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Preface

This monograph looks at computer organization from a strictly conceptual
point of view to identify the very basic mechanisms and runtime structures
necessary to perform algorithmically specified computations. It completely
abstracts from concrete programming languages and machine architectures,
taking the λ-calculus – a theory of computable functions – as the basic pro-
gramming and program execution model. In its simplest form, the λ-calculus
talks about expressions that are constructed from just three syntactical figures
– variables, functions (in this context called abstractions) and applications
(of operator to operand expressions) – and about a single transformation rule
that governs the substition of variable occurrences in expressions by other ex-
pressions. This β-reduction rule contains in a nutshell the whole story about
computing, specifically about the role of variables and variable scoping in this
game.

Different implementations of the β-reduction rule in conjunction with
strategies that define the sequencing of β-reductions in complex expressions
give rise to a variety of abstract λ-calculus machines that are studied in
this text. These machines share, in one way or another, the components of
Landin’s secd machine – a program text to be executed, a runtime envi-
ronment that holds delayed substitutions, a value stack, and a dump stack
for return continuations – but differ with respect to the internal representa-
tion of λ-expressions, specifically abstractions, the structure of the runtime
environments and the mechanisms of program execution.

This text covers more than just implementations of functional or function-
based languages such as miranda, haskell, clean, ml or scheme which
realize what is called a weakly normalizing λ-calculus that uses a naive version
of the β-reduction rule. The emphasis is instead on λ-calculus machines that
are fully normalizing, using a complete and correct implementation of the β-
reduction rule, which includes the orderly resolution of naming conflicts that
may occur when free variables are substituted under abstractions. This feature
is an essential prerequisite for correct symbolic computations that treat both
functions and variables truly as first-class objects. It may, for instance, be
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used to advantage in theorem provers to establish equality between two terms
that contain variables, or to symbolically simplify expressions in the process
of high-level program optimizations.

In weakly normalizing machines, the flavors of a full-fledged β-reduction
are traded in for naive substitutions that are simpler to implement and re-
quire less complex runtime structures, resulting in improved runtime efficiency.
Naming conflicts are consequently avoided by outlawing substitutions under
abstractions, with the consequence that only ground terms (or basic values)
can be computed. Weakly normalizing machines are therefore the standard ve-
hicles for the implementation of functional or function-based languages whose
semantics conform to this restriction. However, they are also used as inte-
gral parts of fully normalizing machines to perform the majority of those
β-reductions that in fact can be carried out naively. Whenever substitutions
need to be pushed under abstractions, a special mechanism equivalent to full
β-reductions takes over to perform renaming operations that resolve potential
name clashes.

Abstract machines for classical imperative languages are shown to be de-
scendants of weakly normalizing machines that allow side-effecting operations,
specified as assignments to bound variables, on the runtime emvironment.
These side effects destroy important invariance properties of the λ-calculus
that guarantee the determinacy of results irrespective of execution orders,
leaving just the static scoping rules for bound variables intact. In this degen-
erate form of the λ-calculus, programs are primarily executed for their effects
on the environment, as opposed to computing the values of the expressions of
a weakly or fully normalizing λ-calculus.

This monograph, though not exactly mainstream, may be used in a grad-
uate course on computer organization/architecture that focuses on the essen-
tials of performing computations mechanically. It includes an introduction to
the λ-calculus, specifically a nameless version suitable for machine implemen-
tation, and then continues to describe various fully and weakly normalizing
λ-calculus machines at different levels of abstractions (direct interpretation,
graph interpretation, execution of compiled code), followed by two kinds of
abstract machines for imperative languages. The workings of these machines
are specified by sets of state transition rules. The book also specifies, for code-
executing abstract machines, compilation schemes that transform an applied
λ-calculus taken as a reference source language to abstract machine code.
Whenever deemed helpful, the execution of small example programs is also
illustrated in a step-by-step fashion by sequences of machine state transitions.

I have used most of the material of this monograph in several graduate
courses on computer organization which I taught over the years at the Uni-
versity of Kiel. Some of the material (Chaps. 2, 3 and the easier parts of
Chaps. 4, 5) I even used in an undergraduate course on programming. The
general impression was that at least the brighter students, after some time of
getting used to the approach and to the notation, caught on pretty well to
the message that I wanted to get across: understanding basic concepts and



Preface IX

principles of performing computations by machinery (with substitution as the
most important operation) that are invariant against trendy ways of doing
things in real computing machines, and how they relate to basic program-
ming paradigms.
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1

Introduction

This text looks at computer organization and architecture from a strictly
conceptual point of view. It is primarily concerned with ways and means of
organizing computations, emphasizing the relationship between algorithmic
problem specifications and the very basic mechanisms and runtime struc-
tures necessary to transform these specifications step by step into problem
solutions. We will completely abstract both from concrete programming lan-
guages, whether imperative or functional, and from concrete machine archi-
tectures, their instruction sets, data formats, addressing modes, register sets,
etc., and nothing will be said about their hardware implementation either.
Only in the last chapter will a brief overview of two representative real ma-
chine architectures be given to show how they relate to the various abstract
machines we are going to talk about.

These abstract machines form what may be considered common interfaces
that may be shared by real computing machines featuring widely varying
architectures. They are derived from basic theoretical concepts of computer
science that are invariant against actual trends of doing things. These concepts
were originally developed in response to the fundamental question of what
can be effectively computed in principle and of what the basic mechanisms
for having these computations performed by machinery are.

Computability became a subject of intensive research between 1930 and
1940, interestingly enough, some time before the first computers as we know
them today came into being. It led to various mathematical models, devel-
oped more or less independently, that capture in a nutshell the essence of
performing computations mechanically. These models include Post’s produc-
tion systems, Markov algorithms, Kleene’s recursive functions, Schoenfinkel’s
and Curry’s combinators, Church’s λ-calculus and the Turing machine, all of
which are equivalent with respect to provable propositions about what can
and what cannot be accomplished with algorithmic approaches to problem
solving. Though more than 60 years old by now, these models are lasting and
stable foundations of computer science.
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The preferred model for studying computability is the Turing machine,
since, on a very elementary level, it closely mimics the workings of computers.
The machine consists of a tape that holds sequences of characters from some
finite alphabet (including blanks) and a primitive processor that can be moved
back and forth along the tape. It also includes controls that may assume
one of finitely many states. The machine goes repeatedly through a cycle
of transforming current states and characters read from the tape into next
states and characters written on the tape, and of moving the processor by one
character position to the left or right. Disregarding efficiency, this primitive
apparatus is capable of computing solutions for all problems that can be
specified algorithmically. It is a simple model of what is doable in principle
by any existing or yet to be invented computing machine.

However, the controls that need to be ‘wired’ into the processor to do
the jobs at hand bear hardly any resemblance to algorithms as they may
be specified in some high-level language. Programming the Turing machine
is primarily concerned with organizing computations as sequences of elemen-
tary character manipulations, using the very basic mechanisms of substituting
one thing (a character) by another one and of moving along the tape to the
positions where substitutions have to take place. Though these two mecha-
nisms realize the most important operations of computing, more important
than adding numbers, the level of granularity is simply too fine to relate the
workings of the Turing machine in an easily comprehensible way to the com-
putational steps specified by high-level algorithms.

The computational model that bridges the gap between high-level algorith-
mic specifications and the machines that are capable of executing them is the
λ-calculus. It strongly influences today’s programming paradigms, the basic
operating principles of computing machines, the runtime environments that
need to be built up during program execution, and to some extent also the
design of compilers that translate high-level algorithms into machine codes.

The λ-calculus is a theory of computable functions. It talks about elemen-
tary properties of operators and operands, about the application of operators
to operands and about the role of variables in this game. In its simplest
and purest form, the λ-calculus knows only three syntactical figures for the
construction of computable expressions – variables, abstractions (of variables
from expressions) and applications (of operator to operand expressions) – and
a single rule for transforming λ-expressions into other λ-expressions. This β-
reduction rule, which specifies the substitution of variables by λ-expressions,
tells the whole story about computing, and it does so in a more appropriate
setting than the simple character substitutions of the Turing machine.

In this text, we will therefore take the λ-calculus as the starting point for
a tour through various abstract computing machines. This tour leads from
complete realizations of the λ-calculus to restricted forms of it that can typi-
cally be found in implementations of functional and imperative languages. The
idea is to follow what is commonly known as a language-directed approach
toward architecting computing machines that emphasizes the basic mecha-
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nisms and runtime structures necessary to perform algorithmically specified
computations, rather than the handling of bits, bytes, addresses, etc. on the
register-transfer structure of concrete hardware machinery.

In this text we will proceed as follows.
Chapter 2 discusses rather informally some essentials of designing and

executing algorithms. They include the concepts of variables and of (recursive)
abstractions, the termination problem, symbolic computations, and operations
on structured data. The chapter also gives an overview of types and type
systems. The purpose of the chapter is to highlight some issues that require a
more formal treatment in subsequent chapters, since they play an important
role in designing abstract machines.

Chapter 3 introduces an expression-oriented algorithmic language al that
will be used as a reference language throughout the text. Its semantics is
defined by an abstract evaluator that prescribes how and in what order the
value of an expression may be computed from the values of its subexpressions.
The chapter identifies some problems related to the chosen evaluation strategy
and also to the freedom provided by the al syntax for designing algorithms.

To fully understand the implications of these problems requires a close
look at the underlying theory, which is given in Chap. 4 on the λ-calculus.
It begins with a precise definition of the binding status of variables and of
the β-reduction rule that governs the substitution of variables by expressions,
including the orderly resolution of potential naming conflicts. The unbinding
mechanism used to this effect leads to a nameless Λ-calculus that represents
binding structures by means of indices that considerably facilitate the imple-
mentation of the β-reduction rule.

The chapter also discusses reduction strategies such as applicative (ope-
rands-first) versus normal (operands-when-needed) order, confluence, termi-
nation with full normal forms (which are the ultimate goals of reducing λ-
expressions), and with intermediate head normal forms and weak (head) nor-
mal forms. It also addresses recursions in the λ-calculus, outlines how the pure
λ-calculus may be extended by primitive arithmetic, logic and relational op-
erations on numbers, Boolean values and character strings and by operations
on simple structured data, and formalizes what has been said about typing in
Chap. 2.

This brief excursion into the λ-calculus covers everything that needs to
be known to understand the abstract machines described in the following
chapters.

In Chap. 5, we begin with a very simple abstract machine that inter-
prets expressions of the pure λ-calculus. This machine, which supports both
applicative- and normal-order reduction, is derived from Landin’s original
secd machine. It is a weakly normalizing machine, meaning that it imple-
ments a naive form of β-reduction that does not penetrate abstractions. An
important concept realized by this machine is that of delayed substitutions
using an environment. Closely related to this concept are closures that pair
abstractions with the environments in which they may have to be evaluated
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later on. Delayed substitutions, environments and closures are the key ingre-
dients of efficient computations that are shared by several of the abstract
machines discussed in subsequent chapters.

The chapter also includes brief descriptions of two other weakly normaliz-
ing abstract machines, the K-machine and the categorial abstract machine.

Chapter 6 describes two interesting approaches to fully normalizing ma-
chines that employ environment-based β-reductions.

The λσ-calculus introduces environments through the notion of explicit
substitutions, as an extension of the nameless Λ-calculus. These substitutions
are manipulated by a set of σ-rules that in fact define a weakly normalizing
abstract machine. Continuing beyond weak normal forms requires a special
beta-rule that pushes substitutions under abstractions, whereupon weak nor-
malization may be resumed in abstraction bodies. Repeated weak normaliza-
tions followed by applications of this beta-rule lead to head normal forms, and
applying this head normalization to all subexpressions of head normal forms
produces full normal forms.

The other approach treats environments as an integral part of the Λ-
calculus itself. It is based on the systematic transformation of Λ-expressions
from head forms to head normal forms by so-called β-reductions in the lar-
ge, governed by a head-order reduction regime. This is basically a process
that recursively distributes largest possible chunks of consecutive β-redices
over the components of head forms, thus in fact creating environments for
binding indices that occur in head positions. These indices either select from
the environments other expressions with which the process continues in their
place or, if they reach beyond the environments, terminate with head normal
forms.

Fully normalizing λ-calculus machines that realize both concepts are de-
scribed in the following four chapters.

Chapter 7 takes the abstract head-order reducer one step closer toward
a real machine. It uses graph reduction techniques based on the substitution
and rearrangement of pointers, rather than of the (sub)expressions or the
environments they represent, which permits a great deal of sharing of the
evaluation of subexpressions among several pointer occurrences. It is the key
to achieving significantly better runtime efficiency as compared with direct
interpretation.

In Chap. 8, this graph reducer is turned into a code-executing abstract
machine. As an interesting feature that follows from head-order reduction,
this machine supports two instruction streams, of which one executes in a
forward direction to dynamically generate the other stream which executes in
a backward direction. Both codes in cooperation produce the code-equivalent
of fully normalized expressions eventually, if they exist.

The G-machine introduced in Chap. 9 is another code-executing abstract
machine, specifically designed for the implementation of functional languages
with lazy semantics. It is weakly normalizing, permitting the computation of
ground terms (or basic values) only, which is more or less a consequence of
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compiling functions to static code. This goes hand in hand with the conversion,
prior to compilation, of nested function definitions into flat sets of closed
abstractions, also referred to as supercombinators, that rule out reductions
under abstractions. Supercombinator compilation yields fairly efficient codes
whose runtime environments can be accommodated in single, coherent stack
frames.

The idea put forth by the λσ-calculus leads to another abstract machine
concept, presented in Chap. 10. It employs compiled graph reduction similar
to that of the G-machine for weak normalization and turns control over to a
special η-extension mechanism that prepares weak normal forms for further
code-controlled reductions under abstractions. The cycle of code execution and
η-extensions is repeated until the expressions are fully normalized. This π–
red machinery comes in two variants, of which one realizes a lazy (operands-
when-needed) and the other a strict (operands-first) semantics. Again, nested
function definitions are closed prior to compilation to code, but this is done in
a less rigorous way than in the G-machine to avoid some of the redundancies
of supercombinator reductions.

The complete machinery is made to appear to the user as a system
that performs high-level transformations of λ-expressions governed by full
β-reductions. These transformations may, under interactive control, be car-
ried out step by step, and intermediate expressions may be displayed to the
user in high-level notation for inspection or modification.

Chapter 11 introduces the concept of pattern matching – an operation
that extracts (sub)structures from given structural contexts and substitutes
them for placeholders in other (structural) contexts. Pattern matching may be
effectively employed to quickly prototype, on a meta-language level, compilers
and language interpreters (abstract machines), or to implement term rewrite
systems and essential parts of theorem provers. The chapter also describes how
pattern matching can be implemented on the lazy variant of the machinery
described in Chap. 10.

Chapter 12 returns to a weakly normalizing, code-executing functional ma-
chine that is more or less a direct descendant of the original secd machine. In
contrast to the G-machine, it implements an applicative-order (or operands-
first) regime and also abandons the concept of supercombinator reduction. In-
stead, it works with open abstractions, closures and runtime structures similar
to those used in the machines of Chaps. 7 and 8. This machine is a perfect
target for the compilation of al, and also for such functional languages as
Standard ml and scheme that feature an applicative-order semantics.

There is only a relatively small step, though one with considerable conse-
quences, from this secd i machine to the code-executing abstract machines for
imperative languages that are described in Chap. 13. The essence of executing
imperative programs is to effect sequences of incremental changes (updates)
on selected entries of the runtime environment. This concept is reflected in
assignments to variables that represent values held in the runtime environ-
ment but are not values themselves, and in abstractions called procedures
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that change their calling environments. Since the semantics of imperative lan-
guages demands that procedures be applied to full sets of arguments, there is
no need to support closures. As a consequence, the runtime environment can
be operated as a stack of activation records for procedure calls. Languages
that support nested procedure definitions, such as pascal, need to have the
activation records linked up in compliance with these nestings. Languages
that support only flat procedure definitions, such as C, have the complete en-
vironments accommodated in coherent activation records that are stacked up
in the order in which they are called but otherwise are completely unrelated
to each other, i.e., there are no links, which simplifies implementation and
enhances runtime efficiency.

The last chapter gives an overview of two representative architectures of
real computing machines. Conceptually, they look very much the same as the
abstract machines of Chap. 13. The differences that matter from a machine
language (assembler) programmer’s point of view relate basically to the re-
sources visible at this level that must be accounted for in ways that go beyond
what can be expressed by abstract machine code. The finiteness of physical
resources (specifically of register sets), certain bandwidth limitations and to
some extent also the mechanics of instruction execution call for a well-balanced
compromise between what is conceptually needed to support procedure calls
and the instruction sets, data formats and memory-addressing modes that
should (or can) actually be implemented.

One of the machines described in the chapter features a CISC (complex
instruction set) architecture very similar to that of the MC680x0 family. Its
instruction set and, specifically, its addressing modes are fairly high level, tai-
lored to the needs of languages that support open procedures that may be
nested inside each other, with variable occurrences bound nonlocally in sur-
rounding contexts. It calls for memory-resident runtime environments (stacks)
that have their activation records statically linked according to nesting levels.

The other machine belongs to the SPARC family, which has a RISC (re-
duced instruction set) architecture. Its most interesting feature is a register
file that is partitioned into several windows that accommodate the activation
records of procedure calls. The windows partially overlap, so that the registers
used by a calling procedure to pass parameters are shared with the called pro-
cedure. The important point is that only the window of the procedure call that
is active is visible at any time; all other windows are inaccessible, and there
can be no links to them either, meaning that all the variable instantiations of
a procedure call must be packed into a single window.

This approach is clearly derived from the programming language C, which
knows only flat procedure definitions. Except for references to global vari-
ables, these definitions are closed and thus are perfect candidates for direct
compilation to code that makes efficient use of the windows.

The text is augmented by two appendices whose contents are somewhat pe-
ripheral to the main topic. The first one deals with input/output in expression-
oriented languages. It briefly discusses such concepts as interactions with an
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external state via streams or environment passing, continuations, and monad-
style specifications of interactions. The second appendix addresses theorem
proving. It describes, largely by means of a simple example, the basics of a
proof process and its al implementation, which uses pattern matching as in-
troduced in Chap. 11 and normalization of λ-terms to implement the proof
rules.

The material included in this text has been used in various ways by the
author to teach graduate courses on abstract computing machines. The ob-
jective of these courses was to familiarize students with the basic principles
of organizing mechanized computations as they are derived from theory. This
was thought to be more relevant with regard to understanding the architec-
tures and the workings of computers than talking about the manipulation of
bits and bytes in actual hardware machinery. The text is structured roughly
as presented in class, though not every subject could be addressed in as much
detail. The contents of some of the chapters more or less build on top of other
chapters. At the end of each chapter is a summary of its contents.

The diagram below depicts some alternative sequences in which the chap-
ters may be read. Following the thick arrows should give a coherent picture of
either weakly or fully normalizing machines. The dashed arrows depict links
between descriptions of either kind of machine and also connect to chapters
that may be skipped.1
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The hard core of the text is contained in Chap. 4 on the λ-calculus, specif-
ically in Sect. 4.4 on the nameless Λ-calculus, which is heavily used later on,
1 The appendices are not included in this diagram.
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and in Chaps. 5 and 6 on the basics of weakly and fully normalizing λ-calculus
machines. The (graph) reduction machines of Chaps. 7 and 8 can hardly be
understood without having read Sect. 6.4 on head-order reductions; the π–
red machines of Chap. 10 follow the basic idea of the λσ-calculus outlined in
Sect. 6.3; and the machines of Chaps. 9, 12, 13 and also those of Chap. 14,
which are weakly normalizing, are descendents of and inherit essential features
from the se(m)cd machines of Chap. 5.

The introductory Chaps. 2 and 3 may be left aside by readers who are fa-
miliar with algorithms and their evaluation. The chapter on pattern matching
may be skipped unless one wishes to read the appendix on theorem proving.
The appendix on input/output assumes knowledge of the λ-calculus only; it
may therefore be read anywhere after Chap. 4.

Owing to the abstract nature of the subject, the text contains many for-
mal specifications relating to the workings of the various machines and to
compilation of high-level algorithms to abstract machine code. These sections
are marked ∗ or ∗∗ in their headings to indicate that they are moderately or
very difficult to read. However, whenever deemed necessary, the formal appa-
ratus, mainly sets of state transition rules or sets of compilation rules, is also
explained verbally to facilitate understanding.

The text does not explicitly include any exercises, but offers an ample
number of challenging problems for homework assignments or for a comple-
mentary lab course in which some of the abstract machines and compilers
may be rapidly prototyped. This can be conveniently done using the pattern-
matching facilities of functional or function-based languages such as haskell,
clean, Standard ml, or KiR – a language developed by the author’s group
that has been extensively used for this purpose. Compilers or interpreters for
these languages are readily available on the Internet and may be downloaded
free of charge from

• www.haskell.org/ghc/download.html (for haskell),
• www.cs.kun.nl/∼clean/Download/main/main/htm (for clean),
• www.smlnj.org/software.html (for Standard ml),
• www.informatik.uni-kiel.de/∼base (for KiR).

Prototyping could begin with the fairly simple machines of Chap. 5, the ab-
stract λσ-machine or the hor machine specified in Chap. 6. Most suitable
for a small termproject would be prototyping the more difficult G-machine of
Chap. 9, the strict version of the code-executing π–red machines of Chap. 10
(stripped of the η-extension part), and the secd i machine of Chap. 12.

There is also a lot left to do for paper-and-pencil homework assignments.
Besides some exercises in reducing λ-terms, particularly of the nameless Λ-
calculus to get acquainted with the manipulation of binding indices, there are
several opportunities to do formal specifications that have been omitted from
the text, e.g., the state transformation rules for the head-order graph reducer
of Chap. 7 and the instruction sets of the π–red machines. On a simpler
level, the specification of instruction sets could be completed, where missing,
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by instructions that implement primitive arithmetic, logic and relational op-
erations, including operations on lists. Compiling small example programs by
hand, using the compilers specified in Chaps. 9, 10, 12 or 13, could provide
other worthwhile exercises.





2

Algorithms and Programs

The art of writing algorithms, also referred to as algorithmics, is undisputably
the most important discipline of computer science. Generally speaking, algo-
rithms are recipes that tell us how problem specifications may be transformed
step by step into problem solutions, which is exactly what we expect computers
to do for us, and what they can do with amazing speed and reliability.

It takes very little to formulate algorithms that can be understood and
executed mentally (or with the help of paper and pencil) by human beings
who have some moderate mathematical background. All that is needed is a
few syntactical constructs (or figures) to specify elementary operations, some
constructs by means of which complex operations can be composed from sim-
pler ones, and a finite set of rules that, in an orderly way, transforms these
constructs into others until no more rules are applicable, at which point a
problem solutions is assumed to have been reached.

We will refer to algorithms as being

• abstract if they are specified using some mathematical notation that merely
defines a partial ordering among operations (or rule applications) that
reflect the logical structures of the problems at hand, and if no particular
mechanisms for performing the operations are assumed;

• concrete or programs if they are specified with execution by machinery in
mind, in which case it may be necessary to include detailed work plans
(schedules) so that the machine’s various gadgets do the right things the
right way in the right order.

It is generally possible to translate abstract algorithms into executable pro-
grams, and – as we will see later on – we can design abstract or real computing
machines that accept and execute abstract algorithms as programs.

Abstract algorithms are usually specified using

• expressions (or terms) that are (recursively) constructed from atomic com-
ponents such as constant values, variables, primitive arithmetic, logic and rela-
tional operators, and of parentheses that define nestings of (sub)expressions
in expressions;
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• selector expressions that, depending on the value of a predicate or an index,
compute just one of two or more alternative subexpressions;

• means for structuring data, e.g., in the form of tuples or lists, and a set of
primitive operations to compose complex from simpler structures and to
decompose structures into substructures;

• defining equations for abstractions (of variables from complex expressions)
that are intended to make the representation of algorithms more concise,
giving it more structure if the same computations have to be carried out
repeatedly, and possibly in different parts of the algorithm.

We expect meaningful algorithms to be composed of only finitely many le-
gitimate syntactical constructs to which transformation rules may be applied.
The rules should be effectively computable, meaning that they can be exe-
cuted mechanically with reasonable effort. The algorithms should terminate
with problem solutions after finitely many rule applications (which cannot be
guaranteed in general), and the solutions should be determinate, meaning that
there is at most one rule applicable to every syntactical construct, and that
problem solutions are invariant against alternative sequences of rule applica-
tions.

However, termination and determinacy of results may not necessarily be
desirable algorithmic properties. On the one hand, there are algorithms that
(hopefully) never terminate but nevertheless do something useful. Well-known
examples in computing are the very basic cycle of issuing a prompter, reading
a command line, and splitting off (and eventually synchronizing with) a child
process for its interpretation, as it is repeatedly executed by a UNIX shell, or,
on a larger scale of several interacting algorithms, the operating system kernel
as a whole, which must never terminate unless the system is shut down.

On the other hand, there are term rewrite and logic-based systems where the
transformation rules are integral parts of the algorithms themselves. Given the
freedom of specifying two or more alternative rules for some of the constructs,
these algorithms may produce different problem solutions for the same input
parameters, depending on the order of rule applications.

When it comes to executing abstract or concrete algorithms by comput-
ing machines, there is usually a considerable gap to be bridged between the
high-level notation in which these algorithms are specified and the binary
code that can be interpreted by the machines. What can be read and under-
stood by human beings is completely indigestible to machines, and what can
be processed by machines is, other than within a very small scope of just a
few instructions, totally incomprehensible to human beings. It usually takes
several levels of representations of algorithms, using notations with increas-
ingly finer resolution of the computational steps that need to be performed,
to bridge this gap.

We may think of these levels as a hierarchy of some n+1 languages Li | i ∈
{0, . . . , n}, with Ln at the higher and L0 at the lower (the hardware) end.
Each of these languages is executed by another abstract (or real) processor



2 Algorithms and Programs 13

Pj | j ∈ {0, . . . , n−1} specified in terms of the language of the next lower level.
More precisely, the language Li is executed by a processor Pi−1 implemented
in the language Li−1,1 which may be depicted as

� � � �Ln Ln−1 Li Li−1 L0 .
Pn−1 Pi Pi−1 P0

. . .. . .

The ‘processor’ for the language L0 does not quite fit into this picture since at
this level we have a change of paradigm to electronic circuitry and sequences
of pulses that make it function.

The processors Pi−1 | i > 1 of the higher language levels may be

• either compilers that translate algorithms (or programs) written in the
languages Li as a whole into programs of the language Li−1 that have the
same meaning (or the same semantics);

• or interpreters written in the language Li−1 that execute the constructs of
the language Li one by one.

A typical such hierarchy by which high-level languages are implemented on
contemporary computing machines is depicted in Fig. 2.1.

Algorithms (or programs) written in a high-level language are first trans-
lated by a compiler frontend rather schematically into some intermediate lan-
guage that abstracts from the specifics of the underlying machine but allows
for some standard code optimizations. Programs of this intermediate language,
nowadays typically C, are translated by a compiler backend into assembler code
composed of sequences of symbolic machine instructions. This code undergoes
various fine-tuning optimizations that take into account particularities of the
processor architecture such as the available register set or pipelined instruc-
tion execution. The symbolic assembler code thus obtained is then one-to-one
transliterated (or assembled) into sequences of binary-coded instructions for
interpretation by the machine. This assembler code is the lowest language
level accessible to programming. It is used primarily by compiler writers and
system programmers who need to implement some performance-sensitive ker-
nel routines, but hardly ever by ordinary application programmers. Below this
level, which in fact defines the architecture of the machine as it is described
in manuals, there are one or two hard-wired levels of interpreters for machine
instructions, of which the lowest one controls the various electronic circuits
that finally do the job.

In the following we will be concerned with the upper levels of the language
| processor hierarchy, specifically with a variety of abstract state-transforming
machines (processors) that either interpret abstract algorithms directly or,
1 It should be noted here that this is a somewhat idealized picture, insofar as in

practice the compiler or interpreter Pi−1 need not necessarily be written in the
language Li−1; any other suitable language may be used for this purpose.
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Fig. 2.1. A typical hierarchy of languages and language processors

on a lower level, interpret abstract instruction-based machine code to which
abstract algorithms are being compiled. Focusing on abstract machines will
help us to identify, in a clean setting, the most essential mechanisms and
runtime environments for program execution and how they translate into the
architectures and operating principles of conventional computing machines.

2.1 Simple Algorithms

We begin our excursion into algorithmics with some simple examples to in-
troduce in an informal way the very basics of the design of abstract algorithms
and of the transformation rules and mechanisms required to execute them.

Designing an algorithm should set out with a formal specification of what is
to be computed. This is always advisable as a first step just to make sure that
the problem is fully understood, that the domains of input parameters and es-
sential properties of the intermediate and final problem solutions are precisely
characterized, and that the solutions actually produced by the algorithm can
be checked against these properties.
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2.1.1 Getting Started with Some Basics

Our first algorithm is intended to compute the volume of the frustum of a
pyramid with a square-shaped base area, as shown in Fig. 2.2. This volume
may be computed by subtracting the volume of the smaller pyramid that
sits on top and has height h1 and base size r1 from the volume of the larger
pyramid with height h2 and base size r2. With h = h2 − h1 as the height of
the frustum of the pyramid, we get for its volume the formula

Vh = (1/3) ∗ h ∗ ((r1 + r2)2 − r1 ∗ r2) .

We also know that this formula is meaningful and yields correct results only
if the variables h, r1, r2 are placeholders for real numbers greater than zero
and the value of r2 is greater than that of r1.

Thus, the problem may be formally specified as

Vh = (1/3) ∗ h ∗ ((r1 + r2)2 − r1 ∗ r2) ,

where2

(h, r2, r1 ∈ IR+) ∧ (r2 > r1) .
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Fig. 2.2. Parameters for computing the volume of a frustum of a pyramid

The right-hand side of the equation for Vh looks very much like an al-
gorithm if we know the rules for evaluating nested arithmetic expressions.
However, if we consider the variables as ‘unknowns’ in a mathematical sense,
nothing can be done if they are not replaced by real numbers to which the
arithmetic operators +, −, ∗, / can be applied.3 The problem that we need

2 IR+ denotes the set of real numbers greater than zero.
3 We assume here that no symbolic computations can be performed that transform

expressions containing variables into other, possibly more concise, expressions.
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to solve is to come up with some construct (and associated mechanism) that,
in some orderly way, substitutes values for these variables so that the for-
mula can actually be evaluated. But before the evaluation actually takes off,
we must make sure that the values substituted for the variables satisfy the
logical formula of the where clause underneath the formula for Vh. Otherwise,
the algorithm should indicate somehow why the evaluation cannot proceed or
is bound to produce an erroneous result.

We will address the problem of substituting values for variables first. All
we need to do here is to define a suitable operator that we can apply to these
values. The expression Vh must be one part of it, the other part must be the
one that substitutes values for variables in this expression. We may give this
operator a name (or an identifier), say f , and define it by the equation4

f = lambda h r1 r2 in (((1/3) ∗ h) ∗ ((r1 + r2)2 − (r1 ∗ r2))) .

The keyword lambda denotes a constructor that is said to bind the variables
h, r1, r2 in the expression following the keyword in. This notation may look
a little strange at first sight, but we may obtain a more familiar notation that
means the same thing if we move the variables under the lambda over to the
left-hand side of the equation and simply write

f h r1 r2 = (((1/3) ∗ h) ∗ ((r1 + r2)2 − (r1 ∗ r2))) .

This denotes f as a function, also called an abstraction, of three variables (or
formal parameters) h, r1, r2. The expression on the right-hand side is said
to be the function (or abstraction) body which implements the algorithm that
computes function values.

Both notations are semantically equivalent, but in the following we prefer
the one that uses the lambda-construct because it lends itself more elegantly to
describing operational aspects. In fact, we may consider the lambda-construct
as an operator replacing the identifier f that may be applied to operands,
in this particular case to the values (or actual parameters) that we wish to
substitute for the formal parameters h, r1, r2.

Before we specify such an application and describe how it evaluates, we
would like to do something that may look a little unusual but gives an inter-
esting touch to the way we would like to compute. We decide to apply the
operator f to numerical values for the variables r1 and r2, say 2 and 3, re-
spectively, but if we have not yet made up our mind about what the value for
the height h should be, we may simply wish to substitute some nonnumerical
dummy value a for it and see how far we can drive the evaluation ahead. We
may write this application as

(f a 2 3) ,

4 We use here a fully parenthesized infix notation for primitive binary operations
such as (a + b) for adding a and b.
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i.e., we put what we consider the operator in the first syntactical position
and the operands in some specific order in the subsequent positions inside the
parentheses.

Looking at this application as it is, it could not be evaluated to anything
else, since it has in operator position a variable that, on its own, merely
represents itself. The application therefore would have to be considered a
constant expression and simply be left unchanged.

However, since in a larger context we also have a defining equation for f ,
we can replace it by its right-hand side to obtain

(lambda h r1 r2 in (((1/3) ∗ h) ∗ ((r1 + r2)2 − (r1 ∗ r2))) a 2 3) .

Now, this application makes more sense, because it says that the operator
lambda h r1 r2 in (...) must be applied to the operands a, 2, 3, and the
operation to be performed must substitute for occurrences of the variables
h, r1, r2 in the function body (...) the values a, 2, 3, respectively, assuming
that the ordering of operands in the application follows the ordering of formal
parameters under the lambda. This operation obviously yields the expression

(((1/3) ∗ a) ∗ ((2 + 3)2 − (2 ∗ 3))) ,

which now has numbers in place of the variables r1 and r2 and can therefore
be evaluated further.

This expression prescribes no particular order for evaluating its subexpres-
sions other than that arithmetic operators can only be applied to numbers and
that therefore the evaluation must proceed from innermost to outermost. So,
we may evaluate (1/3) to 0.3333..., (2 + 3) to 5 and (2 ∗ 3) to 6 in order to
obtain the intermediate expression

((0.3333 ∗ a) ∗ (52 − 6)) ,

in which we have to evaluate 52 to 25 first and then subtract 6 from it to get

((0.3333 ∗ a) ∗ 19) .

This is all that can be done, since a is not a number, so it cannot be multiplied
by 0.3333, i.e., the expression (0.3333 ∗ a) must be left as it is, with the
consequence that the multiplication by 19 cannot be done either.

We may consider this result perfectly legitimate: it is an expression that
defines a value for the volume of the frustum of a square-shaped pyramid
with specific base size values r1 and r2 but with an as yet unspecified height,
which for the time being is represented by the symbolic value a. However, we
also note that this computation was carried out without regard for the logical
formula of the formal problem specification, which says, more precisely, that
the things substituted for the variables should all be numbers greater than
zero, that the value substituted for r1 should be smaller than r2, and that the
resulting value for the volume should be a number greater than zero too. The
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algorithm we have used here did not perform the respective tests, and that is
exactly why we succeeded with the evaluation as far as we did.

Including these tests in the algorithm requires one more operator is num
that, when applied to something, returns a Boolean value (either true or
false) that tells us whether this something is a number or not, and a selector
expression of the form

if e0 then e1 else e2 ,

which, depending on the Boolean value to which the subexpression e0 is as-
sumed to evaluate, returns the value of either e1 (which is called the conse-
quent) or e2 (which is called the alternative).

With these tests, the function f looks a lot more complicated but it guar-
antees that only correct results for correctly specified parameters are returned
as function values:

f = lambda h r1 r2 in
if (((is num h) and (is num r1)) and (is num r2))
then if (((h gt 0) and (r1 gt 0)) and

((r2 gt 0) and (r2 gt r1)))
then (((1/3) ∗ h) ∗ ((r1 + r2)2 − (r1 ∗ r2)))
else ”parameters out of range”

else ”one parameter is not a number” .

If one of the parameters to which the function is applied is not a numerical
value, as in the preceding example, or if one of the parameters is a negative
number, or if the base size at the top is greater than the base size at the
bottom, then the function returns as a value a character string saying why
the algorithm could not be executed as intended.

The problem that we have solved here, though it gives us some initial
idea of how to design algorithms in general, is rather straightforward and
trivial insofar as the number of operations to be performed is fixed irrespective
of the actual parameter values. Other than for the first step that, in the
application (f a 2 3), substitutes the identifier f by the right-hand side of the
defining equation, the size of the expression shrinks monotonically with every
arithmetic operation performed.

However, the overwhelming majority of computational problems are far
from being that simple. They typically involve operations that have to be
performed repeatedly, the number of repetitions often depends in intricate
ways on the input parameters, e.g., on the sizes of data structures or on the
number of alternatives that need to be checked out, and, even worse, the
repetitions may cause the computations to continuously expand in space. In
fact, such repetitions are the essence of being able to compute everything that
is intuitively computable, or computable in principle.
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2.1.2 Recursive Functions

A simple example to illustrate this concept is the computation of the product
of all integer numbers within the interval 1 . . . n, also known as the factorial of
n. Given some numerical value n ∈ { 1, 2, . . . }, the algorithm must be capable
of unfolding an expression of the form

n! = 1 ∗ 2 ∗ 3 ∗ . . . ∗ i ∗ (i + 1) ∗ . . . ∗ (n − 1) ∗ n .

A formal specification of how this algorithm must be designed may be directly
obtained from this n-fold product. It tells us that the factorial of 1 is trivially
1, and that the factorial for numbers n > 1 may be computed as the product
of n and of the factorial of n − 1, i.e., we have

1! = 1 and n! = n ∗ (n − 1)! | n > 1 .

This specification can be directly translated into an algorithmically com-
putable function

fac n = if (n gt 1) then (n ∗ (fac (n − 1))) else 1

or, when the equivalent lambda-notation is used,

fac = lambda n in if (n gt 1) then (n ∗ (fac (n − 1))) else 1 .

This function is said to be recursive, since the function identifier fac recurs
inside the function body to apply the function to the operand expression n−1.
This recursion continues as long as the argument of fac remains greater than
1. When applying fac to an initial value n > 0, the algorithm is bound to
terminate after n recursive calls of fac since n is monotonically decremented
by 1 until it is down to 1, in which case the function returns the value 1.

Figure 2.1.2 illustrates how the computation of fac proceeds if we use the
simple rules of substituting, whenever needed, function identifiers by the right-
hand sides of their defining equations, formal parameters by the operands the
functions are applied to, and expressions specifying primitive operations by
their values.

The computation sets out with the application (fac 5) and, in the first
step, substitutes (or expands) the identifier fac by the operator lambda n in...
on the right-hand side of its defining equation. Applying this operator to the
operand value 5 yields, in the next step, the function body expression in which
all occurrences of the lambda-bound variable n are now substituted by 5. This
enables the predicate (5 gt 1) of the selector expression to be evaluated to
true, which picks the consequent for further evaluation, and the rest of the
expression is dropped. What is now left is an expression that multiplies 5 by
the application of fac to 4, in which fac is again expanded as before. These
steps are repeated until fac is applied to 1, which returns the value 1, and
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(fac 5)

(lambda n in if (n gt 1) then (n ∗ (fac (n − 1))) else 1 5)

if (5 gt 1) then (5 ∗ (fac (5 − 1))) else 1

if true then (5 ∗ (fac (5 − 1))) else 1

(5 ∗ (fac (5 − 1)))

(5 ∗ (fac 4))

(5 ∗ (lambda n in if (n gt 1) then (n ∗ (fac (n − 1))) else 1 4))

(5 ∗ (4 ∗ (lambda n in if (n gt 1) then (n ∗ (fac (n − 1))) else 1 3)))

(5 ∗ (4 ∗ (3 ∗ (2 ∗ 1))))

120

Fig. 2.3. Stepwise execution of the recursive algorithm for the factorial of 5

the expression left is the expanded product of all numbers from the interval
1 . . . 5, as in the second last line. From there it takes four multiplications to
arrive at the value 120.

We note that the expression periodically expands when the function iden-
tifier is replaced by its defining expression and shrinks when this expression
is evaluated, and, in doing so, unfolds the multiplication of numbers from 5
down to 1, which subsequently collapses into the result value.

This very regular behavior allows us to give fairly precise figures for the
time and space that it takes to perform the computation. It obviously requires
n recursive calls of fac to compute the factorial of n. Assuming that it takes
some constant time to evaluate the function body (other than in the case
n = 1, there is each time the same number of primitive operations to be
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carried out), we can say that the execution time grows linearly with n. This
is usually denoted as O(n), which is to be read as ‘the time is of order n
(or of complexity O(n))’. A more precise figure would require that we know
exactly how much time it takes on a particular machine to perform individual
operations, which in turn may depend in intricate ways on the context in
which they occur.

A similar estimate can be made for the space demand. We know that
in the i-th recursion the size of the expression is given by the number of
characters it takes to represent i − 1 nested multiplications of numbers plus
the fully expanded function body. We can now argue that the function body
contributes only some character string of constant length that we can safely
ignore if n becomes very large, and that we are interested only in the dynamic
parts that change with n. This means that we need to worry only about the
space that it takes to build up n multiplications, which again grows linearly
with n, or is of complexity O(n).

If we wish to compute the product of some n numbers, there is no way
around generating those n−1 pairwise multiplications, i.e., the complexity in
time remains O(n) irrespective of the way we do it. But we can save on space
consumption if we design an algorithm that, rather than fully expanding n−1
nested multiplications before actually evaluating them, right away multiplies
the actual value generated by some function application by an intermediate
product accumulated by the preceding function calls.

A formal specification can be derived from the fact that

n! = 1 ∗ 2 ∗ 3 ∗ . . . ∗ i ∗ (i + 1) ∗ . . . ∗ (n − 1) ∗ n

may alternatively be expressed as

n! = 1 ∗ 2 ∗ 3 ∗ . . . ∗ i ∗ ri+1, where ri+1 = (i + 1) ∗ . . . ∗ (n − 1) ∗ n ,

i.e., we have
rn = n and ri = i ∗ ri+1 | i < n .

This variant of computing factorial of n requires a function fac it of two
formal parameters n and r, the latter of which passes the accumulated inter-
mediate product from one recursive call to the next:

fac it = lambda r n in if (n gt 1) then (fac it (r ∗ n) (n − 1)) else r

Figure 2.4 illustrates some steps of computing the application (fac it 1 5). We
note that the sequence of expressions periodically expands and then collapses
again to applications of fac it to accumulated products r in the first operand
position and decremented values of n in the second position, until it termi-
nates, again with the value 120. That is to say, the expression never expands
beyond the size of the application that has the identifier fac it substituted by
the right-hand side of its defining equation, i.e., for all practical purposes the
computation takes place in constant space, or is of space complexity O(1).
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(fac it 1 5)

(lambda r n in if (n gt 1) then (fac it (r ∗ n) (n − 1)) else r 1 5)

if (5 gt 1) then (fac it (1 ∗ 5) (5 − 1)) else 1

(fac it 5 4)

(lambda r n in if (n gt 1) then (fac it (r ∗ n) (n − 1)) else r 5 4)

(fac it 20 3)

(fac it 120 1)

120

Fig. 2.4. Execution steps of the iterative algorithm for the factorial of 5

Recursive functions that behave like this are said to be tail-recursive be-
cause calling the function recursively is always the last action in evaluating
current instances of the function body, i.e., nothing is left to be done when
the computation returns from the next call. Alternatively, these functions may
also be referred to as being iterative since they are equivalent to while state-
ments of conventional programming languages that perform iterations over
statement blocks as long as some predicate term evaluates to true.

Both fac and fac it are bound to terminate for numerical values. If n is
chosen to be greater than zero then these functions terminate after n recursive
calls, otherwise they terminate trivially with the value 1, even if n is a negative
number, in which case the result may not be what we really want. What has
been omitted here for reasons of simplicity are tests that the actual value of n
is greater than zero, and – what seems even more important – that the value
substituted for n is a number after all.

However, failing to do the latter need not have fatal consequences: sub-
stituting, say, some character string ”aabb” for n instead of a number would
mean that the value of (”aabb” gt 1) would have to be computed next as the
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selector of the if then else expression. Since it makes no sense to compare a
character string with a number, we can decide to leave this expression as it is
and subsequently leave the entire if then else clause untouched since with-
out a Boolean value no selection can be made between the consequent and the
alternative. The computation of fac it would then stop with the expression

if (”aabb” gt 1) then (fac it (1 ∗ ”aabb”) (”aabb” − 1)) else 1 .

and return it as a result. The mistake that has been made would be fairly
obvious: a character string and a number are not compatible with respect
to the operator gt or, for that matter, with respect to primitive arithmetic,
logic and relational operators in general. Hence such operations cannot be
performed in a meaningful way and, rather than producing some ambiguous
error message, the expressions that specify them are simply left as they are,
whereupon the person who wrote the algorithm may decide what went wrong.

2.1.3 The Termination Problem

We will now briefly discuss another two algorithms that address the problem
of termination.

The first one is the well-known Euclidean algorithm that computes the
greatest common denominator of two positive integer numbers. It may be
specified using two functions, of which one calls upon the other as a subfunc-
tion:

gcd = lambda u v in if (u eq v)
then u
else if (u gt v)

then (gcd v (mod u v))
else (gcd u (mod v u)) ,

mod = lambda u v in if (u leq v) then u else (mod (u − v) v) .

When the function gcd (for greatest common denominator) is applied to actual
parameter values greater than zero, it is bound to terminate since both pa-
rameters are monotonically decremented by calls of the function mod (which
computes the modulus of two values) until the termination condition (u eq v)
is reached, which in the worst case happens when both values come down to
1. However, there is no easy way of telling after how many recursive calls of
gcd and mod this may be the case, other than that this is a number anywhere
between 1 and the maximum of the initial values of u and v. Thus, we can
only say that the worst-case complexity with regard to time is O(max(u, v)).
Since both functions are tail-recursive, the computation can be performed in
constant space though, i.e., in this respect we have a complexity of O(1).

Moreover, the algorithm does not terminate if both arguments are nega-
tive numbers (other than trivially for those that are equal), that are outside
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its intended domain. Consider as an example the application (gcd −2 −1). It
subsitutes −2 for u and −1 for v in the body of gcd, where it recursively calls
(gcd −2 ( mod −1 −2)). From here on, the computation becomes trapped in
recursive calls of mod, as each time the value substituted for u is stepped up
by +2, whereas the value −2 substituted for v remains unchanged. Thus the
predicate (u leq v) keeps evaluating to false, i.e., it never reaches the termi-
nation condition. Essentially the same happens with all other combinations of
negative arguments. However, this problem can be easily fixed by including in
the function definitions tests for both argument values being numbers greater
than zero.

The second algorithm does not seem to compute anything useful at all.
For good reasons, it is called the roller-coaster algorithm. It is defined by a
recursive function frc of one parameter n that terminates whenever the value
of n becomes 1. However, since n is changed by frc to an even number three
times its current value (plus 1) if this value is odd, and divided by two if this
value is even, the function values appear to oscillate between high and low
numbers, and it is not clear whether the algorithm terminates at all:

frc = lambda n in if (n eq 1) then 1
else if (odd n) then (frc ((3 ∗ n) + 1)) else (frc (n/2)) .

What can safely be said though is that the algorithm terminates after k
recursive calls of frc if n is chosen to be some value 2k, where k is an integer
number greater than or equal to zero. In that case, the function keeps dividing
n by 2 until the value n = 20 = 1 is reached, at which point it stops and returns
1 as result. For all other values of n, it cannot be decided by formal reasoning
whether or not the algorithm comes to a halt or whether it runs forever. The
only way to answer this question is to run the algorithm without any time
bounds for all values of n, starting with n = 3 and proceeding upwards, and
see what happens. This has actually been done for all values up to 230 and,
interestingly enough, the algorithm has been found to terminate for all of
them. This means that, while oscillating up and down, intermediate values of
n are obviously bound to hit some value 2k eventually, from where it takes
another k calls of frc for the algorithm to come to an end.

2.1.4 Symbolic Computations

Another interesting aspect of designing algorithms concerns symbolic simpli-
fications prior to computing, say, actual numbers. The savings, in terms of
computational steps performed, may be substantial if expensive function calls
can be avoided by substituting functions directly inside each other and eval-
uating them as far as possible symbolically, without having certain function
parameters instantiated with actual values.

Consider as an example the computation of function values by means of a
Taylor series that for functions f(u) is generally of the form
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f(u) = f (0)(0) +
f (1)(0)

1!
∗ u +

f (2)(0)
2!

∗ u2 + . . . +
f (n)(0)

n!
∗ un ,

where f (n)(0) denotes the nth derivative of f at point u = 0.
If in a given algorithm we have to compute Taylor series for different func-

tions and several times for each function, it might just be a good idea to
implement a scheme for generating such series that separates the generation
of its terms from the computation of its coefficients on the one hand and from
the computation of the powers of u on the other hand. To this end, we may
define a function

taylor = lambda i n u in
if (i eq n) then ((coef i) ∗ (pow i u))
else (((coef i) ∗ (pow i u)) + (taylor (i + 1) n u))

that, when applied to initial values i = 0 and some n greater than zero, and
where the parameter u is left unspecified, generates the sum over n terms
((coef i) ∗ (pow i u)). The variables coef and pow stand for as yet undefined
functions that are to compute specific coefficients and powers of u, respec-
tively.

For a Taylor series that computes the sine, these functions would have to
be specified thus:

coef = lambda i in ((power −1 i) / (fac((2 ∗ i) + 1))) ,

pow = lambda i u in (power u ((2 ∗ i) + 1)) .

Here again we use two undefined functions, of which power is intended to
take its first argument and raise it to the power of its second argument, and
fac is intended to compute the factorial of its argument. If we just let them
stand as variables and apply the function taylor partially as (taylor 0 3), then
we can expect, as a result, an abstraction in one parameter u that has the
computation of sine expanded to four terms:

lambda u in ((((power −1 0) / (fac 1)) ∗ (power u 1))+
((((power −1 1) / (fac 3)) ∗ (power u 3))+

(((( power −1 2 ) / ( fac 5 )) ∗ (power u 5))+
(((power −1 3) / (fac 7)) ∗ (power u 7))))) .

If power is defined as

power = lambda v j in if (j = 0) then 1 else (v ∗ (power v (j − 1))

and fac is defined as earlier in this section, the above abstraction can be fur-
ther simplified to:
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lambda u in (u + ((−1/6) ∗ (u ∗ (u ∗ u)) + ((1/120) ∗ (u ∗ (u ∗ (u ∗ (u ∗ u))))
+ ((−1/5040) ∗ (u ∗ (u ∗ (u ∗ (u ∗ (u ∗ (u ∗u)))))))))) .

Now we have arrived at an abstraction for the Taylor series of sine, from
which all other function calls have been systematically eliminated, and every-
thing has been evaluated as far as is possible without knowing actual values
for the parameter u.5 Repeated computations of sine have thus been reduced
to passing one argument value and to performing a total of three additions
and fifteen multiplications. The costs of doing the function calls that generate
this abstraction must be paid for only once.

The steps that are crucial for this simplification are a partial application
of taylor that leaves the parameter u uninstantiated, and evaluation of the
partially instantiated abstraction body.

Such function specializations may also be obtained when computing new
functions from existing ones by application of functions to operands that are
themselves functions.6

As an example, consider the functions

twice = lambda f u in (f (f u)) ,
square = lambda v in (v ∗ v) ,

of which twice applies its first parameter f , which is assumed to be a function
of one parameter, twice to its second parameter u, and square computes the
square of its parameter v. When applying twice to square and to the value
2, we obviously obtain as value the square of the square of 2, which is 16.

The sequence of transformation steps that computes this value is shown
in Fig. 2.5. The first step of this sequence expands twice by the right-hand
side of its defining equation, followed by the substitution of square for f and
of the value 2 for u in the body of this abstraction. In the subsequent steps,
the two occurrences of square are expanded by the right-hand side of its
defining equation, whereupon the innermost application computes the square
of 2, returning 4, and the outermost application computes the square of 4,
returning 16.

Nothing unusual has been done here other than that we have taken the
liberty of substituting an operand that happens to be an abstraction into the
body of another abstraction. The abstraction twice is applied to two operands,
and inside it the abstraction square is applied each time to one operand, i.e.,
we have in all cases what may be called full applications, and everything works
out just as expected.

We can now take this one step further and decide that we want to compute
from twice and square a new function of one parameter that double-squares
5 The coefficients have been left as fractions for reasons of clarity but could of

course be evaluated as well.
6 In fact, we could have done the same with the computation of the Taylor series

as well if we had had more sophisticated constructs to hand that, for instance,
would allow us to define functions that are local to others.
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16

(4 ∗ 4)

(lambda v in (v ∗ v) 4)

(lambda v in (v ∗ v) (2 ∗ 2))

(lambda v in (v ∗ v) (lambda v in (v ∗ v) 2))

(square (square 2))

(lambda f u in (f (f u)) square 2)

(twice square 2)

Fig. 2.5. Computing the square of the square of 2

whatever operand value comes along. We can try to do so by applying twice
just to square, in which case we have a partial application of twice, and proceed
as illustrated in Fig. 2.6.

The interesting transformation step here is the second one, in which the
abstraction of two parameters lambda f u in . . . is applied to square, with
the second operand missing. As the parameters of the abstraction are sub-
stituted (and thereby consumed) from left to right, we obtain as a result an
abstraction in one parameter, u, in the body of which we have now square in
the two places of the first parameter f . The next step simply expands both
occurrences of square by the right-hand side of its defining equation, as a
consequence of which another two transformation | substitution steps may be
performed to arrive at the abstraction lambda u in ((u ∗ u) ∗ (u ∗ u)) that, as
expected, multiplies its operand by itself four times.

Since partial applications seem to work as well, we may feel encouraged to
try another one. This time we decide to apply the function twice partially to
itself, hoping to obtain as a result a function double twice of two parameters
that applies a function, to be substituted for its first parameter, four times to
the operand substituted for its second parameter.

Figure 2.7 shows what happens if we proceed in what appears to be the
same way as in the case of computing double square (compare Fig. 2.6).
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lambda u in ((u ∗ u) ∗ (u ∗ u))

lambda u in (lambda v in (v ∗ v) (u ∗ u))

lambda u in (lambda v in (v ∗ v) (lambda v in (v ∗ v) u))

lambda u in (square (square u))

( lambda f u in ( f ( f u)) square)

(twice square)

Fig. 2.6. Computing a new function double square
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lambda u in lambda u in ((u(u u)) ((u (u u)) (u (u u))))

lambda u in lambda u in ((twice u) (u (u u)))

lambda u in lambda u in ((twice u) ((twice u) u))

lambda u in (lambda f u in (f (f u)) (twice u))

lambda u in (twice (twice u))

(lambda f u in (f (f u)) twice)

(twice twice)

Fig. 2.7. An attempt to compute double twice naively

Again, we do not seem to be doing anything out of the ordinary, we just
replace occurrences of twice by the right-hand side of its defining equation,
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and do the substitutions of lambda-bound parameters the same way as before.
Nevertheless, something must be going wrong here, because we obviously do
not get what we expect, 7, which would be an abstraction of the form

lambda z in lambda u in (z (z (z (z u))))

(where the variable z can be freely chosen, and the choice does not really
matter).8 When applying this abstraction as

((lambda z in lambda u in (z (z (z (z u)))) square) 2)

we would get, as desired, square applied four times to 2:

(square (square (square (square 2)))) .

Instead, we obtain as a result of our transformation sequence some strange
abstraction of two parameters that are both named u, and an abstraction
body that features weirdly nested applications composed of just this variable
u which obviously do not make much sense.

Moreover, if we were to apply this abstraction as

((lambda u in lambda u in (. . .) square) 2) ,

then all occurrences of u in the abstraction body would be substituted either
by square or by 2, depending on whether they are bound by the inner or by
the outer lambda u, which so far we do not really know yet. All we can say is
that neither substitution is correct.

The cause of the problem is obviously an unresolved naming conflict.
The accident happens in the fourth step of Fig. 2.7. Here we apply, in
the body of the outer abstraction lambda u in (. . .), the inner abstraction
lambda f u in (f (f u)) to the operand (twice u), in which the u is bound to
the outer lambda u. This operand is substituted for occurrences of f in the
abstraction body, with the inner lambda u remaining in front. It now parasit-
ically binds the u in the substituted expression (twice u), i.e., the u changes
its binding status and thus becomes confused with the occurrences of the u
that were originally bound to the inner lambda u.

As such naming conflicts can potentially occur when substituting, under
abstractions, variables that are either free-floating or bound in larger contexts,
we have to be careful about these situations. If a conflict does indeed occur,
we obviously have to rename one of the conflicting variables to resolve it.

We will return to this naming problem after we have learned a little more
about the underlying theory. For now it may suffice to know that such a
problem exists.
7 It should also be noted that we have chosen to do the substitutions in a sequential

order that yields the particular nesting of parentheses in the resulting abstraction
body. Another sequence of substitutions would result in another structure, which
is another indication that we are obviously making a mistake here.

8 Alternatively, we could have renamed the variable bound by the inner lambda,
obtaining lambda u in lambda z in (u (u (u (u z)))).
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2.1.5 Operating on Lists

Our excursion into algorithmics would be incomplete without introducing at
least the very basics of operating on structured objects, which is what is in-
volved in almost all nontrivial computations. The simplest and most versatile
forms for representing such objects are lists or linearly ordered sequences of
expressions, denoted as < e1 . . . ei . . . en > . The expressions e1 . . . en are
called the elements (or components) of the list. A list without any elements is
said to be empty, denoted as <>.

Lists may be considered expressions themselves, i.e., they may be recur-
sively nested inside each other to construct lists of lists without any bounds.

It takes only three primitive structuring operators to define recursive func-
tions that rearrange (sort) the elements of a list, search lists for elements that
satisfy specific properties, decompose lists and construct lists from sublists,
etc. These primitives are

• first, which, when applied to a nonempty list, returns its first element;
• rest, which, when applied to a nonempty list, returns the list without its

first element;
• append, which, when applied to a first and a second list, returns a new

list containing the elements of the first list followed by the elements of the
second list;

and are undefined otherwise.9

We also need some primitives that test for elementary list properties. These
primitives include

• is list, which returns the Boolean value true when applied to a list, and
false when applied to something else;

• empty, which, when applied to an empty list, returns the Boolean value
true, when applied to a nonempty list returns false, and is undefined
otherwise.

The use of these primitives may be captured in a nutshell by means of an
algorithm that reverses the order of elements in a list:

reverse = lambda list in
if (is list list)
then if (empty list) then list

else (append (reverse (rest list) < (first list) >)
else ”the argument is not a list”

(reverse < e1 . . . en > <>) .

9 It should be remembered here that we impose no restrictions whatsoever on the
expressions that the primitives may be applied to, i.e., the arguments could be
something other than lists.
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The function reverse takes as the parameter list a list whose elements are
to be rearranged in reverse order. As long as the list substituted for list is
not empty, the function calls itself recursively with the current rest of list,
and with its first element appended to it. The algorithm thus terminates with
the reverse list returned as the function value after as many recursive calls of
reverse as there are elements in the list.

2.2 A Word on Typing

Throughout the preceding section we have used, somewhat sloppily, the term
‘function’ whenever we meant to refer to a particular algorithmic realization of a
function, of which – as the computation of factorial exemplifies – there is usu-
ally more than one. The mathematical notion of a function, however, is simply
that of a mapping of a well-defined set of input values, usually called the func-
tion’s domain, to a well-defined set of output values, called the function’s range.
Such sets are, for instance, all nonnegative integer numbers {0, 1, 2, . . .}, the
integer numbers in a certain interval, say {−1000, . . . , −1, 0, +1, +999}, real
numbers (which have a fractional part), Boolean values, or character strings,
but also sets of composite objects whose components are from any of the other
possible sets, such as lists of integers, lists of lists of integers, etc.

This notion of a function enters our algorithmic specifications more or less
through the back door in the form of test operators such as is num or is list.
They are to make sure that the input parameters are in an intended domain
for which the algorithm can somehow be guaranteed to produce results that
are within an intended range. It may occasionally even be necessary to further
restrict the domain of input values to a certain subset by means of additional
predicates.

As escape hatches for tests that fail we have chosen as return values char-
acter strings such as ”the argument is not a number” which may be considered
error messages that are usually outside the intended range of the function.

If we forgo these tests, as we have actually done in some of the algorithms,
nothing goes wrong as long as the argument values are within the intended
domains, but we may end up either with perfectly valid but undesired results
(as in the case of the factorial function applied to negative numbers), with
expressions that are not fully evaluated (e.g., when applying fac to character
strings), or with nontermination (e.g, when trying to compute the greatest
common denominator of negative numbers) otherwise.

Keeping such tests optional means that the responsibility for specifying
algorithms that do exatly what they are supposed to do in terms of mapping
legitimate input values to correct output values and for intercepting illegit-
imate inputs or other exceptional conditions lies fully in the hands of the
individuals who design these algorithms.

This freedom in designing algorithms contrasts with the notions of types
and of type systems supported by almost all programming languages known
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today. These notions make functions (or other forms of abstractions such
as procedures) as mappings from domain to range sets an integral part of
program design. Types are just programming terminology for sets of legitimate
values of some kind, including mappings, and type systems specify the rules
by which types must be assigned to individual program components in order
to have the entire program consistently typed. To this end, the type system
of a modern programming language usually comes with a set of basic types
for constant values (such as integers, reals, characters, etc.) and for primitive
operators, with some composite types for structured data (such as vectors,
arrays, records, etc.), and with mechanisms that allow the programmer to
define types of his/her own, based on the types provided by the type system.

The idea of a type system is to admit for execution only programs that,
beyond being correctly constructed, are also consistently typed, meaning that
there are no type conflicts of the kind where, say, a producing operation deliv-
ers a result of a type different from that expected by a consuming operation.
Such programs are said to be well typed.

Other than raising confidence in the orderly behavior of programs, type
consistency is also something that the underlying machine demands. As all
contemporary computing systems just execute free-running code composed of
sequences of instructions that simply expect the right things, in the form of
otherwise indistinguishable bit patterns, to be in the right places in memory
at the right time and in the right format, typing plays an important role, as
part of the compilation process, in preparing memory layouts and in selecting
the appropriate type-specific instructions that operate correctly on them.

Consistent typing may either be inferred from the types assigned by the
system to (composite) constant values and primitive operators, which is gen-
erally the case with functional languages, or types may have to be explicitly
declared in programs, which is what most conventional (imperative) languages
demand.

To illustrate how type inference basically works, we consider again as an
example the factorial function of subsection 2.1.2:

fac = lambda n in if (n gt 1) then (n ∗ (fac (n − 1))) else 1 .

With this function as it is, we may infer a type for fac and for n by the
following consideration: the arithmetic operators ‘−’ and ‘∗’ are, by definition
of the type system chosen, both assumed to be of the function type num ∗
num → num which, loosely speaking, maps pairs of numbers to numbers
(with num denoting the type number). For the sake of simplicity, we will
assume that the relational operator gt is of type num ∗ num → bool only,
i.e., it maps pairs of numbers to Boolean values. With this in mind, we can
immediately infer from the subexpressions (n−1) and (n gt 1) that the values
substituted for n must be of type num in order to be type-compatible with ‘−’
and ‘ gt ’, respectively. Looking next at the subexpression (n ∗ (fac (n− 1))),
we can conclude that fac must have the function type num → num since it
must map arguments of type num (the values of (n− 1)) to result types num
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that must be compatible with the argument type of the operator ‘∗’. Now we
see that the types of both the consequent and the alternative (which is the
constant value 1) of the if then else clause are num, i.e., the type of the
entire clause is num.10 This in turn leads us to conclude that the abstraction
on the right-hand side of the above equation must have the function type
num → num since it maps arguments of type num substituted for n to
function values of type num. This is consistent with the type of fac on the
left-hand side that has already been inferred.

Thus, applications of fac to numbers are guaranteed to return numbers as
results. The only problem left is the type num itself. If it is confined to integer
numbers greater than zero, then all values returned by the function are also
correct; if it includes negative numbers as well, then typing alone does not
prevent results that are incorrect with respect to the definition of factorial.

Type inference as outlined above can of course be automated and per-
formed prior to actually executing a program. Ideally, the programmer need
not worry much about types unless the program may be rejected because of
type inconsistencies, or type inference cannot be completed owing to some am-
biguities, in which cases the type system must be helped with type annotations
to the program parts that cause those ambiguities.

The less sophisticated alternative to type inference is type annotations to
all program variables, which the type system must check only for consistency.
This places more responsibility on the programmer but also helps to identify
potential causes of type inconsistencies more easily.

Type annotations in the case of the factorial function would typically take
the form

fac : num → num = lambda n in
if (n gt 1) then (n ∗ (fac (n − 1))) else 1 ,

which has the function symbol annotated with the function type, or

fac : num = lambda n : num in
if (n gt 1) then (n ∗ (fac (n − 1))) else 1 ,

which has the binding occurrence of n on the right-hand side annotated with
the domain type num and the function symbol fac on the left-hand side
annotated with the range type num.

Programming languages which demand that their programs be consistently
typed before they can be executed are said to be statically typed, and the type
10 More precisely, we should consider the if then else clause as an application of a

function if to predicate, consequent and alternative as arguments that, depending
on the value of the predicate, selects either of the latter two as the result, i.e., it
realizes a mapping bool ∗ type ∗ type → type, where type denotes some arbitrary
type that is num in our particular example.



34 2 Algorithms and Programs

systems that validate consistent typing either by inference or by checks against
type annotations are said to be static type systems.

The idea of dynamically typed languages is that programs may be written
with little concern for types, as type checking is done completely at runtime
and kept to a minimum. The type-checking mechanisms are assumed to be
built into the machines, on the basis of type tags carried along with the ob-
jects of the language, and usually intercept only type inconsistencies between
primitive operators and the operands they are actually applied to, for in-
stance between arithmetic operators and operands other than numbers. Such
languages are also referred to as being untyped or type-free. As we will see later
on, they provide more freedom in program design, particularly in the area of
symbolic computations, since they permit programming techniques such as
self-applications of functions, for instance as in our double twice example,
or differently typed consequences and alternatives of if then else clauses,
which would not be accepted by static type systems.

This kind of language is the one we have introduced more or less ad hoc in
the preceding section to discuss a few simple algorithms and how they ought to
be executed. Expressions with type inconsistencies, as we have indicated, are
simply considered constant here and remain unchanged, in this form making
explicit what may have gone wrong. The flavor of this approach, as opposed
to system-generated error messages, is that it is left to the programmer, not to
the system, to decide how to interpret such situations and what to do about
them.

As a language of reference, we will therefore settle, in the remaining text,
for a dynamically typed (or type-free) algorithmic language that builds on the
language fragments of the preceding section, and will add typing only when
and to the extent necessary.

2.3 Summary

In this chapter, we have discussed in a rather informal style some important
aspects of the prpocess of designing and mentally or mechanically executing
algorithms. These aspects include the concepts of abstractions, variables, re-
cursion (and related to it termination problems), symbolic computations and
the basics of operating on structured data. We have also given an overview of
types and type systems and the role they play in ensuring that algorithms (or
programs) compute legimitate output values from legitimate input values.

The chapter is intended as an introduction to and motivation for a more
formal treatment of the syntax and semantics of an algorithmic language and
of the underlying theory of the λ-calculus, which are the subjects of the next
two chapters. The λ-calculus and, to a lesser extent, the particularities of the
algorithmic language provide the guidelines for the design of the various ab-
stract computing machines that we are going to study in subsequent chapters.
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An Algorithmic Language

Now that we have a fairly good idea of how abstract algorithms should be
specified and executed, we can get a bit more formal and introduce a dynami-
cally typed algorithmic language called al that enables us to precisely express
computational problems in a form very similar to the way in which we have
been doing this in the preceding chapter. This language must be complete
in the sense that all intuitively computable problems can be specified by fi-
nite means. It must feature a syntax that defines a set of precise rules for
the systematic construction of complex algorithms from simpler parts and a
semantics that defines the meaning of algorithms, i.e., what exactly they are
supposed to compute, and at least to some extent also how these computations
need to be carried out conceptually.

We will call this language expression-oriented since the algorithms are com-
posed of expressions and are expressions themselves, and the objective of ex-
ecuting algorithms is to compute the values of expressions.1 These compu-
tations are realized using a fixed set of transformation rules. The systematic
application of these rules is intended to transform expressions step by step
into others until no more rules are applicable. The expressions thus obtained
are the values we are looking for.

It should be noted here that the term value is given a more general in-
terpretation than is traditionally the case. Values are not necessarily atomic,
such as numbers, but may also be rather complex (aggregate) expressions that
cannot be transformed into anything else and are therefore in some sense con-
stant. Such constant expressions may include functions, function applications
and variables in specific contexts.

Denoting expressions by e or ei (with the index i assuming values from
the set {0, . . . , n}), we can describe such a computation as a sequence

e0 → e1 → . . . → ei → ei+1 → . . . → en

1 Though there are close similarities, we have deliberately chosen not to call al a
functional language, since we will use it in a broader sense than what is usually
understood by this term.



38 3 An Algorithmic Language

where e0 is the start expression, en is the terminal expression (or the value of
e0), and the transition from ei to ei+1 comes about by application of a single
transformation rule.

The expressions in this sequence have a very important property: if en

is assumed to be the value of e0, then we can also say that both e0 and en

mean the same thing, or have the same meaning (or semantics), even though
syntactically the two expressions may look quite different. This being the
case, we can also say that e1 and, for that matter, all other expressions in the
sequence have the same meaning as e0, or that all expressions in the sequence
mean the same thing. The rules by which these expressions are transformed
into each other are necessarily meaning-preserving as they obviously replace
equals by equals.

This idea may be illustrated by evaluating, in three transformation steps,
a simple arithmetic expression:

((5 + 3) ∗ (8/4)) → (8 ∗ (8/4)) → (8 ∗ 2) → 16 .

Here we see clearly that all (sub)expressions are, by rules of the arithmetic
calculus, systematically replaced, from innermost to outermost, by numbers.
All expressions in the sequence differ syntactically but have the same meaning,
or are semantically equivalent.

It is important to note that we are talking about semantic equivalence
here, or about two expressions having the same meaning. This in no way
explains what an expression by itself means. In the given language, it is just
a syntactical figure, and it may take another language to give it a meaningful
interpretation that, in turn, requires yet another level of interpretation, and
so on.

So, strictly speaking, we can talk only about syntactical figures and about
purely syntactical transformations of expressions into expressions that we con-
sider to be meaning-preserving, but we cannot talk about meaning or seman-
tics itself.

3.1 The Syntax of al Expressions

We are now going to define the construction of al expressions from the bottom
up, starting with the simplest (the atomic) expressions and moving on to the
more complex ones.

The atomic expressions include constant values such as numbers (for the
time being we do not distinguish between integers and reals), character strings,
the Boolean values true and false, variables, and the usual symbols for prim-
itive arithmetic, logical and relational operators. These expressions are called
atoms (or ground terms) since they are not composed of other expressions of
the language.

With the atoms as a basis, we can now proceed to define some syntac-
tical constructs or syntactical forms that are composed of expressions and
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are expressions themselves. They may be used to construct more complex
expressions by substituting expressions in syntactical positions reserved for
expressions. For the definition of these forms we assume that e0, e1, . . . , en

and e denote legitimate expressions of the language, and that v1, v2, . . . , vm

and f1, . . . , fk denote variables (or identifiers).
In the following itemization, we do not just give the syntax of these forms

but also explain very briefly what they are good for. A more formal definition
of their semantics is postponed until later in this chapter.

• (e0 e1 . . . en) denotes the application of an expression e0 to the expressions
e1 . . . en. The expression e0 is said to be in operator position and the ex-
pressions e1 . . . en are in operand positions of the application. Applications
are the most important expressions of the language as they are the ones
to which transformation rules may be applied. This is possible whenever
the expressions in operator position specify legitimate operators that can
be applied in some meaningful way to the operand expressions, resulting
in other expressions that replace the applications.2

• if e0 then e1 else e2 is a special syntactical form that denotes the ap-
plication of a predicate e0 to consequent and alternative expressions e1 and
e2, respectively. It is meant to select either e1 or e2 for further evaluation,
depending on the value of the predicate e0 (which must either be true or
false).

• lambda v1 . . . vn in e0 denotes an abstraction of the variables v1 . . . vn from
the expression e0, or a nameless function of n formal parameters v1 . . . vn

whose body expression e0 specifies the computation of function values. The
lambda is said to bind the variables v1 . . . vn in the body e0, which is also
referred to as the scope of what we call the abstractor lambda from now
on.
Abstractions are legitimate operators. Applications with abstractions in
operator position have a transformation rule defined for them that, loosely
speaking, returns the abstraction bodies with occurrences of all lambda-
bound variables substituted by the expressions that are in operand posi-
tions.

• < e1 . . . en > denotes an n-ary list (or a sequence of expressions) as a
means for arranging expressions in a particular order, of which it makes
sense to talk about a first, a last or some i-th component. Lists may be
empty, denoted as <>.

• letrec f1 = e1 . . . fk = ek in e0 is the most complex expression.
The keyword letrec precedes a set of defining equations that equate the
variables f1, . . . , fk with the expressions e1, . . . , ek, respectively,

2 This prefix notation for applications, which requires that operators must always
precede operands, is, for reasons of uniformity, used throughout the rest of this
text. This includes applications of primitive binary operators that are usually
written in infix notation; i.e., something like (e2 prim op e1) must be rewritten
as (prim op e1 e2).
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and binds them in each of the expressions e1, . . . , ek and also in e0.
In fact, these variables may be considered names or function identifiers by
which the respective expressions on the right-hand sides may be referenced
somewhere else in the entire letrec expression.
The idea is to have e1, . . . , ek specified as abstractions that may call
each other in a mutually recursive manner by their assigned names (or
identifiers). For instance, in the body of the abstraction named fi we may
have occurrences of fi, in which case the abstraction recursively calls itself,
or occurrences of variables fj | j �= i, in which case some other abstractions
specified under the letrec construct are called.
The value of the entire letrec expression is the value of the goal expression
e0, in which occurrences of the identifiers f1, . . . , fk are (recursively)
substituted by the right-hand sides of the respective defining equations.

• let v1 = e1 . . . vn = en in e0 is a special variant of the letrec expression
that binds occurrences of the variables v1, . . . , vn nonrecursively just in
the goal expression e0. The value of a let expression, again, is defined
as the value of e0 in which all occurrences of the let-bound variables are
substituted by the values of the expressions on the right-hand sides of their
defining equations.

• nothing else is a legitimate expression of the language.

A concise definition of these syntactical forms may be written as

e =s const | var | prim op |
(e0 e1 . . . en) |
if e0 then e1 else e2 |
let v1 = e1 . . . vn = en in e0 |
lambda v1 . . . vn in e0 |
<> | < e1 . . . en > |
letrec f1 = e1 . . . fn = en in e0 .

An expression e may assume any of the alternative syntactical forms listed
on the right of the =s sign (which denotes syntactical equivalence), and the
expression symbols ei appearing in these forms may be recursively expanded
by any of the alternatives. The expansion stops when all expression symbols
ei have been substituted by any of the atoms const, var, prim op of the
language, which denote constant values, variables, and primitive operators,
respectively.

Constants are either numbers represented as strings of decimal digits that
may include a decimal point, plain text represented as strings of characters
enclosed in quotation marks ”, or the Boolean values true and false. Vari-
ables are strings of letters, digits and underscores that have a letter as the first
character, and the primitive operators include +, −, ∗, / for arithmetic,
and, not, . . . for logical, and eq, neq, gt, . . . for relational operations. There
are also some primitives such as first, rest, . . . , append that operate on
lists.
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This syntax provides complete freedom for inserting syntactical forms into
each other. Any legitimate expression may appear in any syntactical position
reserved for an expression in any other expression. For instance, in an ap-
plication we may have constant values, if or let expressions, or even lists
in operator position, and letrecs, abstractions, variables or primitive oper-
ators in operand positions, or we may have primitive operators applied to
incompatible operands. Typical examples of the latter kind are the expression
(+ ”abc” <> ) which tries to add a character string to an empty list, or the
expression if (”abc” u) then 1 else 2 whose predicate expression cannot be
evaluated to a Boolean value that is required to select between the consequent
and the alternative.

That is to say, the syntax enables us to specify lots of expressions that are
not very meaningful; nevertheless, they are correctly constructed and therefore
perfectly legitimate. Unless we impose further restrictions on the construction
of what we choose to consider legitimate expressions, we simply have to live
with this situation and have to have the evaluation mechanism (or the seman-
tics) take care properly of expressions that obviously make no sense.

3.2 The Evaluation of al Expressions

We are now ready to define how al expressions may be evaluated. All we need
to do is to go through all the syntactical forms introduced in the preceding
section and write down the rules for computing their values. As a first step,
we will do this in a way that completely abstracts from the mechanisms of
any underlying machinery to develop just some basic understanding as to how
we have to proceed in principle.

For this purpose we introduce an abstract evaluator called eval. It may be
considered a meta-function that maps every syntactical form into another one
representing its value, or meaning. In this sense, eval may also be considered
the semantic function of the language. It is defined by recursive application
to either all or selected subexpressions of the syntactical forms, the selection
being determined by the choice of a suitable evaluation strategy that can be
expected to deliver result values with whatever may be considered a near-
minimal computational effort.

We are going to define eval on the basis of a strategy that intuitively
makes a lot of sense: it simply demands that generally the operands of ap-
plications be evaluated before the operators are applied to them, and that
the cases in which this strategy causes problems be singled out and treated
differently. This strategy is fairly straightforward to implement, yields a high
runtime efficiency and is therefore taken as the best choice for the overwhelm-
ing majority of application problems. In fact, this operands-first strategy is
implemented in almost all imperative programming languages, and in this
context is also referred to as the call-by-value strategy.
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Denoting the application of eval to some expression e by eval� e � and
going from top to bottom through the list of syntactical forms, we have

• for atomic expressions such as constants, variables and primitive operators,

eval� atom � = atom ,

i.e., they all are their own values (or meanings);
• for applications with unspecified expressions in operator and operand po-

sitions,

eval� (e0 e1 . . . en) � = eval� (eval� e0 � eval� e1 � . . .eval� en �) � ,

i.e., eval is recursively driven in front of the subexpressions whose values
need to be computed before the operator may be applied to the operands
(which is effected by the outermost eval);3

• for if then else expressions (or conditionals)

eval� if e0 then e1 else e2 �

=

⎧⎨
⎩

eval� e1 � if eval� e0 � = true
eval� e2 � if eval� e0 � = false
if eval� e0 � then e1 else e2 otherwise ,

that defines as the value of the entire expression either the value of e1

or that of e2 if e0 evaluates to a Boolean value, but leaves the syntactical
form intact and e1 and e2 unevaluated if the value of e0 is something else;4

• for let expressions,

eval� let v1 = e1 . . . vn = en in e0 �
= eval � e0[ v1 ←eval � e1 � . . . vn ←eval � en � ] � ,

i.e., it evaluates to the value of e0 in which all occurrences of the let-bound
variables have been substituted by the values of the respective defining ex-
pressions, with vi ←eval� ei � | i ∈ {1, . . . , n} denoting such substitutions;

• for anonymous abstractions occurring in other than operator positions of
applications,

eval� lambda v1 . . . vn in e0 � = lambda v1 . . . vn in eval� e0 � ,

3 An alternative evaluation strategy, on which we will focus extensively in later
chapters, leaves the operand expressions of applications unevaluated, at least as
long as it is not known what the value of the operator is going to be.

4 It should be noted that the if then else construct is just a special syntactical
form of an application (e0 e1 e2) that allows us to define eval so that just one
of the operands e1, e2 is evaluated after the value of the operator e0 has been
determined, i.e., superfluous computations of things that are thrown away are
avoided.
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meaning that abstractions need to have their body expressions evaluated
to determine their values, which must be done with care though;

• for lists,

eval� <> � = <> and
eval� < e1 . . . en > � = <eval� e1 � . . . eval� en � > ,

i.e., their values are recursively computed from the values of their subex-
pression while preserving their structure;

• for letrec expressions,

eval� letrec . . . fi = ei . . . in e0 �
= eval� e0[. . . fi ←eval� ei[ . . . fi ← letrec . . . in fi . . . ] � . . .] � .

This rather complicated-looking definition may be read as follows: the
value of the entire letrec is the value of its goal term e0, computed by ex-
panding all occurrences of the function identifiers fi with (the values of) the
right-hand sides ei of their defining equations. These values must, in turn,
be computed by substituting occurrences of the identifiers fi in these ex-
pressions again, this time by copies of the full letrec expressions, which,
however, have their goal expressions replaced by just the identifiers fi

themselves. These specialized syntactical forms letrec . . . fi = ei . . . in fi

in fact represent the expressions ei in unevaluated form, as the goal ex-
pressions fi simply select them from the set of defining equations whenever
evaluation of the entire letrec expression is enforced by driving the meta-
function eval in front of them.
That is to say, copies of the complete letrec expression, specialized by
the abstractions that need to be selected, are passed along as long as iden-
tifiers fi are left in the actual goal expression. As soon as all of them have
disappeared, the letrec expression is dropped as well since the function
definitions are no longer needed for the computation to continue.

We have now gone through all the syntactical forms, but the definition
of eval is far from being complete. So far, we have only covered the general
case of applications that have unspecified expressions in operator and operand
positions. What is still missing is the special cases where the expressions in op-
erator position are (or evaluate to) abstractions or primitive operators. These
applications define the real actions of transforming expressions into others.

Applications of n-ary abstractions to n operands expressions, i.e., the stan-
dard cases of full applications, are transformed by eval as

eval� (lambda v1 . . . vn in e0 e1 . . . en) �
= eval� e0[ v1 ← eval� e1 � . . . vn ← eval� en � ] � .
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They evaluate to the values of the abstraction bodies e0 in which all occur-
rences of lambda-bound variables (the formal parameters of the abstractions)
are substituted from left to right by the values of the operand expressions in
the order in which they occur in the applications.5

However, the syntax of the language also allows for inequalities between
the arity n of the abstraction and the number m of arguments. We could in
such cases opt for the coward’s approach of simply defining the value of such
an application to be a character string signifying a mismatch:

• eval� (lambda v1 . . . vn in e0 e1 . . . em) � | m �= n =
”function of arity n receiving m arguments” .

The computation could then be aborted and this string be returned as the
value of the entire expression.

Alternatively, we could try to do a little better and go for the following
solutions:

• if the number m of arguments exceeds the arity n of the abstraction, we
may define the value to be a new application whose operator is an expres-
sion resulting from the application of the n-ary abstraction to n arguments
and whose operands are the remaining m − n evaluated arguments:

eval� (lambda v1 . . . vn in e0 e1 . . . em) � | m > n =
eval� (eval� e0[ v1 ← eval� e1 � . . . vn ← eval� en � ] �

eval� en+1 � . . . eval� em �) � ;

• if the arity n of the abstraction exceeds the number m of arguments, in
which case we have a partial application, its value may be defined as

eval� (lambda v1 . . . vn in e0 e1 . . . em) � | m < n =
lambda vm+1 . . . vn in

eval� e0[ v1 ← eval� e1 � . . . vm ← eval� em � ] � ,

i.e., it is an abstraction of arity n − m, in the body of which free oc-
currences of the bound variables v1, . . . , vn are now substituted by the
evaluated arguments.

However, the case m < n must be treated with particular care. As we
have learned in Sect. 2.1, it could potentially cause naming conflicts between
the remaining lambda-bound variables of the resulting abstraction and free-
floating variables in the argument expressions that are being substituted under
the lambda abstractor. The cases n = m and m > n and, as indicated ear-
lier, also the evaluation of isolated abstractions are not entirely free of this
5 Here again, we could alternatively leave the operand expressions unevaluated as

it may very well happen that some of them are just thrown away without further
action when the abstraction body is subsequently evaluated.
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problem either, as abstraction body expressions may recursively contain other
abstractions that may be penetrated by substitutions.

At this point in the discussion, we are not yet ready to deal with this
problem, so we have to postpone proper treatment of it until later, and for
now we must just keep in mind that the substitutions defined above must be
considered naive in the sense that they do not resolve naming conflicts.6

To play it safe, we can take the conservative approach of alternatively
defining the value of a partial application to be of the form

eval� (lambda v1 . . . vn in e0 e1 . . . em) � | m < n
= [ eval� em � . . .eval� e1 � lambda v1 . . . vn in e0 ] ,

that has the evaluated arguments and the abstraction wrapped up in a con-
struction embraced by the brackets [ ] that is called a closure. It represents the
value of a new abstraction of arity n−m without actually computing it, thus
avoiding substitutions under abstractors and the naming conflicts that may
come with them. Closures may be treated just like ordinary abstractions, i.e.,
they may be passed along as operators or operands of other applications and
pick up more arguments until they reach the status of full appplications, at
which point they may be evaluated by actually doing the (postponed) substi-
tutions in the abstraction body then exposed.

Similar considerations regarding arities, though not involving name clashes,
apply to applications of primitive operators as well. For the time being we de-
fine eval only for applications in which the arities of the operators (usually
one or two) match the number of operands.

Turning first to (binary) arithmetic operators, which we summarily denote
by arith op, and using num, num1 and num2 to denote numbers, we have

eval� (arith op e1 e2) � =

⎧⎨
⎩

num if num1 =eval� e1 � ∧ num2 =eval� e2 �

(arith op eval� e1 � eval� e2 �) otherwise ,

i.e., the value of the application is a number if both e1 and e2 evaluate to
numbers, and this value is given by applying the operator to both operand
values; in all other cases the application simply remains as it is, other than
that both e1 and e2 are now replaced by their values.

Likewise, for applications of relational operators, denoted as rel op, and
using str1 and str2 to denote character strings, and bool to denote Boolean
values, we obtain

6 A simple way out of this naming problem would be to make all variable names
unique throughout the entire algorithm, which, however, might become difficult
with growing size and complexity of the algorithm, even more so if it is assembled
from independently written parts.
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eval� (rel op e1 e2) � =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bool if str1 =eval� e1 � ∧ str2 =eval� e2 �
or
num1 =eval� e1 � ∧ num2 =eval� e2 �

(rel op eval� e1 � eval� e2 �) otherwise ,

i.e., the value of the application is a Boolean value if the operands are ei-
ther both character strings (in which case the operator uses lexical ordering
to decide about truth or falsity) or both numbers, otherwise the application
remains intact.

To make the story complete, we also give the definition of eval for a few
operators that apply to lists. Here we make use of the fact that the compo-
nent expressions of lists need not be evaluated in order to render primitive list
functions applicable, i.e., eval needs to drive the evaluation of the operand
expressions only to the point where it can be decided that they are lists or
something other than applications:

eval� (empty e) � =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

true if eval� e � = <>

false if eval� e � =< e1 . . . en >

(empty eval� e �) otherwise ,

eval� (first e) � =

⎧⎨
⎩

e1 if eval� e � =< e1 . . . en >

(first eval� e �) otherwise ,

eval� (rest e) � =

⎧⎪⎪⎨
⎪⎪⎩

< e2 . . . en >
if eval� e � =< e1 e2 . . . en >

( rest eval� e � ) otherwise ,

eval� (append e1 e2) � =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

< e11 . . . e1n e21 . . . e2m >
if eval� e1 � =< e11 . . . e1n >

and eval� e2 � =< e21 . . . e2m >

(append eval� e1 � eval� e2 �) otherwise .

In all four cases, the applications return the expected values if the operands
are lists, i.e., a Boolean value if the list is empty or not empty, the first element
of a list, a list of elements minus its first element, and a concatenated list of
elements, respectively. Otherwise, the applications are left intact other than
that the operands are evaluated to whatever their values are.

It is important to note at this point that the definition of eval for the
primitive operators in fact includes dynamic type checking. Applications of
these functions are evaluated only if the arguments are of compatible types,
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otherwise they are left intact, except that the arguments themselves are eval-
uated. This is in compliance with what we said at the end of Chap. 2 about
the preferred treatment of type inconsistencies detected at execution time.

The meta-function (or abstract evaluator) eval in fact defines an opera-
tional semantics for al. It tells us not only what an expression means (or what
its value is), but also how a person or a machine may proceed to compute
this value. A close look at the definition of eval for applications reveals that
we have some degree of freedom in choosing the order in which individual
computational steps may be performed.

We observe that eval, when applied to an application, is driven in front
of its subexpressions but that the eval in front of the application does not
yet disappear. This means that the subexpressions need to be evaluated be-
fore the value of the entire application can be computed. However, since the
subexpressions are syntactically completely independent of each other, they
may be evaluated in any chosen order, even simultaneously, and their values
will always be the same.

The evals are recursively propagated from outermost to innermost until
subexpressions are encountered that, by definition, are their own values and
let the evals disappear. The same happens with evals in front of applications
whose components are all (atomic) values. These applications may either be
evaluated to something else if they apply legitimate operators to compatible
operands, e.g., arithmetic operators to numbers, or else be left unchanged,
i.e., they too are their own values.

Thus, the evals that are recursively driven from outermost to innermost
into an application may be considered demands that force the evaluation of
its subexpressions. These demands are obviously satisfied from innermost to
outermost as the evals disappear again.

The example in Fig. 3.1, which shows how eval goes about evaluating the
arithmetic expression (∗ (− 3 (+ 2 3)) (/ 3 6)), may help us to understand
what is going on here. The eval that initially sits in front of the entire ap-
plication, demanding its evaluation (topmost line), spreads out over both of
the outermost operand expressions (− 3 (+ 2 3)) and (/ 3 6) but leaves the
operator ∗ alone since it is already a value (second line from the top). Next,
eval simultaneously penetrates the first operand to force the evaluation of
(+ 2 3) and evaluates the second operand to 2, which lets the eval in front
of it disappear as the demand is now satisfied (third line from the top). All
other evals can now be satisfied from the inside out.

3.3 Summary

In this chapter, we have introduced an expression-oriented type-free algorith-
mic language al that will be used as a reference language throughout the
remainder of this text.
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eval� ( ∗ 2 2 ) �

eval� ( ∗ eval� ( − 3 5 ) � 2 ) �

eval� ( ∗ eval� ( − 3 eval� ( + 2 3 ) � ) � 2 ) �

eval� ( ∗ eval� ( − 3 ( + 2 3 ) ) � eval� ( / 3 6 ) � ) �

eval� ( ∗ ( − 3 ( + 2 3 ) ) ( / 3 6 ) ) �

Fig. 3.1. The abstract evaluator at work

The syntax of al provides several syntactical forms (or constructs) for
expressions, the most important one being the application of an operator
expression to one or more operand expressions, that may be freely combined
with each other to design complex algorithms recursively from simpler parts.
The semantics of this language is defined by an abstract evaluator (function)
eval that prescribes how and in what (partial) order the value of an expression
may be computed from the values of its component expressions.

Unfortunately, the syntactical freedom in designing al algorithms invites
a number of problems that have to be dealt with semantically but are not yet
fully covered by the definition of eval.

Owing to the absence of a type system, there are many expressions that are
perfectly legitimate syntactically but do not make much sense semantically.
For instance, we may have applications whose operator expressions are (or
evaluate to) to something other than legitimate operators, e.g., numbers or
character strings, or are legitimate operators that are not type-compatible
with the operands. eval considers such applications as constant expressions
that are their own meanings, and leaves them as they are.

Syntactically, we may also have partial applications in which the arities of
the operators exceed the number of operands. The precise definition of their
evaluation must, for the time being, be left open for it may involve another
problem: since variables may occur in all syntactical positions of expressions,
specifically variables that are nowhere bound, there is always a potential for
naming conflicts that render the results of computations dependent in intricate
ways on the order of evaluating subexpressions.

Another open problem is the choice of the evaluation strategy, which pri-
marily relates to the question of whether and to what extent operand expres-
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sions ought to be evaluated before operators may be applied to them. eval
demands that, generally, all operand expressions of applications be fully eval-
uated irrespective of the operators. This operands-first regime seems to make
a lot of sense in many but not all cases. Unfortunately, in the case of recursive
function calls it is bound to inflict runaway recursions even if termination
conditions are correctly specified, say, in the form of selector expressions with
multiple alternatives. The cause of the problem is that the operands-first strat-
egy forces the evaluation of all alternatives, among them those that include the
recursive calls, before the selection that throws away all but one of them can
actually be performed. It takes a few exceptions to the operands-first rule in
the definition of eval to deal with this and related issues of non-terminating
or at least superfluous computations.

As an alternative, one could think of a strategy that generally applies
operators to operands in unevaluated form and has the operators force the
evaluation of operands whenever values are needed. It would eliminate the
special cases from the definition of eval which in fact overrule the operands-
first regime whenever there is a risk of doing superfluous work or of getting
trapped in runaway recursions. However, there are also some strings attached
to this operands-when-needed strategy: passing operands in unevaluated form
to functions may inflict redundant computations insofar as the operands may
have to be repeatedly evaluated in multiple places of substitution.

In order to fully understand the nature of and deal with all these problems,
we have to undertake a little excursion into theory which we will do in the
next chapter.
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4

The λ-Calculus

The λ-calculus, first published by Church in 1932, i.e., some time before the
first computers came into being, is one of the mathematical models that were
developed nearly at the same time in response to one of the problems raised
by the mathematician Hilbert around the beginning of the 20th century. This
problem concerns the question of whether there exists a general mechanical
method of proving the truth or falsity of logical conjectures, which directly re-
lates to the question of what is algorithmically computable. The other models in-
clude Schoenfinkel’s and Curry’s combinators (a special form of the λ-calculus),
Goedel numbers, Post’s production system, Kleene’s recursive functions, Markov
algorithms and, most prominently with regard to mechanical computations
that can be peformed by digital machinery, the Turing machine. Though it is
not quite clear what computability really means, some comfort can be derived
from the fact that all of these models are in fact equivalent to each other. This
has led to the well-known Church-Turing thesis, which states that intuitively
or effectively computable problems are exactly those that are computable by
Turing machines, or are Turing computable (and, for that matter, computable
by the other models as well).

The λ-calculus is the model closest to algorithms and their evaluation as
informally discussed in Chap. 2 and formalized in Chap. 3. In fact, it may
be considered the paradigm of all programming languages as we know them
today. It is primarily a theory of computable functions that deals with elemen-
tary properties of operators, with applications of operators to operands, and
with the systematic construction of complex operators (or algorithms) from
simpler components.

The core of the λ-calculus is based on little more than a well defined
concept of variables, variable scoping and the orderly substitution of variables
by expressions. The λ-calculus is a closed language, meaning that its semantics
can be defined on the basis of the equivalence of expressions (or terms) of the
calculus itself.

The term λ-calculus is derived from the notation that is used to repre-
sent functions. As the λ-calculus does not distinguish between operators and
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operands other than by syntactical positions within an application, this nota-
tion greatly facilitates treating a function as an object of either kind. It also
allows a precise definition of the notions of variable binding and of the binding
status of variable occurrences in expressions.

4.1 λ-Calculus Notation

Functions of n variables v1, . . . , vn are in the λ-calculus denoted as

f = λv1 . . . vn. e0 .

Other than using the Greek letter λ instead of lambda and dropping the
keyword in, this is exactly the same notation as introduced in Sect. 3.1 and
earlier in Sect. 2.1. The symbol f on the left-hand side of this equation gives
the function a name (or identifier) by which it may be referenced somewhere
else,1 and the expression on the right-hand side defines an abstraction of the
variables v1, . . . , vn from the expression e0, which is said to be the abstraction
body.2 The construct λv1 . . . vn is an abstractor for free occurrences of the
variables v1, . . . , vn in the function body e0. A precise definition of what free
variable occurrences are must be postponed until a little later. For now it may
suffice to say that a variable u is free in the expression e0 if it contains no
abstractor for u preceding it.

An application of the function (or abstraction) named f to r argument
expressions e1, . . . , er has the form

(f e1 . . . er) = (λv1 . . . vn.e0 e1 . . . er) ,

where r must not necessarily be equal to n.
The special case of applying an abstraction to the abstracted variables

yields the abstraction body:

(λv1 . . . vn.e0 v1 . . . vn) = e0 .

To keep the formal apparatus simple and concise, the λ-calculus considers,
without loss of generality, only abstractions of one variable. This is due to a
discovery by Schoenfinkel and Curry that renders it possible to represent n-ary
abstractions as n-fold nestings of unary abstractions, i.e., we have

f = λv1 . . . vn.e0 ≡ λv1.λv2 . . . λvn.e0 .

Using this curried notation, the above application of f to r operands takes the
form of an r-fold nesting of applications of unary abstractions:
1 If the left-hand side is missing, then the abstraction is said to be nameless (or

anonymous).
2 The terms ‘function’ and ‘abstraction’ are in the following used synonymously.
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(f e1 . . . er) = (. . . ((f e1) e2) . . . er) .

This reduces the construction of expressions (or terms) of the λ-calculus to
just the following syntactical rules:

e =s v | c | (e0 e1) | λv.e0 .

A λ-expression is either a variable, denoted as v, a constant value other than
a variable, denoted as c, an application of a λ-expression e0 to a λ-expression
e1, or an abstraction of a variable v from a λ-expression e0, respectively.
Expressions that emerge from a systematic application of these rules are also
called the well-formed formulas of the λ-calculus; nothing else is a legitimate
λ-expression.

An application (e0 e1) represents the result of applying e0 to e1; e0 is said
to be the expression in operator position and e1 is said to be the expression
in operand position of the application. Often e0 and e1 are also referred to as
function and argument, respectively, which is somewhat misleading, insofar as
the syntax allows any legitimate λ-expression to be in either syntactical posi-
tion, but only abstractions and, for that matter, the primitives +, −, ∗, . . .
(which belong to the set of constant expressions) are truly functions. Nonethe-
less, if the expression in operator position is indeed a function, then we may
legitimately call the expression in operand position its argument.

We are primarily interested in applications of the form (λv.e0 e1) that
have an abstraction in operator position and any legitimate λ-expression as
its argument in operand position. These are the applications that tell us the
full story about the role of variables, specifically of variable scoping and the
substitution of variables, in the business of evaluating algorithmic expres-
sions. In fact, it suffices to consider for this purpose only the pure λ-calculus
whose set of constants is empty.3 Without the primitive operators +, −, ∗ ,
etc., abstractions are the only functions left in the game. Nevertheless, we
have a complete formal model that provides the bare essentials necessary to
investigate and reason about algorithmic computability. If so desired, we can
even represent as λ-abstractions numbers, truth values or lists of such items as
well as primitive value-transforming and structuring functions that operate on
them. These abstractions admittedly look a little awkward, bearing no resem-
blance to their usual representation, particularly after they have undergone a
few transformations, but they do the job in principle.

4.2 β-Reduction and α-Conversion

The beauty of the pure λ-calculus is that we need to be concerned with only
one transformation rule since there are only applications of abstractions left
to worry about. As we have learned in Sect. 3.2, this rule is intended to replace
3 Otherwise, the λ-calculus is said to be applied.
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such applications by the abstraction bodies in which all free occurrences of
the λ-bound variables are substituted by the respective operand (or argument)
expressions, which we denote by:

(λv.e0 e1) →β e0[ v ← e1 ] .

The subscript attached to the arrow that points to the right gives the rule its
name: it is called the β-reduction or β-contraction rule of the λ-calculus which
is said to simplify, contract or reduce the β-redex (λv.e0 e1) to its reductum or
contractum e0[ v ← e1 ].

Unfortunately, this rule is not as simple as it may appear at first glance.
As we have learned in Sect. 2.1, there are problems with regard to bound
variables in abstractions and equally named free-floating variables in operand
expressions, in which cases substitutions cannot be performed without some
corrective actions to one of the variables. They concern the binding status
of variables which must remain invariant against β-reductions in order to
guarantee determinacy of results irrespective of the choice of variable names.

If the substitutions would be carried out naively, i.e., with the operand
terms literally as they are, as in

(λu.λv.u w) → λv.w and (λu.λv.u v) → λv.v ,

we would obtain as contractum in the first case the abstraction λv.w and in
the second case the abstraction λv.v. Obviously, the choice of the variable in
the operand position would result in two entirely different functions. In the
first case we would get a constant function that, irrespective of the operand to
which it may be applied, returns the function body w since the operand can
nowhere be substituted. However, in the second case we would get an identity
function that always reproduces the operand expression:

(λv.w a) → w and (λv.v a) → a .

The problem comes about in the second case where the free-floating variable
v is naively substituted into the scope of the abstractor λv and thus becomes
parasitically bound by it, whereas in the first case we substitute the variable
w that remains unaffected by the abstractor λv and thus preserves its binding
status as being free.

We could decide to accept these parasitic bindings, that in fact are caused
by name clashes or naming conflicts as discussed in Sect. 3.2, as part of the
game and possibly even use them as dirty little tricks to take advantage of
some algorithmic shortcuts here and there. Unfortunately, they also destroy
two very useful and important properties of the λ-calculus that, as we will see
later, guarantee a very orderly behavior with regard to evaluation strategies
and should therefore not be given up easily.

To prevent name clashes from occurring, we could play it safe and simply
demand that all variables within a λ-expression be named differently. How-
ever, this does not appear to be a very realistic requirement for pragmatic
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reasons. With increasing numbers of variables in complex algorithms it may
become increasingly difficult to invent variable names that somehow relate to
the intended purpose or to a convention, for example using i, j, k for indexing,
and keep them distinguishable. Making variable names unique by automated
means, say by enumeration, may be a practical alternative provided that the
new names somehow relate to the original ones, i.e., do not alienate the al-
gorithm beyond recognition. This is particularly important if we intend to
have a machine execute algorithms step by step, as described in Sect. 2.1, and
wish to inspect intermediate expressions, say, for validation purposes. Here we
would prefer to see the variables used in the original expression, not variables
that may have been invented by the machine.

We will first have a look at the classical solution of the naming problem
and see how far we can get with the idea of maintaining the original variable
names. To do so, we need to set out with a precise definition of what is meant
by free and bound variables (or by the binding status of variables), and by
variable scoping.

With V denoting the set of variables, we may define the set of free variables
FV of an expression e simply by going through the three syntactical forms of
the pure λ-calculus and specifying what the free variables are in these cases.
This gives4

FV ( e ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ v } if e =s v ∈ V

FV ( e0 ) ∪ FV ( e1 ) if e =s (e0 e1)

FV ( e0 ) \ { v } if e =s λv.e0 .

This recursive definition says that the set contains just the variable v if v is
the entire expression e, that it is the union of the sets of free variables of the
operator and operand if the expression is an application, and if the expression
is an abstraction it is the set of free variables of the abstraction body without
the variable that is bound in it.

A complementary definition can be given for the set of bound variables BV
of an expression e as:

BV ( e ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if e =s v ∈ V

BV ( e0 ) ∪ BV ( e1 ) if e =s (e0 e1)

BV ( e0 ) ∪ { v } if e =s λv.e0 .

This set is empty if e is just a variable, it is the union of the bound-variable sets
of its components if e is an application, and if the expression is an abstraction
4 We use here again the symbol =s for syntactical equality (equality by construc-

tion) of two λ-expressions.
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it is the set of variables bound inside the abstraction body plus the variable
bound by the abstraction itself.

With these definitions at hand, we can now say that a variable v is free in
an expression e if and only if v ∈ FV ( e ), and that it is bound in e if and
only if v ∈ BV ( e ). In an abstraction λv.e, we call the body e the scope of
the abstractor λv, which means that all free occurrences of v in e are bound
by λv.

An example may help to clarify this terminology:

(λu. (λv. (λz. (z (v u))︸ ︷︷ ︸
scope of λz

v )

︸ ︷︷ ︸
scope of λv

u )

︸ ︷︷ ︸
scope of λu

w ) .

Here the variable w is free in the entire expression since there exists no ab-
stractor for it. The variable u is bound in the abstraction λu.( . . . ) but free
in its body, which happens to be the scope of the abstractor λu. Likewise,
the variables v and z are bound in the abstractions λv.( . . . ) and λz.( . . . ),
respectively, but free in their bodies (or in the scopes of λv and λz). Thus,
a variable may be both free and bound in an expression, depending on the
scope that is being considered.

An abstraction whose set of free variables is empty is said to be closed or
a combinator; otherwise it is said to be open. Of particular importance with
respect to the implementation of λ-calculus-based programming languages, as
we will see later on, are so-called supercombinators. These are closed abstrac-
tions whose body expressions may recursively contain only closed abstractions
(or supercombinators).

Now we are ready to define precisely how the substitution involved in a
β-reduction

(λv.eb ea) →β eb[ v ← ea ]

must be performed: the right-hand side of this transformation rule must pre-
scribe the substitution of all free occurrences of the variable v in the expression
eb by the expression ea. This definition is given in Fig. 4.1.

The last three cases are the interesting ones. They prescribe what has
to be done if the expression eb in which substitutions of free occurrences
of v are to take place is an abstraction. If this abstraction binds v, then it
remains unchanged as there are no free occurrences of v in it. If it binds
another variable u, then v can be naively substituted by ea if there is no free
occurrence of u in ea that would become parasitically bound, or if we have the
trivial case that v does not occur in eb, i.e., nothing is substituted anywhere.

The complementary case where the abstraction binds u, with v occurring
free in the abstraction body e0 and with u occurring free in ea, causes a
naming conflict: when ea would be substituted naively in e0, free occurrences
of u in ea would become parasitically bound by the abstractor λu and thus
change their binding status.
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eb[ v ← ea ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ea if eb =s v ∈ V

u if eb =s u ∈ V and v �=s u

(e0[ v ← ea ] e1[ v ← ea ]) if eb =s (e0 e1)

λv.e0 if eb =s λv.e0

λu.e0[ v ← ea ]
if eb =s λu.e0

and u �∈ FV ( ea ) or v �∈ FV ( eb )

λw.e0[ u ← w ][ v ← ea ]
if eb =s λu.e0

and u ∈ FV ( ea ) and v ∈ FV ( eb )
and w ∈ V and w �∈ FV ( ea ) ∪ FV ( eb )

Fig. 4.1. Classical definition of the β-reduction rule

There are two ways out of this dilemma. We could either change the free
variable v in ea, say to w, or change the variable bound by the abstraction from
u to w to take it out of the conflict. In either case, w should be a fresh variable
that is used nowhere else in the original β-redex. The traditional solution is
the latter, which is included as the last case in the above definition. It is the
more convenient one as the renaming concerns only variables occurring within
the scope of the application.5

The renaming transformation

λu.e0 →α λw.e0[ u ← w ]

that is used here is called an α-conversion. It may be realized by application
of an α-conversion function to the abstraction whose bound variable needs to
be changed:

(λv.λw.(v w) λu.e0 ) .

This transformation proceeds, by application of the above rules, in two steps

first to λw.(λu.e0 w) and then to λw.e0[ u ← w] .

To illustrate the application of the substitution rules for eb[ v ← ea ],
Fig. 4.2 shows the stepwise reduction of the above example in slightly modified
form: we replace the free variable w by z to create a name clash when the
β-redices are systematically reduced from outermost to innermost. In this
5 If we were to rename the free variable then we would have to deal with the

problem that it could be bound somewhere in a larger context surrounding the
application, i.e., renaming would concern all occurrences of the variable within
the scope of this abstractor.
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(z z)

(w z)[ w ← z ]

(λw.(w z) w)

(λw.(w z) v)[ v ← z ]

(λv.(λw.(w z) v) z)

(λv.(λw.(w u)[ u ← z ] v) z)

(λv.(λw.(z u)[ z ← w ][ u ← z ] v) z)

(λv.(λz.(z u)[ u ← z ] v[ u ← z ] ) z)

(λv.(λz.(z u) v)[ u ← z ] z)

(λv.(λz.(z u) v)[ u ← z ] u[ u ← z ])

(λv.(λz.(z u) v) u)[ u ← z ]

(λu.(λv.(λz.(z u) v) u) z)

Fig. 4.2. A sequence of β-reductions

sequence, the last of the substitution rules is applied to the fifth expression
from the top to rename to w the bound variable z of the abstraction λz.(z u)
in order to get around a name clash with the free variable z that must be
substituted for u. But this is just what we did not wish to do since now a
variable has entered the game that was not known in the original expression
but has been brought in from nowhere (e.g., by the system that performs
the computation), thus changing the appearance (but not the meaning) of
the abstraction λz.(z u) to λw.(w u). However, in this particular case we
are lucky: if we just look at the original and final expression, and ignore the
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steps in between, the renaming goes unnoticed since the normal form is an
application of the original variable z to itself that preserves its binding status
of being free throughout the entire sequence of reduction steps.

The story looks a little different for λ-expressions that reduce to abstrac-
tions, as for instance

(λu.(λv.λz.((z u) v) z) v) .

When performing β-reductions, say from outermost to innermost, we en-
counter two naming conflicts, the first when substituting the outer argument
v under λv, and the second when substituting the inner argument z under λz.
If we rename v to x first and then z to y, we get the abstraction λy.((y v) z)
as result. However, if we were to reverse the order in which we use x and y,
we would get the abstraction λx.((x v) z), which is the same as before, except
that the name for the bound variable has changed.

Though the choice of names for bound variable is completely irrelevant,
doing several β-reductions that require renaming in a larger context may
nevertheless be quite confusing as it may alienate, with regard to the variables
originally used, the resulting expression beyond recognition.

To avoid these annoying naming problems, we have to come up with a
smarter idea for representing the binding status of variables and for performing
β-reductions that under all circumstances preserves the variable names as
introduced in the initial expression.

4.3 An Indexing Scheme for Bound Variables ∗∗
When specifying an abstraction, it does not really matter what names for
bound variables we choose. They merely relate abstractors to syntactical po-
sitions in abstraction bodies, or are placeholders, where argument expressions
need to be substituted. We might say that this relationship defines a binding
structure.

In this respect, the following two abstractions are syntactically equivalent
modulo α-conversion of variable names:

λu.λv.λw.(((w v) u) (x u)) =s λx1.λx2.λx3.(((x3 x2) x1) (x x1)) .

When we apply the two abstractions to the same arguments, we obtain in
both cases exactly the same result since two expressions that are syntactically
equivalent are also semantically equivalent.

The position of an abstractor in a sequence of abstractors also identifies,
in a nesting of applications, the nesting level from which the argument is to
be taken. We will call this the substitution structure. The resulting structure,
which associates abstractors with occurrences of variables in the abstraction
body on the one hand and with operand positions in a nesting of applications
on the other hand, may be depicted graphically as in Fig. 4.3.
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� � �
( ( ( λu.λv.λw.( ( ( w v ) u ) ( x u ) ) x ) λz.z ) λx.λy.x )

binding structure

structure
substitution

Fig. 4.3. Substitution and binding structures of an abstraction application

We also give in Fig. 4.4 the sequence of β-reductions that evaluates these
nested applications, because we will need it for comparison later on. This
sequence performs, from innermost to outermost, the β-reductions that sub-
stitute in the abstraction body x for u, λz.z for v, and λx.λy.x for w, and
then proceeds to evaluate the instantiated body, returning as the result the
application (x x) of the free variable x to itself.
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(((λu.λv.λw.(((w v) u) (x u)) x) λz.z) λx.λy.x)

((λv.λw.(((w v) x) (x x)) λz.z) λx.λy.x)

(λw.(((w λz.z) x) (x x)) λx.λy.x)

(((λx.λy.x λz.z) x) (x x))

((λy.λz.z x) (x x))

(λz.z (x x))

(x x)

Fig. 4.4. Reduction sequence for the application in Fig. 4.3

We will now take the renaming of variables one step beyond naming them
all x and distinguishing them by subscripts. We give them all the same names,
say z, and define the binding structure by so-called unbinding operators (or pro-
tection keys) that we put in front of the variable occurrences in the abstrac-
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tion body. These unbinding operators are complementary to the abstractors
in that, loosely speaking, they undo bindings: if a variable occurrence z is
preceded by n of these operators, denoted as // . . . /︸ ︷︷ ︸

n

z, then it is protected

against the innermost n abstractors λz or, to put it another way, there are
n abstractors λz between the variable occurrence and the abstractor λz that
actually binds it.

Using this notation, the above abstraction may be equivalently represented
as

λu.λv.λw.(((w v) u) (x u)) =s λz.λz.λz.(((z /z) //z) (x //z)) .

All bound variables are now named z, and occurrences of z replacing the
original variable u in the abstraction body are now preceded by two keys //
to protect them against the innermost two abstractors λz and hook them up
to the outermost abstractor. Likewise, what was originally the variable v is
now z preceded by one key to protect it against the innermost abstractor,
whereas the single occurrence of z that replaces what was originally w carries
no protection key since it needs to be bound by the innermost λz. The x
remains as it is since it is free in the entire abstraction.

The trouble with these protection keys is that they need to be dynami-
cally changed as β-reductions are performed, to preserve the original binding
structures by the remaining abstractors and variable occurrences. If abstrac-
tors disappear in between, then protection keys have to be removed, and if
free variables penetrate the scopes of abstractors for the same variable name,
then the number of protection keys has to be stepped up accordingly.

We will see how this works by applying our abstraction to the three
operand expressions that have their variables changed to z too.

To make things a little more interesting, we add two more abstractors in
front of the entire application, of which the outermost binds the free variable
x. When these variables are changed to z as well, the z that now takes the
place of the x receives four keys to protect it against the three abstractors
λz.λz.λz and against the inner of the two added abstractors:

λz.λz.(((λz.λz.λz.(((z /z) //z) (///z //z)) /z) λz.z) λz.λz./z) .

For the same reason, the z in the innermost operand position that replaces
the x receives one key to relate it to the very same abstractor to which the
////z in the abstraction body is hooked up.

The sequence of β-reductions shown in Fig. 4.5 that evaluates this appli-
cation performs exactly the same number of steps as the sequence in Fig. 4.4,
producing the same intermediate expressions just in a different representation.

The first of these reduction steps contains in a nutshell everything we
need to know about the manipulation of the protection keys when perform-
ing β-reductions. The β-redex that is under consideration here applies the
abstraction λz.λz.λz.( . . . ) to the argument /z.6 In doing so, it drops the
6 The redices to be contracted next are underlined in this figure.
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λz.λz.(((λz.λz.λz.(((z /z) //z) (////z //z)) /z) λz.z) λz.λz./z)

λz.λz.((λz.λz.(((z /z) ///z) (///z ///z)) λz.z) λz.λz./z)

λz.λz.(λz.(((z λz.z) //z) (//z //z)) λz.λz./z)

λz.λz.(((λz.λz./z λz.z) /z) (/z /z))

λz.λz.((λz.λz.z /z) (/z /z))

λz.λz.(λz.z (/z /z))

λz.λz.(/z /z)

Fig. 4.5. The same reduction sequence as in Fig. 4.4, with all bound variables
named z, and with binding distances maintained by means of protection keys

first λz and substitutes /z for all occurrences of variables bound to it in the
abstraction body, which are the two occurrences of //z. Now, substituting the
/z under the two remaining abstractors means that two more protection keys
must be added to it, i.e., the two occurrences of //z must be replaced by ///z
to keep the correct distance relative to the outermost λz, which is in front of
the entire application. Moreover, the variable occurrence ////z that is inside
the abstraction but is bound by the outermost abstractor λz must drop one
protection key since one of the abstractors in between has gone. This leaves
three occurrences of ///z under the remaining abstraction that are bound by
the outermost λz.

The protection keys of these variables are decremented to one by two more
β-reductions, and the result is a self-application of /z that has maintained its
status of being bound to the outermost of the two abstractors that have been
added in front and have never participated in β-reductions.

We can now be a little more specific about the manipulation of these pro-
tection keys by first defining the binding status of a variable that is preceded
by them.

Let / . . . //︸ ︷︷ ︸
i

v =s /(i)v | i ∈ {0, 1, . . .} be a variable occurrence with i-

fold protection inside a λ-expression e, and let j ∈ N0 enumerate, from the
variable occurrence outwards and beginning with j = 0, the abstractors λv
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surrounding it, then, relative to the j-th abstractor, this variable occurrence
is said to be

→ free if i > j , → bound if i = j , → shadowed if i < j .

The protection index i of a variable occurrence denotes what may be referred
to as its binding index or as its binding distance (to the binding abstractor).

With these binding attributes at hand, we can give an initial informal
definition of the β-reduction rule that specifies what needs to be done in
principle.

Given a redex (λv.eb ea), β-reduction returns an expression e′b that is
obtained from eb in that an occurrence of /(i)v

• in the abstraction body eb

– decrements the number i of protection keys by one if free,
– is substituted by ea if bound,
– remains unchanged if shadowed
relative to the abstractor λv that is in front of eb;

• in the operand ea

– increments the number i of protection keys by some value k if free
or bound relative to the innermost λv that surrounds the application
(λv.eb ea), and if it penetrates the scopes of k nested abstractors λv
when substituted in eb,

– remains unchanged if shadowed.

Transforming a λ-expression with freely choosen variables into an equiva-
lent expression that has all bound variables named the same, say z as in our
example, can be accomplished by the application of the α-conversion function
λv.λz.( v z ) to all abstractions of one variable. In the case of our example,
these applications would have to be inserted into the abstraction thus (the
items that are added are underlined):

(λv.λz.(v z) λu.(λv.λz.(v z) λv.(λv.λz.(v z)λw.(((w v) u) (x u))))) .

Performing these α-conversions from innermost to outermost and using the β-
reduction rule as just defined produces the sequence of reduction steps shown
in Fig. 4.6. This sequence terminates with an abstraction that has all occur-
rences of bound variables turned into z and the right number of protection
keys attached to them. The variable x is left unchanged since there is no
abstractor for it in the entire expression.

4.4 The Nameless Λ-Calculus

Once we have given all bound variables the same name and distinguished
different bindings just by the number of protection keys that precede them,
we might as well drop variable names altogether and work with nameless
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(λv.λz.(v z) λu.(λv.λz.(v z) λv.(λv.λz.(v z) λw.(((w v) u) (x u)))))

(λv.λz.(v z) λu.(λv.λz.(v z) λv.λz.(λw.(((w v) u) (x u)) z)))

(λv.λz.(v z) λu.(λv.λz.(v z) λv.λz.(((z v) u) (x u))))

(λv.λz.(v z) λu.λz.(λv.λz.(((z v) u) (x u)) z))

(λv.λz.(v z) λu.λz.λz.(((z /z) u) (x u)))

λz.(λu.λz.λz.(((z /z) u) (x u)) z)

λz.λz.λz.(((z /z) //z) (x //z))

Fig. 4.6. Systematic α-conversion of λ-bound variables of the abstraction of Fig. 4.4
(the redices that are actually contracted are underlined)

abstractors Λ in combination with binding indices #i instead. Our example
abstraction with which the sequence of α-conversions in Fig. 4.6 terminates
then assumes the equivalent form

Λ.Λ.Λ.(((#0 #1) #2) (x #2)) ,

and β-reduction follows the same rules as defined above, except that it ma-
nipulates these indices rather than numbers of protection keys.

We will refer to this variant of the λ-calculus, which was invented by
Berkling and deBruijn independently, as the Λ-calculus of nameless dummies,
or simply the nameless Λ-calculus. It constitutes a considerable departure,
with regard to representation, from the λ-calculus that uses variables to de-
fine binding structures. Λ-expressions may be less readable to human beings
(at least, it takes some getting used to them) but they are decidedly more suit-
able for interpretation by machines: β-reductions replace fairly complicated
name-handling operations by simple index manipulations, and – as we will
see later on – the indices relate more or less directly to accesses to a runtime
environment.

The syntax of the pure Λ-calculus is essentially the same as that of the
λ-calculus, except that bound variables are replaced by binding indices and
abstractor symbols λv are replaced by Λ:

e =s #i | (e0 e1) | Λ.e0 with i ∈ {0, 1, . . .} .
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On the basis of these syntactical figures, we can now precisely define the β-
reduction rule with nameless dummies in an operational form that may serve as
a recipe for its implementation. Following the above informal definition, we
obviously need operations that increment, decrement and substitute binding
indices #i in some Λ-expression e relative to abstractors that are away from
the indices by distances of k intervening abstractors.

The operator p(k) increments all free occurrences of binding indices in e
by one:

p(k)e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

#i if e =s #i and k > i

#(i + 1) if e =s #i and k ≤ i

(p(k)e0 p(k)e1) if e =s (e0 e1)

Λ.p(k+1)e0 if e =s Λ.e0 .

The dual operator q(k) decrements all free occurrences of binding indices in e
by one:

q(k)e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

#i if e =s #i and k ≥ i

#(i − 1) if e =s #i and k < i

(q(k)e0 q(k)e1) if e =s (e0 e1)

Λ. q(k+1)e0 if e =s Λ.e0 .

Finally, the operator s(k) substitutes in an expression e0 occurrences of binding
indices that are bound at a binding distance k by the expression e1:

s(k)e1 e0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

#i if e0 =s #i and i �= k

e1 if e0 =s #i and i = k

(s(k)e1 ea s(k)e1 eb) if e0 =s (ea eb)

Λ.s(k+1)p(0)e1 ea if e0 =s Λ.ea .

Using these operators, β-reduction can now be defined as

(Λ.e0 e1) = q(0)(s(0)(p(0)e1) e0) .

This may look a little strange at first sight, but if we apply the operators one
by one from innermost to outermost, we can see what happens.

To begin with, we have to realize that on the right-hand side of this equa-
tion we have the abstraction Λ.e0 stripped from its abstractor without mod-
ifying e0 itself, i.e., all binding indices remain unchanged as if the abstractor
was still in effect.
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Applying p(0) to the argument term e1 now simply increments free occur-
rences of binding indices in it by one to prepare it for the application of s(0).
This application in fact moves p(0)e1 across the abstractor that preceded e0,
assuming it was still there, and substitutes it for all occurrences of binding
indices #0 in e0. The operator q(0) finally does the equivalent of removing the
abstractor Λ in that it decrements all free occurrences of binding indices in
the resulting term by one.

At this point it may be helpful to make it a little more plausible that the
indices are manipulated correctly. It is easy to see that in (p(0)e1) all binding
indices must have values greater than zero. The same must be true for the
term (s(0) (p(0)e1) e0) since after substitution of (p(0)e1) for free occurrences
of indices #0 there are no zero indices left in e0 either. Thus, when q(0) is
applied, all indices in the resulting expression are guaranteed to have non-
negative values.

We may convince ourselves that this works as expected by means of the
β-reduction

(Λ.Λ.(#0 #1) #2) →β Λ.(#0 #3) ,

which is depicted in Fig. 4.7 as a sequence of transformation steps effected by
application of the operators p(0), q(0) and s(0).

The essence of performing β-reductions by means of these operators is that
they are based solely on simple index increments and decrements that may
be distributed recursively over the expressions involved and applied locally as
the evaluation proceeds, and that the indices in a natural way become the
focus of activity.

To highlight another interesting property of the Λ-calculus, we now return
to the abstraction used as an example earlier and apply it to operands that
are or include binding indices themselves:

(((Λ.Λ.Λ.(((#0 #1) #2) (x #2)) (#2 #3)) #2) #1) .

The indices in the operand expressions are assumed to be bound somewhere
outside, in some context surrounding this application that is not of interest.

Looking at the sequence of reductions of this application in Fig. 4.8, we
note that the indices that make up the arguments are stepped up by the num-
ber of Λ-abstractors that they cross when they are substituted in the abstrac-
tion body, but that these indices are decremented again as these abstractors
disappear due to subsequent β-reductions. Once all β-reductions have been
done, the indices are again the original ones in their places of substitution,
i.e., they have in fact not changed at all.

The free variable x in the abstraction body behaves like a constant value
that remains unaffected by all β-reductions.

We note that the body of the abstraction Λ.Λ.Λ.(((#0 #1) #2) (x #2))
contains only indices smaller than the number of abstractors preceding it, i.e.,
the entire abstraction is an expression whose set of free indices is empty, or
it contains only bound and shadowed indices according to our definition. We
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(Λ.Λ.(#0 #1) #2 )

q(0)(s(0)(p(0)#2) Λ.(#0 #1))

q(0)(s(0)#3 Λ.(#0 #1))

q(0)Λ.(s(1)(p(0)#3) (#0 #1))

q(0)Λ.(s(1)#4 (#0 #1))

q(0)Λ.((s(1)#4 #0) (s(1)#4 #1))

q(0)Λ.(#0 #4)

Λ.q(0)(#0 #4)

Λ. ( q(0)#0 q(0)#4 )

Λ.( #0 #3 )

Fig. 4.7. β-reducing a Λ-expression by means of the operators p(0), q(0) and s(0)

refer to such an expression as being closed or, in this particular case, also
as a supercombinator since the abstraction body trivially contains no further
abstractions either.

As the example shows, the nice part about such closed abstractions is that
applications to full sets of operands can obviously be reduced without worrying
about binding indices that may have to be changed in argument expressions
when all substitutions (β-reductions) are performed in one conceptual step.

This is a very important property which we will exploit to advantage later
on in the design of abstract λ-calculus machines. It renders time-consuming
full-fledged β-reductions at the machine level largely superfluous as almost
all of them can in fact be performed naively, i.e., by substituting operands as
they are. Moreover, the indices lend themselves directly to the structure of
and accesses to a runtime environment that holds instantiations of Λ-bound
variables.
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(((Λ.Λ.Λ.(((#0 #1)#2) (x #2)) (#2 #3)) #2) #1)

((Λ.Λ.(((#0 #1) (#4 #5)) (x (#4 #5))) #2) #1)

(Λ.(((#0 #3) (#3 #4)) (x (#3 #4))) #1)

(((#1 #2) (#2 #3)) (x (#2 3)))

Fig. 4.8. Reducing the application of a closed abstraction

4.5 Reduction Sequences

It is now time to learn more about the properties of sequences of β-reductions.7

Given two λ-expressions e and e′, we can say that e is β-reducible to e′,
denoted as e 
−→β e′, if and only if e can be transformed into e′ by a finite,
possibly empty sequence of β-reductions and α-conversions. It produces a
sequence e0, . . . , en of λ-expressions with e0 =s e and en =s e′ such that for
all indices i ∈ {0, . . . , n − 1} we have either ei →β ei+1 or ei →α ei+1.

On the basis of such sequences, we may also define that two λ-expressions
e and e′ are semantically equivalent, denoted as e = e′, if and only if e can
be transformed into e′ by a finite, possibly empty sequence of β-reductions,
reverse β-reductions, and α-conversions, i.e., for all indices i ∈ {0, . . . , n − 1}
we must have ei →β ei+1 or ei+1 →β ei or ei →α ei+1.

The objective of reducing a λ-expression e is to transform it to some ex-
pression eNF that contains no more redices, or to which no more β-reduction
rules are applicable. This expression is called the normal form (or the value)
of the expression e. If it takes a finite sequence of β-reductions to get from
e to eNF , then eNF is, of course, also the normal form of all intermediate
λ-expressions.

A complex λ-expression that contains several redices generally allows to
choose among several alternative sequences of β-reductions. The trouble with
these choices is that, starting from some initial expression, we may reach a
normal form

• with all possible sequences eventually, i.e., after finitely many β-reductions
have been performed in any order, if we are lucky;

• with none of the possible sequences, because a normal form does not exist,
i.e., none of the sequences terminates after finitely many steps;

• with some of the possible sequences but not with others, i.e., we have some
sequences that terminate after finitely many steps, but others that do not.

7 To render the expressions more readable, we return here to the λ-calculus of
variables.
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The latter case is the interesting one because it calls for a strategy that makes
sure that β-reductions are performed in an order that terminates with a nor-
mal form, if it exists at all.

An example of the first kind is the expression (λu.(λw.(λw.u u) u) w)
that allows three alternative sequences, of which two – incidently – require
the resolution of naming conflicts by means of protection keys:

• doing the redices from outermost to innermost, we obtain:

(λu.(λw.(λw.u u) u) w) →β (λw.(λw.//w /w) w)
→β (λw./w w) →β w ;

• starting with the redex in the middle, we obtain:

(λu.(λw.(λw. u u) u) w) →β (λu.(λw.u u) w) →β (λw./w w) →β w ;

• doing the redices from innermost to outermost, we get:

(λu.(λw.(λw.u u) u) w) →β (λu.(λw.u u) w) →β (λu.u w) →β w ;

i.e., in all three cases we end up, after three β-reductions, with the same
normal form, which is the variable w.

A simple expression that has no normal form is the self-application

(λu.(u u) λu.(u u)) →β (λu.(u u) λu.(u u)) →β . . . ,

that incessantly reproduces itself.
This self-application may be used to construct a simple expression whose

reduction, depending on the order in which redices are contracted, may or
may not terminate. Looking at the application

((λu.λv.u λw.w) (λu.(u u) λu.(u u))) ,

we immediately recognize that the abstraction λu.λv.u in the operator po-
sition is a selector function that reproduces its first argument, i.e., λw.w,
but throws away the second one, which in this particular case is the self-
application. Thus, when doing outermost redices first, we get:

((λu.λv.u λw.w) (λu.(u u) λu.(u u))) →β

(λv.λw.w) (λu.(u u) λu.(u u)) →β λw.w ,

i.e., the sequence terminates after two steps, with the first argument as the
normal form. However, if we do the innermost redices first, i.e., the operands
of the application, we get:

((λu.λv.u λw.w) (λu.(u u) λu.(u u))) →β

((λu.λv.u λw.w) (λu.(u u) λu.(u u))) →β . . . .
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The self-application keeps reproducing itself forever, and the entire application
never reaches its normal form.

The problem in this and all other cases where we have reduction sequences
that do not terminate, even though normal forms do exist, is that they try to
reduce subexpressions whose normal forms do not contribute to the normal
form of the entire expression but are eventually discarded by selector func-
tions. Such reduction sequences may perform superfluous computations in
harmless cases, which should already be reason enough to try to avoid them,
but may cause non-termination in worst cases, which renders it imperative to
look for sequences that guarantee termination with normal forms if they exist
at all.

The strategy that accomplishes this is called normal order reduction (or
operands-when-needed). The idea is to apply abstractions to unevaluated
operands and to force their reduction if and only if there are normal forms
other than abstractions, i.e., variables or applications that cannot be β-
reduced, in operator positions of applications.

This strategy may be defined by a transformation function τN that maps
λ-expressions into λ-expressions as follows:

τN ( e ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if e =s v ∈ V

λv.τN ( eb ) if e =s λv.eb

τ ′
N ( e ) if e =s (λv.eb e2)

τ ′
N (τN ( e1 ) e2) if e =s (e1 e2) and e1 �=s λv.eb ,

and for τ ′
N we have

τ ′
N ( e ) =

⎧⎨
⎩

τN ( eb[ v ← e2 ] ) if e =s (λv.eb e2)

(e1 τN ( e2 )) if e =s (e1 e2) and e1 �=s λv.eb .

The function τN in fact defines an abstract evaluator for expressions of the
pure λ-calculus, similar to the evaluator eval that we introduced in Sect. 3.2
to define the evaluation of al programs. Unlike eval, τN is recursively driven
down just the operator expressions of an application, but it does not touch
the operand expression until the operator is done and turns out not to be an
abstraction (the last case in the definition of τ ′

N ). If it is an abstraction, then
the operand is substituted for free occurrences of the λ-bound variable as it
is (the first case in the definition of τ ′

N ).
Normal order reduction is also referred to as being outermost-leftmost,

meaning that it always reduces the redex that is not contained in any other
redex and that the abstractor involved is to the left of the abstractors of
all other redices. This strategy is also known as call-by-name in conventional
programming languages such as algol or simula.
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Unfortunately, this strategy, though guaranteeing termination with normal
forms if they exist, does not come without a penalty. If the operand expression
is substituted in more than one place in the abstraction body, there is a good
chance that there will be multiple reductions of the same thing. However, as
we will see later, this redundancy can be avoided by a clever implementation
technique called lazy evaluation which ensures that operand expressions are
reduced at most once and only to the extent absolutely necessary to arrive at
normal forms.

The strategy that may cause the termination problems discussed above
is called applicative order reduction. It forces the reduction to normal forms
of both the operator and the operand expression of an application before
the application itself is reduced, though with one exception: reductions do
not penetrate abstractions that are in operator positions. It is defined by a
transformation function τA on λ-expressions as

τA( e ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v if e =s v ∈ V

λv.τA( eb ) if e =s λv.eb

τ ′
A(λv.eb τA( e2 )) if e =s (λv.eb e2)

τ ′
A(τA( e1 ) τA( e2 )) if e =s (e1 e2) and e1 �=s λv.eb ,

and for τ ′
A we have

τ ′
A( e ) =

⎧⎨
⎩

τA( eb[ v ← e2 ]) if e =s (λv.eb e2)

(e1 e2) if e =s (e1 e2) and e1 �=s λv.eb .

It may be noted that this is the operands-first strategy of the abstract
evaluator eval introduced in Sect. 3.2, though with two exceptions: eval does
not evaluate the alternatives of if then else clauses before the selection has
been made, and it also includes measures that prevent runaway recursions
when letrec expressions are evaluated.

These are the cases where the applicative order regime must be compro-
mised in order to avoid termination problems at least with ordinary (mutually)
recursive functions that would terminate safely under a normal order regime,
provided they include proper termination conditions.

With these exceptions, applicative order reduction is a perfectly acceptable
strategy that is fairly easy to implement mechanically and is also fast. It
evaluates operands exactly once and to normal forms irrespective of need, and
may fail to terminate only in some exotic cases, e.g., with self-applications of
functions as operands. Under the name call-by-value this strategy dominates
the scene in conventional programming languages.

Applicative order reduction is also called innermost-leftmost as it reduces
the redex that contains no other redices, and among those it does the one
with the leftmost abstractor involved first.
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The most important property of sequences of β-reductions is captured
by the well-known Church-Rosser theorem. This theorem essentially says that
irrespective of the order in which β-reductions are performed on some λ-
expression, there exists always a λ-expression in which two different sequence
of β-reductions may be joined again. This may be formalized as follows:

Let e0, e1, e2, e3 be λ-expressions, then
e0 
−→β e1 and e0 
−→β e2 implies that there exists an e3 such that
e1 
−→β e3 and e2 
−→β e3 .

The expressions e1 and e2 need not necessarily be syntactically different, i.e.,
they may be α-convertible into each other, and e3 need not necessarily be a
normal form since none may exist. However, if it is a normal form then it is
guaranteed to be unique. Put another way, the normal form of a λ-expression
is invariant against the reduction sequences by which it can be reached.

The proof of this theorem is rather complex, covering several pages, but
there is a very plausible explanation that may help us to understand why the
theorem makes sense.

Disregarding for a moment the name-clashing problem, β-reduction is a
very simple operation: it performs a context-free substitution of equals by
equals, i.e., it replaces a syntactical figure – an application – by another
one without causing any (side) effects somewhere else in a larger expression
(or context). The replacement depends solely on the components of the ap-
plication and is always the same, irrespective of the context in which the
substitution takes place – a property that is also referred to as referential
transparency. Moreover, the syntax of λ-expressions ensures that β-redices are
non-overlapping: they may be fully nested inside or completely independent
of each other but they do not share any components. Hence the determinacy
of normal forms, apart from termination problems, is bound to be invariant
against the order in which β-reductions are performed.

Allowing name clashes does not change anything. The classical definition
of the β-reduction rule deals with them just by renaming the bound vari-
ables that engage in the clashes, but otherwise leaves the abstractions as they
are. Once names have been changed to take abstractions out of conflicts, β-
reduction is again a simple substitution operation as above. What matters in
this game is that the binding structures of the abstractions are preserved; the
choice of variable names by which this is accomplished is irrelevant.

When the nameless Λ-calculus introduced in Sect. 4.4 is used instead, the
binding structures are preserved by other, more elaborate means, but it has
been proven that the Church-Rosser property, or confluence, holds as well.

Besides normal forms that are the ultimate goal of the process of β-
reducing expressions of the pure λ-calculus, there are two important inter-
mediate variants of normal forms. In order to distinguish the three of them,
we refer to a λ-expression as being a
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• full normal form if it contains no β-redices (instead of normal form, whenever
ambiguities may otherwise occur), and the λ-calculus that computes full
normal forms is said to be fully normalizing (or just normalizing);

• weak (head) normal form if it is a top-level abstraction (which may contain
redices in its body) or a top-level application of an n-ary abstraction to
fewer than n operands that are in weak normal form, and the λ-calculus
that computes just weak normal forms is said to be weakly normalizing;

• head normal form if it is a special top-level abstraction

λu1 . . . λun.(. . . ( ui e1 ) . . . em ) with i ∈ {0, . . . , n − 1}

that cannot change its shape anymore to the left of the head variable ui

since further β-reductions can take place only in the operand expressions
e1, . . . , em; the λ-calculus that computes head normal forms is said to be
head normalizing.

These three normal forms are obviously related to each other as follows: ev-
ery λ-expression that is in (full) normal form is also in head normal form,
and every expression in head normal form is also in weak head normal form,
but not the other way around, i.e., they form a hierarchy. Full normalization
and head normalization both require full β-reductions as they may necessi-
tate substitutions and reductions under abstractors, which could cause name
clashes. Naive substitutions suffice to weakly normalize since other than top-
level reductions, including those of partial applications, are ruled out, which
precludes name clashes.

We will see later on that abstract machines for functional languages that
are based on what is called compiled graph reduction are just weakly normal-
izing, and that head normalization is a most suitable strategy to efficiently
compute full normal forms, employing full-fledged β-reductions.

4.6 Recursion in the λ-Calculus

The concept of recursion is absolutely essential for the specification of non-
trivial algorithms that need to repeat computational steps depending on ac-
tual parameter values. In fact, recursive functions are the essence of intuitively
computable functions.

We remember that algorithms using recursive functions may in the lan-
guage al of Chap. 3 be specified as

letrec f = lambda u1 . . . un in � . . . f . . . f . . . � in (f a1 . . . an)

(the symbols � and � are used as delimiters for the function body expression).
Following the definition of the abstract evaluator eval, the first step ex-

ecuted by this algorithm consists of substituting the single occurrence of the
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function identifier f in the goal expression by the right-hand side of the defin-
ing equation. All occurrences of f in this right-hand side are, in turn, substi-
tuted by the entire letrec construct which, however, has the goal expression
replaced by the identifier f , resulting in the application

(lambda u1 . . . un in � . . . letrec f = lambda u1 . . . un in � . . . � in f
. . . letrec f = lambda u1 . . . un in � . . . � in f . . . � a1 . . . an) .

This mechanism replicates the letrec construct in all the places in which it is
needed for subsequent recursive calls. Its goal expression is just the identifier
f of the function that is to be called, which in fact serves as the selector for
the right-hand side of the function definition. It is important to note here that
the evaluation of this construct, i.e., the actual selection of the abstraction, is
postponed until the evaluator eval is driven right in front of it.

Since the λ-calculus does not know defining equations, we have to find
another way of representing the concept of reproducing expressions in them-
selves, which is what recursion apparently is all about. We might try to ac-
complish this with self-applications, of which we know one special case already,
the expression (λu.(u u) λu.(u u)).

A self-applicative representation of the above algorithm in the λ-calculus
that would immediately come to mind is this:

(. . . ((f∗ f∗) a1) . . . an) ,

where f∗ =s λf.λu1 . . . λun. � . . . (f f) . . . (f f) . . . � .

Note that f∗ is meant to be syntactically equivalent to the abstraction on
the right of the =s sign; this is not a defining equation, i.e., we have in fact
an application

(. . . ((λf.λu1 . . . λun. � . . . (f f) . . . (f f) . . . � f∗) a1) . . . an) ,

which by a first β-reduction step is transformed into

(. . . (λu1 . . . λun. � . . . (f∗ f∗) . . . (f∗ f∗) . . . � a1) . . . an) .

This step reproduces the self-application of f∗ twice in the abstraction body,
after which the remaining abstraction, beginning at the abstractor λu1, may
be applied to the operand terms a1, . . . , an.

This approach certainly does the job of calling a function recursively in
itself, but the entire construction is function-specific: it requires that the re-
cursive calls be specified as self-applications of abstractions that carry an
additional parameter to pass along the abstractions themselves.

However, since this is not a very elegant solution, we may wish to look
for a suitable universal recursion operator, say s, that, when applied to an
abstraction of the general form
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f =s λz. � . . . z . . . z . . . � ,

produces the sequence of β-reductions

(s f) 
−→β (f (s f)) =s (λz. � . . . z . . . z . . . � (s f))
→β � . . . (s f) . . . (s f) . . . � ,

which reproduces the application (s f) in f .
Since the expressions of this sequence are semantically equivalent, we may

also write

(s f) = (f (s f)) =s (λz. � . . . z . . . z . . . � (s f))
= � . . . (s f) . . . (s f) . . . � .

Reading the first equation from right to left, i.e., as (f (s f)) = (s f), we
immediately recognize that (s f) is a fixed point of f : it is an expression that
f maps into itself. We call a closed λ-expression s (whose set of free vari-
ables is empty) that satisfies this equation for all λ-expressions f a fixed-point
combinator.

Such a combinator may be realized by the self-application

Y =s (p p) where p =s λu.λv.(v ((u u) v)) .

We may convince ourselves that this is the case by reducing the application

(Y f) =s ((λu.λv.(v ((u u) v)) p) f)

in three steps as follows:

((λu.λv.(v ((u u) v)) p) f) →β

(λv.(v ((p p) v)) f) →β

(f ((p p) f)) =s (f (Y f)) .

The beauty of this Y -combinator of the λ-calculus is that it takes the self-
applications out of individual functions and, at the expense of a few more
β-reductions, effects recursive calls on all abstractions in a uniform way.

Consider, as an example, the defining equation

f = λu.λv.(((f u) v) ((f v) u))

for a recursive abstraction. We can rewrite the right-hand side of this equation
as a semantically equivalent application

f = (λz. λu.λv.(((z u) v) ((z v) u)︸ ︷︷ ︸
eb

) f)

or, when using eb as an abbreviation for the abstraction body, as:
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f = (λz.eb f) .

To give this equation the same form as (Y f) = (f (Y f)), a solution for f
must obviously look like

f =s (Y λz.eb) ,

so that we get
(Y λz.eb) = (λz.eb (Y λz.eb)) .

That is to say, we can take a defining equation for a recursive function and turn
it into a recursive λ-expression by (1) abstracting occurrences of the function
identifier out of the abstraction on the right-hand side of the equation and
(2) applying to this new abstraction the Y -combinator – a very simple recipe
indeed.

Unfortunately, the Y -combinator is not suited for applicative order reduc-
tions since the application (Y f) would incessantly reproduce itself in operand
position, generating the unending sequence of expressions

(Y f) 
−→β (f (Y f)) 
−→β (f (f (Y f))) 
−→β . . .

This may be prevented either by switching to a normal order regime just for
applications of the Y -combinator, or by introducing, as an extension of the λ-
calculus, a primitive recursion operator µ. Using this operator, we may replace
(Y λz.eb) by µz.eb, which binds the variable z recursively in eb and reduces
like this:

µz.eb →µ (λz.eb µz.eb) →β eb[ z ← µz.eb ] .

That is, the operator µ substitutes free occurrences of the variable z in the
body expression eb by (copies of) the entire expression as it is, which is ex-
actly what is needed to prevent runaway recursions, provided that eb contains
proper termination conditions.

Both the Y -combinator and the µ-operator may be employed to represent
mutually recursive functions as λ-expressions as well. We simply need to con-
sider the most general case of a set of defining equations

f1 = . . . f1 . . . fi . . . fk . . .
. . .

fi = . . . f1 . . . fi . . . fk . . .
. . .

fk = . . . f1 . . . fi . . . fk . . .

in which each function recursively calls each other function of the set. These
equations may be rewritten as

fi = (λz̄.e
(i)
b f1 . . . fi . . . fk) ,

where
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λz̄.e
(i)
b =s λz1 . . . λzi . . . λzk. � . . . z1 . . . zi . . . zk . . . �

for all i ∈ {1, . . . , k}. The expressions e
(i)
b are generally abstractions them-

selves that need to be applied to operands (which are not included here).
If we now abstract once more the variable fi we get

fi = (λzi.(λz̄.e
(i)
b f1 . . . zi . . . fk) fi) ,

and, when introducing the Y -combinator, we obtain as a solution of this equa-
tion:

fi = (Y λzi.(λz̄.e
(i)
b f1 . . . zi . . . fk)) .

Instead of the Y -combinator, we may alternatively use the primitive recursion
operator µ, in which case we get:

fi = µzi.(λz̄.e
(i)
b f1 . . . zi . . . fk) .

β-reduction of the Y -combinator version or direct reduction of the µ-operator
version yields

fi = (λz̄.e
(i)
b f1 . . . (Y λzi.(λz̄.e

(i)
b f1 . . . zi . . . fk))︸ ︷︷ ︸

fi

. . . fk)

or
fi = (λz̄.e

(i)
b f1 . . . µzi.(λz̄.e

(i)
b f1 . . . zi . . . fk)︸ ︷︷ ︸

fi

. . . fk) ,

respectively.
These reduction steps are the λ-calculus equivalents of selecting functions

from letrec expressions, as specified in Sect. 3.2. We remember that occur-
rences of function identifiers in their goal expressions are substituted by the
abstractions on the right-hand sides of their defining equations, and that all re-
cursive occurrences of function identifiers in these abstractions are substituted
by copies of the full letrec expressions, with just the particular identifiers as
their goal expressions.

The equivalent of reproducing the letrec expression is accomplished here
by replacing a recursive call of a function fi with an application of the ab-
straction λz̄.e

(i)
b to the full set of (recursive) λ-abstractions for repeated use

in e
(i)
b .
We can also turn this argument around and say that the way we need to

realize mutually recursive functions in the clean setting of the pure λ-calculus
confirms that we did the right things in the evaluation of letrec expressions
by the abstract evaluator eval.
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4.7 A Brief Outline of an Applied λ-Calculus

The pure λ-calculus, though providing a precise formal model of computable
functions, is of course not suited as a language for the specification of real-
life algorithmic problems. What is missing are the usual representations of
numbers, truth values, character strings and data-structuring facilities, to-
gether with sets of primitive operators (functions) defined on them, as they
are available in full-fledged programming languages.

These items may be included in a set C of constant expressions.
Applications of primitive functions such as +, −, . . . , gt, eq, . . . , and, or,

not, . . . to legitimate arguments are called δ-redices, and their evaluation is
referred to as δ-reductions or δ-contractions. Legitimate arguments are those
on which the primitive functions are defined, i.e., numbers in the case of
arithmetic functions, numbers or character strings in the case of relational
functions, and Boolean values in the case of logic functions.

Let e and e′ be expressions of an applied λ-calculus, then e is said to be
δ-reducible to e′ in n steps, denoted as e →δ n e′, iff

• e =s (. . . (pf e1) . . . en) and pf is a primitive function of arity n;
• both e and e′ do not contain any free variables;
• the expressions e1, . . . , en do not contain any β- or δ-redices;
• the function is defined on the values of the expressions e1, e2, . . . , en or,

to put it another way, these values are within the function’s domain.

This definition in fact demands that δ-reductions be performed after all β-
reductions affecting free occurrences of bound variables in e have been done,
and the arguments of the applications are subsequently reduced to values. Oth-
erwise it cannot be decided whether or not the applications are δ-reducible.8

If then else clauses have in an applied λ-calculus the form ((e0 e1) e2),
where e0, e1, e2 denote the predicate, consequent and alternative expressions,
respectively. It is assumed here that the Boolean values to which the predicate
is expected to reduce are the combinators

true ≡ K =s λu.λv.u false ≡ K =s λu.λv.v ,

which may be considered primitive selector functions. Again, we need to make
an exception here to the general rule of reducing the arguments before ap-
plying the primitive functions to them: the combinators K and K must be
applied to their arguments as they are in order to prevent recursive functions
with proper termination conditions from falling nevertheless into the black
hole of runaway recursions.

As an example of an algorithm specified in an applied λ-calculus, we con-
sider again the factorial function (see also Sect. 2.1). This function takes the
syntactical form
8 Exceptions to this definition are primitive list-processing functions such as
first, rest, empty, etc. which demand that their arguments be lists, but the
list components may contain β- and δ-redices.
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fac =s λn.((((gt 1) n) ((∗ (fac ((− 1) n))) n)) 1) .

By abstraction of the recursively defined variable fac we get

fac =s (λf.λn.((((gt 1) n) ((∗ (f ((− 1) n))) n))1) fac) ,

i.e., fac is a fixed point of the abstraction

λf.λn.((((gt 1) n) ((∗ (f ((− 1) n))) n)) 1) ,

and we obtain as the Y -combinator solution for fac:

fac =s (Y λf.λn.((((gt 1) n) ((∗ (f ((− 1) n))) n)) 1)) .

The language al of Chap. 3 is just a syntactical variant of an applied λ-
calculus. It merely takes a few minor modifications of the above representation
of factorial to turn it into an expression of this language.

First of all, we can save a few of those messy parentheses by uncurrying
the nested applications to get:

fac =s (Y λf.λn.((gt 1 n) (∗ (f (− 1 n)) n) 1)) .

Next, we add a little syntactic sugar by turning the abstraction body into an
if then else construct:

fac =s (Y λf.λn.if (gt 1 n) then (∗ (f (− 1 n)) n) else 1) .

Finally, we replace the Y -combinator by an equivalent letrec construct (with
the goal expression left open) to obtain:

letrec fac = λn.if (gt 1 n) then (∗ (fac (− 1 n)) n) else 1 in . . . .

Semantic equivalence between an applied λ-calculus and al can be obtained
by simply declaring the substitutions carried out by the abstract evaluator
eval to be, conceptually, β-reductions.

4.8 Overview of a Typed λ-Calculus

The λ-calculus is a functional model of computation that deals primarily with
the operational aspects of transforming applications of functions to arguments
into function values. The Church-Rosser property guarantees that these ap-
plications have unique values (or normal forms), if they exist at all, i.e., the
functions map, as required, the same argument values into the same function
values.

The λ-calculus that we have considered so far performs these transforma-
tions in a most general way, as it simply maps λ-expressions into λ-expressions.
However, we have also seen that in the language al, which in fact is an applied



80 4 The λ-Calculus

λ-calculus, we may specify a lot of syntactically correct expressions that make
little or no sense semantically. Their evaluation may terminate with expres-
sions that still include applications that are neither β- nor δ-reducible. Typical
examples are applications of primitive functions to incompatible arguments,
e.g., of arithmetic operators to something other than numbers, or applications
with something other than abstractions or primitive functions, say numbers
or free variables, in operator positions.

If such expressions are not what we expect as the results, then we could
decide to consider them erroneous, take corrective actions to deal with the
likely cause of the error in the initial expressions, and try again. This kind of
debugging has the advantage of taking place entirely in the domain of expres-
sions, and not on the level of compiled code and register contents of which we
do not (want to) know anything when writing high-level algorithms. However,
the trouble with this approach is that it is of only limited practical value.
Even fairly simple recursive algorithms tend to unfold to intermediate expres-
sions of considerable size and complexity, in which the causes of irreducible
applications are hard to track down.

Alternatively, we could try to make sure beforehand and by separate means
that all applications in a given expression are β- or δ-reducible, i.e., the ex-
pression can be reduced to a normal form that does not contain any leftover
applications. This is equivalent to restricting the freedom in specifying algo-
rithms to those that, loosely speaking, produce meaningful output if fed with
meaningful input. Otherwise, the algorithms may simply be rejected as not
being executable.

This leads us to the notion of a typed λ-calculus, as opposed to an untyped
λ-calculus that we have dealt with so far. It has associated with each expression
a set of values that it may legitimately assume; this set of values is said to be
the type of the expression. Types introduce into the λ-calculus (and, for that
matter, into any programming language) the notion of functions as mappings
from sets of legitimate arguments to function values, or from domain sets to
range sets.

This typed λ-calculus in fact formalizes what we have said rather casually
in Sect. 2.2 about the typing of algorithms.

Typing may be seen as a means to introduce more formal rigor into the
design of algorithms and to facilitate reasoning about their correctness. There
are good reasons to assume that an algorithm very likely does what it is
supposed to do if it is consistently typed. Beyond that, typing is also of con-
siderable practical relevance. Since contemporary computing systems have
no built-in type checking facilities, programs written in high-level languages
must, at least to some extent, include type declarations to make sure that they
do not produce type inconsistencies at runtime, and to aid the compiler in
generating type-correct machine code.
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4.8.1 Monomorphic Types

Types may be specified by means of type expressions that are basically con-
structed from atomic types and function types. The atomic types denote sets
of numbers (integer or real), Boolean values, characters and character strings,
etc., and the function types denote mappings from domain sets to range sets.
Unspecified atomic types may be denoted as α, β . . . and unspecified function
types by, say, α → β. We refer to these types as being monomorphic.

Based on these monomorphic types, we may define a typed λ-calculus as
follows:

• if v and c respectively denote variables and constants, then v : α and c : α
are typed atomic expressions of type α;

• (e0 : (α → β) e1 : α) : β denotes a typed application of type β if e0 and e1

are typed λ-expressions of types (α → β) and α, respectively;
• (λv : α.eb : β) : (α → β) is a typed abstraction of type (α → β) if v is a

variable of type α and eb is a typed λ-expression of type β.

Some of the type annotations of abstractions and applications may be dropped
if they can in obvious ways be inferred from other types. For instance, if the
type of an abstraction is α → β, then the type of the λ-bound variable must
be α and the type of the body expression must be β.

The type of a curried n-ary abstraction can be easily inferred from

λv1 : α1.λv2 : α2 . . . λvn−1 : αn−1.λvn : αn.eb : β

as being
(α1 → (α2 → . . . (αn−1 → (αn → β)) . . .)) .

If no ambiguities can occur, we may drop parentheses from such nested func-
tion types and simply write

α1 → α2 → . . . αn−1 → αn → β ,

assuming association to the right.9

A typed β-reduction is defined as

(λv.eb : (α → β) ea : α) →β eb[ v : α ← ea : α ] : β .

It does the same as an untyped β-reduction – substituting the argument ex-
pression ea for free occurrences of v in the abstraction body eb – but it does
so if and only if the type of the argument matches the type of the λ-bound
variable (or the domain type of the abstraction), returning an expression of
type β. Otherwise, the application does not qualify as a redex.
9 The types of uncurried n-ary abstractions λv1 . . . vn.eb are usually denoted as

α1 ∗ α2 ∗ . . . αn−1 ∗ αn → β, with the parameter types forming a product type.
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It is important to note that in a typed β-redex the expression in operator
position must be of a higher type, i.e., containing at least one more type con-
structor → than the expression in operand position. Unfortunately, this has
the unpleasant consequence of ruling out self-applications in which both op-
erator and operand are the same and therefore must have the same type. This
in turn would mean that we cannot have a Y -combinator and hence, strictly
speaking, we would have no recursion. A typed λ-calculus would therefore be
inherently strongly normalizing in the sense that every typed λ-expression has
a normal form that can be reached after finitely many β-reductions.

Clearly, this cannot at all be a desirable feature since the absence of recur-
sion would severely limit the expressive power of a typed λ-calculus. It would
exclude all the interesting computational problems that require repeating se-
quences of reduction steps depending on actual parameters. What would be
left to be computable would be merely rather tedious problems that fall into
the same class as polynomials.

Fortunately, the problem with recursions is caused not by typing itself but
by its implications with regard to self-applications. It is possible to infer a type
for every fixed-point combinator µ that satisfies the equation (µ f) = (f (µ f)).
If we assume the type α for (µ f) and (α → β) for f , we obtain

(µ f) : α = (f : (α → β) (µ f) : α) : β .

We see immediately what needs to be done to make the types on both sides
of the equation the same, or to unify them. If we set α = β we get

(µ f) : α = (f : (α → α) (µ f) : α) : α .

We can now conclude that if the type of f is α → α then the type of µ must
be ((α → α) → α) for the type of (µ f) on the left-hand side of the equation
to be α.

So, a typed λ-calculus must obviously be extended by a primitive recursion
operator µ as introduced in Sect. 4.6, in order to get around the typing problem
with the Y -combinator.

The types of the primitive binary arithmetic, relational and logic functions
are of the general form α → α → β. If num, char and bool respectively denote
the types of numbers, characters (character strings) and Boolean values, we
have for

• the arithmetic functions +, −, ∗, / the type num → num → num;
• relational functions such as lt, eq, . . . either the type num → num → bool

or the type char → char → bool;
• logic functions such as and, or, . . . the type bool → bool → bool.

Assuming, for the sake of simplicity, that the expressions in a list all have the
same type, say α, and that the type of the entire list can then be denoted as
list of α, we have for the list functions

• empty the type list of α → bool;
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• first the type list of α → α;
• rest the type list of α → list of α;
• append the type list of α → list of α → list of α.

Applications of these functions constitute δ-redices if and only if the argu-
ments are of the required types, otherwise the applications are not δ-reducible.

4.8.2 Polymorphic Types

The monomorphic types that we have discussed so far are not too well suited
for abstractions that apply uniformly to all argument expressions irrespec-
tive of their types. Typical examples are the recursion operator µ and the
abstraction λv.v that respectively are supposed to duplicate and reproduce
any λ-expression that comes along as an argument, or the abstraction λu.λv.u
that is supposed to reproduce any first and to drop any second argument ex-
pression. Also, if we were to write, say, a function that sorts the elements of a
list, then we would want this function to be applicable to lists of any element
type.

To deal with such functions in a typed λ-calculus, we need to introduce
the more general concept of polymorphic types (or of type schemata). They are
usually denoted as polymorphic type variables (or identifiers) such as ∗α, ∗β
that must be read as for all types α, for all types β, respectively.

At first sight, this seems to be equivalent to no typing at all. However, in
the context of an applied λ-calculus where we have primitive functions requir-
ing that their arguments be of a particular monomorphic type, polymorphic
typing makes a lot of sense. We can set out typing the λ-bound variables
of a uniformly applicable abstraction polymorphically, and then instantiate
the type variables consistently with monomorphic types, depending on the
context in which the abstraction is actually used.

Consider as an example again the function twice introduced in Sect. 2.1,
which in λ-calculus notation is given by

twice =s λf.λv.(f (f v)) .

This function is supposed to accept as its first argument any unary function
and to apply it twice to an argument of compatible type. To find the most
general (polymorphic) type of twice, we assume that the variable v has some
polymorphic type ∗α and that the application (f v) has type ∗β, which means
that f must be of type ∗α → ∗β for this application to be consistently typed.
Looking now at the application (f (f v)), we see that if f is of type ∗α → ∗β
and the argument (f v) is of type ∗β, then the types ∗α and ∗β must obviously
be the same for this to work out. So, we conclude that f must be, say, of type
∗α → ∗α and v must be of type ∗α, which must also be the type of the
function value.10 So, we get as the type of twice

10 We could, of course, have chosen the type variable ∗β instead of ∗α here, which
would not have made any difference.
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twice : (∗α → ∗α) → ∗α → ∗α = λf : (∗α → ∗α).λv : ∗α.(f (f v)) : ∗α .

If we now plan to apply twice to the function square and the value 2, we need
to infer a most general type for

square =s λu.(∗ u u)

first, which is fairly easy: we know that the primitive function ∗ is of type
num → num → num, so both the variable u and the function value computed
by the expression (∗ u u) must be of type num, i.e., the type of square is given
by

square : num → num = λu : num.( ∗ u u ) : num .

Looking now at the application

((twice : (∗α → ∗α) → ∗α → ∗α square : num → num) 2 : num) ,

we see immediately that we have a consistently typed application if the poly-
morphic type ∗α of twice is instantiated (or unified) with the monomorphic
type num.

In another context, we may wish to apply twice to the list function rest
and to a list of type list of ∗ β, in which case rest must be of the polymor-
phic type list of ∗ β → list of ∗ β. Consistent typing of the application

((twice : (∗α → ∗α) → ∗α → ∗α rest : list of ∗ β → list of ∗ β)
llist : list of ∗ β)

(where llist is a placeholder variable for a list) then obviously requires that
the polymorphic type ∗α be instantiated (unified) with the polymorphic type
list of ∗ β. Proper instantiation of the type ∗β, in turn, may depend upon
type unifications in a larger context of this application.

Type annotations on λ-bound variables have scopes that coincide with the
respective binding scopes, i.e., they extend over the body expressions of the
respective abstractions. All occurrences of the same polymorphically typed
variable within a particular scope must be instantiated with the same type,
which may be monomorphic, as in the case of twice applied to square and 2,
or another polymorphic type, as in the case of applying twice to rest and a
list of type list of ∗ β.

The rules for consistent type annotations are defined by a type system.
These rules in fact specify a type checker or a type inference system that may
be used to determine whether or not an expression is (or can be) consistently
typed.

An expression (or a program) is said to be well typed or safe if no type
inconsistencies can occur when evaluating (reducing) it. A type system is
sound if every expression that is typed according to its rules is safe. If the type
system is sound, then all expressions can be fully type-checked (or types can
be inferred) before they are actually evaluated. Languages with sound type
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systems are said to be statically typed, as opposed to languages like al that
are said to be dynamically typed since type checking is done while evaluating
an expression (or executing a program).

Type checking assumes that expressions (or programs) are fully type-an-
notated by the user and need only be checked for type consistency. This is the
case with all conventional programming languages such as pascal, fortran,
C, C++ or java that are monomorphically typed and require that all variables
be declared with respect to their types.

Type inference is the more sophisticated approach taken in almost all
functional languages, e.g., haskell, clean or ml. It is based on polymorphic
type systems. Ideally, the user need not be concerned with type annotations
at all as they may be fully inferred from the types of primitive functions and of
constant values, as exemplified by means of the functions twice and square, or
from argument types. There are only a few odd cases where type annotations
on abstractions are necessary to overcome ambiguities.

It should be noted here that typing, though generally considered very
helpful in writing algorithms dedicated to a specific purpose (solving a specific
problem), may also cause some rather unpleasant problems that do not occur
in untyped languages. Other than ruling out self-applications, there are certain
expressions that cannot be consistently typed and are therefore rejected by
the type system.

An example is again an application of the function twice, this time to the
primitive function first and to a list of type list of ∗ β. Since first is of
type list of ∗ β → β, it cannot be unified with the argument type ∗α → ∗α
of twice and is therefore rejected, even though this application makes perfect
sense if ∗β = list of γ, i.e., the components of the list are lists themselves.

Other typing problems are caused by applications of the same λ-bound
variable in different contexts. For instance, the type of the abstraction

λf.λu.λv.(f u(f u v))

can be inferred as

(∗α → ∗β → ∗β) → ∗α → ∗β → ∗β ,

which means that f must be of type ∗α → ∗β → ∗β, u must be of type ∗α
and v must be of type ∗β for a function value of type ∗β.

However, if this abstraction is slightly modified to

λf.λu.λv.(f u (f v)) ,

the type system fails for it tries unsuccessfully to infer a type ∗α → ∗β →
∗γ for the first occurrence of f and a type ∗α → ∗β → ∗γ for the second
occurrence of f in the abstraction body, and to unify both types. The problem
here is that f is assumed to be both a unary and a binary function.

This excursion into typing was intended to bring out the conceptual differ-
ences between an untyped and a typed λ-calculus and its implications for the
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design of algorithms. However, typing has little or no bearing on the various
abstract machines that we will discuss in the remainder of this text, as the ba-
sic mechanisms and runtime structures supported by these machines remain
the same irrespective of whether they execute typed or untyped languages.

4.9 Summary

The λ-calculus provides the theoretical foundations of algorithmic program-
ming and program execution. It is a theory of computable functions that
deals with operators, their application to operands, and with the systematic
construction of complex operators (or algorithms) from simpler ones. Most
importantly, it clearly defines the role of variables in this game, specifically
the substitution of variables by expressions, and variable scoping.

The essence of this theory is captured in the pure λ-calculus. Its expres-
sions are composed of variables, abstractions (of variables from expressions),
and applications of operator to operand expressions, and it knows only one
transformation rule called β-reduction. This rule specifies the result of apply-
ing an abstraction to a legitimate argument expression as its substitution for
free occurrences of the bound variable in the abstraction body. The difficult
part of this rule is due to potential naming conflicts between occurrences of
free variables in the argument and bound variables in the abstraction body.
These conflicts need to be correctly resolved in order to guarantee the de-
terminacy of results irrespective of execution orders. The classical solution
takes the bound variable out of the conflict by α-conversion into another vari-
able name. An alternative solution consists in a dynamic indexing scheme for
bound variables that keeps their binding status invariant against β-reductions
without changing the variable names. A special variant of this indexing scheme
is a nameless Λ-calculus in which bound variables are consistently replaced
by indices as placeholders for things to be substituted.

The purpose of performing β-reductions is to reduce λ-expressions step by
step to their normal forms, i.e., to expressions that contain no more β-redices.
There are basically two strategies for performing sequences of β-reductions.
The applicative order regime demands that the operands of applications be
reduced to normal forms before abstractions in operator positions are ap-
plied to them. This appears to be the most economical strategy as it eval-
uates operand expressions exactly once, and for good reasons it dominates
the scene in conventional programming languages. The normal order regime
applies abstractions to operands in unevaluated form, which may cause some
redundancy due to the evaluation of multiple copies of the same expressions
in different places of substitution in abstraction bodies. However, as the name
indicates, this strategy guarantees that normal forms can be reached after
finitely many β-reductions, if they exist. This contrasts with applicative order
evaluation that may get trapped in runaway recursions in subexpressions that
do not contribute to normal forms.
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The Church-Rosser property of the λ-calculus ensures that normal forms,
apart from the termination problem, are invariant against the order in which
β-reductions are performed.

Recursion is in the pure λ-calculus realized by means of the Y -combinator.
When applied to an abstraction f , it effects the transformation

(Y f) → (f (Y f))

that reproduces the application as argument of f . The trouble with the Y -
combinator is that it is realized as a self-application of another abstraction
that, under an applicative order regime, has the unpleasant property of inces-
santly reproducing itself. This problem may be avoided either by switching to
a normal order regime or by adding to the pure λ-calculus a special recursion
operator µ that in fact performs the recursion in normal order.

Extending the pure λ-calculus by primitive functions that operate on num-
bers, truth values, character strings and lists is a fairly straightforward matter.
The ensuing δ-reduction rules simply demand that the arguments of primi-
tive functions be of compatible types, e.g., numbers in the case of arithmetic
primitives, for the applications to become reducible.

The idea of a typed λ-calculus is to make sure that expressions are consis-
tently typed in the sense that no type incompatibilities may occur at execu-
tion time. The rules for consistent typing are defined by a type system that,
in turn, specifies a type checker or a type inference system. Type checking
assumes that expressions (or programs) are fully type-annotated by the user
and need only be checked for type consistency, which is the case with almost
all conventional programming languages. Type inference systems try to infer
fully typed expressions from the types of primitive functions, constants and
actual argument types, which is what is done in most functional languages.

Unfortunately, consistent typing, though generally thought to raise confi-
dence in the correctness of algorithms, also imposes some restrictions with re-
gard to the freedom of designing them. Other than ruling out self-applications,
there are a number of perfectly meaningful expressions that cannot be con-
sistently typed and are therefore rejected by the type system as not being
executable.
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The se(m)cd Machine and Others

We begin with the description of abstract computing machines that evaluate
expressions of the pure λ-calculus to weak normal forms. This conservative
approach allows to implement β-reductions as naive substitutions since no
potential naming conflicts between free and bound variable occurrences have
to be dealt with. These machines include in a nutshell everything that is
absolutely essential to performing algorithmic computations mechanically. All
the other abstract machines that we get to know later on are more or less just
descendants of these very basic machines.

5.1 An Outline of the Original secd Machine

The first machine that we are going to talk about is a slightly modified version
of the secd machine invented by Landin in 1962 as an abstract evaluator for
λ-expressions that employs an applicative order strategy.

The operating principle of this machine centers around the idea of delayed
substitutions. Rather than performing β-reductions as atomic operations, the
machine partitions them, as a measure to improve runtime efficiency, into
two steps that are distributed over time. When encountering β-redices, it just
collects mappings of bound variables to (operand) expressions in a runtime
structure called the environment. All substitutions are subsequently done while
traversing the body expressions only once in search of bound-variable occur-
rences.

Closely related to delayed substitutions is the notion of closures. They pair
abstractions that generally include occurrences of free variables with environ-
ments containing the (evaluated) expressions that may have to be substituted
for them later on, whenever it becomes possible and necessary to actually
evaluate these closures.

The name of the machine derives from the four runtime structures it uses,
which are
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• a code structure C that holds in textual form expressions or fragments of
expressions in the order in which they need to be evaluated;

• a value stack S onto which the values of (sub)expressions are pushed;
• an environment structure E whose entries associate (or pair) bound vari-

ables with the values by which they need to be substituted;
• a dump stack D onto which entire machine states are pushed when en-

tering, and from which they are retrieved when returning from, (naive)
β-reductions, respectively.

Complete λ-expressions are initially set up for evaluation in the code struc-
ture C; all other structures are initially empty. The machine takes syntacti-
cally complete expressions or subexpressions off the top of C, evaluates them
and pushes these values onto stack S. Values that become arguments of (naive)
β-reductions are removed from S, paired with the respective λ-bound vari-
ables, and prepended to the current environment E. Free occurrences of bound
variables that pop to the top of C are replaced with copies of the value entries
found for them in E and pushed onto S again. Correct binding scopes are ad-
hered to by isolating, upon entering into a β-reduction, the body expression
of the abstraction on the code structure C, setting up in E only the entries
that belong to this scope, and pushing the remaining parts of the structures
S, E, C, together with the current dump D, onto D. The evaluation of this
body expression terminates with its value in S (with all bound-variable occur-
rences substituted by values from the environment), and with an empty code
structure C. When arriving at such a configuration, the machine retrieves, as
return continuation, the topmost machine state saved on the dump and con-
tinues. It terminates with the value of the entire expression as the sole entry
in an otherwise empty stack S, and with all other structures empty.

The applicative order regime requires that applications (e0 e1) that pop
to the top of C be re-arranged as

(e0 e1) → e1 : e0 : ap .

This brings the operand expression e1 to the front, followed by the operator
expression e0, and then by a special applicator symbol ap, with the separa-
tion symbol ‘ :′ denoting a linear ordering among these items. The machine
computes the values of e1 and e0 in this order, pushes them onto S, and the
applicator ap, once it appears on top of C, applies the topmost value in S to
the value that is underneath.

As for the values that end up in stack S, the machine needs to distinguish
between free variables that are their own values, bound variables for which val-
ues must be retrieved from the environment E, applications of variables whose
values are the applications themselves and of (applications of) abstractions
turned closures.

What the secd machine does in the latter case may be exemplified by
means of the application

(((λu.λv.λw.((u v) w) v) w) u) .
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Applying full-fledged β-reductions and using the protection keys introduced
in Sect. 4.3 would conceptually reduce this expression in three steps, as shown
in Fig. 5.1.

�

�

�

(((λu.λv.λw.((u v) w) v) w) u)

((λv.λw.((/v v) w) w) u)

(λw.((v /w) w) u)

((v w) u)

Fig. 5.1. Reducing a nested application that produces name clashes

The dynamic resolution of name clashes by protection keys notwithstand-
ing, we end up with a normal form in which what were originally the bound
variables u, v, w in the abstraction body are now replaced by the free vari-
ables v, w, u, respectively, found in the operand positions. Since all protection
keys have disappeared again, the β-reductions have in fact been performed as
naive substitutions. As already pointed out in Sect. 4.3, this can be done safely
if an n-ary abstraction is applied to n arguments and no other abstractions
inside the abstraction body need to be penetrated.

The secd machine uses the concept of closures to postpone substitutions in
an abstraction body until all λ-abstractors preceding it have been consumed.
As indicated before, a closure is a construct of the form [ E λv.eb ] that pairs
an abstraction with an environment, i.e., with a set of variable | value pairs in
which λv.eb must be evaluated. To put it another way, the closure represents
the value of λv.eb in E without actually doing the evaluation.

Using closures, the secd machine reduces the above application, in princi-
ple, as illustrated in Fig. 5.2. 1 It sets out with a closure containing the initial
abstraction paired with an as yet empty environment, denoted as an empty
list <>. This closure is applied as operator to the three operands u, v, w. The
first part of β-reducing the innermost redex takes the abstractor λu off the
abstraction, consumes the argument v, creates from these two items a vari-
able | value pair < u v > and prepends it to the environment list. The next
two steps repeat this operation on the remaining β-redices, which builds up
the environment << u v > < v w > < w u >> for the evaluation of the
abstraction body ((u v) w) now exposed. In the last step, the substitutions
can be carried out safely without worrying about name clashes, and the en-
1 The notation used in this figure is pure λ-calculus enriched by closures.
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�
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�

�

((([ <> λu.λv.λw.((u v) w) ] v) w) u)

(([ << u v >> λv.λw.((u v) w) ] w) u)

([ << u v > < v w >> λw.((/u v) w) ] u)

[ << u v > < v w > < w u >> ((u v) w) ]

((v w) u)

Fig. 5.2. Reducing the nested application of Fig. 5.1 with closures

vironment can subsequently be dropped since everything that completes the
β-reductions has been done.

If the same abstraction would be applied to just one or two arguments, in
which case we would have partial applications, then the values would be the
closures shown in the second and third lines from the top, respectively. In
the context of a larger expression they could become the operands of subse-
quent β-reductions, get into the operator positions of other applications and
pick up the missing arguments to become full applications, or be returned as
(components of) the value of the entire expression.

Closures are the means that prevent the secd machine from substituting
and performing reductions under abstractors and thus are an essential prereq-
uisite for a more efficient implementation of β-reductions as naive substitutions.
The ensuing weak normalization is widely accepted as a good compromise be-
tween the amenities of a fully normalizing λ-calculus and simple machinery.
It dictates the semantics of almost all functional and function-based pro-
gramming languages whose implementations return as the results of partial
applications the anonymous values function or procedure (of specific arities
corresponding to the number of missing arguments), which are just external
representations for closures.2

Another problem with the secd machine arises with applicative order eval-
uation. As it rules out using the Y -combinator, recursions must be implemented
either by adding the special recursion operator µ as introduced in Sect. 4.6,
by switching completely to a normal order regime, or by supporting normal
order reductions at least as an option.
2 The semantics of imperative languages take weak normalization one step further

in that they completely rule out partial applications, which is primarily a conse-
quence of compiling functions (procedures) to static code that must be fed with
full sets of arguments (actual parameters) to execute correctly.
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5.2 The se(m)cd Machine

We will now introduce an improved version of Landin’s secd machine that can
do both applicative and normal order reductions, the latter to overcome the Y -
combinator problem and also to realize selection among alternatives without
evaluating them. It employs a constructor syntax to represent λ-expressions in
a form that helps to distinguish between the two evaluation regimes and also
lends itself more elegantly to mechanized interpretation. All it takes to have
this constructor syntax supported by the machine is another stack M for the
temporary storage of constructor symbols.

β-reductions are implemented naively as in the original secd machine, i.e.,
(curried) abstractions remain wrapped up in closures until they have picked
up full sets of arguments.

The operations of this se(m)cd machine may be defined by a state transi-
tion function

τ : (S, E, M, C, D) {| guard} → (S′, E′, M ′, C′, D′) .

It is specified by a finite set of rules that map current into next machine states
whose components are the runtime structures involved, with guard denoting
an optional guard term.

The contents of the stack-like runtime structures are specified as

stack =s nil | X | item : stack ,

where =s again denotes syntactical equality, ‘ :′ separates a topmost sym-
bol or expression of interest from the remainder of the structure, and nil
denotes the empty structure. The symbol X fills in for one of the stack sym-
bols S, E, M, C, D. Legitimate items in C are variables, constructors and
entire λ-expressions. Items in S are values, i.e., variables, applications with
something other than abstractions in operator positions, closures and so-called
suspensions of the general form [ E e ] that pair any unevaluated expression
e with an environment E. Suspensions (which include closures) are created
for operands that need to be passed on to operators in unevaluated form (or
whose evaluation must be suspended), which is what normal order reduction
is all about. The environment E contains variable | value pairs of the general
form < v ee >, with ee representing either a variable, a closure or a suspen-
sion. Items in M are constructor symbols only, and the machine states stored
in the dump D are triples of the form (E, C, D).

The expressions that this machine is supposed to interpret feature the
constructor syntax

e =s v | λv eb | [ E e ] | @ ea ef | @ ef ea ,

i.e., we have variables v, abstractions (with λv taken as a unary binding con-
structor and the body eb as its sole subtree 3), suspensions (closures), and two
3 Note that the dot between the constructor λv and the body expression eb has

been dropped to expose both as separate syntactical entities.
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types of applications formed by the binary constructors @ and @. These con-
structors are also referred to as apply nodes or applicators that respectively are
to enforce applicative and normal order reductions. The components ef and
ea denote expressions in operator (function) and operand (argument) posi-
tions, respectively, relative to these apply nodes. The idea is to consider both
applications as preorder linearized representations of binary trees, as depicted
in Fig. 5.3, where @ takes its left subexpression as operand and its right
subexpression as operator, whereas the apply node @ has both expressions
interchanged.

�
�

�

�
�

�

�
�

�

�
�

�
@ @

ea ef ef ea

Fig. 5.3. Tree representation of applicative and normal order applications

Scanning the components of the applications @ ea ef and @ ef ea from
left to right is equivalent to traversing the respective trees in preorder, i.e., the
root node is visited first, followed by a traversal of the left subtree in preorder,
followed by a traversal of the right subtree in preorder. This is exactly the
order in which we wish to evaluate the components of the applications: the
applicator @ demands that both subexpressions be evaluated in any order
(see Sect. 4.5), so we decide to do ea first and then ef , whereas the applicator
@ demands that only ef (which is traversed first) be evaluated and that ea

remains as it is.

5.2.1 The Traversal Mechanism

The basic mechanism of the se(m)cd machine involves the structures C, M
and S only. They are operated like a shunting yard to perform preorder traver-
sals of constructor expressions in search of β-redices. To accomplish this, the
expressions are initially set up in preorder linearized form in C and moved
from there to S. Preorder linearization of the expressions is preserved by tem-
porarily sidelining all constructor symbols – basically the applicators – in M ,
while their subexpressions are recursively moved from C to S, where they
end up in left-right transposed form. In between, there are configurations in
which the components of redices are spread out over the tops of the three
stacks involved, from where they can be readily removed and replaced by
their reductums.

For a formal specification of this preorder traversal by means of state tran-
sition rules, and ignoring β-reductions, it suffices to consider only applications
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and to treat them summarily as constructor expressions of the general form
ap e0 e1, where ap ∈ {@, @}, since there is in this case no need to distinguish
between the applicative and normal order regimes. Assuming that these appli-
cations appear on top of C as ap : e0 : e1 : C, we have the following traversal
rules:4

(S, E, M, ap : C, D) → (S, E, ap2 : M, C, ; D)
(S, E, api : M, e : C, D)|(i > 0) → (et : S, E, ap(i−1) : M, C, D)

(S, E, ap0 : nil, C, D) → (ap : S, E, nil, C, D)
(S, E, ap0 : api : M, C, D)|(i > 0) → (ap : S, E, ap(i−1) : M, C, D) .

The traversal of a constructor expression begins by moving the apply node
from C to M (the first rule). The index i ∈ {0, 1, 2} attached to the node
symbol while it is in M keeps track of the number of its subexpressions that are
still in C. This index decrements whenever a complete (sub)expression e has
been moved over to S, where it builds up with its left and right subexpressions
interchanged, denoted by et (the second rule). Whenever the index is down to
zero, the apply node itself is moved to S as this completes the traversal from
C to S of a (sub)expression of which it is the root node. If there is another
apply node underneath it on M , its index is accordingly decremented by one
(the last rule). The third rule applies to the special case where, other than
for the topmost apply node, M is empty, which terminates the traversal of a
complete expression.

Figure. 5.4 illustrates by means of the expression @ a @ b c how this
traversal works, showing just the contents of the stacks C, S and M . The
traversal begins with the stack configuration in the upper left and, following
the sequence of arrows, terminates with the configuration in the lower left.

We note that this traversal mechanism brings about a stack configuration
(the third configuration in the sequence) in which the applicator @ appears on
top of stack M , its left subexpression a – the operator – on top of S, and its
right subexpression @ b c – the operand – on top of C. Likewise, in the sixth
configuration of the sequence, we have the applicator @ on top of M , and its
left subexpression b – the operand – underneath its right subexpression c –
the operator – stacked up in S. Thus, we have in S in either configuration the
subexpression(s) that need to be evaluated before reducing the respective ap-
plication. These are both the operand and the operator if the applicator is @,
but just the operator if the applicator is @. If the operator expression happens
to be an abstraction, then these configurations may be readily intercepted by
the machine to perform (naive) β-reductions. This involves first taking the
components of the redex off the stack tops, then creating in the environment
E the corresponding variable | value pair, and – after having saved the current
machine state on the dump – finally pushing the abstraction body onto C for
further evaluation.
4 For the sake of defining these traversal rules, abstractions λv eb are simply con-

sidered expressions e.



96 5 The se(m)cd Machine and Others

@ : a : @ : b : c : nil | C a : @ : b : c : nil | C
nil | M =⇒ @2 : nil | M
nil | S nil | S

⇓

b : c : nil | C @ : b : c : nil | C

@
2

: @1 : nil | M ⇐= @1 : nil | M
a : nil | S a : nil | S

⇓

c : nil | C nil | C

@
1

: @1 : nil | M =⇒ @
0

: @1 : nil | M
b : a : nil | S c : b : a : nil | S

⇓

nil | C nil | C
nil | M ⇐= @0 : nil | M

@ : @ : c : b : a : nil | S @ : c : b : a : nil | S

Fig. 5.4. Traversing the expression @ a @ b c from stack C to S via stack M

5.2.2 Doing β-Reductions

The state transition rules necessary to perform β-reductions are given in
Fig. 5.5. Together with the rules that govern the traversal of expressions,
they completely specify the state transition function τ of the se(m)cd ma-
chine. The rules are listed from top to bottom in the order in which they need
to be tried on actual machine states so that the first rule whose left-hand side
matches is the one to be executed. Ambiguities may otherwise occur among
some of the rules, mainly among those that intercept and execute β-redices
and the traversal rules, which are the last ones in the list.

However, we will describe the rules that effect β-reductions in the sequence
in which they actually apply to β-redices and their components.

The first rules to be considered are those that create closures for abstrac-
tions that appear on top of C. Rule (8) applies to a configuration with an
empty stack M , in which case the abstraction is the entire expression to be
evaluated. Rule (9) creates closures for abstractions in operator and operand
positions relative to either of the apply nodes @ or @ in M . Since closures
represent values, they are in both cases set up in stack S.

Applications of closures occurring in operator positions of apply nodes,
which in fact constitute instances of β-reduction, are handled by rules (2)
and (3). The first of these rules applies to a configuration with an apply
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(1) (S, E, M, nil, (E′, C′, D′)) → (S, E′, M, C′, D′)

(2) ([ E′ λv eb ] : ea
t : S, E, @

0
: M, C, D)

→ (S, < v ea >: E′, M, eb : nil, (E, C, D))
(3) ([ E′ λv eb ] : S, E, @1 : M, ea : C, D)

→ (S, < v [ E ea ] >: E′, M, eb : nil, (E, C, D))

(4) (S, E, nil, v : C, D)
→ (lookup( v, E ) : S, E, nil, C, D)

(5) (S, E, api : M, v : C, D) | (i > 0)

→ (lookup( v, E ) : S, E, ap(i−1) : M, C, D)

(6) ([ E′ ea ] : S, E, nil, C, D) | (ea �=s λv eb)
→ (S, E′, nil, ea : nil, (E, C, D))

(7) ([ E′ ea ] : S, E, api : M, C, D) | (ea �=s λv eb)

→ (S, E′, ap(i+1) : M, ea : nil, (E, C, D))

(8) (S, E, nil, λv : eb : C, D)
→ ([ E λv eb ] : S, E, nil, C, D)

(9) (S, E, api : M, λv : eb : C, D) | (i > 0)

→ ([ E λv eb ] : S, E, ap(i−1) : M, C, D)

(10) (S, E, M, ap : C, D) → (S, E, ap2 : M, C, D)
(11) (S, E, ap0 : nil, C, D) → (ap : S, E, nil, C, D)
(12) (S, E, ap0 : api : M, C, D) | (i > 0)

→ (ap : S, E, ap(i−1) : M, C, D)

Fig. 5.5. The complete set of state transition rules of the se(m)cd machine

node @
0

in M in conjunction with a closure in S and an (evaluated) operand
expression underneath. The second rule applies to a configuration with an
apply node @1 in M , a closure in S, and an unevaluated operand expression
still in E. In either case, the machine sets up as a new environment the
one that comes along with the closure, prepends to this environment a new
entry that pairs the variable v bound in the abstraction with the value of the
operand expression, isolates in C the abstraction body for evaluation in this
new environment, and saves in the dump as return continuation the machine
state comprising the old environment and the remaining code structure C.
The difference between these two rules essentially boils down to the creation
of the new environment entry: rule (2) takes the evaluated operand expression
off stack S as it is, whereas rule (3) takes the unevaluated operand off the top
of C and wraps it up in a suspension [ E ea ] to postpone its evaluation. A
suspension looks almost like a closure, except that ea may be any legitimate
λ-expression, not just an abstraction.
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The machine then moves on to traverse the abstraction body eb from C
to S. Whenever it encounters a variable v on top of C, it generally applies
rule (5) to search, by means of the function lookup, the current environment
for an entry < v ee > and, if successful, returns the value ee on top of S.
Otherwise the variable v is free in the entire expression, in which case lookup
simply returns the variable itself as its own value. Rule (4) takes care of the
special case where stack M is empty.

If lookup retrieves from E a suspension containing an expression other
than an abstraction, it is set up for evaluation in C and E, and the current
machine state is saved in D. This action is specified by rule (6) for the general
case of a nonempty stack M , and by rule (7) for the special case of an empty
stack M .

Upon completing the evaluation of an instantiated abstraction body, the
code structure C becomes empty. This machine configuration effects the state
transition rule (1). It restores as return continuation the configuration before
calling either rule (2) or rule (3) to enter into a β-reduction, but the original
redex is replaced with the value found on top of S.

The remaining rules (10) to (12) apply to the handling of apply nodes
while traversing an expression from C to S.

Just like the original secd machine, this machine generally reduces λ-ex-
pressions to weak normal forms only, as it neither substitutes nor reduces under
abstractors. If the machine starts out with the state (nil, nil, nil, e : nil, nil),
where e denotes the expression to be reduced, then it terminates with the
state ( wnf : nil, nil, nil, nil, nil ) which has the weak normal form wnf of
e on S (provided it exists), and with empty structures otherwise. The weak
normal form could be a free variable, a closure, or an irreducible application.

Since the machine can perform both applicative and normal order reduc-
tions, the applicators should be chosen so as to guarantee termination with
a near-minimal number of β-reductions. The choice can be made either by
appropriate annotations on parenthesized λ-expressions, or by taking normal
order reduction as the default option and determining by some á priori anal-
ysis which of the applications may safely be reduced in applicative order.

5.2.3 Reducing a Simple Expression

As an example, we consider again the application

(((λu.λv.λw.((u v) w) v) w) u)

of Sect. 5.1, whose reduction was illustrated in Figs. 5.1 and 5.2. Since all the
arguments of the (nested) application are free variables which, by definition,
are their own values, the three β-reductions can safely be done in applicative
order. This is generally more efficient since it avoids the overhead of wrapping
the arguments up in suspensions whose environments, in this particular case,
would be empty.
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Now, transforming this λ-expression into constructor syntax, with @ as
the apply node, means that we need to replace systematically parenthesized
expressions of the form (e0 e1) by @ e1 e0, which gives5

@ u @ w @ v λu λv λw @ w @ v u

Figure. 5.6 shows how the se(m)cd machine reduces this expression.
The initial machine state (or stack configuration) has the expression set up

in the code structure C; all other structures are empty.6 The machine then
traverses the expression from C to S and tries to evaluate its components.
Since the arguments v, w, u are already values, the only thing left to do
before reaching the second configuration from the top is to create for the
abstraction a closure with an empty environment.

With this closure on top of S, the argument v underneath and an ap-
plicator @

0
on top of M , the machine recognizes a redex to which rule (2)

applies. It pops the applicator off M , removes the closure from S and unwraps
it, takes the abstractor λu off the abstraction and removes the argument v
from S, creates from these two items an entry < u v > that it adds to the
environment E′ carried along with the closure. It also saves the structures E,
C and recursively D (all three of which are as yet empty) in the dump D, and
sets the remaining abstraction up for evaluation in C, as shown in the third
configuration from the top.

Creating a closure in S and applying it to an argument is repeated twice
to reduce the remaining two redices. This results in the fourth configuration
from the top, which has the abstraction body set up in C and the environment
in which it is to be evaluated set up in E. While traversing the abstraction
body from C to S, every variable that pops to the top of C is replaced by its
associated value found in the environment, which is pushed onto S, resulting
in the second to last configuration shown in the figure.

With the reduced expression in left-right transposed form in S, the ma-
chine has basically done its job, except that the current environment is still
in E, and the dump D still contains nestings of machine configurations that
include the previous states of the environment. Both structures are cleaned
up by repeated application of the first state transition rule so that the final
state has all structures other than S empty.

Knowing that the expression in S is a preorder linearized representation of
a tree that has its left and right subtrees flipped, we obviously have, relative
to an applicator @, the operator in the left subtree and the operand in the
right subtree. This means that we can convert this expression back into an
5 It does not really matter which applicators are used in the abstraction body

since the variables are substituted by other variables, so the applications will not
become redices.

6 Note that all occurrences of constructor symbols and variables in the C, M and
S structures are now separated by ‘:’, and so are the variable | value entries in
the environment E.
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nil | S
nil | E
nil | M

@ : u : @ : w : @ : v : λu : λv : λw : @ : w : @ : v : u : nil | C
nil | D

repeatedly rules (10) and (5), and then rule (9) ⇓

[ nil λu λv λw @ w @ v u ] : v : w : u : nil | S
nil | E

@
0

: @
1

: @
1

: nil | M
nil | C
nil | D

rule (2) ⇓

w : u : nil | S
< u v >: nil | E

@
1

: @
1

: nil | M

λv : λw : @ : w : @ : v : u : nil | C
(nil, nil, nil) | D

rules (9), (2) twice ⇓

nil | S
< w u >:< v w >:< u v >: nil | E

nil | M

@ : w : @ : v : u : nil | C
(< v w >:< u v >: nil, nil, (< u v >: nil, nil, (nil, nil, nil))) | D

repeatedly traversal rules (10) to (12) and rule (5) ⇓

@ : @ : v : w : u : nil | S
< w u >:< v w >:< u v >: nil | E

nil | M
nil | C

(< v w >:< u v >: nil, nil, (< u v >: nil, nil, (nil, nil, nil))) | D

rule (1) three times ⇓

@ : @ : v : w : u : nil | S
nil | E
nil | M
nil | C
nil | D

Fig. 5.6. Reducing (((λu.λv.λw.((u v) w) v) w) u) applicative order with the
se(m)cd machine
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equivalent parenthesized form as

@ @ v w u → ((v w) u) ,

i.e., the result – as expected – is the same as the one obtained by the reduction
sequences in Figs. 5.1 and 5.2.

5.3 The #se(m)cd Machine for the Nameless Λ-Calculus

It takes only a few minor modifications of the se(m)cd machine to make it
reduce expressions of the nameless Λ-calculus introduced in Sect. 4.4, which
uses binding indices instead of variables as placeholders for substitutions.

The main advantage of switching to the Λ-calculus relates to the repre-
sentation of and accesses to the environment. We have seen in the preceding
section that the se(m)cd machine, when it reduces the application

(((λu.λv.λw.((u v) w) v) w) u) ,

constructs an environment of variable | value pairs

< w u >:< v w >:< u v >: nil

for the evaluation of the abstraction body ((u v) w), i.e., the entry for the
innermost bound variable w ends up at the top of stack E and the entry for
the outermost bound variable u ends up at the bottom (compare Fig. 5.6).

If we now α-convert this application into the nameless Λ-calculus, we ob-
tain

(((Λ.Λ.Λ.((#2 #1) #0) v) w) u) .

An environment for the evaluation of the abstraction body ((#2 #1) #0) that
would be created the same way the se(m)cd does it but uses binding indices
instead of variables would obviously have to look like this:

< #0 u >:< #1 w >:< #2 v >: nil .

We immediately recognize that the binding indices that have replaced the
variables identify directly the positions of the entries relative to the top of E.
We can therefore safely drop these indices altogether and just take the values
associated with them as environment entries.

The state transition rules of this modified #se(m)cd machine are given
in Fig. 5.7. They are the same as those of the se(m)cd machine, except that

• λ-abstractors are now replaced by Λ-abstractors;
• binding indices replace occurrences of bound variables;
• expressions represented in this form are denoted as #e;
• entries in the environment are just values (including suspensions);
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(1) (S, E, M, nil, (E′, C′, D′)) → (S, E′, M, C′, D′)

(2) ([ E′ Λ #eb ] : #ea
t : S, E, @

0
: M, C, D)

→ (S, #ea : E′, M, #eb : nil, (E, C, D))
(3) ([ E′ Λ #eb ] : S, E, @1 : M, #ea : C, D)

→ (S, [ E #ea ] : E′, M, #eb : nil, (E, C, D))

(4) (S, E, nil, #j : C, D)
→ (lookup( #j, E ) : S, E, nil, C, D)

(5) (S, E, api : M, #j : C, D) | (i > 0)

→ (lookup( #j, E ) : S, E, ap(i−1) : M, C, D)

(6) ([ E′ #ea ] : S, E, nil, C, D) | (#ea �=s Λ #eb)
→ (S, E′, nil, #ea : nil, (E, C, D))

(7) ([ E′ #ea ] : S, E, api : M, C, D) | (#ea �=s Λ #eb)

→ (S, E′, ap(i+1) : M, #ea : nil, (E, C, D))

(8) (S, E, nil, Λ : #eb : C, D)
→ ([ E Λ #eb ] : S, E, nil, C, D)

(9) (S, E, api : M, Λ : #eb : C, D) | (i > 0)

→ ([ E Λ #eb ] : S, E, ap(i−1) : M, C, D)

(10) (S, E, M, ap : C, D) → (S, E, ap2 : M, C, D)
(11) (S, E, ap0 : nil, C, D) → (ap : S, E, nil, C, D)
(12) (S, E, ap0 : api : M, C, D)|(i > 0)

→ (ap : S, E, ap(i−1) : M, C, D)

Fig. 5.7. The state transition rules for the #se(m)cd machine

• the function lookup accesses the actual environment using the binding
indices as offsets relative to the topmost entry.

Figure 5.8 shows the state transitions effected by these rules on the above
Λ-expression. Other than for the syntactical changes and the representation
of the environment entries, they are exactly the same as in Fig. 5.6.

5.4 Implementing δ-Reductions

Both the se(m)cd machine and the #se(m)cd machine may be extended
without problems to support an applied λ-calculus as well.

To get the basic idea across, it suffices just to give the state transition rules
for addition and ‘greater than’ comparison. Apart from the specifics of the
particular functions, all rules for arithmetic, logic and relational operations
basically look the same. As a matter of convenience, we will also assume
that none of the applications produces type inconsistencies that would require
special treatment, as outlined in Sects. 4.7 and 4.8.
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nil | S
nil | E
nil | M

@ : u : @ : w : @ : v : Λ : Λ : Λ : @ : #0 : @ : #1 : #2 : nil | C
nil | D

repeatedly rules (10) and (5), and then rule (9) ⇓

[ nil Λ Λ Λ @ #0 @ #1 #2 ] : v : w : u : nil | S
nil | E

@
0

: @
1

: @
1

: nil | M
nil | C
nil | D

rule (2) ⇓

w : u : nil | S
v : nil | E

@
1

: @
1

: nil | M

Λ : Λ : @ : #0 : @ : #1 : #2 : nil | C
(nil, nil, nil) | D

rules (9), (2) twice ⇓

nil | S
u : w : v : nil | E

nil | M

@ : #0 : @ : #1 : #2 : nil | C
(w : v : nil, nil, (v : nil, nil, (nil, nil, nil))) | D

repeatedly rules (10) to (12) and rule (5) ⇓

@ : @ : v : w : u : nil | S
u : w : v : nil | E

nil | M
nil | C

(w : v : nil, nil, (v : nil, nil, (nil, nil, nil))) | D

rule (1) three times ⇓

@ : @ : v : w : u : nil | S
nil | E
nil | M
nil | C
nil | D

Fig. 5.8. Reducing (((Λ.Λ.Λ.((#2 #1) #0) v) w) u) in applicative order with the
#se(m)cd machine
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To comply with the syntax supported by either machine, binary arithmetic
operations need to be represented as twofold nestings of unary applications.
Since arithmetic operations require that their operands be evaluated before
the operators can be applied, such applications need to be expressed in con-
structor syntax as

@ e2 @ e1 arith op

for applicative order evaluation.
Assuming that e1 and e2 are (or evaluate to) numbers num1 and num2,

respectively, and that the operator is +, this application is supposed to reduce
in two steps as follows:

@ num2 @ num1 + →δ @ num2 {+ num1} →δ (num2 + num1) ,

where {+ num1} denotes an intermediary function that reads ‘add num1 to
whatever argument’, and (num2 + num1) represents the sum of num1 and
num2. The se(m)cd machine can do these δ-reductions using the rules

(+ : num1 : S, E, @
0

: M, C, D) → (S, E, M, {+ num1} : C, D)

and

({+ num1} : num2 : S, E, @
0

: M, C, D) →
(S, E, M, (num2 + num1) : C, D)

Likewise, binary relational operations need to be represented in construc-
tor syntax as @ e2 @ e1 rel op. An application @ num2 @ num1 gt reduces,
again in two steps, as:

@ num2 @ num1 gt →δ @ num2 { gt num1 }

→δ

⎧⎨
⎩

λsλt s if (num2 > num1)

λsλt t if (num2 ≤ num1)

(here we need to remember from Sect. 4.7 that the combinators λsλt s and
λsλt t stand for the Boolean values true and false, respectively, that, in
the larger context of if then else clauses, select between consequent and
alternative). This translates into the se(m)cd machine rules7

(gt : num1 : S, E, @
0

: M, C, D) → (S, E, M, {gt num1} : C, D)

and

7 Two more rules of the same kind take care of arguments that are both character
strings.
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({gt num1} : num2 : S, E, @
0

: M, C, D) →
if (num2 > num1)
then (S, E, M, λs λt s : C, D)
else (S, E, M, λs λt t : C, D) .

Another rule is necessary to deal with the special case where stack M is
empty and a δ-reduction rule has left a value val (which may also be some
intermediary function) in C. This rule simply moves this value from C to S:

(S, E, nil, val : C, D) → (val : S, E, nil, C, D)

Very similar rules may be defined for δ-reductions involving other arithmetic,
logic and relational primitives, and also for the list processing functions dis-
cussed in Chap. 3 and Sect. 4.7.

5.5 Other Weakly Normalizing Abstract Machines

There are two more abstract machines that ought to be mentioned for rea-
sons of completeness as they (or their descendants) also play a major role in
implementing a weakly normalizing λ-calculus. They share with the se(m)cd
machines the notions of delayed substitutions, environments and closures or
suspensions.

5.5.1 The K-Machine

Krivine’s extremly simple K-machine supports a normal order regime for the
nameless Λ-calculus. It uses just two structures T and E which respectively
hold the Λ-expressions to be transformed and an environment whose entries
are suspensions. A third structure S serves as a working stack for the tem-
porary storage of suspensions. The T -structure in fact replaces the combined
structures C, M and S of the se(m)cd machines as far as the traversal of
expressions in search of redices is concerned. This higher level of abstractions
renders the specification of the machine more concise and keeps more options
open for an implementation.

The syntax of the Λ-expressions processed by this machine is

e =s #i | (e0 e1) | Λe | [ E e ] ,

and its state transition function is defined as

τK : (E, T, S) → (E′, T ′, S′) .

This function is realized by just four rules, corresponding to the three syntac-
tical figures (with an extra rule for the binding index #0), as:
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([ E1 e1 ] : E, #0, S) → (E1, e1, S)
(v : E, #(i + 1), S) → (E, #i, S)

(E, (e0 e1), S) → (E, e0, [ E e1 ] : S)
(E, (Λe0 ), s : S) → (s : E, e0, S) .

The first and the second rule combined select from the environment the i-
th suspension relative to the top, thus replacing the function lookup of the
se(m)cd machine, the third rule creates a suspension in S for the operand of
an application, and the fourth rule has, under the control of an abstraction
in T , a suspension removed from the top of S and pushed as an entry into E,
thereby also exposing the body of the abstraction in T .

The initial machine configuration has the expression set up in T ; both the
environment and the stack are empty. If everything goes right, the machine
terminates for all closed Λ-expressions with a weak normal form in T , and
with E and S again empty.

Figure. 5.9 shows, as a sequence of state transformations, how the K-
machine reduces the Λ-expression (Λ(#0 #0) Λ#0) to Λ#0.

�

�

�

�

�

�

(nil, Λ#0, nil)

([ [ nil Λ#0 ] : nil #0 ] : nil, #0, nil)

(nil, Λ#0, [ [ nil Λ#0 ] : nil #0 ] : nil)

([ nil Λ#0 ] : nil, #0, [ [ nil Λ#0 ] : nil #0 ] : nil)

([ nil Λ#0 ] : nil, (#0 #0), nil)

(nil, Λ(#0 #0), [ nil Λ#0 ] : nil)

( nil, ( Λ( #0 #0 ) Λ#0 ), nil )

Fig. 5.9. Reducing a Λ-expression in the K-machine

There exist numerous variants and extensions of this machine, of which
one will be described in the next chapter. It is also the subject of extensive
theoretical work.
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5.5.2 The Categorial Abstract Machine

The other machine at which we should have a brief look is the categorial ab-
stract machine (CAM) of Cousineau, Curien and Mauny which implements an
applicative order regime for the Λ-calculus. The attribute ‘categorial’ essen-
tially relates to the notion of products (or pairs) which are used to construct
(nested) terms of the form < p, q > that represent environments composed of
closures. The operations on these terms include selection of the first or second
component, swapping, and consing (composing a term from two subterms)
that suggest realization as instructions.

The basic idea of the CAM therefore is to translate expressions of the pure
Λ-calculus into code which, in addition to the instructions just mentioned,
includes others that deal with abstractions and applications, and to have this
code construct and operate on terms.

To do so, the CAM supports three runtime structures, of which T and C
respectively hold the terms and the code, and S again serves as a working
stack.8 The state transition function of the CAM is defined as

τcam : (T, instr : C, S) → (T ′, C′, S′)

(with instr denoting any of the instructions which, upon execution, is removed
from the code structure).

The state transition rules for the CAM instructions are the following:

(< p, q >, car : C, S) → (p, C, S)
(< p, q >, cdr : C, S) → (q, C, S)

(p, ( cur c) : C, S) → ([ p c ], C, S)
(p, push : C, S) → (p, C, p : S)

(p, swap : C, q : S) → (q, C, p : S)
(p, cons : C, q : S) → (< q p >, C, p : S)

(< [ p c ] q >, app : C, S) → (< p q >, c : C, S) .

The instructions car and cdr just select the first and second component of
the term in T (first and second rules from the top), the instruction cur creates
in T a closure for the abstraction code c in the environment p held in T (third
rule), and push copies the term (environment) p from T to S (fourth rule). The
instruction swap exchanges the terms p in T and q in S, and cons combines
them into a new term in T (fifth and sixth rule). Finally, apps evaluates a
closure found in the first component of the term in T (last rule).

Translating the three syntactical figures of the Λ-calculus into code com-
posed of these instructions is accomplished by the following rules:
8 Note that the term structure T and the code structure C of the CAM correspond

to the environment E and to the term structure T , respectively, of the K-machine,
i.e., the terms have different meanings in both machines.
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code[ #0 ] = cdr
code[ #(i + 1) ] = car : code[ #i ]

code[ Λe ] = ( cur code[ e ] )
code[ (e0 e1) ] = push : code[ e0 ] : swap : code[ e1 ] : cons : app .

Translating binding indices #i into cars and cdrs suggests construction of
the environment by the recursive nesting of terms along the first (head) com-
ponents of the binary lists, the instruction cur that precedes abstraction
code effects currying, and the code for applications is to construct a pair
< code[ e0 ] ; code[ e1 ] >, with <, ; and > translating into push, swap
and cons, respectively. The instruction app simply applies the first (operator)
component to the second (operand) component of this pair.

Reducing a Λ-expression e begins with an empty pair in T , an empty stack
S, and the code of e in C, i.e., with a configuration (<>, code[ e ] : nil, nil).
It terminates with a term in T representing the weak normal form of e, and
with an empty code structure and an empty stack.

To see how this works, we consider again the expression (Λ (#0 #0) Λ #0)
that, after two β-reductions, returns Λ #0. Applying to the initial expression
the above translation rules yields the code:

push : (cur f) : swap : (cur cdr) : cons : app ,

where f =s push : cdr : swap : cdr : cons : app.
Figure 5.10 shows, as a sequence of state transitions, how this code ex-

ecutes. The computation stops after 13 steps with a configuration that has
both the code structure and the stack empty, i.e., it has arrived at a legitimate
terminal state. The resulting term in T is a closure containing an empty envi-
ronment and code that consists of just the instruction cdr. We can convince
ourselves that this is the CAM term representing the abstraction Λ #0 by the
following consideration.

We know that an abstraction compiles to curried code which creates a new
closure in T that takes the current term in T as the environment. That is to
say, an n-ary abstraction would create in T an n-fold nesting of closures. The
flat closure that we get in T as the result of our example program thus tells
us that we have an abstraction of arity one. Since the instruction cdr that
makes up the code of the abstraction body retranslates straightforwardly into
the binding index #0, the weak normal form represented by this closure is
indeed Λ #0, as expected.

5.6 Summary

This chapter has focused on some very basic weakly normalizing abstract ma-
chines for the pure λ-calculus that play a major role in language implementa-
tions, specifically in the functional domain, but also in numerous theoretical
studies. Of primary interest are two variants of Landin’s secd machine that
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( [ <> cdr ], nil, nil )

( <<> [ <> cdr ] >, cdr : nil, nil )

( < [ <> cdr ] [ <> cdr ] >, app : nil, nil )

( [ <> cdr ], cons : app : nil, [ <> cdr ] : nil )

( <<> [ <> cdr ] >, cdr : cons : app : nil, [ <> cdr ] : nil )

( [ <> cdr ], swap : cdr : cons : app : nil, <<> [ <> cdr ] >: nil )

( <<> [ <> cdr ] >, cdr : swap : cdr : cons : app : nil, <<> [ <> cdr ] >: nil )

( <<> [ <> cdr ] >, push : cdr : swap : cdr : cons : app : nil, nil )

( < [ <> f ] [ <> cdr ] >, app : nil, nil )

( [ <> cdr ], cons : app : nil, [ <> f ] : nil )

( <>, (cur cdr) : cons : app : nil, [ <> f ] : nil )

( [ <> f ], swap : (cur cdr) : cons : app : nil, <>: nil )

( <>, (cur f) : swap : (cur cdr) : cons : app : nil, <>: nil )

( <>, push : (cur f) : swap : (cur cdr) : cons : app : nil, nil )

Fig. 5.10. Code execution on the categorial abstract machine

support both applicative and normal order reductions. To do so, the machine
represents λ-expressions in a constructor syntax that uses two apply nodes
(or applicators) @ and @ to distinguish between both evaluation strategies.



110 5 The se(m)cd Machine and Others

The most important idea of these se(m)cd machines is that of delayed sub-
stitutions. β-reductions are split up into the collection of variable | value pairs
in a runtime structure called the environment and the actual substitutions
of bound-variable occurrences that are all done at once when the respective
body expressions are subsequently traversed. Closely related to delayed sub-
stitutions and environments are closures and suspensions that respectively
pair abstractions and, more generally, expressions with the environments in
which they may have to be evaluated later on. These features combined are
the keys to efficient language implementations.

The basic mechanism of the se(m)cd machine is a preorder traversal of
constructor expressions, with the code structure C as the source of uneval-
uated expressions, S as the sink stack for expression values and M as an
intermediate stack for apply nodes. This traversal brings about stack configu-
rations in which the components of redices are spread out over the tops of the
stacks C, M and S, ready to be intercepted and replaced by their reductums.

One of the se(m)cd machines implements the λ-calculus of named vari-
ables, the other implements the nameless Λ-calculus. Except for differences
relating to the representation of the environments and to the syntax, the state
transition rules of both machines are exactly the same.

δ-reductions are fairly simple and straightforward to implement in both
machines. They affect just the contents of the stacks S and M , but neither
the environment E nor the dump D. This tells us that primitive operations
are obviously not a primary concern when it comes to designing abstract ma-
chines. What really matters, and makes things complicated, is the machinery
that supports function calls and correctly handles the scoping of variables or
of binding indices.

Delayed substitutions, environments and closures (or suspensions) are the
concepts shared by the other two machines briefly discussed in this chapter,
namely Krivine’s K-machine and the categorial abstract machine (CAM) of
Cousineau, Curien and Mauny. The former is an extremly simple direct in-
terpreter of Λ-expressions that works with only four state transition rules
to transform expressions, using just an environment and a stack as runtime
structures. The latter converts Λ-expressions into simple code that basically
operates on a term structure and a stack to produce terms as representations
of weak normal forms.

It should be clearly understood that the se(m)cd machines, the K-machine
and the CAM just specify what needs to be done in principle, and specif-
ically what runtime structures need to be supported, to weakly normalize
λ-expressions, which can be accomplished without engaging in full-fledged
β-reductions.

A direct implementation of the se(m)cd machines and of the K-machine
would perform rather poorly as they are based on what is commonly known
as string reduction. They interpret linear representations of expressions, and
in doing so, involve a lot of copying, of forming and undoing closures (or
suspensions), and of moving (copying) entire environments structures and
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code fragments from one place to another, e.g., to and from the dump of the
se(m)cd machine. The construction of this dump itself is highly redundant as
it may contain repeatedly the same substructures. All this adds up to runtime
complexities of order O(n2) for problems whose representations are of order
O(n). The CAM is doing a lot better in this respect as it executes compiled
code to construct and operate on terms, primarily closures.
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6

Toward Full-Fledged λ-Calculus Machines

The abstract machines described in the preceding chapter realize a weakly
normalizing λ-calculus. β-reductions are performed naively, the risk of poten-
tial name clashes is consequently avoided by outlawing substitutions and re-
ductions under λ-abstractors. The values of abstractions are represented as
closures, i.e., by constructs that in fact leave abstractions unevaluated.

We could be content with this situation, arguing that this is just a minor
inconvenience of not much practical relevance, particularly if we are interested
in computing only basic values (or ground terms), and therefore not worth
the effort of implementing a supposedly rather complex and time-consuming
β-reduction. In fact, all conventional programming languages and computing
systems are based on the naive substitution of function parameters. Moreover,
they demand that functions (or procedures) be applied to full sets of argu-
ments. Most importantly, variables just represent values but are not values
themselves. So, there can be no free variables and hence there can be no name
clashes that need to be resolved.

However, we could also argue that too much is given up too easily. Full
normalization based on full-fledged β-reductions is an essential prerequisite for
symbolic computations involving free variables. It is the key to correctly treat-
ing both functions (abstractions) and variables truly as first-class objects, just
like values, meaning that they may legitimately occur in both operator and
operand positions of applications, and also be returned as function values.

Full normalization is, for instance, required in proof assistant systems,
and more specifically in proof checkers based on type theories, where the
terms of so-called dependent types must be compared for β-equivalence. In
theorem proving (which is the ultimate goal of proof assistant systems) full
normalization is one of the more important proof tactics to establish reflexive
equality between two terms (see appendix B for an example).

Another area of applying full normalization to advantage are high-level
program optimizations such as converting partial applications of abstractions
into new, specialized abstractions, normalizing abstraction bodies, or unrolling
recursive abstractions to eliminate repeated parameter passing. Such on-the-
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fly simplifications could pay off significantly in terms of runtime efficiency if
the abstractions are repeatedly applied in different contexts.

Clearly, these optimizations cannot be done with the se(m)cd machines
as they are (and neither with the K-machine nor with the CAM) since they
in fact treat closures rather than abstractions as first class objects, with the
consequence that instead of symbolically simplifying abstraction bodies only
once, the equivalent computational steps may have to be repeated as many
times as the closures (rather than the normalized abstractions) are applied
elsewhere.

As an example, we consider again the function double twice introduced in
Sect. 2.1. We remember that it may be computed by applying the function
twice =s λf.λv.(f (f v)) to itself:

(λf.λv.(f (f v)) λf.λv.(f (f v))) .

It takes five β-reductions as defined in Sect. 4.3, i.e., using protection keys to
resolve naming conflicts, to reduce this partial application to

double twice =s λv.λv.(/v (/v (/v (/v v)))) .

Here the abstraction body has been evaluated as far as is possible without
actually applying the abstraction to arguments.

However, the se(m)cd machine would wrap this partial application up in
a closure1

[ < f λf.λv.(f (f v)) > λv.(f (f v)) ]

and pass it along until it can be applied to a second argument, hopefully to an-
other abstraction. This application would prepend to the environment another
entry for the variable v, after which the closure could be unwrapped again and
evaluated. Substituting in the abstraction body then exposed occurrences of
the variable f by the entry found for it in the environment, and performing
subsequent reductions, is equivalent to directly β-reducing the partial appli-
cation of twice to itself. The problem is that these substitutions need to be
repeated wherever the closure is applied, rather than doing the equivalent β-
reductions only once to compute a fully normalized (or optimized) version of
the self-application first.

Beyond avoiding such redundancies, efficiency of execution also relates to
the question of how many β-reductions it takes to fully normalize a given
λ-expression. Minimizing the length of a reduction sequence, which may be
a primary concern, is a matter of choosing the right redex in a particular
state of the computation. However, optimizing strategies to this effect are for
all practical purposes unattainable for the simple reason that they inflict a
considerable runtime overhead, owing to elaborate on-the-fly decision making
1 The environment is denoted as a list of entries that are of the general form

< var e >.
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as to which redex needs to be contracted next. This overhead tends to neu-
tralize any gains made by saving a few β-reductions. Simple strategies such as
normal order may duplicate work by reducing operand expressions in possi-
bly several places of substitution, whereas the applicative order regime trades
the efficiency of reducing an operand expression exactly once for some risk of
getting trapped in runaway recursions even if normal forms exist.

In this chapter, we will give an overview of early implementation techniques
for full-fledged β-reductions and also of more recent concepts that successfully
combine efficient environment-based β-reductions with a strategy that repre-
sents a good compromise between the efficiency of the applicative order regime
and the full normalization property of the normal order regime. In subsequent
chapters we will develop abstract machines that implement these concepts.

6.1 Berkling’s String Reduction Machine

Inspired by John Backus’s earlier work on reduction languages, Berkling came
up as early as 1975 with a novel way of architecting computing machines that
directly implements an applied λ-calculus as the machine language, with a
full-fledged β-reduction as its most important operation, and with support
for both applicative and normal order evaluation.

This machine was designed with hardware implementation in mind, pro-
viding a high-level interface for the λ-calculus. It uses the same linear repre-
sentation of λ-expressions and the same stack-based shunting yard mechanism
for traversing them in search of reducible applications as do the se(m)cd ma-
chines of the preceding chapter.2

The constructor syntax of the expressions that can be directly interpreted
by the machine is given as

e =s v | c | pf | λu eb | @ ea ef | @ ef ea | < eh et ,

i.e., expressions are variables, constant values, primitive functions, abstrac-
tions, applicative and normal order applications, again with ef and ea respec-
tively denoting operator (function) and operand (argument) expressions, and
binary lists. The abstractors λu and the applicators @, @ are again construc-
tors, and so is the list symbol < that combines a head expression eh with a
tail expression et (which may be an end-of-list symbol >).

The variables may be preceded by one or several protection keys (or un-
binding operators /), i.e., their syntax should be defined more precisely as
v =s z | /v (with z being a variable as well). The positions of operators and
operands relative to the applicators @ and @ are, as in the se(m)cd machines,
again chosen in compliance with the order in which they are visited by the
underlying preorder traversal mechanism.
2 In fact, this traversal mechanism was first implemented in Berkling’s machine and

in this text adopted for the specification of the se(m)cd machines.
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The machine performs β-reductions strictly and directly by the rules for
the manipulation of protection keys for bound variable occurrences as given
in Sect. 4.3. Rather than using an environment to delay substitutions, as
the se(m)cd machines do, β-reduction is carried out as an atomic operation
in the sense that the abstraction body is traversed immediately following the
detection of the β-redex to substitute at once all free occurrences of the bound
variable in question, and without any other activity in between. Moreover, the
substitutions are done literally, meaning that the operand expression is directly
copied into the places of substitution.

Thus, a nested application

@@ . . .@︸ ︷︷ ︸
n

λu1 . . . λun e0 e1 . . . en

effects n β-reductions in sequence, of which the i-th traverses the abstraction
body λui+1 . . . λun e′0 in search for the bound variable ui and copies, again
by a traversal, the operand expression ei into e′0 as many times as there are
free occurrences of ui.3

To get the scoping of variables right, the machine must, while traversing
the body expression, memorize how many more abstractors λui have been
crossed, and compare them with the protection keys by which occurrences
of ui are preceded in order to decide whether to substitute, to take one key
away or to do nothing. Moreover, the crossings of all other abstractors must
be kept track of as well since copying an operand expression ei into some
place inside e0 may require protecting free variable occurrences in ei against
possible parasitic bindings. This is routinely done irrespective of whether or
not naming conflicts do indeed occur. Thus, the implementation of the β-
reduction rule is as complex as it can possibly be, which in large part must
be attributed to the use of named variables.

The machine works exclusively with stacks to manipulate expression
strings. A machine state is given by

(S, M, C; U, V, B, cc) ,

and the actions of the machine are defined by a state transition function

τBS : (S, M, C; U, V, B, cc) → (S′, M ′, C′; U ′, V ′, B′, cc′) .

The stacks S, M, C serve the same purpose as in the se(m)cd machine –
traversing an expression from C to S (with M as an intermediate stack for
constructor symbols) in search of β- and δ-redices. The stacks U, V, B are
to sideline and isolate the components of β- and δ-redices, and to build up
auxiliary structures while performing the respective reductions, and cc is a
control stack that keeps track of nested calls for low-level control programs
that are getting involved in the execution of reduction rules.
3 Note that e′0 emerges from e0 by substitution of the operands e1, . . . , ei−1 for free

occurrences of the variables u1, . . . , ui−1, respectively.
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A particular flavor of this machine derives from the fact that the most
fundamental operations of computing – traversing, substituting, copying and
deleting – are implemented in this machine by means of the preorder traversal
mechanism. This mechanism may be employed not only to traverse syntacti-
cally complete (sub)expressions from any source to any sink stack (other than
the control stack), but also to copy them from one source to two sink stacks
(as required for substitution), and to delete them from some source stack by
simply not specifying a sink stack.

Figure 6.1 shows, in the form of stack configurations, a few characteristic
phases of the process of β-reducing the application4

@ λu @ λu λv @ /u v w @ u v ,

of which the equivalent parenthesized version is

(λu.(λu.λv.(/u v) w) (u v)) .

This process substitutes the argument @ u v (or (u v)) for the single free
occurrence of u in the body of the outermost abstraction, thereby penetrating
the scope of another two abstractors λu and λv, and returns

@ λu λv @ @ /u /v v w

(or, equivalently in parenthesized form, (λu.λv.((/u /v) v) w)).
Beginning with the complete expression set up in C and the controls cc

initialized with trav cs (for traversal from C to S), the machine reaches the
configuration shown in Fig. 6.1(a) that has the outermost applicator moved
to M and the abstraction exposed on C, signifying a β-redex, whereupon
control calls the mode beta n to enter into a normal order β-reduction. Next,
the machine drops the abstractor λu and the applicator @ that sits on top of
M , isolates in V the variable u to be substituted, and calls the control mode
r1cb (configuration (b)). Under this mode, the abstraction body is traversed
from C to B. While doing this, the abstractors λu and λv encountered along
the way have their variables pushed onto U , and each variable occurrence that
flies by is compared with the variable in V (configuration (c)). The single free
occurrence /u of the matching variable is replaced by a so-called binding list
• v • u � (with • denoting a special binary list constructor) constructed
from the actual contents of stack U . This list contains exactly those bindings
that have been penetrated at this point, together with a placeholder � for the
argument to be substituted (configuration (d)). The mode r1cb terminates
with the complete abstraction body set up in left-right transposed form in B,
and with an empty stack U , as the variables that have piled up in it have been
removed upon leaving the scopes of the abstractors λu and λv again, which
happens when they are moved from M to B (configuration (e)). The machine
then switches to another instance of the control mode trav cs that moves
4 Again, the stack entries are separated by ‘:’ symbols.
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nil | S
@2 : nil | M

λu : @ : λu : λv : @ : /u : v : w : @ : u : v : nil | C
nil | U (a)
nil | B
nil | V

beta n : trav cs : nil | cc
⇓

nil | S
nil | M

@ : λu : λv : @ : /u : v : w : @ : u : v : nil | C
nil | U (b)
nil | B

u : nil | V
r1cb : beta n : trav cs : nil | cc

⇓
nil | S

λv : λu : @2 : nil | M
@ : /u : v : w : @ : u : v : nil | C

v : u : nil | U (c)
nil | B

u : nil | V
r1cb : beta n : trav cs : nil | cc

⇓
nil | S

λv : λu : @2 : nil | M
w : @ : u : v : nil | C

v : u : nil | U (d)
@ : v : • v • u � : nil | B

u : nil | V
r1cb : beta n : trav cs : nil | cc

⇓
nil | S
nil | M

@ : u : v : nil | C
nil | U (e)

@ : w : λu : λv : @ : v : • v • u � : nil | B
nil | V

trav cs : beta n : trav cs : nil | cc
⇓

Fig. 6.1. Phases of β-reducing the expression @ λu @ λu λv @ /u v w @ u v

the argument in left-right transposed form from C to S (configuration (f)).
Now, everything is prepared for the substitution of the argument: the control
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@ : v : u : nil | S
nil | M
nil | C
nil | U (f)

@ : w : λu : λv : @ : v : • v • u � : nil | B
nil | V

r2bsc : beta n : trav cs : nil | cc
⇓

@ : v : u : nil | S
@1 : λv : λu : @1 : nil | M

v : w : nil | C
nil | U (g)

• v • u � : nil | B
nil | V

r2bsc : beta n : trav cs : nil | cc
⇓

nil | S
λv : λu : @1 : nil | M

@ : @ : /u : /v : v : w : nil | C
@ : u : v : nil | U (h)

• v • u � : nil | B
nil | V

r2bsc : beta n : trav cs : nil | cc
⇓

nil | S
nil | M

@ : λu : λv : @ : @ : /u : /v : v : w : nil | C
nil | U (i)
nil | B
nil | V

trav cs : nil | cc

Fig. 6.1. Phases of β-reduction (continued)

mode r2bsc takes over to traverse the abstraction body back from B to C
and whenever it encounters a binding list, it traverses the argument from S
into its place.5 While doing this, free occurrences of variables in the argument
are checked against the variable entries in the binding list, and a protection
key is added to the former whenever there is a match (configurations (g)
and (h)). The mode r2bsc terminates with an abstraction body that has the
bound variable correctly substituted, and thus the β-reduction completed, in
C (configuration (i)). The argument copy left over in S is deleted, and the

5 Since the traversal consumes what is in S, the argument must also be copied into
U , from where the contents of S can be restored for possible further substitutions.
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machine returns to the trav cs mode controlled by the lowermost entry in cc
to continue the search of further redices.

In this machine, recursion can be accomplished by means of the Y -
combinator, using the normal order applicator @ to implement the self-
application or, more directly, by means of the primitive recursion operator
µ (see Sect. 4.6). The δ-reduction rules are implemented in essentially the
same way as in the se(m)cd machines.

The string reduction mechanisms inflict a runtime complexity of O(n2) for
problems of size O(n), a typical example being the reversal of a list of some
n elements. The one-β-reduction-at-a-time mode of operation, in conjunction
with the complexity of the β-reduction itself, particularly the effort that has to
be devoted to dealing with named variables and with the ensuing problem of
resolving potential naming conflicts, contributes a considerable factor to this
complexity. This factor depends in intricate ways on the number of variables
that have to be dealt with, on the lengths of the character strings, including
protection keys, by which the variables are represented, and on the updates
that have to be performed on the protection keys.

Though the price that has to be paid for supporting variables at the ma-
chine level seems to be considerable, there is also a benefit for doing this:
the machine in fact performs high-level transformations of λ-expressions that
preserve all variable names introduced by the user, save for adding or deleting
protection keys. The machine may be stopped after it has performed some pre-
specified number of β- (and δ-) reductions, and the intermediate expressions
may be readily inspected, say for validation purposes, since they can be made
visible in the same syntax and with the same variables as those in which the
original expressions were submitted.6 After such a stop, the machine may re-
sume performing more reductions until eventually normal forms are reached.
During a stop, the user may even navigate freely through the intermediate
expression at hand to select a certain subexpression as the focus of further
reductions. The complete and correct implementation of the β-reduction rule
guarantees referential transparency, meaning that the value of a subexpression
remains invariant against the context in which it is reduced. More specifically,
variables that are free in a chosen context (or subexpression) but bound in a
larger, surrounding context maintain their binding status irrespective of the
β-reductions performed in the smaller context. To put it another way, irre-
spective of the order in which β-reductions are performed in which parts of
an expression, a unique normal form, if it exists and can be reached with the
chosen order, is always guaranteed.
6 The conversion, say, of al expressions into the constructor syntax understood by

the machine and the re-conversion of intermediate expressions into al represen-
tations are straightforward matters.
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6.2 Wadsworth’s Graph Reduction Techniques

Another concept for performing β-reductions has been proposed by Wadsworth
in 1971. It avoids some of the complexity of directly operating on linear repre-
sentations of expressions, as Berkling’s machine does. The idea is to represent
λ-expressions as graphs, i.e., as structures whose inner (or constructor) nodes
include pointers to subgraphs, and to realize β-reductions by copying, delet-
ing and rearranging pointers. Reductions are fully effected within the graphs
themselves; again there is no environment involved.

The terms graph and graph reduction refer to the fact that, beyond the
tree structures generated by the (constructor) syntax of λ-expressions, we
have the binding structures of abstractions represented by pointers as well, as
a consequence of which we may have subgraphs referenced by several pointer
occurrences and also cyclic references.

The basic pointer substitution mechanism is illustrated in Fig. 6.2, using as
an example the β-reduction

(λu.((f u) u) ea) →β ((f ea) ea) ,

which, when using constructor syntax, is given as

@ λu @ @ f u u ea →β @ @ f ea ea .
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Fig. 6.2. Graph reduction Wadsworth style

The graph of the redex is shown on the left of the figure. Its topmost @-
node is referenced by a graph pointer pG; it has a left pointer (which points
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downward in the graph) to its operator and a right pointer to its operand ea.
The topmost node of the abstraction graph in operator position is a λ-node
representing the abstractor λu. Occurrences of the bound variable u in the
body graph are ‘wired up’ to this λ-node by pointers that branch off to the
right of the @-nodes. These pointers define the underlying binding structure
in the same way as depicted in Fig. 4.3, except for their orientation in the
opposite direction.

β-reduction now overwrites the λ-node with the pointer to the operand
graph ea, thus in fact establishing a substitution structure (see Fig. 4.3), and
moves the graph pointer pG down to the topmost @-node of the abstraction
body. The result of this pointer rearrangement is depicted in the graph of
the reductum on the right of the figure. In this graph the operand can be
seen, through one level of indirection, in its two places of substitution, simply
by following pointers. The single copy of the operand is thus shared between
both pointer occurrences. This is the key to efficient graph reduction as it
also allows sharing the evaluation of the operand expression. If, under a normal
order regime, the demand for the value of an operand arises in the position of
one of the pointer occurrences, this value can be made visible to all pointers
directed at the shared � node by an in-place update.

The advantage of using pointers rather than variables to connect leaf nodes
to abstractor nodes is that the combined binding and substitution structures
created by β-reductions remain invariant against further reductions, both in
the abstraction bodies and in the operand graphs. With bound variable oc-
currences replaced by pointers, there can be no parasitic bindings, i.e., we have
a very simple and elegant way of overcoming the problem of name clashes.7

Variables that are free in the entire expression, such as f in our example, are
treated as constant values that are not and will never get hooked up to an
abstractor node.

However, performing β-reductions by such pointer rearrangements is not
free of problems. Complications arise when abstractions are shared among two
or more application nodes, as may be exemplified by the λ-expression

@ λx @ @ b x λz @ z a︸ ︷︷ ︸
operator

@ λx @ @ b x λz @ z a λz @ z a︸ ︷︷ ︸
operand

taken from Wadsworth’s thesis. Reducing the outermost redex substitutes the
single occurrence of x in the body of the abstraction in operator position by
the operand expression, yielding

@ @ b @ λx @ @ b x λz @ z a λz @ z a︸ ︷︷ ︸
operand substituted in abstraction body

λz @ z a .

7 There is a small trade-off involved here regarding the addressing mode used in
an implementation: relative addressing requires adjustments during reduction but
remains invariant against copy and move operations, whereas absolute addressing
with pointers remains invariant against reduction but needs adjustments when a
piece of the graph is copied or moved.



6.2 Wadsworth’s Graph Reduction Techniques 123

If we were to do this β-reduction by pointer manipulations as in Fig. 6.2 and
were to start with a fully shared graph of the expression as depicted on the
left of Fig. 6.3, then we would end up with the graph on the right. Here we
have created a cyclic structure between the indirection node � that replaces
the λ-node and the topmost apply node of the operand expression. This cycle
is due to pointers from two different apply nodes pointing to the abstractor
node of the original operator. The resulting graph referenced by pG, therefore,
is not equivalent to the expression above and is thus not correct since the cycle
represents infinitely many reproductions of the operand in itself.
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Fig. 6.3. Reducing incorrectly the fully shared graph of the expression
@ λx @ @ b x λz @ z a @ λx @ @ b x λz @ z a λz @ z a

This problem can of course be fixed by making a copy of the abstraction
graph so that the sharing between operator and operand of the topmost apply
node is broken up, as in the top part of Fig. 6.4. The resulting graph in the
lower part of the figure is now cycle-free and thus a correct graph representa-
tion of the reductum.

It should be noted that fully copying the operator to avoid sharing is a
brute force measure that may introduce some redundancy. A more careful
approach permits the sharing between operator and operand of maximal sub-
graphs in which the bound variable of the abstraction does not occur free. In
our example, this would be the free variable b and the abstraction λz @ z a,
in both of which we have no occurrences of x. However, it may require some
effort to figure out, before β-reduction, just which parts of a graph may be
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Fig. 6.4. Reducing @ λx @ @ b x λz @ z a @ λx @ @ b x λz @ z a λz @ z a
with a fully copied operator graph

shared and which parts must be copied to make sure that they are correctly
reduced.

Performing sequences of β-reductions on a complex graph follows a normal
order regime, as defined in Sect. 4.5. The overall strategy may be considered a
mix of reducing to normal form based on reducing, as far as possible, to what is
called lambda form, which by Wadsworth has been referred to as rtnf/rtlf
strategy. It reduces the operator graph of the top-level apply node to the
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extent that an abstraction is returned as a result, if that is at all possible.
This being the case, the ensuing β-redex is contracted as described, and the
strategy is recursively applied to the instantiated graph of the abstraction
body. Otherwise, the top-level apply node becomes part of the normalized
graph, and normal order reduction continues with the operand graph. So far,
the strategy is in fact weakly normalizing, which is good enough to compute
full normal forms as well unless it returns abstraction graphs that cannot be
applied because they are either top level or operands of apply nodes. These
abstraction graphs must get their bodies recursively reduced to full normal
forms. If such an abstraction is shared, the graph must be copied for in-place
reduction to preserve the original graph for possible reduction in different
contexts elsewhere.

It should be clearly understood that copying abstractions is the price that
needs to be paid for working without an environment. The consequences of
this can be painfully felt when reducing recursive functions, which are realized
in the pure λ-calculus by means of the Y -combinator as

(Y f) 
−→β (f (Y f))

(see Sect. 4.6). Here, replicating the abstraction graph that substitutes for
f as many times as there are recursive calls must be made explicit since
each instance must be reduced in a different context defined by the operands
to which it is applied. Copying abstractions involves the allocation of new
memory space and, along with it, constructing new instances of the binding
structures – quite a space- and time-consuming undertaking that to some
extent offsets the gains made by switching from string to graph reduction.

Nevertheless, the Wadsworth approach has set a standard, particularly in
terms of the rtnf/rtlf strategy, for an efficient implementation of a fully
normalizing λ-calculus. It can be found, in a similar form, in the machines de-
scribed in the following that employ environments to avoid excessive copying.

6.3 The λσ-Calculus Abstract Machine

Including an environment in a fully normalizing λ-calculus machine is not as
straightforward as with weakly normalizing machines whose environments rep-
resent static mappings of either bound variables or binding indices to (values
of) expressions. Neither the pairing of variables (or indices) and expressions
nor the expressions themselves need ever be modified since substitutions are
not allowed to penetrate abstractors and thus can be carried out naively.

As we have learned in Sects. 4.2 and 4.3, things are not so simple if we
wish to perform full-fledged β-reductions. Here substitutions under abstrac-
tors require either α-converting bound variables to take them out of naming
conflicts or, equivalently, updating binding indices in order to preserve correct
binding structures. These corrective actions must of course carry over into the
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dealings with the environment, which is nothing but a collection of delayed
substitutions.

A theoretical framework that deals with this problem is provided by the
λσ-calculus. This is an extension of the nameless Λ-calculus by a formal ap-
paratus that makes environments, in the form of substitutions as defined by
full-fledged β-reductions, an explicit part of it. This calculus has been invented
by Abadi, Cardelli, Curien and Levy ‘. . . as a step in closing the gap between
the classical λ-calculus and concrete implementations. . .’. The Λ-calculus of
nameless dummies has been chosen for practical reasons. It eliminates the
difficulties of dealing with variable names – β-reductions can be performed as
relatively simple index manipulations (see Sect. 4.3) – but it also facilitates
formal reasoning, say, about the preservation of the Church-Rosser property
(or confluence) or the correctness of implementations.

6.3.1 The λσ-Calculus ∗∗
The syntax of the λσ-calculus (the σ stands for the part that handles substi-
tutions) splits up into two parts, of which one covers the expressions of the
Λ-calculus proper, the other the terms that describe substitutions:

Λ-expressions e =s #i | @ e0 e1 | Λe | e[ s ] , i ∈ {0, 1, 2, . . .} ;

substitutions s =s id | ↑ | e : s | s ◦ t .

Both are related to each other through the expression e[ s ]. It denotes an
instance of the expression e with aggregate substitutions

s = {#0 ← e0, #1 ← e1, . . .}
for occurrences of binding indices.8

The canonical forms of substitution are defined thus:

• id = {#0 ← #0, #1 ← #1, . . . ,#i ← #i, . . .} is the identity substitution;
• ↑= {#0 ← #1, #1 ← #2, . . . ,#i ← #(i + 1), . . .} denotes index incre-

ments (or shifts by one); ;
• #i[ s ] = s( #i ) is the value for #i under the substitution s;
• e : s = {#0 ← e, . . . ,#(i+1) ← s( #i ), . . .} prepends e to the substitution

s and increments the target indices of s by one;
• s◦t denotes the composition of substitutions s and t, with e[ s◦t ] = e[ s ][ t ].

Substitutions in fact define environments that associate binding indices to
the expressions that have to be substituted for them. The special cases id
and ↑ are substitutions of the indices by themselves, which denotes an empty
substitution, and by themselves incremented by one, respectively. An access
to the i-th entry of the environment is denoted as #i[ s ], and e : s adds a
8 As in Sect. 4.3, #i ← ei must be read as: ‘occurrences of #i are substituted by

the expression ei’.
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new entry to its front end. The composition s ◦ t is shorthand for doing the
substitution s before t. An expression e[ s ] is equivalent to a suspension as
introduced in Sect. 5.2: it denotes the value of e in the environment s without
having the substitutions actually carried out.

It should also be noted that the index increment ↑ renders binding indices
other than #0 superfluous since an index #n > #0 may be expressed as
an n-fold application of ↑ to #0, written as #0[ ↑n ], and that the identity
substitution may also be written as id =↑0. Furthermore, an index #0 applied
to a substitution s that has e as its first element returns e, i.e., we have
#0[ e : s ] = e. For the composition of two substitutions, of which the first
is headed by the element e, we have ( e : s ) ◦ t = e[ t ] : ( s ◦ t ) .
There are two rules that distribute substitutions over composite Λ-expressions:

• the ap-rule ( @ e0 e1 )[ s ] →ap @ e0[ s ] e1[ s ] copies a substitution s into
operator and operand of an application;

• the beta-rule (Λe)[ s ] →beta Λ(e[ #0 : ( s ◦ ↑ ) ] ) has a substitution s
penetrate the scope of an abstractor: it identifies all occurrences of indices
in s that are free relative to Λ and increments them by one, as specified
by the β-reduction rule for nameless dummies given in Sect. 4.4.

To facilitate the handling of successive β-reductions, we can define a beta wn-
rule as

@ Λe0[ s ] e1 →beta wn e0[ e1 : s ] .

It simply accumulates in a substitution the operands of nested β-redices as
they are.9 This rule is in fact only weakly normalizing: it does neither push
substitutions over abstractors nor does it effect reductions in abstraction bod-
ies. The more complex beta-rule may then only be applied whenever it becomes
necessary to continue beyond weak normal forms; this may be accomplished
by giving the beta wn-rule precedence over the beta-rule.

All rules other than ap, beta wn and beta that apply to substitutions
are collectively called the σ-rules of the calculus. Expressions in which all
substitutions have been resolved are expressions of the pure Λ-calculus. These
expressions are said to be in σ-normal form.

To illustrate the application of these rules, we consider the step-by-step
reduction of two simple examples.

The first example is the application10

@@ ΛΛ @ #0 #1 #1 Λ#0 ,

which after three β-reductions returns the index #1. The equivalent sequence
of ap-, beta( wn)- and σ-rule applications is shown in Fig. 6.5.

9 The special case @ Λe0 e1 →beta wn e0[ e1 : id ] applies to abstractions with
empty substitutions (or to abstractions that have all substitutions resolved).

10 Note that this expression contains as the first (inner) operand an index #1 that
is assumed to be bound by a Λ in some surrounding context.
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Fig. 6.5. The sequence of beta- and σ-reductions that normalizes the application
@@ ΛΛ @ #0 #1 #1 Λ#0

The first two steps transform, by means of the beta wn-rule, the two nested
applications into the abstraction body @#0 #1 that has a substitution for
both of its indices associated to it. The third step distributes, by application
of the ap-rule, the substitution over the components of the application, the
fourth step takes the indices that constitute the operator and the operand
of the application as selectors into the substitutions to form another redex
from what were originally the outer and the inner argument. At this point we
have arrived at a σ-normal form since the substitutions have now been done
and have disappeared from the scene. The remaining steps of the sequence
apply the beta wn-rule to this redex and evaluate the ensuing selector term
#0[ {#0 ← #1} ] to #1.

Since this example features a full application, the beta wn-rule suffices to
compute its normal form, which in this particular case coincides with its weak
normal form.

However, using the beta-rule, the λσ-calculus can continue with reductions
under abstractors should this become necessary to normalize partial applica-
tions.
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The second example in Fig. 6.6 shows how this works. The expression to
be reduced is the partial application @ ΛΛ @ #1 #0 Λ#0, whose normal form,
as can be easily verified, is Λ#0.
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Λ#0

Λ @ Λ #0 #0

Λ @ #1[ {#0 ← #0, #1 ← Λ #0} ] #1[ {#0 ← #0, #1 ← Λ #0} ]

Λ ( @ #1 #0 )[ {#0 ← #0, #1 ← Λ #0} ]

Λ ( @ #1 #0 )[ #0 : ( {#0 ← Λ #0} ◦ ↑ ) ]

( Λ @ #1 #0 )[ {#0 ← Λ #0} ]

@ Λ Λ @ #1 #0 Λ#0

Fig. 6.6. The sequence of beta- and σ-reductions that normalizes the application
@ ΛΛ @ #1 #0 Λ#0

As the first step, the beta wn-rule is called to transform the binary into
a unary abstraction that has the substitution {#0 ← Λ#0} attached to it.
The second step pushes, by means of the beta-rule, the substitution under the
abstractor and thus extends it by a new #0 entry. The following two steps
prepend the new entry to, and have the shift operator ↑ update, the current
substitution. Next, the new substitution is distributed, by means of the ap-
rule, over the application that makes up the abstraction body, and the indices
in the operator and operand positions select the respective entries to bring
about the σ-normal form Λ @ Λ#0 #0. This becomes the starting point of
another sequence of one beta wn-reduction followed by two σ-reductions that
terminates, as expected, with Λ #0.
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6.3.2 The Abstract Machine ∗∗
We are now ready to specify an abstract machine that faithfully executes the
beta( wn)- and σ-rules given in the preceding subsection. It may be considered
an extension, with regard to state transition rules, of Krivine’s K-machine
as it too includes just two structures T and E that hold the Λ-expression
under consideration and the substitution (or environment) associated to it,
respectively, and as a third structure a working stack S for operand expressions
that may have to be temporarily sidelined.

Its workings are given in the usual manner by a state transition function

τλσ : (E, T, S) → (E′, T ′, S′)

that maps current into next states (or configurations).
To reduce an expression e, the machine starts out with an initial state

(id, e, nil), i.e., with an empty substitution id and an empty stack, denoted
as nil.

The state transition rules are listed in Fig. 6.7 in the order in which they
need to be matched against actual configurations.

(1) ( ↑, #i, S ) → ( id, #(i + 1), S )

(2) ( e[ s ] : t, #0, S ) → ( s, e, S )

(3) ( e : s, #(i + 1), S ) → ( s, #i, S )

(4) ( s ◦ s′, #i, S ) → ( s′, #i[ s ], S )

(5) ( s, @ e0 e1, S ) → ( s, e0, e1[ s ] : S )

(6) ( s, Λe0, e1 : S ) → ( e1 : s, e0, S )

(7) ( s, #i[ id ], S ) → ( s, #i, S )

(8) ( s, #i[ ↑ ], S ) → ( s, #(i + 1), S )

(9) ( s, #0[ e : s′ ], S ) → ( s, e, S )

(10) ( s, #(i + 1)[ e : s′ ], S ) → ( s, #i[ s′ ], S )

(11) ( s, #i[ s′ ◦ s′′ ], S ) → ( s′′ ◦ s, #i[ s′ ], S )

(12) ( s, e[ s′ ], S ) → ( s′ ◦ s, e, S )

Fig. 6.7. The state transition rules of the λσ-machine
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There are just two rules that manipulate the stack: rule (5) puts the
operand of an application, together with the current substitution | environ-
ment, on it, and continues in T with the operator as the expression to be
evaluated next, and rule (6) removes, under the control of an abstractor in T
(which is also removed), the topmost expression from the stack and prepends
it to the current substitution | environment, thus in fact implementing the
beta wn-rule.

Among the configurations in which this machine, as it has been defined,
comes to a halt are two that require further action to compute full normal
forms.

The first one is (s, Λe, nil). It has an abstraction in T that finds no
argument on the stack. Together with the substitution in E, this abstraction
represents a suspension (or closure) Λe[ s ]. The machine stops right there
since there is no beta-rule that pushes the substitution over the abstractor to
continue with further reductions in the abstraction body, i.e., the λσ-machine
is in fact only weakly normalizing.

The second one is (id, #i, e1[ s1 ] : . . . : en[ sn ]), for which there is no
matching rule either. It represents an expression

@ . . .@︸ ︷︷ ︸
n

#i e1[ s1 ] . . . en[ sn ] ,

which, as we know from Sect. 4.5, is a special head normal form without leading
Λs whose operand expressions (which are generally suspensions) have piled up
on the stack.11

It takes another two rules to unlock the computation again whenever it
ends up in one of these configurations. The trick in both cases is to create
new contexts (or fresh λσ-machines) in which the reduction may continue.

The first of these rules implements the beta-rule as

(s, Λe, nil) → Λ ‖ (#0 : ( s ◦ ↑ ), e, nil) .

It starts a new machine that reduces in isolation the configuration (#0 :
( s ◦ ↑ ), e, nil), which represents the body of the abstraction instantiated by
an updated substitution. The Λ that has been peeled off the abstraction is put
in front, separated by the symbol ‘‖′, as a reminder for the calling machine
that it must be prepended to the normalized body eventually returned by the
called machine in order to construct a fully normalized abstraction.

The second rule applies to the special head normal form. It starts another
n fresh machines to evaluate simultaneously all n suspensions that are held
in the stack:
11 However, it should be clearly understood that this in itself is not a correct Λ-

expression since there is no binder for the head index #i. Such expressions come
about due to the implementation of the beta-rule as given below, which peels
leading Λs off complete head normal forms.
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( id, #i, e1[ s1 ] : . . . : en[ sn ] ) → (#i �1 . . . �n) ‖

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( s1, e1, nil )

. . .

( sn, en, nil ) .

Here the template (#i �1 . . . �n) put in front tells the calling machine that an
application of the general form @ . . .@︸ ︷︷ ︸

n

#i eNF
1 . . . eNF

n must be constructed by

substituting for the placeholders �1, . . . , �n the normal forms eNF
1 , . . . , eNF

n ,
respectively, returned by the called machines.

An ensemble of such machines that reduces a Λ-expression to full normal
form in fact realizes a head-order reduction strategy. What may happen in
general is that the beta-rule is called repeatedly to create a nesting of ma-
chines that perform reductions under abstractors until a head normal form is
obtained by the innermost of the nested machines. This machine then turns
to the operand suspensions and recursively reduces them in the same way to
head normal forms as well.

Figure 6.8 shows how the λσ-machine reduces the expression

@ ΛΛ @ #1 #0 Λ#0

step by step to its normal form. The state transition rules that actually apply
are enumerated as in Fig. 6.7. The horizontal line following the third step
signifies application of the beta-rule that creates another machine to weakly
normalize in isolation the body of the abstraction Λ @ #1 #0 in an updated
environment that reflects its crossing over an abstractor.

The new machine terminates correctly with the value #0 in the structure
T , with some nonempty environment that has become irrelevant and with an
empty stack, since there is no rule applicable to this configuration. The value
in T is returned to the calling machine that puts in front of it the Λ that the
beta-rule has sidelined, thus assembling the normal form Λ#0.

6.4 Head-Order Reduction

Head-order reduction as supported by the λσ-machine is a reduction strategy
that combines the efficiency of the applicative order regime with full normal-
ization. It emphasizes reduction of those subterms that are certain to con-
tribute to normal forms, and requires simple controls. This relates to the fact
that head normal forms are essential for the existence of full normal forms. The
efficiency of this strategy is expected to derive largely from sharing reductions
that are performed in operator (or head) positions.

In this section, we will have another look at what head-order reduction is
all about, and develop an environment concept that, in contrast to the notion
of explicit substitutions of the λσ-calculus, directly derives from, and thus is an



6.4 Head-Order Reduction 133

�

�

�

�

�

�

�

�

�

Λ ‖ ( #0 : ( (Λ #0)[ id ] : id ◦ ↑ ), #0, nil )

Λ ‖ ( #0[ #0 : ( (Λ #0)[ id ] : id ◦ ↑ ) ] :↑, #0, nil )

Λ ‖ ( ↑, (Λ #0)[ id ], #0[ #0 : ( (Λ #0)[ id ] : id ◦ ↑ ) ] : nil )

Λ ‖ ( ↑, #0[ (Λ #0)[ id ] : id ], #0[ #0 : ( (Λ #0)[ id ] : id ◦ ↑ ) ] : nil )

Λ ‖ ( ( (Λ #0)[ id ] : id ◦ ↑ ), #0, #0[ #0 : ( (Λ #0)[ id ] : id ◦ ↑ ) ] : nil )

Λ ‖ ( #0 : ( (Λ #0)[ id ] : id ◦ ↑ ), #1, #0[ #0 : ( (Λ #0)[ id ] : id ◦ ↑ ) ] : nil )

Λ ‖ ( #0 : ( (Λ #0)[ id ] : id ◦ ↑ ), @ #1 #0, nil )

( (Λ #0)[ id ] : id, Λ @ #1 #0, nil )

( id, ΛΛ @ #1 #0, (Λ #0)[ id ] : nil )

( id, @ ΛΛ @ #1 #0 Λ #0, nil )

(2)

(6)

(9)

(4)

(3)

(5)

(6)

(5)

beta

Fig. 6.8. Sequence of state transformations performed by the λσ-machine when
reducing the Λ-expression @ ΛΛ @ #1 #0 Λ#0

integral part of, the Λ-calculus itself. We will also define, as a first step toward
an implementation, an abstract machine for head-order reduction on the same
level of abstraction as the λσ-calculus machine. In subsequent chapters, we
will move on to head-order graph reduction and introduce the mechanisms
of sharing reductions in the head as a prerequisite for designing an efficient
instruction-based reduction machine for a full-fledged Λ-calculus.
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6.4.1 Head Forms and Head-Order β-Reductions

To convey the idea of head-order reduction as it has been developed by
Berkling, and using - in slightly modified form - his easy-to-comprehend graph-
ical representation, we simply need to look at expressions of the pure Λ-calculus
in a particular way: they all feature what are called head forms that, using
constructor syntax again, are generally composed of

• sequences of some n ≥ 0 nameless abstractors Λ, followed by
• sequences of some r ≥ 0 applicators, followed by
• a single head expression H , followed by r tail expressions T .

Head and tail expressions are recursively constructed in the same way, i.e.,
they all have head forms as well. The atoms are just binding indices #i;
they must be smaller than the number of preceding Λs since they must be
bound by one of them. There is no notion of indices being free in an entire
expression (see Sect. 4.3). However, indices bound to the leading sequence of
Λs may be considered as being free in the sense that they are never substituted
by anything but may just be passed around, and thereby updated, by β-
reductions.12 Thus, the syntax of head forms is given by

H | T =s #i | Λ . . . Λ︸ ︷︷ ︸
n

@ . . . @︸ ︷︷ ︸
r

H T . . . T︸ ︷︷ ︸
r

.

If the head expression is a binding index then we have a head normal form.
A typical head form is depicted in Fig. 6.9. We recognize immediately that

head and tail expressions (the latter are not shown explicitly in the figure but
just indicated as thin downward pointing lines) are operators and operands,
respectively, of applications. On the path from the root node down to the
index #i we find alternately only sequences of Λ-abstractors and sequences of
applicators @. We will refer to these sequences as lambs and apps sequences,
respectively, and to the entire path as the (leftmost) spine of the head form.
All tail expressions along this spine have recursively head forms, or spines, of
their own.13

A section of the spine headed by a lambs sequence of length n is in fact
a curried n-ary abstraction whose body stretches over the entire remaining
spine, i.e., the spine of Fig. 6.9 is composed of four abstractions nested inside
each other.

Normal order reduction as defined in Sect. 4.5 requires that β-redices be
reduced from top to bottom along such spines. It turns head forms into head
normal forms in which there are no more β-redices left along the spine, i.e.,
the spine is ‘straightened out’ and the head is a binding index.
12 When transforming a λ-expression into an equivalent Λ-expression, only the

bound variable occurrences are converted into binding indices; free variable oc-
currences remain unchanged and are treated as constants.

13 Λ-nodes and apply nodes are enumerated so that one can follow up more easily
what is ending up where when reducing this spine.
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Λ0 Λ1

Λ2 Λ3 Λ4

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10

@2 @3

@5 @6

@9 @10 @11

#i

apps

lambs

Fig. 6.9. A typical head form of a Λ-expression

In the meander-like structure of the spine in Fig. 6.9, β-redices can be
found in the left-hand corners that connect apps and lambs sequences and
thus pair innermost apply nodes with outermost abstractors. When reducing
these redices, the apps–lambs corners shift step by step to the right, exposing
the next redices, until either the abstractors or the apply nodes are exhausted.
Both situations are depicted in Fig. 6.10.

But instead of actually performing these β-reductions, head-order reduc-
tion does something different that has the effect of a delayed substitution: it
simply takes largest possible numbers of β-redices, to which we will refer as
cuts, off the apps–lambs corners and distributes them over the head and tail
expressions of the apps sequence that follows next along the spine. We coin
the term β-distribution in the large for this operation since it distributes more
than one redex in one conceptual step.

Just what the cuts are depends on the relative lengths of the lambs and
apps sequences involved. The simpler case is the one shown in part (a) of
Fig. 6.10. If the length of the apps sequence is the same as or exceeds the
length of the lambs sequence, then we have a full application: the cut includes
as many redices as there are Λ-abstractors, and the apps sequence that may
be left over remains unaffected.

β-distribution in the large is based on the semantic equivalence
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@ @ @ @

Λ Λ

@ @

@ @ @ @

Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ

#1 #0

η-extension

cut

cut

cut

(+2) (+2)(+2)

(a) apps longer than lambs

(b) lambs longer than apps

Fig. 6.10. Taking cuts off left-hand corners

(. . . (︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

.(ea eb) e1) . . . en) =

((. . . (︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

.ea e1) . . . en) (. . . (︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

eb e1) . . . en)) ,

or, using constructor syntax notation,

@ . . .@︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

@ ea eb e1 . . . en =

@ @ . . .@︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

ea e1 . . . en @ . . .@︸ ︷︷ ︸
n

Λ . . . Λ︸ ︷︷ ︸
n

eb e1 . . . en .

It says that the application of an n-ary abstraction to n argument expres-
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sions may be distributed over the components of an abstraction body that is
itself an application.

The more difficult case is the one in the lower part of Fig. 6.10, where the
length of the lambs sequence exceeds the length of the apps sequence, i.e., we
have a partial application that is supposed to reduce to another abstraction
of arity two. When pushing the cut down the spine it needs to cross over
two leftover Λ-abstractors, which means that all free occurrences of binding
indices in the cut need to be incremented by two.

This is in effect equivalent to an η-extension in the large of the apps se-
quence involved, before doing a β-distribution in the large. Here we make use
of the semantic equivalence

e = Λ . . . Λ︸ ︷︷ ︸
n

(. . . (︸ ︷︷ ︸
n

e′ #(n − 1)) . . . #0) ,

or, using constructor syntax,

e = Λ . . . Λ︸ ︷︷ ︸
n

@ . . .@︸ ︷︷ ︸
n

e′ #(n − 1) . . .#0 ,

where e′ emerges from e when incrementing all free occurrences of binding
indices by n.14

If we thus η-extend the apps sequence in part (b) of Fig. 6.10, we turn
what originally was a cut that represented a partial application into a cut
representing a full application We also note that the added applications have
in their tails (or operand positions) the binding indices #0 and #1, and that
all free occurrences of binding indices in the head and tails of the original apps
sequence need to be stepped up by two, annotated as (+2), since two more
Λ-abstractors have been squeezed in between.

β-reducing this new cut means that in the abstraction body headed by
the lambs sequence free occurrences of the indices bound to the innermost
two Λs are in fact substituted by themselves. This is of course equivalent to
β-reducing the original partial application in which there were no operands
to be substituted for these indices.

Figure 6.11 shows how the meander of Fig. 6.9 changes its shape when the
cuts defined by apps–lambs corners are systematically pushed down the spine
from top to bottom, using β-distributions in the large and η-extensions in -
the large, until all the cuts have accumulated in just one contiguous apps–
ambs corner.

Beginning with the head form in the upper right, we see that the first
apps–lambs-corner is a partial application that must be η-extended by one
14 To convince ourselves that this is the case we simply need to look at an application

(e0 e1) that is semantically equivalent to (λu.(e0 u) e1), provided that u does not
occur free in e0, or to (Λ.(e0 #0) e1).
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Λ0 Λ1 Λ′
4

Λ2 Λ3 Λ4

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10 #i

@2 @3 @′
4

@5 @6

@9 @10 @11

#0
(+1)(+1)(+1)

cut A

Λ0 Λ1 Λ′
4 Λ′

7 Λ′
8

Λ5 Λ6 Λ7 Λ8

Λ9 Λ10 #i

@5 @6 @′
7 @′

8

@9 @10 @11

A A A #1 #0

(+2) (+2) (+2)

cut B

Λ0 Λ1 Λ′
4 Λ′

7 Λ′
8

@9 @10 @11

Λ9 Λ10 #i

B B B B

cut C

Fig. 6.11. Distributing cuts over the spine of the head form of Fig. 6.9

to obtain the cut labeled A – a full application to which the first β-
distribution in the large can be applied.15 This operation pushes the cut down
15 The apply nodes and abstractors added by η-extensions are distinguished by

primes as @′
i and Λ′

i, respectively.
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in front of the tails of the apply nodes @5 and @6 and in front of the head
of @5 (the spine in the center of the figure). The apps sequence made up
by these two apply nodes is part of another partial application and must
therefore also be η-extended to form the cut B. Pushing this cut by another
β-distribution in the large down into the apps sequence made up from the
apply nodes @9, @10 and @11 results in a head form that has only one apps–
lambs corner, or another cut C, left in the spine. This cut cannot be pushed
any further since it ends up in front of the head index #i.

However, we are not yet done. If we expand the cut B (which in turn
contains the cut A) that precedes the abstraction Λ9Λ10 #i at the lower end
of the spine, we get the head form shown in Fig. 6.12 that nicely exhibits what
needs to be done next.




�

�



� � �
cut A cut B cut C

Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10 #i

Λ0Λ1 Λ′
4 Λ′

7 Λ′
8

@2 @3 @′
4 @5 @6 @′

7 @′
8 @9 @10 @11

e2 e3 #0 #1 #0
e6e5 e9 e10 e11

AA B B B
(+3) (+3) (+2) (+2) (+2)

(+3)

Fig. 6.12. The spine of the bottom part of Fig. 6.11, with an expanded cut B

What we have here is a spine with a single left-hand corner connecting an
apps sequence of length ten with a lambs sequence of length nine, i.e., we have
a nesting of nine β-redices that forms the cut C. The final operation of β-
reducing these redices step by step eats up, from left to right, the entire apps–
lambs corner, with basically two different outcomes, depending on the binding
index #i at the end of the spine. This index is the entire body expression of
the abstraction formed by the nine Λ-abstractors preceding it. If the index is
smaller than nine, it is bound by a Λ somewhere within this lambs sequence,
and the abstraction is in fact a selector function. When applied to the preceding
apps sequence, it returns as the result the tail of the apply node that is in the
same position relative to the corner as and opposite to the Λ to which it is
bound. We call this an identity reduction in the large as it simply reproduces
the selected argument.

For instance, an index #i = #1 is bound to Λ9 and picks as the result the
tail of @9, and an index #i = #4 is bound to Λ6 and selects the tail of @6.
These tails are appended to what is left over from the original spine, which
is just the leading lambs sequence Λ0Λ1Λ

′
4Λ

′
7Λ

′
8 followed by the apply node

@11. The new head forms are as shown in Figs. 6.13(a) and (b), respectively.
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If the expressions e9 and e6 are non-trivial head forms themselves, we may
have more β-reductions to perform along the spine thus extended.

The situation is different if the index in the head position is either larger
than the length of the lambs sequence preceding it, say #i = #10, or it is
bound to one of the Λs that were subject to η-extensions, say #i = #6.

�
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@2 @3 @′
4 @5 @6 @′

7 @′
8 @11

Λ0 Λ1 Λ′
4 Λ′

7 Λ′
8

Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 e9

Λ0 Λ1 Λ′
4 Λ′

7 Λ′
8

@2 @3 @′
4 @11

Λ2 Λ3 Λ4 e6

Λ0 Λ1 Λ′
4 Λ′

7 Λ′
8

@11

#2

(a) selecting with index #i = #1

(b) selecting with
index #i = #4

(c) selecting with index #i = #6

cut B

cut A

(+2)(+2)(+2)(+3)(+3)

(+3) (+3) (+2)(+3)

(+3)

Fig. 6.13. Head (normal) forms resulting from β-reducing the head form of Fig. 6.12

By inspection of the original spine at the top of Fig. 6.11 we can see that
the index in the former case is bound to Λ0 and must remain so after the
nine β-reductions along the apps–lambs corner have been performed, i.e., the
correct resulting index afterwards should be #i = #4. This is indeed so since
the balance between the nine intervening Λs that have been consumed by the
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β-reductions and the three Λs that are added by the two η-extensions is #6,
which must be subtracted from the original index value to obtain #i = #4.

The latter case is the simpler one: as the index #i = #6 is bound to Λ4,
it selects the tail of @′

4, i.e., the index #0 that needs to be incremented by 2
to obtain #i = #2 (see Fig. 6.13(c)).

Since in both cases there are no redices left in the head of the spine – the
index there cannot be substituted by anything else – we have reached a head
normal form with a remaining apps sequence of length one (the apply node
@11). Evaluation continues in its tail expression to recursively β-reduce it to
its (head) normal form as well. Once a head normal form is reached, reducing
leftover tail expressions does not change the shape of the spine anymore.

It is fairly easy to realize that the cuts that build up along the spine in fact
define the environment in which the head expression is to be evaluated. This
environment (or the cut) just keeps expanding as long as there are apps–lambs
corners left to be pushed down the spine. With just one apps–lambs corner
remaining, we have a single contiguous environment, and the head is bound to
be a binding index. Depending on its value, we may either have a single access
to this environment to retrieve a tail expression that must be substituted
in the head, generally leading to more β-reductions along the spine, or we
are done with the head and may turn to the tails, if there are any left, and
recursively reduce them in head order as well.

Since the tails of head normal forms are generally unevaluated expressions
preceded by cuts, or by their environments, they are equivalent to the sus-
pensions that we know from the se(m)cd machines of Chap. 5 and from the
λσ-machine of the preceding section.

The entire process composed of in the large β-distributions, η-extensions
and identity reductions is organized as a sequence of what we may call β-
reductions in the large along leftmost spines of Λ-expressions. This process re-
alizes a head-order reduction regime with delayed substitutions, using an envi-
ronment that, conceptually, is completely contained in the framework of the
Λ-calculus itself.

Not very surprisingly, there is a strong correspondence to the explicit sub-
stitution concept of the λσ-calculus. The environments are of course equiv-
alent to the λσ-substitutions, β-distribution in the large is equivalent to re-
peatedly distributing substitutions over the components of an application,
η-extension in the large is equivalent to repeated applications of the beta-
rule that moves substitutions across abstractors, and identity reduction in-
the large is equivalent to selecting the i-th entry of a substitution.

6.4.2 An Abstract Head-Order Reduction (hor) Machine ∗∗

An abstract machine that performs head-order reductions as outlined in the
preceding subsection basically works with two structures T and E to repre-
sent the Λ-expression under consideration and the current environment, re-
spectively. It also has a stack S for the temporary storage of tail expressions



142 6 Toward Full-Fledged λ-Calculus Machines

embedded in suspensions and for other expression fragments that need to be
temporarily sidelined. These are the components that the machine shares with
the λσ-machine and with the K-machine. In addition, it includes a count in-
dex u that keeps track of the number of Λ-abstractors actually penetrated, to
which we will also refer as the unapplied lambdas count (or ULC for short),
in order to be able to adjust free occurrences of binding indices in the course
of performing β-reductions, and a direction parameter dir that distinguishes
between moving down a spine while reducing it to head normal form and
moving up again to reduce the remaining tail suspensions from the bottom
up. A complete state (or configuration) of this hor machine is thus given by

(S, E, T, u, dir) ,

and the state transition rules are of the general form

τhor : (S, E, T, u, dir) → (S′, E′, T ′, u′, dir′) .

These rules are listed in Fig. 6.14 in the order in which they need to be tried
on actual machine configurations.

In order to keep these rules close to those of the λσ-machine, we abandon
the notion of ‘ in the large’ operations and return to individual β-reductions,
η-extensions and identity reductions without changing anything conceptually.
Also, instead of denoting suspensions by e[ s ], we use [ E e ], as in the
se(m)cd machine. The ULC index may assume values greater than or equal

(1) (S, E, @ e0 e1, u, ↓) → ([ E e1 ] : S, E, e0, u, ↓)

(2) ([ E′ e′ ] : S, E, Λe, u, ↓) → (S, [ E′ e′ ] : E, e, u, ↓)

(3) (S, E, Λe, u, ↓) → (Λ : S, (u + 1) : E, e, u + 1, ↓)

(4) (S, v : E, #(i + 1), u, ↓) → (S, E, #i, u, ↓)

(5) (S, [ E′ e ] : E, #0, u, ↓) → (S, E′, e, u, ↓)

(6) (S, u′ : E, #0, u, ↓) → (S, −, #(u − u′), u, ↑)

(7) (Λ : S, −, e, u, ↑) → (S, −, Λe, u − 1, ↑)

(8) (@ : e0 : S, −, e1, u, ↑) → (S, −, @ e0 e1, u, ↑)

(9) ([ E′ e1 ] : S, −, e0, u, ↑) → (@ : e0 : S, E′, e1, u, ↓)

(10) (nil, −, e, u, ↑) → (−, −, e, −, done)

Fig. 6.14. The state transition rules of the hor abstract machine
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to zero, and the parameter dir may assume the values ↓ (for going down the
spine), ↑ (for going up), and done.

Stack S serves as a temporary storage for operand expressions whose eval-
uation, on the way down a spine, needs to be suspended, and also to set up
abstractors and apply nodes as markers (or anchor points) for the construction
of normalized expressions on the way up. Environment entries are either sus-
pensions that are moved over from S or ULCs pushed onto E whenever an
abstractor is being crossed.

Rules (1) to (6) apply to the three syntactical figures of the pure Λ-calculus
that may appear on top of the structure T while moving down. Applications
have their operator expressions set up in T for further reductions in the cur-
rent environment; the evaluation of the operand expressions is postponed by
sidelining suspensions in S (rule (1)). Abstractions that find suspensions in
S have them prepended to the current environment; otherwise the current
ULCs, incremented by one, are pushed onto E, which is equivalent to β-
distributions complemented by η-extensions. In either case, evaluation con-
tinues with the abstraction body in T (rules (2) and (3)).

A binding index greater than zero removes the topmost environment entry
and decrements itself; a zero index may either find a suspension on top of E,
which is set up for evaluation, or a ULC, signifying arrival at a head normal
form. In the latter case the zero index is updated by subtracting from the
current ULC the ULC value found on top of E, followed by a reversal of the
direction from down to up (rules (4) to (6)). These rules combined in fact
realize an identity reduction, or an environment lookup.

Rules (7) to (9) are to effect head-order reduction of the remaining tail
suspensions and the construction of the normalized spine from the bottom
up. Rule (7) prepends a Λ in S to the expression in T , rule (8) hooks up an
evaluated suspension to the appropriate apply node, which can be found in
S, and rule (9) sets up for evaluation a suspension found in S.

Rule (10) stops the machine after it has computed a full normal form.
Figure 6.15 shows how the hor machine reduces step by step the Λ-

expression Λ @ ΛΛ@ #1 #0 Λ #0 to its normal form ΛΛ #0 (the numbers
attached to the arrows identify the transformation rules that are applied).

Fundamental differences between the hor machine and the λσ-calculus
machine primarily relate to the fact that the former reduces expressions
through a succession of head normal forms to full normal forms, whereas
the latter reduces only to weak (head) normal forms. This is reflected in the
terminal configurations of the λσ-machine, which require the creation of new
machines to continue with reductions beyond weak (head) normal forms. It
necessitates saving certain contexts not included in the definition of the λσ-
machine to assemble fully normalized expressions from the partial solutions
delivered by these machines. The hor machine handles these configurations
simply by pushing onto the stack Λ and @ markers that serve as anchor points
for the construction of full normal forms from the head normal forms of com-
ponent expressions.
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(nil, nil, Λ @ ΛΛ@ #1 #0 Λ #0, 0, ↓)

(Λ : nil, 1 : nil, @ ΛΛ@ #1 #0 Λ #0, 1, ↓)

([1 : nil Λ #0] : Λ : nil, 1 : nil, ΛΛ@ #1 #0, 1, ↓)

(Λ : nil, [1 : nil Λ #0] : 1 : nil, Λ@ #1 #0, 1, ↓)

(Λ : Λ : nil, 2 : [1 : nil Λ #0] : 1 : nil, @ #1 #0, 2, ↓)

([2 : [1 : nil Λ #0] : 1 : nil #0 ] : Λ : Λ : nil, 2 : [1 : nil Λ #0] : 1 : nil, #1, 2, ↓)

([2 : [1 : nil Λ #0] : 1 : nil #0 ] : Λ : Λ : nil, [1 : nil Λ #0] : 1 : nil, #0, 2, ↓)

([2 : [1 : nil Λ #0] : 1 : nil #0 ] : Λ : Λ : nil, 1 : nil, Λ #0, 2, ↓)

(Λ : Λ : nil, [2 : [1 : nil Λ #0] : 1 : nil #0 ] : 1 : nil, #0, 2, ↓)

(Λ : Λ : nil, 2 : [1 : nil Λ #0] : 1 : nil, #0, 2, ↓

(Λ : Λ : nil, − , #0, 2, ↑)

(nil, − , ΛΛ #0, 0, ↑)

(− , − , ΛΛ #0, − , done)

(10)

(7) twice

(6)

(5)

(2)

(5)

(4)

(1)

(3)

(2)

(1)

(3)

Fig. 6.15. Sequence of state transformations of the hor abstract machine when
reducing Λ @ ΛΛ@ #1 #0 Λ #0

More specifically, penetrating the scope of an abstractor is in the hor
machine handled by rule (3) that, on the way down, pushes the abstractor
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onto S to expose the abstraction body in T for further reductions (and also
increments the current ULC); the abstractor is picked up again on the way up
by rule (7) to put it back in front of the normalized body. Both rules combined
have the same effect as the beta-rule of the λσ-machine that in fact creates a
new machine to reduce the abstraction body in isolation, but memorizes the
Λ that has been peeled off. The more frequent case where an abstraction finds
a suspension on the stack is treated in the same way in both machines: the
suspension is moved from S to E (rule (2) of the hor machine and rule (6)
of the λσ-machine).

Suspensions left over in the tails of head normal forms are in the hor ma-
chine taken care of sequentially on the way up. Rule (9) removes suspensions
from the stack, sets them up for reduction in T and E, and pushes the respec-
tive normalized head expressions onto S, followed by a marker @. Rule (8)
constructs normalized applications in T from the normalized tails and from
the marker | head expression pairs held in S. Repeated application of both
rules combined corresponds to having the λσ-machine create as many addi-
tional machines as are necessary to reduce all remaining tails simultaneously.

Rules (1) of the hor machine and (5) of the λσ-machine distribute environ-
ments over the components of applications in the very same way; selection of
an environment entry, which is handled by rules (4) to (6) in the hor machine,
is essentially captured by rules (2) to (4) and (9), (10) of the λσ-machine.

6.5 Summary

This chapter has given an outline of four different conceptual approaches to
designing fully normalizing λ-calculus machinery.

Two of them, a string reduction machine, of which an experimental version
has actually been implemented in hardware, and a graph reduction concept,
are based on the direct implementation of β-reductions. They may be con-
sidered interesting early case studies that, however, are of limited practical
value since runtime efficiency in both cases leaves much to be desired. String
reduction involves a lot of traversing, literal copying and deleting of expres-
sions, which inflicts a runtime complexity of typically O(n2) for problems of
sizes O(n). The graph reduction approach is more efficient since binding struc-
tures are represented by pointers and β-reductions are effected by rearranging
argument pointers, which in turn enables the sharing of (the evaluation of) ar-
gument graphs. However, copying complete graphs cannot be entirely avoided
if abstractions need to be applied in different contexts, e.g., if they are recur-
sively applied to changing arguments.

The other two approaches, which are the more interesting ones from an
implementation point of view, accomplish full normalization by means of envi-
ronment-based β-reductions. They set out with slightly different ideas of how
an environment should enter the game, but the ends are essentially achieved
by very similar means. Not very surprisingly, both approaches are based on the
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nameless Λ-calculus since the handling of binding indices lends itself directly
to simple machine operations.

The λσ-calculus introduces environments through the notion of explicit
substitutions as an extension of the Λ-calculus. Substitutions are basically
sets whose elements pair binding indices with the expressions by which they
need to be replaced. They are subject to various operations such as iden-
tity, index increments, selection, adding another expression, composition, and
distribution of substitutions over applications and abstractions.

The essence of this approach is that full normalization can be accomplished
by weakly normalizing machinery that in between must call upon a special
mechanism that pushes substitutions across Λ-abstractors and, in doing so,
updates binding indices so as to maintain static binding structures.

Rather than extending the Λ-calculus by explicit substitutions, the concept
of an environment can alternatively be directly derived from, or made an
integral part of, Λ-expressions proper. The idea is to transform head forms
of Λ-expressions to head normal forms by a head-order regime that employs
what is called β-reductions in the large.

Head forms emphasize the shapes of the leftmost spines of Λ-expressions.
These spines feature alternating sequences of Λs, called lambs, and sequences
of apply nodes @, called apps, followed by a binding index #i at the end of
the spine. Consecutive apps and lambs sequences form apps–ambs corners.
β-reductions in the large systematically push these corners down the spine
until a spine with a leading lambs sequence followed by a single contiguous
apps–lambs corner followed by a head index #i emerges. This corner in fact
represents an environment. The index #i either selects from this environment
a suspension with which reduction continues in the head of the spine, or, if the
index reaches beyond, returns an updated index, in which case the spine is in
head normal form and done. Applying this head-order scheme recursively to
the tails of head normal forms produces full normal forms eventually, if they
exist.

The ensuing hor machine just defines the basic runtime environment and
mechanisms necessary to perform head-order reductions as outlined above,
and in this respect is very similar to the λσ-machine. Besides an environ-
ment E, a structure T for expressions and a value stack S, it includes just
another two parameters u and dir that respectively keep track of the number
of abstractors actually penetrated and denote the direction in which a head
(normal) form is traversed. Differences relate to the fact that the hor ma-
chine reduces Λ-expressions through a succession of head normal forms to full
normal forms, i.e., it is fully normalizing, whereas the λσ-machine reduces to
weak (normal) forms only. Full normalization can, however, be achieved by
continuing with fresh machines for subexpressions that have peeled off cer-
tain contexts in which they were called, and have appropriately updated the
substitutions attached to them.
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We will see in subsequent chapters how the basic concepts of the λσ-
machine and the hor machine can be turned into code-executing graph re-
ducers.
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7

Interpreted Head-Order Graph Reduction

On the basis of what has been said in the preceding chapter about head-
order reduction and how it can be mechanized in the hor machine, we can
now proceed to design another abstract machine that interprets graph repre-
sentations of Λ-expressions, following a head-order strategy. In these graphs,
which are held in a memory section called the heap, the inner nodes represent
constructors and the leaf nodes represent binding indices (and also constant
values, primitive operators, etc. of an applied Λ-calculus). The inner nodes, in
addition to the node symbols themselves, also include pointers to subgraphs.

The benefits of using graph reduction are manifold. Traversing an expres-
sion in search of redices boils down to dereferencing pointers along spines, the
environment created by β-distributions in the large is made up from pointers
to suspensions that combine unevaluated tail expressions with their environ-
ments. The environment may be represented as a linked list of frames that
correspond to apps–lambs corners pushed down the spines. Different environ-
ments, of which several may coexist at some point during the evaluation of an
expression, may then share common parts so that each frame exists exactly
once in the entire environment structure.

The essence of this is that (sub)expressions and environments that, in a
particular state of the computation are not of immediate interest and there-
fore need not be looked at, are hidden behind pointers, and that it is pri-
marily pointers that may be substituted, copied and rearranged rather than
the (sub)expressions or environments they represent. Since pointers have unit
length, as opposed to expressions of sizes O(n), the complexity of performing
these elementary operations is usually cut down from O(n) to O(1), which
typically brings down from O(n2) to O(n) the complexity of graph reduction
relative to that of string reduction.

The most important benefit of graph reduction derives from sharing a
single copy of a suspension held in the environment among several pointers
distributed over the graph. If the suspension needs to be evaluated in the
place of one of these pointer occurrences, then the resulting (head) normal
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form may be made visible in (or shared by) all of them by overwriting the
original suspension with it.

Sharing is the key to optimizing normal order strategies with regard to
numbers of reductions performed. It aims at reducing every (sub)expression
at most once and, if at all, only as far as is needed to arrive at a full normal
form of the entire expression graph eventually. This strategy is also referred
to as lazy evaluation.

Head-order reduction looks like the best possible choice for this purpose.
Under this strategy, opportunities for sharing primarily come about when
suspensions are copied from the environment into head positions of spines,
which is where most of the action takes place. Reducing suspensions in these
positions may then be shared with the environment and thus with all pointers
to the suspensions elsewhere. Tails that are left over after head-normalization
are recursively treated in the same way. This strategy can be expected to
compute, through a succession of head normal forms, full normal forms with
least numbers of β-reductions.1

The head-order graph reducer whose workings will be outlined in this
chapter is called the g hor machine as it derives more or less directly from the
abstract hor machine of Sect. 6.4.2, bringing it one step closer to a conceivable
implementation.

7.1 Graph Representation and Graph Reduction

In the g hor machine, the graph representation in heap memory of expres-
sions of the pure Λ-calculus is based on three types of cells for inner nodes, these
being Λ-nodes, apply nodes, and suspension nodes, the latter being created in
the course of reducing head forms to head normal forms. The machine also
needs some suitable representation for environment frames and frame entries.

For the Λ-nodes, we take advantage of the fact that in a lambs sequence
they follow each other in linear order, with no other graph structures branch-
ing off. A single Λ-node cell may therefore be used to represent such a sequence
by a triple (Λ, n, ph) whose components denote from left to right the node
type, the number n of Λs in the sequence, and a pointer ph to the apps se-
quence or to a binding index that follows next along the spine.

An apply node cell represents a triple (@, ph, pt), where @ denotes the
node type, and ph and pt are pointers to head and tail graphs, respectively.
Likewise, a suspension cell represents a triple (sus, pE, pt), with pt again

being a pointer to a tail graph and pE being a pointer to the environment in
which the tail may have to be reduced later on.
1 It should, however, be noted that this strategy may not necessarily be the best

thing to do in terms of runtime efficiency as the overhead involved in controlling
it, as we will see later on, could easily offset the gains made by saving a few
reduction steps.
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Fig. 7.1. Graph representation of the head form shown in Fig. 6.9

With these cell types at hand, the head form of Fig. 6.9 translates straight-
forwardly into the graph shown in Fig. 7.1. The tail graphs that are abbrevi-
ated here as ei | i ∈ { 2, 3, 5, 6, 9, 10, 11 } (with the indices corresponding
to the @-cells to which they are hooked up) feature similar structures as well.

The idea of reducing such graphs, roughly speaking, is to use them as
nondestructible templates that are traversed from top to bottom along their
spines to identify instances of β-distribution in the large, to build up envi-
ronments and to construct, from the bottom up, (head) normal forms as new
graph structures somewhere else in the heap. The original graphs remain un-
changed in this process in order to be able to reduce shared (sub)graphs in
different contexts that cannot be shared.

The environment is composed of frames corresponding to apps–lambs cor-
ners removed from a spine that, in their order of creation, are linked up by
pointers. The frames contain as many suspension entries as there are apply
nodes in the particular apps sequences, and unapplied lambdas counts (ULCs)
for missing apply nodes (or arguments), so that the total numbers of frame
entries always equal the lengths of the lambs sequences.2 The frame headers,
in addition to the link pointers, contain as parameters the arities of the Λ-
nodes and the current ULCs. When accessing the environment with specific
2 Filling frame entries with ULCs is in fact equivalent to η-extending apps se-

quences.
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head indices, these parameters are used to compute correct offsets relative
to frame bases and to start evaluating the suspensions retrieved from these
positions with the correct ULCs.

Reduction starts out with an empty environment, a ULC set to zero, and
a graph pointer pG pointing to the topmost (or leading) Λ-cell of the leftmost
spine.The pointer to a fresh copy of this cell becomes the first entry in a trace
stack that, to some extent, adopts the role of stack S of the hor machine in
that it basically keeps track of graph nodes traversed (see Sect. 6.4.2).

Very much like the instruction counter of a conventional computer, the
graph pointer pG then advances down the spine of the graph along the chain
of head pointers ph found along the way in the Λ- and apply cells.

While visiting apply cells, tail pointers are paired with the current environ-
ment pointers to form suspension cells, and the pointers to these suspensions
are pushed onto the trace stack, just as specified by rule (1) of Fig. 6.14 for
the hor machine.

When encountering a Λ-cell, a new environment frame is created and filled
with suspension pointers removed from the trace stack, thereby decrementing
the cell’s arity index, until either this index comes down to zero, in which case
we have a full application, or the leading Λ-cell pops to the top of the trace
stack, signifying a partial application. In this latter case, the remaining arity
index is added to that of the leading Λ-cell, thus in fact lifting the unapplied
Λs to top level, and the remaining entries of the frame are filled with ULCs
in monotonically ascending order.3 These operations, which correspond to
removing apps–lambs corners from a spine, are equivalent to the hor rules
(2) and (3) of Fig. 6.14.

The suspensions left over in the trace stack after all apps–lambs corners
have been removed and the spine has thus been straightened are the ones
that constitute the tails of the resulting head normal form. They remain to be
reduced when the machine moves upward again along the spine to compute a
full normal form.

Figure 7.2 shows two typical phases of turning apps–lambs corners of the
spine of Fig. 7.1 into environment frames, with the trace stack on the left
and the section of spine that includes the apps–lambs corner actually under
consideration on the right.

The first entry pushed onto the trace stack is the pointer to a fresh copy
of the leading Λ-cell of arity 2. Since this Λ-cell must become the topmost
node of the resulting graph, generally with an updated arity index, its pointer
entry pt is replaced by a dummy symbol �, thus in fact disconnecting the
cell from the rest of the spine. This dummy symbol serves as a placeholder
for the pointer to the remainder of the (head-)normalized spine that must be
substituted for it later on.

The upper part of Fig. 7.2 shows the spine after the graph pointer pG has
advanced to the second Λ-cell from the top. The pointers to the suspension
3 Note that a leading Λ-cell of arity n creates a frame filled with n ULCs only.
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Fig. 7.2. Two phases of processing apps–lambs corners of the spine shown in Fig. 7.1

cells created for the two tail expressions e3 and e2 while the respective apply
cells were visited have been pushed onto the trace stack, right on top of the
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pointer to the leading Λ-cell.4 Both suspensions share the same pointer pE0 to
the environment created by the leading Λ-cell, which is a single frame of two
ULC entries 1 and 2 prepended to an empty environment, denoted as nil.

The two suspensions now held in the trace stack belong to the first apps–
lambs corner of the spine formed by the two apply cells just traversed and by
the Λ-cell of arity 3 referenced by the current graph pointer pG. Pushing this
corner down the remainder of the spine corresponds to popping the two sus-
pensions off the trace stack and putting them into a new environment frame,
which is completed by another ULC value of 3 for the remaining unapplied Λ.
This Λ also increments by one the arity index of the leading Λ-cell, which has
now become the sole entry of the trace stack. The graph pointer subsequently
advances to the next apply cell (with e6 as the tail expression) down the spine.
The result of these actions is shown in the lower part of Fig. 7.2.

Processing the remaining apps–lambs corners of the spine in the same way
results in the configuration depicted in Fig. 7.3. In the upper part, this figure
shows stacked up in the trace stack a single Λ-cell of arity 5 underneath a
pointer to a suspension for the expression e11. This expression is in operand
position of an apply cell whose operator is a binding index #i referenced by
pG. The environment created at this point is shown in the lower part.

This environment consists of three frames corresponding to the cuts A, B
and C in Fig. 6.12, with the pointers pEA, pEB and pEC , respectively, pointing
to them. Each frame consists of a header that includes the number n of entries,
the current ULC value and a pointer to the next frame, and of the entries
themselves (which are either pointers to suspensions or ULCs).

Environment accesses are performed by means of a function lookup(#i, pE)
that takes as its first parameter a binding index #i encountered in the head of
a spine and as its second parameter the pointer pE to the current environment.
This function is expected to return either the pointer to a suspension with
which the computation must continue in the head, or a ULC value that, as
prescribed by hor rule (6) of Fig. 6.14, must be subtracted from the current
ULC to obtain an updated head index. In this latter case we are done with
the head, i.e., we have arrived at a head normal form, and evaluation must
continue with the tail suspensions of the spine that are held in the trace stack
(which in Fig. 7.3 is just the suspension for the tail expression e11).

Once the trace stack is empty, the evaluation has arrived at a full normal
form and terminates.

In order to be able to specify lookup in an easy-to-read algorithmic form,
we represent an environment E composed of a frame F with parameters n for
the total number of its entries and u for the current ULC value and of a rest
environment E′ as

E =s nil | (n, u, F ) : E′ ,

where
4 The trace stack grows downward and has the stack pointer sp pointing to the

first empty slot following the topmost entry.
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F =s F ′ | ULC : F and F ′ =s nil | [ E′′ e ] : F ′ ,

i.e., E is either empty or a sequence of frame triples (n, u, F ), with F being
either empty or a sequence of suspensions [ E′′ e ] that may be preceded by a
sequence of ULCs, with ULC ∈ {1, 2, . . .}.

Using this notation, the function lookup may be specified as:
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lookup( #i, E ) =
case E of

nil : index out of range
(n, u, F ) : E′ : if n ≥ i

then F [ i ]
else lookup(#(i − n), E′)

end case ,

where F [ i ] returns the i-th entry of the frame F .
This function does the equivalent of the hor rules (4) and (5) of Fig. 6.14.

It performs, as part of a case statement, a pattern match on the structure
of the environment E. If it is empty (denoted as nil), we have obviously an
erroneous index that is out of range. Otherwise, the second pattern splits the
environment E up into the components n, u and F that specify the topmost
frame, and into a rest environment E′. The parameter i is compared with
the frame size n and, if found smaller, meaning that it falls into the frame,
the function simply returns the i-th frame entry. Otherwise, the frame size
n is subtracted from i and lookup is recursively applied to the remaining
environment E′.

7.2 Continuing with Reductions in the Head

We now have to take a closer look at what exactly needs to be done if the
binding index in the head of a spine selects from the environment a suspension.
Conceptually, its graph must be substituted for the head index, and reduction
must then continue along its spine in the environment that comes along with
the suspension.

Figure 7.4 illustrates a typical configuration that must be dealt with. In
the upper part, it shows unwound on the stack a trace of two suspensions on
top of a leading Λ-cell, and a graph pointer pG that has arrived at the head
index #i of the spine that is being traversed. This index is assumed to select
from the current environment the suspension shown in the lower part, with
pS pointing to it. Its tail pointer pSt points to an as yet unreduced spine, as
indicated by several Λ-nodes (which have apply nodes in between), and the
associated environment is referenced by pSE.

The straightforward solution to continuing in the head would be to set the
graph pointer to pSt, the environment pointer to pCE, the ULC to the value
found in the header of the topmost environment frame, and then to move on.

If the graph thus substituted in the head of the current spine is, or reduces
to, an abstraction, it forms a new apps–lambs corner with the suspensions held
in the trace stack. These suspensions in fact constitute a specific instantiation
(or context) of the abstraction that renders what happens further down the
extended spine dependent on it, meaning that its evaluation cannot be shared.
The entire process produces a (head) normal form eventually (if it exists), but



7.2 Continuing with Reductions in the Head 157

�

�

�

�

�

�

�

�

�

�

��

��� �
�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�
�

�

Λ 2 �

sus

sus

#i

@

@

sus Λ m0

Λ

@

m1

Λ m2

#j

sp

pG

pS

pSE

pE

pSt

...

...

the trace stack the suspensions the graph

the selected suspension

Fig. 7.4. Continuing with another suspension in the head of a spine

it may arrive there after it has reduced the same suspension more than once
in different contexts, just as under an ordinary normal order regime.

Sharing makes things more complicated. It requires that the suspension
selected by the head index first be evaluated in isolation, say by a fresh abstract
machine, and that the graph that it returns overwrites the original suspension
node so that it can be seen by all pointer occurrences directed to it. This
graph may then be substituted in the head and reduction may proceed as in
the nonshared case described above.

Reducing a suspension in isolation makes a lot of sense pragmatically. Even
if its (head) normal form turns out to be an abstraction, it has at least all
of its nonlocal parameters substituted, which may subsequently allow some
simplifications of the abstraction body that could be shared with further ap-
plications. The question is just how far reducing suspensions out of context
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can proceed without inflicting any problems. Unfortunately, the answer de-
pends on what the (head) normal forms are going to be, which generally is
not known á priori.

Reducing suspensions just to head normal forms can safely be done in
isolation without regard for what we end up with. As we have learned in
Sect. 4.5, their existence is essential (but by no means sufficient) to compute
full normal forms eventually. Put another way: if reducing to head-normal
forms does not terminate, then full normal forms do not exist either, i.e., the
entire computation may be aborted right there.

However, the story would be different if the result of head normalization
were an abstraction and the machine were to continue to reduce, on the way
up along the spine, the tail suspensions in an attempt to compute a full normal
form in isolation. Here we face the problem that some of these suspensions
may be nonterminating, but that some selector that could be substituted
for the head index later on, when this abstraction is applied in the intended
context(s), may discard them and thus enforce termination.

This is typically the case with meaningful recursive abstractions. They
include if then else clauses that in the pure Λ-calculus may have the simple
head form

Λ . . .@ @ #0 et ef ,

for example, in which the consequent et may include the recursive call and
the alternative ef may specify the terminal case. Full normalization of this
expression in isolation would inevitably get trapped in unending recursions in
et. However, if a selector abstraction ΛΛ #i | i ∈ {0, 1} would be substituted
for the head index, it would either terminate with the value of ef and discard
et (if i = 1) or continue with et and drop ef (if i = 0).

Of course, this termination problem would not exist if head normalization
of a suspension were to return either an application or trivially a binding index,
which would be identifiable as a spine headed by a Λ-cell whose arity index
was zero. Then the tails could safely be reduced as well since substitution in
another context would have no further effect on the shape of the spine, i.e.,
the normalized tails would become part of the full normal form of the entire
expression. If reducing one of the tail suspensions would not terminate, then
the expression would have no full normal form at all.

So, head normalization looks like the thing to do when blindly reducing
suspensions out of context. A slightly smarter machine may decide to continue
beyond this point if the head normal form that it has produced is something
other than an abstraction, but otherwise stop right there and return the head
normalized graph. But, as we will see in a moment, there are some strings
attached to using head-normalized abstractions in other contexts.

The result of head-normalizing by means of a fresh machine a suspension
as in Fig. 7.4 is depicted in the lower part of Fig. 7.5. This head normal form
has the suspension node referenced by the pointer pS updated by its head-
normalized spine. It is composed of a leading Λ-cell of nonzero arity that
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takes the place of the original suspension cell, followed by a sequence of apply
cells followed by a head index. The tails of the apply cells are new suspensions
constructed for the original tail expressions e1, . . . , ep, whose environments are
referenced by the pointers pEE1, . . . , pEEp, respectively. These environments
usually have more frames appended to the environment to which pSE was
pointing. These frames have been created in the course of running down the
original spine.
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the trace stack – continued from Fig. 7.4

Wherever such a head-normalized suspension is referenced by a head index,
the computation may continue, as in the nonshared case, by setting the graph
pointer pG to the updated suspension node, i.e., to pS in the example of
Fig. 7.5.

Going once more down the head-normalized spine first turns the apps–
lambs corner formed by the Λ-cell and by the entries left in the trace stack
into an argument frame, and prepends this frame to an environment consisting
of just one frame that is filled in ascending order with as many ULCs as are
specified by the current unapplied lambdas count (which, incidentally, equals



160 7 Interpreted Head-Order Graph Reduction

the arity of the Λ-cell held at the bottom of the trace stack, i.e., 2 in the
example).

As an unpleasant consequence, the suspensions found in the tails of the
apply cells encountered along the way must be touched again to construct new
suspensions that have the original suspensions paired with this new environ-
ment. Unfortunately, these suspensions of suspensions may be passed around
by further β-reductions and end up in the tails of other abstractions, which
may lead to still deeper nestings of suspensions.

The real trouble starts when the machine goes into reverse gear and, on
the way up, must reduce the tails in an attempt to compute a full normal form.
Then these nested suspensions must be recursively unraveled from outermost
to innermost in order for the machine to be able to reduce them from the
inside out, each time traversing the entire graph, so that correct ULCs and
hence binding indices can be preserved.

It takes little imagination to realize that the complexity thus introduced
into the computation may easily offset the gains made by saving a few β-
reduction steps due to sharing. But reducing in isolation suspensions to head
normal form only is as far as we can go to be on the safe side of guaranteeing
termination whenever a full normal form exists.

The alternatives that are available to get around the difficulties of dealing
with nested suspensions are not very satisfactory either. On the one hand, we
could try to reduce out-of-context suspensions to full normal form. As this
entails a considerable risk of getting trapped in nonterminating recursions,
it contradicts the objective of a fully normalizing machine and therefore is
not acceptable. On the other hand, we could take the coward’s approach of
reducing suspensions to weak (head) normal forms only, leaving abstractions
untouched. This strategy is in fact equivalent to full normalization if it does
not end up with unapplied abstractions, but it also forecloses optimizations
under abstractions that in some cases could be rather rewarding. However, in
view of the difficulties with head normalization under abstractions, it may be
the most reasonable thing to do.

Setting up a fresh machine to reduce in isolation a suspension either in
the head or, for that matter, in one of the tails may, as in the se(m)cd
machines, be accomplished by means of a dump in which must be saved a return
continuation with which the computation must be resumed upon returning. It
should include at least the trace stack and the graph pointer.

The dump may have stacked up, at some instant in the course of reducing
a Λ-expression, several such machines for the evaluation of nested suspensions
that need to be shared.

7.3 Reducing the Tails

Once the graph pointer, on its way down the spine of a head form, has reached
the binding index in its head, and this index has been replaced by an adjusted



7.3 Reducing the Tails 161

ULC retrieved from the environment, the machine goes into reverse gear and
constructs from what it finds on the trace stack the spine of the normal form.
The steps that are involved in this are illustrated in Fig. 7.6.

At the top, we have a configuration that has in the trace stack two sus-
pension pointers ps2 and ps1 on top of the pointer pΛ to a leading Λ-cell.
The current graph pointer pG0 points to an adjusted binding index #jj that
is assumed to be correctly bound by one of the leading Λs. The normalized
spine must now be constructed from the bottom up, starting with the index
#jj as its leftmost leaf node. Everything else that is needed to do the job can
be retrieved by dereferencing and subsequently popping pointers held in the
trace stack.

Constructing a full normal form may now proceed as follows:
The suspension that is currently on top the trace stack causes the machine

to construct an apply node, inserts the current graph pointer pG0 as its head
pointer, and forces the evaluation of the suspension, i.e., in this particular
case the tail expression et2 in the environment E2, beginning with the ULC
value found in the header of the topmost frame of E2. The resulting normal
form eNF

t2 overwrites the suspension cell, and the pointer ps2 to it becomes
the tail pointer of the apply cell just created. The pointer to this apply cell
becomes the new graph pointer pG1, and ps2 is popped off the trace stack,
which brings about the second configuration from the top in Fig. 7.6.5 These
operations are equivalent to hor rules (8) and (9) of Fig. 6.14 that handle the
@ markers.

The next suspension that pops to the top of the trace stack brings about
the third configuration from the top, which now features a spine of two apply
nodes and an updated graph pointer pG2 pointing to the new node.

This piece of spine is, as the last step, hooked up to the Λ-cell now on top
of the trace stack by substituting the pointer pG2 for the placeholder �. The
pointer pΛ is popped and taken as the resulting graph pointer, as shown at
the bottom of Fig. 7.6, which completes the construction of the normalized
spine. The equivalent operation of the hor machine is specified by rule (7) of
Fig. 6.14, which builds a leading lambs sequence from Λs held in stack S.

Constructing just a head normal form differs only insofar as the tail sus-
pensions that are taken off the trace stack and have their pointers inserted
into the newly created apply cells are left unevaluated.

As indicated in the preceding section, evaluating a suspension, whether in
the head or in a tail, is done by a fresh machine that is called by saving in a
dump some return continuation that includes at least the current trace stack,
the graph pointer and the environment pointer.6

5 Nested suspensions, other than being recursively normalized from innermost to
outermost, are treated in the same way.

6 As an aside, it should be noted that an environment becomes irrelevant when
constructing a new spine from the bottom up and thus need not be saved when
entering into the evaluation of a tail suspension retrieved from the stack. The
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Fig. 7.6. Constructing a (head) normal form from the bottom up

environment pointer is nevertheless routinely saved since it becomes relevant when
reducing a suspension in the head.
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Constructing an apply node can, accordingly, be split up into two steps.
The first step just creates a cell by allocating heap space, inserting the current
graph pointer as the head pointer, and setting the new graph pointer to this
cell. The slot for the tail pointer is, for the time being, filled with a placeholder
symbol �.

Next, the evaluation of the suspension is started in a fresh machine. Upon
termination, this machine returns the pointer to the normalized graph that,
after the return continuation has been restored from the dump, is substituted
for the placeholder in the new apply node.

7.4 An Outline of the Formal Specification of g hor

In the g hor machine, all the actions primarily take place in the heap that
holds the graph and the environment. The stacks E and T of the hor-machine
are replaced by pointers into the heap, and the state transition rules predomi-
nantly specify pointer manipulations and the creation or modification of heap
objects.

A state of the machine is described by the 8-tuple

(pG, pE, S, M, H, D, u, dir) ,

where pG is a pointer to the graph cell that constitutes the current focus of
action, pE is the environment pointer, S is a working stack that is mainly used
to build new environment frames, M is the trace stack, H denotes the heap,
D denotes the dump stack, u stands for the unapplied lambdas count ULC,
and dir specifies the direction in which pG is advancing along a spine, which
is either ↓ (down), ↑ (up) or done.

The initial configuration of the machine with which reduction of a Λ-
expression e sets out, is given by

(pG, pE , nil, nil, H [ pG � (Λ, n, ph), pE � nil ], nil, 0, ↓).
It has the working stack, the trace stack and the dump empty, the ULC value
set to zero, the graph pointer pG pointing to the leading Λ-cell of the graph
of the expression e, pE pointing to an as yet empty environment (denoted as
nil), and the graph pointer set to move down along the spine.

The machine terminates in an orderly form with a configuration

(pG, −, nil, nil, H [ pG � (Λ, n′, ph′) ], nil, −, done) .

It has the graph pointer pG pointing to the topmost Λ-cell of the fully normal-
ized graph, and all other structures either are empty or have become irrelevant.

The state transition rules are, as usual, specified as mappings of the general
form

τg hor : (pG, pE , S, M, H, D, u, dir) → (p′G, p′E , S′, M ′, H ′, D′, u′, dir′) .
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At this point we forgo giving the details of the fairly complex rules beyond
saying that for the basic machine there are ten of them, roughly corresponding
to those of the hor machine (see Fig. 6.14), and another six rules that support
sharing in the head. A full specification will be postponed until, in the next
chapter, the g hor machine is transformed into a code-executing machine
whose state transition rules can be given in a more concise form.

7.5 Garbage Collection

As we have seen throughout this chapter, the g hor machine, when evaluating
a graph, is busy dynamically creating environment frames, suspensions and
normalized pieces of graphs, for which heap space must be made available and
possibly be reclaimed again if these objects are no longer needed. Managing
heap space is an important aspect of implementing graph reducers. Though
this is not really a primary concern of this text, there should be at least an
outline of what is at stake here and how it may be done in principle.

Heap space may, beginning with an empty heap, simply be allocated in
consecutive chunks in the order in which heap objects need to be created. The
position at which the next object may be placed may be identified by a pointer
that subsequently must be advanced by the object’s size. Assuming unlimited
heap space, there is nothing else to worry about, which is perfectly legitimate
as long as we are talking about abstract machines. Unfortunately, heap space
is finite in reality and, even if in generous supply, may get filled to capacity,
at which point the computation would have to be aborted, unless something
is done about heap space occupied by objects that are no longer used and
may therefore be released again. Unused heap objects are also referred to as
garbage, and the process of cleaning up heap space from garbage is called
garbage collection.

The difficult part about garbage collection is that heap objects gener-
ally cannot be released in an order that somehow relates to the order in
which they come into existence. The problem is primarily due to the entan-
glement between suspensions (or closures for unapplied abstractions in other
settings) and environments. When removing an apps–lambs corner from the
graph (which mimics β-distributions in the large), the g hor-machine gener-
ally prepends another frame of suspensions to the current environment. The
suspensions that, in turn, hold on to earlier environments may be passed along
and copied without bounds into other contexts that are unrelated to the con-
texts in which they have been created. Thus, after the reduction of a modestly
complex expressions has progressed to some extent, the machine typically has
created a fairly complex network of pointers to environments whose entries are
pointers to suspensions that in turn include pointers to (earlier) environments,
and so on, with generally several pointers directed at a particular part of the
environment (or, more precisely, its topmost frame) and at each suspension.
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The entire environment structure develops like a cactus as depicted in
Fig. 7.7, in which individual frames, represented by boxes, are linked up by
pointers held in the frame headers to share common subenvironments so that
exactly one copy of each frame exists. At any state during the evaluation of
an expression, an entire such structure must be kept alive as the computation
may in intricate ways jump back and forth among the branches of the cactus.
Parts of this environment structure or individual frames can only be released
if they are no longer referenced from somewhere else, e.g., by suspensions.
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Fig. 7.7. Typical cactus structure of an environment as it develops when a Λ-
expressions is reduced in head-order

Likewise, suspensions cannot be released as long as they are referenced
from somewhere else, which could be environment entries or the graph.

That is to say, in order to be able to decide whether or not the space
occupied by an object can be reclaimed (or garbage-collected), the system
has to know or find out that no more references to it exist. Also, since heap
objects are generally not released in the same or reverse order of their creation,
the entire heap space tends to become fragmented with ellapsing time into
occupied chunks interspersed with free chunks, also called holes, of varying
sizes. The holes are usually administered by a linked list. Whenever a new heap
object is about to be created, this list is searched for a hole of fitting size into
which the new object can be placed. Reclaiming heap space involves adding
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to this list a hole that, whenever possible, must be merged with adjacent holes
in order to keep chunks of free space as large as possible.

The most rigorous approach to garbage collection is based on reference
counting. It associates with every heap object a reference count value that is
updated whenever a pointer to the object is replicated or consumed; once this
count value comes down to zero, the space occupied by the object may be
immediately released, thus keeping at a near minimum the heap space that is
actually committed. However, this rigor may have to be paid for not only with
the overhead of updating reference counts but also with some unpredictable
time delays due to decrement operations that may have to be recursively prop-
agated through several levels of nested substructures. If not handled properly,
garbage and thus heap space may get lost forever.

With heap space in generous supply, we may take the more relaxed ap-
proach of simply letting garbage accumulate, and recover it only whenever no
hole of sufficient size can be allocated. Then the garbage collector must go
through all the objects in one sweep and release those with a reference count
of zero.

We may even abandon reference counting altogether and instead use a
mark-and-sweep scheme that ignores garbage until it becomes necessary to
worry about it. The idea is to allocate heap space from a contiguous chunk
until not enough is left of it to allocate another object. Only then does the
garbage collector go into action to set to zero a mark bit (which replaces the
reference counter) associated with each heap object. Next, the program graph
and the runtime environment are searched for pointers to heap objects still in
use and sets their mark bits to one. All objects whose mark bits remain zero
are considered garbage and the heap space that they occupy is subsequently
reclaimed.

The problem with the mark-and-sweep approach is that the computation
may be suspended for considerable periods of time while garbage is collected,
since the entire program graph and the entire runtime environment must be
searched to find out what is actually in use and what is not. Reference counting
is more selective in this regard as it touches only garbage. Garbage collection
in this case is also more or less local and incremental, spreading the overhead
more evenly over the entire computation and thus over time.

Irrespective of the garbage collector actually used, there is the problem
of steadily increasing fragmentation of the heap space into used and unused
pieces, the reason being that a newly created object hardly ever fits exactly
into an allocated hole but leaves some smaller part of it over, even if – with
considerably more effort – the best-fitting hole is selected. This may lead to
situations where for a particular object no hole of sufficient size can be found,
even though there is enough free space left in all the holes taken together.
Such situations call for heap compaction that, loosely speaking, moves all the
objects into a contiguous section on one side of the heap space, leaving a
contiguous large hole on the other side.
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The simplest but rather wasteful form of heap compaction is a two-space
copying scheme. It splits the entire heap space up into two equally sized parti-
tions, of which one is called the from-space and the other is called the to-space.
The from-space is the one actually used, the to-space is the target space for
compaction. Whenever fragmentation of the from-space has reached the point
where space allocation fails, all heap objects still referenced are copied in one
sweep into consecutive locations of the to-space. After having completed the
copying and cleaned up the from-space, the two spaces are simply flipped and
the computation continues out of what has now become the from-space.

Two-space copying not only leaves one half of the total heap space unused,
as any other heap compaction method it also causes a considerable problem
with pointers by which heap objects are referenced from within other heap
objects. These pointers must all be updated to point to the new locations in
the new from-space. However, this problem may, at the expense of introducing
another level of indirection, be alleviated to some extent. All it takes is to have
all heap objects represented by equally sized descriptors that may be placed
anywhere in an array of equally sized slots, also held in the heap but outside
the to- and from-spaces. Each descriptor includes a single pointer to the heap
object itself, but references to the object from anywhere else are pointers to
the descriptor. Moving a heap object between the from- and the to-space then
entails modifying only the single pointer included in its descriptor but leaves
all pointers to this descriptor, i.e., the references from other heap objects (of
which there may be several), unchanged.

A more selective approach to heap compaction is called lifetime or gen-
eration scavenging. Rather than moving all the heap objects still in use each
time compaction becomes necessary, the scheme distinguishes objects of dif-
ferent ages. It is based on the observation that heap objects are likely to be
released in reverse order of their creation, i.e., the ones that enter the game
at an early stage of program execution are also the ones that have the best
chances of survival. Thus there are hardly any opportunities for compaction
in the heap sections taken up by objects with a long lifetime. This suggests
that the entire heap space be partitioned into several sections that accommo-
date objects of different ages (or generations), and that compaction be applied
only to the youngest section(s). Also, since the majority of references point
from younger to older objects, very little pointer updating needs to be done,
rendering age-based scavenging the method with the least overhead of all the
combined garbage collection and heap compaction schemes.

7.6 Summary

The head-order graph reducer g hor informally described in this chapter de-
rives more or less directly from, and is a concretization of, the abstract head-
order reducer of the preceding chapter – the hor machine. It is a fully normal-
izing machine for the pure Λ-calculus that supports full-fledged β-reductions.
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Graph reduction is expected to reduce the complexity of evaluating Λ-
expressions relative to string reduction from typically O(n2) to O(n) for prob-
lems of size O(n) since it primarily substitutes, copies, moves and rearranges
pointers of unit length rather than the (sub)expressions or the environments
they represent. It is the key to avoiding duplicate work by reducing at most
once (sub)graphs that are shared among several pointer occurrences. Owing
to the underlying head-order regime, this is done only to the extent absolutely
necessary to compute normal forms.

The primary strategy that is applied to this effect in the g hor machine
is referred to as sharing in the head. The idea is to reduce in isolation to head
normal form a suspension that needs to be substituted in the head position of a
spine, and to subsequently overwrite the suspension with the resulting graph
so that it may be seen by all pointer occurrences that refer to it. This strategy
guarantees that the head normal form thus obtained is needed at least once
and that, for the time being, this is as far as reduction may proceed without
running the risk, in the cases where the head normal forms turn out to be
abstractions, of getting trapped, due to missing contexts, in nonterminating
recursions. Once these contexts have been made available in the places of
substitution, the fully instantiated head normal forms may safely be reduced
to full normal forms. Non-termination can then only occur if no normal forms
exist at all at all.

Unfortunately, head normalization of shared suspensions in isolation comes
at the expense of needing to create nested suspensions that must be evaluated
recursively from the inside out, thus inflicting a considerable overhead that
may more than offset the gains made by saving a few β-reductions.

There are, however, alternatives. On the one hand, reduction could safely
proceed beyond head normal forms should they turn out to be something other
than abstractions, which a smart machine could easily recognize, because then
the tails, if there are any, are bound to contribute to the overall full normal
form and therefore have to be reduced in any case. On the other hand, we could
settle for a weakly normalizing strategy that does not penetrate abstractions,
thus avoiding the termination problem altogether, but this would also mean
forgoing optimizations that may become possible in abstraction bodies.

The graphs used by the g hor-machine to represent Λ-expressions are
made up from inner nodes for Λ-abstractors, applicators @ and suspensions,
and from leaf nodes for binding indices #i. These graphs, together with the
environments in which they need to be evaluated, are held in a section of
memory called the heap.

The environment is realized as a linked list of frames created by appli-
cations of abstractions along leftmost spines. The frame entries are either
suspensions of tail expressions or binding indices that fill in for missing argu-
ments. Accesses to the environment are realized by means of a function lookup
that takes as its parameters a head index and the current environment, re-
turning either a binding index or a suspension.
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The last section of the chapter gives a brief overview of ways and means of
managing the heap space that accommodates the dynamically expanding and
collapsing graph structure and the runtime environment, addressing primar-
ily garbage collection by reference counting, two-space copying and generation
scavenging. Though of little relevance with regard to the discussion of abstract
machines, garbage collection plays an important role when it comes to imple-
menting real graph reduction machinery.
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The B-Machine

An interpreting graph reducer such as the g hor machine of the preceding
chapter has to find out at runtime, based on an analysis of actual machine
states, what incremental state transformations need to be done in what order.
This may inflict a considerable overhead since there are often several alter-
native state transition rules to be tested to identify the one that matches.
This overhead is the more annoying as nontrivial computations specified in
terms of recursive functions tend to perform repeatedly essentially the same
sequences of computational steps, except for changing parameters, that an
interpreting machine must each time figure out anew as if they have never
happened before.

An important idea of compilation is to have the analysis of an algorithm
(or of a high-level program) done only once and without actually executing it.
Based on this static analysis, the compiler constructs, as a sequence of machine
instructions, in the following also referred to as the code, a complete runtime
schedule that can be efficiently executed with very little (or ideally with no)
overhead spent on interpreting actual machine states.

These efficiency considerations raise the question of whether and to what
extent a full-fledged λ-calculus could benefit from this approach as well. The
categorial abstract machine briefly described in Sect. 5.5.2 shows that at least
a weakly normalizing Λ-calculus can be realized by execution of compiled code.
However, things appear to be a lot more difficult with full normalization. Since
the λ-calculus provides considerable freedom in designing algorithms (see also
Chap. 2), it is generally impossible to statically infer in all cases whether
and to what extent applications can actually be reduced, e.g., with regard
to matching arities of abstractions or compatible types, and to have static
code deal with such fairly complicated things as dynamically changing bind-
ing indices when penetrating or removing abstractors, or as computing new
(specialized) from existing functions (abstractions). This suggests that little
can be accomplished by compilation alone, some amount of interpretation
seems to be unavoidable.
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However, if we liberate our way of thinking about instruction-based com-
puting from the classical von Neumann approach, we may be able to come
up with a concept for a code-executing machine that is at least a fairly close
match to the λ-calculus.

Good starting points for this purpose are the abstract hor machine of
Sect. 6.4 and, more specifically, its graph-reducing descendant, the g hor
machine of the preceding chapter. As already indicated in Sect. 7.1, we may
consider moving the graph pointer down the spine of a head form as being
similar to advancing the instruction counter of a classical computer, and ac-
cordingly we may consider the graph nodes as instructions that essentially
effect the state transformations which need to be performed.

The problem with these instructions is that, when executed on the way
down the spine, they are not completely done. Once the graph pointer has
reached the head index of a head-normalized spine, there is a trace of things left
to do when the machine reverses gear and moves upward again. The trace gen-
erated by the g hor machine generally consists of a Λ-node representing the
accumulated leading lambs sequence of the spine, followed by suspended tail
expressions that have not (yet) been consumed by β-reductions. These expres-
sions still need to be normalized to compute full normal forms. Implementing
this trace in a code-executing Λ-calculus machine would have to be accom-
plished by a sequence of instructions that, in a way, would be complementary
to, and may have to be created dynamically by, the instructions encountered
while running down the spine. These complementary instructions essentially
are to force the evaluation, in reverse order, of the leftover suspensions by
code-controlled head-order reduction of the respective tail expressions.

We will also adopt from the g hor machine the idea of sharing reductions
in the head as the basic mechanism for avoiding, whenever possible, dupli-
cate work. This mechanism again employs fresh machines to reduce suspen-
sions that are called in head positions to the code equivalents of head normal
forms. These codes are, by updating, subsequently made visible to all pointer
occurrences that refer to the original suspensions.

The concept of such a pure Λ-calculus machine was proposed by Berkling
in response to difficulties he encountered in cleanly and efficiently resolving
naming conflicts among all-quantified variables in mechanized Horn-clause res-
olution. This machine works with two instruction streams that mutually call
each other to construct cooperatively code that can be straightforwardly con-
verted into a high-level representation of the normal form of the Λ-expression
submitted for execution.

As a reference to its inventor, we have chosen to call this machine the
B-machine but taken the liberty of including a few modifications and using
a slightly different notation to make it fit with the concepts and machines
discussed earlier and later on in this text.
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8.1 The Operating Principles of the B-Machine

The B-machine basically centers around two code structures, denoted as F
and B. They accommodate the instruction streams that must be executed in
what we from now on call the forward and backward directions (instead of
downward and upward along the spine), respectively. The structure F holds
the code equivalent of the spine actually processed. It dynamically generates
in the structure B the code that, in turn, constructs in F the normalized
spine, again as code.

The code structures F and B in fact replace the graph and the trace stack
M , respectively, of the g hor machine. Other than that, we have again a
heap H that holds pieces of code, suspension nodes and environment frames,
a workspace stack S, a dump D that stacks up return continuations when enter-
ing into the reduction of suspenions either in the head or in the tails, and an
environment pointer pE that, for reasons of notational convenience, is paired
with the current unapplied lambdas count (or ULC) u as (pE | u).1 The en-
vironment again unfolds as a cactus structure of frames, just as in the g hor
machine.

The basic idea of the B-machine is to start computing the forward code in
F that corresponds to the spine of a head form. It generates code in B that
takes care of the suspensions which the g hor machine piles up in its trace
stack. Once the code in F is exhausted, the machine executes in reverse order
the code that has built up in B to compute the code equivalent of a head-
normalized or fully normalized spine in F . Since this may create opportunities
for further β-reductions, these steps may have to be repeated several times
until an overall full normal form is reached.

The code of some nontrivial spine held in F includes pointers to the codes
for its tail expressions that are held in the heap. These codes may be loaded
(copied) into F for execution by dereferencing the respective pointers.

A state of the B-machine may be described by a 7-tuple

((pE | u), F, B, S, H, D, dir) ,

and the state transitions effected by instructions may be formally specified as:

• τF : ((pE | u), f instr : F, B, S, H, D, fw) →
(env, F ′, B′, S′, H ′, D′, dir)

for instructions f instr executed from F , and

• τB : (−, F, b instr : B, S, H, D, bw) →
(env, F ′, B′, W ′, H ′, D′, dir)

1 This notation simply makes explicit at top level the ULC parameter u held in
the header of the environment frame to which pE is pointing. Otherwise, this pa-
rameter would have to be inspected, whenever needed, by dereferencing pointers.
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for instructions b instr executed from B,

where fw and bw denote the respective directions, dir ∈ {fw, bw, done},
and env stands for either a (pE | u) pair or an irrelevant environment −.2

Advancing the program counter along the codes held in F and B corre-
sponds to deleting one by one from their front ends instructions that have been
executed. It considerably facilitates formalizing the idea of having new code
generated from existing code, which is the essence of doing fully normalizing
code-controlled β-reductions.

The initial state of the B-machine has set up in F the code for the spine
of the λ-expression e to be reduced, the pointer pE set to the base of the heap
section allocated for the environment, the ULC set to zero and the direction
set to fw. All other structures are empty.

The terminal state has the code for a fully normalized spine set up in
F (with references to the codes for the normalized tails recursively pointing
into the heap), an irrelevant environment pointer pE , an irrelevant unapplied
lambdas count ULC, some garbage left in the heap, the code structure B and
the stacks S and D empty, and the direction set to done.

The code equivalent of a fully normalized Λ-expression as it ends up in F
may be straightforwardly converted into either a graph or a high-level textual
representation.

As for sharing in the head, we will focus in the following on reducing in iso-
lation suspensions to head normal forms only, which is the most appropriate
thing to do conceptually but at the same time also the approach that is most
difficult to implement. As outlined in Sect. 7.2, it is as far as code execution
may safely proceed without risking nontermination should the suspensions re-
duce to abstractions, and in full contexts it guarantees computing full normal
forms, if they exist at all. The simpler but unsatisfactory solutions of reducing
suspensions indiscriminately either just to weak head normal forms or to full
normal forms are not discussed here since the former case would rule out code
optimizations under abstractions and the latter case could potentially cause
termination problems (see Sect. 7.2).

8.2 The Instruction Set

To convey the basic idea of a code-executing λ-calculus machine, it suffices to
equip it with just three instructions ap p, lam n and var i, which correspond
to the graph nodes of the g hor machine, yielding very dense code. They all
have a forward interpretation for execution from the structure F , lam n and
ap pp also have a backward interpretation as they can be executed from the
structure B as well.
2 The environment becomes irrelevant whenever the machine enters or is in the

backward mode.
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Considering first the simpler variant of the B-machine that excludes shar-
ing in the head, the forward interpretation of the three instructions is the
following:

ap p creates a suspension for code referenced by the pointer p by pairing it
with the current environment pointer pE , hides it behind a pointer as
pp � (sus, pE , p), and moves itself over into B as ap pp.

lam n, when occurring as the first instruction in a piece of code in F , is copied
into B as it is. This instruction never gets involved in β-reductions but
the parameter n may be incremented due to partial applications further
down the spine.
Otherwise, the instruction tries to remove, from the top of B, step by step
up to n consecutive ap pp instructions, pushing the pointers pp onto the
stack S and each time decrementing the parameter n by one. If only some
k < n ap instructions can be taken out of B, then n−k ULCs are pushed
onto S in monotonically ascending order, and the value n− k is added to
the parameter m of the lam instruction that pops to the top of B. As
the last action, the lam instruction prepends in either case the n entries
pushed onto S as a new frame to the current environment, and updates
the environment pointer pE accordingly.

var i replaces in head positions variables turned into binding indices. It es-
sentially uses the function lookup defined in Sect. 7.1 to access with index
i the current environment to determine how to continue in the head of the
spine. The outcome may be either a (pointer to a) suspension, in which
case the code referenced in it is set up for execution in F , or an updated
index obtained by subtracting from the current ULC a ULC value re-
trieved from the environment, in which case the machine reverses gear
and executes instructions from the structure B.

The backward interpretation of the two instructions that can also be exe-
cuted from B are, in the simpler nonsharing case, as follows:

ap pp forces full normalization of the suspension pp � (sus, pE , pt) by
a fresh machine, overwrites the suspension with the resulting code, and
writes the instruction back into F .

lam n, which can only be encountered as the last instruction in B, moves
itself back into F to terminate construction of the code for a (head-
)normalized spine.

Sharing in the head basically requires a more sophisticated interpretation
of the head instruction var i as it must distinguish plain suspensions, sus-
pensions of suspensions, head-normalized code and ULCs retrieved from the
environment (see Sect. 7.2). Essentially the same applies to the instruction
ap pp when executed from B as its parameter pp may refer to a (nested) sus-
pension or to head-normalized code, both of which must be fully normalized.

It should be noted that, owing to the one-to-one correspondence to graph
nodes, the interpretation of the chosen B-machine instructions is about as
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complex, in terms of machine configurations that need to be distinguished, as
the graph-interpreting g hor machine of the preceding chapter, i.e., not much
seems to have been gained in terms of runtime efficiency. However, a great
deal of analyzing these configurations to find out what exactly must be done
can be eliminated by clever compilation to code that uses more specialized
instructions.

For instance, the instruction lam n could be replaced by specialized ver-
sions llam n, flam n and plam n k that deal with leading Λs, full appli-
cations (to n parameters) and partial applications (to k of n parameters),
respectively, if opportunities for using them can safely be inferred by static
program analysis. Otherwise, the instruction lam must be used as defined
above. Essentially the same applies to the instruction var i. It may be re-
placed by a branch instruction bra pp that transfers control directly to the
evaluation of a suspension referenced by pp, or by a hvar ii instruction signi-
fying an updated head index in a head-normalized spine, if this can be figured
out statically.

We could also think of these instructions as being macros that expand
to standardized sequences of simpler conventional instructions which move
things from one place to another, do primitive arithmetic | logical or rela-
tional operations, dereference pointers, and do (un)conditional branches. The
ensuing codes may give rise to further optimizations known from conventional
compiler technology.

8.2.1 Instruction Interpretation Without Sharing ∗∗
Following the informal description of what the B-machine instructions are
supposed to do, we may now take a closer look at their formal specification,
beginning in Fig. 8.1 with the state transition rules for the nonshared versions.

For operations involving the heap, we use in these rules the following
notations:

• p � object denotes a heap object referenced by a pointer p from some-
where else. The object itself may be a Λ-cell, an apply cell or a suspension
cell, given as a triple (Λ, n, ph), (@, ph, pt) and (sus, (pE | u), pt),
respectively, a piece of code for an expression e, denoted as code[e], or an
environment frame.

• < n, u, pE | s1, . . . , sn > represents as a list structure an environment
frame composed of a header < n, u, pE | (with pE pointing to the next
environment frame and u denoting the ULC associated to the environ-
ment) and n frame entries si | i ∈ {1, . . . , n} that may be either pointers
to suspensions or ULCs.

• H [ p � object ] says that the heap contains, generally among many others,
an object p � object that is actually of interest.

• H [ pp1|pp2 � object ] says that both pp1 and pp2 point to the same object.
• H [] occurring on the right-hand side of a rule means that the heap remains

the same as on the left-hand side.



8.2 The Instruction Set 177

(1) ( (pE | u), ap p : F, B, S, H, D, fw ) →
( (pE | u), F, ap pp : B, S, pp � (sus, (pE | u), p) : H, D, fw )

(2a) ( (pE | u), lam n : F, ap pp : B, S, H, D, fw ) | ( n > 0 ) →
( (pE | u), lam n − 1 : F, B, pp : S, H, D, fw )

(2b) ( (pE | u), lam 0 : F, B, s1 : . . . : sm : nil, H, D, fw ) →
( (ppE | u), F, B, nil, ppE �< m, u, pE | s1 . . . sm >: H, D, fw )

(3a) ( (pE | u), lam n : F, nil, S, H, D, fw ) →
( (pE | u), lam n : F, lam 0 : nil, S, H, D, fw )

(3b) ( (pE | u), lam n : F, lam m : nil, S, H, D, fw ) →
( (pE | u + 1), lam n − 1 : F, lam m + 1 : nil, u + 1 : S, H, D, fw )

(5) ( (pE | u), var i : nil, B, S,
H [ psus � (sus, (p′

E | u′), p′
t), p′

t � code[e′] ], D, fw ) |
( lookup(i, pE) = psus ) →

( (p′
E | u), code[e′] : nil, B, S, H [], D, fw )

(6) ( (pE | u), var i : nil, B, S, H, D, fw ) | ( lookup(i, pE) = u′ ) →
( −, var u − u′ : nil, B, S, H, D, bw )

(7) ( −, ncode[e′] : nil, lam n : nil, S, H [ psus � (sus, . . .) ],
( t, psus, F, B, D ), bw ) →

( −, ap psus : F, B, S, H [ psus �lam n : ncode[e′] ], D, bw )

(9) ( −, F, ap psus : B, S,
H [ psus � (sus, (p′

E | u′), p′
t), p′

t � code[e′] ], D, bw ) →
( (p′

E | u′), code[e′] : nil, nil, S, H [], ( t, psus, F, B, D ), fw )

(10) ( −, ncode[e′] : nil, lam n : nil, −, H, nil, bw ) →
( −, lam n : ncode[e′] : nil, −, H, nil, done )

Fig. 8.1. The state transition rules for the basic B-machine instructions (no support
for sharing in the head)

• p � object : H [. . .] occurring on the right-hand side of a rule means that
a new object p � object is added to the heap.

• Modifying (or updating) a heap object (or its components) is represented
as H [ p � object ] on the left-hand side and as H [ p � updated object ]
on the right-hand side of a rule.

As a matter of convenience that reduces the number of rules, we assume
that each piece of code begins with a lam n instruction, meaning that the
respective spine is preceded by a sequence of n leading Λs, with n = 0 as a
special case.



178 8 The B-Machine

The state transition rules are enumerated as in Fig. 6.14 for the hor
machine to expose their close relationship.

The most complex of the instructions is lam n which does the first part of
a β-reduction. When executed from F , it has to distinguish between pushing
a suspension pointer found in B as another entry onto stack S (rule (2a)),
creating a new environment frame from entries held in S (rule (2b)), setting up
in an empty structure B a lam 0 instruction (rule (3a)), and lifting unapplied
Λs to the leading Λ-cell that, in this particular state, is the sole entry in B (rule
(3b)), thereby also incrementing the unapplied lambdas counts and pushing
them onto stack S. Thus, all four rules combined in fact turn an apps–lambs
corner into an environment frame. Rules (2a) and (2b) fill it with suspension
entries and rules (3a) and (3b) do the equivalent of an η-extension by filling,
in the case of a partial application, the entries for unapplied Λs with ULCs.

The second part of a β-reduction involves occurrences of the instruction
var i. Depending on the parameter i, it either sets up for evaluation in the
head a suspension retrieved from the environment (rule (5))3 or it simply
updates this parameter by the difference between the current ULC and a
ULC entry found in the environment, signifying arrival at a head normal
form, and reverses direction to execute backward code out of B (rule (6)).

Executing the instruction ap p from F creates a suspension for whatever
object the parameter p refers to, and subsequently moves itself over into B
with the suspension pointer as a parameter (rule (1)).

The three rules left in Fig. 8.1 apply to backward interpretation out of B
of the instructions ap and lam.

The instruction ap psus expects as its parameter the pointer to a suspen-
sion that it sets up for full normalization by a fresh machine (rule (9)). In
the dump it saves a tuple headed by a symbol t, signifying reduction in a
tail. The tuple also includes the suspension pointer as an anchor point and
the structures F and B of the calling machine that must be restored when
returning.

The instruction lam n in conjunction with a nonempty dump marked t
complements the backward execution of ap psus. It overwrites the suspension
node with the normalized code and returns control to the calling machine,
which creates in F another ap instruction, with the pointer to this code as a
parameter.

A configuration with a lam n instruction popping to the top of B and
an empty dump terminates the machine with the code of a head-normalized
spine in F . This code typically includes pointers that recursively refer to other
pieces of head-normalized code held in the heap. Taken together, they form
the code equivalent of a fully normalized Λ-expression.
3 It is important to note that the ULC value u is taken over as in the current

machine state, not as in the suspension, since the code of the suspension is directly
inserted for var i, thus simply extending the current spine.
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When comparing these rules with those of the hor machine, it may be
noted that there are some minor differences that are primarily related to code
execution versus the transformation of expressions, but are also related to the
representation of the environment. Collecting environment entries in the stack
S before creating a frame and the particularities of handling a leading lam
instruction render it necessary to split hor rules (2) and (3) up into two each.
There is no explicit equivalent for hor rule (4) as selecting an environment
entry is taken care of, as part of rules (5) and (6), by the function lookup, and
there is also no equivalent for hor rule (8) since entering into and returning
from the evaluation of tail suspensions is handled by saving and unsaving
relevant machine states, including anchor points, in (from) the dump.

8.2.2 Interpretation Under Sharing in the Head ∗∗
Interpreting the B-machine instructions becomes more complicated, requiring
more rules and also additional instructions, when the reduction of suspensions
in the head is shared, as outlined in Sect. 7.2. The difficulties primarily concern
the instruction var i. They are mainly caused by the fact that under sharing
a suspension may be reduced to head normal form only in order to avoid
potential termination problems. When abstractions thus head-normalized are
applied in other contexts, suspensions of suspensions are, as an unpleasant
consequence, created in their tails. Normalizing these nested suspensions is
decidedly more involved than that of plain suspensions. The instruction must
also distinguish between retrieving from the environment a suspension (of a
suspension) and code that, due to prior evaluation under sharing, is already
head-normalized and can therefore be directly executed.

Accordingly, the interpretation of var i must be split up into four different
rules (5a–d) as given in Fig. 8.2, which replace rule (5) of Fig. 8.1 for the basic
(nonsharing) B-machine. When retrieving, per lookup in the environment, a
pointer pp, the instruction replaces itself by another instruction rthnf pp that
forces the reduction to head normal form of whatever pp refers to (rule (5a)).
This instruction is not visible at the machine language level that is accessible
to the user or the (de-)compiler. It just enters the scene and disappears again
in the course of executing code, but it occurs neither in the initial nor in the
terminal (normalized) code.

The state transition rules for the interpretation of rthnf pp are the fol-
lowing: If pp points to

• head-normalized code, denoted as hncode[e], it sets this code up for exe-
cution in the structure F (rule (5b));

• a suspension whose tail pointer refers to code, then it creates a fresh ma-
chine to execute this code in the environment and with the ULC that
comes with the suspension, saving in the dump a return continuation ear-
marked h in its first component (for reduction in the head) (rule (5d));

• a suspension of a suspension, it again creates a fresh machine that recur-
sively applies the instruction rthnf to its tail pointer, thus driving the
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(5a) ( (pE | u), var i : nil, B, S, H, D, fw ) | ( lookup(i, pE) = pp ) →
( (pE | u), rthnf pp : nil, B, S, H [], D, fw )

(5b) ( (pE | u), rthnf pp : nil, B, S, H [ pp � hncode[e] ], D, fw ) →
( (pE | u), hncode[e] : nil, B, S, H [], D, fw )

(5c) ( (pE | u), rthnf pp : nil, B, S,
H [ pp � (sus, (p′

E | u′), p′
t), p′

t � (sus, . . .) ], D, fw ) →
( (p′

E | u′), rthnf p′
t : nil, nil, S, H [],

( h, u, pp, rthnf pp : nil, B, D ), fw )

(5d) ( (pE | u), rthnf pp : nil, B, S,
H [ pp � (sus, (p′

E | u′), p′
t), p′

t � code[e′] ], D, fw ) →
( (p′

E | u′), code[e′] : nil, nil, S, H [],
( h, u, pp, rthnf pp : nil, B, D ), fw )

(8a) ( −, hncode[e′] : nil, lam n : nil, S, H [ pp � (sus, . . .), pE0 � nil ],
( h, uu, pp, rthnf pp : nil, B, D ), bw ) →

( (pER, u), rthnf pp : nil, B, S,
pER �< u, u, pE0 | u . . . 1 >: H [ pp �lam n : hncode[e′], . . . ], D, fw )

(8b) ( −, F, ap pp : B, S, H, ( h, . . . , D ), bw ) →
( −, ap pp : F, B, S, H, ( h, . . . , D ), bw )

Fig. 8.2. The state transition rules for the interpretation of B- machine instructions
under sharing

demand for the evaluation of nested suspensions recursively from outer-
most to innermost (rule (5c)).

The return continuations save the current ULCs and the instructions rthnf
pp so that, when code execution returns to the calling machines, the head-
normalized code can be executed in place and in the correct context.

Returning to a calling machine is accomplished by rule (8a) of Fig. 8.2
that in the head does something similar to rule (7) of Fig. 8.1, which in the
basic B-machine handles returning from the normalization of tail suspensions.
It applies, under the backward execution mode, to a configuration that again
features an instruction lam n on top of an otherwise empty structure B, this
time in conjunction with some piece of code in F that is just head-normalized.
The rule prepends lam n to the code in F , overwrites with it the suspension
node whose pointer pp has been saved in the dump, then restores the calling
machine from the dump and switches to the forward execution mode.

Restoring the calling machine includes the old codes in F and B and the
construction of a new environment consisting of just a single frame that is
filled in ascending order with as many ULCs as specified by the ULC value
retrieved from the dump. This new environment is the one in which the head-
normalized code must be executed in this particular place of call, after the
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original environment of the suspension has served its purpose and is done
with. This simply reflects the fact that this place has become the head of
a straightened-out spine with a leading lambs sequence of length ULC. All
accesses to this environment or, more precisely, to its single nonempty frame
of ULCs by instructions var i that occur somewhere in the head-normalized
code become turning points of code execution from forward to backward,
signifying arrival at a head normal form.

The configuration returned by rule (8a) immediately matches the left-
hand side of rule (5b). It causes the instruction rthnf pp to set up the code
referenced by pp for execution in this new environment. As long as there are
nested return continuations in the dump that are earmarked h, the cycle of
going through rules (8a) and then (5b) repeats itself, terminating either with
an empty dump or, when recursively head-normalizing the spines of tails, with
return continuations in the dump that are earmarked t.

Finally, the new rule (8b) of Fig. 8.2 applies to ap pp instructions in the
code held in B. When executed in the backward mode under the control
of a head-normalizing fresh machine (which can be identified by a return
continuation tagged h in the dump), it is simply moved over into F without
its parameter being touched.

Sharing reduction to full normal forms of suspensions in the tails, if it
can be exploited at all, is implicitly taken care of by rules (9) and (7) of the
basic B-machine. Here too, fresh machines are created to do the job, and the
codes of the normalized suspensions overwrite the original suspension nodes
so that they may be shared with multiple pointer occurrences. Copies of the
suspension pointers that, upon returning to the calling machines, are retrieved
from the dump subsequently also become the parameters of ap instructions
set up in F to place them properly in the tails of apply nodes.

8.3 Executing B-Machine Code: an Example ∗∗
With precise specifications of the instructions at hand, we are now ready to
go step by step through a small piece of program that illustrates how the
B-machine does its job.

As an example, we consider the spine of a fairly simple head form with as
yet unspecified tail expressions

ΛΛ @@ ΛΛΛ @ #i e1 e2 e3

(with i ∈ { 0, . . . , 4}), which is graphically depicted in Fig. 8.3. It translates
straightforwardly into the B-machine code

lam 2; ap p3; ap p2; lam 3; ap p1; var i;

that must be set up in F and executed from left to right. The codes that
compute the tail expressions e1, e2, e3 are referenced by the pointer parameters
p1, p2, p3, respectively, of the instructions ap.
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Fig. 8.3. An example graph

Figure 8.4 illustrates some characteristic phases of executing this piece of
code from F . It also shows the code that builds up in B, the contents of the
workspace stack S and of the environment section HE of the heap as code
execution proceeds. The currently valid environment pointer is the one that
in HE is underlined. The downward-pointing arrows have attached to them
the current ULCs and the rules that effect the state changes, as enumerated
in Fig. 8.1.

Beginning with the complete code in F , with the ULC set to zero and all
other structures empty, and moving forward, the first instruction lam 2 of
F , finding B empty, creates, through a sequence of five rule applications, an
environment frame containing two ULCs in ascending order that it prepends
to the empty environment (fourth configuration from the top). The two ap
instructions that follow next in F then move themselves over into B with
parameters ppi that are pointers to suspensions created by pairing the pointers
pi to the tail codes with the environment pointer pE1 (fifth configuration
from the top). Then the instruction lam 3 takes over. It removes two ap
instructions from B before hitting the lam 2 instruction underneath, pushes
their suspension pointers onto S and decrements its own arity index to one.
The ensuing combination of lam 1 in F and lam 2 in B pushes the ULC
value 3 onto S, and changes the parameters of these instructions to 0 and 3,
respectively (second last configuration), which leads to the creation of another
environment frame of three entries. Subsequently moving the instruction ap
p1 that now is next in F over into B yields the last configuration of Fig. 8.4. It
has the var i instruction exposed in F as the last instruction of this particular
piece of code, whose index selects, through the function lookup(i, pE2), an
entry in the current environment.

If the head index is set to i ∈ {0, 3, 4}, which means that it is bound
by the leading lambs sequence, the machine has to go into reverse gear to
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lam 2 : ap p3 : ap p2 : lam 3 : ap p1 : var i : nil | F
nil | B
nil | S

pE0 � nil | HE

⇓ u = 0 | rule (3a)

lam 2 :ap p3 : ap p2 : lam 3 : ap p1 : var i : nil | F
lam 0 : nil | B

nil | S
pE0 � nil | HE

⇓ u = 0 | rule (3b) twice (fw)

lam 0 :ap p3 : ap p2 : lam 3 : ap p1 : var i : nil | F
lam 2 : nil | B

2 : 1 : nil | S
pE0 � nil | HE

⇓ u = 2 | rule (2b) twice (fw)

ap p3 : ap p2 : lam 3 : ap p1 : var i : nil | F
lam 2 : nil | B

nil | S
pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

⇓ u = 2 | rule (1) twice (fw)

lam 3 : ap p1 : var i : nil | F
ap pp2 : ap pp3 : lam 2 : nil | B

nil | S
pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

⇓ u = 3 | rule (2a) twice and rule (3b) (fw)

lam 0 : ap p1 : var i : nil | F
lam 3 : nil | B

3 : pp3 : pp2 : nil | S
pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

⇓ u = 3 | rules (2b) and (1) (fw)

var i : nil | F
ap p1 :lam 3 : nil | B

nil | S
pE2 � < 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

Fig. 8.4. Phases of forward code execution in the B-machine
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generate, by execution of the code in B, the code equivalent of a normalized
spine in F .

If the head index assumes one of the values i ∈ {1, 2}, then var i in fact
becomes a branch instruction that continues executing from F the code of the
suspension referenced by either pp2 or pp3, both in the environment pE2.

In order to discuss what happens in the latter case, we assume a head
index of i = 2 and choose for the tail expressions the following codes:

p1 � lam 1; var 2; for the tail e1

p2 � lam 1; var 0; for the tail e2

p3 � lam 1; var 1; for the tail e3 .

These codes bring out the essentials of continuing with reductions in the head
but are simple enough to keep the number of rule applications reasonably
small.

The complete code thus realizes the Λ-expression

ΛΛ @ @ ΛΛΛ @ #2 Λ#2 Λ#0 Λ#1

or, in parenthesized notation,

ΛΛ.((ΛΛΛ.(#2 Λ#2) Λ#0) Λ#1) .

As may be easily verified, this expression reduces in three β-reduction steps
to

ΛΛΛΛΛ#3 .

Figure 8.5 depicts as a sequence of machine configurations how these reductions
can be performed by the above codes, using first the instruction interpretation
specified by the rules of Fig. 8.1 only, i.e., without going through the motions
that would be necessary to do sharing in the head.

The sequence begins with the last configuration of Fig. 8.4, which has the
instruction var 2 as the last one left in F .4 It selects from the current envi-
ronment pE2 the suspension referenced by pp2 and sets it up for evaluation in
the head (second configuration from the top). These steps are repeated in the
fourth and sixth configurations from the top for the suspensions referenced
by pp1 and pp3, respectively. The interesting case with regard to index cor-
rections comes about in the second last configuration. Here we have exposed
in F an instruction var 1 in conjunction with a ULC value of 5 and an envi-
ronment composed of two frames. The index i = 1 now selects the first ULC
entry 2 of the second frame (the one to which pE1 is pointing). The difference
of 3 between the two ULCs becomes the updated parameter of the instruction
var. In the last step, the machine prepends the instruction lam 5 in B to it
to form in F the code equivalent
4 Note that stack S has been dropped throughout the entire sequence since it is not

directly involved, and that the heap section HS that holds the suspensions and
the dump are shown only once in the first configuration since they never change.
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var 2 : nil | F
ap pp1 : lam 3 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pp2 � (sus, (pE1 | 2), p2), pp3 � (sus, (pE1 | 2), p3) | HS

pp1 � (sus, (pE2 | 3), p1) | HS

nil | D
⇓ u = 3 | rule (5) (fw)

lam 1 :var 0 : nil | F
ap pp1 : lam 3 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

⇓ u = 3 | rules (2a) and (2b) (fw)

var 0 : nil | F
lam 3 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE1 � < 1, 2, pE1 | pp1 > | HE

⇓ u = 3 | rule (5) (fw)
lam 1 :var 2 : nil | F

lam 3 : nil | B
pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE1 �< 1, 2, pE1 | pp1 > | HE

⇓ u = 4 | rule (3b) (fw)
var 2 : nil | F
lam 4 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE2 �< 1, 4, pE2 | 4 >, pEE1 � < 1, 2, pE1 | pp1 > | HE

⇓ u = 4 | rule (5) (fw)
lam 1 :var 1 : nil | F

lam 4 : nil | B
pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE2 �< 1, 4, pE2 | 4 >, pEE1 � < 1, 2, pE1 | pp1 > | HE

⇓ u = 5 | rule (3b) (fw)
var 1 : nil | F
lam 5 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE3 � < 1, 5, pE1 | 5 >, pEE2 � . . . , pEE1 � . . . | HE

⇓ u = 5 | rule (6) (fw)
lam 5 :var 3 : nil | F

nil | B
pEE3 � . . . , pEE2 � . . . , pEE1 � . . . , pE2 � . . ., pE1 � . . . , pE0 � nil | HE

Fig. 8.5. Continuing with nonshared reductions in the head
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lam 5 : var 3 : nil

of the normalized expression.
Though this example cannot really exploit any sharing, we can at least

show how code-controlled reductions in the head can be performed in the
isolation of a fresh machine and how the computation continues with the
code returned by it.

Figure 8.6 depicts the first part of the sequence of state transformations
that develops when, beginning at the same configuration as in Fig. 8.5, the
instructions are interpreted under sharing, using whenever applicable the rules
listed in Fig. 8.2, and otherwise the rules of Fig. 8.1.

The first step sees rules (5a) and (5d) in action. They have the instruction
var 2 in F select from the current environment the suspension referenced
by pp2 and set it up for execution in a fresh machine by saving the current
machine state in the dump (second configuration from the top). This machine
can do nothing but overwrite the suspension with its abstraction code as it
is, prepend to the current environment a frame of ULCs that derive from
the ULC saved in the dump, and then return control to top level, where the
abstraction code is set up for execution out of F (fourth configuration from
the top).

The var 0 instruction that then pops to the top of F (second last configu-
ration) selects the suspension referenced by pp1 and, by calling the instruction
rthnf pp2, creates another fresh machine for its shared head normalization
(last configuration). The computation would then continue by recursively call-
ing inside the machine for pp1 yet another machine to reduce the suspension
referenced by pp3 and, after returning from both machines, produce the code
lam 5 :var 3 as the full normal form.

The point to be driven home here is that it takes two passes through the
code to first head-normalize a suspension for sharing and then to apply this
code in the head of the spine in which it is called first. All subsequent calls,
of which there are none in our trivial example, may use the head-normalized
code directly. A more complex suspension would go through essentially the
same motions of calling and returning from a fresh machine; otherwise the
machine would just perform more computational steps.

8.4 Supporting Primitive Functions

Primitive functions such as +, −, . . . are strict in their arguments and thus
are a little at odds with the head-order regime. The simpler case seems to be
that a primitive function symbol can be statically inferred to be in the head
of a spine, e.g., as in @ @ + e1 e2. It could be translated into something like

code[e2]; code[e1]; add; .

When executed from left to right, this piece of code would first evaluate the
arguments e2 and e1 in that order, and then add them up. We may assume
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var 2 : nil | F
ap pp1 : lam 3 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pp2 � (sus, (pE1 | 2), p2), pp3 � (sus, (pE1 | 2), p3) | HS

pp1 � (sus, (pE2 | 3), p1) | HS

p1 �lam 1 :var 2 : nil, p2 �lam 1 :var 0 : nil, p3 �lam 1 :var 1 : nil | HS

nil | D

⇓ u = 3 | rules (5a) and (5d) (fw)
lam 1 :var 0 : nil | F

nil | B
pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

. . . , pp2 � (sus, (pE1 | 2), p2), p2 �lam 1 :var 0 : nil, . . . | HS

( h, 3, pp2, rthnf pp2 : nil, ap pp1 :lam 3 : nil, nil ) | D

⇓ u = 2 | rules (3a), (3b), (2b) and (6) (fw)
var 0 : nil | F
lam 1 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE1 �< 1, 3, pE1 | 3 > | HE

. . . , pp2 � (sus, (pE1 | 2), p2), p2 �lam 1 :var 0 : nil, . . . | HS

( h, 3, pp2, rthnf pp2 : nil, ap pp1 :lam 3 : nil, nil ) | D

⇓ u = 3 | rules (8a) (bw) and (5b) (fw)
lam 1 :var 0 : nil | F

ap pp1 :lam 3 : nil | B
pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pER1 �< 3, 3, pE0 | 3 2 1 >, pEE1 �< 1, 3, pE1 | 3 > | HE

. . . , pp2 �lam 1 :var 0 : nil, p2 �lam 1 :var 0 : nil, . . . | HS

nil | D

⇓ u = 3 | rules (2a) and (2b) (fw)
var 0 : nil | F
lam 3 : nil | B

pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE2 �< 1, 3, pER1 | pp1 >, pER1 �< 3, 3, pE0 | 3 2 1 >, pEE1 � . . . | HE

. . . , pp1 � (sus, (pE2 | 3), p1), p1 �lam 1 :var 2 : nil, . . . | HS

nil | D

⇓ u = 3 | rules (5a) and (5d) (fw)
lam 1 :var 2 : nil | F

nil | B
pE2 �< 3, 3, pE1 | 3 pp3 pp2 >, pE1 �< 2, 2, pE0 | 2 1 >, pE0 � nil | HE

pEE2 �< 1, 3, pER1 | pp1 >, pER1 �< 3, 3, pE0 | 3 2 1 >, pEE1 � . . . | HE

. . . , pp1 � (sus, (pE2 | 3), p1), p1 �lam 1 :var 2 : nil, . . . | HS

( h, 3, pp1, rthnf pp1 : nil, lam 3 : nil, nil ) | D

Fig. 8.6. Continuing with shared reductions in the head
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here that the argument values would be temporarily pushed by the respective
codes onto stack S, from where they could be picked up by add and replaced
with the result value.

Unfortunately, this solution does not take into account the general case
where we may have in the head positions a variable (or a binding index, for
that matter) that, in the course of performing a code-controlled β-reduction,
may be substituted by a primitive function.

A workaround that is compatible with the β-reduction mechanics of the
B-machine consists in translating occurrences of primitive function symbols
such as + into the abstraction code

padd � lam 2; force 0 ; force 1; add; free; .

As the name implies, the instruction force forces evaluation in the current
environment of the suspension selected by its index parameter, whose result
value is then deposited in stack S for subsequent consumption by the add
instruction. The instruction free releases the environment frame created by
the instruction lam 2 since it is used nowhere else. Using the pointer padd as a
handle, this piece of code can be freely passed around by means of β-reductions
and called for execution wherever it ends up in the head of a spine.

Similar codes may be given for all other primitive functions, including con-
ditionals, though we seem to face a minor difficulty here insofar as alternative
codes must be executed depending on the outcome of evaluating a predicate
expression. However, the Λ-calculus takes care of this by representing the
Boolean values true and false as selector abstractions ΛΛ #1 and ΛΛ #0,
respectively, which translate into the codes

ptrue � lam 2; var 1; and pfalse � lam 2; var 0; .

Thus, all we need to do is to define the code for a primitive function if as

pif � lam 1; force 0; branch; .

It takes a single argument that is assumed to be a predicate expression, forces
its evaluation and, depending on the Boolean value, deposits either the pointer
ptrue or pfalse in stack S. This pointer is taken by the instruction branch to
continue execution in the head with the code referenced by it.

When applying the function if as

@ @ @ if e0 e1 e2 ,

the equivalent code looks like this:

ap p2; ap p1; ap p0; bsr pif ;

(where p0, p1, p2 point to the codes code[e0], code[e1], code[e2], respectively,
and bsr denotes another simple branch instruction). This code first generates
ap instructions for all three arguments held in B and then calls the code for if
to evaluate e0 in its environment. This code in turn calls the code referenced
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by either ptrue or pfalse and thus decides whether to continue with execution
of the code for e1 or e2 out of F .

We note that primitive functions translated into such codes in fact realize
closed Λ-abstractions, or combinators, that may be called without regard for
the current environment.

The combinator property also renders it possible to include the codes for
all primitive functions in a runtime library that may be linked to executable
B-machine code.

8.5 Summary

The original B-machine was designed by Berkling as a pure Λ-calculus ma-
chine with hardware realization in mind. The idea for this machine was born
out of some frustration about difficulties in cleanly and efficiently resolving
naming conflicts among all-quantified variables in the context of mechanized
Horn-clause resolution. The solution to this problem was thought to be a novel
machine architecture that supports a full-fledged Λ-calculus, with a complete
and efficient implementation of the β-reduction rule as the single most impor-
tant operation.

The starting point was the head-order reduction concept outlined in
Sect. 6.4. It led to the idea of doing β-reductions in the large, i.e., of reduc-
ing several consecutive β-redices in one conceptual step, and of consequently
focusing on reductions in the head of a spine until there was nothing else to
do but to turn (recursively) to leftover tails. This variant of a normal order
regime, in conjunction with sharing in the head, ensures that all β-reductions
are performed at most once and only if absolutely necessary to compute nor-
mal forms.

Beyond that, it was clear from the beginning that raw runtime efficiency
could be achieved only by instruction-based machinery rather than by inter-
pretation of machine states. As a truly novel concept that directly derives
from the head-order regime of going up and down the spine of a graph, the B-
machine supports two instruction streams, of which one is executed in forward
direction and, while this is being done, dynamically generates the other stream
that must be executed backward. The forward stream (or code) is statically
generated by compilation of the Λ-expression to be reduced and corresponds
to reducing a spine of the expression graph to head normal form (or just go-
ing down the spine). The backward executing code controls the reduction of
the head-normalized spine’s tails (which recursively calls upon forward code
execution) and corresponds to going up again along a spine. This code in turn
generates a normalized spine as forward code.

Forward code is composed of three instructions, of which ap essentially
constructs suspensions for tail expressions, lam controls the creation of envi-
ronment frames and var handles the head index of a spine. The latter instruc-
tion either returns an updated binding index and subsequently turns control
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over to the backward code, or it continues with the evaluation in forward
direction of a suspension selected from the environment.

The most important backward executing instruction is ap. It effects the
evaluation of suspensions for tail expressions by forward code.

Reducing suspensions in the head or in a tail is separated from the rest
of the spine by creating fresh machines (or contexts) that render it possi-
ble to share the (head) normal forms they compute with references to the
suspensions somewhere else in the code.

Unfortunately, things are not as nice and tidy as they may look on the B-
machine code level. The difficulties are largely hidden behind the two forward
instructions lam and var i that play a key role in performing β-reductions.
Since each requires interpretation of different machine states, their execution
turns out to be fairly complex, though some of the complexity can be avoided
by introducing more specialized instructions. It may then be left to compi-
lation to decide, based on a static program analysis, where these specialized
instructions can safely replace those that cover the general cases (or all rele-
vant machine configurations).

However, a complexity problem that is hard to overcome is due to sharing
in the head. It relates to the question of how far reducing a suspension in
the isolation of a fresh machine should be driven ahead, assuming no advance
knowledge of what its (head) normal form might be. Since it could be an
abstraction, there are basically three options available.

At one extreme, we could take the coward’s approach of reducing the ab-
straction to weak normal form only, in which case there would be little benefit
from sharing since it would fail to utilize opportunities for optimizing the ab-
straction itself. At the other extreme, we could go for full normalization, but
here we face the problem that uninstantiated parameters may inflict runaway
recursions in tail expressions that would otherwise be discarded, i.e., it does
not guarantee termination, even though normal forms may exist.

Reducing to head normal forms only is the best solution conceptually, as it
avoids these termination problems and also allows some optimizations under
abstractions, but it can only be had at the expense of creating at runtime sus-
pensions of suspensions that could extend over several nesting levels. Applying
in different contexts abstractions thus head-normalized is bound to inflict a
substantial overhead as these nestings have to be recursively reduced from the
inside out, meaning that the machine has to run the particular code as many
times as there are nestings. In worst cases, this overhead may easily offset
what has been gained, in terms of runtime efficiency, by saving a number of
β-reductions that would otherwise have to be performed repeatedly.
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The G-Machine

The preceding chapter showed that a fully normalizing λ-calculus does not
lend itself smoothly to code execution as it is known from conventional com-
puting machines. Transforming abstractions into others, i.e., performing re-
ductions in abstraction bodies, which is what distinguishes full from weak
normalization, requires ways and means of modifying code dynamically. To
do so, the B-machine supports two instruction streams, of which the one ob-
tained by compilation of λ-expressions and executed in what is called the
forward direction, dynamically generates the other one that is carried out
in the reverse direction to generate code that represents a fully normalized
expression. Instruction execution also involves a considerable amount of in-
terpretation of machine states to do the right things in the right order and,
most importantly, to maintain correct variable bindings.

Contemporary computing machines are ill equipped for this purpose. Exe-
cutable code is expected to be static, there is no direct way of dynamically gen-
erating new from existing code (other than by recompilation), and there are
no instructions that are a reasonably close match to those of the B-machine.

Conventional instruction sets, loosely speaking, expect all data objects
that they are supposed to operate on to be of the right type and format in the
right places (memory locations) at the right times (or states of control). Other
than for conditional branch instructions that inspect a few status bits, instruc-
tion execution does not depend on the machine state. The machine blindly
interprets as instructions the bit patterns to which the program counter is
pointing, and correct code execution depends solely on this counter starting
at the right address and being correctly advanced.

Of course, as anything that is Turing-computable can be implemented on
such primitive target machinery, it is possible in principle to have B-machine
code either interpreted by or compiled to target code, though this cannot
be expected to be very efficient both in terms of time and memory space
expended.

In order to generate efficient target code, some restrictions must inevitably
be imposed on the high-level source language as regards the construction of



194 9 The G-Machine

legitimate algorithms (or programs). These restrictions must be tight enough
to rule out anything that at runtime leaves a choice between two or more
alternative courses of action or, even worse, brings about undecidable situa-
tions.

Since the λ-calculus treats abstractions and variables as first-class objects,
there is simply too much freedom in designing algorithms, including many that
are not very meaningful semantically (see Chap. 2). This freedom renders
it impossible for a compiler to statically infer in all cases whether and to
what extent applications can actually be reduced with regard to compatible
argument types, matching arities of applications and abstractions, and such
fairly complicated things as the handling of potential naming conflicts.

However, it is perfectly reasonable to challenge the freedom of a full-fledged
λ-calculus when it comes to writing algorithms that solve real-life application
problems and to executing them efficiently. There are good reasons to argue
that full support for functions and variables as first-class objects is a lux-
ury that is rarely used, and that a rigorous typing discipline not only raises
confidence in the correctness of algorithms but also considerably facilitates
compilation to efficiently executable code.

The canonical approach taken in the world of functional languages is re-
ferred to as compiled graph reduction. It is based on a weakly normalizing
λ-calculus and on constructing and modifying graph representations of λ-
expressions that resemble those used by the interpreting graph reducer of
Chap. 7 but, owing to the absence of full-fledged β-reductions, turns out to
be decidedly simpler.

The idea is to compile the (nested) sets of function definitions of an al-
gorithm written in some high-level language such as al into code for some
suitably defined abstract machine. This code starts out with the construc-
tion of a graph for the outermost goal expression of the algorithm and, in the
course of reducing it, repeatedly constructs and subsequently reduces applica-
tion graphs by calling function codes held in some persistent part of memory,
until a graph in weak normal form is reached.

Weak normalization must be seen primarily as a consequence of compiling
functions to code. Since codes are static objects that transform the graphs that
they operate on but are not graphs themselves, we have in fact a separation
of the world of functions from the world of those objects that are legitimate
function arguments and function values. In particular, functions cannot be
freely applied to other functions to compute new functions and use them
as operators elsewhere, i.e., in a strict sense, functions lose their status as
first-class objects. What can be done, though, is to pass function codes as
parameters to other function codes.

Compilation to static code also requires that functions of n formal param-
eters be applied to n actual parameters (arguments), usually of specific types,
for the code to execute correctly, which – strictly speaking – rules out partial
applications.



9.1 Basic Language Issues 195

The workaround in both cases is usually to wrap the components of the
respective applications up in closures, and to pass them along in this form
until they can be unwrapped again elsewhere once they have picked up the
missing arguments, or otherwise must be returned in unintelligible form as
(part of) the result.

The most prominent abstract machine for compiled graph reduction that for
a long time has set a standard for the implementation of functional languages
with a lazy semantics is the G-machine invented by Johnsson. It defines an
intermediate level of code generation and code execution which assumes that
high-level functional programs composed of nested sets of function definitions
are, prior to compilation, converted into flat sets of supercombinators. The
programs must also be well typed so that no type inconsistencies can occur at
runtime.

Supercombinators offer some interesting conceptual advantages when it
comes to compiling them to code of an abstract or real machine. They are
defined to be closed abstractions that have all abstractions that may occur in
their body expressions recursively closed (or turned into supercombinators)
as well. With all variables bound, supercombinator reduction cannot run into
naming conflicts, i.e., all substitutions may safely be performed naively. Super-
combinators represented as closed abstractions of the nameless Λ-calculus,
as we have seen in Sect. 4.3, have the pleasant property of not changing any
binding indices when reducing full applications. A compiler may convert these
indices into fixed offsets relative to the base of an environment that consists
of just a single contiguous frame of argument entries.

In the following we will describe the workings of this machine, introduce
a set of instructions that are essential for graph manipulations that relate to
function calls, and specify the rules for compiling supercombinators to G-code,
including some code optimizations.

9.1 Basic Language Issues

The G-compiler accepts as input program expressions specified as sets of mu-
tually recursive function definitions of the form

define
f1 = λu11 . . . u1n.e1

. . .
fr = λur1 . . . urn.er

in e0 ,

as we know it from the language al. However, as just indicated, there is an
important difference that makes things a lot easier as far as the construction
of the runtime environment and compilation to abstract machine code are
concerned: the abstractions on the right-hand sides of the defining equations
need to be all closed (or supercombinators), and so must be the goal expression
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e0. Without free variables, all function definitions may be given in flat form, or
on the same level, since there can be no variable bindings that would require
defining functions local to others.

The expressions e0, e1, . . . , er that are of primary interest here may be1

• variables, including identifiers of supercombinators, constant values and
primitive function symbols;

• applications (e′0 e′1 . . . e′n) that are assumed to be curried, with association
to the left, as usual.

The important point is that these expressions may contain neither anonymous
abstractions nor other define constructs.

Algorithms written, say, in al that may contain (relatively) free variables
in functions that are defined to be local to others can be readily converted into
supercombinator form. All it takes is to systematically abstract free variables
out of open λ-abstractions to the next higher level of abstractors, and then lift
all abstractions thus closed to the top level.

For an illustration of how this works, we consider a def construct that is
assumed to be local to some other function definition:2

def
f = λx. � . . . u . . . g . . . h . . . v . . . f . . . �
g = λy. � . . . g . . . h . . . w . . . �
h = λz. � . . . h . . . g . . . �
in � . . . h . . . g . . . f . . . �

(again, the symbols � and � denote delimiters of the abstraction bodies). Here
we have three mutually recursive functions f, g, h in which we assume to have
occurrences of free variables u, v, w that may be bound somewhere higher up.
To simplify this example a little, we also assume that the abstraction bodies
do not contain further abstractions.

Abstracting (or lifting) free variables makes use of the semantic equivalence

e = (λu.e u) ,

where u is assumed to be free in e. It may be used to transform, in a first
step, the above set of abstractions into

def
f = λu.λv.λx. � . . . u . . . (g w) . . . h . . . v . . . (f u v) . . . �
g = λw.λy. � . . . (g w) . . . h . . . w . . . �
h = λz. � . . . h . . . (g w) . . . �
in � . . . h . . . (g w) . . . (f u v) . . . � .

1 Legitimate expressions may also include local variable definitions (recursive and
nonrecursive) which, however, will not be considered.

2 The def construct differs from the define construct insofar as the functions
defined under it need not be closed.
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A close look at these new abstractions reveals that we are not yet done, as
we have now introduced w as a new free variable in f and h. Repeating this
λ-lifting step once more yields

define
f = λw.λu.λv.λx. � . . . u . . . (g w) . . . (h w) . . . v . . . (f w u v) . . . �
g = λw.λy. � . . . (g w) . . . (h w) . . . w . . . �
h = λw.λz. � . . . (h w) . . . (g w) . . . �
in � . . . (h w) . . . (g w) . . . (f w u v) . . . � ,

in which all functions are now closed.3

Before compiling these supercombinators to G-machine code, all bound
variables may be converted into binding indices for direct translation into en-
vironment offsets:

define
f = ΛΛΛΛ. � . . . #2 . . . (g #3) . . . (h #3) . . .#1 . . . (f #3 #2 #1) . . . �
g = ΛΛ. � . . . (g #1) . . . (h #1) . . . #1 . . . �
h = ΛΛ. � . . . (h #1) . . . (g #1) . . . �
in � . . . (h #iw) . . . (g #iw) . . . (f #iw #iu #iv) . . . � .

We note that inside the abstraction bodies all indices have values smaller than
the number of Λs that precede them, and that occurrences of the variables
u, v, w in the goal expression are replaced by indices #iu, #iv, #iw, re-
spectively, which denote their distances relative to the Λs that bind them in
a larger context.

Once all nested sets of function definitions have thus been transformed
into sets of supercombinators, they may be lifted to the same (top) level since
all dependencies among them through variable (or index) occurrences that are
bound higher up are then eliminated.

9.2 Basic Operating Principles of the G-Machine

The basic G-machine works with four runtime structures. These are

• a control structure C that holds the G-code to be executed;
• a runtime stack S for pointers to graph nodes that represent environments,

in G-machine terminology also referred to as contexts, in which supercom-
binator reductions take place;

• a graph representation G of the expression that the code held in C is oper-
ating on;

• a dump stack D to handle supercombinator calls.
3 The complexity of going repeatedly through function definitions to lift free vari-

ables may be avoided to some extent by a more elegant approach based on the
solution of set equations. However, its worst-case complexity is still O(k3), with
k being the number of function definitions involved.
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There is also a persistent global structure that associates supercombinator
names to codes. This structure is not included in the state description of the
machine since it is of no relevance with regard to its dynamic behavior.

The instructions of the core G-machine may be defined by means of a state
transition function

τg : (S, G, C, D) → (S′, G′, C′, D′) .

To get an idea of just what instructions are needed and how they operate
on the runtime structures, we first have to explain informally how the G-
machine basically works. Not very surprisingly, it has a great deal in common
with the head-order reducers of Chaps. 7 and 8.

The basic mechanism of the G-machine is designed to reduce supercombi-
nator applications. It involves primarily the code, the graph and the stack. The
code repeatedly constructs, from the contexts held in the stack, new pieces
of the graph – essentially spines of apply nodes – that represent (parts of)
instantiated supercombinator bodies. These pieces are subsequently reduced
by systematically overwriting application nodes with values or with graphs of
canonical forms.4

The valid (or active) context held in the stack includes an activation record
(or an argument frame) for the parameters of the supercombinator that is
being evaluated, and on top of it some dynamically expanding and collapsing
workspace for temporaries. The actual focus of code execution is defined by
the topmost instruction in C in conjunction with a pointer to the graph node
that it operates on.

Figure 9.1 shows how the G-machine prepares the application

(f e1 e2 e3 e4)

of a supercombinator f (whose arity is assumed to be three) to four operand
expressions e1, e2, e3, e4 for code-controlled execution. The equivalent G-
graph derives from the preorder linearized constructor expression

@ @ @ @ ∇ 3 code[f ] e1 e2 e3 e4 ,

in which ∇ denotes a supercombinator graph node for the G-code of arity 3
that evaluates the instantiated body of f .

The machine sets out with the graph pointer that is on top of the stack,
pointing to some topmost apply node (Fig. 9.1(a)), and traverses the spine
of the graph until it reaches the node ∇ in the head. While moving down
the spine, the graph pointers are stacked up in S which, when arriving at
the head, thus contains the complete trace of apply nodes encountered along
the spine (Fig. 9.1(b)). Upon inspecting the arity of the ∇ node, the machine
reverses gear and, as a prelude to actually executing the supercombinator
4 An expression graph is said to be in canonical form if its topmost node is some-

thing other than an applicator.
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Fig. 9.1. Unwinding a spine on the stack

code, dereferences the three topmost pointers held in S to rearrange the stack
so that the tail pointers are placed on top of the pointer to the topmost apply
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node of the full supercombinator application (Fig. 9.1(c)). This is the node
that eventually must be overwritten with the value (or canonical form) of the
application.5

The frame of tail pointers thus constructed, together with items that may
be temporarily pushed onto S, constitutes the context in which the code
code[f ] must be executed.

We immediately recognize that running down the pointers of the spine
is what the head-order graph reducer of Chap. 7 does as well, with a slight
difference though: the G-machine completely ignores operand expressions in
the tails of the apply nodes, whereas the g hor machine wraps them up
in suspensions to postpone evaluation in its environment until it becomes
absolutely necessary to do so. The G-machine delays the evaluation of these
expressions too but, as we will see a little later, it instantiates the variables
as part of constructing the respective graphs, and it does so right away in the
current context.

Other differences relate to the fact that the g hor machine (and its de-
scendant, the B-machine of Chap. 8) supports a fairly complex environment
for full β-reductions compared with simple, coherent contexts for supercom-
binator reductions and, as a by-product of this simplification, to the skillful
merging of the environment stack E, the workspace stack W and the trace
stack M of the g hor machine and of the B-machine in a single stack S of
the G-machine.

The G-machine employs a single control instruction unwind to traverse
the spine of apply nodes from top to bottom, to dereference from the bottom
up as many node pointers stacked up in S as the arity of the function-turned-
supercombinator demands, and to rearrange the stack. Thus, unwind is in
fact a fairly sophisticated graph interpreter of about the same complexity as
the part of g hor and of the B-machine that prepares apps–lambs corners
for β-reductions.

Stack entries are in the G-machine accessed with fixed offsets relative to
the current stack top, and only within the topmost context. These offsets are
statically figured out by the G-compiler based on the binding indices #i as
they occur in the index representations of the supercombinators, and on the
number of temporaries that are pushed on top. Since all stack entries are
pointers of unit length, the compiler uses

• a parameter d that measures the size of the current context in multiples
of these units;

• a mapping ρ that assigns indices j ∈ {0, . . . , d − 1} in monotonically
ascending order to all entries of the current context, starting with the
index j = 0 at the topmost entry, and with the pointer to the topmost
application node (the one that needs to be updated by the value of the

5 The stack pointer sp again points to the first empty position on top of the topmost
valid entry.
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particular supercombinator application) a distance of d − 1 entries away
from the top.

As for supercombinator applications of the general form

(Λ . . . Λ︸ ︷︷ ︸
r

.e0 e1 e2 . . . er) ,

we remember from Sect. 4.3 that in the body term e0 we may only have
occurrences of binding indices #i with i ∈ {0, . . . , r−1}, and that the indices
#i = #0 and #i = #r − 1 are bound to the innermost and outermost Λs,
respectively, of the lambs sequence. Reducing this application thus requires
that indices #i be substituted by operand terms er−i, i.e., the innermost
operand e1 replaces index occurrences #(r−1) and the outermost operand er

replaces index occurrences #0. Looking at the stack configurations of Fig. 9.1,
we recognize that the pointer to e1 is at the stack top and the pointer to er

(with r = 3 in this particular example) is r − 1 = 2 entries deeper down in
the stack.

The size of the context frame being d, this is also the distance of the
deepest entry (the pointer to the topmost apply node) relative to the current
stack pointer sp (see Fig. 9.1). We can therefore define the function ρ as a
mapping of binding indices #i to offsets j relative to sp as

j = ρ( #i ) = d − 1 − i .

This mapping may be validated by the following consideration: assuming that
the context contains no temporaries, then the size of the context frame is
d = r + 1, i.e., the number r of parameters plus the additional node pointer
at the bottom. Thus, the indices #i = #0 and #i = #(r − 1) translate, as
expected, into offsets j = r and j = 1, respectively. Each temporary that is
added increases the size d of the context, and with it the offsets j relative to
the stack top, by one.

9.3 Compiling Supercombinators to G-Machine Code

We begin the specification of the G-compiler without knowing any G-machine
instructions other than unwind, of which we know so far only how it ba-
sically works. As we go along, we will introduce other instructions on an
informal basis as well, and postpone formal definitions until later. We also
ignore typing issues and simply assume that all source programs submitted
to the G-compiler are well typed.

The G-compiler uses three major compilation schemes F , R and C. The
top-level scheme F applies to supercombinator definitions and transforms
them thus:

F [ f = Λ . . . Λ︸ ︷︷ ︸
r

.f e ] =⇒glabel f r; R[ f e, ( ρ, (r + 1) ) ]; .
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It generates a pseudoinstruction glabel f r that assigns to the code produced
by R an entry label (or pointer) p f under which it may be located in the
global code section, together with the number r of argument pointers that the
code needs to find in the stack.

R[ f e, ( ρ, d ) ] defines a compilation scheme for supercombinator bodies
f e, with the function ρ and the size d of the context frame as parameters. It
generates the code

R[ f e, ( ρ, d ) ] =⇒ C[ f e, ( ρ, d ) ) ]; update (d + 1); pop d; unwind ,

that breaks down as follows:

C[ f e, ( ρ, d ) ] generates the code for the expression f e itself. It basically
constructs a graph and, upon completing it, leaves a pointer to it on the
stack, thus increasing the size of the actual context frame by one.

update (d + 1) overwrites with the pointer pushed by C[ f e, ( ρ, d ) ] the
pointer to the topmost apply node of the application of f , which is deeper
down in the stack by an offset d + 1, and subsequently pops this pointer.

pop d pops the topmost d entries off the stack (which is the complete set of
arguments of f), leaving only the pointer to the new graph in S.

unwind unwinds along its spine the new graph referenced by the topmost
pointer on the stack to prepare it for execution of the code found in its
head.

The compilation scheme C applies only to expressions. The code that it
produces constructs instantiated graphs using the mapping ρ and the frame
size d to compute the offsets of the frame entries by which binding indices #i
must be substituted.

Atomic expressions such as binding indices, function identifiers and con-
stant values are translated by C into specific push instructions that push onto
the stack whatever items follow as parameters, and applications are translated
into (sequences of) mkap instructions that construct apply nodes, with the
pointers to the subgraphs taken off the top of the stack (first the pointer to
the left subgraph and then the pointer to the right subgraph).

C[e, (ρ, d)] =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pushval const if e =s const

pushfun p f if e =s f

pushind ρ( #i ) if e =s #i

C[ e1, (ρ, d) ]; C[ e0, (ρ, (d + 1)]; mkap; if e =s (e0 e1) .

Applications (e0 e1 e2 . . . er) are by C treated as r-fold nestings of binary
applications (. . . ((e0 e1) e2) . . . er) that compile to

C[ er, ( ρ, d ) ]; . . . ; C[ e1, ( ρ, (d + r − 1) ) ];
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C[ e0, ( ρ, (d + r) ) ]; mkap; mkap; . . . ; mkap .

This code constructs a spine of apply nodes to the left, with the graphs of the
operand expressions branching off to the right, as shown in Fig. 9.1.

The compilation schemes R and C may be used to compile the goal ex-
pression of a set of supercombinator definitions as well. This expression, by
definition, is nothing but the special case of a supercombinator of arity zero
since it must not contain any free variables.

The context in which the graph of the goal expression must be reduced
contains initially just the pointer to its code, which is what eventually needs
to be updated by the resulting graph.

The complete code of a legitimate program expression thus typically in-
cludes

• some piece of code that initializes the runtime environment, i.e., the point-
ers to the stack, the graph and the dump, all of which are initially empty,
and calls, through a unique entry label p s,

• the G-code for the goal expression that, in turn, calls
• the G-codes for the various supercombinators, which have assigned to them

entry labels by which they may be referenced from within the goal expres-
sion and may also cross-reference each other;

• a runtime library for the G-codes that evaluate primitive function appli-
cations, i.e., perform δ-reductions.

The top-level initialization and control code of a program is as follows:

begin; pushglabel ll s; eval; print; end; ,

where the instruction

begin initializes the runtime environment;
pushglabel ll s pushes the pointer (label) to the code of the goal expression

onto the stack;
eval forces the evaluation of the code referenced by the pointer found on top

of the stack and returns the graph of a canonical form;
print forces reduction to normal form of the graph referenced by the pointer

on top of the stack and prints it on the output medium;
end terminates code execution.

The instructions eval and print play a key role in executing G-programs.
They may occur recursively in all codes to control the reduction of selected
parts of the graph in compliance with the lazy evaluation regime. In the
next section, we will see more of them in the codes that perform various
δ-reductions.
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9.4 G-Code for Primitive Functions

Primitive functions fit perfectly into the picture of the G-machine since they
are nothing but special (super)combinators: they are trivially closed in the
sense that their evaluation does not depend on anything held in an environ-
ment, and they need to be applied to as many arguments (of compatible types)
as their arities demand to return meaningful results. Full applications of prim-
itive functions may therefore be reduced by ordinary G-code held in a runtime
library that is linked to each executable program. Occurrences in high-level
programs of primitive function symbols such as +, −, ∗, . . . , gt, . . ., etc. are
by the G-compiler simply converted into entry labels ll pf of this library.

Calling the code of a particular primitive function follows the same mech-
anism as for user-defined functions that have been converted into supercom-
binators: before the code is entered through the label ll pf , the application of
the function is unwound on the stack by pushing, in the order from innermost
to outermost, the argument pointers on top of the topmost apply node.

As the first example, we consider the graph of the application

@ @ ll add e1 e2

that is supposed to add the values of the expressions e1 and e2. Unwinding
this application results in a stack configuration in which we have the pointer
to e1 on top of the pointer to e2 on top of the pointer to the outermost apply
node.

Since under a lazy regime the expressions e1 and e2 cannot generally be
expected to be in normal form but addition is strict in its arguments, requiring
numbers, the evaluation of these expressions must be enforced first. Thus, the
code to which the label ll add refers is as follows:

push 2; eval; push 2; eval; add; update 3; pop 2; return; ,

where

push i pushes onto the stack the pointer to the expression that can be found
by an offset of i positions deeper down in the stack (relative to the stack
pointer sp);

eval again forces the evaluation of the expression referenced by the topmost
pointer in S and returns a graph in canonical form;

add adds the two topmost values of the stack, pops them, and pushes the
result instead;

update 3 overwrites with this result value the application node that is by an
offset of 3 positions away from the stack top, and subsequently pops this
result value;

pop 2 pops both arguments of the application to bring to the stack top the
pointer to what originally was the outermost apply node and now points
to the result;

return returns control to the calling code.
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Another important piece of library code evaluates conditional expressions
given by:

@ @ @ ll if e0 e1 e2 .

Conditionals are strict in their first arguments – the predicate expressions
e0 – and, depending on predicate values, are expected to evaluate either e1

or e2 to canonical form. With the pointer to e0 on top of the pointer to e1

on top of the pointer to e2 in S, and with the pointer to the outermost apply
node underneath, i.e., an offset of 4 away from the stack top, this may be
accomplished by the following piece of code referenced by the label ll if:

push 1; eval; jpfalse ll f ; push 2; jump ll t; label ll f ;
push 3; label ll t; eval; update 4; pop 3; unwind; ,

where

push 1 pushes the pointer to the predicate expression;
eval that follows next evaluates the predicate, leaving a truth value in S; the

second occurrence of eval evaluates the expression that at this point is
referenced from the stack top, which is either e1 or e2;

jpfalse ll f jumps conditionally to the label ll f upon finding in S the pred-
icate value false, which is popped;

push 2 pushes the pointer to the consequent expression;
jump ll t jumps unconditionally to label ll t;
label ll is a pseudoinstruction that inserts a label ll in its place;
push 3 pushes the pointer to the alternative expression e1;
update 4 overwrites the application node now 4 positions down from the

stack top with the canonical form of the conditional;
pop 3 pops the three arguments;
unwind continues with further reductions of the graph created by the code

of either e1 or e2.

This code is structured fairly closely to what compilers of conventional
(imperative) languages would produce. The codes for predicate, consequent
and alternative expressions, or, more precisely, the evals that in fact call
them, are simply arranged in sequential order, and depending on the predicate
value, code execution jumps around either the (call for the) alternative code
or the consequent code.

9.5 The Controlling Instructions ∗
We can now be more specific about the instruction eval and about why
in some cases we use the instruction return and in others the instruction
unwind at the end of a piece of code that implements a function application.

The instruction eval is the sole enactor of code-controlled reductions in
the G-machine, forcing execution of the code referenced from the top of the
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stack. It occurs in G-code wherever the lazy regime demands evaluation to
canonical form of some tail expression along the spine that is unwound on the
stack. This is the case for all arguments of strict (primitive) functions occuring
in the head position of a spine, and trivially so for the graph generated for
the goal expression, which for this purpose may be considered the tail of an
application outside the program text itself. The graphs returned by eval are
generally in canonical form, i.e., the top-level node is something other than
an applicator.

Reducing subgraphs just to canonical forms ensures that no more work
is done than is absolutely necessary to compute (weak) normal forms. It in-
volves unwinding spines, executing the codes referenced in their heads, which
may lead recursively to further unwindings along the spines, and eventually
overwriting the root nodes of the (sub)graphs.

Thus, eval may be considered a standardized subroutine call that expects
to find a single reference parameter – the pointer to some piece of code – on
top of the stack. This subroutine begins with the instruction unwind to set
up in S an argument frame for the code entered at the head of the spine.
After completion of the code, control either returns to the calling code by
means of the instruction return, or takes a shortcut to continue with further
reductions along the spine, using unwind as the last instruction.

The choice of the terminating instruction depends on what the code is
computing. If it returns as the canonical form some value in a conventional
sense, for instance a number or a list, then return is used since nothing
else can be done along the spine. However, if the machine executes code that
includes recursively supercombinator calls, it must continue to unwind the
spine within the current call of eval. Of course, unwind must also include a
return to deal with codes that produce canonical forms other than functions.

eval trivially returns its parameter unchanged if this is a constant value,
a binary list constructor node < or a function, all of which, by definition,
already have canonical form. Similarly, unwind does not touch a constant
value or a < node since both are already trivially unwound.

A formal definition of the instructions eval, unwind and return by
means of state transition rules is given in Fig. 9.2. These rules use essentially
the same notation as in the preceding chapters, and

• val for a constant value,
• < p1 p2 for a binary list,
• @ ph pt for an apply node,
• ∇ k code[ f ] for a supercombinator node,

where the px are pointers to subgraphs. We use also the symbol G for the
heap that holds the graph, and G[ p � e1 | e2 | . . . ] to denote alternative
(pieces of) graphs to which p may be pointing.

The definition of eval requires three rules, of which rule (1), after saving
the current machine state in the dump, starts unwinding on the stack a spine
of apply nodes, rule (2) starts executing supercombinator code of zero arity
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(1) ( p : S, G[ p � @ ph pt ], eval: C, D ) →
( p : nil, G[], unwind : nil, ( S, C, D ) ) .

(2) ( p : S, G[ p � ∇ 0 code[ f ] ], eval : C, D ) →
( p : nil, G[], code[ f ] : nil, ( S, C, D ) ) .

(3) ( p : S, G[ p � val | ∇ n code[ f ] | < p1 p2 ], eval : C, D ) →
( p : S, G[], C, D ) .

(4) ( p : S, G[ p � @ ph pt ], unwind : nil, D ) →
( ph : p : S, G[], unwind : nil, D ) .

(5) ( p0 : p1 : . . . pr : S,
G[ p0 � ∇ r code[ f ] | ∀ i ∈ {1, . . . , r } pi � @ ph(i−1) pt(i) ],

unwind : nil, D ) | ( s ≥ r ) →
( pt(1) : pt(2) : . . . : pt(r) : S, G[], C, D ) .

(6) ( p0 : p1 : . . . ps : nil, G[ p0 � ∇ r code[ f ] ],
unwind : nil, ( S, C, D ) ) | ( s < r ) →

( ps : S, G[], C, D ) .

(7) ( p : nil, G[ p � val | < p1 p2 ], unwind : nil, ( S, C, D ) ) →
( p : S, G[], C, D ) .

(8) ( p0 : p1 : . . . ps : nil, G, return : nil, ( S, C, D ) ) →
( ps : S, G, C, D ) .

Fig. 9.2. The state transition rules for the G-machine control instructions

(which primarily applies to the goal expression of a program), and rule (3)
applies to the trivial cases where the topmost graph node is either a constant
value, a list constructor or a supercombinator node of nonzero arity that,
without doing anything, let the machine continue with the next instruction
in sequence.

The instruction unwind breaks down into four rules, of which two handle
the ‘regular’ cases, and the other two continue with the machine state saved
in the dump if no reductions can be performed on the spine. Rule (4) pushes
the pointer to an apply node and continues unwinding the spine along its head
pointer ph. When encountering in the head of a spine a supercombinator node
of arity r, rule (5) dereferences the topmost r pointers, provided there are as
many, and replaces them with the tail pointers of the respective apply nodes.
Rule (6) terminates unwind in the case of a partial application, clearing the
stack down to the topmost apply node of the unwound spine, and rule (7)
does nothing if the topmost stack entry is either a constant value or a list
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constructor. Both of the latter two rules unsave the machine state that is in
the dump.

Finally, rule (8) defines the instruction return. It effects continuation
with the machine state saved in the dump in all cases that are not implicitly
taken care of by unwind, but restores the lowermost pointer on the old stack
as the top pointer on the new stack in order to pass the result of some function
application on to the calling code. This instruction is mainly used to return
from primitive function code such as that for addition.

Implementing these instructions is simpler than the state transition rules
may suggest, particularly with regard to the dump. What is to be saved and
unsaved in it are conceptually tuples (S, C). However, looking at the rules for
eval and return, we note that the graph pointer p in the topmost position
of the old stack becomes the lowermost entry of the new stack, and vice versa.
Thus, rather than saving the stack in another structure, the dump, it may
simply be extended, and the contexts of the calling and the called codes may
be overlapped with regard to this entry – a very convenient way of passing
the graph pointer back and forth between the two. This leaves the actual
state of execution of the calling code to be saved in the dump. Since in an
implementation on a real machine this state is represented by an instruction
counter that points to the instruction immediately following eval, the dump
can in fact be reduced to a stack for return addresses.

The last control instruction to be defined is print. It is used in the ini-
tialization code to force the reduction to weak normal form of the canonical
form of the goal expression returned by the instruction eval, and to print this
weak normal form on the output medium. In the original G-machine print
produces legitimate output only for (sequences of) atomic values, but not for
normal forms that include functions. Since the G-machine compiles functions
to code that has generally undergone several optimizations, and from which
all variables are gone, they cannot be decompiled anymore into intelligible
high-level output that bears any resemblance to the original definitions. Also,
partial function applications are left as they are and not returned as output.

To include the output in the definition of print, we need to extend the
state of the G-machine by another component O to get

( O, p : S, G[ p � val ], print : C, D ) → ( O : val, S, G[], C, D )

for atomic values, and

( O, p : S, G[ p � < p1 p2 ], print : C, D ) →
( O, p1 : p2 : S, G[], eval : print : eval : print : C, D )

for lists, in which case the subgraphs need to be first evaluated and then
printed.

In all other cases, the output either remains unchanged or produces some
error message.
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It may also be noted that print, as defined here, outputs the elements
of a list in flat form, i.e., without preserving its structure. However, this is a
minor problem that may be easily fixed.

9.6 Some G-Code Optimizations

Abstract machines, as intermediate levels of compilation, provide a platform
for a variety of code optimizations that are invariant against the choice of a
particular target architecture.

Primary targets for G-code optimizations are sequences of costly mkap
instructions that construct superfluous application nodes which subsequently
have to be reduced by equally superfluous unwinds, updates and even evals.
They come about when compiling the bodies of supercombinator, as in

f = λu1u2 . . . ur.(g e1 e2 . . . en) ,

using the compilation scheme R without regard for what the function g really
looks like:

R[ (g e1 e2 . . . en), ( ρ, d ) ] =⇒
C[ en, ( ρ, d ) ]; . . . ; C[ e1, ( ρ, (d + n − 1) ) ]; C[ g, ( ρ, (d + n) ) ];

mkap; . . . ; mkap; update (d+1); pop d; unwind;

The code thus obtained routinely goes through the motions of

• constructing an instantiated graph in the context created by the applica-
tion of f ;

• updating the root node of the original graph with it and then popping the
arguments of f ;

• then unwinding the spine of the new graph, and thereby often pushing
again what was already or still is on the stack;

• and finally, executing the code for the function g, provided the spine holds
enough arguments.

However, there are many applications whose evaluation, if more cleverly or-
ganized, could do without constructing and unwinding new spines.

Typical examples are applications of the primitive functions + and if to
just the right number of arguments. These applications could be compiled by
R without using mkap instructions as:

R[ ( + e1 e2 ), ( ρ, d ) ] =⇒
C[ e2, ( ρ, d ) ]; eval; C[ e1, ( ρ, (d + 1) ) ];

eval; add; update (d+1); pop d; return;

R[ (if e0 e1 e2), ( ρ, d ) ] =⇒
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C[ e0, ( ρ, d ) ]; eval; jumpfalse ll f ;
R[ e1, ( ρ, d ) ]; label ll f ; R[ e2, ( ρ, d ) ]; .

Also, the unwinds are replaced by returns in the code for +, and ter-
minating both the consequent and alternative codes of the primitive if with
returns, whenever applicable, is ensured by recursive application of the R-
scheme.

A very effective optimization may be applied if the function g called in
the body of the above supercombinator f is another (or the same) supercom-
binator, i.e., we have a tail (recursive) function call. Since there is nothing left
to do in the body of f once control returns from g, we may at least expect to
have the context created by the application of f released before g is entered
and thus save space in the stack. But there is a little more to this.

When reducing a full application of f to, say, arguments a1, . . . , ar, the
code for f generated by a nonoptimizing scheme R first creates a context
for the evaluation of f ’s body by pushing the argument pointers, and then
continues to execute the code C[ en ]; . . . ; C[ e1 ]; . This extends the context
of f by pointers to the graphs created for e1, . . . , en, as shown in Fig. 9.3(a).
Up to this point, the optimized code has to do the same as the nonoptimized
code.

However, the nonoptimized code would now execute a sequence of n mkap
instructions to construct a complete graph for the application (g e1 . . . en).
update d + 1 and pop d would overwrite the root node of the application of
f and then clear the argument pointers off the stack, as in the configuration
of Fig. 9.3(b). Finally, unwind would unwind the spine of this graph again
to bring about the configuration shown in Fig. 9.3(c).

We recognize that, with regard to the application of g to its arguments
e1 . . . en, we had the same configuration on the stack already as part of the
context of f . Also, updating the root node of the application of f can obviously
be dispensed with since the resulting graph is in fact constructed by the code
for g that updates the very same node. So, we may take a shortcut to get from
the stack configuration of Fig. 9.3(a) to that of Fig. 9.3(c) by squeezing the
r argument pointers of f out from underneath the n argument pointers for g
(plus the pointer to g itself), and then branch directly to the code for g.

Thus, the optimized code to be generated by R must look like this:

R[ (g e1 . . . en), ( ρ, d ) ] =⇒
C[ en, ( ρ, d ) ]; . . . ; C[ e1, ( ρ, (d + n − 1) ) ];

pushlabel ll g; squeeze (n + 1) r; jfun; ,

where squeeze does the squeezing and jfun takes the topmost stack en-
try as the code label ll g. This code passes the arguments of g directly, i.e.,
without going through the redundant moves of constructing a graph from the
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Fig. 9.3. Handling tail-end recursions in the G-machine

stack entries e1 . . . en just to have them immediately restored by unwinding
this graph again.6

9.7 Summary

The idea of the G-machine is to perform head-order graph reductions by
compiled code whose raw runtime performance is in the same league as that
of code obtained by compilation of conventional (procedural) programs. To

6 More G-code optimizations are described in the original papers by Johnsson or
in the textbook by Peyton Jones.
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achieve this end, some restrictions have to be imposed on the language ac-
cepted by the compiler. They constitute a fairly radical departure from the
full-fledged λ-calculus as supported by the reduction machines of the preced-
ing chapters. The machine is just weakly normalizing, permitting merely the
computation of ground terms (or basic values).

Compiling user-defined functions to efficient code means that they become
static objects that need to be supplied with full sets of arguments in order to
execute correctly, with the consequence that they lose their status as first-class
objects. Functions may still be applied to functions, but there is no way of
computing new functions, say, as results of partial applications. What can be
done though is to pass partial applications along as they are, hoping that they
may pick up the missing arguments in the course of subsequent reductions,
but they cannot be turned into intelligible output. Similarly, variables may
only be used as identifiers but there is no way of supporting them as first-
class objects (or as their own values) either. Last but not least, compilation
to free-running code also demands that programs be well typed so that no
type inconsistencies can occur at runtime.

The approach taken with the G-machine, therefore, is to convert, prior
to compilation, nested sets of function definitions into flat sets of supercom-
binators (or closed λ-abstractions), thus systematically eliminating variables
that are locally free but bound in larger contexts. The goal expressions of
programs must be supercombinators of arity zero, i.e., they must not contain
any free variables either. Conversion to supercombinators in fact kills two
birds with one stone: all substitutions of formal by actual function parame-
ters can be done naively and in one conceptual step since there can be no
name clashes, and compilation yields fairly efficient codes whose active run-
time environments (or contexts) are completely contained in single contiguous
frames whose entries can be accessed with fixed offsets.

Supercombinator reduction is inherently weakly normalizing since it rules
out substitutions and reductions under abstractors.

The G-machine works with three runtime structures: a stack, a graph
and a dump. Starting with empty structures, the machine repeatedly goes
through the basic cycle of having the code construct a graph of application
nodes, unwinding the spine of this graph on the stack, attempting to apply
the function code referenced in the head of the spine to the arguments found
on the stack and, if successful, to overwrite the topmost application node of
the unwound graph with the result. Depending on what the function actually
is, this result may either be an atomic value or another graph constructed by
the code.

In comparison with the B-machine of Chap. 8 there does not seem to be
much difference regarding this basic cycle. It does not really matter how the
code unwinds a spine and subsequently constructs a normalized expression,
the effects are basically the same. The B-machine does the unwinding by ex-
ecuting forward code consisting of lam and ap instructions, which generates
the equivalent of an unwound spine as backward code composed of ap in-
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structions whose parameters are suspensions. The G-machine does the same
by means of a single instruction unwind, which leaves a trace of argument
pointers on the stack.

Applying abstractions is in the B-machine effected by lam instructions.
They consume ap instructions from the backward code to create environ-
ments in which the forward-executing abstraction code generates new back-
ward code. This is equivalent to function-turned-supercombinator calls of the
G-machine that consume arguments from the stack to construct new spines,
which are subsequently unwound on the stack again.
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The π–red Machinery

In this chapter, we introduce a compiled graph reduction system for a fully nor-
malizing applied λ-calculus. It comes in a lazy (or operands-when-needed) and a
strict (or operands-first) version, both of which are based on code-executing ab-
stract machines very similar to the G-machine. They reduce λ-expressions to
weak (head) normal forms and cross the borderline toward full normalization
by means of an η-extension mechanism that, by interpretation, turns partially
applied or unapplied abstractions into full applications to enable further code
execution in the abstraction bodies. This approach has the same effect of
moving substitutions across abstractors as the beta-rule of the λσ-machine of
Sect. 6.3.

π–red accepts high-level programs of the al variety as input and com-
piles them to abstract machine code that may either be interpreted or, in
another step, compiled to conventional target machine code. Code execution
produces a graph that may be decompiled and returned to the user in the
same al-like high-level notation in which the original program was written.
As a distinguishing feature, π–red also supports an interactively controlled
stepwise execution mode. This mode renders it possible to set breakpoints that
stop the machine after some prespecified number of β-reductions and to de-
compile the intermediate machine states reached at these points into high-level
program expressions. These expressions may even be modified before they are
resubmitted for more reductions. As far as its appearance to the user is con-
cerned, π–red thus performs high-level program transformations as described
in Chaps. 2 and 3, though something different is going on at the machine level.

10.1 The Basic Program Execution Cycle

Compiled graph reduction for two reasons calls for a supercombinator-based
parameter-passing mechanism, as in the G-machine, or for some equivalent
mechanism of closing λ-expressions. On the one hand, it derives its efficiency
largely from substituting λ-bound variables naively by argument pointers,
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which means that these substitutions must be kept free of potential name
clashes. On the other hand, compiled function code must be supplied with full
sets of arguments to execute correctly. Both demands can be satisfied only by
systematically closing all abstractions and by treating partial applications as
irreducible, the latter being exactly where weak normalization stops.

However, static conversion to supercombinators, or alternatively, turning
abstractions into closures at runtime, as the se(m)cd machine does, inflicts
some degree of redundancy, though much of it can be eliminated by sub-
sequent compiler optimization. Supercombinators repeatedly copy the same
instantiations of what were originally (relatively) free variables into function
calls. Closures must be formed individually for all abstractions defined in local
contexts, even if they share the same subsets of free variables, which means
that again the same variable instantiations may have to be copied repeatedly.

π–red employs a less rigorous concept of closing λ-expressions that has
this redundancy largely eliminated by a preprocessor. Free variables are sys-
tematically lifted (or abstracted) out of the larger contexts of al-like letrec
expressions that define sets of mutually recursive functions.1

Let e denote a λ-expression whose set of free variables is, say, {w1, . . . , wq},
then λ-lifting turns e into

(∼ λ̃w1 . . . wq .e w1 . . . wq) ,

where the tilde superscript (or tag) ∼ distinguishes the abstractions and ap-
plications introduced by lifting from those of the original expression. They
will in the following be referred to as tilde abstractions and tilde applications,
respectively. λ-lifting implies that tilde abstractions can occur only in oper-
ator positions of tilde applications, and that no other expressions can occur
in these positions since there is no other way for tilde applications to come
about.

Tilde annotations are not part of the high-level syntax and therefore must
occur neither in input expressions nor in partially or fully reduced output
expressions. They can be introduced only by the preprocessor, and must be
removed by a complementary postprocessor before returning legitimate high-
level expressions of the language as output.

To illustrate this kind of λ-lifting, consider the nested letrec expression2

letrec
f = λuv.letrec

g = λwz.if (gt u w) then(g (− 1 u) z) else (f v (+ 1 w))
in (g v u)

in (f 1 2) .

1 Anonymous abstractions that may occur anywhere within a program expression
must be closed individually.

2 Throughout this chapter we deviate slightly from al syntax insofar as we use the
symbol λ instead of lambda.
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This expression is composed of two mutually recursive functions, of which
g is local to f , using u and v as relatively free variables. λ-lifting changes this
expression syntactically to

letrec
f = λuv.(∼ λ̃uv.letrec

g = λwz.if (gt u w) then(g (− 1u) z)
else (f v (+ 1 w))

in (g v u)
u v)

in (f 1 2) .

This expression obviously includes an opportunity for a simple but effective
optimization that can be directly carried out by the preprocessor. Since the
inner letrec in this particular case is the entire body of the abstraction f ,
and f is defined at top level, the λ-bound variables of f are the same as those
that have been lifted, which just introduces an additional parameter-passing
step with nothing being done in between. This step can therefore be elimi-
nated, yielding

letrec
f = λ̃uv.letrec

g = λwz.if (gt u w) then(g (− 1 u) z) else (∼ f v (+ 1 w))
in (g v u)

in (∼ f 1 2) .

Since f has thus been turned into a tilde abstraction, applications of f must
accordingly be converted into tilde applications as well in order to conform
to what has been said before about legitimate syntactical positions of tilde
abstractions. However, this optimization can only be done if f occurs in op-
erator positions of full applications, as in this particular case. If f occurs as
operator of a partial application or is passed along as an operand, then the
nonoptimized variant of f must be used since it cannot generally be decided
statically whether and where f will be applied eventually.

Another preprocessing step converts all occurrences of λ- and λ̃-bound
variables into differently tagged reverse binding indices (or binding levels) to
prepare the expression for compilation to abstract machine code. This con-
version is defined on λ-abstractions as

λu1u2 . . . un.e → Λu1Λu2 . . . Λun .#e ,

where Λu1Λu2 . . . Λun is a sequence of our well-known nameless abstractors,3

and #e emerges from e by replacing, for all i ∈ {1, . . . , n}, free occurrences of
3 The original variable names remain attached to the Λ-abstractors as subscripts

to enable the compiler to prepare a graph node from which the postprocessor can
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ui with indices #(i− 1). Thus the variable bound to the outermost λ receives
the lowest index, and the variable bound to the innermost λ receives the
highest index.

An equivalent conversion applies to λ̃-abstractions λ̃w1 . . . λ̃wq.e, whereby
all λ̃wj are replaced by nameless abstractors Λ̃wj and free occurrences of all
wj in e are replaced by indices ∼ (j − 1).4

With these conversions, our expression becomes:

letrec
f = Λ̃uΛ̃v.letrec

g = ΛwΛz.if (gt ∼ 0 #0) then (g (− 1 ∼ 0) #1)
else (∼ f ∼ 1 (+ 1 #0))

in (g ∼ 1 ∼ 0)
in (∼ f 1 2) .

All occurrences of the λ̃-bound variables u and v, i.e., those that have been
lifted, are now replaced by tilde indices ∼ 0 and ∼ 1, and all occurrences
of the λ-bound variables w and z are now replaced by indices #0 and #1,
respectively.

Once these these preprocessing steps have been performed, the compiler
takes over to translate expressions into abstract machine code for execution.
As code execution is just weakly normalizing, the machine may repeatedly call
for η-extensions of partially applied or unapplied abstractions that pop to top
level to turn them into full applications and thus enable further weakly nor-
malizing code execution phases, until full normal forms are reached. The graph
representations of these normal forms are handed over to the postprocessor
for reconversion into legitimate high-level output. These program execution
phases are graphically depicted in Fig. 10.1.

Reducing expressions in a stepwise mode and returning intermediate ex-
pressions as high-level output renders it possible to modify the expressions
before resubmission for another sequence of reduction steps. For instance,
one could correct programming errors, add new to existing functions, replace
subexpressions by others, build new applications, change variable names or
the scope of variable bindings, introduce new variables out of thin air, and so
on, which of course would also change the meaning of the original program.
Moreover, the focus of control may be shifted within the expression to se-
lect any subexpression for execution. Referential transparency is nevertheless
guaranteed since variables that may occur (relatively) free in these subexpres-
sions but are bound in larger contexts are correctly treated by full-fledged
β-reductions.

reconstruct the original abstraction, with all variables as introduced by the user,
should it become part of the output expression.

4 In what follows, we will refer to λ-abstractions and λ̃-abstractions also as ordinary
and tilde abstractions, respectively.
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Fig. 10.1. The program execution phases of π–red

Both of these features are very helpful when, during a program devel-
opment phase, it comes to validating correctness and correct execution. In
Appendix B it will be shown that they play an important role in theorem
proving as well.

If either of these options is chosen, the expression at hand must pass
through a full execution cycle, including preprocessing and compilation, as
depicted by the feedback path fb 2 in Fig. 10.1. If the output is just inspected
without modification, then code execution may resume directly with the in-
ternal machine state reached at the breakpoint, as indicated by the feedback
path fb 1.

Figure 10.2 shows how the effects of three consecutive function calls on our
example expression can be visualized as π–red output when executing them
step by step. Each step yields a new expression that results from expanding the
function application in what is actually the body of the outermost letrec by
the instantiated right-hand side of the function definition, and then reducing
this expression to the point where the other letrec becomes top level.

We note that the example expression has the interesting property of repro-
ducing itself after three function calls with the parameters of the outermost
application of f interchanged. Another two such steps restore the original ex-
pression, which means that the computation, if left running, never terminates.

Runaway recursions can be taken care of by the same mechanism that
controls stepwise execution. We simply need to equip the machine with a
counting device for β-reductions or, more appropriately, for entire function
calls. Before submitting an expression for evaluation, this counter must be
initialized with some integer value greater than zero that defines an upper
bound on the number of function calls executed. Each function call decrements
this value by one, and code execution stops either after the counter is down
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letrec

f = λuv.letrec
g = λwz.if ( gt u w ) then ( g ( − 1 u ) z )

else ( f v ( + 1 w ) )
in ( g v u )

in ( f 1 2 )

⇓
letrec

g = λwz.if ( gt 1 w ) then ( g ( − 1 1 ) z )
else letrec

f = . . .
in ( f 2 ( + 1 w ) )

in ( g 2 1 )

⇓
letrec

g = λwz.if ( gt 1 w ) then ( g ( − 1 1 ) z )
else letrec

f = . . .
in ( f 2 ( + 1 w ) )

in ( g 0 1 )

⇓
letrec

f = λuv.letrec
g = λwz.if ( gt u w ) then ( g ( − 1 u ) z )

else ( f v ( + 1 w ) )
in ( g v u )

in ( f 2 1 )

Fig. 10.2. Stepwise program execution in π–red

to zero or after a full normal form has been reached, whichever occurs first.
The machine state at this point is in either case reconverted into a high-level
expression and returned as output. If the output expression is not yet fully
normalized, it may be resubmitted for another sequence of reductions. If the
expression is known to terminate, then ensuring that the machine reaches its
normal form in one run is just a matter of choosing the initial counter value
generously enough.
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10.2 The Operating Principles of the Abstract Machines

Both the lazy and the strict code-executing abstract machines use basically
the same internal program representation and the same runtime structures,
although there are some differences with regard to the latter that concern the
representation of the objects they are to accommodate.

Being able to reconstruct complete intermediate program expressions from
the machine states left at the breakpoints of stepwise code execution requires
that all information about the original program which is getting lost when
compiling it must be saved as part of a persistent structure that survives code
execution. This information must include the nesting of function definitions in
letrec expressions, the list of function names, and the lists of bound variable
names that the preprocessor has changed into #- or ∼-tagged indices.

Figure 10.3 shows such a structure for a typical letrec expression,

λ̃w1 . . . ws.letrec . . . fi = λu1 . . . ur.ei . . .in e0 ,

from which the (relatively) free variables w1, . . . , wq have been lifted out.
In this structure, both the entire letrec construct and each individual

function are represented by descriptors that are distinguished by the tags
letrec and func, respectively. The letrec descriptor includes links to the
code of the body expression e0, to the list of free variable names that have
been abstracted out, to the list of function names, and to a list of pointers to
function descriptors that, in turn, have links to the function codes and to the
lists of λ-bound variables. There are also pointers back to the letrec under
which the functions are defined.
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Fig. 10.3. A typical graph structure for a letrec expression
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The function codes and the code for the letrec body contain, as pa-
rameters of function calls, only direct pointers p fi to function descriptors.
These pointers must be dereferenced to branch to the respective codes. The
letrec descriptors are never referenced during code execution; they are used
only by the postprocessor to reconstruct output expressions that include the
complete defining contexts of the functions that are still relevant; hence the
letrec pointers in the function descriptors.5

Both abstract machines are defined by tuples ( C, ( A, W, T, R ), H, rr )
whose components denote from left to right

• the piece of code C actually selected for execution from a graph structure
as in Fig. 10.3;

• a system of four runtime stacks ( A, W, T, R );
• a heap H to accommodate graph structures, including the complete code

structure;
• a reduction counter value rr that specifies the number of function calls left

to be performed.

Distributing the changeable parts of the runtime environment over four stacks
simplifies code optimizations, and it also liberates the compiler from calculat-
ing offsets relative to changing stack tops – something that may have to be
completely redone when target machine code is generated.

The stacks are used as follows:

• stack W serves as a value stack for temporaries and as a buffer space in
which the argument frames of function calls build up;

• stack A holds completed argument frames, also called A-frames, for instan-
tiations of Λ-bound reverse binding indices #i, that have been created by
full applications of λ-abstractions;

• stack T holds the frames for instantiations of Λ̃-bound reverse binding
indices ∼ j, also called T -frames, that result from the reduction of tilde
applications;

• stack R accommodates the return continuations of function calls.

In reference to the stacks that hold their instantiations, we will alternatively
call the #- and ∼-tagged indices the A- and T -indices, respectively.

Given a nontrivial program that typically features an outermost letrec
construct for function definitions, the machine starts with the code for its body
expression that is held in the structure C, and from there calls the code for
applications of top-level functions that, in turn, may recursively call functions
defined deeper down in local letrecs. The code for a full application of a
λ-abstraction defined under a letrec builds up the arguments one by one in
the workspace stack W and, upon entering the code of the abstraction body,
moves them in one conceptual step into a frame in stack A. It also saves the
5 For reasons of consistency, we will also use this descriptor concept for the change-

able parts of the graph and for the environment frames.



10.3 The Lazy Abstract Stack Machine lasm 223

remaining code in C as return continuation on stack R, and copies the function
code into C instead. The code for a tilde application goes through essentially
the same motions, except that it creates a frame in stack T . Occurrences of
A-indices or T -indices in the code are used as offsets into the topmost A- or T -
frames, respectively, and the entries found under these offsets are subsequently
pushed onto the workspace stack W . Completing the code of a Λ-abstraction
releases the topmost frame from stack A, and completing the code of a Λ̃-
abstraction releases the topmost frame from stack T , and in both cases the
return continuation is retrieved from R and restored in C.

The complete environment for executing a function call is thus contained
in what are currently the topmost A- and T -frames. On the one hand, there is
no linking of frames, as for instance in the B-machine, on the other hand, there
is no redundancy in passing nonlocal parameters between recursive function
calls within the same letrec context, as in the G-machine. So we have in
fact the simplicity of supercombinator reduction without closing individual
letrec-defined abstractions.

These basic operating principles are what both the lazy and the strict ab-
stract machine have in common. Beyond that, there are some significant differ-
ences regarding the instruction sets and their interpretation, the compilation
of preprocessed λ-expressions to machine code, the treatment of operand ex-
pressions, and the intricacies of using the runtime stacks. We therefore have
to look at the two machines separately, beginning with the more sophisticated
lazy version.

10.3 The Lazy Abstract Stack Machine lasm

We begin the description of the lasm with the runtime environment that is
distributed over the stack system and the heap, and with the graph structures
that are created and operated on as code execution proceeds.

Lazy evaluation applies functions to arguments in unevaluated form and
exploits sharing as much as possible to contract redices at most once and
only to the extent needed. This means that arguments (or operands) must be
wrapped up in suspensions and passed around in this form until a demand for
their evaluation arises. Sharing requires that suspensions be represented as
graph nodes, just as in the g hor and B-machines of Chaps. 7 and 8. The
pointers to these nodes may be copied, rearranged or deleted in the course of
β-reductions. The environments that need to be included in the suspensions
at the time of creation are the topmost A- and T -frames. However, as the
suspensions usually survive the contexts, i.e., the function calls in which they
come into existence, so must the respective T - and A-frames. This means that
they cannot simply be stacked up on top of each other as applications of λ̃- or
λ-abstractions are nested inside each other (and released in reverse order) but
must be held in the heap and referenced from the stacks T and A by pointers.
The very same pointers can then also be used to represent these frames in
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suspensions. The frames can only be released if they are referenced neither
by suspensions nor from the respective stack; likewise, suspensions can be
released only if they are not referenced anymore from within stack frames of
either kind.

Representing all heap objects by descriptors of the same formats also facil-
itates the earliest possible release of unused heap space. All it takes to do so is
to include reference counters in the descriptors that are incremented whenever
pointers to them are replicated, and decremented whenever such pointers are
deleted. Once the reference count has come down to zero, both the descriptor
slot and the space held by the object itself can be immediately set free (see
Sect. 7.5).
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Fig. 10.4. A typical stack | heap configuration of the lasm

Figure 10.4 shows a typical stack | heap configuration as it may develop
when executing lasm code. Here we have the stacks on the left, growing
downward, whose entries are pointers to frame descriptors, of which three are
shown in the middle, two for A-frames and one for a T -frame. Each descriptor
is assumed to consist of four words, of which the first one has entries for the
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frame type (A f for an A-frame and T f for a T -frame), for the reference
count (the number of pointers pointing to it) and for the number of argument
pointers in the frame itself. The pointers to the frames can be found in the
last words of the descriptor formats (the remaining words are not used); the
frames themselves are shown on the right. One of the A-frame entries is shown
as pointing to the descriptor of a suspension (at the bottom of the descriptor
column) with a reference count of one, one pointer each to the A- and T -
frames that define the environment, and a pointer to the code that needs to
be executed in this environment.

10.3.1 The lasm Instruction Set

Now that we have an idea of what the runtime structures basically look like
and how they need to be operated on, we are ready to specify the lasm
instructions that are necessary to implement function applications:

push c value takes a basic value as its parameter, turns it into a heap object
and pushes a pointer to it onto stack W .

push p pp takes a pointer pp as its parameter and pushes it onto stack W .
push fun prf pushes a primitive function symbol such as +, −, ∗, etc. di-

rectly onto stack W .
mksusp pe creates a suspension for the code of some nonatomic expression e

(referenced by the pointer pe) and pushes a pointer to the suspension onto
stack W . If the expression is an application, then the environment is rep-
resented by frame pointers pA and pT found in the topmost positions on
stacks A and T , respectively; if it is an abstraction, then the environment
included is just a tilde frame pointer pT (with a nil value replacing the
frame pointer pA). In all other cases, the pointer returned by the instruc-
tion just points to the code of the expression or to an evaluated graph
node.

copy aw i copies the i-th entry (a pointer) of the topmost A-frame onto the
top of stack W .

copy tw i copies the i-th entry (a pointer) of the topmost T -frame onto the
top of stack W .

mkframe a n takes the topmost n entries off stack W , puts them in a frame
allocated in the heap, and pushes a pointer to this frame onto stack A.

mkframe t n takes the topmost n entries off stack W , puts them in a frame
allocated in the heap, and pushes a pointer to this frame onto stack T .

free a pops the topmost frame pointer off stack A.
free t pops the topmost frame pointer off stack T .
bra pf realizes a function call: it saves as return continuation on R the remain-

der of the code in C, copies into C instead the function code referenced
by the pointer pf and decrements the count value rr by one.

jfalse pff realizes a conditional branch: it inspects the topmost value of stack
W and, if this value is found to be false, copies the code referenced by
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the pointer pff in front of C; otherwise code execution continues with the
next instruction in sequence.

ret effects a return from a function call in that it restores in C a return
continuation retrieved from R.

reduce i forces the reduction of a suspension referenced by the i-th pointer
entry relative to the top of stack W by prepending the suspension’s code
to C and pushing the pointers to the suspension’s environment frames
onto stacks A and T ; if the i-th entry points to an evaluated expression,
then the instruction has no effect other than pushing this pointer on top
of W .

update i overwrites the graph node referenced by the pointer found in the
i-th position relative to the top of W with the graph referenced by the
topmost pointer in W .

rtt returns from the execution of a reduce instruction by popping the top-
most frame pointers (or nil entries) off the stacks A and T .

ap n is the most complex instruction of the set: it attempts to apply the
top element of W to the n elements underneath. If the top element is a
primitive function or a pointer to function code whose arity is less than
or equal to n, then the application is actually reduced (and the count
value rr is decremented); otherwise a closure is constructed in the heap.
In either case, the function and at most as many arguments as the function
requires are popped off the stack, and (a pointer to) the result is pushed
instead. If the function consumes fewer than n arguments, then another
attempt is made to apply the result to the remaining arguments.

entry is the first instruction of a program; it initializes the runtime structures
of the machine.

exit is the last instruction of a program that terminates its execution.

In addition, there are a number of parameterless arithmetic, logic, and rela-
tional instructions such as add, sub, ..., cmp, lt, ... that take two arguments
off stack W and push a result instead.

A formal definition of these instructions in terms of state transition rules is
given in Fig. 10.5, using the same notation for operations involving the heap
as in Sect. 8.2.6

To keep these definitions as concise as possible, we have made descriptors
for things held in the heap explicit only where really needed to precisely specify
what is going on, which are the descriptors for suspensions (or closures),
but have dropped the descriptors of expressions (including abstractions) and
frames, and instead used direct pointers to these objects.

So, we use the following notation:

• pp � [ pA pT | pe ] for the descriptor of a suspension (or closure) referenced
by pp, which in turn includes pointers pA and pT to the A- and T -frames,

6 Of the primitive instructions, only add has been defined, as all the other instruc-
tions basically work in the same way.
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( push c item : C, ( A, W, T, R ), H, rr ) →
( C, ( A, pc : W, T, R ), pc � item : H, rr )

( push p pp : C, ( A, W, T, R ), H, rr ) →
( C, ( A, pp : W, T, R ), H, rr )

( push fun prf : C, ( A, W, T, R ), H, rr ) →
( C, ( A, prf : W, T, R ), H, rr )

( mksusp pe : C, ( pA : A, W, pT : T, R ), H [ pe � code[e] ], rr )
| e = ( e0 e1 . . . en ) →

( C, ( pA : A, pp : W, pT : T, R ), pp � [ pA pT | pe ] : H [], rr )

( mksusp pe : C, ( A, W, pT : T, R ), H [ pe → code[e] ], rr ) | e = Λv.e′ →
( C, ( A, pp : W, pT : T, R ), pp → [ nil pT | pe ] : H [], rr )

( mksusp pe : C, ( nil, W, nil, R ), H [ pe � code[e] ], rr ) →
( C, ( nil, pp : W, nil, R ), pp � [ nil nil | pe ] : H [], rr )

( copy aw i : C, ( pA : A, W, T, R ), H [ pA �< p1 . . . pi . . . pn > ], rr ) →
( C, ( pA : A, pi : W, T, R ), H [], rr )

( copy tw i : C, ( A, W, pT : T, R ), H [ pT �< p1 . . . pi . . . pn > ], rr ) →
( C, ( A, pi : W, pT : T, R ), H [], rr )

( mkframe a n : C, ( A, p1 : . . . pn : W, T, R ), H, rr ) →
( C, ( pA : A, W, T, R ), pA �< p1 . . . pn >: H, rr )

( mkframe t n : C, ( A, p1 : . . . pn : W, T, R ), H, rr ) →
( C, ( A, W, pT : T, R ), pT �< p1 . . . pn >: H, rr )

( free a: C, ( pA : A, W, T, R ), H, rr ) → ( C, ( A, W, T, R ), H, rr )

( free t: C, ( A, W, pT : T, R ), H, rr ) → ( C, ( A, W, T, R ), H, rr )

( jfalse pff : C, ( A, pcc : W, T, R ), H [ pff � code[e], pcc � false ], rr )
→ ( code[e], ( A, W, T, R ), H [], rr )

( jfalse pff : C, ( A, pcc : W, T, R ), H [ pff � code[e], pcc � true ], rr )
→ ( C, ( A, W, T, R ), H [], rr )

( bra pf : C, ( A, W, T, R ), H [ pf � code[e] ], rr ) | rr > 0 →
( code[e] : nil, ( A, W, T, ( C, R ) ), H [], rr − 1 )

( ret: nil, ( A, W, T, ( C, R ) ), H, rr ) → ( C, ( A, W, T, R ), H, rr )

Fig. 10.5. A formal definition of the lasm instruction set (continued on the next
page)
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( reduce i : C, ( A, p0 : . . . : pi : W, T, R ),
H [ pi � [ pA pT | p ], p � code[e] ], rr ) →

( code[e] :rtt: C, ( pA : A, p0 : . . . : pi : W, pT : T, R ), H [], rr )

( reduce i : C, ( A, p0 : . . . : pi : W, T, R ), H [ pi � value ], rr ) →
( C, ( A, pi : p0 : . . . : pi : W, T, R ), H [], rr )

( update i : C, ( A, pres : . . . : pi : W, T, R ), H [ pres � val, pi � . . . ], rr )
→ ( C, ( A, . . . : pi : W, T, R ), H [ pres � val, pi � val ], rr )

( rtt : C, ( pA : A, W, pT : T, R ), H, rr ) → ( C, ( A, W, T, R ), H, rr )

( ap n : C, ( A, pf : W, T, R ), H [ pf � code[fun]n ], rr ) | ( rr > 0 ) →
( code[fun]n : nil, ( A, W, T, ( C, R ) ), H [], rr − 1 )

( ap n : C, ( A, pf : W, T, R ), H [ pf � code[fun]k ], rr ) |
( k < n ) ∧ ( rr > 0 ) →

( code[fun]k : nil, ( A, W, T, ( ap n − k : C, R ) ), H [], rr − 1 )

( ap n : C, ( A, pf : p1 : . . . : pn : nil, pT : T, R ),
H [ pf � code[fun]k ], rr ) | ( k > n ) →

( C, ( A, pclos : W, pT : T, R ),
pclos � [ pA pT | pf ], pA �< p1 . . . pn >: H, rr )

( add : C, ( A, p1 : p2 : W, T, R ), H [ p1 � num1, p2 � num2 ], rr ) →
( C, ( A, pres : W, T, R ), pres � ( num2 + num1 ) : H [], rr )

Fig. 10.5. A formal definition of the lasm instruction set (continued from previous
page)

respectively, that make up the environment for the code to which pe points.
If this code happens to be that of an abstraction, then the environment
consists only of a T -frame, i.e., the pointer pA is set to nil.

• pA|T �< p1 . . . pn > for an A- or T -frame of n pointers (to suspensions),
to which pA|T points.

• pe � code[e] for the code of an expression e referenced by a pointer pe.
• pf � code[fun]k for the code of a function (abstraction) fun of arity k to

which pf points.

Reference counting is omitted in these rules as heap space, for the sake of
defining the state transitions effected by the instructions, may be considered
unlimited.

10.3.2 Compilation to lasm Code ∗
Compilation of source programs to lasm code may be defined by a compila-
tion scheme similar to that of the G-machine. It specifies a set of rules that
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translates syntactical forms of the source language into pieces of target code.
We take as the source language a kernel of al that has been preprocessed as
described in Sect. 10.1. Its syntax is given by

e =s const | pp | prf | #i | ∼ j |
if e0 then e1 else e2 |
( e0 e1 . . . er ) | (∼Λ̃v1 . . . Λ̃vs .et e1 . . . es ) |
Λu1 . . . Λun .e |
letrec f1 = e1 . . . fm = em in e0 ,

et =s Λu1 . . . Λun .e | letrec . . . in e0

i.e., the expressions that we have to deal with are constant values, pointers
pp to things that are held in the heap, primitive function symbols prf , A-
and T -indices that replace bound-variable occurrences, conditionals, ordinary
and tilde applications, ordinary abstractions and letrecs, respectively. We
remember that by construction the operator expression of a tilde application
is a tilde abstraction of matching arity, and that the body expression et of
this abstraction is either an ordinary abstraction or a letrec.

The top-level compilation scheme C is defined as

C[ e : es ] =⇒ code[ e ]; C[ es ] .

It splits the compiler input e : es up into a head expression e that conforms to
one of the above syntactical forms, and a tail es that represents the remain-
der of what needs to be compiled.7 This approach generates a very orderly
code structure that uses only branch instructions, e.g., to function code or to
code for the components of conditionals, which are complemented by return
instructions. Code referenced by pointers from within the code for e can thus
be placed into the free space immediately following the code for es (and pos-
sibly other pieces of code that have, in the course of compiling e, been placed
there), and compilation may be postponed until later.

A typical example is the compilation of letrecs embedded in larger con-
texts. It splits up into compiling first their body expressions, then the (unre-
lated) remaining tails that follow and finally the function definitions. Occur-
rences of letrec-bound variables fi either in the body of the entire letrec
or in one of the function bodies may be replaced by unique symbolic labels pfi

that remain undefined until the respective functions are compiled as well.
Following what we have said in the preceding section about suppressing

descriptors whenever convenient, function definitions fi = Λu1 . . . Λur .ei are
compiled as

pfi � code[ei]r ,

which turns the label pfi into a pointer to the location where code[ei]r can be
found in the heap, but we should keep in mind that it implies creation of a
descriptor that introduces a level of indirection between the pointer pfi and the

7 The symbol ‘;’ catenates two pieces of code (or two consecutive instructions).
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code that evaluates the body expression ei. Similarly, when compiling letrecs,
it is implicitly assumed that a graph structure such as that in Fig. 10.3 is
created.

The complete compilation scheme C that specifies how each of the above
syntactical forms translates into code is given in Fig. 10.6.

(1) C[ const : es ] =⇒ push c const; C[ es ];

(2) C[ #i : es ] =⇒ copy aw i; C[ es ];

(3) C[ ∼ i : es ] =⇒ copy tw i; C[ es ];

(4) C[ if e0 then e1 else e2 : es ] =⇒ C[ e0 ]; bra pif ; C[ es ];
pif � jfalse pfalse; C[ e1 ]; ret; pfalse � C[ e2 ]; ret;

(5) C[ ( e0 e1 . . . er−1 er ) : es ] =⇒ L[ er : er−1 : . . . : e1 : e0 : apr : es ];

(5a) L[ e0 : apr : es ] =⇒ C[ e0 ]; ap r; C[ es ];

(5b) L[ e : es ] =⇒

⎧⎪⎨
⎪⎩

mksusp pp; L[ es ]; pp � C[ e ]; rtt;
if e = Λ.e′ | ( e′0 e′1 . . . ) | < e′1 . . . e′n >

C[ e ]; L[ es ]; otherwise

(6) C[ Λu1 . . . Λur .e : es ] =⇒ push p pf ; C[ es ]
pf � mkframe a r; C[ e ]; free a; ret;

(7) C[ letrec f1 = e1 . . . fn = en in e0 : es ] =⇒ C[ e0 ]; C[ es ];
pf1 � F [ e1 ]; . . . ; pfn � F [ en ];

(7a) F [ Λu1 . . . Λur .e ] =⇒ mkframe a r; C[ e ]; free a; ret;

(8) C[ (∼ e0 . . . es−1 es ) : es ] =⇒ C[ es ]; C[ es−1 : . . . : e0 : taps : es ];

(8a) C[ Λ̃v1 . . . Λ̃vs .e : taps : es ] =⇒ bra pt; C[ es ];
pt � mkframe t s; C[ e ]; free t; ret;

(9) C[ prf 1 ] =⇒ reduce 0; update 0; push fun prf 1;

(10) C[ prf 2 ] =⇒ reduce 1; update 1;
reduce 0; update 0; push fun prf 2;

Fig. 10.6. The lasm compilation rules

It may help to give an informal explanation of these compilation rules, and
specifically of the codes that they generate:

• A constant value has a pointer to it pushed onto stack W (rule (1)).
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• Occurrences of A- or T -indices translate into instructions that copy the
pointers found under these index positions in the topmost A- or T -frames,
respectively, and push them onto stack W (rules (2) and (3)).

• A conditional compiles to code that first computes the predicate expression
e0 and then branches to the code pointed to by pif . The first instruction
of this code checks the Boolean value computed by the code for e0 and, if
false, branches to the code for the alternative expression e2; otherwise, it
continues with the code of the consequent expression e1. As both of these
codes terminate with the instruction ret, control returns in either case
to the instruction immediately following the branch instruction bra pif

(rule (4)).
• An r-ary application calls for another compilation scheme L that is ap-

plied to its components in reverse order, followed by an apply symbol apr,
followed by the remaining text (rule (5)). This rule prepares the compila-
tion of nonatomic operand expressions for delayed evaluation by creating
suspensions for them.

• The compilation scheme L breaks down into two rules, of which rule (5a)
handles the special case of the last expression preceding the apr symbol –
the operator of the application – which it compiles by switching back to
C, followed by an ap r instruction, followed by the code for the remaining
text. Rule (5b) generates mksusp instructions for operand expressions
that are applications, abstractions or lists, followed by L-generated code
of whatever remains to be compiled, followed by C-compiled code for the
operand itself. All other operands are directly compiled by calling C again.

• The code for an anonymous r-ary Λ-abstraction is called by a branch
instruction and begins with the creation of an A-frame for r entries taken
off stack W , followed by the code for the body expression, followed by
instructions that release the A-frame again and return to the calling code
(rule (6)). The code for a Λ̃-abstraction looks basically the same, except
that it creates and releases a T -frame instead of an A-frame (rule (8a)).

• A top-level letrec compiles to code for its body expression and to codes
for its individual function definitions (rule (7)). Since the function codes
are already hidden behind pointers, their compilation requires another
scheme F (rule (7a)) that avoids an additional level of indirection, but
other than that is the same as rule (6).

• A tilde application compiles to code for its operands followed by a branch
instruction that calls the code of the operator, which by construction can
only be a tilde abstraction8 (rule (8)).

• The codes for primitive unary and binary functions that are strict in their
arguments, meaning that they must be normalized before the functions can

8 Note that the operands of a tilde application, owing to the lifting mechanism that
brings them about, can only be binding indices of either kind that straightfor-
wardly compile to copy aw or copy tw instructions.
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be applied, first force their evaluation by means of reduce instructions,
followed by updates of the respective graph nodes (rules (9) and (10)).

The code for the entire program expression e is of the form

entry; C[ e ]; exit ,

i.e., it is embedded in mandatory entry and exit instructions that initialize
and terminate the machine, respectively.

10.3.3 Some Simple Code Optimizations

There are, of course, some opportunities for simple yet effective code opti-
mizations. Primary targets are code fragments of the general form

. . . push p pp; ap r; . . . or . . . push fun prf ; ap r; . . .

that push either a pointer pp to an abstraction or a primitive function whose
arity happens to be r, i.e., in both cases the arity matches the number of
arguments to which the function is applied by the instruction ap r.

The first of these fragments may be replaced by an instruction bra pp that
calls the function code directly, i.e., without going through the superfluous
motions of pushing its pointer onto the stack and then having it called by
ap. Similarly, occurrences of the second code fragment may be replaced by
dedicated primitive instructions such as add, mult, . . . gt, etc. that directly
pop the topmost two entries off stack W and push the result of the operation
instead. The ap instructions must be used only whenever it cannot be decided
at compile time whether or not the arities match, which is generally the case
if we have binding indices of either kind in operator position of applications.

Other targets for code optimizations are tail-recursive functions, as for in-
stance in

letrec f = Λu1 . . . Λun .( g a1 . . . am ) g = Λv1 . . . Λvm .( f b1 . . . bn ) in e0 .

Straightforward compilation by the rules of Fig. 10.6 would produce the codes

pf � mkframe a n; . . . ; bra pg; free a; ret;
and

pg � mkframe a m; . . . ; bra pf ; free a; ret;

for the functions f and g, respectively (the dots stand for the codes that cre-
ate suspensions for the operand expressions a1, . . . , am and b1, . . . , bn). Here
we can do two things that simplify code execution. First, we can move the
free a instructions ahead of all instructions that neither change nor access
the A-frame, which are at least the branch instructions bra pg and bra pf .
That is to say, the A-frames can be released before the respective complemen-
tary functions are called. Thus, when these codes are called alternately, the
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A-frames of the calling codes are released before the A-frames of the called
codes are created, meaning that these tail calls can be executed in constant
space. Second, since the codes of both functions end with bra pg; ret and
bra pf ; ret, they may be replaced by instructions jtail pg and jtail pf , re-
spectively, that jump directly back to the beginning of the function codes. The
jtail instructions, in contrast to the branch instructions, spare the machine
the motions of saving and retrieving return continuations on stack R.

The tail-optimized versions of the above function codes thus are

pf � mkframe a n; . . . ; free a; jtail pg;
and

pg � mkframe a m; . . . ; free a; jtail pf ; .

Whenever a conditional makes up the entire body of an abstraction, as for
instance in

h = Λu1 . . . Λum .if e0 then e1 else e2 ,

the code can be flattened to

C[ e0 ]; jfalse pfalse; C[ e1 ]; free a m; ret;
pfalse � C[ e2 ]; free a m; ret; ,

which saves the bra instruction that calls this piece of code and the com-
plementary ret instruction. This rule may be recursively applied to nested
conditionals.

Code efficiency may also be improved by eliminating, whenever possible,
superfluous reduce and update instructions. This becomes possible if we
have full applications of primitive unary or binary functions that are strict
in their arguments, say, (+ e1 e2). This applications may, in a first step, be
schematically compiled to

. . . ; C[ e2 ]; C[ e1 ]; reduce 1; update 1; reduce 0; update 0; add; . . . .

If the compilation of the operand expression e1 or e2 returns something other
than instructions copy aw #i or copy tw #j (which retrieve suspensions
from the environment), then the respective reduce and update instructions
that force their evaluation may safely be discarded. A typical examples of
such optimizations is the code for the expression ( + 43 ( + #2 123 ) ):

. . .push c 123; copy aw #2; reduce 1; update 1;
reduce 0; update 0; add;

push c 43; reduce 1; update 1; reduce 0; update 0; add; . . .
→ . . .push c 123; copy aw #2; reduce 0; update 0;

add; push c 43; add; . . . .

It includes the interesting case of an inner application that contains a
copy aw instruction whose corresponding reduces and updates cannot be



234 10 The π–red Machinery

deleted since at compile time it is not known whether or not a suspension must
be evaluated as the second argument. However, both instructions may be re-
moved from the outer application since the evaluation of the inner application
is bound to return a numerical value in either case.

Room for more optimizations, particularly for such standard techniques as
function inlining or loop unrolling, is somewhat limited insofar as a one-to-one
correspondence between code-controlled machine-level graph reductions and
equivalent high-level program transformations must be rigorously adhered to
in order to be able to decompile intermediate states of code execution correctly
into source language output.

Compiling the preprocessed version of the example program given in
Sect. 10.1 yields the code shown in Fig. 10.7.

pe � entry; push c 2; push c 1; bra p f ; exit;

p f � mkframe t 2; copy tw 0; copy tw 1; bra p g; free t; ret;

p g � mkframe a 2; copy aw 0; copy tw 0;
reduce 1; update 1; rtt; reduce 0; update 0; rtt; gt;
jfalse p m; copy aw 1; free a; mksusp p c1; jtail p g;

p m � mksusp p c2; free a; copy tw 1; bra p f ; ret;

p c1 � copy tw 0; push c 1; reduce 1; update 1; sub; rtt;

p c2 � copy aw 0; reduce 1; update 1; push c 1; plus; rtt;

Fig. 10.7. Optimized lasm code for the example program of Fig. 10.1

The top line of this code implements the tilde application (∼ f 1 2) that is
the body expression of the outer letrec. Having pushed the two arguments
onto W , the instruction bra p f calls the code for f that is shown in the sec-
ond line. It computes the body expression (g ∼ 1 ∼ 0) of the inner letrec in
that it creates a T -frame from the two entries in W , moves these two entries
in reverse order from T back to W and then branches to the code for the
function g in the third line (the T -frame is released again after returning from
g). This code first creates an A-frame for the two entries taken off the top of
W , then evaluates the predicate of the if then else clause and, depending
on the outcome, either branches via the instruction jfalse to the alterna-
tive code to which p m points (fourth line from the top) or continues in line
with the consequent code. Both pieces of code include a mksusp instruction
for applications that are arguments of abstractions (these are (− 1 ∼ 0) as
argument for g and (+ 1 #0) as argument for f) since under a lazy regime
their evaluation must be suspended until a demand arises later on. This hap-
pens whenever these suspensions are substituted for occurrences of binding



10.4 The Strict Abstract Stack Machine sasm 235

indices of either kind in operand positions of strict (primitive) functions such
as +, −, ∗, gt, . . . etc. This is the case for the instruction gt in the predi-
cate code of the function g that is preceded by two pairs of reduce, update
instructions to force the evaluation of the arguments pushed onto stack W
by the instructions copy aw 0 and copy tw 0. Likewise, one such pair pre-
cedes the instructions sub and plus in the suspension codes referenced by the
pointers p c1 and p c2, respectively (the two lines at the bottom of the figure).
The compiler must generate these sequences as a precautionary measure since
it has no direct way of knowing what kind of argument expressions are being
substituted.

10.4 The Strict Abstract Stack Machine sasm

The strict variant sasm of the π–red machinery shares with the lazy variant
lasm essentially the same runtime structures and the very basic operating
principles. However, the particularities of using these structures, the instruc-
tion set and also compilation to sasm code are quite different, and to some
extent also simpler and more direct. The single most important reason for
this is that under a strict (or applicative order) regime the operands of appli-
cations are, at some risk of getting trapped in runaway recursions, directly
evaluated before the operators are applied, as opposed to suspending their
evaluation until a demand arises, as under a lazy regime. As a consequence,
operand expressions need not be embedded in suspensions that hold on to
their environments, i.e., to A- and T - frame pointers, beyond the lifetimes of
the function calls or tilde applications that bring them about. Instead, A- and
T -frames may be released in reverse order of their creation immediately af-
ter control returns from the respective abstraction codes. This last-in-first-out
(LIFO) order suggests that the frames rather than pointers to them should be
directly pushed onto the A- and T -stacks, thus saving one level of indirection,
which significantly speeds up environment accesses. Garbage collection also
becomes decidedly simpler and less frequent.

Moreover, keeping the environment frames directly in the stacks suggests
an elegant solution to the problem of making an argument frame that has
built up in the working stack W available in stack A. Rather than explicitly
moving it by an instruction similar to mkframe a, as the lasm does, we
can simply flip, upon a function call, the argument stack A with the workspace
stack W , without moving a single entry. The arguments that have been pushed
onto W by the calling code thus become directly accessible in what, after the
stack switch, becomes stack A of the called function code. The function value
computed by the called code is put on top of its stack W . Immediately before
returning from a function call, (the pointer to) this value must therefore be
moved from W to A to make sure that, after another stack switch that restores
the original stack configuration, this value ends up on top of stack W of the
calling code.
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The same trick can, of course, also be played between stacks W and T :
the arguments of a tilde application are stacked up in W , entering the code
of the tilde abstractions effects a stack switch between W and T that renders
the arguments accessible in what then becomes stack T , and returning from
this code restores the original stack configuration.

Again, the complete environment for executing a piece of code is thus
available in what are the topmost A- and T -frames that now are held directly
in the stacks. Accesses to the frames are specified by fixed offsets relative
to the stack tops and, as in the lasm, directly derive from the A- and T -
indices generated by the preprocessor. Switching the stacks also enables the
sasm compiler to generate code that releases as early as possible and right
from the top of the stacks the A- or T -frames that are no longer needed, thus
minimizing the consumption of stack and heap space.

10.4.1 The sasm Instruction Set

In comparison with the lasm, the sasm needs fewer and less complex instruc-
tions. The instructions that are dropped are essentially those that deal with
the creation and handling of suspensions, i.e., mksusp, reduce and update,
and the mkframe x instructions. The effects of the latter are now realized
by simple stack switches performed as part of the branch instructions that
call abstraction codes, and as part of the complementary return instructions.
However, as a consequence, we now need three variants of branch and return
instructions to distinguish between the stacks that need to be flipped and
those that require no flips at all.

Thus, the sasm instruction set includes the following:

push w item pushes onto stack W an item that may be either a constant
value, a primitive function symbol, or a pointer to some piece of graph.

copy aw i copies the i-th entry relative to the top of stack A and pushes it
on top of stack W .

copy tw i copies the i-th entry relative to the top of stack T and pushes it
on top of stack W .

free a n pops the topmost n entries off stack A.
free t n pops the topmost n entries off stack T .
bra f pf branches to the code of an ordinary abstraction: it saves the code

that is left over in C as return continuation in stack R, copies into C
the abstraction code to which pf points, flips the stacks A and W , and
decrements the count value rr by one.

bra t pt branches to the code of a tilde abstraction: it does the same as
bra f except that it flips stacks T and W rather than A and W .

bra c pc branches to the code of a conditional and saves the code that is left
over in C as the return continuation in R; no stacks are flipped.

jfalse pif is exactly as in the lasm: it inspects the topmost value on stack
W and, if it is false, copies the code to which pif points in front of C;
otherwise code execution continues with the next instruction in sequence.
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rtf is used to return from ordinary function code: the instruction moves the
function value from stack W to stack A, then flips the two stacks to restore
the stack configuration as before the function call, and finally retrieves the
return continuation from R to restore it in C.

rtt is used to return from reducing a tilde application: it does exactly the
same as rtf except that it flips stacks T and W .

rtc is used to return from a conditional simply by restoring in C a return
continuation retrieved from R; no stacks are flipped.

ap n works like the equivalent lasm instruction: it attempts to apply the top
element of W to the n elements that are underneath. If the top element is
a pointer to abstraction code whose arity is less than or equal to n, then
stacks A and W are flipped and the code is actually executed (and rr is
decremented). If the top element is a primitive function of matching arity,
then it is applied directly to the topmost n entries in W that, together
with the function symbol itself, are subsequently popped, and the result
value is pushed instead. If the parameter n of the instruction is less than
the arity of the function, then a closure is formed, and the pointer to it is
pushed onto W ; no stacks are flipped.9

Again, this set is complemented by parameterless instructions such as add,
sub, ..., cmp, ... that take two arguments off stack W and push a result value
instead.

10.4.2 Compilation to sasm Code ∗
Compiling preprocessed al programs to sasm code follows essentially the
same rules as given in Fig. 10.6 for lasm. The sasm rules are summarized in
Fig. 10.8.

Here we have again a top-level compilation scheme

C[ e : es ] =⇒ C[ e ]; C[ es ] ,

which applies to a head expression e and recursively to some tail es. With one
minor exception (rule (7a)) it does the entire job.

The primary difference from the lasm compiler relates to the compilation
of ordinary applications (rule (5)). The operand expressions are directly com-
piled by C to code that effects their strict evaluation, rather than creating
suspensions. Other differences relate to the generation of different branch in-
structions and the complementary return instructions for conditionals (rule
(4)) and for ordinary and tilde abstractions (rules (5a) and (8a)) that effect
the respective stack switches, to dropping the mkframe x instructions from
the abstraction codes, and to adding to the free x instructions parameters
9 At this point we need to remember that tilde applications are always full applica-

tions, i.e., calling the codes of tilde abstractions need never involve ap instructions
as it can always be directly handled by bra t instructions.
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that specify the number of stack entries that must be popped (rules (5a) and
(8a) again, and also rules (6) and (7a)). The remaining compilation rules are
exactly the same as for the lasm.

(1) C[ item : es ] =⇒ push w item; C[ es ];

(2) C[ #i : es ] =⇒ copy aw i; C[ es ];

(3) C[ ∼ i : es ] =⇒ copy tw i; C[ es ];

(4) C[ if e0 then e1 else e2 : es ] =⇒ C[ e0 ]; bra c pif ; C[ es ];
pif � jfalse pfalse; C[ e1 ]; rtc; pfalse � C[ e2 ]; rtc;

(5) C[ ( e0 e1 . . . er−1 er ) : es ] =⇒ C[ er ] : C[ er−1 : . . . : e1 : e0 : apr : es ];

(5a) C[ Λu1 . . . Λur .e : apr : es ] =⇒ bra f pf ; C[ es ];
pf � C[ e ]; free a r; rtf;

(5b) C[ apr : es ] =⇒ ap r; C[ es ];

(6) C[ Λu1 . . . Λur .e : es ] =⇒ push w pf ; C[ es ];
pf � C[ e ]; free a r; rtf;

(7) C[ letrec f1 = e1 . . . fn = en in e0 : es ] =⇒ C[ e0 ]; C[ es ];
pf1 � F [ e1 ]; . . . ; pfn � F [ en ];

(7a) F [ Λu1 . . . Λur .e ] =⇒ C[ e ]; free a r; rtf;

(8) C[ (∼ e0 e1 . . . es−1 es ) : es ] =⇒ C[ es ]; C[ es−1 : . . . : e0 : taps : es ]

(8a) C[ Λ̃v1 . . . Λ̃vs .e : taps : es ] =⇒ bra t pt; C[ es ];
pt � C[ e ]; free t s; rtt;

Fig. 10.8. The sasm compilation rules

There are again a few straightforward code optimizations that are similar
to those discussed in Sect. 10.3.3 for the lasm.

Eliminating ap r instructions whenever the parameter r equals the arity
of the abstraction in operator position has already been taken care of by rule
(5a). The same can be done if the operator is a primitive function of matching
arity, in which case the code fragment . . . push w prf ; ap r; can be replaced
by a dedicated parameterless instruction such as add, mult, . . . that takes
its arguments off the workspace stack W and pushes a result value instead.

Tail-recursive functions such as in

letrec f = Λu1 . . . Λun .(g a1 . . . am) g = Λv1 . . . Λvm .(f b1 . . . bn) in e0
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compile in a first step to the codes

pf � C[ am ]; . . . ; C[ a1 ];bra g pf ; free a m; rtf;
and

pg � C[ bn ]; . . . ; C[ b1 ];bra g pg; free a n; rtf;

for the functions f and g. Next, the free a instructions can again be moved
ahead of all instructions that do not touch the topmost A-frame, which in
this particular case are at least the branch instructions preceding them, and
the branch | return instruction combinations can subsequently be replaced
by jtail instructions that in fact turn the tail-recursive function calls into
mutually entangled iteration loops. We thus get:

pf � C[ am ]; . . . ; C[ a1 ]; free a m; jtail pf ;
and

pg � C[ bn ]; . . . ; C[ b1 ]; free a n; jtail pg; .

These tail jumps cause a small problem, though. They must of course
switch the stacks A and W as the bra f instruction does in order for the
code to always find the right things in the right stacks. To restore the correct
stack configuration upon returning from a sequence of tail jumps (which our
example code never does since the functions do not include conditionals that
will eventually terminate them), the return continuation stacked up on R when
calling one of the functions from somewhere else must include a single tail flag.
Starting with the initial value zero, this flag must be flipped with every tail
jump. When this flag is set to one upon executing the complementary rtf
instruction, the stacks remain as they are; otherwise they must be flipped
again.

Conditionals that make up an entire abstraction body may be flattened in
exactly the same way as described in Sect. 10.3.3.

Compilation of the example program of Sect. 10.1, including all optimiza-
tions, yields the sasm code shown in Fig. 10.9. In comparison with the equiv-
alent lasm code it looks decidedly simpler and more concise since it directly
evaluates arguments of function applications rather than going through the
motions of wrapping them up in suspensions and forcing their evaluation later
on and in other contexts.

Again we have a top line of code for the application (f 1 2) of the outermost
letrec that calls the code of the function f to which pf points, thereby
switching stacks W and T . This code moves from what is now stack T back to
stack W the two arguments with which the function g must be called (these
two arguments are removed from T immediately after control returns from
g). The code of g is entered through the pointer pg (third line from the top),
takes one argument from each of the stacks A and T , evaluates the predicate
of the conditional and, if true, continues with the consequent code following
the jfalse instruction. The jtail instruction at the end of this piece of code
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pe � entry; push w 2; push w 1; bra t pf ; exit;

pf � copy tw 0; copy tw 1; bra f pg; free t 2; rtt;

pg � copy aw 0; copy tw 0; gt;
jfalse pm; copy aw 1; free a 2; copy tw 0; push w 1; minus; jtail pg;

pm � copy aw 0; free a 2; push w 1; add; copy tw 1; bra t pf ; rtf;

Fig. 10.9. Optimized sasm code for the example program of Fig. 10.1

returns control back to its beginning. If the predicate evaluates to false, the
code of the alternative is entered through the pointer pm, which calls the code
of f again through the bra t instruction. This instruction, together with the
rtf instruction that follows next, cannot be replaced by a tail jump since, for
good reasons, there is no optimizing rule to this effect.

10.4.3 Code Execution

Code execution in the sasm starts with the count value rr set to some nonzero
value that specifies an upper limit on the number of function calls to be
performed, with the initial program graph held in the heap, and with the
top line of the code loaded into the structure C. By convention, the first
instruction of this piece of code is entry, which clears the runtime stacks.
Orderly termination with the exit instruction at the end of this code leaves
the stacks A, T , R empty and a single entry representing the result of the
computation in the workspace stack W . This entry is either a pointer to a
coherent graph or a basic value.

Intermediate states of code execution have the stacks filled according to
the nesting of tilde applications and of function calls (applications of ordinary
Λ-abstractions). The entries in stacks A, T, W are basic values, primitive
function symbols and pointers to graph fragments held in the heap, e.g., clo-
sures created by partial applications. The entries in R are code fragments that
represent return continuations of function calls.10

If the count value rr comes down to zero in some intermediate state,
the machine must nevertheless somehow continue executing the remaining
code to terminate in an orderly manner, i.e., with a pointer to a coherent
graph representing a partially reduced expression as the sole entry in W .
The remaining code specifies, in the form of rtx instructions, the complete
return path to the terminal state, and the free x instructions encountered
along this path clear the stacks. These instructions must be executed exactly
as defined. However, all function calls and tilde applications must, from the
10 In an implementation of the machine, stack R would contain return addresses

pointing to the first instruction of rather than to the full return continuation.



10.4 The Strict Abstract Stack Machine sasm 241

point at which rr is exhausted forward, be treated as irreducible and, as is
standard procedure in such cases, be wrapped up in closures.

When executing an instruction ap r with rr = 0, the machine inspects
the topmost entry of stack W . If this entry is a pointer pf to an ordinary
abstraction, then the instruction takes its parameter r and retrieves from the
abstraction’s descriptor the parameter s (which is the number of relatively
free variables that have been abstracted out) to create in the heap a closure
that we choose to represent here in a more convenient form as

pclos � (∼ (pf a1 . . . ar) b1 . . . bs)

rather than as a heap structure

pclos � [ pa pt | pf ] : pa �< a1 . . . ar >: pt �< b1 . . . bs >: H ,

which, similarly to the notation that we have used to describe the lasm in
Sect. 10.3, makes the descriptor explicit. Here pf and a1 . . . ar are the topmost
r +1 entries of stack W , which must be popped, and b1 . . . bs are the topmost
s entries in stack T , which must be copied since they may still be needed
elsewhere. This closure represents the application in unevaluated form.

If the top item on W is something other than a pointer to function code,
say a constant value or a primitive function symbol prf , then the closure is
of the simpler form

pclos � (prf a1 . . . ar) ,

i.e., it is just made up from the entries that need to be cleared off the workspace
stack.

The instruction bra f pf creates the same closure as does ap r, except
that only r items must be taken off W , and that both the indices r and s that
determine the number of arguments to be included must be retrieved from
the function descriptor.

The instruction bra t pf looks up the arity index s in the descriptor of
the tilde abstraction and creates a closure

pclos � (∼ pf b1 . . . bs) ,

with b1 . . . bs popped off stack T .
The closure pointers pclos must in all cases be pushed onto stack W after

the items that have been included in the closures have been removed.
We are now ready to study the step-by-step execution of the sasm code

given in Fig. 10.9. The sequence of machine states (or stack configurations)
produced by this code is shown in Fig. 10.10. Since this code runs forever,
as we remember from the discussion of the equivalent high-level program in
Sect. 10.1, we need to enforce termination by means of the count variable
rr that we have chosen to initialize with the value 4, i.e., the machine per-
forms four function calls and thereafter executes the remaining code as just
described.
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STEP INSTR S1 S2 S3 R rr

0 entry | W | A | T | 4
1 push w 2 2 | W | A | T | 4
2 push w 1 1 2 | W | A | T | 4
3 bra t pf 1 2 | T | A | W ex0| 3
4 copy tw 0 1 2 | T | A 1 | W ex0| 3
5 copy tw 1 1 2 | T | A 2 1 | W ex0| 3
6 bra f pg 1 2 | T | W 2 1 | A ft0 . . . | ex0| 2
7 copy aw 0 1 2 | T 2 | W 2 1 | A ft0 . . . | ex0| 2
8 copy tw 0 1 2 | T 1 2 | W 2 1 | A ft0 . . . | ex0| 2
9 gt 1 2 | T true | W 2 1 | A ft0 . . . | ex0| 2
10 jfalse pm 1 2 | T | W 2 1 | A ft0 . . . | ex0| 2
11 copy aw 1 1 2 | T 1 | W 2 1 | A ft0 . . . | ex0| 2
12 free a 2 1 2 | T 1 | W | A ft0 . . . | ex0| 2
13 copy tw 2 1 2 | T 1 1 | W | A ft0 . . . | ex0| 2
14 push w 2 1 2 | T 1 1 1 | W | A ft0 . . . | ex0| 2
15 minus 2 1 2 | T 0 1 | W | A ft0 . . . | ex0| 2
16 jtail pg 1 2 | T 0 1 | A | W ft1 . . . | ex0| 1
17 copy aw 0 1 2 | T 0 1 | A 0 | W ft1 . . . | ex0| 1
18 copy tw 0 1 2 | T 0 1 | A 1 0 | W ft1 . . . | ex0| 1
19 gt 1 2 | T 0 1 | A false | W ft1 . . . | ex0| 1
20 jfalse pm 1 2 | T 0 1 | A | W ft1 . . . | ex0| 1
21 copy aw 0 1 2 | T 0 1 | A 0 | W ft1 . . . | ex0| 1
22 free a 2 1 2 | T | A 0 | W ft1 . . . | ex0| 1
23 push w 1 1 2 | T | A 1 0 | W ft1 . . . | ex0| 1
24 add 1 2 | T | A 1 | W ft1 . . . | ex0| 1
25 copy tw 1 1 2 | T | A 2 1 | W ft1 . . . | ex0| 1
26 bra t pf 1 2 | W | A 2 1 | T rtf0 | ft1 . . . | ex0| 0

27 copy tw 0 2 1 2 | W | A 2 1 | T rtf0 | ft1 . . . | ex0| 0
28 copy tw 1 1 2 1 2 | W | A 2 1 | T rtf0 | ft1 . . . | ex0| 0
29 bra f pg pclos 1 2 | W | A 2 1 | T rtf0 | ft1 . . . | ex0| 0
30 free t 2 pclos 1 2 | W | A | T rtf0 | ft1 . . . | ex0| 0
31 rtt 1 2 | T | A pclos | W ft1 . . . | ex0| 0
32 rtf 1 2 | T | A pclos | W ex0| 0
33 free t 2 | T | A pclos | W ex0| 0
34 rtt pclos | W | A | T | 0
35 exit pclos | W | A | T | 0

Fig. 10.10. Execution sequence of the sasm code of Fig. 10.9

The first column of the table in Fig. 10.9 simply enumerates state transi-
tion steps, and the second column lists the instructions that effect these tran-
sitions. The next three columns depict three memory sections S1, S2, S3
onto which the stacks W, A, T are mapped. The sixth column shows the
return stack R, and the last column shows the value of the reduction counter
rr. Each row of the table shows the stack contents and the permutation of the



10.4 The Strict Abstract Stack Machine sasm 243

stacks over the memory sections S1, S2, S3 immediately after execution of
the instruction in the second column. All stacks grow to the left. In the case of
this particular program the stacks contain just basic values, stack R shows the
first instructions of the return continuations (abbreviated to ex for exit and
ft for free t), which are separated by ‘|′ symbols. The superscripts attached
to these instructions give the current values of the flag bits that keep track of
the odd/even stack flips effected by jtail instructions.

The instruction sequence begins with the top-level piece of code that com-
putes (∼f 1 2) in that it pushes both argument values onto stack W and then
branches to the code of the function f (steps 1, 2 and 3). This code, in turn,
computes (g ∼ 1 ∼ 0) by retrieving both arguments from stack T and then
branching to the code of g (steps 4, 5 and 6).

The first action of g is to evaluate the predicate (gt ∼ 0 #0) of its
conditional to true (steps 7, 8, 9) by moving to W an argument each from
stacks A and T and then doing the ≥ comparison. Ignoring the branch in step
10, the computation then continues with the consequent code to compute the
application (g (− 1 ∼ 0) #1) (steps 11 to 16), with jtail pg effecting a jump
back to the beginning of the code for g. We note that between steps 11 and
16 two entries of stack A that constitute the A-frame for g can be dropped
since they are no longer needed.

The next instance of the code for g, beginning at step 17, now takes the
branch at step 20 to continue with the code for (∼ f ∼ 1 (+ 1 #0)) (steps 21
to 26).

The instructions bra t in steps 3 and 26 flip stacks T and W , the instruc-
tions bra f in step 6 and jtail in step 16 flip the stacks A and W , and the
bra x instructions push new return continuations onto stack R with the flag
bits set to 0.

Looking at the last column, we see that the count value rr is decremented
by every branch and tail-jump instruction, and that bra t pf at step 26
decrements this value to zero, i.e., the machine reaches the breakpoint at
which regular instruction execution stops.

From here on, the machine turns all function calls into closures but ex-
ecutes all other instructions as usual. Thus the branch to pf is taken and
execution continues with the code for f . In steps 27 and 28, the arguments
for another call of g are moved from stack T to W but the instruction bra f
pg in step 29 creates from the two topmost entries in W and T the closure

pclos � (∼ (pg 1 2) 2 1) ,

and pushes the pointer pclos onto W instead. Next, two entries are popped
off stack T (step 30), and the instruction rtt of step 31 restores from stack
R the return continuation consisting of the single instruction rtf. As the
flag of this instruction is set to 0, rtt effects a stack flip between T and W
that also moves the pointer pclos to the top of what has now become stack
W . When rtf is executed next, the return continuation in R is found to be
flagged out with 1 which, without a stack switch, returns control back to the
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remaining code of the function f . This piece of code releases two more entries
from stack T and then returns, after another stack flip between T and W , to
the remainder of the top-line code, which is just the instruction exit (steps
33 to 35).

As we can see, the program terminates after four function calls with the
closure to which the single entry pclos in stack W points, with all other stacks
empty, and with the stacks permuted over the memory sections S1, S2, S3
in the same way as at the beginning of code execution.

The postprocessor transforms the resulting closure into the high-level pro-
gram

letrec
g = λwz.if( gt 2 w ) then( g ( − 1 2 ) z )

else letrec f = . . .in ( f 1 ( + 1 w ) )
in ( g 1 2 )

by undoing the tilde application and reconstructing, through the descriptor
to which pg is pointing, the nesting of letrecs (and also the variable names)
as it defines a partially instantiated variant of the function g that has its
nonlocal parameters u, v substituted by the values 2, 1, respectively.

10.5 Reducing to Full Normal Forms ∗
Both the lasm and the sasm are only weakly normalizing. Partial applications
of abstractions, including as special cases unapplied abstractions, that pop to
top level are considered irreducible and are turned into closures, the reason
being that abstraction codes of both machines are static and therefore need
to be supplied with full sets of arguments in order to execute correctly. These
closures could simply be left as they are and unraveled by the postprocessor,
based on the structural information and on the variables contained in the
persistent graphs of the original programs (see Fig. 10.3), to produce as output
equivalent high-level expressions.

However, with a little more effort we can do a lot better than that. All that
it takes to fully normalize partial applications or unapplied abstractions is to
η-extend them to full applications. This is in fact equivalent to what the λσ-
machine of Sect. 6.3 does when it applies the beta-rule to update substitutions
that penetrate the scopes of abstractors, and it is also equivalent to how the
head-order machines of Chaps. 7 and 8 handle partial applications.

We remember that in both cases the unapplied Λ-abstractors, in the course
of η-extensions, end up in a leading lambs sequence that never engages in fur-
ther β-reductions and therefore becomes part of the full normal form with
which the computation hopefully terminates eventually. Since π–red is in-
tended to return as output high-level expressions in which all variables and
function identifiers are restored as in the original program expressions, we
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can take advantage of this property by using the η-extensions to reintroduce
the original variables and λ-abstractors. All we need to do conceptually is to
transform some partially applied abstraction that, as a Λ-expression, has the
form11

(Λ . . . Λ︸ ︷︷ ︸
n

.e0 e1 . . . ek) with k < n

into an (n − k)-ary abstraction

λvk+1 . . . vn.((Λ . . . Λ︸ ︷︷ ︸
n

.e0 e1 . . . ek) vk+1 . . . vn) ,

in which the missing arguments are replaced by the bound variables them-
selves.12 In π–red these variables may be recovered from the persistent pro-
gram structures set up initially in the heap. The body of this new abstraction
can now be weakly normalized again by executing the code of the abstraction
Λ . . . Λ︸ ︷︷ ︸

n

. e0 . The new abstractor λvk+1 . . . vn (which is the equivalent of the

leading lambs sequences produced by the head-order reducers of Chaps. 7
and 8 and by the λσ-machine) must be kept in a separate structure, from
which it may be retrieved when constructing the resulting expressions.

A partial application may be encountered by π–red when executing a code
fragment

. . . ; push w pf ; ap k; . . . .

As illustrated in Fig. 10.3, pf points to a function descriptor that in turn
includes a link each to the function code and to the list of its λ-bound variables,
which in the case of the above abstraction would be < s n | v1 . . . vn > (with
s denoting the number of relatively free variables that have been λ-lifted).
The instruction ap k inspects this descriptor for the value of n and, if found
smaller than its own parameter k, removes the pointer pf and k arguments
a1 . . . ak of the application from stack W and creates in its place a closure of
the form

pclos � (∼ (pf a1 . . . ak) b1 . . . bs) ,

where b1 . . . bs denote the entries of the topmost T -frame. Whenever such a
closure occurs at the top level, it is turned over for further processing to the η-
extension mechanism included in Fig. 10.1. This mechanism provides another
stack P that keeps track of nested η-extensions but it has also access to the
machine stacks A, W, T, R. By interpretation of the components of such a
closure, this mechanism
11 Of course, in π–red the abstraction Λ . . . Λ︸ ︷︷ ︸

n

. e0 is compiled to a piece of code.

12 In the special case of an unapplied abstraction we have k = 0, i.e., η-extension
trivially returns the original abstraction λv1 . . . λvn.e0 itself.
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• creates in stack W a full argument frame by pushing first the variables
vn, . . . , vk+1 retrieved from the variable list held in the function’s descrip-
tor, followed by the arguments ak, . . . , a1, both in the order from left to
right;

• pushes the variables vn, . . . , vk+1 in the same order also into stack P , from
where the leading abstractors of the full normal form are constructed later
on;

• creates in stack T a tilde frame by pushing the arguments bs . . . b1 in that
order;

• returns control back to the lasm or the sasm proper by executing (the
equivalent of) a bra f pf instruction to branch to and execute the function
code in the environment defined by what, after the stack switch effected
by this instruction, have become the topmost A- and T -frames.

Such η-extensions may have to be repeated several times until an expression
is fully normalized.

The variables that in an η-extension step are pushed onto stack P must
be popped again when returning, by means of the instruction rtf, from a
partially applied function to construct the leading λ-abstractors that must
precede the full normal form of the η-extended function application. The λ-
abstraction thus obtained is then placed in the heap.

To remove the correct number of variables from stack P in each such step,
the bra f instruction through which the function code is entered must push
a separation symbol $ onto stack P , which is removed by the complementary
rtf instruction after all the variables found on top of it have been turned into
abstractors.

There is one more thing that must be taken care of when η-extending
partial applications as described. Reintroducing in this naive form the vari-
ables that have been extracted by the preprocessor may cause name clashes.
They may be avoided by assigning to all variables restored in a particular
η-extension step the same η-nesting index, beginning, say, with the index 1 for
the first η-extension and incrementing. Thus, when repeatedly going through
the cycle of η-extension and code execution, the machine never needs to engage
in full-fledged β-reductions to maintain correct bindings among occurrences
of identically named variables that are bound in different contexts.

To illustrate how all this works, we consider as an example the nontermi-
nating program expression

letrec f = λuv.(+ (f u) v) in (f v)

that includes two partial applications of the binary function f . When β-
reducing the body expression (f v) of the letrec following the classical defi-
nition given in Sect. 4.2, we obtain

λv1.(+ (letrec f = λuv.(+ (f u) v) in (f v) v1) .
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Here we have α-converted to v1 the λ-bound variable v that otherwise would
get caught in a naming conflict with the free occurrence of v in operand
position. Repeating this step one more time gives

λv1.(+ λv2.(letrec f = λuv.(+ (f u) v) in (f v) v2) v1) .

The sasm that we will consider here since it is a little simpler than the lasm
and serves the intended purpose well enough, has this λ-expression compiled
to the code

pe � push w pv; push w pf ; ap 1; exit;
pf � copy aw 1; copy aw 0; free a 2; push w pf ; ap 1; add; rtf; .

To perform the same number of β-reductions as above, the count value rr
needs to be initialized to rr = 2, which allows for two function calls before it
is forced to stop.

Figure 10.11 shows the sequence of stack configurations produced by this
code, including the two η-extension steps that become necessary. The layout
of the figure is essentially the same as that of Fig. 10.10, except that stack T
has been dropped since it does not engage in this particular computation.

The first piece of code executed in steps 1 to 4 creates a closure for (f v),
and the pointer pclos to it becomes the sole entry in W , i.e., the partial ap-
plication is at the top level. With nothing else left to do, the machine calls
the η-extension mechanism that pushes onto W the η-extended variable v1

followed by v to prepare f for a full application. It also pushes v1 onto the
η-extension stack P . The first part of the η-extension is completed in step
5 by executing a branch instruction that returns control back to the sasm
to execute the code of the function f . The branch also effects a stack switch
between W and A, stores a return continuation in R, and decrements the
reduction counter rr by one.

The code of f executed in steps 6 to 10 creates a second closure for another
instance of the partial application (f v) that again is η-extended by pushing
onto stack W the η-indexed variable v2 followed by v, by pushing v2 also onto
P , and then calling the code for f again in step 11.

Since this η-extension step brings the count value rr down to zero, the
code that is left is trivially executed by turning without further action all
remaining redices into closures. The first such redex is another instance of
(f v) that in step 16 is wrapped up in a closure referenced by the pointer
p1

clos, immediately followed by the creation in step 17 of a closure for the
expression (+ p1

clos v2), to which p2
clos points.

The rtf instruction of step 18, after having flipped the stacks W and A and
restored a return continuation from stack R, calls the η-extension mechanism
again to complete the η-extension of step 11. It does so by using the indexed
variable v2 popped off stack P to prepend the abstractor λv2 to the expression
pointed to by p2

clos.
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STEP INSTR S1 S2 R P rr

1 entry | W | A | | 2
2 push w v v | W | A | | 2
3 push w pf pf v | W | A | | 2
4 ap 1 pclos | W | A | | 2

η-extending the closure pclos � ( pf v )
new stack configuration

v v1 | W | A | v1 $ | 2
branching to the function code

5 (bra f pf ) v v1 | A | W ex0 | v1 $ | 1

6 copy aw 1 v v1 | A v1 | W ex0 | v1 $ | 1
7 copy aw 0 v v1 | A v v1 | W ex0 | v1 $ | 1
8 free a 2 | A v v1 | W ex0 | v1 $ | 1
9 push w pf | A pf v v1 | W ex0 | v1 $ | 1
10 ap 1 | A pclos v1 | W ex0 | v1 $ | 1

η-extending the closure pclos � ( pf v )
new stack configuration

| A v v2 v1 | W ex0 | v2 $ v1 $ | 1
branching to the function code

11 (bra f pf ) | W v v2 v1 | A add0 . . .ex0 | v2 $ v1 $ | 0

12 copy aw 1 v2 | W v v2 v1 | A add0 . . .ex0 | v2 $ v1 $ | 0
13 copy aw 0 v v2 | W v v2 v1 | A add0 . . .ex0 | v2 $ v1 $ | 0
14 free a 2 v v2 | W v1 | A add0 . . .ex0 | v2 $ v1 $ | 0
15 push w pf pf v v2 | W v1 | A add0 . . .ex0 | v2 $ v1 $ | 0
16 ap 1 p1

clos v2 | W v1 | A add0 . . .ex0 | v2 $ v1 $ | 0
17 add p2

clos | W v1 | A add0 . . .ex0 | v2 $ v1 $ | 0
18 rtf | A p2

clos v1 | W ex0 | v2 $ v1 $ | 0

completing the η-extension of step 11
p2

clos � ( + p1
clos v2 ) =⇒η p2

clos � λv2.( + p1
clos v2 )

19 add | A p3
clos | W ex0 | v2 $ v1 $ | 0

20 rtf p3
clos | W | A | v1 $ | 0

completing the η-extension of step 5
p3

clos � ( + p2
clos v1 ) =⇒η p3

clos � λv1.( + p2
clos v1 )

21 exit p3
clos | W | A | | 0

Fig. 10.11. Executing sasm code that requires η-extensions

Steps 19 and 20 create another closure for (+ p2
clos v1) and prepend the

abstractor λv1 to it; the pointer p3
clos to it remains the sole entry in W when

executing in step 21 the exit instruction.
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The full picture of what we are getting develops when we follow the chain
of pointers, beginning with p3

clos. It gives

p3
clos � λv1.(+ p2

clos v1) | p2
clos � λv2.(+ p1

clos v2) | p1
clos � (pf v)

or, when these pointers are dereferenced and substituted by the expressions
hidden behind them, the λ-expression

λv1.(+ λv2.(+ (pf v) v2) v1) ,

which is what the postprocessor constructs. In a last step, the postprocessor
dereferences the pointer pf to replace the innermost application with the
complete letrec expression, yielding, as expected,

λv1.(+ λv2.(letrec f = λuv.(+ (f u) v) in (f v) v2) v1)

as the intermediate expression after two (partial) function applications.
Converting the bound variables v1 and v2 into v by means of the α-

conversion function λu.λv.(u v), and using protection keys as introduced in
Sect. 4.3 to distinguish different bindings of equally named variables, would
yield

λv.(+ λv.(letrec f = λuv.(+ (f u) v) in (f //v) v) v) ,

We note that the free variable occurrence v in the original expression preserves
its binding status in that it is now protected against the two binders λv whose
scope it has penetrated.

10.6 Summary

This chapter describes two variants of a fully normalizing reduction system
π–red, of which one realizes a lazy, the other a strict semantics. It appears
to the user as a system that performs high-level program transformations
governed by the reduction rules of a full-fledged applied λ-calculus. These
transformations may, under interactive control, be carried out step by step,
and intermediate program expressions may be displayed at the user interface.

Internally, the system executes compiled code composed of fairly conven-
tional instructions that operate primarily on stacks. The underlying abstract
machines essentially mimic the λσ-calculus machine introduced in Sect. 6.3
insofar as weakly normalizing code execution phases may be interspersed with
η-extensions equivalent to applications of the beta-rule that moves substitu-
tions over abstractors. These η-extensions are to maintain correct variable
bindings whenever argument expressions containing (relatively) free variables
must be substituted under abstractors and normalization must continue in
abstraction bodies.

The basic ideas of compiling high-level al-like programs to code and of
code execution are similar to those of the G-machine. Differences are primarily
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due to another, less rigorous concept of closing λ-expressions. Rather than
converting individual abstractions into supercombinators, π–red employs a
preprocessor to lift relatively free variables out of the larger contexts of letrec
expressions and distinguishes them by different tags from the variables that
are locally bound. These tagged variables are subsequently converted into
different sets of binding indices that define fixed offsets in separate runtime
structures.

Since π–red supports stepwise program transformations, compilation to
executable code must preserve the structure of the original program, specif-
ically the nesting of function definitions, in order to be able to decompile
intermediate states of code execution into high-level expressions that corre-
spond to instances of β-reductions completed. To this end, the compiler gen-
erates a persistent graph that typically features alternatingly letrec nodes
and abstraction nodes.

Both abstract machines use the same runtime structures of four cooperat-
ing stacks, but differ with regard to the use of these stacks, which also affects
the compilation to abstract machine code.

Laziness requires that argument expressions be wrapped up in suspensions
to postpone their evaluation until a demand for their normalization arises
later on. Since several such suspensions may share the same environments,
and the suspensions generally survive the lifetimes of the function calls that
created them, the entire environment structure that must be kept alive during
a program run typically looks like a cactus structure of frames, as in Fig. 7.7.

Things are decidedly simpler in the strict machine since the arguments of a
function application are evaluated right away in the environment of the calling
context, which renders suspensions superfluous. The environment frames may
therefore be placed directly in the stacks and released as soon as control
returns from the called to the calling context, i.e., creating and releasing
frames follows a last-in-first-out (LIFO) order.

Compilation to executable code is slightly more complex in the lazy ma-
chine as it must generate instructions that create suspensions and subse-
quently force their evaluation; there are no such instructions in the equivalent
code of the strict machine.

Both machines return graphs as intermediate or terminal states of compu-
tation. These graphs are converted into high-level output by a postprocessor
that, with the help of the persistent graph structure generated by the compiler
from the expression prepared by the preprocessor, reconstructs the original
letrec nestings and function definitions that are still in use.

A complete program execution cycle thus includes preprocessing the input
expression, compiling the preprocessed expression to code, typically going
repeatedly through the subcycle of executing code and doing η-extensions to
construct the graph of an intermediate or a fully normalized expression, and
finally postprocessing this graph to return it as high-level output.

It is fairly straightforward to have any weakly normalizing machine par-
ticipate in an execution cycle that accepts high-level program expressions as
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input and returns partially reduced or fully normalized expressions in high-
level notation as output.

Things remain nearly the same when the π–red machines, specifically the
lazy variant, are replaced by the G-machine. Differences primarily concern
the preprocessor. It must convert individual λ-abstractions into supercom-
binators rather than closing entire letrec contexts, and when compiling the
supercombinators to code the nestings of the original function definitions must
somehow be preserved for possible reconstruction of high-level output, rather
than lifting them all to the top level, as the original G-compiler does. G-code
execution must be complemented by η-extensions exactly as in π–red when-
ever top-level partial applications or unapplied supercombinators are encoun-
tered, and the postprocessor must reconvert whatever graphs are produced
into high-level expressions. Supporting stepwise code execution may also pre-
clude certain G-code optimizations since a one-to-one correspondence must
be preserved between pieces of code and β-reductions, as the intermediate or
final states of code execution must be decompiled into high-level expressions
that correspond to β-reductions performed.

The B-machine of Chap. 8 conceptually looks like the better choice for
this purpose. Since it is fully normalizing itself, a preprocessor would have
to convert λ-bound variables of an al-like high-level program expression into
binding indices, but there would be no need to close abstractions. The com-
piler, in the course of translating function definitions into B-code, again would
have to preserve the nestings of function definitions and the names of λ-bound
variables. Code execution must not be interspersed with explicit η-extensions
since this is implicitly taken care of by corrective actions on the binding in-
dices whenever the runtime environment is accessed. A postprocessor would
have to convert intermediate or final states of code execution into high-level
output, which would have to include the reintroduction of λ-bound variables
(which in π–red is done as an integral part of η-extensions).
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Pattern Matching

Pattern matching is a powerful mechanism that, roughly speaking, extracts
(sub)structures from given structural contexts and substitutes them for place-
holders in other (structural) contexts. It is typically used in functional lan-
guages to define as ordered sets of alternative function equations restructuring
operations on lists. In a more general setting, pattern matching may also be
used in the area of rule-based transformations of constructor expressions that
in fact introduce a meta-language level on which these transformations can
safely be carried out without corrupting the Church–Rosser property and ref-
erential transparency of the underlying functional language. This approach
may be effectively employed to quickly prototype, as sets of pattern matching
functions specified on this meta-language level, compilers or language inter-
preters such as the abstract machines discussed in this text, or to implement
term rewrite systems and, as we will see in Appendix B, theorem provers.

In this chapter, we will briefly discuss how al may be extended by pat-
tern matching on n-ary lists, how this concept can be generalized to specify
other languages and language interpreters as rule-based transformations of
constructor expressions, and how the lazy version lasm of the π–red ma-
chines described in the preceding chapter may be used to implement it. This
machine is of particular interest in that it is fully normalizing on the one hand
and supports a stepwise execution mode on the other hand, with the amenities
of modifying intermediate expressions and shifting the scope of reductions to
selected subexpressions – properties that play an important role in theorem
proving.

11.1 Pattern Matching in al

In its simplest form, pattern matching refers to the application of what may be
called a pattern abstraction to an argument. Pattern abstractions differ from
ordinary λ-abstractions in that they have the abstractors λu1 . . . un replaced
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by patterns specified as list structures whose components are variables, numer-
ical values, character strings or recursively again patterns. Just like λ-bound
variables, the pattern variables are said to be bound in the pattern abstraction
bodies.

Pattern matching compares the structure of such a pattern with the struc-
ture of the argument to which it is applied. It is said to succeed if for every
(sub)pattern there is a corresponding (sub)structure in the argument, every
pattern variable can be associated with a (sub)structure and every numerical
and string value equals a value and a string in the corresponding syntactical
position of the argument. Otherwise it is said to fail.

If the match succeeds, every free occurrence of a pattern-bound vari-
able in the body of the pattern abstraction is substituted by the matching
(sub)structure of the argument, and evaluation continues in the body thus
instantiated.

If the match fails, one can try alternative pattern abstractions and, if all
of them fail, turn to (the evaluation of) yet another expression that serves as
some kind of an escape hatch.

The patterns may be supplemented by guard expressions that specify con-
ditions which, in addition to succeeding matches, must be satisfied by the
(sub)structures substituted for pattern-bound variables.

Pattern matching on n-ary lists raises the general problem that patterns
may have to be specified for (sub)structures of varying lengths that may
also occur in varying syntactical positions. To locate and match against such
(sub)structures, the patterns may have to include wild cards that bind or sim-
ply skip over varying numbers of list components.

A typical example would be a test for the palindrome property of a list of
numbers, say < 4 5 3 7 3 5 4 >. To tackle this problem, it would be convenient
to be able to specify a pattern of the form < u as[w] v >, together with a
guard term (eq u v). When applied to the above list, this pattern would have
to bind the first element 4 to the pattern variable u, the last element 4 to
the pattern variable v, and the sublist < 5 3 7 3 5 > of elements that are in
between to the variable w, denoted as a wild card by the key word as. As
the guard term would evaluate to true, the pattern match would succeed and
could be recursively applied to the list bound to w until it either ends up with
an empty or one-element list signifying the palindrome property, or fails with
an unsatisfiable guard.

The palindrome problem is just a simple example of using wild cards be-
tween two pattern variables. The more general case would have wild cards
anywhere in a pattern or in subpatterns. It takes little imagination to realize
that translating such patterns into abstract machine code would require a set
of suitable instructions and also a rather elaborate compilation scheme. To
keep things simple and convey just the basic ideas of implementing pattern
matches on the lasm, we therefore allow wild cards to be used only in the last
(rightmost) syntactical position of a pattern. Such patterns are good enough
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to extract one or several leading elements from an n-ary list and to bind the
rest to a wild-card variable.

With these things in mind, we can define an al-compatible syntax for
pattern matching as follows: 1

e =s case pattern1 ‖ guard1 → e1

. . .
patternn ‖ guardn → en

otherwise e0

pattern =s val | string | var | < pattern {pattern}∗ {as[ var ]} > |
label[ pattern {pattern}∗ {as[ var ]} ] .

The case construct in fact realizes a complex unary function composed
of an ordered set of n pattern abstractions, including guards, followed by an
otherwise expression that serves as the aforementioned escape hatch. When
this construct is applied to an argument, the pattern abstractions are tried in
the order from top to bottom, and the first pattern that matches and satisfies
the guard2 has the entire case application reduced to the associated body
expression in which all free occurrences of the pattern variables are substituted
by the matching components of the argument. If none of the patterns matches,
the application reduces to the (value of) the otherwise expression e0.

As said before, a pattern is either a numerical value val, a variable var,
a character string string embedded in quotes, or a list of these items that
may recursively contain patterns as elements. The variables that occur free
in the body expression or in the guard of a pattern abstraction may be either
locally bound by the pattern, nonlocally in a surrounding context, or free in
the entire program expression. The patterns are assumed to be linear, meaning
that all pattern-bound variables of a pattern abstraction must be unique.

A wild card as[ var ] that may occur as the last (rightmost) component
of a pattern collects in a new list the elements of the argument list that occur
to the right of the elements that match preceding subpatterns.

Labeled patterns label[ pattern 1 . . . ] are just syntactic sugar for list pat-
terns of the form < ‘label′ pattern 1 . . . > that have labels in the form of
strings in their first components. These labels may be considered customized
constructors that may be effectively employed to construct the terms of some
meta-language that sits on top of al proper and can be interpreted by sets of
pattern abstractions specified in this notation.

11.2 Programming with Pattern Matches

A few examples of increasing complexity may illustrate how pattern matching
is supposed to work.
1 As usual, {item}* denotes zero or more occurrences of item, and {item} denotes

zero or one occurrences of item.
2 A guard may be any expression that evaluates to either true or false.
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The case-function

• case
< x ‘aa′ < v u > w > ‖ (eq x v) →< x w >

otherwise ‘no match′

matches the argument < 4 ‘aa′ < 4 7 > 3 >, returning the list < 4 3 >, but
fails on the argument < ‘aa′ < 4 7 > 3 > due to mismatching arities, on
< 4 ‘bb′ < 4 7 > 3 > due to a mismatch between the strings ‘aa′ and ‘bb′, or
on < 2 ‘aa′ < 4 7 > 3 > due to an unsatisfiable guard, returning in each of
these cases the string value ‘no match′.

The case function

• case
< x < u v > as[w] > ‖ true →< w < u x > v >

otherwise ‘no match′

matches the argument < y < ‘aa′ ‘bb′ > 2 3 4 >, returning as the result the
list << 2 3 4 > < ‘aa′ y > ‘bb′ >, but fails, for instance, on the argument
< 2 < 5 6 7 > ‘cc′ > due to mismatching arities between the subpattern
< u x > and the sublist < 5 6 7 >.

A more involved example that uses wild cards is a recursive function that
figures out whether or not two lists are identical with regard to the numbers
of elements and the elements themselves:

• letrec
compare = lambda u v in

(case
<<><>> ‖ true → ‘identity′

<<>< w as[z] >> ‖ true → ‘mismatching arities′

<< w as[z] ><>> ‖ true → ‘mismatching arities′

<< u h as[u t] >< v h as[v t] >> ‖ (eq u h v h)
→ (compare u t v t)

otherwise ‘mismatching elements′

< u v >)
in (compare < 4 7 3 . . . >< 4 7 3 . . . >) .

The function compare substitutes for the parameters u and v a first and a
second argument that are both assumed to be lists of numbers. These lists
become the components of a binary list (second last line) to which the case
function in the body of compare is applied. This function includes four pat-
tern abstractions, of which the first checks whether both sublists are empty,
signifying identity of the two argument lists, the second and the third check
whether one of the sublists is empty while the other contains at least one
element, signifying a mismatch with regard to the lengths of both argument
lists, and the fourth one applies compare recursively to the argument lists
minus their first elements if these are identical.
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The use of labeled patterns may be best demonstrated by means of an
al specification of the se(m)cd machine of Chap. 5 that implements the
pure λ-calculus. Its three syntactical figures may be represented as customized
constructor terms

cct =s var[ ‘v′ ] | lam[ ‘v′ cct ] | apa[ cct a cct f ] | apn[ cct f cct a ]

of a meta-language on top of al, where var, lam, apa, apn are constructor
labels for variables, abstractions, applicative and normal order applications,
respectively. Specific variables, as may be noted, must be quoted in this lan-
guage in order to distinguish them from the al variables proper that are used
in the patterns themselves.3

Thus, a λ-expression

@ @ λu λv @ v u λu u w

as it can be evaluated by the se(m)cd machine of Chap. 5 must be converted
into

apn[ apn [ lam[ ‘u′ lam[ ‘v′ apa[ var[‘v′] var[‘u′] ] ] ]
lam[ ‘u′ var[‘u′] ] ]var[ ‘w′ ] ]

for interpretation by al-style pattern matching.
Another constructor term clos[ env cct ] is needed to represent closures,

and we will also use the terms apa[ num ] and apn[ num ] to represent
applicators with associated arity indices num as they occur isolated from
their component terms in stack M of the se(m)cd machine.

With this in mind, we are now ready to transliterate, more or less one-
to-one, the state transition rules of the se(m)cd machine as they are given in
Fig. 5.5 into a set of pattern abstractions wrapped up in a case construct.

Just a few representative pattern abstractions are given in Fig. 11.1. From
top to bottom, they implement rules (1), (2), (5), (9) and (11) of Fig. 5.5.
They all have the general form

< S E M C D > ‖ guard → < S′ E′ M ′ C′ D′ > ,

with S, E, M, C, D denoting the pattern variables that fill in for the sub-
lists that represent the respective stacks. More specific subpatterns such as
< apa[ i ] M > or < clos[E lam[v e]] S > expose apa[ i ] or clos[E lam[v e]]
as the topmost items on stacks M and S, respectively.

Of course, the full se(m)cd interpreter must have this case construct
embedded in a recursive function that applies it to an initial state

< <> <> <> < cct term <> > <> >

3 Internally these terms are transformed into lists whose first components have the
labels quoted as well.
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case

< S E M <> < Ee Cc Dd >> ‖ true → < S Ee M Cc Dd >

<< clos[Ee lam[v e]] < ea S >> E < apa[0] M > C D > ‖ true

→ < S << v ea > Ee > M < e <>>< E C D >>
. . .

< S E < apa[i] M > < var[v] C > D > ‖ (gt 0 i)
→ (< (lookup v E) S > E < apa[(− 1 i)] M > C D >
. . .

< S E < apa[i] M > < lam[v e] C > D > ‖ (gt 0 i)
→ << clos[E lam[v e]] S > E < apa[(− 1 i)] M > C D >
. . .

< S E M < apa[e a e f ] C > D >
→ < S E < apa[2] M > < e a < e f C >> D >
. . .

otherwise . . .

Fig. 11.1. A pattern matching implementation of the se(m)cd machine’s state
transition rules

and repeatedly to intermediate states until it terminates with

< < cct wnf <> > <> <> <> <> > ,

which has the weak normal form cct wnf of the initial term cct term in the
sublist S, and all other sublists empty.

11.3 Preprocessing Pattern Matches

The preprocessing of case constructs (or functions for that matter) before
compilation to lasm machine code can in large part be adopted from what
has been said in Sect. 10.1 about preprocessing ordinary al expressions.

As a first preprocessing step, cases are turned into tilde applications by
lifting all relatively free variables out in front, in the same way as they are
lifted out of letrecs.

For instance, a case construct

case
< u v > ‖ (eq u z) → << u w > < v z >>
< u < v w >> ‖ (gt v z) → < w < u w > z >

otherwise < w z > ,

of two pattern abstractions in which the variables w and z occur free4 thus
transforms into the tilde application
4 Note that w also occurs bound in the second pattern abstraction.
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(∼ λ̃wz.case
< u v > ‖ (eq u z) → << u w > < v z >>
< u < v w >> ‖ (gt v z) → < w < u w > z >

otherwise < w z >
w z ) .

Converting the λ̃-bound variables into T -indices follows the same rules as for
letrec expressions.

However, the story is a little different for the variables bound by pattern
abstractions. To relate the A-indices by which we wish to replace occurrences
of pattern-bound variables in the abstraction bodies in a meaningful way to
offsets into A-frames, we need to be a little more specific about how pattern
matching is supposed to work on a step-by-step basis suitable for implemen-
tation in the lasm.

The basic idea here is to walk side by side through both the pattern and
the argument, most conveniently under the control of a preorder traversal,
and to determine for each symbol encountered in the pattern whether or not
there is a matching symbol or substructure in the argument. This entails also
the order in which pattern variables may be instantiated with (pointers to)
matching argument (sub)structures and in which these instantiations may be
temporarily pushed onto the workspace stack W . From there, they may either
be dumped again if the matches fail or be moved into new A-frames allocated
in the heap if the matches are successful.

To have the A-indices that replace occurrences of pattern-bound variables
define the same offsets relative to the same A-frame bases as in the case of
ordinary λ-abstractions, the following conversion rule must be used.

Let u1, . . . , ui, . . . , un denote the sequence of pattern variables en-
countered when traversing a pattern in preorder, then free occurrences of
ui | i ∈ {1, . . . , n} in both the guard and the body of the respective pattern
abstraction must be replaced with indices #(n − i), i.e., the order of indices
must be the reverse of that for λ-bound variables (see Sect. 10.1).

The variables in the patterns themselves must simply be replaced by name-
less binding symbols � that serve the same purpose of just denoting syntac-
tical positions as the anonymous abstractors Λ and Λ̃ of ordinary and tilde
abstractions.

Following this conversion rule, we obtain for the example above the fully
preprocessed tilde application of the case function as follows:

(∼Λ̃Λ̃.case
< � � > ‖ (eq #1 ∼ 1) → << #1 ∼ 0 > < #0 ∼ 1 >>
< � < � � >> ‖ (gt #1 ∼ 1) → < #0 < #2 #0 > ∼ 1 >

otherwise <∼ 0 ∼ 1 >
#w #z )
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(the symbols #w and #z in the argument positions of the tilde application
(last line) are to indicate that the abstracted variables w and z may be bound
in some larger context in which they are replaced with A- or T -binding indices
as well).

As a final remark, it should be noted that the pattern abstractions are
thus closed with respect to pattern variables (or A-indices), and that there is
of course no notion of partially applying pattern abstractions since they are in
fact unary functions in which all pattern variables must be instantiated with
argument components for the matches to succeed.

11.4 The Pattern Matching Machinery

We will now investigate how pattern matching can be supported by the the
lazy variant lasm of the π–red machines described in the preceding chapter.
It turns out that, other than assigning a more engaged role to stack R and
requiring an additional set of dedicated instructions, pattern matching can be
implemented on this machine in essentially the same way as ordinary function
calls.

When reducing the tilde application of a closed case function, a T -frame
is set up in the heap for instantiations of what were originally its (relatively)
free variables, and the pointer to it is pushed onto stack T . While a particular
pattern is being matched against a given argument, instantiations of the pat-
tern variables, i.e., (pointers to) the matching argument components, build
up successively on stack W . In the case of a successful match these entries
are removed from stack W and placed in an A-frame created in the heap, and
a pointer to this frame is pushed onto stack A, thus completing the environ-
ment in which both the guard and the body of the pattern abstraction must
be evaluated.

Mismatches may occur with respect to the arities of the argument (sub)-
structures, numerical values or strings may not be the same, or guards cannot
be satisfied. In each of these cases, the match must be aborted, instantiations
of the pattern variables that have thus far piled up in stack W or have already
led to the creation of complete A-frames must be removed again, and code
execution must continue with the next pattern abstraction in sequence.5

To support such pattern matches, the machine needs to keep track of
nesting levels, index positions and numbers of bindings performed while it
traverses an argument structure. This can be accomplished using stack R as
follows:

• When entering an argument structure (or substructure) held as a graph in
the heap H , the pointer to it is pushed onto stack R, followed by an index
tuple (i, l) that is initialized with i = 0, l = 0 and pushed on top.

5 A pattern variable always matches if there is a corresponding syntactical position
in the argument, and so do wild cards that also match empty structures.
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• While moving along the components of a (sub)structure, the index i of the
tuple that is on top of R keeps track of the position at which the matching
process has arrived, and l counts the number of bindings completed up to
and including position i.

• When a match on a (sub)structure has been successfully completed, the
topmost index tuple and the pointer that is underneath are taken off stack
R, and the component l of this tuple is added to that of the index tuple
that has now popped to the top, i.e., the bindings on lower pattern levels
accumulate on the higher levels.

• Failure to match a (sub)pattern at some nesting level causes the topmost
index tuple (i, l) and the pointer underneath to be popped off stack R,
and l entries to be removed from stack W . The failure is propagated to the
next higher nesting level, where the same operations are repeated until all
entries in R pertaining to the particular pattern match have gone.

Otherwise, stack R is used as usual to store return addresses of ordinary
function calls (applications of λ-abstractions) and of case applications. In
the latter case, a return address is pushed before entry into the first pattern
abstraction and popped after completing the evaluation either of the body
expression of the matching pattern or, if no match succeeds, of the otherwise
expression.

The instructions that are necessary to implement pattern matching as com-
piled code derive from the internal representation of (nested) lists, the preorder
traversal scheme used by the matching process, and the steps that need to be
taken to deal with succeeding or failing matches.

To simplify things a little, it suffices to assume that a nested list, say
< a11 a12 < a21 < a31 a32 a33 > a23 > a14 >, whose components aij

are atomic, is internally represented as a graph as depicted in Fig. 11.2. The
(sub)lists of a particular nesting level are represented by pointers at the next
higher level, and their arities are directly accessible as superscripts attached to
the list constructors, i.e., list descriptors preceding the (sub)lists are ignored.

�

�

�

p1 <4 a11 a12 p2 a14 >

<3 a21 p3 a23 >

<3 a31 a32 a33 >

Fig. 11.2. Graph representation of a nested list structure

The following is the set of instructions used to implement pattern matches:

init r is the first instruction of a pattern abstraction that initializes stack R.
It pushes some dummy pointer �, followed by an index tuple ( 0, 0 ) and
by a copy of the argument (pointer) that is assumed to be on top of stack
W , to set R up for the traversal of the argument.
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is list n tests whether or not the item on top of stack R is a pointer to a
list of arity n, pushing a succ or fail entry onto stack W , respectively,
or, if the test cannot be decided since the entry on R is a pointer to a
suspension, forcing its evaluation.

is string string tests whether the topmost entry of stack R is a character
string string (or a numerical value given as a string of digits), taking the
same actions as is list n if the entry indeed equals string, is a pointer
to a closure, or is something else.

jpfail pp follows an is list or is string instruction. After having inspected
the top item of stack W (which is assumed to be either succ or fail), code
execution continues either at the next instruction in sequence or at the
code referenced by the pointer pp. Before branching to pp, the instruction
also undoes all the bindings that have piled up in W . It does so by popping
entries (i, l) and the pointers underneath off stack R, and in each such
step it also pops l entries off stack W , down to and including the dummy
pointer set up by init r.

next moves control to the next item of a (sub)list, copies it onto the top of
stack R and increments the traversal position index i of the topmost tuple
(i, l) in R.

bind follows next if the topmost entry on stack R is to be substituted for
a pattern variable (by moving it to the top of stack W ), and increments
the binding index l of the topmost (i, l) tuple in R.

down follows an is list; jpfail;. . . instruction sequence to descend, in the
case of a successful match, to the next lower pattern level by pushing
a new tuple (0, 0) onto R on top of the pointer to the corresponding
argument (sub)structure that is already in R.

up is complementary to down, returning control, after successfully complet-
ing a match on some sublist, to the next higher pattern level. It does so by
taking the actual (i, l) entry and the pointer underneath off stack R, and
by changing the tuple (ii, ll) that then pops to the top to (ii + 1, ll + l),
thus advancing the traversal position at the next higher pattern level and
updating the number of bindings accumulated thus far.

Another four instructions are required to bring about (and undo) the en-
vironments in which guard terms need to be evaluated, and to continue code
execution with the appropriate alternatives:

mkpatframe takes l entries off the top of stack W and puts them in the
same order into an A-frame created in the heap, with l read from the
topmost entry in R.

jpguard pp immediately follows the code of a guard term to continue code
execution either at the next instruction in sequence or, if the guard evalu-
ates to false, at the code referenced by the pointer pp. Before branching
to pp, the instruction clears stack R in the same way as jpfail, and it
also releases the A-frame whose pointer is topmost on stack A.
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drop r is the last instruction of a pattern match that complements init r:
upon a successful match, it removes from stack R the remaining index
tuple and the dummy pointer.

pop w pops the topmost item off stack W .

It takes just one more instruction to deal with the simple wild card patterns
that we have included:

mkrestlist puts the remaining elements of a (sub)list, starting at the current
traversal position, into a list created in the heap (which may be empty if
no more elements are left).

Permitting wild cards between any syntactical positions within a pattern
(or subpattern) would complicate matters considerably as it would require
more instructions, e.g., to test for the number of elements remaining in a
(sub)list, to undo bindings, and to effect backtracking in cases of mismatch-
ing (sub)structures.

11.5 Compiling Pattern Matches to lasm Code ∗
Compiling pattern matches specified as preprocessed high-level case con-
structs to abstract machine code follows essentially the same routine as the
compilation of ordinary al programs. It sets out by applying the compilation
scheme C to a λ-lifted case function and recursively breaks down as follows:

(1) C [
∼
Λ1 . . .

∼
Λs case . . . patterni ‖ guardi → ei . . . otherwise e0 : es ]

=⇒ mkframe t s; bra pp1;free t; ret; C[ es ];
. . .
ppi � CT [ patterni ‖ guardi, pp(i+1) ] ; C[ ei ]; free a; ret;
. . .
pp0 � pop w; C [ e0 ]; ret; .

It generates a top-level instruction sequence that first creates, with the in-
struction mkframe t s, a T -frame from the topmost s entries on stack W
and then branches, via the pointer pp1, to the code of the first pattern ab-
straction, thereby also pushing a return continuation onto stack R (instruction
bra pp1). When returning to this level from a successful match, the T -frame
is released by the instruction free t, and the subsequent ret instruction
returns control to the code that called the case function.

The code for the escape hatch e0 must be preceded by a pop w instruction
to throw away the argument pointer that is still on stack W , and be followed
by ret to return to the top-level case code.

Following this piece of code, C drives the compilation into the individual
pattern abstractions, where another compilation scheme CT takes over to com-
pile the patterns. The body terms are compiled by C, followed by instructions
free a and ret that release the A-frames created after successful matches
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and complement the bra pp1 instruction of the top-level sequence, respec-
tively. The codes of the individual pattern abstractions are chained together
by pointers ppi that are passed along as parameters of CT to generate, within
the pattern code, the branch labels through which, in case of mismatches,
control is transferred to the next pattern abstraction in sequence.

The compilation scheme CT distinguishes between the cases where the top-
level patterns are variables (whose preprocessed variants are the anonymous
binders �), strings, and recursively lists of patterns, and it also compiles the
guard terms:

(2) CT [ � ‖ guard, pp ] =⇒ init r; bind;
mkpatframe; C[ guard ]; jpguard pp; drop r; pop w;

(3) CT [ ‘string′ ‖ guard, pp ] =⇒ init r; is string ‘string′; jpfail pp;
mkpatframe; C[ guard ]; jpguard pp; drop r; pop w;

(4) CT [ <k . . . > ‖ guard, pp ] =⇒ init r; PT [ <k . . . >, pp ];
mkpatframe; C[ guard ]; jpguard pp; drop r; pop w;

In all three cases, we have the same piece of trailing code that, assuming a
successful pattern match, first creates an A-frame for the instantiations of the
pattern variables, followed by the code for the guard term, by a conditional
branch to the code pointed to by pp if the guard evaluates to false, and by
drop r that is executed if the guard can be satisfied.

The codes preceding these trailers are rather straightforward. As pattern
variables always match a corresponding argument (sub)structure, the code for
� simply binds the pointer to it (which is topmost in R) by pushing it onto
stack W . The code that does the string matching branches conditionally to
the code pointed to by pp if the match fails, and otherwise simply continues
with the trailer code. If the pattern is a list of patterns, then CT calls another
compilation scheme PT that takes care of this situation:

(5) PT [ <k pattern1 pattern2 . . . >, pp] =⇒
is list k; jpfail pp; down; PS [ pattern1 : pattern2 : . . . >, pp ]; .

It generates code that first checks whether the arities of the pattern and of
the argument list are the same and, if so, has the pointer to it dereferenced by
the instruction down. The code for the sequence of subpatterns is generated
by yet another compilation scheme PS . This is followed by the instruction up
which returns control to the next higher pattern level.

PS splits up into another five compilation rules:

(6) PS [ >, pp ] =⇒ up;

(7) PS [ as[ � ] >, pp ] =⇒ mkrestlist; up;

(8) PS [ � : pattern : . . . , pp ] =⇒ next; bind; PS [ pattern . . . , pp ];
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(9) PS [ ‘string′ : pattern : . . . , pp ] =⇒
next; is string ‘string′; jpfail pp; PS [ pattern . . . , pp ];

(10) PS [ <k . . . > : pattern : . . . , pp ] =⇒
next; PT [ <k . . . >, pp ]; PS [ pattern : . . . , pp ]; .

When applied to an empty sequence of subpatterns, identified by the end-
of-list symbol >, it inserts an up instruction (rule (6)) that returns control
to the next higher pattern level, a wild card (which must be followed by >)
compiles to mkrestlist; up;. . . (rule (7)), and rules (8), (9), (10) compile
variables, strings and sublists of patterns in essentially the same way as rules
(2), (3), (4), respectively.

11.6 Code Generation and Execution: an Example ∗∗
To illustrate how pattern compilation works, we consider as an example the
λ-lifted and preprocessed case construct of p. 259 that includes two pattern
abstractions. Applying the compilation scheme C to it (rule (1)) gives the fol-
lowing intermediate code:

ppcase � mkframe t 2; bra pp1; free t; ret;

pp1 � CT [ <2 � � > ‖ (eq #1 ∼ 1), pp2 ];
C[ << #1 ∼ 0 >< #0 ∼ 1 >> ]; free a; ret;

pp2 � CT [ <2 � <2 � � >> ‖ (gt #1 ∼ 1), pp0 ];
C[ < #0 < #2 #0 > ∼ 1 > ]; free a; ret;

pp0 � pop w; C[ <∼ 0 ∼ 1 > ]; ret; .

This code has the compilation scheme CT driven in front of the patterns which,
through rule (4), repeatedly calls the compilation schemes PT (rule (5)) and
PS (rule (10)) to yield

ppcase � mkframe t 2; bra pp1; free t; ret;
pp1 � init r; is list 2; jpfail pp2; down;

next; bind; next; bind; up;
mkpatframe; C[ (eq #1 ∼ 1) ]; jpguard pp2; drop r; pop w;

C[ << #1 ∼ 0 >< #0 ∼ 1 >> ]; free a; ret;
pp2 � init r; is list 2; jpfail pp0; down; next; bind; next;

is list 2; jpfail pp0; down;
next; bind; next; bind; up; up;
mkpatframe; C[ (gt #1 ∼ 1) ]; jpguard pp0; drop r; pop w;

C[ < #0 < #2 #0 > ∼ 1 > ]; free a; ret;
pp0 � pop w; C[ <∼ 0 ∼ 1 > ]; ret; .
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The remaining applications of the compilation scheme C to the guard and
body expressions of both pattern abstractions and to the otherwise expres-
sion follow the C-rules of Fig. 10.6. They produce the following pieces of code:

C[ (eq #1 ∼ 1) ] =⇒ copy tw 1; copy aw 1;
reduce 1; update 1; reduce 0; update 0; push fun eq; ap 2;

C[ (gt #1 ∼ 1) ] =⇒ copy tw 1; copy aw 1;
reduce 1; update 1; reduce 0; update 0; push fun gt; ap 2;

C[ <∼ 0 ∼ 1 > ] =⇒ push w ppl1;
ppl1 � <copy tw 0 copy tw 1 >

C[ << #1 ∼ 0 >< #0 ∼ 1 >> ] =⇒ push p ppl2;
ppl2 � < C[ < #1 ∼ 0 > ] C[ < #0 ∼ 1 > ] >

C[ < #0 < #2 #0 > ∼ 1 > ] =⇒ push p ppl3;
ppl3 � <copy aw 0 C[ < #2 #0 > ] copy tw 1 > .

To see how this code executes, we consider as an example the application
of the case function to an argument list < 4 < 3 2 >> and to instantiations
of the free variables w and z with the values 3 and 5, respectively, i.e., we
have in λ-lifted al notation:

((∼ λ̃wz.case . . .otherwise < w z > 3 5 ) < 4 < 3 2 >>) .

Figure 11.3 shows the sequence of instructions executed and the effects
that they have on the stacks W and R and on the heap H . The sequence
begins with an initial stack configuration that has in stack W the arguments
of the tilde application sitting on top of the pointer pl to the argument list in
the heap. As its second element, this list includes another pointer pll to the
sublist < 3 2 >:

pl � < 4 pll > pll � < 3 2 > .

Stack R is still empty with regard to items that belong to the case application.
The case code is entered through the pointer ppcase to have in step 1

the entries 3 and 5 taken off stack W to create a T -frame, leaving just the
argument pointer pl in W . The bra pp1 instruction of step 2 branches to the
code of the first pattern abstraction and pushes the remainder of the top-level
code, beginning with the instruction free t, as a return continuation onto
stack R. The init r instruction of step 3 initializes stack R for the pattern
match by pushing, in this order, the dummy pointer � as a separation symbol,
an index tuple (0, 0) associated with �, and the argument pointer pl (which it
copies from stack W ).

Steps 4 to 11 perform the pattern match. After the top-level argument list
has been successfully checked for matching arity, its elements are bound by
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STEP INSTR STACK W STACK R

0 init 3 5 pl . . . . . .

1 mkframe t pl . . . . . .
creates in heap a T -frame pT � < 3 5 >: H | pT is pushed onto stack T

2 bra pp1 pl . . . free t. . .
3 init r pl . . . pl (0, 0) � free t. . .
4 is list 2 succ pl . . . pl (0, 0) � free t. . .
5 jpfail pp2 pl . . . pl (0, 0) � free t. . .
6 down pl . . . (0, 0) pl (0, 0) � free t. . .
7 next pl . . . 4 (1, 0) pl (0, 0) � free t. . .
8 bind 4 pl . . . (1, 1) pl (0, 0) � free t. . .
9 next 4 pl . . . pll (2, 1) pl (0, 0) � free t. . .
10 bind pll 4 pl . . . (2, 2) pl (0, 0) � free t. . .
11 up pll 4 pl . . . (0, 2) � free t. . .

12 mkpatframe pl . . . (0, 2) � free t. . .
creates an A-frame pA � < pll 4 >: H | pA is pushed onto stack A

13 C[(eq #1 ∼ 1)] false pl . . . (0, 2) � free t. . .

14 jpguard pp2 pl . . . free t. . .
releases the A-frame again by popping pA off stack A

15 init r pl . . . pl (0, 0) � free t. . .
16 is list 2 succ pl . . . pl (0, 0) � free t. . .
17 jpfail pp0 pl . . . pl (0, 0) � free t. . .
18 down pl . . . (0, 0) pl (0, 0) � free t. . .
19 next pl . . . 4 (1, 0) pl (0, 0) � free t. . .
20 bind 4 pl . . . (1, 1) pl (0, 0) � free t. . .
21 next 4 pl . . . pll (2, 1) pl (0, 0) � free t. . .
22 is list 2 succ 4 pl . . . pll (2, 1) pl (0, 0) � free t. . .
23 jpfail pp0 4 pl . . . pll (2, 1) pl (0, 0) � free t. . .
24 down 4 pl . . . (0, 0) pll (2, 1) pl (0, 0) � free t. . .
25 next 4 pl . . . 3 (1, 0) pll (2, 1) pl (0, 0) � free t. . .
26 bind 3 4 pl . . . (1, 1) pll (1, 1) pl (0, 0) � free t. . .
27 next 3 4 pl . . . 2 (2, 1) pll (2, 1) pl (0, 0) � free t. . .
28 bind 2 3 4 pl . . . (2, 2) pll (1, 1) pl (0, 0) � free t. . .
29 up 2 3 4 pl . . . (1, 3) pl (0, 0) � free t. . .
30 up 2 3 4 pl . . . (0, 3) � free t. . .

31 mkpatframe pl . . . (0, 3) � free t. . .
creates an A-frame ppA � < 2 3 4 >: H | ppA is pushed onto stack A

32 C[(gt #1 ∼ 1)] true pl . . . (0, 3) � free t. . .
33 jpguard pp0 pl . . . (0, 3) � free t. . .
34 drop r pp0 pl . . . free t. . .
35 pop w . . . free t. . .

. . .

Fig. 11.3. Execution of the compiled case code as on the opposite page

pushing them onto stack W , thereby also advancing the traversal position i
and the binding index l of the tuple that is on top of stack R. The instruction
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up of step 11 then removes the top level-index tuple and the argument pointer
from R, adding the binding index l = 2 to the index l of the index tuple that
now pops to the top.

The mkpatframe instruction of step 12 takes this index to create an
A-frame from two entries that are popped off stack W .

Step 13 summarizes the code execution of the guard term. It compares the
second entries (with indices #1 and ∼ 1) of the A- and T -frames, finds them
not to be identical, and pushes as the result the value false onto stack W .
The instruction jpguard of step 14 thereupon pops the false entry, clears
stack R down to and including the dummy pointer �, releases the A-frame
that is topmost in stack A and branches to the code of the second pattern
abstraction.

Steps 15 to 30 go through essentially the same motions again, this time
over both nesting levels of the argument, to produce another match.

The instruction mkpatframe of step 31 takes three entries off stack W
to create another A-frame in the heap, and the subsequent code of the guard
term returns true since the second entry of the T -frame (with index ∼ 1) is
greater than the second entry of the A-frame (with index #1), whereupon in
steps 34 and 35 stack R is cleared down to and including �, and the argument
pointer pl is finally popped off stack W to turn control over to the code that
computes the body of the second pattern abstraction (which is not made
explicit in the figure).

11.7 Summary

This chapter is on pattern matching – an operation that extracts substruc-
tures from structural contexts and substitutes them for placeholders in other
structural contexts. Its implementation blends nicely into the lasm variant of
the π–red machines described in the preceding chapter.

Pattern matching may be specified in an al-compatible fashion as an or-
dered set of pattern abstractions collected in a case construct that realizes
a unary function. Each pattern abstraction is composed of a pattern that is
usually specified as a nested list of variables and character strings (including
numbers), followed by a guard term and a body expression. The pattern ab-
stractions are tried on the argument in the order in which they are written
down. The first matching pattern, including a satisfiable guard term, is the
one that succeeds. It returns as value of the entire case application the value
of the abstraction body in which all occurrences of pattern-bound variables
are substituted by the corresponding (sub)structures of the argument.

Though basically applicable to list structures only, this pattern-matching
concept includes the notational means to specify customized constructor terms
that render it possible to quickly specify (meta-)languages that sit on top of al
proper and to prototype compilers, type systems or interpreters (abstract ma-
chines) for them, or to implement term rewrite systems and theorem provers.
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Performing pattern matches in the lasm takes a few more instructions
to traverse a given argument along the structure specified by the pattern to
decide, at each traversal position, whether or not a match occurs or some
(sub)structure must be bound to a pattern variable, and to undo all bind-
ings accumulated so far before navigating, in case of a mismatch, to the next
pattern abstraction in sequence. Other than that, pattern abstractions are
executed in the same way as ordinary λ-abstractions: instantiations of non-
local variables are held in a T -frame created upon entry into the code of the
surrounding case function, and instantiations of pattern variables are held
in A-frames created upon the successful completion of pattern matches. The
codes for the guard and body terms of the pattern abstractions are generated
by the very same compilation scheme C as used in the lasm.
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Another Functional Abstract Machine

We will now study another weakly normalizing λ-calculus machine that brings
us one step closer to abstract machines that implement conventional impera-
tive languages. It derives more or less directly from the original secd machine
of Sect. 5.1 but replaces direct interpretation of λ-expressions by execution
of abstract instructions. This secd i machine (the i stands for instruction-
based) is called functional since it evaluates expressions to values (their weak
normal forms), and the evaluation is referentially transparent and confluent,
meaning that the value of a (sub)expression is invariant against the con-
text in which it occurs and against evaluation orders. The machine imple-
ments an applicative order (or strict) reduction strategy that corresponds to
the call-by-value semantics of almost all imperative languages. In contrast to
the sasm of Sect. 10.4, which also normalizes weakly under an applicative
order regime, the secd i machine abandons the concept of closed contexts
and instead works with open abstractions, closures, and nested runtime struc-
tures composed of linked frames, very similar to the g hor machine and the
B-machine of Chaps. 7 and 8, respectively, but with a naive substitution
mechanism.

The secd i machine is a perfect target for the compilation of al (see
Chap. 3) but also for such well-known function-based languages as Standard
ml and scheme1 (a purified variant of lisp) that come with an applicative
order semantics as well. Its instruction set and operating principles are very
similar to those of Cardelli’s functional abstract machine (fam). Many of the
instructions are shared with the code-executing abstract machines of Chaps. 8,
9 and 10, and so are parts of the compilation scheme that translates al ex-
pressions into secd i code.
1 In fact, al expressions may be converted rather straightforwardly into scheme

expressions, basically by turning defining equations f = e and abstractions
lambda u1 . . . un in e into the parenthisized forms (f e) and (lambda ( u1 . . . un ) e),
respectively, and n-ary lists must in scheme be represented as quoted expressions
(e1 . . . en).
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Compilation is a one-way affair preceded by a preprocessing phase that
converts lambda-bound variables into index representations for direct trans-
lation into environment accesses. There is no complementary decompilation
followed by postprocessing that, as in the π-red machines, would convert ter-
minal machine states into intelligible output other than ground terms such
as (lists of) numbers, Boolean values or character strings denoting function
results or nonreducible applications.

12.1 The Machine and How It Basically Works

The secd i machine centers around an addressable memory that is partitioned
into three nonoverlapping sections C, E and H . These sections hold the ex-
ecutable program code, the runtime environment and the heap, respectively.
There is an explicit pointer pc – the program counter – to the instruction in C
that is being executed, and an explicit environment pointer pe to the topmost
frame of the current environment in E. The machine also has a value stack S
and a dump stack D for return continuations. A complete machine state is thus
described by a tuple

(pc, pe, S, E, C, D, H) .

C[ pc � instr ], E[ pe � frame ] and H [ pp � object ] respectively denote
an instruction in C referenced by pc, a frame in C referenced by pe, and a
heap object referenced in H by a pointer pp.

The pointers are in fact memory locations given as integer numbers from
an interval [ 0 . . . s − 1 ], where s is the size of the particular memory section
(which is either E, C or H). For the sake of simplicity we assume that all
instructions in C have unit length so that two consecutive instructions instr i
and instr (i + 1) can be found in memory locations pc i and pc i + 1, respec-
tively. Likewise, if pe points to a particular environment frame, then the i-th
entry of this frame is located at the address pe+i. Environment frames (which
occupy as many consecutive locations as there are entries) are dynamically
allocated in E as space can be made available; the same applies to the place-
ment in H of heap objects of varying size (of which those that are of primary
interest here are closures).

Code execution exactly mimics the control mechanism of conventional com-
puting machines: the code is traversed by advancing the program counter pc
step by step in increments of one, unless it is updated by a branch instruction
to point to some instruction other than the next one in sequence. Primi-
tive value-transforming instructions operate exclusively on the value stack S,
which is also used to prepare the arguments for function calls. Branching to
function code includes saving, in the form of a tuple (pc, pe), the return
continuation in the dump stack D. As its first action, the code of the called
function creates from the entries deposited by the calling function in S the ar-
gument frame it has to work with, prepends it to the calling environment in E
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identified by the current pointer pe, and uses the pointer to this new frame as
the new pe. Conversely, returning from a function call may be accomplished
simply by retrieving from the dump the topmost return continuation, which
implicitly also releases from the current environment the argument frame when
the pointer to it (which is held in pe) is overwritten.2

12.1.1 Some Semantic Issues

We will now introduce some semantic restrictions that are aimed at simplify-
ing the secd i machinery, as compared with the sasm of Sect. 10.4, and, in
consequence, the compilation of high-level programs to secd i code.

With regard to function calls, we demand that they be executable only
if the function’s arity matches the number of arguments supplied, and that
otherwise the computation be terminated with some string value denoting a
mismatch. In terms of al semantics as defined in section 3.2, this behavior
may be exemplified by means of a let expression as

eval� let f = lambda v1 . . . vn in e0 in (f e1 . . . em) �

=

⎧⎨
⎩

eval� e0[ v1 ←eval� e1 � . . . vm ←eval� em � ] if n = m,

”function f of arity n receiving m arguments” otherwise .

The string value returned in the case of mismatching arities becomes the
value of the entire program expression regardless of the nesting level at which
the mismatch occurs, i.e., it pops to top level.

This semantics ensures that whenever the code of an abstraction is called,
it finds exactly the right number of arguments in the right places of an ar-
gument frame; otherwise, code execution stops prematurely at the calling
instruction.

Also, weak normalization defines the values of unapplied abstractions to be
closures that associate the abstractions as they are to the environments that
instantiate their relatively free (or nonlocal) variables. However, unapplied
abstractions are not decompiled into high-level output but simply turned into
the anonymous string value ”function”, i.e., we have

eval� lambda v1 . . . vn in e0 � = ”function” ,

if lambda v1 . . . vn in e0 either is or, in the course of reducing a program expres-
sion, becomes the top-level expression, or it occurs as operand of a top-level
application that has the general form (e0 . . .lambda v1 . . . vn in ei . . .), where

2 Of course, the frame itself continues to exist in E, from where it may be garbage-
collected as soon as there exist no more references to it anywhere else, e.g., in
closures.
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e0 is something other than an abstraction; otherwise, eval reproduces the
abstraction as it is.

Apart from minor syntactical differences regarding the resulting string val-
ues, this is how almost all implementations of functional (or function-based)
languages treat applications of abstractions with mismatching arities and un-
applied abstractions in order to get around the problems of evaluating closures
(which may include the resolution of potential name clashes) and of decom-
piling function code.

To illustrate what happens when this semantics is used, consider the let
expression

let f = lambda u v w in (u (v w w) w) in e0 ,

where f represents an abstraction of arity 3. It evaluates to3

• 6 if e0 =s (f + + 2) since f is applied to the correct number of arguments;
• ”function f of arity 3 receiving 2 arguments” if e0 =s (f + +) since one

argument is missing, i.e., we have a partial application;
• ”function f of arity 3 receiving 4 arguments” if e0 =s (f + + 2 3) since

there is one argument too many;
• ”function” if e0 =s f since the abstraction f remains unapplied.

This semantics seems to rule out programming techniques that make use of
partial applications. However, we can work around this problem by switching
to curried representations of abstractions in conjunction with corresponding
nestings of applications.

For instance, if the above let expression is changed to

let fc = lambda u in lambda v in lambda w in (u (v w w) w) in e0 ,

it evaluates to

• 6 again if e0 =s (((fc +) +) 2) since each of the nested unary abstractions
is applied to just one argument;

• ”function fc of arity 1 receiving 2 arguments” if e0 =s ((fc + +) 2) since
the outermost unary abstraction is applied to two arguments;

• ”function fc of arity 1 receiving 2 arguments” if e0 =s ((fc +) + 2) since
the next to outermost unary abstraction is applied to two arguments (the
outermost abstraction is applied correctly);

• ”function” if e0 =s (fc +) or e0 =s ((fc +) +) since the next to outermost
or the innermost abstraction, respectively, remains unapplied, i.e., we have
the equivalent of partial applications.

Generally, we can have curried abstractions of any arity, as, for instance, in
the let expression

let h = lambda u1 u2 in lambda v1 v2 v3 in lambda w1 in eb in e0 .

3 The notation used for the string values closely resembles that of the scheme
variant DrScheme [PLTS96].
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It returns the value of the instantiated abstraction body expression eb if e0 =
(((h a1 a2) b1 b2 b3) c1), the value ”function” if one, two or all three of
these applications are dropped from outermost to innermost, and the value
”function h of arity n receiving m arguments” otherwise.

A more interesting example that involves applications of functions to func-
tions to compute (the equivalent of) new functions has already been exten-
sively discussed in Sect. 2.1. It concerns applications of the functions twice
and square, which in al notation may be specified as

let
twice = lambda f in lambda u in (f (f u))
square = lambda n in (∗ n n)

in e0 ,

where twice is now specified as a curried function. This expression pro-
duces the value ”function” if, for instance, e0 =s (twice square) or e0 =s

(twice twice) or e0 =s ((twice twice) square) and the value 65536 if
e0 =s (((twice twice) square) 2).

12.1.2 Index Tuples and the Runtime Environment

To support in our secd i machine the semantics as just defined, we have to
have a closer look at how we wish to internally represent binding structures and,
once we have settled this issue, how we go about constructing and accessing
the runtime environment.

To convey a basic idea of what needs to be done here, we consider as an
example the following al expression that is composed of two nested letrecs:

letrec
f = lambda u1 u2 in

letrec
g = lambda v1 v2 in

lambda w1 w2 in � . . . ( f v1 w2 ) . . . ( ( g u2 w1 ) u1 v2 ) . . . �
in � . . . ( ( g u1 u1 ) u2 u2 ) . . . ( f u1 u2 ) . . . �

in � . . . ( f 2 3 ) . . . ( f 3 2 ) . . . � .

This expression defines two functions, of which g is local to f . They are called
in the body expressions (following the key word in) of their defining letrecs,
recursively by themselves, and g also calls f . The formal parameters of the
functions have been chosen so that we have both local and nonlocal bindings,
i.e., the variables u1 and u2 bound in f occur (relatively) free in g.

The nesting of function definitions requires that a call of f must execute in
an empty environment, and that a call of g must execute in an environment
created by an application of f . Assuming that each lambda binder creates
another environment frame, we recognize that when f is called inside g, the
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environment for f may be found a distance of three intervening frames away
from the the topmost frame of the current environment. These are the frames
in which the lambda-bound variables (or parameters) u1, u2 of f and v1, v2

as well as w1, w2 of g are instantiated. Similarly, when f is called in f or g in
g, the respective environment is a distance of one or two intervening frames
away from the top of the current environment, and when f or g are called in
the bodies of their defining letrecs, the distances are zero.

This is to say that each individual occurrence of a function identifier, say
foo, can in an equivalent Λ-expression obviously be represented by a tuple of
the form [ f ind foo ], in which the index f ind specifies the distance, in terms
of intervenening lambdas, to the lambda that binds the function parameters.
We will therefore refer to this index as the lambda binding index or the distance
index.

In particular, occurrences of variables (or function identifiers) foo that are
letrec-bound, as in

letrec . . . foo = lambda u1 . . . un in eb . . . in e0 ,

can be transformed into tuples

• [ 0 foo ] if foo occurs free in the body expression e0 of the defining letrec,
with f ind = 0 indicating that this occurrence is outside the scope of the
abstractor lambda u1 . . . un;

• [ f ind foo ] with f ind > 1 if foo occurs inside eb at a distance of f ind
intervening lambdas away from lambda u1 . . . un.

Occurrences of tuples [ f ind foo ] in expressions must then be given the
following interpretation:

• [ 0 foo ] must link up to the environment of the calling function (or to the
environment of the defining letrec);

• [ f ind foo ] with f ind > 1 must be evaluated in the environment
obtained by descending f ind levels down into the current environment
(which may be obtained by dereferencing the current environment pointer
f ind times).

This can be expressed by means of a function

p′E = deref( f ind, pE )

that takes the current environment pointer pE and an index f ind to return
the desired environment pointer p′E .

A similar approach may be taken with lambda-bound variables as well, us-
ing the following convention: binders lambda u1 . . . un are, as in the abstract
machines of the preceding chapters, converted into sequences of n nameless
binders Λ . . . Λ︸ ︷︷ ︸

n

, and occurrences of a bound variable uk are replaced by index

tuples [ i j ] rather than by plain binding indices such that



12.1 The Machine and How It Basically Works 277

• i denotes the nesting level, or the binding distance, of the occurrence of [ i j ]
relative to the binding Λ-sequence, given by the number of intervening Λ-
sequences;

• j denotes the declaration position of the binder Λ within the binding Λ-
sequence, in terms of the number of intervening Λs in this sequence.

For instance, an expression

lambdai u(n−1) . . . uj . . . u0 in
� . . .lambda0 v(m−1) . . . v0 in � . . . uj . . . � . . . �

in which we assume to have i intervening lambdas between the uj that is
exposed in the body of the inner abstraction and the binding lambda trans-
lates into

Λ(n−1) . . . Λj . . . Λ0. � . . . Λ(m−1) . . . Λ0. � . . . [ i j ] . . . � . . . � .

When converting into this index tuple representation a curried lambda-abstraction
such as

lambda u1 u2 in lambda v1 v2 in lambda w in
� . . . v1 . . . u1 . . . w . . . v2 . . . u2 . . . � ,

we take the dots ‘.’ to syntactically separate from each other the Λ-sequences
that belong to different nesting levels and separate the innermost Λ-sequence
from the abstraction body to enable compilation to code that properly reflects
the nesting of abstractions. We thus obtain

ΛΛ.ΛΛ.Λ. � . . . [ 1 1 ] . . . [ 2 1 ] . . . [ 0 0 ] . . . [ 1 0 ] . . . [ 2 0 ] . . . � .

Here the distance indices 0, 1 and 2 of the index tuples respectively refer to
the inner Λs, to the Λs in the middle, and to the outer Λs.

To see how all this works out, consider as an example again the above
letrec expression. It translates into the index tuple representation

letrec
f = ΛΛ.

letrec
g = ΛΛ.ΛΛ.
� . . . ([ 3 f ] [ 1 1 ] [ 0 0 ]) . . . (([ 2 g ] [ 2 0 ] [ 0 1 ]) [ 2 1 ] [ 1 0 ]) . . . �

in � . . . (([ 0 g ] [ 0 1 ] [ 0 1 ]) [ 0 0 ] [ 0 0 ]) . . . ([ 1 f ] [ 0 1 ] [ 0 0 ]) . . . �
in � . . . ([ 0 f ] 2 3) . . . ([ 0 f ] 3 2) . . . � .

A typical environment as it unfolds when evaluating the above expression
is depicted in Fig. 12.1. It is composed, from the bottom up, of a single frame
for one call of the function f , followed by two frames for calls of the function
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g in f , followed by frames for several recursive calls of f out of the body of g,
followed by frames for several recursive calls of g out of f . Each frame includes
a link pointer to the preceding frame (or to the empty environment) and two
slots for argument values (which may also be pointers to nonatomic values
such as closures) with which the function parameters are instantiated.4
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Fig. 12.1. A typical runtime environment of the secd i machine

The structure of this environment is basically the same as in Fig. 7.7: it has
frames linked up in a cactus-like fashion that reflects the nesting of function
definitions. However, since the secd i machine is only weakly normalizing,
meaning that the semantics of the source language rules out partial applica-
4 The frames depicted by the boxes are inscribed with the functions that created

them, with g1 and g2 denoting the frames for the inner and outer applications,
respectively, of the function g.
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tions other than in the disguise of curried functions and function applications,
accessing the environment becomes decidedly simpler than in the fully nor-
malizing machines. The index tuple [ i j ] directly specifies, by means of the
distance index i, how many times the current environment pointer pe must
be dereferenced to arrive at the correct frame, and the declaration position
j specifies the offset relative to the base of the frame at which the entry to
be accessed is located. More precisely, and using the function deref , an index
tuple translates into a pointer to an environment location as

[ i j ] → deref( pe, i ) + j + 1

(the additional offset of one is due to the first entry of a frame being reserved
for the link pointer to the preceding frame).

We may convince ourselves that the index tuples [ f ind ff ] and [ i j ]
access the right frames and the right entries therein by looking at the body of
the function g of our example program and at the environment of Fig. 12.1,
which has the pointer pe pointing to a frame of g2. The function call of f in
the body of g comes with a distance index 3, meaning that the environment
of f can be found by dereferencing pe three times, which gets us to the empty
environment. Likewise, the call of g in this body comes with a distance index 2
that, when pe is dereferenced twice, correctly identifies the most recent frame
of f as its environment. Also, the index tuples [ i j ] with distance indices
0, 1 and 2 correctly refer to entries in the most recent frames of g2, g1 and
f , respectively, which may be validated by relating the index tuples to the
lambda-bound variables they replace.

12.2 The secd i Instruction Set

The instructions that are of primary interest here are again those that handle
function calls, parameter passing and the construction of the environment. A
formal definition of these instructions in terms of the usual state transition
function

τsecd i : (pc, pe, S, E, C, D, H) → (pc′, pe′, S′, E′, C, D′, H ′)

is given in Fig. 12.2.5

From top to bottom, we have the following instructions:

push s atom pushes an atomic value or a pointer, say to function code or to
a closure, onto stack S;

copy es i j accesses the j-th entry in the i-th frame relative to the top of
the current environment and copies it on top of stack S;

5 Note that the code structure C is the only one that never changes since it is a
static structure that is traversed by the instruction counter pc.
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( pc, pe, S, E, C[ pc � push s atom ], D, H )
→ ( pc + 1, pe, atom : S, E, C[], D, H )

( pc, pe, S, E[ deref( pe, i) � ppf : se1 : . . . : se(j+1) : . . . sen ]
C[ pc � copy sc i j ], D, H )

→ ( pc + 1, pe, se(j+1) : S, E[], C[], D, H )

( pc, pe, ppf : se1 : . . . : sen : S, E, C[ pc � mkframe n ], D, H )
→ ( pc + 1, pe′, S, pe′ � ppf : sen : . . . : se1 : E, C[], D, H )

( pc, pe, true | false : S, E, C[ pc � brc p t p f ], D, H )
→ ( p t | p f, pe, S, E, C[], ( pc + 1, pe ) : D, H )

( pc, pe, S, E, C[ pc � bsr p f ], D, H )
→ ( p f, pe, S, E, C[], ( pc + 1, pe ) : D, H )

( pc, pe, S, E, C[ pc � args n ], D, H ) → ( pc + 1, pe, S, E, C[], D, H )

( pc, pe, p f : S, E, C[ pc � ap r, p f � args n, . . . ], D, H )

→
{

( p f, pe, S, E, C[], ( pc + 1, pe ) : D, H ) if n = r
( −,−, [ mm, p f, r ],−,−,−,− ) if n �= r

( pc, pe, S, E, C[ pc � ret ], ( ppc, ppe ) : D, H )
→ ( ppc, ppe, S, E, C[], D, H )

( pc, pe, S, E, C[ pc � link h ], D, H )
→ ( pc + 1, pe, deref( pe, h ) : S, E, C[], D, H )

( pc, pe, S, E, C[ pc � mkclos h p f ], D, H )
→ ( pc + 1, pe, p clos : S, E, C[], D, p clos � [ deref( pe, h ), p f ] : H )

( pc, pe, p clos : S, E,
C[ pc � ap r, p f � args n, . . .], D, H [ p clos � [ pp, p f ] ] )

→
{

( p f, pp, S, E, C[], ( pc + 1, pe ) : D, H [] ) if n = r
( −,−, [ mm, p f, r ],−,−,−,− ) if n �= r

Fig. 12.2. The definition of the secd i machine instruction set

mkframe n is expected to find on top of stack S a pointer ppf to an environ-
ment and n value entries sej underneath, from which it creates another
environment frame in E (with the order of entries reversed), and returns
the pointer pe′ to this frame as the new environment pointer;

brc pt pf realizes a two-way conditional branch, as typically needed to im-
plement if then else clauses: depending on the Boolean value found on
top of stack S, code execution continues at either the pointer pt or the
pointer pf , and in the dump it saves as return continuation the tuple
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(pc, pe) that becomes effective after having completed the code for either
the consequent or the alternative;

bsr p f realizes a function call: it branches unconditionally to function code
and again saves in the dump the return continuation (pc, pe);

args n is a pseudoinstruction that has no effect; it is the very first instruction
of some function code that specifies the function’s arity;

ap r in conjunction with a pointer p f to function code on top of stack S
branches to this code if the arity given by its first (pseudo)instruction
equals the number r of arguments supplied and saves a return continuation
in the dump; otherwise, it issues as a value on stack S a triple of the form
[ mm p f r ] to signify a mismatch and terminates the computation;

ap r in conjunction with a pointer p clos to a closure on top of stack S
branches to the code of the closure’s function if its arity equals the number
r of arguments supplied, saves a return continuation in the dump D, and
takes over from the closure the new environment pointer; otherwise, it
issues the same mismatch triple as above;

ret returns from one of the branches of an if then else clause or from a
function call, taking off the top of the dump stack D the program counter
pc and the environment pointer pe with which the computation needs to
continue;

link h dereferences h times the current environment pointer and pushes the
pointer thus obtained on top of stack S as the link pointer of a new frame
whose entries are assumed to have been stacked up underneath;

mkclos h p f creates in the heap H a closure from a pointer p f to function
code and an environment pointer obtained by dereferencing h times the
current environment pointer pe; the pointer to this new closure is pushed
on top of stack S.

In addition, there is the usual set of parameterless arithmetic | logic | relational
instructions, which take their arguments off and push their result values onto
stack S, as in the se(m)cd machines described in Chap. 5.

We also have entry and exit instructions that respectively initialize the
runtime structures and in a regular fashion terminate the machine.

A regular terminal state is reached when pc points to an exit instruction.
This state may have as the weak normal form of a program expression either
(a pointer to) a basic value (or ground term) or a pointer to a closure on the
value stack S. Basic values are directly taken as output, closures produce as
output the string ”function”. Premature termination with an ap r instruction
in the case of mismatching arities leaves a triple [ mm p f r ] on stack S (all
other components of the machine state become irrelevant) that translates into
the output ”function f of arity n receiving r arguments”, where n is retrieved
from the (pseudo)instruction args n to which p f points.
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12.3 Compilation to secd i Code

Compiling al expressions to secd i code may be defined again by a top-level
compilation scheme

C[ e : es ] =⇒ code[ e ]; C[ es ]

that applies to some syntactically complete head expression e and to some tail
es in which may accumulate expressions to be compiled later on. The expres-
sions are assumed to have been turned into index tuple representation by a
preprocessor. The subset of preprocessed al expressions in the compilation of
which we are primarily interested is:

e = const | [ f ind ff ] | [ i j ] |
if e0 then e1 else e2 |
(e0 e1 . . . er) | Λ . . . Λ︸ ︷︷ ︸

n

.eb |

letrec f1 = e1 . . . fm = em in e0 ,

i.e., we have to deal with constant values (including pointers to function codes
or to closures), occurrences of index tuples for letrec defined function iden-
tifiers and for lambda-bound variables, conditionals, r-ary applications, n-ary
abstractions, and letrec constructs for mutually recursive function definitions.

The set of compilation rules is given in Fig. 12.3.
The compilation of all expressions that do not directly involve abstractions

follows basically the same rules as those of the abstract machines described
in Chaps. 9 and 10. Constant values (and pointers) are pushed onto stack
S (rule (1)), index tuples translate into instructions that copy environment
entries on top of stack S (rule (2)), if then else clauses compile to code that,
depending on the value of the predicate, branches conditionally to the code of
either consequent or alternative (rule (3)), applications have their operands
evaluated before the operators are applied to them (rule (4)), and letrecs
compile to code for their body expressions followed by codes for the individual
functions that are generated by another compilation scheme F . These codes
are referenced by symbolic pointers that, for identification purposes, carry the
function identifiers as subscripts (rule (5)).

An abstraction occurring in operator position of an application with match-
ing arity, after the pointer to the current environment has been pushed onto
S, has its code called through a bsr instruction (rule (6)). Nonmatching ar-
ities are rejected in this context. If an abstraction occurs anywhere else, say
in an operand position of an application, it is simply wrapped up in a closure
(rule (9)). The code for the abstraction itself is compiled by F .

A function identifier tuple [ h ff ] for a letrec-defined function, when it
occurs in operator position of an application, compiles to a call of the function
code in the environment given by the frame index h, provided the arities match
(rule (7)). A closure is created if such a reference occurs anywhere else (rule
(10)). Thus rules (6) and (9) are essentially the same as rules (7) and (10),
respectively, except for the environments to which the function calls link up
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(1) C[ const : es ] =⇒ push s const; C[ es ];

(2) C[ [ i j ] : es ] =⇒ copy es i j; C[ es ];

(3) C[ if e0 then e1 else e2 : es ] =⇒ C[ e0 ]; brc pt pf ; C[ es ];
pt � C[ e1 ]; ret; pf � C[ e2 ]; ret;

(4) C[ ( e0 . . . er−1 er ) : es ] =⇒ C[ er ]; C[ er−1 : . . . : e0 : apr : es ]

(5) C[ letrec f1 = e1 . . . fm = em in e0 : es ] =⇒ C[ e0 ]; C[ es ];
pf1 � F [ e1 ]; . . . ; pfm � F [ em ];

(6) C[ Λ . . . Λ︸ ︷︷ ︸
r

.eb : apr : es ] =⇒ link 0; bsr pf ; C[ es ];

pf � F [ Λ . . . Λ︸ ︷︷ ︸
r

.eb ]

(7) C[ [ h ff ] : apr : es ] | ff = Λ . . . Λ︸ ︷︷ ︸
r

.eb =⇒ link h; bsr pff ; C[ es ];

(8) C[ e0 : apr : es ] =⇒ C[ e0 ]; ap r; C[ es ]

(9) C[ Λ . . . Λ︸ ︷︷ ︸
r

.eb : es ] =⇒ mkclos 0 pff ; C[ es ];

pff � F [ Λ . . . Λ︸ ︷︷ ︸
r

.eb ];

(10) C[ [ h ff ] : es ] =⇒ mkclos h pff ; C[ es ];

(11) F [ e ] =⇒
{

args r; mkframe r; C[ eb ]; ret; if e = Λ . . . Λ︸ ︷︷ ︸
r

.eb

args 0; C[ e ]; ret otherwise

Fig. 12.3. Compiling an al kernel to secd i code

and for the fact that in the latter cases the function codes are compiled in
other contexts.

Applications that have expressions other than abstractions or direct ref-
erences to them in operator position have these expressions compiled by C,
followed by the instruction ap r (rule (8)). This instruction takes care of the
general case in which functions of matching or mismatching arity or something
other than functions may end up in this position eventually.

Finally, rule (11) defines the compilation scheme F that enters the game
whenever abstractions have to be turned into code. This code begins with
the instructions args and mkframe, followed by the code compiled by C for
the abstraction body (which may or may not be another abstraction), and
terminates with ret to return to the calling code. The special case where F
is applied to something other than an abstraction is, for reasons of consistency
with the context in which the code may be called, treated as an abstraction
of arity 0.
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As an example, we consider again the letrec expression on p. 277 to
show how the function g compiles. In order to cover both the special cases of
matching arities between functions and applications and the general case of
unknown function arity, the function body has been slightly modified to

g = ΛΛ.ΛΛ.( ( [ 3 f ] [ 1 1 ] [ 0 0 ] ) ( ( [ 2 g ] [ 2 0 ] [ 0 1 ] ) [ 2 1 ] [ 1 0 ] ) ,

i.e., the applications of f and g have become the operator and operand of
another application that constitutes the body of the inner abstraction of g.

Compiling the entire letrec under which the function g is defined calls
for rule (5) of Fig. 12.3, which in turn calls rule (10) to apply the scheme F
for generating function code referenced by a newly created pointer pg1 as

pg1 � F [ ΛΛ.ΛΛ.( . . . ) ] .

F applied to the outer abstraction yields

pg1 � args 2; mkframe 2; mkclos 0 pg2; ret;

and behind the newly created pointer pg2 another call of F compiles the inner
abstraction to

pg2 � args 2; mkframe 2; C[ ( . . . ) ]; ret; .

The first step of applying C to the remaining abstraction body calls for rule
(4) that swaps operator and operand of the outermost application to apply C
recursively as

C[ ( ( [ 2 g ] [ 2 0 ] [ 0 1 ] ) [ 2 1 ] [ 1 0 ] ) ]; C[ ( [ 3 f ] [ 1 1 ] [ 0 0 ] ) : ap1 ] .

Application of rules (4), (7) and (8) to the operand expression generates the
code

copy se 1 0; copy se 2 1;
copy se 0 1; copy se 2 0; link 2; bsr pg1; ap 2;

C[ ( [ 3 f ] [ 1 1 ] [ 0 0 ] ) : ap1 ]; .

Here we have the interesting case where the application of the outer abstrac-
tion of g (to which pg1 points) can be implemented as a bsr pg1 instruction
since the compiler can decide that the arity of the abstraction is the same as
that of the application, but the application of the inner abstraction (to which
pg2 points) must be implemented with the instruction ap 2 since at compile
time nothing is known about the arity of the function returned in the operator
position (if it is a function at all).

The same applies to the remaining compilation steps: the application of
f to two arguments can be compiled to a bsr pf instruction, using rule (7),
whereas it is not known at compile time whether what is returned by this
application is a function of arity one, hence the instruction ap 1 that is set
up by rule (8) for the outermost application:
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copy se 1 0; copy se 2 1;
copy se 0 1; copy se 2 0; link 2; bsr pg1; ap 2;

copy se 0 0; copy se 1 1; link 3; bsr pf ; ap 1; .

Thus the complete code for the function g looks like this:

pg1 � args 2; mkframe 2; mkclos 0 pg2; ret;

pg2 � args 2; mkframe 2;
copy se 1 0; copy se 2 1;

copy se 0 1; copy se 2 0; link 2; bsr pg1; ap 2;
copy se 0 0; copy se 1 1; link 3; bsr pf ; ap 1; ret; .

To convince ourselves that this code does what we expect it to do, consider the
branch instruction bsr pg1 in the third line of the code to which pg2 points.
It is preceded by two copy se instructions and a link instruction that push
arguments and a link pointer onto stack S. Upon entering the code referenced
by pg1, a new frame made up from the three entries just deposited in S is
added to the current environment, a closure including this new environment
is created for the code referenced by pg2, and the pointer to it is pushed onto
stack S. Following this, control returns to the calling code and continues. The
instruction to be executed next is ap 2 that takes the closure pointer off the
top of stack S, pushes its environment pointer onto S and attempts to apply
the function code referenced by the pointer pg2 held in the closure. Since the
function’s arity as specified by the pseudo-instruction args 2 matches the
parameter 2 of ap (which also implies that in S there are two valid arguments
underneath the environment pointer), execution proceeds correctly with the
code referenced by pg2. The first action of this code is to add another frame
of two argument entries to the current environment, i.e., we have two frames
linked up to each other as depicted in Fig. 12.1 that hold instantiations of the
variables that are lambda-bound in the function g.

Replacing the parameter of the instruction ap by some value r �= 2 would
terminate the computation with the value ”function of arity 2 receiving r
arguments”, any instruction other than ap r following bsr pg1 would simply
leave the closure pointer on S untouched.

12.4 Summary

The secd i machine is a code-executing abstract machine for functional lan-
guages with an applicative order (or strict) semantics. The machine is weakly
normalizing, meaning that substitutions do not penetrate, and no evaluation
takes place in, abstraction bodies. Abstractions are internally represented as
closures, and closures that cannot be applied anywhere are converted into the
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anonymous output value ”function”. Abstractions may be curried and may
have arities greater than one, but they (or, more precisely, the respective clo-
sures) can be applied successfully only to matching numbers of arguments.
Applications of closures may return closures as values. Mismatches terminate
the computation with a message signifying the cause of the problem. The ma-
chine is therefore a perfect vehicle for implementing functional languages such
as ml or scheme that both feature an applicative order (or strict) semantics
and excatly the same treatment of mismatching function applications.

As the name indicates, the machine is more or less a direct descendant
of the classical secd machine of Chap. 5 as it employs the same runtime
structures, but uses them in a slightly different form. Very much like a con-
ventional computing machine, it features a program counter pc, a pointer pe to
the current environment, and a dump D that stacks up return continuations
of function calls as tuples (pc, pe). The value stack S, other than accommo-
dating pointers to closures rather than the closures themselves, is basically
the same as in the original secd machine.

The most important instructions of the machine are those that create and
apply closures, or – as shortcuts – branch directly to function code, set up
argument frames for function calls, link them up to the calling environments
and return from function calls.

Compiling high-level functional programs to secd i code is preceded by a
preprocessing phase that turns occurrences of

• identifiers ff of letrec-defined functions into tuples [ h ff ] that pair
these identifiers with indices h identifying the environments in which the
function codes need to be executed;

• lambda-bound variables into index tuples [ i j ] of which the distance index
i identifies in the current environment the frame and the declaration index
j identifies the entry in the frame by which the variable occurrence must
be substituted.

The compiler translates these tuples directly into instructions that respec-
tively create closures and copy environment entries on top of stack S.

The differences compared with the sasm of Sect. 10.4, whose kernel is also
an strictly evaluating and weakly normalizing code-executing machine, are
due primarily to the internal representation of functions (abstractions) and
the ensuing construction of the environments. The sasm works with closed
contexts resembling supercombinators (which typically are entire letrec ex-
pressions) and accordingly splits the environments for evaluating abstraction
bodies up into individual frames for instantiations of locally and nonlocally
bound variables. Accesses to the environment derive from two different sets of
binding indices that define static offsets into each of these frames. This con-
trasts with the secd i machine that works with open abstractions wrapped
up in closures. The ensuing environment is a linked list of frames of which
what is currently the topmost frame holds instantiations of the variables that
are locally bound in the function code that is currently executed, and in-
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stantiations of the nonlocal variables are spread out over the frames that are
underneath. Thus, what is packed into one frame for nonlocals in the sasm
may take several linked frames in the secd i machine.
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13

Imperative Abstract Machines

Throughout the preceding chapters we have looked at several abstract ma-
chines that evaluate expressions of an applied λ-calculus, a syntactically sug-
ared version of which is our algorithmic language al of Chap. 3. The differ-
ences among these machines basically concern weak versus full normalization
of λ-expressions and, related to that, the treatment of partially applied or
unapplied abstractions, applicative order (operands-first) versus normal order
(operands-when-needed) evaluation, and interpretation versus code execution.

These machines employ environments to delay substitutions of formal by
actual function parameters until it becomes necessary to do so. The environ-
ments associate λ-bound variables to the values (or representations of values
in the form of closures or suspensions) by which they need to be substi-
tuted. However, the environment is not visible to the programmer, meaning
that she/he has no means available of inspecting and explicitly manipulating
it. Conceptually, variables are their own values; they may be substituted by
but do not represent other values. Environment entries may only be created,
copied and released, but they can never have their values changed. This prop-
erty guarantees referential transparency since nothing can be done that could
have an effect somewhere else. Computations based on this notion of a hidden
environment are therefore said to be independent of an explicitly changeable
state. They are oriented toward computing the values of expressions rather
than effecting state changes, say, to memorize something that could be used
in another context later on.

The classical model of imperative programming and program execution con-
stitutes a radical departure from this approach as the essence of computing
here is to effect sequences of elementary state (or environment) changes, ex-
plicitly specified by the programmer, that transform step by step some initial
into a terminal state. In short, programs are executed for their effects (on
the environment) rather than for computing values. This concept primarily
reflects itself in another perception of variables: they behave like containers
(or boxes) whose contents may be modified by assignment statements. Alter-
natively, we may say that variables represent values, and assignments change
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these values. Several such assignments may be made in succession to the same
box variables.

Closely related to assignments is the notion of reference parameters. They
are used by abstractions called procedures to effect changes in their calling
environments. Procedure calls must have these parameters substituted by
variables defined in surrounding contexts (which may have to be specifically
annotated as pointers to the values they represent). Assignments made to ref-
erence parameters inside procedure bodies update the values hidden behind
these actual variable parameters. A procedure may thus be called in different
contexts with different variable parameters.1

Some imperative languages, e.g., pascal, also support the notion of func-
tions that explicitly return values to their calling contexts by assignments
to the function identifiers. However, this distinction is somewhat misleading
since functions may also have reference parameters that may or may not be
used for environment updates, i.e., such functions are in fact procedures as
well. In the following, we will therefore uniformly refer to abstractions in the
imperative world as procedures, keeping in mind that functions are just spe-
cial cases of procedures that do not have (or make assignments to) reference
parameters and produce explicit return values.2

With assigments and procedures that are to perform explicit environment
updates, we end up with a degenerate form of the λ-calculus in which vari-
ables have lost their status as first-class objects: as before, they may occur
as actual parameters (or in operand positions) of procedure calls, but what is
substituted for the formal parameters are the values they represent, not the
variables themselves, and procedures cannot return variables by assignments
to other variables.

For the same reason, we may not have the equivalent of full normaliza-
tion either. There is no way for partially applied (or unapplied) procedures
to perform any useful computations since there would be no valid values for
the uninstantiated formal parameters. This has led to defining for all known
imperative languages a semantics which demands that procedures be legiti-
mately applied to full sets of operands (or actual parameters) only, though this
restriction is unnecessarily severe. There is nothing conceptually that stands
in the way of turning partial applications into closures and passing them along
as procedures of lesser arities. The decision not to support such closures is
largely of a pragmatic nature as it simplifies the implementation on an under-
lying abstract or real machine, specifically the compilation to executable code
and the structure of the runtime environment. Though this in fact rules out
the computation of new from existing procedures, there is at least a mecha-
1 Assignments may also be made directly to nonlocal variables if a procedure is

used in just one context.
2 Interestingly enough, in a predominantly function-based language like scheme,

all abstractions are called procedures, whereas in an imperative language like C,
all abstractions are called functions.
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nism available by which procedures may be parameterized by other procedures
passed along as operands. This mechanism must inevitably employ something
akin to closures since actual procedure parameters must carry with them the
environments in which nonlocal variables are instantiated.

The ensuing programming style is called procedural (or imperative) since
it is primarily concerned with organizing computations as sequences of state
changes effected by procedures and assignments that, loosely speaking, must
ensure that the right things (data values) are in the right places (boxes) at
the right times (or states of program execution). Thus, programming is not
just a matter of specifying what is to be computed, as with an expression-
oriented language such as al, but to a large extent also a matter of detailing
how, on a rather granular level, the computation must be performed in terms
of interactions with the environment and of the causes and (side)effects that,
beyond purely logical dependies, may thus be introduced among individual
operations. However, as we will see later in this chapter, an abstract machine
that supports this programming model looks surprisingly similar to the func-
tional abstract machine of the preceding chapter, merely requiring a few more
instructions to deal with explicit updates to environment entries.

13.1 Outline of an Imperative Kernel Language

Other than using assignment statements and procedures instead of functions,
programs of high-level imperative languages such as for instance pascal,
modula or C are basically constructed in the same way as al programs.

They are composed of sets of procedure declarations and statement blocks.
A procedure is an abstraction consisting of a header and a body. The header
defines a procedure name (or identifier) and a list of formal parameters that
typically includes one or more of the aforementioned reference parameters.
The body specifies, either as a single compound statement or as a sequence
of statements embedded in a block, the computation to be performed by the
procedure or, more precisely, its effect on the environment. In some of the
languages, e.g., pascal or modula, statement blocks may be preceded by
definitions of locally used procedures, which permits the unbounded nesting of
such definitions. Other languages such as C permit just one level of (or flat)
procedure declarations.

The main program is itself a procedure with a unique header and a body.
The scopes of variables declared in the header of a procedure stretch over

its entire body. The same applies to local variable and procedure definitions
within a body. With respect to these definitions, we have the same scoping
rules as in the λ-calculus.

A statement block may include multiple assignments to local variables, to
global variables declared in an enclosing procedure and to reference param-
eters declared in the header. It may also include an assignment of a return
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value to the procedure identifier, which is usually the last (or the only) one
of the block.

Almost all imperative languages are statically typed, using a monomorphic
type system; formal parameter and local variable declarations must include
explicit type specifications. Programs are executable only if they are well typed.
However, in this chapter we will largely ignore typing and simply assume that
all programs under consideration have successfully passed type checking.

The syntax of a simple imperative kernel language il that we will use in
this chapter is given in Fig. 13.1. It has intentionally been chosen to resemble
the syntax of al (see p. 40) rather than the traditional syntax of impera-
tive languages, to expose more clearly some of the similarities of program
construction and also of compiling il programs to abstract machine code.

program =s main = body

body =s { statements } |
defs procedures in body |
bind vars in body

procedures =s procedure | procedures; procedure

procedure =s proc proc id = sub form pars in body

statements =s statement | statements; statement

statement =s var := expr | ∗ var := expr | proc call |
if expr then statements else statements

expr =s const | var | ( un op expr ) | ( bin op expr 1 expr 2 ) | proc call

form pars =s par | form pars par

par =s var | ∗ var

proc call =s ( proc id act pars )

act pars =s act par | act pars act par

act par =s &var | expr

Fig. 13.1. The syntax of a simple imperative kernel language il

From top to bottom, this syntax breaks down as follows.
A program is a main procedure with a body. A body may be a block of

statements, a sequence of procedure definitions preceded by the keyword defs
and followed by a body, or a bind construct for the definition of local variables
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in a body. The defs construct is equivalent to a letrec expression of al in
that it may be used to define mutually recursive procedures (of which at least
one should be called in its body), the bind construct bears some resemblance
to the let expression of al in that it assigns values to the variable occurrences
bound by it, but it does so from within the body.3

A procedure definition is preceded by the keyword proc. The left-hand side
of the defining equation gives the procedure a name (or identifier) proc id, the
construct on the right that is preceded by the keyword sub replace the lambda
abstractions of al: its binds the formal parameters specified in the sequence
form pars in the procedure body. The keyword sub denotes an abstractor
that signifies naive substitution of the variable occurrences it binds by actual
parameters. If the variables happen to be reference parameters, they may also
be used to effect updates in the environment.

The statements which do the actual computing include assignments of ex-
pression values to variables, procedure calls, and if then else clauses whose
consequents and alternatives are again sequences of statements. Expressions
may be constants, variables, applications of unary and binary operators, and
procedure calls that return values.

This is basically what we need to know about the construction of il pro-
grams to design an abstract machine that executes them. What follows next
in Fig. 13.1 are just the nitty-gritties of parameter declarations and of the
actual parameters for procedure calls.

Formal procedure parameters form pars may be value parameters, denoted
as ordinary variables var or reference parameters denoted as ∗var. Procedure
calls have the identifiers proc id applied to sequences of actual parameters.
These parameters are either expressions substituting for value parameters or
pointer variables, denoted as &var, which substitute for reference parameters.

As stated at the beginning of this chapter, the semantics of imperative
languages does not support partial applications. Procedures must be applied
to exactly as many operands (of compatible types) as there are formal param-
eters. However, most imperative languages permit procedures to be passed
as procedure parameters, with a similar effect: a calling procedure may be
specialized to perform different computations depending on the procedures
by which these parameters are instantiated. A procedure passed as parameter
to another procedure, of course, must carry along the environment for the in-
stantiation of its nonlocal variables in order to execute correctly in the calling
procedure’s body. However, as the mechanism to this effect is basically the
same as in Sect. 12.1.2, we can forgo looking at procedure parameters since
it adds nothing new and keeps the description of the abstract machine that
follows in Sect. 13.3 focussed on the essentials.

Like almost all imperative languages, il is assumed to have a call-by-value
semantics (or an applicative order semantics in λ-calculus terminology). Calling

3 Multiple assignments within a statement block to the same variable may be equiv-
alently expressed in purely functional form as nestings of let expressions.
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a parameter by value means that an operand value must be substituted di-
rectly, calling it by reference means that the procedure must receive a pointer
(a reference) to an operand value. Calling a parameter by reference may imply
sharing a single value between several pointer occurrences.

13.2 An Example of an il Program

For the sake of a simple but nontrivial example program we add to our kernel
language arrays of basic values of the same type, denoted as

vec =s< a 1 . . . a i . . . a n > ,

and selector operations vec[ i ] that, when occurring on the left-hand side
of an assignment statement, update the i-th array entry with the value of
the expression on the right-hand side and, when occurring in an expression,
represent the value of the i-th array entry a i.

Arrays are composite objects and thus prime candidates for being passed
to procedures as reference parameters for in-place updating.4

Perfect examples of programs that use reference parameters derive from
algorithms that sort the elements of an unsorted array of numbers, say, in
monotonically ascending order. The least sophisticated of these algorithms is
bubble-sort which works like this: the array is traversed from left to right (or
in the direction of increasing index i) and numbers are swapped if the one
in position i happens to be greater than the one in position i + 1. In the
first pass through the array the greatest number thus moves step by step to
the right (or into the highest index position n) but the numbers in all other
positions remain unsorted. Another such pass through the array that ignores
the last element (or the largest number) brings the second largest number to
the right, and so on. Thus, if the array contains n numbers, it takes n − 1
passes to sort the entire array, with the i-th pass extending over the leftmost
n + 1 − i numbers only.

Figure 13.2 shows how this algorithm may be implemented as an il pro-
gram. It uses three procedures nested inside each other. The outermost defs
construct defines a tail-recursive procedure sort that merely controls the n−1
sorting passes through an n-ary array. This procedure receives as reference pa-
rameter the array to be sorted and as value parameter the length of the array.
It recursively calls the procedure bubble, defined by another defs construct
local to sort, that does the actual sorting. The array is passed on to bubble
again as a reference parameter; the parameter i specifies the actual index po-
4 For performance reasons it is advisable to pass all composite objects by reference,

even if they are not modified by the procedure. The difference in runtime com-
plexity becomes evident when considering an n ∗ m matrix: it takes one unit of
time to pass it by reference but n ∗ m units of time to pass it by value.
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sition. Depending on the outcome of the comparison, bubble calls yet another
procedure swap, defined local to it, that simply flips the two elements.5

main = bind lvec in
defs

proc sort =
sub n ∗ vec in

bind i in
defs

proc bubble =
sub i ∗ vec in

bind j in

defs

proc swap =
sub i j in

bind temp in {
temp := ∗vec[ i ];
∗ vec[ i ] := ∗vec[ j ];
∗ vec[ j ] := temp
}

in { if ( gt i n )
then j := ( + 1 i );

if ( lt ∗ vec[ i ] ∗ vec[ j ] )
then ( swap i j )
else nop ;
( bubble j ∗ vec )

else ( sort ( − 1 n ) ∗ vec )
}

in { if ( gt 1 n )
then i := 1;

( bubble i ∗ vec )
else nop

}
in { lvec := < 5 4 9 8 1 6 3 2 7 >;

( sort &lvec 10 )
. . .

}
Fig. 13.2. An il implementation of the bubble-sort algorithm

The main program is a bind construct for the variable lvec, with the
nested defs constructs as its body. The statement block of the outermost
defs makes an assignment to lvec of the array that is to be sorted and then
applies the procedure sort to the pointer &lvec and to the actual number of
elements in the array, which is 10 in this particular case.
5 Note that the alternatives of two of the if then else clauses use the primitive
nop for no operation.
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The important point here is that, throughout the entire program run, there
exists only this one copy of the array to which &lvec points. This pointer, not
the array itself, is replicated when passing it from the procedure sort to bubble
and further on to swap. That is to say, the array can be sorted completely
in place, i.e., without ever producing a new (updated) copy of it, thus saving
both memory space and execution time.6 Assuming that the elements of the
array are held in consecutive locations of the addressable memory, individual
array elements vec[ i ] | 1 ≤ i ≤ n may be accessed simply by adding the
index i to this pointer.

However, in-place updating cannot be had if arrays, or other composite
objects for that matter, with different element values have to coexist in the
course of executing a program. But it is then the programmer’s responsibility
to explicitly create and manage these different versions of the same objects,
as opposed to al, where this is none of her/his concerns.

13.3 The Runtime Environment

A good starting point for the design of an imperative abstract machine, in the
following abbreviated as iam, is the secd i machine of the preceding chapter.
Both machines share support for a call-by-value semantics that, in λ-calculus
terminology, is only weakly normalizing, and abstractions can only be applied
to full sets of actual parameters (or arguments).

We remember that the secd i machine features a code structure C tra-
versed by a pointer pc, an environment structure E with a top pointer pe, a
value stack S, a dump D for return continuations of function calls, and a heap
H . They are the structures that need to be included in the iam as well, the
question is how this should (or could) be done most appropriately.

Looking first at the environment E, we are faced in the case of the secd i
machine with the necessity of realizing it as a cactus structure of argument
frames for function calls. This is a consequence of wrapping partially applied
or unapplied functions in closures that carry along with them the associated
environments. As these closures may hold on to their environments beyond
the function calls that created them, there is no way of releasing them until
the closures have also ceased to exist.

The situation is quite different with the iam. Here we have by definition no
partial applications and hence no closures to support. There are only the spe-
cial cases of procedure parameters that need to carry along the environments
for their nonlocal variables to be taken care of. Now, since these environments
are either the same or earlier environments of the calling procedures and the
actual procedure parameters are applied in the calling procedure’s statement
6 Some print procedure following the call of sort in the outermost statement block

and applied to &lvec (which is not shown) would print the sorted array on an
output medium.
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blocks, we can be sure that no environment frame needs be kept beyond the
lifetime of the procedure call that brought it about. Environment frames may
therefore be released in reverse order of creation, following a last-in-first-out
(or lifo) discipline, with the pleasant consequence that the environment can
be realized as a stack in which frames can be packed densely on top of each
other.

This would leave us with three stacks E, D and S that are getting involved
in procedure calls. Following secd i machine ritual, the calling procedure would
first build an argument frame in S, entering the called procedure would then
push the tuple (pc, pe) of the current program counter | environment pointer
pair onto the dump stack D, and move the argument frame from S to what
has now become a stack E, whereupon the called procedure would use S as
a working stack for local variable instantiations and temporaries. However,
since these items could be removed in reverse order upon returning from a
procedure call, the three stacks may, as a matter of economy, be merged into
a single runtime stack, just as in the G-machine of Chap. 9.

With this in mind, we can now define the iam as comprising

• a code structure C that holds, as a sequence of iam instructions, the entire
program code;

• a program counter (pointer) pc that identifies the instruction currently
executed from C;

• a runtime stack S that holds what we will refer to as activation records of
procedure calls, of which each is composed of an argument frame, a return
continuation and a workspace for local variables and temporaries;

• a stack pointer ps pointing to the current top of stack S;
• a pointer pe to the environment deeper down in stack S of the procedure

call that is currently active;
• a heap H for nonatomic values such as arrays, records etc.

That is, a state of the iam is described by a six-tuple ( pc, ps, pe, S, C, H ).
As in the secd i machine, the code and the stack are held in nonover-

lapping sections of addressable memory; all instructions and stack entries are
assumed to have unit length. Stack entries are either basic values or pointers
deeper down into the stack or into the heap. Following standard convention,
the stack is assumed to grow toward lower addresses, and the stack pointer
ps points to the next (empty) entry to be filled by a push operation.

An important issue of working with just a single runtime stack concerns
the problems of how we must

• arrange the various entries within an activation record so that they can be
conveniently accessed, using fixed offsets relative to some reference position
within the record;

• dynamically link the activation records in their order of creation;
• statically link the activation records in compliance with the nestings of

procedure definitions in the source program in order to be able to access
instantiations of nonlocal variables.
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Because of the sequence of actions that bring them about, there is not
much of a choice as to where we have to place argument and workspace frames
relative to each other, but there is some degree of freedom in deciding how
activation records need to be linked up to each other, where to put the link
pointers, and relative to which point of reference we wish to address record
entries.

In the following, we will discuss two possible solutions to this problem
that basically differ with respect to the linking of activation records and, in
consequence, to their layout.

13.3.1 Using Static and Dynamic Links

The first solution uses both static and dynamic links to connect the activation
record of a procedure call to its own environment and explicitly to the environ-
ment of the calling procedure, respectively. The dynamic link, together with
the program counter value at the point of a procedure call, in fact constitutes
the return continuation of that call.

Figure 13.3 shows conceivable stack configurations with statically and dy-
namically linked activation records before and after a procedure f calls an-
other procedure g. Both f and g are assumed to be locally defined on the
same level under another procedure h. On the left, we have just the activation
record of f on top of the activation record of h. At the lower end of the record
of f (which is at higher addresses) we have an argument frame, and on top of
it, a dynamic link dlink f followed by a static link slink f , both of which in
this particular case point to the activation record of h and, more specifically,
to the static link entry slink h therein. The current environment pointer pe
points to the slink f entry.

The next entry is the program counter value pc f that is pushed when
entering the code of f . This value, together with the dynamic link dlink f
that is stacked up underneath, completes the return continuation of f .

Finally, we have in the stack a workspace frame for local variables and for
temporaries.

On the right of the figure, we see how the stack grows when f calls the
procedure g. First the procedure f creates the argument frame for g, and then
pushes both the dynamic and the static link pointers dlink g and slink g on
top of it. Since g is defined at the same level as f , the static link slink g
happens to be the same as slink f ; otherwise, it could be obtained by deref-
erencing slink f and thus point deeper down into the stack.

The pointer new pe to the slink g entry overwrites the current envi-
ronment pointer pe. Branching to the procedure g saves the current pro-
gram counter pc g to complete its return continuation (the other part being
dlink g).

Now the code of the procedure g pushes the part of the workspace that
holds the local variables, simply by advancing the stack pointer to the position
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Fig. 13.3. Typical stack configurations before and after a procedure f calling a
procedure g

new ps, and then starts computing its statement block, which may further
expand (and subsequently shrink) the workspace.

Before returning from g, the workspace is cleared by setting the stack
pointer ps back by the number of entries that are still left there (which are
the local variables). The pointer that then pops to the top is taken as the
return address of the calling procedure f , and the second entry underneath
is used to restore the pointer pe that renders the static link slink f to the
environment of f accessible. Finally, having returned from g, the procedure
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f , knowing how many entries it has pushed before calling g, releases the rest
of the activation record of g by resetting the stack pointer ps accordingly.

Though this solution has the pleasant property of having both link pointers
and the program counter stacked up in adjacent locations of a control block7

that is squeezed between the argument frame and the workspace, this is not
the smartest thing to do. In the next subsection, we will show that, with a
more appropriate placement of the static link pointer, we can completely do
without the dynamic links and also facilitate addressing within the records.

13.3.2 Dropping Dynamic Links

The trick that needs to be played to eliminate dynamic links from activation
records is to place the static link pointers at the very bottom, right on top of
the workspaces of the calling procedures, to freeze the environment pointers
to these stack positions, and to access record entries relative to them. This
can be done consistently throughout all activation records that belong to the
environment of a particular procedure call.

Consider again the situation in which a procedure f calls another proce-
dure g, as depicted in Fig. 13.4. On the left, we have in the stack the activation
record of f sitting on top of the activation record of the procedure h, with the
environment pointer pe pointing to its bottom, where the static link slink f
to the environment of f , i.e., to the corresponding entry at the bottom of the
activation record of h, can be found. Between the argument and workspace
frames is saved just the return address of f , and the stack pointer ps again
points to the first empty entry on top of the workspace. This is exactly the po-
sition where we have to place the static link pointer for the procedure g. The
first step of doing this is to reserve an empty slot for this pointer. Next, the
procedure f creates the argument frame for g (which may require doing eval-
uations in the environment referenced by pe), then accesses with the pointer
pe the link slink f to get the static link slink g to the environment of g,
writes this link into the stack position reserved for it, and finally sets the new
environment pointer new pe to this position. Calling the procedure g pushes
just the return address pc g, whereupon g pushes an as yet uninstantiated
workspace frame for its locals and advances the stack pointer ps accordingly,
resulting in the stack configuration shown on the right of the figure.

Accessing locals and value parameters of g can be done with fixed negative
offsets figured out by the compiler relative to the static link pointer new pe.
Accesses to nonlocal variables and procedure parameters may be accomplished
by dereferencing the static links beginning at new pe and, again, by addressing
relative to the address thus found, which should point to the bottom of the
desired activation record.

Returning from the procedure g involves g itself to clean up the workspace,
which pops the return address pc g to the top of the stack. Then the calling
7 In an implementation on a real computing machine this control block would

include a few more entries.
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Fig. 13.4. An improved stack configuration before and after a procedure f calling
a procedure g

procedure f , upon returning to it, cleans up the rest of the stack down to
slink g. Adding the (known) size of the activation record of f to this stack
position gives the environment pointer pe of the procedure f and thus restores
the stack configuration on the left of the figure, except that a few entries may
have been updated.

If a procedure behaves like a function in that it returns a value rather
than just changing its environment, another entry must be reserved on the
stack through which this value may be handed over to the calling procedure.
The place where this entry belongs is on top of the workspace of the calling
procedure and underneath the static link pointer of the called procedure,
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where it can be conveniently accessed from both sides which, incidently, closely
resembles the result-passing mechanism of the G-machine (see Sect. 9.5).

13.3.3 Calculating Stack Addresses ∗
Most of what needs to be known about translating variable occurrences into
stack accesses (or addresses) has been explained in Sect. 12.1.2. There we
introduced a tuple notation that pairs occurrences of function identifiers with
indices specifying binding distances, in terms of intervening lambda binders,
to the lambda that binds the function parameters. An equivalent index tuple
notation was introduced for occurrences of lambda-bound variables, of which
the first index denotes the distance to the binding lambda, again in numbers
of intervening lambdas, and the second index gives the declaration position
within the list of variables bound by it.

This tuple notation can be used in the iam more or less as it is and directly
translated into dereferencing static links and into offsets relative to the bases of
activation records, assuming that their layout is as described in the preceding
subsection.

To convey the basic idea, we consider a fragmental procedure definition

proc ff = sub v1 . . . ∗ vi . . . vn in
/∗local procedure | function definitions∗/
bind u1 . . . uj . . . um in {

. . .
( ff . . .&uj . . . );

. . .
uj := . . . ;

. . .
∗ vi := . . . uk . . . vl . . . ;

. . .
} .

This procedure features n formal parameters v1 . . . vn, of which ∗vi is as-
sumed to be a reference parameter, and m local variables u1 . . . um, all of them
being bound in the statement block enclosed in the curly braces { }. Thus,
an activation record for ff must include an argument frame of n entries and
a workspace of m entries, on top of which may follow some temporaries.

Taking the static link pointer entry as the base of an activation record, the
argument frame then obviously occupies offset positions within the interval
[−1, . . . , −n] and, accounting with one slot for the program counter entry
pc, the static part of the workspace can be found in offset positions that are
within the interval [−(n + 2), . . . , −(n + m + 1)] relative to this base.

To compute bases and offsets of stack entries, a preprocessor needs to re-
place the subs and binds of this procedure with nameless abstractors ∆s and
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∆b, respectively, and the variable occurrences bound by them need to be ac-
cordingly replaced with index tuples [ i j ]s and [ i j ]b. We thus obtain

proc ff = ∆s . . . ∗ ∆s . . . ∆s︸ ︷︷ ︸
n

in

/∗local procedure | function definitions∗/
∆b . . . ∆b . . . ∆b︸ ︷︷ ︸

m

in {
. . .

( [ 1 ff ] . . . &[ 0 (m − j) ]b . . . );
. . .

[ 0 0 ]b := . . . ;
. . .

∗ [ 0 (n − i) ]s := . . . [ 0 (m − k) ]b . . . [ 0 (n − l) ]s . . .
. . .

} .

Using ∆-abstractors instead of Λs signifies a departure from the nameless
Λ-calculus in that they not only bind parameters to be substituted by (the
values of) expressions but also reference parameters and box variables that
are subject to assignments, and thus have another quality.

We note that the index tuples that have replaced sub- or bind-bound
variable occurrences have distance indices 0, i.e., they are bound by the re-
spective innermost sequences of ∆-abstractors, and the second indices give
the declaration positions within those sequences. For instance, the index tu-
ple [ 0 (m − j) ]b that replaces the variable occurrence uj is bound by the
(m−j)-th binder from the right of the innermost sequence ∆b . . . ∆b︸ ︷︷ ︸

m

; likewise,

the index tuple [ 0 (n− i) ]s that replaces the variable occurrence vi is bound
by the (n − i)-th binder from the right of the innermost sequence ∆s . . . ∆s︸ ︷︷ ︸

n

.

The distance index of 0 in both cases means that the entries can be found in
the topmost activation record on the stack, and the base address that must
be used is the current environment pointer pe that points to the link entry of
this record.

The occurrence of the procedure identifier ff in the statement block is
replaced by the tuple [ 1 ff ], meaning that the environment of ff must be
obtained by dereferencing the pointer pe once (or, more directly, that the link
entry of the topmost activation record must be copied).

As outlined in Sect. 12.1.2, occurrences of tuples with distance indices
i > 1 must have the actual environment pointer pe dereferenced i times to
get to the base of the activation record relative to which an entry must be
accessed.

We now have to figure out how the declaration positions j of the index
tuples [ i j ]x need to be translated into offsets relative to the bases of the
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activation records. Beginning with the ∆s-bound index tuples, we note that
a legitimate application of a procedure

ff = sub v1 . . . vn in . . . {. . . v(n−j) . . .}
to n actual parameters ppar1, . . . , pparn has the preprocessed form

([ i ff ] ppar1 . . . pparn) =s

([ i ∆s . . .∆s︸ ︷︷ ︸
n

in . . . {. . . [ 0 j ]s . . .} ] ppar1 . . . pparn) .

Using λ-calculus conventions, we know that the arguments ppar(n−j) | j ∈
{1, . . . , n} are substituted for occurrences of the index tuples [ 0 j ]s. This
suggests pushing the arguments onto the stack in the order from right to left,
in which case they can be accessed relative to the base pe of the argument
frame with negative declaration position indices −j as offsets. Distance in-
dices i > 0 just mean that the environment pointer pe must be dereferenced
i times to get to the right frame base.

Likewise, when preprocessing a block of the form

bind u1 . . . um in {. . . ; um−j := . . . ; . . .} ,

we get
∆b . . . ∆b in {. . . ; [ 0 j ]b := . . . ; . . .} .

Here we are free to choose the same ordering of indices as above for entries
relative to the base of the workspace, i.e., relative to the base pe of the entire
activation record we have offsets −(n + 2 + j) | j ∈ { 0, . . . , m − 1 }. Thus,
translating occurrences of index tuples of either kind into stack addresses
becomes a straightforward matter, as in the secd i machine described in the
preceding chapter, the only difference being that the frames are turned upside
down with respect to addressing.

Things are a bit trickier with occurrences of array selectors ∗vec[ h ]. Let
∗vec denote the dereferencing of a pointer to an array, then the address of the
h-th entry in this array may be obtained by adding to this pointer the current
index value h. Since h itself is either a sub- or a bind-bound variable and
thus translates into an index tuple as well, we may simply use the notation
[ ivec jvec ]s | [ ih jh ]s|b to represent ∗vec[ h ] in preprocessed form. This
notation must be interpreted as using first [ ivec jvec ]s and then [ ih jh ]s|b
to retrieve first the array pointer and then the index value for h, respectively,
from deeper down in the stack, adding them up, and using the (heap) address
thus obtained to access the selected array element.

13.4 The Instruction Set

We are now ready to put together the iam, based on the stack representation
of the runtime environment as described in Sect. 13.3.2 and on accessing this
environment as outlined in the preceding subsection.



13.4 The Instruction Set 305

As usual, the iam instructions are defined by a state transition function

τiam : ( pc, ps, pe, S, C, H ) → ( pc′, ps′, pe′, S′, C, H ′ ) .

Since no partial applications need to be dealt with and all the actions are
taking place on one runtime stack, the iam needs fewer and simpler instruc-
tions than the secd i machine to handle procedure calls. However, a single
instruction must be added to update, or assign values to, environment entries.

The iam instructions that are shared more or less one-to-one with the
secd i machine are the following:

push atom pushes an atomic value or a pointer to a composite value such as
an array onto the stack.

copy i j copies to the top of the stack the entry found at an offset −j relative
to the base of the activation record obtained by dereferencing i times the
current environment pointer pe.

brc pt pf realizes a conditional two-way branch: depending on the Boolean
value found on top of the stack, code execution continues at either the
pointer pt or the pointer pf , and the current program counter pc is saved
as the address to which control must return after either piece of code has
been executed.

bsr pff realizes a procedure call: it branches unconditionally to the code
beginning at the pointer pff and saves on the stack the program counter
pc as the return continuation.

ret returns from a procedure call or from a conditional branch, taking the
return address off the top of the stack.

link h k dereferences h times the current environment pointer pe, writes the
pointer thus obtained into the entry found at an offset k relative to the
current stack top position ps, and then updates the environment pointer
to point to this new position, i.e., pe := ps + k.

alloc n allocates space for n entries in the stack by moving the stack pointer
ps by this number of positions ahead toward lower addresses.

free n deallocates the topmost n stack entries by moving the stack pointer
ps by this number of positions back toward higher addresses.

The instruction that performs assignments to environment entries is

assign i j which overwrites (or updates) with a value taken from the stack
top a stack entry found by dereferencing i times the environment pointer
pe and adding to the pointer thus obtained an offset −j − 1.

Of course, the full instruction set of the iam also includes the usual vari-
ety of arithmetic | logic | relational and array-processing instructions. These
instructions take (pointers to) their arguments off the stack top and push
(pointers to) result values instead.

Indexed accesses to arrays are handled by another two instructions, of
which
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fetch takes the topmost stack entry as a heap address and replaces it with
the value found at this address.

store again takes the topmost stack entry as a heap address, updates the
value at this address by the second stack entry from the top, and then
pops both entries.

These instructions allow us to compile, as an example, the bubble-sort pro-
gram of Fig. 13.2 to iam code.

We also have the instructions entry and exit to mark entry into and exit
from code execution.

13.5 Compiling il Programs to iam Code ∗
Defining a compilation scheme for il is not as straightforward as for an al ker-
nel. Not only do we have to deal with a slightly more complex syntax, there
are also some semantic restrictions that need to be obeyed. Procedures may be
legitimately applied to full sets of arguments (or actual parameters) only, and
procedures, pointers and values may be passed to procedures only through
formal parameters expilicitly so designated. This is essentially a matter of ap-
propriate typing according to the rules of some underlying type system, which
we have earlier decided to simply take for granted. Only with this in mind
may we take the liberty of again defining compilation simply as a mapping
of syntactical constructs (or figures) into pieces of iam code. Otherwise, we
would have to explicitly include typing in the language and type checking in
the compilation process to make sure that the iam code is well typed and thus
working as intended.

The il syntax given in Fig. 13.1 suggests that compilation works with
two schemes B and C, of which the former applies to bodies, procedures and
(sequences of) statements, and the latter applies to expressions. Both schemes
realize mappings of the general form

Z[ s form : rest | n ] =⇒ code[ s form ]; Z[ rest | n ] ,

where s form denotes a legitimate syntactical form, rest denotes some re-
maining sequence of the same kind (which may be empty), and the parameter
n specifies the number of parameters passed to the code to be generated. An
irrelevant parameter n is denoted by ‘-’.

The top-level compilation schemes B is defined in Fig. 13.5. It partitions
into two sets of rules, of which those that belong to the first set basically apply
to procedure definitions. More specifically, when B is applied to

• the main program, it is driven in front of its body, embedded in entry
and exit instructions; the ensuing code is referenced by a pointer pp (rule
(1)).

• a defs construct, it first generates the code for its body, followed by the
codes for the procedures defined under it (rule (2)).
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(1) B[ main = body | − ] =⇒ pp �entry; B[ body | − ]; exit;

(2) B[ defs proc 1 . . . proc k in body | n ]
=⇒ B[ body | n ];B[ proc 1 | − ]; . . . ; B[ proc k | − ]

(3) B[ ∆b . . . ∆b︸ ︷︷ ︸
m

in body | n ] =⇒ alloc m; B[ body | n ]; free m

(4) B[ proc proc id = ∆s . . . ∆s︸ ︷︷ ︸
n

in body | − ] =⇒ p proc id � B[ body | n ]; ret

(5) B[ { statements } | n ] =⇒ B[ statements | n ]

(6) B[ [ i j ]b := expr; statements | n ]
=⇒ C[ expr | n ]; assign i (n + j + 2); B[ statements | n ]

(7) B[ ∗[ i j ]s := expr; statements | n ]
=⇒ C[ expr | n ]; assign i (j + 1); B[ statements | n ]

(8) B[ ( [ h proc id ] act par1 . . . act par r ); statements | n ]
=⇒ alloc 1; C[ act par r ]; C[ act par r − 1 . . . act par 1

[ h prod id | r ] | n ]; B[ statements | n ]

(9) B[ if expr then { statements 1 } else { statements 2 }; statements | n ]
=⇒ C[ expr | n ]; brc pt pf ; B[ statements | n ]

pt � B[ statements 1 | n ]; ret; pf � B[ statements 2 | n ]; ret;

Fig. 13.5. The top-level compilation scheme B of il

• a bind constructs, it first allocates stack space for the local variables, then
generates the code for its body using B, and afterwards releases the stack
space again (rule (3)).

• a procedure definition, it applies B to its body and instantiates the pa-
rameter n with its arity (which by definition equals the number of actual
parameters that the code can expect to find on the stack). The code is
referenced by a symbolic pointer (or label) derived from the procedure
identifier (rules (4)).

The second set of B-rules applies to (sequences of) statements, recursively
calling on the scheme C to compile expressions. In particular, B compiles

• an assignment statement to code generated by C for the right-hand side
expression, followed by the instruction assign whose index parameter de-
pends on whether the assignment is made to locally bound variables or to
reference parameters (rules (6) and (7)).

• a procedure call to code that first allocates in the stack an empty slot as
a placeholder for a link pointer, then evaluates the actual parameters in
reverse order, and finally branches to the procedure code itself (rule (8)).
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• a conditional in that it first generates the code for the predicate expression
using C, followed by a conditional branch instruction, and then compiles
the consequent and alternative statements by application of B, both fol-
lowed by return instructions (rule (9)).

In all three cases, B is recursively applied to the remaining sequence of state-
ments until this sequence becomes empty.

Figure 13.6 lists the compilation rules for expressions that may occur on
the right-hand sides of assignment statements, in predicate positions of con-
ditionals, and in parameter positions of procedure calls. The scheme C applies
to constants (including pointers) that have to be pushed onto the stack (rule
(10)), to index tuples that have to have the contents of the respective stack
entries copied to the stack top (rules (11) and (12)), and to applications of
primitive operators that have their argument expressions compiled in reverse
order to code that pushes their values onto the stack and then applies the
respective instructions to them (rules (13) and (14)).

Applications of procedures that are expressions are assumed to produce re-
turn values, i.e., they are in fact function applications. They are by C compiled
to codes for the argument expressions, followed by the code for the procedure
call itself (rules (15) and (16)). Rule (15) puts an alloc 2 instruction in front
of this code to allocate two empty slots on the stack, of which one is reserved
for the return value of the procedure call, and the other is to accommodate
the link pointer to the calling environment. It also attaches the number k of
arguments as another component to the procedure tuple [ h proc id ] that is
used by rule (16) to generate the code that establishes the link to the calling
environment, branches to the procedure code and, upon returning, releases
the argument frame of size k from the stack. Rule (16) also applies to the
compilation of ordinary procedure calls that are treated as statements (see
rule (8) of Fig. 13.5).

The special cases of selecting elements from arrays are taken care of by
two more rules,8 of which

(7a) B[ ∗[ i j ]s | [ k l ]s|b := expr; statements | n ]
=⇒ C[ expr ]; copy i j + 1; copy k (l + n + 2); add; store;

B[ statements | n ]

handles assignments to individual elements of arrays through reference pa-
rameters, and

(11a) C[ [ ∗[ i j ]s | [ k l ]s|b : es | n ]
=⇒ copy i j+1; copy k (l+n+2); add; fetch; C[ es | n ]

8 The enumeration of these rules refers to the fact that they relate to rules (7)
and (11) in that they too make assignments to and retrieve values from reference
parameters, respectively.
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(10) C[ const : es | n ] =⇒ push const; C[ es | n ]

(11) C[ ∗[ i j ]s : es | n ] =⇒ copy i (j + 1); C[ es | n ]

(12) C[ [ i j ]b : es | n ] =⇒ copy i (n + j + 2); C[ es | n ]

(13) C[ ( prim op expr 1 . . . expr k ) : es | n ]
=⇒ C[ expr k | n ]; C[ expr (k − 1) : . . . : expr 1 : prim op : es | n ]

(14) C[ prim op : es | n ] =⇒ prim op; C[ es | n ]

(15) C[ ( [ h proc id ] expr 1 . . . expr k ) : es | n ]
=⇒ alloc 2; C[ expr k | n ];

C[ expr (k − 1) : . . . : expr 1 : [ h proc id | k ] : es | n ]

(16) C[ [ h p id | k ] : es | n ] | =⇒ link h k; bsr p id; free k; C[ es | n ]

Fig. 13.6. The compilation rules for expressions

handles occurrences of individual array elements in expressions, e.g., on the
right-hand sides of assignments.

Both rules have in common the instruction sequence

. . . ; copy i (j + 1); copy k (l + n + 2); add;. . . ,

which computes heap addresses from stack entries given by index quadruples
∗[ i j ]s | [ k l ]s|b. The instruction store in rule (7a) makes an assignment to
this heap address, the instruction fetch in rule (11a) pushes the value stored
at this address onto the stack.

13.6 Compiling the Bubble-Sort Program

We can now study how the compiler works by applying it to the bubble-sort
program of Fig. 13.2. Compilation must of course be preceded by a prepro-
cessing step that turns sub- and bind-bound variable occurrences into index
tuples. The preprocessed program text is shown in Fig. 13.7.

Compilation starts out by application of the scheme B to the main proce-
dure, i.e., we get

pp � entry; B[ ∆b in defs proc sort = . . .
in { [ 0 0 ]b := < 5 4 9 8 1 6 3 2 7 >; ( [ 0 sort ] &[ 0 0 ]b 10 ); . . . | 0 ];
exit; .

Application of B to the bind construct calls for rule (3) of Fig. 13.5 which
applies B recursively to the outermost defs construct for the procedure sort,
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main = ∆b in

defs

proc sort =
∆s ∗ ∆s in

∆b in

defs

proc bubble =
∆s ∗ ∆s in

∆b in

defs

proc swap =
∆s ∆s in

∆b in { [ 0 0 ]b := ∗[ 1 0 ]s | [ 0 1 ]s;
∗ [ 1 0 ]s | [ 0 1 ]s :=

∗ [ 1 0 ]s | [ 0 0 ]s;
∗ [ 1 0 ]s | [ 0 0 ]s := [ 0 0 ]b

}
in{ if ( gt [ 0 0 ]s [ 1 1 ]s )

then [ 0 0 ]b := ( + 1 [ 0 1 ]s );
if ( lt ∗ [ 0 0 ]s | [ 0 1 ]s

[ 0 0 ]s | [ 0 0 ]b )
then ( [ 0 swap ] [ 0 1 ]s [ 0 0 ]b )
else nop ;
( [ 1 bubble ] [ 0 0 ]b ∗ [ 0 0 ]s )

else ( [ 2 sort ] ( − 1 [ 1 0 ]b ) ∗ [ 0 0 ]s )
}

in { if ( gt 1 [ 0 1 ]s )
then [ 0 0 ]b := 1;

( [ 0 bubble ] [ 0 0 ]b ∗ [ 0 0 ]s )
else nop

}
in { [ 0 0 ]b := < 5 4 9 8 1 6 3 2 7 >;

( [ 0 sort ] &[ 0 0 ]b 10 )
. . .

}
Fig. 13.7. The preprocessed version of the il bubble-sort program of Fig 13.2

calling in turn rule (2). This rule compiles first the statement block of the
defs, using again scheme B to generate the first piece of code of Fig. 13.8,
to which pp points. It also creates a heap structure for the argument array
referenced by the pointer p vec (second line of Fig. 13.8).

The compiler then turns to the procedure sort, using rule (4), (3) and
(9) of B and rule (13) of C in this order, to generate the top line of code for
its body, to which p sort points. This piece of code evaluates the predicate
(gt 0 n) of the if then else clause and, depending on its value, branches
either to the consequent or alternative code referenced by the pointers p t0
and p f0, respectively (third line of Fig. 13.8).
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pp � entry; alloc 1; push p vec; ass l 0 1;
push 10; copy 0 1; link 0 2; bsr p sort; free 2; exit;

p vec � < 5 4 9 8 1 6 3 2 7 >

p sort � alloc 1; copy 0 1; push 1; gt; brc p t0 p f0; free 1; ret;

p t0 � push 1; ass l 0 4; copy 0 1; copy 0 4;
link 0 2; bsr p bubble; free 2; ret;

p f0 � nop; ret;

p bubble � alloc 1; copy 1 2; copy 0 2; gt; brc p t1 p f1; free 1; ret;

p t1 � copy 0 2; push 1; add; copy 0 1; copy 0 4; add; fetch;
copy 0 1; copy 0 2; add; fetch; lt; brc p t2 p f2; ret;

p f1 � alloc 1; copy 0 1; copy 1 4; push 1; minus;
link 2 2; bsr p sort; free 2; ret;

p t2 � alloc 1; copy 0 4; copy 0 2;link 0 2; bsr p swap; free 2; ret;

p f2 � nop; ret;

p swap � alloc 1; copy 1 1; copy 0 2; add; fetch; ass l 0 4;
copy 1 1; copy 0 1; add; fetch;
copy 1 1; copy 0 2; add; store;
copy 0 4; copy 1 1; copy 0 1; add; store; free 1; ret;

Fig. 13.8. The compiled iam code of the bubble-sort program

Compilation of the rest of the program, i.e., of the procedures bubble and
swap, follows the same routine recursively. The special rules (7a) and (11a)
that apply to indexed accesses of array elements enter the game when the
code for the body of swap is generated.

What looks like rather sophisticated code with several nesting levels for
a fairly simple problem is primarily a consequence of the limited expressive
power of il, of the chosen programming style, to a lesser extent of the choice
of the iam instruction set, and of the schematic compilation rules which do
not include any code optimizations. In the absence of loop constructs that
belong to the standard repertoire of imperative languages, traversing through
a sequence of indices, e.g., to inspect and update the elements of an array
step by step, must be realized in il by means of tail-recursive procedures that
involve a lot of parameter passing through the stack (rather than incrementing
index variables in place). Moreover, defining the nonrecursive procedure swap
locally to the procedure bubble is a somewhat artificial choice to create more
than one nesting level and, in consequence, more activity on the stack. This
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situation could be easily avoided by inlining the code of swap where it is
called in the code of bubble, which could conveniently be done either in the
il source program or figured out by a code optimizer. This would eliminate
almost the entire piece of code referenced by p f1, which creates in the stack
the argument frame for swap, then calls the procedure and, upon returning,
clears the frame again. With a more suitable conditional branch instruction
such as jfalse of the machines described in Chap. 10, the do-nothing codes
for the alternatives referenced by the pointers p f0 and p f2 could also be
eliminated.

13.7 Outline of a Machine for a ‘Flat’ Language

One of the important flavors of imperative languages of the il variety, e.g.,
pascal or modula, is the freedom to define procedures local to others. It
allows a very structured approach toward program design in which the decla-
ration of procedures, or of variables for that matter, may be carefully confined
to exactly the contexts in which they are needed. Local procedures may be
open in the sense that their bodies may contain occurrences of relatively free
variables declared in enclosing contexts, which in fact justifies the nesting of
procedures in the first place. The scoping of variables follows the λ-calculus
insofar as the scopes of sub- and bind-bound variables extend over the re-
spective procedure bodies, the scopes of defs-bound identifiers extend over
the entire defs expressions, and outer bindings are shadowed against inner
bindings to the same variable names.

However, the elegance of program design that comes with this flavor, as we
have seen, must be paid for at the machine level with an environment structure
in which activation records held in a stack must be linked up by chains of static
pointers that reflect the nesting of procedure definitions in the source program.
Both linking newly created records correctly to existing environments and
accessing environment entries generally requires dereferencing pointers along
these chains, followed by other operations on the stack, which in a real machine
involves fairly time-consuming address computations.

However, we may get rid of these difficulties by switching from open to
closed procedures. It renders the nesting of procedures and, in consequence,
the linking of their activation records superfluous. This can be had either by
ruling out nested procedures in the source language or by transforming, before
compilation to machine code, programs of the il language variety into some
intermediate language that supports only closed procedures.

This approach is in fact similar to the concept of supercombinators out-
lined in Chap. 9. Section 9.1 tells us how to transform open into closed abstrac-
tions (or supercombinators) by λ-lifting relatively free variables to the next
higher level of abstractors, and Sect. 9.2 shows that the environments for ex-
ecuting supercombinator codes are contained in coherent stack frames that,
other than for the order in which they are called, are completely unrelated
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to other frames held in the stack, i.e., there are no static links among them.
There is a small price to be paid for this simplification, though. It comes in
the form of additional parameters that need to be passed to procedures from
which relatively free variables have been lifted.

Well-known languages that support only closed procedures and, interest-
ingly enough, are in widespread use are C, C++ and to some extent also java.9.
Specifically C has become increasingly popular both as a programming lan-
guage and as a standard intermediate language shared by compilers of other
high-level languages to take advantage of highly optimized target code gen-
eration techniques supported by machine-specific C-compiler backends. Some
of these code optimizations benefit greatly from the fact that procedures are
closed.

The syntax of a language kernel cil that derives from il but supports only
closed procedures is defined in Fig. 13.9.

program =s main = alternatives

alternatives =s bind vars in { statements } |
globals vars in defs procedures in { statements } |
defs procedures in { statements }

procedures =s procedure | procedures; procedure

procedure =s = sub form pars in body

body =s { statements } | bind vars in { statements }

Fig. 13.9. The syntax of a flat imperative kernel language cil that supports only
closed procedures

In this syntax, a program is either a block of statements preceded by an
abstractor (or binder) for variables used in it, or a defs construct for mutu-
ally recursive procedures which may or may not be preceded by an abstractor
globals for global variables used in any of the procedures or in the statement
block. The syntax of procedures is as defined in il, except that their bodies
are just blocks of statements that may or may not be preceded by abstrac-
tors for local variables. The important point is that these bodies, in contrast
to il, may not recursively contain further procedure definitions, which also
implies that the variables that may occur in the statement blocks of proce-
dures are either their sub-bound formal parameters, their bind-bound locals
9 java allows to define classes and, hence, procedures called methods that are local

to each other. However, the java virtual machine requires that inner classes be
flattened by a preprocessor before compilation to code.
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or globals-bound globals. Statements are defined exactly as in il and are
therefore not repeated in Fig. 13.9.

We refer to cil as being a flat language since there is only one level of pro-
cedure definitions, i.e., a cil program may be composed of at most one defs
construct (possibly enclosed in a single globals definition), and the machin-
ery that supports it is called a flat imperative abstract machine, abbreviated
to fiam.

The procedures, as may be noted, are closed only with respect to their sub-
and bind-bound variables, but not with respect to global variables. However,
this does not create much of a problem since the globals are shared among
all the procedures declared in the program, including the top-level statement
block, and may therefore be held in some fixed locations, preferably at the
bottom of the stack, where they can be conveniently accessed from anywhere
else. This goes hand in hand with the fact that space for these globals must
obviously be allocated in the very first step of code execution.

A typical stack configuration of the fiam that shows the situation after
some procedure f has called a procedure g is depicted in Fig. 13.10. At the
very bottom of the stack (or at the highest addresses) we find a frame for
the instantiations of the program’s global variables, with a pointer p global
pointing to the next to topmost location of this frame, relative to which the
frame entries may be addressed. The activation records for f and g comprise
argument frames and workspaces for the procedures parameters and local
variables, and in between them the return addresses, just as in the iam, but
the link pointers have disappeared.

Since the code of an active procedure accesses sub- or bind-bound variable
instantiations only in what is currently the topmost activation record, we
may conveniently use the current stack-top pointer ps as the record’s base,
relative to which its entries may be addressed with positive offsets derived
from binding indices. However, the compiler has to take into account the fact
that this point of reference is not fixed but may change due to temporaries
pushed onto and removed from the stack, which means that a particular record
entry may have different offsets relative to the stack top, depending on the
state of code execution (see also the description of the G-machine compiler in
Sect. 9.3).

To figure out what the offsets in the activation records are, or where its
entries need to be placed, we again engage a preprocessor to convert bound
variable occurrences into index representations. However, since only closed
procedures defined at the same level need to be dealt with, we can simply
use plain binding indices again since we don’t have to worry about nesting
levels. We need only to distinguish between globals-bound variables on the
one hand and sub- or bind-bound variables on the other hand since they must
be sorted into two different bins – the former to access the globals frame at
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Fig. 13.10. A fiam stack configuration with a procedure f having called another
procedure g

the stack bottom, and the latter to access the activation record at the stack
top.10

To illustrate how preprocessing basically works, consider the following frag-
mental cil program:
where h ∈ { 1, . . . , k }, i ∈ { 1, . . . , m } and j ∈ { 1, . . . , n }. It is converted
into the index representation
10 As in the case of the iam, we also must of course distinguish between sub- and

bind-bound variables of a procedure to get the offsets relative to the position of
the return addresses within the activation record right.
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globals u1 . . . uk in

defs

. . .
proc pp = sub v1 . . . vm in

bind w1 . . . wn in

{. . . uh . . . vi . . . wj . . .}
. . .

in { . . . } ,

∆g . . . ∆g︸ ︷︷ ︸
k

in

defs

. . .
proc pp = ∆s . . . ∆s︸ ︷︷ ︸

m

in

∆b . . . ∆b︸ ︷︷ ︸
n

in

{. . . #g(k− h− 1) . . . #s(m− i− 1) . . . #b(n− j − 1) . . .}
. . .

in { . . . } ,

where the anonymous abstractor sequences ∆g . . . ∆g︸ ︷︷ ︸
k

, ∆s . . . ∆s︸ ︷︷ ︸
m

and ∆b . . . ∆b︸ ︷︷ ︸
n

replace the binders globals u1 . . . uk, sub v1 . . . vm and bind w1 . . . wn,
respectively, and the binding indices #g(k − h − 1), #s(m − i − 1), #b(n −
j−1) replace the variable occurrences uh, vi, wj , respectively, denoting their
declaration positions.

Translating the binding indices #sii and #bjj into offsets relative to the
current stack top ps may be based on the following consideration: we know
that the size of an activation record that is topmost on the stack and thus
active is given by size = m+n+s+1, where m and n are the numbers of pro-
cedure parameters and local variables, respectively, s accounts for the number
of temporaries on top of the workspace, and another entry accommodates the
return address.

Following the convention that we have used in the iam, the code for a
procedure call (proc name act par 1 . . . act par m) is supposed to push the
actual parameters in the order from right to left. That is to say, the argument
to be substitued for the index #s(m − 1) is topmost, or at offset 1, and
the argument to be substitued for index #s0 is lowermost, or at offset m,
relative to the top of a stack in which just the complete argument frame of an
activation record has built up.11 Relative to the full activation record these
offsets must be shifted to n + s + 2 and m + n + s + 1, respectively. Thus, we
may transform binding indices #sii into offsets relative to the stack pointer
11 Remember that the stack top pointer ps points to the first empty position on top

of the stack.



13.7 Outline of a Machine for a ‘Flat’ Language 317

ps as follows:

off s( #sii ) = m + n + s + 1 − ii | ii ∈ { 0, . . . , m − 1 } .

The same convention may be used with regard to the orientation of indices
#bjj in the locals frame of the workspace (whose upper and lower boundaries
are at offsets s + 1 and n + s) so that they transform as

off b( #bii ) = n + s − jj | jj ∈ { 0, . . . , n − 1 } .

Things become even simpler for the globals indices #ghh, which transform as

off g( #ghh ) = k − hh | hh ∈ { 0, . . . , k − 1 }

into offsets relative to the globals frame pointer pg (see Fig. 13.10).
The instruction set of the fiam is essentially the same as that of the iam,

except that the instruction link h k has become superfluous and that both
the copy and the assign instruction split up into two which come with only
one index parameter j:

copy g j copies to the top of the stack the entry found at an offset j relative
to the top pointer p global of the globals frame;

copy s j copies to the top of the stack the entry found at an offset j relative
to the stack top pointer ps;

assign g j assigns the value taken from the top of the stack to the entry
found at an offset j relative to the top pointer p global of the globals
frame;

assign s j assigns the value taken from the top of the stack to the entry
found at an offset j relative to the stack top pointer ps.

Compiling cil programs to fiam code follows a scheme that is similar to
the compilation to iam code. It is a little more complicated in that addressing
stack entries relative to changing stack top pointers rather than fixed base
addresses of activation records necessitates carrying along the four parame-
ters m, n, s and k by means of which binding indices must be converted into
offsets. We thus have

Z[ s form : rest | (m, n, s, k) ]
=⇒ code[ s form ]; Z[ rest | (m, n, s, k) ]

as the general scheme for compiling syntactical forms s form of cil. Whereas
the parameter k remains fixed throughout the entire compilation process, m
and n change between procedure codes, and s changes whenever temporaries
are pushed onto or popped off the stack.
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13.8 Summary

In this chapter we have crossed the borderline between computing the values
of expressions and performing computations for their (side)effects on a state.
This imperative (or procedural) model of computation differs from the λ-
calculus in that it

• downgrades the notion of λ-bound variables that are their own values
(and thus are first-class objects) to that of box variables which represent
changeable values (environment entries) but are not values themselves;

• introduces the notion of assignment statements that modify the values
represented by the box variables and, closely related to this idea,

• introduces procedures as another kind of abstractions that effect changes
in the values of box variables in their calling environments;

• outlaws, as a matter of convenience, not of necessity, partial procedure
applications to simplify the implementation.

Procedure definitions may be arbitrarily nested, permitting variables to be
free in local contexts but bound higher up (i.e., the procedures may be open),
with the scoping rules remaining the same as in the λ-calculus.

The ensuing imperative abstract machine iam closely resembles the secd i
machine of the preceding chapter, except that it has merged the value, en-
vironment and dump stacks into a single runtime stack. This has become
possible because the machine does not need to deal with closures representing
partial applications, as a consequence of which activation records of procedure
calls may be released strictly in reverse order of their creation. However, what
is inherited from the secd i machine is the linking of activation records in ac-
cordance with the nesting of procedure definitions in the source program, and
along with it the dereferencing of these link pointer chains to access entries
deeper down in the environment structure. An activation record itself includes,
in this order, a link pointer to the preceding record in the environment, an
argument frame for instantiations of procedure parameters, a return address
and a frame for local variables, followed by dynamically changing numbers of
temporaries that together make up the workspace.

The iam instruction set is nearly the same as that of the secd i machine.
What is added are merely assignments that update environment entries.

The chapter has also shown that the machinery, and specifically the rep-
resentation of environments in the stack, can be considerably simplified when
switching to a flat source language that permits only closed procedures defined
on the same level. Implementing this approach, which resembles the super-
combinator concept of Chap. 9, disposes of the link pointer chains as the
environments for procedure calls are, apart from a set of global variable in-
stantiations, completely contained in single activation records. These records
are stacked up in the order in which the procedures are called but otherwise
are completely unrelated to each other.
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14

Real Computing Machines

There is little difference conceptually between the various code-executing ab-
stract machines described in the preceding chapters on the one hand and real
computing machines on the other hand. What matters from a users point of
view are their instruction sets, addressing modes and the resources visible at
the machine language level, which are said to define the architectures of the
machines. The visible resources basically include a processing unit equipped
with an arithmetic/logic unit and a set of fast working registers (of which some
are reserved for special purposes such as program counter and stack pointer), a
uniformly addressable main memory, and various peripheral devices operated
through dedicated input/output ports.

Programming at this level is, for good reasons, usually confined to a few
system kernel routines, e.g., for interrupt handling, process scheduling and
input/output operations, and to the implementation of compiler backends
that generate executable code.

It is primarily the finiteness of resources and certain bandwidth limita-
tions that must be taken into consideration in machine-level programming
beyond what is specified by abstract machine code. Major concerns, on the
one hand, are the efficient utilization of finitely many processor-resident reg-
isters for speedy program execution and the management in main memory of
dynamically expanding and contracting structures such as stacks and heap
space. On the other hand, fixed sizes of physical registers and addressable
memory entries, measured in units of bits, bytes or words, render it necessary
to squeeze instructions, data and addresses into fixed formats that can be
readily decoded (or interpreted) by the underlying hardware machinery. Data
formats determine the choice of instructions that may be used to operate on
them, instruction formats determine the total number of instructions that
can be supported, the number of operands and the operand addressing modes
that may be used, and address formats determine the size of the effectively
addressable main memory.

The architectures of real computing machines are dictated primarily by
the needs of imperative programming languages, but beyond that they are also
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driven to a considerable degree by technological progress. Steadily increasing
miniaturization of electronic circuitry has led to rapidly growing capacities of
cache, main and peripheral memories, and, even more importantly, to proces-
sor designs featuring sophisticated controls, large register sets and advanced
pipeline processing. Computational speed has been increased by several orders
of magnitude due to a combination of faster memory access cycles and higher
clock frequencies at which the processors are driven.

Earlier processor generations that dominated the scene in the 1980s are
characterized as complex instruction set computer architectures (CISCs for
short) or as register/memory (R/M) architectures, of which the VAX/750,
the MC68000 and the Intel 8080/8086 families are typical examples. Their
instruction sets and addressing modes facilitate the compilation of high-level
languages into fairly dense code for machines with limited memory capacities.
The data-processing instructions come in different formats for the operand
data and may be combined with a variety of addressing modes. Instruction
decoding requires complex microcoded controls; executing the same basic in-
struction may take varying numbers of machine cycles, depending on the
chosen addressing modes and address positions in memory. Operands may be
addressed either in main memory or in processor-internal registers. As we will
see in the following sections, CISC architectures are a very close match for
the implementation of the various abstract machines we have studied in the
preceding chapters.

These architectures were superseded in the 1990s by reduced instruction set
computer (or RISC) architectures. This development paid tribute to the fact
that only about 30 of the more than 200 instructions of a CISC were used by
compilers to generate machine code, and also of technological advances that
led to the integration of entire processors on single chips. The first of these
processors favored simple instruction sets suitable for pipelined execution at
the rate of about one instruction per machine cycle.1 All instructions have the
same (word) format to facilitate decoding, all data-processing instructions use
processor-internal registers only as operand sources and result destinations,
and there are special instructions that load data from memory into registers
and store data from registers into memory; RISCs are therefore also said to
have a load/store architecture. Compilation and specifically code generation
are more difficult than in CISCs since a larger gap has to be bridged between
high-level languages and machine code, and some amount of code reorganizing
is generally necessary to obtain the best possible pipeline performance. Code
density is decidedly lower since more of the simpler RISC instructions are
necessary to do the same jobs as CISC instructions. Typical examples of RISC
processor architectures are the SPARC and MIPS families.
1 It is of course assumed here that pipelining is supported by fast cache memories

for both instructions and data and that a continuous flow of instructions through
the pipeline can be sustained.
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More recent trends in processor architectures, driven primarily by further
technological advances and by the demand for still higher performance, are
aimed at drastically increased instruction throughput. Superscalar processors
run several instruction pipelines fed from a single instruction stream. The
instructions become more complex again but are by predecoders converted
into RISC-like operations for pipelined execution, as for instance in the Intel
Pentium 4. Very Long Instruction Word (VLIW) processors execute in parallel
the equivalent of several RISC-like instructions issued in one step. The re-
sponsibility for filling the slots in such instruction words rests entirely with
the compiler. An example of such a processor is the Intel Itanium IA 64 that
works with 128 bit instruction bundles, of which two combined may control
execution of up to six RISC instructions.

However, as these advanced architectures are CISC or RISC at the core,
we will focus in the following on representative classical machines of either
kind to expose similarities and essential differences with regard to machine
level programming. To this end, we will use the symbolic notation commonly
used in assembler programming but largely ignore the details of instruction and
data formats beyond their lengths (numbers of bits or bytes), and also ignore
the intricacies of instruction execution that specifically in CISC processors are
quite complicated. Little needs to be known about the underlying hardware
machinery other than that there is a byte- or word-addressable main memory,
a finite set of processor-internal working registers, dedicated registers for the
program counter and a single stack pointer, and some arithmetic/logic unit
that somehow does all the value-transforming and address computations.

Of RISC processors it suffices to know that the instructions must be sim-
ple enough so that their execution can be conveniently partitioned into four
or five different phases that take about the same time to complete. These
phases typically include instruction fetching (from an instruction buffer or a
cache memory), decoding and data fetching (usually from a separate data
cache), performing the specified operation, and writing the result back to cache.
They correspond to successive pipeline stages that an instruction has to pass
through step by step. The pipeline may process simultaneously as many in-
structions as there are stages, ideally producing a throughput of one instruc-
tion per unit time. In reality, however, throughput is lower than that since on
average one in four instructions executed is a branch instruction that disrupts
the continuous flow of instructions through the pipeline.

14.1 A Typical CISC Architecture

The architecture described in this section closely resembles that of the
MC680x0 processor family, but we have taken the liberty of skipping or sim-
plifying a few things that are not too relevant with regard to the basics of
machine-level programming and program execution.
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The characteristic features of this architecture are a relatively small set of
just 16 processor-internal registers, a rich variety of addressing modes that fa-
cilitate creating, deleting and accessing runtime stack entries and heap objects
held in the memory, and the freedom to combine these addressing modes with
almost all data-transporting, data-processing and control instructions. The
very basic instructions necessary to move data in memory, between memory
and registers and about registers, to do primitive operations, and to excercise
control over the sequencing of instructions are essentially the same as those
used in the abstract machines of the preceding chapters. Mapping abstract
machine code, at least that of the iam or fiam, to CISC-code is, apart from
a few details pertaining to addressing and formats, more or less just a matter
of transliteration.

14.1.1 The Register Set, Formats and Addressing in Memory

The register set, also called the register file, of this machine partitions into
eight data registers named d0 . . . d7 and eight address registers named a0 . . . a7.
By convention, the data register d0 is reserved for return values of function
calls, address register a7 is reserved for the runtime stack pointer sp, and
address register a6 accommodates the static link pointer to the environment
of the active procedure call.The data registers d1 to d7 are mainly used for
temporaries, i.e., the items that are held on the value stack S in our various
abstract machines and, space permitting, also for frequently accessed locals.
The address registers a0 to a5 may be used to hold various pointers to data
structures held in memory, e.g., to additional stacks or heap locations that
come into play when emulating one of the abstract machines described in the
preceding chapters. Unused address registers may alternatively store data, but
data registers may not be used for addressing.

An additional address register is provided for the program counter pc, and
there is also a four-bit condition code register ccr signaling the outcome of all
but the control instructions. These bits are denoted as z for zero results, n for
negative results, c for carry conditions, and v for result overflows of arithmetic
and compare operations. They replace the Boolean values deposited on the
value stacks of our abstract machines for inspection by subsequent conditional
branch instructions.2

Numerical data values may come in byte, halfword (2 bytes), word (4
bytes) or double-word (8 bytes) formats, character strings may have a length

2 It should be noted that these are the registers that are accessible when the ma-
chine is in a so-called user mode, under which it executes code obtained by compi-
lation of high level user programs, using a restricted set of nonprivileged instructions
only. A few more registers and a few more privileged instructions become available
under a supervisor or kernel mode to which the machine switches whenever system
calls or interrupt conditions need to be dealt with. However, this mode is not of
interest here.
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of up to 256 bytes. In memory, the numerical formats are stored at byte ad-
dresses that are multiples of their sizes, in data registers they are aligned
‘to the right’, meaning that byte and halfword formats occupy the least sig-
nificant byte positions. Double-word formats take two consecutive registers
(with the least significant word in the evenly enumerated register). Character
strings may begin at byte addresses. Depending on the number of operands
and the addressing modes used, instruction formats may have one or sev-
eral halfwords lengths; consecutive instructions are held under consecutive
addresses in memory, without any gaps in between. The program counter
traverses instruction formats in increments of halfwords under the control of
the instructions themselves. As in the (f)iam, the runtime stack grows toward
lower addresses in decrements corresponding to the formats of the data entries
pushed (and shrinks toward higher addresses in increments corresponding to
the formats of the data popped).

A typical memory layout in the logical (or virtual) address space [ 0 . . . size−
1 ] of an imperative program is depicted in Fig. 14.1.3 It has the program code
and static data located at the higher end of the address space. The dynamic
parts, which include the runtime stack and the heap, occupy the lower end. As
indicated by the horizontal arrows, the stack grows toward lower addresses,
and the heap grows basically toward higher addresses, but may have holes
that are left over by deallocated heap objects filled again with newly created
objects of fitting sizes (the holes and the unused space between the stack and
the heap are depicted as shaded areas).
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Fig. 14.1. Typical memory layout for executing an imperative program

There are basically three different ways of mapping logical address space
into the real address space of a computer’s memory. The brute force method
allocates real address space in units of regions large enough to have entire
logical address spaces loaded, with the consequences that (1) entire regions
must be swapped between backup and main memory whenever a program run
must be temporarily suspended and that (2) generally other regions must be

3 The size of the logical address space is usually chosen to be some convenient value
n ∗ 2k large enough to accommodate the static and dynamic parts of a program
run.
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allocated for reloading. A more appropriate method has the logical address
space partitioned into segments of variable size, say for pieces of code, the
runtime stack and the heap, and has these segments placed into different
parts of the real address space. Alternatively, the logical and real address
spaces may be partitioned into equally sized page frames so that any logical
page can be mapped into any real page, and only what is called a working
set of pages needs to be kept in main memory at any time. Segmentation and
paging may even be combined. Real address space can thus be managed more
economically, and swapping segments or pages in and out of main memory may
take less time (and possibly be hidden behind other activities) than swapping
entire regions.

However, swapping inevitably requires that things be relocatable in real
address space. This, in turn, means that they must be addressable with fixed
offsets relative to suitable changeable base addresses, e.g., stack entries rela-
tive to the stack pointer sp, heap objects relative either to the heap base 0 or
to some top-of-the-heap pointer hp, and program code relative to the program
counter pc, which specifically applies to branch addresses. Once the respective
address registers are loaded with the initial real addresses, or logical addresses
are dynamically mapped to real base addresses by means of tables, code exe-
cution may proceed without updating any logical address specifications.

14.1.2 Addressing Modes

A distinguishing feature of our MC680x0-like CISC machine is the various
addressing modes available and the freedom to combine them with almost all
instructions. As stated before, these addressing modes are tailored to the needs
of creating and accessing entries in memory-resident data structures such as
stacks, linked lists of (compound) data, arrays, etc. They include addressing
by

• direct specification of a register as the source or destination of a data item
or of a memory address;

• implicit references, as part of the encoding of an instruction, to special
registers such as the stack pointer or the program counter;

• computation of operand or branch addresses from base addresses, offsets,
increments, decrements, indices and levels of indirection.

The addressing modes that are of interest here are summarized in Fig. 14.2.
It lists, from left to right, the name of a mode, the syntax used in machine-
level (or assembler) programming, and its effect (or interpretation). Using the
notations rand for an operand value, addr for a memory address, an and dn
for the contents of the registers involved, MM [ an ] for the contents of a
memory location addressed with the contents of an, and ⇀↽ symbolizing the
reading (or writing) of the value on its left from (or to) the contents of what
is specified on the right, we have from top to bottom the modes
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mode syntax effect

reg direct dn rand ⇀↽ dn
an address ⇀↽ an

reg indirect (an) rand ⇀↽ MM [ an ]

reg indir pre incr +(an) an ← an + size
rand ⇀↽ MM [ an ]

reg indir post decr (an)− rand ⇀↽ MM [ an ]
an ← an − size

reg indir offset dis(an) rand ⇀↽ MM [ an + dis ]

reg indir index dis(an, xm) rand ⇀↽ MM [ an + xm + dis ]

immediate #number rand ↼ #number

Fig. 14.2. The addressing modes

reg(ister) direct which reads or writes an operand value in a register dn
or an address in a register an;

reg(ister) indirect which reads or writes the value in memory location
an;

reg(ister) indir(ect with) pre incr(ement) which first increments the
contents of the address register an by the size of an operand specified as
part of the instruction that uses the mode, and then does the same as the
mode reg indirect;

reg(ister) indir(ect with) post decr(ement) which does the same as
the mode reg indirect and then decrements the address in an, again
by the size of an operand specified as part of the instruction that uses the
mode;

reg(ister) indir(ect with) offset which reads or writes the memory lo-
cation obtained by adding to a base address in an an offset (or displace-
ment) dis that may be positive or negative;

reg(ister) indir(ect with) index(ing) which reads or writes a memory
location obtained by adding to a base address in an an index contained
in another address register xm and an offset dis;

immediate which introduces as a direct operand a constant numerical value
#number that may, for instance, be written into a value register or into
a memory location.

The reg indir offset and reg indir index modes are also applicable to
the program counter pc instead of one of the address registers an.
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Of particular interest with regard to our various stack-based machines are
the modes reg indir pre incr and reg indir post decr which may be used
to respectively increment the stack pointer prior to reading an item from the
stack, thus realizing a pop operation, and to decrement the stack pointer after
having written something onto the stack, thus realizing a push operation. As
these modes can be used with any of the address registers, not just with the
default stack pointer a7, there is ample opportunity to support several stacks.4

Equally important is the mode reg indir offsetwhich may be used to access
stack entries relative to the stack top or to any other fixed stack address, e.g.,
relative to some suitably chosen base of an activation record, and to branch,
relative to the current program counter, to an instruction address other than
the next one in sequence.

Dereferencing an address k times, as is necessary to access environment
entries in activation records or argument frames k nesting levels down from
the top, may be accomplished by having the reg indir mode applied by a
sequence of k instructions that move the contents of some memory location
MM [ an ] into the register an.

14.1.3 Some Important Instructions

There are only a few instructions that we need to know about in order to be
able to implement our various abstract machines on this MC680x0-like CISC
architecture.

The control instructions include

bsr dis which branches unconditionally to procedure code located a distance
of dis bytes (positive or negative) away from the current progam counter
position pc. It does so by first saving as return address the current pc on
the stack, then decrementing the stack pointer by four byte positions (the
length of the return address), and finally setting the program counter to
pc + dis, i.e., it does the steps (sp) ← pc; sp ← sp − 4; pc ← pc + dis.

b cc dis which branches conditionally to code located a distance of dis bytes
away from the current pc, the condition being specified by the subscript
cc which may assume one of the values z, n, c, v or nz, nn, nc, nv (for

negation of the former) of the condition codes set by preceding instruc-
tions. If the condition is not satisfied, code execution continues with the
next instruction in sequence. Thus, the effect of the instruction may be
specified as if cc = true then pc ← pc + dis else pc.

rtd dis which returns from a procedure call by taking the return address off
the stack and subsequently incrementing the stack pointer by the offset
dis to deallocate parameters from the stack, i.e., the sequence of steps is
sp ← sp + 4; pc ← (sp); sp ← sp + dis.

4 These two modes may also be (mis)used to traverse array structures, instead of
using the reg indir index mode.
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rts which is the simpler version of rtd that does not pop parameters off the
stack.

Both branch instructions have their addressing modes implicitly defined as
reg indir offset, using the register pc instead of one of the address registers
an as the base of the offset. Likewise, both return instructions implicitly refer
to the stack pointer as the address register that needs to be operated on.

Another two control instructions handle the static link pointers that con-
nect activation records of procedure that are local to each other.

link an dis establishes a link between a newly created activation record of a
procedure call and its environment. It does so by first saving on the stack
the current environment pointer held in an, then overwriting an with the
current stack pointer, and finally adding the displacement dis to the stack
pointer, i.e., it performs the steps (sp) ← an; an ← sp; sp ← sp−4+dis;

unlink an is complementary to link. It deletes the topmost activation record
from the environment, and it does so by updating the stack pointer with
the contents of the register an and then overwriting the register an with
the pointer to the rest environment that it pops off the stack, i.e., we have
sp ← an; sp ← sp + 4; an ← (sp); .

Another important class of instructions are those that copy the contents of
registers or storage locations. These are instructions that must have specified
the format of the data items to be copied. This is done by attaching to the
instruction’s name a label .f which may assume any of the values .b (for byte),
.h (for halfword), .w (for word), .d (for double word) and .s (for character
string). The copy instructions of interest are the following:

move.f source dest copies a data format .f from a source location source to
a sink location dest, both are specified by any of the addressing modes
listed in Fig. 14.2;

move.a source dest copies an address from a source location source to a sink
location dest, again both are specified by any of the addressing modes
of Fig. 14.2, with the restriction that source or destination must be an
address register when using the reg direct mode;

movem reg list (sp)− pushes multiple data and address registers from the
list reglist =< ri1 . . . rik > 5 into the stack in the order from left to right;
conversely, movem +(sp) reg list loads from right to left the registers
listed in reg list with data or addresses taken off the stack;

lea source an loads the register an with the address specified by source.

The instructions that do the actual computing look very much the same
syntactically as the move instructions. They are two-address instructions,
with the second address specifying both the source of the second operand
5 In symbolic assembler code, the registers may be specified by their names, at the

machine level this list translates into a bit vector of 16 positions, with rj = 1 if
the j-th register is to be moved, and with rj = 0 otherwise.
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and the destination of the result, the preferred addressing mode for it being
reg direct. Typical examples are the instructions

add.f source 1 dn which adds two integer data values of format .f and writes
the result to data register dn;

add.a source 1 an which adds two addresses (of word format) and writes the
resulting address to address register an;

cmp.f source 1 dn which compares two data values of format .f;
cmp.a source 1 an which compares two addresses.

All arithmetic and relational instructions set condition codes which may be-
come relevant to subsequent instructions that test them. This is specifically
the case with the cmp.f instructions where the condition codes are the re-
sults that really matter since they are usually inspected by conditional branch
instructions that follow next in sequence.

14.1.4 Implementing Procedure Calls

Given the definition of the instructions link and unlink, procedure calls may
in our CISC machine be implemented in about the same way as in the iam
described in Sect. 13.3.1. The layout of the activation records, specifically the
placement of the static link pointers, closely resembles that in Fig. 13.3, with
a slight difference though. Since the processor includes a set of registers for
temporary data and addresses, some of which may be used by a procedure in
some state of execution, provisionxs must be made to save register contents in
the stack when another procedure is called. These may be the registers used
either by the calling or by the called procedure, which must be restored (or
unsaved) upon returning. The most appropriate place in an activation record
for saving these registers is the one immediately following the return address
to make sure that they are cleared before the callee does anything else.

Another minor difference relates to the positions in the activation records
of the static and dynamic links which, due to the particularities of the instruc-
tions link and unlink, must be interchanged.

A complete activation record for some procedure f is shown on the left of
Fig. 14.3. Between the argument frame of f and the registers that need to be
saved it features a control block whose entries are, in this order, the dynamic
link old a6 to the activation record of the calling procedure, the static link
pe f to the environment of f , the current program counter value pc f , and
some status register status f that includes the condition code cc. The contents
of the register a6, which points to the stack entry that contains the static link
pe f to the environment of f , may be used as a base address, sometimes also
referred to as a frame pointer, relative to which all other record entries may
be conveniently accessed with fixed offsets.

The first steps of procedure f calling another procedure g consist of first
pushing the arguments of g and then executing the instruction
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Fig. 14.3. Stack configurations before and after a procedure f calls a procedure g
defined at the same nesting level

move.a a6 (sp)− ,

which saves the actual contents of a6, i.e., the pointer to the static link pe f ,
by pushing it onto the stack as well, thus establishing the dynamic link to the
activation record of f .

As we know from Sect. 13.3, the following cases need to be distinguished
with regard to the static linking of the called procedure g: if it is defined

• to be local to procedure f , then a6 points to its environment and nothing
needs be done;

• on the same or some k > 0 levels above procedure f , then a6 must be
dereferenced by executing k + 1 times in succession the instruction

move.a (a6) a6
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to update a6 with the environment pointer pe g of the callee g.

The second step completes the linkage by executing the instruction6

link a6 #0 ,

which saves on the stack the new environment pointer pe g held in register a6
and then updates a6 with the actual stack pointer sp.

The stack configuration on the right of Fig. 14.3 shows how the activation
record of g thus links up if g is defined at the same nesting level as f , i.e.,
both share the same environment. In this particular case, the instruction move
(a6) a6 must be executed just once so that pe g (to which the updated contents
new a6 of a6 are pointing) and pe f become the same. The stack entry a6
underneath pe g is the dynamic link to the static link entry pe f of the caller’s
activation record.

The entire linkage, i.e., the instruction sequence

move.a a6 (sp)−; move.a (a6) a6; link a6 #0 ,

is performed by the calling procedure f immediately before it executes the
bsr instruction that branches to the procedure g, and so is the unlinking by
means of the instruction unlink that must immediately follow the branch
instruction.

Figure 14.4 shows how the piece of code of a procedure f that sur-
rounds the call of another procedure g basically looks like. It begins with
n move.f instructions that push n arguments from the source addresses
source 1 . . . source n onto the stack, followed by the instruction sequence
that creates in the stack the static and dynamic links, which may require
several successive move.a instructions to deference the current static link.
Immediately after the bsr instruction, the linking is undone and the argu-
ment frame is released simply by resetting the stack pointer by the frame
size.

The code of the procedure g begins at label with a prelude that first saves
the status register and the working registers to be used and then allocates
workspace by advancing the stack pointer by the required size. Following the
code that actually does the computing, the prelude is reversed to deallocate
the workspace and restore the saved registers, before control returns, by means
of the instruction rts, to the caller f .

Essentially the same linking mechanism may be used when the static (and
dynamic) links are placed underneath the activation records rather than be-
tween their argument frames and the return addresses of the procedure calls.
However, since this means that the caller has to do the linking before set-
ting up the callee’s argument frame, we have to be careful about the regis-
ter a6. If it is used as the base address relative to which all frame entries
are accessed with fixed offsets, it cannot be updated before the argument
6 #val denotes an immediate value which in this particular case adds the value 0

to the stack pointer sp.
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entry;
. . .
move.f source 1 (sp)−;
. . . /* pushing n arguments
move.f source n (sp)−;
move.a a6 (sp)−;
move.a (a6) a6;
. . . /*doing the links
move.a (a6) a6;
link a6 #0;
bsr label; /*calling procedure g
unlink a6; /*undoing the links
adda #size of arg frame sp; /*deleting the arguments
. . .
exit;

label : move.w status reg (sp)−; /*saves status register
movem reg list (sp)−; /*saves registers
sub.a #size of workspace sp; /*allocates workspace
. . .
. . . /*code of g statement block
. . .
add.a #size of workspace sp; /*deallocates workspace
movem +(sp) reg list /* restores saved registers
movem +(sp) status reg /*restores old status
rts /*returns to calling procedure

Fig. 14.4. The basic code structure of a procedure f that calls a procedure g defined
at the same nesting level

frame has been completely built up, as otherwise at least the source addresses
source 1 . . . source n of the arguments, and possibly other address computa-
tions in between, may get corrupted. To play it safe, we therefore need to
do the dereferencing of the static links, if necessary, on another address regis-
ter, say a5, which changes the sequence of instructions that handle the links to

move.a a6 (sp)−; move.a a6 a5;
move.a (a5) a5; . . .; move.a (a5) a5; link a5 #0; .

Next, the arguments may be pushed onto the stack using the old contents
of a6 as the base of their source addresses, and then the new static link held
in a5 may be copied to a6, using the instruction move.a a5 a6 immediately
before the branch instruction bsr.

Figure 14.5 again shows the stack configurations before and after a pro-
cedure f calls a procedure g, with both f and g being defined at the same
nesting level. On the left we see the environment link pe f for f underneath
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Fig. 14.5. Linking the activation record of a procedure call, with the link pointer
entries placed underneath the record

the activation record a rec f , with the contents of a6 pointing to this link
entry and the stack pointer sp pointing to the top of a rec f . After the above
instruction sequence has been executed, the arguments for procedure g have
been stacked up, and the link pointer in a5 has been copied back to a6, the
register a6 is updated to new a6, and the old contents of a6 are underneath.
At this point, the activation record of g, though not yet complete, is fully
linked up to its environment. Completing the record a rec g moves the stack
pointer further down to the position new sp.

The calling procedure f again does all the linking, and also the unlinking,
once control has returned from the procedure g and the stack has been cleared
again by the procedure f down to the position sp − 4. Executing in this
configuration the instruction

unlink a6

reconstructs the configuration on the left of Fig. 14.5.
All entries within an activation record may now be accessed with negative

offsets relative to the link pointer, i.e., relative to the actual contents of the
register a6, just as in the iam described in Sect. 13.3.2.

14.2 A Typical RISC Architecture

One of the most challenging problems of compiling to real machine code is the
efficient use of the processor-internal working registers. As stated before, they
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take over the role of the value stacks of our various abstract machines, i.e.,
they accommodate primarily temporaries but, if available in excess to that,
may also be allocated to local variables or even to procedure parameters.

The trouble with these register sets is that, in contrast to a stack of (con-
ceptually) unlimited depth, the number of data items that can be held there
is fairly small, particularly in the CISC architecture of the preceding section.
Moreover, the register indices may be used only as address components of in-
structions but they cannot be placed into other registers or memory locations,
as is the case with memory addresses, i.e., there can be no indirect addressing
and hence no linking across registers. These constraints create a considerable
register allocation problem if the objective is to keep as many active data as
possible resident in registers, and to minimize data traffic between the regis-
ters and main memory.

Register allocation is usually based on the idea of coloring of what arei
called interference graphs that derive from a program’s flow of control and
data. The nodes of these graphs represent temporaries (or locals), and edges
between the nodes identify those items that cannot be placed into the same
registers because they are used in the same phases of program execution. The
nodes are then colored so that no two nodes connected by an edge receive
the same color. If there are just as many colors needed as there are registers,
then they constitute a valid register assignment that is free of interferences.
Otherwise, as many data items as there are colors exceeding the number of
registers need to be moved out and placed into memory.

Actually, register allocation is a little more involved than that but the col-
oring method is the basic idea. The problem becomes less severe with growing
numbers of processor-internal registers. When more data is held in registers,
there is less data traffic from and to memory. As computations are usually
performed within a slowly shifting, fairly narrow scope of data items, most
of the operations can then be done register to register, which helps to speed
things up considerably. In fact, load/store instructions which cleanly separate
data traffic to and from the memory from computations, large register sets,
instruction pipelines and separate instruction and data caches are the major
performance-enhancing components of RISC processor architectures.

14.2.1 The SPARC Register Set

There are basically two alternative ways to implement a register file.
The simplest one is a flat array of some 2k registers, enumerated 0 . . . 2k−1,

as for instance in the Intel 88110 and in the IBM Power PC processor architec-
tures. However, with k approaching 8 it may become increasingly difficult to
fully utilize all registers in a given computational context, say of a procedure
call, unless code optimization techniques such as inlining and unrolling are rig-
orously applied. Beyond that there are two more reasons that argue against
excessively large register arrays. One the one hand, the binary representation
of register addresses increases logarithmically with the array size, which may
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cause problems with the formatting of word-sized (32 bit) instructions. On
the other hand, context switching, which requires that all register contents be
swapped, becomes increasingly more costly.

A more structured approach with regard to the organization of a register
file can be found in the SPARC architecture, at which we will now have a
closer look.

The basic idea is to partition a fairly large register file into several par-
tially overlapping register windows that accommodate the contexts in which
procedure calls must be executed. Depending on the particular implementa-
tion, there are from 3 up to 32 such windows available of which, however, only
one window is accessible at a time.

Each window includes 32 registers r0 . . . r31, of which r0 . . . r7 are global
registers whose contents are the same in every window, and r8 . . . r31 are 24
window registers whose contents are specific to procedure calls.

The window registers, in turn, are partitioned into sets of

• eight outs registers r8 . . . r15 ≡ o0 . . . o7 in which a procedure sets up the
arguments for another procedure call;

• eight locals registers r16 . . . r23 ≡ l0 . . . l7 which accommodate local vari-
able instantiations and temporaries;

• eight ins registers r24 . . . r31 ≡ i0 . . . i7 through which a called procedure
receives its arguments from a calling procedure.

The outs registers of a calling procedure are in fact the same as the ins registers
of the called procedure, i.e., the windows are overlapping, as schematically
depicted in Fig. 14.6.

r31

r31

r31

r8

r8

r8

ins locals outs

ins locals outs

ins locals outs

current window

previous window

next window

Fig. 14.6. Three consecutive register windows

Here we see a current window allocated to a procedure that executes, i.e.,
this window is the only one that is visible. It shares its ins registers with the
outs registers of the previous window allocated to its calling procedure. The
outs of the current window, in turn, are shared with the ins of a next window
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that is going to be allocated to another procedure call. Thus the allocation of
windows to procedure calls proceeds from left to right, and deallocation upon
returning from procedure calls proceeds in the opposite direction.

With n ≥ 3 windows in the register file, the number of registers that
physically exist amounts to n ∗ 16 + 8 window registers and 8 global registers,
or (n + 1) ∗ 16 registers in total. However, since only one window is accessible
at any time, it takes only 5 bits to address a register, irrespective of the
actual number of windows, which is an important property for instruction
formatting.7

With this window concept, there are two kinds of limitations that need to
be dealt with.

The first one concerns the number of ins, outs and locals per window.
Though the number of parameters of procedure calls rarely exceeds four and
almost never six, provisions must nevertheless be made to cope with more
parameters. The problem is a little more severe with the locals. Together with
temporaries, there could be easily more than eight, of which some could, of
course, be put into ins registers that are not used by the calling procedure,
but local parameters in excess of this must inevitably spill over into memory.
However, this concept may also lead to a considerable waste of register ca-
pacity in the case of procedure with only one or two parameters and about as
many local variables.

At a higher level, the same problem comes up in the allocation of limited
numbers of windows. Profiling a wide variety of conventional programs has
revealed that on average there are about three and rarely more than eight
nestings of procedure calls to handle, but with the advent of function-based
languages this picture may drastically change in favor of a highly recursive
programming style and, in consequence, far deeper nestings of procedure calls.

So, the machine has to provide a mechanism that in the case of a window
overflow swaps a certain number of windows out into memory, and in the
case of a window underflow swaps windows in from memory, provided there
are windows left there. To this end, the machine supports a backup stack in
memory. This stack associates with each register window a generously sized
backup frame into which it may spill over whenever the computation runs out
of available windows or registers within the windows.

The existence of this backup stack necessitates a stack pointer sp which is
held in register o6 | r14. The stack pointer of the calling procedure becomes
the (backup) frame pointer fp = i6 | r30 of the called procedure, relative to
which all frame entries may be accessed with fixed offsets. Another register
needs to be reserved for the return addresses of procedure calls, which is the
outs register o7 | r15 of the calling procedure and, accordingly, the ins register
i7 | r31 of the called procedure.

7 The position of the visible window is held in a separate register that is not directly
accessible by the program code.
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It should be noted that there is no way of supporting nested procedure
definitions. They would require static links to windows deeper down in the
register file which would have to be made accessible. In fact, the origins of the
SPARC architecture may easily be traced back to the programming language
C. Except for globally free variables (which may be placed into the registers
g0 . . . g7), this language is flat in the sense that it knows only closed procedures
(somewhat misleadingly called functions) whose contexts (or environments)
can be put into single windows and, whatever does not fit in there, into the
associated backup stack frames. The windows (and the stack frames) are com-
pletely unrelated to each other, except for the order in which they come into
being, and in this sense fully conform to what has been said in Sect. 13.7
about the runtime environment for flat languages.

Control over the allocation and deallocation of windows and over window
swapping is exercised by means of four count variables held in dedicated reg-
isters, which may assume values from the interval 0 . . . n − 1. These are

• cwp (the current window pointer) which identifies the window position
that is active (or visible);

• cansave which keeps track of the number of windows that can still be
allocated;

• canrestore which denotes the number of windows that are occupied and
may be released again;

• otherwin which gives the number of windows reserved for other uses, e.g.,
for trap handling in cases of window overflow or underflow.

Since the windows are counted cyclically modulo(n), one window position
must remain unused as its ins and outs registers overlap with usable windows.
With this in mind, the above count variables must satisfy the equation

cansave + canrestore + otherwin + cwp = n − 1 .

Allocating a new window is possible if cansave > 0, in which case the sequence
of operations

cwp ← cwp + 1; cansave ← cansave − 1; canrestore ← canrestore + 1;

must be executed to adjust the count variables, otherwise a trap is generated.
The trap calls a kernel routine that swaps the contents of older windows
out into the backup stack, thus making new windows available for allocation.
Likewise, releasing an existing window is possible if canrestore > 0, in which
case the count variables must be updated by the complementary sequence

cwp ← cwp − 1; cansave ← cansave + 1; canrestore ← canrestore − 1;

otherwise a kernel routine takes over to fill empty windows with frames from
the backup stack to continue with further computations after returning from
procedure calls.
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14.2.2 Some Important SPARC Instructions

Though we are not really interested in bits and bytes here, a few words on
instruction formats should nevertheless be said since they more or less dictate
how the instructions need to be sliced and what they can do. Simplicity of
interpretation, which is what RISC architectures are all about, requires that
all instructions have fixed word size (say, of 32 bits). They can then be fetched
from (cache) memory and loaded into an instruction register for decoding in
one machine cycle and in one piece. Moreover, there should be only a few
formats in which instruction words are subdivided into dedicated operator
and operand (register) address fields. Given these constraints, there is little
room left to choose among many alternatives.

In fact, the SPARC architecture distinguishes just three classes of word-
sized instruction formats, of which the most important one has the general
form

rator sr1 sr2 dr ; .

Here rator, sr1, sr2, dr denote an operator, the addresses of a first and a
second source register for operands, and the address of a destination register
for results, respectively.8 This format applies to several control instructions, to
all value-transforming instructions (which are exclusively register to register)
and, in slightly modified form, also to load | store instructions that transfer
data between registers and memory.

The control instructions that effect branches to and returns from procedure
include the following:

call dest saves in register o7 | r15 the current pc as the return address
and then branches to procedure code at the address pc + off , where
off = (dest − pc)/4 ∈ [ −229 . . . 229 − 1 ].9

jmpl sr1 sr2 dr branches to procedure code in that it saves the current pc
as the return address in the destination register dr, and then computes
a new pc by adding the contents of the source registers sr1 and sr2.
Alternatively, the source register sr2 may be replaced with an immediate
value specifying an offset that is added to the contents of sr1; other than
that, the instruction has the same effect. This instruction is also used in
degenerate form to return from a procedure call.

return sr1 sr2 returns from a procedure by deallocating a window, as de-
scribed in the preceding subsection, and then setting the pc to the value
obtained by adding the contents of the two source registers sr1 and sr2
in the window to which control returns.

8 Wherever it makes sense, the second source register may be replaced with an
immediate value specifying, say, an offset relative to a base address held in the
first source register.

9 This instruction is in a format class of its own that features a 2 bit operator code
followed by the 30 bit offset off .



340 14 Real Computing Machines

ret without any parameters has the same effect as jmpl i7 #0 g0, i.e., it
returns control to the address held in register i7 without deallocating the
current window.

save sr1 sr2 dr allocates, as described in the preceding subsection, the next
window of the register file and then overwrites the destination register dr
of the new (the callee’s) window with the sum of the contents of the source
registers sr1 and sr2 (or alternatively an offset) of the caller’s window.

restore sr1 sr2 dr switches back to the caller’s window, as described in the
preceding section, and then updates the destination register dr in it with
the sum of the contents of registers sr1 and sr2 (or alternatively an offset)
in the callee’s window.

rest without any parameters has the same effect as restore, i.e., it returns
to the caller’s window, except that it does not perform the subsequent
addition.

It may be noted that, for good reasons, the instructions that call and return
from procedures may be separated from the instructions that switch windows.
This is to avoid unnecessary switches whenever a procedure call is the last
one in a sequence of nested calls.

There is, of course, a conditional branch instruction that, as in the CISC
machine of Sect. 14.1, may be spezialized by a condition code cc:

br cc dest sets the program counter pc to pc + off (where off = (dest −
pc)/4 ∈ [ −221 . . . 221 − 1 ]) if the condition specified by cc becomes true,
otherwise code execution continues at pc+4, i.e., with the next instruction
in sequence. The branch instruction belongs to yet another format class
which provides a field for a 22 bit signed offset.10

There are basically three move instructions available to copy data from one
place to another:

st.f sr1 sr2 dr stores in the format .f the contents of register dr in memory
at the address obtained by adding the contents of sr1 and sr2.

ld.f sr1 sr2 dr loads in the format .f into register dr the contents of the
memory address obtained by adding the contents of sr1 and sr2.

move.f cond sr2 dr copies in the format .f the contents of register sr2 to
register dr if the condition cond is true; otherwise nothing happens. If the
condition is missing, the move is done unconditionally.

Representative of the instructions that do the actual computing are

add.f sr1 sr2 dr which adds numbers in the format .f in the source registers
sr1 and sr2, and puts the result in register dr.

cmp.f sr1 sr2 which compares in the format .f the contents of sr1 and sr2,
and accordingly sets condition codes to be inspected by subsequent con-
ditional branch instructions.

10 In another instruction sethi that belongs to the same format this field is used
for immediate operands.
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The last instruction that needs to be mentioned is nop (short for no operation)
which has no effect other than killing time, exactly one machine cycle to be
precise. This instruction occurs quite frequently in RISC code as a consequence
of pipelined instruction processing. Following conditional branches taken, the
pipeline has to be restarted with new instructions beginning at the branch
addresses while instructions already in the pipeline may have to be discarded.
The nops are used simply to fill the ensuing slots that open up behind the
branch instructions, unless they can be filled with useful instructions by code
reorganization.

14.2.3 The SPARC Assembler Code for Factorial

To illustrate how SPARC code typically looks like, we consider what may be
obtained by compiling the function definition

fac n = if ( n ≥ 1 ) then ( n ∗ ( fac ( − 1 n ) ) else 1 .

Figure 14.7 shows the code generated by a compiler for an equicalent C pro-
gram, with all optimizations turned off.

The first thing that is done when this code is entered at label fac is to
have the instruction save allocate a new window in the register file and also
a new frame of a generously chosen 120 bytes in the backup stack, simply by
advancing the stack pointer sp accordingly. The single parameter n received
through the ins register i0 is stored in the backup frame entry fp + 68 and
from there is immediately reloaded into the outs register o0. The comparision
performed by the instruction cmp realizes the inverse of (n ≥ 1), i.e., the
subsequent branch by the instruction br le is taken if the value of n drops
below 2. However, since the branch would become effective in the pipeline
two instructions later, the compiler routinely fills the slot in between with
the instruction nop, as it does following every other branch instruction in the
code.

The following three instructions compute the expression (n− 1) and place
the result into the outs register o0, where it is expected as input parameter
by the subsequent recursive call of fac. The function value that is returned
through the ins register i0 of the callee and thus becomes the outs register
o0 of the caller is, in preparation for the multiplication (n ∗ (fac (− 1 n)),
moved to register o1 to make room for reloading the actual value of n from
the frame entry fp + 68 to register o0.

The multiplication is performed by a library routine umul which imple-
ments it as a sequence of add and shift instructions compatible with pipeline
processing of one instruction per machine cycle.11 This routine expects its
parameters in the caller’s outs registers o0 and o1 and returns its result in
11 The more advanced SPARC III processor supports mult instructions in conjunc-

tion with a hardwired multiplier that does multiplication in one machine cycle.
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fac : save sp # − 120 sp /* entry into fac code, allocates
new window and backup stack frame*/

st.w fp #68 i0 /*passes the the function parameter n
ld.w fp #68 o0 from i0 to o0 */

cmp o0 #1 /*computes n ≤ 1 and
br le ll3 branches to label ll3 if true*/

nop /* fills empty slot after a branch*/

ld.w fp #68 o0 /*loads parameter n again */
add.w o0 # − 1 o1 /*computes n − 1 */
move.w o1 o0 /* sets up n − 1 in o0 for next

call of fac*/

call fac /*recursively calls fac again*/
nop

move.w o0 o1 /*moves (fac (− 1 n)) to o1 */

ld.w fp #68 o0 /*loads n again*/

call umul /*calls multiplication routine*/
nop

st.w fp # − 20 o0 /*stores result of multiplication */

br.a ll4 /*branches unconditionally to label ll4*/
nop

ll3 : move.w #1 o0 /*copies value 1 of else clause
st.w fp # − 20 o0 to o0 and to frame entry fp − 20*/

ll4 : ld.w fp # − 20 i0 /*loads function value*/
br.a ll2
nop

ll2 : ret /*returns from call of fac and
restore sp #120 sp deallocates current window and stack frame*/

Fig. 14.7. Nonoptimized SPARC code for the factorial

register o0 of the caller’s window. The instruction st.w moves this result to a
backup stack entry at the address fp− 20 outside (below) the current frame.

Continuing at label ll4, the function value is reloaded again from this stack
entry into the ins register i0 through which it is returned to the callers outs
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register o0 once control has returned to it and the instruction restore has
the caller’s window restored.

Alternatively, if the conditional branch to label ll3 is taken by the in-
struction br le, the constant value 1 is written into the outs register o0 and
into stack entry fp − 20 to be returned as the value of the function call that
terminates the recursion.

Though this piece of code closely reflects the structure of the high-level
program, it also shows how poorly both the window registers and the frames of
the backup stack are utilized if there is just one formal parameter to be dealt
with. Taking into account the overlap between outs and ins of two successive
(a caller’s and a callee’s) windows, the entire computation in this particular
case uses just the two outs registers o0 and o1, with o0 serving as the register
through which argument values are passed from callers to callees and function
values are handed over in the opposite directions, i.e., not counting the globals,
14 out of 16 window registers remain unused. Similarly, only one out of 30
word-sized entries is used in each of the backup frames to pass the argument
value along. Another location underneath the topmost stack frame is used to
return function values.

A decidedly better register utilization can be achieved by having the code
optimizer inline (or flatten) several consecutive recursive calls of fac. Each
instance of the function body code must then be distinguished by the use of
distinct registers. If two registers are required for each instance, and the locals
registers are engaged in this game as well, it is then possible to inline up to
eight calls. As inlining eliminates time-consuming call/save and return/restore
sequences and generally opens up more opportunities for other optimizations,
the resulting code not only utilizes registers more economically but also runs
a lot faster. However, the alienation from the original high-level program may
be quite considerable, particularly as programs become more complex and
inlining can be applied to (nestings of) different procedure calls.

Other redundancies can be found in the factorial code itself. They are
primarily due to repeated reloads of registers from the corresponding backup
stack entries. A code optimizer would replace the first occurrence of the in-
struction ld.w fp #68 o0 with move.w i0 o0, and drop the second occurrence
altogether since it would find out that the value of n is still in o0. Likewise,
the instruction ld.w fp #−20 i0 at label ll4 could be replaced with move.w
o0 i0 since the right return value is in o0 irrespective of how this instruction
is reached. A small amount of code reorganization would move at least in the
place of the first occurrence of the nop instruction either the ld.w or the
st.w instruction that now precedes the conditional branch instruction br le,
thus saving another pipeline slot for useful computations.
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14.3 Summary

Having had a closer look at two representative architectures of real computing
machines, we note that differences from the various code-executing abstract
machines described in the preceding chapters, particularly the imperative ab-
stract machines of Chap. 13, primarily concern implementation issues. All
these machines, of necessity, share essential control instructions to call and
return from procedures and to branch conditionally, instructions that move
things from one place to another, and instructions that do the actual com-
puting, i.e., arithmetic, logic and relational operations.

However, whereas the instructions of the abstract machines operate on
(pointers to) conceptually infinite data structures such as stacks and linked
lists of things held in heaps, finiteness of resources and bandwidth limitations
are a major concern when it comes to implementing and operating on such
structures in real machines. Fixed sizes of registers and addressable mem-
ory entries dictate data and instruction formats. Data formats determine the
instructions needed to operate on data, instruction formats limit the total
number of instructions, the number of operands, and the addressing modes
that can be supported. And finally, the addressing modes and address formats
determine the address ranges that may be covered.

A particularly challenging problem is the utilization of limited numbers
of processor-internal registers that replace the working (value) stacks of our
abstract machines. Runtime efficiency demands that all data and (memory)
addresses that belong to the current focus of computation be held in these reg-
isters, which requires carefully tuned allocation strategies. Larger register sets
alleviate this allocation problem to some extent. However, they do so at the
expense of logarithmically growing register addresses which may be difficult to
squeeze into given instruction formats, and also of increased context-switching
times which may to some extent offset the performance gains made by adding
registers.

Another problem with registers is that they can be addressed only directly.
There is no way of keeping register addresses in registers and using them for in-
direct addressing. This precludes building structures such as linked lists across
register contents, with the consequence that runtime structures composed of
statically linked frames cannot be held even in sufficiently large register files
but must be kept in memory. What is, however, possible are register-resident
frames holding instantiations of closed procedures that, other than being lined
up in their order of creation, are totally unrelated to each other.

The chapter has described both a CISC (complex instruction set computer)
architecture that is capable of supporting in memory a runtime environment
with statically linked activation records for invocations of nested procedures,
and a RISC (reduced instruction set computer) architecture that works with
register windows for invocations of flat (or closed) procedures.

The CISC instruction set is fairly high-level, closely resembling that of the
MC680x0 family, which facilitates compilation of high-level language programs
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into dense code. The instructions may have varying lengths as operators may
be paired with a variety of addressing modes for operands that are tailored to
the needs of pushing, popping and addressing, also over levels of indirection,
stack entries held in memory. To keep the code relocatable, branching to pro-
cedures or to the alternatives of conditionals is done with fixed offsets relative
to the program counter. Instruction decoding requires sophisticated controls
and, depending on address positions, addressing modes used for operands and
operand formats, it may take widely varying numbers of machine cycles to
execute.

The CISC register set is fairly small, with most of the action taking place
in the memory-resident runtime stack. The registers merely accommodate the
temporaries and the base addresses of data structures – most prominently the
runtime stack – that constitute the current scope of the computation. Since
there are eight registers available for address manipulations, this architec-
ture is a perfect vehicle for the direct implementation of our code-executing
abstract machines that feature several stacks and a heap.

The SPARC family that we have chosen as a typical RISC architecture
centers around register files of sizes that may vary in multiples of 16 regis-
ters. However, only one window of 32 registers is addressable at any time. It
comprises 8 registers for global values and 24 registers that accommodate the
incoming, local and outgoing parameters, i.e., basically the activation record,
of a procedure call. Moving the accessible window in a round robin fashion
across the register file in increments (or decrements) of 16 registers mimics
the workings of a runtime stack as the ins registers of some current window
overlap with the outs of the preceding window to pass parameters from a call-
ing to the called procedure. Other than that, there are no linkages between
the windows, meaning that only closed procedures that contain no references
to items held in other windows may be supported. This concept clearly has
its origins in the programming language C. This language knows only flat
procedure definitions that, except for references to global variables, are closed
and thus are perfect candidates for compilation to SPARC code. In fact, C is
about the only language for which compilers to SPARC code exist. All other
high-level languages are compiled to C as an intermediate language to take
advantage of the C compiler backend for the generation of highly efficient
machine code.

Since there are only finitely many window positions (from three to eight,
depending on the processor implementation chosen), a backup stack must be
supported in memory, into which older windows may spill over to make room
in the register file for more procedure calls, and from which empty window
positions may be reloaded when returning from procedure calls. The backup
stack may also accommodate data items in excess of the fixed window capacity.

The SPARC instruction set is very much in line with that of other RISC
architectures, meaning that they are tailored for smooth and efficient pipeline
execution. All instructions are simple enough to pass through each pipeline
stage in one machine cycle, most of them perform register-to-register opera-
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tions, there are explicit load and store instructions to move things in and out
of memory, and branch instructions, as usual, work with offsets relative to the
program counter. There are two instructions unique to SPARC that control
window movement: save advances the window position from caller to callee
and at the same time allocates another frame on the backup stack, restore
returns to the preceding window position and deallocates the current backup
frame upon returning from callee to caller. Both instructions effect traps in
cases of window overflow or underflow to move windows out to or in from the
backup stack, respectively.
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A

Input/Output

Throughout the discussion of the various abstract machines there has been
something important missing: an answer to the question of how a program
expression or executable program code gets into the machine, say from a user
interface (typically a keyboard/display arrangement) or some file held in a
peripheral store, and how the result of a program run is returned to that in-
terface or written back into a file again. In a more general setting, we might
wish to know how a running program can be made to repeatedly communi-
cate with a user, or another computation for that matter, by requesting (or
receiving) input of some kind and responding with appropriate output.

At first sight, we could simply have the input/output problem taken care of
by the traditional mechanisms known from conventional computing systems,
and the issue would be settled. Unfortunately, things are not that simple in
the world of λ-calculus-based languages of the al variety.

To understand what is at stake here, we need to realize that input/output
always involves interactions with the state of an environment consisting of files
as abstractions of a wide variety of devices that hold data. Getting input
from a file means copying all or part of it, putting output into a file means
overwriting all or part of it, which is to say that input/output operations
are performed for their effects on the environment. Since this is exactly what
assignment statements of imperative languages are doing as well, just at a
finer level of granularity and on specific components of the runtime environ-
ment (the stack and the heap) (see Chaps. 13 and 14), input/output is fully
compatible with the imperative model of computing. This model imposes a
sequential execution order upon all updating and copying operations on the
state, whether assignments or input/output, which trivially guarantees deter-
minacy of results for all program runs in the same environment.

This contrasts with the λ-calculus where the Church–Rosser property guar-
antees the determinacy of results (normal forms) irrespective of the order in
which redices that are only partially ordered are reduced, the reason being
that evaluating a λ-expression is based on context-free substitutions of equals
by equals without interaction with a state.
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This situation changes, of course, if input/output operations are intro-
duced into the λ-calculus in naive form. To illustrate what may happen, con-
sider a simple machine that, in addition to the structures that are necessary
to perform reductions, also includes two abstract registers in and out through
which expressions may be communicated with an environment. Both registers
may either be filled with valid expressions or be empty. We also assume two
primitive functions get and put which read from the in register and write
to the out register, respectively. The primitive get implicitly takes as an ar-
gument the contents of the in register and reproduces it as a function value,
whereas put takes as an argument the expression to be moved out and returns
as a value some dummy symbol, say �, in its place. The primitive get is ex-
ecutable only if the in register is filled, consuming its contents and leaving it
empty, and put is executable only if the out register is empty, filling it with
the argument, otherwise the applications remain unchanged in both cases.

Here we have a very simple program that, depending on its interleaving
with executable gets and puts, does weird things with its output:

letrec f = lambda u v in (g v u)
g = lambda u v in (h u u)
h = lambda u v in ”nil”

in (f (put ”hello”) (put get)) .

Assuming that the register in is going to be filled with the string ”world”,
we may get the following output sequences:

• ”world” ”hello” if both put applications can be reduced before applying
f ;

• ”hello” ”world” if both puts are passed along by f as they are and
reduced before applying g;

• ”hello” ”hello” if the (put get) application is passed along by g and
reduced before applying h (the other put disappears);

• and no output at all if the ( put get ) application falls through the appli-
cation of h, which returns ”nil” as its value.

The problem that we face here is that interactions with an environment as
naive add-ons to the λ-calculus obviously violate the Church–Rosser property.
They produce results – output in this particular case – that are dependent
on execution orders and thus are incompatible with computations based on a
reduction semantics (or context-free substitutions).

There are several ways of getting around this problem, of which the more
important ones will be outlined in the following sections.

A.1 Functions as Input/Output Mappings

In its simplest form, an al program may interact with the environment by
receiving a single argument object, say a string of characters, via a get s
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operation and returns to the environment a result which is another character
string, using a put s operation. This may be expressed as an application of
a function main to the input operation get s, which in turn becomes the
argument of an application of the output operation put s:1

(put s (main get s)) .

Unlike the put and get operations of the naive approach, executing get s
and put s must include a synchronization mechanism, signified by the postfix
s, which ensures that main is not applied before input can be read from the
in register, and output cannot be produced before the evaluation of the main
function’s body has terminated. Otherwise, the get s may be duplicated in
the body of main, of which each copy attempts to retrieve another entry
from the in register, or the put s may produce output that still contains
occurrences of get s.

To formalize the specification of this and the following input/output
schemes, we use the general notation

C[ e ] ‖ < in out >→ C[ e′ ] ‖ < in′ out′ > | e 
→ e′ .

It describes the transformation, by a sequence of (β-)reductions denoted by
the arrow 
→, of some expression e that may (or may not) be embedded in
some context C, e.g., a larger expression surrounding it, and an associated
environment (or state), represented by its in and out register interface, into
an expression e′ and a new environment.

Evaluation of the above application may be specified by the following three
rules:2

C[ (main get s) ] ‖ < string out > → C[ (main string) ] ‖ < � out > ,

(put s string) ‖ < in � > → � ‖ < in string > ,

C[ e ] ‖ < in out > → C[ e′ ] ‖ < in out > | e 
→ e′ ,

where C[ e ] denotes all contexts of e.
This restricted form of interaction with the environment is in compliance

with the notion of functions as mappings from inputs to outputs. It never
interferes with the evaluation of the body of main, assuming that this body
does not contain further get ss and put ss. What we have here is in fact
equivalent, on a larger scale, to an assignment statement: the function main
may be seen as the expression on its right-hand side, the get s operation is
equivalent to copying values for the expression’s variables from the store, and
the put s operation does the equivalent of assigning the value of the expression
1 Multiple arguments and result values may be packed in lists to comply with the

single-argument/single-function-value notation.
2 The symbol � denotes an empty input or output register.
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to the variable on the left (which are the variables in and out, respectively, in
this input/output scheme).

There are, however, limitations to this approach: since the strictness as-
sumption demands that the input be fully specified and that output must not
be produced before the computation terminates, there is no way of handling,
say, a continuous flow of input that generates a continuous flow of output,
which would establish a simple form of repeated interaction with the environ-
ment.

Such interactions may be realized by means of streams, i.e., potentially
unending sequences of objects that can be exchanged between a program
and its environment. These sequences may be thought of as infinite lists that
require nonstrict evaluation, meaning that elements may be taken off their front
ends and appended to their back ends without having the lists themselves
evaluated.

To illustrate the use of streams, consider a simple request/response interac-
tion scheme that works with a first stream of requests to be communicated to
the environment and a second stream to accumulate responses received from
the environment. Requests are assumed to be of the form

request =s (putstring string) | getstring ,

i.e., they may either put a string value into the out register or receive a string
value from the in register. Responses have the form

response =s< success string > | < failure string > ,

signifying success or failure of an interaction, with string denoting either the
interaction’s return value or the cause of the failure.

A function main that communicates with an environment by means of
request/response streams may be specifies as

main = lambda u in emain ,

where u denotes a formal parameter to be substituted by a special variable
resp for response streams that are initially empty.

Executing an application of this function to resp may be governed by the
following rules of an input/output scheme:

C[ (main resp) ] ‖ < in out > → C[ efun[ u ← resp ] ] ‖ < in out > ,

C[ e ] ‖ < in out > → C[ e′ ] ‖ < in out > | e 
→ e′ ,

getstring : e ‖ < string out > →
e[ resp ←< success string >: resp ] ‖ < � out > ,

getstring : e ‖ < eos out > →
e[ resp ←< failure ”stream end” >: resp ] ‖ < � out > ,
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(putstring string) : e ‖ < in � > →
e[ resp ←< success ”putstring” >: resp ] ‖ < in string > ,

<> ‖ < in � > → done ‖ < in eos > .

It may be noted that the first rule is just a special case of the second
rule. It has nevertheless been included to make explicit the substitution of the
response stream into the body of main.

The rules for getstring either take a valid string from the in register
and prepend a < success string > tuple to the response stream or, if the
special end-of-stream symbol eos is encountered, signify failure. The rule for
putstring puts its argument string into the out register and prepends a tuple
signifying successful completion of the operation to the response stream. It
is important to note that prepending something to the response stream is
seen by all occurrences of resp since all of them are substituted by the new
sequence.

Otherwise, we have a rule for normalization of an expression without en-
gaging input/output, and a rule for termination of the output if the request
stream is empty.

A primitive login procedure that just asks the user for her/his name and
responds with ”hello” and the name that is being returned would have to look
like this:

main = lambda u in
(putstring ”your name ?”) : getstring : (hello (rest u))

hello = lambda v in
(case

< success name >: tail →
(putstring ”hello”) : (putstring name)

otherwise . . .
v) .

The body of the function main is a stream of two explicit requests fol-
lowed by a call for the subfunction hello. This function performs a pattern
match on the response stream, expecting a success message as an echo to the
getstring of the request stream, and thereupon produces the desired answer
as another output request (reactions to mismatches are ignored here).

Correct evaluation of such stream programs requires that the putstring
and getstring operations are atomic in the sense that they are completed
only after responses have arrived and been prepended to the response stream,
i.e., output and input are tightly synchronized. Synchronization problems of
another kind may nevertheless occur if, owing to programming errors, un-
successful attempts are made to inspect responses before the corresponding
requests have been made, in which case the program would deadlock. This
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would, for instance, be the case if the calls of hello and getstring would be
interchanged in the request stream generated by the above function main.

Another way to have a program communicate with an environment that
is based on the notion of functions as mappings from input to output is called
environment passing. The idea is that functions are applied to complete cur-
rent environments and return new, modified environments as function values.
These environments are also referred to as world states, or worlds for short.

In its simplest form, and using the same notation as before, such interac-
tions could be specified by three transformation rules that take the in and
out registers as representations of the environment (or of the world state):

C[ (main getstate) ] ‖ < in out > →
C[ (main < in out >) ] ‖ < � � > ,

(putstate < in out >) ‖ < � � > → done ‖ < in out > ,

C[ e ] ‖ < � � > → C[ e′ ] ‖ < � � > | e 
→ e′ .

The first rule uses the primitive getstate to move the entire state into the
argument position of the function main, leaving the original state empty.
The second rule applies putstate to copy back as the new world state the
< in out > tuple that has emerged as the value of the main application.
In between, normalization of an expression may proceed without interactions
with the state (the last rule).

For this to work correctly, the entire interaction would have to be specified
as a nested application

(putstate (main getstate)) .

There must be no putstates or getstates in the body of main, which means
that interaction with the state takes place only when starting and termintating
main.

However, this is not really a satisfactory solution. The more ambitious ob-
jective of having a functional program repeatedly interact in an orderly way
with the environment, or the world state, between start and finish is more
difficult to accomplish. The problem is that there must be a tight synchro-
nization between an internal representation of the state (the one used on the
left of the separator ‖) and the real state of the environment (on the right
of ‖), which may be changed by operations external to the program under
consideration. That is to say, every input operation must find the states on
both sides of the separator ‖ to be the same, and every output operation must
effect the same changes on both sides of the ‖ symbol. To put it another way,
there must be exactly one representation of the world state that must be the
same as the real state, i.e., the representation must be unique.

Irrespective of concrete realizations, this uniqueness property may be ex-
pressed by the following transformation rules that describe interactions with
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the world state with the notion of a unique world context UWC in which in-
put/output operations take place. This specific context, whose existence can
be asserted by program analysis such as uniqueness type checking, essentially
ensures that an input/output operation is in exclusive possession of the world
state when it is executed.3

start main ‖ < in out > → (main < in out >) ‖ < in out > ,

UWC[ (Getstring < string out >) ] ‖ < string out > →
UWC[ << success string > < � out >> ] ‖ < � out > ,

UWC[ (Getstring < eos out >) ] ‖ < eos out > →
UWC[ << failure ”stream end” > < � out >> ] ‖ < � out > ,

UWC[ (Putstring string < in � >) ] ‖ < in � > →
UWC[ << success ”Putstring” > < in string >> ] ‖ < in string > ,

C[ e ] ‖ < in out > → C[ e′ ] ‖ < in out > | e 
→ e′ ,

< in � > ‖ < in � > → done ‖ < in eos > .

Here is, as an example that uses this uniqueness-based environment-
passing mechanism, a function main that realizes the primitive login pro-
cedure described above:

main = lambda u in
letrec f = lambda v w in

( case
< ”getstate” < in out > > ‖ (eq w ”w0”) →

( f ( Putstring ”your name ?” < in � > ) ”w1” )
<< success ”Putstring” > < in ”your name ?” >> ‖

(eq w ”w1”) → ( f ( Getstring < name out > ) ”w2”)
<< success name > < � out >> ‖ (eq w ”w2”) →

( f ( Putstring ”hello” : name < in � > ) ”w3”)
<< success ”Putstring” > < in ”hello” : name >> ‖

(eq w ”w3”) → . . .
otherwise . . .

v )
in ( f < ”getstate” v > ”w0” )

The body of main defines a recursive function f that moves through a
sequence of pattern matches that produces the desired communication with
the state. The correct sequencing of the Putstrings and Getstrings has
3 The first of these rules applies a start operator to some function main that

simply copies the world-state representation in its argument position.
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been accomplished in this program by means of a little trick: the func-
tion f is equipped with another parameter w that may assume the values
”w0”, ”w1”, ”w2”, . . . which change and are subsequently tested whenever f
is called. This trick gets us around the problem that the sequencing should in
reality be determined by data dependencies that are part of the world states.
However, since we have chosen to represent the world state just by in and
out registers through which strings are passed, the additional parameter w
simply assumes the role of a full world representation, as far as sequencing is
concerned.

A major deficiency of both styles of interaction – streams and environment
passing – is the low level of abstraction. The details of sequencing interactions
with the environment must be explicitly specified, either by means of streams
or through dependencies among world states and uniqueness properties. In this
regard, the programming style does not differ much from that of imperative
programming. However, an expression-oriented programming model should
provide the means to introduce abstractions that hide the details of stream
handling and environment passing.

A.2 Continuation-Style Input/Output

The basic idea here is again to focus on one interaction at a time and to
specify how the computation must continue after the interaction has occurred.
This result continuation is realized by means of a function of one parameter
through which the result of the interaction is passed along. Its body may
recursively contain further constructs of the same kind, possibly terminating
with an empty result continuation, symbolized by done. Thus, a program that
performs several interactions is composed of a nesting of an equal number of
result continuations, of which each handles one interaction. More precisely,
a program just specifies requests for interactions that are performed by the
environment itself.

Using the notation (cont fun response) for the application of a continua-
tion function cont fun to an interaction response named response, interaction
by result continuation can be specified by the following rules:

(GetString cont fun) ‖ < string out > →
(cont fun < success string >) ‖ < � out > ,

(GetString cont fun)‖ < eos out > →
(cont fun < failure ”stream end” >) ‖ < � out > ,

(PutString string cont fun)‖ < in � > →
(cont fun < success ”PutString” >) ‖ < in string > ,
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C[ e ] ‖ < in out > → C[ e′ ]‖ < in out > | e 
→ e′ ,

done ‖ < in � > → done ‖ < in eos > .

The first rule simply replaces the name main of its main function by the
right-hand-side expression e of its defining equation main = e. The next three
rules have applications of the primitives GetString and PutString to some
continuation function cont fun transformed into the application of cont fun
to the results of the respective interactions. The second to last rule evaluates
expressions without interactions, and the last rule takes care of the termina-
tion condition.

In this result continuation style, our primitive login procedure can now be
reformulated as

main = ((PutString ”your name ?”)
lambda − in

(GetString
lambda u in

(case
< success name >→

((PutString < ”hello” name >)
lambda − in done)

otherwise . . .
u))) .

Here we have three nested applications of continuations corresponding to
the three interactions – requesting a name through PutString, receiving it
through GetString and responding with "hello" and the name – that need
to be performed. The continuations are lambda abstractions, of which those
whose parameters are denotes as ‘−’ simply dump their interaction’s responses
(both PutStrings), and the continuation following GetString includes a pat-
tern match to extract the name from the response < successor name > and
to pass it on to the subsequent PutString interaction.

At first glance, continuation-style programming seems to be all we need to
include interactions with an environment in function-based programs. Compo-
sitions of primitive interactions can be had as part of the construction of result
continuations. However, the tight coupling of interactions and continuations
renders it impossible to separate the two from each other, i.e., to perform an
interaction without explicitly specifying in place how the response ought to be
dealt with immediately afterwards. Working around this problem would mean
passing continuations around as parameters, say, when large programs need to
be composed of smaller components, with the consequence that continuation
parameters may be scattered all over the place.

A more elegant solution consists in a construct that makes explicit the com-
position of an interaction and a continuation function by means of a primitive



356 A Input/Output

function bind:
(bind interaction cont fun) .

This bind construct evaluates in two steps: first it evaluates its first argu-
ment, the interaction description (which includes performing the interaction),
returning an intermediate expression (return value). It is itself an identity
interaction description that simply returns value. The application of bind
is, in the second step, evaluated only if its first parameter is such a return
interaction, passing its return value value on to the continuation function
cont fun.

The important difference from the result continuation is that this monadic
style of interaction programming allows complex interactions to be specified
as compositions whose evaluation terminates with a primitive interaction that
results in a return application.

The transformation rules for these monadic interactions, which take place
in a special monadic context MC, are the following:

C[ e ] ‖ < in out > → C[ e′ ] ‖ < in out > | e 
→ e′ ,

MC[ getString ] ‖ < string out > →
MC[ (return < success string >) ] ‖ < � out > ,

MC[ getString ] ‖ < eos out > →
MC[ (return < failure ”stream end” >) ] ‖ < � out > ,

MC[ (putString string) ] ‖ < in � > →
MC[ (return < success ”putString” >) ] ‖ < in string > ,

MC[ (bind (return value) cont fun) ] ‖
< in out > →

MC[ (cont fun value) ] ‖ < in out > ,

(return e) ‖ < in out > → done ‖ < in eos > .

If we use a more convenient infix notation for the bind construct that
uses �= if the return value of the interaction is to be passed on to the con-
tinuation function, and � otherwise, the monadic-style version of our login
program takes the form

main = (putString ”your name ?”) �
getString �=
lambda u in
(case

< success name > → ( putString < ”hello” name >)
otherwise . . .

u) � . . .
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Other than for syntactic sugar, this program looks very much the same as
the result continuation program since both concepts coincide if the interac-
tions involved are just primitive getStrings and putStrings.

The advantage of this input/output programming model, as compared
with streams and environment passing, is the higher level of abstraction. It
is more declarative in the sense that the programmer does not have to worry
about the details of stream handling, evaluation orders (strict versus non-
strict), or uniqueness properties. All that remains to be done is to specify
which interactions need to be performed and in which order. In this regard,
monadic style programming closely resembles imperative programming, with
decidedly more expressiveness and flexibility though. This is not very surpris-
ing since the bottom line is that it describes interactions with a state.

A.3 Interactions with a File System

As a concretization of monadic-style interactions, we will now have a brief look
at the specification of input/output operations for an ordinary file system, as
is known from UNIX, for instance. A file system consists of a set of files of
which each either is empty or contains a sequence of elements (or entries) that
can be located by their positions, usually counted by the number of entries
relative to the beginning of the file. Entries selected by their positions can
be read or overwritten. Prior to performing these elementary operations files
must be opened, and afterwards they must be closed again. The files must be
identified by names.

Interactions with a file system may be specified, as usual, by a set of trans-
formation rules that are of the general form

MC[ interaction ] ‖ environment | guard →
MC[ (return value) ] ‖ new environment .

The environment may be described by a tuple

environment = (N → F, H → I ∗ N) ,

where N, F, H and I denote a set of file names, a set of file entries (or file
contents), a set of handles on open files, and a set {0, 1, 2, . . .} of indices that
enumerate file entries, respectively. The mapping N → F relates file names
to file contents, and the mapping H → I ∗ N defines handles as tuples of
the form (ind, file name) which identify specific entries in specific files. The
contents of a file may simply be thought of as a list < s0 . . . si . . . sn−1 >
of n entries si, with i denoting the index positions.

The interactions that we wish to perform on this environment are fopen
and fclose to open and close a file, and fput, fget and fseek to overwrite,
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read and position the handle on a particular file entry, respectively.

MC[ ( fopen name ) ] ‖ ( N → F, H → I∗N ) | name /∈ N∧handle /∈ H →
MC[ (return handle) ] ‖

(N → F ∪ {name →<>}, H → I ∗ N ∪ {handle → (0, name)}) ,

MC[ (fopen name) ] ‖(N → F, H → I ∗ N) | name ∈ N ∧ handle /∈ H →
MC[ (return handle) ] ‖

(N → F, H → I ∗ N ∪ {handle → (0, name)}) ,

MC[ (fclose handle) ] ‖(N → F, H → I ∗ N) |
name ∈ N ∧ handle ∈ H ∧ handle = (i, name) →

MC[ (return ”closed”) ] ‖
(N → F, H → I ∗ N \ {handle → (i, name)}) .

There are two rules for fopen. The first one takes care of the case where the
file does not yet exist and must be created, meaning that a new name → <>
entry must be added to the mapping N → F and a new handle must be
added to H . The second rule applies to the case where the file already exists,
which requires a new handle only. In either case, the handle is initialized with
position index 0 and returned as the value of the interaction. The interaction
fclose takes as its argument the handle of an open file, removes it from H
and returns the value "closed".

The interactions with an open file are defined as follows:

MC[ (fget handle) ] ‖(N → F, H → I ∗ N) |
name ∈ N ∧ name →< . . . si . . . >

∧ handle ∈ H ∧ handle = (i, name) →
MC[ (return si) ] ‖ (N → F, H ′ → I ′ ∗ N)

(in the new environment the handle has changed to handle′ → (i+1, name) ∈
H ′ → I ′ ∗ N);

MC[ (fput handle ssi) ] ‖(N → F, H → I ∗ N) |
name ∈ N ∧ name →< . . . si . . . >

∧ handle ∈ H ∧ handle = (i, name) →
MC[ (return ”succ”) ] ‖ (N → F ′, H ′ → I ′ ∗ N)

(in the new environment the handle has again changed to handle′ → (i +
1, name) ∈ H ′ → I ′ ∗ N and the file has changed in position i to
< . . . ssi . . . >∈ F ′);

MC[ (fseek handle index) ] ‖handle ∈ H ∧ handle = (i, name) →
MC[ (return ”succ”) ] ‖ (N → F, H ′ → I ′ ∗ N)
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(in the new environment the handle has changed to handle′ → (index, name) ∈
H ′ → I ′ ∗ N).

And, of course, we also need a rule for each of the bind constructors �=
and � that specify what happens to the return value of an interaction:

MC[ (return value) ] �= ff ‖ env → MC[ (ff value) ] ‖ env ,

MC[ (return value) ] � ff ‖ env → MC[ ff ] ‖ env .

As an example that illustrates the use of these interactions, consider a small
program that opens a file named "misc", positions the file handle at index
position 668, reads the entry at this index, writes a string ”aabbcc” into the
next position and then closes the file again:

main = (fopen ”misc”) �= lambda hdl in (fget hdl 668) �
(fget hdl) �= lambda entry in (fput hdl ”aabbcc”) �
(fclose hdl) �= lambda u in if(eq u ”closed”)

then entry else . . .

In this notation, the program looks almost like a sequence of UNIX system
function calls that does the same job, the only difference being that some of
the interactions have to be embedded in abstractions that explicitly pass along
parameters such as the file handle or the entry read from the file, which in
UNIX would be accomplished by means of side-effecting assignments to box
variables. This is not very surprising insofar as the UNIX functions in fact
realize almost the same abstractions that hide the low-level details of their
implementation. They just need to be fed with the correct parameters and
properly sequenced, everything else happens underground.
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B

On Theorem Proving

The subject of this appendix is somewhat outside the scope of this textbook
but it may help to underline the importance of machinery that lends formally
sound support to interactively controlled symbolic computations involving free
floating variables.

With growing size and complexity of programs, formal reasoning about
the properties of at least their critical parts has become an issue of foremost
concern. Expression-oriented languages appear to be particularly well suited
for this purpose.

Reasoning about a piece of a program is a process that sets out with a
theorem, also referred to as a goal in this context, about some property that
is to be verified against some given theory. To do so, the process goes through
sequences of proof steps that produce sequences of proof states. As each such
state generally consists of a set of new goals that need to be proven, the entire
proof process unfolds a tree structure of states. A single proof step is realized
by what is called a tactic, which is a function that maps a single goal into a
set of goals. If successful, this proof process terminates with states in which
we have equality of two terms in each of the branches of the proof tree.

Some of the more important tactics include proof by contradiction, by
induction, by rewriting according to an axiom or another theorem of the un-
derlying theory, by reflexive equality of two terms, by unification of terms with
respect to free variables and by (full) normalization.

The problem with this proof process is that, for practical reasons, it cannot
be fully mechanized. For each proof state, it must be decided which of pos-
sibly several applicable tactics is the best one to proceed with. Even though
the proof system could be made to offer suggestions as to some of the more
promising tactics, the decision about which one to apply next to a particular
(sub)goal ought to rest with the user in order to avoid explosion of the proof
space. Also, it might become necessary to prove supplementary theorems (or
lemmas) that need to be introduced to aid the original proof, which must be
temporarily sidelined for this purpose. All this calls for a highly interactive
proof system that at the user interface displays intermediate proof states in
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high-level notation and gives the user an opportunity to select the (sub)goal
(and possibly a subterm therein) and the tactic with which to perform the
next step.

To illustrate how partly mechanized theorem proving should work, we
consider, as a simple example, a function rev that is supposed to reverse the
elements of a list. Using pattern matching as described in Chap. 11, this func-
tion may be specified in al notation as1

rev xs = (case
<> ‖ true → <>
< u as[ us ] > ‖ true → ((append (rev us)) u)

otherwise xs
xs) .

For this function, we wish to prove the theorem

( rev ( rev xs ) ) = xs ,

which says that applying rev twice to any list symbolized by the variable xs
must return the list itself.

Since rev is a recursive function, proof by induction appears to be the
natural choice. This proof breaks down into proving as subgoals the base case
of an empty list

(rev (rev <>)) = <> ,

and the induction step

(rev (rev list)) = list =⇒
(rev (rev ((append < u >) list))) = ((append < u >) list) (∗)

for nonempty lists. This logical implication says that if the theorem holds for
some list list it must also hold for the same list prepended by a single element
u. It is important to note here that the variables list and u have been brought
in from nowhere and may therefore be considered free in this implication,
although in a strictly formal sense they are all-quantified since the implication
must hold for all legitimate values substituted for them.

The first case can be proven by normalizing the left-hand side of the equa-
tion. It yields <>=<> and, after having established that both sides of the
equation are truly equal, completes this part of the proof by returning the
value done, say.
1 Note that in this example we use the variable append simply as a name for a

function that is assumed to append two argument lists without giving its im-
plementation, and that we represent applications of append in curried form to
facilitate transformation to customized constructor syntax as needed for the ap-
plication of proof rules.
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�

�

�

�

�

( rev ( rev ( ( append < u > ) list ) ) ) = ( ( append < u > ) list )

( rev ( ( append ( ref list ) ) ( rev < u > ) ) ) = ( ( append < u > ) list )

( ( append ( rev ( rev < u > ) ) ) ( rev ( rev list ) ) ) = ( ( append < u > ) list )

( ( append < u > ) ( rev ( rev list ) ) ) = ( ( append < u > ) list )

( ( append < u > ) list ) = ( ( append < u > ) list )

done

by theorem (∗∗)

by theorem (∗∗)

by normalization

by unification

by reflexive equality

Fig. B.1. Sequence of proof steps for the theorem ( rev ( rev xs ) ) = xs

Proving the second case is a little more difficult. What needs to be shown
is that the term on the right-hand side of the =⇒ sign is implied by the term
on the left-hand side. To do so, we make use of another theorem

(rev ((append xs) ys)) = ((append (rev ys))(rev xs)) , (∗∗)
which we assume is already proven. This theorem simply says that reversing
a list made by appending a second sublist to a first sublist must result in the
reversed first sublist appended to the reversed second sublist, which is rather
straightforward.

The sequence of proofs and proof states for the right-hand side (or the
conclusion) of the implication (∗) is depicted in Fig. B.1. It sets out with
applications of this new theorem whose left-hand side matches the left-hand
term of the conclusion twice in succession (the subterms that are affected
by the proof steps are underlined). Substituting the matching (sub)terms by
the properly instantiated right-hand sides of this theorem yields the proof
state shown in the third line from the top. In the new left-hand term we can
normalize the application (rev (rev < u >)) to < u > to obtain as the proof
state the equation in the fourth line from the top. Since the terms on both
sides of the equation now feature matching structures, all that remains to be
done is to unify both terms which, with respect to the free variables u and
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list, yields u = u and (rev (rev list)) = list, which is what was to be proved:
the right-hand side of our induction (∗) is implied by its left-hand side.

Looking at the initial induction step and at the subsequent proof steps
in Fig. B.1, we immediately recognize that only normalization can be done
by λ-calculus machinery. All other steps involve major term transformations
effected by tactics that obviously require another level of term representation
on which the rewrite rules can be readily implemented. This level can be made
available by pattern matching on customized constructor terms as described in
Chap. 11. Working in the same system alternately with al and constructor
term representations calls for system functions that convert these represen-
tations into each other. Converting al expressions into the meta-language of
constructor terms in fact renders the terms constant with respect to al in-
terpretation. Since this is essentially a quoting mechanism, we may call the
conversion function quote and its inverse unquote, as in lisp.

To define the quote function just for the terms that are involved in the
above proof it suffices to consider the following fairly simple al-like syntax:

term =s var | < term 1 . . . term n > | lambda var in term |
(term 0 term 1) | term l = term r .

It includes variables, lists, abstractions, applications and equality of terms.
The quote function transforms these syntactical forms as follows:2:

quote� var � → var[ ‘var′ ]

quote� < term 1 . . . term n > � → < quote� term 1 � . . . quote� term n � >

quote� lambda var in term � → lam[ ‘var′ quote� term � ]

quote� ( term 0 term 1 ) � → ap[ quote� term 0 � quote� term 1 � ]

quote� ( term l =s term r ) � → equ[ quote� term l � quote� term r � ] .

Quoting the theorem (rev (rev xs)) = xs by this function thus yields the
constructor term

equ[ ap[ var[ ‘rev′ ] ap[ var[ ‘rev′ ] var[ ‘xs′ ] ] ] var[ ‘xs′ ] ] ,

which can now be subjected to transformations by pattern matching.
As an example, consider a function that realizes the induction tactic for

theorems that relate to operations on lists. It must be applicable to the con-
structor term that represents the theorem and to the variable over which
2 The inverse function unquote is defined in essentially the same way. It is re-

cursively driven down into the subterms of a constructor term submitted as an
argument to undo all the quotes.
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induction is to be performed. It must return a list of two versions of the con-
structor term as its result. One version has the induction variable substituted
by the empty list <> (the base case), and the other version has it substituted
by the meta-language version

ap[ ap[ var[ ‘append′ ] < var[ ‘u′ ] > ] var[ ‘list′ ] ]

of ((append < u >) list) (the induction case). The latter term represents the
right-hand side (or the conclusion) of the implication, with ‘u′ and ‘list′ being
the names of free variables that enter the game out of thin air.

To keep things simple, we define the function ind tac just for the induction
case:

ind tac = lambda term u in
(case

var[ v ] ‖ ( eq u v ) →
ap[ ap[ var[ ‘append′ ] < var[ ‘u′ ] > ] var[ ‘list′ ] ]

var[ v ] ‖ true → var[ v ]
< term 1 . . . term n > ‖ true →

< ( ind tac term 1 u ) . . . ( ind tac term n u ) >
lam[ ‘v′ term ] ‖ true → lam[ ‘v′ ( ind tac term u ) ]
ap[ term 0 term 1 ] ‖ true →

ap[ ( ind tac term 0 u ) ( ind tac term 1 u ) ]
equ[ term l term r ] ‖ true →

equ[ ( ind tac term l u ) ( ind tac term r u ) ]
otherwise term

term ) .

The interesting pattern abstraction of this case construct that makes up the
body of this function is the first one: whenever the constructor term submitted
as an argument is a variable that equals the induction variable u, it is replaced
by the construct ap[ ap[ var[ ‘append′ ] < var[ ‘u′ ] > ] var[ ‘list′ ] ]. All
other pattern abstractions merely reconstruct the argument term as it is by
doing nothing other than recursively driving ind tac down into its subterms.

Thus, when applied as

(ind tac constr term ‘xs′) ,

where constr term fills in for the meta-language representation of our theo-
rem, the function returns as its result

equ[ ap[ var[ ‘rev′ ] ap[ var[ ‘rev′ ]
ap[ var[ ‘append′ ] < var[ ‘u′ ] > ] var[ ‘list′ ] ] ] ]

ap[ ap[ var[ ‘append′ ] < var[ ‘u′ ] > ] var[ ‘list′ ] ] ] .

It is not very hard to see that unquoting this constructor term yields, as
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expected, the right-hand side of the induction in al notation (compare the
first proof state in Fig. B.1):

(rev (rev ((append < u >) list))) = ((append < u >) list) .

Functions that realize rewrite tactics are more straightforward to gener-
ate. They may be composed of case constructs whose pattern abstractions
implement the rewrite rules as they may be obtained more or less directly by
quoting axioms and proven theorems of the underlying theory.

For instance, the single theorem (**) used in the first and second steps of
the proof sequence in Fig. B.1 translates into

theo = lambda term in
(case

ap[ var[ ‘rev′ ] ap[ ap[ var[ ‘append′ ] xx ] yy ] ] ‖ true →
ap[ ap[ var[ ‘append′ ] ap[ var[ ‘ref ′ ] yy ] ] ap[ var[ ‘ref ′ ] xx ] ]

otherwise term
term)

The other two steps of this proof sequence that need to be performed at
the meta-language level are unification and the proof of equality of two terms.

Unification requires analyzing the structure of two terms and equating
free variables occurring in one of the terms with (sub)structures in the other
term. There is a well-established resolution/unification algorithm to this effect,
proposed by Robinson, that is perfectly suited to implementation by pattern
matching.

Equality of two terms, which in this particular case follows trivially from
unification, may generally be established by literal comparison modulo α-
conversion of variable occurrences, which too can best be done by pattern
matching.

A complete semiautomated proof in a system that renders proof states
visible to the user in al-like notation thus goes repeatedly through the motions
of

• inspecting in al notation the entire proof state, i.e., the list of (sub)goals
that need to be proven;

• selecting from this list a (sub)goal, a proof tactic and possibly the (sub)term
of the goal to which the tactic is to be applied;

• applying the system function quote to the selected (sub)term if the proof
tactic is something other than normalization;

• applying the chosen tactic function to the appropriate term representation;
• applying, if necessary, the system function unquote to the resulting proof

state to reconstruct its al representation.

This is done until either all subgoals generated in the course of the proof
process have been dealt with or the proof fails somewhere, with none of the
available tactics applicable.
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The π–redsystem of Chap. 10, in conjunction with the pattern-matching
machinery of Chap. 11, is particularly well equipped to support such a proof
system. It realizes the reduction semantics of a fully normalizing applied λ-
calculus that in an orderly way deals with free variables, supports an interac-
tively controlled stepwise execution mode and provides the means to decompile
intermediate states of code execution into high-level al-output. Such interme-
diate expressions may be freely modified, e.g., new applications and functions
may be added, existing functions may be changed, old expressions, specifi-
cally applications, may be replaced by new ones, variables may be renamed or
introduced out of the blue sky, their binding scopes may be redefined, etc., so
that the meaning of the original expression may completely change. Moreover,
reductions may be performed in any chosen order in subexpressions; referential
transparency guarantees that this does not corrupt the determinacy of results.

The only things that are missing so far in this machinery are the con-
version functions quote and unquote that transform al expressions into the
meta-language of customized constructor expressions and, after having them
reduced by pattern matching, retransform them back into al expressions.
However, since both transformations are rather straightforward, merely re-
quiring parsing the expressions to which they are applied, their implementa-
tion as built-in system functions is not at all difficult.
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[Lan64] Landin, P.J.: The Mechanical Evaluation of Expressions, The Computer

Journal, Vol. 6, No. 4, 1964, pp. 308–320
[Lan65] Landin, P.J.: A Correspondence Between algol 60 and Church’s Lambda-

Notation, Communications of the ACM, Vol. 8, No. 2/3, 1965, pp. 89–101
and 158–165

[Ler90] Leroy, X.: The Zinc Experiment: an Economical Implementation of the ML
Language, Technical Report No. 117, INRIA Rocquencourt, France, 1990

[Lev94] Levine, F.: RISC System/6000 PowerPC System Architecture, Morgan
Kaufmann, 1994

[LiYe99] Lindholm, T.; Yellin, F.: The javaTM Virtual Machine Specification,
Addison-Wesley, 1999

[LiWa93] Livadas, P.E.; Ward, C.: Computer Organization and the MC68000, Pren-
tice Hall, 1993

[Ma96] Mark, R.: Writing Compilers and Interpreters, Wiley, 1996
[McCA65] McCarthy, J.; Abrahams, P.W.; Edwards, D.J.; Hart, T.P.; Levin, M.I.:

LISP 1.5 Programmer’s Manual, MIT Press, Cambridge, Mass., 1965
[Mil78] Milner, R.: A Theory of Type Polymorphism in Programming, Journal of

Computer and System Sciences, Vol. 17, 1978, pp. 348–375
[MTHQ97] Milner, R.; Tofte, M.; Harper, R.; MacQueen, D.: The Definition of

Standard ML, MIT Press, 1997
[dMvEPl02] de Mol, M.; van Eekelen, M.; Plasmeijer, R.: Theorem Proving for

Functional Programmers, Proceedings of the International Workshop on
the Implementation of Functional Languages, Lecture Notes in Computer
Science, No. 2312, Springer, 2002, pp. 55–71

[NPW03] Nipkow, T.; Paulson, L.C.; Wenzel, M.: Isabelle HOL – A Proof Assis-
tant for Higher-Order Logic, Lecture Notes in Computer Science, No. 2283,
Springer, 2003

[PaCu90] Papadopoulos, G.M.; Culler, D.E.: monsoon: an Explicit Token-Store Ar-
chitecture, Proceedings of the 17th Annual Symposium on Computer Ar-
chitecture, ACM, 1990, pp. 82–91

[PaHe90] Patterson, D.A.; Hennessy, J.L.: Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, 1990

[PeDa82] Pemberton, S.; Daniels, M.: pascal Implementation, the P4 Compiler,
Ellis Horwood, 1982

[Per91] Perry, N.: The Implementation of Practical Functional Programming Lan-
guages, PhD thesis, Imperial College, London, 1991

[PeyJ87] Peyton Jones, S.L.: The Implementation of Functional Programming Lan-
guages, Prentice Hall, 1987

[PeSa89] Peyton Jones, S.L.; Salkild, J.: The Spineless Tagless G-Machine, ACM
Proceedings of the Conference on Functional Programming Languages and
Computer Architecture, London, 1989, pp. 184–201



374 References

[PeyJ92] Peyton Jones, S.L.: Implementing Lazy Functional Languages on Stock
Hardware: the Spineless Tagless G-Machine, Journal of Functional Pro-
gramming, Vol. 2, No.2, 1992, pp. 127–202

[PJWa93] Peyton Jones, S.L.; Wadler, P.: Imperative Functional Programming, Pro-
ceedings of the 20th Symposium on Principles of Programming Languages,
ACM, 1993

[PvE93] Plasmeijer, R.; van Eekelen, M.: Functional Programming and Parallel
Graph Rewriting, Addison-Wesley, 1993

[Pau99] Paul, R.: SPARC Architecture Assembly Language, 2nd edition, Prentice
Hall, 1999

[Pau96] Paulson, L.C.: ml for the Working Programmer, Cambridge University
Press, 1996

[Post43] Post, E.: Formal Reductions of the General Combinatorial Decision Prob-
lem, American Journal of Mathematics, No. 65, 1943, pp. 197–215

[RR64] Randell, B.; Russel, L.J.: Algol 60 Implementation, Academic Press, 1964
[RS92] Rathsack, C., Scholz, S.-B.: Lisa – a Lazy Interpreter for a Full-Fledged

λ-Calculus, Proceedings of the International Workshop on the Implemen-
tation of Functional Languages, RWTH Aachen, Germany, 1992

[Rea89] Reade, C.: Elements of Functional Programming, Addison-Wesley, 1989
[Rein98] Reinke, C.: Functions, Frames, and Interactions, PhD thesis, Report Nr.

9804, Dept. of Computer Science, University of Kiel, Germany, 1998
[Rob65] Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Prin-

ciple, Journal of the ACM, No. 12, 1965, pp. 23–41
[RoSi82] Robinson, J.A.; Sibert, E.E.: loglisp: an Alternative to prolog, Machine

Intelligence, No. 10, Ellis Horwood, 1982, pp. 399–419
[SBK92] Schmittgen, C.; Bloedorn, H.; Kluge, W.: π-red∗ – a Graph Reducer for a

Full-Fledged λ-Calculus, New Generation Computing, Vol. 10, No. 2, 1992,
pp. 173–195

[Scho24] Schoenfinkel, M.: Ueber die Bausteine der Mathematischen Logik, Mathe-
matische Annalen, Vol. 92, 1924, pp. 305–316

[Scho03] Scholz, S.-B.: Single Assignment C: Efficient Support for High-Level Array
Operations in a Functional Setting, Journal of Functional Programming,
Vol. 13, No. 6, 2003, pp. 1005–1059

[Sch93] Schreiner, W.: Parallel Functional Programming, an Annotated Bibliogra-
phy, 2nd edition, Technical Report, Research Institute for Symbolic Com-
putation, University of Linz, Austria, 1993

[SSB01] Staerk, R.F.; Schmid, J.; Boerger, E.: Java and the Java Virtual Machine:
Definition, Verification, Validation, Springer, 2001

[Ste84] Steele, G.L.: Common lisp – The Language, Digital Press, 1984
[Tho96] Thompson, S.: haskell – the Craft of Functional Programming, Addison-

Wesley, 1996
[Trou93] Troullinos, N.B.: Head-Order Techniques and Other Pragmatics of Lambda

Calculus Graph Reduction, PhD thesis, CASE Center Technical Report No.
9322, Syracuse University, Syracuse, NY, 1993

[Tur37] Turing, A.: On Computable Numbers with an Application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society, No. 42,
1937, pp. 230–265

[Tur85] Turner, D.A.: Miranda – a Non-strict Functional Language with Polymor-
phic Types, Proceedings of the Conference on Functional Programming Lan-
guages and Computer Architecture, Lecture Notes in Computer Science,
No. 201, Springer, 1985, pp. 1–16



References 375

[Tur79] Turner, D.A.: A New Implementation Technique for Applicative Languages,
Software Practice and Experience, Vol. 9, No. 1, 1979, pp. 31–49

[Ull98] Ullman, J.U.: Elements of ml Programming, 2nd edition, Prentice Hall,
1998

[Wads71] Wadsworth, C.P.: Semantics and Pragmatics of the Lambda Calculus, PhD
thesis, Oxford University, 1971

[Wea93] Weaver, D.L.: SPARC Architecture Manual Version 9, Prentice Hall, 1993
[WeSm94] Weiss, S.; Smith, J.E.: POWER and PowerPC, Morgan Kaufmann, 1994
[Wi96] Wirth, N.: Compiler Construction, Addison-Wesley, 1996
[ZB89] Zhang, S.; Berkling, K.: The Soundness and Completeness of Head-Order

Reduction, CASE Center Technical Report No. 8907, Syracuse University,
Syracuse, NY, 1989

[Sun90] Sun Common lisp 4.0 User’s Guide, Sun Microsystems, 1990
[All92] Allegro CL User Guide, Vol. 1, Version 4.1, Franz Inc., 1992
[PLTS96] PLT DrScheme: Programming Environment Manual,

http://download.plt-scheme.org/doc/drscheme, 1996 (last update 2004)





Index

B-machine, 171

CISC architecture, 322

G-machine, 195

code optimization, 209

compiler, 201

control instructions, 205

graph, 198

operating principles, 197

MC680x0

instruction set, 328

processor family, 323

RISC architecture, 322

SPARC

architecture, 334

assembler code, 341

instruction set, 339

Y -combinator, 75, 92, 120

∆-abstractor, 303

Λ-calculus, 101

Λ-calculus machine, 172

Λ-expression, 149

Λ-node, 150

α-conversion, 57, 366

β-contraction, 54

β-distribution in the large, 135, 149

β-redex, 54, 89

β-reducibility, 68

β-reduction, 54, 92, 93, 113, 126, 178,
218

β-reduction

in the large, 141, 164

typed, 81

with nameless dummies, 65

with protected variables, 63, 116

δ-contraction, 78

δ-redex, 78

δ-reducibility, 78

δ-reduction, 78, 102, 104, 120

η-extension, 215, 218, 244

η-extension in the large, 137
η-nesting index, 246

λσ-abstract machine, 130, 244

λσ-calculus, 125, 126

λ-calculus, 51, 125

applied, 53, 78, 102, 115, 367

pure, 53, 257

typed, 79

λ-expression, 53, 89, 93

λ-lifting, 197, 216, 312

σ-normal form, 127

σ-rule, 127

apps–lambs corner, 135
beta-rule, 244

beta wn-rule, 127

deref function, 276

double twice function, 27, 114

in/out registers, 348

ins registers, 336

locals registers, 336

lookup function, 98, 154, 175

outs register, 336

reverse function, 31

twice function, 26, 114

K-machine, 105

π–red system, 215, 367
operating principles, 221



378 Index

fam, 271
while statement, 22
#se(m)cd machine, 101
fiam instruction set, 317
fiam machine, 314
g hor machine, 150
hor machine, 142
iam instruction set, 304
lasm abstract machine, 223

instruction set, 225
rtnf/rtlf strategy, 124
sasm abstract machine, 235

code execution, 240
instruction set, 236

se(m)cd machine, 93
secd i machine, 271, 280

instruction set, 279
operating principles, 272

secd machine, 89
case construct, 255, 365
if then else clause, 39, 78
lambda abstractor, 39
lambda-bound variable, 39, 272, 302
letrec expression, 39
let expression, 40

Abadi, 126
abstract algorithm, 11, 14
abstract evaluator, 41, 70, 89
abstract machine, 13, 89, 133, 222
abstract processor, 13
abstracting free variables, 196
abstraction, 12, 16, 39, 40, 52, 89, 90,

282, 291
body, 16, 52
code, 188
open and closed, 56

abstractor, 39, 52, 64
access to stack entries, 200, 302
access to the environment, 64, 101, 126,

141, 154, 175, 275
activation record, 198, 297, 314, 330
actual parameter, 16, 194
address

computation, 312
register, 324
space (real and logical), 325

addressing modes, 326

aggregate substitution, 126
algorithm, 51

abstract, 11, 14
bubble-sort, 294
concrete, 11
Euclidean, 23
factorial, 341
for resolution/unification, 366
roller-coaster, 24

algorithmic language, 37
algorithmics, 11
all-quantified variable, 362
alternative, 18, 39, 78
application, 16, 39, 51, 52, 90, 196, 283

full, 26, 43, 135, 290
partial, 27, 44, 92, 137, 175, 245, 290

applicative order, 71, 89, 93, 115, 235,
271, 293

applicator, 94
applied λ-calculus, 53, 78, 102, 115, 367
apply node, 94, 150
argument, 53, 194

frame, 198, 222, 272, 297
stack, 222

array, 294
assembler code, 13
assembler programming, 323
assignment statement, 289, 307, 347
atom, 38
atomic expression, 38
atomic type, 81

backup stack, frame, 337
Backus, 115
backward code execution, 173
backward instruction interpretation,

175
Berkling, 64, 115, 134, 172
binary tree, 94
binding, 39

construct, 356
distance, 63, 277, 302
index, 59, 63, 64, 101, 126, 134, 156,

197, 200, 217, 314
list, 117
parasitic, 29, 54, 122
status, 52, 54
structure, 59, 121, 122, 275
variables, 16, 52



Index 379

body expression, 39
Boolean value, 18, 38
bound variable, 55, 89, 90
bound variable occurrence, 55, 63, 89
box variable, 289

call-by-name, 70
call-by-value, 41, 71, 271, 293
calling and called function, 272
calling and called procedure, 297
canonical form, 198
Cardelli, 126, 271
categorial abstract machine, 107
Church, 51
Church–Rosser property, 120, 347
Church–Rosser theorem, 72
Church–Turing thesis, 51
closed

abstraction, 56, 195
expression, 67
language, 51
procedure, 312, 338

closure, 45, 89, 91, 93, 241, 271, 273,
282, 290

code, 171
generation, 195, 265
inlining, 312
optimization, 232, 238
structure, 90, 197, 272, 297

code execution, 272
for pattern matches, 265
forward and backward, 173
in the sasm, 240

combinator, 56, 189
compilation, 171, 194

of primitive functions, 204
of pattern matches, 263
to supercombinator code, 201
to fiam code, 317
to iam code, 306
to lasm code, 228
to sasm code, 237
to secd i code, 282

compilation scheme, 201, 228, 237, 263,
282, 307

compiled graph reduction, 194, 215
compiler, 13

frontend and backend, 13
computability, 12, 18, 51, 53, 73

computable function, 51
computation, 37
concrete algorithm, 11
condition code register, 324
conditional, 42, 308
confluence, 271
consequent, 18, 39, 78
constant

expression, 37
function, 54
value, 11, 196

constructor, 16
customized, 255, 364
expression, 253
syntax, 93, 115, 134

context, 197
context-free substitution, 72, 347
continuation-style input/output, 354
contractum, 54
contradiction, 361
control

block, 300
instruction, 205, 328, 339
mechanism, 272
structure, 197

Cousineau, 107
Curien, 107, 126
curried notation, 52
Curry, 51
currying, 274
customized constructor term, 255, 364

data format, 324
deBruijn, 64
declaration position, 277, 302
decompilation, 215, 367
defining equation, 12, 17, 39, 76, 195,

293
degenerate λ-calculus, 290
delayed substitution, 89, 141
descriptor, 167, 221
determinacy, 12, 54, 72, 347
distance index, 276
domain of a function, 31
domain set, 80
dump, 160
dump stack, 90, 163, 173, 197, 272
dynamic

linking, 297, 330
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typing, 34

environment, 14, 149
frame, 150, 154, 175, 271
lookup, 143
offset, 197
passing, 352
pointer, 163, 173, 272
structure, 90, 149

Euclidean algorithm, 23
evaluation, 51, 78, 90, 172, 271

of al expressions, 41
strategy, 41
to canonical form, 206

execution for effect, 289
expression, 11, 37

goal, 40
constant, 37
selector, 12, 18
sequence, 30

factorial function, 19, 78, 341
file input/output, 357
first-class object, 113, 194
fixed-point combinator, 75, 82
flat imperative abstract machine, 314
flat language, 312, 338
flat procedure declaration, 291
formal parameter, 16, 39, 194, 291
formal specification, 14
forward code execution, 173, 183
forward instruction interpretation, 175
frame

entry, 150, 154
header, 154
pointer, 337

free variable, 55, 90, 361, 367
free-variable occurrence, 63, 89
from-space, 167
full application, 26, 43, 135, 290
full normal form, 73, 161, 244
full normalization, 113, 215, 244, 361
fully normalized spine, 173
function, 16, 53

body, 16, 39
call, 219, 272, 279
computable, 51
constant, 54
factorial, 19

identifier, 19, 40, 276, 282
identity, 54
nameless, 39
primitive, 78, 196
recursive, 19, 76
roller-coaster, 24
semantic, 41
specialization, 26, 113
type, 33, 81
value, 16

functional abstract machine, 271
functional language, 194

garbage collection, 164, 273
generation scavenging, 167
global register, 336
goal expression, 40
Goedel, 51
graph, 173, 222

pointer, 152, 163, 198
reduction, 121, 149
representation, 149, 197

ground term, 38
guard expression, 254

head
expression, 134, 237, 282
form, 134, 172, 181
graph, 150
index, 182
normal form, 73, 134, 161
normalization, 73
position, 188

head-normalized spine, 173
head-order reduction, 132, 134
heap, 149, 163, 173, 222, 272, 297

compaction, 166
fragmentation, 166
management, 164
object, 163, 164

Hilbert, 51
Horn-clause resolution, 172

identifier, 16, 39, 52, 196, 291
identity

function, 54
reduction, 143
reduction in the large, 139

substitution, 126
imperative
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abstract machine, 296
language, 292, 321, 347
programming model, 289
programming style, 291

in-place sorting, 296
index, 12
index increment, 126
index tuple, 275
induction, 361
inlining, 343
innermost-leftmost reduction, 71
input/output, 347

continuation style, 354
mapping, 348
monadic style, 356
of files, 357
scheme, 349
streams, 350

instruction, 13, 171
counter, 172
format, 324
privileged and nonprivileged, 324
stream, 172

interaction request, 354
interaction with state, 347
interference graph, 335
intermediate expression, 218
interpreter, 13
iteration, 22

Johnsson, 195

Kleene, 51
Krivine, 105

lambda-binding index, 276
lambda form, 124
Landin, 89
language

algorithmic, 37
functional, 194
hierarchy, 12
imperative, 292, 321, 347

lazy evaluation, 71, 150, 203
Levy, 126
lifting free variables, 196
linking mechanism, 332
list, 12, 30, 39
list operators, 30

literal substitution, 116
load/store architecture, 322
local procedure declaration, 291
logical address space, 325
logical implication, 362

machine architecture, 13
machine configuration, 163, 184
machine instruction, 13, 171
machine state, 93, 116, 142, 163, 272
mark-and-sweep, 166
Markov, 51
Mauny, 107
meaning, 38, 41
meaning-preserving transformations, 38
memory layout, 325
memory location, 272
memory region, segment, 325
meta-function, 41
meta-language, 257
monadic context, 356
monadic-style input/output, 356
monomorphic typing, 81
move instruction, 340
multiple assignment, 291
mutually recursive functions, 76, 195,

216

naive β-reduction, 90
naive substitution, 45, 54, 92
name, 16, 40, 52
name clash, 29, 54, 89, 246
nameless

abstractor, 64
dummies, 64
function, 39
λ-calculus, 64

naming conflict, 29, 54, 89, 246
nesting of suspensions, 160
nonprivileged instruction, 324
nonstrict evaluation, 350
nontermination, 70
normal form, 68, 124
normal order, 70, 93, 115
normalized graph, 163

open abstraction, 56, 196, 271
operand, 16, 51
operands-first strategy, 41, 71
operands-when-needed strategy, 49, 70
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operating principles
of π–red, 221
of the G-machine, 197
of the secd i machine, 272

operational semantics, 47
operator, 16, 51

arithmetic/logic/relational, 38, 45,
102

on lists, 46
primitive, 11
unbinding, 60

optimization (of G-code), 209
outermost-leftmost reduction, 70

page frame, 326
parameter

actual, 16, 194
by reference, 293
by value, 293
formal, 16, 39, 194, 291
passing, 279

parasitic binding, 29, 54, 122
partial application, 27, 44, 92, 137, 175,

245, 290
pattern

abstraction, 253, 365
labeled, 255
linearity of, 255
traversal, 259
variable, 254

pattern matching, 253
compilation, 263
instruction, 261
machinery, 260, 367
preprocessing, 258
syntax, 255

placeholder, 59
polymorphic type, 83
Post, 51
postprocessing, 216, 244
predicate, 12, 39, 78, 188
preorder linearization, 94
preorder traversal, 94, 117
preprocessing, 216, 272, 315
primitive function, 78, 186, 196
privileged instruction, 324
procedure, 290

body, 291
call, 307, 330, 336

called and calling, 336
declaration, 291

processing unit, 321
program, 11
program

execution, 14
execution cycle, 215

program counter, 272, 297, 321, 324
proof sequence, 366
proof state, step, tactic, 361
protection key, 60
pure Λ-calculus, 134, 150
pure λ-calculus, 53, 257

quote and unquote, 364

range (of a function), 31
range set, 80
real address space, 325
real computing machine, 321
recursion, 19, 73, 92, 120
recursion operator, 74, 76, 120
recursive function, 19, 76
reduction

counter, 219
in isolation, 157
sequence, 68
strategy, 69

reductum, 54
reference counting, 166, 224
reference parameter, 290, 293
referential transparency, 72, 120, 218,

271, 367
register

allocation, 335
file, 324
for outs, ins and locals, 336
for return address, 337
global, 336
in/out, 348
saving, 330
set, 324
window, 336

register/memory architecture, 322
relocatable code, 326
renaming, 29
request/response interaction, 350
resolution/unification algorithm, 366
result continuation, 354, 355
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return continuation, 90, 97, 160, 173,
222, 272, 297

return stack, 222
roller-coaster algorithm, 24
rule application, 12
rule-based transformation, 253
runtime

environment, 14, 89, 272, 275, 277,
296

library, 204
stack, 197, 222, 297
structure, 93, 271

Schoenfinkel, 51
scope

of a type, 84
of an abstractor, 56
of variables, 39, 51, 116, 291, 312

selector expression, 12, 18
selector function, 139
self-application, 27, 69, 74, 82
semantic equivalence, 38, 68
semantic function, 41
semantics, 13, 37, 51
sequence

of β-reductions, 68, 124
of beta- and σ-reductions, 128
of expressions, 30, 39

shadowed variable occurrence, 63
sharing, 157

in the head, 132, 172, 179
of globals, 314
of suspensions, 149

shift by one, 126
sorting algorithm, 294
spine, 134, 198
stack

access, 200, 302
configuration, 95, 117, 201, 241, 298,

314
pointer, 297, 321, 324, 337

state-based model of computation, 289
state transition function

for a string reduction machine, 116
of λσ-machine, 130
of B-machine, 173
of G-machine, 198
of K-machine, 105
of CAM, 107

of se(m)cd machine, 93, 96
of secd i machine, 279
of g hor, 163
of iam, 305

state transition rules
for CAM, 107
of G-control instructions, 206
of λσ-machine, 130
of K-machine, 105
of nonshared B-machine, 177
of shared B-machine, 180
of #se(m)cd machine, 102
of se(m)cd machine, 97
of hor machine, 142
of lasm instructions, 226

statement block, 291
static

analysis, 171
link, 324
linking, 297, 330
typing, 33, 292

stepwise execution mode, 215, 367
strict argument, 186
strict evaluation, 271
string reduction machine, 115
strong normalization, 82
structuring operator, 30
substitution, 16, 39, 42, 51, 54, 89, 126
substitution

aggregate, 126
composition of, 126
context-free, 72, 347
delayed, 89, 141
identity, 126
literal, 116
naive, 45, 54, 92
of binding indices, 201
of free-variable occurrences, 56
of pointers, 121
structure, 59, 122

supercombinator, 56, 67, 195, 201, 312
superscalar processor, 323
supervisor mode, 324
suspension, 93, 97, 127, 149, 175
suspension node, 150
suspension of suspension, 160, 179
symbolic computation, 24
syntactical construct, 12
syntactical form, 38
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syntax, 37
of al expressions, 40
of il, 292
of pure Λ-calculus, 64
of λσ-calculus, 126
of λ-calculus, 53

tail
code, 182
expression, 134, 172, 181, 189, 200
graph, 150
pointer, 200
recursion, 22, 210, 238

Taylor series, 24
term rewriting, 12, 253, 361
termination, 12, 23
theorem, 361
theorem proving, 253, 361
tilde

abstraction and application, 216
stack, 222

to-space, 167
trace stack, 152, 160, 163, 173
transformation function, 70
transformation rule, 12
traversal mechanism, 95
traversal rule, 95
Turing, 51
Turing machine, 51
two-space copying, 167
type, 31

annotation, 33, 84
atomic, 81
basic and composite, 32
checker, 84
declaration, 80
expression, 81
inference, 32, 84
monomorphic, 81
of a function, 33, 81
polymorphic, 83
schema, 83
soundness, 84
system, 31, 84
unification, 82

type-free language, 34
typed

β-reduction, 81
λ-calculus, 79

atomic expression, application and
abstraction, 81

typing, 31, 79, 85

unapplied Λs count, 142, 173
unbinding operator, 60
unification, 361, 366
unique world context, 353
uniqueness type checking, 353
untyped language, 34
unwinding (the spine of a graph), 200,

206
user mode, 324

value, 37
Boolean, 18, 38
parameter, 293
stack, 90, 222, 272

variable, 11, 38, 39, 51, 196
all-quantified, 362
binding, 16, 52
bound occurrence of, 55, 63, 89
free occurrence of, 52, 55, 63, 89
occurrence, 39, 276
scope, 39, 51, 116, 291, 312
shadowed occurrence of, 63
lambda-bound, 272
let-bound, 40

variable parameter, 290
very-long-instruction-word (VLIW)

processor, 323

Wadsworth, 121
weak

(head) normal form, 73
normal form, 89
normalization, 89, 92, 125, 131, 194,

218, 245, 271
well-formed formula, 53
well-typed program, 201
wild card, 254
window

allocation and deallocation, 338
overflow and underflow, 337
register, 336
swapping, 337

working register, 321
workspace, 198, 297
workspace stack, 163, 173, 222
world state, 352
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