'left
part' transformations (Algorithms 5.2 and 5.3) and we have introduced 'left-part'
parses.

In this chapter we show the origins.of these concepts. Historically seen, the
results in this chapter precede most results of the preceeding chapters. Most results
in this chapter were first published in Nijholt [118,119,122].

We consider a subclass of the LR(0) grammars. This class of grammars, called
the simple chain grammars has a very simple and natural bottom~up parsing method.
The definition of a simple chain grammar was originally motivated by the parsing
method for production prefix grammars, as introduced by Geller, Graham and Harrison
[ 38]. However, they start by constructing a parsing graph for a context-free grammar
and give conditions which ensure that the parsing algorithm works correctly. In our
approach we start with a grammatical definition and, as can be shown, a slightly

adapted version of their parsing method can be used.

This chapter is concerned with the properties of simple chain grammars, their
languages, their grammatical trees and their parsing and covering properties. For
the time being we consider only simple chain grammars for which no look-ahead is
allowed. An extension with look-ahead is straightforward and in Chapter 12 a few
notes will be spent on this extension. The class of simple chain grammars is such
that it properly contains the class of simple deterministic grammars (Korenjak and
Hopcroft [80]). However, each simple chain grammar can be transformed to a weakly
equivalent simple deterministic grammar. Thus, the simple chain grasmars generate
exactly the simple deterministic languages.

Material which is closely related to the parsing method which can be used for
simple chain grammars appears in the work of Kr3l [82] and Kr3il and Demmer [§3].
They consider top=down properties of DeRemers LR(O; parsing method. A comparison of

this work will not be given here.

The organization of this chapter is as follows. In section 11.1 we introduce
the simple chain grammars. We develop some of their properties and give examples
of simple chain grammars which are not, for any k, LL(k), LC(k) or left parsable.
Section 11.2 is devoted to relationships with some other classes of grammars and in
section 11.3 simple chain languages are discussed. We present transformations to
Greibach normal form and to simple deterministic grammars. Section 11.4 is concerned

with the grammatical trees of simple chain grammars. In analogy with Harrison and
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Havel [60] a left part property for simple chain grammars is obtained. With the help
of this left part property we can (in section 11.5) introduce left part parses and

discuss the parsing and covering properties of simple chain grammars.

It should be noted that until Chapter 8 we have been using simple SDTS's (or
equivalently, pushdown transducers) without further restrictions. In Chapter 8, 9
and 10 we used deterministic pushdown transducers (DPDT) to obtain cover results. In

this chapter we use a simple DPDT to obtain cover results for simple chain grammars.
11.1. SIMPLE CHAIN GRAMMARS

In this section we introduce the class of simple chain grammars and discuss

some of their properties.

DEFINITION il.}!. An e-free CFG ¢ = (N,L,P,S) is said to be a simple chain grammar
if P is prefix~free and for any A ¢ N, o,9,) ¢ v and XY € V with X # Y, if A + aXp
and A + o¥y are in P, then FIRST(X) n FIRST(Y) = §.

Qur first task is to prove that each e-free LL(1) grammar is a simple chain
N
grammar. After that we will be concerned with a definition of simple chain grammars
which is equivalent to Definition 11.1 but in which some useful properties of simple

chain grammars are explicitly mentioned.
LEMMA 11.1. Every e-free LL({l) grammar is a simple chain grammar.

Proof. Let ¢ = (N,I,P,S8) be an e-free LL(l) grammar and assume that G is not a simple
chain grammar. If P is not prefix-free then there is A ¢ N and o, ¢ v* such that

A-> o, A+ aB and B # €. This obviously contradicts the LL(l) definition. Now sup-
pose there exist & € N,0,0,Y € V*, X,Y € V and rules A - oXp, A > oYY with X # ¥

and FIRST(X) n FIRST(Y) # @. Since oX¢p # oYy and FIRST(oXp) n FIRST(aYy) # B this
contradicts the LL{1) definition. ]

In Definition 5.1 chains were introduced. We recall this definition. Let
G = (N,L,P,S) be an e-free CFG. If XO
. . _ + * )
is defined by CH(X)) = {¥jX;...X ¢ NI | Xgp B P p ¥ ¥y Yy eV, 1 5is n}
and, for each Xg € Z, CH(XO) = {XO}. For each T € CH(XO), let £(m) denote the last

X and £(w) € Z.

€ N, then CH(XO), the set of chains of XO,

I}

element of w. Thus, if T = XOXI..,Xn, then £(m)

DEFINITION 11.2. Let X ¢ V. X is said to be chain-independent if for each pair L

7, in CH(X), if m # Tys then Z(nl) # Z(ﬂz). If each element of V is chain-indepen-

2
dent, then V is said to be chain-independent.
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Clearly, each terminal symbol is chain-independent. Some other properties are

listed in the following lemma.

LEMMA 11.2.
a. Let X ¢ V. If V is chain-independent, then CH(X) is a finite set.

b. If V is chain-independent, then G is NLR.
Proof. Part a. is trivial. Part b. follows from Theorem 5.1. a0

DEFINITION 11.3. Let X,Y € V, X # Y. The symbols X and Y are said to be mutually
chain-independent, and we write X # Y, if for each pair m, ¢ CH(X) and 7, ¢ CH(Y),

l(vl) # Z(wz).

1 2

Recall that if k = 1| then we omit the index k of the notation FIRSTk.

LEMMA 11.3. Let X,Y e V, X# Y. Then X # Y if and only if FIRST(X) n FIRST(Y) = @.

Proof. Trivial. a

Notice that for each pair a,b in I with a # b we have a # b. The following cor-
ollary will be obvious. Recall that a set P of productions is said to be prefix-free

if for each pair A> o and A> 0B in P, B = €.

COROLLARY 11.1. CFG G = (N,I,P,8) is a simple chain grammar if and only if P is
prefix-free and for any o,9,} € V*, A e Nand X,Y € Vwith X # Y, if A > oX¢p and
A > oYy are in P, then X # Y.

LEMMA 11.4. If FIRST(X) n FIRST(Y) = @ for each pair A - oXp, A > oYy with
0,P,P € V*, X,Y ¢ Vand X # Y, then V is chain~independent.

Proof. Assume that V is not chain-independent. Hence there exist A € N and

LITLPN CH(A) such that ™ # My and Z(vl) = Z(ﬁz). Let mo= xoxl...xn and

m, =YY ...Y , where X, =Y, =A and X = Y . Then there exists a maximal i 2 0 such
2 01 m 0 0 i m . .

XOXI"'xi = YOYI"'Yi’ there exists a derivation A T xiwi for some wi € Z and there

T 2 ] ]
exist productions xi > Xi+1¢i+1, xi > Yi+1wi+1 ¢i+1, wi+1 € V' such that
X # Yo BY hypothesis FIRST(X.+I) n FIRST(Y_+1) = @. But this contradicts the
i i

, for some

i+l
assumption that Z(ﬂl)= ﬂ(ﬂz). O

From Corollary 11.1 and Lemma 11.4 the following corollary is now immediate.
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COROLLARY 11.2. 24mn c—free CFG 6 = (N,Z,P,S) is a simple chain grammar if and only

if the following three conditions are satisfied.

(1) V is chain-independent .
.- . + .
(i1) If there exist a e V , P, € V*, Ae N and X,Y € V with X # Y such that
A > aXp and A + oYy are in P, then X # Y.

(iii) P is prefix—free.

Hence, the three conditions in this corollary can be used as a definition of
a simple chain grammar. These three conditions will be useful in proofs of proper-
ties of simple chain grammars.

To illustrate the definition of a simple chain grammar we consider a few exam~

ples.

EXAMPLE 1i.1.

Consider grammar G with productions
i

S » AF ¢+ dF | dD
A > Ba G+ Cb
B> Cd D~>b

F>Gal| a

il

For example, CH(C) = {Cd}, CH(a) = {a} and CH(F) = {Fa,F6Cd}. One can easily verify

that G satisfies the conditions of a simple chain grammar.

In the following two examples we list simple chain grammars which are not LL(k)
or LC(k) {for any k > 0) and left parsable, respectively. For the definitions of
these classes of grammars the reader should consult Chapter 8 and 9. The proofs are

straightforward from these definitions.

EXAMPLE 11.2,
CFG G with productioms

§ + afc | akEd

E -+ aE | ab

is a simple chain grammar. However, there is mo k such that G is LL(k) or LC(k).

EXAMPLE 11.3.
CFG G with productions

S » aBc | aEd
E +~ aEb | ab



175

is a simple chain grammar. However, G is not left parsable, that is, there does not

exist a DPDT which acts as a left parser for G.

The grammar of Example 11.2 is not g-free LL(1). Therefore the dlass of e-free LL(1)

grammars is properly included in the class of simple chain grammars.

DEFINITION 11.4. Let G = (N,Z,P,5) be a CFG. String o ¢ v* is said to be prefix-

free if, for any W W, € Z*, o= v, and o > LA implies w, = €. Grammar G is said

to be prefix-free if all the nonterminal symbols are prefix~free.

Notice that if a grammar G is prefix-free, then L(G) is prefix-free. That is,

if w, e L{(G) and ww

1 € L(G), then w, = €.

2 2

THEOREM 11.1, Every simple chain grammar is prefix-free.

Proof. We have to prove that every nonterminal of a simple chain grammar is prefix-
free. Let G = (N,Z,P,S) be a simple chain grammar. By induction on the length of

P . + . .
the derivations we prove that any Yy ¢ V is prefix-free.

Basis., Consider two derivations of length | which can be used to obtain v, and LAY
in Z*; the case in which ome derivation is of length! and the other is of length 0
cannot occur, If u VY and U 2 wlwztthen there exists a nonterminal C € N and

strings w',w",zl,z2 € L such that

U= w'Cw" ? W'le" w

1°

and

=
n

1 ] " 1] "
w Cw ? W'z W Wy

if v, # € then z, is a prefix of z, and P is not prefix~free, whence w, = €,

1 2 2

Induction. Assume for all U ¢ V+ and derivationsLL% v, and | % LA with lengths
less than n, we have W, = £, Now consider derivations y b4 v and | % LAY with lengths
less than or equal to n. Then there exist C ¢ N, p,p],wl,wz € V*, vl,vz,w' € ¥ and

X,Y ¢ V such that C - plxwl and C +> plez are in P, with X # Y and

f *
CEPA SR T

) *

*
Hg v’ g oo Xow'
and

' *
PRIV B W Wy,

P 2

* ' '
H i’ pCw b4 DDIY(DZW

where (Cw' is the last right sentential form which these two derivations have in
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common. Since FIRST{X) n FIRST(Y) = § we must have PP, # €. Moreover, to obtain both
v, and LA there exist w # € and w # € such that 0P, % ww and PP, % w, where both
w and ww are prefixes of Wi and both derivations are of length less than n. Since
this contradicts the induction hypothesis we must conclude Wy = £ This concludes

+ . .
the proof that every u ¢ V and hence every A ¢ N is prefix-free. |
THEOREM 11.2, Every simple chain grammar is unambiguous.

Proof. We have to prove that each w ¢ L{(G), where G = (N,Z,P,S) is a simple chain
*

grammar, has exactly one (rightmost) derivation from S. Suppose S TV by at least

two rightmost derivations. Then there exists A ¢ N, p,wl,wz € V* and X,Y € V, where

X # Y,such that there are derivations
A= oXp, 3w
A= oXp g W

and

A = pYo, % w’
where w' # € is a substring of w. Since X # Y we must conclude that p is not prefix-

free which is in contradiction with Theorem i!.1. Therefore there are no two such

derivations. g

A characteristic feature of simple chain grammars is mentioned in the following
theorem. The notation % is used to indicate that the derivation is of length n.
THEOREM 11.3. Let ¢ = (N,Z,P,S) be a simple chain grammar. Suppose there exist n 2 1,
%,Y ¢ V and 0,9, € V* such that S % oXe and S -2» oYy, If X # Y, then X # Y.

Proof. The proof is by induction on the length of the derivations. To facilitate

+ .
the induction proof we take an arbitrary string W ¢ V instead of the start symbol S.

Basis. Let M % oXp and % oYy, Suppose Y = yCp, C e N, ¥ € Z* and p € V*, Then
there are productions C + YIXD, and C - YIYDZ in P such that Yy, = o, pPp=e and
PP = Y. Since X # Y we obtain X # Y.

Induction. Let U % a¥P and u % oYy where X # Y and assume the property holds
for all u € V* and leftmost derivations with length less than n. There exist 0y € *,
8, W, VP € V*, X]’YI € V and C ¢ N such that C ~ lewl and C » 5Y]w1, where
X] # Yl’ and
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u % a]Cp 2 alcSX]kp]p % oXp
and

m
M aICp T aléY]tplp T oYy

[l

withn=%k +m+ 1, Ifm=0thenX1 = X, Yl = Y and since X] #Yl we have also

X # Y. Otherwise, since 0L16 is prefix-free, there are two possibilities:
(i) a8 F oXp), where @IX @0 = @,
and
a8 % oYy, where YIY ¥ p = Y.
Since m < n we have X ¢ Y,

. ; * . . .
(ii) a]G = o', where o' is a prefix of o, that is o = a'a",

and
Xl %a"XLp;, where tp; is a prefix of o,
and

Y, %a"Ytpi, where ‘P; is a prefix of y.

Since X1 # Yl we have " = ¢ and X # Y. 0

It follows that S % vXp and § P WYy with X # Y implies X # Y.

In the remainder of this section we present some results on the rightmost deri-
vations of a simple chain grammar. First we have the following results. In this lemma

T denotes the concatenation of the productions in the rightmost derivation.

LEMMA 11.5. Let G = (N,I,P,S) be a simple chain grammar. Assume A ¢ N, X ¢ V, Q¢ v

and VsV, € Z* such that
* b
i 38 L
where A # X. Then there is v' ¢ I such that v'v, = v, and

1 2

A%Xv'.

. % * , .
Proof. Notice that we can not have ¢ g @Xu for some u ¢ I since ¢ is prefix—free.
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. * f . .
Neither can we have 2 ', where ' is a proper prefix of ¢ since there are no

P *
g-productions. Therefore we must conclude that A.% Xv' for v' ¢ I and v'vl =V, C

THEOREM {1.4. Let G = {N,L,P,S) be a simple chain grammar. Let o ¢ V*, X,Y ¢ V
and WV, € Z* such that S % ule and S % anz, whete X # Y. Then, either X # Y or

there is a string u € I such that
S % aXu # a¥
§ ou ¥y
(or the symmetric case:
* *®
S 7 a¥u 2 oanl)

Proof. The proof is by induction on the length of the derivations. Let U ¢ V+. As

basis we consider derivations of length one ox less.

Basis. First consider derivations
i ? OLle
and
b g 0w,

where X # Y. Then there exist p ¢ V., C e N, w ¢ L and C ~ pXv,, C > pIv, in P,
i

such that pp; =@, VW =W, and VoW = Wy Since G is a simple chain grammar, X # Y.

Now suppose that U = an1 and p ﬁ anz. Then anI 3 anz. It follows that we

have a derivation
2 oXw, = o
HE W RO
which is of the desired form. The basis of the induction is now satisfied.

Induction. Now suppuse we have derivations

Z ax
W g ol
and

x
-4 anz

with X # Y and the lengths of the derivations are less than or equal to n. Assume
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the property holds for all derivations with lengths less than n. There exist

03P 159, 5P; € V', Ce N, X,¥ ¢V such that C+ pX®

1519 and C + plYle2 are in P,

with Xl # Yl and there exist derivations
* *
H g o0 g 00 X 0w g OKW)
and
% pCw Y % aY
HR PCW g PP X 0w g 00W,-
Since X1 # Y1 and PPy is prefix-free there are two possibilities:
. *
(1) ppy g aXv,

and
*
pp1 ? och2

where v, is a prefix of w, and vy is a prefix of Wye But then, since the lengths

of these derivations are less than n, we have by the induction hypothesis either

X # Y or there is v ¢ Z* such that
* *
e, ? oXv 2 asz

where vy is a prefix of Wy If

*
oy B asz
then there is a derivation

* * '* -
14 pplY]wzw 2 pplw 2 aszw anz.

Moreover, since

* *
pp1 ? aXv ? asz

we can write
* * x ¢ X '
14 pplYlwzw T eow g oXvw 2 aszw anz.

. *
Therefore there is u = vw' € %I such that

* *
M ? aXu ? anz.
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s x L U
(ii) Xl ZP XW]
and

Y, % 0'Vw!
I R 2
where p’ is a suffix of o and w; and w. are prefixes of w, and w,, respectively.

2 1 2
But then, since X] £ Y we have p' = € and X # Y.

I

The proof of the theorem is now complete if we take W = S, a

Note. It follows from this theorem that, if § % anl and § % anz, where X # Y

and we do not have X # Y, then there exists v ¢ I such that

4 uS
S i aXv 3 an2

U . .
where X b Yw' and w' is such that w'v = v, {(or the symmetric case).

The following corollary is immediate from Theorem 11.4, We use the following
notation. For X,Y ¢ V we write X L Y if there does mot exist § ¢ v" such that either
* . . . .
X3 Yy or ¥ = X. Notice that 1f X # Y, then X # Y implies X L Y. If X 1L Y, then
X # Y.

CORQLLARY 11.3. Lec 6 = (N,I,P,3) be a simple chain grammar. Suppose there exist

o e V*, X,Y ¢ V and W W, € ¥ such that § % oaXw, and S % aYw,. If X L Y, then X # Y.

2

Note. Notice that we do not have S % anl and § % an2 implies X # Y. A counter-

example is grammar G with productions S + aXb, X + Yc and Y + a. Grammar G is a
simple chain grammar, S % aXb and S % a¥Ych but we do nmot have X # Y.
Another example is the grammar with productions S + aXD | aXe, X+ Y, Y + b

and D + d, which is also a simple chain grammar. Here we have derivations S % aXd

=Pt

and S % aYe, but we do mot have X # Y.
11.2. RELATIONSHIPS BETWEEN SIMPLE CHAIN GRAMMARS AND OTHER CLASSES OF GRAMMARS

We already saw that each e-free LL(l) grammar is a simple chain grammar. More-
over, there exist simple chain grammars which are not LL(k) or LC(k), for any k = O.
In Chapter 12 we will return to the relation between simple chain grammars and LC-
grammars. Here we will compare the class of simple chain grammars with the classes

of grammars that are simple precedence, strict deterministic or LR(0). For the
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definition of simple precedence the reader is referred to [ 3 ]. The definition of

strict deterministic grammars can be found in section 8.2.

The CFG with productions S + Ab 1 Bc, A+ a and B + ad is not a simple chain
grammar. By constructing the Wirth-Weber precedence matrix' one can easily verify
that there are no precedence conflicts. Since the grammar is also uniguely invertible
(i.e., if A> o and B+ @ are in P, then A = B) it follows that the grammar is simple
precedence. On the other hand, the CFG with only productions S - ad | bB, A + dc,

B+ dC and C » c is a simple chain grammar and not a simple precedence grammar.

COROLLARY 11.4. The classes of simple chain grammars and of (e-free) simple prece-

dence grammars are incomparable.

The CFG with only productions S + cb | Ab and A + a is a simple chain grammar
but not a strict deterministic grammar. The CFG with only productions S + Ab | Be,

A+ ad and B ~ ae is a strict deterministic grammar but not a simple chain grammar.

COROLLARY 11.5. The classes of simple chain grammars and of (c-free) strict deter-

ministic grammars are incomparable.

There is a nontrivial hierarchy of strict deterministic grammars and their
languages according to their degree (cf. Harrison and Havel [59]). The simplest class
in this hierarchy is the class of strict deterministic grammars of degree 1. The

following definition is a reformulation of Theorem 3.1 of [61].

DEFINITION 11.5. A CFG G = (N,L,P,8) is said to be strict deterministic of degree
one if P is prefix-free and if A -+ oXp and A + aYy are in P (hence, ®,9 and ¥ in V*
and X and Y in V), with X # Y, then X and Y are in I.

LEMMA 11.6. Any e€-free strict deterministic grammar of degree | is a simple chain

granmmar.

Proof. Trivial. 0

In order to prove that every simple chain grammar is LR(D) we have to show that
if

* i
sﬁaAwﬁan=yw
and

8 % a'A'x 2 a'B'x = yw'
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then A+ 8 = A" » 8 and jaB| = |a'B'].

Notice that $§ 3 S is not possible in a simple chain grammar.

One possible way to do this is to assume that there exists a simple chain
grammar which is not LR(0} and to do a tedious case analysis based on the following

four situations:

@ o] < laf
(ii) la] < [a'] < |og]
(1ii) la'] > |aB], and
(iv) fa'] = |oB]

Each of these cases can actually occur for a non-LR(0) grammar and it can be
shown that for sach of these cases the assumption that G is not LR(0) leads to a
contradiction with G being a simple chain grammar.

The following proof, however, which was supgested by a referee of [122], uses
the construction of the state sets of the usual LR(0) parsing algorithm. It is shown
that if a CFG G is a simple chain grammar, then these state sets do not contain imn-
consistent items. Therefore we may conclude that G is LR(0Q).

We recall a few definitiomns. However, to avoid too much repetition of terminol-
08y we assume that the reader is familiar with the comstruction of the LR(0) parsing

algorithm ([3,58]).

DEFINITION 11.7. Suppose that S % chw 1 afw in a CFG G. Strimg vy is a viable prefix

of G if v is a prefix of af. We say that [A - B].BZ} is an LR(0) item for G if
A > 8182 is a production in P. LR(0Q) item [A =+ 81'82] is valid for uBl (a viable

prefix of G) if there is a derivation § % OAw ﬁOBIBZW'

For any viable prefix Y of G define U(y) to be the set of LR(0) items valid for

v. Define

!

S =1{c | o= Y(y) for some viable prefix y of G},

the collection of LR(0) state sets for G.
In the conmstruction of S each ¢ ¢ S is obtained as the union of a basis set and
a set which is achieved by taking the ‘closure’ of this basis set. We denote the

basis set of a set ¢ ¢ § by basis(o).
THEOREM 11.5. Every simple chain grammar is an LR(0) grammar.

Proof. Let § be the collection of state sets for simple chain grammar G = (N,X,P,S).

First we have the following claim.
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CLAIM. Let 0 ¢ S. If [A~> o
(c), then A = B and o, = B

1.az] and [B » BI'BZ] are any two distinct items in basis

1

Proof of the Claim. By definition of S there exists y ¢ v" such that o = V(y). It

is convenient to prove the claim by induction on |Y|.

Basis. |Y| = (. By convention (see Algorithm 5.8 [ 3]) basis(V(e)) =
= {[s > .a] I S > a is in P} for which the claim is easily verified. Notice that
for every state set ¢ other than V(g) an item [A -+ a].az] can only be in basis(o)
if a, #e.

Induction. Consider a string YX where Y € V" and X ¢ V. Assume that the claim
is true for ¢ = V(y); we will show that it is likewise true for o' = V(YX)., Let
[A > alx.az] and [B > B]X.Bz] be any two items in basis(0'). Then both [A » al.xuzl

and [B ~+ BI.XBQ are in O. There are now several cases:

(1) o #e# Bl: By the induction hypothesis A = B and a, = Bl’ as desired since
both items belong to basis(o).

(1T o # £ and B1 = ¢; In this case [B ~ .XBZ] is obtained from some item

[c~» Y]'YYZJ € basis(g), so that Y % X9 for some @ € v" and because of the

induction hypothesis, C = A and Y, = % Hence we have productions A > alYYz

and A ~ o, Xo,. If X = Y then X is left recursive, which is not possible in
a simple chain grammar. If X # Y then, since FIRST(X) n FIRST(Y) # @, we obtain

a contradiction with the definition of a simple chain grammar.

(III) o

] € and B1 # €: This case is symmetric to (II).

(IV) a, =e-= 81: Then either A = B = §, hence the claim is satisfied, or [A ~> .XQZ]
and [B - 'XBZ] are obtained from items [C ~ YI.UYZ] and [C ~ YI.U'y'g, respec—
tively, in basis(o). If U = U' then either U is not chain-independent, which
is impossible, or A = B, as desired. If U # U' then, since FIRST(U) n FIRST(U')

# @, G is not a simple chain grammar.
This concludes the proof of the claim. 0

Now suppose that G is nmot LR(0). Then there is some LR(0) state set 0 of G which
contains two ore more inconsistent items. There are two cases (see Definition 2.4

in Geller and Harrison [41])

(i) A shift/reduce conflict: There are two items [A —+ al.aazl and [B +~ 8.] in o,

*
where algb,ﬁe V and a € L. Since B = € we have that [B >~ 8] is in basis(o).

There are two cases:

(a) o # €: It follows that o = B, A =38 and P is not prefix-free which is impos-

sible,
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(b) o = € In *his case there exists a production B + 8X¢ in P, where X¢ ¢ "
+
and X T Ay for some Y € V*, and also in this case we have that P is not prefix-—

free, which is impossible.

(1) A reduce/reduce conflict: There are two items [A + o.] and [B + 8.] in 0.
Since G i1s e-free o # € # B and both items belong to basis(g). It follows
from the claim that A = B and o = 8, so that, in fact, no conflict exists in

Jd.
It follows that every simple chain grammar is an LR(0) grammar. d

Observe that, since we are only concerned with g-free grammars, the combination
of Lemma 1!.1 and Theorem !1.5 does not lead to the incorrect result that any LL(I)
grammar {not necessarily e-free) is an LR(0) grammar. Clearly, every simple deter-
ministic grammar is a simple chain grammar. The class of simple chain grammars is
properly inciuded in the LR(0) grammars since the CFG with only productions S -+ aB,
S+ eB, B>¢cD, B+cF,D-+band F+ b is LR(0} but it is not a simple chain grammar.
In Reichardt [139] and in Schlichtiger [147,148] (cf. also Chapter 12) simple

chain grammars are compared with some other classes of grammars.
11.3. SIMPLE CHAIN LANGUAGES

In this section we show that the class of simple chain languages coincides with
the class of simple deterministic languages. First we show that every simple chain
grammar can be transformed to an equivalent simple chain grammar in Greibach normal
form. A transformation which is similar to ours can be found in [42] where it is
shown that each strict deterministic grammar can be transformed to a strict deter-

ministic grammar in GNF,

OBSERVATION !i.i. Let G = (N,I,P,S) be a simple chain grammar. Let A ¢ N and

a ¢ FIRST{A). The chain from A to a in CH(A) is uniquely determined and therefore
also its length. Denote this length by nA(a). Hence, if A % ao for some o € V*, then
n > nA(a).

THEOREM 1].6. Each simple chain grammar can be transformed to a weakly equivalent

simple chain grammar in GNF.

*
Proof. Let G = {N,I,P,5) be a simple chain grammar. Let P' = {A > an | A e Nya eV
T
and a ¢ I such that A % aa with 2’ = nA(a)} and let G' = (N,Z,P',S8). In this way
G' is well-defined, G' has no e-productions and moreover, G' is in quasi-GNF. CFG G’

can be reduced in the usual way.
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CLAIM 1. G' is a simple chain grammar.
Proof of Claim 1. Consider Definition I1.1. Assume P' is not prefix-free, so that

there exist productions & > & and A * gB in P' with B # €, Then, by definition of
P' there exist derivations A.% o and A.% of in G with B # €. Since G is a simple
chain grammar it follows from Theorem |1.1 that this is not possible. Thus P' is
prefix—free.

Now assume there exist A € N, a,p,} € v* and X,Y ¢ V with X # Y such that
A > oXp and A+ oY) are in P'. Let 0 # € and assume | : o = a. Then both derivations

in G can be written as

1
A.% axp
and
e
2 aw
' =
where n nA(a).

Then, by Theorem 11,3, X # Y. If a = £, then X and Y are in Z, X # Y and therefore

also in this case X # Y. This completes the proof of Claim 1. 0

It is not difficult to see that transforming G' in quasi~GNF to a CFG in GNF
by replacing terminals inside the righthand sides of the productions in the usual
way does not disturb the simple chain properties of G'. Therefore we may assume that

G' is in GNF.
CLAIM 2. L(G') = L(G).

Proof of Claim 2. It is clear that for any w ¢ Z*, S % w in G' implies S={ w in G.

For the converse, consider A.% w in G, If n = 1, then trivially, also A Pw in G'.
Suppose that A.% w in G implies A % w in G' be true for all der%vations of

length less than n in G. Factor the derivation A,% w in G to get A.% at, where

n' = nA(a) and it is assumed that | : w = a. By construction, A + ad is in P'. Let

o = AIAZ"'Am € N*. Notice that according to the remark following Claim 1 we may

* . . * , .
assume o ¢ N ., Each Ai derives a subword of w, that is, A, = v, in G for 1 £1i<m

iL
and w = E PLITERL A Since these derivations are of length less than n, Ai % LA in
G'. The combination of A + aAlAZ"'Am is in P' and Ai % LA in G' gives A TV in G'.
Therefore, § % w in G implies § % w in G'. It follows that L(G') = L(G). 0
With these two claims the proof of Theorem 11.6 is complete. a

Grammar G' which is now in GNF is not necessarily a simple deterministic grammar.
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The second transformation of this section will produce a simple deterministic grammar
from a simple chain grammar in GNF. In section !1.5 we will give an immediate trans-
formation from a simple chain grammar to a simple deterministic grammar. There we

will also discuss the cover properties of these transformationms.

The transformation which we are now to present is in fact a simple process of
left factoring. That is, we are going to replace productions A > aff and A + oy with
o # ¢ and B # Yy by productions A~ oH, H~+ B and H +~ y. However, since we want to

preserve the Greibach normal form we need to adapt the process of left factoring.
NOTATION 11.1., ZLet G = {(N,I,P,5) be a CFG. For any A ¢ N and Q ¢ V*,
@ ={arape?|we Vi

Let A ~+ o, and A -+ o, be two productions. The longest string a ¢ v such that

0. 1s both a prefix of o and o,

Similarly, we can define the common prefix of a set of productions.

is called the common prefix of A - al and A ~ Oy

ALGORITHM 11.1.

Input. A simple chain grammar G = (N,I,P,S) in GNF.

Output. A weakly equivalent simple deterministic grammar G' = (N',Z,P',S).

_Method. Initially, set N' = N and P' = @. Define R = {(4,2) | A~> a0 ¢ P for some
@ € V'}. The elements of R are numbered in an arbitrary way. Starting with the first
element we shal consider for each element (A,a) £ R the set QZ . The set QZ is mot

fixed but will change in the course of the computation. Initially,
Qz = {A+»ape P ! @ e N},

Step 1.
(1) Let |QZ| = |. Then add the only production of QZ to P', If all the elements of
R have been considered go to Step 2. Otherwise, start again with the next ele-

ment of R.

(ii) Let EQZ| > 1. Counsider a ¢ {a}N'* such that o satisfies:
a. o is a common prefix of at least two productions in Qz, and
b. there are no productions A + ap and A +~ a with © # ¥ in QZ with common pre-

fix o' such that o is a proper prefix of ao'.

Lf ]Qii = n, then denote the elements of Qz by {A + axiwi ] 1 < i < n}. Replace

in QZ the subset Qi by the only production A + alAo,X ml,...,ann], where

1
[Aa,Xlwl,.o.,ann] is a newly introduced nonterminal which is added to N'.

Repeat Step 1I.
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Step 2.
For each newly introduced nonterminal of the form Q = [BB,Y]wl,....,mem] add to P',

for each i, 1 < i < m, the set of productions {Q - Ywi ] Yi - e P'}.

Step 3.

Remove the useless symbols. ]

Note. In general, string ¢ in Step 1 (ii) is not uniquely determined. If there
is more than ome such o then it does not matter which one is taken first. Notice,
that since G is in GNF the strings Yiwi’ 1 £1<m are in N'*. A newly introduced
nonterminal symbol [BB,Ylwl,....,mem] is associated by B with the productions

in Qg from which it is obtained.

EXAMPLE 11.4.

Consider the simple chain grammar in GNF with the following list of productions.

S > cA A~ aBD A~ aAB D> e
A > aBCBD A - aBA A~ f B->b
A -~ aBCBA A - aACA D-~>d C—+c

The subsequent results of Step 1 on QZ can be given in the following order:

1. TFor o = aBCB. A -~ aBCBD and A - aBCBA are replaced by
A + aBCBQ,, where Q, = [AaBCB,D,A).

2. Fora = aB. A+ aBCBQO, A » aBD and A + aBA are replaced by
A - aBQ, where Q = [AaB,CBQO,D,A].

3. For a = aA., A -+ aACA and A > aAB are replaced by A »> aAQZ,
where Q, = [AaA,CA,B].

4, TFor a = a (the common prefix of Q:). A+ aAQ2 and A -+ aBQ] are replaced by
A > aQ,, vhere Q, = [Aa,AQz,BQ]].

The result of Step 2 for QO’QI’QZ and Q3 are:

Prd QB gt QG > 1
% e Q> d Qrch QDY
Q> aQ, Qe Q, + b

Q> Q> aQ Q, > 20,0,

THEOREM 11.7. Each simple chain grammar can be transformed to a weakly equivalent

simple deterministic grammar.
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Proof. By Theorem 1.6 we may assume that ¢ = (N,Z,P,S) is a simple chain grammar
in GNP. Let G' = (N',Z,P*,S) be the CFG which is obtained by Algorithm 11.1. The
proof that G! is a simple deterministic grammar which is weakly equivalent to G is
divided into three claims.

CLAIM 1. Let Q = [An,X w],,,..,Xdpn] be a newly introduced nonterminal symbol. Each

1
X,, ! <i<n, i in N and if i # j, where | < 1, j < n, then Xi # Xj and Xi # Xj'

Proof of Claim !. Observe that the prefix o in step ! (ii) is always in IN® (that
is, it does not contain newly introduced nonterminals). Moreover, since all the
productions in QZ are considered at the same time we can not have productions

A > aQ'@ for some newly introduced Q' and ¢ ¢ ' and A - 0By for some B ¢ N and

Y e N, Thus, each eri which is mentioned in Q has Xi ¢ N. Moreover, Xi # Xj gince
otherwise the o which was chosen was not the longest applicable prefix as is demand-
ed in part b of Step ! (ii). Since Xi, X. € N there exist productions A& quQ and
A+ axjw in P, for some ¢ and J in v*. For i # j we have X # Xj and since P is the

set of productions for simple chain grammar G, we have X, # Xj. 0
CLAIM 2. G' is a simple deterministic grammar.

Proof of Claim 2. We have to show that for each A ¢ N’ and a € I there is at most
one production 4 +~ aa in P', for some O ¢ v,

A set QZ, where & ¢ N and a ¢ I, is reduced to only one production whose right-
hand side has as prefix the common prefix of QZ. Therefore, after step 1 has been
performed, for each A ¢ N and a ¢ I there is at most one production A + aq in P!
for some a ¢ N'7,

In step 2 productions are introduced for the new nonterminals of the form
Q= {Aa,X]wl,...,ann]. Since, by Claim 1, X, # Xj for i # j, we can not have X, > ay
and Xj + ay' for some a ¢ I and Y,Y' ¢ V'*. Therefore, for any newly introduced Q
and for any a ¢ I there is also at most ome production in Qg. This concludes the

proof that G' is simple deterministic. i
CLAIM 3. L(G') = L{G).

Proof of Claim 3. In Figure 11.l the transformation is illustrated. Only local trans-
formations as presented in this figure are performed. Therefore the transformation

is language preserving. 0

From Claim 2 and Claim 3 it follows that Theorem 11.7 is proved. 0



189

A
/R
a X @
Y

Y

Figure 11.1. Transformation to simple deterministic grammars.

Since each simple deterministic grammar is a simple chain grammar and since it
is decidable whether two simple deterministic grammars are weakly equivalent we have

the following corollary.

COROLLARY 11.6.

a. The class of simple chain languages coincides with the class of simple determi-
nistic languages.

b. It is decidable whether two simple chain grammars are weakly equivalent.
11.4, A LEFT PART THEOREM FOR SIMPLE CHAIN GRAMMARS

In this section we consider a global property of the grammatical trees of con-
text—-free grammars, This property can be considered as a restricted version of the
left part property for the trees of strict deterministic grammars (Harrison and
Havel [60]). It will be shown that this left part property is satisfied by the set
of grammatical trees of a left part grammar, a type of context-free grammar which
is a slight generalization of a simple chain grammar.

If a context-free grammar is unambiguous, then each terminal string generated
by this grammar has a unique parse tree. Informally, our left part property requires
that every prefix of such a terminal string has a unique 'partial'tree. This notion
of 'partial’' tree will be specified.

To present the left part property and to describe grammatical trees we use the
notations and definitions from Harrison and Havel [60]. For convenience we repeat,
as far as necessary, some of these notions here. For more details the reader is
referred to [60].

Among others, an intuitive assumption on 'translations' of prefixes of sentences

which is discussed in Krdl [82] motivated us to introduce this left part property.
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The organization of this section is as follows. We continue with some defini-
tions and notational conventions on trees and grammatical trees. Then we present
the left part property and we introduce the left part grammars. We show that a con-—
text-free grammar is a left part grammar if and only if its set of grammatical trees

satisfies the left part property.

PRELIMINARIES ON TREES

To introduce the concepts of the theory of trees which we need here we will
frequently refer to the tree 7 given in Figure 11.2. This introduction goes along

similar lines as in [60].

Figure 1}.2. Tree T and its labeling.

Tree T has nodes <X0’x1"""x10) and it has a root (xo). The relation of imme-
diate descendancy is denoted by [ (for example X is an immediate descendant of X
xzrxs). The transitive closure of | is denoted by [* and the reflexive and transitive
closure by F*. If x F*y then there is a path from x to y, which is the sequence of
all nodes, including x and y, between X and y. For example, XX XgaX is the path
in T from ®, to X, .. A leaf is a node x in T for which there is no y in T such that
x[y; in Figure 11!.2 the leaves are X, sXgXgsX | 5%, Xgs given here in the left-right
order, which is in general, for a tree 7 with m leaves, denoted by YysVoreresye We
introduce the bimary relation L as follows; xLy if and only if:

(i) x and y are not on the same path and

{ii) for some leawes y,,y in the left-right order we have x0* vy, and y[ ¥y, ..
i i i+l

Thus, for instance, ;ZILXZ and, by introducing transitive and tramsitive-reflexive
closures of L in an obvious way, X, L* Xg+

Two trees T, T' are structurally isomorphic, T = T', if and only if there is a
bijection g: T =+ T' such that x Fy if and only if g(x) [ g(y) and x L y if and only

if g(x) L g(y), that is, except for a possible reldbeling the trees are identical.
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GRAMMATICAL TREES

Let T be a tree. Then every node x of T has a label A(x). For instance, in
Figure 11.2 X3 has label C. We will be concerned with grammatical trees, therefore
A(x) € V, where V= N u I for a given CFG G = (N,X,P,5). The root label of tree T
is denoted by rt(T) (in Figure 11.2 rt(T) = 8) and the frontier of tree T is the
concatenation of the labels of the leaves (in the left~right order)} of T, notation:
fr(T). In Figure 11.2 fr(T) = abeded. We write T =T' when T = T' and T and 7' will
be treated as identical. The productions in P are elementary subtrees (see Figure

11.3 for a production A + XlXZ...Xn).

Figure 11.3. An elementary subtree.

Formally, T is said to be a grammatical tree for a CFG G = (N,Z,P,S) iff

(i) for every elementary subtree T' of T there exists a production in P corresponding
to T', and
(ii) £r(T) ¢ 1%,

The set of grammatical trees for a CFG G is denoted by Jg' Define JG(A) =
={T ¢ JG [ rt{T) = A} and trees in JG(S} are the parse trees of G (cf.Definition 1.5).
Having introduced the mecessary preliminaries we now can turn our attention to
the left part property.
Let G = (N,I,P,S) be a CFG. Informally, the left part property says that for
each A ¢ N and for each prefix u of w = uv ¢ L(A), u uniquely determines the "left
part" (up to the first symbol of v) of the grammatical tree which corresponds to
the derivation of w from A. Clearly such a property can only be satisfied (take for
instance v = ¢ and A = S) by grammatical trees for which the CFG is unambiguous. The

following definition of left part is from Harrison and Havel [60].

DEFINITION 11.8, Let 7 be a grammatical tree of some grammar G. For any n = 0 define
(n)T, the left n-part of T(or the left part when n is understood) as follows. Let

(x sene e X ) be the sequence of all leaves in T (from the left to the right). Then
(niT ={xeT|x e X } if n < m and (n)T =T if n > m. (n)T is considered to

be a tree under the same relatlons I, L and the same labeling A as T.
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For instance, in Figure 11.2 (3)T is the subtree with the nodes Ry X Xy X, Xgs
Xe and xg- In the following definition we introduce our simple left part property
for a set of grammatical trees.

DEFINITION 11.9, Let J ¢ JG’
property if for any n > 0 and T,T" ¢ J, if rt(T) = rt(7') and (n)fr(T) = (n)fr(T')

for some CFG G. J is said to satisfy the left part

then W7 = @W7r,
This definicion is illustrated in Figure I1.4 where two trees 7 and T' in a
set J = J, are given with their labeling. In this figure we have (Z)T = (Z)T'. How—

G
ever, since (S)T # (B)T' and (3)fr(T) = (3)fr(T') we may conclude that J does not

satisfy the left part property. Clearly, not for every CFG G we have that JG satis—
fies the left part property. We introduce the left part grammars, a modest general—
ization of simple chain grammars, defined in such a way that CFG G is a left part

grammar if and only if J. satisfies the left part property.

G

Let ¢ = (N,%,P,S) be a CFG. Set P is said to be prefix(l) if for each pair
A+ B, A+ By in P, with v # € and for a € V" and w ¢ Z*, if § % wAd, then
FIRST(Y) n FIRST(a) = @#. To avoid an empty ¢ we add, if necessary, the production

§*' + 81 to P, where $' is a new start symbol and L is an endmarker, 1 { v,

DEFINITION 11.10. An c-free CFG G = (N,L,P,S) is said to be a left part grammar if
P is prefix(l) and FIRST(X) n FIRST(Y) = @ for each pair A > oXp, A > oYy in P, with
X+ Y.

The following corollary is now self-evident (cf. Corollary 11.2).

A
T
B
c £
a [
e a

3y, O,

Figure 1l.4. Two trees,

COROLLARY 1i.7. & CFG G = (N,%Z,P,S) is a left part grammar if and only if

(i) P is prefix(l)
(ii) V 1is chain-independent

(iii) X # Y for each pair A + oXp, A > oYy in P with X # Y and o # €.
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EXAMPLE 11.5.
Grammar G with only productions S +~ Ac and A + a | ab is a left part grammar. G is

not a simple chain grammar.

The class of simple deterministic languages is properly included in the class

of left part languages. Consider CFG G with productions

5 + aSa | aA
A>bd | b ¢

Obviously, G is a left part grammar. However the language generated by G is
not a simple deterministic lanmguage, since L(G) can not be generated by an e-free
LL(1) grammar {see Aho and Ullman [3]). Since each simple deterministic grammar is

an ¢-free LL(1) grammar, the proper inclusion follows.

From Definition 11.9 and Definition 11.10 we now can achieve the main result

of this section.

THEOREM 11.8. Let G = (N,I,P,S) be a CFG. The set J, of the grammatical trees of

G
G satisfies the left part property if and only if G is a left part grammar.

Proof. (The 'if '~direction). Let G be a left part grammar. To prove: JG satisfies

the left part property. Assume J does not satisfy the left part property. Hence
there exist n > 0 and trees T and T, in J with re(T,) = rt(T ), (n )fr(T ) =
(n) My 4 ! 2 SN (1)
fr(T ) and T # T Suppose n = 1, then T # T and fr(T ) =
(1)

fr(Tz) hence, since rt(Tl) = rt(Tz) we must conclude that V 1s not chaln-lnde—

pendent. Contradiction.

Now consider the case n > 1. For T and T we can choose n such that

(n—l)T (n- 1)T and (n)Tl # (n)T . Let T be labeled by X and T by T @ The re-
(n-l

strictuxrof A to (n= 1)T which is equal to the restriction of X is

denoted by A. We use the same convention for the relations T Ll on T1 and Tz, L

on T,. Let the leaves of (n)T have a left-right order xl,xz,...,xn. Since
(n)f (T ) = (n)fr(T ) we have the same order and labels for the leaves of (n)Tz.
(n I)T (n—T

2

Since the path in T1 from the root of T1 to x _ is the same

1

(including the label1ng) as the path in T2 from the root of Té to x .

and yorylf...fym. Since

Let this

path be p = (yo,yl,...,ym), where y0 is the root, ym = xn_

(n)T 4 @1 !

there exist nodes s and yj onp (0 <1i, j < m) such that
* . * .
a. y; fl x in T] and not y, , Tl % in T]

* , * .
b. yj Tz x in T2 and not yj+1 Tz x in Tz.
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First we show that 1 = j. Suppose 1 > j (the case i < j is symmetric). See also
Figure 11,5, Since T1 and TZ are grammatical trees and since we have no e-productions
there exist A(yi) - Bk(yi+l) and X(yi) > Bk(yi+1)w in P, for some ¢ ¢ V+ and B € Y*.
Notice that ¢ # g since Xl(xn) ¢ FIRST(9).

Tree Tl corresponds with a derivation
*
re(T)) 7 wilype, g wBily

al € V*.

i+1)wul % (n—l)fr(Tl)wa] % fr(Tl), for some w ¢ 7" and

Tree T, corresponds with a derivation

rt(Tz) % wk(yi} o, P WSA(yi+l)az % (n_l)fr(Tz)az % fr(Tz), for some w € 5% and a, € v,

Since A](xn) = Xz(xn) we have that FIRST(a,) n FIRSI(9) # . Since the CFG is

reduced and since rt(Ti) = rt(Tz) it immediately follows that if P contains
Aly) > Brly;,,) and My.) > BA(y,, )@

then P is not prefix(1). Therefore we must conclude that i = j.

Figure 11.5. Trees Tl and T2.

We proceed with i. There are corresponding nodes, z in Tl and z, in T2, which
will again be treated as idemtical, hence we omit the indexes, such that v flz,

* * (n) . .
le, Yisg Lzz and z fl X and z f2 X . Left part T1 is obtained by

v. [z, v.
i'2 1+1
(n—])T]

adding in an obvious way the path from y; to x to . Left part (n)T2 is
obtained in an analogous way. Hence there are paths y.[ zfl...flx and y.fzzrz...fzx .

(a1 (n-1) (n) (n) L1 no 1 . n
Since Tl = T2 and Tl # T2 these labeled paths are different. Since
T] and T2 are grammatical trees there exist productions A(yi) > Bk(yi+!)kl(z)w] and

. * _ .

X(yi) > Bh(yi+l)lz(z)¢2, for some B,¢I and wz in V. If Xl(z) Az(zz) then V is
not chain-independent. If Al(z) # Az(z) then the necessary condition that Xl(z) # Xz(z)
is not satisfied. We must conclude that also the case n > | leads to a contradiction,

This concludes the 'if '-part of the proof.
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(The 'only if '-direction). Let G be a CFG such that JG satisfies the left part

property. Assume that G is not a left part grammar, then, according to Corollary

11.7 there are three possibilities:

(1) V is not chain-independent. Then there iz A ¢ N and Ts Ty € CH(A), ™ # T,
such that ﬂ(ﬂl) Z(ﬂz). Then we can construct trees T1 and T2 in JG with
rt(Tl) = rt(Tz) = A and where the first leaf of each of the trees has label
ﬂ(ﬂ ). Let the path (and the labeling) from the root of Tl to the first leaf
of T be according to L and the path (and the labeling) from the root of T

to the first leaf of T be according to Tys then (l)fr(T ) = (l)fr(Tz) and

2

Contradlctlon.

(ii) Suppose there exist productions A + oX@ and A > oYy in P, X # Y, o # € and
X and Y are not mutually chain-independent., Let w e L(a), where |w| =n- l.
Let m, € CH(X), T, € CH(Y) and I_(w ) = L(w
T1 and T in J w1th rt(T ) = rt(T )
@1, 2 @b

(n— l)Tl

% . Obviously there exist trees
n- 1)fr:(Tl) = (n_l)fr(Tz) = w and

. By addlng paths correspondlng to the chains m and m, to

and to (n l)T respectively we obtain a situation such that (n)fr(T ) =
(n)fr(T ) and (n)T # (n)T Contradiction. .
(iii) Suppose P is not preflx(l). Then there exist productions A + B and A + By,
Y # € and there is a ¢ L , w ¢ $¥ and o ¢ V* such that S % wAo and
a e FIRST(y) n FIRST(a). Also in this case we can construct trees T1 and T2
in JG’ rt(T ) = rt(T ) = S. Let v, o€ L(B) and let |ww | be n - !. Then we con-
struct T and T such that (n)fr(T )} = (n>fr(T ) = wwa and where (n )T # (n)T
(n}Tl is obtalned from (n= )T by adding the (rlghtmostb path from the

node corresponding to M

(o~ I)T (=

since
o to the nth leaf of Tl’ and (n )T is obtained by
adding to (n= l)T ) the path from the node correspondlng to A to the
nth leaf of T . Slnce (n)T # (n)T we have again a contradiction with the left
part property. This concludes the ’ only if ' part of the proof and therefore

the proof of Theorem 11.8 is now complete. a

We may conclude that the grammatical trees of a simple chain grammar satisfy

the left part property.

In Harrison and Havel [60] the left part property for strict deterministic
grammars is used to prove relationships between strict deterministic grammars and
other classes of grammars. Moreover, the property is used to develop an iteration
theorem for deterministic languages. In Beatty [10,11] a left part property of

LL(k) grammars is considered and iteration theorems for LL(k) languages are obtained.



196
11.5. LEFT PART PARSING AND COVERING OF SIMPLE CHAIN GRAMMARS

In section !1.3 we have seen that each simple chain grammar can be transformed
to a weakly equivalent simple deterministic grammar., Unfortunately, this transfor-
mation can not be done in such a way that always a left cover or a left-to-right
cover can be defined. This will be shown in the present section.

With the help of the simple left part property we will then show that a positive
cover result can be obtained if we use the left part parse. The method which will
be used to show this does not differ from the methods use in Chapter 7 and Chapter
9, That is, we construct a (left part) parser for a simple chain grammar and then
convert it into a (simple deterministic) grammar.

The first algorithm of this section, however, shows how right parsing can be
done for simple chain grammars. From the proof of Theorem 1.5 it will already be
clear that a simplified version of the LR(0) parsing method can be used. Moreover,
it is possible to modify the construction of the parsing-graphs for production prefix
grammars (Geller, Graham and Harrison [38]) so that they are suitable for a parsing
method for simple chain grammars. We will confine ourselves to the presentation of
a DPDT which acts as a right parser for the simple chain grammar from which it is

constructed.

ALGORITHM 11.2.

Input. A simple chain grammar & = (N,L,P,S).

Output. A DPDT R = (Q,Z,F,A,S,qO,Z,F) which is a right parser for G.

Method. Define Q¢ = {q}, q; = q, F = {g}, 6=4, T = {{ae] | A+ 0 in P, A e N

and 0, € V'}, Z = [8] and the function 8 is defined in the following way:

(i) For each i.A = o in P, define 8{q,e,{An]) = (q,€,1).

(ii) For any [Aa] < I', with A+ af in P and B # €, and any chain xoxl...xn ¢ CH(1:B),
define:
{a) S(q,Xn,[Aa]) (q,[AaXO],e) if XO = Kn ¢ I and otherwise
() §(q,X ,Llaal) = Lq,[xn_]xn]....[XOX]]{Aaxo},e).

#

This concludes Algorithm 11.2. 0

Define a simple SDTS T on simple chain grammar G = (N,Z,P,S8) such that if
i.A~+qa is in P, then A + o, hz(ai) is a rule of T. We have to show that Algorithm
11.2 yields a right parser for G, that is, it should be proved that T(R) = 1(T) = T,
This proof can be based on the following two claims. Since the proofs of the claims
and the proof of T(R) = T(T) hardly differ from the proofs which are used for a
more interesting result stated in Corollary 11.7, we confine ourselves to the presen-

tation of the two claims.
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CLAIM 1. Let A~ aXdp be in P and let XOXI"'Xn—IY € N*V be a prefix of a chain in
CH(XO). Then

*
(t,h: (D) % (7,m)
+ * . .
for some m 2 0, y €« 2 and ™ € A, implies

(0,7,[4a),€) & (q,e.0X _ ¥]...[XgX, I0Aax ],m).

CLAIM 2. If (q,w,[ AaX],e) = {q,€,e,T), then

(A,A) % (aXw, by, (X)) .

In the preceding chapters pushdown transducers (PDI) and deterministic pushdowm
transducers (DPDT) have been used. The class of simple deterministic languages is
exactly the class of languages which can be accepted with a simple deterministic
pushdown automaton. Here we immediately define the notion of a simple deterministic

pushdown transducer {(simple DPDT).

DEFINITION 11.11. A simple DPDT is a five-tuple R = (£,A,T,8,S), where I is the

input alphabet, A is the output alphabet, I' is the alphabet of pushdown list symbols,
§ is a mapping from % x T to I" x A" and S ¢ T is the initial pushdowm list symbol.

A configuration of a simple DPDT is a triple (w,G,y) in ¥ x % x A*, where w

will stand for the unused portion of the input string, o represents the contents
of the pushdown list and y is the output string emitted sofar. The binary relation

I~ on configurations is defined by
(aw,Zo, y) Lo (W,YG:YZ)

if and only if &(a,Z) = (Y,z), for some a ¢ Z, Z ¢ ', v ¢ I'" and z ¢ A, Au initial
configuration of R is of the form (w,S,£) for some w ¢ £*.

The transitive and transitive-reflexive closures of  are denoted byli and ¢3
respectively. The translation defined by a simple DPDT R is the set T(R) =
= {{w,x) ] (w,S,E)ii (e,e,x)}. If (w,x) ¢ T(R), then x is said to be a translation
of w. We will always have that A = AG for some grammar G.

Observe that if a simple DPDT is converted into a simple SDTS, then the under-—
lying input grammar is simple deterministic. Note also that a simple DFDT can act
as a left parser for a simple deterministic grammar; define §(a,A) = (0,i) for each
production i.A + ag. It will be clear that we do not have to bother about an end-

marker.
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DEFINITION i1.i2. A simple DPDT R is valid for CFG G and parse relation fG if
T(R) = £

G
Instead of fG—parsable grammars (cf.Definition 9.2) we can now introduce simple

fG—parsable grammars for a parse relation fG. We will not repeat definitions and

theorems of Chapter 9, but cbservations similar to those in that chapter will be

used.

Each simple deterministic grammar is both left parsable and right parsable.

Now consider the simple chain grammar G with productions:

S + aBc | aRd

E > akb | ab

Grammar G is not left parsable. This will be clear from the arguments present-—
ed 1in Chapter 9. It follows that there does not exist a left parsable grammar G'
such that G'[ £/£1G or G'[T/£]1GC (cf.Theorem 9.6). Since any simple deterministic
grammar is left parsable, we may conclude that a transformation from a simple chain
grammar G to a simple deterministic grammar G' will not always satisfy G'[ £/£]1G or

G'[T/£]G. Now consider simple chain grammar G with productions:

1. 8 > aB 3. B>b
2. B> aB 4, B¢

Notice that G is not oaly a simple chain grammar but also a simple determinis-
tic grammar. However, G is not simple right parsable. That is, there does not exist

a gimple DPDT which is valid for G and Y .. This follows from the following claim.

G

CLAIM. There does not exist a valid simple DPDI for G and ;G'

Proof. 1If a simple DPDT is valid, then no €-moves can be made. For G we have parse
relation ;G = {(anb,32n~]l) ] nxzl1}u {(anc,ézn_ll) [ n 2 1}. For any DPDT which

performs the translation r.. the first symbol on the output tape should be 3 or 4,

depending on whether a strgng a’b or a'c is parsed.

In both cases the DPDT can not emit this first symbol until symbol b or c has
been read. After a" has been read there is only one symbol left on the input tape
while an unbounded amount of output symbols must be generated. Therefore e-moves

are needed. 0

We may conclude that there does not exist a simple deterministic grammar G°

such that G'[2/T]G.

It is possible to comstruct a left part parser for each simple chain grammar.
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The intuitive idea behind the method is as follows. In Figure 11.6 it is displayed
how a parse tree T is obtained from partial subtrees (left parts) by considering the

next terminal symbol, reading from left to right.

Figure 11.6. Tree T and its left parts.

The left part parse of tree T is 33416. In (I)T and in (2)T there are only
‘partial' productions. In (B)T it can be seen that production 3 is completely dis-—
played. In (4)T the following production 3 and production 4 are complete. Finally,
in (S)T the productions 1 and 6 follow.

The left parts of a simple chain grammar are unique. That is, each string u
which is prefix of a sentence w has exactly one left part. It follows that for simple
chain grammars parsing can be done in the following way: Suppose the nth terminal
symbol has been read. Now read the next terminal symbol, The productions which are
complete in (n+])T and which are partial in (n)T can now be given as output, Due to
the uniqueness of the left parts these productions are unique.

In the following algorithm, which is a modification of Algorithm 11.2, this
idea is formalized and a left part parser is constructed. The algorithm, which takes
as input a simple chain grammar G = (N,IZ,P,S), will use two special alphabets T and
' and a homomorphism &3 LR

Define

T' = {[s]} v {[Aka] i i.,A>qgBf in P for some 0 # €, k =1 if B8 = € and

k = £, otherwise}
and
T = {[s81} u {[aa} | A -+ 0B is in P for some a,B # £}.
Define homomorphism &: A by defining E{[S]) =[8]) and, for any [4kal} in T'

E([Akal) = € if [Aka) in I'' - T
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and
E( Akal) = { An], otherwise.

Notice that for a simple chain grammar P is prefix-free. Therefore, if

[Aka] € T'" with k # €, then [ An] is not in ', and conversely.

ALGORITHM 11.3,
Input. A simple chain grammar G = (N,I,P,S).
output. A simple DEDT R = (Z,A,T,5,[8]) which is a left part parser for G.

Method. Set I' is defined as above,[S] ¢ ', A = A, and § is specified below.

G

(i) TFor each X.X <X e CH(XO), with X, = S, define

071 0

4 = 7
§(x_,i81) = (EQX _ kX oo L8 kX X ok X 1) 0k eu k)
(ii) For each A ~ aXy® in P, o # € and XOX}'"'Xn € CH(XO), define

S(Xn,[Au}) = (E([Xn_iknxn]....[XOkIXI][AkOaXO]),kOkI.h.kn).

This concludes Algorithm 1}.3. ]

Obviously, R has no €-rules. It is an immediate consequence of the definition
of a simple chain grammar that, for each Xn, [6(xn,[S])l = 1 and for each Xn and
[Aal, EG(XH,[AQ])1= 1. Therefore 5 is well-defined and R is indeed deterministic.
That R transduces with empty pushdown list follows from the lemma which will be prov-
ed below.

Let Q be the simple SDTS which is defined on simple chain grammar G and which
satisfies T(Q) = ﬂpG. We have to show T(R) = 7(Q). The proof of the following lemma

resembles the proof of Theorem 5.2.

LEMMA 11.7. Let G, R and § be as above. Then
“*
(8,8) = (w,m)
in Q if and only if
@,isl,e) & (e,8,m

in R,

Proof. TFor the ‘only if part’ of the proof the following claim is used.
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CLAIM ]. Let A~ axdo be in P and let X Y e NV be a prefix of a chain in

CH(XO). Then

"

(T,hy (1) & (y,m)
+ * . .
for some m2> 0, y e I and 7 ¢ A", implies

(v,[801,e) F (e,E([X__ k'K ]...[AkaX, 1) k.. . k'T)
where X =Y,
n

Proof of Claim 1. The proof is by induction on m. If m = 0, then y = Y ¢ L and

7 = ¢. In this case we have a production A - uxow and a chain XOXI"'Xn—ly € CH(XO).

Thus, by construction,

8(y,[401) = (E(IX_ k'y]...[AkaX D) k.. k"),

Therefore,

(y,[Aal,e) + (e,i([xn_lk'xn].. . [Aku.xo]) koo k')

with Xn =Y =y,
Now assume m > 0 and assume the claim holds for all m' < m (induction hypothesis).
If j. Y » YIYZ"'Yq is the first production which is used, then we can write

. * .
(X)) = (V¥ Y hp (Y)Y (5T D) = (e ey oMy e oy 3T0)

where ylyz...yq =y, Wlﬂz...wq_ljwq = 7 and

m.
1
(Yi,hZ(Yi)) = (ym)

for v, € %, o, <m and 1 € 1 £ q. From the induction hypothesis it follows that we

may conclude
(v, [4al,e) ¥ (€,E([Tk, Y, JIX _ k' ]...[AKoX 1) k.. k'R )
and

*
(yi’[YYl"°Yi-l]’E) F-(E,E([Ykin...Yi_lYi]),kiﬂi)
for 1 < i £ q. Notice that ki =g, 1 £1< gand kq = j. We may conclude that

(7,703 [0l €) i (€, E(1%, K"K 1. [AKOXG D) koo kT o )
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(]

which had to be proved.
Now let A - o¥p in P and suppose (X,X) 4 (x,mT), It follows from Claim ! that
(x,[a0l,e) & (g,E([AkaX]) ,kT).

Notice that Claim | holds for o = ¢ and A = S, Let 1. S-> 2 ..Zn be the first

production which is used in a derivation of w = Z 2y Z € %if’where
(Z;,0:(2,0) > (2,,7)

for 1 £ 1 s n. It follows that
(5,8) = (2,292 30y (2 2500 2 (120)) = G,y (1T )

implies

*
w,[8],e) — (e,e,m “;Tfn_ll’lTn),

1

which had to be proved for the 'only if part'. Now we show the 'if part' of the proof.

CLAIM 2. If (w,[40X]l,e) ® (e,e,m), then

(4,4) 3 (oXw,hy (X)) .
Proof of Claim 2. The proof is by induction on m. Write w = ax, a € Z and X ¢ 5.
If m= 1, then w = a. In that case we have

§(a,[AaX]) = (E([Xn_lknxn]...[Xoklxl][AkoaXXO]),kokl.g.kn?

i C = H i = ' =
with XOXl...Xn € uH(XO), X a,E(LXn_lann]...[XOkIXI]LAkoaXXO]) € and T kl"k

is the left part parse associated with XO = Xn. Thus,

{o, [A0X],€) = (e,8,kym")
implies
y) & '
(A,A) = (axxo,hz(uXkoxo,) = (aXa,hZ(uXkoﬂ M)
Now let m > 1. Let the first step be done with the transition

§(a,[AcX]) = (5([Xn__lknxn]...[Xoklx}}{AkoaXXO]),kOkl...kn)

with Xn = a, Then we have
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(ax, [AoX] ,€) = (€ (X _ KK 1.0 [Xok X 1[AK XX 1) gk ook ) = (6,€,M).

. , * . _
Obviously, there exist x; € L'y 0 < i< mn, such that x = xnxn_l...xlexo and

* . - i = = i
M€ A, 0<1i=n, such that 7 kokl...knvnwn_]...ﬂzw‘ﬂo, with 7, = x, = € if

ki # ¢, and such that, for those ki equal to g,
i
(xi’[xi"lxi] ’E) [ (e’e””i)
and

oy
(%, [A0XXy],€) = (e,€,M) .
Since m,, m < m, we obtain

(X;_»hs (X, 1)) 3 (X%, kb (%,07,)

i-1*7%
for 1 < 1 < n, and

*
(A,A) > (uXXOXO,hZ(aXXO)WO).

It follows that
(8,8) 3 (oXax,hy (@M.
This concludes the proof of Claim 2.
Now let (w,[S],&-:)l-n—1 (g,€,m). The first step, with w = ax can be written as

(ax,[8],€) (x,i([Xn_lann]...[XokIX]][SkOXO]),kORI...kn)

where Xn = a and the other notations are as usual. From Claim 2, with an analogous

partition of x and T as in its proof, we obtain
(8,8) = (X, kghy (%))
and for 1 < 1 £ n,
(g poXy ) = G kb ()T,
Hence,

*
(8,8) = (ann...x xo,k k ...knﬂn...ﬂlﬂo) = (w,m)

1 071

which had to be proved.
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This conciudes the proof of Lemma 11.7. |

The following corollary is immediate

COROLLARY 11.7. Each simple chain grammar G has a simple DPDT R such that T(R) = ZpG.

Corollary 11.7 has the following consequence.

COROLLARY 11.8. For each simple chain grammar G there exists a simple determinis-
tic grammar G' such that G'[£/£plG.

Recall that not for every CFG G the parse relation ZpG is proper (cf.Chapter 2).
It should be observed that when Algorithm 5.3 is applied to a simple chain gram—
mar G, then a CFG G' in GNF is obtained such that G'[£/x]G, £ < x < £p. However,
grammar G' is not necessarily a simple chain grammar and therefore not a simple de-
terministic grammar, The comstruction of the simple DPDT should be compared with
the transformation presented in Algorithm 5.2. This algorithm, when applied to a

simple chain grammar, yields a simple deterministic grammar.



CHAPTER 12

TRANSFORMATIONS AND PARSING STRATEGIES: A CONCRETE APPROACH
12.1, INTRODUCTION

In this chapter we study classes of grammars which can be transformed to gram—
mars with 'better' parsing properties. This notion of 'better' will not be made expli-
cit. However, in many cases it will just mean that for the new grammars we can make
use of a simpler parsing technique than is possible for the original grammar. Ob-
viously, this does not necessarily imply that parsing will be done faster or that
less space is required.

In general we have the following point of view. Consider a well-amenable class
of grammars TO. We are interested in the question which grammars can be transformed
to grammars belonging to FO' Moreover, the necessary transformations have to be
language preserving and, preferably, it should be possible to define a cover homomor-—
phism between the grammars. Hence, we are looking for a class of grammars Pl for

which we can find covering grammars in PO.

As a first approach, one can try to find a new parsing method. This will lead
to a definition of a class of grammars for which this method can be used. Clearly,
in finding a new method we can use ideas and techniques of existing methods. Maybe
this new class of grammars can be transformed to the existing class FO of well~ame-
mble grammars. If we can find such a transformation T, then we have

T(F]) =T,
Transformation T is an already existing or a newly introduced transformation. In
both cases we can try to find the largest class ' of grammars such that

(T) sT,
If we can find this class I', then we have the situation that grammar G is in I if and
only if G can be transformed by T to a grammar in FO' A next step in this process
could possibly be finding a parsing method for I' and, maybe, by taking instead of

TO the class T or P] as starting point, start a new cycle.

In a second approach it is not the parsing method but the transformation which
is the source for the definition of a new class of grammars. Suppose we have a sub-
class FO of the class of context—free grammars. There exist many well-known trans-

formations of context-free grammars. If T is such a transformation, then we can
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e _1 al al
try to characterize the class T ‘(IO) or, for some subclass Ié E.FO, the class

-1 i .
T (Fé). Consider for example Hotz [66] where three transformations Tl’ Tz and T3
to Greibach normal form grammars are studied and where it is observed that these

transformations may transform non-LR(k) grammars into LR(k) grammars.

From a theoretical point of view one will always be interested in a precise
characterization, that is, in the form of a grammatical definition, of PI and T_‘(TO)
and in parsing methods for these classes of grammars. Examples will be given in this
chapter.

Clearly, if we have a grammatical definition and a transformation, then, in the
case of a cover, we may say that we have enlarged the 'domain' of a given parsing
method to the class which satisfies this definition. In a more practical environment
one is not always interested in such a precise characterization. For example, the
first phase of a compiler writing system can contain one or more transformations
which try to make the input grammar suitable for the parser generating part of the
system. This can be done without knowledge of a grammatical definition of the class
of grammars to which the input grammar belongs. The system recognizes whether these
transformations succeed, in which case automatically a correct parser will be construct—
ed , or whether these transformations fail. In the latter case it depends on the

design philosophy of the system what will happen {cf. Chapter 8).

Not only enlarging the domain of a given parsing method but also other consider-
ations can lead to transformations of grammars. For example, it can be done to improve
the error-correcting capabilities or one can consider transformations, often performed
on the parser instead of on the grammar, which improve the time and space require-
ments of the parsing algorithms. Another example can be found in the description of
the Yace system (Johnson [74]), where the user is advised to use, 'wherever possible',
left recursion in the syntax of a programming language. Instead of this advice it

would have been possible to include an elimination of right recursiom in the system.

In this final chapter of this monograph we will illustrate the above given re-
marks with some grammatical definitions and transformations. The results mentioned
here are a sampling of recent results which have been obtained by various authors.
Because of this recentness we are not yet able to give a thorough investigation of
this area. However, the reader will recognize that the approaches which we give here
are useful,

The class of grammars which will play the role of FO in the forthcoming two
sections will be the class of LL(k) grammars. A first step to a discussion on LL(k)
grammar transformations has been given in section 10.! immediately after the con-
struction of the cover—table for LL(k) grammars. As mentioned in that section, LL(k)

grammars can be transformed to covering strong LL(k) grammars.
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In section 12.2 we have an informal discussion on parsing strategies which lead
to classes of grammars 'between' the LL(k) and LR(k) grammars. The formal approach
will be given in section 12.3. Most of the results in these sections first appeared
in Rosenkrantz and Lewis [143], Soisalon-Soininen and Ukkonen [157] and Nijholt and
Soisalon-Soininen [128]. In section 12.4 we informally introduce an analogous re-
search area where, instead of LL(k) grammars strict deterministic grammars play

a central role.
12,2, FROM LL(k) TO LR(k) GRAMMARS: PARSING STRATEGIES

Especially from the point of view of parsing the LL(k) grammars constitute a
very attractive class of context-free grammars. For each LL(k) grammar a top-down
parsing algorithm can be devised which is essentially an one-state deterministic
pushdown transducer, Efficient implementations of LL-parsing algorithms are known
(either by a table or by recursive descent), there exist compiler writing systems
which are based on LL-parsing methods and error-recovery algorithms for LL-grammars
have been developed. Consult Wood [175] for a general overview and an associated

bibliography.

There are many reasons why it is interesting to focus on the gap between LL(k)

and LR(k) grammars and languages. We mention four of them.

(1) Parsing methods for LL(k) grammars are easy to understand and efficiently im—
plementable. Therefore it is desirable to find subeclasses of the LR(k) grammars

which can be transformed to the LL(k) grammars.

(ii) It is interesting to study the different parsing properties of LL(k) and LR(k)
grammars. Every LL(k) grammar is left parsable (cf.Chapter 9) while not every

LR(k) grammar is left parsable.

(iii} The definitions and parsing strategies which can be found for classes of gram—
mars between the LL(k) and LR(k) grammars can, hopefully, be generalized in
order to find and investigate parsing methods for more general classes of gram-

mars (cf. section 12.4).

(iv) It is decidable whether two LL(k) grammars generate the same language. The an-
swer is unknown for LR(k) (and LR(D)) grammars. Therefore, in order to obtain
an answer for LR-grammars, it seems to be useful to define more general classes
of grammars than the LL(k) grammars for which the decidability question can be

answered affirmatively.

Many authors have contributed to the research which deals with the 'gap' between

LL(k} and LR(k) grammars. At this point we want to mention Rosenkrantz and Lewis [143],
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Brosgol [17], Hammer [56], Rechenberg [138], Cho {[19], Demers [24] and Soisalon-

Soininen and Ukkomen [157].

In order to imntuitively characterize the different classes of grammars to be
defined we give an intuitive idea of their parsing strategies. In Figure 12.! we
have displayed a parse tree of a context—free grammar G = (N,Z,P,S). In this tree
we have described the following situation. There exist terminal strings w, X, ¥y and

z, a nonterminal A and symbols X

...,XP in V, such that A + xl...xp is a production

]’
and there exist derivations

s £ vaz,

and

w x y z

Figure 12.!, Parsing strategies.

In the following table we have collected six parsing strategies which are illustrated

with the help of Figure 12.1. The following abbreviations are used:

LL : reading from the left using left parses
PLC: predictive left corner grammars

LP : left part grammars+

+ In Nijholt and Soisalon-Scininen [128] the left part grammars were called chain-k
(or Ch(k)~) grammars.
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LC : left corner grammars
PLR: predictive LR-grammars

LR : reading from the left using right parses

RECOGNITION RECOGNITION

GRAMMAR READ of A READ of A > X|....X
LL W k ! xyz w k : xyz

PLC w k @ xyz WX k: yz

LP w k 1 xyz WXy k:z

LC WX k : yz wX k : yz

PLR WX k:yz WXy k:z

LR WXy k:z WXy k:z

Table XIII. Parsing strategies.

With the help of Figure 12.1 the table should be read as follows. Consider the ter-
minal string wxyz. The production A - XIXZ"'xp depicted in this parse tree of wxyz

can be recognized with certainty after scanning
(i) w and k : xyz if the grammar is LL(k)
(ii) wx and k : yz if the grammar is PLC(k)} or LC(k)}

(iii) wxy and k : z if the grammar is LP(k), PLR(k) or LR(k).

However, if the grammar is PLC(k) or LP(k), then the lefthand side A of the pro-
duction A -+ XIXZ"'XP is already recognized after scanning w and k : xyz. If the
grammar is PLR(k), then A is recognized after scanning wx and k : yz.

In Table XIII we have distinguished between the recognition of the lefthand side
of a production and the recognition of the whole production rule. In Demers [24] this
distinction is not made. He considers a generalization of the LC(k) parsing method.
In his approach it is possible to specify arbitrarily for each production rule the
position in the righthand side at which that rule is to be recognized.

Clearly, this idea can also be used if we want to distinguish between recogni-
tion of the lefthand side of a production and recognition of the whole production. In
Table XIII we have only considered a left corner which consists of one symbol. In

general we can define strategies and classes of grammars as depicted in Figure 12.2.
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, AN

xj *p

recognition of A - Xl...X

P
recognition of A

Figure 12.2. Generalized parsing strategies.

In Figure 12.2 we have that for each i, 0 < i < p, we can specify where A has to
be recognized (by considering FIRSTk(Xi+1...sz)) and for each j, 1 £ j £ p, we can

specify where the production A ~ Xl"'xp has to be recognized.

It should be noted that when grammar G is in Chomsky normal form, that is, with
production which are of the form, A& +BC or A~ a, then the generalization of Figure
12.1 to Figure 12.2 does not play a role. Moreover, it will be clear that if a gram—
wmar is in Chomsky normal form then the strategies for LP-parsing and PLC-parsing
coincide. This observation was first made, in a less general setting, by Reichardt
[139].

Unfortunately, the representation of classes of grammars in Table XIII does mot
really expose the differences between LP(k) grammars on the one side and PLR(k) and
LR(k) grammars on the other side. In the next section we will return to this draw-

back of our table-representation of classes of grammars.
12.3. TRANSFORMATIONS TO LL(k) GRAMMARS

We introduce classes of grammars which are properly included in the class of

LR(k) grammars and which properly include the class of LL{k) grammars. First we re-
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call the definition of an LL(k) grammar.

A grammar G = (N,I,P,8) is said to be an LL(k) grammar if, for a terminal string
W, a nonterminal A and strings v, 6] and 62 in (Nu Z)* such that A =+ 61 and

A~ 62 are distinct productions of G, the condition
S % wAY
implies that

FIRSTk(ﬁlY) n FIRSTk(ﬁzY) = @,
It is instructive to consider the following characterization of LL(k) grammars.

LEMMA 12.1. Let k 2 0. Grammar G = (N,Z,P,5) is an LL(k) grammar if and only if

for n 2 0 and for any w ¢ Z*, A, A' e N, v, Y', 8 62 e V¥ such that 6] # 52, the

],
conditions

8 3 uAy = wb

T VY T WOy
and

) "t '
waAY fw(ﬁz‘y

always imply that FIRSTk(dlY) n FIRSTk(SzY) = g.

Proof . The 'if'-part is trivially satisfied. For the 'only if'-part we use the fol-

lowing claim.

*

CLAIM. Let v,u e ', AeN, 0,8,y ¢ V- and n 2 0. If S 3

then FIRSTk(Ba) n FIRSTk(Ya) # @ implies that B = v.

wAQ, A%VB and A%vy,

Proof of the Claim. Induction onn. If n = 0, then A = vf = vy, whence B = vy,
Let n > 0 and assume that the claim holds for derivations of length n - 1. We can

write
A = uB$ q%] uzf = vf
A= u'B'§' n%] u'z'y = vy

*

for some u, u', z, z' € L', B, B' ¢ N and §, §' ¢ v*. since FIRSTk(Ba) n FIRSTk(Yu) £ 0
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we have also FIRSTk(uBSQ) n FIRSTk(u'B'G'a) # @. Since G is LL(k) it follows that
uBd = u'B'S'. We obtain

s%wu}saa
n-1
5 28
n-1
B2 oo

for some Bl’ Yy € v such that 8 = 816, Y = Y16 and FIRSTk(BIGa) n FIRSTk(Ylda) # 0.

From the induction hypothesis it follows that 8] =7 Therefore the claim is proved.[]

This Claim and its proof is also in Pittl [132]. Now assume that G is LL(k) and we

have derivations

S % wAY ?’WﬁlY
and

I e, . [
S ? wA'y ? szy
with 61 # 62. That is, we have derivations S % S, S % wAY and 8 % wA'Y'. Assume for
the sake of contradiction that FIRSTk(GlY) n FIRSTk(ézY’) # . It follows from the
Claim that Ay = A'y'. That is, A = A' and Y = Y', However, if A = A" and v = Y' then
it follows from the LL(k) definition that FIRSTk(ﬁlY) n FIRSTk(SzY') = @. Contradic-—

tion. 0

In Lemma }2.! it is more clearly displayed that in Figure 12.1, once we have
seen w and k : xyz, the next production in the left parse is uniquely determined
since for amy pair of productions A - 6] and A ~ 62 in this situation we have that
A= A' and 61 = 62. In what follows we will also refer to the class of strong LL(k)
grammars (cf. Definition 8.8). The following lemma gives a useful characterization
of strong LL(k) grammars. The function FOLLOWk which is used is defined as follows.
DEFINITION 12.1. Let G = (N,Z,P,5) be a CFG and let k = 0. For any A ¢ N, define

FOLLOW, (A} = {k : w | S % adw for some o ¢ v and w ¢ I°).

LEMMA 12.2. Let k = 0. A CFG G = (N,Z,P,S) is a strong LL(k) grammar if and only if

for distinct productions A + o and A + B the condition

FIRSTk(a FOLLOWk(A)) n FIRSTk(B FOLLOWk(A)) =@
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holds.
Proof. Trivial. 0

Our first definition of a new class of grammars concerns the so-called PLC(k)

grammars (predictive left corner grammars).

DEFINITION 12.2. Let k > 0. A CFG G = (N,Z,P,S) is said to be a PLC(k) grammar if,

. *
for a terminal string w, a nonterminal A and strings o, Y, Y', 61 and 62 in (N v Z)
such that A - aél and A a52 are distinct productions of G and o is the longest

common prefix of adl and 062 with length less than or equal to one, the conditions
S % wA s
T VAY T a0
and
* ' '
S wAY' 2 wad )y
always imply that

' =
FIRSTk(dlY) n FIRSTk(GZY ) = @,

This definition is included for completeness sake. Clearly, we can also intro-—
duce strong PLC(k) grammars. Then we have for distinct productions A — adl and
A~ aGZ with o is the longest common prefix of aél and aGZ with length less than or

equal to one, the condition

Fmsrk(s1 FOLLOWk(A)) n FIRSTR(GZ FOLLOWk(A)) = g.

We immediately turn our attention to the class of LP(k) grammars. This class includes

the PLC(k) grammars.

DEFINITION 12.3. A CFG G = (N,L,P,S) is said to be an LP(k) grammar if, for a termi~
nal string w, a nonterminal A and strings G, Y, Y', 61 and 62 in (W u Z)* such that
A adl and A - a62 are distinet productions of G and o is the longest common prefix

of aﬁl and aéz, the conditions

*
S ¢ wAY 7 waGlY
and
s> vAY' = wad, vy’
L L 2
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always imply that

FIRST, (8,Y) n FIRST, (8,v') = 8.

Observe the obvious difference with the characterization of LL(k) grammars in

Lemma [2,1, In that case the implication

FIRSTk(aélyj n FIRSTk(uézy’) =g

is used. Thus, in the case of LP(k) grammars it is not necessary to comsider the
terminal string which can be derived from the longest common prefix o of the right-
hand sides of two distinct productions A a61 and A - udz.

In {128] we have tried to characterize LP(k) grammars by saying that if
*
S T wAY

and A u6], A > adz are two distinct productions such that o is the longest common

prefix of aGl and ad,, then
FIRSTk(Gly) n FIRSTk(ézy) = 9.

This seems to be the straightforward generalization of the LL(k) definition. However,
it is not what we want since such a characterization allows ambiguous grammars, This

can be seen as follows. Consider the grammar with productions

t

5+ Ac ;| Aac

A+ a ! aa

This grammar is ambiguous. Moreover, we have

(i) S$ 8, 8~ aAc | Aac and FIRST,(c) n FIRST,(ac) = §.
(iiy s % Ac, A~> a I aa and FIRSTZ(C) n FIRSTZ(ac) = 9.
(iii) 5 3 Aac, A > a | aa and FIRST,(ac) n FIRST,(aac) = §.

Hence, the condition which is given above is satisfied. However, this grammar does

not satisfy Definition 12.3 since we have productions A + a and A + aa and derivations

Ac aac

o
o’ B3

T
and

Aac = aac
L

e
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while

FIRST, (ac) n FIRSTk(ac) #9

for any k 2 0.
The class of strong LP(k) grammars is now defined by demanding that

FIRSTk(('S1 FOLLOWk(A)) n FIRSTk(G2 FOLLOWk(A)) =0

for any pair of distinct productions 4 -+ a(SI and A + cu52, where o is the longest common
prefix of cchl and ocﬁz.

We consider the possibility of obtainingasimilar characterization for LP(k) gram—
mars as is displayed in Lemma 12.1 for LL(k) grammars. Therefore it is necessary to

generalize two results for simple chain grammars.

LEMMA 12.3. Let G = (N,IL,P,5) be an LP(k) grammar, k 2 0. For any w, Wi Wy € I* and

* . * * * *
H, W, W' e V, 1fS=L>wum, S=wuw',u=fw andu=ﬁw1w2

7 with Wy # £, then
FIRSTk(m) n FIRSTk(wzw) = g.

1

Proof. The proof is by induction on the lengths of the derivations from y to v, and

from 1 to LALPY
Basis. Consider two derivations of length 1 which can be used to obtain v, and

v v, from U € v'. The case in which one derivation is of length 0 and the other is
of length 1 can not occur. If u ? v and U T V¥, then there exist a nonterminal

C ¢ N and strings w', w'", 215 2, € 2" such that

B = w'cw" 7 w'zlw" =w,
and
= 5! Pralt 1 "o
u w Cw =L9 Wiz W Wy Wy.
It follows that z, is a proper prefix of z,. We write z, = z z!. Hence, we have pro-

1 2 2 172
* "ot

ductions C ~+ z, and C ~ ZIZZ'Z and derivations S "f, ww'Cw'w and S % ww'Cw'"w'. Since

G is LP(k} we have

1 1y o
FIRSTk(w w) n FIRSTk(zzw w') B.

Moreover, since w" is a prefix of zéw" such that w"wz = zéw", it follows that

FIRSTk(w) n FIRSTk(wzw ) =6,
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which had to be proved.

. + . .
Induction. Assume for all w ¢ V and derivations u % v and | % LA with

lengths less than a, we have

t =
FIRSTk(w) n FIRSTk(wzw ) 9.

Now consider derivations U 2w, and u % W W, with lengths less than or equal to n.

¥

Then there exist C ¢ N, a, p, 6,, 8, € ¥* and w' € £* such that 6] # 62 and o is the

1 V2
longest common prefix of aél and a62 and

* T 3
W Cp TV a&lp T Y
and
u 2 w'Cp » w'ad 3 wow
L T 2 TYIY2

where w'Cp is the last left sentential form which these two derivations have in

common. Now comsider the following two derivations:

*
s
uélpm VW {1
and
v X f
aézpw T (¥l (2}

Suppose that both in (1} and in (2) we have o % up, for some u € bl Hence, we can

write w, = v where v, ¢ £*. Since G is LP(k) it follows that

1 1

' -
FIRSTk(Glpw) n FIRSTk(Gzpw ) =9

and we can conclude that

i
=
.

t -
FIRSTk(vlw) n FIRSTk(v]wzw )

Thus,

ty =
FIRSTk(w) n FIRSTk(wzw ) =9

which had to be proved. Now suppose that « % U in derivation (1) and o % uu, in

derivation {2), with u, # g. From the induction hypothesis we can conclude that

P - LA
FIRSTk(SIpw) n FIRSTk\uzdzpw ) 8.
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We can write W o= ulvl, for some V] € Z*. It follows that

7 'y =
FIRSTk(vlm) n FIRSTk(vlwzm )y =9
and therefore

' =
FIRSTk(w) n FIRSTk(wzw ) [}

which had to be proved. The symmetric case with % uu, in (1) and o % Y in (2)
can be treated similarly and therefore it is omitted. This concludes the proof of

Lemma 12.3. O

Notice that Lemma 12.3 can be considered as a generalization of Theorem 11.1.

We can also obtain an analogue for Theorem 11.3.

LEMMA 12.4. Let G = (N,Z,P,8) be an LP(k) grammar, k 2 0. For any n 2 0, X, Y e V
with X # Y and a, @, $ € V', if § -% aXp and § 3 oYy, then FIRST, (X9) n FIRST, (W) = .

Proof. We prove the slightly more general result that if S % wpw and S % wuw',

where w ¢ Z*, and |, w, W' € V*, then for any n > 0, X, Y ¢ V with X # Y and a, o,
pe vV, ifp % oXp and U % oYy, then FIRST, (Xm) n FIRST, (Ww') = @. The proof is done
by induction on n.
Basis. Assume that u % oXyp and p % aYy. We can write p = vCp for some v ¢ E*,
C e Nand p ¢ V. Then there exist productions C - YSI and C +~ Y62, where 61 # 82,
Ys 61, 62 e V° and Y is the longest common prefix of Yﬁl and YGZ. Since G is LP(k)

we have that

t =
FIRSTk(élpw) n FIRSTk(Gme }y = 0.

There exists a prefix B of 6]pm and of dzpm' such that vyf = a, BXpw = Gpuaand
BYyYuw' = Gzpm'. It follows that

FIRST, (Xgw) n FIRST, (Wu') = 0.

Induction. Let u % oXp and Y % oYy, where X # ¥ and assume the property holds
for all y ¢ v* and leftmost derivations with length less than n. Then there exist
1° §

the longest common prefix of YSI and YGZ, such that

vel, Y, 6 9 P € v*, C e N and productions C + YSI, c > YGZ in P where v is

m
u%vCpfwélpfan Q)]

and
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K o m
BFvep P vys,0 P ooty (2)
with n = k + m + i. Now consider the following possibilities:

(i) vy % oXp' in (1), with w'élp = ¢ and vy % o' in (2), such that o can be written

as o'a" for a', a" ¢ V*. It follows from Lemma 12.3 that

FIRSTk(u"Xum) n FIRSTk(a"YWw') = g.

Hence,

FIRSTk{mﬂw) n FIRSTk(wa') = §.

The symmetric case with vy % o' in (1) and vy % oYy' in (2) can be treated sim-

ilarly and therefore it is omitted.

(ii) vy %& aXe' in (1), with @' p =
and
w% aYy' in (2), with §'8,0 = Y.

Since m < n, we may conclude that

1 (st 1y =
FIRSTk(Xﬁp ngw) n FIRSTk\YlI} 52pm ) ]

that is,

FIRSTk(Xum) n FIRSTk(YWw') = g.

* *
. . N . B
(iii) wy T o in (1), with o oy for s a, € v

and

vy % ai in (2), with o = a;ué for ui, aé e V¥,

Al

1 °f conversely. With the same type of argument

is a prefix of o

1
If oy # oy then o,

as used above it can again be shown that the desired property holds. If o = m;, then
there exists o" ¢ V* such that ala" = aia" = o and

8,0 3 oo in (1)
and

8,0 % A" ey in (2).

However, since ¢ is LP(k) and Yy is the longest common prefix of Yél and YGZ, it fol-

lows that
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' =
FIRSTk(élpw) n FIRSTk(ﬁzpm )y = 0.

Therefore,

FIRSTk(a"&D) n FIRSTk(a"Yw) =0

and it follows that

FIRSTk(Xw) n FIRSTk(Yw) = §.

This concludes the induction proof. For w = w = w' = € and 4 = S, we obtain the

result which is mentioned in Lemma 12.4. 0

Now we are sufficiently prepared to present the following theorem.

THEOREM 12.1. Let k > 0 and let G = (N,L,P,8) be an LP(k) grammar. For any n 2 0,
W e Z*, A, A' ¢ N, a,y,y',ﬁl, 62 ¢ V' such that 61 # 62 and o is the longest common

prefix of aﬁl and a62, the conditions

S % why T wudlv

and

always imply that

FIRSTk(dly) n FIRsrk(azy') = g.

Proof, If A = A', then the theorem is only a restricted version of the LP(k) defi-
nition. If A # A', then it follows from Lemma 12.4 that

FIRSTk(AY) n FIRSTk(A'Y') = §.

Hence,

! =
FIRST, (a8,v) n FIRST, (ad,Y") ]

and it follows that

! =
FIRST, (8,Y) n FIRST, (8,Y') = @

which had to be proved. O
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Clearly, with this theorem in mind we can again consider Figure }2.]. Notice
that in Lemma 12.1 we haye changed the LL(k) definition (in which we use the condition
] % wAy) into a characterization with § % wAy and S % wA'y'. Also in Theorem 12.1 for
LP(k) grammars we have used a superscript n. It is rather inviting to omit n from

the derivations. However, consider the following LL(0) grammar with productions

S + adb
A > Be

B+ a

Here we have derivations

1
3 f aAb f aBeb
and
2
8 f aBcb i aach
while

FIRSTk(Bcb) n FIRSTk(acb) E )

for any k 2 0. It follows that we can not omit superscript n from the derivations

in Lemma 12.1 and in Theorem 12.1.
THEOREM 12.2. Every LL(k) grammar is an LP(k) grammar, k 2 0.

Proof. Assume that a grammar G = (N,Z,P,8) is LL(k) but not LP(k). Then there exist
. *

a terminal string w, a nonterminal A and strings a,Y,Y',Sl and 62 in V  such that

A~ adl and A a62 are two distinct productions in P, with a is the longest common

prefix of adl and adz, such that

*
s T wAY P wuﬁly
S & wAv' = wad
T WAY f waod.Y

and

FIRST, (§,7) n FIRST, (8,v') # §.

It follows that

2 L]
FIRST, (0,Y) n FIRST, (ad,Y") # 0.
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It is straightforward te verify that in the case of LL(k) grammars we have that
Y = v'. Hence, we obtain a contradiction with the LL(k) definition. Therefore we

must conclude that G is also LP(k). |

The definition of LP(k) grammars can be considered as a generalization with
'look-ahead' of the definition of the simple chain and left part grammars of Chapter

11. The following corollary is an immediate consequence of the defimitioms.

COROLLARY 12.1. A grammar G = (¥,X,P,S) is a simple chain grammar if and only if

P is prefix-free and G is an e~free LP(1) grammar.
Context—free grammar G with productions

S+ a

S > ab

is an example of a grammar which is not a simple chain grammar. However, grammar

G is LP(1).

Since there exist simple chain grammars which are not LL(k) for any k (cf.
Example 11.2) we conclude that the class of LL(k) grammars is properly contained
in the class of LP(k) grammars.

Just.as in the case of LL(k) grammars one may conclude that if k = 0, then the
language of an LP(k) grammar does exist of one element only.

The following two theorems are also immediate consequences of the LP(k) defini-
tion. The proofs are analogous to corresponding proofs for the LL(k) case and they
are slight generalizations of corresponding proofs for simple chain grammars. Notice,

once more, that the grammars under consideration are assumed to be reduced.
THEQREM 12.3. Each LP(k) grammar is unambiguous.
Proof. We show that each w ¢ L(G), where G is an LP(k) grammar, has exactly one

. . * . .
leftmost derivation from S. Suppose that S ? W by at least two leftmost derivationms.

We can write

* *
S ? uAw ? ua61w Puv=w (*)
and
S:»uAma s = = *k
T T ual,w Puv = v (**)

where u, v € 2*, A e N, a,61,62, we V" and o is the longest common prefix of the

distinct strings adl and a62.
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Assume that in (x)} we have used a % U 61 % X and @ % v, and in (**) we have
* * * .
used o f u,, 62 7Y and w TV such that WXV, T U,¥V, T V. Since k : xVy #k: ¥V,
we can not have U = Uy, If u, is a proper prefix of U,y (or the symmetric case which
we omit) and we write u, = ulu{ then, since k : uiyv2 =k : xv,, we have that o

does not satisfy Lemma 12.3. We must conclude that G is unambiguous. ]
THEOREM 12.4. LP(k) grammars are not left recursive.

Proof. The proof is a straightforward adaptation of the corresponding proof for LL(k)

grammars. a

Clearly, as we did in Chapter !l for simple chain grammars, we now cam obtain
properties for the leftmost and rightmost derivations of LP(k) grammars. We will,
however, turn our attention to transformations of LP(k) grammars. We shall show that
the LP(k) grammars are exactly those grammars which can be transformed into LL(k)
grammars by left factoring the grammar until it has no two productions of the form
A - o and A > o with o # &,

The definitions of LL(k) and LP(k) grammars immediately imply the following

theorem.
THEOREM 12.5. A left factored grammar is LL(k) if and only if it is LP(k).
Proof. Trivial. {

The process of left factoring consists of consecutively replacing productions
of the form A » oy and A + o , where o # € and o is the longest common prefix of

o4 and o, by the productions

A~ oH
H>g
H=>1y

where H is a newly introduced nonterminal symbol, until the grammar is left factored.

Clearly, this transformation preserves the original language.

THEOREM 12.6. The grammar obtained by the left factoring process is LL(k) if and

only if the original grammar is LP(k).

Proof. By Theorem 12.5 it is sufficient to show that the process of left factoring
does not affect the LP(k) property and that this process can not produce an LP(k)

grammar from a non-LP(k) grammar. It is clear from the definitiom that this is true
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as regards one individual step in the left factoring process. Since the whole pro-
cess is just a consecutive sequence of these individual steps, we thus conclude the

theorem.

COROLLARY 12.2., The families of LP(k) and LL(k) languages coincide.

As we already showed in section 10.1, if we have productions i. A - op and

j- A~ o and we define

A-~>oH <e>
H>yp <i>
H~+ ¢ <3i>

then it will also be clear that the newly obtained left factored grammar right covers
the original grammar. Moreover, also shown in section 10.1 and a consequence of Theo-
rem 9.1, top—down parsing of Ll-grammars can be done in such a way that right parses

are obtained and therefore this right cover result is not only of theoretical value.

It is also possible to obtain an LL(k) grammar which left-to-right covers the

original LP(k) grammar.
THEOREM 12.7. Each LP(k) grammar can be left—to-right covered by an LL(k) grammar.
Proof. Let Gl = (N],Z,PI,S) be an LP(k) grammar. Define Gi = (N',Z,Pi,S) with
N} =N v {[aa] | A+ 0 isinP}
and

Pi = {A » af[Aa] ] A~+aqa is in Pl} v {[aa] > ¢ I A~ a is in P]}.

Clearly, GI is LP(k) if and only if Gl
by the left factoring process from G; is LL(k) if and only if any grammar obtained
= (NZ,Z,PZ,S) is the

is LL(k).

is LP(k) and the grammar which is obtained

by the left factoring process from Gl is LL(k). Hence, if G2

grampar which is obtained by the left factoring process from G', then G

1 2

Now define a homomorphism wl : Pi* - PT such that

Y (laal »e) =a+a
and

wl(A +0) = E.
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Clearly, Gi[ﬂ/;]G] (cf. Lemma 4.4) where the cover is supported by the productions
of the form {40l + &. These productions remain unchanged in the left factoring pro-
cess and, moreover, this process does not affect the order in which these productions

appear in a left parse. Therefore, if we define wz : P; - P: such that

wz([Aa] >g)=A~+aq
and
V(C>v)=c¢

where C ¢ N; - N], then we can conclude that G2 left~to-right covers grammar Gl with

respect to homomorphism ¥.,. ]

The next class of grammars which we want to consider is the class of LC(k) or
left cormer grammars. There are two ways to characterize LC(k) grammars. The first
definition we present makes use of rightmost derivations. The second, original, def-
inition uses leftmost derivationms.

In order to present the first characterization we recall the definition of an

LR(k) grammar as it was presented in section 8.Z.

A grammar ¢ = {(N,Z,P,S) is said to be an LR{k) grammar if § % S is not possible

in ¢ and for each w, w', X € E*; Y,a,0.',8 and B’ in V" and A,A' € N, if

(1) S %aAwi afw and
(ii) s % a'A'x g a'B'x = ofw’ and

(i) x s w=k : w'

then A > R = A* ~ B" and |aB| = |a'B'|.

An equivalent definition is obtained if we conclude from (i), (ii) and (iii) that
@A = 0'A' and x = w'. Moreover, it is useful to say that a fixed production & > B of
CFG G satisfies the LR(k) condition if, whenever we have derivations (i) and (ii),
then k : w=1k ¢ w' implies oA = o'A' and x = w'. We use the notation 0of % ay or
Ba % Yo to denote that in the specific derivations 0B % oy and Bo % Yo which are

considered, respectively, the displayed string a is not rewritten.

. + .
DEFINITION i2.4, A CFG G = (N,I,P,S) is said to be an LC(k) grammar if 8 7 S is
not possible in €, each t-production of G satisfies the LR(k) condition and if for
each w,w',y,y' ¢ E*; o, Lo, B,y ¢ Vv*:; X ¢ V; A,A" ¢ N and production A > XB in P,

the conditions
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(1) S % aAw:ﬁ g§§W'% aXyw
(ii) s % a'A'w! ? alanX.wi % OL'OL"Xy'W'
(iii) a'a" = o and k : yw = k : y'w', always imply that oA = a'A' and B = v.

We have included the condition that S % S is not possible for an LC(k) grammar.

Otherwise, the following ambiguous grammar with productions
S+5| a

is to be called LC(0). Another possibility would have been to extend the grammar by
adding an 'initial production” S' -+ 1S, with L is a symbol not in V and S' is a
newly introduced start symbol. This latter method has been used in [157]. We have,
in accordance with our definition of LR(k) grammars, excluded the possibility S %is
from the definition of LC(k) grammars.

In Geller and Harrison [40] the following context-free grammar G with produc-

tions
S > Sa ] a

is given as an example to show that there exist grammars which are LR(0) according
to the LR(k) definition which is used here, but which are not LR(0) according to the
definition in Aho and Ullman [3]. Moreover, it follows easily that G is mot LR(0),
PLR(0) or LC(0) according to the definitions which are given in Soisalon-Soininen
and Ukkonen [157]. However, the grammar G is LC(0), PLR(0) and LR(0) according to

the definitions which are used in this chapter.

We now want to show that any LC(k) grammar is an LR(k) grammar. We use the

following lemma which tells us when a grammar is not LR(k).

LEMMA 12.5. Let G = (MN,X,P,S) be a (reduced) CFG such that S % S is impossible in

G. G is not LR(k) if and only if there exist w,w',x € Z*; AAT e N; Y',v,0,0",B,B" € V

such that

i) s % oAW 2 ofw,

(ii) sfa'A'xga'f'x = ofv',
(iii) ¥k : w=%k : w', and

(iv) oA # a'A' or x # w', with

v) |a'B'| = |aB

*
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Proof. This lemma is a slight modification of Lemma 2.5 of Geller amd Harrison
140]
I .

THEOREM 12.8. Every LC(k) grammar is an LR(k) grammar.

Proof. Assume that an LC(k) grammar G = (N,I,P,S) is not LR(k). Then there exist

derivations {(cf. Lemma 12.5)
(i) s % ahw 3 ofw,
(ii) s % a'A'x 3 a'8'x = ofw’

such that Xk : w=k : w', ia‘S'[ > [aBi, and oA # a'A' or x # w'. Notice, that due
to the definition of 1LC(k) grammars we do no have to consider the possibility that
the production A + 8 which is displayed in (i) is an e-production. Moreover, since
(i) and (ii) can be reversed, we do not have to consider the possibility B' # €.

Hence, we may assume B # € and B' # €. Since la'B'] 2 IaBj we can distinguish the

three cases depicted in Figure 12.3.

2 Py
g i ZEZ* {
|
case 1 a' { g !
|
1
case 2 a' ' ; B'
|
case 3 a' : 8'

Figure 12.3. Three cases for Theorem 12.8.

It is straightforward to show that each of these three cases violates the conditions

of an LC(k) grammar. {1

This inclusion of LC(k) grammars in LR(k) grammars is proper. Context-free gram—

mar G with productions

8+ aB | aC
B+ab | b
¢+ aC i c

is a grammar which is LR(0) while G is not, for amy k 2 0, LC(k).
In the original definition of LC(k) grammars (Rosenkrantz and Lewis [143]) con-

ditions are imposed on the leftmost derivations of a grammar. As mentioned in [153,
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157], in the original definition the look—ahead is used in a slightly different way
since distinction is made between the cases that the left cormer of a production is

a terminal or a nonterminal.
THEOREM 12.9. Every LL(k) grammar is an LC(k) grammar.

Proof. See Soisalon-Soininen [155]. Although our definition of an LC(k) grammar does
not use an 'initial production' §' + 1S it can be easily seen that the proof in

[155] can be used for the case that our definition is used. 0

We have a short discussion on the original definition of LC(k) grammars. If we
use the abbreviation LCSU to denote LC~grammars according to Soisalon-Soininen and
Ukkonen (cf. Definition 12.3) and LCRL to denote LC-grammars according to Rosenkrantz
and Lewis, then it can be shown that there exist LCSU(k) grammars which are LCRL(k+])
but not LCRL(k).

In [100] and in a revised form in [143] a method is presented which transforms
LCRL(k) grammars into LL(k) grammars. A rigorous proof that the method indeed does
what it is supposed to do is not available. However, such a proof has been given for

the following class of grammars which can be transformed into LL(k) grammars.

DEFINITION 12.5, A CFG G = (N,L,P,S) 1s said to be a PLR(k) grammar if G is LR(k)
and if for each w,w',y,y' € Z*; a,a',a",B,y € V*; X € V; A,A' ¢ N and production

A » XR in P, the conditions
. * *
(iy 8 T 0w 2 aXpw B oXyw

(ii) s % a'A'vw' ? oo Xyw' % a'a"Xy'w'

(iii) a'a" = o and k : yw=k : y'w'
always imply that oA = q'A'.

Notice that any LL(k) grammar is also LC(k) (Theorem 12.9), any LC(k) grammar
is PLR(k) (cf. Definition 12.4 and 12.5 and Theorem 12.8) and, by definition, any

PLR(k) grammar is also an LR(k) grammar. These inclusions are proper (cf.[1571).

Theorem 12.5 has the following analogue,

THEOREM 12.10. A left factored grammar is LC(k) if and only if it is PLR(k).
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Proof, See [i57]. 0

Moreover, there is an analogue for Theorem 12.6.

THEOREM 12.11. The grammar obtained by the left factoring process is LC(k)} if and

only if the original grammar is PLR(k).

Proof. See [157, p. 349]. 0

Maybe it is not yet clear that every LP(k) grammar is also PLR(k). This can be

seen as follows.
THEOREM 12,12, Every LP(k) grammar is a PLR(k) grammar.

Proof. Any LP(k) grammar can be made LL(k) by left factoring (Theorem 12.6). Since
LL{k) grammars are also LC(k) grammars we can say that any LP(k) grammar can be made
LC(k) by left factoring. It follows from Theorem 12.1! that every LP(k) grammar is

also PLR(k). 0

Context~free grammar G with productions

S + aBc
S =+ aBd
B + aB

B+c

is a context-free grammar which is LP(l). However, there does not exist k 2z 0 such
that ¢ is LC(k). Simce there exist LC(k) grammars which are left recursive and, by
Theorem 12.4 LP(k) grammars can not be left recursive we conclude that the classes
of LP{k) and LC(k) grammars are incomparable. Hence, we have the situation displayed

in Figure 12.4,

; Left factoring

LP <=~ Lef;/tgzz::;ng

Figure 12.4. Inclusion diagram.
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In this figure we have also displayed the role of the left factoring process.
The reader is asked to recall the cover properties of this transformation.

Soisalon-Soininen and Ukkonen [157] present a transformation T from PLR(k)
grammars to LL(k) grammars. It is necessary for this transformation to provide the
grammar with an ‘initial production' S' + 1S, If we use the notation T(G) to denote

thé transformed grammar, then the following result can be shown.
THEOREM 12.13. Let k > 0. A grammar G is PLR(k) if and only if T(G) is LL(k).

Proof. See [157]. 0

Moreover, it is shown in [157] that transformation T has the following property.

THEOREM 12.14. Every PLR(k) grammar G can be transformed to an LL(k) grammar T(G)
such that T(G)[£/r]G and T(6)[r/T]G.

Proof. The proof that T(G)[£/r]G can be found in [157]. The cover-homomorphism ¥
which is defined to show that T(€)[£/r]G is such that, for each i « AT(G)’ Y(i) # €
only if the production with label i is an e-production. It follows from Lemma 4.3
that 1(G)[r/r]G. d

In summary, if we use the notation TLF for the left factoring process and Tsy

for the transformation of Soisalon-Soininen and Ukkonen [157], then:

LL

In

(i) TLF(LP)

-1
1 p(LL) = LP
(ii) ILF(PLR) c LC
-1
TLF(LC) = PLR

(iii) TSU(PLR) c LL

-1
TSU(LL) = PLR

and, if we consider a specific amount of look-ahead k,

(iv) TSU(PLR(k)) cLL(k), k>0

n

n

TSU(PLR(O)) c LL(1)

Top(LL(K)) = PLR(K), k 0.
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This section is concluded with a note on Table XIII and a general note an the
possibility to transform grammars to LL(k) grammars.

Note 1. In Table XIII we have that for LP(k) and for LR{k) grammars the produc-
tion A~ X]"'Xp is recognized with certainty after seeing k symbols of look—ahead
of the string z. However, for LP(k) grammars we need this look-ahead only to disting—
uish productions of the form A + o and A + 0f with B # €. If the set of producticns
is prefix-free {i.e., if A+ o and A~> af in P, then B = €) then it is only neces-
sary to consider k symbols of the terminal string which is obtained from XP in order

to be able to recognize the production A + X ...Xp. Notice that this remark is of

the same type as the remark which was made 0; Chomsky normal form in section 12.2.
That is, due to a special form of the productions it is possible to modify a parsiug
strategy.

Note 2. In Hammer [56] there is a thorough discussion on ‘k-transformable'
grammars. The class of k~transformable grammars is a subclass of the class of LR(k)
grammars. Each k-transformable grammar can be transformed to an LL(k) grammar in
such a way that a left-to-right cover is obtained. There is an interesting conjecture
in [56] concerning this transformation. This conjecture, which is attributed to R.E.
Stearns, says that for any CFG G, if there is some LL(k) grammar which is as useful
for parsing as G then that grammar can be found by application of this transformation.
'As useful' means 2.g. that a left-to-right cover can be defined. In [56] it is shown
that the LC(k) grammars are k-transformable. In [155] it is mentioned that the PLR(k)

grammars are k-transformable.
12.4. PARSING STRATEGIES REVISITED: A SURVEY OF RECENT RESEARCH

In the preceeding sections we have distinguished between two main techniques
for recognizing a production during the parsing process. The first technique assumes
that each production has a position in its righthand side where the whole production
should be recognized. The second technique distinguishes between recognition of the
lefthand side of a production and recognition of the whole production. The first
technique leads to definitions of LL-, LC~ and LR-grammars. The second technique
gives rise to definitions of PLC~, LP- and PLR-grammars.

Other approaches, which give rise to new classes of grammars, are possible.
Ukkonen [162,166] considers a slight extension of the definition of PLR(k) grammars.
Due to this extension the class of corresponding languages is not the class of LL(k)
languages but the class of deterministic languages.

Consider again Figure 12.1. The LL-, PLC~, LP~, LC~ and PLR-grammars have in
common that for each of their productions the lefthand side is recognized before
the recognition of the righthand side. However, for these classes of grammars it is
not only the lefthand side A which is certainly known after scanning k : yz but also

symbol Xl is known as being the left corner of the next production which is going
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to be recognized. Hence, here we see the possibility to introduce a new parsing strat-~
egy in which we distinguish the recognition of the left corner (or a generalized
left corner) from the recognition of the complete production. This has been done in
the definition of 'weak' PLR(k) grammars. It is required that each left corner of

a non-g-production can be recognized with certainty after scanning at most k termi-

nal symbols of string yz in Figure 12.1. The definition follows below.

DEFINITION 12.6. A grammar G = (N,IZ,P,S) is said to be weak PLR(k) if it is LR(k)-

and if for each a,a',0".B,Y ¢ V*; w,w',y,y' € Z*; A,A" ¢ N, X € V and for each pro-

duction A -~ X8, the conditions
. * *
(i) S ﬁ‘lAw 7 oXBw 3 oXyw

(ii) s % a'A'w' 2 a'o"Xyw' % o'a"Xy'w'

(iii) a'o" = a and k : yw = k : y'w’

a!

always imply that o

It is intuitively clear that every LR(k) grammar such that the length of each
righthand side of the productions is less than or equal to two is weak PLR(k). It
follows (cf. [166]) that any LR(k) grammar G can be transformed to a weak PLR(k)
grammar G'. This can be seen as follows. Every production i. A -+ xlxz...xp of G such
that IXIXZ...XP| < 2 is also a production of G'. If ]X]XZ...XP] > 2, then add the

productions

A~ X1[X2"'Xp] <i>

[xz...xP] - xz[x3...xP] <g>

X X1=+% X <g>»
[P—IP] p-I'p

to P'. Clearly, in this case a right cover homomorphism can be defined.

There is another consequence of this definition. In gemeral we ean not recognize
the lefthand side of a production of a weak PLR(k) grammar before we have seen the
next k terminal symbols after the yield of this lefthand side. That is, in Figure
12,1, after we have seen k : z. However, once we have recognized a left corner then
in general not all the nonterminal symbols in N will deserve consideration for being
a lefthand side of the production. That is, once we have recognized the left cormer

X of a production then we know that the lefthand side of the production is in the
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set {A| A+ X in P, for some o ¢ V'}. These sets form a so-called weak partition
of the set of nonterminal symbols. That is, a family of nonempty subsets of N is
called a weak partition of N if for each element A ¢ N there is a subset in this
family which contains A. Notice that in the usual definition of a partition we have
also the condition that the subsets are pairwise disjoint, For weak partitions we
will use the same notation as for partitions. Hence, if 7 is a weak partition of a
set V, then we write x = y {(mod 7w) if x and y are in the same subset of the weak
partition 7. Notice that for a weak partition we do not necessarily have that x = y

and y = z implies that x = z.

Recently various classes of grammars have been introduced for which a (weak)
partition of the set V of grammar symbols plays an essential role. Clearly, in
Chapter 8 we have already given a definition of such a class of grammars, viz. the
strict deterministic grammars. We recall this definition since we want to generalize

it.

A grammar 6 = (N,%,P,S) is said to be a strict deterministic grammar if there

exists a partition m of V such that
(1) £ em,

(ii) For any A,A' ¢ N and o,B,8" ¢ V*, if A+ of, A" »~ aB' and A = A'(mod ), then

either

(a) both B,83' # e and 1 : B =1 : B'(mod 7), or
(b) B=8"' =€ and A = A",

In Harrison and Havel [60] some remarks on the parsing procedure for strict
deterministic grammars are given. The strategy can be explained by specifying a 'work-
ing set' which consists of the nmodes of the parse tree that are currently under
processing. The nodes enter this set in a top-down order and the nodes exit from the
working set in a bottomup order.

In Friede [36,37] a definition for strict deterministic grammars with look-ahead

is given. We use the name strong SD(k) to denote these grammars.

DEFINITION 12.7. A CFG G = (N,Z,P,8) is said to be a strong SD(k) grammar for some

k = 0, if there exists a partition 7 of V such that

(i) T em,

(ii) For any A,A’ ¢ ¥ and a,B,8" € V*, if A + ap, A" > of' are productions in P,

A

A'(mod w) and

FIRSTk(B FOLLOWL(AY) n FIRSTk(B' FOLLOWK(A’)) 0
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then either
(a) bothB,B' #e and 1 : B8 =1 : 8" (mod ), or
(b) B =B" = ¢ and A = A",

We will present the relations between the classes of grammars which have been
defined in section 12.3 and those which will be defined here. We start with the strong
LP(k) grammars and we show that any strong LP(k) grammar is a strong SD(k) grammar,
with that also accomplishing the inclusion of the class of strong LL(k) grammars in

the class of strong SD(k) grammars.

THEOREM 12.15. For any k 2 0, if G is a strong LP(k) grammar then G is a strong
8D(k) grammar.

Proof. Let G = (N,I,P,S) be a strong LP(k) grammar, Define a partition 7 of V by
m={{a} | A ¢ ¥} v {2}.

We prove that m satisfies the conditions of Definition 12.7. Consider two productions
A+ of and A > oR'. If B = B' then the conditions are trivially satisfied. Otherwise,
if o is not the longest common prefix of of and af', then both B # g, B' # £ and

1 :B=1:R8", whence 1 ; B8 =1 : B'(mod 7). If o is the longest common prefix of

af and oR', then by definition of a strong LP(k) grammar we have that

FIRST, (B FOLLOWk(A)) n FIRSTk(B’ FOLLOWk(A)) = §.

e
Therefore, any strong LP(k) grammar is also a strong SD(k) grammar. O

However, and therefore we have used the name strong SD(k), it is not the case
that every LL(k) or LP(k) grammar is SD(k). Consider the following LL(2) grammar with

productions

S > alAa
S - bAba
A->b

A-> g

If we follow the definition of a strong SD(k) grammar, then we see that for the pro-

ductions A > b and A + ¢ we have A & A and

ba ¢ FIRSTZ(b FOLLOWZ(A)) n FIRSTZ(E FOLLOWZ(A))

and the conditions (a) and (b) are not satisfied.
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Pitt)l [132] introduced anather generalization of the class of strict determi-

nistic grammars. However, instead of a partition of V, a weak partition of the set
M, (6) = {(4,u) | 4 ¢ ¥ andue FOLLOW, (A)}

is defined.

DEFINITION 12.8. Let G = (N,I,P,5) be a CFG, let k = O and let 7 be a weak partition
of Mk(G)' Then T is called admissible if for any (A,u), (A',u') ¢ Mk(G)’ with a,B,
8" € V*, if A » B and A" - oB' are in P and (4,u) (A',u"'y(mod m), then

FIRSTk(Bu) f FIRSTk(B'u') #9

implies that either
(1) l1 :BeZand !l : B8 ¢ I, or
(ii) B =Cy, B' = C'y' for some C,C" ¢ N, Y,y' ¢ V¥ and (€,z) = (C',z2")(mod w) for

all z e FIRSTk(yu), z' ¢ FIRSTk(y‘u'), ar

(iii) B = B' = £ and A = A'.

In Pittl {132] this definition is obtained as the result of his efforts to give
a simple characterization of a class of grammars which had only been defined, until
then, in a rather obscure way. In the framework of this chapter we prefer to use

the name weak SD(k) grammars for grammars which have an admissible partition.

DEFINITION j2.9. Let k 2 0. A grammar G = (N,I,P,S) is said to be a weak SD(k) gram~

mar if there exists an admissible partition of Mk(G)'
The classes of strict deterministic grammars, strong SD(0) grammars and weak SD(O)

grammars coincide. The adjectives strong and weak are justified as follows.

THEOREM 12.16. Let k > 0. If CFG G is a strong SD(k) grammar then G is a weak SD(k)

grammar.

Proof. Assume that G (N,I,P,8) is a strong SD(k) grammar with a partition m of V

which satisfies Definition 12.7. Define T, an admissible partition of Mk(G) in the

following way. For any (A,u), (A',u') ¢ Mk(G), define
(a,0) = (&",u")  (mod 7))

if and only if
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A= A" (mod 7).

Clearly, L is a partition of Mk(G). Reflexivity, symmetry and transitivity are
trivially satisfied since 7 is a partition of V. Moreover, T, is admissible. This
caq.be seen as follows. Let (A,u), (A'u') ¢ Mk(G) and let A > of, A+ ap' ¢ P, for
some o,B,R' € v*. If {A,u) = (A',u") (mod wa) and

FIRSTk(Bu) n FIRSTk(B'u') + 8,
then also

FIRSTk(B FOLLOWk(A)) n FIRSTk(B' FOLLOWk(A)) #0

and it follows from Definition 12.7 that we can have the following two cases:

()B,B"#ecand 1 : B =1: 8" (mod 7). Hence, 1 : Bec T and 1l : B' ¢ £ or B = Cy
and B' = C'y' for some C,C' ¢ N, v,Y' ¢ V¥ and C = C' {(mod ). In the latter case,
if z ¢ FIRSTk(Yu) and z' ¢ FIRSTk(Y'u'), then z ¢ FOLLOWk(C) and z' ¢ FOLLOWk(C')

and it follows from the definition of L that (C,z) = (C',z') {(mod wa).

(2) B=R"=¢ and A = A",
Hence, any strong 8D(k) grammar is a weak 5D(k) grammar. 0

We emphasize that the admissible partition T, which is defined in Theorem 12.16
is a partition (without the adjective weak) of Mk(G)' The question can be raised
whether each weak SD(k) grammar with an admissible partition T, which is in fact a
partition of Mk(G) is a strong SD(k) grammar. However, this is not the case. The
intuitive reason is that for strong SD(k) grammars the look-ahead is not used in a
'context-dependent’ way. That is, for strong SD(k) grammars there exist situations in
which nonterminal symbols are forced to be equivalent due to some look-ahead which
can only appear in other situationms.

Our LL(2) example grammar with productions

S + aAa
S - bAba
A—+Db

A-+eg
is a grammar which is not strong SD(k) but it is weak SD(2) for the partition
Tfa = {{(S,E)}, {(Aaa)}a {(Aaba)}

of MZ(G)' In [132] an example of a grammar G can be found which is weak SD(k) and
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for which only a weak partition of Mk(G) can be found. Therefore it is possible to
define a proper subclass of the class of weak SD{k) grammars which properly includes
the class of strong SD{k) grammars and which is defined by the restriction that the
admissible partition should be a partition of Mk(G)' We will not investigate this

class of grammars here.

Next we show that any LP(k) grammar is a weak S5D(k) grammar, with that also ac-
caplishing the inciusion of the class of LL(k) grammars in the class of weak SD(k}
grammars. A few preliminaries are needed.

Let G = (N,Z,P,S) be a CFG and let k 2 0. For any A ¢ N, define

oLL,(4) = {L | L = FIRST,(a) for some o ¢ V" and w ¢ I" such that S 3 vaal
and define

H

I o * il *
iLis Y FIRSTk( i) for some w € I" such that S p wAa,, a; €V 3.

I

ULPk(A)

Notice that, due to Lemma 12.1, for LL(k) grammars both sets coincide. In Aho and

Ullman [3] the sets OLLk(A) are used for LL(k) testing.
THEOREM 12.17. For any k 2 0, if G is an LP(k) grammar then G is a weak SD(k) grammar.

Proof. Let G = {N,Z,P,5) be an LP(k) grammar. Define a weak partition m of Mk(G)

as follows. For any (A,u), (A,u') € Mk(G) define (A,u) = (A,u') (mod T) if and omnly
if there exists a set L ¢ GLPk(A) such that u, u' ¢ L. Clearly, in this way a weak
partition of Mk(G) is defined. We show that 7 is an admissible partition. Let (A,u),
(A,u") ¢ Mk(G) such that {(A,u) = (A,u') (mod 7). Then we know that there exist left-

most derivations
*
S 7 wAW
and
* .
S i WAL
such that u ¢ FIRSTk(m) and u' € FIRSTk(m‘). Let, for some 0,B8,B8" ¢ V*, the produc-
tions A » af and A > af' be in P.

Suppose B # R' and o is the longest common prefix of of and of'. Since G is
LP(k) we have that

FIRSTk(Bu) n FIRSTk(B'u') = @.

Suppose 8 # B' and o is not the longest common prefix of af and aB’'. Then
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1 :8=1:R8"and either 1 : B c¢ L and 1 : B' ¢ £ or B = Cy and B' = Cy' for some

* . . . .
C,C' ¢ N, v,Y' € V. Since there exist derivations

S %’W'CYM
and
S % w'Cy'w'

for some w' ¢ Z*, we may conclude that for all z ¢ FIRSTk(Yu) and z' ¢ FIRSTk(Y'u')
we have that (C,z) = (C,z') (mod T).

It remains to verify that if f = R' then the conditions of an admissible parti+
tion are also satisfied. If B8 = B' and B # €, then we have exactly the situation
(1 : B=1: B") which was described above. If 8 = B' = g then condition (iii) of
the implication is trivially satisfied.

This concludes the proof that 7 is an admissible partition and therefore grammar

G is a weak SD(k) grammar. [n}

We are now in a position to present the inclusion diagram of Figure 12.5. The
drawn lines in this figure demote proper inclusions. The interrupted line denotes
a conjecture. That is, we conjecture that any weak SD(k) grammar is a weak PLR(k)
grammar. Because LC(k) grammars can be left recursive and weak SD(k) grammars can
not be left recursive (cf. Pittl [132]) we can not have the inclusion of the class
of LC (or PLR) grammars in the class of weak SD grammars.

-
—* weak PLR

weak SD
»
/ // FLR
strong Sb //

// "

trong PLC

strong LL

Figure 12.5. Inclusion diagram.
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We conclude this section with some notes on possible future research. Moura
{cf. [113]) has anncunced results and transformations which deal with the relation-
ships between the classes of LR(k), weak SD(k) and strong SD{k) grammars. Ukkomen
[162] has presented a transformation from weak PLR(0) grammars to strict determinis-
tic grammars. The question arises whether this transformation can be used for weak
PLR(k) grammars. Unfortunately the transformation is rather complicated. It would
be useful if we had more insight in the class of k-transformable grammars (cf. Hammer
[56]). No_.formal proof is available for the inclusion of the class of PLR(k) grammars
in the class of k-transformable grammars. Moreover, is every k-transformable grammar
a weak PLR(k)} grammar ?

Schlichtiger [147,148] has introduced the class of 'partitionsd chain grammars'.
Partitioned chain grammars are defined with the help of chains (cf. Definition 5.1.)
and a partition of the set of nonterminal symbols. Schlichtiger uses the names PC(k)
(partitioned chain) grammars and EPC(k) (extended PC(k)) grammars. In the framework
of this chapter and, moreover, to avoid confusion with the extended context-free gram-
mars, it would be better to use the names strong PC(k) grammars and PC(k) grammars.
In [148] relationships between the partitioned chain grammars and the PLR(k) grammars
are mentioned. Moreover, it is mentioned that the class of PC(k) grammars (which we
prefer to call strong PC(k) grammars) properly includes the class of strong SD(k)
grammars.

It is our belief that the classes of grammars which have been mentioned in this
chapter can be put together in a framework and in an inclusion diagram in which the

relationships and the parsing strategies can be shown in a rather natural way.
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