NEW AGI

THEORY OF AUTOMATA,

FORMAL LANGUAGES
7= AND
/ gCOMPUTATION

‘}

@ NEW AGE INTERNATIONAL PUBLISHERS

Theory of
AUTOMATA, FORMAL LANGUAGES
and
COMPUTATION

S.P. Eugene Xavier

A

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS

New Delhi « Bangalore * Chennai ¢ Cochin * Guwahati « Hyderabad
Jalandhar ¢ Kolkata ¢ Lucknow « Mumbai * Ranchi

Visit us at www.newagepublishers.com

Copyright © 2005 New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.

No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed toghts@newagepublishers.com

ISBN (10) : 81-224-2334-5
ISBN (13) : 978-81-224-2334-1

PUBLISHING FOR ONE WORLD
NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS

4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us atwww.newagepublishers.com

Fhis book és dedicated o
oMy PBelood Frathor, Mathor, Wit and Diaughtor —
The Fountuin of Insperation Forevex

THIS PAGE IS
BLANK

Preface

This book deals with a fascinating and important subject which has the
fundamentals of computer hardware, software and some of their applications.
This book is intended as an introductory graduate text in computer science
theory. | have taken care to present the material very clearly and interestingly.

As an introductory subject to computer science, this book has been written
with major stress on worked exampl€hapter O covers the basics required
for this subjectviz., sets, relations, functions, graphs, trees, languages, and
fundamental proof techniques.

Chapter 1 deals with the different aspects of Deterministic Finite
Automata (DFA) and Non-Deterministic Finite Automata (NFA). A brief
introduction to pumping lemma and some theorems relating to Regular Sets
have also been given.

Chapter 2 covers the concepts relating to context free gramrizar
derivation trees, parsing, ambiguity, and normal fod&pter 3 deals with
Pushdown Automata and their relation to Context-Free Grammar with some
introduction to decision algorithms.

Chapter 4 deals with the Turing Machine model and the variations of
Turing Machines with introduction to Church-Turing Thesis and the concept
of undecidability.Chapter 5 explains the conceptsz, regular grammars,
unrestricted grammars and Chomsky hierarchy of languages.

Chapter 6 deals with the different aspects of computability with an
introduction to formal systems, recursive functions, primitive recursive
functions, and recursiol€hapter 7 covers the various aspect of complexity
theory such agolynomial time algorithms, non-polynomial time algorithm
class P and NP problems.

Chapter 8 covers propositions and predicates with lot of illustrative
examples.

| wish to thank my teachers who helped me to get a good grasp of the
subject and for having motivated me to write this book.

| want to place on record my sincere thanks to my family—Shri. Papu
Antony, my father; Mrs. Maria Daisy, my mother; Mrs. Assumpta Eugene, my
wife; and Ms. E. Catherine Praveena, my only daughter, for their great
patience and prayers while | was writing this book.

Vi Preface

My heartfelt thanks to my friends—Rajeevan Lal, Mohana Sundar,
Gayathri Suresh, Lakshmi Menon, Rajagopal Raman, Dr. A. Kannan and
llamadhi for their prayers and great encouragement.

| wish to thank M/s. New Age International (P) Ltd., Publishers, for
publishing this book in a very short span of time.

Suggestions are most welcome from the readers of this book.

Happy Learning!

S.P. BJGENE XAVIER

Notations

Symbol Meaning

O Empty set

| S| Cardinalityof setS.

O Set Union

n Set Intesection

aldA a belongs to the sét

AOB Ais a suketof B

— Set Difference

A° Complemenbf A

2 Powerset ofA

AxB Cartesiarproductsof A andB
UL A Union of setsA,, A, A,

L Complemenbf L

LR LanguageRevesal

L Kleene Star

L Kleene Plus

2 All finite strings over the alphzet>
3" All strings over the alpHzetZ of length exactly.
A Empty string

| x| Length of stringk.

O The OR fungion

O The AND fundion

xdy X is related toy under relion O
R* Transitiveclosureof R

R R Compositeof relationsR, andR,
fixoy Functionfromxtoy.

f(x) Image ofx underf.

viii Notations

Symbol Meaning

X0 Ceiling function of x (least intgernot less thar)
X0 Floor fundion of x (greagestintegernot exceeig X)
O Logicalcomective— If then... ...

H For every

O There exists

= Equivalenceof predcateformulae

Xa Characteristifunction of set A

Z(X) Zero fundion

S(x) Successoaiunction

p" (x) ProjectorFundion

(Q,%,9,q94,F) Finite autonaton

(Q,2,A,0,M,qy) MooreMealey Machine

Vy, 2, P,S) Grammar

Q,%,I,9,qy,b,F) Turing machine

O(f (n) Set of funtionswhose growthr is orderf(n).

N Set of Natiral nunbers

z
Q
R

Set of Intgers
Set of Ratimal Numbers
Set of Real Nurbers

Preface

Notations

Contents

Chapter 0 Introduction

0.1 Basics

0.11
0.1.2
0.1.3
0.1.4
0.15
0.1.6
0.1.7

Sets

Relations and Functions
Graphs and Trees

Strings and Languages
Boolean Logic

Fundamental Proof Techniques
Introduction to Grammar
Glossary

Review Questions

Exercises

Short Questions and Answers

Chapter 1 DFA and NFA

1.1 Deterministic Finite Automata (DFA)
1.1.1 Automata—What is it?

1.2
1.3
1.4

15
1.6

1.1.2
1.1.3

Types of Automaton
Definition of Deterministic Finite Automaton

Non-Deterministic Finite Automata (NFA)
Equivalence of NFA and DFA
Regular Expression

141
1.4.2
143
1.4.4
145
1.4.6

Regular Languages

Regular Expressions

Building Regular Expressions

Languages Defined by Regular Expressions
Regular Expressions to NFA

NFAs to Regular Expression

Two-way Finite Automata
Finite Automata with Output

15
18
27
28
37
43
44
46
51

58

58
58
58
59
70
75
80
80
81
81
82
82
83
88

89

X Contents

1.6.1 Definition 89
1.6.2 Mealey Machine 89
1.6.3 Moore Machine 90
1.7 Properties of Regular Sets (Languages) 91
1.7.1 Closure 91

1.7.2 Union, Concatenation, Negation, Kleene Star,
Reverse 92
1.7.3 Intersection and Set Difference 92
1.8 Pumping Lemma 93
1.8.1 Principle of Pumping Lemma 93
1.8.2 Applying the Pumping Lemma 94
1.9 Closure Properties of Regular Languages 96
1.10 Myhill-Nerode Theorem 97
1.10.1 Myhill-Nerode Relations 97
1.10.2 Myhill-Nerode Theorem 98
Glossary 99
Review Questions 99
Exercises 100
Short Questions and Answers 108
Chapter 2 Context-Free Grammars 115
2.1 Introduction 115
2.1.1 Definition of CFG 115
2.1.2 Example of CFG 115
2.1.3 Right-Linear Grammar 115
2.1.4 Right-Linear Grammars and NFAs 116
2.1.5 Left-Linear Grammar 116

2.1.6 Conversion of Left-linear Grammar into

Right-Linear Grammar 117
2.2 Derivation Trees 118
2.2.1 Definition of a Derivation Tree 118
2.2.2 Sentential Form 119
2.2.3 Partial Derivation Tree 119
2.2.4 Right Most/Left Most/Mixed Derivation 119
2.3 Parsing and Ambiguity 127
2.3.1 Parsing 127
2.3.2 Exhaustive Search Parsing 128
2.3.3 Topdown/Bottomup Parsing 128
2.3.4 Ambiguity 129
2.3.5 Ambiguous Grammars/Ambiguous Languages 130
2.4 Simplification of CFG 131
2.4.1 Simplification of CFG-Introduction 131
2.4.2 Abolishing Useless Productions 132
2.5 Normal Forms 142

Contents Xi
2.5.1 Chomsky Normal Form (CNF) 142
2.5.2 Greibach Normal Form (GNF) 148
Glossary 149
Review Questions 149
Exercises 150
Short-Questions and Answers 153
Chapter 3 Pushdown Automata 159
3.1 Definitions 159
3.1.1 Nondeterministic PDA (Definition) 159
3.1.2 Transition Functions for NPDA 160
3.1.3 Drawing NPDAs 161
3.1.4 Execution of NPDA 162
3.1.5 Accepting Strings with an NPDA 162
3.1.6 An Example of NPDA Execution 163
3.1.7 Accepting Strings with NPDA (Formal Version) 164
3.2 Relationship between PDA and Context Free

Languages 166
3.2.1 Simplifying CFGs 166
3.2.2 Normal Forms of Context-Free Grammars 167
3.2.3 CFG to NPDA 167
3.2.4 NPDA to CFG 169
3.2.5 Deterministic Pushdown Automata 170
3.3 Properties of Context Free Languages 170
3.3.1 Pumping Lemma for CFG 170
3.3.2 Definitions 171
3.3.3 Proof of Pumping Lemma 171
3.3.4 Usage of Pumping Lemma 173
3.4 Decision Algorithms 176
Glossary 179
Review Questions 180
Exercise 181
Short Questions and Answers 182
Chapter 4 Turing Machines 186
4.1 Turing Machine Model 186
4.1.1 What is a Turing Machine? 186
4.1.2 Definition of Turing Machines 186

4.1.3 Transition Function, Instantaneous Description
and Moves 187
4.1.4 Programming a Turing Machine 188
4.1.5 Turing Machines as Acceptors 188
4.1.6 How to Recognize a Language 188
4.1.7 Turing Machines as Transducers 189

Xii Contents

4.2 Complete Languages and Functions 192
4.3 Modification of Turing Machines 195
4.3.1 N-Track Turing Machine 195

4.3.2 Semi-infinite Tape/Offline/Multitape/
ND Turing Machines 196
4.3.3 Multidimensional/Two-state Turing Machine 196
4.4 Church-Turing’'s Thesis 196
4.4.1 Counting 197
4.4.2 Recursive and Recursively Enumerable Languad®7
4.4.3 Enumerating Strings in a Language 198
4.4.4 Non-recursively Enumerable Languages 199
4.5 Undecidability 199
4.5.1 Halting Problem 199
4.5.2 Implications of Halting Problem 201
4.5.3 Reduction to Halting Problem 201
4.5.4 Post's Correspondence Problem 202
4.6 Rice’s Theorem 203
Glossary 203
Review Questions 204
Exercises 205
Short Questions and Answers 206
Chapter 5 Chomsky Hierarchy 210
5.1 Context Sensitive Grammars and Languages 210
5.2 Linear Bounded Automata 211
5.3 Relationship of other Grammars 211
5.4 The Chomsky Hierarchy 212
5.5 Extending the Chomsky Hierarchy 213
5.6 Unrestricted Grammar 213
5.7 Random-Access Machine 214
Glossary 214
Review Questions 215
Exercises 215
Short Questions and Answers 216
Chapter 6 Computability 218
6.1 Formal Systems 218
6.2 Recursive Function Theory 219
6.3 Primitive Recursive Functions 219
6.4 Composition and Recursion 222
6.5 Ackermann’s Function 229

Contents Xiii

Glossary 230

Review Questions 231

Exercises 231

Short Questions and Answers 232

Chapter 7 Complexity Theory 235
7.1 Introduction 235

7.2 Polynomial-Time Algorithms 236

7.3 Non-deterministic Polynomial Time Algorithms 237

7.4 Integer Bin Packing 237

7.5 Boolean Satisfiability 238

7.6 Additional NP Problems 239

7.7 NP-Complete Problems 239

Glossary 240

Review Questions 240

Exercises 241

Short Questions and Answers 242

Chapter 8 Propositions and Predicates 245
8.1 Propositions 245

8.1.1 Connectives 246

8.1.2 Tautology, Contradiction and Contingency 255

8.1.3 Logical Identities 258

8.2 Logical Inference 265

8.3 Predicates and Quantifiers 276

8.4 Quantifiers and Logical Operators 281

8.5 Normal Forms 289

Glossary 292

Review Questions 293

Exercises 294

Short Questions and Answers 299

Answers to Exercises 304
University Question Papers 320
Bibliography 341

Index 343

THIS PAGE IS
BLANK

Chapter 0

Introduction

0.1 BASICS
0.1.1 Sets

A “set” is a collection of objects. For example, the collection of four letters
b, c andd is a set, which is written as

L={ab,cd}

The objects comprising a set are called its “elements” or “members”.

A set having only one element is calledsingleton”. A set with no
element at all is called thefpty set”, which is denoted Y.

It is essential to have a criterion for determining, for any given thing,
whether it is or is not a member of the given set. This criterion is called the
“Membership criterion” of the set.

There are two common ways to indicate the members of a set:

() Listall the elements, e.g,a{e, i, o, u}.
(i) Provide some kind of an algorithm or a rule, such as a grammar.

Let us now take a look at the ntiten that is being used to denote sets.

(8) To indicate thak is a member of the s&t we writex 0 S.
(b) If every element of st is also an element of #fwe say thaf

is a “subset” ofB, and writeA O B.

(c) If every element of sétis also an element of $8tbutB also has
some elements not containedAnwe say that\ is a “proper
subset” ofB and writeA [B.

(d) We denote the “empty set” as { }a0or.

The set opetionsare as described below.

(@) Union

The “union” of two sets is the set that has objects that are elements of at least
one of the two given sets, and possibly both.

Introduction

2 Theory of Automata, Formal Languages and Computation

That is, the union of sets andB, written A O B, is a set that contains
everything inA, or inB, or in both.

AOB={x:xOA or xOB}
Example A={1, 3, 9} B={3, 5}
Therefore, AOB={,35%

(b) Intersection

The “intersection” of set& andB, writtenA n B, is a set that contains exactly
those elements that are in bétlandB.

AnB={x:xOA and x0OB}
Example GivenA={1, 3,9},B={3,5},C={a, b, c}
AnB={3}
AnC={}
(c) Set Difference

The “set difference” of set and seB, written asA—B, is the set that contains
everything that is i\ but not inB.

A-B={x:xOA and x0OB}
Given A={13%, B={3%
A-B={19

(d) Complement

The “complement” of sei, written asA is the set containing everything that is
not inA.

Properties of set operations

Some of the properties of the set operations follow from their definitions. The
following laws hold for the three given sé{sB andC.

Idempotency - AOA=A
An A=A
Commutativity . AOB=BOA
AnB=Bn A
Associativity : (AOB)OC=A0(BOC)

(AnB)nC=An(BnC)

Introduction 3

Distributivity - (AOB)nC=(AnC)I(BnC)
(AnB)OC=(AOC)n (BOC)
Absorption . (AOB)n A= A
(AnB)O A= A
DeMorgan'sLaws : A-(BOC)=(A-B)n (A-C)

A-(BnC)=(A-B)O(A-C)

Example 0.1.1: ShowthatA-(BOC)=(A-B)n (A-C).

Eolution

xOA-(BOC)O xOA and xOBOC

xOA and xOB and xOC

(xOA and xOB) and (xOA and xOC)
xOA-B and xOA-C

xO(A-B)n (A-C)

[I o |

Therefore A-(BOC)O(A-B)n (A-C) (@H)]
Conversely,

xO(A-B)n (A-C)O xOA-B and xOA-C
O (xOA and xOB) and (xOA and xOC)
O xOA and (xOB and xOC)
0 xOA and xOBOC
O xOA-(BOC)

Therefore(A-B) n (A-C)OA-(BOC).
HenceA-(BOC)=(A-B)n (A-C).

Example 0.1.2: Given set#\ andB are the subsets of a universalldet
prove that

(@ A-B=An B
(b) A-B=A ifandonlyif An B=0O
(c) A-B=0, ifandonlyif AOB.

Eolution

(@) LetxOA-B. Then

xOA-BO xOA and xOB
O xOA and xOB
O xOANn B

A-BOAn B 1)

4 Theory of Automata, Formal Languages and Computation

Conversely, LekDA n B. Then

xOAn B O xOA and xOB
O xOA and xOB 2
0 xOA-B

Hence from (1) and (2)
A-B=An B
(b) We haveAn B=1[. Then

A=(A-B)O(An B
0O A= A-B0OO since An B=0O
0O A=A-B
Again we haveA- B = A Then
A=(A-B)O(An B
0O AnB= A- ASince A- B= A
0O AnB=0.

(c) We haveA [B.Then
AnB=A
A-B= A-(An B
0 A-B= A- ASnce An B= A
U A-B=1[.

If A—B=0, then

AnB= A-(A- B
0 AnB= A-[
0AnB=A
0 AOB.

Example 0.1.3: Given three set8, B andC, prove that

AO(BOC)=(AOB)OC.
Eolution

(i) Let us show that
AO(BOC)O(AOB)OC

xOADO(BOC)
O xOA or xO(B OC), by definition d union
O xOA or (xOB or xOC)
O (xOA or xOB) or xOC

Introduction 5

O xO(AOB) or xdC
O xO(AOB)OC.

Therefore we have
AOd(BOC)O(AOB)OC 1)
(i) Let us now show that
(AOB)OCOAD(BOC).
Assume thay is any element of the seA 0 B) O C

yO(AOB)OC
O yO(AOB) or yOC
O (yOA or yOB) or yOC
O yOA or (yOB or yOIC)
O yOAO(BOC)

Therefore we have

(AOB)OCOAO(BOC) 2
From (1) and (2), we have

AO(BOC)=(AOB)OC

Example 0.1.4: Prove that the intersection of sets is associative i.e., if
A, BandC are three sets, then

An(BnC)=(An B)nC.
Eolution

Let us prove that An(BnC)O(AnB)nC

Let x be an element such that

xOANn(BnC)

xOA and xO(B n C)
xOA and (xOB and xOC)
(xOA and xOB) and xOC
xO(An B) and xOC
xO(AnB)nC

OooDoooOoo

Therefore An(BnC)O(AnB)nC 1)
Letusprovethat (AnB)nCOAN (BnC).
Let us assume the elemegrfl(An B) n C
O yO(An B) and yOC

6 Theory of Automata, Formal Languages and Computation

O (yOA and yOB) and yOIC
O yOA and yOB and yOC
O yOA and yO(B nC)

O yOAn(BnC)

Thereforewe have (AnB)nCOAN (BnC) 2

From (1) and (2), we have
An(BnC)=(AnB)nC

Example 0.1.5: Forany two setd andB, prove thddeMorgan’s Laws

(@) (AOBy=A n B
(b) (AnBy=ADOB

Eolution

(@ xO(AOB) - xOAOB
= xOA and xOB
= XOA and xOB'
= XxOA n B

(b) YyO(AnB) =« yOAN B
< either yOA or yOB
= either yOA or yOB'
- yOA OB

Hence we havéA n BY = A 0O B.

Example 0.1.6: If the symmetric difference of the two seksandB is
refined agA- B) O (B- A and denoted bAA B, prove that

(8 AAB=BA A
(b) (AOB)-(An B)= M B

Eolution

(a) AAB=(A-B)0(B- A
=(B- A O(A- B
=BAA
(b) (AOB)-(An B)=(A0 Bn (A B
(-x=—y=xnYy)
=(AOB)n (A O B)
= ((AOB)n A)O((AQ B n B)
=(An A)O(Bn A)O(An B)
0(BnB)

Introduction 7

=(AnB)O(Bn A)

(-(An A)=(Bn B)=0)
=(A-B)J(B- A
= AAB.

Additional Terminology

(a) Disjoint Sets. If AandB have no common element, thatdsp B=10,
then the setd andB are said to be disjoint.

(b) Cardinality. The“Cardinality” of a setA, written A|, is the number of
elements in séh.

(c) Powerset. The“powerset” of a seh, written2”, is the set of aubsets of
A; i.e., a set containingh* elements has a powerset containiig@2ments.

(d) Cartesian Product. LetA andB be two sets. Then the set of all ordered
pairs(x, y) wherex 0 Aandy B is callecthe “Cartesian Product” of the séts
andB and is denoted b x B, i.e.

AxB={(xy) : xOA and yOB}

Example 0.1.7: GivenA={1, 2, 3} determind>(A) (powerset of\).

Eolution

As the sefA = {1, 2, 3} has 3 elements thwersetP(A) will have 2° = 8
elements.

P(A={0,43.{2.{3.{12.{23. {30 {128

Example 0.1.8: Given A=[{a, 1}, {¢,{d,ef}], determine the
powerseP(A).

Eolution

Since A has 3 elemen®(A) has 2 = 8 elements.

_PAKaB.{41H{a B {de LI {def}],
P =D B To 1 e], 0

Example 0.1.9: Prove tha{Ax B) O (AxC)=Ax(BOC)

Proof: (AxB)UO (AxC)

{(x, y):(x YOAxB or (x,y))OAxC}
{(x, y:xOA yOB or xOA, yOC}

={(x,):xOA and yOB o yOC}

={(x, y):xOA yOBOC}

= Ax(BOC) O

8 Theory of Automata, Formal Languages and Computation

Example 0.1.10: GivenA={1,2}, B={x,y, zZ and C = {3, 4}, find
AxBxCandn(AxBxC).

Eolution

i o

1,vy,3

ey Y
<0 oy
< e

2,¥,3

2 y<431 EZ,§,4;
< e

n(Ax BxC)=n(A)h(B)h(C) =(2) (3 (9 = 12

0.1.2 Relations and Func tions

Definition of RelationA relation on setSandT is a set of ordered pairs f),
where

(&) sOS(sisamember of S)

(b) taOT

(c) SandT need not be different

(d) The set of all first elements in the “domain” of the relation, and
(e) The set of all second elements is the “range” of the relation.

Example:

Set S SetT

Fig. 1 SetsSandT are digoint

Supposeis the set §, b, ¢, d, €} and sefT is {w, X, Y, Z.

Introduction 9

Then a relation o®andT is

R={(a). (cw), (52, (d y)}
The four ordered pairs in thelation is represented as shown in Fig. 2.

Fig. 2 RelaionR = {(a, y), (c, w), (c, w), (c, 2, (d, ¥)}

Equivalence Relation

A subsetR of A x Ais called arequivalence relation oA if R satisfies the
following conditions:

(i) (a,a)dRforalladA (Risreflexive)
(i) If (a,b)dR, then(b, a) OR, then(a, b) OR (R is symmetric)
(i) If (a,b)OR and (b,c) OR, then(a, c) OR (Ristransitive)

Partial Ordering Relations

A relationR on a seSis called a “Partial ordering” or a “Partial order'Rifs
reflexive, antisymmetric and transitive.

A setStogether with a partial orderimgjis called a “Partially ordered set”
or “Poset”.

Example: The relation < on the setR of real numbers igeflexive,
antisymmetric and transitive. Therefarés a “Partial ordering”.
Partition

A Partition P of Sis a collection{ A} of nonempty subsets d with the
properties:

(i) Eacha Sbelongs to som#,,
(i) IfA#A, thenA n A =L.

Thus a partitior? of Sis a subdivision o8 into disjoint nonempty sets.
If Ris anequivalence relation on a &ffor eacHa’ in S let[a] denote the
set of elements d&to which @' is related undeR, i.e.

[a ={x: (a,x)OR}

Here f] is the Equivalence class” ai‘in S.

10 Theory of Automata, Formal Languages and Computation

The collection of all equivalence classes of element$ ahder an
equivalence relatioR is denoted by% , e,

Sh={lal:a0s.

It is known as “gquotient” set @by R.

Example 0.1.11: Given a relationR is ‘circular if (a,b)OR and
(b,c)OR O (¢ a) OR. Show that a relation ieflexive and circular if and
only if it is reflexive,symmetric, andransitive.

Eolution

Let the relatiorR bereflexive and circular. We shall prove this reflexive,
symmetric andransitive.

(a,b)0R, (b,c)OR O (¢ a) R, sinceRis circularand
(a, @) DR sinceR s reflexve.

We have(ca) OR, (a,a) DR O (a,¢) OR, sinceRis circular.
Thus showga, ¢) R and(c a) OR. HenceR is symmetric
(a,b)0OR,(b,c)ORO (¢a)dR, sinceR iscircular
O (a,¢)0R, sinceR issymmetric
O R istranstive

It is given thaR is reflexive.
Conversely, iR isreflexive,symmetric, andransitive then we show that
Ris reflexive and circular.

(a,b)0R,(b,c) RO (a¢)OR, sinceR istransitive
O (c,a)0R, sinceR isyymmetric
O R iscircular

(a,00R,(ca)0R O (a a)OR, sinceR istransitive
0 R isreflexive

Example 0.1.12: Show that the relation “congruence modaofbover
the set of positive integers is an equivalence relation.

Eolution

Assume thalN = Set of all positive integers
andm = given positive integer.
Forx, yON,x = y(modm) if and only ifx —y is divisible bym, i.e.

x—=y=km for kOz

Introduction 11

Letx, ¥, zON. Then

(@ Asx—x=0m, x=x(modm), for all xON. Therefore this
relation is reflexive
(b) x= y(modm) O x - y= kmfor integer k
O y—x=(-k)m
O y= x(modm)
Therefore the relation is symmetric.
(c) x= y(modm) andy= z(modm)
O x-y=kn and y- z=Imfor integersk,I.
O (x=y+(y-2=(k+hm
O xX-2=(k+)m
O x=z(modm)sincek + 1 isasoaninteger

Therefore the relation is transitive.
Since the relation iseflexive, symmetric andtransitive, the relation
“congruence modula’ is anequivalence relation.

Example 0.1.13: Give examples of relatiol®onA = {1, 2, 3} with

(&) Rbeing both symmetric and antisymmetric
(b) Rbeing neither symmetric nor antisymmetric

Eolution

A possible set of examples are:

(@ R={@D, (22}
(b) R={®2), (23, (23}

Example 0.1.14: Given the relatiolRin A as

R={(1.2).(22,(23,32, 42, (4.4}

(@) IsR (i) reflexive (ii) symmetric (iii) transitive?
(b) Is Rantisymmetric?
(c) DetermineR’.

Eolution

(@) (i) Ris not reflexive because
30A but 3R3,i.e.(3,3)0R
(i) Ris not symmetric because
4R2 but2R4, i.e.(4,2)O0R but(2 49 OR
(i) Ris not transitive because
4R2 and R3 but4R3 i.e.,
(42 0R, (23 0Rbut(4,3 0R

12 Theory of Automata, Formal Languages and Computation

(b) Ris not antisymmetric becausB2and R2 but2# 3
(c) For each paifa, b) OR, determine al(b,c) OR. As (a,c) OR?,

R*={(10,(2.2.(23. (32,33, (4.2, (4.3, (4.4}.

Functions

Suppose every element 8foccurs exactly once as the first element of an
ordered pair. In Fig shown, every elemenSdfas exactly one arrow arising
from it. This kind ofrelation is called &unction”.

Fig. A Fundion

A function is otherwise known as “Mapping”. A function is said to map an
element in its domain to an element in its range.

Every element irsin the domain, i.e., every element®fs mapped to
some elemet in the range. No element in the domain maps to more than one
element in the range.

Functions as relations

A functionf : A - Bis a relation fromA toB i.e., asubset ofA x B, such that
eacha 0 A belongs to a unique ordered pairlf) in f.

Kinds of Functions

() One-to-One Functior(Injection): A function f :A - B is said to be
one-to-one if different elements in the domain A have distinct images in the
range.

A functionf is one-to-one iff (a) = f (@') impliesa = 4.

—

Fig. An Injedion (one to one furtton)

Introduction 13

(b) Onto function(Surjection): Afunctionf:A - B is said to be an onto
function if each element Bfis the image of some elementfof

i.e.,, f:A - Bis onto if the image of is the entire codomain, i.e. if
f (A) = B. i.e.,f mapsA ontoB.

Fig. A Surjection

(c) One-to-one onto FunctiofBijection): Afunction that is both one-to-one
and onto is called &ijection”. Such a function maps each and every element
of A to exactly one element Bf with no elements left over. Fig. below shows
bijection.

) >\

Fig. A Bijection

(d) Invertible function A function f:A - B is invertible if its inverse
relationf ~*is a function fronB to A.
A function f : A B is invertible if and only it is both one-to-one and

onto.

Example 0.1.15: Find whether the functioffi (x) = x* from the set of
integers to the set of integers is one-to-one.

Eolution

The functionf (x) = x? is not one-to-one as, for examlé) = f (-1) = 1 but
1#-1

Example 0.1.16: Givenfis a functionf : A - BwhereA={a, b, c, d}
andB = {1, 2, 3} withf (a) = 3,f (b) = 2,f (c) =1, andf(d) = 3. Is the
functionf an onto function?

14 Theory of Automata, Formal Languages and Computation

Eolution

As all three elements of the codomain are images of elements in the domain,
we havef as an “onto function”.

Example 0.1.17: Givenf (x)=2x+3 and
g(x) =3x+2
Check if commutative law holds good for composition of functions.

Eolution

(f @) = f(g(x)
f(3x+2)
2(3x+2+3
6x+7
(9F)(x) = o(f (%))
=g(@x+3
=3(x+3+2
=6x+11

Since(f g)(x) # (g OOF)(x), commutative law does not hold for composition
of functions.

Example 0.1.18: Check whether the mappind : X - X where
, 1.
X ={x0OR, x #0} defined byf (x) = ; is one to one and onto.

Eolution

x = set of all non-zero real numbers. kgtx, 0 X.

1 1
Then fx)=1(x) 0O X_1:X_2
O X =X,

Hencef is one-to-one.

Introduction 15

For every non-zero real numbell X there exists a non-zero real number

1 0 X such that
X
f %@: %—1@: X.
Hence every elemenrt] X is an image ogi Thereford is onto.
X

Thereforef is one-to-one and onto.

0.1.3 Graphs and Trees
Graphs

A graphG consists of a finite s&tof objects called “Vertices”, a finite SeDf

objects called “Edges”, and a functiprihat assigns to each edge a subget {
w}, wherev andw are vertices (and may be the same).

Thereforewe write G=(\V,Ey).
Example:GivenV = {1, 2, 3, 4} ancE = {e, e,, &;, &, &}
yis defined by

v(e)=v(e)={12
v(e)={43
v(g)={L3
v(e)={24

ThenG = (V, E,y) is a graph shown below.

1 2

4 3

Degree of a vertexit is defined as the number of edges having that vertex as
an end point.

Loop: A graph may have an edge from a vertex to itself, such an edge is called
a “loop”.

Degree of a vertex is 2, for a loop since that vertex serves as both
endpoints of the loop.

Isolated vertex:A vertex with “zero” as degree is called an “Isolated vertex.”

16 Theory of Automata, Formal Languages and Computation

Q b

a

d)

Adjacent verticesA pair of vertices that determine an edge are “adjacent”
vertices.

In the graph shown above, vertekis an “Isolated vertex*,a and'b’ are
adjacent vertices, verticeg ‘and ‘d’ are not adjacent.

Path A path in a grapks consists of a paiM, E) of sequences.
Circuit: A circuit is a path that begins and ends at the same vertex.

Simple Path:A path is called “simple” if no vertex appears more than once in
the vertex sequence.

Connected GraphA graph is called “connected” if there is a path from any
vertex to any other vertex in the graph, otherwise, the graph is “disconnected”.

Componentsif the graph is disconnected, the various connected pieces are
called the “components” of the graph.

1 2 A r B
X C
4 3 E
(a (b) D

The above two graphs are examples of connected graphs.

2 5
>3 4<
1 6
(c) (d)

The above two graphs are examples of disconnected graphs.

Introduction 17

(A “walk” is a sequence of edges, where the finish vertex of each edge is
the start vertex of the next edge).

Tree: Agraphis saidto be a“Tree” if it is connected and has no simple cycles.
(A “path” is acycle if it starts and ends in the same nodesifple cyclé
is one that does not repeat any nodes except for the first and last).

Fig. A Tree
Directed Graph: The graph is said to be a “directed graph” if it has arrows in
stead of lines.

Outdegree:The number of arrows pointing from a particular node is the
“outdegree” of that node.

Indegree: The number of arrows pointing to a particular node is the
“indegree”.

O O

Fig. Directed Graph

Directed graphs (as shown in fig.) are an easy way of depicting binary
relations.

18 Theory of Automata, Formal Languages and Computation

0.1.4 Strings and Lan guages

The mathematical study of the “Theory of Computation” begins by
understanding the Mathematics of strings of symbols.

Alphabet: It is defined as a finite set of symbols.

Example:Roman alphabetg b, Z.
“Binary Alphabet” {0, 1} is pertinent to the theory of computation.

String: A “string” over an alphabet is a finite sequence of symbols from that
alphabet, which is usually written next to one another and not separated by
commas.

(i) 1f £, ={0,3 then 001001 is a string OVEL,.
(i) If ¥, ={ab ..., 2 then axyrpgstcd is a string ovey.

Length of String:The “length” of a string is its length as a sequence. The
length of a stringv is written asv|.

Example:|10011| =5

Empty String: The string of zero length is called the “empty string”. This is
denoted byl
The empty string plays the role of 0 in a number system.

Reverse Stringif w=ww, ... w, where eachw, 0%, the reverse oW is
WoWog === W.

Substring: zis a substring ofv if zappears consecutively within
As an example, ‘deck’ is a substring of ‘abcdeckabcjkl’.

Concatenation:Assume a string of lengthm and stringy of lengthn, the
concatenation ok andy is written xy, which is the string obtained by
appending to the end ok, as iNX; X,... X, % Y%-..- Y.

To concatenate a string with itself many times we use the “superscript
notation:

1]

k
—

XX ... x= X

Suffix: If w=xvfor somex, thenv is a suffix ofw.
Prefix: If w=vyfor somey, thenv is a prefix ofw.

Lexicographic ordering:TheLexicographic ordering of strings is the same as
the dictionary ordering, except that shorter strings precede longer strings.

Introduction 19

The lexicographic ordering of all strings over the alphabet {0, 1}i8,(
1, 00, 01, 10, 11, 000,.).

Language: Any set of strings over an alphalzets called a language.

The set of all strings, including the empty string over an alphHal®t
denoted ag& .

Infinite languages L are denoted as

L ={WD %" :w has property P}

Examples:
(@ L = {WD{O,]}* :w has an equal number of 0'sand Is}
(b) L,= {wD s w= V\F} wherew? is the reverse string of.

Concatenation of Language$f L, and L, are languages oveX, their
concatenation is =L, - L,, or simplyL =L,L,, where

L:{WD 3" :w=x. yfor some xOL,, and yOI L2}

Example: GivenZ ={0,1
L = {wD 3" :w has an even number of O'S}
L, ={w:wstartswith a0 and the rest of the symbads are 1's}
then
L,L, ={w:w has an odd nunber of 0's}
Kleene Star:Another*Ianguage operation is the “Kleene Star” of a language
which is denoted bl .

L" is the set of all strings obtained by concatenating zero or more strings
fromL.

L*=%NDZ*:w=V\1,...,V\4forsomekzOend O
0 somew;, W, ..., W, 0L

Example:If L = {01, 1, 100} then 11000111001, since 110001110011 =
1. 100 01- 1. 100- 1. 1, each of these strings islin

Example 0.1.19: Prove thatuv|= |u|+ v, for any two given stringa
andv.

20 Theory of Automata, Formal Languages and Computation

Eolution

For alladZ' and w any string oB, we make a recursive definition as

lal=1 [wa|= [w}+1
With this formal definition, we can prove
luv|= [ul+ V|

By this definition maddpv|= |u|+ \ holds for allu of any length and of
length 1, which is the basis.
Let us assume of lengthn + 1 and we write it as

vV=wa
Therefore we havev|= |w|+1,
[uv|= Juwal= Juw {1
But by inductive hypothesis,
o= Jul+ W
so that
luw|= |ul+ Wi1= PtV |
Hence for allu and allv of length upta +1, we have
[uv|= [u+ M|

which is the inductive step.

Example 0.1.20: Use induction on to show thau"|= n|u| for all
stringsu and alln.

Eolution

Basis: Forn =1, p*| = p| = | (assume)
nu=1ul= [uE1

Inductive HypothesisLet us assume that it is true far

[u"|= nlul
InductiveStep: [u™=|u". & U B Ul
= nful+|ul
= (n+D)|u

which is the required Inductive step to be proved.
Hence we haviu"|= n|u}

Introduction 21

Example 0.1.21: The reverse of a string is defined by the recusive rules
aRk =g
(wa)R = aw®
for allad %, w3 .Using this prove that
(u)" = vRu®

foralluvOx®.

Eolution

Given that® = a,

(wa)R = aw®.
Now we have to provav)® = vRu®
Let us assume that=wb andv = wa.

LHS = (w)® = (wbwa)® = bwR aw R
= (bw®)(aw®)
= (bw)® (aw) "
= vR @R = RHS

Hence proved.

Example 0.1.22: GivenZ ={a, bj obtains .

(@) Give an example of a finite languagezin
(b) GivenL ={a”b”: n= O}, check if the stringaablh aaaabbbl

abbare in the languade

Eolution
Z={a b

Therefore we havE ={\,a, b, aa ah ba bb aaa

(@) {a, aa aal} is an example of a finite language3n
(i) aabb - astringinL. (n=2)
(i) aaaabbbb - astringinL. (n=4)
(i) abb - not a string irL (since there is no satisfying this).

22 Theory of Automata, Formal Languages and Computation

Example 0.1.23: GivenL:{anbn; nzO}
obtain (a)L? (b) L?.

Eolution

GivenlL = {a”bn ‘n= O}

(@) L? :{a”b“am b": n>0,mz> 0}
wheren andm are unrelated.

For example, the string aabbaaabbb is’in
(b) Reverse ot is given by

LR ={b”a“:n20}

Example 0.1.24: LetL ={ab, aa, bag. Which of the following strings
areinL’.

(a) abaabaaabaa
(b) aaaabaaaa
(c) baaaaabaaaab
(d) baaaaabaa

Eolution

Please note thaf is the “star-closure” of a languagegiven by

(a) abaabaaabaa - This string is irL"

(b) aaaabaaaa - This string is inL’
(c) baaaaabaaaabor _baaaaabaa aab
1 1
(undefined) (uncefined)
Thisstring is not irL".
(d) baaaaabaa - This string isirL".

Example 0.1.25: GivenL ={a“b”+l: n= O}.
It is true thal. = L for the given language?

Introduction 23

Eolution

Weknowl =L°OL'OL%......
and L' =L"0L20L%......
Now for givenL ={a“bn+1 ‘n= 0}, we have
LO — a.Ob(}\"l - b
Ll — albl+1 — ab2
L2 — a2b2+1= a2b3.

*_ 10 1 2
Therefore, we have L =L DL OL......

Hence it is true thdt = L".

Example 0.1.26: Givenu= a’ba’ b andu= bal?, obtain

(@ uv (€ [l @ IV
(b) wvu) vl G Il
() Vv (@) Iluvll
(d) v (h) lvull

Eolution

(@) uv=(a’ba’b?)(balf)= & bd B ab

(b) wu= (bal’)(& ba’ §)= bab & bd b
(c) v?=vv=(bab®)(batf) = bali ab

(d) u®=uu=(a’ba®B(bab)= & bd b ab

(e) [ul| = 8 (as there are 8 letters in the waxd

0 IMI=4
(@ || =12
() [l = 12
() IV =8
0 Il =11

Example 0.1.27: For any wordi andyv, prove that

(@) [luv] = ull + VI
(b)] = ful.

Proof: (&) Let us assumeu]] =m and N|| =n. Thereforeuv will have ‘m’
letters ofu followed by 1’ letters ofv.

24 Theory of Automata, Formal Languages and Computation

Therefore we have

lluvll=m+n=]ult N |l
(b) Now, IWIF Ll Iy [| (from (&)
O =[IVIF- T
O [uvl= [bd].

Example 0.1.28: GivenA={a,b, c}, find L" where
(O L={b3 (i)L={ab} (i) L={ab,d

Eolution

() ForL ={b%, L has all wordd", wheren is even (including the
empty word\).
(i) ForL ={a, b}, L* has words ira andb.
(i) ForL={a bc®}

L* has all words fronA = {a, b, c} with the length of each maximal subword
composed entirely of C’s is divisible by 3.

Example 0.1.29: For the language ={ab, c} over the seA={a, b, c}.
Find (a)L®(b) L™ (c) L.

Eolution

(@) ForL = {ab, c}, we have

L® = All 3- word sequences from L
= {ababab, abab ahcab, alr? ,cababcabc,czab,c3}

(b) L2 is “Not defined” as negative power of a language is not
defined.
(c) L°={A}, whereA is empty word.

Example 0.1.30: Givenl, = {a, ab, a’} and L, = {b?, aba are the
languages ovehk = {a, b}, determine {a}L,L, (b) L,L.,.

Eolution:

(a) TofindL,L,, we concatenate wordslipwith words inL, so that

L1L2={ab2,a2ba al, ababa 4 b A §a

Introduction 25

(b) TofindL,L,, we concatenate wordslinwith words inL, so that

L,L, :{b4, b*aba abali, aba tk

Example 0.1.31: Find (i) uvu (i) Au, U, UAv givenu = a’b andv =
b3ab.

Eolution

() uwu= (a’b(b’>ah(& b
= a’b*aba’ b
(i) We know that is an empty word. Therefore we have
Au=u\=u=ab
ulv = uv = (a®b)(b*ab
= a’b*ab

Example 0.1.32: GivenA = {a, b, ¢} check ifL,, L,, L; andL, are all
languages over the alphaldet where
L, ={a aa ah &, abc,caly}
L, = {aba aabai
L,={ 1}
L, ={a'ch' 23

Eolution

All the languages$;, L,, L; andL, are defined over the alphal#et

Example 0.1.33:
(@) GivenL, ={a‘bj [i>] 2]} and
L, ={a'b/[1<i<j} findL, DL,
(b) GivenL, ={ a'bicl|i,] 21} and
L ={a'b’c/[i,j21} find L, n L,

Eolution

@ L1|]L2={aibj‘i>j2]} D{aibj‘lSi<j}
:{aibi\i::j,i,j 21}

26 Theory of Automata, Formal Languages and Computation

(b) Lyn L4:{a‘b‘cj‘i,j21} n{aibjd ‘i,jz]}

:{aibici i;tl}

Example 0.1.34: Given L, is English language ant, is French
language, what do you mean by l@)] L, andL; n L,.

Eolution

(@) L, OL, = Set of all sentences someone who speaks both English
and French can recognize.

(b) L, nL,=Language that contains all the sentences that are in both
L, andL,.

Example 0.1.35: GivenA={a, b, c}, B={b,c, d} and
L={a'b|iz1j=1}, L ={bclizj=1
L={abicd|iz1j23, L,={(ad)a diz2j=23

Determinewhether each of the following statements is true or false.

(a) L,is alanguage ovex.

(b) L,is alanguage ovés.

(c) L,is alanguage ovek U B.

(d) L,isalanguage ovekn B.

(e) Ljis alanguage ovek U B.

() Lsis alanguage ovek n B.

(9) L,is alanguage ovek [B.

(h) L,is alanguage ovex—B.

(i) L,isalanguage ovés —A.

() L OL,isalanguage ovex.

(k) L, OL,isalanguage ovek O B.
() L, OL,isalanguage ovek n B.
(m) L, nL,isalanguage ovés.

(n) L, nL,isalanguage ovek [B.
(0) L, nL,isalanguage oveA n B.

Eolution

From the given set& andB, we have

AOB={abcd}
AnB={bd
A-B={gd
B-A={d.

Introduction 27

Hence we conclude the following

(@) True (b)False (c)True (d)True (e)True (f) False
(g) True (h)False (i) False (j) True (k) True (l) False
(m) True (n) True (o) True.

0.1.5 Boolean Logic

“Boolean logic” is a system built with two values TRUE and FALSE.
“Boolean values” are represented by values 0 and 1. There are many Boolean
operations.

(&) Negation: It means the NOT operation, represents:by

Example-= 0=1and- 1=0.
(b) Conjunction: It means the AND operation, representediby

(c) Disjunction: It means the OR operation, represented by

The truth tables of the above Boolean operations are shown as below:

A B C=AIB A B C=A0UB

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1
AND OR

(d) Exclusive-OR operationl if either but not both of its operands are 1.
Exclusive-OR is denoted Ly.

A B C=A0B
0 0 0
0 1 1
1 0 1
1 1 0

Exclusive-OR

(e) Equality: The equality operation, written with the symbo| is 1 if both
its operands have the same value.

28 Theory of Automata, Formal Languages and Computation

(f) Implication: This operation is designated by the symbohnd is O if its
first operand is 1 and its second operand is 0; otherwigel.

0.1.6 Fundamental Proof Tech niques
(@) Principle of Mathematical Induc tion

Proof of induction is used to show that all elements of an infinite setehave
specified property. The proof by induction has two parts, (i) Induction step
(ii) Basis.

The induction step proves that for eaell, if P(i) istrue, then so is
P(i +1). The basis proves thafl) is true. When both these parts are proved,
then for each, P(i) is proved.

Let us illustrate the method of writing a proof by induction.

Basis: To prove thaP(1) is true.

Induction Step:For each =1, assume tha(i) is true and use this assumption
to show thaP(i + 1) is true.

(b) Pigeon-hole Prin ciple

If AandB are finite sets anfd\| >|B|, then there is no one-to-one function from
AtoB. i.e., If an attempt is made to pair off the elements of A (the “pigeons”)
with elements oB (the “pigeonholes”), sooner or later we will have to put
more than one pigeon in a pigeonhole.

By induction, the pigeonhole principle can be proved.

Example 0.1.36: A sack has 50 marbles of 4 different colours. Show
that there are at least 13 marbles of the same colour.

Eolution

Since we need to partition the set of 50 elements (marbles) into 4 sets
(colours), according to the Pigeon-hole principle at least one of the sets (same
colour) has(b0/40= 13 elements (marbles). That is to say that at least 13
marbles have the same colour.

Example 0.1.37: Show that2" >n® for n=10 by Mathematical
Induction.

Proof: (i) Basis: Fom = 10,2'° =1024> 10
(i) Inductive Step: Assun® > k3

Introduction 29

Now,
10
1@3 .
+— [
3
1@3 .
>0+ k
3

(k+1)°
3

k
2K > (k +1)3,

1\

> k3

Hence2" >n for n>10Q 0

Example 0.1.38: Prove that for every integar=0, the number
4*™1 4+ 3™2 s a multiple of 13.

Proof: Weuse induction om, starting withn = 0.

PO) = 420" +39%2= 4+ 32= 13 1)
Assume P(k) = 4% +3“*2= 13, for some intgert. (2)
We need to prove that

P(k +1): 42971 4 33 25 3 mutiple of 13.
Now,
L20K+D+L (kD42 _ f(Z 1+ 2 ok prl
- 42(42k+l) + 42(3k+2 _3k+2) + 3l:Bk+2
— 42(42k+1 + 3k+2) + 3k+ 2(_ 42+ 3

=16(13) + 3*2(- 13 [from (2)]
=131a - 37 (3)

From (3) it follows thatP(k+1) is a multiple of 13. Hence we have,
4*™1 4+ 3™2 s a multiple of 13. m|

Example 0.1.39: Show that for any integar>0, (19" + (12°™' is
divisible by 133.

Proof: Basis: Whem = 0, 1% + 12 = 133 is divisible by 133.

30 Theory of Automata, Formal Languages and Computation

Inductive Hypothesis: Whem=k.
1142 + 1221 = 133

Inductive Step: When=k + 1
11543 + 12243 = 12 1572+ 123
=11(133p - 121y + 133
=13311p) - 12*** (1% 13)
=1331Ip+ 12

Hence it is true fon=0. O

Example 0.1.40: Itis known that for any positive integee 2,

i+i+...i_A>o
n+l n+2 2n

whereA is a constant. How large carbe?

Eolution

Let the value of bex.
n=2,}+}—x>0 @Assume x<1ﬁ
3 4 12

Inductive Hypothesis:

1 1 1
Forn=k,—+——+---+—-x>0
k+1 k+2 2k
Inductive Step:
1 1
For n = k+ + +ooot -X
lk+2 k+3 2(k+1)
01 1 10 1 1 1

= e L =t + -
Hc+1 k+2 2kH 2k+1 2k+2 k+1

@Adding and substrading i@
k+1

But 01 +i+.--im—x+ (p- positive)
Hort kw2 T2kE TP PP

Introduction 31

From (1), we have

01, 1,1 8o, 1,1 1
F+2 k+3 2k+2 'H Pt 1 2k+2 k+1
1 1

k+1 2k+2
1

+ —
2k +D(2x+ 2

p+

p

Hence the value ofis increasing for increase im

0 Maximum value of A<1—72.

Example 0.1.41: For the sequence of integet®,[]., defined by
F, =1,F, =1 andF,=F,, +F,,,n=3 prove by Mathematical
Induction that

-2

| SaCS SR CICKS

F,=—
""Vs@ 2 0 02 0f
Proof: Basisn=1,
O — /5
F, = L i+58 B-vsH
V51 2 00 2 [
13 5 1 450
= —F+—-+—7[]
B2 2 2 2p
=1

Inductive Stepn=k + 1,

Fra = Fe TR

32 Theory of Automata, Formal Languages and Computation

Example 0.1.42: Show that any positive integerz 2is either a prime
or a product of primes.
Proof: Basis:n =2 is a prime.
Inductive Hypothesis: Far =k, k is either a prime or a product of primes.
Inductive Step: Fan=k+ 1, if k+ 1 is prime the given statement is true else,
k+1=pqg, pg<k

O k + 1 is a prodctof primes.

Example 0.1.43: Prove byMathematical Induction, fan>1,

5, _n(n+t)(n+2
2T
_ n(n+(2n+])

Proof: LetP(n) =1° +2% +..-n? !

Basis: Fom = 1,P(1) = 2 = 1 (on calculating LHS)

s =Py -1 221)_0@A

ThereforeP(1) is true.

Inductive Hypothesis:

P(K)=1*+2% +...k? = k(k+D@k* Do e
Inductive Step: We claim that
PK+D) =12 +2%+...+(k +)2 = (k +1)(k+62)(2k+ 3 istrue.

Now,
11 +22+...+k2+(k+])2=(11+ 22++k2)+(k+ 12
:wfk{b_{_(k*_l)Z

(. P(K) istrue)
_ k(k+D (2k+1 + g k+ 12
6
(k +1)[2k? + 7k +
6

Introduction 33

(k+D)(k+2)(2k+ 3
6

O P(k+1) is true.

Thus we have, iP(K) is true P(k+1) is also true. By principle of Mathematical
Induction, we have

Z:—lkz _ N(n+)(2n+])’ N>l
= 6 O

Example 0.1.44: Prove tha2" > n, for allnO N, by using Mathematical
Induction.

Proof: LetP(n)=2"-n>Q
Basis:Forn=1,P(1)=2-1=2-1=1>0.
ThereforeP(1) is true.

Inductive Hypothesistet us assume th&(k) is true. Here we havieasa
positive integer.

0 2% -k is postive integer

O2¢-k=m 1)
Inductive Step:To prove thatP(k + 1) is also positive. Let us consider
2k+l — (k +D.
We have

2 —(k+D)= A2 -k-1
=2k +m) -k -1
=k+2m-1
= positive (- mis positive)

O If P(K) is true,P(k + 1) is also true.
Hence by Mathematical InductioR(n) is true, i.e.,

2"-n>00 2">n0OnON O

Example 0.1.45: A wheel of fortune has the numbers from 1 to 36
painted on it in at random. Prove that irrespective of how the numbers are
situated, three consecutive numbers total 55 or more.

Eolution

Let n, be any number on the wheel.

34 Theory of Automata, Formal Languages and Computation

Counting clockwise from,, label the other numbens, n,,...... , Ngg.
For the result to be false, we should have

n +n, + Ny <53
n, +n; +n, <55

In all the inequalities above, the termsn,, n;, appear exactly three
times.
Therefore adding the 36 inequalities we get

3zfilnj = 3Zfilj <3¢ 35= 1980
But zfil j = (36)(37) = 666

But this gives the contradiction that
1998 = 3 (666) < 1980.

Example 0.1.46: Prove by induction,

n(n+1)(2n+7

1.3+24+35+.-n(n+2 = 6

Proof:

Basis: 1.3= QICIC =3
6
This result is true fon = 1.

Inductive HypothesisAssume that the result is true for k(=1).
i.e.,
k(k+D(2k+ 7

1.3+24+35+---k(k+ 3= 5

Inductive Step:Forn =k + 1,
[1.3+24+---k(k+2]+(k+3(k+ 3

_ k(k+D(2k+ 70O
= 5 H+ (k+D)(k+3

Introduction 35

:Lgl)[k(Zk+7)+dk+ 3]

_ Kk +1)(2k? + 13k + 19

6
_ (k+D(k+2)(%K+9
6

Hence the result follows for aiJZ", by the principle ofMathematical
induction. a

Example 0.1.47: Prove by induction

n 1 n

2= +1) nel
n 1 n
Proof: AssumeS(n: Z i=1m =7
Forn=1,
gt 1 1 _ 1
S = Zi=1i(i +1) 12) 1+1
O S istrue.
<k 1 k .
Assume S(k).zi:l i+ = k—+1|s true.
Now considelS (k + 1).
1 1 ok 1 1
Zi=li(i +1) - Zi=lia 1) (kD) (k+2)
ok 1
T kD) (k+D(k+2
_ [k(k+2) +1
T (k+D)(k+2)
_ kel
T k+2

Therefore,Sk) O Sk + 1). Hence the result follows by Mathematical
Induction.

Example 0.1.48: Prove by induction fon(z*,

n>40 n?<2"

Proof: Forn=5,2=32>25=§

36 Theory of Automata, Formal Languages and Computation

Assume the result for= k(=5):
2> 12,
Fork > 3, we have
k(k-2)>1
0 k2>2k+1
0 2% >k?
0 2% +2K > k2 + k2
O 27 > k2 +k?> k2(2k +1)
D 2k+1 >(k+])2

Hence the result is true farz 5 by the principle of Mathematical Induction.
O

Example 0.1.49: GivenS(n) as the statement

Prove that the truth of(k) implies the truth ofS(k + 1) by Mathematical
induction.

Proof: AssumeS(k). ForSk + 1), we have
3=k B] 0
= %2 +k+ %@+2k +2§/2
Ek +1)% +(k+1) + %%/2
= é{k +1) + %g é/z

ThereforeS(k) O gk +1). O

Example 0.1.50: Show that if we select 151 distinct computer
engineering courses numbered between 1 and 300 inclusive, at least two
are consecutively numbered (using Pigeonhole Principle).

Introduction 37

Eolution

Let the selected course numbers be

Ky, Koy oo Kisg 1)
The 302 numbers consisting of (1) together with
k, +Lk, +1,...... kis; +1 2

range in value between 1 and 301. By Pigeonhole principle, at least two of
those values coincide. The numbers (1) are all distinct and so the numbers (2)
are also distinct.

It must be then that one of (1) and one of (2) are equal. Therefore we have

k; :kj +1

and coursg; follows coursek;.

Example 0.1.51: Suppose there are 50 marbles of four different colours
in a sack, if exactly 8 marbles are red, show that there are at least 14 of the
same colour.

Eolution

If we know that 8 of the marbles are red, then no other marbles could be red,
and we need to partition the rest (50 — 8) = 42 marbles into therest (4 —1) =3
colours.

According to the Pigeon-hole principle, there are at |&4&t31= 14
marbles, which must have the same colour.

0.1.7 Introduction to Grammar

Grammar is a mechanism to describe the languages.
A grammar @) is defined as a quadruple

G=(V,T,SP)
where
\% = Finite set of objects called VARIABLES
T = Finite set of objects called TERMINAL SYMBOLS
SV = Startvariables
P = Finite set of Productions.

A production ruleP is of the form

X-y

Given a stringv, of the formw =uxv, we can use the production rule. yand
obtain a new string = uyv.

38 Theory of Automata, Formal Languages and Computation

”

The set of all strings obtained by using Production rules is the “Language
generated by th@rammar.

If the grammaiG = (V, T, S P) then
LG) ={wOT :S11 w
If WOL(G), then the sequence
SOwOw 0O w...... Ow0dw
is a “derivation” of the sentenee

The string S, w;, W, w,, which contain variables as well as
terminals, are called “SENTENTIAL FORMS?” of the derivation.

Example 0.1.52: Given a GrammaB = ({S,{a B, SP)
with P defined as

S aSb
S A

(i) Obtain a sentence in language generate@ byd the sentential form
(i) Obtain the languagk(G).

Eolution

SO aSb
0 aaSbb
0 aabb

Therefore we hav8 [1 aabh

(i) Sentence in the language generate@byaabh
Sentential form -aaSbb
(i) TheruleS - aShs recursive.

All sentential forms will have the forms
w =ash
Applying the production rul& - aSbhwe get
a'spOo atsy!

This is true for all.

In order to get a sentence we aply: A.
Therefore we get

st a'sBo 48

Introduction 39

Therefore L(G) = {a”b”; n= 0}.

Example 0.1.53: Obtain a Grammar which generates the language
L:{a“bn+1 : nZO}

Eolution

With L ={a”bn N2 0}, the grammar

G=({3.{ah, SP)

with production rule$ - aSh S- A.
Thereforel = { a"b™ :nx O} is obtained by generating an extra

This is done with a production rule
S - Ab
Hence the grammas is given by
G=({S A{a B3, SP) with praductionrules given by

S - Ab
A - aAb
Ao A

Example 0.1.54: Obtain the languadeproduced by with production
rules

S SS$
S—P)\

S - aSh
S - bSa

Eolution

Itis known from the given production rules tk&lhas equal number afs and
b's.
If w starts with ana’ and ends with ald, thenwL has the form
w=aw b

wherew, L.
If w starts with ab’ and ends with and® thenwO L has the form

w=bw, a

wherew; L.

40 Theory of Automata, Formal Languages and Computation

As a string irL can begin and end with the same symbol, the string shoud
be of the form

W=w,; W,

wherew, andw, are inL, produced bys -~ SS
This generates the language

L={w:n, (W)= n, (W}

wheren,(w) andn,(w) denotes the number afs and number ob’s in the
stringw, respectively.

Example 0.1.55: GivenG, = ({A S},{a B, SP,)with P, defined by
the production rules

S - ab|\
A — aAb|\
show that.(G,) :{a” b" : n> 0}.

Also show tha6, is equivalent t@& whereG = ({S ,{a B, SP)whereP
is given by

S - aSb

S A
GivenP, as

S- &b

S A

S- &b

A A

S - A producesa string with zero lengthn(0)

SO a\b SO ab
O aib 00 aalbb
O ab 0 aabb

O a?b? andsoon

ThereforeL(G,) ={a"b" : n> 0}.

GivenG=({3 .{a B, SP)wherePisS — aSh S- A.
The ruleS - aShs recursive.
All sentential forms will have the forms

w=a'sh

Introduction 41

Applying the production rul& - aSbwe get
a'spo atsy!
This is true for all.

In order to get a sentence we apply: A.
Therefore we get

st asB0 48
Hence L(G):{a“bn : nzO}

Hence G, is equivalent toG as both the grammars are given by
{a”bn : nzo}.

Example 0.1.56: Given a gramma@ defined by the production rules

S- AB
A- Aa
B - Bb
A—)a.
B - b

Show that the word w=a?b* OL(G),

wherelL is a language determined By

Eolution

AB
AaB
aaB
aaBb
aaBbb
aaBbbb
aabbbb

a’p*

Ooooogoodg

Hence the worev= ab* OL(G).

Example 0.1.57: Find grammars foE = {a, I3 that generate the sets of

(a) all strings with exactly onex’
(b) all strings with at least ona™
(c) all strings with no more than thraks.

42 Theory of Automata, Formal Languages and Computation

Eolution

(@ GivenZ={a, B}
We are able to write the gramm@rwhich produces all strings
with exactly oned’ whose production rules are
A - aSb

S- Sb
S- 0O

(b) For all strings with at least ona’? Productionrules of Grammar
Care
A - aSb

S - bSa
S-0O

(c) For all strings with no more than three a’s
L={a”bm‘ n< 3 ma 0}

with production rules

A - aSb
S5 &b
B - aCb
C- bC
C-b|O

Example 0.1.58: Give a simple description of the language generated
by the grammar with productions

(@) S- &, (b) S- Aa,
A - bS, A- B

Eoution

(a) For the given production rules

S- &A
A bS
S- A

we have the languadegiven by
L ={ a"b"| n= 1}
(b) For the given production rules
S- Aa

Introduction 43

A- B
B - Aa

There is no languadeproduced as there is no proper termination.

GLOSSARY

Set: Collectionof objects

Singleton: Sethaving only one element.

Empty set: Setwith no element

Complement: Setcontaining everything not contained in the base set.

Cardinality: Numberof elements in a set.

Powerset: Sethaving " elements have a powerset haviflgeements.

Relation: A relation on two sets is a set of ordered pair.

Poset: Partiallyordered set.

Mapping: A function is otherwise called Mapping.

Injection (one-to-one function): Functionis one-to-one if different elements
in domain of one set have distinct images in the range.

Surjection (onto function): A function is onto function if each element of a
set is the image of some element of the other set.

Bijection (one-to-one onto function): Functionthat is both one-to-one and
onto

Invertible function: Function is invertible if and only if it is both one-to-one
and onto.

Degree of vertex:Number of edges having that vertex as an end point.

Loop: Graph having an edge from a vertex to itself.

Isolated vertex: Vertex with zero as degree.

Directed graph: Graph having arrows instead of lines.

Outdegree: Number of arrows pointing from a particular node.

Indegree: Number of arrows pointing to a particular node.

Alphabet: Finite set of symbols.

String: Finite sequence of symbols from an alphabet.

Lexicographic ordering: Dictionary ordering, except that shorter strings
precede longer strings.

Language: Any set of strings over an alphabet.

Kleene star: Set of all strings obtained by concatenating zero or more strings
from a language.

Boolean logic: Systembuilt with two values True and False.

Negation: MeansNOT operation

Conjunction: MeansAND operation

Disjunction: MeansOR operation.

44 Theory of Automata, Formal Languages and Computation

Exclusive-OR: 1if either but not both of its operands are 1.

Mathematical Induction: Hastwo parts (a) Induction step (b) Basis.

Pigen-hole principle: If an attempt is made to pair off the elements of A (“the
pigeons”) with elements of B (the “pigeon holes”), sooner or later we
will have to put more than one pigeon in a pigeon hole.

REVIEW QUESTIONS

1. Define the following terms:
(a) Set (b)Union (c) Intersection
2. Define the following terms:
(a) set difference (b) Complement
Explain with examples.
3. What have you understood by the following:
(a) ldempotency
(b) Commutativity
(c) Associativity in respect of sets.
4. Define the following w.r.t. sets:
(a) Distributivity (b) Absorption (c)DeMorgan’s laws
5. Stand prove DeMorgan’s Laws.
6. Define the following terms w.r.t. sets:
(@) Disjoint sets
(b) Cardinality
(c) Powerset
(d) Cartesian product.
7. Define a relation. Explain with an example.
What is arequivalence relation? Give an example.
9. Explain the terms:
(a) Partial ordered set/Poseth) Partition of a relation
10. What do you mean by equivalence class?
11. Define function as a relation.
12. What are the kinds of functions?
13. Explain the following with an example for each:
(a) one-to-one function
(b) onto function
(c) one-to-one onto function
(d) invertible function.
14. Differentiate between Injection, Surjection and bijection with
examples.
15. Define a graph with an example.

o

Introduction 45

16.

17.

18.

19.

20.

21.
22.

22.
23.
24,
25.
26.
27.
28.

29.

30.
31.
32.

Define the following terms:

(a) Degree of a vertex

(b) Loop

(c) Isolated vertex

(d) Adjacent vertices.

Define the following terms w.r.t a graph

(a) path (b) circuit (c) simple path

Define the following terms w.r.t. of graph

(&) Connected graph

(b) Components of a graph

(c) Walk of a graph

(d) Directed graph.

Define the following terms w.r.t. a graph

(a) out degree (b) in degree

How will you define the following:

(a) string (b) alphabet in languages.

How do you define the length of a string?

Define the following in respect of languages.

(a) Empty string

(b) Reverse string

(c) Substring

(d) Concatenation

What do you mean by lexicographic ordering of strings?
What do you mean by prefix and suffix of a string?
Define a language with an example.

Define concatenation of strings with an example.
Define “kleene star”, with an example.

What are the kinds of fundamental proof techniques?
Explain the following with an example (in Boolean logic)
(&) Negation

(b) Conjunction

(c) Disjunction

(d) Exclusive-OR

(e) Equality

() Implication

State and explain the principle of Mathematical Induction with an
example.

State and explain Pigeon-hole principle with an example.
What do you mean by Grammar?

What are the types of Grammars?

46 Theory of Automata, Formal Languages and Computation

EXERCISES

1. Determine whether each of the following pairs of sets is equal
@ o{¢
() {{2 .{2{B}
() {1, 3,35 5 51{53 13
2. For each of the following sets, determine whether 5 is an element of that
set.
(@ {xOR|xisaninteger greaher than 1
(b) {xOR|xisthe square of an integer}
(© {545}
3. Determine whether each of the following statements is True or False.
(@ xO0{3 (b)ed{x (c) e0{%
4. If A, BandC are sets such that(d BandB OC, show thatA O C.
5. Find theCardinality of each of the following sets.
@ {1} O{3} O3} O}
6. Determine thg@owerset of the following sets.
@{a O{ab ©{e{g}
7. Determine the number of elements in each of the following sets.
@P(P@) GP{ea{d {3)
8. GivenA={a,b,c,d} andB={y, 7, find {a} AxB (b)B xA.
9. Find out the cartesian produtk B x C, whereA s the set of all airlines
andB andC are both the set of all cities in Australia.
10. If Ais a set, show thaix A= Ax@p= A
11. Determine how many elements willx B have ifA has in elements and
B hasn elements.
12. Show that the ordered pd@, b) can be defined in terms of sets as

{{& .{a B}, (Hint: First show tha{t{g ,{a & ={ & ,{c d}} if and only
if a=candb=d).

13. LetA={1,2, 3, 4,5} andB = {0, 3, 6}. Find (Q)AT B (b) An B
() A-B(d)B-A

14. Show thatA = A for a given sef.

15. Showthat(@AOB=BO A (b)AnB=Bn A

16. Show that ifA andB are setsA- B= An B.

17. Show that ifA andB are sets, thepA n B) 0 (An B)= A

18. What can you say about the sAtandB if the following are true?
(@ AOB=A
(b) AnB=A
(c) A-B=A
(d AnB=Bn A

Introduction 47

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.
32.

33.

(e) A-B=B- A

LetA ={1, 2, 3,...... i} fori=1,2,3,......Find (aLnJAi, (b)ﬁAi

Using Membership table show that - l
An(BOC)=(An B)O(ANC).

Using Venn diagram show that
AO(BnC)=(AOB)n (AOC)

Using set builder notation and logical equivalences show that

AnB=A0OB

State and prove De Morgan’s laws.

Prove by (a) Venn Diagram(b) Membership table:
(i) Commutative law (ii) Distoibutive law.
GivenA={0 a}, B ={aB , find A°, B> andAB.
GivenA={[a}, B ={aj determineA’, B" andB"
Given A and B are subsets of and 0 A, show that the equation
X = AX O Bhas a unique solutiod = A’ B,
Define=* in terms ofs .

Givenl, ={ab Ic, ca}, L, ={aa, ac, do} determine
@LOLGL L, (€L 0, dLL,.

What do you mean by the Kleene closure of&et
What do you mean kiyfree closure of set A?
GivenA={a, aa, B={g, C ={ag show that

A(BNnC)OABn AC.

A survey was conducted among 1000 people. Of these 595 are

democrats. 595 wear glasses and 550 like icecream. 395 of them are

democrats who wear glasses, 350 of them are democrats who like

icecream and 400 of them wear glasses and like icecreams; 250 of them

are democrats who wear glasses and like icecream.

(@) How many of them are not Democrats, who do not wear glasses,
and do not like icecreams?

(b) How many of them are Democrats, who do not wear glasses and do
not like icecreams?

. Itis known that at the “Catherine Assumption University”, 60 percent of

them play bridge, 70 percent jog, 20 percent play tennis and bridge, 30

percent play Tennis and jog, and 40 percent play bridge and jog. If

someone claimed that 20 percent of the Professors jog and play bridge

and Tennis, would you believe in this claim? Why?

48 Theory of Automata, Formal Languages and Computation

35. Prove:
(@ AO(AnB)=A
(b) An(AOB)= A
(c) A-B=An
(d AO(AnB)= AO B
() An(ADOB)= An B

36. Check if the following are functions definedRto R:

i I

(@) f(x)==
X
(b) f(x)=+x

() f(x)=+Vx*+1
37. Determine the domain and range of the following functions.
(a) The function that assigns to each positive integer the largest perfect
square not exceeding this integer
(b) The function that assigns to each bit string twice the number of
zeros in that string.
38. Which of the following functions are onto from the sat§, c, d}.
(@ f(@=hf(h)=af()=cf(d)=d
(b) f(@)=d f(b)=h f()=¢ f(d)=d
39. Determine which of the following functions frofto Z is one-to-one

@ f(m=n-1
(b) f(n)=n*+1
() f(n=n

@ f(n=m20
40. Determine which of the following functions is a bijection fréto R.
(@) f(x)=3x+1
(b) f(x)=2x*+1
(c) f(x)=3%°
d) fx)=(+D)/(x% +4)
42. If gis a function fromA to B andf is a function fronB to C.
(&) Show that if botli andg one onto functions, thdigis also onto.

(b) Show that if botti andg are one-to-one functions, theRg is also
one-to-one.

43. If f andf Bg are one-to-one, does it follow thiats one-to-one? Justify
your answer.

44. Findf Bgandg of wheref (x) = 2x? + 1andg(x) = x +5 are functions
fromRtoR.

Introduction 49

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Show that the mapping: X — X whenX ={x0R, x#0} defined
1.
by f (x) = ; is one-to-one and onto.

State which of the following are injections, surjections or bijections
from Rto R, whereR is the set of all real numbers.

(@ f(x)=-2x

(b) f(x)=x*-1

Given X = {1, 2, 3, 4} and a functionf: X - X given by

f ={(12,(23,(39,(4} Find the composite functidr.

Given f :R - Randg:R - R whereR is the set of real numbers,
wheref (x) = x* —2andg(x) = x + 4 Determinef o gandg o f. State
whether these functions are injective, surjective and bijective.
GivenR s the relation on the shtof all natural numbers given by the
expressiorx + 3y = 12.

(@) ExpressRas a set of ordered pairs

(b) Determine the domain and range of R.

GivenRas the relation fro’A= {2, 3, 4, 5} toB={3, 6, 7, 10}, which is
defined by the expression dividesy”.

(a) ExpressRas a set of ordered pairs.

(b) Determine the domain and range.

For each of the following relations on the set {1, 2, 3, 4}, determine
whether itis reflexive, or symmetric or antisymmetric or it is transitive.
(@ {22),(23),(24), (3.2), (3,3), (3.4)}

(b) {(1.1), (1.2), (2,2), (2,2), (3,3), (4.4)}

() {(2:4). (4.2)}

(d) {(1,2), (2,3), (3.4)}

How many relations are there on a set withelements that are

(&) symmetric

(b) antisymmetric

(c) asymmetric

(d) irreflexive

(e) reflexive & symmetric

(N neither reflexive nor irreflexive

Show that the relatioR on a sef is symmetric if and only iR=R™
whereR ™ is the inverse relation.

Assume that the relatidR is irreflexive. IsR? necessarily irreflexive?
Give reasons.

GivenRis a reflexive relation on a sétshow thaR" is reflexive for all
positive integers.

50 Theory of Automata, Formal Languages and Computation

56. GivenRis a relatiorR ={(a, b) | adivides I} on the set of positive

integers. Determine
@R" (MR
57. Determine whether the relatiéton the set of all integers is reflexive,
symmetric, antisymmetric, and/or transitive, whéxey) OR if and
only if
(@)xy=1 (b)x= y(modb) (c)x= y?
58. Determine the language of gramn@given byV = {S A, a, b},
T ={a, b} and productiorP ={S - @A, S - hA - aa}.
59. Determine the grammar that generates the set
{0"1" In=Q12...... }

60. Determine at least two grammars that generate tr{é”%:ﬁt‘ mandn

are nonnegative integers}.
61. Determine the grammar that generates the set

{0"1"2" | n=012.....}

62. Determine the grammar for each of the following languages.
(a) set of all bit strings containing an even number°a @ no 1
(b) set of all strings containing morétban £.
(c) set of all strings containing an equal number°cri £.
(d) set of all strings containing an unequal numberain@ f.
63. Determine the grammars for the following languageZ er{& .
(@ L={w:|w]|mod3=0}
(b) L={w:|w]|mod 3=|w|mod 2}
64. AssumingZ ={a, b} with n(w) andn,(w) as the number of a’s and b’s
respectively in string w, find grammars for
(@) L={w:n, (W) =2n,(W)}
(b) L={w:n, (W) >n,(w)}
65. Are the two grammars with respective productions

S - aSh alpr
and

S - ablab

A - aAb|A
equivalent?

66. Are there languages for whith = L2
67. Prove tha(l,L,)" = LXLR for all languages, andL,.

68. Show that ang" x 2" chessboard with one square removed can be tiled

Introduction 51

69.

70.
71.
72.

73.

74.

75.

76.

usingL-shaped pieces, where these pieces cover three squares at a time
as shown in fig.r{-positive integer).

Using Mathematical Induction prove that 3 + 3.5 +3.5- + 3.5'=3

(5"* ' 1)/4, wheren is a nonnegative integer.

Using Mathematical induction prove that< n", wheren > 1.

Show that 1— 2 + #—--- + (1) 'n® = (=1)"'n(n+1)/2 wheren > 0.
Determine which amounts of postage can be formed using 5-cent and
6-cent postage stamps. Prove your solution using mathematical
induction.

Show than lines separate the plane iS5 + n+2) / 2regions if no two

of these lines are parallel and no three pass through a common point.

A computer network has 6 computers. Each computer is directly
connected to at least one of the other computers. Show that there are at
least 2 computers in the network that are directly connected to the same
number of other computers (using Pigeonhole principle).

Show that in a group of 5 people where any two people are either
friends/enemies, there are not necessarily three mutual friends or three
mutual enemies, using Pigeon-hole principle.

Use induction to prove that any integer composé iofentical digits is
divisible by 3.

SHORT QUESTIONS AND ANSWERS

Define aset.
A set is a collection of objects.
Define “elements” of a set.
The objects comprising a set are called its elements or members.
Define asingleton.
A set having only one element is called a Singleton.
Define an empty set.
A set with no element at all is called the empty set.

52 Theory of Automata, Formal Languages and Computation

5. What do you mean by ‘membership criterion’ of a set?
The criterion for determining for any given thing, whether it is or is
not a member of the given set is called ‘membership criterion’ of the set.
6. What is anull set?
A set which has no elements at all is caladl set.
7. Define asubset.
If every element of seA is also an element of sBf thenA is a
“subset” ofB, which is written a#\ 0 B.
8. Define a proper subset.
If every element of sei is also an element of sBt butB also has
some element not containeddywe say thaf is a “proper subset” @,
and writeA 0 B.
9. What is aNull set?
A set having no element is called a Null set.
10. Define Union of two sets.
The Union of two sets is the set that has objects that are elements of
at least one of the two given sets, and possibly both.
Union of two set#\ andB is given by

AOB={x:xOAorxOB}

11. Define intersection of sets.
The intersection of sefsandB, writtenA n B, is a set that contains
exactly those elements that are in batandB.

An B={x:xOA orxB}

12. Define set difference.
The set difference of s@tand seB, written asA —B, is the set that
contains everything that is fbut not inB.

A-B={x:xOA and xOB}

13. DefineComplement of a set.
The Complement of a séY, written asA, is the set containing
everything that is not iA.
14. Define the set operations
(a) ldempotency (bCommutativity
€) IdempotencyAD A=A

An A= A
(b) Commutauvny AOB=BO A
AnB=Bn A

15. Define the set operations
(a) Associativity (b)Distributivity

Introduction 53

16.

17.

18.

19.

20.

21.

22.

23.

24.

(a) Associativity: (AOB)OC=A0(BOC)
(AnB)nC=An(BnC)
(b) Distributivity: (AOB)nC=(AnC)0(BnC)
(AnB)yOC=(AOC)n(BOC)
Define the set operation viAbsorption.
(AOB)n A= A
(AnB)O A= A
StateDeMorgan’s Laws.
A-(BOC)=(A-B)n (A-C)
A-(BnC)=(A-B)O(A-C)
What aredisjoint sets?
If AandB have no common elements i&.n B =@, then the seta
andB are said to be disjoint.
Definecardinality of a set.
The Cardinality of a sef, written J|, is the number of elements in
SetA.
Define powerset.
The set of all subsets &f written 2\, is called The power set of set
A
If a set hasrt’ elements, how many elements does the powerset have?
The Powerset has' 2lements.

Define Cartesian Product.
The set of all ordered pai(g, y) wherex 0 A andy[IB is called
Cartesian product of the sé&¢sindB, denoted byA x B, i.e.,

AxB={(x y):xOA and yOIB}

Define a relation.

A relation on setSandT is a set of ordered pairs), whose
(8 sOS(sis a member 0§
(b)y tadT
(c) SandT need not be different
(d) The set of all first elements is the “domain” of the relation, and
(e) The set of all the second elements is the “range” of the relation.
What is arequivalence relation?

A subset R ofAx Ais called an equivalence relation énif R
satisfies the following conditions:
(i) (a,a)0RforalladA (Ris reflexive)
(i) If (a, b)OR,then(b, a) OR, then(a, b)OR

R is symmetric)

(iii) If (a, b)ORand(b,c) OR, then(a, c) OR (Ris transitive)

54

Theory of Automata, Formal Languages and Computation

25.

26.

27.

28.

29.

30.

31.

32.

What do you mean bygartial ordering relation?
A relationR on a sefSis called a “partial ordering” or a “partial
order” if Ris reflexive, antisymmetric and transitive.
What do you mean byRoset?
A set S together with a partial ordering R is called a “Partially
ordered set” or “Poset”.
What do you mean biartition?
A PartitionP of Sis a collection A} of nonempty subsets &with
the properties:
(i) Eachal Sbelongs to soma,,
(i) If A=A, thenA n A =0.
What is afunction?
Suppose every element of S occurs exactly once as the first element
of an ordered pair. In fig. shown, every element of S has exactly one
arrow arising from it. This kind of relation is called a “function”.

domain co-domain

\ T~

A function maps an element in its domain to an element in its
co-domain.

What do you mean bipjection?

A one-to-one function is called an Injection. A functiorA - Bis
said to be one-to-one if different elements in the domain A has distinct
images in the range.

A function of is one-to-one if (a) = f (&') impliesa= 4.
Define Surjection.

An onto function is called a Surjection.

A functionf : A — Bis said to be an onto function if each elemef of
is the image of some element/f
What do you mean blyijection?

A one-to-one onto function is called a bijection. A function that
maps each and every element of A to exactly one element of B, with no
elements left over is a one-to-one onto function.

What is aninvertible function?

A function f : A = B is invertible if its inverse relatioh * is a

function fromB to A.

Introduction 55

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

A functionf : A - Bis invertible if and only if it is both one-to-one and
onto.
Define aGraph.

A graph a consists of a finite sétof object called “Vertices’a
finite setE of objects called “Edges” and a functiprihat assigns to
each edge a subdet, w}, wherev andw are vertices. Here we have
G=\V,EYy).

Definedegree of a vertex.

Degree of a vertex is defined as the number of edges having that

vertex as an end point.
What is arisolated vertex?

A vertex with zero as degree is called an Isolated vertex.
What is acircuit?

A circuit is a path that begins and ends at the same vertex.
What is aconnected graph?

A graph is called “connected” if there is a path from any vertex to
any other vertex in the graph.
When is a graph said to berae?

A graphis said to be a tree if it is connected and has no simple cycles.
When is a path calledeycle?

A path is a cycle if it starts and ends in the same node.

What is adirected graph?

A graph is said to be directed if it has arrows in stead of lines.
Defineoutdegree of a node.

The number of arrows pointing from a particular node is the
outdegree of that node.

Definelndegree of a node.

The number of arrows pointing to a particle node is the indegree.
Define Alphabet with an example.

Alphabet is defined as a finite set of symbols
Example:Roman Alphabetd, b, zZ
Define astring.

A string over an alphabet is a finite sequence of symbols from that
alphabet, which is usually written next to one another and not separated
by commas.

Give examples for strings.

(a) If=, ={03then 001001 is a string ovEr,

(b) Ifz,={ab...... Z} thenaxyrpgstcds a string ovek ..
Define length of a string.

The length of a string is its length as a sequence. The length of
stringw is written as v |.
Example:] 10011 | = 5.

56

Theory of Automata, Formal Languages and Computation

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Define anEmpty string.

The string of zero length is called the empty string, denotéd by
Define prefix and suffix of a string.

Prefix: If w=vyfor somey, thenv is a prefix ofw.
Suffix: If w=xvfor somex, thenv is a suffix ofw.
What do you mean by Lexicographics ordering?

The Lexicographic ordering of strings is the same as dictionary
ordering, except that shorter strings precede longer strings.
The Lexicograhic ordering of all strings over the alphabet {0,@},i8,
1, 00, 01, 10, 11, 000, ... }
What is a Language?

Any set of strings over an alphalzeis called a Language.
Definex’.

The set of all strings, including the empty string over an alphabet
denoted by
Defineconcatenation of languagegsandL,.

L=L O, ={w02"; w=xDyfor somexOL, andyOL,}
DefineKleene star.

Kleene star of a languadeis denoted by~ which is the set of all
strings obtained by concatenating zero or more stringslfrom
L' ={wDZ :w=w ... w, for somek =0and somev,, W,, ... w, L}
What isBoolean logic?

It is a system built with two values — True and False., represented
by 1 and 0.
What do you mean by Negation?

It means NOT operation, represented-by
Example:=0=1 and-1 =0.
What do you mean bgonjunction?

It means the AND operation, representediby
What do you mean bisjunction?

It means the OR operation, representedlby
Sketch the truth table f@onjunction &Disjunction

A B C=A0OB A B C=A0B
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

Conjunction Disconjunction

Introduction 57

60.

61.

62.

59. Sketch the Ex-OR truth table.

A B C=A0B

0 0 0

0 1 1

1 0 1

1 1 0
Conjunction

What is the principle dathematical Induction?

There are two parts to the method of proof by induction (used to
show that all elements of an infinite set have a specified property):
() Induction step (ii) Basis.

The Induction step proves that for eagtd, if P(i) is true, then so is
P(i +1).

The basis proves thR(1) is true.
When both these parts are proved, then for gde{i) is proved.
StatePigeon-hole Principle.

If an attempt is made to pair off the elementé\dthe “pigeons”)
with elements oB (the “pigeonholes”), sooner or later we will have to
put more than one pigeon in a pigeonhole.

Define aGrammar of a Language.
A Grammar G) is defined as a quadruple

G=(\V,T,S,P)
where
V = finite set of objects called Variables
T = finite set of objects called Terminal symbols.
SOV = start symbol

P = finite set of productions.

Chapter 1
DFA and NFA

1.1 DETERMINISTIC FINITE AUTOMATA (DFA)
1.1.1 Automata—What is it?

An automaton is an abstract model of a digital computer. An automaton has a
mechanism to read input, which is a string over a given alphabet. This input is
actually written on an “input file”, which can be read by the automaton but
cannot change it.

Input File

LTI/ o

Control Unit

' |

Output

v

Storage

A

Fig. Automaton

Input file is divided into cells, each of which can hold one symbol. The
automaton has a temporary “storage” device, which has unlimited number of
cells, the contents of which can be altered by the automaton. Automaton has a
control unit, which is said to be in one of a finite number of “internal states”.
The automaton can change state in a defined way.

1.1.2 Types of Automaton

(a) Deterministic Automata
(b) Non-deterministic Automata

A deterministic automata is one in which each move (transition from one
state to another) is unequally determined by the current configuration.

If the internal state, input and contents of the storage are known, it is
possible to predict the future behaviour of the automaton. This is said to be
deterministic automata otherwise it is nondeterminist automata.

DFA and NFA 59

An automaton whose output response is “yes” or “No” is called an
“Acceptor”.
1.1.3 Definition of Deter ministic Finite Autom aton

A Deterministic Finite Automator (DFA) is a 5-tuple
M=(QZ2,q,,F)

where

Q = Finite state of “internal states”

> = Finite set of symbols called “Input alphabet”
0:Qx2 - Q = Transition Function

g, 0Q = Initial state

FOQ = Set of Final states

The input mechanism can move only from left to right and reads exactly
one symbol on each step.

The transition from one internal state to another are governed by the
transition functiord.

If 5(q,, @) = q;, then if the DFA is in staig, and the current input symbol
is a, the DFA will go into state,.

Example 1.1.1: Design a DFA,M which accepts the language
L(M)={w(a,b)" :wdoes not contain three consecutis.

Let M=(Q’ z! 6’ quF)

where
Q = {dy G G}
> = {ab}
Qo Iis the initial state
F = {0, q, 0.} are initial states
andd is defined as follows:

Initial state Symbol Final state
q Y 8(q,0)
Qo a 4
Qo b G
Q; a 4
a; b G
0z a G
0> b G
03 a %
0z b G

60 Theory of Automata, Formal Languages and Computation

Eolution

M does not accept specified language, as long as three consk'sutaee not
been read.
It should be noted that

(i) Misin statey, (wherei = 0,1, or 2) immediately after reading a run
of i consecutiveb’'s that either began the input string or was
preceded by ara’.

(i) If an ‘a’is read andM is in stateg, g,, or M returns to its initial
stateq,.

0o 0, andg, are “Final states” (as given in the problem). Therefore any input
string not containing three consecuthis will be accepted.

In case we get three consecutX®then theg, state is reached (which is
not final state), henc® will remain in this state, irrespective of any other
symbol in the rest of the string. This stgies said to be “dead state” bris
said to be “trapped” &,

The DFA schematic is shown below based on the discussion above.

a a b

b b b

Fig. Finite Automatonwith four states

Example 1.1.2: Determine the DFA schematic fof = (Q, Z,0,q,F)
whereQ = {q,, 0,, 93}, = ={0,1}, q, is the start statd; = {g,} and d is
given by the table below.

Initial state Symbol Final state
q o 5(q,0)
a; 0 a,
a; 1 87}
s7 0 Us
0, 1 s7
0; 0 0z
0z 1 0z

Also determine a Languagderecognized by the DFA.

DFA and NFA 61

Eolution

0 1
1 0
@ @3

0,1

Fig. Finite Automatonhaving three states.

From the given table fd;, the DFA is drawn, whe, is the only final state.

(Itis to be noted that a DFA can “accept” a string and it can “recognize” a language.
Catch here is that “accept” is used for strings and “recognize” for that of a language).

It could be seen that the DFA accepts strings that has at least one 1 and an
even number of Os following the last 1.

Hence the languadeis given by

L = {w|w cortainsat least one 1 and
aneven nurberof 0s folow the last 1}

whereL = L(M) andM recognized the RHS of the equation above.

Example 1.1.3: Sketch the DFA given
M = ({a;, 6;}.{03,8, a.{ a3)
andd is given by
8(9;,0)=0; andd(d,, 0 = ¢
o(q;,)=0d, 0(g)=gq,
Determine a Languad€M), that the DFA recognizes.

Eolution

From the given data, it is easy to predict the schematic of DFA as follows.
Internal states g, ,.
Symbols =0, 1.
Transition function = (as defined above in the given problem)
g, = Initial state
g, = Final state.

0 1
1

g
0

Fig. State digramof DFA

62 Theory of Automata, Formal Languages and Computation

Ifastring endsinao, itis “rejected” and “accepted” only if the string ends
in a 1. Therefore the language

L(M) = {w|wendsin a 1}.

Example 1.1.4: Design a DFA, the language recognized by the
Automaton being

L={a"b:n>0}

Eolution

a a,b
_,_b,a_'b,

For the given languade={a"b: n> 0}, the strings could be ab, a’b, a%b,
Therefore the DFA accepts all strings consisting of an arbitrary number of
a’'s, followed by a single. All other input strings are rejected.

Example 1.1.5: Obtain the state table diagram and state transistion
diagram (DFA Schematic) of the finite state Automatlrr (Q, 2,9,
0o, F), whereQ ={q,, q;, 0,, 93}, £ ={a, b}, q, is the initial statef; is the
final state with the transistion defined by
6(dp,8)= 0, 0(0, 3= q (G b= g
o(a, @) =03 0(a, B=1q d(g3,b)=0,
0(d, @) =0y O(q, B=

Eolution

The State Table diagram is as shown below

o a b
do 0, Oy
Oy ds Qo
d, o Os
Os Oh 0]

With the given definitions, the State Transition diagram/DFA Schematic is
shown on next page.

DFA and NFA 63

Example 1.1.6: Obtain the DFA that accepts/recognizes the language
L(M) = {w|w{a, b, ¢}" andw cortainsthe paternabag

(Note: This is an application of DFA’s involving searching a text for a specified
pattern)

Eolution

Let us begin by “hard coding” the pattern into the machines states as shown in
fig. (@) below.

Input

— o) >y »@2 »@3

Fig. (a)

As the patternfabac has length four, there are four states required
in addition to one intial statg, to remember the patterq, is the only
acceptingstate required and this stajgcan be reached only after reading
‘abac.

The complete DFA is as shown below in Fig. (b).

Fig. (b)

Example 1.1.7: GivenX ={a, I, construct a DFA that shall recognize
the languagé = {bMab":m n>0}.

64 Theory of Automata, Formal Languages and Computation

Eolution

The given language = {b™ab" :m n >0} has all words with exactly one’*

which is neither the first nor last letter of the word i.e., there is one ora'sore
before or afterd’.

DFA is drawn above for the automatieh

where M =(Q,Z,d,q,,F) with

Q={0o: G A2+ U3, A}
>={ab; q,=Initial state,
F = {q,} = Final state.
and 0is defined as per the langudgegq, is “dead” state)

Example 1.1.8: GivenX ={a, b}, construct a DFA which recognize the
language. ={a™b" :m n>0}.

Eolution

The given languade={a™b" :m n>0} has all words which begin with one or

morea’s followed by one or morb's.
The finite automatoM (Q, Z,9,q,,F) is with

Q = {0y s Gy, s}

> ={ab}

Qo = Initial state
F ={qg,} = Final state

and 0 as defined by languade

The DFA is as shown below.

Yo

Hereq, is a “dead” state.

DFA and NFA 65

Example 1.1.9: Construct a DFA which recognizes the set of all strings
onZ ={a, b starting with the prefixab'.

Eolution

Only two statesq;, g,) are required to recogniad, in addition to the input
state. One additional state called the “trap” state is also required.

a,b

b t@

Fig. (a) DFA

Hence the DFA that recognizes the set of all strings ®fia, b} starting
with the prefix ab' is drawn above, where the automabdns

M({do: G, Ay 93}.{0.3,0.{ q})

with the state table diagram fdras shown below.

o) a b
o Oh O;
O, Os o)
a, a; a,
d; d; 0;

Fig. (b) State table digram

Example 1.1.10: Determine the DFA that will accept those words from
> ={a, b} where the number df's is divisible by three. Sketch the state
table diagram of the finite Automatdh also.

Eolution

The Finite AutomatoM is M (Q, £,9,q,,F) with
Q={do, th, A}

66 Theory of Automata, Formal Languages and Computation

z={a b
g, = Initial state
F = Fina state

We choose three sta®gsq,, g,. The states count the numbebsfmodulo 3,
with g, as the input as well as accepting state wheagda, are not accepting
states. Run arrows fromy to q,, g, to g, andg, to g, with label b'.

If any a is encountered, it does not alter the state. The suitable DFA is as
shown in the figure (a).

Fig. (2) DFA

The state table diagram is shown in Fig. (b).

o a b
o o Oy
d, Oy 0,
. d, o

Fig. (b) State table digram

Example 1.1.11: Construct an FA accepting all strings in {0, hjaving
even number of O0’s.

Eolution

The Finite Automatom is given by

M ({do, %, 95},{03,d, qy.{ 03).
The Finite Automaton is as shown.

DFA and NFA 67

Example 1.1.12: Construct a finite automaton accpting all strings over
{0, 1}

(&) having odd number of 0's
(b) having even number of 0’s and even number of 1's.

Eolution

(@ M({do, &, A2},{03,3, qo.{ o). (SeeFig. (2))
(b) M({do, 4, 9z, A3},{0%,3, ao.{ 0). (SeeFig. (b))

Fig. (a) Fig. (b)

Example 1.1.13: Determine an FAM acceptingd.,
whereL ={w{ 0,3 : Every O inw has a 1 immediately to its right}.

Eolution

0,1

0 =<C13;

The finite automaton is given by
M ({qo’ qlv q2! q3}’{01]}’61 qov{ 0&)

68 Theory of Automata, Formal Languages and Computation

Example 1.1.14: Determine the languages produced by the FA shown
in Figs. (a) and (b).

@ @«
o~ SRS

(@) (b)

Eolution

(a) Forz ={a, b}, language generated a,b}"

(@Owill be accepted when initial state equal final state).
(b) ForZ ={a, 3, language generated a,{} "

{Ois not accepted).

Example 1.1.15: Determine the FA i& ={a, b} for

(a) Language generatéd = (ab)” ={(ah" | n=0}
(Crnot accepted)

(b) Language generatéd ={(ab)" |n=1
(Crnot accepted)

Eolution

(@) GivenL, ={(ab)"|n=0}.
The FA is shown below in Fig. (a).

Fig. (a)

The FA is given by

M({do. &, 9z}.{3 B.3, &, &)
whereq, is a “dead state”.

DFA and NFA 69

(b) GivenLg ={(ab)" | n=1 (C+not accepted) i.e., initial statefinal state).
The FA for this languagk, is shown in Fig. (b).

Fig.(b)

The FA is given by

M({do, G, A2, G}, {3 B,6, & @)
whereq, is a “dead state”.

Example 1.1.16: Determine the FA with the

(a) Set of strings beginning with aa’!

(b) Set of strings beginning witla" and ending withb'.
(c) Set of strings havingaad as a subword.

(d) Set of integers

(e) Set of signed integers.

Eolution

() Setof strings beginning with am".

[It is not necessary always to have a dead state]

(b) Set of strings beginning witA’*and ending with by,

70 Theory of Automata, Formal Languages and Computation

(c) Set of strings havingad as a subword.

(d) Set of integers.

9 Alphabets ={0,1, ...,9}

(e) Set of signed Integers.

D @ @<

- 1-9 0-9

1.2 NON-DETERMINISTIC FINITE AUTOMATA (NFA)

Definition

A Nondeterministic Finite Automata (NFA) is defined by a 5-tuple
M =(Q2,,q,,F)

where Q,Z,0,q,,F are defined as flaws:

Q = Finite set of intemal states
> = Finite set of syrholscalled“Input alph#det”
8 = Qx(ZO{N) - 2°

g, OJQis the Intial states
F 0OQis a set of Final states

NFA differs from DFA in that, the range &fin NFA is in the powerset®2
A string is accepted by an NFA if there is some sequence of possible
moves that will put the machine in the final state at the end of the string.

Example 1.2.1: Obtain an NFA for a language consisting of all strings
over {0,1} containing a 1 in the third position from the end.

Eolution

0, O, G are initial states

DFA and NFA 71

q, is the final state.

1 0.1 0,1
—»
Please note that this is an NFAdg,,0) = g, andd(d,.,1) = ds.

Example 1.2.2: Determine an NFA accepting the language

(@) L, ={x|x0{a b g andx contains the pattermbad
(b) L,={a” Ob}

Eolution

@) a,b,c a,b,c
a
GD’ abac

Example 1.2.3: Determine an NFA accepting all strings over {0,1}
which end in 1 but does not contain the substring 00.

Eolution

The conditions to be satisfied are:

(@) String shouldendinal
(b) String should not contain 00.

The NFA is shown in figure.

Example 1.2.4: Obtain an NFA which should accept a language
given byL, ={x{ a, B :|x|=3 and third symbol ok from the right is

{'a}.

72 Theory of Automata, Formal Languages and Computation

Eolution

The conditions are

(a) the last two symbols can b& or ‘b'.
(b) third symbol from the right isa’
(c) symbol in any position but for the last three position caraber
‘b
The NFA is shown in fig. below.
a,b

—P%g a >y ab =®T

Example 1.2.5: Sketch the NFA state diagram for

M = ({qov ql! q21 Q3}v{0,]},5, qo;{ 0(})
with the state table as given below.

e} 0 1
o Cor Oy Go» Q2
O, 0; O
0, U 0z
d; d; 0;

Eolution

The NFA states arg, ¢, g, andds.
0(do.0) ={do, &} O(dlo D) ={d, A}
0(a,,0) ={ag (d,.1) ={ag
0(03.0) ={ag o(ds.) ={ag -

The NFA is as shown below.

DFA and NFA 73

Example 1.2.6: Given L is the language accepted by NFA in Fig.
Determine an NFA that accepts]{a} .

a a =®;>

Eolution

The language accepted by the given NFA is
L={a% O{ a":nisodd.
Now to make an NFA accepting the language:
L={a% O{ a":nisodd O{a"}.

This is accomplished by adding two states after gtat., g, andg; as shown
in fig.

_ a @ a a @
o @

The NFA is given by
M = ({do, O, Up, U3, Gs» G, G, F.{ RO, { G G @)

Example 1.2.7: Find an NFA with four states for
L={a":n20 O{b"an>1

Eolution

NFA for the language:
L={a":n20 O{b"an>1

For such a language two cases are to be considered.

Case (i):a",n=0
0, goes to a staig, where alla’s are absorbed. Hene is accepted.

74 Theory of Automata, Formal Languages and Computation

Case (ii):b"a: n>1

g, goes to a statg, where allb's are accepted and when & is
encountered it goes to final stade An additional statey, is added as
rejection state for the cases whbtis encountered after a's of case (i) or when
‘a or ‘b’ is encountered aftdr"a of case (ii).

The NFA is given by

M =({do, ths Ups Gs; At { @ B0, 4 { &)
which is shown in the fig. below.

Example 1.2.8: Design an NFA with no more than five states for the set

{abad': n=0} O{ abd: =q.

Eolution

NFA for the language
L={abad': n=0} O{ abd: =G

M =({do, %, G2, G, A} { @ B0, &{ & &)
Here the NFA is such that it accepts all strings of the aj# andabaty
wheren=0.

g, is for the case when stringab, i.e.ab” with n = 0.
0 is for the case when stringabald' with n>0.
q, is for the case when stringabd' withn>0

This NFA is shown in the fig. above.

DFA and NFA 75

Example 1.2.9: Determine an NFA with three states that accepts the
language &b, abg .

Eolution:

NFA for the language
L={ah ah}’

should be such that it accepts’ or “abc’ in the first step and then this is
looped with initial state so that any combinationt'ab’ and “abc’ can be
accepted.

Hence we have the NFA as

M = ({do, %, 0z}.{3 bd,d,0,{a4)
which is shown below:

Example 1.2.10: Determine an NFA that accepts the language
L(aa (a+ b).

Eolution:

a

a . ab

—>@ @y :
NFA is given by
M =({do, 05, d2}.{a 8,3, &, { &)

1.3 EQUIVALENCE OF NFA AND DFA

Definition

Two finite accepterM, andM, are equivalent iff
L(M;) =L(M,)

i.e., if both accept the same language.

Both DFA and NFA recognize the same class of languages. It is important
to note that every NFA has an equivalent DFA.

Let us illustrate the conversion of NDA to DFA through an example.

76 Theory of Automata, Formal Languages and Computation

Example 1.3.1: Determine a deterministic Finite State Automaton
from the given Nondeterministic FSA.

M =({do, a.}.{a 8,5, o.{ q})
with the state table diagram féigiven below.

0 a b

o {do a. {a}
Ox U {do aut

Eolution

Let M'=(Q',Z,d',qy.F') be a determine. Finite state automaton (DFA),
where

Q ={ldol.[au],[do, 4], [E1},
o = [l
and F'={la,].[do, [}

Please remember that [] denotes a single state. Let us now proceed to
determine' to be defined for the DFA.

b} a b
(Gl [9o: Gl [0
[a] U (9o, a1l

[%lo,0l] (90,04 (00,04

O O O

It is to be noted that
& ([do, o], @ =[0, @l

since & ([qu ql]v a) = 9(Qo a 0d(G, 3
={qp, 0} OO
={a,, o}

and O ([do,], B =0, a1l

since O ([ag,], B =3(q, BOS(q, b
={ag X do, }

={do, i}

DFA and NFA

Here any subset containiggis the final state in DFA. This is shown as below.

Example 1.3.2: Given the NDA as shown in Fig. (a), wilas shown in

Fig. (b).

/A

(a
@
Fig. (a)

a b
% {a a.t O
o} O {a., a2}
0, O O
Fig. (b)

Determine the equivalent DFA for the above given NDA.

Eolution

Conversion of NDA to DFA is done through subset construction as shown in

the State table diagram below.

a b

[l [Go: Gl 0
(9o, a4 [Go: G4l [0y, G,
[ql ’ qz] O [ql’ q2]

O O O

78 Theory of Automata, Formal Languages and Computation

The corresponding DFA is shown below. Please note that here any subset
containingg, is the final state.

Example 1.3.3: Given the NDA as shown in fig. below, determine the
equivalent DFA.

ovy

Eolution

The given NDA has}, andg, as final states. It accepts strings ending in 00 or
11. The state table is shown below.

0 1
Qo {do A} | { %o a3}
Oy {a.} g
O O O
G O {ag
d4 O O

The conversion of NDA to DFA is done through the subset construction.

DFA and NFA 79

o' is given by the following state table.

0 1
- [Qo] [Go: 0] (o 03]
(9o, G [Go, G O] [Go: O]
(9. 0l (0o al [do, Gs» Gal

[do, G, 9] [do, G, 9] (9. 0l

(Do, 93, Q4] [do, a4l (Do, O3 0]

Any state containing, or g, will be a final state.
The DFA is shown below.

[do,91,d2] [9o,93,d4]

Example 1.3.4: Determine a NFA acceptingb, ba} and use it to find
a DFA accepting it.

Eolution

The state table is as shown below.

a b
Qo Oh 07
) U Os
07 Os O
Os O O

The NFA is shown below.

Qo is the input statey, is the final state.

80 Theory of Automata, Formal Languages and Computation

The state table corresponding to the DFA is derived by using subset
construction. State table for DFA is as shown below.

a b

[a] [(Gl
[au] O [aal
[a] [G] 0

[aa] O O
O 0 0

The DFA is as shown above.

1.4 REGULAR EXPRESSION
1.4.1 Regular Languages

The regular languages are those languages that can be constructed from the
“big three” set operations viz., (a) Union ®pncatenation (dXleene star.
A regular language is defined as follows.

Definition: LetZ be an alphabet. The class of “regular languages” D&r
defined inductively as follows:

(@) O is aregular language
(b) ForeaclodZ,{g is aregular language

(c) For any natural numben=2 if L;,L,,...... L, are regular
languages, then solis O L, O oL,

(d) For any natural numben>2, if L,L,,...... L, are regular
languages, then soligso L, o oL,.

(e) If Lis aregular language, then sa.is
() Nothing else is a regular language unless its construction follows
from rules (a) to (e).

DFA and NFA 81

Examples

() O is aregular language (by rule (a))
(i) L={a,ab}isalanguage ovex ={a, i} because, bota} and{ b}
are regular languages by rule (b). By rule (d) it follows that
{8 b £ &b is aregular language. Using rule (c), we see that
{& O @ =Lis aregular language.
(i) The language over the alphabet {0,1} where strings contain an
even number of O's can be constructed by

(r'((01)(01)))
or simply 1(01 01)".

1.4.2 Regular Expres sions

Regular expressions were designed to represent regular languages with
mathematical tool, a tool built from a set of primitives and operations.

This representation involves a combination of strings of symbols from
some alphabeX, parantheses and the operatgr§) and *.

Aregular expression is obtained from the synjlapb, c}, empty strind],
and empty-sefl perform the operations, [and * (union,concatenation and
Kleene star).

Examples
0 + 1 represents the set {0, 1}
1 represents the set {1}
O represents the set {0}
(0+ 1) 1 represents the set {01, 11}
(a+ b) [{b+ c) represents the sealf, bb, ac, bc}

O0+1)=0+0+1)+(O+1)(O+1)---=%
O0+D"=(0+3(0+) =57 =% -{g

1.4.3 Building Regular Expres sions
Assume thak ={a, b ¢

Zero or more;a means “zero or moras”,
To say “zero or moral's,” i.e., {A,ab abah...... } you need to say
(ab)*.

One or more:Sincea means “zero or more’'s’, you can useaa (or
equivalentlya a) to mean “one or mora's”. Similarly to describe ‘one or
moreab's”, that is {ab, abah ababal...... }, you can useab (ab)*.

Zero or one: It can be described as an optiorg@hith (a + A).

82 Theory of Automata, Formal Languages and Computation

Any string at all: To describe any string at all (with ={a, b ¢ you can use
(a+b+c).

Any nonempty stringThisis written any character from={a, b, ¢ followed
by any string at ala + b+c) (a+b+c)’

Any string not containing......... Todescribe any string at all that does not
contain and&' (with = ={a, b @), you can useb(+c) .

Any string containing exactly one To describe any string that contains
exactly onea’ put “any string not containing aai’, on either side of thea'

like: (b+c)" a(b+c) .
1.4.4 Languages defined by Regular Expres sions

There is a very simple correspondence between regular expressions and the
languages they denote:

Regularexpresion L (Regular Expresion)
X, for eachk 0 X {x
A {A}
O {}
(n) L(r;)
oy (L(r)
nr L(r)L(r2)
n+r; L(r,) O L(rp)

1.4.5 Regular Expressions to NFA

() For anyxin Z, the regular expression denotes the language {
The NFA (with a single start state and a single final state) as
shown below, represents exactly that language.

NFA for x

(i) The regular expressioi denotes the languada}that is the
language containing only the empty string.

~O—2—0

NFA for A

DFA and NFA 83

(i) The regular expression denotes the languade; no strings
belong to this language, not even the empty string.

O O

NFA for O

(iv) For juxtaposition, strings ib(r,) followed by strings ir.(r,), we

NFA for rqr,

chain the NFAs together as shown.
(v) The “+” denotes “or” in a regular expression, we would use an
NFA with a choice of paths.

NFA forry +ry

(vi) The star (*) denotes zero or more applications of the regular
expression, hence a loop has to be set up in the NFA.

1.4.6 NFAs to Reg ular Expres sion
The basic approach to convert NFA, to Regular Expressions is as follows:

() If an NFA has more than one final state, convert it to an NFA with
only one final state. Make the original final states nonfinal, and

add aA-transition from each to the new (single) final state.

84 Theory of Automata, Formal Languages and Computation

(i) Consider the NFA to be a generalised transition graph, which is
just like an NFA except that the edges may be labeled with
arbitrary regular expressions. Since the labels on the edges of an
NFA may be eithe? or members of each of these can be
considered to be a regular expression.

(i) Removes states one by one from the NFA, relabeling edge as you
go, until only the initial and the final state remain.

(iv) Read the final regular expression from the two state automaton
that results.

The regular expression derived in the final step accepts the same language
as the original NFA.

Example 1.4.1: Represent the following sets by regular expression

(@ {0ap
(b) {1,11111......}
(c) {aba hbb

Eolution

(a) The se{[] al} is represented by the regular expres8ierab

(b) Thesefl,11111...... } is got by concatenating 1 and any element
of {1} . Therefore 1(1)represent the given set.

(c) The set {aba bbb represents theregular expression
ab+ a+ b+ bb

Example 1.4.2: Obtain the regular expressions for the following sets:

(a) The set of all strings over{b} beginning and ending witta'.
(b) {b% b be,......}
() {a**|n>0

Eolution

(@) The regular expression for ‘the set of all strings ofar b}
beginning and ending witla" is given by:

a(a+b)a
(b) The regular expression ffib?, b>, b8, } is given by:
bb (bbb’

2n+1 |

(c) The regular expression ffa n>GC} is given by:

a(aa)

DFA and NFA 85

Example 1.4.3: Obtain the regular expressions for the languages given
by
(@) L, ={a*"b®™*!| n20m=0
(b) L,={a bh aa abb ba bbh.....}
(¢) Ly ={wD{03" |w has no pair of consecutive zeros}
(d) L,={strings of 0’s and 1's ending in 00}

Eolution

(@) L, ={a®"b®™'| n=0,m= @ denotes the regular expression
(aa) (bb)'b

(b) The regular expression for the language
L, ={a, bh aa abb babbh }

(a+b) (a+bb)

(c) The regular expression for the language {w} 03" |whas no
pair of consecutive zeros} is given by

@011y (0+A) +1 (0+))
(d) The regular expression for the langudgge= {strings of 0's and
1's beginning with 0 and ending with 1} is given by
0(0+1j1

Example 1.4.4: Describe the set represented by the regular expression
(aa+b) (bb+a)

Eolution

The given regular expression is
(@aa+ b (bb+ 3.

The English language description is as follows: “The set of all the strings of the
form uvwherea’s are in pairs iu andb’s are in pairs irv".

Example 1.4.5: Give Regular expressions for the following on

>={a,bc

(a) all strings containing exactly orze

(b) all strings containing no more than theeg

(c) all strings which contain at least one occurrence of each symbol in
>

86

Theory of Automata, Formal Languages and Computation

(d)
(e)

Eolution

(@)
(b)

(©)

(d)

all strings which contain no runsas of length greater than two.
all strings in which all runs @f's have lengths that are multiples of
three.

RE=p+c) a(b+c) [for all strings containing exact oa
All strings containing no more than thr@e: We can describe the
string containing zero, one, two or thege (and nothing else) as

(A+a)(A+a)(A+a)

Now we want to allow arbitrary strings not containaig at the
places marked b)(’s:

XA+a)X(A+a)X(A +a)X
Therefore we puth{+c)” for eachX.
(b+¢) (N +a)(b+c) (A +a)(b+c) (A +a)(b+c)
All strings which contain at least one occurrence of each symbol
in X
Here we cannot assume the symbols are in any particular order.

We have no way of saying “in any order’, so we have to list the
possible orders:

abc+ acb + bac + bca + cab+ cba

Let us putX in every place where we want to allow an arbitrary
string:

XaXbXcX+ XaXcXbX+ XbXaXcxX+ XbXcXaX
+ XcXaXbX+ XcXbXaX

Finally, we replace all X’s witka + b +c)” to get the final regular
expression:

(a+b+c) a(a+ b+c) b(a+b+c) a+b+c)
(a+b+c) a(a+b+c) a+b+c) b(a+b+c)
(a+b+c) bla+b+c) a(a+b+c) a+b+c)
(a+b+c) bla+b+c) a+b+c) a(a+ b+c)
(a+b+c) c(a+b+c) a(a+ b+c) b(a+ b+c)
(a+b+c) da+b+c) b(a+tb+c) a(a+ b+c)

+ + + + +

All strings which contain no runs of a's of length greater than
two: An expression containing r& onea, or oneaa:

(b+0c) (A +a+aa)(b+c)

DFA and NFA 87

But if we want to repeat this, we have to ensure to have least one
non-a between repetitions:

(b+0c)" (A +a+aa)(b+c) (b+c)(b+c) (A +a+aa)(b+c))

(e) All strings in which all runs adi's have lengths that are multiples
of three:

(aaa+ b+c)’

Example 1.4.6: Find regular expressions ovex={a b} for the
language defined as follows:
@ L ={a"b™: m>0}
(b) L, ={b™ab": m>0,n>0
() Ly={a"b", m>0,n>0

Eolution

(@ Given L, ={a™b™: m>0},
L, has those words beginning with one or mmsefollowed by
one or moréy’s.
Therefore the regular expression is

aa bb (or) aabb

(b) GivenL, ={b™ab": m>0,n> 0. This language has those words

w whose letters are dbl except for oned’ that is not the first or
last letter ofw.
Therefore the regular expression is

bb abb
(c) GivenlL; ={a"b™ m>0}.

There is no regular expression for this beginnind-as not
regular.

Example 1.4.7: Determine all strings inL((a+b)" b(a+ ab)’) of
length less than four.

Eolution

b, ab, bb, ba, aab, abb, bab, bbb, baa, bba, aba

Example 1.4.8: Find the regular expressions for the languages defined
by

88 Theory of Automata, Formal Languages and Computation

() L={a"p":n=1 m=21 nm=3
(i) L,={ab’w:n=3wl{a
(i) Ly ={ww:v,wl{a B ,|v|=2
(iv) L,={w:|w mod3=0

Eolution:

(i) Regular Expression fay ={a"b™ : n=1, m>=1 nm= 3 is given
by
aa(a) b(b) +a(@)bb(b)
(i) Regular Expression fdr, ={ab"w: n>3 wl{a, 3"} is given
by
abbb(b’) (a+b) (@a+b)
(i) Regular Expression fdr, = {ww : v, w{a, B ,|v|=2 is given
by
(a+b) (@a+b)(@a+b) (@a+b)(a+h)
(iv) The regular expression fay ={w: |w mod 3= G is given by

(aaa+ bbb+ ccc +aab+ aba+abb+ bab
+ bba+ cab+ cba+ cbb+ caa)

1.5 TWO-WAY FINITE AUTOMATA

Two-way finite automata are machines that can read input string in either
direction. This type of machines havéra@ad head”, which can move left or
right over the input string.

Like the finite automata, the two-way finite automata also have a finite set
Q of states and they can be either deterministic (2DFA) or nondeterministic
(2NFA).

They accept only regular sets like the ordinary finite automata. Let us
assume that the symbols of the input string are occupying cells of a finite tape,
one symbol per cell as shown in fig. The left and right endmarkers |— and —|
enclose the input string. The endmarkers are not included in the input alphabet
>

[— & |& |ag...... a, |—|

o —

DFA and NFA 89

Definition
A 2DFA is an octuple
M = (Q’ zyl_’ _|161 S1tl r)

where, Qs a finite set of states
> is afinite set of input alphabet.
|— is the left endmarker, |-H Z,
—1| is the right endmarker, —l Z,

0:Qx(Z0{|—, —}) - (Qx{L,R})Iis the trasition function.

sOQ is the start state,
t 0Q is the accept state, and
r JQ s the reject state,z t

such that for all the states

0(g,t) = (u,R) for some ullQ,
0(q,—]) = (v,L) for some vOQ

and for all symbol® 0% O {}—}

3(t,b) = (4, R), 5(r,b) = (I,R)
¢ (t’_l) = (tv L)’ 6(rv_l) = (r’ L)

0 takes a state and a symbol as arguments and returns a new state and
direction to move the head i.e.difp, b) = (g d), then whenever the machine

is in statgp and scanning a tape cell containing synhbd@lmoves its head one

cell in the directiord and enters the stade

1.6 FINITE AUTOMATA WITH OUTPUT
1.6.1 Definition

A finite-state machinev = (Q, 2,0,8,A,q,) consists of a finite se) of
states, a finite input alphatb®ta finite output alphab@, a transition function
0 that assigns to each state and input pair a new state, an output frisibn
assigns to each state and input pair an output, and an initisjstate

LetM = (Q, %,0,8,A,q,) be a finite state machine. A state table is used to
denote the values of the transition funcicend the output functioh for all
pairs of states and input.

1.6.2 Mealey Machine

Usually the finite automata have binary output, i.e., they accept the string or do
not accept the string. This is basically decided on the basis of whether the final
state is reached by the initial state. Removing this restriction, we are trying to
consider a model where the outputs can be chosen from some other alphabet.

a0 Theory of Automata, Formal Languages and Computation

The values of the output functidf(t) in the most general caseas
function of the present stadt) and present inpud(t).

F(t) = A(a(t), x(t))
whereA is called the output function.
This model is called thtMealey machine”.
A “Mealey machine” is a six-tupi®, %, 0,8,A ,q,) where all the symbols
exceptA have the same meaning as discussed in the sections above.
A is the output function mappirkgx Q into O.

1.6.3 Moore Machine

If the output functiori-(t) depends only on the present state and is independent
of the present inpud(t), then we have the output functitft) given by

F(®)=A(a(t)

A Moore machine is a six-tupl€Q, ,0,d,A,q,) with the usual
meanings for symbols.

Example 1.6.1: Given state table as shown below that describes
finite-state machine with state® ={q,, q,. d,, g}, input alphabet
2 ={0% and output alphab@& = {0, 1}, sketch the state diagram.

o A
State Input Output
0 1 0 1
Qo a. Uo 1 0
a, 0z Uo 1 1
*7 4. 0z 0 1
0z 0z 4, 0 0

Eolution

The given state table corresponds to finite-state machine with output. The
corresponding state diagram is shown below.

DFA and NFA 91

Example 1.6.2: Give examples for Moore and Mealy Models of finite
automata with outputs.

Eolution

State Table shown in Fig. (a) representéomre Machine and that of Fig. (b)
shows aMealey Machine.

Current Next Stated
State Output
Input A
0 1
Input — o 0s Oh 0
a, Oh a, 1
0, 0, 0; 0
O O % 0
Fig. (a)
Next State
Input O Input 1
State Output State Output
Input — O ds 0 d, 0
07} Oh 1 o 0
Os 0, 1 O 1
Q4 Q4 1 Oz 0
Fig. (b)

1.7 PROPERTIES OF REGULAR SETS (LANGUAGES)

A regular set (language) is a set accepted by a finite automaton.

1.7.1 Closure

A set is closed under an operation if, whenever the operation is applied to
members of the set, the result is also a member of the set.

For example, the set of integers is closed under addition, becauysie
an integer whenever andy are integers. However, integers are not closed
under division: ifx andy are integersy/'y may or may not be an integer.

92 Theory of Automata, Formal Languages and Computation

There are several operations defined on languages:

L, OL, : stringsin eithet, orL,.
L, nL, : stringsin both, andL,.
L L, : strings composedof one string froni, followedby one
string fromL,.
—L, : Allstrings (over the same alpbet)not inL,.

*

L, : Zero or more strings from, corcatenatedogether
L, - L, : stringsinL, that are not irt,.
LY : strings inL,, reversed.

We shall show that the set of regular languages is closed under each of
these operations.

1.7.2 Union, Concatenation, Negation, Kleene Star, Reverse
The general approach is as follows:

(i) Build automata (DFA or NFA) for each of the languages involved.
(i) Show how to combine the automata in order to form a new
automaton which recognizes the desired language.
(i) Since the language is represented by NFA/DFA, we shall
conclude that the language is regular.

UnionofL ; and L,

(a) Create a new start state

(b) Make ai-transition from the new start state to each of the original
start states.

Concatenation ofL,and L,

(a) PutaA-transition from each final statelofto the initial state df,,.
(b) Make the original final states &f nonfinal.

1.7.3 Intersection and Set Dif ference

Just as with the other operations, it can be proved that regular languages are
closed under intersection and set difference by starting with automata for the
initial languages, and constructing a new automaton that represents the
operation applied to the initial languages.

In this construction, a completely new machine is formed, whose states are
labelled with an ordered pair of state names: the first element of each pair is a
state fromL, and the second element of each pair is a statelfsom

(a) Begin by creating a start state whose label is (start sthjestart
state ofl,).

DFA and NFA 93

(b) Repeat the following until no new arcs can be added:

(1) Find a stateA, B) that lacks a tragitionfor somex in Z.
(2) Add a transition orx from state(A, B) to state(d (A, x),
0 (B, x)). (If this state does not already exist, create it).

Negation of L,

(a) Start with a complete DFA, not with an NFA

(b) Make every final state nonfinal and every nonfinal state final.
Kleene star of L

(a) Make a new start state; connect it to the original start state with a
A-transition.

(b) Make a new final state; connect the original final state (which
becomes nonfinal) to it witk-transitions.

(c) Connect the new start state and new final state with a pair of
A-transitions.

Reverse of L ;

(a) Start with an automaton with just one final state.
(b) Make the initial state final and final state initial.
(c) Reverse the direction of every arc.

The same construction is used for both intersection and set difference. The
distinction is in how the final states are selected.

Intersection

Make a stateA, B) as final if both
(i) Ais afinal state ih, and
(i) Bis afinal state i,

Set Dif ference

Mark a staté¢A, B) as final ifAis a final state ih,, butBis not a final state ih,.

1.8 PUMPING LEMMA
1.8.1 Principle of Pumping Lemma

« If an infinite languageis regular,it can be defined by a DFA.

» The DFA has some finite nurerof states (say).

 Since the laguages infinite,some strings of the lgnageshould have
length >n.

94 Theory of Automata, Formal Languages and Computation

» For a string of length » accepted by the DFA, the walk through the
DFA must comaina cycle.

» Repeating the cycle an anmairy nunberof times should yield another
string accepted by the DFA.

The “pumping lemma” for regular languages is another way of showing
that a given infinnite language is not regular. The proof is always done by
“contradiction”. The technique that is followed is as outlined below:

(i) Assume that the languages regular.

(i) By Pigeon-hole principle, any sufficiently long stringrshould
repeat some state in the DFA, and therefore, the walk contains a
“cycle”.

(i) Show that repeating the cycle some number of times (“pumping”
the cycle) yields a string that is notlin

(iv) Conclude that is not regular.

1.8.2 Applying the Pumping Lemma
Definition of Pumping Lemma

If L is an infinite regular language, then there exists some positive intéger *
such that any stringg[0 L, whose length is®' or greater can be decomposed
into three partsgyyzwhere

(i) |xy]is less than or equal b
@i lyl>0,
(i) w =xyzisalsoinLforalli=0,1,2 3,.....

To use this lemma, we need to show:

(i) For any choice ofn,
(i) For somew[L that we get to choose (and we will choose one of
length at least).
(i) For any way of decomposing w inkyz so long agxy] is not
greater thamn andy is notA,
(iv) We can choose d@rsuch thakyzis not inL.

Example 1.8.1: Prove that. ={a"b" : n>0} is not regular.

Eolution

() We don’'t knowm, but let us assume that there is one.
(i) Choose a stringg = a"b", wheren>m, so that any prefix of length
‘m’ consists only of’s.

DFA and NFA 95

(i)

We don’t know the decompositionwfintoxyz but sincéxyj< m
Xy must consist entirely @'s. Moreovery cannot be empty.

(iv) Choose = 0. This has the effect of dropping | a's out of the

string, without affectng the numberlw$. The resultant string has
fewera’s thanb's, hence does not belonglto

Thereforel is not regular.

Example 1.8.2: Provethat ={a"b* : n>k and n> @ is not regular.

Eolution

(i)
(ii)

(i)

(iv)

We do not knowr, but assume there is one.

Choose a stringv=a"b*, wheren > m, so that any prefix of
length'm’ consists entirely of’'s, andk=n— 1, so that there is just
one more a thah.

We do not know the decomposition wf into xyz but since
[Xyl< m xy must consist entirely ai's. Moreover,y cannot be
empty.

Choose = 0. This has the effect of dropping | a's out of the
string, without affecting the number bfs. The resultant string
fewer a’'s than before, so it has either fevaés thanb's, or the
same number of each. Either way, the string does not belang to
soL is not regular.

Example 1.8.3: Show that L={a": nisaprimenumber} is not
regular.

Eolution

()
(ii)

(i)
(iv)

We don’t knowm, but assume there is one.
Chose a stringw = a" where n is a prime number and
[Xyzl=n>m+1 (This can always be done because there is no
largest prime number). Any prefix of consists entirely of's.
We do not know the decompositiorveinto xyzbut sincéxy|< m
it follows that [z| > 1. As usual,y | > 0.
Since| z|>1, |xy|>1 Choosé =|xz|. Then|xy z|= |xz|+ |y| kz |
=@+ 1Y) el
Since (1 + ¥/ |) and kz| are each greater than 1, the product must
be a composite number.
Thereforgxy' z|is a composite number.

Hencel is not regular.

96 Theory of Automata, Formal Languages and Computation

1.9 CLOSURE PROPERTIES OF REGULAR LANGUAGES

THEOREM 1: If L, andL, are regular ovek, thenl, O L, is regular i.e.,
union of two regular sets is also regular. [Regular sets are closed w.r.t.
union).

Proof: As L, andL, are given to be regular; there exists finite automata
M; =(Q %9,,09,,F;) andM, = (Q,, 2,8 ,.,q,,F,) such that;, = T(M,) and
L, =T (My).
[T(M) ={x0%" :5(q,,x) OF}
is a larguage_(M) accepted b]
Let us assume th@, n Q, =[.
Let us define NFA witti+Hransitions as follows:
M3 =(Q,2,8,0o.F)
where

() Q=Q 0Q,0{q4 whereq,is a new state not @, 0 Q,
(i) F=F OF,

(iiiy dis defined by(qy,) ={q,, 9,} ()
_ [P:(a,@) if qUQ,
o@a= e % ane, (b)

It is obvious thab(q,,) ={q,, 9,} inducesHransitions either to the
initial stateq, of M, or initial stateg, of M,.

From (b), the transitions dil are the same as transitiohg or M,
depending on whethey, or g, reached by}Hransitions fronm,.

SinceF = F, O F,, any string accepted by, or M, accepted by.

Thereforel, O L, =T(M) and so is reglar. O

THEOREM 2: If L is regular and. 03", thenX™ - L is also a regular set.

Proof. LetL =T(M) where M =(Q,Z,0,q,,F)is an FA.
ThoughL O X", 3 (q,) need not be defined as for ail in =.

0 (g, @) is defined for some ‘a’ ia eventhougha’ does not find a place in
the strings accepted by M.
Let us now modifyz,Q andd as defined below.

(i) If ad%; - Z, then the symbok will not appear in any string of
T(M). Therefore we delet@” from %, and all transitions defined
by the symbold’. T(M) is not affected by this).

(i) If¥-%; #0, we add a dead stateto Q. We defined(d,a) = d
for all ‘a’in Zandd(d,a) = d forallginQand @ in X - Z,.

Once agairm(M) is not affected by this.

DFA and NFA 97

Let us consider M got after applying (i) and (i@ andd. We write the
modifiedM as

(Q! 2161 qO ’ F)
Let us now define a new automatt by
M’ = (Q’ zuéqu!Q - F)

We can see thatOT(M") iff 8(qy, w) JQ — F andwOT(M).
Therefores” —L =T(M") and theréore regular. O

THEOREM 3: If L, andL, are regular, so is; n L, [Regular sets are closed
w.r.t. Intersection]

Proof: It is important to note that
Lnl,=(50L)°

If L, andL, are regular, theh?, L5 are regular by theorem 1.
Therefore(L O L3) € is regular by theorem 2.
Hencel, n L, is regular. g

1.10 MYHILL-NERODE THEOREM
1.10.1 Myhill-Nerode Rela tions
Isomorphism

Two DFAs given byM = (Q,,,%,9,,.S,.F) andN = (Q\,%,9,,s,.F,) are
said to be “isomorphic” if there is a one-to-one and onto mapping
f:Qu — Qu such that

) f(su)=s,
(i) TOy(pa)=95o,(f(p,a)foralPliQ,,alz,
(i) pOF, if f(pOFy.

Isomorphic automata accept same set.

Myhill-Nerode Rela tions

LetR O be aregular set, and l&l = (Q, =,3,s,F) be a DFA for R with no
inaccessible states.
TheautomatorM induces an equivalence relatisp, on3 defined by
def A ~
X=y Y= 3(sx)=0(sy)

It is easy to show that the relatieg, is anequivalence relation, meaning
it is reflexive, symmetric and transitive.

98 Theory of Automata, Formal Languages and Computation

A few properties satisfied bs ,, are as follows:

(a) Itis a right congruencefor anyx, yOJ= andaZ,
X=y yd asy v,

Proof: Assumex=,, V.
Therefore we have

5(sxa) = 8(3(s %), a)
=03(0(s y),a) (byassumption)
=5(s ya) O
(b) It refinesR: for anyx, yOs',
x=,, yO (xOR < yOR).
Proof: Sinced (sx)= 8(3 y), which is either an accept state or a reject state,
so either bottkx andy are accepted or both are rejected. O

(c) Itis of “Finite index™: i.e., it has only finitely many equivalence class.
This is because there is exactly one equivalence class

X0z |8(sX) = o}
corresponding to each statef M.

Hence thequivalence relatior onZ’ is a “Myhill-Herode relation” foRif it
satisfies properties (a), (b) and (c). i.e., if itis a right congruence of finite index
refiningR.

1.10.2 Myhill-Nerode The orem

LetR X . The following statements are equivalent.

(i) Risregular
(i) There exists a Myhill-Nerode relation fBr
(i) The relatiore is of finite index.

(The proof is beyond the scope of this book).

Example 1.10.1: Using Myhill-Nerode Theorem verify whether
L={a"b" : n=0} is regular or not.

Eolution

This is done by determining the,-classes. Ik #m thena® #, a™, since

DFA and NFA 99

a*b*“ OL buta™b* OL. Hence there are infinitely mars -classes, at least

one for eacta® , k >0.

Hence byMyhill-Nerode Theoreni is not regular. (The application of
Myhill-Nerode theorem has been illustrated above).

GLOSSARY

Automaton: Abstractmodel of a digital computer.

Acceptor: Automatonwhose output response is “Yes” or “No”

DFA: DeterministicFinite Automata.

NFA: Non-deterministidcinite Automata.

Regular Language: Language that can be constructed from the set
operations—UnionConcatenation and Kleene star.

Regular expression: Mathematicaltool built from a set of primitives and
operations.

Two-way Finite Automata: Machinesthat can read input string in either
direction.

Moore machine: Output function depends only on present state and
independent of present input.

Mealey machine: Value of the output function is a function of the present
state and present input in a Mealey Machine.

Pumping lemma: A way to show that an infinite language is not regular.

REVIEW QUESTIONS

Define the term ‘Automata’ with an example.
What are the types of Automaton?

Explain Deterministic automata with an example.
Explain Non-deterministic automaton with an example.
Distinguish between DFA and NFA.

Explain the terms:

(a) State Table diagram

(b) State Transition diagram.

Define Non-deterministic Finite automata.
Comment on the equivalence of NFA and DFA.
What are regular expressions?

10. Define a regular language.

11. Give examples for regular expressions.

S o

©o®~N

100

Theory of Automata, Formal Languages and Computation

12.

13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.
24,

Comment on the correspondence between regular expressions and the
languages they denote.

How will you convert an NFA to a regular expression?

What do you mean by two way finite automata?

What do you mean by finite automata with output.

What do you mean by a Mealy machine?

What do you mean by a Moore machine?

Give examples for Moore and mealy models of finite automata with
outputs.

State the properties of regular sets.

State the principle of pumping lemma.

Define Pumping lemma.

Explain the closure properties of Regular languages.

What is Isomorphism?

State the Myhill-Nerode relations.

EXERCISES

ForZ ={a, I} construct DFA that accepts the following set of strings
(a) all strings with exactly one ‘a’

(b) all strings with at least one ‘&’

(c) all strings with no more than three a’s

(d) all strings with at least one ‘a’ and exactly two b’s.

(e) L={w:|w|mod3=0}

H L={w:|w|mod520}

Determine a DFA that accepts all strings on {0,1} except those
containing the substring 001.

Obtain the NFA for a language defined by

L={a"b"/nm=3.

and its associated state table diagram.
Construct an NFA for the state table given below.

5 0 1
o {0 au} { a3}

o) {ao} { du, g}
0 O { a0 0z}

0; {dy, G, a3} {al

DFA and NFA 101

. Obtain the language recognised by the NDA shown below.

. Convert the NDA to DFA giveM = ({q,, &;. 9,}.{a 8,9, o.{a,})
with state table as given below

a b
o {a., a5} U
Oh U {a,}
07 U {a,}

Determine the DFA that accepts the language
L(aa +aba + b)
Determine the DFA that accepts the language
L(ab(a+ ab (a+ ad).

Determine the regular expression for the languages accepted by the
following automata:

102 Theory of Automata, Formal Languages and Computation

10. Construct the state diagram for the finite-state machine with the state
table shown below.

g h
Input Input
State 0 1 0 1
S S S 1 0
S S3 S 1 1
S, S S, 0 1
S S, S 0 0

11. Construct the state table for the finite-state machine with the state
diagram shown below.

12. In a given coding algorithm, when three consecutive 1's appear in
message, the receiver of the message knows that there hasa been
transmission error. Construct a finite state machine that gives a 1 as its
output but if and only if the last three bits received are all 1's.

13. Obtain the state tables for the finite-state machines with the following
state diagrams.

(@)

DFA and NFA 103

14.

15.

16.

17.

18.

19.

20.

(b)

For the finite-state machine shown in problem (13), determine the
output for each of the following input strings

(a) 0111

(b) 11011011

(c) 01010101010

Construct a finite-state machine that delays an input string two bits,
giving 00 as the first two bits of output.

Construct a finite state machine that determines whether the input string
has a 1 in the last position and a 0 in the third to the last position read so
far.

Construct the state table for the Moore machine with the state diagram
shown below. Each input string to a Moore machh@roduces an
output string. The output corresponding to an input string

a,8,,...... ,a Is the string 9()9(s) -..... g(s;) where
§ =f(s_,,8)fori=12,...... k.

(52

Determine the output generated by the Moore machine shown in
problem (17), with each of the input strings shown below.

(@) 0101 (b)111111 (c)11101110111
Construct a Moore machine that determines whether an input string
contains an even or odd numberldf The machine should give 1 as
output if an even number of are in the string and 0 as output if an odd
number of 1are in the string.
Obtain the languages recognized by each of the following Finite-state
automata shown below.

104 Theory of Automata, Formal Languages and Computation

1 0,
(a) Start @'

(b)

21. Obtain the NDA with state table shown below.

f
Input
State 0 1
S S St S
s, S S1 3
S, S S
S S S S S

22. Determine the state table for the NDA with state diagram as shown
below.

23. Determine a DFA that recognizes the same language as the NDA shown
in problem 2.2 (Determine the language first).
24. Determine the language recognized by the NDA shown below.

DFA and NFA 105

25.

26.

27.

28.

29.

() Start @ @ 1
a v
0
0
O 0 e i ae’
&

Determine the languages recognized by the given DFA.

@ Start &) 1 & 0,1 0’1

Determine a DFA that recognizes each of the following
(@ {1"|n=12 3...... }

(b) {1, 00}

(c) {0}

Show that there is no finite-state automaton that recognizes the set of bit

strings containing an equal number d&0d .

What are the strings in the regular sets specified by the regular

expressions given below.

(a) 10

(b) (10)

(c)odo1

(d)oeD Y’

(e) (0* 1.

Construct a NDA that recognizes the regulaf’'sét 01

106 Theory of Automata, Formal Languages and Computation

30. Determine a regular grammar that generates the regular set recognized
by the finite state automaton shown in Fig.

31. Prove that the seto"1" | n=012...... } made up of all strings
consisting of a block of Os followed by a block of an equal numbét of 1
is not regular.

32. Express each of the following sets using a regular expression.

() the set of strings of one or more Os followed by a 1.
(b) the set of strings of two or more symbols followed by three or more
Os.

33. Show that ifA is a regular set, then s&F, the set of all reversals of
strings inA, is also regular.

34. Find an NDA which recognizes the set’0

35. Show that the set 81"} is not regular using pumping lemma.

36. Show that the set of palindromes over {0,1} is not regular using
pumping lemma.

37. Convert the NFA to DFA of the NFA shown below.

38. Convert the regular expressitab[] a) to an NFA.
39. Convert the regular expressitm b)” abato an NFA.

40. Using pumping lemma show that the following languages are not
regular.

(@ L ={0"1"2"|nz2¢
() L,={a?|n=0 (@ means a string of'&’s).

41. Give regular expressions for each of the following subseta, &} {.
(& {x|xcontains an even numbera$ }

DFA and NFA 107

42.

43.

44,

45,

46.

47.

(b) {x|xcontains an odd number of b’s}

(c) {x]|xcontains an even number of a’'s or an odd number of b’s}
(d) {x|xcontains an even number of a’'s and an odd number of b’s}
Give the DFA accepting the sets of strings matching the following

regular expressions:

(@) (000* + 111*)*

(b) (01 +10) (01 + 10) (01 + 10)

(c) (0+1(01*0)*1)*

Show that the following sets are not regular.
(@) {a"p™ | n=2n}

(b) {x{a bgd |xisa palindrome}

(c) {x{abd | thelength okis asquare}
Consider the NFA shown below.

a
a

g e

b

(a) Construct an equivalent DFA.
(b) Give an equivalent regular expression.

Convert the NDA to equivalent DFA for each of the following:
a,b

@

o P a,b

Give the regular expressions for each of the following subsgssigf .
(@) {x|xdoes not contain the substriag

(b) {x|xdoes not contain the substriaig

(c) {x|xdoes not contain the substriaba}

Match each NFA with an equivalent regular expression.

108

Theory of Automata, Formal Languages and Computation

48.

49.

() DO+0(011+ 09 (0OX

(i) O+0(10 1+ 10" 10

(i) 0+0(101+ 00" 0

(iv) O+0(011+ 0Q" O

(v) 0+0(101+1Q 1

Define an NFA with four states equivalent to the regular expression

(01+ 011+ 011) .

Convert this automaton to an equivalent deterministic one.
Obtain the DFA equivalent to the following regular expressions:
(a) (00+11) (01 +10) (00 + 11)

(b) (000) 1 + (00j1

(c) (0 (01) (1 +00)+1 (10)(0 + 11)§

SHORT QUESTIONS AND ANSWERS

What is arautomaton?

An Automaton is an abstract model of a digital computer. ltahas
mechanism to read input, which is a string over a given alphabet. This
input is actually written on an “input” file, which can be read by the
automaton but cannot change it.

What are the types éfutomaton?

(a) Deterministic Automata

DFA and NFA 109

(b) Non-deterministic Automata
. What do you mean bgeterministic automata?
If the internal state, input and contents of storage are known, it is

possible to predict the future behaviour of the automaton. This is said to
be deterministic automaton.

. What do you mean biyon-deterministic automata?

If the internal state, input and contents of storage are known, if it is
not possible to predict the future behaviours of the automaton, it is said
to be non-determine automaton.

Give the formal definition of Deterministic Finite Automaton (DFA).
A Deterministic Finite Automaton (DFA) istetuple

M =(Q2,,q,,F)
where
Q = Finite state of “internal states”
> = Finite state of symbols callddiput Alphabet'.
0:Q x X - Q=Transition function
g, UQ = Initial state
F 0Q = Set of Final states.
Define thetransition functiord in DFA.

If d(q,, @) = q;, then if the DFA is in statg, and the current input
symbol isa, the DFA will go into state;.

Give the formal definition of Non-deterministic Finite Automata
(NFA).
A non-deterministic Finite Automata (NFA) is defined by a 5-tuple

M =(Q,Z,3,0,.F)

whereQ, Z,9,q, ,F are defined as follows:
Q = Finite set of internal states
> = Finite set of symbols called ‘Input alphabet’
5=Qx(Z0{N) - 2°
do, JQ s the ‘Initial state’
F OQis a set of Final states.
. What is the difference between NFA and DFA in terms of the transition
function?

NFA differs from DFA is that, the range &fin NFA is in the
powerset 3.
. When is a string accepted by an NFA?

A string is accepted by an NFA if there is some sequence of possible
moves that will put the machine in the final state at the end of the string.

110

Theory of Automata, Formal Languages and Computation

10.

11.

[EEN

12.

13.

14.

15.

16.

17.

When are twdinite acceptord/, andM, said to be equivalent?
Two finite acceptord!, andM, are said to be equivalent if

L(M;)=L(M,)

i.e., if both accept the same language.
Is it possible to convert every NFA into an equivalent DFA?

Yes, itis possible to convert every NFA into an equivalent DFA and
vice-versa.

What areregular languages?

Regular languages are those languages that can be constructed from
the three set operations (a) Union (b) Concatenation and (c) Kleene star.
Give the formal definition of a regular language.

Let Z be an alphabet. The class of ‘regular languages’ bvier
defined inductively as follows:

(@) O is a reglarlanguage
(b) For eaclo0Z,{q} is a regular language

(c) For any natural number=2 if L, L,,...... L, are regular
languages, then solig O L, oL,.

(d) For any natural number=>2 if L;,L,,...... L, are regular
languages, then soligo L, o oL,.

(e) If L is aregular language, then solis
(H Nothing else is a regular language unless its construction
follows from rules (a) to (e).
Give an example of @gular language.
The language over the alphabet {0, 1} whose strings contain an even
number of 0’s can be constructed by

1%((01)(01))’)

or simply 1(0101)".
What is the motivation behind writing regular expressions?

Regular expresions were designed to represent regular languages
with a mathematical tool, a tool built from a set of primitives and
operations.

How areregular expressions formed?

A regular expression is obtained from the symbols {a, b, c}, empty
string, and empty sefl performing the operations #and * (union
concatenation andleene star).

What do the following regular expressions represent?
(@) (0+1)1 (b)y(a+b){b+c) (c)(O0+1) (d)0(e)(0+1)

(@) (0 +1) 1 repesentshe set {01, 11}
(b) (a+ b) [b+ c) represents the sealy, bb, ac, bc}

DFA and NFA 111

18.

19.

20.

21.

22.

23.

24,

(c) (0 + 1)* represents the following:

O0+1)" =0+(0++(0+ J(O+ L+ - =%

*

(d) O represents the set {0}

(€) O+)"=(0+9(0+) =3" =5 -{}
What are the languages defined by the following regular expressions?
@0 (B)nry (©n +r,

(a) Ford, the laguageis { }

(b) Forrr,, the language is(r;)L(r,).

(c) Forr, +r,, the language ils(r;) O L(r,).
Sketch the NFA for (@30% (b)A (c)O.

(a) NFA for x: \O—f—©
(b) NFA for A: \‘Q—LQ
(c) NFA for O: \‘Q O

What do you mean hbiyvo-way finite automata?
Two way-finite automata are machines that can read input string in
either direction.
What is the kind of arrangement you have for ‘ttead head” ina
two-way automata machine?
These types of machines have a ‘read head’, which can move left or
right over the input string.
State a common characteristic between Finite automata and two-way
finite automata?
Both Finite automata and two-way finite automata have the same
finite setQ of states. They accept only regular sets.
What are the types ofvo-way finite automata?
(a) 2DFA (Deteministic)
(b) 2NFA (Non-deterministic)
Give the formal definition of a 2DFA (two-way DFA).
A 2DFA is an octuple

M=@QZ2} 493 str)
where, Q is a fine set of states,
> is afinite set of input,
|-is the left end markef; 0% ,

- is the right end marked O Z ,
0:Qx(ZU{}F 4} - (Qx{L,R}) is the transition function

112

Theory of Automata, Formal Languages and Computation

25.

26.

27.

28.

29.

30.

31.

sOQ s the start state,

t0Q is the accept state, and

r 0Q is the reject state,# t.

What is a Mealey Machine?

Usually the finite automata have binary output i.e., they accept the
string or do not accept the string. This is basically decided on the basis
of whether the final state is reached by the initial state. Removing this
restrictin, we are trying to consider a model where the outputs can be
chosen from some other alphabet. The value of the output fuRgtjon
in the most general case is a function of the presentgtedad present
inputx(t).

F (1) = A(a(t), x(1)

where A is called the output function. This model is called the
“Mealey Machine”.
What is aMoore Machine?

If the output functior (t) depends only on the present state and is
independent of the present input), then we have the output function
F(t) given by

F(t) =A(a()

A Moore machine is a six-tuplg®, ¥,0,6,A,q,) with the usual
meanings for symbols.
What is aregular set?

A setwhich is accepted by a finite automaton is called a regular set.
What isclosure property of a regular set?

A set is closed under an operation if, whenever the operation is
applied to members of the set, the result is also a member of the set.
State the meanings of the following operations made on languages:

@LOL, BLnl, (©-L @L-L @EL 6L

(@) L, OL,: Strings in eithet, orL,.

(b) L, n L,: Strings in both., andL,.

(c) —L,: All strings (over the same alphabet) noLjn

(d) L, —L,: Strings inL, that are not irt,.

(e) L1 Zero or more strings from, concatenated together.
(f) L: Strings inL,, reversed.

What is meant bypumping Lemma?

The Pumping Lemma for regular languages is another way of
showing that a given infinite language is not regular.
What is the method of proof used by Pumping Lemma?

The proof is always done by contradiction.

DFA and NFA 113

32.

33.

33.

34.

35.

36.

37.

State the principle of Pumping Lemma.

If an infinite language is regular,k it can be defined by a DFA. The
DFA has some finite number of states (saySince the language is
infinite, some strings of the language should have lerigtRor a string
of length>n accepted by DFA, the walk through of the DFA must
contain a cycle. Repeating the cycle an arbitrary number of times should
yield aother string accepted by the DFA.

How will you show that a given infinite language is not regular using a
Pumping Lemma?

() Assume that the layuagel is regular
(i) By Pigeon-hole principle, any sufficiently long stringLin
should repeat some state in the DFA, and therefore, the walk
contains a “cycle”.
(ili) Show that repeating the cycle some number of times
(“pumping” the cycle) yields a string that is notlin
(iv) Conclude thatk is not regular.
Give the formal definition of a Pumping Lemma.
If L is an infinite regular language, then there exists some positive
integer m such that any stringg[0 L, whose length ism’ or greater can
be decomposed into three paxigzwhere

(i) |xy] is less than or equal o

(i) lyl>0,

(i) w =xyzisalsoinLforalli=0,1 2 3......
Is the languagk ={a"b" : n=0} regular or not.

The languagé is not regular.

Are the following languages regular or not.
(@L={a"b“ : n>k and n= @
(b)L={a" : n is a prime number}.

(&) Not regular
(b) Not regular.
State the closure property of Regular Languages.

(a) If L, andL, are reglarover, thenL, O L, is regilar,i.e.,
union of two reglar sets is also redar. Regular sets are
closed w.r.t. union.

(b) If L, andL, are regular, so ik, n L,, i.e., regular sets are
closed w.r.t. intersection.

State the Myhill-Nerode Theorem.
LetROZ". The following statements are equivalent

() Risregqular

114

Theory of Automata, Formal Languages and Computation

38.

39.

40.

(i) there exists a Myhill-Nerode relation far
(iii) the relatiorey is of finite index.
What is aracceptor?
Automaton whose output response is ‘Yes’ or ‘No’ is called an
acceptor.
What is aregular expression?
Itis a mathematical tool built from a set of primitive and operations.

What are the properties idgular sets?

(@) Closure

(b) Union

(c) Concatenation
(d) Negation

(e) Kleene star

(H Intersection
(g) Set difference

Chapter 2

Context-Free Grammars

2.1 INTRODUCTION
2.1.1 Definition of CFG
A context-free grammar is a 4-tupM, [T, S, P) where

(i) Vis afinite set called the variables
(i) Tis a finite set, disjoint frorv, called the terminals
(i) Pis afinite set of rules, with each rule being a variable and a string
of variables and terminals, and
(iv) SOV is the start variable.

If u, v andw are strings of variables and terminals, &nd wis a rule of
the grammar, we say thaf\vyieldsuwy, writtenuAv [0 uwv.
2.1.2 Example of CFG

Given agrammatG = ({$, {a, b}, R 9.
The set of ruleRis

S aSb
S. SS
S-.0O

This grammar generates strings such as
abah aaabbband aababb

If we assume thatis left paranthesis ‘(" anldlis right paranthesis ‘), then
L(G) is the language of all strings of properly nested parantheses.

2.1.3 Right-Linear Grammar
In general productions have the form:
vVoOT) - vOT).
In right-linear grammar, all productions have one of the two forms:

VTV

116 Theory of Automata, Formal Languages and Computation

or VT

i.e., the left hand side should have a single variable and the right hand side
consists of any number of terminals (member§)aptionally followed by a
single variable.

2.1.4 Right-Linear Grammars and NFAs

There is a simple connection between right-linear grammars and NFAs, as
shown in the following illustration.

A - xB
A - xyzB
A_B
A - X O @

As an example of the correspondence between an NFA and a right linear
grammar, the following automaton and grammar both recognize the set of set
of strings consisting of an even number of 0’s and an even number of 1’s.

S A
S - 0B
S - 0A
A - 0C
A - 1S
B - 0S
B - 1C

2.1.5 Left-Linear Grammar

In a left-linear grammar, all productions have one of the two forms:
Vo VT

or VT

i.e., the left hand side must consist of a single varibale, and the right-hand side
consists of an optional single variable followed by one number of terminals.

Context-free Grammars 117

2.1.6 Conversion of Left-lin ear Grammar into
Right-Linear Grammar

Step Method
(@) Constructa right-linear Replace each pductionA - x of L
grammarfor the diferent with a praductionA - x® and
languages ™. replace each pouctionA - Bx

with a praductionA — x"B

(b) Constructan NFA forL® from Refer to setion 2.1.4 for deriing an
the right-lineargranmar.This NFA from a right-lireargranmar.
NFA should have just one

final state.
(c) Reverse the NFA fdc® to (i) Constructan NFA to
obtain an NFA folL. recognizethe larguagel.
(i) Ensure the NFA has only a
singlefinal state
(i) Reverse the dir¢ion of arcs
(iv) Make the iniial state final and
final state iniial
(d) Constructa right-linear This is the techiquedescribed in
grammarfor L from the the previoussedion.
NFA for L.

Example 2.1.1: Give some example of context-free languages.

Eolution

(@) ThegrammarG = ({S$}, { a, b}, S P) with productions
S-aSa S bSbh S A
is context free.
SO aSal aaSaal aabSbéa aabbaa
Thus we havé(a) = {ww? : wi{a, B}.

This language is context free.
(b) The grammafs, with production rules given by

S - alB,
A - aaBb,
B - bbAa,
A—))\

is context free.

118 Theory of Automata, Formal Languages and Computation

The language is

L(G) ={ab(bbag" bbg b}": &0}

Example 2.1.2: Construct right-and left-linear grammars for the
language. ={a"b™ : n=2 m>3.

Eolution

Right-Linear Grammar:

S aS
S ad
A - bA
A - bbb

Left-Linear Grammar:

S - Abbb
S- Sb
A- Aa
A- aa

2.2 DERIVATION TREES

A ‘derivation tree’ is an ordered tree which the the nodes are labeled with the
left sides of productions and in which the children of a node represent its
corresponding right sides.

2.2.1 Definition of a Derivation Tree

LetG=(V, T, S P) be a CFG. An ordered tree is a derivation tre&foff it
has the following properties:

() The root of the derivation tree $
(i) Each and every leaf in the tree has a label ffdm{A}.
(i) Each and every interior vertex (a vertex which is no a leaf) has a
label fromV.
(iv) Ifavertex haslabehdV, and its children are labeled (from left to
right) a,, a,, a,, thenP must contain a production of the
form

(v) A leaf labeled\ has no siblings, that is, a vertex with a child
labeled A can have no other children.

Context-free Grammars 119

2.2.2 Sentential Form

For a given CFG with productiorS - aA A- aB,B - bB,B - a. The
derivation tree is as shown below.

S
a— \A
a— \
B
b= \B

a

SO aAQ aaB 0 aabB OO0 aaba

The resultant of the derivation tree is the ward aaba
This is said to be if'Sentential Form”.

2.2.3 Partial Derivation Tree

In the definition of derivation tree given, if every leaf has a label from
V OT O{A} itis said to bépartial derivation tree”.

2.2.4 Right Most/Left Most/Mixed Der ivation

Consider the gramm& with production
S- aS

asSSs
aaSSSs

Now, we have

(2]

O O O O O O O

aabSS (Left Most Deivation)
aabaSSS
aababSS
aababbS
aababbb

The sequence fladwedis “left most deivation”, following “1121222", giv
ing “aababbb.

120 Theory of Automata, Formal Languages and Computation

w

O O O O O O -
Q
(0))
0p)

aSb

aaSShb (Mixed Deiivation)
aabShb

aabaSSb

aabaSbb

aabalbb

The sequence 1212122 represents a “Mixed Derivation”, giving
“aababbb.

w

O Ov Ov O O O e
Q
(0))
(0p)

aSh

aaSSh

aaSaSSb (Right Most Deivation)
aaSaSbb

aaSabbb

aababbb

The sequence 1211222 represents a “Right Most Derivation”, giving
“aababbb.

Example 2.2.1: A grammar G which is context-free has the
productions

S aB
A - Bba
B - bB
B-c

(The wordw = acbabcis derived as follows)
SO &B - a(Bba)B O achaB O acba(bB) O acbakc.

Obtain the derivation tree.

Context-free Grammars 121

Eolution

a

"
TN
b

B

/T\

B a
| b
Cc
(@S - aAB (b) A - Bba (c)B - ¢
S S
/|\ /|\
a a
A B A B
/|\ b/\ /|\ b/\c
| b b
Cc
(d)B - bB (e)B -~ ¢

Example 2.2.2: A CFG given by productions is

S- a
S . aAS,
and A - bS

Obtain the derivation tree of the ward= abaabaa

Eolution

w = abaabaais derived frons as

SO aASO a b9 91 aba8Sl ahaAs)
0 abaal S
O abaabaS
0 abaalna

The derivation tree is sketched below.
a/i\
o | e T\

S a A S

|]

|
a

122 Theory of Automata, Formal Languages and Computation

Example 2.2.3: Givena CFG givenb&=(N, T, P, 9

Obtain the derivation tree and the language geneké@d

Eolution

SO ab i.e.,abdL(G)
SO aSb

0 aabb i.e,a’b? OL(G)
SO aSb

O aaSbb

0 aaabbb i.e,a’b’0L(G),

0 a3p® andsoon

Derivation tree is as follows.

Language generatedG) ={a"b" | n>1}.

Example 2.2.4: GivenaCFGG=(N,T,P, 9
DS asaa
withN={S}, T={a,b,c}andP = 02) S -~ bSly
BG) S-c H

Obtain the derivation tree and language genetai@&jl

Eolution

() SO ¢ cOLG) I

(i) SO aSal ea OL(G)

Context-free Grammars

123

S
b/ | \b
S
(i) SO bSHl bbOL(G) |
c
/TN
a a
(v) sO aSa /ﬁ\\
O abSba b b
0 abcbalL(G) S
and so on.
Hence the language generat€®) is given by c

L(G) = {wew® | wO{a, B}
wherew® = reversal ofv

ie., if w=aa,...... a,_1 8,
then wf=aa_, ... a,a.
Example 2.2.5: GivenG= (N, T, P, § with
N={E}, S=E T={id, +, *, ¢}

P:1E- E+E
and 2E-E*E
3. E- (E)
4 E - id
Obtain the derivation tree.

Eolution

E E E

/NG 7 I\

E E | (|) |

| * | id E id

id id E/ +\E
P

0 [id*id +id | 0 [Gid + id) *id]|

124 Theory of Automata, Formal Languages and Computation

Example 2.2.6: Obtain the language generate@) for a CFG given
, _ [AS- S
GIN.T.P.SwithN={s Ta} P[5 3" 27

Eolution

S
SO a
a
/S
SO SS S
0 aS | S
0 aa a

SO SS1 a%l aSS aas aamad soon....
Therefore the language generated is
L(G)={a" | n23

Example 2.2.7: Obtain the language generated by each of the following
production rules.

(a) A—» a (b) S—» aS (C) A a
A- aB S- 0O A- aB
A-01 Ao

d) A- aS (e) S— aS (f) S— ab
S- bS S- bS S- s
S-0 S- a S- a

S- b

Eolution

(a) The language generated is a “type-3 language” or “regular set”.

(by SO O
SO aSO a
SO &l aaSO aa
and so on.
Hence the language generated is

LG)={a" | n=0}

Context-free Grammars 125

(c) AOO
A a L(G) ={ww® | wO{a, B}
Al aB
(d) s- as
S~ bS L(G)={a B
S-0ad Languege generated of any string o a,b
(e) S- as
S~ bS LG)={a B a
S- a
(f) S- ab
S- bS L(G)={a, ",
S- a
S- b
Example 2.2.8: GivenaCFGG=(N,T,P, 9
(L S- ag]

o) @S- al
WlthN—{SsA},T—{&b}"’mdp‘ﬁA_,bAD

HA-b O

Obtain the derivation tree ahgG).

Eolution

SO a0 ab
SO aSO aal aab
SO aSO aa3] aawl aaabA aaabb

andoon ...

Thederivation tree has been shown here in fig.
S,
a— \
S
RN

S
a \A

/

b

c———)>/

The language generated is

L(G)={a"b™ n=1, m>3

126 Theory of Automata, Formal Languages and Computation

Example 2.2.9: Given a CFG with

s g

P = A - bS[Obtain the derivation tree ah{G).
MBA-DbH

Eolution

S
a/ \A
SO A0 ab '
b
S
/N
a A
SO aA0 abSO aba& O abab b/ \S
...... / \
a A
b/

The derivation trees suggedi, abah
Therefore the language generated

L@G) ={(ab)"| n=1

B Example 2.2.10: Obtain the production rules for CFG given the
language generated as

(@ LG)={w|wO{a, B, >, W) =Xy(W)}
(b) L@G)={w|wD{a ", >, (w)=2>,(w)}
(©) LG)={w|wD{a B, X, (w)=3X,(w}

Eolution

(@ S - SaSbs
S-0
S - SbSaS

(b) S - SaSaSbS
S - SaSbSaS
S - SbSaSaS
S- 0O

Context-free Grammars 127

(c) S~ SaSaSaSbS
S . SaSaShSaS
S . SaSbSaSaS
S - SbhSaSaSaS
S Ed D

Example 2.2.11: Given a gramma@ with production rules

S &8
S—>tA
A - aS
A - bAA
A- a

B - bS
B - aBB
B-b

Obtain the (i) leftmost derivation, and (ii) rightmost derivation for the
string “aaabbabbba

Eolution

(i) Leftmost derivation:

SO &8 0 aaBB [0 aaaBBB[O aaalBB [0 aaablB
0 aaabbalBd 0 aaabbablB [aaabbabbbS] aaabbabbba
0 aaabbabb
(i) Rightmost dewation:

SO &80 aaBB O aaBbS[O ad8bbA [0 aaaBBbba
0 aaalBbball aaabbShbal aaabbd&bball aaabbabbba

2.3 PARSING AND AMBIGUITY
2.3.1 Parsing
A grammar can be used in two ways:

(a) Using the grammar to generate strings of the language.
(b) Using the grammar to recognize the strings.

“Parsing” a string is finding a derivation (or a derivation tree) for that
string.

Parsing a string is like recognizing a string. The only realistic way to
recognize a string of a context-free grammar is to parse it.

128 Theory of Automata, Formal Languages and Computation

2.3.2 Exhaustive Search Parsing

The basic idea of the “Exhaustive Search Parsing” is to parse awiring
generate all strings in and check ifvis among them.

Problem arises wheh is an infinite language. Therefore a systematic
approach is needed to achieve this, as it is required to know that no strings are
overlooked. And also it is necessary so as to stop after a finite number of steps.

The idea of exhaustive search parsing for a string is to generate all strings
of length no greater tham|, and see ifvis among them.

The restrictions that are placed on the grammar will allow us to generate
any stringwOL in at most 2 yv | — 1 derivation steps.

Exhaustive search parsing is inefficient. It requires time exponeritigl in

There are ways to further restrict context free grammar so that strings may
be parsed in linear or non-linear time (which methods are beyond the scope of
this book).

There is no known linear or non-linear algorithm for parsing strings of a
general context free grammar.

2.3.3 Topdown/ Bottomup Parsing

Sequence of rules are applied in a leftmost derivation in Topdown parsing.
(Refer to section 2.2.4.)

Sequence of rules are applied in a rightmost derivation in Bottomup
parsing.

This is illustrated below.

Consider the gramm#& with production

1S- aSSs
2S- b

The parse trees are as follows.
/ S\
a | S

S \b
RN

IS S
/ e | N\
S
/b
b
Fig. Topdownparsng.

aababbb- Left parse of the string with the sequence 1121222.
This is known asTopdown Parsing.”

Context-free Grammars 129

“Right Parse” is the reversal of sequence of rules applied in a rightmost
derivation.

S

\S
\\S\S\S s
(]

Fig. Bottom-upparsng.

S|
a a b a b b

aababbb- Right parse of the string with the sequence 2221121.
This is known asBottom-up Parsing.”
2.3.4 Ambiguity
The grammar given by
G=({9.{aBh, SS- asp bja §3)

generates strings having an equal numbarsondb’s.
The string“abald’ can be generated from this grammar in two distinct
ways, as shown in the following derivation trees:

S S\b /S\
N a/,s\b /T\b
[T

Similarly, “abald has two distinct leftmost derivations:

SO aShHl abSabd abab
SO SS] aSbhg abHS abaSb abab

Also, “abali’ has two distinct rightmost derivations:

SO aSd] abSabh abab
SO SSO SaSh Sab aSkab abab

Each of the above derivation trees can be turned into a unique rightmost
derivation, or into a unique leftmost derivation. Each leftmost or rightmost
derivation can be turned into a unique derivation tree. These representations
are largely interchangeable.

130 Theory of Automata, Formal Languages and Computation

2.3.5 Ambiguous Grammars/Ambiguous Languages

Since derivation trees, leftmost derivations, and rightmost derivations are
equivalent rotations, the following definitions are equivalent:

Definition: LetG =(N,T,P,S) be a CFG.
A stringwL(G) is said to be “ambiguously derivable “if there are two or
more different derivation trees for that stringdn

Definition: A CFG given byG = (N, T, P, 9 is said to be “ambiguous” if there
exists at least one stringlifG) which is ambiguously derivable. Otherwise it
is unambiguous.

Ambiguity is a property of a grammar, and it is usually, but not always
possible to find an equivalent unambiguous grammar.

An ‘“inherantly ambiguous language” is a language for which no
unambiguous grammar exists.

Example 2.3.1: Prove that the grammar

S &Blah
A - aAB |a,
B ABb|b

is ambiguous.

Eolution

It is easy to see thaal’ has two different derivations as shown below.
Given the gramma® with production

1S &8
2S- ab
3 A- aAB
4 A- a
5B - ABb
6.B-b

Using(2), SO ab H
Using(1), SO &0 ab[]
and then (6). =

Example 2.3.2: Showthatthegramm& - § $ S» & ambiguous.

Eolution

In order to show thab is ambiguous, we need to findndlL(G), which is
ambiguous.

Context-free Grammars 131

Assume w = abababa

The two derivation trees far=abababas shown below in Fig. (a) and (b).
S
b /S \ S / i \S
L &N SN
| 0/ | AN b b
b

"

S

S

a

—W0

S
| a

L —=W

Q

a a
(@) (b)

Therefore, the gramm& is ambiguous.

Example 2.3.3: Show that the gramm& with production
S - &l &AblabSb
A - aAAb|bS

is ambiguous.

Eolution

SO absSb (- S» ab$b
0 abab (.~ S- A

Similarly,

SO ab (S &b)
O abSb (- A- bS)
0 abab

Since'abalbl has two different derivations, the gramn@is ambiguous.

2.4 SIMPLIFICATION OF CFG
2.4.1 Simplification of CFG-Intro duction

In a Context Free Grammar (CFG), it may not be necessary to use all the
symbols iV O T, or all the production rules i while deriving sentences.

Let us try to eliminate symbols and production&iwhich are not useful
in deriving sentences.

LetG = (V,T,S,P) be a context-free grammar. Suppose fhatntains a
production of the form

A - X BX,.

132 Theory of Automata, Formal Languages and Computation

Assume thaf andB are different variables and that

B- yilYal- | Y-
is the set of all productions Piwhich haveB as the left side.
LetG = (V,T,S,P) be the grammar in whidhis constructed by deleting
A - X BX,
from P, and adding to it

Ao X XX YoXol oo [%) %
ThenL(G) = L(G).

Substitution Rule

A productionA - x,Bx, can be eliminated from a grammar if we put in its
place the set of productions in whiBhs replaced by all strings it derives in
one step. In this result, it is necessary fhahdB are different variables.

An illustration is given in examples 2.4.1 and 2.4.2.

2.4.2 Abolishing Useless Productions

In the grammag with P,

S - aSha|A

A aA
the productiors — Adoes not play any role becadseannot be transformed
into a terminal string.A’ can occur in a string derived froB) this can never

lead to a sentential form. Hence this production rule can be removed, which
does not affect the language.

Definition: LetG = (V,T,S,P) be a CFG.
A variable AV is said to be “useful” iff there is at least onélL(G)
such that
SO xAyﬁ w
with x, y in (V DT)*, i.e., a variable is useful iff it occurs in at least one
derivation.
lllustration: Consider the gramm& with P

S_ A
A - aA|\
B - bA

Here the variablB is said to be “useless”, hence the produdBon bAis

also “useless”. There is no way to achi®/e XBYy.

Context-free Grammars 133

THEOREM: Let G = (V, T, S P) be a CFG. There exists an equivalent
grammalG (\/ T,S, P) that does not contain any useless variables or

productions.

Procedure:The first Part-A is to finds, using the algorithm.
Step 1: SetV, to

Step 2: Repeat the following step until no more variables are added to
For everyAIV for whichP has a production of the form.

Ao XXy X,, withall x.inV, OT,addAtoV,.
Step 3: TakeP, as all the productions Pwhose symbols are all{d, O T).

Thus the grammar G, can be geeratedrom G by the above algahm.
HereG, = (V,,T,,S,P,) such tha¥/, containsonly variablesA for which

AL wOT

The next step is to check whether evarfor whichAQl w=ab... is

added to/, before the procedure terminates.

Step belowdescribes the secoért B.

“Dependency graph” is drawn to find all the variables that cannot be
reached from the start symb8l These variables are removed from the
variable set and also all the productions involving the variables.

The resultant obtained G

(a) Empty Pro duction Removal

The productions of context-free grammars can be coerced into a variety of
forms without affecting the expressive power of the grammars.

If the empty string does not belong to a language, then there is a way to
eliminate the productions of the forfn— A from the grammar.

If the empty string belongs to a language, then we can elinAirfieden all
productions save for the single product®n- A. In this case we can also
eliminate any ocurrences 8ffrom the right-hand side of productions.

Let us illustrate this through the Example 2.4.4. Any production of a CFG
of the form

Ao A

is called a\-production. Any variablé for which the derivation

AD Ais posible.
is called “NULLABLE".

134 Theory of Automata, Formal Languages and Computation

Let G be any CFG with\ not inL(G). Then there exists an equivalent
grammaiG having nok-productions.

Procedure to find CFG with out A-Productions

Step (i): Forall productionsA — A, putAinto V.
Step (ii): Repeathe following steps until no further variables are add&¢] to
For all productions

whereA,, Az; Al , A are inV,, putBintoV,.
To find P, let us consider all productionsknof the form

for eachx, OV O T.

For each such production Bf we put intoP that production as well as
all those generated by replacing nullable variables witin all possible
combinations.

(If all x are nullable, the pouctionA - A is not put intds).
Let us illustrate this procedure through an example as shown in example
2.4.5.
(b) Unit Pro ductions Removal
Any production of a CFG of the form
A- B

where A, BV is called d'Unit-production”. Having variable one on either
side of a production is sometimes undesirable.
“Substitution Rule” is made use of in removing the unit-productions.

GivenG = (V, T, § P), a CFG with nd\-productions, there exists a CFG
G= (V T,S, P) that does not have any unit-productions and that is equivalent

to G.
Let us illustrate the procedure to remove unit-production through example
2.4.6.

Procedure to remove the unit productions:
Find all variabled, for eachA such that
AL B
This is done by sketching a “depending graph” with an €@geD)

Context-free Grammars 135

whenever the grammar has unit-production- D, then Aﬁ B holds
whenever there is a walk betwe&mandB.

The new gramma(é, equivalent toG is obtained by letting int® all
non-unit productions d.

Then for allA andB satisfyingA 0 B, we add td®

Ao Yl Yo |oeee | ¥,
whereB - y; | Y, |...... | y, is the set of all rules iR with B on the left.

(c) Left Recursion Removal
A variableA is left-recursive if it occurs in a production of the form
A - AX
foranyxO(V OT) .
A grammar is left-recursive if it contains at least one left-recursive
variable.

Every content-free language can be represented by a grammar that is not
left-recursive.

Example 2.4.1: Given a grammarG = ({ A B},{a, b ¢}, A P) with
productions

A - alaaA|abBc
B - abbA|b.

obtain an equivalent grammﬁsuch that botfs andG would accept the string
“aaabbé.

Eolution

GivenG as
A - alaaA|abBc Q)
B - abbA|b. 2
Making use of (2) in (1), we have the gramléanvith productions

A - al|aaA|abablAc|ablc
B - abbA|b.

Gis equivalent tds.
Thus the stringdaabb¢ is derived as

A0 aaA 0 aaalBcO aaablr (with G)

136 Theory of Automata, Formal Languages and Computation

and

AD aaAD aaable (withG)

sinceG andG are equivalent.

Example 2.4.2: Given a CFG as
G=({S AB,C,E},{a,bg,P,S)
with productionP given by

S AB
A- a
B-b
B-C
E-c/A

Obtain L(G) and obtain an equivalent gramma(é) by eliminating
useless terminals and productions.

Eolution

L(G) is obtained as follows:
SO ABO aB 0 ah
Therefore L(G) = {ab}.

Here G=({S AB}{a 3 P,S).
whereP' has the production rules

S AB

A- a

B-b

We have eliminate@ as it does not derive terminal strifigandC do not
appear in any sentential form.

E - A is a null production and hence eliminatBd- C simply replaces
B byC.

Example 2.4.3: GivenG = (V, T, S P) with P given by

S- ajA|C
A-a

B - aa

C - aCh

Eliminate the useless symbols and productions feom

Context-free Grammars 137

Eolution

HereV = {S A, B, C}. Let us determine the set of variables that can lead to a
terminal string.

Since A -~ a andB - aa, implies A andB belong to this set. Als&
belongs to this set, sin&ld AQO a.

But C does not belong to this set becaGsdoes not produce terminals
sinceC - aCh.

ThusC is removed and its corresponding productions are also removed.

S- ajA

Ao a

B - aa
HereV, = {S A, B}.

To eliminate the variables that cannot be reached from the start variable, a
“dependency grapglis drawn and decided.
The dependency graph fagf = {S A, B} is drawn as below.

o o

A variable is useful only if there is a path from the vertex lab8tedhe
vertex labeled with that variable.
From the above fig. it is obviolis useless. Hence we have

G=WV,T,S,P)withV ={S, A}, T ={a andP given by
S- ajA
Ao a
Example 2.4.4: Given a CFG withP given by
S~ aShb
S, - ag tr

obtain a new set @ for a granmarsame as the given CFG.

Eolution

The given grammar
S~ aSh
S, - a§ b

generatetheA-free larguagegiven by

138 Theory of Automata, Formal Languages and Computation

{a"b" : n>1
TheA-productionin P viz.,

S - A
is removed after adding new productions by substitukirigr S; where it
occurs on the right. Hence we get
S- ashab
S - aS lhab

which is the new set oP that produces the same language given by
{a"b":n>1}.

Example 2.4.5: Determine a CFG without-production equivalent to
the grammar given bl as

S. ABaC, A- BC, B-Db|A, C-DJA\, D-d

Eolution

Refer to the procedure outlined in section 2.4.2 to find CFG without
A-productions.
Step 1: The“Nullable variables” aré\,, B andC.
Step 2:
S - ABaC|BaC |ABa|AaC |Aa Ba fc A
A - B|C|BC
B-b

C-D
D-d

The above set of rules represenfor the new CFG after elimination of
A-productions.

Example 2.4.6: Eliminate unit productions from the gramng@given
by productions®).

Context-free Grammars 139

Eolution

A - a, B - b E - aare nonunit production. TherefdPewill contain these
productions.

SinceBﬂ E, andE - ais a non-unit production, include - ain P.

SinceC D E,DO E,includeC - a,D - ain P.

Hence we have the equivalent grammar without unit productioﬁ% as
defined by

G=({S AB,C,DE}{al}P5S)
with P given by

S- AB
A- a
B—’b
B- a
C-a
D- a

Example 2.4.7: Given a CFG wittP given by

S- AB
A- a
B-C
C-D
D- b

Eliminate the unit productions to obtain an equivalent grammar.

Eolution

In the grammar defined @, we have

B-C
C-D
as unit-praluctions.
We can replace
B-C
C d D
and D-b
by B - b,

140 Theory of Automata, Formal Languages and Computation

we haveP for an equivalent grammar given by

S- AB
A- a
B-b

Example 2.4.8: Eliminate the unit-production from the CFG wikh
given by
S Aa|B
B - Albb
A - a|bc|B.

Eolution

From the giverP we shall draw the dependency graph as follows.

S &

From this we see that
sO A
SO B
BO A
Al B

Therefore these rules are added to the original non-unit productions

S- Aa
A albc (from given P)
B - bb
the following new rules
S - a kr|bb
A - bb
B - alhc
in order to obtain
S - & lz|bbjAa
A - a|bblkx
B - a|bb| ke

which isP for the new grammargereratedequivalentto the given grammar.

Context-free Grammars 141

Example 2.4.9: Given a CFG wittP given by
S - ABJa
A-Db

Eliminate the useless symbols to obtain an equivalent grammar.

Eolution

A-Db

Bis a non-generating symbalandb generate themselvesgeneratea andA
generates.
WhenB is eliminatedS - AB s eliminated. Therefore we have

S- a
A-b

Sanda are only reachable fro® Therefore we eliminata andb, therefore
we have

S- a

as the nevP for equivalent grammar.

Example 2.4.10: Given the CFG withP given by

S AB
A = aAA|A
B - bBB|A.

Eliminate the\-productions to obtaiR for an equivalent CFG.

Eolution

A and B are “Nullable Symbols” as they haveproductions.S is also
“Nullable”, because it has the productiBn- AB, which has only “Nullable
symbols”, A andB.

ForS - AB, we have three ways viz.,

S- AB|A|B
For A . aAA we have four ways viz.,
A - aAAlaAlaAla
ForB - bBB, we have three ways viz.,
B - bBB|bB|b

142 Theory of Automata, Formal Languages and Computation

Therefore, the new set of producticﬁhfor the grammar equivalent to the
given CFG is

S- AB|A|B

S aAAlaAla

B - bBB|bB |b.
2.5 NORMAL FORMS
Two kinds of normal forms viz.Chomsky Normal Form and Greibach
Normal Form (GNF) are considered here.

2.5.1 Chomsky Nor mal Form (CNF)

Any context-free language without anyA-production is generated tgy
grammar is which productions are of the foAn- BC or A - a, where
A BOV,,andaOV;

Procedure to find Equiv alent Grammar in CNF

(i) Eliminate the unit productions, aieproductions if any,
(i) Eliminate the terminals on the right hand side of length two or
more.
(i) Restrict the number of variables on the right hand side of
productions to two.
Proof:
For Step (i): Apply the following theorem:

“Every context free language can be generated by a grammar with no
useless symbols and no unit productions”.

At the end of this step the RHS of any production has a single terminal or
two or more symbols. Let us assume the equivalent resulting grammar as
G=WVy\,Vr,PS).

For Step (ii):Consider any production of the form
A Yy, ... Yy M2

If y, is a terminal, saya’, then introduce a new variabB, and a
production

B, - a
Repeat this for every terminal on RHS.

Let P’ be the set of productions Iitogether with the new productions

Context-free Grammars 143

B, - a LetV, be the set of variables\iy together witrB, sintroduced for

every terminal on RHS.
The resulting grammas, = (V\,V;, P',S) is equivalent t&5 and every
production inP' has either a single terminal or two or more variables.

For step (iii): ConsiderA - B, B, B,

whereB,’s are variables anah= 3.
If m=2, thenA - By, B, is in proper form.
The productiol/A - B, B, B, is replaced by new productions

whereD;S are new variables.
The grammar thus obtained@g, which is in CNF.

Example 2.5.1: Obtain a grammar in Chomsky Normal Form (CNF)
equivalent to the gramm& with production$ given

S -, aAbB
A - aAla
B -~ bB|b.

Eolution

(i) There are no unit productions in the given sd®.of
(i) Amongst the given productions, we have

A- a,
B-b

which are in proper form.
ForS - &AbB, we have

S - B,AB,B
B, - a
B, - b
For A = aA, we have
A- B A
ForB - bB, we have

B BB

144 Theory of Automata, Formal Languages and Computation

Therefore, we hav@, given by
Gl = ({Sv Av Bv Ba ’ Bg};{av @,P',S)
whereP' has the productions
S- B,AB,B
A~ B,A
B- B,B
B, -~ a
B, - b
A- a
B-b

(iii) In P" above, we have only
S- B,AB,B
not in proper form.
Hence we assume new variabzsandD, and the productions

D, - AD,
D, -~ B,B

Therefore the grammar in Chomsky Normal Form (CNFJjsvith the
productions given by

S~ B,D,,
D, - AD,,
D, - B,B,
A~ B, A
B B,B
B, - a,
Bb - b,
A a,

and B_-h

Example 2.5.2: Obtain a grammar in Chomsky Normal Form (CNF)
equivalent to the gramm& with productiond® given by

S . ABa
A - aab
B - AC

Context-free Grammars 145

Eolution

(i) The given setP does not have any unit productions or

A-productions.
(i) None of the given rules is in proper form.

ForS - ABa, we have

S - ABB,
and B, -~ a

For A — aah we have

A- B,B,B,
and B, - b
ForB - Ac, we have
B - AB,
and B, - ¢C

ThereforeG, has a set of productiofs given by

S- ABB,
A- BaBaBb
B - AB,
Ba—>a.
B, - b
B —?C

(i) In P" above, we have
S - ABB,
A- B,B,B,

not in proper form.

Hence we assume new variablzsandD, and the productions

S~ AD,,
D, - BB,,
A~ B,D,,
D, - B,B,.

Thus the grammar in Chomsky Normal Form (CNFBjsgiven by the
productions given by

S~ AD,,
D, - BB,,
A~ B,D,,
DZ - BaBb’

146 Theory of Automata, Formal Languages and Computation

B - AB,,

B, - &

B, - b
and B, - ¢

Example 2.5.3: Reduce the given CFG withgiven by
S abSh 4 &b and A - bS| &AAb
to Chomsky Normal Form (CNF).

Eolution

(i) There are neithéproductions nor unit product in the given set of
P.
(i) Among the given productions, we have
S- a

in proper form.
ForS - abSpwe have

S- B,B,SB,, B, -a andB, - h.
ForS - &b, we have
S - B, AB,.
For A = bS, we have
A- B,S.
For A — aAAb, we have
A - B, AAB,.
Therefore, we hav&, given by
G =({S AB,,B}.{a B, P,
which hasP' given by
S - B,BySBy
S - B, AB,
A - B, AAB
A- B,S
B, - a
B, - b
and S- a
(i) In P" above, we have
S - B,ByBy,
S - B,AB,

Context-free Grammars 147

and A - B, AAB

not in proper form.

Hence we assume new variabBg D,, D,;, D, and Dy with
productions given as below:

ForS - B,B,SB,, we have

S- B,D;, D - BD, D,- SB,
ForS - B, AB,, we have

S - B,D,
D, - AB,

For A — B, AAB, we have
A- B,D,
D, - ADg
D; - AB,

Therefore, the grammar in Chomsky Normal Form (CNFR,is
with production given by
S- B,D;
D, - B,D,
D, - SB,
S- B,D;
D; - AB,
A- B,D,
D, - ADg
D; - AB,
A - B,S
B, - a
B,- b
and S- a

Example 2.5.4: Obtain the grammag given byP asS - a| hcSS

Eolution

(i) There are na-productions and no unit productions in giv@n
(i) Among the given productions,

S- a
and S, b

are in proper form.

148 Theory of Automata, Formal Languages and Computation

ForS - ¢SS we have
S - B.SS
B, - ¢
Therefore we have, given by

Gl = ({S"} ’{a bC};P';S)
which hasP' given by
S- B.,SS
B, - C
S- a
S- b

(iii) In P" above, we have
S - B.SS

not in proper form.
Hence we have new varialilg and new productions,

D, - SS

Therefore the grammar in Chomsky Normal Form (CNR}p.is
with productions given by

S- B.D,
D, - SS
BC_)C
S, a

and S- b

2.5.2 Greibach Nor mal Form

In Chomsky’s Normal Form (CNF), restrictions are put on the length of right
sides of a production, whereas in Greibach Normal Form (GNF), restriction
are put on the positions in which terminals and variables can appear.

GNF is useful in simplifying some proofs and making constructions such
as Push Down Automaton (PDA) accepting a CFG.

Definition: A context-free grammar is said to be in Greibach Normal Form
(GNF) if all productions have the form

A - ax

wherea 0T and x(OV".

Context-free Grammars 149

For a grammar in GNF, the RHS of every production has a single terminal
followed by a string of variables.

The procedure of getting a grammar in GNF is beyond the scope of this
book.

GLOSSARY

CFG: Context-Free Grammar.
Left-Linear Grammar: All productions are either of the form

Vo VT

or VoT

Right-Linear Grammar: All productions are either of the form
VoTV

or VT

Parsing: Findinga derivation of the string.

Topdown Parsing: Sequencef rules applied in the leftmost derivation

Bottomup Parsing: Sequencef rules applied in a rightmost derivation.

Ambiguous Grammar: A CFG is said to be “ambiguous” if there exists at
least one string in the language of the CFG which is ambiguously
derivable. Otherwise it is unambiguous.

Useless Production: A production rule not affecting the language

Unit Production: Any production of a CFG of the formA — B where
A BOVis called a Unit-Production.

Chomsky Normal Form: A CFG without any\-productions is generated by
a grammar in which productions are of the foAm- BC or A - a,
whereA, BOV, anda OV .

REVIEW QUESTIONS

Define the term: Context-Free Grammar (CFG).

Give an example of a CFG.

What do you mean by a right linear grammar?

Show the relationship existing between right-linear grammars and
NFAs. Give an example.

What is a left-linear grammar?

Compare right-linear grammar with left-linear grammar.

Give some examples of Context-free languages.

What are derivation Trees?

PwbdpPE

® N oo

150 Theory of Automata, Formal Languages and Computation

9. Define ‘derivation tree’.
10. When is an ordered tree said to be a derivation tree?
11. What do you mean by sentential form?
12. What is a partial derivation tree?
13. Explain (a) Rightmost (b) Leftmost and (c) Mixed derivation.
14. What do you mean by the terms
(a) Parsing
(b) Ambiguity.
15. What do you mean by exhaustive search parsing?
16. Distinguish between top-down and bottom-up parsing.
17. Define the terms:
(a) Ambiguous Grammar (b) Ambiguous Language.
18. What do you mean by inherantly ambiguous language?
19. Explain the method of simplifying a CFG.
20. State the substitution rule.
21. How will you abolish useless production in CFG?
22. What do you mean by empty production removal? Explain with an
example.
23. State the procedure to find CFG withagproductions.
24. What do you mean by unit production removal?
25. What do you mean by left recursion removal?
26. What are the kinds of Normal Forms?
27. What do you mean by Chomsky Normal Form (CNF)?
28. State the procedure to find equivalent grammar in CNF.
29. What do you mean by Greibach Normal Form (GNF).
30. When is a CFG said to be in GNF?

EXERCISES

1. Generate the Context-Free Grammars that give the following languages.
(@) {w|w contains at least three 1s}
(b) {w|w starts and ends with the same symbol}
(c) {w] the length ofvis odd}
(d) {w|w=w thatiswis a palindrome}

2. Determine the CFG that generates the following languages.
(a) The set of strings over the alphabet {a, b} with twice as naags
b’s.
(b) The complement of the language §" | n > 0}

3. Determine a derivation tree af b+ a* bgiven thag* b+ a* bisin
L(G) whereG is given by the productior- S+ § 8 B la.b

Context-free Grammars 151

10.

11.
12.

Given grammaf with productions
S &B|bA A- alaS| AA B - b|bs|aBB.

For the stringaaabbabbba find a rightmost derivation, leftmost
derivation and parse tree.

Obtain the derivation tree for the strirafb’c in the grammar
G=(N,T,P,S)where N = (x,,%), T=(a,bc), S=x,,

P={x, - axq|bx,,x; - bx;|¢g. o

Obtain a CFG that generates the languagga'b’ c* |i, j,k =0 and
eitheri =j orj = k}. Is the grammar you have generated ambiguous?
Let G, and G be context-free grammars, generating the languages
L(G,) and L(Gg), respectively. Show that there is a context-free
grammar generating each of the following sets.

(@LGA) OLGg) (B)L(GA)L(Gg) (OLG,) -

GivenV={S A, B, a, b} andT={a, b}. Determine whetheG=(V, T, S

P) is a type 0 grammar but not a type 1 grammar, a type 1 grammar but
not a type 2 grammar, or atype 2 grammar but not a type 3 granimar if
the set of productions is

(@) S- @B, A BB, B~ \; (b)S— ABa AB- a

(e) S- a&A A-bB,B- b B A.

GivenGis a grammar withl ={a, b, ¢,S}, T ={a, b, ¢}, starting symbol

S and production§ -~ ab$S - kS, S~ bbS S - aandS - ch.
Construct derivation trees for:

(&) bcbba

(b) bbbcbba

(c) bcabbbbbcb.

For a grammag with productions

S aS|a
A - SPA|SS| ba

Show thaBﬁ aabbaaand construct a derivation tree fmbbaa
Obtain a CFG for generating all integers.
Given the grammar G:

S- &AD

A - aB|bAB

B-b

D-d

Reduce the gramm& to Chomsky Normal Form.

152 Theory of Automata, Formal Languages and Computation

13. Obtain a grammar in Chomsky Normal Form equivalent to
S - a\bB,A- aA|a,B - bB|b
14. Convert the following NFA to DFA.

15. Prove that for every NFA there is an equivalent NFA that has only one
final state.
16. GivenM = ({dy, o,}.{0.3,A, d,.{ 9}) is an NFA with

A ={(dy.0,d), (90,0), (UL &), (R3). (G 1 o)}

Draw the state transition diagram fdr Convert to a DFA using subset
construction.
17. Show that the grammar with productid®s. aSlhh S§\, is ambiguous.
18. Show that the grammar

S- aSh$ bSas

is ambiguous.
19. Give the derivation tree f¢f(a + b) * ¢)) + a + b using the grammar

G=(V,T,E,P)
V={ET,F,I}
E-T

T-F

Fol

E- E+T
T T*F

F - (E),

| - a|b|c

20. Eliminate useless productions from
S- a &|BIC
A - aBJ|A
B- Aa
C - cCD,
D - ddd

21. Show that the two grammars

S - abAaA|abAbb|ba
A - aaa

Context-free Grammars 153

22.

23.

24.
25.

26.

27.

and S - alAB|ba,
A - aaa
B - aA|bb

are equivalent.
Eliminate all the-productions from

S - AaB|aaB,
A A
B - bbA|A.

Say whether the following grammars are in CNF:
@ S- Asla (b) S AS|AAS,
A- SAlb A - SAlaa
Convert the gramméa - aSly alinto Chomsky Normal Form.
Convert the grammar with productions

S - alAB,
A - bABJA,
B - BAa|A|A

into Chomsky Normal Form.
Give a grammar with n@}+ or unit productions generating the set
L(G) -{3 , whereG is the grammar

S - aSbir,
T - bTaa| S|O0

Give grammars in Chomsky Normal Form for the following CFGs.
(@) {a b} -(palindromes)

(b) {a*b™c" |k, mn=12 >n}

(c) {a"p“a" |k, n=1

(d) {a"b*"c* |k n=1.

SHORT-QUESTIONS AND ANSWERS

Define aContext-Free Grammar (CFG).
A context-free grammar is a 4-tupM, T, S, P) where
(i) Vis afinite set called the variables
(i) Tis afinite set, disjoint fronv, called the terminals.
(i) Pis a finite set of rules, with each rule being a variable and a
string of variables and terminals, and
(iv) SOV is the start variable.

154 Theory of Automata, Formal Languages and Computation

If u, v andw are strings of variables and terminals and wis a
rule of the grammar, we say thaivyieldsuwyv, writtenuAv O uvwv.
2. Give an example of CFG.
Given agrammar &6 = ({S ,{a B,R,S). The set of ruleR is

S. as
S SS
S-0d

This grammar generates strings suchlzsh aaabbbandaababhb

3. What is deft linear grammar?
A grammar is which all productions are either of the form

V o VT
or VoT

is called a left linear grammar.
4. What isright linear grammar?
A grammar is which all productions are either of the form
VTV
or VoT
is called a right linear grammar.
5. What do you mean biyarsing?
Finding a derivation of the string is called Parsing.
6. What arederivation trees?
A derivation tree is an ordered tree in which the nodes are labeled

with the left sides of productions and in which the children of a node
represent its corresponding right sides.

7. What do you mean bsentential form?
The resultant of the derivation tree is a word something like
w = aaba for a CFG with production§ - a\, A- aB,B - bB,
B - a.This word is said to be in sentential form.

8. Sketch the derivation tree for the CFG given®y. aA A - aB,
B- bB,B- a
S
a— \
A
a— \
B
b= \B

a

Context-free Grammars 155

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

What is gpartial derivation tree?

In the definition of derivation tree given, if every leaf has a label
fromV OT O{A then itis said to be a partial derivation tree.
What do you mean bjopdown Parsing?

The sequence of rules being applied in the leftmost derivation is
referred to as Topdown Parsing.
What is meant bpottomup Parsing?

Sequence of rules applied in a rightmost derivation is referred to as
bottom-up parsing.

What is arambiguous grammar?

A CFG is said to be ambiguous if there exists at least one string in the
language of the CFG which is ambiguously derivable. Otherwise it is
unambiguous.

What is meant by aseless production?

A production which does not affect a language is called a useless
production.

What is anUnit Production?

Any production of a CFG of the forrA -~ B where A, BOV is
called a Unit Production.

What do you mean bgxhaustive search parsing?

To parse a stringy, that generates all stringslinand check ifv is
among them is called exhaustive search parsing.
Give the formal definition of an ambiguous CFG.

Let G=(N,T,P,S) be a CFG. A stringvL(G) is said to be
“ambiguously derivable” if there are two or more different derivation
trees for that string ifs.

What is an inherantly ambiguous language?

A language for which no unambiguous grammar exists, is called an

inherantly ambiguous language.
Give examples foambiguous grammars.
(&) A CFG which has the production rules

S Sh$ S @& ambigious.
(b) A CFG which has the production rules
S - a &Ab|abSh A - aAAb|bSis ambigious.

What do you mean bsubstitution rule?

A productionA - x,Bx, can be eliminated from a grammar if we
putin its place the set of productions in whitcls replaced by all strings
it derives in one step. In this result, it is essential fahdB are
different variables.

156 Theory of Automata, Formal Languages and Computation

20. Give the formal definition of aseful production.
LetG=(V,T,S P) be a CFG. A variablaV is said to be ‘useful’
iff there is at least o L(G) such that.

Sﬁ xAyﬁ w
with x,yin (Vv OT)', i.e., a variable is useful if it occurs in at least
one derivation.
21. Give an example of a grammar with useless production.
In the gramma6 with production rule® given by
S aSha|A
A - aA

The productiors - Adoes not play any role becaugécannot be
transformed into a terminal strirfg\’ can occur in a string derived from
S, this can never lead to a sentential form.

22. Determine whether the gramm@amwith P
S nd A
A - aA|A
B - bA

has a useless production?
Here the variabl® is “useless”, thereforB - bA is also useless.

There is no way to achiev@[] xBy. ThereforeB - bA is a useless
production.

23. What is a\-production?
Any production of a CFG of the form

Ao A

is called a\-production.

24. When is a variable said to be “nullable™?
Any variableA for which the derivation

AT A
is possible is called “Nullable”.

25. Write a procedure to find CFG withohtproductions
(i) For all productiorA — A, putAinto V.
(i) Repeat the following steps until no further variables are added
to V.
For all productions

B- AA A
whereA;, A, A,, A, are inVy, putBintoV, .

Context-free Grammars 157

26. What is meant by &nit Production?
Any production of a CFG of the form

A- B

whereA, BOV is called a ‘Unit Production’.

27. State the procedure to remove the unit productions.
(i) Find all variablesB, for eachA such that

AD B
This is done by sketching a “dependency graph” with an edge
(C, D) whenever the grammar has unit productidn. D,
thenA Dl Bholds whenever there is a walk betwaemds.

(i) The new grammaé, equivalent tdG is obtained by letting
into P all non-unit productions d?.

(i) Then for allA andB satisfyingA[] B, we add tc®

Aoyl | Yo

whereB - y; | Y, | |y, is the set of all rules iR with B
on the left.

28. What do you mean higft recursion?
A variableAis left-recursive if it occurs in a production of the form

A - AX
foranyxO(V OT) .
A grammar is left-recursive if it contains at least one

left-recursive variable.

29. Can every CF language be represented by a grammar that is not
left-recursive?
YES.
30. What are the kinds ddormal Forms?
There are two kinds dformal Forms viz.,
(&) Chomsky Normal Form (CNF)
(b) Greibach Normal Form (GNF)
31. What do you mean bghomsky Normal Form?
A CFG without anyA-production is generated by a grammar in
which productions are of the forfa— BC or A - a whereA, BOV,
anda[OV;.

32. Differentiate between Chomsky’s Normal Form (CNF) and Greibach
Normal Form (GNF).

158 Theory of Automata, Formal Languages and Computation

In CNF, restrictions are put on the length of right sides of
production, whereas in Greibach Normal Form (GNF), restrictions are
put on the positions in which terminals and variables can appear.

33. What is meant bgreibach Normal Form?
A CFG is said to be in Greibach Normal Form if all productions have

the form
A - ax

wherea 0T andx V" .

Chapter 3

Pushdown Autom ata

3.1 DEFINITIONS

Let us consider a finite automata which accepts the language
L(M)={a™"|mn=3.

We see tha¥! moves frong, toq;,, on the occurence afs. On seeingl’,
M moves frony, tog, and continues to be in the stgj®n getting moré's.
Assume that the input string is given by

amb"
then the resulting state is final state and/lsaccepta™b".

Consider the languade, (M) ={a"b"|n=1} where the number df's

and a’s are equal. The FA constructedLipdiffers from that oL,.
For the languagd,(M)={a™b"|mn=1 there is not necessity to

remember the number afs. The following have to be remembered.

(@) Whether the first symbol id* (to reject the string)
(b) Whether & follows ‘b’ (to reject the string)
(c) Whether a follows ‘a and‘b’ follows ‘b’ (to accept the string).

We know that FA has only a finite number of stak¢sannot remember
the number ofi’s in a'b" where v is larger than the number of statedvaf
The FA does not accept the sets of the fpath" | n>1}. This is taken

care by &PUSHDOWN AUTOMATA".
Let us illustrate a Pushdown Automata (PDA) model.

3.1.1 Nondeterministic PDA (Def inition)
An NPDA is defined by the 7-tuple
M = (Q’ z!r161q01zyF)

Finite set of intemal states of the cdrol unit
Input alphdet
Finite set of syrholscalled “Stack alpHaet”

where

Q
2
-

160 Theory of Automata, Formal Languages and Computation

5 : Qx(ZO{N)xI - finite susetsof Q xI'" is the
transitionfunction

g, = Initial state of the cdnol unitdQ
Z = Stack start syiol
F 0Q = Set of Final states.

The arguments a¥ are the current state of the control unit, the current
input symbol, and the current symbol on the top of the stack.
The result is a set of pairg, &)

next state of the carol unit
string that is put on top of the stack in place of thglsin
symbolthere before.

where q
X

The ‘stack’ is an additional component available as part of PDA. The
‘stack’ increases its memory. With respedtatdb” | n>1}, we can stora’s in

the stack. When the symbdl is encountered, ara" from the stack can be
removed. If the stack becomes empty on the completion of processing a given
string, then the PDA accepts the string.

) 2)
T

Finite State » Z
Control

Pushdown Store
Fig. Model of Pushdown Autoaton(PDA)

3.1.2 Transition Functions for NPDA
The transition function for an NPDA has the form
53:Qx (ZO{N)xl - Finite sutsetsof Q x "

0 is how a function of three arguments.
The first two arguments are the same as before:

(i) the state
(ii) eitherA, or a symbol from the input alphabet.

The third argument is the symbol on top of the stack. Just as the input
symbol is “consumed” when the function is applied, the stack symbol is also
“consumed” (removed from the stack).

Pushdown Automata 161

Note that while the second argument may\beather than a member of
the input alphabet (so that no input symbol is consumed), there is no such
option for the third argument.

0 always consumes a symbol from the stack, no move is possible if the
stack is empty.

There may also be J&transition, where the second argument may be
which means that a move that does not consume an input symbol is possible.
No move is possible if the stack is empty.

Example: Considerthe set of transition rules of an NPDA given by

(0, & B ={(p, cd), (g3, A)}

If at any time the control unit is in staqg the input symbol read is’;
and the symbol on the top of stackb$ then one of the following two cases
can occur:

(a) The control unit tends to go into the stgjeand the stringcd
replacesty’ on top of the stack.

(b) The control unit goes into staggwith the symbob removed from
the top of the stack.

In the deterministic case, when the functiois applied, the automaton
moves to a new statg]Q and pushes a new string of symbolsl"~ onto the

stack. As we are dealing with nondeterministic pushdown automaton, the
result of applying is a finite set ofd, x) pairs.

3.1.3 Drawing NPDAs

NPDAs are not usually drawn. However, with a few minor extensions, we can
draw an NPDA similar to the way we draw an NFA.

Instead of labeling an are with an elemenkpfve can label arcs with
a|x, ywhereaOZ,x Ol andyOrr .

Let us consider the NPDA given by

Q={d0, 05,0, 03}, Z2={a B, M ={01,d, ¢,.Z2=0F ={q4)

where 5(qo, a0) ={(10), (0, A)}
(0o, A.0) ={(as, A)}
o(qy, a1) ={(q,,11}
0(ay, bl) ={(g,, A)}
(0, bl) ={(0,, A)}
(92, A.0) ={(as,A)}

162 Theory of Automata, Formal Languages and Computation

This NPDA is drawn as follows.

a/0,10 /1,11
Ao ’ >y
MO, a/0,\ b/
b/
@)
MO,A

Please note that the top of the stack is considered to be the left, so that, for
example, if we get a@’ from the starting position, the stack changes from ‘0’
to ‘10.".

3.1.4 Execution of NPDA

Assume that someone is in the middle of stepping through a string with a DFA,
and we need to take over and finish the job. There are two things that are
required to be known:

(a) the state of the DFA is in, and
(b) what the remaining input is.

But if the automaton is an NPDA we need to know one more viz., contents
of the stack.
Instantaneous Descrip tion of a PDA
The Instantaneous description of a PDA is a trifgetv(u),

where g = currentstate of the autoaton
w = unread part of the input string
u = stack cotents(writtenas a string, with the leftmost
symbolat the top of the stack).

Let the symbol“l’ denote a move of the NPDA, and suppose that
o(a;, ax) ={(q,, y),...}, then the following is possible:

(G, 8W,x2) |- (92, W, y2)

whereW indicates the rest of the string followireg andZ indicates the rest of
the stack contents underneathxhe

This notation tells that in moving from statg to stateq,, an‘a’ is
consumed from the input striadV, and thex at the top (left) of the staciz is
replaced withy, leavingyZ on the stack.

3.1.5 Accepting Strings with an NPDA
Assume that you have the NPDA given by
M=(QZ%rl,5,0,2F).

Pushdown Automata 163

To recognize stringy, begin with the instantaneous assumption

(qO’ W, Z)
where Q, = start state
w = entire string to be pressedand
z = start stack syipol.

Starting with this instantaneous description, make zero or more moves,
just as is done with an NFA.
There are two kinds of moves that can be made:

(a) A-Transitions: If you are in statg,, x is the top (leftmost) symbol
in the stack, and

3(ay, A, x) ={(dz, W), -..... }
then you can replace the symkalith the stringv, and move taj,.
(b) Nonempty transitionsif you are in the statg,, ‘a’ is the next
unconsumed input symbol, x is the top (leftmost) symbol in the
stack, and

3(ay, a,x) ={(dp W), -..... }
then you can remove thHa' from the input string, replace the
symbolx with the stringw,, and move to staig,.
If you are in the final state when you reach the end of the string (and may
be make soma-transition after reaching the end), then the string is accepted
by the NPDA. It does not matter what is on the stack.

3.1.6 An Exam ple of NPDA Exe cution

Let us consider the NPDA given by

0(d, 8,0) ={(,10), (G5, A)}
0(dp, A,0) ={(as,A)}
o(ay, &,1) ={(a,, 11}
(0, b1) ={ (0, A)}
0(dz, 1) ={(az A)}
(0, A,0) ={ (93, A)}

It is possible for us to recognize the strirgébbtj using the following
sequence of “Moves”:

(dg, @aabbh0) |- (g, aabhbtO)
- (g,, abbh110
F (g, bbb 1110
I (d,, bh110
F (a2, b10)
F (92,7,0)

164 Theory of Automata, Formal Languages and Computation

3.1.7 Accepting Strings with NPDA (For mal Version)
The notdion “I-" is used to indiatea sirgle move of an NPDA.

“I" " is used to indicate a sequence of zero or more moves.
“k""is used to indicate a sequence of one or more moves.

If M =(Q,2rI,3,q,.Z,F) is an NPDA, then the language accepted by
M, L(M), is given by

L(M) ={wOZ" : (4, W, 2) [(p.A, 1), pOF,u0r’}.

Example 3.1.1: Construct a Push Down Automata (PDA) accepting
{a"b™a" |m n=1 by empty store.

Eolution

The PDA which will accept
{a"b™a" mn=1
is given below

PDA = ({do, 0,}.{a B.,{azy},0,d0, 20, 0)

whered is given by

(1) d(dg, & zp) = {(dq aZp)}
(2) 8(do.a @) = {(q, a3}
(3) d(dp, b a = {(q, 3}

(4) o(a;, b @) = {(q, 3}

(®) d(ap,a @ = {(q,A)}
(6) (A, zp) = {(dg, A)}

Therefore we can see that we start stoaisdill b occurs ((1) and (2)). When
the current input symbol I the state changes, but no change in PDS occurs
((3)). Once all thé's in the input string acts over ((4)), the remainitgyare
erased ((5)).

Using (6),7, is erased.

Therefore we have

(G, @" B" &', z) — (A3, A, Zo) — (4, A, D)
Therefore we see that' b™ a" 0 N (PDA).

Example 3.1.2: Construct a PDA acceptif@” b*" | n=1 by empty
store.

Pushdown Automata 165

Eolution

The PDA that will acceda” b*" | n=1} is given by

PDA = ({do, 0y, 0}, { & b}, { &, 29}, 9, Gg, 25, @)
whered is given by
0 (do, & Zp) = {(ay, azy)}
0(q, a8 = {(q, ad}
0(qy, b a) = {(q, 3}
0(dz b a) = {(q,A)}
0 (g, A, Z) = {(a, A)}

Example 3.1.3: Obtain the PDA acceptinga™ b™c" [mn=1 by
empty store.

Eolution

The PDA which will accegdia™ b™ c" | m n =1} by empty store is given below.

PDA =({do, 01}, (& bd}, {2y, z},9,04,20,9)
whered is given by
3 (dos & Z5) = {(0» Z 2)}
0 (dos & 7)) = {(do, 2,2)}
3 (do, b z) = {(ay, A)}
3 (a5, b z) = {(q, M)}
8 (a5, ¢ z5) = {(ay, zo)}
O (a1, A, z5) = {(ay, M)}

When an &’ is readz, is added. When & is read therz, is removed.

Example 3.1.4: Construct a PDA acceptingp" b™ a" |mn=1 by
final state.

Eolution

THEOREM: If A=(Q,Z,I,0,qy,2,,F) is a PDA accepting by null store,

we can find a PDA

B=(Q,%I"05,00,2,F")
which accept by final state, i.e.,
L =N(A) = T(B).
Using the above theorem, we have
B=({do o o & }.{a B.{ 2z Z3},3,.0'0, Zo{q})
whered is given by
3 (do: A, Zo) = {(dor Zo Zo)}

166 Theory of Automata, Formal Languages and Computation

3 (do, A, Zp) ={(a¢,A)} = 3(do, A, Zp)
O (Gy, A, z5) ={(as, M)} = d(dy, A, Zp)
0 (dos & Z5) = {(0p 22Z0)}

0 (dos & @ = {(q, a3}

0(do, b @) = {(q, 3}

0(q;, b @) = {(q, 3}

d(d, ad = {(q,A)}

O (a1, A, z5) = {(an, M)}

Example 3.1.5: GivenL={a™b"|n<ni.
Derive (i) a context-free grammar that accelpts
(i) a PDA accepting. by empty store
(i) a PDA acceptind. by final state.

Eolution

() GivenL={a™b"|n<m}
CFGis givenbys = ({3 ,{a B, P, S), where productionP are
S- aSl%
S- aS[
S- afd

(i) The PDA that will accedt(G) by empty store is given by
A=({d4.{aB.{S abhod q 3,

whered is defined by the rule:
d(a,A,S) ={(q aSh(g ap(.q)a
d(d,aad =3(q hh={(qr)}
(i) B=(Q,Z,I",0g,dy.2.F'), where
Q ={do, do. A}, T"={S a bz}, F ={qas}.
Oz is given by
g (do, A, o) = {(ay zo Zp)}
Os (4, A, S) ={(q aSh(A ap(,q)k
Oz (@ aa) ={(gA)}=3g(qbb
O (a1, A, Zp) = {(a¢, M)}

where
05 (0,29 =06(qag=¢ and
Oz (0,bS) =3(qgbIJ=0¢
3.2 RELATIONSHIP BETWEEN PDA AND CONTEXT FREE
LANGUAGES

3.2.1 Simplifying CFGs

The productions of context-free grammars can be coerced into a variety of
forms without affecting the expressive power of the grammar.

Pushdown Automata 167

(&) Empty Pro duction Removal

If the empty string does not belong to a language, then there is no way to
eliminate production of the forrA - A from the grammar.

If the empty string belongs to a language, then we can elimirfieden all
productions same for the single producti@s. A. In this case we can
eliminate any occurrences $from the right-hand-side of productions.

(b) Unit Pro duction Removal

We can eliminate productions of the foAn- B from a CFG.

(c) Left Recursion Removal
A variableA is left-recursive if it occurs in a production of the form
A AX

for anyxO(V OT)". A grammar is left-recursive if it contains at least one
left-recursive variable.

Every CFL can be represented by a grammar that is not left-recursive.
3.2.2 Normal Forms of Context-Free Grammars
(@) Chomsky Nor mal Form
A grammar is in Chomsky Normal form if all productions are of the form

A - BC
or Ao a

whereA, B andC are variables an@’ is a terminal. Any context-free grammar
that does not contai can be put into Chomsky Normal Form.

(b) Greibach Nor mal Form (GNF)

A grammar is in Greibach Normal Form if all productions are of the form

A - ax

where &’ is a terminal anc OV .

Grammars in Greibach Normal Form are much longer than the CFG from
which they were derived. GNF is useful for proving the equivalence of NPDA
and CFG.

Thus GNF is useful in converting a CFG to NPDA.

3.2.3 CFGto NPDA

For any context-free grammar in GNF, it is easy to build an equivalent
nondeterministic pushdown automaton (NPDA).

168 Theory of Automata, Formal Languages and Computation

Any string of a context-free language has a leftmost derivation. We set up
the NPDA so that the stack contents “corresponds” to this sentential form:
every move of the NPDA represents one derivation step.

Thesentential form is

(The chaactersalready read) + (sybolson the stack)
— (Finalz (initial stack syrbol)

In the NPDA, we will construct, the states that are not of much
importance. All the real work is done on the stack. We will use only the
following three states, irrespective of the complexity of the grammar.

(i) start state), just gets things initialized. We use the transition from
g, to g, to put the grammar’s start symbol on the stack.

0(do; A, Z2) ~ {(q1,)}

(i) Stateq, does the bulk of the work. We represent every derivation
step as a move from to g;.
(iii) We use the transition from to g to accept the string

(g, A, 2) - {(a;. 2)}
Example Considetthe gramma® = ({S, A, B} ,{a, I3, S P), where
P={S- aS- &B,A- aA A- a,B- bB,B- b}

These productions can be turned into transition functions by rearranging
the components.

S—— a AB

3 (04,a,S) — {(d., AB)}

Thus we obtain the following table:

(Start) 3(dos A, 2) - {(ay,)}
S- a 3(d, a9 - {(q,A)}
S B 3(dh,a 9 - {(q,AB)}
A aA 3(ay, & A) - {(a;, A)}
Ao a 0(g;, & A) - {(a;,A)}
B - bB 3(d;, b B) - {(a;,B)}
B-b 3(dy, b B) - {(a;,A)}

(finish) 6(ch: A, 2) - {(ar, 2)}

Pushdown Automata 169

For example, the derivation
SO aAB O aaB O aabB [0 aabb

maps into the sequence of moves

(do, aabb 2) |- (q,, aabh)
I (a;, abh AB?)
I (g, bbB2)
F (o, b B2)
F (a7, 2)
F (@2, A 0)

3.2.4 NPDAto CFG

(&) We have shown that for any CFG, an equivalent NPDA can be obtained.
We shall show also that, for any NPDA, we can produce an equivalent CFG.
This will establish the equivalence of CFGs and NFDAs.

We shall assert without proof that any NPDA can be transformed into an
equivalent NPDA which has the following form:

(i) The NPDA has only one final state, which it enters if and only if
the stack is empty.
(i) All transitions have the form

d(g,8,A)={c,C,, G, }
where eaclt, has one of the two forms

(a;.7)
or (q;,BC)

(b) When we write a grammar, we can use any variable names we choose. As
in programming languages, we like to use “meaningful” variable names.

When we translate an NPDA into a CFG, we will use variable names that
encode information about both the state of the NPDA and the stack content
variable names will have the form

[giAg;],
whereq; andq; are states and A is a variable.

The “meaning” of the variablel[Aq] is that the NPDA can go from state
g with Axon the stack to statg with x on the stack.

Each transition of the formd(q;,a A)=(q;,A) results in a single
grammar rule.

Each transition of the form

(g, a A) ={q;,BC)

170 Theory of Automata, Formal Languages and Computation

results is a multitude of grammar rules, one for each pair of sjzeslq, in
the NPDA.

3.2.5 Deterministic Pushdown Autom ata

A Non-deterministidinite acceptor differs from a deterministic findeceptor
in two ways:

(i) The transition functiond is single-valued for a DFA, but
multi-valued for an NFA.
(i) An NFA may have\-transitions.

A non-deterministic pushdown automaton differs from a pushdown
automaton in the following ways:

(i) The transition functio® is at most single-valued for a DPDA,
multi-valued for an NPDA.
Formally: |6(q,, a b|=0or] for everyqJQ,alx O{A}, and
bdr.

(i) Both NPDA and DPDA may havetransitions; but a DPDA may
have a\-transition only if no other transition is possible.
Formally: If|8(q, A, b)| 20, thend(q, ¢, b) = O for everycOX.

A deterministic CFL is a language that can be recognized by a DPDA. The
deterministic context-free languages are a proper subset of the context-free
languages.

3.3 PROPERTIES OF CONTEXT FREE LANGUAGES
3.3.1 Pumping Lemma for CFG

A “Pumping Lemma” is a theorem used to show that, if certain strings belong
to a language, then certain other strings must also belong to the language.
Let us discuss a Pumping Lemma for CFL.
We will show that , iL is a context-free language, then stringis thfat are
at least im' symbols long can be “pumped” to produce additional stringis in
The value of M depends on the particular language.
Let L be an infinite context-free language. Then there is some positive
integer ' such that, ifSis a string oL of Length at least, then

() S=uvwxy(for someu, v, w, X, y)
(i) |vwx|sm
(i) |vx=1
(iv) u'wx yOL.

for all non-negative values of

Pushdown Automata 171

It should be understood that

() If Sis sufficiently long string, then there are two substringsd

X, somewhere i There is stuffif) beforev, stuff (W) betweerv
andx, and stuffy), afterx.

(i) The stuff betweer andx won't be too long, becausevx| can't
be larger tham.

(iii) Substringss andx won't both be empty, though either one could
be.

(iv) If we duplicate substringr, some number (i) of times, and
duplicatex the same number of times, the resultant string will also
be inL.

3.3.2 Definitions

A variable is useful if it occurs in the derivation of some string. This requires
that

(a) the variable occurs in some sentential form (you can get to the
variable if you start fron®), and

(b) a string of terminals can be derived from the sentential form (the
variable is not a “dead end”).

A variable is “recursive” if it can generate a string containing itself. For
example, variablé is recursive if

*

SO wy

for some values af andy.
A recursive variablé can be either

(i) “Directly Recursive”, i.e., there is a production
A - X AX,
for some strings,, x, O(T OV), or
(i) “Indirectly Recursive”, i.e., there are variabkeand productions

Ao X,

Xy o Xy
X, . Xgeo.
Xy = A

3.3.3 Proof of Pumping Lemma

(&) Suppose we have a CFL given by Then there is some context-free
GrammairG that generatels. Suppose

172 Theory of Automata, Formal Languages and Computation

() Lisinfinite, hence there is no proper upper bound on the length of
strings belonging ta.
(i) L does not contaih.
(i) G has no productions @rproductions.

There are only a finite number of variables in a grammar and the
productions for each variable have finite lengths. The only way that a grammar
can generate arbitrarily long strings is if one or more variables is both useful
and recursive.

Suppose no variable is recursive.

Since the start symbol is nonrecursive, it must be defined only in terms of
terminals and other variables. Then since those variabls are non recursive, they
have to be defined in terms of terminals and still other variables and so on.
After a while we run out of “other variables” while the generated string is still
finite. Therefore there is an upperbond on the length of the string which can be
generated from the start symbol. This contradicts our statement that the
language is finite.

Hence, our assumption that no variable is recursive must be incorrect.

(b) Let us consider a string belonging td_.

If X is sufficiently long, then the derivation &f must have involved
recursive use of some varial#le

SinceA was used in the derivation, the derivation should have started as

SO wy

for some values af andy. Since A was used recursively the derivation must
have continued as

SO uAyﬁ UVAXY

Finally the derivation must have eliminated all variables to reach a string
Xin the language.

SO uAyﬁ uvAxyI*] UVWXY = X
This shows that derivation steps
AT VAX
and AT w
are possible. Hence the derivation
AT wix

must also be possible.

Pushdown Automata 173

It should be noted here that the above does not imply that a was used

recursively only once. The * dfl could cover many uses Af as well as other
recursive variables.

There has to be some “last” recursive step. Consider the longest strings
that can be derived for w andx without the use of recursion. Then there is a
number ' such that pwx| <m.

Since the grammar does not contain amproductions or unit
productions, every derivation step either introduces a terminal or increases the

length of the sentential form. Sinée] VAYX, it follows that|vx|> 0.

Finally, sinceuvAxyoccurs in the derivation, armﬁ VAX andA D ware
both possible, it follows thatv'wx' yalso belongs tb.
This completes the proof of all parts of Lemma.

3.3.4 Usage of Pumping Lemma

The Pumping Lemma can be used to show that certain languages are not
context free.
Let us show that the language

L={a'bc |i >0
is not context-free.

Proof: Supposd. is a context-free language.
If string X OL, wherg X |> m it follows thatX =uvwxy whergwx|< m

Choose a valuithat is greater tham. Then, whereveywxoccurs in the
stringa'b'c, it cannot contain more than two distinct letters it can besall
allb's, allc's, or it can bea’'s andb’s, or it can béd's andc’s.

Therefore the stringx cannot contain more than two distinct letters; but
by the “Pumping Lemma” it cannot be empty, either, so it must contain at least
one letter.

Now we are ready to “pump”.

Sinceuvwxyis inL, uv®wx ? ymust also be ih. Sincevandx can’t both be

empty,
[uv2wx?y| > Juvwxyl

so we have added letters.

Both sincevx does not contain all three distinct letters, we cannot have
added the same number of each letter.

Therefore uv/"wx%y cannot be ..

Thus we have arrived at‘eontradiction”.

174 Theory of Automata, Formal Languages and Computation

Hence our original assumption, thais context free should be false.
Hence the laguagel is not conext-free. O

Example 3.3.1: Check whether the language given by
L={a™b™c" : m<sn<2m}

is a CFL or not.

Eolution

Lets=a"h"c*", n being obtained from Pumping Lemma.

Thens=uvwxy wherel<|vx|<n.
Thereforeyx cannot have all the three symbal®, c.
~ If you assume thatx has only a’s and b’s then we can shdcsech that
uvwxy has more than occurrence o orb and exactly2n occurences af.
Henceuv'wx' yOL, which is a contradiction. Henteis not a CFL.

Example 3.3.2: “If Lisregularand 0%, thenZ - Lis also a regular
set"—Prove this theorem.

Proof: LetL =T(M) whereM = (Q, %,,q,,F) is a Finite Automata.
We modifyZ,Q andd as follows:

(a) IfallZz, —Z, then the symbol will not appear in any string of
T(M).

Therefore we can deleta’ from %, and all transitions defined by
‘a.
HereT(M) is not affected.

(b) If ¥-Z%, 20, we can add a dead stateo Q. Let us define
o(d,a) = d for all ‘a’ in Z andd(q, a) = d for allgin Q anda in
-3,

Hence alsd(M) is not affected.

Let us consideM obtained by applying (a) and (b)IoQ andd.

The newM is now written as(Q, %,8,q,,F). Let us define a new
automatoniM’ such thatM' = (Q, Z,9, Q,F), whereM' differs fromM only in
its final states.

TherewOT(M") iff 8(q,, w) 0Q - F andwT (M).

Thereforey” —L=T(M')is regilar. O

Example 3.3.3: Prove that the languagdegiven by
L={a"b"| n=0, n#100Q

is context-free.

Pushdown Automata 175

Proof: Letus assume that
L —_ {a1000b100?
A=)

Then, sincd., is finite, it is regular.
It is obvious that
L={a"b" | n=0} n L,.
According to theheorem:“If L, is a CFL and., is a regular language,
L, n L, is context-free”, we have the following.

By closure of regular languages under complementation and closure of
context free languages under regular intersection, the langugigen by

L={a"b"| n=0, n#100Q

is cortext-free. O

Example 3.3.4: Check whether the language given by
L={wl{abg" |n,(W)=n,w) =n(w}

iSs not context-free.

Proof: If L is assumed to be context-free, then
LnL@bc)={a"bc"|n=0}.
which is also context-free.

But it is a fact that the latter is not context-free.
Therefore we conclude that

L={wD{a bd" |n, (W)= ny(w) = n, (W)}

is not conext-free. O

Example 3.3.5: Determine whether the language given by
2
L={a" | n>1 is context-free or not.

Eolution

Let us assume that

2
s=a" .

s = uvwxy wherel <|vx|< n. which is true

since, [vwx|< n (by Pumping Lemma)

176 Theory of Automata, Formal Languages and Computation

Let|vx]=m m<n.
By Pumping Lemmayv?wx?yis inL.
Since luv?wx?y|> n?,
[uvwx® yf= k2.
wherek >n+1
But|uv®wx?y|=n?+m<n?+2n+1
Therefore|uv?wx? yilies betweem? and f + 1Y.
Hence,uv®wx? yOL, which is a contradiction.

2
Therefore{a" : n>1} is not context-free.

3.4 DECISION ALGORITHMS

THEOREM: Given L is aregular set, i.e., a language accepted by a finite
automaton. There exists a constansuch that if s'in any string irL. and
|9= n, thens= uvw such thatuv|< n,|v|=1and for alli >0, uv'wL.

Proof: Letus assume that=T(M) whereM = (Q, Z,9,q,,F) and 1’ be the
number of states iQ.

Let W=a,a,...... a, 0L wheremzc
and O(dgs Oys Oos - - a)=gq.
Sincemzn, the number of states, the sequenggsy,,...... q,, will have

some repeated states.
Hence there are two integgrandk, 0< j <k <nsuch that; = q,.
Let us assume thétis least in the chosen pajrK).
For this we have

(@ g =09
(b) if0 <1<k, thenqg; # q; forall0<i <1 thereforey,, q,... ... C—1
are distinct states iQ and k <n.

Let u=aa,...... V=2, e v and w=ag,; ... , a,.
Therefores = uvw (as shown in Fig.).
a]-+1, P T
a1ay ... g +1s -+ Am

Sinced(q;,v) = q, = 9,,3(q;,v') = q;.
Therefored(q,, w'w) = q,,, OF.

Pushdown Automata 177

This illustrates thaov'wL, for alli > 0.
Sinceuwv =a, a, a, and

k<n|w|<n
Hence|v|z1 O
THEOREM: The set of strings that is accepted by a finite automaton which has
‘n’ state is

(&) nonempty if and only iM accepts some string of length less than
n.

(b) infinite, if an only if M accepts some string of lengthwhere
n<k<2n.

Thus there is ®ECISION ALGORITHMTto find out whetheM accepts
zero, a finite number, or an infinite number of strings.

Algorithm (i): Letus give an algorithm to decideTi{fM) = 0.
Let us consider the strings of length less tharest if any of these strings
is in T(M). If so,T (M) = 0. Otherwise T(M) is empty.

Algorithm (ii): Letus give an algorithm to decideTifM) is infinite.
Let us consider the strings of lendthwheren<k <2n-1Test if any
such string is found im(M). If so, T(M) is infinite, otherwisd (M) is finite.

Example 3.4.1: Prove that there exists an algorithm to find if two finite
automatav, andM, accept the same language.

Proof: Letus assume that

L, = T(M,) and
L, = T(M,).

Let us definde = (L, - L,) O (L, —L,).
The languagé is regular.
Let us assume th# is a finite automaton such that T(M).
Now, if L=0,iff L, = L,.

Since there is an algorithm (decision algorithm) to tdstsfa empty, we
have an algorithm to checklif = L,. a

Example 3.4.2: Check whether the language defined by

L={a® = pisaprime number} isregular or nat.

178 Theory of Automata, Formal Languages and Computation

Eolution

Let us assume that=T (M), where the automatdvl hasn states.
If pis a prime number greater thanconsider

z=a’ 0L
By using pumping lemma,= uvwanduv'wOL fori =1
Also uvtwiL.
But|uv"*'w|=|uvw [+ V7 E p+ pmwherem=|v].
This is a contradiction as we see thatpm cannot be prime.

Therefore the languadeis not prime.

B Example 3.4.3: Construct a deterministic Pushdown Automata to
accept,, the language of nested, balanced parantheses.

Eolution

The idea is to store all left parantheses on the stack and then pop them off as
each one matches a right parantheses.

Let us define

M = ({do, &}, {(’)}, do.{)

whered is given in the table below.

Table: Tran sition Table for DPDA.

Transition Current Input Stack New Input Stack
Number state symbol Top state op op
1 o (> % + push (
2 o ((% + push (
3 %) (% + pop
4 qO > > ql 0 0
S) % > (0z 0 0
6 %) > 0z 0 0

Transitions (1) and (2) are used to push opening parantheses on the stack;
transition (3) is used to to match a closing paranthesis with an open one on the
stack; (4) accepts the input, and (5) and (6) send the machine into a rejecting
state, which halts the machine.

Pushdown Automata 179

ConsideM on input (() ()):
(o, [() O L AT 1=(G0,[2 () (D)LI3(D)
b= (@0, [3, (O) (LI (D)
b= (@, [4 () O [3.(])
b= (@, [5 () (LI (D)
k= (0, [6, (() (DL ()
b= (@0, [7 () ONL[L A
b= (@, [7, () ()LI3AD)
Therefore,
(%L (C) O LILAD I*g(ql,[l(() OLIIAD

and sincey, is an accepting state, all input has been read, and the stack is
empty, we havé() ())OL(M).

Let us consideM on the input string ()). We get the following
computations.

(9o, [1 ()L [LA] 'J (do,[2 (D1.L3(D)
|'\;(qu[31 (DLILA])
L;(qz’[?’v (DLILAD)

No further transitions dfl can be appliedy, is not an accepting state, and
so () ULy,.

GLOSSARY

NDPDA: Non-deterministidPushdown automata
PDA: Pushdowrautomata
Transition Function of NPDA: Are of the form

0=Qx(Z0O{N)xI

These are finite subsets@fx I ".

180 Theory of Automata, Formal Languages and Computation

Stack: Oneadditional component available as part of PDA.
More of NPDA: |- denotes a move of NPDA.
PDA: Has(q, w, u),

where g = currentstate of autorton
w = unreal part of input string
u = stack cotents.

Simplifying CFG: Done either through (i) Empty Production removal (ii)
Unit production removal (iiieft recursion removal.

DPDA: DeterministicPDA, which has a transition function as single-valued
for DFA and hag-transitions.

Pumping Lemma: Theoremused to show that if certain strings belong to a
language, then certain other strings must also belong to the language.

Decision Algorithm: To find out if M accepts zero, a finite number, or an
infinite number of strings.

REVIEW QUESTIONS

Define a Pushdown automata.

Define a Nondeterministic Pushdown automata.

State the general form of transition function for an NPDA.

Give the instantaneous description of a PDA.

Explain how the strings are accepted with an NPDA.

What are the kinds of moves that can be made while accepting strings
with an NPDA?

Explain the terms (&-transitions (b) Non-empty transitions

Give an example of NPDA execution.

State the relationship between PDA and context free languages.
10. Explain: (a) Empty Production removal (b) Unit Production removal.
11. What are the Normal forms of CFGs?

12. How will you convert a CFG to NPDA?

13. How will you convert a NPDA to CFG?

14. What do you mean by deterministic pushdown automata?

15. State the properties of Context free languages.

16. State the pumping lemma for CFG.

17. Give the proof for pumping lemma.

18. State the usuage of pumping lemma.

19. What are decision algorithms?

20. State the usefulness of decision algorithms.

o 0sWNE

© o~

Pushdown Automata 181

w

® N o o

10.
11.

12.

13.
14.

15.

EXERCISES

Construct a Pushdown automata (PDA) accepting the language
L={0'T|i=q0{d # |j= 0.

ForZ ={0,1, design DPDAs to accept the following languages:

(&) 0*

(b) {01012]i,j=0Q

() {0?1]i=3

(d) {0™1"|m#n}

Define the concepts of string and language acceptance for PDASs.

ForX ={03, design PDA to accept the following languages:

(@ {xx|x0{0,3}

(b) {x|x0{0,3" and x= XY}

(c) {0™"|Insms 2}

(d) {0M"|;n<m< T}

Construct a PDA acceptifg | n=1} by empty store.
Obtain the PDA acceptif@™b"c" | m n>1} by empty store.
Obtain the PDA acceptif@™b"c" |[m n>1} by final state.
GivenL ={a"b™|m<n}. Derive

(a) a CFG that accepts L

(b) a PDA accepting L by empty store

(c) a PDA accepting L by final state.

Construct a PDA acceptirig= {wew' :w{a, b} by final state.

nb3n

Construct a PDA acceptig={wew' :w{a, B} by empty store.
If the PDAA={Q,%,I",8,q,.Z,.F) acceptd by final state, prove that
there exists another POB\acceptind. by empty store, i.eT,(A) =T(B)
=L.
Find PDA accepting the following sets by final state
@ {xO{a B :n,()>n,(x)}
(b) xO{a B :n, () <x,(X}
Design a PDA recognizing the ¢etf all non-palindromes ovéa, b}.
Construct a PDA equivalent to the CFG.

S-0BB, B-0S, B-1S, B- 0

Construct a CFG acceptirig={a™b" |n<nt} and construct a PDA
acceptind- by empty store.

182 Theory of Automata, Formal Languages and Computation

16. Construct a PDA accepting L by empty store where
L={a'b"a"|n21 j=0

17. Construct a PDA acceptifg’ b"c":n>1, j =3 by final state.

18. Constuct a CFG generatifi@"b” | n>1 O{ a" ™|m=>1. Using this
CFG, construct a PDA accepting the given set by empty store.

19. Using Pumping lemma show that the languagga'b'c |i =0} is not
context free.

20. Using Pumping lemma show that the language

L={a™b"c’|0smsn< g

is not a CFL.
21. Using Pumping Lemma prove that the language{ww| w{0,3" is
not a CFL.

22. Consider the set of all strings ovex, p} with no more than twice as
manya’s asb’s:

{xO{a B | # a(x)<2#b(x)}

(@) Give a CFG for this set, and prove that it is correct.
(b) Give a PDA for this set. Show sample runs on the input strings
aabbag aaabbbandaaabaa
23. Consider the set

abc —{a"b"c"|n=0}

the set of all strings &'s followed byb's followed byc's such that the
number ofa’s, b's andc’s are not all equal.

(a) Give a CFG for the set, and prove that your grammar is correct.
(b) Give an equivalent PDA.

24. Show thaf{a, B —{a" B | n=0} is not context free.

SHORT QUESTIONS AND ANSWERS

1. Whatis PDA and NDPDA?
PDA means Push Down Automata and NDPDA means
non-deterministi®ush Down Automata.
2. Define an NDPDA.
An NDPDA is defined by the 7-tuple

M=(Q2r.8,q0,2,F)

Pushdown Automata 183

where Q = Finite set of intemal states of the cdrol unit
> = input alph&et
' = Finite set of syrholscalled ‘stack alphaet’.

5:Q x (ZO{N)xI - Finite sulsetsof Q xI"" is the trasition function.
g, = Initial state of the cdnol unitdQ
Z = Stack start syiol
F 0Q - Set of Final states.
3. What is the data structure used in a Push Down Automaton?
Stack is the data structure used in a PDA.
4. What is the general form of a transition function of an NPDA?
5:Q x (ZO{N)xI - Finite subsets dd xI"". whered has now
three arguments:
(a) the state
(b) eitherA, or a symbol from the input alphabet.
(c) symbol on the top of the stack.
5. State the requirements for execution of an NPDA.

(a) The state of the DFAis in
(b) What the remaining input is.
6. Given an instantaneous description of a PDA.
The instantaneous description of a PDA is a trifgleiv(u), where

g = currentstate of the autoaton
w = unreal part of the input string
u = stack cotents(writtenas a string, with the leftmost

symbolat the top of the stack).
7. What are the types of moves that are made while accepting strings with
an NPDA?

(a) A-transition.
(b) Non-empty transition.
8. What do you mean byXatransition in PDA?
If you are in a state,, X is the top (leftmost) symbol in the stack, and

3(gy; A, x) ={(q,,W,), --.}
then you can replace the symkalith the stringv, and move taj,.

9. What are non-empty transitions in an NPDA?
If you are in the statg,, ‘a’ is the next unconsumed input symbol,
is the top (leftmost) symbol in the stack, and

o(ay, & x) ={(d,,W,),...}

then you can remove thHa' from the input string, replace the
symbolx with the stringw,, and move to the statg.

184

Theory of Automata, Formal Languages and Computation

10.

11.

12.

13.

14.

15.

16.

17.

18.

State the meanings pf |— andli while accepting strings with NPDA.
| is used to indicate a single move of an NPDA

|-is used to indicate a sequence of zero or more moves

|iis used to indicate a sequence removal in a PDA.

What is meant bmpty Production removal in a PDA?

If the empty string does not belong to a language, the there is no way
to eliminate production of the frolA -~ A from the grammar. If the
empty string belongs to a language, then we can elimindem all
productions for the single productidh— A. In this case we can
eliminate any occurrences®from the right hand side of productions.
What is meant by unit production removal in PDA?

Eliminating productions of the forrA — B from a CFG is called a
unit production removal in PDA.

What is meant bieft recursion removah PDA?
Avariable Ais left recursive if it occurs in a production of the form

A - AX

for anyx O OT)". A grammar is left-recursive if it contains at

least one left-recursive variable. Every CFL can be representad by
grammar that is not left-recursive.

What are the Normal Forms of CFGs?

(&) Chomsky Nomal Form.
(b) Greibach Normal Form.
How is an NPDA built from a CFL?

Any string of a CFL has a leftmost derivation. NPDA is set up so that
the stack contents corresponds to this sentential form, every move of the
NPDA represents one derivation step.

How is thesentential form obtained while converting a CFG into an
NPDA?

The sentential form is obtained as
[The characters already read] + [symbols on the stack] — [Fimdtial
stack symbol)]

What are the two ways in which deterministic pushdown finite acceptor
differs from a non-deterministic finite acceptor?
(&) The transition functiord is single-valued for a DFA, but
multi-valued for an NFA.
(b) An NFA may have\-transitions.
What are the ways in which a non-deterministic pushdown automaton
differs from a Pushdown automata

Pushdown Automata 185

19.

20.

21.

22.

23.

24.

(&) The transition functiod is at most single-valued for a DPDA,
multi-valued for an NPDA.
Formally:|d(q, a, b|=0 or |,
foreveryqdQ, a0z O{A}, andbOr .

(b) Both NPDA and DPDA may havetransitions, but a DPDA
may have a-transition only if no other transition is possible.
Formally: Ifd(q, A, b) 0, themd(q, ¢, b) = O for everyc O .

State the Pumping Lemma for Context Free Grammars.

Let L be an infinite context-free language. Then there is some
positive integerm’ such that, ifSis a string oL of length at least,
then

() S= vwxy(for someu, v, w, X, y)

(i) [vwwx|<m

(i) |vx=1
(iv) uv'wiyOL, for all non-negative values bf

State one usage offaimping Lemma.
The Pumping Lemma can be used to show that certain languages are
not context free.
What is adecision algorithm?
The set of strings that is accepted by a finite automaton M which has
‘n’ state is
(a) non empty, if and only i1 accepts some string of length less
thann.
(b) infinite, if and only ifM accepts some string of lendtivhere
n<k<2n.
State the use of decision algorithm:
It is used to find out whether a finite automatraccepts zer@
finite number, or an infinite number of strings.
What are the ways to simplify a CFG to an NPDA?
(&) Empty Production Removal
(b) Unit Production Removal
(c) Left Recursion Removal.
How is a ‘move’ of an NPDA denoted?
|- denotes a move of NPDA.

Chapter 4

Turing Machines

4.1 TURING MACHINE MODEL
4.1.1 Whatis a Turing Machine?

A Turing Machine is like a Pushdown Automaton. Both have a finite-state
machine as a central component, both have additional storage.

A Pushdown Automaton uses a “stack” for storage whereas a Turing
Machine usea a “tape”, which is actually infinite in both the directions. The
tape consists of a series of “squares”, each of which can hold a single symbol.
The “tape-head”, or “read-write head”, can read a symbol from the tape, write
a symbol to the tape and move one square in either direction.

There are two kinds of Turing Machine available.

(a) Deterministic Turing Machine.
(b) Non-deterministic Turing Machine.

We will discuss about Deterministic Machines only. A Turing Machine
does not read “input”, unlike the other automata. Instead, there are usually
symbols on the tape before the Turing Machine begins, the Turing Machine
might read some. all, or none of these symbols. The initial tape may, if desired,
be thought of as “input”.

“Acceptors” produce only a binary (accept/reject) output. “Transducers”
can produce more complicated results. So far all our previous discussions were
only with acceptors. A Turing Machine also accepts or rejects its input. The
results left on the tape when the Turing Machine finshes can be regarded as the
“output” of the computation. Therefore a Turing Machine ‘i$ransducer”.

4.1.2 Definition of Turing Machines
A Turing MachineM is a 7-tuple
(Q’ z!r161q01# ;F)

where Qs a set of states
> is a finite set of symbolsinput alphabet”.
I is a finite set of symbolstape alphabet”.
0 is the partial transition function

Turing Machines 187

#0T is a symbol called ‘blank’
d, UQ is the initial state
F OQis a set of final states

As the Turing machine will have to be able to find its input, and to know
when it has processed all of that input, we require:

(@) The tape is initially'blank” (every symbol is #) except possibly
for a finite, contiguous sequence of symbols.

(b) If there are initially nonblank symbols on the tape, the tape head is
initially positioned on one of them.

This emphasises the fact that the “input” viz., the non-blank symbols on
the tape does not contain #.
4.1.3 Transition Function, Instantaneous Descrip tion
and Moves
The“Transition Functiof for Turing Machine is given by
0:QxI - QxI x{L,R}

When the machine is in a given st@@® and reads a given symkb)) from the
tape, it replaces the symbol on the tape with some other syimbgbgés to
some other sta(€)), and moves the tape head one squarfedtr right(R).

An “Instantaneous Descriptidmor “Configuratiorf of a Turing machine
requires.

(a) the state the Turing machine is in
(b) the contents of the tape
(c) the position of the tape head on the tape.

This is written as a string of the form

where theds are the symbols on the tapg,is the current state, and the tape
head is on the square containiggthe symbol immediately following,,).

The “Move' of a Turing machine can therefore be expressed as a pair of
instantaneous descriptions, separated by a syrpbol “
For example, if

3(9s, b) = (gg, G R)
then a possible move can be
abbabg babb}- abbaiggabb

188 Theory of Automata, Formal Languages and Computation

4.1.4 Programming a Turing Machine

As we have the “productions” as the control theme of a grammar, the
“transitions” are the central theme of a Turing machine. These transitions are
given as a table or list of S-tuples, where each tuple has the form

(currentstate, syrhol read, syrbol written,diredion, next state)

Creating such a list is called “programming” a Turing machine.

A Turing machine is often defined to start with tkad head positioned
over the first (leftmost) input symbol. This is not really necessary, because if
the Turing machine starts anywhere on the nonblank portion of the tape, it is
simple to get to the first input symbol.

For the input alphab&t={a, k}, the following program fragment does the
trick, then goes to statg.

(do> @ aL,qy)
(do, b BL,qp)
(do, #,#.R.ay)

4.1.5 Turing Machines as Acceptors

A Turing machine halts when it no longer has available moves. If it halts in a
final state, it accepts its input, otherwise it rejects its input.

A Turing machineT = (Q,%,I,8,q,,# ,F) accepts a language L(M),
where

L(M)=(WOZ": gow |-x,q; X; for some q; OF % ,x Or"),

with the assumption that the Turing machine starts with its tape head
positioned on the leftmost symbol.

A Turing Machine accepts its input if it halts in a final state. There are two
ways this could fail to happen:

(&) The Turing machine could halt in a nonfinal state or
(b) The Turing machine could never stop i.e., it enters an “infinite
loop”.
4.1.6 How to Recognize a Language
This machine will match strings of the form
{a"b":n=0}

g, is the only “final state”.
g, (which has no available moves at all) serves as an “error state”.

Turing Machines 189

Current Symbol Symbol Direction Next
state read written state

Find the left end of the input

% a a L Qo
o b b L Qo
Qo # # R)

If leftmost synbol is “a”, erase it, if b” fall

Oy a # R 0,
O b # R o

Find the right end of the input

o2 a a R o
07} b b R 07}
0, # # L Os

Erase the B’ at the left end of the input

0s b # L o

The basic operation of this machine is a loop:

go: move all the way to the left

qi:: eraseon a’

g2: move all the way to the right
gs: Erase a’ b’

Repeat

If the string is not of the forda"b": n>0}, it will finally either

(a) See ana& in nonfinal stateg,, and halt, or
(b) see ab'in final stateq,, move to nonfinal statg,, and halt.
4.1.7 Turing Machines as Transducers

To use a Turing machine as a transducer, treat the entire nonblank portion of
the initial tape as input, and treat the entire nonblank portion of the tape when
the machine halts as output.

A Turing machine defines a functigref (x) for stringsx, yO X if

quI*—qu

whereg; is the final state.

190 Theory of Automata, Formal Languages and Computation

A function index isSTuring computable” if there exists a Turing machine
that can perform the above task.

Example 4.1.1: Design a Turing machine that accepts the set of all even
palindromes over {0,1}.

Eolution

There are various steps involved in processing even length palindromes. The
TM scans the first symbol of input tape (0 or 1), erases it and changdg state

or g,). TM scans the remaining part without changing the tape symbol until it
encounterd. The read/write head moves to the left. If the rightmost symbol
tallies with the leftmost symbol (which can be erased but remembered), the
rightmost symbol is erased. Otherwise TM halts. The read/write head moves to
the left untilb is encountered. The above steps are repeated after changing the
states suitably. The transition table is as shown below.

Present Input Synbol
State
0 1 b

R bRq bRg, bRg,
o} ORq 1Rq bLa,
0, ORq 1Rg, bLa,
Os bLag
Q4 bLgg
Os OLas 1Lgs bRgq,
Os OLqe 1Lge bRq,
q;

Example 4.1.2: GivenZz ={0J, design a Turing machine that accepts
the language denoted by the regular expressian 00

Eolution

Let us start at the left end of the input, we read each symbol and check that it is
a 0. If it is, then we continue by moving right. If a blank is reached without
seeing anything else other than 0, we terminate and accept the string.

If the input contains a 1 anywhere, the string is nat(@0'), and so we
halt in a nonfinal state. In order to keep track of computation, two internal
state€) ={q,, q,} and the final staté ={q,} are enough.

Turing Machines 191

Transition function is taken as

6(qO’ O) = (Cio’ 01 R)
&(qp, O) = (0, O,R).

The head will move to the right, as long as 0 appears under the read-write
head. If any time a 1 is read, the machine will halt in the nonfinalggtatiece
8(0,.)) is undefined.

Example 4.1.3: Design a Turing machine that accepts

L={a"b"| n=0}.

Eolution

Assume thaty, is the “final state”.
g, (which has no available moves at all) serves as an “error state”.

Current Symbol Symbol Direction Next
state read written state

Find the left end of the input

% a a L %o
o b b L o
Qo # # R Oy

If leftmost synbolis “a”, erase it, if b”, fail

0y a # R 0,
Oy b # R o

Find the right end of the input

0, a a R 0,
07} b b R 07}
o3 # # L s

Erase the " at the left end of the input

0s b # L Qo

The basic operation of this machine is a loop:

Jo: Move all the way to the left
q:: Erasean’ a'.

192 Theory of Automata, Formal Languages and Computation

g2: Move all the way to the right
gs: Erase a* b”.
Repeat

If the string is not of the fordqm"b" | n>0} it will finally either

(a) see an& in nonfinal statey,, and halt, or
(b) see ab'in final stateg,, move to nonfinal statg,, and halt.

B Example 4.1.4: What does the Turing Machine described by the

S5-tuples (,.0, dy,0,R), (40,2 d;,GR), (do.B.q,,B,R), (9,,0,6,.0,R),
(9,.1 0o.LR) and(q,, B,q,,B,R) do when given a bit string as input?

Eolution

If the tape contains at least one 1, the machine changes every othe® 1 to a
starting at the first 1, and halts when it reches the first blank symbol. If the tape
is blank initially the machine halts without changing the tape. If the nonblank
portion of the tape contains all 0s, the machine moves successively through
these Os and halts.

Example 4.1.5: LetT be the Turing machine defined by the five tuples:
(qo’oy qj_vllR)v (qo’lr qj_vOyR)! (q()vB!ql’O!R)! (q]_’O’ q21llL)’
(0.1 9,,0,R), (q;,B,q,,0,L). For each of the following initial tapes,
determine the final tape whénhalts, assuming that begins in initial

position.
(@ ~—|B|B|O|O|1|1|B|B
(by -~ |B|B|B|B|B|B|B|B

Eolution

(&) The nonblank portion of the tape contains the string 1111 when
the machine halts.

(b) The nonblank portion of the tape contains the string 00 when the
machine halts.

4.2 COMPLETE LANGUAGES AND FUNCTIONS

A Turing machine has an output function, the contents of the input tape after
processing, a given input string can be viewed as the result of computation.
Therefore a Turing machine is seen as a computer of functions, from integers
to integers.

Turing Machines 193

Let us now look at the procedure to compute functioms, n,, n)
wheren,, n,, , N, are non-negative integers.
(a) Represent the integems, n,, , N inunary i.e.n, is written
as 0™ etc. The input(n,n,,...,n) is represented by
0"10™...... 10% where the 1's are used to separate the unary
representation af;, n,, -

(b) After several moves, if the Turing Machine halts (eithemin
final state or in any other state) and hdsrOthe input tape, then

F(ny,n, ,n)=m.

Example 4.2.1: Design a Turing machine to add two given integers.

Eolution

Assume that m and n are positive integers. Let us represent the i6fi80as
If the separatin® is removed and 0's come together we have the required
output,m+ nis unary.

() The separatin® is replaced by a 0.
(i) The rightmost O is erased i.e., replacedby

Let us define M = ({qo, 0y, G,, 03, A4t.{Q .{Q B},3,0,{a}). O is
defined by Table shown below.

Tape Syrbol
State 0 B
o (99,0 R) (o,.0,R)
Oh (o, OR) (0,,B,L)
0, (gs,B,L) —
s (ds0,L) (d4,B,R)

M starts from IDg,0™BQ", moves right until seeking the blank B

changes state t. On reaching the right end, it reverts, replaces the rightmost
0 byB. It moves left until it reaches the beginning of the input string. It halts at
the final state,.

Example 4.2.2: Design a Turing Machine that copies strings of 1's.

Eolution

Follow the following steps:

194 Theory of Automata, Formal Languages and Computation

(&) Replace every 1 by an

(b) Find the rightmost x and replace it with 1.

(c) Travel to the right end of the current nonblank region and create a
1 there.

(d) Repeat steps (b) and (c) until there are no more X's.

The Transition function is given by

3(do.D) = (do: X, R),
8(do,0) = (qp, 0, L),
o(a;,x) = (42,4 R),

0(d,.0) = (4,1 R),

5(d,,0) = (g4 L),

o(q;.D) = (gL L),

8(q,,00) = (93,4, R).

whereq; is the only final state.

Example 4.2.3: Design a Turing Machine that multiplies two positive
integers in unary notation.

Eolution

ofof1{1f1fOo|1|1]|2 o121 meeeee 1{0(1(1(1(0f1(1|1
_ _—
y y y y

Assume that the initial and final tape contents are to be as indicated in figure
above. Multiplication is visualized as a repeated copying of the multiplicand y
for each 1 in the multiplies, whereby the string y is added the appropriate
number of times to the partially computed product. The steps involved in the
process are:

() Repeat the following steps unticontains no more 1's—find a 1
in X and replace it with another syml@lReplace the leftmost 0

by Oy.
(i) Replace alb's with 1's.

Example 4.2.4: Design a Turing Machine that recognizes the set of bit
strings which have a 1 as their second bit i.e., the regular set

(oonyo0).

Eolution

We would like to have a Turing machine, which, starting at the leftmost
nonblank tape cell, moves right, and determines whether the second symbol is

Turing Machines 195

a 1. If the second symbol is 1, the machine should more into a final state. If the
second symbol is not a 1, the machine should not halt or it should faalt in
non-final state.

To construct such a machine, we include the five-tuplg$9,q;, 0,R) and
(90 1,0;, 1,R) to read in the first symbol and put the Turing machine in state
Ca-

Next, we include the five-tuplég,, 0,0,, 0,R) and @, 1,9;, 1,R) to read
in the second symbol and either move to siaiiethis symbol is a O, or to state
g, if this symbol is a 1.

We do not want to recognize strings that have a 0 as their secondpit, so
should not be a final state. We wagtto be a final state. Therefore we can
include the 5-tupled,, 0,q,, 0,R). As we do not want to recognize the empty
string nor a string with one bit, we also include the 5-tufjg®, g,, 0,R) and
(9, B, &, O,R).

The Turing machind consisting of seven 5-tuples given above will
terminate in the final statg if and only if the bit string has at least two bits and
the second bit of the input string is a 1. If the bit string contains fewer than two
bits or if the second bit is not a 1, the machine will terminate in the non final
stateq,.

4.3 MODIFICATION OF TURING MACHINES

Two automata are said to be equivalent if they accept the same language. Two
transducers are said to be equivalent if they compute the same function.

A class of automata e.gStandard Turing machines is equivalent to
another class of automata e.g., nondeterministic Turing machines, if for each
transducer in one class, an equivalent transducer can be found in another class.

At each move of a Turing machine, the tape head may move either left or
right. We can augment this with a “Stay option”, i.e., we will add “don’t move”
to the set, R.

“Turing machines with a stay option are equivalentStandard
Turing Machines.”

4.3.1 N-Track Turing Machine

An N-track Turing Machine is one in which each square of the tape holds an
orderedh-tuple of symbols from the tape alphabet. This can be thought of as a
Turing machine with multiple tape heads, all of which move in lock-step
mode.

“N-Track Turing machines are equivalent to standard Turing
machines”.

196 Theory of Automata, Formal Languages and Computation

4.3.2 Semi-infinite tape/Offline/Multitape/ND Turing Machines

(&) A Turing machine may have aémi-infinite tap& the nonblank
input is at the extreme left end of the tape.

Turing machines with semi-infinite tape are equivalent to
Standard Turing machines.

(b) An“Offline Turing Machinghas two tapes. One tape is read-only
and contains the input, the other is read-write and is initially blank.
Offline Turing machines are equivalent to Standard Turing
machines”.

(c) A “Multi-tape Turing Machine’has a finite number of tapes, each
with its own independently controlled tape head.

“Multi-tape Turing Machines are equivalent to Standard Turing
Machines”.

(d) A “Nondeterministic Turing Machitiés one in which the DFA

controlling the tape is replaced with an NFA.

“Nondeterministic Turing machines are equivalent to Standard
Turing Machines.”

4.3.3 Multidimensional/Two-state Turing Machine

A “Multidimensional Turing Machiriehas a Multidimensional “tape”, for
example, a two-dimensional Turing Machine would read and write on an
infinite plane divided into squares, like a checkerboard. Possible directions
that the tape head could move might be labeHéd E,S,W}. A
three-dimensional turing machine machine might have possible directions
{N,E,S,wW)\V ,D} and so on.

“Multidimensional Turing Machines are equivalent to Standard
Turing Machines”.
A “Binary Turing Machine”is one whose tape alphabet consists of
exactly two symbols.

Binary Turing machines are equivalent to Standard Turing Machines.

A “Two-state Turing Machine” is one that has only two states. Two-state
Turing machines are equivalent3tandard Turing Machines.

4.4 CHURCH-TURING’S THESIS

Alan Turing defined Turing machines in an attempt to formalize the notion of
an “effective producer” which is usually called as ‘algorithm’ these days.
Simultaneously mathematicians were working independently on the same
problem.
Emil Post - Production Systems
Alonzo Church - Lambda Calculus

Turing Machines 197

Noam Chomsky - Unrestricted Grammars
Stephen Kleene - Recursive function Theory
Raymond Smullyn - Formal Systems.

All of the above formalisms were proved equivalent to one another. This
led to

(@) Turing’s Thesis (Weak Form)A Turing machine can compute
anything that can be computed by a general-purpose digital
computer.

(b) Turing's Thesis (Strong Form)A Turing machine can compute
anything that can be computed.

The strong form of Turing’s Thesis cannot be proved it states
relationship between mathematical concepts and the “real world”.

4.4.1 Counting

Two sets can be put into a one-to-one corresponding if and only if they have
exactly the same number of elements.

Example:

{red, vellow, green, bue}

7 7 7 7
{apple, banana, cucumber, plum}

One-to-one correspondence with a subset of natural numbers can be done as:

{red, vyellow, green, blue}
! ! ! !
{1, 2, 3, 4

4.4.2 Recursive and Recursively Enumerable Lan guage

There are three possible outcomes of executing a Turing machine over a given
input.
The Turing machine may

() Halt and accept the input
(i) Halt and reject the input, or
(i) Never halt.

A language is‘recursive if there exists a Turing machine that accepts
every string of language and rejects every string over the same alphabet that is
not in the language.

If a languagelL is recursive, then its complemehtshould also be
recursive.

198 Theory of Automata, Formal Languages and Computation

A language isrecursively enumerable” if there exists a Turing machine
that accepts every string of the language, and does not accept strings that are
not in the language. Strings which are not in the language may be rejected or
may cause the Turing machine to go into an infinite loop.

Recursively
Enumerable

Recursive
Languages

Languages

Every Recursive language is also recursively enumerable. But it is not
clear if every recursively enumerable language is also recursive.

Turing Machines are not “recursive”. The terminology is borrowed from
recursive function theory.

4.4.3 Enumerating Strings in a Lan guage

To enumerate a set is to place the elements of the set in a one-to-one
correspondence with the natural numbers. The set of all strings over an
alphabet is denumerable. Let us assume that a string is a numbj|isan
number system. The strings in a language from a subset of the set of all strings
overZ.But is it possible to enumerate the strings in a language?

If a language is recursive, then there exists a Turing machine for it that is
guaranteed to halt. We can generate the stringsiofa shortest first order to
guarantee that every finite string will be generated, test the string with the
Turing machine, and if the Turing machine accepts the string, assign that string
the next available natural number. We can also enumerate the recursively
enumerable languages. We have a Turing machine that will halt and accept any
string that belongs to the language; the trick is to avoid getting hung up on
strings that cause the Turing machine to go into an infinite loop. This is done
using “Time sharing”. Let us illustrate this now.

w.=[0 N=s0

for i:=1 to xy,do{
add the next string in v to set W;
infiaize a Turing machine for this new string;
for each string in set Wdo {

let the Turing machine for it make one more;
if the Turing machine halts {
accept or reject the string as appro prate;
if the string is accepted {
N.= N+1;

Turing Machines 199

let this be string N of the lan guage;

}

remove the string from set W,

}

4.4.4 Non-recursively Enumerable Lan guages

A Language is a subset &f . A language is “any” subset & . We have

shown that Turing machines are enumerable. Since recursively enumerable
laguages are those whose strings are accepted by a Turing machine, the set of
recursively enumerable languages is also enumerable. The power set of an
infinite set is not enumerable i.e., it has more thaisubsets. Each of these
subsets represent a language. Hence there should be languages that are not
computable by a Turing machine.

According to Turing Thesis, a Turing machine can compute any effective
procedure. Therefore there are languages that cannot be defined by any
effective procedure. It is possible to find a non-recursively enumerable
languageX by a process called “diagonalisation”.

4.5 UNDECIDABILITY
4.5.1 Halting Prob lem

The input to a Turing machine is a string. Turing machines themselves can be
written as strings. Since these strings can be used as input to other Turing
machines.

A “Universal Turing machine” is one whose input consists aof
descriptionM of some arbitrary Turing machine, and some input w to which
machineM is to be applied, we write this combined inputMas- w. This
produces the same output that would be produced by M. This is written as

UniversalTuring Machine i1 + w) =M (w).

As a Turing machine can be represented as a string, it is fully possible to
supply a Turing machine as input to itself, for exanMpigM). This is not even
a particularly bizarre thing to do for example, suppose you have written a
prettyprinter in C, then used the Prettyprinter on itself. Another common usage
is Bootstrapping—where some convenient languages used to write a minimal
compiler for some new language L, then used this minimal compiler for L to
write a new, improved compiler for language L. Each time a new feature is
added to language L, you can recompile and use this new feature in the next
version of the compiler. Turing machines sometimes halt, and sometimes they
enter an infinite loop. A Turing machine might halt for one input string, but go
into an infinite loop when given some other string.

The halting problem asks: “It is possible to tell, in general, whether a given
machine will halt for some given input?” If it is possible, then there is an

200 Theory of Automata, Formal Languages and Computation

effective procedure to look at a Turing machine and its input and determine
whether the machine will halt with that input. If there is an effective procedure,
then we can build a Turing machine to implement it.
Suppose we have a Turing machine “WillHalt” which, given an input

stringM +w, will halt and accept the string if Turing machMénalts on input

w and will halt and reject the string if Turing machivieloes not halt on input

w. When viewed as a Boolean function, “WillHald,(w)" halts and returns
“TRUE” in the first case, and (halts and) returns “FALSE” in the second.

THEOREM: Turing Machine “WillHalt M, w)” does not exist.

Proof: Thistheorem is proved by contradiction.

Suppose we could build a machine “WillHalt”.

Then we can certainly build a second machine,

“LooplfHalts”, that will go into an infinite loop if and only if “WillHalt”
accepts its input:

Fundion LooplfHalts (M w):

if WillHalt (M w) then
while true do { }
else

return false;

We will also define a machine “LooplfHaltOnltSelf” that, for any given
inputM, representing a Turing machine, will determine what will happén if
is applied to itself, and loopsM will halt in this case.

Fungion LooplfHaltsOnltself (M:
return LooplfHalts (M M:

Finally, we ask what happens if we try:

Fungion Impos sble:
return LooplfHaltsOnltself (LooplfHaltsOnltself):

This machine, when applied to itself, goes into an infinite loop if and only
if it halts when applied to itself. This is impossible. Hence the theorem is
proved.

Will this
program
halt?

Turing Machines 201

4.5.2 Implications of Halting Prob lem
(& Programming

The Theorem of “Halting Problem” does not say that we can never determine
whether or not a given program halts on a given input.

Most of the times, for practical reasons, we could eliminate infinite loops
from programs. Sometimes a “meta-program” is used to check another
program for potential infinite loops, and get this meta-program to work most of
the time.

The theorem says that we cannot ever write such a meta-program and have
it work all of the time. This result is also used to demonstrate that certain other
programs are also impossible.

The basic outline is as follows:

(i) Ifwe could solve a probleiX, we could solve the Halting problem
(i) We cannot solve the Halting Problem
(iiiy Therefore, we cannot solve problein

(b) Artificial Intelligence (Al)

It has been tried to use the Halting Problem as an argument against the
possibility of intelligent computers. The argument is as follows:

(i) There are things computer cannot do
(i) We can do those things
(i) Therefore, we must be superior to computers.

The first premise given above is definitely TRUE. The second premise is
generally supported by displaying a program which solves some subset of the
Halting Problem, then describing a nice trick which is not incorporated into the
program, that solves a slightly larger subset. There may well be valid
arguments against the possibility of Al. This is not one of them.

4.5.3 Reduction to Halting Prob lem

In order to reduce problemP to the Halting problem, look at the following
steps:

(i) Assume that you have an effective procedure—either a Turing
machine or any kind of algorithm to solve problBm
(i) Show how to use the program frto solve the Halting problem.
(i) Conclude that problera cannot be solved.

State Entry Prob lem

This problem otherwise called “dead code problem” is to determine whether
Turing machineM, when given inputv, ever enters stag The only waya

202 Theory of Automata, Formal Languages and Computation

Turing machineM halts is if it enters a state q for which some transition
functiond(q;, a) is undefined. Add a new final staté& the Turing machine,
and add all these missing transitions to lead to gtdtew use the assumed
state-entry procedure to test if state z, is ever enteredM/igegiven input w.
This will let us know if the original machink® halts. We conclude that it
should not be possible to build the assumed state-entry procedure.

Some unsolvable Problems are as follows:

(i) Does a given Turing machihé halts on all input?
(i) Does Turing machin® halt for any input?
(iii) Is the languag&(M) finite?
(iv) DoesL(M) contain a string of lengtk for some giverk?
(v) Do two Turing machinebl; andM, accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary
given Turing machin® and input stringv, whether or no¥l acceptsv. These
problems for which no algorithms exist are called “UNDECIDABLE”" or
“UNSOLVABLE".

4.5.4 Post’s Cor respondence Problem

Let2 be a finite alphabet, and ktandB be two lists of nonempty strings over
%, with| A|=|B] i.e.,

and B = (X, %Xy, Xgy «o- ... %)
Post’s CorespondencBroldemis the folowing.

Does there exist a sequence of integers, i, such tham=1and
Wit WaoWg ..o Win = Xin %2%3 - Xm?

Example: Supposé\ = (a, abaag ab) andB = (aaa, ab, b). Then the required
sequence of integers is 2, 1, 1, 3 giving
abaaa a a alx abaaa aaa b
This example has a solution. It will turn out that Post’s correspondence
problem is insolvable in general.

Example 4.5.1: Prove thatiL, is not recursive, and there is a reduction
from L, toL,, thenL, is also not recursive.

Eolution

Assume that, is recursive, as decided by Turing mactvhyeand lefT be the
Turing machine that computes the reduction

Turing Machines 203

Then the Turing machine TMvould decidd._,. ButL, is undeciable—a
contradiction.

4.6 RICE'S THEOREM

A Turing machine (TM) is a way to describe a language and the decision
problem can be interpreted as belonging to the general class of problems:

“Given a Turing machine, doégTM) have the propert”?

In this caseéP is the property of containing the null string.

THEOREM: “If Pis a property of languages that is satisfied by some but not
all recursively enumerable languages, then the decision problem.

D: Given a TM, doe&(TM) have propertyP is unsolvable.”

Proof: Assume thaP is a nontrivial language property. Starting with Turing
machine TM, an arbitrary instance of Accefff3. (Which is the other
unsolvable problem), we need to find an instardéof D so that the answer
for TM andTM' are the same.

The machin@M' is constructed so that the first things it does it to move its
tape head past the input string and execute TM onlihpuhatTM' does with
its original input after that depends on the outcome of Accipts (

We would likeTM' to proceed with its original input as if its goal were to
accept some original input as if its goal were to accept some lanbyage
that it halts if and only if the original input islip. Also we would wantM' to
proceed as if it were accepted as a different language

In order to get everything right, we wdrto be a language satisfyify
andLg to be a language not satisfyiRgndL to be a language not satisfying
P. This ensures that M’ is a yes-instance dd if and only if TM isa
yes-instance of AcceptBl)(

The problem that exists here is that if TM does not aé¢epen it will go
into infinite loop. ThenTM' could not accept anything. Therefdrg is an
empty language. Therefore if TM crashed on inpabenTM’ also crashes. If
O happens to be a language not satisfying the propetiyen we have exactly
what we want.

The choice of the languagg is arbitrary subject to the conditibp must
satisfyP; then we have such a langudgg sinceP is nontrival.

Therefordt is proved that iP is any nontrivial proprty not saisfiedby the
empty laguagethenD is unsohable,which proves the RiceTheorem [

GLOSSARY

Turing machine: Finite-statemachine with storage.

204 Theory of Automata, Formal Languages and Computation

Types of TM: DeterministicTM, non-deterministic TM

Transition function of TM: 3:Q xI' - QxTI x{L,R}

Configuration of TM: Requires
(i) state of TM
(i) contents of the tape
(i) position of the tape head on the tape.

Move of a TM: Pairof instantaneous descriptions, separated.by

Programming a TM: Creatingcurrent state, symbol read, symbol written,
direction, next state.

Transducer: TM is used as a Tranducer by treating the entire nonblank
portion of the initial tape as input, and treating the entire nonblank
portion of the tape when the machine halts as output.

N-Track Turing machine: Onein whch each square of the tape holds an
orderedn-tuple of symbols from the tape alphabet.

Semi-infinite tape TM: TM having an semi-infinite tape, with the non-blank
input at the extreme left of the tape.

Offline TM: TM having two tapes, one tape is read-only and has the input,
the other is read-write and is initially blank.

Multi-tape TM: TM having finite number of tapes, each having its own
independently controlled tape head.

Standard TM: Multi-tape TMs are called so.

Binary TM: Onewhose tape alphabet consists of exactly two symbols.

Turing Thesis (Weak form): TM can compute anything that can be.
computed by a general-purpose digital computer.

Turing Thesis (Strong Form): TM can compute anything that can be
computed.

Recursively enumerable (R.E.)Language is R.E. if there exists a TM that
accepts every string of the language and does not accept strings that are
not in the language.

REVIEW QUESTIONS

What is a Turing machine?

What are the types of Turing machines?

Give the definition of a Turing machine.

Define the term ‘Transition function’ of a TM.

Define the term ‘Instantaneous description’ of a TM.
Define the term ‘move’ in a TM.

What are the requirements of the ‘configuration’ of a TM?
How will you program a Turing machine?

Explain “Turing machine as acceptors”.

©CxNoO,r®DNE

Turing Machines 205

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.

How will you recognize a language in a TM?

How are Turing machines used as Transducers?

Explain what do you mean by an N-Track Turing machine?
Explain the following terms

(&) Semi-infinite tape

(b) Offline Turing machine

(c) Multitape Turing machine

(d) Nondeterministic “Multidimensional Turing Machine”
What do you mean by “Multidimensional Turing Machine”?
What do you mean by a binary TM?

State the Church-Turing Thesis.

State the weak form and strong form of Turing’s Thesis.
What do you mean by Recursively enumerable languages?
How will you enumerate strings in language?

What are non-recursively enumerable languages?

What do you mean by Undecidability?

What do you mean by the Halting problem?

What is an Universal Turing machine?

State the implications of Halting problem.

What do you mean by Post’s Correspondence problem?

EXERCISES

Design a Turing machine which recognizes the language consisting of
all strings of 0Os whose length is a power of 2. i.e., it decides the language
L={0%"|n>0Q.

Design a Turing machine which recognizes the language
L={w#w wi{03}.

Design a Turing machine which recognizes the language
L={a'b'c“|ixj=k andi,j, k=3

Design a deterministic Turing machine (DTM) to accept the language
L={a'bc |i=0}.

Define a DTMs to accept the following languages. Specify the 5-tuple in
each. (Use multi-tape machine if necessary).

(@ {xx|x0{03}
(b) {x|x0{03" and x= X}
Design DTMs to compute the following functions. (Input number can

be in unary, i.en is encoded as'L
(&) Successor functiorf::N - N wheref (n) = n+1

206

Theory of Automata, Formal Languages and Computation

10.

11.

12.
13.

14.

15.

16.

17.

18.
19.

20.

(b) f:N x N - Nsuch thaff (a, b)=[r/]
(¢) f:N - Nsuch thaff (n) = [fog, n[]

Define Nondeterministic Turing machines to accept the following
languages.

(@) {xx|x0{03}

(b) {x|x0{03" and x= X}

Define a multiheaded Turing machine, a model in which each tape can
havek tape heads. Prove that a Deterministic Turing Machine (DTM)
with one work tape can simulate a two-headed Turing machine.
Design a Turing machine which computes the function

f (n,, n,) = min(n,, n,) for all non-negative integerg andn,.

Design a Turing machine which computes the functitm = 3if n>5

andf (n)=0if n=0, 1, 2, 3 or 4.

Construct a Turing machine which computes the funétioj)=n mod

5.

Design a Turing machine which recognizes th¢@éaf2"|n> q.

Design a TM that recognizes the set of all bit strings that contain an even
number of

Construct a TM that recognizes the set of all bit strings which enéwith

0.

Design a Turing machine with tape symbols 0, 1Bttt given a bit
string as input, replaces all but the leftmost 1 on the tape with Os and
does not change any of the other symbols on the tape.

Design a TM with tape symbols 0, 1 d@ithat replaces the first 0 witgh

1 and does not change any of the other symbols on the tape.

Design a TM that recognizes the set

{0*'1"|n= Q.

Show that the recursiveness problem of Type-0 grammars is unsolvable.
Show that the problem of determining whether or not a TM over {0,1}
will print ever the symbol 1, with a given tape configuration is
unsolvable.

Show that there exists a TM for which the halting problem is
unsolvable.

SHORT QUESTIONS AND ANSWERS

What is aTuring machine?
A finite-state machine with storage is called a Turing machine.

What is the analogy between a Turing machine and a Push Down

Turing Machines 207

10.

Automaton?
Both have a finite-state machine as a central component, both have
additional storage.
What are the types of Turing machines?
(a) Deterministic Turing machine.
(b) Non-deterministic Turing machine.
Define aTuring machine.
A Turing machine is a 7-Tuple

Q,z,N,0,qq,# F)

where Qis a set of states

> is a finite set of syimols,“Input alphaet”
I is a finite set of sytmols,“Tape alphhet”
0 is the patial trarsition function
#0OT is a syntol called'blank’
g, 0Q s the intial state
F O0Qis a set of final states

Define the Transition Function for Turing Machine (TM)

0:QxI - QxTI x{L, R} is the trasitionfunction.

When a machine is in a given stéf® and reads a given symhpl)
from the tape, it replaces the symbol on the tape with some other symbol
(M), goes to some other sta@),(and moves the tape head one square
left (L) or right R).
State the requirements of an instantaneous description or configuration
ofa TM.
TM requires:
(a) the state the TM is in
(b) the contents of the tape
(c) the position of the tape head on the tape.
How is move of a Turing machine expressed?
Itis expressed as a pair of instantaneous descriptions, separated by a
symboll-.
What do you understand by “programming” a Turing machine?
Creating a list:
(current state, symbol read, symbol written, direction, next state) is
called ‘Programming’ a Turing machine.
What are the reasons for a TM not accepting its input?
(@) The TM could halt in a nonfinal state.
(b) The TM could never stop i.e., it enters an “infinite loop”.
How is a Turing machine used a¥ransducer?

208

Theory of Automata, Formal Languages and Computation

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

To use a Turing machine as a Transducer, treat the entire nonblank
portion of the initial tape as input, and treat the entire nonblank portion
of the tape when the machine halts as output.

When is a functioffi said to béTuring computable™?
A Turing machine defines a functign= f (x) for stringsx, yO = if

qoX-a; y

whereq; is the final state.

A functionf is ‘Turing Computable” if there exists a Turing machine
that can perform the above task.

When are two automata said to be equivalent?

Two automata are said to be equivalent if they accept the same
language.

When are twdransducers said to be equivalent?

Two transducers are said to be equivalent if they compute the same
function.

What do you mean bstandard Turing machines?

At each move of a Turing machine, the tape head may move either
left or right. We can augment this with a ‘stay’ option, i.e. we will add
“don’t move” to the set {L, R}.

Turing machines with a stay option are equivalent to Standard
Turing Machines.

What is arN-Track Turing machine?

A TM in which each square of the tape holds an ordeyiegble of
symbols from thetape alphabet is said to be &RkTrack Turing
Machine.

What is a semi-infinite tape Turing Machine?

A Turing machine having a semi-infinite tape, with the non-blank
input at the extreme left of the tape is called so.
What is aroffline Turing machine?

A Turing machine having two tapes, one tape being read-only and
has the input, the other being read-write that is initially blank is called an
offline Turing machine.

What is amulti-tape Turing machine?

A Turing machine with finite number of tapes, each having its own
independently controlled tape head is called a multi-tape TM.
What arestandard Turing Machines?

Multi-tape Turing machines are called standard Turing Machines.
What is abinary Turing Machine?

A Turing machine whose tape alphabet having exactly two symbols
is a binary Turing Machine.

Turing Machines 209

21.

22.

23.

24.

What is théweak form’ of Turing Thesis?

“A Turing machine can compute anything that can be computed by a
general-purpose digital computer.” This is the weak fornTwing
Thesis.

What is théstrong form’ of Turing Thesis?

“A Turing Machine can compute anything that can be computed”.
This is the strong form dfuring Thesis.

When is a language said to teeursively enumerable?

A language is recursively enumerable if there exists a Turing
machine that accepts every string of the language, and does not accept
strings that are not in the language.

What is thePost’s correspondence problem?

Let X be a finite alphabet, and latandB be the lists of nonempty

strings ovek, with| A|=|Bj} i.e.,

A= (W, W,, W)
and B=(X, X5, -ev.. X)-

Post’s correspondence problem is the following:

“Does there exist a sequence of integgfis, ...i ,, such tham=>1
and

Wit WoWs-...o Wi = Xiz X 2% 3.0 Xm 7'

Chapter 5

Chomsky Hier archy

5.1 CONTEXT SENSITIVE GRAMMARS AND LANGUAGES

A context-sensitive Language is a language generated by a context sensitive
grammar.

Definition 1: A context-sensitive grammar is one whose productions are all
of the form

XAY - Xvy

whereAOvandx,v, yO~ OT).

“Context-sensitive” implies the fact that the actual string modification is
given byA - v, while thex andy provide the context in which the rule may be
applied.

Definition 2: A context-sensitive grammar is one whose productions are all
of the form

X->Y

wherex, yO(V OT)", and |x|<|y}

This type of grammar is called “Non-contracting” as the derivation steps
never decrease the length of the sentential form.

This definition given above is mostly used. The two kinds of grammar are
almost equivalent generating the same languages with only the exception: One kind
of grammar permits languages to contain the empty string, while the other doesn't.

A languagel is context-sensitive if there exists a context sensitive
grammaiG such that eithet = L(G) or L =L(G) O{A} .

Example 5.1.1: Show that the languagé ={a"b"c"|n>1} is a
context-sensitive language.

Eolution

Let us prove this by showing a context-sensitive grammar for the language.

Chomsky Hierarchy 211

A kind of grammar is

S - alr|aAbcg
Ab - DbA,

Ac - Bbcg

bB - Bb,

aB - aalaaA

Let us see how this works by looking at the derivatioa’dfc>.

SO aAbcO abAcO abBbcc
0 aBbbccO aaAbbcc aabAbcc
0 aabbAccO aablBbccc
0 aabBbbcccO aaBbblbccc
0 aaabblzcc

This uses the variablédsandB. Since the language is not context-free, itis
said to becontext-sensitive language.

5.2 LINEAR BOUNDED AUTOMATA

A Turing machine has an infinite supply of blank tape. A linear-bounded
automaton is a Turing machine whose tape isamngguares long, whefg’ is

the length of the input string aads a constant associated with the particular
linear-bounded automaton.

THEOREM (1): For every context-sensitive languade there existsa
linear-bounded automatd such that. =L(M), i.e.,M accept exactly the
strings ofL.

THEOREM (11): For every languagd. accepted by a linear-bounded
automaton that produces exadtlpr L —{A}, depending on the definition
of context sensitive grammar.

5.3 RELATIONSHIP OF OTHER GRAMMARS
THEOREM (1): Every context-free language is context-sensitive.

Proof: Theproductions of a context-free language have the farmv. The
productions of a context-sensitive language have theXaym. xvy wherex
andy are permitted to bk.

Hence the result. O

THEOREM (I1): There exists a context-sensitive language that is not
context-free.

212 Theory of Automata, Formal Languages and Computation

Proof: The languagda"b"c"|n>=0} is not context-free (which could be
proved using a pumping lemma).

It can be shown that it is context-sensitive by providing an approprite
grammar.

The productions of one such grammar is given here.

S &ABC S &8C A - aABC
A_-aBC CB-BC aB- ab
bB - bb bC - bc cC - cc

THEOREM (I): Every context-sensitive language is recursive.

Proof: A context-sensitive grammar igncontracting. Moreover, for any
integer n there are only a finite number of sentential forms of lemgth
Therefore, for any stringg we could set a bound on the number of derivation
steps required to generate hence a bound on the number of possible
derivations. The stringv is in the language if and only if one of these
derivations produces.

5.4 THE CHOMSKY HIERARCHY

The Chomsky Hierarchy, as originally defined by Noam Chomsky, comprises
four types of languages and their associated grammars and machines.

Language Grammar Machine Example
Reguladan- Regulargrammar Deterministic a
guage —Right-lineargrammar or

—Left-lineargranmar Nondeter-

ministic

finite-state

acceptor
Context-free Context-freegranmar Nondeter- a'n"
language ministic

pushdown

automaton
Context-sensi Contextsersitive Linear- a'n"c"
tive language grammar bounded

automaton
Recursively Unrestrictedgranmar Turing Any
enumerable machine computable
language function

Chomsky Hierarchy 213

5.5 EXTENDING THE CHOMSKY HIERARCHY

So far we have discussed about other types of languages besides those in the
“classical Chomsky hierarchy. For example, we noted that deterministic
pushdown automaton were less powerful than nondeterministic pushdown
automata. The table below shows a table of some of the language classes we
have covered that fit readily into the hierarchy.

Language Machine

Reguladanguage Deterministicor Non-deteministic
finite-state accepr

Deterministiccortext-freelanguage DeterministidPushdown Automaton

Context-fredanguage Non-deterministipushdown Autom
aton

Context-Sensitivlanguage Linear-boundediutomaton

Recursivdanguage Turing machine that halts

Recursivelyenumerable laguage Turing machine

It should be noted that not all language classes fit into a hierarchy. When
linear languages are considered, they fit neatly between the regular languages
and the context-free languages. However there are languages that are linear but
not deterministic context-free, and there are languages that are deterministic
context-free but not linear.

5.6 UNRESTRICTED GRAMMAR

The grammars in the Chomsky hierarchy allows productions of the form

a-B

wherea andpB are arbitrary strings of grammar symbols, witi A.
These types of grammars as called “Unrestricted grammars”. The 4-tuple
notationG = (V, T, P,S) is used for unrestricted grammars also.

L(G) ={w|wisin T" and SO w}
ﬁ denotes the reflexive and transitive closure of the relation

THEOREM (1): If L isL(G) for unrestricted gramm& = (V,T,P,S), thenL
is an r.e. language.

THEOREM (11): If L is an r.e. language, thérn= L(G) for some unrestricted
grammaiG.

214 Theory of Automata, Formal Languages and Computation

5.7 RANDOM-ACCESS MACHINE
A randon access machine is defined as follows:

Data Types:Theonly data type supported is the Natural Numbers 0, 1, 2, 3,
......... But the numbers may be very large.

Variables: An orbitrary number of variables are allowed. Each variable is
capable of holding a single natural number. All variables are initialized to O.

Tests: Theonly test allowed is <variable> = 0.
Statements:Thereare the following types of statements in the language:

(a) if <test>then <statement> else <statement>;
(b) while <test> do <statements>;

(c) <variable>: = <variable> +1; (increment)

(d) <variable>: = <variable> —1; (decrement)

It is to be noted that decrementing a variable whose value is already zero
has no effect.

Statements to be executed in sequence (<statement>; <statement>;
<statement>; are allowed and parantheses are used to group a sequence of
statement into a single statement. This language is very equivalent in power to
a Turing machine. This can be proved by using the language to implement a
Turing machine, and then using a Turing machine to enulate the language.

This language is so powerful to compute anything that can be computed in
any programming language.

GLOSSARY

Context sensitive language:Language generated by a context-sensitive
grammar.
Context-sensitive grammatr: It is one whose productions are of the form

XAy - \Vy

whereAOV andx, v, yO(V OT) .

Linear Bounded automata (LBA): It is a TM whose tape is ordyn squares
long, where'n’ is the length of input string and is a constant
associated with the LBA.

Chomsky hierarchy: Has4 types of languages viz.,

(&) Regular language

(b) Context-free language

(c) Context-sensitive language

(d) Recursively enumerable language.

Chomsky Hierarchy 215

Unrestricted grammar: Production of the formo — B wherea, are

abrwbdE

o

10.

11.
12.

W

arbitrary strings of grammar symbols, withz A forms unrestricted
grammar.

REVIEW QUESTIONS

What do you mean by a context-sensitive grammar?

What do you mean by a context-sensitive language?

What do you mean Linear bounded automata?

Prove: “Every context-free language is context-sensitive”.

Prove: “There exists a context-sensitive language that is not
context-free”.

Prove: “Every context-sensitive language is recursive”.

Given an example for

(a) Regulatanguage (b) Context-free language.

Give an example for

(a) Context-sensitive language (b) Recursively enumerable language.
What do you mean by Chomsky hierarchy of languages?

What are the machines corresponding to each of the following?

(&) Recursively enumerable language

(b) Context sensitive language

(c) Context-free language

(d) Regular language.

What do you mean by unrestricted grammar?

What do you mean by a random access machine?

EXERCISES

Check whether the language given by
L={a"b"| n=1

is a context-sensitive language or not.
Check whether the language

L={1"0"|n>3

is a context-sensitive language or not.

Explain the Chomsky hierarchy of languages with an example.
Explain the concept of unrestricted grammar with examples.
Show that every context-free language is context sensitive.

216

Theory of Automata, Formal Languages and Computation

10.

Prove that exists a context-sensitive language that is not context-free.
Show that every context sensitive language is recursive.

SHORT QUESTIONS AND ANSWERS

What is acontext-sensitive language?

A language generated bycantext-sensitive grammar is called
context-sensitive language.
Define acontext sensitive grammar.

A context-sensitive grammar is one whose productions are all of the
form

XAY - XMy
whereAOvandx, v, yd OT)".

Give an alternative definition @bntext-sensitive grammar.
A context-sensitive grammar is one whose productions are all of the
form

X=-y

wherex, ydV OT)" and |x|<|y]

What is meant bynon-contracting” grammar?

Grammar is which the derivation steps never decrease the length of
the sentential form is called a ‘non-contracting’ grammar.
When is a language said to be context sensitive?

A languagel is context-sensitive if there exists a content-sensitive
grammairG, such that eithdr = L(G) or L =L(G) O{N\}
Give an example for eontext-sensitive language.

L={a"b"c"|n>1 is an example of a context-sensitive language.

What is dinear bounded automata?

A linear bounded automaton is a Turing machine whose tape is only
an squares long, where ‘n’ is the length of the input stringcaisla
constant.

Say True or False: “Every context-free language is context-sensitive.”

TRUE.

Say True or False: “There exists a context-sensitive language that is not
context-free.”

TRUE.

Say True or False: “Every context-sensitive language need not be
recursive”.

FALSE, every context-sensitive language is recursive.

Chomsky Hierarchy 217

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Give an example of a regular language
a*.
Give an example of a context-free language?
a"o".
Give an example of a context-sensitive language
a"b"c"
Give an example of a recursively enumerable language.
Any computable function is an example.
What are kinds of regular grammars?
(&) Right-linear grammar.
(b) Left-linear grammar.

Give an example of a machine which applies context-free language.
Nondeterministic Pushdown Automaton

Give an example of a machine which applies context-sensitive
language.
Linear Bounded Automaton

Give an example of a machine which applies recursively enumerable
language.

Turing machine.
What is the grammar corresponding to a recursively enumerable
language.

Unrestricted grammar.
What are the languages the Chomsky Hierarchy describes?

(&) Regular language

(b) Context-free language

(c) Context-sensitive language

(d) Recursively enumerable language.

What areUnrestricted grammars?
The grammars in the Chomsky hierarchy allows productions of the
form

a-pB
wheren andB are arbitrary strings of grammar symbols, with A.
These grammars are calléthrestricted grammars”.

Mention the types of statements in the language raihdom access
machine.
(a) if <test>then <statement> else <statement>;

(b) while <test> do <statement>;
(c) <variable>: = <variable> + 1; (increment)
(d) <variable>: = <variable> — 1; (decrement)

Chapter 6
Computability

6.1 FORMAL SYSTEMS

The necessary properties of a satisfactory formal system are as follows:

() Completenessit should be possible either to prove or disprove any
proposition that can be expressed in the system.

(b) Consistency:lt should not be possible to both prove and disprave
proposition in the system.

Consistency becomes crucial if it becomes possible to prove and disprove
some proposition in the system, which means the same can be done for every
proposition in the system.

In the late 1800’s there were a lot of mathematicians who were working on
a method of putting together all of mathematics, starting from the axions of set
theory.

In fact, sets can have other sets as members. In 1901 Bertrand Russel
discovered the Russel's Paradox:

Russel's Paradox

“Consider the set of all sets that do not have themselves as a member. Is this set
a member of itself?”

This problem was tried to be resolved by the way of defining “type”. This
theory of types though not accepted fully have paved way for new
philosophies of mathematics.

Godel was able to express proofs as numbers like considering a computer
program to be a very large binary number. Godel proved the following result:

“If it is possible to prove, within a formal system, that the system is
consistent, then the formal system is not, in fact, consistent.”

Equivalently, we can say,

“If a formal system is consistent, then it is impossible to prove (within
the system) that it is consistent.”

Computability 219

This particular result shows that any attempt to prove mathematics
consistent is foredoomed to failure. It is still possible to prove a system
consistent by logical arguments outside that system, provided the outer system
is known to be consistent.

6.2 RECURSIVE FUNCTION THEORY

It is seen that a sufficiently powerful formal system cannot be both consistent
and complete as proved by Godel. Simple arithmetic on integers is an example
of a system that is “sufficiently powerful”. It is always preferred to give up
completeness rather than consistency, because in a consistent system any
proposition can be proven.

Ideally, we wanted to have an algorithmic theorem proving procedure to
distinguish between the provable propositions and unprovable ones. Alan
Turing invented Turing machines in an attempt to solve this problem. With the
halting problem, Alan Turing had shown that it is not possible to distinguish
between soluable and insolvable problems. Similar results were arrived at by
other scientists. Church invented “Recursive Function Theory”.

6.3 PRIMITIVE RECURSIVE FUNCTIONS

This section describes the basic ideas behind recursive function theory.

The Recursive functions are described over the natural nuinbéds 1,
2,3, ... }. Recursive functions are looked at as “Pure Symbol Systems”.
Numbers are not used in the system, rather, we use the system to construct both
numbers and arithmetical functions on numbers. Its a different numbering
system, in the same way as Roman numerals are different. The correspondence
is as given below.

2(x)=0, 2x)) =1 (L 4x)) = 2.....

In order to translate to decimal, just count the numbeisafurrounding
the centrak(x).

(a) Zero Function: z(x) = z(), for allx, y[O1.This is our “zero”; it is written
as a function so we don’t have to introduce constants into the system.

(b) Successor Function s(xXhis function informally means+ 1. Formally,
it does not return a value. It just lies there, the resupdis s(x).

(c) Projector Function:

220 Theory of Automata, Formal Languages and Computation

These priectorfunctionsare a way of extraictg one of the parastersand
discardinghe rest. We define only, andP, as only funtionsof no more
than two argmentsare only discused.

Definition: A total functionf overN is primitive recursive if (i) it is any one of
the three initial functions [zero function, successor function and Projector
Function] or (i) it can be got by applying composition and recursion finite
number of times to the set dafitial functions. This is dealt with in the
subsequent sections.

Example 6.3.1: How are the following functions defined.

(@) Zero functionz(x)
(b) Successor functiof(x)
(c) Projection functiorP," (x).

Eolution

(&) Zero functionz(x) =0
(b) Successor functiof(x) =x + 1
(c) Projection functiorP" (x,, X,,...... X,) = X%

Example 6.3.2: How are the following functions defined?

(@ nil (x)
(b) consa(x)
(c) consb(x)

Eolution

@ nil (x)=A
(b) consa(x) =ax
(c) consb(x) =bx

m Find out the values of
(@ Z(80)
(b) P'(2376
© P'2367
(d) S(79)

With Z as thezero function,S as thesuccessor function arld as the
projection function.

Computability 221

Eolution

(&) Z(80) = Osince zero functiod(x) = 0.

(b) We know thaP" (x,, X,,...... %)= %,
Therefore we have
P,(2376=3

(©) PY(2367=6
(d) S(x)=x+1
ThereforeS(78) =78 + 1 = 79.

Example 6.3.4: Obtain the values of
(&) nil (ababab

(b) consa(babg
(c) consb(ababal)

with the usual definitions of functions ovEr

Eolution

(&) nil (ababah) =A
(b) consa(babg = ababa
(c) consb(ababal) =bababab

Example 6.3.5: Check whether the following functions are Total
functions or not. If a function is not total, specify the arguments for which
the function is defined.

(@ f(x)=x4over N

(b) f(x)=x*-9overN

(c) f(X)=x+4overN

(d) f(x)=x?over N

(e) f(x)=5x>+2x*+60ver N.

Eolution

(@) f(x)=x/4over N.

The function is defined for all natural numbers divisible by 4.
(b) f(x)=x*-9 over N.

The function is defined for al>3.
(c) f(x)=x+4over N.

The function is defined for all natural numbers.

222 Theory of Automata, Formal Languages and Computation

(d) f(x)=x?over N.

The function is defined for all natural numbers.
(e) f(x)=5x>+2x*+6

The function is defined for all natural numbers.

6.4 COMPOSITION AND RECURSION

If g,, 9,, 9; andh are previously defined functions, these functions can be
combined to form new functions. These functions can be combined only in
precisely defined ways.

(@) Composition: f (X, ¥) = h(g, (X, ¥),9,(X, ¥)). This allows us to use
functions as arguments to functions.

(b) Primitive Recursion This is a structured “recursive routine” with the
form:
f(x0)=9,(x)
f(x s(y)) = h(g, (x, ¥, 95(f (x, ¥)))
“A primitive recursive function is a function formed from the

functions z, s, p, and p, by using only composition angrimitive
recursion”.

The recursion should be guaranteed to terminate. In order to ensure this,
the function should carry along an extra parameter that is “decremented” every
time the function is called(x) replaced by], and halts the recursion when it
reaches “zero"Ax)), i.e.,

F ey SX)) = v ey Xy

The recursive function should appear only once in the definitions (RHS of
the definition). This in fact, avoids various forms of “fancy” recursion.

Examples: The following examples show how these can be used to define
more complicated functions.

(a) Addition of two numbersAccording to the form, it is:
add (x, z(x)) = 9, ()
add (x, (y)) = h(g, (x ¥),9s(add (x, ¥)))
By choosingg, = p,, 9, = P, g;=sand h= p,, we get

add (x, z(x)) = py (x)
add (x,X(y)) = p2(Pi(x Y), Sadd (x, ¥)))

Computability 223

which sinplifiesto
add (x, z(x)) = x
add (x,s(y)) = s(add (x, Y)).

As an example, add (3, 2) works as follows:

add (g £ £)))), (€ 4x))))
S(add (4 ¢ £)))), Az (x))))
(dadd(£ ¢ 6 &)))), 2(x)))))
% ¢ 6 @)

(b) Multiplication of Two NumbersThenew feature is the use of a previously
defined function, add, in the definition of a new function. We skip the step of
playing around with the, functions to pick out the right parts, and go to the
simplified form.

multiply (X, S(Zx))) = x
multiply (x, (y)) = add(x, multiply (x, y))

(c) Predecessor of a Numbeitheimportant catch here is that it will not be
able to drop below zero, so effectively 0 — 1 = 0. In order to show this, we write
a dot above the minus sign and call it “monus”. The function is easy to define:

pred (z(x)) = z(x)
pred (S(x)) = X
(d) Subtraction:
subtrad (X, z(x)) = x
sultract(x, (y)) = pred (subract(x, y)).
Example 6.4.1: Given

G =XyY=x+y
g; = (X y) =3xy
05 = (X y) =12x

andh(x, y, z) = x + y+ zare funtionsoverN. Obtain the comositionof h
with g;, 9y, -

Eolution

h(fo(x y); Fo(% y); T4(x ¥) = h(x+ y,3xy12%
=X+ y+3xy+12x.

Therefore the composition bfwith g,, g, andg, is given by a function

f(x, y) = X+ y+3xy+12x

224 Theory of Automata, Formal Languages and Computation

Example: Given f, =x2x5, f, =\, f; =5x,x, all defined overs
with the pair &y, y,) andg(x,, X,, X3) = 5%,X5; again defined ovex. Obtain
the composition of with f,, f, andf,.

Eolution

2

9(fy, F2, F3) = 9(xPG, A 5% %)
= BA (5%, X,)
= 25%; X,.
Therefore the composition gfwith f;, f, andf, is given by
h(X,, X;) = 25X X,.

Example 6.4.2: Prove that the functiofi, (X, y) = X+ yis primitive
recursive.

Eolution

A function f of (n + 1) variables is defined by recursion if there exists
functiong of ‘n’ variables, and a functidmof (n + 2) variables anflis defined
as follows:

F (X Xgheennen %,0) = 9(Xy, Xpy.n e X) (1)
F (X, Xpyeennen X, Y1) = g(Xg, Xppeeenn Xy W (X Xppernnen X,) (2)

f.qq (X Y) is @ function of two variables. In order tHgf, (x, y) is defined by
recursion, we require a functiog ‘of a single variable and a functiol’ ‘of
three variables.

f g (X0) = x+0= x (3)
Comparingf 4 (%, 0) with the left hand side of (1), we have
9(x) = x= p;(x) 4)

(Note thatp is the projector function).
Also we have

fagg 6 Y+ = x+(y+D=(x+ y+1=fq(x y) +1 (5)
Comparingthis with L.H.S. of equi#on (2), we have

h(x, ¥ F (% ¥) = faaa(X y) +1
= S(f g9 (% Y)
= S(PS (% ¥ Fogg (% 1))

Let us assumb(x, y, 2) = € p3 (X, Y, 2)).

Computability 225

From (4) we have
9= px.
Therefore we havé that is got from the initial functionpS ands by

composition and 4 is got by recusion usingiandh.
Hence we see here thi},, is got by applying composition and recursion
finite number of times to initial functions, p5 ands.

Thereforef 4 (X, y) = x+ yis “primitive recursive”.

Example 6.4.3: Show that the functionf (x)=x? is primitive
recursive.

Eolution

Givenf (X) = X%
f(x+1)=(x+D%= x*+2x+1
= (%) + 4 4x)))) [Py (X) + L 2X)).
Thus we havé(x) shown to be obtained by recursion and addition of primitive
recursive functions.

Example 6.4.4: Prove that the function given by the signum function

o= X0
% - M x>0
is primitive recursive.
Eolution
Given that the signum function
n(x) = EO =0

S T x>0

Now,
sgn(0) = z(0)

sgn(x +1) = s(Z p; (x SgNn(¥))))
Therefore the given signum function is primitive recursive.
Example 6.4.5: Prove that the function

f(x y)=max(x Y

is primitive recursive.

226 Theory of Automata, Formal Languages and Computation

Eolution

Given

f(x)=Max(x y)
= y+(x—)
where— represents “Monus” given by
pred (z(x)) = z(x)
pred ((x)) = X
Therefore the given functidi(x, y) is primitive recursive.

Example 6.4.6: Prove that the functioR(x, y) = Remaindei(xly) is
primitive recursive.

Eolution

Wheny = 0, R(X, ¥) = R(x, 0) = 0. Whery is increased in its value by 1, the
remaindetR(x, y) also increases by 1.
Wheny = x, we haveR(x, y) = 0.

Therefore we have
R(x, y+1) = S(R(x Y) * sgn(x—s(R(x, Y))).

wheresis the successor functies, represents the monus function (defined in
the usual way) and sgr)(represents the signum function.
Therefore we have the remainder function defined by

R(x0) =0
R(x, y+1) = S(r(x, ¥)) * sgn (x—S(R(x,).
Hence the functiofR (X, y) = RemaindeKx / y) is primitive recursive, as it
obtained by applying composition and recursion to known primitive functions.
Example 6.4.7: Show that the characteristic functipp, (x) defined by
() = EO xz0
X9 - 0, x=0

is primitive recursive.

Eolution

Given the characteristic function

Computability 227

0, x#0

X(g (X)=%l <=0

ie. Xig @ =1
Xig (X+1) =X p san(px (X))

where prélecessofunction pg (x) is given by

(X)_Eb(—l xz0
PR x=o0

Since we are able to represent the function as a combination of the primitive
functions, it is proved to be primitive recursive.

Example 6.4.8: Show that the functiopg(X), the predecessor function
given by
-1 x#0

0 =0
Pr 00 x=0

is primitive recursive.

Eolution

Given the predecessor function
[X
Pr(X) =0
O

We have
Pr(0)=0
Pr(Y+D) = pf (Y, Pr(Y)

(Note: pg represents predecessor function apﬁj represents projector

function).
Thus the given predecessor functigg(x) is defined by recursion using
an initial function (projector function).

Hence we have the function to be primitive recursive.

Example 6.4.9: Prove that the function
g(x, y) = x

is primitive recursive.

228 Theory of Automata, Formal Languages and Computation

Eolution

Giveng(x, y) = xX.
We haV@(X, y) |y=0 = g(X,O) = XO =1

and
g(x, y+1) = xtg(x, y)
= PP (% Y96 Y* PS5 (X Vg% Y)

Thus we have been able to represent the given function as a combination of
initial function. Therefore the given function is primitive recursive.

Example 6.4.10: Show that the function given by

X, x=0
Abs(x) = %
% x<O0

is primitive recursive.

Eolution

Given the absolute value function as

gx, x=0
Abs(x) =[O
% Xx<O0

We are able to write

Abs(x - y) = (x— Y +(y— ¥

Hence the function is primitive recursive as we have been able to represent the
Absolute function as a combination of initial function/or function (monus)
defined in terms of initial function.

Example 6.4.11: Prove that the characteristic function of a finite subset
of N is primitive recursive.

Eolution

Let us initially prove that the characteristic function

(X)_EO, X#0
X _E’L x=0

is primitive recursive.

Computability 229

ie. Xig 0 =1
Xig X+D) =X p sIn(pr (X))

where prélecessofunction pg (x) is given by

(X)_Eb(—], xz£0
Pr _D 0, x=0

Hencex q (X) is primitive recursive.
Now, we have

x{al,az,...an} = X{a]l +)Q alp

Since we have proved that,, is primitive recursive and also the fact that the
sum of primitive functions is also primitive recursive, it is proved that the
characteristic function of a finite subsetNfis primitive recursive. Hence
proved.

6.5 ACKERMANN’'S FUNCTION

Ackermann'’s function is an example of a function that is mu-recursive but not
primitive recursive. Mu-recursive functions are said to have the power of
Turing machine. It is defined as follows:

AQ y) = y+1

A(x0) = A(x-1)

Al Y) = AX-L A% y-1)
It is otherwisedefined as

AQ y)= y+1
AX+10) = A(XJ
Ax+1 y+D) = A, A(x+1Y))
A(X, y) can be computed for eveny, §). HenceA (x,y) is a total function. But
Ackermann’s function is not primitive recursive but recursive.

Example 6.5.1: Calculate A(1, 1) and A(1, 2) where A(X, y) represents
Ackermann’s function.

Eolution

We have Ackermann’s function given by
AQ y)= y+1 (1)
A(x+10) = A(x. D)
Ax+1 y+D = A(x Ax+1Y)) 3)

230 Theory of Automata, Formal Languages and Computation

Therefore, to calculat&(1, 1), we have

ALY = A0+10+])
= A0 ALO) (using(3))
= A0 AGD) (using(2)
= A0,2 (using (1))
A(1,) =3 (using (1))

AR2) = A(l+1 1+)
= AL ARZY) (usng(3))

A@2D = Al+1 0+)
\ =ALA2 0 (using(3))
ow. = AL ALD) (using(2)
= A@L A(LD)

= A0 AL2) (using(3)
=A(0,9
A(2,1) = 5.

Therefore, AR2=A1 A2
= ALY

AL5) = A(0+1 4+)
= A0, AL4) (Using(3))
Now, =1+AQ4 (Using(1)
=1+ A(0+13+1)
=1+ AQ A1 3)
=1+1+A(1 3
=1+1+1+A(1 2
=1+1+1+ 4
ALD) =7

ThereforeA(2, 2) = 7.

GLOSSARY

Formal system: Shouldbe complete and consistent.

Completeness: Should be possible either to prove or disprove any
proposition that can be expressed in the system.

Consistency: Shouldnot be possible to both prove and disprove a proposition
in the system.

Russel's Paradox: Considetthe set of all sets that do not have themselves as
a member. Is this set a member of itself?

Computability 231

Primitive Recursive function: Totalfunction is primitive recursive if () itis

any one of three initial functions (zero function, successor function and
Projector function) or (b) it can be got by applying composition and
recursion finite number of times to the set of initial functions.

Initial functions: Zero functionsuccessor function and projector function.
Composition of functions: Allows us to use functions as arguments to

functions.

f (% ¥)=h(g (% ¥),92(x ¥)

Ackermann’s function:

©OCoNoaRrDE

H
o

AQy) = y+1
AX0) = A(x—-1)
A(x, y) = AX-LA(x y-1)

REVIEW QUESTIONS

What are formal systems?

Define (a) Completeness (b) Consistency in Formal Systems.
State the Russel's Paradox.

What are recursive functions?

Give examples for recursive functions.

What is a primitive recursive function?

Give examples for primitive recursive function.

Explain composition of functions.

What do you mean by primitive recursion?

What is Ackermann’s function?

EXERCISES

Obtain the values of
(@ Z(90)

(b) p3(23786

© piL234567
(d) $(82).

Obtain the values of
(&) nil (abababab
(b) consa(ababab
(c) consb(abababa

232 Theory of Automata, Formal Languages and Computation

3. Determine whether the following functions are total functions or not. If
a function is not total, specify the arguments for which the function is
defined.

(@) f(x):gover N

(b) f(x)=x*-250wr N
(c) f(x)=3x*+2x+50ver N
(d) f(x)=x+8owver N.

4. Given g;(X y)=x+2yg,(x, y)=2xy and g,;(x y)=6x and
h(x, y, z2) =2x + y+ zare functions oveX. Obtain the composition of h
with g;, g, andgs.

5. Givenf, =2x2x3, f, = A, f5 = 2x,x, all defined ove&. With the pair

(X, y;) and g(x,, X,, X3) =15%, X; again defined oveE. Obtain the

composition ofy with f,, f, andf;.

Show that the functiof,,;, (X, y) = Xyis primitive recursive.

Show that the functiof{x, y) = Min (x, y) is primitive recursive.

Show that the functio@(x, y) = Quotient(x/y) is primitive recursive.

Px -1

xz0
Show that the functiop(x) = 0 0 « 0is primitive recursive.
oo =

© oNo

10. Check whether the functiay(x, y) = X is primitive recursive or not.

11. Show that the functiofi (x) = ¥2is partial recursive function ovak
12. Prove that the function
O 4x if xis perfed sguare
f(x)=0 per .
Mx+1 otherwise
is primitive recursive.
13. ComputeA(2, 4) andA(3, 3) wherA(x, y) is Ackermann’s function.

SHORT QUESTIONS AND ANSWERS

1. What are the properties of@mal system?
(&) Completeness
(b) Consistency
2. Define the termicompleteness’ of a formal system.
It could be either to prove or disprove any proposition that can be
expressed in the system.
3. Define the termconsistency’ of a formal system.
It should not be possible to both prove and disprove a proposition in
the system.

Computability 233

10.

11.

12.

What isRussel’s Paradox?
“Consider the set of all sets that do not have themselves as
member. Is this set a member of itself?”

What isGodel’s proof of numbers about.
“If it is possible to prove within a formal system that the system is
consistent, then the formal system is not, in fact consistent.”

What are the different primitive recursive functions?
(&) Zero function

(b) Successor function
(c) Projector function
What is azero function?

z(x) = z(y), for all x, yO1
This is our “zero”, it is written as a function so we don't have to

introduce constants into the system.

What is asuccessor function?
This function informally means+ 1. Formally, it does not return a
value.

What is a Projector function?

P (X) = X
pL(X Y) = X
P& Y=Y

These functions are a way of extracting one of the parameters and
discarding the rest.
What is gprimitive recursive function?

A Total functionf overN is primitive recursive if (a) it is any one of
the threeinitial functions [zero function, successor function and
projector function] or (b) it can be got by applying composition and
recursion finite number of times so the set of initial functions.
What do you mean bgomposition of functions?

Use of function as arguments to functions represent composition of
functions.

f (Xv y) = h(gl(xv y)1g2(x’ y))

What isprimitive recursion?
This is a structured “recursive routine” with the form

f(x0) = g, (x)
f (% y)) = (g, (x, ¥), 95(f (x, ¥)))

A primitive recursive function is formed from the functians, p,
andp, by using only composition argtimitive recursion.

234 Theory of Automata, Formal Languages and Computation

13. Give examples foprimitive recursive functions
(@) fagq (% ¥) = x+y
(b) f(x)=x°
x=0
x>0
14. Are the following functions primitive recursive?
(@) R(x, y) = Remainderxly).
(b) f(x y)=Max(xy

(©) san(x) = é’i’

(@ YES
(b) YES
15. Are the following functions primitive recursive?
x-1 x#0
a X) =
@ pPr(x) EO, <=0
0, x#0
b X) =
(B) Xiq () EIL x=0
(@ YES
(b) YES
16. Give an example of a function that is mu-recursive but not primitive
recursive.

Ackermann’s function.
17. Define theAckermann’s function.
AQ y)= y+1
A(x+10) = A(x,D
AX+L y+D) = A AX+1Y)

18. Is Ackermann’s function recursive/primitive recursive?
It is recursive not primitive recursive.

19. What is aformal system?
A system which is complete and consistent is a formal system.

20. What are thénitial functions?
(&) Zero function.

(b) Successor function.
(c) Projector function.

Chapter 7

Complexity Theory

7.1 INTRODUCTION

There are two kinds of measures with Complexity Theory: (a) time and
(b) space.

(i) Time Complexity:lt is a measure of how long a computation takes to
execute. As far as Turing machine is concerned, this could be measured as the
number of moves which are required to perform a computation. In the case of a
digital computer, this could be measured as the number of machine cycles
which are required for the computation.

(i) Space Complexitylt is a measure of how much storage is required for a
computation. In the case of a Turing machine, the obvious measure is the
number of tape squares used, for a digital computer, the number of bytes used.

It is to be noted that both these measures functions of a single input
parameter, viz., “size of the input”, which is defined in terms of squares or
bytes. For any given input size, different inputs require different amounts of
space and time. Thus it will be easier to discuss about the “average case” or for
the “worst case”. It is usually interesting to look at the worst-case complexity
because

() It may be difficult to define an “average case”
(b) Usually easier to compute worst-case complexity.

Order Sta tistic

In Complexity theory, equations are subjected to extreme simplifications.

If an algorithm takes exact§on® + 5n” — 5n+ 56machine cycles, where
‘N’ is the size of the input, then we shall simplify thi©@"). This is called the
“order statistic”.

It is customary to (a) drop all terms except the highest-ordered one
(b) drop the co-efficient of the highest-ordered term.

For very large values of the effect of the highest-order term completely
swamps the contribution of lower-ordered term. Tweaking the code can
improve the coefficients, but the order statisfic is a function of the algorithm
itself.

236 Theory of Automata, Formal Languages and Computation

Example 7.1.1: Given P(n)=a,+an+ arf +---+ g f. Show
that

P(n)=0(n™).

Eolution

Lethy =|a,l, b =[&], B =l anl-
Then forn=1,

P(y<sh +bn+ brf+--o +RH1=HT+

<(by+b +0oe +h,) " =Mn"
where M =|aphlay b+ fay |
Therefore P(n)=0O(n™).

Example 7.1.2: Find the order of the following polynomials:
(@ f,(n)=5n+3n+1
(b) f,(n)=n>-400n°

Eolution

@ (fy(n)=0(n%).
(b) f,(n)=0(n).

7.2 POLYNOMIAL-TIME ALGORITHMS

A polynomial-time algorithm is an algorithm whose execution time is either
given by a polynomial on the size of the input, or can be bounded by such a
polynomial. Problems which can be solved by a polynomial-time algorithm
are calledtractable” problems. As an example, most algorithms on arrays can
use the array siza, as the input size. In order to find the largest element in any
array requires a single pass through the array, so the algorithm which does this
is of O(n), or it is a “linear time” algorithm.

Sorting algorithms také&(n logn) or O(n?) time.Bubble sort takes linear
time in the least case, bD{n®) time in the average and worst cases. Heapsort
takesO(n log n) time in all casegQuicksort take®(n log n) time on average,
butO(n?) time in the worst case.

As far asO(n log n) is concerned, it must be noted that the base of the
logarithms is irrelevant, as the difference is a constant factor, which is ignored.

All programming tasks we know have polynomial solutions. It is not due
to the reason that all practical problems have polynomial-time solutions.

Complexity Theory 237

Rather, it is because the day-to-day problems are one for which there is no
known practical solution.

7.3 NON-DETERMINISTIC POLYNOMIAL TIME ALGORITHMS
A nondeterministic computation is viewed as:

() when a choice point is reached, an infallible oracle can be
consulted to determine the right option.

(i) When a choice point is reached, all choices are made and
computation can proceed simultaneously.

A Non-deterministic Polynomial Time Algorithm is one that can be
executed in polynomial time on a nondeterministic machine. The machine can
either consult an oracle in constant time, or it can spawn an arbitrarily large
number of parallel processes, which is obviously a nice machine to have.

Summary to common time complexities:

Complexity VerbalDescrigion Feasilality
0(1) constantime feasible
O(logn) log time feasible
O(n) lineartime feasible
O(nlogn) log lineartime feasible
0o(n?) quadraticime sometimegeasible
o(n®) cubic time less often fesible
oE2") exponentiatime rarely feaible

7.4 INTEGER BIN PACKING

Assume we are given a setrointegers. Our task is to arrange these integers
into two piles or bins, so that the sum of the integers in one pile is equal to the
sum of the integers in the other pile.

For example, given the integers

{19, 23, 32, 42, 50, 62, 77, 88, 89, 105, 114, 123, 176}

These numbers sum to 1000. Can they be divided into two bins, bin A and
bin B, such that the sum of the integers in each bin is 5007

There is an obvious nondeterministic algorithm: For each number, putitin
the correct bin. This requires linear time.

There is also a fairly easy deterministic algorithm. There are 13 numbers
(n = 13), so form the 13-bit binary number 0000000000000.

238 Theory of Automata, Formal Languages and Computation

Fori ranging from 1 to 13: if bit i is zero, put integémto bin A; if biti is
one, put integerinto bin B. Test the resultant arrangement.

If we don’t have a solution yet, add 1 to the binary number and try again. If
wereach 1111111111111, we will stop and conclude that there is no solution.

This is fairly simply algorithm; the only problem is that it tak&g&")
time, that is, “exponential time”. In the above example, we may need to try as
many a®2"* arrangements. This is fine for all small values of n (such as 13), but
becomes unreasonable for large valuas of

We could find many shortcuts for problems such as this, but the best we
can do is improve the coefficients. The time complexity remai®)).
Problems that require exponential time are referred tdlrdamsactable”
problems.

There are many variants to this problem.

* We can have mtiple bins.

* We can have a gjte bin, and the object is to pack as much asijdes
into it.

* We can pack objects with miigle dimersions(volumeand weight, for
example).

7.5 BOOLEAN SATISFIABILITY

Assume we haveBoolean variables, viz., A, B, C, and an expression in the
propositional Calculus i.e., we can use and, or and not to form the expression.
Is there an assignment of truth values to the variables, (for example, A = true,
B = true, C = false), that will make the expression true?

Here is a nondeterministic algorithm to solve the problem: For each
Boolean variable, assign if the proper truth value. This is a linear algorithm.
We can find a deterministic algorithm for this problem in much the same way
as we did for the integer bin problem. Effectively, the idea is to set up
systematic procedure to try every possible assignment of truth values to
variables. The algorithm terminates when a satisfactory solution is found, or
when all2" possible assignments have been tried. Again, the deterministic
solution requires exponential time.

Example 7.5.1: Check whether the boolean formula
O=(x0y0O(x02)

is satisfiable or not.

Eolution

A Boolean formula is satisfiable if some assignment of Os and 1s to the
variables makes the formula evaluate to 1.
Whenx =0,y =1 andz= 0, we have

Complexity Theory 239

0= @019 0(00)
=101
O=1

Therefore the Boolean formula is satisfiable.

Example 7.5.2: Check whether the formula
xOyOxOyoxo yorxay

is satisfiable or not?

Eolution

(Hint: Proceed in the same way as the previous problem).

7.6 ADDITIONAL NP PROBLEMS

The following problems have a polynomial-time solution, but an
exponential-time solution on a deterministic machine. There are literally
hundreds of additional examples.

(&) The Travelling Salesman Problem (TSR):salesman starting in Texas,
wants to visit every capital city in the United States, returning to Texas as his
last stop. In what order should he visit the capital cities so as to minimize the
total distance travelled?

(b) The Hamiltonian Circuit ProblemEverycapital city has direct air flights

to at least some capital cities. Our intrepid salesman wants to visit all the
capitals, and return to his starting point, taking only direct air flights. Can he
find a path that lets him do this?

(c) Linear Programming:We have on hand X amount of butter, Y amount of
flour, Z eggs etc. We have cookie recipies that use varying amounts of these
ingredients. Different kinds of cookies bring different prices. What mix of
cookies should we make in order to maximize profits?

7.7 NP-COMPLETE PROBLEMS

All the knownNP problems have a remarkable characteristic: They are all
reducible to one another. What this means is that, given any two NP problems
X andY,

(&) There exists a polynomial-time algorith to restate a problem of
type X as a problem of typ¥, and

(b) There exists a polynomial-time algorithm to translate a solution to
a typeY problem back into a solution for the tygeoroblem.

240 Theory of Automata, Formal Languages and Computation

This is what the “complete” refers to when we talk about NP-complete
problems. What this means is that, if anyone ever discovers a polynomial-time
algorithm for any of these problems, then there is an easily-derived
polynomial-time algorithm for all of them. This leads to the question.

Does P = NP?

No one has ever found a deterministic polynomial-time algorithm for any
of these problems (or the hundreds of others like them). However, no one has
ever succeeded in proving that no deterministic polynomial time algorithm
exists, either. The status for some years now is this: most computer scientists
don’t think a polynomial-time algorithm can exist, but no one knows for sure.

GLOSSARY

Measures of complexity: Time and space

Time complexity: Measureof how long a computation takes to execute.

Space complexity: Measure of how much storage is required far
computation.

Kinds of complexity analysis: (a) average case (b) worst case (c) best case

Polynomial time algorithm: An algorithm whose execution time is either
given by a polynomial on the size of the input, or can be bounded by
such a polynomial.

Heapsort complexity: O(nlogn) at all times.

Quicksort complexity: O(nlogn) time an averag&(n?) time in the worst
case.

Nondeterministic Polynomial time algorithm: Onethat can be executed in
polynomial time on a non-deterministic machine.

NP problem: How a polynomial-time solution, but an exponential time
solution on a deterministic machine.

TSP: Travellingsalesman problem.

REVIEW QUESTIONS

What is meant by complexity theory?

What do you mean by Time complexity?

What do you mean by space complexity?

Define order-statistic in complexity theory?

Define O-notation (BigO).

What do you mean by Polynomial Time algorithms?
What do you mean by non-polynomial time algorithms?

Noogok~owdPRE

Complexity Theory

241

10.
11.

12.
13.
14.
15.
16.

State some of the common time complexities.

Discuss the feasibility of the following complexicities
(2)0(1) (b)O(log n) (c)O(n) (d)O(nlogn)
(e) o) (f) o(n’) (9)O(2") (ho@")
What are heuristic algorithms?

Explain the following intractable problems

(a) Integer Bin packing

(b) TSP

What do you mean by Boolean satisfiablity?

What are P-class problems?

What are NP-class problems?

When are problems said to be NP-complete?

Give examples for

(@) class-P

(b) class-NP Problems.

EXERCISES

Prove the following

(@) n?+100logn is O(n?)
(b) n!is O(n")

(c) 3" is O(nl)

Given f(n)=5n°+n and g(n)=0(n%). Is the statement

f (n) — g(n = O(n) valid?

Determine the order of the following polynomials
(a) f,(n)=100n*+3n-1

(b) f,(n)=5n"-4n* - 200r".

Discuss the feasibility of algorithms with following time complexities.

(@)O(logn) (b)O(nlogn) (c)O(n*)

Discuss the feasibility of algorithms with following time complexities.

(@0(’) (b)OR") (c)O(nt)
Explain Boolean satisfiability with an example.
Verify whether the following formula

xOyodmxdy

is Boolean satisfiable or not.

242

Theory of Automata, Formal Languages and Computation

10.

11.

12.

SHORT QUESTIONS AND ANSWERS

What are the measures@dmplexity Theory?
(&) Time (b) Space
What is meant bsime complexity?
It is a measure of how long a computation takes to execute.

What is meant bgpace complexity?
It is a measure of how much storage is required for a computation.

How do you measure space complexity in a Turing machine?
It is the number of tape squares used.

How do you measure space complexity in a digital computer?
It is the number of bytes used in a digital computer which is
measure of space complexity.

What are the different cases of complexities?
(a) averge case

(b) best case

(c) worst case.
What isorder statistic?

In complexity theory, equations are subjected to extreme
simplifications.

If an algorithm takes exactBOn® + 5n° — 5n+ 56machine cycles,
where h' is the size of the input, then we shall simplify thim?).
This is called'order statistic”.

Determine the order of the polynomials
(@) f (n)=10n°+6n+1
(b) f,(n)=n>-2n°
(@) f,(n)=0(n%)
(b) f,(n)=0(n°)
What is aPolynomial time algorithm?
An algorithm whose execution time is either given by a polynomial

on the size of the input or can be by bounded by such polynomial is a
polynomial time algorithm.

What aretractable problems?
Problems which can be solved by a polynomial time algorithm are
called tractable problems.
What do you mean by saying that an algorithm i©) algorithm?
It means it is a linear time algorithm.
What are the time complexities €drting algorithms?
O(nlogn) or O(n?).

Complexity Theory 243

13.

14.

15.

16.

17.

18.

19.

20.

21.

Mention the time complexities of hubble sort in (a) best case
(b) average case and (c) worst case?
(a) Best caseO(n)

(b) Average caseO(n?)

(c) Worst case:0(n?).
Mention the time complexities @uicksort algorithm in (a) best case
(b) average case and (c) worst case.

(a) Best caseO(nlogn)

(b) Average caseO(nlogn)

(c) Worst caseO(n?)

Discuss the feasibility of the following complexities:
@0R") (®O(n®) (c)O(n®).

(@ O(2") - rarely feasible

(b) O(n®) - less often feasible

(c) O(n?) - sometimes feasible

Discuss the feasibility of the following complexities.
(@)O(nlogn) (b)O(n) (c)O@)

(@ O(nlogn) - feasible

(b) O(n) - feasible

(c) O(Q) - feasible
What is a non-deterministic Polynomial Time algorithm?

It is the one that can be executed in polynomial timeaon
non-deterministic machine.

What are the view points of a non-deterministic computation?
(&) When a choice point is reached, an infallible oracle can be
consulted to determine the right option.
(b) When a choice point is reached, all choices are made and
computation can proceed simultaneously.
Name some of thimtractable problems.
(a) Integer Bin packing
(b) Knapsack problem
(c) Travelling Salesman Problem
What is‘integer bin packing’ problem?

Assume we are given a setndhtegers. Our task is to arrange these
integers into two piles or bins, so that the sum of the integers in one pile
is equal to the sum of the integers in the other pile.

What isBoolean satisfiability?

A Boolean formula is satisfiable if some assignment of Os and 1s to

the variables makes the formula evaluate to 1.

244

Theory of Automata, Formal Languages and Computation

22.

23.

24,

25.

Name some of thEP problems.

(@) Travelling salesman problem

(b) Hamiltonian Circuit problem.
What is theTSP problem?

“A salesman starting in a certain city, wants the visit every capital
city in a country, returning to the city where he started. In what order
should be visit the capital cities so as to minimize the total distance
travelled?” This is the TSP.

Mention a remarkable characteristic of P Problems.

All NP problems are reducible to one another.
IsP =NP?

No one has proved or disproved that P = NP.

Chapter 8

Propositions and Pred icates

8.1 PROPOSITIONS

Mathematics is the study of the properties of mathematical structres.
mathematical structure is defined by a set of “axioms”:'@iom” is a true
statement about the properties of the structure.

“Logic” is the discipline that deals with the methods of reasoning. It gives
a set of rules and techniques to determine whether a given argument is valid or
not. True assertions which can be inferred from the trugétxioms are called
“theorems”. A“proof” of a theorem is an argument that establishes that the
theorem is true for a specified mathematical structure.

A “proposition” or “statement” is any declarative sentence which is true
(T) or false (F). We refer to T or F as the truth value of the statement.
Propositional calculus is the calculus of propositions.

Some illustrations below explain the concept well.

(@) The sentence “3 + 3 = 6" is a statement, since it can be either true
or false. Since it happens to be a true statement, its truth value is T.

(b) The sentence “2 = 0" is also a statement, but its truth value is F.

(c) “It will rain tomorrow” is a proposition. For its truth value, we
shall have wait for tomorrow.

(d) “Solve the following equation foy”’ is not a statement, since it
cannot be assigned any truth value whatsoever. It is an imperative,
or command, rather than a declarative statement.

(e) The Liar's Paradox:“This statement is false” gets us into a bind:

If it were true, then since it is declaring itself to be false, it must be
false. On the other hand, if it were false, then its declaring itself
false is alie, so itis true! In other words, if it is true, then it is false,
and if it is false, then it is true, and we go around in circles. We get
out of this bind by refusing to accord it the privileges of
statementhood. In other words it is not a statement. An equivalent
pseudo statement is “| am lying”, so we call fids's paradox.

Such sentences are called “self-referential” sentences, since they refer to
themselves.

246 Theory of Automata, Formal Languages and Computation

We use the letters, g, 1, S, for propositions. Thus for example, we
might decide that P should stand for the proposition “The earth is round”. Then
we shall write

p: “the earth is round”
to express this. We read this

p is the statment“the earth is round”.

8.1.1 Connectives

In order to make use of some keywords like and, ‘or’, ‘not’, etc. which are
called“sentential connectives”, itis required to have some ground rules before
making use of them. Let us now discuss about the different forms of
connectives.

(a) Negation (NOT): The negation ofp is the statementp;-which is read as
“not P". Its truth value is defined by the following truth table.

p ~p
T F
F T

wherep is the statement, T and F represent ‘True’ and ‘False’ respectively.

lllustration
(i) Givenp="3+3=6,we have
~ p="3+3%£6.

Note that P is false in this case, sinpds true.
(i) If p="2=0" then we have
~ p:"1£0'.
~ pis true in this case, singss false.

(i) If p="lloved either Nirmala or Padmaja”.
then we have

~ p: “l loved netherNirmala nor Padmaja”.

Herep is a hypothetical statement (but which was true!)
(iv) If p="All the doctors in this town are crooks”, then we have

~ p=“Not all the dotorsin this town are crooks”
or
~ p = “At least one of the daersin this town is not a crook”.

Propositions and Predicates 247

It is very important to be careful while negating a statement involving the
words “All” or “Some”. The use of these “quantifiers” is the subject of
“Predicate calculus”. p-is also written as p.

(b) Conjunction(AND): The conjunction ofp andq is the statemenp g,
which is read aspg'andqg”, whose truth value is defined by the following truth
table.

©
O
o0

m T 4 4 |©
m 4 1 4 | o
e L e s

If p andq columns are listed, all four possibile combinations of truth
values fop andq, and in thep 0 q column we find the associated truth value
for pOq.

Illustration

(i If p=*“lamclever’
andq = “You are strong”.
Therefore we have

pdqg="“l am clever and you are strong”.

(i) If p="“The galaxy will at last wind up in a black hole”
andqg ="“3 + 3 = 6", then we have

pdaq “This galaxy will at last wind up in
a black holeand 3 + 3 =6".

andpO(~ q) : “This gabxywill at last windup in
ablack hole and 3 +36.”

(i) If p="“This chapter is boring”.
andq = “Logic is a boring subject”.

Let us see how the statement “This chapter is definitely not boring even
though logic is a boring subject” is expressed in logical form.

The first clause is the negationmfso is p. The second clause is simply
stating the (false) claim that logic is a boring subject, and thus amounts to

The phrase “even though” is a colourful way of saying that both clauses
are ture, and so the whole statement is(jugt) O q.

248 Theory of Automata, Formal Languages and Computation

(c) Disjunction(OR): Thedisjunction ofp andq is the statemermi O g, which
is read asg orq’, whose truth value is defined by the following truth table.

p q pOq
T T T
T F T
F T T
F F F

Note that the only way for the whole statement to be false is foptzotti
g to be false. Hence we say th@fl g means p andq are not both false”.

Illustration

(i) If p:lamclever
andq: You are strong

thenp g=Iam clever or you are strong.

Mathematicians have settled on “Inclusive god g meansp is
true orq s true or both are ture.
(i) If p:The butler did it.
andq : The cook did it.
then we have

pOq: either the bdér or the cook did it.

(iiiy If p: The butler did it
g: The cook did it
r : The lawyer did it, then we have

(pdq) O(~ r): Either the buer or the cook did it,
but not the lawer.

(d) Implication(Conditional if ther): Theconditionalp O g, read as “if
p, theng” or “p impliesq’, is defined by the following truth table.

p q pO g
T T T
T F F
F T T
F F T

Propositions and Predicates 249

The arrow] is the “conditional” operator, and m] qthe statementis
called the “antecedent” or “hypothesis”, apik called the “consequent”, or
“conclusion”.

Illustration

(i) If pandg are both true, thepd qis true. For example, “if 2 + 2 =4, then
the sun rises in the East”

Here:p:“2+2=4"and q: “the sun rises in the east”.
(i) If pis true andyis false, therp O qis false. For example:

“When it rains, | carry an umbrella”. Hepe Itis raining;q : | carry an
umbrella.

If it is raining then | carry an umbrella. Now there are lot of days when it
rains @ is true) and | forget to bring my umbrellai¢ false). On any of those
days the statememt qis clearly false.

(e) Biconditional (If and only if.......)} The Biconditional p = g, which is
read as p if and only ifp” or “p is equivalent tg” is defined by the following
truth table.

p q p=q
T T T
T F F
F T F
F F T

From the truth table, we see that for q to be true, botp andq must
have the same truth values; otherwise it is false.
The statemenp = qis defined to be the statemdmO q)d(qO P.
For this reason, the double headed artows called the “biconditional”.
Each of the following is equivalent to the biconditiopal g
(i) pifand only ifg
(i) pis necessary and sufficient fgr
(i) pis equivalent ta.

Illustration

(i) The statement “2 + 2 = 6 if and only if Gregory is Alexander the Great”, is
true since the given statement has the fpre g, where

p:"2+2=6 and

g:"Gregory is Alexander the Grea"

250 Theory of Automata, Formal Languages and Computation

Since both statements are false, the biconditipnal g is true.
(il) Consider the statement:

“l teach mathematics if and only if | am paid a large amount of
money”.

Some of the equivalent ways of phrasing this sentence are:

“My teaching Mathematics is necessary and sufficient for me to be
paid a large amount of money”.

“For me to teach Mathematics it is necessary and sufficient that | be
paid a large sum of money”.

Example 8.1.1: Express the following statements in symbolic form,
with

p : Jalaney is good.
g: Padmaja is good.

(a) Jalaney is good and Padmaja is not good.

(b) Jalaney and Padmaja are both good.

(c) Neither Jalaney nor Padmaja are good.

(d) Itis not true that Jalaney and Padmaja are both good.

Eolution

(@ pO-q
(b) pOq
() - pO-q
(d) -(pO0)

Example 8.1.2: Express the following statements in symbolic form.

(@) Jack and Jill went behind the hill

(b) If either Naveena takes Maths or Nirmala takes Physics, then Anju
will take English.

(c) Ifthere is a ticket available, | will travel by this train

(d) There is either a fault with Raju or Mohan.

Eolution

(@) p: Jack went behind the hill
g : Jill went behind the hill.
Then we have the given statement in symbolic form as

pUq

Propositions and Predicates 251

(b) p: Naveena takes Maths
d: Nirmala takes physics
r : Anju takes English
Then the given statement is written as

(pOag) O r

(c) p: Ticketis available
g : | will travel by this train.

pU q

is the given statement in symbolic form.
(d) p: Thereis a fault with Raju.
g: There is a fault with Mohan.

pUq

is the given statement is symbolic form.

Example 8.1.3: Given
p : Triangle PQR is isosceles
g: Triangle PQR is equilateral
r : Triangle PQR is equiangular.

Translate each of the following into a statement in English.

(@ gq-p
(b) ~p=-q
© qer
(d) pO7q
(e) rad p

Eolution

@ qg-p
TrianglePQRis equilateral if and only if it is isoscles
(b) ~p=-q
TrianglePQRis not isosciles if and only if it is not equilateral.
€ ger
TrianglePQRis equilateral if and only if it is equiangular
(d) pO-q
TrianglePQRIis isosceles and it is not equilateral.
() rOp
If Triangle PQRis equiangular then it is isosceles.

252

Theory of Automata, Formal Languages and Computation

Example 8.1.4: Given

and

p: Itis cold;
g:12+5=200
r: It rains.

Express the following in symbolic form.

(@)
(b)
(©)
(d)
(e)

Eolution

(@)
(b)
(©)
(d)
(e)

Itis cold only if 12 + 5 = 200.

A necessary condition for it to be cold is that 12 + 5 = 200.
A sufficient condition for it to be cold is that 12 + 5 = 200.
It rains and 12 + 5 is not 200.

It never rains when 12 + 5 = 200.

p=q
p<q
qep
ri-p
qd -r

Example 8.1.5: Let

p : prices are high,
g : wages are increasing.

Express the following in verbal form.
(@ pUqg (b)-pO-q (©)-~ (pUa)
(d)pU-qg (&)~ (= pO-q)

Eolution

(@)
(b)
(€)
(d)
(e)

pOqg Pricesare high and wages are increasing
- pO- g Pricesare not high and wages are not increasing

- (pOaq): Itis not that prices are high and wages are increasing

pO- g Pricesare high or the wages are not increasing

- (= pO~- @): Itis not that prices are not high or wages are not

increasing.

Example 8.1.6: Determine the truth of the following:

(@)
(b)
(©)
(d)

5 <6 and 6 is a positive integer.

5> 6 or 6 is a positive integer

If 5> 6, then 100 is a prime number
If 10 > 6, then 100 is a prime number.

Propositions and Predicates 253

Eolution

@T; 0T, (@©T, (@F.
Example 8.1.7: If p,q,r are three statements, with truth values ‘True’,

‘True’, ‘False’ respectively, find the truth values of the following:

(@ pOq (b) pOr (©)(pOq)Or (d)pO(=r1)
@ PO-g0EN® pOr (@pO0 (q= (rd9).

Eolution

Given p:T;, q:T;, r:F

(@ pOq
p q plq
True
T T T
(b) pOr
p r pOr
False
T T T
(c) (pOq)Or
p q r plqg | (pOg)Or
False
T T F T F
(d) pO(=r)
p r -r | pOG=r)
True
T F T T
(e) (pO-qO(=1)
p | =g | pd-q| =-r | (pU=qO(=T)
False
T F F T F
® pOr
p r pdr
False
T F F

254 Theory of Automata, Formal Languages and Computation

(@) pO(g= (rds)

Pla r|s | risige((=)s) p0(q0 (rOs)
T T FIF| T T T

True

Example 8.1.8: Construct the truth table for
(= pda)t(-qdp.

i

olution

p q -p/~qg -plg| -qlp | [(-pUgU(-qlp
T T F F T T T

T | F F T F T F

F | T, T F T F F

F F| T T T T T

Example 8.1.9: Determine the Truth Table for (- pO-).

P g -p | -q -~pO-qg| -(-pO-0)
T T F F F T
T F F T F T
F T T F F T
F F T T T F

B Example 8.1.9: Using truth tables, show that i = Q is true, then
PO Q andQ O P are both true. Conversely, show thaPif] Q and
Q O P are both true, theR = Qs true.

Eolution

P Q |P-Q POQ QOP
T T T T | —o
T F F F T
F T F T F
F F T T | —o

Propositions and Predicates 255

From® and®, itis obvious thatiP = Qistrue, thef® 0 QandQ O P
is true.

From the above truth table, fro & @, it is seen that iP O Q and
QO P are true als® = Qis true.
8.1.2 Tautology, Contradiction and Contingency

(a) Tautology: A Tautology is a propositional form whose truth value is true
for all possible values of its propositional variables.

Example:p0- p
(b) Contradiction: A contradiction oabsurdity is a propositional form which
is always false.

Example:p0- p

(c) Contingency:A propositional form which is neither a tautology reor
contradiction is called a contingency.

Example 8.1.10: Show thaP O Q has the same truth value-a® [0Q
for all truth values oP andQ, i.e., show thatP 00 Q) = (- POQ) isa
tautology.

Eolution

P Q -P |PO0Q -POQ| (POQ)~ (-POQ)
T T F F T T
T F F F F T
F T T T T T
F F T T T T

From the truth table itis clear tHat] Q has the same truth value-a® 0Q.
Also it is seen tha{P 0 Q) = (- POQ) has all truth values to be
“True”. Therefore it is a “Tautology”.

Example 8.1.11: Establish whether the following propositions are
tautologies, contingencies or contradictions.

(@) PO-P
(b) PO-P

() PO=(=P)

d -(POQ) = (-POI=-Q)

256 Theory of Automata, Formal Languages and Computation

Eolution

(a) PO- P.
P ~P | PO-P
T F T
F T T

All truth values are True.
Therefore, it is dTautology”.

(b)y PO- P
P ~P | PO-P
T F F
F T F

All truth values are False.
Therefore, it is dcontradiction”.

€ PO-(=P)

P =P | ~(=P)| PO-(=P)
T F T T
F T F T

All truth values are “True”.
Therefore, it is a “Tautology”.

(d) - (POQ) - (-PU=-Q)

P Q POQ -(POQ) ~P-Q-PO0-Q -(POQ) =
(-PO-Q)

TIT| T F FF F T

TIF| F T F T T T

F T F T T F T T

F F F T T T T T

All truth values are “True”.
Therefore, it is a “Tautology”.

Example 8.1.12: Establish whether the following propositions are
tautologies, contingencies or contradictions.

Propositions and Predicates

257

(@ - (POQ) - (=PO-Q)
(b) (POQ) < (-QO ~P)
(© (POQ) < (=QO-P)
(d) [POQOR]DO[(PUQ O(PORI.

Eolution

(@ - (POQ) - (=PU-Q)
Tautology

(b) (POQ) = (-QO=P)
Tautology

(c) (PO QOO P)

POQ |Q

(PO QOO P)

mTm 4 -]
md4m 4|0
- 4 7 4|0
- n 4 4|0

T

F
F
T

Some values are True, some are False.

Therefore, it is &Contingency”.

(d) [POQOURIDO[(POQ O(PORI.

It can be shown to be a “tautology”.

Example 8.1.13: LetP be theproposition “It is snowing”.

Let Q be the proposition “I will go to town”.
Let R be the proposition “I have time”.

(&) Using logical connectives, write a proposition which symbolizes

each of the following:

(i) Ifitis not snowng and | have time, then | will go to town.
(i) 1 will go to town only if | have time.

(iii) Itisn’t snowing.

(iv) Itis snowing, and | will not go to town.

(b) Write a sentence in English corresponding to each of the

following propositions:

() Q = (RO~ P)

(i) ROQ

(i) QU R)O(RO Q)
(iv) = (ROQ).

258 Theory of Automata, Formal Languages and Computation

Eolution

@ () -PORDQ
(i) ROQ
(i) = P
(iv) PO-Q
(b) () Q<= (RO~ P).
| will go to town, if and only if | have time and it is not
showing.
(i) ROQ.
I have time and | will go to town.
(i) QU R)O(RO Q).
I will go to town if | have time and if | have time, | will go to
town.
(iv) = (ROQ).

It is not that | have time or | will go to town.

Example 8.1.14: How many rows are needed for the truth table of the
formula(pd- q) = ((-rOs) O t)?

Eolution

Givenp, g, r, S, t as propositions.
0 Number of rows needed in Truth Table*=232.

Example 8.1.15: If p,, p,,...... p, are primitive propositions and
O(p, Pos-e- e p,) is a formula which contains at least one occurrence of
eachp, (1<i<n), how many rows are needed to construct the truth table
for 0?

Eolution

Given p;, Py, p, as propositions. Therefore number of rows needed in

Truth Table = 2 (for n elements).

8.1.3 Logical Identities

If two propositional forms are logically equivalent one can be substituted for
the other in any proposition in which they occur. Table below shows a list of
important equivalences, which are called “identities.” The synihdls, and
Rrepresent arbitrary propositional forms. The symbol “1” is used to represent
either a “tautology” or a true proposition. Similarly, “0” represents a false
proposition or a contradiction.

Propositions and Predicates

259

Table. Log ical Identities

NN RRPRPRERERRBRRRR
NP OO®X®NO kWD REO

© ©oNo Ok DdDE

P~ (POP)
P~ (POP)

(POQ) - (QUP)
(POQ) - (QUP)
[(POQUR] ~ [PO(QURY]
[(POQUR] ~ [PO(QURY]
- (POQ) = (-PO-Q) O

Idempotence df]
Idempotence dfl

~(POQ) = (-P0-Q 7

[POQOR)] < [(POQ O(POR]
[POQOR)] < [(POQ O(POR]

(PO =1
(PO = P
(POO) = P
(PO0) = 0
(PO-P) =1
(PO-P) =0
Pe-(=P)

(POQ) - (-PUQ)
(P-Q~[(POQOOP)
[(POQ U R] «[PO(QU R
(POQUMPO-Q]--P
(POQ) - (-QO=-P)

Commutativity of]
Commutativity ofl]
Associativityof O
Associativityof O
DeMorgan’s Laws

Distributivity of O over[
Distributivity of O over[

DoubleNegdion

Implication
Equivalence
Exportation
Absurdity
Contrapositive

All the above identities can be proved by constructing truth tables.
The following table gives a list of tautologies which ianelications.

Table. Logical Impli cations

© 0N TOA~LDNPRE

PO (POQ)
(POQOP

(PO(POQIUQ
(POQO-QO-P
[-POPOQIT Q

(PO QUQORIO (PO R
(POQUQROR O (PO R
(POQUROSOPOR O (QOY)
[(P-QO0O(Q-RIO(P-R

Addition
Simplification

Modus Ponens
Modus Tollens
DisjunctiveSyllogism
HypotheticalSyllogism

260 Theory of Automata, Formal Languages and Computation

Example 8.1.15: State the converse aodntrapositive of the following
statements:

() If itrains, | am not going.

(b) 1 will stay only if you go.

(c) If you get 8 pounds, you can bake the cake.

(d) Ican't complete the task if | don’t get more help.

Eolution

(&) Converse: If | don't go, then it rains.
Contrapositive: If go, then it does not rain.

(b) Converse: Ilfyou go then | will stay
Contrapositive: Ifyou go | will not stay

(c) Converse: Ifyou can bake the cake you get 8 pounds.
Contrapositive: If you cannot bake the cake you don’t &et
pounds.

(d) Converse: | don’t get more help if | can’t complete the task.
Contrapositive: ktan complete the the task if | get more help.

Example 8.1.16: For each of the following expressions, use identities
to find equivalent expressions which use amynd- and are as simple as
possible.

(@) POQO-R
() PO[(-QOR) O P
(0 PO QO P)

Eolution

(a) POQU-R = —|(—| PD—lQ)D—! R
= 2 (-PO-Q)OR)
- = (-PO-QOR)
(b) PO(-QOR) O] = = (=~ PU-[(-QOR O A)
= (PO~ (= (~QUR)IP)
= =2 (= PO(=QOR) D~ P)
(co POQQOP)- PO (-QOP)
-~ =PO(-QOP)
- (-POP)0-Q
- 10-Q
=1

Example 8.1.17: For each of the following expressions, use identities
to find equivalent expressions which use anénd- and are as simple as
possible.

Propositions and Predicates 261

(@ (POQO-P
(b) [PO QU-R]O- POQ.

Eolution

(@ (POQU-P = =[-(POQ)UP]
- =[~PO-QOP

(b) [PO (QOU-RJU-POQ
= [~ POQO=- R)]0(~ POQ)
- - POQO-R) O~ POQ
o (+P0-POQ)I(QO(~ PUQ)0(~ RO(~ POQ))
- (- POQ)O(QO-P)I(~POQO~R)O
[(QO- P)10- R
- - (PO-Q).

Example 8.1.18: Establish the following tautologies by simplifying the
left side to the form of the right side:

(@ [(PUQOP) =1
() ~(=(POQ)T ~P) <0
(¢ (PO-PO(-POP]=0

Eolution

(@ [(POQD P] = -(POQOP
-~ =PO0-QOP
- (PO~ P)0-Q
- 10-0Q
-1

(b) ~(-(POQ)DO =P
= -~ [(POQ)O- P
- = [PO-P)OQ]
= = [10Q]
< =[]
=0
(© (PO -P) O~ PO P
= [(=PO-~P)O(POP]
- -POP
-0

Example 8.1.19: Using the truth table ofl, relate the following
assertion to the logical operatdr. “If you start with a false assumption,
you can prove anything you like".

262 Theory of Automata, Formal Languages and Computation

Eolution

mT Mm 4 4|7
m 4 11 4|0
4 4 4|0

Suppose® is false.

ThenP O Qis true for any proposition Q. If we kndiJ Q as true, and
acceptP as true, then we can infer the truthf

Q may or may not be true (as seen in truth table).

Example 8.1.20: The Sheffer stroke, or nand operator, is defined by the
following truth table:

PIQ

P P O O | T
R o r o O
o r P P

Nand is an acronym for not arfél|Q is logically equivalent te» (P Q).

Show that @P|IP==P
(b) (PIP)[(QIQ) = PUQ
© PIQI(PIQ) = PLQ.

Eolution

P Q POQ | -(PIQ)
T T T F
T F F T
F T F T
F F F T

PIQ « = (POQ). (NAND).

Propositions and Predicates

263

@ P|P< - P (Toprove)
We knowP|Q - - (P OQ)
P|P- - (POP)
= = P.
Hence proved.

(b) (PIP)IQIQ) = PUQ (Toprove)
We have from (@P|P < = P

QIQ=-Q
(PIP) QIQ)
- aP|-Q
e = (=PO-Q)
- POQ.
Hence proved.

© (PIQIPIQ) - POQ (Toprove)
PlQ=-(PLQ)

(PIQ)I(PIQ)
= [~ (POQNI[-~ (POQ)]

- [(POQ)T(POQ)
- (POQ)
POQ.

LA A

Hence proved.

Example 8.1.21: Establish the following implications:

(@ -PO(POQ)
by -(POQOP
(C) ﬁQD(PDQ)D - P

Eolution

(@ -PO(POQ)

- [~ (POQ O/~ (POQ)]

P Q P (POQ | -PO(POQ)
T F T T
T F F F T
F T T T T
F F T T T

O Itis a Tautology.
Hence proved.

264 Theory of Automata, Formal Languages and Computation

(b)-(POQOP

P Q (POQ -~(POQ) -~(POQOP
T T T F T
T F F T T
F T T F T
F F T F T

O Itis a tautology.
Hence proved.

P Q -QPOIQ =P =-QOIFPOQ -QOMPOQO-P
TIT|F | T F F T
TIF| T F F F T
FIT F T T F T
FIFIT T T T T

O Itis a tautology.
Hence proved.

Example 8.1.22: Show that
(POQ)O- (-PO(=QO-R))O(- PO-Q)O(-PO-R)

is a tautology.

Eolution

(POQO-(POEQO-R)O(=PO-QU(=PI=R)
= (POQ)O= (- PU=-(QUR) U= (POQ)O(=~ (PORY))
= (POQ)O(POQOR) O~ (PUQ) U~ (PUR)
= [(POQ) O((POQ)U=[(PUQ (P UR)
= [(POQ U(PUR)] L= (PO(QURY))
< [POQOR)]O-[PO(QUR)]
=T

Hence the given formula is a tautology.

Example 8.1.23: Show thatP - Q)O(R - Q)and(POR) - Q are
equivalent formulae.

Propositions and Predicates 265

Eolution

(P-QUR-Q) = (-PIQ)DI(-RIQ)
- (-PO-ROQ
- - (PORDOQ
- (POR - Q

Hence proved.

Example 8.1.24: Prove that
- (POQ) - (- PO(- POQ) O (- POQ).

- (POQ) - (-PO(-POQ))
(POQ)O[- PO(~ POQ)]
(POQ)O(- POQ)
(POQ)O-POQ
(POQ)O-P)OQ
(PO- P)O(QO-P)OQ
(TOQD-P)OQ
(QO-P)0Q

QO-P

~POQ

Oooooooood

Hence proved.

Example 8.1.25: Show that SOR is tautologically implied by
(POQOMP - RO - 9S).

Eolution

Assume tha(P 0Q) O (P - R)O(Q - S) has the truth valug.

(POQ), (P - R)yand(Q - S)all have truth valug&. As the truth value of
P OQisT, eitherP has Truth valud or Q have truth valud.

SupposeP has the valug. As P - R has truth valud, R should have
truth valueT. On the other hand suppd3éas the truth valué AsQ - Shas
truth valueT, Sshould have truth value Thus eitheR has truth value T or S
has truth valud, i.e.,R OShas truth valud.

Therefore (POQ)O(P - R)O(Q —» S) is tautologically implied by
SOR.

8.2 LOGICAL INFERENCE

RuleP : A premise may be introduced at any point in the derivation.

RuleT : AformulaSmay be introduced in a derivatiorsiis tautologically
implied by any one or more of the preceding formula in the
derivation.

266 Theory of Automata, Formal Languages and Computation

Rule CP: If we can derivé&sfrom R and a set of premises, then we an derive
R - Sfrom the set of premises alone. (Deduction Theorem).
Rules of Infer ence

Implications:

I POQO PO P
0O (Simplificaion
, PoQnqp &M)

:j gg EES@ (addition)
. -POP-Q

e QUP-Q

7 "(P—'Q)DP

8 - (P-Q)=-Q

- P,POQO Q (digunctivesyllogism)

P,P- Q0O Q (ModusPorens)

QP -Q0O-P (ModwsTollens)

1 P-QQ- RO P> R (Hypotheticd Syllogism)
u POQP-RQ-ROR (dlemma)

1

o

1

[N

1

N

w

|
|
|
|
l, P,QO0POQ
|
|
|
|
|

Equivalences

m

, -~ P« P (doubeNegation)

E, POQ< QOP(.
0 (Commutative laws
E, POQ-QOP[Q ()
E, (POQ)OR « POQOR) O -
0O (Assciative laws
Es (POQ)OR - POQOR) O ()
Ee POUOR) = (POQ)O(POR) O L
0 (Distributive law
£ POQOR) - (POQO(POR) 3 ¢)
E, - (POQ) =-~PO-Q[
O (DeMorgan'slaws)
E, ~(POQ --PO-QQ
E, POP<P
E, POP<P
E, RO(PO-P) - R
E, RO(PO-P) « R
E, ROMPO-P) =T

Propositions and Predicates 267

RO(PO-P) = F
P.Q<-POQ
~(P-Q)=PO-Q
P.Q<--Q--P
P-Q-R)=(POQ)-R
~(P=Q«P<=-Q
P-Q<=(P-QUQ-P)
(P=Q < (POQU(-PLI-Q)

[y
a1

[y
o

m m m m m m
6 & S

l\)ml\)
= o

BI'I'I

Example 8.2.1: Show thatR O Sfollows logically from the premises
COD,(COD) - = H,~H - (AQ- B)and(AO= B) » (ROS).

Eolution

1. COD - =-H P

2. -H- (AO- B) P

3. CcaOD - (AO-B) Using Hyp. Syll in (1), (2)
4. (AO- B) - (ROS) P

5. (COD) - (ROS) Using Hyp. Syll. in (3), (4)
6. cOoD P

7. ROS Modus Ponens

Example 8.2.2: Show thatS R is tautologically implied by

(POQ)O(P - RIEQ- S).
Eolution

1. POQ P

2. =P-Q (P~ P=(=POQ)

3. Q-S P

4. -P-S (2), (3), Hyp. Syll.

5. -S.P (From (4), usindP - Q = ~ Q- = P))
6. P-R P

7. -S-R (5), (6) & Hyp. Syll.

8. SOR

Example 8.2.3: Show thatRO(POQ) is a valid conclusion from the
premised 0Q,Q - R, P> M and- M.

268 Theory of Automata, Formal Languages and Computation

Eolution

1. P- M P

2. - M P

3. - P (1), (2), Modus Tollens
4. POQ P

5. Q Simplificationof (4)

6. Q-R =)

7. R Modus Ponens

8. RO(POQ) (-P,Q0O POQ)

Hence proved.

Example 8.2.4: Demonstrate that is a valid inference from the
premised - - Q,QUR,~ S - Pand- R.

Eolution:

1. QOR P

2. - R P

3. Q (1), (2), Disj. Syll.

4, P--Q P

5. - P (3), (4), Contrapositive, Modus Tollens
6. -S> P P

7. S (5), (6), Modus Tollens

Example 8.2.5: ShowthatQ,P - QO - P.

Eolution

1. P-Q P
2. -Q-=-P T, (1) and cotrapostive[P -~ Q = = Q - - P]
3. ~Q P

4. -P T, (2), (3) and Modus Poner®. - Q,P 0 Q]

Example 8.2.5: Show thaR OSis a valid conclusion from the premises
cob,CcOD - = H,-H - (AO- B)and(AO- B) - (ROS).

Propositions and Predicates 269

Eolution

1. cob P
2. COD- =-H P
3. - H (1), (2), Modus Ponens
4, -H- (AO- B) P
5. AO-B (3), (4), Modus Ponens
6. (AO=- B) - (ROS) P
7. ROS (5), (6), Modus Ponens

Example 8.2.6: State whether the following argument is valid or not. If
valid, give proof. If not valid, give counter example.

If a baby is hungry the baby cries.

If the baby is not mad, then he does not cry.

If a baby is mad, then he has a red face.

Therefore, if a baby is hungry, then he has a red face.

Eolution

H : Baby is hungry

C : Baby cries

M : Baby is mad

R: Baby has a red face.

Given: H-C

-M-=C

M- R

OH - R
Verification:
1. H-C Premise
2. -M-=C Premise
3. C-M (2), Contrapositive
4, H- M (1), (3), Hyp. Syll.
5. M-S R Premise
6. H-R (4), (5), Hyp. Syll.

Example 8.2.7: State whether the following argument is valied or not.

“If Nixon is not re-elected, then Tulsa will lose its air base. Nixon will
be re-elected if and only if Tulsa votes for him. If Tulsa keeps its air base,
Nixon will be re-elected. Therefore, Nixon will be re-elected”.

270 Theory of Automata, Formal Languages and Computation

Eolution

R : Nixon is re-elected
L : Tulsa will lost its air base
V : Tulsa votes for Nixon

Given:
@ -R-L O
2 RoV EPremises
® -L-R
OR

(1) and (3) are equivalent.

(-L-ROR- WO R

L RV (vL-R)| (RoV) (+L-R)O (=L RO
RoV) | (RoV)O R

T T T T T T T

T T F T F F T

T F T F F F T

T F|F F F F T

Fl T T T T T T

Fl T F T F F T

FlF T T F F T

Fl F | F T F T

Therefore the given implication isdt a Tautology. Therefore the argument
is not valid.

Example 8.2.8: For each of the following sets of premises, list the
relevant conclusions which can be drawn and the rules of inference used in
each case.

(@) 1 am either fat or thin, I'm certanly not thin.

(b) IfI'run | got out of breath. I'm not out of breath.

(c) Ifthe butler did it, then his hands are dirty. The butler's hands are
dirty.

(d) Blue skies make me happy and gray skies make me sad. The sky is
either blue or gray.

Propositions and Predicates 271

Eolution

(a) F:lanfat
T:1 amthin @ FOT| P
FOT @2 -7 P
AT 3 F (D, (2, Dis. syll.
OF (Q,PUQI P)
Conclusioni am Fat
(b) R:lrun
B :l get out of breah @ R-B| P
R- B 2 -B P
- B 3 -R @, (2, Mol - Tolens
0-R -QP-Q0-P)

Conclusioni didn’t run
(c) B:Butlerdidit
H: Hands are dirty.

B-H
H

Conclusion: Hypothesis

(d) B: Blue skies

H : Make me happy
G : Gray skies
S
H

: Makes me sad

1. B - =)
2. BOG P

3. B (2), Sinplification

4, H (1), (3), Modus Ponens
5. G- S P

6. BOG P

7. G (6), Sinplification

Conclusioni am either happy or sad.

Example 8.2.9: For each of the following set of premises, list the
relevant conclusions which can be drawn and the rules of inference used in
each case.

272 Theory of Automata, Formal Languages and Computation

(&) If my program runs, then | am happy. If | am happy, the sun
shines. It's 11.00 p.m. and very dark.
(b) All trignometric functions are periodic functions and all periodic

functions are continuous functions.
Eolution

P: My program runs

H: | am happy P-H
S: Sunshines H - SO Hypatheses
T It's1l pm. CU- SH
- S Itisvery dark
1. P-H P
2. H-S P
3. P-S 2, (2
4, t0-S P
5. -~ SsOC
6. -S Simplification
7. =P (3), (6), Modus Tollens
8. -H (1), (7), Modus Tollens
9. -~PO-H Conjunction

Conclusion: I am not happy and my program does not run.

(b) T: Trignometric functions
P : Periodic functions
C : Continuous functions

T-P
P.C
OT-C

ConclusionAll Trignometric functions are continuous functions.

Example 8.2.10: Construct a proof for each of the following
arguments, giving all necessary additional assertions. Specify the rules of
inference used at each step. (The word “or” denotes the “logical or” rather
than the “exclusive or”.

(@) It is not the case that IBM or Xerox will take over the copier
market. If RCA returns to the computer market, then IBM will
take over the copier market. Hence, RCA will not return to the
computer market.

Propositions and Predicates 273

(b) (My program runs successfully) or (the system bombs and | blow
my stack). Furthermore, (the system does not bomb) or (I don’t
blow my stack and my program runs successfully). Therefore, my
program runs successfully.

Eolution

(&) IBM: IBM will take over the copier market
Xerox: Xeroxwill take over the copier market

RCA: RCAreturns to the computer market
@» - (BM OXerox)

(@ RCA - IBM
0 - RCA

Proof:
1. - (IBMO xerox) P
2. RCA - IBM P
3. - IBMO- xerox (1), De Mogan’sLaw
4. -1BM (3), Sinplification
5. = RCA (2), (4), Modus Tollens

(b) S My program runs successfully
B: System bombs
BS | blow my stack

-BO(-BSOY

SO(BOBS)

~ OS (Topove
Proof
1. SsSO(BOBS) P
2. - BO(EBSOY P
3. (SOB)O(SOBS) Distributivity of (1)
4. (-BO-~BS)O(-BOS) Distributivity of (2)
5. SOUOB (3), Sinplification
6. - BOS (4), Sinplification
7. SO-B (6)
8. (SOB)O(SO-B) (5), (7), Coni.
9. SO(B0O- B)
10. SO0
11. S

Hence proved.

274 Theory of Automata, Formal Languages and Computation

Example 8.2.11: Determine which of the following arguments are
valid-contruct proofs for the valid arguments.

(@) AOB (b) ACB

AOC AOC
gcoB gcoB
(d)AO (BOC)
(©) AD B gg ﬂi
ADC A
gcioB D
OBO-B
Eolution
(a) Given
AUB
AO C
gcoB
1. AUOB P
2. A-C
3. A (1), Sinplification
4. C (2), (3), Modus Ponens
Therefore the given argument is INVALID.
(b) Given
AUB
AOC
gciaB
1. ACB P
2. A0OC P
3. =-B-A (2), Implication
4. -B-C (2), (3), Hyp. Syll.
5. BOC (4), Implication
Hence the argument is VALID.
(c) Given
Al B
AOC

gcioB

Propositions and Predicates 275

A/B C A.B A-C (A-B0O C-B| (A-B)0O
(A-C) (A-C)
oCc-B
T T|T T T T T T
T|T|F T F F T T
T F|T F T F T T
T F | F F F F T T
FIT T T T T F
F| T|F T T T T T
FlFIT T T T F
F|F|F T T T T T
O Not a Tatology
O Argumentis INVALID.
(d) Given:
A - (BOC)
D--C
B--A
A
D
OBO- B
1. A- (BOC) P
2. A P
3. BOC (1), (2), Modus Ponens
4, D--C P
5 D P
6. -C (4), (5), Modus Ponens
7. Bo-A
8 -(-A--B (7), Implication
9. A--B (8), Sinplification
10. - B (2), (9), Modus Ponens
11. B (3), Sinplification
12. BO-B (10), (11), Cojunction

O Argument is VALID.

276 Theory of Automata, Formal Languages and Computation

Example 8.2.12: Determine whether the following argument is valid or

not. Give the proof if it is valid.

“If today is Tuesday, then | have a test in Computer Science or a testin
Economics. If my Economics Professor is sick, then | will not have a test
in Economics. Today is Tuesday and my Economic Professor is sick.

Therefore, | have a test in Computer Science”.

Eolution

T: Today is Tuesday

CS | have a test in Computer Science
E: | have a test in Economics

EP: Economics Professor is sick.

M T - (CSOE)
2 EP--E

©) TOE
ocs

1. T - (CSOE) P

2. EP--E P

3. TUOE P

4. T (3), Sinplification
5. CSOE (1), (4), Modus Ponens
6. E (3), Sinplification
7. -E (2), (6)

8. CS (5), (7), Disj. Syll.
O The Argument is VALID.

8.3 PREDICATES AND QUANTIFIERS

Assertions which are formed using variables in a “template” that expresses the
property of an object or a relationship between objects are called “Predicates”.

Example:

() “Heis dark and ugly” is written as
“x is dark and ugly”.
(i) “Naveena lives in Maryland and
Menon Lakshmi lives in Texas” is written as
“x lives in Maryland and
y lives in Texas”.

Propositions and Predicates 277

Predicates are used in Control Statements in high level languages.

Predicates may be either “constants” or “variables”. Values of the
individual variables are drawn from a set of values called “Universe of
discourse”.

In order to change a predicate into a proposition, each individual variable
of the predicate should be “bound”. There are two ways of doing it.

(i) The first way to bind an individual variable is by assigning a value to it.

ExampleP ="a+b=6".
which is denoted by R(y).
If a=2, andb = 3, then
P(2, 3) is false.

(i) The second way to bind an individual variable is by “quantification” of the

variable.
It can be done either by “universal” or “extential”.

“For all values ok, the assertioR(x) is true.”

“For all x, P(x)" is written as“H, P(x)", whereBis a “Universal
Quantifier”.

“There exists a value of x for which the asserf{R) is true”. This
statement is written d§1, P (x)” wherelis called “External Quantifier”.

The propositiorid, P(x) is equivalent to the conjunction

POOPRUPQO P4

for the universal consisting of integers 1, 2, 3, and 4.
The propositiort], P(x) is equivalent to the disjunction

POOPQ@OPRUP4
The propositiori! xP(x) is equivalent to the proposition

[POO-PO- 3]0 R0~ RYI0O- R Y
O[PE) O- P() 0= P(2)]

Note that the sequenég H, can always be replaced by H,, and the
sequencel, [, can always be replaced by, [J,, though the order in which
individual variables are bound cannot always be changed without affecting the
meaning of an assertion.

Example 8.3.1: LetS,Y, 2) denote the predicata*+y =2". P(X, Y, 2)
denote % Oy= Z' andL(x, y) denote X <y”". Let the universe of discourse
be the natural numbers. Using the above predicates, express the
following assertions. The phrase “there ixadoes not imply that hasa
unique value.

278 Theory of Automata, Formal Languages and Computation

(a) For everyx andy, there is & such thak +y =z
(b) Noxis less than 0.

(c) Forallx,x+ 0 =x.

(d) Forallx,x—y=yforally.

(e) Thereis an x such thatly= yfor all y.

Eolution:

S(X ¥,2): x+y=2z
P(x, y,2): x-y=2z
L(x, y) @ x<y

Universe of DiscourseN.

(@ 5,8,0,x+y=2ieH, 0, 0,<(x Y2
(b) E,(=L(x0) or - O,[L(x0)]

(c) B, S(x0,x)

(d) HyEy P y%

() U,H, Px vy

Example 8.3.2: Show that 0,0, P(x,y) and 0,0, P(x y) are
equivalent by expanding the expressions into infinite disjunctions.

Proof: To prove:0, 0, P(x, y) = 0,0, P(x, y).

0,0, P(x y) =[O0, PO y]O[O, P WIOO,P(2Y)] -.....
=[P(0,000P@QD)TIP(QD]
IPLOOPELITP(1D]
[IP(20) OP(2)TP(22]

=[P(O,0)OPLOOP(2090.....]
OPO)OPELIOP(2)0.....]
P02 0P 20P(23C......]

= [O,P(x0)]0[O,P(x, D] O[O,P(x, 2] C......
= 0, 0,P(%).

Hence Proved. O

Example 8.3.3: Determine which of the following propositions are true
if the universe is the set of integers | drdenotes the operation of
multiplication.

(8) 5,0,[x0y=0
(b) O, OryxOy=1

Propositions and Predicates 279

() O, B[xy=1
(d) O, B, [xly=%

Eolution

() 8,0,x0y=0
y = 0 makes it TRUE.

(b) B, 0O y[xOy=1 False
(c) Oy Hx[xty=1

10y=1
20y=1

1
==0l.

y 2

False.

) Oy BiIxty=X
11=1
2= 2

y=1 makesit true.

Example 8.3.4: Let the universe be the integers. For each of the
following assertions, find a predicdavhich makes the implication false.

(@)BE,0yP(x y) O O yd, P(x, y)
(b) O'yH, P(x, y) O B, yP(x, y)

Eolution

@B, 0y P(x y) O O yH, P(x y)

LHS: X+ (-1

RHS: 'y, x=1,

P(x, y) is (x+ y =0

280 Theory of Automata, Formal Languages and Computation

(b) Oy B, P(x, y) O 8,0 yP(x, y)

xy=0
LHS: (I) y=0 RHS X(O) =0
y=0 x=123...
i) y=0
i ¥=2
P(x, y) is xy=0.

Example 8.3.5: Specify the universe of discourse for which the
following propositions are true. Try to choose the universe to be as large a
subset of integers as possible.

(@) Ei[x>10

(b) B[x=3

() ExOy[x+y=43§
(d) O,y [x+y<q.

Eolution

(&) Universe of discourse: “All Integers greater than 10”.
(b) Universe of discourse: “The Universe has 3 only”.
(c) Universe of discourse: |

(d) Universe of discourse: |

Example 8.3.6: Let the universe of discourse consists of the integers 0
and 1. Find finite disjunctions and conjunctions of propositions which do
not use quantifiers and which are equivalent to the following:

@ B8,P0OXx)
(b) E
© 5,0,Px)
(d O
(e) O,0,P(x Y

Eolution
U =01

(@ E,P@0x)=P(@Q090(0).

(b) B,8,P(x, Y=PO0OOP@QITP(1QOP(1})
() E.0,P(xy)=[PO0TPQIO[ALQOP(LY
(d) 0,8,Pxy=[POOUPIOIO[AQI0P(1N
() 0,0,P(xy)=POODOPQIDP(IQOP(LY

Propositions and Predicates 281

Example 8.3.7: Consider the universe of integers I.

(8 Find a predictatd®(x) which is false regardless of whether the
variablex is bound byd or [1

(b) Find a predicatd’(x) which is true regardless of whether the
variablex is bound byd or [1

(c) Isit possible for a predicaf(x) to be true regardless of whether
the variable is bound by, [J, or [!?

Eolution

(@ P(X):x=x+1

(b) P(X)=x#x+1

(c) Yes.
P(x): x# x+1is true regardless of whether the variable is bound
by& O, or [

Example 8.3.8: Consider the universe of integers andRefx, vy, 2)
denotex—y = z Transcribe the following assertions into logical notation.

(&) For everyx andy, there is some such thak — y=z

(b) For everyx andy, there is some such thak — z=y

(c) There is arx such that for aly, y— x=y

(d) When 0 is subtracted from any integer, the result is the original
integer.

(e) 3 subtracted from 5 gives 2.

Eolution
P(x, y,2):x—-y=2z

(@ 5,8, 0,P(x y2)
(b) B,E8,0,P(x y2)
(© O,E,PyxY
(d)y P(x,0,%)

(e) PG32

8.4 QUANTIFIERS AND LOGICAL OPERATORS

The transcription of mathematical statements involves predicates, quantifiers
and logical operators.
Assume that “Universe of discourseliand let
E (X), x—even
O (x), x-odd
P (X), x—prime
N (X), X non-negative.

282 Theory of Automata, Formal Languages and Computation

(i) Every integer is even or odd.
O, [E(x) DO(¥)]
(i) The only even prime is two
B JIE(X)OP(X) O x=2]
(i) Not all primes are odd.
=8, [P(¥) O O(x)], O,[P(x) O= O(x)].
(iv) If an integer is not odd, then its even.
H[~O(x) O E(X)]

The quantifiers may go anywhere in the transcription of mathematical
statements.

Let P(x, V, z2) denote“xy= Z' for the universe of integers. Informal
statements of propositions frequently omit the universal quantification of
individual variables.

(i) “If x=0, thenxy =x for all vlaues ofy”
E(x=00 By P(x v X)]
(i) “If xy=xfor everyy, thenx =0".
E 8y P(x v ¥ 0 x=0]

Propagation of negations through quantifier sequences is useful in
constructing proofs and counterexamples.

As an example, consider there existsach thak +z =y, for every pair of
integersx andy. This is stated as:

By, O,[x+z=]
This is true for universe of integers I, but not true for the natural numbers
N. We establish the falsity for the univefddoy showing that its negation is
true.
The negation has the form
a5, B, 0,[x+z=]
which is difficult to interpret.
The equivalent form
0,0, 8y =~ [x+z=y],or 0,08, [x+z#}]

is more tractable and can easily be shown to be true for the nonnegative
integers by choosing>'y.

Propositions and Predicates 283

Logical Relations

B, P(x) O P(c), where ds an arbitrary element of universe.
P(c) O O,P(x), wherec is an arbitrary element of universe.
2 P(X) = -~ OP(X)

H,PX) = 2 P(x)

00~ P(X) = =8, P(x)

[E,P(x) 0Q] = E,[P(x 0Q

[E,P(X) 0Q] = E,[P(XY 0Q

[E,P(x) OE,Q(¥)] < H,[P(¥ 0QX)]

[E,P(¥) 0E,Q(X)] = E,[P(¥ UQ(X)]

10. [O,P(x) Q] « LP(x 0Q

11. [O,P(x) 0Q] < O,[P(¥ 0Q

12. 0,[P(x) 0Q(X)] = [O,P(¥ D0,QX]

13. [O,P(x) D0,Q(X)] = [O,P(¥ DQX]

Example 8.4.1: LetP(x, Y, 2) denotexy =z, E(x, y) denotex =y; and

G(x, y) denotex > .

Let the universe of discourse be the integers. Transcribe the following into
logical notation.

©CxNoarwNE

(@) If y=1, thenxy =x for anyx.

(b) If xy#0,thenx#0andy#0

(c) If xy=0,therx=0ory=0.

(d) 3x=6ifand onlyifx=2.

(e) There is no solution t&f =y unlessy > 0.

() x<zis anecessary condition fexy andy <z
(g) x< yandy< xis a sufficient condition foy = x.
(h) If x<yandz<O0, therxz<yz

() It cannot happen that=y andx <y.

() If x<ythen for some such thatz < 0,xz>yz
(k) There is arx such that for every andz, xy = xz

Eolution
(@) If y=1, thenxy=xfor anyx.
Hy[E(y.D O 5,[P(x v Xl
(b) If xy#£0,thenx#0andy#0.
5,8y [~ P(x y0) 0 = E@Y) 0~ E(x 0]
(c) If xy=0, therx =0, andy = 0.
5, By [P(x, ¥0) O E(G y) DE(x, 0]

284 Theory of Automata, Formal Languages and Computation

(d) 3x=6ifand onlyifx=2
B [P(3x,6) = E(x2]
(e) There is no solution & =y unlessy > 0.
- (%Y = = [G(y0) DE(Y.0]]
() x<zis anecessary condition fox y andy <z
H, By B,[[-G(x, Y)O-G(y, 2] 0 = G(x, 2)]
(g) x< yandy< xis a sufficient condition foy = x.
B Hy [~ G(x)0~ G(y,)10 E(y, X)]
(h) If x<yandz> 0, therxz>yz
0,0, 0,[G(% ¥ 0G(0,2) 0 5, 5, [P(x 0) TP(y, 2 V)]]
O G(u,v)
(i) It cannot happen that=y andx <y.
- B By [E(x y) OG(y, X)]
() If x<ythen for some such thaz < 0,xz>yz
5, By [(G(y,x) 00,60, 2] 0 5, 8, [[P(x,zu) OP(y, zZV)]]
O G(y,v).

(k) Do it yourself.

Example 8.4.2: Let the universe of discourse be the set of arithmetic
assertions with predicates defined as follows:

P (X) denotes X is provable”.

T (X) denotes X is true”.

S(X) denotes X is satisfiable”.

D (x, Y, 2 denotes Z is the disjunctiox [0 y’

Translate the following assertions into English statements.
(@) Ex[P(X) O T(¥)]
(b) H,[T(x) 0= S(x)]
(©) GT(X¥ 0= P(X)]
(d) B8, BAD(x ¥%2)OP(2] 0 [P(x) OP(Y]}
(€) BT D &, 8, [D(x Y20 T(2]}

Eolution

(@) EJ[P() 0 T(X)]
If xis provable, themr is true.

Propositions and Predicates 285

(0) W [T(X) 0= S(X)]

(©)
(d)

(e)

If x is true or it is unsatisfiable.

0T 0= P(X)]

There is some, for which x is true and it not provable.

H Hy B {[D(x % 2) OP(2)] 0 [P(x) OP(Y]}

If the assertiorz = x Oy and the assertiop(z) is provable, then
eitherx is provable oy is provable.

HAT) 0 8, 8, [D(x %2 O T(2]}

If every arithmetic assertion is true, then the assertror O yis
true.

Example 8.4.3: Write the following using logical notation. Choose
predicates so that each assertion requires at least one quantifier.

(@)
(b)
(©)
(d)

(e)

Eolution

(@)
(b)
(©

(d)
(e)

There is one and only one even prime

No odd numbers are even.

Every train is fasten than some cars.

Some cars are slower than all trains but at least one train is faster
than every car.

If it trains tomorrow, then somebody will get wet.

P (X): xis prime

E (X): xis even

O P(x) OE(X)]

P (X): xis odd

E (X): xis even

- 0,[0(x) DE(X)]

T (X): xis a train
C(y):yisacar

F (X, y): xis faster thayy.

ETY O Oy (C(y) OF(x, W)

E,.0,[C(y) 0=~ F(x »]O0O0[T(X OF(X Y]
R: It rains tomorrow.
W(X): x will get wet.

RO O,[w(x).

Example 8.4.4: Find an assertion which is logically equivalent to
H,P(x) but uses only the quantifiefl and the logical operatot .
Similarly, express§l, P(x) in terms ol and-. Similarly, expresg&l, P(x)
in terms of@and-.

286 Theory of Automata, Formal Languages and Computation

Eolution

() B,P(X) = ~(=E,P(x)
= = (0= P(x)
= 7 Dxﬁ P(X).
(i) OPX) = = (- O,P(x)
= (B~ P(x)
= 7 Qx - P(X).

)

Example 8.4.5: Find an assertion which is logically equivalent to
O'xP(x) but which uses only the quantifigfsand (] together with the
predicate for equality and logical operators.

Eolution
OIxP(x) = O,[P() O8,[P(y O y= 4

Example 8.4.6: Find whether the assertion

B P() 0 QX1 O [E,P(¥ 0 B,QX]

is true or not.

Eolution:

P(x) Q) 5,P(x) 0 Q(x) 8,P(x) 0 5,Q(x)
T T T T
T T T T
T F F F
T F F F
F T T T
F T T T
F F T T
F F T T

The assertion is “TRUE".

Example 8.4.7: For a universe containing only the elements 0 and 1,
expand O, [P(x) 0Q(x)] and [0, P(x) OO, Q(X)] into propositions
involving P(0), P(D, ... etc., and without quantifiers. Rearrange the
terms of the expansion to show that

Propositions and Predicates 287

0,[PCGY 0QM(¥] U [0, P(¥ 00, QA

Eolution

O, [P(x) 0Q(X)] = [(P(O DRQI LI(R} OQU N
= [[P(O 0Q(O] P@] L(AQ U 9) QN
= [[P(O OP(D] Q9 DR IIOP(O 03]
[1Q(0) D Q(D]]
= [[P(O OPD] Q9 OQ D]
< O,P(x)00,Q(x) (for this universe).

Hence proved.

Example 8.4.8: For each of the following sets of premises, list the
relevant conclusions which can be drawn and the rules of inference used in
each case.

(@) All cows are mammals. Some mammals chew their cud.

(b) All even integers are divisible by 2. The integer 4 is even but 3 is
not.

(c) What's good for the auto industry is good for the country. What's
good for the country is good for you. What's good for the auto
industry is for you to buy an expensive car.

Eolution

(@) C(x):isxis acow.
M(X): x is a mammal.
D(x): x chew their cud
0.IC() - M(¥)]
O0,M(x) - D(x).
(b) E(X): xis an even Integer.
D(x): x is divisible by 2.
E(x) - D(x).
(c) A(X):xis good for the auto industry
C(X): x is good for the country
Y(X): x is good for you.
b = “You buying an expensive car” (constant)

V[AX) - C(X)] 1)

WIC(X) - Y(X)] (@)

A(b) (3)

By US, A(b) —~ C(b) (4)

C(b) ~ Y (b) ()

288 Theory of Automata, Formal Languages and Computation

(3), (4), Modus Ponens, C(b) (6)
(5), (6), Modus Ponens, Y (b) @)
By corjunction, C(b) Y (b)

Conclusion: It is good for the country and for you to buy an expensive car.

Example 8.4.9: Determine the validity of the argument: “It is not the
case that some trigonometric functions are not periodic. Some periodic
functions are continuous. Therefore, it is not true that all trigonometric
functions are not continuous”.

Construct proof, if it is valid.

Eolution

T(X): x is a Trigonometric function.
P(X): x is a periodic function
C(x): x is a continuous function.

LT - 2P(X)] H-T(Xx) - P(X)
OPX - C(x OPX - C(x
0~ (ET(K) - -C(X 0(0-TK - CX)

1. B-T(X) - P(X) P

2. -T(a)- P(a) us, (1)

3. O0,P(X)-C((X

4. P(@-C(a (3), ES

5. =T(a)- C(a) (2), (4), Implication
6. O0,-TX - C(x (5), EG

O Assetionis VALID.

Example 8.4.10: Show that(H,)(H,)P(x y) - (= X([E,)P(x Y) is

logically valid.
Eolution
1. E)EYPKXY) P
2. H)P@EY) us, (1)
3. P(ay) UG, (2)
4. (LDP@Y) EG, (3)
5. (L0E,P(ay) UG, (4)

Propositions and Predicates 289

Example 8.4.11: Prove that(E,)(T,)P(x, y) - (0,)(0,)P(Xx y) is

logically valid.
Eolution
1. E)(O)PXY) P
2. (0y)P(ay) us, (1)
3. P(ay) ES, (2)
4, (0,)P(ay) (3), EG
5. o @E)P XY (4), EG

Example 8.4.12: Show that - P(a b) follows logically from
E)E)PX,) — W(x, y)) and~ W(a, b).

Eolution

1. EI)E)PXY - WXY) P

2. (E,)(P(xb) - W(x b)) (1), US

3. P(ab)— Wb (2), US

4. - P(ab)OW(a b P.Qe--POQ

5. -W(a b P

6. -P(ah T, (5),~P,POQO Q

8.5 NORMAL FORMS

Let us show how to find the formula given the Truth Table.

_h
R
©

R)

4 Truth vabiesare
“True”

I o o o e

M mTmTm 4 A4 4T
mT m—=4 4 1 -4 4O
n s e T T T T R

uR=IL IR CILRC]

290 Theory of Automata, Formal Languages and Computation

f(P,Q,R)=(POQOR) I(PO-QOR)O(PO-~QO7r)
OG- PO-QOR)

Formula obtained here is“disjunction” of terms, each of which &
“conjunction” of “statement variables” and th&iegations”.

A product of statement variables and their negations is called “elementary
production”. A sum of variables and their negations is called “elementary
sum”.

Disjunctive Normal Form

A formula which is equivalent to a given formula and which has a sum of
elementary products is called “disjunctive Normal Form” of the formula.

Conjunctive Normal Form

A formula which is equivalent to a given formula and that has a product of
elementary sums is called “conjunctive Normal form” of the formula.

Procedure to find dis junctive Normal form

(i) If the connectives and~ appear in the given formula, obtain an
equivalent formula in which. and ~ does not appear.

o — Bis replaced by- a 0OB)
anda - B is replaced either by

@OB)O(-ad=p)
or
(=aOp)O(=B 0a)

(i) UsingDeMorgan’s laws, an equivalent formula can be obtained in
which the negation is applied to statement variables only, if the
negation applied to a formula or part of the formula which is not a
statement variable.

(i) Applying the distributive law until a sum of elementary products
is obtained.

This is the "Disjunctive Normal Form”, after applying the
Idempotent law and suitable re-ordering.

In the Normal Form, the elementary products which are
equivalent to “F” (False), if any, can be ommitted.

Example 8.5.1: Obtain a disjunctive normal form of

POGP- QOQ~ ~R)).

Propositions and Predicates

2901

Eolution

PO(-P

LA T A A A

QOUQ- =R))
POG-P- (QI(-=QOR))
PO P-[(QU-QUQUR)]
PO(- P~ [TO(QOR)
PO(- P - (QORY))
PO[- (- P)O(QOR)]
PO[PO(QOR)
(POP)O[PO(QOR)
POQOR)

POPOQOR

POQOR. (Answer)

Example 8.5.2: Obtain the disjunctive Normal form of

Eolution

PO(-

8

=
<=
=

PO~ PO-QOR)

PO-QOR)
(PO-P)O(PO-Q)I(POR)
PO(PO-QO((POR)
-QUO(POR)

PO-QOR (Answer).

Example 8.5.3: Obtain the disjunctive normal form of

Solution:

~-PO-Q)- (-POR)

(-PO0-Q) - (-POR)

= [-(-PO-Q]0(-PUR]
- [(POQ)O(-POR)] (Answer).

Example 8.5.4: Obtain the disjunctive normal form of

Eolution

(PO-QOR)O(P~ Q)

(PO-QOUR)O(P- Q)
= (PO~ (QOR)O(- POQ)
= (PO(=QOUR)0(- POQ)
-~ (PO-Q)O(PORI(- POQ)
= (PO-QU-P)I(PI-QUQI(PIR)

292 Theory of Automata, Formal Languages and Computation

- (TO-Q)O(POT)O(POR)
-~ 7QOPO(POR)
- (POR)OPO-Q (Answer)

Example 8.5.5: Obtain a Disjunctive Normal Form of

P-(P-QU-(-Q0~P))
Eolution

P- (P-QUO-(-QU-P))
= P [(-POQOQOP)
< = PO[(- POQ) I(QUP)]
= [-PO-POQIO-POQOPR)]
= [-PO-POQIO(-POQ O(F)]
= [(=PO-P)O(- POQIL(-PLQ]
= [-POPOQIO-POQ
= [(-PO-P)O(- POQ)O(-PLQ)
= [-POQIO-POQ
= = POQ (Answer)

Example 8.5.6: Obtain the Conjungtive Normal Form of

- (POQ) » (POQ)
Eolution

- (POQ) - (POQ)
= [+(POQ O(POQIU -~ (-(POQ) O-(PLQ]
= [(-PO-Q)I(POQ)D[(POQ) O(- PU=-Q)
- [(PDO-POQO-QUO(POQ)O(~PO-Q)]
-~ (POQ)O(-PO-Q) (Answer)

GLOSSARY

Logic: Disciplinewhich deals with methods of reasoning.

Proposition (statement): Any declarative sentence which is true (T) or false
(F).

Truth Value: T or F are the truth values of a statement.

Liar's Paradox: This statement is false.

Connectives: AND, NOT, OR,

Negation: ~ P or- P (NOT P)

Conjunction: AND (pOq)

Disjunction: OR(pdq)

Propositions and Predicates 293

Implication: ConditionalpO q

Biconditional: If and only ifp = q

Tautology: Propositional form whose truth value is true for all possible
values of its propositional variables.

Contradiction: Propositionaform that is always false.

Contingency: Propositional form which is neither a tautology na
contradiction.

Modus Ponens:(PO(PO Q)0 Q

Modus Tollens: (PO QDO-Q 0O =~ P

Disjunctive Syllogism: [- PO(POQ)] O Q

Hypothetical Syllogism: [(P O Q)J(QU RO (PO R

Predicates: Assertionsormed using variables in a “template” that expresses
the property of an object or a relationship between objects are
predicates.

REVIEW QUESTIONS

What do you mean by a proposition?
Give examples for proposition.
State the liar's paradox.
What are connectives? Give examples.
Explain the following:
(a) Negation (b) Conjunction (c) Disjunction
(d) Implication (e) Biconditional.
6. Give the Truth Tables for:
(a) Negation (b) Conjunction (c) Disjunction
(d) Implication (e) Biconditional.
7. Explain the terms:
(a) Tautology (b) Contradiction (c) Contingency
8. What are logical Identities? Give a few of them.
9. Explain the following:
(&) Modus Ponens
(b) Modus Tollens
(c) Disjunctive Syllogism
(d) Hypothetical Syllogism
10. What are Predicates and Quantifiers?
11. Explain the following:
(a) Disjunctive Normal Form
(b) Conjunctive Normal Form
12. State the procedure to find Disjunctive Normal Form.

abrwphE

294

Theory of Automata, Formal Languages and Computation

EXERCISES

Which of the following sentences are propositions? What are the truth
values of those that are propositions?

(a) x+y=y+xforevery pair of real numbexsandy

(b) Answer this question

€ y+2=17
(d) 7+5=10
() 3+2=5

(H Bombay is the capital of India.

(g) ISPEX s in love with ‘L’JALAJABATVMU

Write the negation of each of the following propositions?

(@) Summer in Kodaikanal is hot and sunny.

(b) 7+8=15

(c) There is no air pollution in Karuppur

(d) Today is friday.

Let p andq be the propositions

p: | drive over 85 km per hour

g: | get a speeding ticket.

(&) 1do notdriver over 85 kmph

(b) 1 will get a speeding ticket if | drive over 85 kmph.

(c) Driving over 85 kmph is sufficient for getting a speeding ticket.

(d) Whenever | get a speeding ticket, | am driving over 85 kmph.

Obtain a truth table for each of the following propositional forms:

(@ (- pUag

(b) - (pOQq)

€ (=pda

(d) (pUao)Or

(e) (pO(=pP)0 p

Determine whether each of the following implications is true or false.

(@ If2+2=6,then3+3=8

(b) If elephants can fly, then2 +2 =6

(c) If 2+ 2 =6, then elephants can fly.

For each of the following sentences state if the sentence means if the

“or” is an “inclusive or” (disjunction) or an “exclusive or” which of

these meanings of “or” do you think is intended

(&) Dinner for two includes two items from menu list | or three items
from menu list 11.

(b) To take Applied Physics, you should have taken a course in
Mathematics or a course in physics.

Propositions and Predicates 295

10.

11.

12.
13.

14.
15.
16.

17.
18.

19.
20.
21.
22.
23.

24.
25.

Write down each of the following statements in the form,“theng” in
English.
(&) Your guarantee is good, only if you bought your PC less than 1

year ago.
(b) If you drive more than 800 kilometres, you have to buy diesel.
State the converse and contrapositive of each of the following
implications.
(&) A positive integer is a prime only if it has no divisors other than

and itself.
(b) 1go to class whenever there is a test.
Construct a truth table for each of the following compound propositions.
(@) (pUao)dr
(b) (pOaq)Or
© (pOgO=r
Construct a Truth table for each of the following compound
propositions.
@ (p-agO(= p-r)
(b) (P~ O(= p-T)
© -p-(q-r)
Show that- (pOq) and - pd- q are logically equivalent by
constructing Truth Table.
Show that the propositions— gand- pdgare logically equivalent.
Show that the propositionpO(qOr) and (pdq)d(pdr) are
logically equivalent.
Show thats (pO (- pOg)) and- pO- qare logically equivalent.
Show thatp= - (= p).
Rewrite the statement: “It is not true that | am not happy” in simpler
form.
Show that: (pOq)= (- pO(~ g (De Morgan’s Laws)
Givenp: The president is a Democrat

g: The president is a Republican

Express (ay (pOd) (b)(= p)I(= q).
Show that the statemeptd (= p) is a tautology.
Show thai pOq) O[(= P O(- gd] is a tautology.
Show that the statemefp O q) d[(= p O(- 9] is a contradiction.
Simplify the statement ([pO(-)] Or).
Consider: “You will get an A if either you are clever and the sun shines,
or you are clever and it rains”. Rephrase the conditions more simply.
Show thatp - q= (-~ p) O qusing Truth Table construction.
Verify the “Switcheroo Law” using Truth Table.- q=(- pOdqg

296

Theory of Automata, Formal Languages and Computation

26.

27.

28.

29.

30.

31.

32.

33.

34.

Using the Switcheroo law — q= (7 p O gtransform the following
statement into a disjunction: “If 0 = 1, then | am the queen of Texas.
Check whether the followings statements are equivalent or not.

(a) Ifitis Tuesday, this must be Mexico.

(b) That this is Mexico is a necessary condition

(c) Its being Tuesday is sufficient for this to be Mexico.

Verify whether commutative law holds good for the “conditional” i.e.,
p - qisthe same a$ - por not?

Prove the valid argument:

(pOr) - (sOt)

p
ot

”

Prove the valid argument:

a- (bOc)
-b
O-a

Prove the valid argument:

Check the validity of the argument:

So T
(pUqg) - —r
2s-(~g-1)
p
dq

Prove and comment on the argument:
pO(= P
Op
Show that the argument
pP-q
Up

is not valid.

Propositions and Predicates 297

35.

36.

37.

38.

39.

40.

41.

Check whether the following argument is valid. If it is, then give
proof, if it is not, then give a counterexample.

“Heat dissipation accompanies every irreversible chemical reaction.
Therefore, if a chemical reaction is reversible, it dissipates no heat”.
Check whether the following is valid.

If it is, then give a proof; it it is not, then give a counterexample.

“It the moon is made of red chease, then elephants can fly and circles are
round. The moon is indeed made of red cheese. Therefore elephants can
fly”.

Prove the valid argument

(pOQq) -~ (rds)
pdq
Or0s

Check the validity of the following arguments:

(@ - (rOs) (b) pOUq
(pUaq) - (rOs) p-r
O-(pdq) Or

() p- (qOr)
p

ar

q

Let P(X) denote*x spends more than six hours every weak is class”,

where the universe of discourse %as the set of students. Express each

of the following quantifications in English.

(@ OP(x)

(b) ExP(x)

() 0~ P(X)

(d) B~ PX)

GivenP (X): x can speak Hindi

Q (¥): x knows computer language “Small Talk” express each of the

following sentences in terms &(x), Q(x), quantifiers and logical

connectives. Universe of discourse is the set of all students at your

school.

(&) There is a student at your school who can speak Hindi and who
knows small talk.

(b) There is a student at your school who can speak Hindi but who
does not know small talk.

Use quantifiers to express the associative law for multiplication of real

numbers.

298 Theory of Automata, Formal Languages and Computation

42. Prove that the statements
- 0, H,P(x y) and B,0, - P(xY)

have the same truth table.
43. State the truth values of the following:
(@ OxP(x) - O, P(X)
(b) B,P(x) - O'xP(x)
() O=P(x) - -H,P(X
44. Show thatd, P(x)0OE, Q(x) andH, (P(x)TQ(x)) are not logically
equivalent.
45. Show that, P(x) 0 0,Q(x) and B, U, (P(x) DQ(Y)) are equivalent.
46. Obtain the principal disjunctive normal form and principal conjunctive
normal form of

PoQ

47. Obtain the PDNF of the following
(a.) - P DQ

(b) (POQ)U(-PUQ)L(QOR).

48. Obtain the disjunctive normal form of

PO(=P- QU(=Q-~ R))

49. Derive the disjunctive normal form of
P-(P-QUOEQ-R))
50. Obtain the conjunctive normal form of
(-P-RIOQ«~R)

51. State whether the following argument is valid or not. Give proof if it is

valid. Otherwise give counter example.

Babies are illogical.

Nobody is despised, who can manage crocodiles.
lllogical people are despised.

Therefore babies cannot manage crocodiles.

52. Ifthe colonel was out of the room when the murder was committed, then
he could not have been right about the weapon used. Either the butler is
lying or he knows who the murderer was. If Lady Sharon was not the
murderer, then either colonel was in the room at the time or the butler is
lying. Either the butler knows who the murdered was or the colonel was
out of the room of the time of the murder. The policeman deduced that if
the colonel was right about the weapon, they Lady Sharon was the
murderer. Was he right?

Propositions and Predicates 299

10.

11.

SHORT QUESTIONS AND ANSWERS

Define amathematical structure.

It is defined as a set of axioms.
What is araxiom?

An oxiom is a true statement about the properties of the structure.
What islogic?

Logic is the discipline that deals with the method of reasoning. It
gives a set of rules and techniques to determine whether a given
argument is valid or not.

What areTheorems?

True assertions which can be inferred from the truth of axioms are
called ‘Theorems’.

What is meant biproof’ of a Theorem?

Proof of a theorem is an argument that establishes that the theorem is
true for a specifiethathematical structure.
What is gproposition or a statement?

Any declarative sentence which is true (T) or false (F) is called
proposition or a statement.

What do you mean by truth value of a statement?

We referto T (True) or F (False) as the truth value of the statement.
Give examples for statements (propositions).

(@ 3+3=6

(b) It will rain tomorrow.

What is Liar's paradox?
(@) “This statement is false”.
(b) “l am lying".
Statement (b) is a pseudostatement equivalent to (a).
Such a self-referential sentence isia’s Paradox.
Give examples dadentential connectives
And, or, not.
Draw the truth table dflegation.

300 Theory of Automata, Formal Languages and Computation

12. Draw the truth table afonjunction (AND).

p q pOq
T T T
T F F
F T F
F F F

13. Obtain the Negation of the statements:
(&) Not all the doctors in this town are crooks.
(b) Iloved neither Padmaja nor Naveena.
(&) All the doctors in this town are crooks.
(b) 1loved either Padmaja or Naveena.
14. Obtain the conjunction of the statements.
(@ p:lamrich.
g: You are old.
(b) p:8+8 =17
g: Sun rises in the east.
(@ pOg: “lamrich and you are old”.
(b) pOg:8+8=17 and Sun rises in the East.
15. Sketch the truth table diisjunction (OR).

p q pOq
T T T
T F F
F T T
F F F

16. Obtain the disjunction of the statements
p: Ravi did it
g: Ram did it.
p O q: Either Ravi or Ram did it.
17. What is meant bimplication? Sketch the Truth Table.
pO gread as “ifp, theng” is an implication.

Propositions and Predicates 301

18.

19.

20.

21.

22.

23.

24,

The Truth Table is as follows.

p q pO g
T T T
T F F
F T T
F F T

What is the Truth Table d@iconditional?
Biconditional meansd if and only ifp”. or “p is equivalent tay".

p q p=q
T T T
T F F
F T F
F F T

What do you mean byautology?
A Tautology is a propositional form whose truth value is true for all
possible values of its propositional variables.

ExampleP O- P.

What do you mean bgontradiction?
A contradiction or absurdity is a propositional form which is always
false.

Example:P O~ P.

What do you mean bgontingency?
A propositional form which is neither a tautology nor a contradiction
is called a contingency.

What are the representations for tautology and contradiction?
Tautology- 1

Contradiction— O.
What isModus Ponens?

[PO(PD QIO Q
What isModus Tollens?

(POQUO-QUO-P.

302

Theory of Automata, Formal Languages and Computation

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

What isdisjunctive syllogism?
[-PO(POQIO Q
What isHypothetical Syllogism?
(PO QOQURIO(POR
What do you mean bgontrapositive identity?
(PO Q) = (7Q0O 7P).
Explain the logical identityExportation.
(POQUR] < [PO(QI RY
Explain the logical identifyAbsurdity
(POQOMPO-Q]=-P
Explain the logical identityEquivalence
(P-Q) =[(PDQUQO P
Explain the logical identifytmplication
(POQ) = (-PUQ)

State the following rules of inference
(&) Hypothetical Syllogism
(b) Disjunctive Syllogism
@ P-QQ-ROP-R
(b) ~P,POQO Q
State the following rules of inference
(&) Modus Ponens
(b) Modus Tollens
(@ P,P-QOQ
(b) -Q,P-Q0O =P.
What is double negation?

--P<P
State De Morgan’s laws in terms of Equivalences.
- (POQ) = -PO-Q
- (POQ) = -PO-Q
State Distributive Laws in terms of equivalences.

POQOR) « (POQ)TI(POR)
POQOR) « (POQ)O(POR)

Propositions and Predicates 303

37.

38.

39.

State Associative Laws in terms of equivalences.

(POQ)OR = PO(QOR)
(POQ)OR = POQOR)

State Commutative laws in terms of equivalences.

POQ - QOP
POQ ~ QOP

What arePredicates?

Assertions formed using variables in a “template” that expresses the
property of an object or a relationship between objects are called
Predicates.

Answers to Exer cises

CHAPTER O

1.

oo

11.
13.

18.

19.

(@ No (b)No (c)Yes

2. (@) Yes (b)No (c)Yes
3.
4. Suppose that O A. SinceA O B, this implies thak (0B. SinceB O C,

(@) True (b)True (c)False

we havex OC. Sincex 0 Aimplies thatx OC, it follows thatA O C.
@1 (b1 ()2 (d)3
(@ {o{d}
(b) {o{a.{8.{al}
© {o{d . {# {o{dh
@2 (b)16
@ {(ay).(by).(cy(dy), (a2, (b2),(c2(d 2}
(b) {(y.a),(vb),(y.9(yd),(za),(zb),(zc),(zd)}
The set of triplesg, b, ¢) wherea is an airline and andc are cities.
exA={(x y)|xOgpand yJA}
=o={(x y|xOA and yUg}
= AX(p
mn
@1{0,1,2,3,4,5, 6}
(b) {3}
(c) {1,2,4,5}
(d) {0.,6}
(@B OA
(b) AOB
(c) AnB=9g
(d) Nothing, since this is always true
(e) A=B
@{L23...... n
(b) {1}

Answers to Exercises 305

25.

26.

28.
29.

30.
31.
32.

33.
35.

36.

A? ={0a a%

B* ={ababap

AB ={ah aaB

A ={0aa’,...... }={a"| n=0}

B" ={(ab)"|n=0}

B" ={(ab)"|nz3

2t =% {0

(@ L OL,={ab bx,aa, ac, v}

(b) L nL,={ad

(© L -Ly={xylx0L, Oy0L;}

(d) LL,={abaa aba,abch, bcaa, bcac,bcch,caaa,caac,cach}

A=, A=AO0ADAN. ..

At=J, ,A=AO0ANDOA...

A={a, aa}, B ={a} and C = {aa}, to prove that
A(BnC)OABNn AC.

AB = {aa, aag, AC= {aaa aaad
ABn AC={aag ,BNnC=¢,ABnC)=0@
O ABNnC)OABN AC.

(a) 155 (b)100

(@& Weknow, AnBOA

If ADB, thenAn B= A
OAO(An B)= A

(b) An(AOB)=(An AO(AN B
= AO(An B)
= A(by(a))

(c) XO(A-B) = xOADxOB
= xOAOxOB
= xO(An B)

B,[xO(A-B)]=8,[x0(An B)
OA-B= An B

(d ADO(AOB)=(A0 An(AD B
=U n (A0 B)
= A0OB.

(e) An(AOB)=(An AO(AN B
=0 (An B)
=AnB.

(@ No (b)No (c)No.

306

Theory of Automata, Formal Languages and Computation

38.
40.
41.
46.

47.
48.

49.

50.

51.

52.

53.

54.
56.

57.

58.
59.

(a) only

Only (a) and (d) are onto functions.

(@) Yes (b)No (c)Yes (d)No.

(a) Bijection

(b) None

{1.1), (2, 2), (3, 3), (4.4)}

fog=x"+8x+14

gof =x?+2

(@ R={@3.3),(6,2),(9 1)}

(b) Domain = {3, 6, 9}

Range = {3, 2, 1}

(@) R={(3,2),(5,2),(5.4).(7,2),(7,4).(7,6), (9, 2), (9,4, (9, 6),
(9.8)}

(b) Domain ={3, 5, 7, 9}

Range = {2, 4, 6, 8}

(a) Transistive

(b) Reflexive, symmetric, transitive

(c) Symmetric

(d) Antisymmetric.

(a) 2n(n+1)/2

(b) on 3n(n—l)/2

(C) 3n(n—1) /2

(d) 2n(n—l)

) 2"™ /2

(f) 2n2 _zmn(n—l)

R is reflexive if and only if(a,a) OR for all aO A if and only if
(a, @) DR if and only ifR™* is reflexive.

No, ExampleR ={(1,3), (39}

(@) {(a b)|bdivides g

(b) {(a b)| adoes nat divide B

(&) Symmetric, transitive

(b) Reflexive, symmetric, transitive

(c) Antisymmetric

L(G) ={b, aag}

G=(\,T,SP)wherev={0, 1,§ T={0, 1}, Sis the start symbol and
productions are

S-038
S- A

Answers to Exercises 307

60. G:V={S0%, T={Q%.
ProductionP:S - 0S5 S- § S A
G,:V={S,A0%, T={Q}
Productiond: S - 05 S- 1A, S- 1 A= 1A A 1SS A,
61. G=(,T,S,P)
v={0,1,2SA B}
T={0,1, 2}
S = Starting state
Production®: S - OAB, S- A, BA- AB,
OA- 01 1,A-11 B- 12 B 22
62. (@) S- 00S S- A
(b) S- AS, S- ABS,S- AAB- BABA- ABA.0 B 1
(c) S- ABS,S_ \,AB- BABA- AB A- 0, B-1
(d S ABS,S-T,B-U,T - AT, T - A,
U-BU,U-BAB- BABA- AB A- 0 B> 1L

69. LetP(n) beZ3EBj =35 -1/ 4
1=0
n .
Basis:P(0) is true time sinc§3[5' =3=35-1}/ 4
1=0

n .
Induction: Assume thgj 3(5' = 5™ -3/ 4
1=0
n+1l _ On O
Then 23[5] — DZ 36 O+ 3D51+1
J=0) =0 U
— 3(5n+1 _])/4+ 3D51+1
=3(5™ +45" -}/ 4
- 3(5n+2 _])/4
72. Postages are 5 cents, 6 cents, 10 cents, 11 cents, 12 cents, 15 cents, 16
cents, 17 cents, 18 cents and all postages of 20 cents or more.

CHAPTER 1
1. (a)

308 Theory of Automata, Formal Languages and Computation

© (Do v (o
(d) (@) a a
B—> @’ @' @O

a

(i) a a
H— @’ @'

v
(e) &
a,b @
b
2 1 0 0,

A b
a b
o {do a. U
0 U {a.,, a5}
0, O O

Answers to Exercises 309

5. L={0",0"010'1In= P
6. M* = {I0].[a0], [aul. [] [G @l [6o [&
(90,0, 021} .{a §.0".[q].{[ql.[& 4l
[d, 921, [, G, 4,1}
which is the DFA of the fornM’ = (Q', Z,8',q;,F") with & given by
the table below.

a b

(O] (O] (O]

[al [0, 0] (0]

[au] (0] [Ql

[aa] (0] (Gl

(9o, a1l (g, a] [g,]

[dor G2 (g, az] [g,]

[d, Q) (O] (G

[Go» Gr 0L [0, 0] (o]
7.
8.

9. (a) baa aba

310 Theory of Automata, Formal Languages and Computation

(b) (aabh” + H ba (bi b (ab

(c) a ba

10.

11.
State g h

Input Input

S St S3 1 0
St St S 1 1
S, S, S, 0 0
S3 St S 0 0
S, S; S, 0 0

12. Start

14. (a) 1100

(b) 00110110
(c) 11111111111
15.

Answers to Exercises 311

16.
17.
f
Input
State 0 1 g
S S) 1
S S S 1
S S S 0
18. (a) 11111 (b)1000000 (c)100011001100
0
19.

20. (@) L, ={1"|n=01 2......}

(b) L,={10%3

() L, ={0",0"1X|n=012...andxisany string}
21.

312 Theory of Automata, Formal Languages and Computation

22,
State f
Input

0 1
S %, S
S S;
S S,
S; S;
Sy S; S;

23. L={0",0"010'11n=> P

24. (a) L=1{0,01, 11}
(b) L={A,000{0""Im=1n=1}
(c) L={10"|In=q 0{10'10'|Inm=> P
25. (a) {0, 10, 11}{0, 1}’
(b) O™"Im=0and n>}
26. (a)

Start @

Answers to Exercises 313

28.

29.

30.

32.

34.

(b) Start

(c) Start

(&) A1 followed by any number of Os

(b) Any number of copies of 10, including null string
(c) The string O or the string 01

(d) Any string beginning with O.

(e) Any string not ending with 0.

Start 0 @ 1

1

G=(V,T,SP)

G={S A BOJ

T={03

S_.0AS-1B,S-AA- 0AA- 1B,
A-1B- 0AB- 1B B- 1

(@) 001
(b) (0O (0O (00) 0000

314

Theory of Automata, Formal Languages and Computation

35.

36.

37.

38.

Assumel ={0°"1"} is regular. Assum8is the set of states of a finite-
statemachine recognizing the set. IZet 0°"1" where3n=|d. Then by
pumping lemmaz = 0%"1" = uw, I(v) = 1 anduv'w{0?"1"|[n= @. It

is obvious thal/ cannot contain both 0 and 1, sin¢ecould then
contain 10. Thereforéis all Os or all 1s, and $*w contains too many
0Os or too many 1s, so itis notlinThis is a contradiction which shows

is not regular.

Assume that the set of palindromes over {0, 1} is regular. Assume S is
the set of states of a finite-state machine that recognizes the st Let
0"10", whenn > | S|.

Apply the pumping lemma to gew/'wIL for all positive integers
wherel(v) =1, andl(uv) €| and z=0"10" = uvw. Thenv must bea
string of Os (sinchn|>|s|), souvw is not a palindrome. Therefore the set
is not regular.

(abd a)*

Answers to Exercises 315

39. (ad b)* aba

7. LetS, andS; be the start symbols Gf, andGg respectively. LeSbe a
new start symbol.
(a) Add Sand production$ —» S, andS - §
(b) Add Sand productiors - S, §
(c) AddSand productior® - A andS -~ S, S
8. (a) Type 2, nottype 3
(b) Type 0, not type 1
(c) Type?2
(d) Type3
(e) Type 2, not type 3

316 Theory of Automata, Formal Languages and Computation

10.

TN
S/A|\A \a
a/ ’ a/ \a

14.

23. (a) Yes
(b) No.

CHAPTER 3

12. DefiningA=({g,9:}.{a B.{z,a 18,9, 0 z,.{q3} dis given by
0(0, &, zy) = {(0, az,)} 0(, b, z,) ={(a, bz,)}
(g, a, @) ={(qaa)} 0(q b B={(q bb}
o(a,a B ={(q)}=0(q b3
(q,0ha) ={(a;,)}

A accepts the given set by final state.

14. M =({q.,{05,{S B,0%,5,q,S,0}dis defined as

(0,00, S) = {(q0BB)}

9(a, 0, B) = {(0,0S), (qls), (0,0}
0(9,00) = {(q,[)}
3(a.LD) = {(a. ()}

15. G=({3.{a B,P,9)

P:S- aShS. as s a
A({g.{aBd.{S abd q)

where 3(a,0,S)={(q aSh(a af(.q)a
(g, 8,8 =3(q b h={(g0}

Answers to Exercises 317

CHAPTER 4

1. M= (Qv zvl—l’6’ql 1qaccspt 1Qrejed)
>2={q
r={0, x £}
g, — start state
Qaccep— aCCEPL state
Oreject— rejeCt state
0 is described by the state diagram shown below.

9 ($0,%0R) (%* 8B R (S * s % L)
(5,0, 8.0,L) (1s.1L) ($,B %,B/R)
(s1s,B,R ($.05.B,R) ($.B %,B,L)
(%.B.s,B,L) (%0 sLL) (5,,0,s,1,L)
(91 5.0R) (8151R) (s:,B, s, B, L)
(5,0, .1L) (8%, % B, L) ($,0,5,BL)
(1 %.B,L)

whereB = Blank cell,L = Left andR = Right

13 (S)’Ov %10! R)v (8011 S_Lle)’ (S:L’ Q S_|_1 QR)v (S]_v 1301 R)v (%1 Bv SZ! Bv R)

14. (%0, 8.0R), (50,1 %,0R), (5,08, QR), (54 15,0 R). (8, B, S, B, R)

15. (%0 %.0,R), (5,1 51R), (5,05, 0R), (s, 15, OR)

16. (2.0, §.1R), (50,1 %:1R)

20. Since the universal Turing machine that simulates every Turing
machine, the present problem is equivalent to the Halting problem of
Turing machines, therefore, it is unsolvable.

CHAPTER 6
1. @ O

318

Theory of Automata, Formal Languages and Computation

(b)
(©)
(d)
(@)
(b)
(©)
(@)
(b)
(©)
(d)

3

3

83

A

aababab

babababa

Function is defined for all natural numbers divisible by 9.
Function is defined for ak =5

Function is defined for all N.

Function is defined for all N.

13. A(2,4)=11;A(3,3) = 37.

CHAPTER 8

1.

(@
(b)
(c)
(d)
(e)
(f)
(9)
()
(b)
(c)
(d)
()
(b)
(c)
(d)

Yes, T

No

No

Yes, F

Yes, T

Yes, F

Yes, T

Summer in Kodaikanal is not hot or it is not Sunny
There is air pollution in Karuppur.
7+8#15

Today is not friday.

- p

p-q

p-d

q-p

(a) True

(b)
(©)
(@)

(b)
(@)

(b)

True

True

If your guarantee is good, then you must have bought your PC less
than 1 year ago.

If you drive more than 800 kilometers, then you have to buy diesel.
Converse: A positive integer is a prime if it has no divisors other
than 1 and itself.

Contrapositive: If a positive integer has a divisor other than 1 and
itself, then it is not prime.

Converse: If | goto class there will be a test.

Contrapositive: If | do not go to class, then there will not be a test.

Answers to Exercises 319

16.
18.

19.

21.
22.
23.
26.
27.
28.
36.
38.

39.

40.

41.
43.

46.

47.

48.
49.

| am happy.
(@) The President is not both a Democrat and a republican.
(b) Either the President is not a Democrat, or he is not a Republican, or

he is neither.
p - p pl(-= p
T F T
F T T

Since there are only T's in the (= p) column, we conclude that

pd(= p)is a tautology.

Hint: Show that all the entries in the last column are all F's.

(= ptqb(=r)

You will get an A if you are clever and either the sun shines or it rains.

Either0#1 or | am the Queen of Texas.

Yes

No (verify using Truth Table construction).

Valid.

(&) Valid

(b) Valid

(c) Valid

(@) Thereis a student who spends more than 6 hours every weekday in
class.

(b) Every student spends more than 6 hours every weekday in class.

(c) There is student who does not spend more than 6 hours every
weekday in class.

(d) No student spends more than 6 hours every weekday in class.

(@) 0,(P(x)0Q(x))

(b) O, (P(x)0-Q(x))

0,8, 0, (xDy) 2= xQy)

(@ True

(b) False, unless the Universe of discourse has just one element

(c) True

PDNF:(POQ)O(-PO-Q)

PCNF:(PO-Q)0(- POQ)

(@ (POQU(=POQUO(-PO-Q)

(b) (POQUR)O(POQO-R)I(- POQOIR)I(~ POQO-R)

POQOR

(POQU(=-PUQO(=PO=-Q)

University Question Papers

THEORY OF COMPUTING
GROUP |
(ANSWER ALL QUESTIONS)

1. The positive closure operator denotes
(@) Proper suffix (b) Proper prefix
(c) One or more occurrance (d) the length of string is zero
2. Type 3 Grammars are known as
(@) Regular Grammar (b) Context Sensitive Grammar
(c) Context Free Grammar (d) Unrestricted Grammar
3. If a grammar produces more than one parse free for a sentence, the
grammar is known as
() Left Linear Grammar (b) Ambiguous Grammar
(c) Context Free Grammar (d) Regular Grammar
(4) Which is the data structure used to implement the Push Down

Automata?
(a) Linked List (b) Queue
(c) Stack (d) Array
5. The graphical representation of derivation is known as
(@) Derivation Tree (b) Derivation structure
(c) Linear Graph (d) Cellular Automata
6. An unrestricted language can be accepted by
(@) Finite Automata (b) Turing Machine

(c) Push Down Automata (d) Cellular Automata
7. The grammar with the productions
S - @ and A - ¢ (s-epsilon) belongs to
(@) Regular Grammar only (b) Context-Free Grammar only
(c¢) Regular Grammar and context-free grammar
(d) Context sensitive grammar.

University Question Papers 321

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.

The functions which are computable by a Turing Machine are known as
(a) Partial Recursive Function(®) Enumerable Functions

(c) Partial Functions (d) Finite-Automata

In a digraph, if all the vertices have the same outer degree, then it is
known as

(&) Connected Graph (b) Euler Graph

(c) Hamiitonion Graph (d) Regular Graph

GROUP I

Which Automation is used for accepting Regular Expressions? Write
the definition for it.

Define “prefix” and “suffix” of a string.

When an NFA becomes a DFA?

What is CNF? and What is GNF? Define.

Write the definition of Context-Free Grammar.

Define “Unit Production” and “Null Production”.

Write the definition of “Turing machine”.

What is meant by Recursively Enumerable language?
What is meant by Partial Recursive Function?

When a “digraph” becomes a “regular graph”?

SEMESTER EXAMINATIONS
(NOV./DEC. 1999)

M.Sc. — COMPUTER TECHNOLOGY — | SEMESTER

THEORY OF COMPUTING

Time : 3 hours Max. Marks: 60

Instructions

1.
2.

1.

Answer ALL questions from Part A and FIVE questions from Part B.
All questions must be answered in same answer book.

PART A

Define regular expression.

322

Theory of Automata, Formal Languages and Computation

©XNOOR®

10.

11.

12.
13.

14.

15.

16.

Show that the CFG with the following productions is ambiguous.
S- a Sqd bS$ S$b SbS

When NFA becomes DFA?

List the properties of Finite State Machine.

Define tree automata.

What is priority rewriting?

Define Kleene closure.

What is star free sets?

State the two methods used by PDA to accept a language.
Define Rabin tree automation.

PART B

Construct DFA accepting each of the following languages.

(@) WO{a, B eachainW isimmediately proceded and immediately
followed by “ab’.

(b) WO{a, B :W has ‘abalb’ as a substring.

Construct and explain special automata for the given stablgdaly.

Design a Push Down Automata to accept the strings of the grammar.

G:E- rEr|eEe|e

Explain the sequence of moves.

Find star heights of the following regular expressions.

(@ (a(ab o)) (b) (c@b')

(c) (@ Ob Oab (d) (abb &

Write markov algorithm to find the following.

(a) Reverse of the given string “abcd”

(b) Whether a given decimal number is divisible by 3.

Construct NFA accepting the following languages over alphabet {0, 1}

(&) The set of all strings with 3 consecutive 0's (zeroes).

(b) The set of all strings such that every block of five consecutive sym-
bols contains atleast 2 zeroes.

(c) The set of all strings ending in oo.

END

University Question Papers 323

THEORY OF COMPUTATION
Time: 3 hours Marks: 60

Instructions:

Answer anySix questions each carry 10 marks.
1. (a) State and prove the principle of mathematical induction using two
examples other than Q no. Ib.
(b) Prove using mathematical induction ‘For every n > 1 the number of
subsets of {1, 2, .n} is 2n.
2. (a) Prove that the language accepted by any Finite Automation is
regular.
(b) Construct a minimal DFA for the regular expression
((ab)” b/ ab¥)*
3. (a) Write short notes on Pumping lemma.
(b) State and Prove the properties of Context Free languages.
4. (a) Distinguish between deterministic Pushdown Automata and
Non-deterministic Pushdown Automata.
(b) LetG be the Context free grammar with productions

S - aS/ASbhS/c
Let G, be the Context free grammar with productions
S -T/U T albT/c U - aS/ abu

(i) Show thatG is ambiguous.
(i) Show thatG andG, generate the same language.
(iii) Show thaitG, is unambiguous.
5. (a) Construct a Turing machine to accept a palindrome |a/dy|
Draw the transition diagram and trace the moves for the any string.
(b) Does every Turing machine computes a partial function? Explain.
6. State the Rice’s theorem and post correspondence problem and give the
proof of Rice’s theorem.
7. (a) Show thatalanguaged 2" is recursively enumerable (i.e. can be

accepted by some TM) if and onlylif can be enumerated by some
T™.

(b) Distinguish halting problem and Unsolvability.

324

Theory of Automata, Formal Languages and Computation

THEORY OF COMPUTING
GROUP |

(ANSWER ALL QUESTIONS)

Letaandb be two regular expressions th@ 0 b)" is equivalent to
(@ alb (b) (aOb)

(€ (bOa) d (o Day

Every context free Grammar can be transferred into an equivalent
(@) Greibach Normal Form (GNF)

(b) Chomsky Normal Form (CNF)

(c) Either (A) or (B)

(d) None of the above

Finite state machine — recognizes palindromes

(& can (b) may

(c) Can't (d) may not

Pushdown machine represents

(@) Type 3regular grammar (b) Type 2 context free grammar
(c) Type 1 context sensitive grammar

(d) Type 0 phrase structural grammar

The Turing machine is computable if final state contains

(a) transition function (b) no tansition function

(c) halt state (d) bothBandC

Match the following

1. BNF (@) S— a\a,A- ShA

2. CNF (b) S- aA A- bBB

3. GNF (c) S- AAA- a

(A) 1-a, 2-b, 3-c, (B) 1-b, 2-c, 3-a

(C) 1-a, 2-c, 3-b (D) 1-c, 2-b, 3-a.

Which is the data structure used to implement the PDA?

(@) Linked list (b) queue

(c) stack (d) Array

A connected graph as a strongly regular colouring if and only if it is a
(a) digraph (b) cayley graph

(c) regular graph (d) cellular Automata.

Which is the following is a model of massive parallelism.

(@) Finite Automata (b) Linear Bounded Automata

(c) Turing machine (d) Cellular Automata

University Question Papers 325

10.

11.
12.

13.

14.

15.
16.
17.
18.
19.
20.

The free abelian group of ranked with the standard set of free generator
is the lattice of integer co-ordinate prints of euclidean spideroted
as2isis

(a) triangular tessellation (b) Torus

(c) Torus tessellation (d) 2D-euclidean grid

THEORY OF COMPUTING
GROUP I

Draw the NFA that recognize the following set/0D 1.

Construct a Turing machine that recognizes the set of all bit strings that
end with a ‘0'.

Derive the stringaaabbbcccfrom S - ABSc, S — Abc, BA- AB
Bb -~ bh Ab -~ ahh Aa - aa

Is the GrammarS - AB, B - ab A - aa, A - a,B - b ambiguous?
Prove.

Define Pushdown Automata.

What is a unit production & (epsilon) production?

State the church’s Hypothesis.

State the Halting problem.

State some practical application for linear cellular automata.
Draw 3 examples for cayley graph.

THEORY OF COMPUTING
GROUP |
(ANSWER ALL QUESTIONS)

The grammar with the productions
S a/bB, B - b, A- ¢ (e-epsilon)belongs to

(&) Regular grammar only (b) Context free grammar only
(c) Regular and Context free only

(d) Context sensitive only

State the regular expression recognized by the transition diagram

326

Theory of Automata, Formal Languages and Computation

4.

()10 (i) 0*1* (i) {0, L}*{10} (iv) (101)*

(A) (i) only (B) (i) & (i) only

(C) (i) & (iii) only (D) (i) & (iii) only

The context free grammar defined diy* is

(@ S- Sh a (b) S- XY, X - ax,Y - by

(c) C- SS/ bad abbS;¢ (d) S- aS S-» bS
Find the useless symbol in the given CFG

S- AB/CAB- BC/AB,A- aC - aB/b

10.

@A (b)B (cC (d) all of the above.

The grammar that does not have an equivalent deterministic automata
for a non-deterministic one is

() Finite state automata (b) Turing machine

(c) Pushdown automata (d) None of the above

A CFG is ambiguous if

(&) The grammar contains useless Non-Terminals.

(b) It produces more than one parse tree for some sentence.
(c) Some productions has two Non-Terminals side by side.
(d) The grammar contains only terminals on the right side.
Which of the following is a model of massive parallelism

(@) Cellular automata (b) Turing machine

(c) Linear bounded automata(d) Finite automata

When a connected graph has a strongly regular coloring

(a) If the graph is a digraph

(b) If the graph is a Cayley graph

(c) If the graph is a Euler graph.

(d) If the graph is a Hamiltonian graph.

Match the following

(a) BNF) S- AAA- BBB- a
(b) CNF @iy S— &AA A- bBB,B- b
(c) GNF @iy S- aAa,A- A Ao b
(@ a-i, b-iii,c-ii (b) a-ii,b-iii,c-i

(c) a-i,b-ii,c-ii (dy a-iii,b-i,c-i.

If ‘a’ and ‘X’ as configuration with finite support ang be an arbitrary
configuration then the convoluti@ix is given by.

University Question Papers 327

11.

12.
13.

14.

15.

16.
17.
18.
19.
20.

THEORY OF COMPUTING
GROUP I

Describe in English the sets accepted by the finite automata along with
the regular expression for the following transition diagram.

List the application of finte automata.
Show that the following context Free Grammar generates the language
of all strings over {0, 1} with twice as many 1's as 0’s.

S~ SSOTT/TOT/ TTO
T-1S/99 ¥1
Is the following grammar ambiguous. Justify
S AB, A- aAle B - ab/bB/e.

Give the new set of productions after removng the unit productions for
the following CFG.

S—- AA A- B/ BB B- abB/b/bh

Construct two different NFA for the Ri.

Is unsolvability a halting problem. Justify.

When a ‘digraph’ becomes regular?

Define cellular automata.

What is meant by Recursively Enumerable language?

B.E. — COMPUTER SCIENCE & ENGINEERING — IV SEMESTER

THEORY OF COMPUTING

Time: 3 Hours Max. Marks: 60

21.

GROUP 11l

Construct and explain pushdown Automata for the following grammar.

S aA
A - aS/ bY a

328

Theory of Automata, Formal Languages and Computation

22.

23.
24.

25.

Time;

21.

22.

23.

24,

Construct NFA for the following regular expressions. Show the
sequence of moves made by the each in processing the input string
“ababbab”.

(@) (ab)* (ag*

(b) (a/b)* abb(a/b)*

(c) (@ /b)

Construct GNF for the BNF gramm@&r- AB, A- B B- aB|Bble.
Construct Turing Machine for identifying the language consisting of 0's
and 1's in which all the string consisting of even number of 0's and odd
number of 1's.

The roles played by Linear Cellular Automatadiscuss. Explain Global
maps and dynamical systems.

THEORY OF COMPUTING

3 Hours Max. Marks: 60

GROUP 11l

LetM = ({q,,0,, 05},{0.3,0,{ o} .{ a}) isa NDFA wheré s given by
0(9,.0) ={0z a5} o(q.)={c}k

8(0,.0) ={a;, a4} () ={¢

(d3,0) ={az 0(0s D) ={q, a3}

(@) Construct an equivalent DFA and draw the transition diagram.
(b) Check whether the string ‘011010’ is accepted by DFA and NFA.
Consider the grammar with the following productions

S~ iCtS/iCtseS/ aC - b

(a) Generate a sentence ‘ibtibtaea’ using leftmost derivation and con-
struct a derivation tree for it.
(b) Derive an equivalent chomsky norma form productions.
(@) Construct a PDA for the given grammar
S - AaA/CA/ BaB
A - aaBa/CDA/aa/DC
B - bB/DbAB/ bbaS
C-Ca/bC/D
D - bD/e.

(b) Using the above show the sequence of PDA for the string
‘aabbaaaaaaa
(a) State the problems in Turing Machine.

University Question Papers 329

(b) Constructa Turing Machine that will accept the following largua
gesin f, b}

L={a"b™, n>1, n#ni.

25. (a) Explain the basic properties of linear cellular Automata.
(b) Draw any 3 common types of Cayley graph.

THEORY OF COMPUTING

TEST Il
Class: BE—CSE Time 90 mts.
Sem: IV Marks : 30
GROUP |
1. The CFG defined bgb is
S XY
@ S- Sha (b) X - ax
(©) C - S§| bag abb (d) S aS
S-¢ S- Bs
2. Consider the Left Recursive (LR) grammar
S - Aalb
A - Ac|bd

Which of the following grammar is equivalent to the given grammar.
When LR is removed

S - Aa|b
(@ A bdA () S- BN
A cAle A- Cl|da
©) S - Aa|b (d) S - Aa|b
A - CA A - AC|bdle
3. Match the following
1. BNF (@ S- &Aa A- SKA
2. CNF (b) S- aAA A bBB
3. GNF (©) S- AAA- a
(@ 1-a,2-b,3-c (b) 1-a,2-¢,3-b
(c) 1-b,2-¢,3-a (d 1-c¢,2-b,3-a
4. In PDA, thed is defined by
(@ d(a,a2)=(pLy) (b) 9(q.2) = (ML yD)

(c) d(qa=(Hy) (d) botha & b.

330

Theory of Automata, Formal Languages and Computation

5.

10.

The Turing machine is computable if final state contains

(a) transition function (b) halt state
(c) no transition function (d) bothb&c.
GROUP 11

Check whether the following grammar is ambiguous or Unambiguous

S- H39le

Rewrite the given grammar after removing unit production
S AB

A- B
B - aB|Bble
Define PDA
Find the moves for the following configuration of TM
Qo
i
0 1 1
Q
i
0 1 1

Define Turing Machine.

GROUP 11l

Answer Any 2 Ques tions

11.
12.

13.

Construct GNF for the BNF given in problem no. 7.
(@) Construct PDA from the following grammar

S - aAA|bBB|aB |a

Ao aAla

B - bB|b
(b) Show the sequence of moves of PDA of problem given in 12(a).
Construct TM for identifying the language consisting of 0’s and 1's in
which all the string consists of even no. of 0’'s and 1’s.

University Question Papers 331

10.

THEORY OF COMPUTING

GROUP |

The regular expression for the set of strings that consists of alternating

O'sand 1's.
(@ (0) +(10 +q10 + (O}
© (E+D(0) €+0

(b) (0D (19 10} Q1P
(d) botha& c.

Consider the following 2 DFA'’s (Refer fig.)
The CFG is defined by the following productions

S AIB
A - OA/¢€
B 0B/1B/¢

Which of the following substring is encountered during the derivation
process for the sentence 00101
(a) 0A1B (b)0O1B (c)0101B (d)All of the above

Match the following
1. BNF
2. GNF
3. CNF

@ 1-a,2-b,3-c
() 1-¢c,2-A,3-b

(b) A-xy

() A XxYyZz
(b) 1-b,2-¢,3-a
(d 1-a,2-b,3-c

The equivalent PDA for the given CFGSs- 0Sl/ A (Refer fig.)
The pumping lemma for regular language

(&) xy zforanyi=0
(c) xyz for anyi =21

(b) x yzforanyi=0
(d) x yZforanyi=1

The transition function of Turing machine can be defined as

(@ 9(q.x) =(p. y.D)

() d(a.xy)=(p y,D)

The Turing machine is said to
(&) 9(q,x) is undefined

(c) 9(qg,x)isO
....................... model does
computation

(@) uniform arrays

(c) tessellation structure

(b) o(q.0)=(pYy.D)

(d) No transistion function.

be acceptance by halting, if

(b) 0&(q,x) is defined

(d) d(a,x)=(p.y)

not exchange information during

(b) mosaic automata
(d) all of the above

The transition function of cellular space is denoted by

(@ &QxQ" -~ Q
) &- Q°

(b) &QxQ- Q°
d &Q’-0Q

332

Theory of Automata, Formal Languages and Computation

B.E. — COMPUTER SCIENCE & ENGINEERING
THEORY OF COMPUTING

SEMESTER IV

Time: 3 Hours MaximumMarks : 60

11.

12.

13.
14.

15.

16.

17.
18.
19.
20.

21.

GROUP I

Find a regular expression for the language of the set of all strings of 0’s
& 1's whose number of 0’s is divisible by 5 and whose number of 1's is
even.

Compute*NFA for the following, regular expression

11+10" + 1@ o+ OX

Prove thaf0"102" / n> @ is not a regular language.
Find whether the given grammar is ambiguous (or) Unambiguous
S-T|U

T - aTbT|c
U - aAl|aTbu

Rewrite the given grammar after removing unit production:

S_ ABA
A~ aA|l
B - bB|O

Design a CFG generating the following language
{a'blc/jzi+k}

Define Turing Machine.

Why accepting state is called as Halting State in TM?
Differentiate Cellular and Linear Cellular automata.
Write the local rules of Cellular automata.

GROUP I

(a) Construct finite automata to recognize the language of all strings of
0’'s and 1's of length at least 1, if they were interrupted as binary
representation of integers, would represent integers evenly divisi-
ble by 3. Leading O’s are permissible.

University Question Papers 333

(b) Find an equivalent FA and Regular expression from the given NFA
(Refer fig.)
22. (a) Design a PDA to recognize the language of all odd-length palin-
dromes over {a, b}
(b) Construct CFG for the language generated in Question No. 22(a).
23. Construct GNF from the given grammar

S - &\a|bBb]|
A- cla

B - c|b

C - CDE|

D - A|Blab

24. (a) Construct a Turing Machine that creates a copy of its input string
(Ex: abcd) to the right of the input but with a blank separating the
copy from the original.

(b) Design a Turing machine for computing the LCM of two numbers.

25. Write short notes on

(8 Cellular Automata
(b) Linear Cellular Automata

THEORY OF COMPUTING

Time: 3 hours Max. Marks: 40

GROUP |

1. Find the start height of the following and draw the NFA for the given
regular expressions.
(@) (a(al @ ag/ aad
(b) (((a/a aa)ad / aaaaaa)
2. Consider the two regular expressions
rt0 /1 r201/10/10(0%
(a) Find a string corresponding t& but not tar2.
(b) Find a string corresponding t& but not tarl.
(c) Find a string corresponding to bathandr2.
(d) Find a string in {0, 1} corresponding to neithet norr2.
3. Define and Construct a language for Context sensitive grammar.

‘We do not define-transitions for a Turing machine’. True or False.
Justify.

334

Theory of Automata, Formal Languages and Computation

Time

State and distinguish halting problem and Unsolvability.
GROUP I

State the Kleene’s theorem (not the corollary) and give the proof with
neat sketch wherever necessary.

State the rules for a Context Free Grammar to be in Chomsky Normal
form. Find a CFG G’ in CNF generating L(G)€H where G hasa
productions of

S . AaA/CA/ BaB A - aaBa/CDA/aa/DC
B - bB/bAB/bb/As C - Ca/bC/D
D-bD/e

Consider the CFG with productions

S-S$ S- S+T/T T-T*FIF F-(S)/a

(&) Write the CFG obtained from this one by eliminating left recursion.
()

(b) State the rules for DPDA and give a transition table for a DPDA
that acts as a top down parser for this language.

Define Universal TM.

Show that a language 03" is recursively enumerable (i.e., can be

accepted by some TM) if and onl\Litan be enumerated by some TM.

State and prove Rice’s Theorem.

THEORY OF COMPUTING
1 90 Mts. Max Marks: 30
TEST Il

GROUP |

The CFG defined by ab* is

S XY
(@) S- Sha (b) X - ax

Y - by
) C- DSS| bag abb (d S- ay bsS

The transition function of PDA is defined as
(@ o(a,a2)=(py)
(b) d(a,2)=(py)

University Question Papers 335

() do(q.a)=(ny)
d) d(a.a2)=(py)
3. Say True or False
Alanguage L is Context free Language, if there is a Pushdown automata
accepting.
4. A CFG is Unambiguous if,
(a) it contains uselss Nonterminals
(b) it produces more than one parse tree for some sentence
(c) it produces more than one derivation for some sentence
(d) Bothbé&c
5. S a\a, A- SA A- b.The given grammar is in normal
form.
(@) BNF (b)CNF (c)GNF (d)botha &b

GROUP I

6. Define PDA.

7. Show that the CFG with following production is Unambiguous.
S- 9|0

8. LetL be the language generated by the CFG with productions
S S+3S $5 |S/IS|IO)|S a
How many derivation trees (Parse trees) are there fore theas|eig |
alala?
9. Write Instantaneous descriptions for the PDA generated in the Qn. No.

11 for accepting the sentence aabb.
10. Rewrite the grammar after removihgft recursion.

S- Aalb
A~ Ac|bd

GROUP 1l

Answer any 2 Ques tions
11. Convert the following grammar to GNF.

S . AB|O
A - aAS|a
B — SbgA|bb

336

Theory of Automata, Formal Languages and Computation

12.

13.

11.

12.
13.

14.

15.

16.
17.
18.
19.
20.

(a) Construct PDA from the given grammar.

S- 3%

Sl- S+T|SI-T|T
T T*F|T/F|F
F-(Sa

(b) Show the moves of the PDA for accepting the sentence
a+a*dd

Design a Context Free grammar for Boolean expressions and Construct
PDA for the same.
THEORY OF COMPUTING
GROUP I

Describes in English the sets accepted by the finite automata along with
the regular expression for the following transition diagram.

List the application of finite automata.
Show that the following context Free Grammar generates the language
of all strings over {0, 1} with twice as many 1's as 0’s.

S SYOrT/TOT/ TTO
T-1S/99 %1

Is the following grammar ambiguous. Justify
S- AB, A- aA/0 B ab/ bB/O

Give the new set of productions after removing the unit productions for
the following CFG.

S- AA A-. B/ BB B- abB/b/bh

Construct two different NFA for the Ri.

Is unsolvability a halting problem. Justify.

When a ‘digraph’ becomes regular?

Define cellular automata.

What is meant by Recursively Enumerable language?

University Question Papers 337

B.E.—COMPUTER SCIENCE & ENGINEERING—IV SEMESTER

THEORY OF COMPUTING

Time : 3 Hours Max. Marks: 60

21.

22.

23.

24,

25.

GROUP I

LetM = ({q;, 9y, 05},{03,5,{ a} .{ a3) is a NDFA wher& is given
by

0(0.0) ={0z a5} O(q. D) ={

0(0,.0) ={ay, ax} O(aD) ={¢@

0(93,0) ={q3 0(0z.D) ={ q, a3}

(a) Construct an equivalent DFA and draw the transition diagram.
(b) Check whether the string ‘011010’ is accepted by DFA and NFA.
Consider the grammar with the following productions

S iCtS/iCtSeS/ aC - b

(a) Generate a sentence ‘ibtibtaea’ using leftmost derivation and con-
struct a derivation tree for it.

(b) Derive an equivalent chomsky normal form productions.

(a) Construct a PDA for the given grammar

S - AaA/CA/ BaB

A - aaBa/CDA/aa/DC
B — bB/bAB/ bbaS
C-Cal/bC/D

D - bD/0

(b) Using the above show the sequence of PDA for the string
‘aabbaaaaaaa

(a) State the problems in Turing Machine.

(b) Construct a Turing Machine that will accept the following languages
in {a, b}

L={a"b"™, n>1, n#ni}.

(&) Explain the basic properties of linear cellular Automata.
(b) Draw any 3 common types of Cayley graph.

338 Theory of Automata, Formal Languages and Computation

COMPUTER SCIENCE AND ENGINEERING — FIFTH SEMESTER
THEORY OF COMPUTATIONS
Time: 3 Hours Max. Marks: 50
*Answer All Ques tions
PART A

1. (a) Explain the Chomsky’s hierarchy of language.
(b) Explain the need for Theory of Computing.
2. (a) Prove by mathematical induction: Every integer, greater than 17, is
a nonnegative integer combination of 4 and 7. In other words, for
everyn > 17, there exists integdrsandj, both= 0, so that

n=i, *4+j.*7
(b) For everyn=0, n(n? +5) is divisible by 6.
3. (a) Prove that for every NDFA, there exists a DFA.

(b) Find the deterministic acceptor equivalent to
M =({q0,q% 93, (a b,5,5,,5,) is given below:

State a b
Qo Co» Q1 07
a; o Oy
07) Co» Q1

4. (a) Find the language generated by the following grammars:
() S- O0A|IS|O|I1A- 1A B|1
(i) S-0S80Al1 A- 1AQO
(b) Construct a grammar to generate

{(@)"[nz1) O{(b3"| r=1.

5. List any 12 idetities for regular expressions.
6. Draw the transition system correspondingab+c) b.

University Question Papers 339

7. Transition table of a Turing machine is given below:

Present Tape Syrhols Initial State-
State b 0 1 finite state
-0 1La, ORgq

% bR, OLa, 1Lg,
Uz bRa, bRg
a, ORq, ORaq, 1Rq,
Os OLg,

Draw the computation sequence of the input string 00.
8. Explain how a Turing-machine can be used as a language acceptor.
9. Prove that not all languages are recursively enumerable.
10. (&) What is Rice’s Theorem?
(b) List six unsolvable problems.
11. (i) Construct a minimal finite automaton for the given FA.

@)
D
1
(i) Below are a number of language over {0, 1}. In each case, decide
whether or not the language is regular, and prove that your answer
is correct.
(a) The set of all strings beginning with a non null string of the
form WW.
(b) Set of all strings< containing some non null substring of the
form WW.
(c) Set of all stringx containing some non null substring of the

form WWW.
(d) Set of all length strings over {0,1} with middle symbol O.

340 Theory of Automata, Formal Languages and Computation

(e) Set of non palindromes.
() Set of strings in which the number of 0's and the number of
1's are both divisible by 5.
12. What is a non deterministic turing machine? Explain how is it used for
computing.
13. (a) (i) Construct a turing machine that can accept the strings over
{0, 1} containing even number of 1's.
(i) Construct a turing macine that can accept the set of all even
palindromens over {0, 1}.
(OR)
(b) M is a turing machine represented by the transition system as in
the figure given. Obtain the computation sequenceéviofor
processing thé@p string 0011.

y:R) y.L) (b,b,R)

’ ,y,L) g xx,R) g (b,b,R)

(0,x,R)

1.x,R)

10.

11.

12.
13.

14.

15.

16.

17.

Bibliography

Richard Johnsonbaugh, Discrete Mathematics, Fifth Edition, Pearson
Education Asia Publishers, 2001.

Kolman, Bushy, Ross, Discrete Mathematical Structures, Fourth
Edition, Pearson Education, 2001.

Dexter C. Kozen, Automata and Computability, Springer, 1997.
Seymour Lipschutz., Discrete Structures, Schaum’s Outline series,
TMH, 1986.

Michael Sipser, Introduction to Theory of Computation, Thomson,
Brooks/Kole, 2001.

Peter Linz., An Introduction to Formal Languages and Automata,
Second Edition, Narosa Publishers, 1997.

Raymond Greenlaw, H-James Hoover, Fundamentals of the Theory of
Computation, Principles and Practice, Morgan Kaufmann Publishers, 1998.
John E. Hoperoft, Rajeev Motwani, Jeffrey D. Uliman, Introduction to
Automata Theory, Languages and Computation, Pearson Education, 2001.
Leon. S. Levy, Discrete Structures of Computer Science, Wiley Eastern
Limited, 1994.

K.L.P. Mishra, N. Chandrasekaran, Theory of Computer Science,
Second Edition, EEE, Prentice Hall of India, 1998.

Kenneth Ht. Rosen, Discrete Mathematics and Its Applications, Tata
McGraw-Hill, Edition 2001.

B.S. Vatssa, Discrete Mathematics, Wishwa Prakashan, 1993.
Bernard M. Moret. The Theory of Computation, Pearson Education
Asia, 1998.

Harry R. Lewis, Christos H. Papadimitrion, Elements of the Theory of
Computation, Pearson Education Asia, Second Edn., 1998.

Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, Pearson
Education, Asia, 2002.

John C. Martin, Introduction to Languages and the Theory of
Computation, Second Edition, McGraw Hill International Edition, 1997.
John. E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory,
Languages and Computation, Narosa Publishers, 1979.

THIS PAGE IS
BLANK

Index

Absorption 3,44, 53

Absurdity 255,259, 302

Acceptor 59,99, 114, 170, 186, 188
Ackermann’s funton 229,231, 234
Alphabet 18,43, 55

Ambiguity 127,129-130
Ambiguousgrammar 130,149, 155
Associativity 2,44, 52-53, 259
Automaton 58,97, 99, 108

Axiom 245,299

Biconditional 249,293, 301
Bijection 13,43, 54

Binary turing machine 196,208
Blank 187,207

Boolean logic 27,43, 56

Boolean satisfiability 238,243
Bottomup parg 128-129,149, 155
Bubblesort 236,243

Cardinality 7,43-44, 46, 53, vii

Cartesiarproduct 7,53, vii

Chomsky nomalform (CNF) 142,149,
157, 167, 184

Circuit 16,55

Closure 91,96, 112, 175

Commutativity 2,44, 52, 259

Complement 2,43, 52, vii

Complexitytheory 235,240, 242

Compositiorof fundions 222,231, 233

Concatenation18,56, 80-81, 92, 99

Conjunction 27,43, 56, 247, 290, 292,
300

Connectedyraph 16,55

Contextsersitivegranmar 210,214, 216

Contextsersitivelanguage 210-211,214,
216-217

Context-freegranmar (CFG) 115,
148-149, 153, 167

Contingency 255,257, 293, 301

Contradiction 94,173, 203, 255-256, 293,
301

Contrapositive 259-260,302

Cycle 17,55, 94

Decisionalgaithm 176,180, 185

Degree of vaex 15,43, 55

DeMorgan’s law 3, 6, 44, 53, 259, 290

Derivationtree 118,125, 154

Deterministicautomata 58,109

Directed graph 17,43, 55

Disjointset 7,44, 53

Disjunction 27,43, 56, 248, 290, 292,
300

Disjunctivesyllogism 259,293, 302

Distributivity 3,44, 52, 259, 273

Empty praluctionremoval 133,184
Empty set 1,43, vii

Empty string 18,56, vii

Equivalence 259,266, 302
Equivalenceelaion 9-11,44, 53, 97-98
Exhaustivesearch paieg 128,155
Exportation 259,302

Finite accepr 110,170

Formalsysem 197,218, 230, 232, 234
completeness218,230, 232
consistency 218,230, 232

Function 12,43, 54

Godel’s proof of nurhers 218,233
Grammar 37-38,57, 117, viii
Graph 15,55

344

index

Greibach normal form (GNF) 148, 158,
167, 184

Hypothetical syllogism 259, 293, 302

Idempotency 2, 44, 52, 259
Implication 239, 293, 300, 302
Indegres 17, 43, 55

Initial fumctions 220, 231, 233-234
Injection 12, 43, 54

Input zlphabet 70, 109, 186, 207
Integer bin-packing 237, 243
Intractable problem 238, 243
Invertible function 13, 43, 54
Isnlated vertex 15, 43, 55

Kleene star 19,43, 56, 80-81, 92-93, 110,
il

lambda-production 138, 156
Left linear grammar 116, 118, 149, 154,
217

Left recursion 157, 184, 337
Left recursion removal 135, 167, 180,
184

Liar's paradox 245, 292, 299

Linzar bounded automata 211, 214, 216
Logic 245,292,209

Logical identities 258

Mathematical induction 28, 32, 35, 44, 57
Mathematical structure 245, 209

Mealey machine B9-91, 99, 112, viii
Membership criterion |

Modus Ponens 259, 293, 301

Modus Tollens 259, 293, 301

Moore machine 90-91,99, 112
Multi-tape turing machine 198, 208
Myhill-Nerode theorem 97-99

Negation 246, 290, 292, 299

MNon-contracting grammar 212, 216

Mon-deterministic automata (NDA) 58,
109

Mormal fonn 142, 157, 167, 289

NP problem 239-240), 244

M-track turing machine 195, 204, 208

Mull set 52

Dffline tering machine 196, 208

Order statistic 235, 242
Outdegree 17, 43, 55

P problem 201, 239

Parsing 127, 149, 154

Partial derivation tree 119, 153

Partial ordering relation 9, 54

Partition 9, 54

Pigeon-hole principle 28, 57, 94

Polynomial time algorithm 236, 240, 242,
v

Posct 9,43, 54

Post’s correspondence problem 209

Post"s Correspondence Problem 202

Powerset 7, 43-44, 46, vii

Predicate calculus 247, 293, 303

Primitive recursion 222, 233

Primitive recursive function 219, 222,
231, 233234

Proof 245, 209

Proposition 243, 257, 292, 299

Pumping lemma 93-94, 99, 112, 170-171,
180, 185

Pushdown automata (PDAY} 159, 179

Quicksort 236, 240, 243

Random access machine 214, 217

Read head 88, 111, 188

Recursively envmerable (RE) 197-198,
204, 209, 217

Reflexive 9-11

Regular expression 80-82, 84, 99, 110,
Tid

Regular language 80, 99, 110, 214

Regularset 91,97, 112, 114, 176

Relation 8-9, 12, 43

Right lingar grammar 115-118, 149, 154,
217

Rules of inference 266

Russel’s paradox 218, 230, 233

Sentential connectives 246, 202, 209
Sentential form 3%, 119, 154, 168, 184
Set 1,43, 51

Singleton 1, 51

Sorting algorithm 236, 242

Space complexity 235, 240, 242
Standard turing machine 195-194, 208
String 18, 55, 198

Index 345

Strong form of turing thesis 197, 204, Transitive 9-11

209 Travelling salesman problem (TSP)
Subset 1,7.9, 12,52 239-240, 243-244
Substitrtion rule 132, 134, 155 Tree 15,17, 55
Successor function 208, 219-220, 231, Turing computable 190, 208

233-234, viii Turing machine 186, 188, 203, 206-207
Surjection 13,43, 54 Turing thesis 204, 209
Symmetric 6, 9-11 Two-way finite automata 88, 99, 111
Tape alphabet 186, 207-208 Unit production 134, 149, 155, 157
Tautology 255-236, 293, 301 Unrestricted grammar 197, 215, 217
Theorem 245, 299 Useful production 156
Time complexity 233, 240, 242 Useless production 132, 149, 155
Topdown parsing 128, 149, 155
Tractable problems 236, 242 Weak form of turing thesis 197, 204, 209

Transducer 186, 189, 204, 207-208
Transition function 59, 109, 160, 179, Zero function 219-220, 231, 233-234,
187, 204 viti

	Cover
	Preface
	Notations
	Contents
	Chapter 0. Introduction
	0.1 Basics
	0.1.1 Sets
	0.1.2 Relations and Functions

	0.1.3 Graphs and Trees
	0.1.4 Strings and Languages

	0.1.5 Boolean Logic
	0.1.6 Fundamental Proof Techniques

	0.1.7 Introduction to Grammar

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 1. DFA and NFA
	1.1 Deterministic Finite Automata (DFA)
	1.1.1 Automata—What is it?
	1.1.2 Types of Automation

	1.1.3 Definition of
Deterministic Finite Automation

	1.2 Non-Deterministic Finite Automata (NFA)
	1.3 Equivalence of NFA and DFA
	1.4 Regular Expression
	1.4.1 Regular Languages

	1.4.2 Regular Expressions

	1.4.3 Building Regular Expressions

	1.4.4 Languages defined by Regular Expressions

	1.4.5 Regular Expressions to NFA

	1.4.6 NFAs to Regular Expression

	1.5 Two-Way Finite Automata
	1.6 Finite Automata with Output
	1.6.1 Definition
	1.6.2 Mealey Machine
	1.6.3 Moore Machine

	1.7 Properties of Regular Sets (Languages)
	1.7.1 Closure

	1.7.2 Union, Concatenation, Negation, Kleene Star, Reverse

	1.7.3 Intersection and Set Difference

	1.8 Pumping Lemma
	1.8.1 Principle of Pumping Lemma
	1.8.2 Applying the Pumping Lemma

	1.9 Closure Properties of Regular Languages
	1.10 Myhill-Nerode Theorem
	1.10.1 Myhill-Nerode Relations

	1.10.2 Myhill-Nerode Theorem

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 2. Context-Free Grammars
	2.1 Introduction
	2.1.1 Definition of CFG

	2.1.2 Example of CFG

	2.1.3 Right-Linear Grammar

	2.1.4 Right-Linear Grammars and NFAs

	2.1.5 Left-Linear Grammar

	2.1.6 Conversion of Left-linear Grammar into Right-Linear Grammar

	2.2 Derivation Trees
	2.2.1 Definition of a Derivation Tree
	2.2.2 Sentential Form
	2.2.3 Partial Derivation Tree
	2.2.4 Right Most/Left Most/Mixed Derivation

	2.3 Parsing and Ambiguity
	2.3.1 Parsing
	2.3.2 Exhaustive Search Parsing
	2.3.3 Topdown/Bottomup Parsing
	2.3.4 Ambiguity
	2.3.5 Ambiguous Grammars/Ambiguous Languages

	2.4 Simplification of CFG
	2.4.1. Simplification of CFG-Introduction
	2.4.2 Abolishing Useless Productions

	2.5 Normal Forms
	2.5.1 Chomsky Normal Form (CNF)
	2.5.2 Greibach Normal Form
	Glossary
	Review Questions
	Exercises
	Short-Questions and Answers

	Chapter 3. Pushdown Automata
	3.1 Definitions
	3.1.1 Nondeterministic PDA (Definition)
	3.1.2 Transition Functions for NPDA
	3.1.3 Drawing NPDAs
	3.1.4 Execution of NPDA
	3.1.5 Accepting Strings with an NPDA
	3.1.6. An Example of NPDA Execution

	3.1.7 Accepting Strings with NPDA (Formal Version)

	3.2 Relationship Between PDA and Context Free Languages

	3.2.1 Simplifying CFGs
	3.2.2 Normal Forms of Context-Free Grammars
	3.2.3 CFG to NPDA
	3.2.4 NPDA to CFG
	3.2.5 Deterministic Pushdown Automata

	3.3 Properties of Context free Languages
	3.3.1 Pumping Lemma for CFG
	3.3.2 Definitions
	3.3.3 Proof of Pumping Lemma
	3.3.4 Usage of Pumping Lemma

	3.4 Decision Algorithms
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 4. Turing Machines
	4.1 Turing Machine Model
	4.1.1 What is a Turing Machine?
	4.1.2 Definition of Turing Machines

	4.1.3 Transition Function, Instantaneous Description and Moves

	4.1.4 Programming a Turing Machine
	4.1.5 Turing Machines as Acceptors
	4.1.6 How to Recognize a Language
	4.1.7 Turing Machines as Transducers

	4.2 Complete Languages and Functions
	4.3 Modification of Turing Machines
	4.3.1 N-Track Turing Machine
	4.3.2 Semi-infinite Tape/Offline/Multitape/ND Turing Machines
	4.3.3 Multidimensional/Two-state Turing Machine

	4.4 Church–Turing’s Thesis
	4.4.1 Counting
	4.4.2 Recursive and Recursively Enumerable Language

	4.4.3 Enumerating Strings in a Language

	4.4.4 Non-recursively Enumerable Languages

	4.5 Undecidability
	4.5.1 Halting Problem

	4.5.2 Implications of Halting Problem

	4.5.3 Reduction to Halting Problem

	4.5.4 Post’s Correspondence Problem

	4.6 Rice’s Theorem
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 5. Chomsky Hier archy
	5.1 Context Sensitive Grammars and Languages
	5.2 Linear Bounded Automata
	5.3 Relationship of other Grammars

	5.4 The Chomsky Hierarchy
	5.5 Extending the Chomsky Hierarchy
	5.6 Unrestricted Grammar
	5.7 Random-Access Machine
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 6. Computability
	6.1 Formal Systems
	6.2 Recursive Function Theory
	6.3 Primitive Recursive Functions
	6.4 Composition and Recursion
	6.5 Ackermann’s Function
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 7. Complexity Theory
	7.1 Introduction
	7.2 Polynomial-Time Algorithms
	7.3 Non-Deterministic Polynomial Time Algorithms
	7.4 Integer Bin Packing
	7.5 Boolean Satisfiability
	7.6 Additional NP Problems
	7.7 NP-Complete Problems

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 8. Propositions and Predicates
	8.1 Propositions
	8.1.1 Connectives

	8.1.2 Tautology, Contradiction and Contingency

	8.1.3 Logical Identities

	8.2 Logical Inference
	8.3 Predicates and Quantifiers
	8.4 Quantifiers and Logical Operators
	8.5 Normal Forms
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Answers to Exercises
	University Question Papers

	Bibliography
	index

