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Preface

These notes form the core of a future book on the algebraic foundations of
automata theory. This book is still incomplete, but the first eleven chapters
now form a relatively coherent material, covering roughly the topics described
below.

The early years of automata theory

Kleene’s theorem [46] is usually considered as the starting point of automata
theory. It shows that the class of recognisable languages (that is, recognised
by finite automata), coincides with the class of rational languages, which are
given by rational expressions. Rational expressions can be thought of as a
generalisation of polynomials involving three operations: union (which plays the
role of addition), product and the star operation. It was quickly observed that
these essentially combinatorial definitions can be interpreted in a very rich way
in algebraic and logical terms. Automata over infinite words were introduced
by Büchi in the early 1960s to solve decidability questions in the first-order and
monadic second-order logic of one successor. Investigating the two-successor
logic, Rabin was led to the concept of tree automata, which soon became a
standard tool for studying logical definability.

The algebraic approach

The definition of the syntactic monoid, a monoid canonically attached to each
language, first appeared in a paper of Rabin and Scott [89], where the notion is
credited to Myhill. It was shown in particular that a language is recognisable
if and only if its syntactic monoid is finite. However, the first classification
results on recognisable language were rather stated in terms of automata [60]
and the first nontrivial use of the syntactic monoid is due to Schützenberger [94].
Schützenberger’s theorem (1965) states that a rational language is star-free if
and only if its syntactic monoid is finite and aperiodic. This elegant result is
considered, right after Kleene’s theorem, as the most important result of the
algebraic theory of automata. Schützenberger’s theorem was supplemented a
few years later by a result of McNaughton [56], which establishes a link between
star-free languages and first order logic of the order relation.

Both results had a considerable influence on the theory. Two other important
algebraic characterisations date back to the early seventies: Simon [96] proved
that a rational language is piecewise testable if and only if its syntactic monoid
is J -trivial and Brzozowski-Simon [12] and independently, McNaughton [55]
characterised the locally testable languages. The logical counterpart of the first
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result was obtained by Thomas [116]. These successes settled the power of the
algebraic approach, which was axiomatized by Eilenberg in 1976 [27].

Eilenberg’s variety theory

A variety of finite monoids is a class of monoids closed under taking submonoids,
quotients and finite direct products. Eilenberg’s theorem states that varieties of
finite monoids are in one to one correspondence with certain classes of recognis-
able languages, the varieties of languages. For instance, the rational languages
are associated with the variety of all finite monoids, the star-free languages with
the variety of finite aperiodic monoids, and the piecewise testable languages with
the variety of finite J -trivial monoids. Numerous similar results have been es-
tablished over the past thirty years and, for this reason, the theory of finite
automata is now intimately related to the theory of finite monoids.

Several attempts were made to extend Eilenberg’s variety theory to a larger
scope. For instance, partial order on syntactic semigroups were introduced in
[69], leading to the notion of ordered syntactic semigroups. The resulting exten-
sion of Eilenberg’s variety theory permits one to treat classes of languages that
are not necessarily closed under complement, contrary to the original theory.
Other extensions were developped independently by Straubing [112] and Ésik
and Ito [29].

The topological point of view

Due allowance being made, the introduction of topology in automata theory can
be compared to the use of p-adic analysis in number theory.

The notion of a variety of finite monoids was coined after a similar notion,
introduced much earlier by Birkhoff for infinite monoids: a Birkhoff variety of
monoids is a class of monoids closed under taking submonoids, quotient monoids
and direct products. Birkhoff proved in [8] that his varieties can be defined by
a set of identities: for instance the identity xy = yx characterises the variety
of commutative monoids. Almost fifty years later, Reiterman [91] extended
Birkhoff’s theorem to varieties of finite monoids: any variety of finite monoids
can be characterised by a set of profinite identities. A profinite identity is an
identity between two profinite words. Profinite words can be viewed as limits
of sequences of words for a certain metric, the profinite metric. For instance,
one can show that the sequence xn! converges to a profinite word denoted by
xω and the variety of finite aperiodic monoids can be defined by the identity
xω = xω+1.

The profinite approach is not only a powerful tool for studying varieties but
it also led to unexpected developments, which are at the heart of the current
research in this domain. In particular, Gehrke, Grigorieff and the author [31]
proved that any lattice of recognisable languages can be defined by a set of
profinite equations, a result that subsumes Eilenberg’s variety theorem.

The logical approach

We already mentioned Büchi, Rabin and McNaughton remarkable results on the
connexion between logic and finite automata. Büchi’s sequential calculus is a
logical language to express combinatorial properties of words in a natural way.
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For instance, properties like “a word contains two consecutive occurrences of
a” or “a word of even length” can be expressed in this logic. However, several
parameters can be adjusted. Different fragments of logic can be considered:
first order, monadic second order, Σn-formulas and a large variety of logical and
nonlogical symbols can be employed.

There is a remarkable connexion between first order logic and the concate-
nation product. The polynomial closure of a class of languages L is the set of
languages that are sums of marked products of languages of L. By alternating
Boolean closure and polynomial closure, one obtains a natural hierarchy of lan-
guages. The level 0 is the Boolean algebra {∅, A∗}. Next, for each n > 0, the
level 2n+ 1 is the polynomial closure of the level 2n and the level 2n+ 2 is the
Boolean closure of the level 2n + 1. A very nice result of Thomas [116] shows
that a recognisable language is of level 2n+ 1 in this hierarchy if and only if it
is definable by a Σn+1-sentence of first order logic in the signature {<, (a)a∈A},
where a is a predicate giving the positions of the letter a.

There are known algebraic characterisations for the three first levels of this
hierarchy. In particular, the second level is the class of piecewise testable lan-
guages characterised by Simon [95].

Contents of these notes

The algebraic approach to automata theory relies mostly on semigroup theory,
a branch of algebra which is usually not part of the standard background of a
student in mathematics or in computer science. For this reason, an important
part of these notes is devoted to an introduction to semigroup theory. Chapter
II gives the basic definitions and Chapter V presents the structure theory of
finite semigroups. Chapters XIII and XV introduce some more advanced tools,
the relational morphisms and the semidirect and wreath products.

Chapter III gives a brief overview on finite automata and recognisable lan-
guages. It contains in particular a complete proof of Kleene’s theorem which
relies on Glushkov’s algorithm in one direction and on linear equations in the
opposite direction. For a comprehensive presentation of this theory I recom-
mend the books of my colleague Jacques Sakarovitch [92]. The recent book of
Olivier Carton [14] also contains a nice presentation of the basic properties of
finite automata. Recognizable and rational subsets of a monoid are presented in
Chapter IV. The notion of a syntactic monoid is the key notion of this chapter,
where we also discuss the ordered case. The profinite topology is introduced
in Chapter VI. We start with a short synopsis on general topology and metric
spaces and then discuss the relationship between profinite topology and recog-
nisable languages. Chapter VII is devoted to varieties of finite monoids and to
Reiterman’s theorem. It also contains a large collection of examples. Chap-
ter VIII presents the equational characterisation of lattices of languages and
Eilenberg’s variety theorem. Examples of application of these two results are
gathered in Chapter IX. Chapters X and XI present two major results, at the
core of the algebraic approach to automata theory: Schützenberger’s and Si-
mon’s theorem. The last five chapters are still under construction. Chapter
XII is about polynomial closure, Chapter XIV presents another deep result of
Schützenberger about unambiguous star-free languages and its logical counter-
part. Chapter XVI gives a brief introduction to sequential functions and the
wreath product principle. Chapter XVII presents some logical descriptions of
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languages and their algebraic characterisations.

Notation and terminology

The term regular set is frequently used in the literature but there is some con-
fusion on its interpretation. In Ginzburg [35] and in Hopcroft, Motwani and
Ullman [41], a regular set is a set of words accepted by a finite automaton. In
Salomaa [93], it is a set of words defined by a regular grammar and in Car-
oll and Long [13], it is a set defined by a regular expression. This is no real
problem for languages, since, by Kleene’s theorem, these three definitions are
equivalent. This is more problematic for monoids in which Kleene’s theorem
does not hold. Another source of confusion is that the term regular has a well-
established meaning in semigroup theory. For these reasons, I prefer to use the
terms recognisable and rational.

I tried to keep some homogeneity in notation. Most of the time, I use Greek
letters for functions, lower case letters for elements, capital letters for sets and
cursive letters for sets of sets. Thus I write: “let s be an element of a semigroup
S and let P(S) be the set of subsets of S”. I write functions on the left and
transformations and actions on the right. In particular, I denote the action
of a word u on a state q by q ·u. Why so many computer scientists prefer
the awful notation δ(q, u) is still a mystery. It leads to heavy formulas, like
δ(δ(q, u), v) = δ(q, uv), to be compared to the simple and intuitive (q ·u)· v =
q ·uv, for absolutely no benefit.

I followed Eilenberg’s tradition to denote varieties of semigroups by boldface
letters, likeV, and varieties of languages by calligraphic letters, like V. However,
I have adopted Almeida’s suggestion to have a different notation for operators
on varieties, like EV, LV or PV.

I use the term morphism for homomorphism. Semigroups are usually de-
noted by S or T , monoids by M or N , alphabets are A or B and letters by a,
b, c, . . . but this notation is not frozen: I may also use A for semigroup and S
for alphabet if needed! Following a tradition in combinatorics, |E| denotes the
number of elements of a finite set. The notation |u| is also used for the length
of a word u, but in practice, there is no risk of confusion between the two.

To avoid repetitions, I frequently use brackets as an equivalent to “respec-
tively”, like in the following sentence : a semigroup [monoid, group] S is com-
mutative if, for all x, y ∈ S, xy = yx.

Lemmas, propositions, theorems and corollaries share the same counter and
are numbered by section. Examples have a separate counter, but are also num-
bered by section. References are given according to the following example:
Theorem 1.6, Corollary 1.5 and Section 1.2 refer to statements or sections of
the same chapter. Proposition VI.3.12 refers to a proposition which is external
to the current chapter.
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Rostislav Horč́ık, John McCammond, Stuart W. Margolis, Dominique Perrin,
Mark Sapir, Imre Simon, Ben Steinberg, Howard Straubing, Pascal Tesson,
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Chapter I

Algebraic preliminaries

1 Subsets, relations and functions

1.1 Sets

The set of subsets of a set E is denoted by P(E) (or sometimes 2E). The
positive Boolean operations on P(E) comprise union and intersection. The
Boolean operations also include complementation. The complement of a subset
X of E is denoted by Xc. Thus, for all subsets X and Y of E, the following
relations hold

(Xc)c = X (X ∪ Y )c = Xc ∩ Y c (X ∩ Y )c = Xc ∪ Y c

We denote by |E| the number of elements of a finite set E, also called the size
of E. A singleton is a set of size 1. We shall frequently identify a singleton {s}
with its unique element s.

Given two sets E and F , the set of ordered pairs (x, y) such that x ∈ E and
y ∈ F is written E × F and called the product of E and F .

1.2 Relations

Let E and F be two sets. A relation on E and F is a subset of E×F . If E = F ,
it is simply called a relation on E. A relation can also be viewed as a function1

from E into P(F ) by setting, for each x ∈ E,

τ(x) = {y ∈ F | (x, y) ∈ τ}

By abuse of language, we say that τ is a relation from E into F .
The inverse of a relation τ ⊆ E × F is the relation τ−1 ⊆ F ×E defined by

τ−1 = {(y, x) ∈ F × E | (x, y) ∈ E × F}

Note that if τ is a relation from E in F , the relation τ−1 can be also viewed as
a function from F into P(E) defined by

τ−1(y) = {x ∈ E | y ∈ τ(x)}

1Functions are formally defined in the next section, but we assume the reader is already

familiar with this notion.

1
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A relation from E into F can be extended to a function from P(E) into P(F )
by setting, for each subset X of E,

τ(X) =
⋃

x∈X

τ(x) = {y ∈ F | for some x ∈ X, (x, y) ∈ τ}

If Y is a subset of F , we then have

τ−1(Y ) =
⋃

y∈Y

τ−1(y) = {x ∈ E | there exists y ∈ Y such that y ∈ τ(x)}

= {x ∈ E | τ(x) ∩ Y 6= ∅}

Example 1.1 Let τ be the relation from E = {1, 2, 3} into F = {1, 2, 3, 4}
defined by τ = {(1, 1), (1, 2), (2, 1), (2, 3), (2, 4)}.

E

1

2

3

F

1

2

3

4

Figure 1.1. The relation τ .

Then τ(1) = {1, 2}, τ(2) = {1, 3, 4}, τ(3) = ∅, τ−1(1) = {1, 2}, τ−1(2) = {1},
τ−1(3) = {2}, τ−1(4) = {2}.

Given two relations τ1 : E → F and τ2 : F → G, we denote by τ1τ2 or by τ2 ◦ τ1
the composition of τ1 and τ2, which is the relation from E into G defined by

τ2 ◦ τ1(x) = {z ∈ G | there exists y ∈ F such that y ∈ τ1(x) and z ∈ τ2(y)}

1.3 Functions

A (partial) function ϕ : E → F is a relation on E and F such that for every
x ∈ E, there exists one and only one (in the case of a partial function, at most
one) element y ∈ F such that (x, y) ∈ ϕ. When this y exists, it is denoted by
ϕ(x). The set

Dom(ϕ) = {x ∈ E | there exists y ∈ F such that (x, y) ∈ ϕ}

is called the domain of ϕ. A function of domain E is sometimes called a total
function or a mapping from E into F . The set

Im(ϕ) = {y ∈ F | there exists x ∈ E such that (x, y) ∈ ϕ}
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is called the range or the image of ϕ. Given a set E, the identity mapping on
E is the mapping IdE : E → E defined by IdE(x) = x for all x ∈ E.

A mapping ϕ : E → F is called injective if, for every u, v ∈ E, ϕ(u) = ϕ(v)
implies u = v. It is surjective if, for every v ∈ F , there exists u ∈ E such
that v ∈ ϕ(u). It is bijective if it is simultaneously injective and surjective. For
instance, the identity mapping IdE(x) is bijective.

Proposition 1.1 Let ϕ : E → F be a mapping. Then ϕ is surjective if and
only if there exists a mapping ψ : F → E such that ϕ ◦ ψ = IdF .

Proof. If there exists a mapping ψ with these properties, we have ϕ(ψ(y)) = y
for all y ∈ F and thus ϕ is surjective. Conversely, suppose that ϕ is surjective.
For each element y ∈ F , select an element ψ(y) in the nonempty set ϕ−1(y).
This defines a mapping ψ : F → E such that ϕ ◦ ψ(y) = y for all y ∈ F .

A consequence of Proposition 1.1 is that surjective maps are right cancellative
(the definition of a right cancellative map is transparent, but if needed, a formal
definition is given in Section 1.2).2

Corollary 1.2 Let ϕ : E → F be a surjective mapping and let α and β be two
mappings from F into G. If α ◦ ϕ = β ◦ ϕ, then α = β.

Proof. By Proposition 1.1, there exists a mapping ψ : F → E such that ϕ◦ψ =
IdF . Therefore α ◦ ϕ = β ◦ ϕ implies α ◦ ϕ ◦ ψ = β ◦ ϕ ◦ ψ, whence α = β.

Proposition 1.3 Let ϕ : E → F be a mapping. Then ϕ is injective if and only
if there exists a mapping ψ : Im(ϕ)→ E such that ψ ◦ ϕ = IdE.

Proof. Suppose there exists a mapping ψ with these properties. Then ϕ is
injective since the condition ϕ(x) = ϕ(y) implies ψ ◦ ϕ(x) = ψ ◦ ϕ(y), that is,
x = y. Conversely, suppose that ϕ is injective. Define a mapping ψ : Im(ϕ)→ E
by setting ψ(y) = x, where x is the unique element of E such that ϕ(x) = y.
Then ψ ◦ ϕ = IdE by construction.

It follows that injective maps are left cancellative.

Corollary 1.4 Let ϕ : F → G be an injective mapping and let α and β be two
mappings from E into F . If ϕ ◦ α = ϕ ◦ β, then α = β.

Proof. By Proposition 1.3, there exists a mapping ψ : Im(ϕ) → F such that
ψ◦ϕ = IdF . Therefore ϕ◦α = ϕ◦β implies ψ◦ϕ◦α = ψ◦ϕ◦β, whence α = β.

We come to a standard property of bijective maps.

Proposition 1.5 If ϕ : E → F is a bijective mapping, there exists a unique
bijective mapping from F to E, denoted by ϕ−1, such that ϕ ◦ ϕ−1 = IdF and
ϕ−1 ◦ ϕ = IdE.

2For the mathematically oriented reader only: Proposition 1.1 and Corollary 1.2 are actu-

ally both equivalent to the axiom of choice.
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Proof. Since ϕ is bijective, for each y ∈ F there exists a unique x ∈ E such that
ϕ(x) = y. Thus the condition ϕ−1 ◦ ϕ = IdE requires that x = ϕ−1(ϕ(x)) =
ϕ−1(y). This ensures the uniqueness of the solution. Now, the mapping ϕ−1 :
F → E defined by ϕ−1(y) = x, where x is the unique element such that ϕ(x) =
y, clearly satisfies the two conditions ϕ ◦ ϕ−1 = IdF and ϕ−1 ◦ ϕ = IdE .

The mapping ϕ−1 is called the inverse of ϕ.
It is clear that the composition of two injective [surjective] mappings is injec-

tive [surjective]. A partial converse to this result is given in the next proposition.

Proposition 1.6 Let α : E → F and β : F → G be two mappings and let
γ = β ◦ α be their composition.

(1) If γ is injective, then α is injective. If furthermore α is surjective, then β
is injective.

(2) If γ is surjective, then β is surjective. If furthermore β is injective, then
α is surjective.

Proof. (1) Suppose that γ is injective. If α(x) = α(y), then β(α(x)) = β(α(y)),
whence γ(x) = γ(y) and x = y since γ is injective. Thus α is injective. If,
furthermore, α is surjective, then it is bijective and, by Proposition 1.5, γ◦α−1 =
β ◦ α ◦ α−1 = β. It follows that β is the composition of the two injective maps
γ and α−1 and hence is injective.

(2) Suppose that γ is surjective. Then for each z ∈ G, there exists x ∈ E
such that γ(x) = z. It follows that z = β(α(x)) and thus β is surjective. If,
furthermore, β is injective, then it is bijective and, by Proposition 1.5, β−1 ◦γ =
β−1 ◦ β ◦α = α. It follows that α is the composition of the two surjective maps
β−1 and γ and hence is surjective.

The next result is extremely useful.

Proposition 1.7 Let E and F be two finite sets such that |E| = |F | and let
ϕ : E → F be a function. The following conditions are equivalent:

(1) ϕ is injective,

(2) ϕ is surjective,

(3) ϕ is bijective.

Proof. Clearly it suffices to show that (1) and (2) are equivalent. If ϕ is injec-
tive, then ϕ induces a bijection from E onto ϕ(E). Thus |E| = |ϕ(E)| 6 |F | =
|E|, whence |ϕ(E)| = |F | and ϕ(E) = F since F is finite.

Conversely, suppose that ϕ is surjective. By Proposition 1.1, there exists a
mapping ψ : F → E such that ϕ ◦ ψ = IdF . Since ψ is injective by Proposition
1.6, and since we have already proved that (1) implies (2), ψ is surjective. It
follows by Proposition 1.6 that ϕ is injective.

1.4 Injective and surjective relations

The notions of surjective and injective functions can be extended to relations as
follows. A relation τ : E → F is surjective if, for every v ∈ F , there exists u ∈ E
such that v ∈ τ(u). It is called injective if, for every u, v ∈ E, τ(u) ∩ τ(v) 6= ∅
implies u = v. The next three propositions provide equivalent definitions.
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Proposition 1.8 A relation is injective if and only if it is the inverse of a
partial function.

Proof. Let τ : E → F be a relation. Suppose that τ is injective. If y1, y2 ∈
τ−1(x), then x ∈ τ(y1) ∩ τ(y2) and thus y1 = y2 since τ is injective. Thus τ−1

is a partial function.
Suppose now that τ−1 is a partial function. If τ(x) ∩ τ(y) 6= ∅, there exists

some element c in τ(x)∩τ(y). It follows that x, y ∈ τ−1(c) and thus x = y since
τ−1 is a partial function.

Proposition 1.9 Let τ : E → F be a relation. Then τ is injective if and only
if, for every X,Y ⊆ E, X ∩ Y = ∅ implies τ(X) ∩ τ(Y ) = ∅.

Proof. Suppose that τ is injective and let X and Y be two disjoint subsets of
E. If τ(X) ∩ τ(Y ) 6= ∅, then τ(x) ∩ τ(y) 6= ∅ for some x ∈ X and y ∈ Y . Since
τ is injective, it follows x = y and hence X ∩ Y 6= ∅, a contradiction. Thus
X ∩ Y = ∅.

If the condition of the statement holds, then it can be applied in particular
when X and Y are singletons, say X = {x} and Y = {y}. Then the condition
becomes x 6= y implies τ(x) ∩ τ(y) = ∅, that is, τ is injective.

Proposition 1.10 Let τ : E → F be a relation. The following conditions are
equivalent:

(1) τ is injective,

(2) τ−1 ◦ τ = IdDom(τ),

(3) τ−1 ◦ τ ⊆ IdE.

Proof. (1) implies (2). Suppose that τ is injective and let y ∈ τ−1 ◦ τ(x). By
definition, there exists z ∈ τ(x) such that y ∈ τ−1(z). Thus x ∈ Dom(τ) and
z ∈ τ(y). Now, τ(x) ∩ τ(y) 6= ∅ and since τ is injective, x = y. Therefore
τ−1 ◦ τ ⊆ IdDom(τ). But if x ∈ IdDom(τ), there exists by definition y ∈ τ(x) and
thus x ∈ τ−1 ◦ τ(x). Thus τ−1 ◦ τ = IdDom(τ).
(2) implies (3) is trivial.
(3) implies (1). Suppose that τ−1 ◦ τ ⊆ IdE and let x, y ∈ E. If τ(x) ∩ τ(y)
contains an element z, then z ∈ τ(x), z ∈ τ(y) and y ∈ τ−1(z), whence y ∈
τ−1 ◦ τ(x). Since τ−1 ◦ τ ⊆ IdE , it follows that y = x and thus τ is injective.

Proposition 1.10 has two useful consequences.

Corollary 1.11 Let τ : E → F be a relation. The following conditions are
equivalent:

(1) τ is a partial function,

(2) τ ◦ τ−1 = IdIm(τ),

(3) τ ◦ τ−1 ⊆ IdF .

Proof. The result follows from Proposition 1.10 since, by Proposition 1.8, τ is
a partial function if and only if τ−1 is injective.
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Corollary 1.12 Let τ : E → F be a relation. Then τ is a surjective partial
function if and only if τ ◦ τ−1 = IdF .

Proof. Suppose that τ is a surjective partial function. Then by Corollary 1.11,
τ ◦ τ−1 = IdF .

Conversely, if τ ◦ τ−1 = IdF , then τ is a partial function by Corollary 1.11
and τ ◦ τ−1 = IdIm(τ). Therefore Im(τ) = F and τ is surjective.

Corollary 1.12 is often used under the following form.

Corollary 1.13 Let α : F → G and β : E → F be two functions and let
γ = α ◦ β. If β is surjective, the relation γ ◦ β−1 is equal to α.

Proof. Indeed, γ = α ◦ β implies γ ◦ β−1 = α ◦ β ◦ β−1. Now, by Corollary
1.12, β ◦ β−1 = IdF . Thus γ ◦ β−1 = α.

It is clear that the composition of two injective [surjective] relations is injec-
tive [surjective]. Proposition 1.6 can be also partially adapted to relations.

Proposition 1.14 Let α : E → F and β : F → G be two relations and let
γ = β ◦ α be their composition.

(1) If γ is injective and β−1 is surjective, then α is injective. If furthermore
α is a surjective partial function, then β is injective.

(2) If γ is surjective, then β is surjective. If furthermore β is injective of
domain F , then α is surjective.

Proof. (1) Suppose that γ is injective. If α(x) ∩ α(y) 6= ∅, there exists an
element z ∈ α(x)∩α(y). Since β−1 is surjective, there is a t such that z ∈ β−1(t)
or, equivalently, t ∈ β(z). Then t ∈ β(α(x))∩ β(α(y)), whence γ(x) = γ(y) and
x = y since γ is injective. Thus α is injective.

If furthermore α is a surjective partial function, then by Proposition 1.8,
α−1 is an injective relation and by Corollary 1.12, α ◦ α−1 = IdF . It follows
that γ ◦ α−1 = β ◦ α ◦ α−1 = β. Thus β is the composition of the two injective
relations γ and α−1 and hence is injective.

(2) Suppose that γ is surjective. Then for each z ∈ G, there exists x ∈ E
such that z ∈ γ(x). Thus there exists y ∈ α(x) such that z ∈ β(y), which shows
that β is surjective.

Suppose that β is injective of domain F or, equivalently, that β−1 is a
surjective partial map. Then by Proposition 1.10, β−1 ◦ β = IdF . It follows
that β−1 ◦ γ = β−1 ◦ β ◦ α = α. Therefore α is the composition of the two
surjective relations β−1 and γ and hence is surjective.

Proposition 1.15 Let E,F,G be three sets and α : G → E and β : G → F
be two functions. Suppose that α is surjective and that, for every s, t ∈ G,
α(s) = α(t) implies β(s) = β(t). Then the relation β ◦ α−1 : E → F is a
function.

Proof. Let x ∈ E. Since α is surjective, there exists y ∈ G such that α(y) = x.
Setting z = β(y), one has z ∈ β ◦ α−1(x).



1. SUBSETS, RELATIONS AND FUNCTIONS 7

E F

G

α

β ◦ α−1

β

Let z′ ∈ β ◦α−1(x). Then z′ = β(y′) for some y′ ∈ α−1(x). Thus α(y′) = x and
since α(y) = α(y′), the condition of the statement implies that β(y) = β(y′).
Thus z = z′, which shows that β ◦ α−1 is a function.

1.5 Relations and set operations

We gather in this section three elementary properties of relations. The first
two propositions can be summarized by saying that “union commutes with
relations”, “Boolean operations commute with inverses of functions”, “union,
intersection and set difference commute with injective relations”. The last one
is a more subtle property of surjective partial functions.

Proposition 1.16 Let τ : E → F be a relation. Then for every X,Y ⊆ E, the
relation τ(X ∪ Y ) = τ(X) ∪ τ(Y ) holds.

Proof. It follows immediately from the definition:

τ(X ∪ Y ) =
⋃

z∈X∪Y

τ(x) =
( ⋃

z∈X

τ(x)
)
∪
(⋃

z∈Y

τ(x)
)
= τ(X) ∪ τ(Y ).

Proposition 1.17 Let τ : E → F be an injective relation. Then, for every
X,Y ⊆ E, the following relations hold:

τ(X ∪Y ) = τ(X)∪ τ(Y ) τ(X ∩Y ) = τ(X)∩ τ(Y ) τ(X−Y ) = τ(X)− τ(Y ).

Proof. The first formula follows from Proposition 1.16.
It follows from the inclusion X∩Y ⊆ X that τ(X∩Y ) ⊆ τ(X) and similarly

τ(X ∩ Y ) ⊆ τ(Y ). Thus τ(X ∩ Y ) ⊆ τ(X) ∩ τ(Y ). Now, if z ∈ τ(X) ∩ τ(Y ),
then z ∈ τ(x) ∩ τ(y) for some x ∈ X and y ∈ Y . But since τ is injective, it
follows x = y and thus z ∈ τ(X ∩ Y ). Thus τ(X) ∩ τ(Y ) ⊆ τ(X ∩ Y ), which
proves the second relation.

The first relation gives τ(X − Y ) ∪ τ(Y ) = τ(X ∪ Y ). Thus

τ(X)− τ(Y ) ⊆ τ(X ∪ Y )− τ(Y ) ⊆ τ(X − Y )

Furthermore, τ(X − Y ) ⊆ τ(X) and since τ is injective, τ(X − Y ) ∩ τ(Y ) = ∅
by Proposition 1.9. Thus τ(X − Y ) ⊆ τ(X) − τ(Y ) and finally τ(X − Y ) =
τ(X)− τ(Y ), which proves the third relation.

More precise results hold for inverse of functions on the one hand, and for
surjective partial functions on the other hand.
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Proposition 1.18 Let ϕ : E → F be a function. Then, for every X,Y ⊆ F ,
the following relations hold:

ϕ−1(X ∪ Y ) = ϕ−1(X) ∪ ϕ−1(Y )

ϕ−1(X ∩ Y ) = ϕ−1(X) ∩ ϕ−1(Y )

ϕ−1(Xc) = (ϕ−1(X))c.

Proof. By Proposition 1.8, the relation ϕ−1 is injective and thus Proposition
1.17 gives the first two formulas. The third one relies on the fact that ϕ−1(F ) =
E. Indeed, the third property of Proposition 1.17 gives ϕ−1(Xc) = ϕ−1(F −
X) = ϕ−1(F )− ϕ−1(X) = E − ϕ−1(X) = (ϕ−1(X))c.

Proposition 1.19 Let ϕ : E → F be a surjective partial function. Then for
every X ⊆ E and Y ⊆ F , the following relations hold:

ϕ(X) ∩ Y = ϕ(X) ∩ ϕ
(
ϕ−1(Y )

)
= ϕ

(
X ∩ ϕ−1(Y )

)

Proof. By Corollary 1.12, ϕ ◦ ϕ−1 = IdF . It follows that ϕ(X) ∩ Y = ϕ(X) ∩
ϕ
(
ϕ−1(Y )

)
. Furthermore, ϕ

(
X ∩ ϕ−1(Y )

)
⊆ ϕ(X) ∩ ϕ

(
ϕ−1(Y )

)
. Finally, if

y ∈ ϕ(X) ∩ Y , then y = ϕ(x) for some x ∈ X and since y ∈ Y , x ∈ ϕ−1(Y ). It
follows that ϕ(X) ∩ Y ⊆ ϕ

(
X ∩ ϕ−1(Y )

)
, which concludes the proof.

2 Ordered sets

If R is a relation on E, two elements x and y of E are said to be related by R
if (x, y) ∈ R, which is also denoted by x R y.

A relation R is reflexive if, for each x ∈ E, x R x, symmetric if, for each
x, y ∈ E, x R y implies y R x, antisymmetric if, for each x, y ∈ E, x R y and
y R x imply x = y and transitive if, for each x, y, z ∈ E, x R y and y R z
implies x R z.

A relation is a preorder if it is reflexive and transitive, an order (or partial
order) if it is reflexive, transitive and antisymmetric and an equivalence relation
(or an equivalence) if it is reflexive, transitive and symmetric. If R is a preorder,
the relation ∼ defined by x ∼ y if and only if x R y and y R x is an equivalence
relation, called the equivalence relation associated with R.

Relations are ordered by inclusion. More precisely, if R1 and R2 are two
relations on a set S, R1 refines R2 (or R1 is thinner than R2, or R2 is coarser
than R1) if and only if, for each s, t ∈ S, s R1 t implies s R2 t. Equality is
thus the thinnest equivalence relation and the universal relation, in which all
elements are related, is the coarsest. The following property is obvious.

Proposition 2.20 Any intersection of preorders is a preorder. Any intersec-
tion of equivalence relations is an equivalence relation.

It follows that, given a set R of relations on a set E, there is a smallest
preorder [equivalence relation] containing all the relations of E. This relation is
called the preorder [equivalence relation] generated by R.

Proposition 2.21 Let R1 and R2 be two preorders [equivalence relations ] on
a set E. If they commute, the preorder [equivalence relation ] generated by R1

and R2 is equal to R1 ◦ R2.
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Proof. Suppose that R1 and R2 commute and let R = R1 ◦ R2. Then R is
clearly reflexive but it is also transitive. Indeed, if x1 R x2 and x2 R x3, there
exist y1, y2 ∈ E such that x1 R1 y1, y1 R2 x2, x2 R1 y2 and y2 R2 x3. Since
R = R2 ◦ R1, one gets y1 R y2 and since R1 and R2 commute, there exists y
such that y1 R1 y and y R2 y2. It follows that x1 R1 y and y R2 x3 and thus
x1 R x3.

An upper set of an ordered set (E,6) is a subset F of E such that, if x 6 y
and x ∈ F , then y ∈ F . The upper set generated by an element x is the set ↑x
of all y ∈ E such that x 6 y. The intersection [union] of any family of upper
sets is also an upper set.

3 Exercises

1. Let ϕ1 : E1 → E2, ϕ2 : E2 → E3 and ϕ3 : E3 → E1 be three functions.
Show that if, among the mappings ϕ3 ◦ ϕ2 ◦ ϕ1, ϕ2 ◦ ϕ1 ◦ ϕ3, and ϕ1 ◦ ϕ3 ◦ ϕ2,
two are surjective and the third is injective, or two are injective and the third
is surjective, then the three functions ϕ1, ϕ2 and ϕ3 are bijective.

2. This exercise is due to J. Almeida [2, Lemma 8.2.5].
Let X and Y be finite sets and let P be a partially ordered set. Let ϕ : X → Y ,
γ : Y → X, π : X → P and θ : Y → P be functions such that:

(1) for any x ∈ X, π(x) 6 θ(ϕ(x)),

(2) for any y ∈ Y , θ(y) 6 π(γ(y)),

(3) if x1, x2 ∈ X, ϕ(x1) = ϕ(x2) and π(x1) = θ(ϕ(x1)), then x1 = x2,

(4) if y1, y2 ∈ Y , γ(y1) = γ(y2) and θ(y1) = π(γ(y1)), then y1 = y2.

Then ϕ and γ are mutually inverse functions, π = θ ◦ ϕ and θ = π ◦ γ.
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Chapter II

Semigroups and beyond

The purpose of this chapter is to introduce the basic algebraic definitions that
will be used in this book: semigroups, monoids, groups and semirings, mor-
phisms, substructures and quotients for these structures, transformation semi-
groups and free semigroups. We also devote a short section to idempotents, a
central notion in finite semigroup theory.

1 Semigroups, monoids and groups

1.1 Semigroups, monoids

Let S be a set. A binary operation on S is a mapping from S × S into S. The
image of (x, y) under this mapping is often denoted by xy and is called the
product of x and y. In this case, it is convenient to call multiplication the binary
operation. Sometimes, the additive notation x+ y is adopted, the operation is
called addition and x+ y denotes the sum of x and y.

An operation on S is associative if, for every x, y, z in S, (xy)z = x(yz). It
is commutative, if, for every x, y in S, xy = yx.

An element 1 of S is called an identity element or simply identity or unit
for the operation if, for all x ∈ S, x1 = x = 1x. It is easy to see there can
be at most one identity, which is then called the identity. Indeed if 1 and 1′

are two identities, one has simultaneously 11′ = 1′, since 1 is an identity, and
11′ = 1, since 1′ is an identity, whence 1 = 1′. In additive notation, the identity
is denoted by 0 to get the intuitive formula 0 + x = x = x+ 0.

A semigroup is a pair consisting of a set S and an associative binary operation
on S. A semigroup is a pair, but we shall usually say “S is a semigroup” and
assume the binary operation is known. A monoid is a triple consisting of a set
M , an associative binary operation onM and an identity for this operation. The
number of elements of a semigroup is often called its order1. Thus a semigroup
of order 4 is a semigroup with 4 elements.

The dual semigroup of a semigroup S, denoted by S̃, is the semigroup defined
on the set S by the operation ∗ given by s ∗ t = ts.

A semigroup [monoid, group] is said to be commutative if its operation is
commutative.

1This well-established terminology has of course nothing to do with the order relations.

11
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If S is a semigroup, S1 denotes the monoid equal to S if S is a monoid,
and to S ∪ {1} if S is not a monoid. In the latter case, the operation of S is
completed by the rules

1s = s1 = s

for each s ∈ S1.

1.2 Special elements

Being idempotent, zero and cancellable are the three important properties of
an element of a semigroup defined in this section. We also define the notion
of semigroup inverse of an element. Regular elements, which form another
important category of elements, will be introduced in Section 2.2.

Idempotents

Let S be a semigroup. An element e of S is an idempotent if e = e2. The set of
idempotents of S is denoted by E(S). We shall see later that idempotents play
a fundamental role in the study of finite semigroups.

An element e of S is a right identity [left identity] of S if, for all s ∈ S, se = s
[es = s]. Observe that e is an identity if and only if it is simultaneously a right
and a left identity. Furthermore, a right [left] identity is necessarily idempotent.
The following elementary result illustrates these notions.

Proposition 1.1 (Simplification lemma) Let S be a semigroup. Let s ∈ S
and e, f be idempotents of S1. If s = esf , then es = s = sf .

Proof. If s = esf , then es = eesf = esf = s and sf = esff = esf = s.

Zeros

An element e is said to be a zero [right zero, left zero] if, for all s ∈ S, es = e = se
[se = e, es = e].

Proposition 1.2 A semigroup has at most one zero element.

Proof. Assume that e and e′ are zero elements of a semigroup S. Then by
definition, e = ee′ = e′ and thus e = e′.

If S is a semigroup, we denote by S0 the semigroup obtained from S by
addition of a zero: the support of S0 is the disjoint union of S and the singleton2

0 and the multiplication (here denoted ∗) is defined by

s ∗ t =

{
st if s, t ∈ S

0 if s = 0 or t = 0.

A semigroup is called null if it has a zero and if the product of two elements is
always zero.

2A singleton {s} will also be denoted by s.
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Cancellative elements

An element s of a semigroup S is said to be right cancellative [left cancellative]
if, for every x, y ∈ S, the condition xs = ys [sx = sy] implies x = y. It is
cancellative if it is simultaneously right and left cancellative.

A semigroup S is right cancellative [left cancellative, cancellative] if all its
elements are right cancellative [left cancellative, cancellative].

Inverses

We have to face a slight terminology problem with the notion of an inverse.
Indeed, semigroup theorists have coined a notion of inverse that differs from the
standard notion used in group theory and elsewhere in mathematics. Usually,
the context should permit to clarify which definition is understood. But to avoid
any ambiguity, we shall use the terms group inverse and semigroup inverse when
we need to distinguish the two notions.

Let M be a monoid. A right group inverse [left group inverse] of an element
x of M is an element x′ such that xx′ = 1 [x′x = 1]. A group inverse of x is an
element x′ which is simultaneously a right and left group inverse of x, so that
xx′ = x′x = 1.

We now come to the notion introduced by semigroup theorists. Given an
element x of a semigroup S, an element x′ is a semigroup inverse or simply
inverse of x if xx′x = x and x′xx′ = x′.

It is clear that any group inverse is a semigroup inverse but the converse
is not true. A thorough study of semigroup inverses will be given in Section
2, but let us warn the reader immediately of some counterintuitive facts about
inverses. An element of an infinite monoid may have several right group inverses
and several left group inverses. The situation is radically different for a finite
monoid: each element has at most one left [right] group inverse and if these
elements exist, they are equal. However, an element of a semigroup (finite or
infinite) may have several semigroup inverses, or no semigroup inverse at all.

1.3 Groups

A monoid is a group if each of its elements has a group inverse. A slightly weaker
condition can be given.

Proposition 1.3 A monoid is a group if and only if each of its elements has a
right group inverse and a left group inverse.

Proof. In a group, every element has a right group inverse and a left group
inverse. Conversely, let G be a monoid in which every element has a right
group inverse and a left group inverse. Let g ∈ G, let g′ [g′′] be a right [left]
inverse of g. Thus, by definition, gg′ = 1 and g′′g = 1. It follows that g′′ =
g′′(gg′) = (g′′g)g′ = g′. Thus g′ = g′′ is an inverse of g. Thus G is a group.

For finite monoids, this result can be further strengthened as follows:

Proposition 1.4 A finite monoid G is a group if and only if every element of
G has a left group inverse.
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Of course, the dual statement for right group inverses hold.

Proof. Let G be a finite monoid in which every element has a left group inverse.
Given an element g ∈ G, consider the map ϕ : G → G defined by ϕ(x) = gx.
We claim that ϕ is injective. Suppose that gx = gy for some x, y ∈ G and let
g′ be the left group inverse of g. Then g′gx = g′gy, that is x = y, proving
the claim. Since G is finite, Proposition I.1.7 shows that ϕ is also surjective.
In particular, there exists an element g′′ ∈ G such that 1 = gg′′. Thus every
element of G has a right group inverse and by Proposition 1.3, G is a group.

Proposition 1.5 A group is a cancellative monoid. In a group, every element
has a unique group inverse.

Proof. Let G be a group. Let g, x, y ∈ G and let g′ be a group inverse of g.
If gx = gy, then g′gx = g′gy, that is x = y. Similarly, xg = yg implies x = y
and thus G is cancellative. In particular, if g′ and g′′ are two group inverses
of g, gg′ = gg′′ and thus g′ = g′′. Thus every element has a unique inverse.

In a group, the unique group inverse of an element x is denoted by x−1 and is
called the inverse of x. Thus xx−1 = x−1x = 1. It follows that the equation
gx = h [xg = h] has a unique solution: x = g−1h [x = hg−1].

1.4 Ordered semigroups and monoids

An ordered semigroup is a semigroup S equipped with an order relation 6 on
S which is compatible with the product: for every x, y ∈ S, for every u, v ∈ S1

x 6 y implies uxv 6 uyv.

The notation (S,6) will sometimes be used to emphasize the role of the
order relation, but most of the time the order will be implicit and the notation
S will be used for semigroups as well as for ordered semigroups. If (S,6) is an
ordered semigroup, then (S,>) is also an ordered semigroup, called the dual of
S. Ordered monoids are defined analogously.

1.5 Semirings

A semiring is a quintuple consisting of a set k, two binary operations on k,
denoted additively and multiplicatively, and two elements 0 and 1, satisfying
the following conditions:

(1) k is a commutative monoid for the addition with identity 0,

(2) k is a monoid for the multiplication with identity 1,

(3) Multiplication is distributive over addition: for all s, t1, t2 ∈ k, s(t1+t2) =
st1 + st2 and (t1 + t2)s = t1s+ t2s,

(4) for all s ∈ k, 0s = s0 = 0.

A ring is a semiring in which the monoid (k,+, 0) is a group. A semiring is
commutative if its multiplication is commutative.
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2 Examples

We give successively some examples of semigroups, monoids, groups, ordered
monoids and semirings.

2.1 Examples of semigroups

(1) The set N+ of positive integers is a commutative semigroup for the usual
addition of integers. It is also a commutative semigroup for the usual
multiplication of integers.

(2) Let I and J be two nonempty sets. Define an operation on I × J by
setting, for every (i, j), (i′, j′) ∈ I × J ,

(i, j)(i′, j′) = (i, j′)

This defines a semigroup, usually denoted by B(I, J).

(3) Let n be a positive integer. Let Bn be the set of all matrices of size n× n
with zero-one entries and at most one nonzero entry. Equipped with the
usual multiplication of matrices, Bn is a semigroup. For instance,

B2 =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)}

This semigroup is nicknamed the universal counterexample because it pro-
vides many counterexamples in semigroup theory. Setting a = ( 0 1

0 0 )
and b = ( 0 0

1 0 ), one gets ab = ( 1 0
0 0 ), ba = ( 0 0

0 1 ) and 0 = ( 0 0
0 0 ). Thus

B2 = {a, b, ab, ba, 0}. Furthermore, the relations aa = bb = 0, aba = a and
bab = b suffice to recover completely the multiplication in B2.

(4) Let S be a set. Define an operation on S by setting st = s for every
s, t ∈ S. Then every element of S is a left zero, and S forms a left zero
semigroup.

(5) Let S be the semigroup of matrices of the form
(
a 0
b 1

)

where a and b are positive rational numbers, under matrix multiplication.
We claim that S is a cancellative semigroup without identity. Indeed,
since (

a 0
b 1

)(
x 0
y 1

)
=

(
ax 0

bx+ y 1

)

it follows that if
(
a 0
b 1

)(
x1 0
y1 1

)
=

(
a 0
b 1

)(
x2 0
y2 1

)

then ax1 = ax2 and bx1+y1 = bx2+y2, whence x1 = x2 and y1 = y2, which
proves that S is left cancellative. The proof that S is right cancellative is
dual.

(6) If S is a semigroup, the set P(S) of subsets of S is also a semigroup, for
the multiplication defined, for every X,Y ∈ P(S), by

XY = {xy | x ∈ X, y ∈ Y }



16 CHAPTER II. SEMIGROUPS AND BEYOND

2.2 Examples of monoids

(1) The trivial monoid, denoted by 1, consists of a single element, the identity.

(2) The set N of nonnegative integers is a commutative monoid for the ad-
dition, whose identity is 0. It is also a commutative monoid for the max
operation, whose identity is also 0 and for the multiplication, whose iden-
tity is 1.

(3) The monoid U1 = {1, 0} defined by its multiplication table 1 ∗ 1 = 1 and
0 ∗ 1 = 0 ∗ 0 = 1 ∗ 0 = 0.

(4) More generally, for each nonnegative integer n, the monoid Un is defined on
the set {1, a1, . . . , an} by the operation aiaj = aj for each i, j ∈ {1, . . . , n}
and 1ai = ai1 = ai for 1 6 i 6 n.

(5) The monoid Ũn has the same underlying set as Un, but the multiplication
is defined in the opposite way: aiaj = ai for each i, j ∈ {1, . . . , n} and
1ai = ai1 = ai for 1 6 i 6 n.

(6) The monoid B1
2 is obtained from the semigroup B2 by adding an identity.

Thus B1
2 = {1, a, b, ab, ba, 0} where aba = a, bab = b and aa = bb = 0.

(7) The bicyclic monoid is the monoid M = {(i, j) | (i, j) ∈ N2} under the
operation

(i, j)(i′, j′) = (i+ i′ −min(j, i′), j + j′ −min(j, i′))

2.3 Examples of groups

(1) The set Z of integers is a commutative group for the addition, whose
identity is 0.

(2) The set Z/nZ of integers modulo n, under addition is also a commutative
group.

(3) The set of 2× 2 matrices with entries in Z and determinant ±1 is a group
under the usual multiplication of matrices. This group is denoted by
GL2(Z).

2.4 Examples of ordered monoids

(1) Every monoid can be equipped with the equality order, which is compati-
ble with the product. It is actually often convenient to consider a monoid
M as the ordered monoid (M,=).

(2) The natural order on nonnegative integers is compatible with addition and
with the max operation. Thus (N,+,6) and (N,max,6) are both ordered
monoids.

(3) We denote by U+
1 [U−

1 ] the monoid U1 = {1, 0} ordered by 0 < 1 [1 < 0].

2.5 Examples of semirings

(1) Rings are the first examples of semirings that come to mind. In particular,
we denote by Z, Q and R, respectively, the rings of integers, rational and
real numbers.
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(2) The simplest example of a semiring which is not a ring is the Boolean
semiring B = {0, 1} whose operations are defined by the following tables

+ 0 1

0 0 1

1 1 1

× 0 1

0 0 0

1 0 1

(3) If M is a monoid, then the set P(M) of subsets of M is a semiring with
union as addition and multiplication given by

XY = {xy | x ∈ X and y ∈ Y }

The empty set is the zero and the unit is the singleton {1}.

(4) Other examples include the semiring of nonnegative integers N = (N,+,×)
and its completion N = (N ∪ {∞},+,×), where addition and multiplica-
tion are extended in the natural way

for all x ∈ N , x+∞ =∞+ x =∞

for all x ∈ N − {0}, x×∞ =∞× x =∞

∞× 0 = 0×∞ = 0

(5) The Min-Plus semiring is M = (N ∪ {∞},min,+). This means that in
this semiring the sum is defined as the minimum and the product as the
usual addition. Note that ∞ is the zero of this semiring and 0 is its unit.

3 Basic algebraic structures

3.1 Morphisms

On a general level, a morphism between two algebraic structures is a map pre-
serving the operations. Therefore a semigroup morphism is a map ϕ from a
semigroup S into a semigroup T such that, for every s1, s2 ∈ S,

(1) ϕ(s1s2) = ϕ(s1)ϕ(s2).

Similarly, a monoid morphism is a map ϕ from a monoid S into a monoid T
satisfying (1) and

(2) ϕ(1) = 1.

A morphism of ordered monoids is a map ϕ from an ordered monoid (S,6) into
a monoid (T,6) satisfying (1), (2) and, for every s1, s2 ∈ S such that s1 6 s2,

(3) ϕ(s1) 6 ϕ(s2).

Formally, a group morphism between two groupsG andG′ is a monoid morphism
ϕ satisfying, for every s ∈ G, ϕ(s−1) = ϕ(s)−1. In fact, this condition can be
relaxed.

Proposition 3.6 Let G and G′ be groups. Then any semigroup morphism from
G to G′ is a group morphism.

Proof. Let ϕ : G → G be a semigroup morphism. Then by (1), ϕ(1) =
ϕ(1)ϕ(1) and thus ϕ(1) = 1 since 1 is the unique idempotent of G′. Thus ϕ is
a monoid morphism. Further, ϕ(s−1)ϕ(s) = ϕ(s−1s) = ϕ(1) = 1 and similarly
ϕ(s)ϕ(s−1) = ϕ(ss−1) = ϕ(1) = 1.
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A semiring morphism between two semirings k and k′ is a map ϕ : k → k′

which is a monoid morphism for the additive structure and for the multiplicative
structure.

The semigroups [monoids, groups, ordered monoids, semirings], together
with the morphisms defined above, form a category. We shall encounter in
Chapter XIII another interesting category whose objects are semigroups and
whose morphisms are called relational morphisms.

A morphism ϕ : S → T is an isomorphism if there exists a morphism ψ :
T → S such that ϕ ◦ ψ = IdT and ψ ◦ ϕ = IdS .

Proposition 3.7 In the category of semigroups [monoids, groups, semirings ],
a morphism is an isomorphism if and only if it is bijective.

Proof. If ϕ : S → T an isomorphism, then ϕ is bijective since there exists a
morphism ψ : T → S such that ϕ ◦ ψ = IdT and ψ ◦ ϕ = IdS .

Suppose now that ϕ : S → T is a bijective morphism. Then ϕ−1 is a
morphism from T into S, since, for each x, y ∈ T ,

ϕ(ϕ−1(x)ϕ−1(y)) = ϕ(ϕ−1(x))ϕ(ϕ−1(y)) = xy

Thus ϕ is an isomorphism.

Proposition 3.7 does not hold for morphisms of ordered monoids. In partic-
ular, if (M,6) is an ordered monoid, the identity induces a bijective morphism
from (M,=) onto (M,6) which is not in general an isomorphism. In fact, a
morphism of ordered monoids ϕ :M → N is an isomorphism if and only if ϕ is
a bijective monoid morphism and, for every x, y ∈ M , x 6 y is equivalent with
ϕ(x) 6 ϕ(y).

Two semigroups [monoids, ordered monoids] are isomorphic if there exists
an isomorphism from one to the other. As a general rule, we shall identify two
isomorphic semigroups.

3.2 Subsemigroups

A subsemigroup of a semigroup S is a subset T of S such that s1 ∈ T and s2 ∈ T
imply s1s2 ∈ T . A submonoid of a monoid is a subsemigroup containing the
identity. A subgroup of a group is a submonoid containing the inverse of each
of its elements.

A subsemigroup G of a semigroup S is said to be a group in S if there is
an idempotent e ∈ G such that G, under the operation of S, is a group with
identity e.

Proposition 3.8 Let ϕ : S → T be a semigroup morphism. If S′ is a subsemi-
group of S, then ϕ(S′) is a subsemigroup of T . If T ′ is a subsemigroup of T ,
then ϕ−1(T ′) is a subsemigroup of S.

Proof. Let t1, t2 ∈ ϕ(S
′). Then t1 = ϕ(s1) and t2 = ϕ(s2) for some s1, s2 ∈ S

′.
Since S′ is a subsemigroup of S, s1s2 ∈ S

′ and thus ϕ(s1s2) ∈ ϕ(S
′). Now since

ϕ is a morphism, ϕ(s1s2) = ϕ(s1)ϕ(s2) = t1t2. Thus t1t2 ∈ ϕ(S′) and ϕ(S′) is
a subsemigroup of T .
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Let s1, s2 ∈ ϕ−1(T ′). Then ϕ(s1), ϕ(s2) ∈ T ′ and since T ′ is a subsemigroup
of T , ϕ(s1)ϕ(s2) ∈ T

′. Since ϕ is a morphism, ϕ(s1)ϕ(s2) = ϕ(s1s2) and thus
s1s2 ∈ ϕ

−1(T ′). Therefore ϕ−1(T ′) is a subsemigroup of S.

Proposition 3.8 can be summarized as follows: substructures are preserved
by morphisms and by inverses of morphisms. A similar statement holds for
monoid morphisms and for group morphisms.

3.3 Quotients and divisions

Let S and T be two semigroups [monoids, groups, ordered monoids]. Then T is
a quotient of S if there exists a surjective morphism from S onto T .

Note that any ordered monoid (M,6) is a quotient of the ordered monoid
(M,=), since the identity on M is a morphism of ordered monoid from (M,=)
onto (M,6).

Finally, a semigroup T divides a semigroup S (notation T 4 S) if T is a
quotient of a subsemigroup of S.

Proposition 3.9 The division relation is transitive.

Proof. Suppose that S1 4 S2 4 S3. Then there exists a subsemigroup T1
of S2, a subsemigroup T2 of S3 and surjective morphisms π1 : T1 → S1 and
π2 : T2 → S2. Put T = π−1

2 (T1). Then T is a subsemigroup of S3 and S1

is a quotient of T since π1(π2(T )) = π1(T1) = S1. Thus S1 divides S3.

The next proposition shows that division is a partial order on finite semigroups,
up to isomorphism.

Proposition 3.10 Two finite semigroups that divide each other are isomorphic.

Proof. We keep the notation of the proof of Proposition 3.9, with S3 = S1.
Since T1 is a subsemigroup of S2 and T2 is a subsemigroup of S1, one has |T1| 6
|S2| and |T2| 6 |S1|. Furthermore, since π1 and π2 are surjective, |S1| 6 |T1|
and |S2| 6 |T2|. It follows that |S1| = |T1| = |S2| = |T2|, whence T1 = S2

and T2 = S1. Furthermore, π1 and π2 are bijections and thus S1 and S2 are
isomorphic.

The term division stems from a property of finite groups, usually known as
Lagrange’s theorem. The proof is omitted but is not very difficult and can be
found in any textbook on finite groups.

Proposition 3.11 (Lagrange) Let G and H be finite groups. If G divides H,
then |G| divides |H|.

The use of the term division in semigroup theory is much more questionable
since Lagrange’s theorem does not extend to finite semigroups. However, this
terminology is universally accepted and we shall stick to it.

Let us mention a few useful consequences of Lagrange’s theorem.

Proposition 3.12 Let G be a finite group. Then, for each g ∈ G, g|G| = 1.
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Proof. Consider the set H of all powers of g. Since G is finite, two powers, say
gp and gq with q > p, are equal. Since G is a group, it follows that gq−p = 1. Let
r be the smallest positive integer such that gr = 1. Then H = {1, g, . . . , gr−1}
is a cyclic group and by Lagrange’s theorem, |G| = rs for some positive integer
s. It follows that g|G| = (gr)s = 1s = 1.

Proposition 3.13 A nonempty subsemigroup of a finite group is a subgroup.

Proof. Let G be a finite group and let S be a nonempty subsemigroup of G.
Let s ∈ S. By Proposition 3.12, s|G| = 1. Thus 1 ∈ S. Consider now the map
ϕ : S → S defined by ϕ(x) = xs. It is injective, for G is right cancellative, and
hence bijective by Proposition I.1.7. Consequently, there exists an element s′

such that s′s = 1. Thus every element has a left inverse and by Proposition 1.4,
S is a group.

3.4 Products

Given a family (Si)i∈I of semigroups [monoids, groups], the product Πi∈ISi is
the semigroup [monoid, group] defined on the cartesian product of the sets Si

by the operation
(si)i∈I(s

′
i)i∈I = (sis

′
i)i∈I

Note that the semigroup 1 is the identity for the product of semigroups [monoids,
groups]. Following a usual convention, which can also be justified in the frame-
work of category theory, we put

∏
i∈∅ Si = 1.

Given a family (Mi)i∈I of ordered monoids, the product
∏

i∈I Mi is naturally
equipped with the order

(si)i∈I 6 (s′i)i∈I if and only if, for all i ∈ I, si 6 s
′
i.

The resulting ordered monoid is the product of the ordered monoids (Mi)i∈I .
The next proposition, whose proof is obvious, shows that product preserves

substructures, quotients and division. We state it for semigroups, but it can be
readily extended to monoids and to ordered semigroups or monoids.

Proposition 3.14 Let (Si)i∈I and (Ti)i∈I be two families of semigroups such
that, for each i ∈ I, Si is a subsemigroup [quotient, divisor ] of Ti. Then

∏
i∈I Si

is a subsemigroup of [quotient, divisor ] of
∏

i∈I Ti.

3.5 Ideals

Let S be a semigroup. A right ideal of S is a subset R of S such that RS ⊆ R.
Thus R is a right ideal if, for each r ∈ R and s ∈ S, rs ∈ R. Symmetrically, a
left ideal is a subset L of S such that SL ⊆ L. An ideal is a subset of S which
is simultaneously a right and a left ideal.

Observe that a subset I of S is an ideal if and only if, for every s ∈ I and
x, y ∈ S1, xsy ∈ I. Here, the use of S1 instead of S allows to include the cases
x = 1 and y = 1, which are necessary to recover the conditions SI ⊆ S and
IS ⊆ I. Slight variations on the definition are therefore possible:

(1) R is a right ideal if and only if RS1 ⊆ R or, equivalently, RS1 = R,

(2) L is a left ideal if and only if S1L ⊆ L or, equivalently, S1L = L,
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(3) I is an ideal if and only if S1IS1 ⊆ I or, equivalently, S1IS1 = I.

Note that any intersection of ideals [right ideals, left ideals] of S is again an
ideal [right ideal, left ideal].

Let R be a subset of a semigroup S. The ideal [right ideal, left ideal] gen-
erated by R is the set S1RS1 [RS1, S1R]. It is the smallest ideal [right ideal,
left ideal] containing R. An ideal [right ideal, left ideal] is called principal if
it is generated by a single element. Note that the ideal [right ideal, left ideal]
generated by an idempotent e is equal to SeS [eS, Se]. Indeed, the equality
S1eS1 = SeS follows from the fact that e = eee.

Ideals are stable under surjective morphisms and inverse of morphisms.

Proposition 3.15 Let ϕ : S → T be a semigroup morphism. If J is an ideal of
T , then ϕ−1(J) is a ideal of S. Furthermore, if ϕ is surjective and I is an ideal
of S, then ϕ(I) is an ideal of T . Similar results apply to right and left ideals.

Proof. If J is an ideal of T , then

S1ϕ−1(J)S1 ⊆ ϕ−1(T 1)ϕ−1(J)ϕ−1(T 1) ⊆ ϕ−1(T 1JT 1) ⊆ ϕ−1(J)

Thus ϕ−1(J) is an ideal of S.
Suppose that ϕ is surjective. If I is an ideal of S, then

T 1ϕ(I)T 1 = ϕ(S1)ϕ(I)ϕ(S1) = ϕ(S1IS1) = ϕ(I)

Thus ϕ(I) is an ideal of T .

Let, for 1 6 k 6 n, Ik be an ideal of a semigroup S. The set

I1I2 · · · In = {s1s2 · · · sn | s1 ∈ I1, s2 ∈ I2, . . . , sn ∈ In}

is the product of the ideals I1, . . . , In.

Proposition 3.16 The product of the ideals I1, . . . , In is an ideal contained in
their intersection.

Proof. Since I1 and In are ideals, S1I1 = I1 and InS
1 = In. Therefore

S1(I1I2 · · · In)S
1 = (S1I1)I2 · · · (InS

1) = I1I2 · · · In

and thus I1I2 · · · In is an ideal. Furthermore, for 1 6 k 6 n, I1I2 · · · In ⊆
S1IkS

1 = Ik. Thus I1I2 · · · In is contained in
⋂

16k6n Ik.

A nonempty ideal I of a semigroup S is called minimal if, for every nonempty
ideal J of S, J ⊆ I implies J = I.

Proposition 3.17 A semigroup has at most one minimal ideal.

Proof. Let I1 and I2 be two minimal ideals of a semigroup S. Then by Propo-
sition 3.16, I1I2 is a nonempty ideal of S contained in I1 ∩ I2. Now since I1 and
I2 are minimal ideals, I1I2 = I1 = I2.

The existence of a minimal ideal is assured in two important cases, namely
if S is finite or if S possesses a zero. In the latter case, 0 is the minimal ideal. A
nonempty ideal I 6= 0 such that, for every nonempty ideal J of S, J ⊆ I implies
J = 0 or J = I is called a 0-minimal ideal. It should be noted that a semigroup
may have several 0-minimal ideals as shown in the next example.
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Example 3.1 Let S = {s, t, 0} be the semigroup defined by xy = 0 for every
x, y ∈ S. Then 0 is the minimal ideal of S and {s, 0} and {t, 0} are two 0-minimal
ideals.

3.6 Simple and 0-simple semigroups

A semigroup S is called simple if its only ideals are ∅ and S. It is called 0-
simple if it has a zero, denoted by 0, if S2 6= {0} and if ∅, 0 and S are its only
ideals. The notions of right simple, right 0-simple, left simple and left 0-simple
semigroups are defined analogously.

Lemma 3.18 Let S be a 0-simple semigroup. Then S2 = S.

Proof. Since S2 is a nonempty, nonzero ideal, one has S2 = S.

Proposition 3.19

(1) A semigroup S is simple if and only if SsS = S for every s ∈ S.

(2) A semigroup S is 0-simple if and only if S 6= ∅ and SsS = S for every
s ∈ S − 0.

Proof. We shall prove only (2), but the proof of (1) is similar.
Let S be a 0-simple semigroup. Then S2 = S by Lemma 3.18 and hence

S3 = S.
Let I be set of the elements s of S such that SsS = 0. This set is an ideal of

S containing 0 but not equal to S, since
⋃

s∈S SsS = S3 = S. Therefore I = 0.
In particular, if s 6= 0, then SsS 6= 0, and since SsS is an ideal of S, it follows
that SsS = S.

Conversely, if S 6= ∅ and SsS = S for every s ∈ S−0, we have S = SsS ⊆ S2

and therefore S2 6= 0. Furthermore, if J is a nonzero ideal of S, it contains an
element s 6= 0. We then have S = SsS ⊆ SJS = J , whence S = J . Therefore
S is 0-simple.

The structure of simple semigroups will be detailed in Section 3.

3.7 Semigroup congruences

A semigroup congruence is a stable equivalence relation. Thus an equivalence
relation ∼ on a semigroup S is a congruence if, for each s, t ∈ S and u, v ∈ S1,
we have

s ∼ t implies usv ∼ utv.

The set S/∼ of equivalence classes of the elements of S is naturally equipped
with a structure of semigroup, and the function which maps every element onto
its equivalence class is a semigroup morphism from S onto S/∼. Four particular
cases of congruences are extensively used.

(a) Rees congruence

Let I be an ideal of a semigroup S and let ≡I be the equivalence relation
identifying all the elements of I and separating the other elements. Formally,
s ≡I t if and only if s = t or s, t ∈ I. Then ≡I is a congruence called the
Rees congruence of I. The quotient of S by ≡I is usually denoted by S/I. The
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support of this semigroup is the set (S − I) ∪ 0 and the multiplication (here
denoted ∗) is defined by

s ∗ t =

{
st if s, t ∈ S − I

0 if s = 0 or t = 0.

Let us mention a useful decomposition result:

(b) Syntactic congruence

Let P be a subset of a semigroup S. The syntactic congruence of P is the
congruence ∼P over S defined by s ∼P t if and only if, for every x, y ∈ S1,

xsy ∈ P ⇐⇒ xty ∈ P

The quotient semigroup S/∼P is called the syntactic semigroup of P in S. The
syntactic semigroup is particularly important in the theory of formal languages.

(c) Congruence generated by a relation

Let R be a relation on S, that is, a subset of S×S. The set of all congruences
containing R is nonempty since it contains the universal relation on S. Further,
it is closed under intersection. It follows that the intersection of all congruences
containing R is a congruence, called the congruence generated by R. Let us give
a more constructive definition.

Proposition 3.20 The congruence generated by a relation R on a semigroup
S is the reflexive-transitive closure of the relation

{(xry, xsy) | (r, s) ∈ R and x, y ∈ S1}

Proof. If a congruence contains R, it certainly contains the relation

R̄ = {(xry, xsy) | (r, s) ∈ R and x, y ∈ S1}

and hence its reflexive-transitive closure R̄∗. Therefore, it suffices to show that
R̄∗ is a congruence. Let (u, v) ∈ R̄∗. By definition, there exists a finite sequence
u = u0, u1, . . . , un = v such that, for 0 6 i 6 n− 1

(u0, u1) ∈ R̄, (u1, u2) ∈ R̄, · · · (un−1, un) ∈ R̄

Therefore, one has, for some xi, yi, ri, si ∈ S such that (ri, si) ∈ R,

(u0, u1) = (x0r0y0, x0s0y0), (u1, u2) = (x1r1y1, x1s1y1), · · · ,

(un−1, un) = (xn−1rn−1yn−1, xn−1sn−1yn−1)

Let now x, y ∈ S1. Now, the relations

(xuiy, xui+1y) = (xxiriyiy, xxisiyiy) ∈ R̄ (0 6 i 6 n− 1)

show that (xuy, xvy) ∈ R̄∗. Thus R̄∗ is a congruence.

(d) Nuclear congruence

For each semigroup morphism ϕ : S → T , the equivalence ∼ϕ defined on S by

x ∼ϕ y if and only if ϕ(x) = ϕ(y)

is a congruence. This congruence, called the nuclear congruence of ϕ, has the
following standard property.
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Proposition 3.21 (First isomorphism theorem) Let ϕ : S → T be a mor-
phism of semigroups and let π : S → S/∼ϕ be the quotient morphism. Then
there exists a unique semigroup morphism ϕ̃ : S/∼ϕ → T such that ϕ = ϕ̃ ◦ π.
Moreover, ϕ̃ is an isomorphism from S/∼ϕ onto ϕ(S).

Proof. The situation is summed up in the following diagram:

S/∼ϕ T

S

π

ϕ̃

ϕ

Unicity is clear: if s is the ∼ϕ-class of some element x, then necessarily

ϕ̃(s) = ϕ(x) (3.1)

Furthermore, if x and y are arbitrary elements of s, then ϕ(x) = ϕ(y). Therefore,
there is a well-defined function ϕ̃ defined by Formula (3.1). Moreover, if π(x1) =
s1 and π(x2) = s2, then π(x1x2) = s1s2, whence

ϕ̃(s1)ϕ̃(s2) = ϕ(x1)ϕ(x2) = ϕ(x1x2) = ϕ̃(s1s2)

Therefore ϕ̃ is a morphism. We claim that ϕ̃ is injective. Indeed, suppose that
ϕ̃(s1) = ϕ̃(s2), and let x1 ∈ π

−1(s1) and x2 ∈ π
−1(s2). Then ϕ(x1) = ϕ(x2)

and thus x1 ∼ϕ x2. It follows that π(x1) = π(x2), that is, s1 = s2. Thus ϕ̃
induces an isomorphism from S/∼ϕ onto ϕ(S).

When two congruences are comparable, the quotient structures associated
with them can also be compared.

Proposition 3.22 (Second isomorphism theorem) Let ∼1 and ∼2 be two
congruences on a semigroup S and π1 [π2] the canonical morphism from S onto
S/∼1 [S/∼2]. If ∼2 is coarser than ∼1, there exists a unique surjective mor-
phism π : S/∼1 → S/∼2 such that π ◦ π1 = π2.

Proof. Since π ◦ π1 = π2, Corollary I.1.13 shows that π is necessarily equal to
the relation π2 ◦ π

−1
1 . Furthermore, Proposition I.1.15 shows that this relation

is actually a function.
Since π1 and π2 are morphisms,

π(π1(s)π1(t)) = π(π1(st)) = π2(st) = π2(s)π2(t) = π(π1(s))π(π1(t))

and thus π is a morphism.

Proposition 3.23 Let S be a semigroup, (∼i)i∈I be a family of congruences
on S and ∼ be the intersection of these congruences. Then the semigroup S/∼
is isomorphic to a subsemigroup of the product

∏
i∈I S/∼i.

Proof. Denote by πi : S → S/∼i the projections and by π : S →
∏

i∈I S/∼i the
morphism defined by π(s) = (πi(s))i∈I for every s ∈ S. The nuclear congruence
of π is equal to ∼, and thus, by Proposition 3.21, S/∼ is isomorphic to π(S).
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Corollary 3.24 Let S be a finite semigroup with zero having (at least) two
distinct 0-minimal ideals I1 and I2. Then S is isomorphic to a subsemigroup of
S/I1 × S/I2.

Proof. Under these assumptions, the intersection of I1 and I2 is 0 and thus the
intersection of the Rees congruences ≡I1 and ≡I2 is the identity. It remains to
apply Proposition 3.23 to conclude.

(e) Congruences of ordered semigroups

Let (M,6) be an ordered monoid. A congruence of ordered semigroup on
M is a stable preorder coarser than 6. If � is a congruence of ordered monoid,
the equivalence ∼ associated with � is a semigroup congruence and the pre-
order � induces a stable order relation on the quotient monoid S/∼, that will
also be denoted by 6. Finally, the function which maps each element onto its
equivalence class is a morphism of ordered monoids from M onto (M/∼,6).

4 Transformation semigroups

4.1 Definitions

A [partial ] transformation on a set P is a [partial] function from P into itself. A
permutation is a bijective transformation. For instance, if P = {1, 2, 3} and f ,
g and h are defined in the table below, then f is a transformation, g is a partial
transformation and h is permutation.

1 2 3

f 2 1 2

g - 2 3
h 1 2 3

Let P be a set and S be a semigroup. A right action from S on P is a map
P × S → P , denoted (p, s) 7→ p· s, such that, for each s, t ∈ S and p ∈ P ,

(p· s)· t = p· (st)

This condition implies that one may use the notation p· st in the place of (p· s)· t
or p· (st) without any ambiguity. We will follow this convention in the sequel.

An action is faithful if the condition

for all p ∈ P , p· s = p· t

implies s = t. A transformation semigroup on P is a semigroup S equipped
with a faithful action of S on P .
Given an action of S on P , the relation ∼ defined on S by s ∼ t if and only if

for all p ∈ P , p· s = p· t

is a congruence on S and the action of S on P induces a faithful action of S/∼
on P . The resulting transformation semigroup (P, S/∼) is called the transfor-
mation semigroup induced by the action of S on P .
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Example 4.1 Each semigroup S defines a transformation semigroup (S1, S),
given by the faithful action q · s = qs.

Example 4.2 Let R be a right-zero semigroup. By definition, the operation on
R is defined by st = t for every s, t ∈ R. One can associate to R a transformation
semigroup (R,R) defined by the action r· s = s for every r, s ∈ R. In particular,
if R = {1, . . . , n}, this transformation semigroup is usually denoted by n̄.

A transformation semigroup (P, S) is said to be fixpoint-free if, for every
p ∈ P and every s ∈ S,

p · s = p implies s = s2.

For instance, translations of the plane form a fixpoint-free transformation semi-
group.

4.2 Full transformation semigroup and symmetric group

The full transformation semigroup on a set P is the semigroup T (P ) of all trans-
formations on P . If P = {1, . . . , n}, the notation Tn is also used. According
to the definition of a transformation semigroup, the product of two transforma-
tions α and β is the transformation αβ defined by p· (αβ) = (p·α)·β. At this
stage, the reader should be warned that the product αβ is not equal to α ◦ β,
but to β ◦ α. In other words, the operation on T (P ) is reverse composition.

The set of all partial transformations on P is also a semigroup, denoted
by F(P ). Finally, the symmetric group on a set P is the group S(P ) of all
permutations on P . If P = {1, . . . , n}, the notations Fn and Sn are also used.

The importance of these examples stems from the following embedding re-
sults.

Proposition 4.25 Every semigroup S is isomorphic to a subsemigroup of the
monoid T (S1). In particular, every finite semigroup is isomorphic to a sub-
semigroup of Tn for some n.

Proof. Let S be a semigroup. We associate with each element s of S the
transformation on S1, also denoted by s, and defined, for each q ∈ S1, by
q · s = qs. This defines an injective morphism from S into T (S1) and thus S is
isomorphic to a subsemigroup of T (S1).

A similar proof leads to the following result, known as Cayley theorem.

Theorem 4.26 (Cayley theorem) Every group G is isomorphic to a sub-
group of S(G). In particular, every finite group is isomorphic to a subgroup of
Sn for some n.

4.3 Product and division

Let (Pi, Si)i∈I be a family of transformation semigroups. The product of this
family is the transformation semigroup (

∏
i∈I Pi,

∏
i∈I Si). The action is defined

componentwise:

(pi)i∈I · (si)i∈I = (pi · si)i∈I .
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A transformation semigroup (P, S) divides a transformation semigroup (Q,T )
if there exists a surjective partial function π : Q → P and, for every s ∈ S, an
element ŝ ∈ T , called a cover of s, such that, for each q ∈ Dom(π), π(q)· s =
π(q · ŝ). The chosen terminology is justified by the following result.

Proposition 4.27 If (P, S) divides (Q,T ), then S divides T . If S divides T ,
then (S1, S) divides (T 1, T ).

Proof. If (P, S) divides (Q,T ), there exists a surjective partial function π : Q→
P such that every element s ∈ S has at least one cover. Furthermore, if ŝ1 is a
cover of s1 and ŝ2 is a cover of s2, then ŝ1ŝ2 is a cover of s1s2, since, for each
q ∈ Dom(π),

π(q)· s1s2 = π(q · ŝ1)· s2 = π((q · ŝ1)· ŝ2) = π(q · ŝ1ŝ2).

Therefore, the set of all covers of elements of S form a subsemigroup R of T .
Furthermore, if two elements s1 and s2 have the same cover ŝ, then, for each
q ∈ Dom(π),

π(q)· s1 = π(q · ŝ) = π(q)· s2

Since π is surjective and the action of S is faithful, it follows s1 = s2. Therefore,
there is a well-defined map ŝ→ s from R onto S and this map is a morphism.

Suppose now that S divides T . Then there exists a subsemigroup R of
T and a surjective morphism π from R onto S, which can be extended to a
surjective partial function from T 1 onto S1, by setting π(1) = 1 if R is not a
monoid. For each s ∈ S, choose an element ŝ ∈ π−1(s). Then, for every q ∈ R1,
π(q · ŝ) = π(q)s and thus (S1, S) divides (T 1, T ).

5 Generators

5.1 A-generated semigroups

Given a subset A of a semigroup S, the subsemigroup of S generated by A is
the smallest subsemigroup of S containing A. It is denoted by 〈A〉 and consists
of all products a1 · · · an of elements of A.

If S is a monoid, the submonoid generated by A is defined in a similar way,
but it always contains the identity of S. Finally, if S is a group, the subgroup
generated by A is the smallest subgroup of S containing A. It consists of all
products of the form a1 · · · an, where each ai is either an element of A or the
inverse of an element of A.

A semigroup [monoid, group] generated by A is also called A-generated . For
instance, the semigroup B2 is A-generated, with A = {a, b} and a = ( 0 1

0 0 ) and
b = ( 0 0

1 0 ).
A semigroup [monoid, group] is called monogenic if it is generated by a single

element.

5.2 Cayley graphs

Given an A-generated monoid M , the right Cayley graph of M has M as set
of vertices and the triples of the form (m, a,ma), with m ∈ M and a ∈ A, as
edges. The left Cayley graph of M has the same set of vertices, but the edges
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are the triples of the form (m, a, am), with m ∈ M and a ∈ A. Therefore the
notion of Cayley graph depends on the given set of generators. However, it is
a common practice to speak of the Cayley graph of a monoid when the set of
generators is understood.

The right and left Cayley graphs of B1
2 are represented in Figure 5.1.

a

ab

1 0

b

ba

a a

ab b

b

b

b

a, b

a

a

a ab

1 0

b ba

a a b

b b a

b

a

a, b

a

b

Figure 5.1. The left (on the left) and right (on the right) Cayley graph of B1
2 .

5.3 Free semigroups

Let A be a set called an alphabet, whose elements are called letters. A finite
sequence of elements of A is called a finite word on A, or just a word. We denote
by mere juxtaposition

a0a1 · · · an

the sequence (a0, a1, . . . , an). The set of words is endowed with the operation
of concatenation product also called product, which associates with two words
x = a0a1 · · · ap and y = b0b1 · · · bq the word xy = a0a1 · · · apb0b1 · · · bq. This
operation is associative. It has an identity, the empty word, denoted by 1 or ε,
which is the empty sequence.

We denote by A∗ the set of words on A and by A+ the set of nonempty
words. The set A∗ [A+], equipped with the concatenation product is thus a
monoid with identity 1 [a semigroup]. The set A∗ is called the free monoid on
A and A+ the free semigroup on A.

Let u = a0a1 · · · ap be a word in A∗ and let a be a letter of A. A nonnegative
integer i is said to be an occurrence of the letter a in u if ai = a. We denote by
|u|a the number of occurrences of a in u. Thus, if A = {a, b} and u = abaab,
one has |u|a = 3 and |u|b = 2. The sum

|u| =
∑

a∈A

|u|a

is the length of the word u. Thus |abaab| = 5.
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5.4 Universal property

Free structures are defined in category theory by a so-called universal property.
The next proposition, which shows that A+ [A∗] satisfies this universal property,
justifies our terminology.

Proposition 5.28 If ϕ is a function from A into a semigroup [monoid ] S,
there exists a unique semigroup [monoid ] morphism ϕ̄ : A+ → S [A∗ → S] such
that, for each a ∈ A, ϕ̄(a) = ϕ(a). Moreover, ϕ̄ is surjective if and only if the
set ϕ(A) generates S.

Proof. Define a mapping ϕ̄ : A+ → S by setting, for each word a0a1 · · · an,

ϕ̄(a0a1 · · · an) = ϕ(a0)ϕ(a1) · · ·ϕ(an)

One can easily verify that ϕ̄ is the required morphism. On the other hand,
any morphism ϕ̄ such that ϕ̄(a) = ϕ(a) for each a ∈ A must satisfy these two
equalities, which shows it is unique.

By construction, the set ϕ(A) generates ϕ̄(A). Consequently, the morphism
ϕ̄ is surjective if and only if the set ϕ(A) generates S.

This result has several frequently used corollaries.

Corollary 5.29 Let S be a semigroup and let A be a subset of S generating S.
The identity map from A into S induces a morphism of semigroups from A+

onto S.

This morphism is called the natural morphism from A+ onto S.

Corollary 5.30 Let η : A+ → S be a morphism and β : T → S be a surjective
morphism. Then there exists a morphism ϕ : A+ → T such that η = β ◦ ϕ.

A+ T

S

η

ϕ

β

Proof. Let us associate with each letter a ∈ A an element ϕ(a) of β−1(η(a)).
We thus define a function ϕ : A → T , which, by Proposition 5.28, can be
extended to a morphism ϕ : A+ → T such that η = β ◦ ϕ.

5.5 Presentations and rewriting systems

A semigroup presentation is a pair 〈A | R〉, where A is an alphabet and R a
subset of A+ × A+. The elements of A are called generators and the ones of
R, relations. The semigroup presented by 〈A | R〉 is the quotient of the free
semigroup A+ by the congruence ∼R generated by R. In other words, it is the
semigroup generated by the set A submitted to the relations R. This intuitive
meaning is suggested by the notation. Indeed 〈X〉 traditionally denotes the
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semigroup generated by a set X and the vertical bar used as a separator can be
interpreted as “such that”, as in a definition like {n ∈ N | n is prime}.

By extension, a semigroup is said to be defined by a presentation 〈A | R〉 if
it is isomorphic to the semigroup presented by 〈A | R〉. Usually, we write u = v
instead of (u, v) ∈ R.

Monoid presentations are defined analogously by replacing the free semi-
group by the free monoid. In particular, relations of the form u = 1 are allowed.

Example 5.1 The monoid presented by 〈{a, b} | ab = ba〉 is isomorphic to the
additive monoid N2.

Example 5.2 The monoid presented by 〈{a, b} | ab = 1〉 is the bicyclic monoid
defined in Section 2.2.

6 Idempotents in finite semigroups

If S is a monogenic semigroup, generated by a single element x, the set S consists
of the successive powers of x. If S is infinite, it is isomorphic to the additive
semigroup of positive integers. If S is finite, there exist integers i, p > 0 such
that

xi+p = xi.

The minimal i and p with this property are called respectively the index and the
period of x. The semigroup S then has i+ p− 1 elements and its multiplicative
structure is represented in Figure 6.2.

•
x

•
x2

•
x3 . . . . . . . . . . . .xi+p = xi

•

xi+1

•
xi+2

•

xi+p−1
•

Figure 6.2. The semigroup generated by x.

The next result is a key property of finite semigroups.

Proposition 6.31 Each element of a finite semigroup has an idempotent power.

Proof. Let i and p be the index and the period of an element x. Observe that,
for k > i, xk = xk+p. In particular, if k is a multiple of p, say k = qp, one has

(xk)2 = x2k = xk+qp = xk

and thus xk is idempotent. In fact, it is easy to see that the subsemigroup
{xi, . . . , xi+p−1} is isomorphic to the additive group Z/pZ.

Proposition 6.31 has two important consequences.

Corollary 6.32 Every nonempty finite semigroup contains at least one idem-
potent.

Proposition 6.33 For each finite semigroup S, there exists an integer ω such
that, for each s ∈ S, sω is idempotent.
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Proof. By Proposition 6.31, every element s of S has an idempotent power sns .
Let n be the least common multiple of the ns, for s ∈ S. Then s

n is idempotent
for each s ∈ S.

The least integer ω satisfying the property stated in Proposition 6.33 is called
the exponent of S.

Here is another elementary property connected with idempotents.

Proposition 6.34 Let S be a finite semigroup and let n = |S|. For every
sequence s1, . . . , sn of n elements of S, there exists an index i ∈ {1, . . . , n} and
an idempotent e ∈ S such that s1 · · · sie = s1 · · · si.

Proof. Consider the sequence s1, s1s2, . . . , s1 · · · sn. If these elements are all
distinct, the sequence exhausts the elements of S and one of them, say s1 · · · si,
is idempotent. The result is thus clear in this case. Otherwise, two elements of
the sequence are equal, say s1 · · · si and s1 · · · sj with i < j. Then we have

s1 · · · si = s1 · · · si(si+1 · · · sj) = s1 · · · si(si+1 · · · sj)
ω

where ω is the exponent of S. The proposition follows, since (si+1 · · · sj)
ω is

idempotent.

If S is a semigroup and n is a positive integer, we set

Sn = {s1 · · · sn | si ∈ S for 1 6 i 6 n}

Corollary 6.35 Let S be a finite semigroup and let E(S) be the set of idempo-
tents of S. Then for every n > |S|, Sn = SE(S)S.

Corollary 6.35 states that every sufficiently long sequence of elements of a
finite semigroup contains a subsequence of consecutive elements whose product
is idempotent. The proof of this result is elementary and relies mainly on the
pigeon-hole principle. We shall now present a more difficult result whose proof
rests on a celebrated combinatorial theorem, due to Ramsey, which we shall
admit without proof.

An m-colouring of a set E is a function from E into {1, . . . ,m}. An r-subset
of E is a subset with r elements.

Theorem 6.36 (Ramsey) Let r, k,m be integers satisfying k > r, m > 0.
Then there exists an integer N = R(r, k,m) such that for every finite set E
having at least N elements and for every m-colouring of the set of the r-subsets
of E, there exists a k-subset of E of which all r-subsets have the same colour.

The next result clearly generalises Proposition 6.34.

Theorem 6.37 For each finite semigroup S, for each k > 0, there exists an
integer N > 0 such that, for every alphabet A, for every morphism ϕ : A+ →
S and for every word w of A+ of length greater than or equal to N , there
exists an idempotent e ∈ S and a factorisation w = xu1 · · ·uky with x, y ∈ A∗,
u1, . . . , uk ∈ A

+ and ϕ(u1) = . . . = ϕ(uk) = e.
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Proof. It suffices to prove the result for k > 2. Put N = R(2, k + 1, |S|) and
let w be a word of length greater than or equal to N . Let w = a1 · · · aNw

′,
where a1, . . . , aN are letters. We define a colouring into |S| colours of pairs of
elements of {1, . . . , N} in the following way: the colour of {i, j}, where i < j, is
the element ϕ(ai · · · aj−1) of S. According to Ramsey’s theorem, one can find
k+1 indices i0 < i1 < · · · < ik such that all the pairs of elements of {i0, . . . , ik}
have the same colour e. Since we assume k > 2, one has in particular

ϕ(ai0) · · ·ϕ(ai1−1) = ϕ(ai1) · · ·ϕ(ai2−1) = ϕ(ai0) · · ·ϕ(ai2−1)

whereby ee = e. Thus e is idempotent and we obtain the required factori-
sation by taking x = a1 · · · ai0−1, uj = aij−1

· · · aij−1 for 1 6 j 6 k and
y = aik · · · aNw

′.

There are many quantifiers in the statement of Theorem 6.37, but their order
is important. In particular, the integer N does not depend on the size of A,
which can even be infinite.

Proposition 6.38 LetM be a finite monoid and let π : A∗ →M be a surjective
morphism. For any n > 0, there exists N > 0 and an idempotent e in M
such that, for any u0, u1, . . . , uN ∈ A∗ there exists a sequence 0 6 i0 < i1 <
. . . < in 6 N such that π(ui0ui0+1 · · ·ui1−1) = π(ui1ui1+1 · · ·ui2−1) = . . . =
π(uin−1

· · ·uin−1) = e.

Proof. Let N = R(2, n + 1, |M |) and let u0, u1, . . . , uN be words of A∗. Let
E = {1, . . . , N}. We define a colouring into |M | colours of the 2-subsets of E in
the following way: the colour of the 2-subset {i, j} (with i < j) is the element
π(uiui+1 · · ·uj−1) of M . According to Ramsey’s theorem, one can find k + 1
indices i0 < i1 < · · · < ik such that all the 2-subsets of {i0, . . . , ik} have the
same colour. In particular, since k > 2, one gets

π(ui0ui0+1 · · ·ui1−1) = π(ui1ui1+1 · · ·ui2−1) = . . . = π(uin−1
· · ·uin−1)

= π(ui0ui0+1 · · ·ui2−1)

Let e be the common value of these elements. It follows from the equalities
π(ui0ui0+1 · · ·ui1−1) = π(ui1ui1+1 · · ·ui2−1) = π(ui0ui0+1 · · ·ui2−1) that ee = e
and thus e is idempotent.

There is also a uniform version of Theorem 6.37, which is more difficult to
establish.

Theorem 6.39 For each finite semigroup S, for each k > 0, there exists an
integer N > 0 such that, for every alphabet A, for every morphism ϕ : A+ → S
and for every word w of A+ of length greater than or equal to N , there exists
an idempotent e ∈ S and a factorisation w = xu1 · · ·uky with x, y ∈ A∗, |u1| =
. . . = |uk| and ϕ(u1) = . . . = ϕ(uk) = e.

Let us conclude this section with an important combinatorial result of Imre
Simon. A factorisation forest is a function F that associates with every word x of
A2A∗ a factorisation F (x) = (x1, . . . , xn) of x such that n > 2 and x1, . . . , xn ∈
A+. The integer n is the degree of the factorisation F (x). Given a factorisation
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forest F , the height function of F is the function h : A∗ → N defined recursively
by

h(x) =

{
0 if |x| 6 1

1 + max {h(xi) | 1 6 i 6 n} if F (x) = (x1, . . . , xn)

The height of F is the least upper bound of the heights of the words of A∗.
LetM be a finite monoid and let ϕ : A∗ →M be a morphism. A factorisation

forest F is Ramseyan modulo ϕ if, for every word x of A2A∗, F (x) is either of
degree 2 or there exists an idempotent e of M such that F (x) = (x1, . . . , xn)
and ϕ(x1) = ϕ(x2) = · · · = ϕ(xn) = e for 1 6 i 6 n. The factorisation forest
theorem was first proved by I. Simon in [98, 99, 100] and later improved in
[16, 21, 22, 48]:

Theorem 6.40 Let ϕ be a morphism from A∗ into a finite monoid M . There
exists a factorisation forest of height 6 3|M | − 1 which is Ramseyan modulo ϕ.

Proof. TO DO.

7 Exercises

Section 2

1. Show that, up to isomorphism, there are 5 semigroups of order 2. There are
also 14 semigroups of order 3 and the number of semigroups of order 6 8 is
known to be 1843120128. . .

Section 3

2. Let I and J be ideals of a semigroup S such that I ⊆ J . Show that I is an
ideal of J , J/I is an ideal of S/I and (S/I)/(J/I) = S/J .

3. Let T be a semigroup and let R and S be subsemigroups of T .

(1) Show that R∪S is a subsemigroup of T if and only if RS ∪SR is a subset
of R ∪ S.

(2) Show that this condition is satisfied if R and S are both left ideals or both
right ideals, or if either R or S is an ideal.

(3) Show that if R is an ideal of T , then S∩R is an ideal of S and (S∪R)/R =
S/(S ∩R).

4. (Hickey) Let M be a monoid and let m be an element of M .

(1) Show that the operation ◦ defined on the set mM ∩Mm by

xm ◦my = xmy

is well defined.

(2) Show that (mM ∩Mm, ◦) is a monoid with identity m which divides M .

Section 4

5. Show that, if n > 2, Tn is generated by the three functions a, b, and c of the
table below
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1 1 2 3 · · · n− 1 n
a 2 3 4 · · · n 1
b 2 1 3 · · · n− 1 n
c 1 2 3 · · · n− 1 1

An element s of Tn is a function from {1, . . . , n} into itself. We define the rank
r(s) of s to be | Im(s)| and the defect of s to be n− r(s). For instance, a and b
have rank n and defect 0 and c has rank n− 1 and defect 1.

Show that if s is an element of Tn of defect 1, then a, b and s generate Tn.

6. Let (P, S) be a transformation semigroup. Show that (P, S) divides (P, 1P )×
(S1, S).

Section 5

7. Show that the number of words of length n on a k-letter alphabet is kn.

Show that, if k > 2, the number of words of length 6 n is kn+1−1
k−1 .

8. Describe the semigroups 〈{a, b} | a2 = a, b2 = b, ab = ba〉 and 〈{a, b} | a2 =
a, b2 = b〉.

9. Show that the monoid presented by 〈{a, b} | ab = ba = 1〉 is the group (Z,+).

Section 6

10. Let S be a semigroup. Show that for each idempotent e of S, the sets

eS = {es | s ∈ S}, Se = {se | s ∈ S} and eSe = {ese | s ∈ S}

are subsemigroups of S. The semigroup eSe [eS, Se] is called the [left, right ]
local semigroup associated with e. Show that eSe is a monoid with identity e.
Prove that an element s of S belongs to eSe [eS, Se] if and only if es = s = se
[es = s, se = s]. Show that eSe = eS∩Se. What is the connexion with Exercise
4?



Chapter III

Languages and automata

This chapter offers a brief overview of the theory of finite automata and formal
languages. For a complete introduction to this theory, the reader is referred to
specialized books [14, 42, 92].

There are different manners to describe a set of words, or language. The
constructive approach consists in giving a collection of basic languages and a set
of construction rules to build new languages from previously defined ones. The
definition of rational languages is of this type. In the descriptive approach, the
words of a language are characterised by a property: the language of words of
even length, the set of binary representations of prime numbers are examples
of this approach. The automata approach is a special case of the descriptive
approach: an automaton reads a word as input and decides whether the word is
accepted or not. The set of words accepted by the automaton defines a language.
Another variant of the descriptive approach consists in defining languages by
logical formulas, a point of view further studied in Chapter XVII.

The first three sections of this chapter review standard definitions on words,
rational languages and finite automata. The minimal automaton of a language
is defined in terms of morphisms of automata, which is more precise that just
requiring that the number of states be minimal.

Section 4 gives an overview of standard constructions on automata related to
various operations on languages: Boolean operations, product, star, quotients,
inverse of morphisms.

The main result of Section 5 is Kleene’s theorem, which states that a lan-
guage is recognisable if and only if it is rational. Kleene’s theorem is obtained
in two steps. First, we present Glushkov’s algorithm to pass from rational ex-
pressions to finite automata. Next, we use linear equations to pass from finite
automata to rational expressions.

1 Words and languages

1.1 Words

Let u = a0a1 · · · an be a word of A∗. The reversal of u is the word ũ =
anan−1 · · · a0 obtained by reading u from right to left.

A word x ∈ A∗ is a factor of u if x = arar+1 · · · as for some r and s such that
0 6 r 6 s 6 n. This amounts to saying that there exist two words v, w ∈ A∗

35
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such that u = vxw. Similarly, x is a left factor, or prefix, of u, if there exists
a word w ∈ A∗ such that u = xw and x is a right factor or suffix of u, if there
exists a word v of A∗ such that u = vx.

Example 1.1 If u = abaabba, aba is a prefix, ba is a suffix and abaa, baab are
factors of u. One has |u|a = 4 and |u|b = 3, since u contains four occurrences of
a and three of b.

1.2 Orders on words

The relation “being a prefix of” is an order relation on A∗, called the prefix order.
which is partial if A contains at least two letters. There are other interesting
orders on the free monoid. We describe two of them, the lexicographic order
and the shortlex order.

Let A be an alphabet and let 6 be a total order on A. The lexicographic order
induced by 6 is the total order on A∗ used in a dictionary. Formally, it is the
order 6lex on A∗ defined by u 6lex v if and only if u is a prefix of v or u = pau′

and v = pbv′ for some p ∈ A∗, a, b ∈ A with a < b. In the shortlex order, words
are ordered by length and words of equal length are ordered according to the
lexicographic order. Formally, it is the order 6 on A∗ defined by u 6 v if and
only if |u| < |v| or |u| = |v| and u 6lex v.

For instance, if A = {a, b} with a < b, then ababb <lex abba but abba < ababb.
The next proposition summarizes elementary properties of the shortlex order.
The proof is straightforward and omitted.

Proposition 1.1 Let u, v ∈ A∗ and let a, b ∈ A.

(1) If u < v, then au < av and ua < va.

(2) If ua 6 vb, then u 6 v.

An important consequence of Proposition 1.1 is that the shortlex order is stable:
if u 6 v, then xuy 6 xvy for all x, y ∈ A∗.

1.3 Languages

Let A be a finite alphabet. The subsets of the free monoid A∗ are called lan-
guages. For instance, if A = {a, b}, the sets {aba, babaa, bb} and {anban | n > 0}
are languages.

Several operations can be defined on languages. The Boolean operations
comprise union, complement (with respect to the set A∗ of all words), intersec-
tion and difference. Thus, if L and L′ are languages of A∗, one has:

L ∪ L′ = {u ∈ A∗ | u ∈ L or u ∈ L′}

L ∩ L′ = {u ∈ A∗ | u ∈ L and u ∈ L′}

Lc = A∗ − L = {u ∈ A∗ | u /∈ L}

L− L′ = L ∩ L′c = {u ∈ A∗ | u ∈ L and u /∈ L′}

One can also mention the symmetric difference, defined as follows

L△L′ = (L− L′) ∪ (L′ − L) = (L ∪ L′)− (L ∩ L′)
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The concatenation product or simply product of two languages L and L′ is the
language

LL′ = {uu′ | u ∈ L and u′ ∈ L′}.

The product is an associative operation on the set of languages, which admits
the language1 {1} as an identity, since the formula {1}L = L{1} = L holds for
each language L. The product is distributive over union, which means that, for
all languages L, L1 and L2, one has

L(L1 ∪ L2) = LL1 ∪ LL2 and (L1 ∪ L2)L = L1L ∪ L2L (1.1)

Therefore the languages over A∗ form a semiring with union as addition and
concatenation product as multiplication. For this reason, it is convenient to
replace the symbol ∪ by + and to denote the empty language by 0 and the
language {1} by 1. For instance, (1.1) can be rewritten as L(L1 +L2) = LL1 +
LL2 and (L1 + L2)L = L1L + L2L. Another convenient notation is to denote
simply by u the language {u}. We shall use freely these conventions without
any further warning.

Note that the product is not commutative if the alphabet contains at least
two letters. Further, it is not distributive over intersection. For instance

(b ∩ ba){a, aa} = 0{a, aa} = 0 but

b{a, aa} ∩ ba{a, aa} = {ba, baa} ∩ {baa, baaa} = baa

The powers of a language can be defined like in any monoid, by setting L0 = 1,
L1 = L and by induction, Ln = Ln−1L for all n > 0. The star of a language L,
denoted by L∗, is the sum (union) of all the powers of L:

L∗ =
∑

n>0

Ln.

The operator L+ is a variant of the star operator, obtained by considering the
sum of all nonzero powers of a language:

L+ =
∑

n>0

Ln.

Example 1.2 If L = {a, ba} the words of L+, ordered by increasing length,
are a, aa, ba, aaa, aba, baa, aaaa, aaba, abaa, baaa, baba, aaaaa, aaaba, aabaa,
abaaa, ababa, baaaa, baaba, babaa, etc.

Note that the notation A∗ [A+] is compatible with the definition of the opera-
tions L∗ and L+. Also note the following formula

0∗ = 1, 0+ = 0 and 1∗ = 1 = 1+.

Let L be a language of A∗ and let u be a word of A∗. The left [right ] quotient
u−1L [Lu−1] of L by u is defined as follows:

u−1L = {v ∈ A∗ | uv ∈ L} and Lu−1 = {v ∈ A∗ | vu ∈ L}

1 The language {1}, which consists of only one word, the empty word, should not be

confused with the empty language.
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It is easy to verify that the formula v−1(u−1L) = (uv)−1L and u−1(Lv−1) =
(u−1L)v−1 hold for all words u and v of A∗. We also let as an exercise to the
reader the following formulas, where a is a letter:

u−1(L1 + L2) = u−1L1 + u−1L2

u−1(L1 − L2) = u−1L1 − u
−1L2

u−1(L1 ∩ L2) = u−1L1 ∩ u
−1L2

a−1(L1L2) =

{
(a−1L1)L2 if 1 /∈ L1,

(a−1L1)L2 + a−1L2 if 1 ∈ L1

a−1L∗ = (a−1L)L∗

Example 1.3 Let A = {a, b} and L = A∗abaA∗. Then

1−1L = L a−1L = A∗abaA∗ + baA∗

b−1L = L (ab)−1L = A∗abaA∗ + aA∗, etc.

More generally, for any subset X of M , the left [right] quotient X−1L [LX−1]
of L by X is

X−1L =
⋃

u∈X

u−1L = {v ∈ A∗ | there exists u ∈ X such that uv ∈ L}

LX−1 =
⋃

u∈X

Lu−1 = {v ∈ A∗ | there exists u ∈ X such that vu ∈ L}

One has, for all languages X, Y and L (new exercises. . . )

(X + Y )−1L = X−1L+ Y −1L

(XY )−1L = Y −1(X−1L)

(X∗)−1L = L+ (X∗)−1(X−1L)

To avoid too much parentheses, it is convenient to define precedence orders for
operators on languages, summarized in Table 1.1.

Operator Priority

L∗, Lc, 1

L1L2, X
−1L, LX−1 2

L1 + L2, L1 ∩ L2 3

Table 1.1. Operation precedence table.

The unary operators L∗ and Lc have higher priority. The product and the
quotients have higher priority than union and intersection.
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2 Rational languages

The set of rational (or regular) languages on A∗ is the smallest set of languages
F satisfying the following conditions:

(a) F contains the languages 0 and a for each letter a ∈ A,

(b) F is closed under finite union, product and star (i.e., if L and L′ are
languages of F , then the languages L+ L′, LL′ and L∗ are also in F).

The set of rational languages of A∗ is denoted by Rat(A∗).
This definition calls for a short comment. Indeed, there is a small subtlety

in the definition, since one needs to ensure the existence of a “smallest set”
satisfying the preceding conditions. For this, first observe that the set of all
languages of A∗ satisfies Conditions (a) and (b). Further, the intersection of all
the sets F satisfying Conditions (a) and (b) again satisfies these conditions: the
resulting set is by construction the smallest set satisfying (a) and (b).

To obtain a more constructive definition, one can think of the rational lan-
guages as a kind of LEGOTM box. The basic LEGO bricks are the empty
language and the languages reduced to a single letter and three operators can
be used to build more complex languages: finite union, product and star. For
instance, it is easy to obtain a language consisting of a single word. If this word
is the empty word, one makes use of the formula 0∗ = 1. For a word a1a2 · · · an
of positive length, one observes that

{a1a2 · · · an} = {a1}{a2} · · · {an}.

Finite languages can be expressed as a finite union of singletons. For instance,

{abaaba, ba, baa} = abaaba+ ba+ baa

Consequently, finite languages are rational and the above definition is equivalent
with the following more constructive version:

Proposition 2.2 Let F0 be the set of finite languages of A∗ and, for all n > 0,
let Fn+1 be the set of languages that can be written as K + K ′, KK ′ or K∗,
where K and K ′ are languages from Fn. Then

F0 ⊆ F1 ⊆ F2 · · ·

and the union of all the sets Fn is the set of rational languages.

Example 2.1 If A = {a, b}, the language (a+ ab+ ba)∗ is a rational language.

Example 2.2 The set L of all words containing a given factor u is rational,
since L = A∗uA∗. Similarly, the set P of all words having the word p as a prefix
is rational since P = pA∗.

Example 2.3 The set of words of even [odd] length is rational. Indeed, this
language can be written as (A2)∗ [(A2)∗A].

A variant of the previous description consists in using rational expressions to
represent rational languages. Rational expressions are formal expressions (like
polynomials in algebra or terms in logic) defined recursively as follows:

(1) 0 and 1 are rational expressions,
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(2) for each letter a ∈ A, a is a rational expression,

(3) if e and e′ are rational expressions, then (e+ e′), (ee′) and e∗ are rational
expressions.

In practice, unnecessary parentheses can be wiped out by applying the prece-
dence rules given in Table 1.1. For instance, ((0∗a)(ba)∗ + (bb∗))∗ is a rational
expression that should formally be written as (((0∗a)(ba)∗) + (bb∗))∗.

The value of a rational expression e, denoted by v(e), is the language rep-
resented by e. The symbol 0 represents the empty language, the symbol 1 the
language reduced to the empty word, and each symbol a the language {a}. Fi-
nally, the operators union, product and star have their natural interpretation.
Formally, one has

v(0) = 0

v(1) = 1

v(a) = a for each letter a ∈ A

v((e+ e′)) = v(e) + v(e′)

v((ee′)) = v(e)v(e′)

v(e∗) = (v(e))∗

Beware not to confuse the notions of rational expression and of rational lan-
guage. In particular, two rational expressions can represent the same language.
For instance, the following expressions all represent the set of all words on the
alphabet {a, b}.

e1 = (a+ b)∗, e2 = (a∗b)∗a∗, e3 = 1 + (a+ b)(a+ b)∗

The difficulty raised by this example is deeper than it seems. Even if a rational
language can be represented by infinitely many different rational expressions,
one could expect to have a unique reduced expression, up to a set of simple
identities like 0+L = L = L+0, 1L = L = L1, (L∗)∗ = L∗, L+K = K +L or
L(K+K ′) = LK+LK ′. In fact, one can show there is no finite basis of identi-
ties for the rational expressions: there exist no finite set of identities permitting
to deduce all identities between rational expressions. Finding a complete in-
finite set of identities is already a difficult problem that leads to unexpected
developments involving finite simple groups [23, 47].

We conclude this section by a standard result: rational languages are closed
under morphisms. An extension of this result will be given in Proposition IV.1.1.
The proof of this proposition can be found on page 74.

Proposition 2.3 Let ϕ : A∗ → B∗ be a morphism. If L is a rational language
of A∗, then ϕ(L) is a rational language of B∗.

3 Automata

3.1 Finite automata and recognisable languages

A finite automaton is a 5-tuple A = (Q,A,E, I, F ), where Q is a finite set called
the set of states, A is an alphabet, E is a subset of Q × A × Q, called the set
of transitions and I and F are subsets of Q, called respectively the set of initial
states and the set of final states.
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It is convenient to represent an automaton by a labelled graph whose vertices
are the states of the automaton and the edges represent the transitions. The
initial [final] states are pictured by incoming [outgoing] arrows.

Example 3.1 Let A = (Q,A,E, I, F ) where Q = {1, 2}, I = {1, 2}, F = {2},
A = {a, b} and E = {(1, a, 1), (2, b, 1), (1, a, 2), (2, b, 2)}. This automaton is
represented in Figure 3.1.

1a 2 b

a

b

Figure 3.1. An automaton.

Two transitions (p, a, q) and (p′, a′, q′) are consecutive if q = p′. A path in the
automaton A is a finite sequence of consecutive transitions

c = (q0, a1, q1), (q1, a2, q2), . . . , (qn−1, an, qn)

also denoted by

c : q0
a1−→ q1 · · · qn−1

an−→ qn or q0
a1···an−−−−−→ qn.

The state q0 is its origin, the state qn its end, the word a1 · · · an is its label and
the integer n is its length. Is is also convenient to consider that for each state

q ∈ Q, there is an empty path q
1
−→ q from q to q labelled by the empty word.

A path in A is called initial if its origin is an initial state and final if its end
is a final state. It is successful (or accepting) if it is initial and final.

Example 3.2 Consider the automaton represented in Figure 3.1. The path

c : 1
a
−→ 1

a
−→ 2

b
−→ 2

b
−→ 1

a
−→ 2

b
−→ 2

is successful, since its end is a final state. However the path

c : 1
a
−→ 1

a
−→ 2

b
−→ 2

b
−→ 1

a
−→ 2

b
−→ 1

has the same label, but is not successful, since its end is 1, a nonfinal state.

A word is accepted by the automaton A if it is the label of at least one successful
path (beware that it can be simultaneously the label of a nonsuccessful path).
The language recognised (or accepted) by the automaton A is the set, denoted
by L(A), of all the words accepted by A. Two automata are equivalent if they
recognise the same language.

A language L ⊆ A∗ is recognisable if it is recognised by a finite automaton,
that is, if there is a finite automaton A such that L = L(A).

Example 3.3 Consider the automaton represented in Figure 3.2.



42 CHAPTER III. LANGUAGES AND AUTOMATA

q0 q1 qi qj+1 qr

qi+1

a1

. . .
ai aj+1

. . .
ar

ai+1

ai+2

aj

Figure 3.3. Illustration of the pumping lemma.

1a 2 b

a

b

Figure 3.2. The automaton A.

We let the reader verify that the language accepted by A is aA∗, the set of all
words whose first letter is a.

Example 3.3 is elementary but it already raises some difficulties. In general,
deciding whether a given word is accepted or not might be laborious, since a
word might be the label of several paths. The notion of deterministic automaton
introduced in Section 3.2 permits one to avoid these problems.

We shall see in the Section 4 that the class of recognisable languages owns
many convenient closure properties. We shall also see that the recognisable
languages are exactly the rational languages. Before studying these results in
more detail, it is good to realise that there are some nonrecognisable languages.
One can establish this result by a simple, but nonconstructive argument (cf.
Exercice 15). To get an explicit example, we shall establish a property of the
recognisable languages known as the pumping lemma. Although this statement
is formally true for any recognisable language, it is only interesting for the
infinite ones.

Proposition 3.4 (Pumping lemma) Let L be a recognisable language. Then
there is an integer n > 0 such that every word u of L of length greater than or
equal to n can be factorised as u = xyz with x, y, z ∈ A∗, |xy| 6 n, y 6= 1 and,
for all k > 0, xykz ∈ L.

Proof. Let A = (Q,A,E, I, F ) be an n-state automaton recognising L and let

u = a1 · · · ar be a word of L of length r > n. Let q0
a1−→ q1 · · · qr−1

ar−→ qr be
a successful path labelled by u. As r > n, there are two integers i and j, with
i < j 6 n, such that qi = qj . Therefore, the word ai+1 . . . aj is the label of a
loop around qi, represented in Figure 3.3. Let x = a1 . . . ai, y = ai+1 . . . aj and
z = aj+1 . . . ar. Then |xy| 6 n and for all k > 0, one gets xykz ∈ L, since the
word xykz is the label of a successful path.

Unfortunately, the pumping lemma does not characterise the recognisable
languages. In other words, there exist some nonrecognisable languages which
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satisfy the pumping lemma (see Exercice 8). However, in some cases, the pump-
ing lemma remains a convenient criterion to show that a language is not recog-
nisable. Here is a standard example.

Corollary 3.5 The language {anbn | n > 0} is not recognisable.

Proof. Let L = {anbn | n > 0}. Suppose that L is recognisable. By the
pumping lemma, there is an integer n > 0 such that the word anbn can be
written as anbn = xyz with x, y, z ∈ A∗, |xy| 6 n, y 6= 1 and xy2z ∈ L (as one
can see, we only use a very weak form of the pumping lemma). As |xy| 6 n, the
word xy is prefix of an and thus x = ar, y = as and z = atbn, with r+ s+ t = n
and s 6= 0.

an bn

x y z

Then xy2z = ara2satbn and since s 6= 0, one has r + 2s+ t 6= n. It follows that
xy2z is not in L, a contradiction. Therefore L is not recognisable.

3.2 Deterministic automata

An automaton A = (Q,A,E, I, F ) is deterministic if I contains exactly one
initial state and if, for every state q ∈ Q and for every letter a ∈ A, there exists
at most one state q′ such that q

a
−→ q′ is a transition of E. If q− is the unique

initial state, we adopt the notation (Q,A,E, q−, F ) instead of (Q,A,E, {q−}, F ).

Example 3.4 The automaton represented in Figure 3.4 is deterministic.

1 2 3 4 5

b

a b

a

b

b

a

Figure 3.4. A deterministic automaton.

The following result is one of the cornerstones of automata theory. Its proof is
based on the so-called subset construction.

Proposition 3.6 Every finite automaton is equivalent to a deterministic one.

Proof. Let A = (Q,A,E, I, F ) be an automaton. Consider the deterministic
automaton D(A) = (P(Q), A, · , I,F) where F = {P ⊆ Q | P ∩F 6= ∅} and, for
each subset P of Q and for each letter a ∈ A,

P · a = {q ∈ Q | there exists p ∈ P such that (p, a, q) ∈ E}
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We claim that D(A) is equivalent to A.
If u = a1 · · · an is accepted by A, there is a successful path

c : q0
a1−→ q1 · · · qn−1

an−→ qn

The word u also defines a path

I = P0
a1−→ P1 · · · Pn−1

an−→ Pn (3.2)

in D(A). Let us show by induction on i that, for 0 6 i 6 n, qi ∈ Pi. Since
c is a successful path, one has q0 ∈ I = P0. Suppose that qi−1 ∈ Pi−1. Then

since qi−1
ai−→ qi is a transition, one gets qi ∈ Pi−1 · ai = Pi. For i = n, we get

qn ∈ Pn and since c is a successful path, qn ∈ F . It follows that Pn meets F
and hence Pn ∈ F . Therefore u is accepted by D(A).

Conversely, let u = a1 · · · an be a word accepted by D(A) and let (3.2) the
successful path defined by u. Since Pn is a final state, one can choose an element
qn in Pn ∩F . We can now select, for i = n, n− 1, . . . , 1, an element qi−1 of Pi−1

such that qi−1
ai−→ qi is a transition in A. Since q0 ∈ I and qn ∈ F , the path

q0
a1−→ q1 · · · qn−1

an−→ qn is successful, and thus u is accepted by A. This
proves the claim and the proposition.

The subset construction converts a nondeterministic n-state automaton into
a deterministic automaton with at most 2n states. One can show that this
bound is tight (see Exercise 10).

Example 3.5 Let A = {a, b}. Starting from the automaton A represented in
Figure 3.5, we get the automaton D(A) drawn in Figure 3.6. In practice, it
suffices to compute the accessible states of D(A), which gives the deterministic
automaton shown in Figure 3.7.

1 2 3

a, b

a a, b

Figure 3.5. A nondeterministic automaton.

1

12

13

∅

2

3 23

123

a

ba, b

a, b

a, b

a

b

ba, b

aba

Figure 3.6. After determinisation...
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1

12

13

123

a

b

a

b

b

aba

Figure 3.7. . . . and trimming.

We shall give in Theorem IV.3.20 a purely algebraic proof of this result.

3.3 Complete automata and trim automata

Complete automata

An automaton A = (Q,A, · , q−, F ) is complete if, for each state q ∈ Q and for

each letter a ∈ A, there is at least one state q′ such that q
a
−→ q′ is a transition.

Example 3.6 The automaton represented in Figure 3.8 is neither complete, nor
deterministic. It is not deterministic, since the transitions (1, a, 1) and (1, a, 2)
have the same label and the same origin. It is not complete, since there is no
transition of the form 2

a
−→ q.

1a 2 b

a

b

Figure 3.8. An incomplete, nondeterministic automaton.

On the other hand, the automaton represented in Figure 3.9 is complete and
deterministic.

1a 2 b

b

a

Figure 3.9. A complete and deterministic automaton.

Trim automata

In a finite automaton, states which cannot be reached from the initial state
or from which one cannot reach any final state are clearly useless. This leads



46 CHAPTER III. LANGUAGES AND AUTOMATA

to the following definition. A deterministic automaton A = (Q,A,E, q−, F ) is
trim if, for every state q ∈ Q, there exist two words u and v such that q− ·u = q
and q · v ∈ F . It is not difficult to see that every deterministic automaton is
equivalent to a trim one.

Standard automata

The construction described in this section might look somewhat artificial, but
it will be used in the study of the product and of the star operation.

A deterministic automaton is standard if there is no transition ending in the
initial state.

Proposition 3.7 Every deterministic automaton is equivalent to a determin-
istic standard automaton.

Proof. Let A = (Q,A,E, q−, F ) be a deterministic automaton. If A is not
standard, let p be a new state and A′ = (Q ∪ {p}, A,E′, p, F ′) be the standard
automaton defined by E′ = E ∪ {(p, a, q) | (q−, a, q) ∈ E} and

F ′ =

{
F if q− /∈ F

F ∪ {p} if q− ∈ F

Then the path q−
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn is successful in A if and

only if the path p
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn is successful in A′. Conse-
quently, A and A′ are equivalent.

Example 3.7 Standardization is illustrated in Figure 3.10.

1a 2 b

b

a

0

1 2a b

b

a

a b

Figure 3.10. An automaton and its standardized version.

4 Operations on recognisable languages

We review in this section some classical results on finite automaton. We give
explicit constructions for the following operations: Boolean operations, product,
star, quotients and inverses of morphisms.
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4.1 Boolean operations

We give in this section the well known constructions for union, intersection and
complement. Complementation is trivial, but requires a deterministic automa-
ton.

Proposition 4.8 The union of two recognisable languages is recognisable.

Proof. Let L [L′] be a recognisable language of A∗ recognised by the automaton
A = (Q,A,E, I, F ) [A′ = (Q′, A,E′, I ′, F ′)]. We suppose that Q and Q′ are
disjoint sets and thus one can identify E and E′ with subsets of (Q∪Q′)×A×
(Q ∪ Q′). Then L + L′ is recognised by the automaton (Q ∪ Q′, A,E ∪ E′, I ∪
I ′, F ∪ F ′).

Example 4.1 If L [L′] is recognised by the automaton A [A′] represented in
Figure 4.11, then L+ L′ is recognised by the automaton represented in Figure
4.12.

1 2

a b

a

1 2

3

b
a

a b

Figure 4.11. The automata A and A′.

1 2

a b

a

4 5

6

b
a

a b

Figure 4.12. An automaton recognising L+ L′.

Corollary 4.9 Every finite language is recognisable.

Proof. Since recognisable languages are closed under union, it suffices to verify
that the singletons are recognisable. But it is clear that the language a1a2 · · · an
is recognised by the automaton represented in Figure 4.13.
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0 1 2 n
a1 a2 a3 . . . an

Figure 4.13. An automaton recognising a1 · · · an.

Proposition 4.10 The intersection of two recognisable languages is recognis-
able.

Proof. Let L [L′] be a recognisable language of A∗ recognised by the automaton
A = (Q,A,E, I, F ) [A′ = (Q′, A,E′, I ′, F ′)]. Consider the automaton B =
(Q×Q′, A, T, I × I ′, F × F ′) where

T =
{(

(q1, q
′
1), a, (q2, q

′
2)
)
| (q1, a, q2) ∈ E and (q′1, a, q

′
2) ∈ E

′
}
.

A word u = a1a2 · · · an is the label of a successful path in B

(q0, q
′
0)

a1−→ (q1, q
′
1)

a2−→ (q2, q
′
2) · · · (qn−1, q

′
n−1)

an−→ (qn, q
′
n)

if and only if the paths

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−→ qn and

q′0
a1−→ q′1

a2−→ q′2 · · · q
′
n−1

an−→ qn

are successful paths of A and A′ respectively. Therefore, B recognises L∩L′.

In practice, one just computes the trim part of B.

Example 4.2 If L [L′] is recognised by the automaton A [A′] represented in
Figure 4.11, then L ∩ L′ is recognised by the trim automaton represented in
Figure 4.14.

1, 1 2, 2 3, 3

b

a b

Figure 4.14. A trim automaton recognising L ∩ L′.

Proposition 4.11 The complement of a recognisable language is recognisable.

Proof. Let L be a recognisable language of A∗ and let A = (Q,A, · , q−, F )
be a complete deterministic automaton recognising L. Then the automaton
A′ = (Q,A, · , q−, Q − F ) recognises Lc. Indeed, since A and A′ are both
deterministic and complete, every word u of A∗ is the label of exactly one path
starting in q−. Let q be the end of this path. Then u belongs to L if and only
if q belongs to F and u belongs to Lc if and only if q belongs to Q− F .
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Example 4.3 If L is recognised by the complete deterministic automaton A,
then Lc is recognised by the automaton A′ represented in Figure 4.15.

0

1 2

a, b

b

a

b

a

A A′

0

1 2

a, b

b

a

b

a

Figure 4.15. Complementation of a deterministic automaton.

4.2 Product

Proposition 4.12 The product of two recognisable languages is recognisable.

Proof. Let L1 and L2 be two recognisable languages of A∗, recognised by the
automata A1 = (Q1, A,E1, I1, F1) and A2 = (Q2, A,E2, I2, F2), respectively.
One may assume, by Propositions 3.6 and 3.7 thatA2 is a standard deterministic
automaton and thus in particular that I2 = {i}. One can also suppose that Q1

and Q2 are disjoint. Let now A = (Q,A,E, I, F ), where

Q = (Q1 ∪Q2)− {i},

E = E1 ∪ {(q, a, q
′) ∈ E2 | q 6= i} ∪ {(q1, a, q

′) | q1 ∈ F1 and (i, a, q′) ∈ E2},

I = I1, and

F =

{
F2 if i /∈ F2,

F1 ∪ (F2 − {i}) if i ∈ F2 (i.e. if 1 ∈ L2).

We claim that A recognises L1L2. If u is a word of L1L2, then u = u1u2 for
some u1 ∈ L1 and u2 ∈ L2. Therefore, there is a successful path c1 : i1

u1−→ q1
in A1 (with i1 ∈ I1 and q1 ∈ F1) and a successful path c2 : i

u2−→ q2 in A2, with
q2 ∈ F2. If u2 = 1, then L2 contains the empty word, the path c1 is a successful
path of A and u is accepted by A. If u2 is not the empty word, let a be the
first letter of u2 and let i

a
−→ q be the first transition of c2. Since q1 ∈ F1,

q1
a
−→ q is by definition a transition of E. Further, if q′

b
−→ q′′ is a transition

of c2 different from the first transition, then q′ is the end of a transition of A2.
Since A2 is standard, this implies q′ 6= i and it follows from the definition of

E that the transition q′
b
−→ q′′ is also a transition of A. Let c′2 be the path

of A obtained by replacing in c2 the first transition i
a
−→ q by q1

a
−→ q. The

resulting path c1c
′
2 is a successful path of A of label u and hence u is accepted

by A.
Conversely, let u be a word accepted by A. Then u is the label of a successful

path c : i1
u
−→ f of A. Since the initial states of A are contained in Q1, and

since there is no transition of A starting in Q2 and ending in Q1, c visits first
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some states of Q1 and then possibly some states of Q2. If all the states visited
by c are in Q1, one has in particular f ∈ Q1. But this is only possible if 1 ∈ L2,
and in this case, c is also a successful path of A1, and hence u ∈ L1 ⊆ L1L2.
If c visits some states of Q2, then c contains a unique transition of the form
e = (q1, a, q2) with q1 ∈ F1 and q2 ∈ Q2. Therefore c = c1ec2, where c1 is a path
in A1 and c2 is a path in A2. Denoting by u1 [u2] the label of c1 [c2], we get
u = u1au2. Since c1 is a successful path in A1, one has u1 ∈ L1. Further, by
definition of E, e′ = (i, a, q2) is a transition of A2. Therefore the path e′c2 is a
successful path in A2 of label au2. It follows that au2 ∈ L2 and thus u ∈ L1L2,
proving the claim and the proposition.

Example 4.4 If L1 [L2] is recognised by the automaton A1 [A2] represented
in Figure 4.16, then L1L2 is recognised by the automaton represented in Figure
4.17.

1 2

3

b

a

ba

A1 A2

1 2 3
a

a

a

Figure 4.16. The automata A1 and A2.

1 2

3

b

a

ba

4 5
a

a

a

a

Figure 4.17. An automaton recognising L1L2.

4.3 Star

Proposition 4.13 The star of a recognisable language is recognisable.

Proof. Let L be a recognisable language of A∗, recognised by the deterministic
standard automaton A = (Q,A,E, q−, F ). Let A

′ = (Q,A,E′, {q−}, F ∪ {q−})
be the nondeterministic automaton defined by

E′ = E ∪ {(q, a, q′) | q ∈ F and (q−, a, q
′) ∈ E}.
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Let us show that A′ recognises L∗. If u is a word of L∗, then either u is the
empty word, which is accepted by A′ since q− is a final state, or u = u1u2 · · ·un
with u1, . . . , un ∈ L − 1. Each ui is the label of a successful path of A, say
ci : q−

ui−→ qi with qi ∈ F . Let ai be the first letter of ui and let q−
ai−→ pi be

the first transition of ci. Let i ∈ {2, . . . , n}. As qi−1 ∈ F , the definition of E′

shows that qi−1
ai−→ pi is a transition of A′. Denote by c′i the path obtained

by replacing in ci the first transition q−
ai−→ pi by qi−1

ai−→ pi. This defines,

for 2 6 i 6 n, a path c′i : qi−1
ui−→ qi in A′. Therefore, the path c1c

′
2 · · · c

′
n is a

successful path of label u in A′ and hence u is accepted by A′.
Conversely, let u be a word accepted by A′. If u = 1, one has u ∈ L∗.

Otherwise, u is the label of a nonempty successful path c of A′. This path can
be factorised as

c = q−
u0−→ q1

a1−→ q′1
u1−→ q2

a2−→ q′2 · · · qn
an−→ q′n

un−→ qn+1

where the transitions e1 = q1
a1−→ q′1, e2 = q2

a2−→ q′2, . . . , en = qn
un−→ q′n+1

are exactly the transitions of E′ − E occurring in c. Thus by definition of
E′, one gets, for 1 6 i 6 n, qi ∈ F and e′i = (q−, ai, q

′
i) ∈ E. Furthermore,

qn+1 ∈ F ∪ {q−} since c is a successful path. Consequently, the paths

q−
ai−→ q′i

ui−→ qi+1

are paths of A. For 1 6 i 6 n − 1, these paths are successful, since qi ∈ F .
Moreover, since A is standard2, qn+1 is different from q− and hence qn+1 ∈ F .

Consequently aiui ∈ L for 1 6 i 6 n. Since q−
u0−→ q1 is also a successful path

of A, one also has u0 ∈ L, and hence u ∈ L∗.

Example 4.5 If L is recognised by the standard deterministic automaton rep-
resented in Figure 4.18, then L∗ is recognised by the nondeterministic automaton
represented in Figure 4.19.

1 2 3
a

a

b

Figure 4.18. A standard automaton recognising L.

1 2 3

a

a

a

b

a

Figure 4.19. An automaton recognising L∗.

2This is the only place where this property is used
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Example 4.6 This example shows that the algorithm above does not work if
one does not start with a standard automaton. Indeed, consider the automaton
A represented in Figure 4.20, which recognises the language L = (ab)∗a. Then
the nondeterministic automaton A′ = (Q,A,E′, {q−}, F ∪ {q−}), where

E′ = E ∪ {(q, a, q′) | q ∈ F and (q−, a, q
′) ∈ E}.

does not recognise L∗. Indeed, the word ab is accepted by A′ but is not a word
of L∗.

1 2

a

bA A′

1 2

a

b

a

Figure 4.20. A nonstandard automaton A and the automaton A′.

4.4 Quotients

We first treat the left quotient by a word and then the general case.

Proposition 4.14 Let A = (Q,A, · , q−, F ) be a deterministic automaton recog-
nising a language L of A∗. Then, for each word u of A∗, the language u−1L
is recognised by the automaton Au = (Q,A, · , q− ·u, F ), obtained from A by
changing the initial state. In particular u−1L is recognisable.

Proof. First the following formulas hold:

u−1L = {v ∈ A∗ | uv ∈ L}

= {v ∈ A∗ | q− · (uv) ∈ F}

= {v ∈ A∗ | (q− ·u)· v ∈ F}.

Therefore u−1L is accepted by Au.

Proposition 4.15 Any quotient of a recognisable language is recognisable.

Proof. Let A = (Q,A,E, I, F ) be an automaton recognising a language L of
A∗ and let K be a language of A∗. We do not assume that K is recognisable.
Setting

I ′ = {q ∈ Q | q is the end of an initial path whose label belongs to K}

we claim that the automaton B = (Q,A,E, I ′, F ) recognises K−1L. Indeed, if
u ∈ K−1L, there exists a word x ∈ K such that xu ∈ L. Therefore, there is a
successful path of label xu, say p

x
 q

u
 r. By construction, p is an initial state,

r is a final state and q belongs to I ′. It follows that u is accepted by B.
Conversely, if a word u is accepted by B, it is the label of a final path starting

in a state q of I ′. By definition of I ′, there is a word x ∈ K which is the label
of an initial path ending in q. Consequently, the word xu is accepted by A and
hence belongs to L. It follows that u ∈ K−1L, which proves the claim.

For the language LK−1, a similar proof works by considering the automaton
(Q,A,E, I, F ′), where

F ′ = {q ∈ Q | q is the origin of a final path whose label belongs to K.}
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4.5 Inverses of morphisms

We now show that recognisable languages are closed under inverses of mor-
phisms. A concise proof of an extension of this result will be given in Proposition
IV.2.10.

Proposition 4.16 Let ϕ : A∗ → B∗ be a morphism. If L is a recognisable
language of B∗, then ϕ−1(L) is a recognisable language of A∗.

Proof. Let B = (Q,B,E, I, F ) be an automaton recognising L. Let A =
(Q,A, T, I, F ), where

T = {(p, a, q) | there is a path labelled by ϕ(a) from p to q in B}

We claim that A recognises ϕ−1(L). First, if u is accepted by A, there is a
successful path of A labelled by u. Consequently, there is a successful path of
B labelled by ϕ(u). Thus ϕ(u) is accepted by B and u ∈ ϕ−1(L).

Let now u = a1 · · · an be a word of ϕ−1(L). Since the word ϕ(u) is accepted
by L, there is a successful path in B labelled by ϕ(u). Let us factorise this path
as

q0
ϕ(a1)
−− q1 · · · qn−1

ϕ(an)
−− qn

These paths define in turn a successful path in A labelled by u:

q0
a1−→ q1 · · · qn−1

an−→ qn

which shows that u is accepted by A.

4.6 Minimal automata

Let L be a language of A∗. The Nerode automaton of L is the deterministic
automaton A(L) = (Q,A, · , L, F ) where Q = {u−1L | u ∈ A∗}, F = {u−1L |
u ∈ L} and the transition function is defined, for each a ∈ A, by the formula

(u−1L)· a = a−1(u−1L) = (ua)−1L

Beware of this rather abstract definition. Each state of A(L) is a left quotient
of L by a word, and hence is a language of A∗. The initial state is the language
L, and the set of final states is the set of all left quotients of L by a word of L.

Proposition 4.17 A language L is recognisable if and only if the set {u−1L |
u ∈ A∗} is finite. In this case, L is recognised by its Nerode automaton.

Proof. Let L be a recognisable language, accepted by the deterministic automa-
ton A = (Q,A, · , q−, F ). By Proposition 4.14, the language u−1L is accepted
by the automaton Au = (Q,A, · , q− ·u, F ). If n is the number of states of A,
there are at most n automata of the form Au and hence at most n distinct
languages of the form u−1L.

Conversely, if the set {u−1L | u ∈ A∗} is finite, the Nerode automaton of L
is finite and recognises L. Indeed, a word u is accepted by A(L) if and only if
L·u = u−1L is a final state, that is if u ∈ L. It follows that L is recognisable.
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Let us define a partial order on deterministic automata as follows. Let A =
(Q,A,E, q−, F ) and A′ = (Q′, A,E′, q′−, F

′) be two deterministic automata.
Then A′ 6 A if there is a surjective function ϕ : Q→ Q′ such that ϕ(q−) = q′−,
ϕ−1(F ′) = F and, for every u ∈ A∗ and q ∈ Q, ϕ(q.u) = ϕ(q).u.

Let L be a recognisable language. The next proposition shows that, amongst
the trim and complete deterministic automata recognising L, the Nerode au-
tomaton of L is minimal for this partial order. For this reason it is called the
minimal complete automaton of L.

Proposition 4.18 Let A = (Q,A, · , q−, F ) be a trim and complete determinis-
tic automaton accepting L. For each state q of Q, let Lq be the language recog-
nised by (Q,A, · , q, F ). Then A(L) = ({Lq | q ∈ Q}, A, · , Lq− , {Lq | q ∈ F}),
where, for all a ∈ A and for all q ∈ Q, Lq · a = Lq·a. Further, the map q 7→ Lq

defines a morphism from A onto A(L).

Proof. Let q be a state of Q. Since q is accessible, there is a word u of A∗ such
that q− ·u = q, and by Proposition 4.14, one has Lq = u−1L. Conversely, if u is
a word, one has u−1L = Lq with q = q− ·u. Therefore

{Lq | q ∈ Q} = {u
−1L | u ∈ A∗} and {Lq | q ∈ F} = {u

−1L | u ∈ L}

which proves the first part of the statement.

Further, for all a ∈ A, one has

ϕ(q · a) = Lq·a = Lq · a = ϕ(q)· a (4.3)

which shows that the map ϕ : q 7→ Lq is a morphism from A onto A(L).

The direct computation of the Nerode automaton is probably the most effi-
cient method for a computation by hand, because it gives directly the minimal
automaton. In practice, one starts with the quotient L = 1−1L and one main-
tains a table of quotients of L. For each quotient R, it suffices to compute
the quotients a−1R for each letter a. These quotients are compared to the ex-
isting list of quotients and possibly added to this list. But there is a hidden
difficulty: the comparison of two rational expressions is not always easy since a
given language might be represented by two very different rational expressions.
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Example 4.7 For L = (a(ab)∗)∗ ∪ (ba)∗, we get successively:

1−1L = L = L1

a−1L1 = (ab)∗(a(ab)∗)∗ = L2

b−1L1 = a(ba)∗ = L3

a−1L2 = b(ab)∗(a(ab)∗)∗ ∪ (ab)∗(a(ab)∗)∗ = bL2 ∪ L2 = L4

b−1L2 = ∅

a−1L3 = (ba)∗ = L5

b−1L3 = ∅

a−1L4 = a−1(bL2 ∪ L2) = a−1L2 = L4

b−1L4 = b−1(bL2 ∪ L2) = L2 ∪ b
−1L2 = L2

a−1L5 = ∅

b−1L5 = a(ba)∗ = L3

which gives the minimal automaton represented in Figure 4.21.

1

2 4
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b

a

a

b
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b

Figure 4.21. The minimal automaton of L.

There are standard algorithms for minimizing a given trim deterministic au-
tomaton [42] based on the computation of the Nerode equivalence. Let A =
(Q,A,E, q−, F ) be a trim deterministic automaton. The Nerode equivalence ∼
on Q is defined by p ∼ q if and only if, for every word u ∈ A∗,

p·u ∈ F ⇐⇒ q ·u ∈ F

One can show that ∼ is actually a congruence, in the sense that F is saturated
by ∼ and that p ∼ q implies p·x ∼ q ·x for all x ∈ A∗. It follows that there is a
well-defined quotient automaton A/∼ = (Q/∼, A,E, q̃−, F/∼), where q̃− is the
equivalence class of q−.

Proposition 4.19 Let A be a trim [and complete ] deterministic automaton.
Then A/∼ is the minimal [complete ] automaton of A.

We shall in particular use the following consequence.
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Corollary 4.20 A trim deterministic automaton is minimal if and only if its
Nerode equivalence is the identity.

One can show that the operations of completion and of minimization com-
mute. In other words, if A is a trim automaton and if Ā is its completion, then
the minimal automaton of Ā is the completion of the minimal automaton of A.

Example 4.8 The minimal and minimal complete automata of (ab)∗ are given
in Figure 4.22.

1 2

a

b

1 2

0

a

b

b a

a, b

Figure 4.22. The minimal and minimal complete automata of (ab)∗.

Example 4.9 The minimal and minimal complete automata of aA∗b are given
in Figure 4.23.

1 2 3

a b

a

a

b

0 1 2 3

a ba, b

ab

a

b

Figure 4.23. The minimal and minimal complete automata of aA∗b.

5 Rational versus recognisable

5.1 Local languages

A language L of A∗ is said to be local if there exist two subsets P and S of A
and a subset N of A2 such that 3

L− 1 = (PA∗ ∩A∗S)−A∗NA∗.

3P stands for prefix, S for suffix and N for non-factor.
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For instance, if A = {a, b, c}, the language

(abc)∗ = 1 ∪ [(aA∗ ∩A∗c)−A∗{aa, ac, ba, bb, cb, cc)A∗]

is local. The terminology can be explained as follows: in order to check whether
a nonempty word belongs to L, it suffices to verify that its first letter is in P , its
last letter is in S and its factors of length 2 are not in N : all these conditions are
local. Conversely, if a language L is local, it is easy to recover the parameters
P , S and N . Indeed, P [S] is the set of first [last] letters of the words of L, and
N is the set of words of length 2 that are factors of no word of L.

It is easy to compute a deterministic automaton recognising a local language,
given the parameters P , S and N .

Proposition 5.21 Let L = (PA∗ ∩ A∗S) − A∗NA∗ be a local language. Then
L is recognised by the automaton A in which the set of states is A ∪ {1}, the
initial state is 1, the set of final states is S, and the transitions are given by the
rules 1· a = a if a ∈ P and a· b = b if ab /∈ N .

Proof. Let u = a1 · · · an be a word accepted by A and let

1
a1−→ a1

a2−→ a2 · · · an−1
an−→ an

be a successful path of label u. Then the state an is final and hence an ∈ S.
Similarly, since 1

a1−→ a1 is a transition, one has necessarily a1 ∈ P . Finally,

since for 1 6 i 6 n − 1, ai
ai+1

−→ ai+1 is a transition, the word aiai+1 is not in
N . Consequently, u belongs to L.

Conversely, if u = a1 · · · an ∈ L, one has a1 ∈ P , an ∈ S and, for 1 6 i 6 n,
aiai+1 /∈ N . Thus 1

a1−→ a1
a2−→ a2 · · · an−1

an−→ an is a successful path
of A and A accepts u. Therefore, the language accepted by A is L.

For a local language containing the empty word, the previous construction
can be easily modified by taking S ∪ {1} as the set of final states.

Example 5.1 Let A = {a, b, c}, P = {a, b}, S = {a, c} and N = {ab, bc, ca}.
Then the automaton in Figure 5.24 recognises the language L = (PA∗∩A∗S)−
A∗NA∗.
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Figure 5.24. An automaton recognising a local language.
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Note also that the automaton A described in Proposition 5.21 has a special
property: all the transitions of label a have the same end, namely the state a.
More generally, we shall say that a deterministic automaton (not necessarily
complete) A = (Q,A, · ) is local if, for each letter a, the set {q · a | q ∈ Q} con-
tains at most one element. Local languages have the following characterisation:

Proposition 5.22 A rational language is local if and only if it is recognised by
a local automaton.

Proof. One direction follows from Proposition 5.21. To prove the opposite
direction, consider a local automaton A = (Q,A, · , q0, F ) recognising a language
L and let

P = {a ∈ A | q0 · a is defined },

S = {a ∈ A | there exists q ∈ Q such that q · a ∈ F},

N = {x ∈ A2 | x is the label of no path in A }

K = (PA∗ ∩A∗S)−A∗NA∗.

Let u = a1 · · · an be a nonempty word of L and let q0
a1−→ q1 · · · qn−1

an−→ qn
be a successful path of label u. Necessarily, a1 ∈ P , an ∈ S and, for 1 6 i 6 n−1,
aiai+1 /∈ N . Consequently, u ∈ K, which shows that L− 1 is contained in K.

Let now u = a1 · · · an be a nonempty word of K. Then a1 ∈ P , an ∈ S, and,
for 1 6 i 6 n−1, aiai+1 /∈ N . Since a1 ∈ P , the state q1 = q0 · a1 is well defined.

Further, since a1a2 /∈ N , a1a2 is the label of some path p0
a1−→ p1

a2−→ p2 in
A. But since A is a local automaton, q0 · a1 = p0 · a1. It follows that the word
a1a2 is also the label of the path q0

a1−→ p1
a2−→ p2. One can show in the same

way by induction that there exists a sequence of states pi (0 6 i 6 n) such that

aiai+1 is the label of a path pi−1
ai−→ pi

ai+1

−→ pi+1 of A. Finally, since an ∈ S,
there is a state q such that q · an ∈ F . But since A is a local automaton, one has
q · an = pn−1 · an = pn, whence pn ∈ F . Therefore q0

a1−→ p1 · · · pn−1
an−→ pn

is a successful path in A and its label u is accepted by A. Thus K = L− 1.

Local languages are stable under various operations:

Proposition 5.23 Let A1 and A2 be two disjoint subsets of the alphabet A and
let L1 ⊆ A∗

1 and L2 ⊆ A∗
2 be two local languages. Then the languages L1 + L2

and L1L2 are local languages.

Proof. Let A1 [A2] be a local automaton recognising L1 [L2]. The proofs of
Propositions 4.8 and 4.12 give an automaton recognising L1 + L2 and L1L2. A
simple verification shows that these constructions produce a local automaton
when A1 and A2 are local.

Proposition 5.24 Let L be a local language. Then the language L∗ is a local
language.

Proof. Let A be a local automaton recognising L. The proof of Proposition
4.13 gives an automaton recognising L∗. A simple verification shows that this
construction produces a local automaton when A is local.
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5.2 Glushkov’s algorithm

Glushkov’s algorithm is an efficient way to convert a rational expression into a
nondeterministic automaton.

A rational expression is said to be linear if each letter has at most one
occurrence in the expression. For instance, the expression

[a1a2(a3a4)
∗ + (a5a6)

∗a7]
∗ (5.4)

is linear. One can linearize a rational expression by replacing each occurrence of
a letter by a distinct symbol. For instance, the expression (5.4) is a linearization
of the expression e = [ab(ba)∗ + (ac)∗b]∗. Now, given an automaton for e′, the
linearization of e, it is easy to obtain an automaton for e, simply by replacing
the letters of e′ by the corresponding letters in e. For instance, starting from
the automaton A which recognises [(a1a2)

∗a3]
∗, one gets a nondeterministic

automaton A′ which recognises [(ab)∗a]∗ by replacing a1 and a3 by a and a2 by
b, as shown in Figure 5.25.

a3

a1

a2

a1

a1 a3

a3

A A′

a

a

b

a

a a

a

Figure 5.25. Construction of an automaton recognising [(ab)∗a]∗.

It remains to find an algorithm to compute the automaton of a linear expression.

Proposition 5.25 Every linear expression represents a local language.

Proof. The proof works by induction on the formation rules of a linear ex-
pression. First, the languages represented by 0, 1 and a, for a ∈ A, are local
languages. Next, by Proposition 5.24, if e represents a local language, then so
does e∗. Let now e and e′ be two linear expressions and suppose that the ex-
pression (e+ e′) is still linear. Let B [B′] be the set of letters occurring in e [e′].
Since (e+e′) is linear, the letters of B [B′] do not occur in e′ [e]. In other words,
B and B′ are disjoint and the local language represented by e [e′] is contained in
B∗ [B′∗]. By Proposition 5.23, the language represented by (e+e′) is also a local
language. A similar argument applies for the language represented by ee′.

Proposition 5.21 allows one to compute a deterministic automaton recognis-
ing a local language. It suffices to test whether the empty word belongs to L
and to compute the sets

P (L) = {a ∈ A | aA∗ ∩ L 6= ∅},

S(L) = {a ∈ A | A∗a ∩ L 6= ∅},

F (L) = {x ∈ A2 | A∗xA∗ ∩ L 6= ∅}.
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This can be done by recursion, given a linear rational expression representing
the language. We first compute the procedure

EmptyWord(e: linear expression): boolean;
which tells whether the empty word belongs to the language represented by e.

EmptyWord(0) = false;
EmptyWord(1) = true;
EmptyWord(a) = false for all a ∈ A;
EmptyWord(e+ e′) = EmptyWord(e) or EmptyWord(e′);
EmptyWord(e· e′) = EmptyWord(e) and EmptyWord(e′);
EmptyWord(e∗) = true;

Now P , S and F are computed by the following recursive procedures:

P(0) = ∅; S(0) = ∅;
P(1) = ∅; S(1) = ∅;
P(a) = {a} for all a ∈ A; S(a) = {a} for all a ∈ A;
P(e+ e′) = P(e) ∪ P(e′); S(e+ e′) = S(e) ∪ S(e′);
if EmptyWord(e) if EmptyWord(e′)
then P(e· e′) = P(e) ∪ P(e′) then S(e· e′) = S(e) ∪ S(e′)
else P (e· e′) = P (e); else S(e· e′) = S(e′);

P(e∗) = P(e); S(e∗) = S(e);

F(0) = ∅;
F(1) = ∅;
F(a) = ∅ for all a ∈ A;
F(e+ e′) = F(e) ∪ F(e′);
F(e· e′) = F(e) ∪ F(e′) ∪ S(e)P(e′);
F(e∗) = F(e) ∪ S(e)P(e);

In summary, Glushkov’s algorithm to convert a rational expression e into a
nondeterministic automaton works as follows:

(1) Linearize e into e′ and memorize the coding of the letters.

(2) Compute recursively the sets P (e′), S(e′) and F (e′). Then compute a
deterministic automaton A′ recognising e′.

(3) Convert A′ into a nondeterministic automaton A recognising e.

Example 5.2 Consider the rational expression e = (a(ab)∗)∗ + (ba)∗. We first
linearize e into e′ = (a1(a2a3)

∗)∗ + (a4a5)
∗. Let L = L(e) and L′ = L(e′). To

compute the sets P , S and F , one can either use the above-mentioned recursive
procedures, or proceed to a direct computation (this method is usually preferred
in a computation by hand...). Recall that P [S] is the set of first [last] letters
of the words of L′. We get

P = {a1, a4} and S = {a1, a3, a5}

Note that a1 belongs to S since a1 is a word of L′.
Next we compute the set F of all words of length 2 that are factors of some

word of L′. We get F = {a1a2, a1a1, a2a3, a3a1, a3a2, a4a5, a5a4}. For instance,
a3a1 is a factor of a1a2a3a1 and a3a2 is a factor of a1a2a3a2a3. Since the empty
word belongs to L′, the state 1 is final and we finally obtain the automaton
represented in Figure 5.26. Since this automaton is local, there is actually no
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need to write the labels on the transitions. We now convert this automaton into
a nondeterministic automaton recognising L, represented in Figure 5.27.

1 a1
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a4a5
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a3a2
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a4

Figure 5.26. A local automaton recognising L′.
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Figure 5.27. A nondeterministic automaton recognising L.

To get a deterministic automaton, it remains to apply the algorithm described
in Section 3.2, which leads to the automaton represented in Figure 5.28.
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Figure 5.28. A deterministic automaton recognising L.
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5.3 Linear equations

In this section, we give an algorithm to convert an automaton into a rational
expression. The algorithm amounts to solving a system of linear equations on
languages. We first consider an equation of the form

X = KX + L, (5.5)

where K and L are languages and X is the unknown. When K does not contain
the empty word, the equation admits a unique solution.

Proposition 5.26 (Arden’s Lemma) If K does not contain the empty word,
then X = K∗L is the unique solution of the equation X = KX + L.

Proof. Replacing X by K∗L in the expression KX + L, one gets

K(K∗L) + L = K+L+ L = (K+ + 1)L = K∗L,

and hence X = K∗L is a solution of (5.5). To prove uniqueness, consider two
solutions X1 and X2 of (5.5). By symmetry, it suffices to show that each word
u of X1 also belongs to X2. Let us prove this result by induction on the length
of u.

If |u| = 0, u is the empty word and if u ∈ X1 = KX1 + L, then necessarily
u ∈ L since 1 /∈ K. But in this case, u ∈ KX2+L = X2. For the induction step,
consider a word u of X1 of length n+1. Since X1 = KX1 +L, u belongs either
to L or to KX1. If u ∈ L, then u ∈ KX2 + L = X2. If u ∈ KX1 then u = kx
for some k ∈ K and x ∈ X1. Since k is not the empty word, one has necessarily
|x| 6 n and hence by induction x ∈ X2. It follows that u ∈ KX2 and finally
u ∈ X2. This concludes the induction and the proof of the proposition.

If K contains the empty word, uniqueness is lost.

Proposition 5.27 If K contains the empty word, the solutions of (5.5) are the
languages of the form K∗M with L ⊆M .

Proof. Since K contains the empty word, one has K+ = K∗. If L ⊆ M , one
has L ⊆M ⊆ K∗M . It follows that the language K∗M is solution of (5.5) since

K(K∗M) + L = K+M + L = K∗M + L = K∗M

Conversely, let X be a solution of (5.5). Then L ⊆ X and KX ⊆ X. Conse-
quently, K2X ⊆ KX ⊆ X and by induction, KnX ⊆ X for all n. It follows
that K∗X =

∑
n>0X

nK ⊆ X. The language X can thus be written as K∗M
with L ⊆M : it suffices to take M = X.

In particular, if K contains the empty word, then A∗ is the maximal solution
of (5.5) and the minimal solution is K∗L.

Consider now a system of the form

X1 = K1,1X1 +K1,2X2 + · · ·+K1,nXn + L1

X2 = K2,1X1 +K2,2X2 + · · ·+K2,nXn + L2

...
...

Xn = Kn,1X1 +Kn,2X2 + · · ·+Kn,nXn + Ln

(5.6)

We shall only consider the case when the system admits a unique solution.
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Proposition 5.28 If, for 1 6 i, j 6 n, the languages Ki,j do not contain the
empty word, the system (5.6) admits a unique solution. If further the Ki,j

and the Li are rational languages, then the solutions Xi of (5.6) are rational
languages.

Proof. The case n = 1 is handled by Proposition 5.26. Suppose that n > 1.
Consider the last equation of the system (5.6), which can be written

Xn = Kn,nXn + (Kn,1X1 + · · ·+Kn,n−1Xn−1 + Ln)

According to Proposition 5.26, the unique solution of this equation is

Xn = K∗
n,n(Kn,1X1 + · · ·+Kn,n−1Xn−1 + Ln)

Replacing Xn by this expression in the n−1 first equations, we obtain a system
of n− 1 equations with n− 1 unknowns and one can conclude by induction.

We shall now associate a system of linear equations with every finite au-
tomaton A = (Q,A,E, I, F ). Let us set, for p, q ∈ Q,

Kp,q = {a ∈ A | (p, a, q) ∈ E}

Lq =

{
1 if q ∈ F

0 if q /∈ F

The solutions of the system defined by these parameters are the languages recog-
nised by the automata

Aq = (Q,A,E, {q}, F )

More precisely, we get the following result:

Proposition 5.29 The system (5.6) admits a unique solution (Rq)q∈Q, given
by the formula

Rq = {u ∈ A∗ | there is a path of label u from q to F}

Further, the language recognised by A is
∑

q∈I Rq.

Proof. Since the languages Kp,q do not contain the empty word, Proposition
5.28 shows that the system (5.6) admits a unique solution. It remains to verify
that the family (Rq)q∈Q is solution of the system, that is, satisfies for all q ∈ Q
the formula

Rq = Kq,1R1 +Kq,2R2 + · · ·+Kq,nRn + Lq (5.7)

Let us denote by Sq the right hand side of (5.7). If u ∈ Rq, then u is by definition
the label of a path from q to a final state f . If u is the empty word, one has
necessarily q = f and hence Lq = 1. Thus u ∈ Sq in this case. Otherwise,
let (q, a, q′) be the first transition of the path. One has u = au′, where u′ is
the label of a path from q′ to f . Then one has a ∈ Kq,q′ , u

′ ∈ Rq′ and finally
u ∈ Sq.

Conversely, let u ∈ Sq. If u = 1, one has necessarily u ∈ Lq, whence q ∈ F
and u ∈ Rq. Otherwise there is a state q′ such that u ∈ Kq,q′Rq′ . Therefore,
u = au′ for some a ∈ Kq,q′ and u′ ∈ Rq′ . On the one hand, (q, a, q′) is a
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transition of A by definition of Kq,q′ and on the other hand u′ is the label of a
final path starting in q′. The composition of these paths gives a final path of
label u starting in q. Therefore u ∈ Rq and thus Rq = Sq.

For example, if A is the automaton represented in Figure 5.29,

1 2

3

b

a

a

b a

Figure 5.29. An automaton.

The system can be written

X1 = aX2 + bX3

X2 = aX1 + bX3 + 1

X3 = aX2 + 1

Substituting aX2 + 1 for X3, one gets the equivalent system

X1 = aX2 + b(aX2 + 1) = (a+ ba)X2 + b

X2 = aX1 + b(aX2 + 1) + 1 = aX1 + baX2 + (b+ 1)

X3 = aX2 + 1

Substituting (a+ ba)X2 + b for X1, one gets a third equivalent system

X1 = (a+ ba)X2 + b

X2 = a((a+ ba)X2 + b) + baX2 + (b+ 1) = (aa+ aba+ ba)X2 + (ab+ b+ 1)

X3 = aX2 + 1

The solution of the second equation is

X2 = (aa+ aba+ ba)∗(ab+ b+ 1)

Replacing X2 by its value in the two other equations, we obtain

X1 = (a+ba)(aa+aba+ba)∗(ab+b+1)+b and X3 = a(aa+aba+ba)∗(ab+b+1)+1

Finally, the language recognised by the automaton is

X1 = (a+ ba)(aa+ aba+ ba)∗(ab+ b+ 1) + b

since 1 is the unique initial state.
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5.4 Extended automata

The use of equations is not limited to deterministic automata. The same tech-
nique applies to nondeterministic automata and to more powerful automata, in
which the transition labels are not letters, but rational languages.

An extended automaton is a quintuple A = (Q,A,E, I, F ), where Q is a set
of states, A is an alphabet, E is a subset of Q× Rat(A∗)×Q, called the set of
transitions, I [F ] is the set of initial [final] states. The label of a path

c = (q0, L1, q1), (q1, L2, q2), . . . , (qn−1, Ln, qn)

is the rational language L1L2 · · ·Ln. The definition of a successful path is
unchanged. A word is accepted by A if it belongs to the label of a successful
path.

1 2

3

a+ b

ba

a∗b+ a

b∗ a

Figure 5.30. An extended automaton.

In the example represented in Figure 5.30, the set of transitions is

{(1, a∗b+ a, 2), (1, b∗, 3), (2, a+ b, 1), (2, b, 3), (3, a, 1), (3, a, 2)}

Let A = (Q,A,E, I, F ) be an extended automaton. For all p, q ∈ Q, we denote
by Kp,q the label of the transition from p to q. Notice that Kp,q might possibly
be the empty language. We also put

Lq =

{
1 if there is a path labelled by u from q to F

0 otherwise

Yet the associated system does not necessarily fulfil the condition 1 /∈ Ki,j and
Proposition 5.29 needs to be modified as follows:

Proposition 5.30 The system (5.6) has a minimal solution (Rq)q∈Q, given by
the formula

Rq = {u ∈ A∗ | there is a path labelled by 1 from q to F}

In particular the language recognised by A is
∑

q∈I Rq.
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Proof. Let us first verify that the family (Rq)q∈Q is indeed a solution of (5.6),
i.e. satisfies, for all q ∈ Q:

Rq = Kq,1R1 +Kq,2R2 + · · ·+Kq,nRn + Lq (5.8)

Denote by Sq the right hand side of (5.8). If u ∈ Rq, then u is by definition
the label of a path from q to F . If u = 1, one has Lq = 1 and thus u ∈ Sq.
Otherwise, let (q, u1, q

′) be the first transition of the path. One has u = u1u
′,

where u′ is the label of a path from q′ to F . Therefore u1 ∈ Kq,q′ , u
′ ∈ Rq′ and

finally u ∈ Sq.
Conversely, let u ∈ Sq. If u = 1, one has necessarily u ∈ Lq, whence q ∈ F

and u ∈ Rq. Otherwise, there is a state q′ such that u ∈ Kq,q′Rq′ . Thus
u = u1u

′ for some u1 ∈ Kq,q′ and u′ ∈ Rq′ . On the one hand, (q, u1, q
′) is a

transition of A by the definition of Kq,q′ and on the other hand, u′ is the label
of a path from q′ to F . Therefore u = u1u

′ is the label of a path from q to F
and u ∈ Rq. Consequently Rq = Sq.

It remains to verify that if (Xq)q∈Q is a solution of the system, then Rq ⊆ Xq

for all q ∈ Q. If u ∈ Rq, there exists a path labelled by u from q to F :

(q0, u1, q1)(q1, u2, q2) · · · (qr−1, ur, qr)

with q0 = q, qr ∈ F , ui ∈ Kqi−1,qi and u1u2 · · ·ur = u. Let us show by induction
on r − i that ui+1 · · ·ur belongs to Xqi . By hypothesis, the Xq are solutions of

Xq = Kq,1X1 +Kq,2X2 + · · ·+Kq,nXn + Lq

In particular, since qr ∈ F , one has 1 ∈ Lqr and hence 1 ∈ Xqr , which gives the
result for r − i = 0. Further, if ui+1 · · ·ur is an element of Xqi , the inclusion
Kqi−1,qiXqi ⊆ Xqi−1

shows that uiui+1 · · ·ur is an element of Xqi−1
, which

concludes the induction. In particular, u = u1 · · ·ur ∈ Xq.

Example 5.3 For the extended automaton represented in Figure 5.30, the sys-
tem can be written

X1 = (a∗b+ a)X2 + b∗X3

X2 = (a+ b)X1 + bX3 + 1

X3 = aX1 + aX2 + 1

Replacing X3 by aX1 + aX2 + 1, and observing that a + b∗a = b∗a, we obtain
the equivalent system

X1 = (a∗b+ a)X2 + b∗(aX1 + aX2 + 1) = b∗aX1 + (a∗b+ b∗a)X2 + b∗

X2 = (a+ b)X1 + b(aX1 + aX2 + 1) + 1 = (a+ b+ ba)X1 + baX2 + b+ 1

X3 = aX1 + aX2 + 1

We deduce from the second equation

X2 = (ba)∗((a+ b+ ba)X1 + b+ 1)

and replacing X2 by its value in the first equation, we obtain

X1 = b∗aX1 + (a∗b+ b∗a)(ba)∗((a+ b+ ba)X1 + b+ 1) + b∗

= (b∗a+ (a∗b+ b∗a)(ba)∗(a+ b+ ba))X1 + (a∗b+ b∗a)(ba)∗(b+ 1) + b∗
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Finally, the language recognised by the automaton is

X1 =
(
b∗a+ (a∗b+ b∗a)(ba)∗(a+ b+ ba)

)∗
[(a∗b+ b∗a)(ba)∗(b+ 1) + b∗]

since 1 is the unique initial state.

5.5 Kleene’s theorem

We are now ready to state the most important result of automata theory.

Theorem 5.31 (Kleene) A language is rational if and only if it is recognis-
able.

Proof. It follows from Proposition 5.29 that every recognisable language is
rational. Corollary 4.9 states that every finite language is recognisable. Further,
Propositions 4.8, 4.12 and 4.13 show that recognisable languages are closed
under union, product and star. Thus every rational language is recognisable.

The following corollary is now a consequence of Propositions 2.3, 4.8, 4.10,
4.11, 4.12, 4.13, 4.15 and 4.16.

Corollary 5.32 Recognizable [rational ] languages are closed under Boolean op-
erations, product, star, quotients, morphisms and inverses of morphisms.

We conclude this section by proving some elementary decidability results
on recognisable languages. Recall that a property is decidable if there is an
algorithm to check whether this property holds or not. We shall also often use
the expressions “given a recognisable language L” or “given a rational language
L”. As long as only decidability is concerned, it makes no difference to give
a language by a nondeterministic automaton, a deterministic automaton or a
regular expression, since there are algorithms to convert one of the forms into the
other. However, the chosen representation is important for complexity issues,
which will not be discussed here.

Theorem 5.33 Given a recognisable language L, the following properties are
decidable:

(1) whether a given word belongs to L,

(2) whether L is empty,

(3) whether L is finite,

(4) whether L is infinite,

Proof. We may assume that L is given by a trim deterministic automaton
A = (Q,A, · , q−, F ).

(1) To test whether u ∈ L, it suffices to compute q− ·u. If q− ·u ∈ F , then
u ∈ L; if q− ·u /∈ F , or if q− ·u is undefined, then u /∈ L.

(2) Let us show that L is empty if and only if F = ∅. The condition F = ∅
is clearly sufficient. Since A is trim, every state of A is accessible. Now, if A
has at least one final state q, there is a word u such that q− ·u = q. Therefore
u ∈ L and L is nonempty.

(3) and (4). Let us show that L is finite if and only if A does not contain

any loop. If A contains a loop q
u
−→ q, then L is infinite: indeed, since A
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is trim, there exist paths q−
x
−→ q and q

y
−→ f , where f is a final state and

thus L contains all the words xuny. Conversely, if L is infinite, the proof of
the pumping lemma shows that A contains a loop. Now, checking whether an
automaton contains a loop is easy. Consider the directed graph G obtained from
A by removing all the labels. Then A is loop-free if and only if G is acyclic,
a property that can be checked by standard algorithms. One can for instance
compute the transitive closure G′ of G and check whether G′ contains an edge
of the form (q, q).

We leave as an exercise to the reader to prove that the inclusion problem
and the equality problem are decidable for two given recognisable languages.

6 Exercises

Section 1

1. Let us say that two words x and y are power of the same word if there exists
a word z and two nonnegative integers n and m such that x = zn and y = zm.
Show that two words commute if and only if they are power of the same word.

2. Two words x and y are conjugate if there exist two words u and v such that
x = uv and y = vu.

(1) Show that two words are conjugate if and only if there exists a word z
such that xz = zy.

(2) Conclude that the conjugacy relation is an equivalence relation.

3. A word u is a subword of v if v can be written as

v = v0u1v1u2v2 · · ·ukvk

where ui and vi are words (possibly empty) such that u1u2 · · ·uk = u. For
instance, the words baba and acab are subwords of abcacbab.

(1) Show that the subword relation is a partial ordering on A∗.

(2) (Difficult) Prove that if A is finite, any infinite set of words contains two
words, one of which is a subword of the other.

Section 2

4. Simplify the following rational expressions

(1) ((abb)∗)∗,

(2) a∗b+ a∗ba∗

(3) 0∗ab1∗,

(4) (a∗b)∗a∗.

5. Let e, e1, e2, e3 be four rational expressions. Verify that the following pairs
of rational expressions represent the same language:

(1) e1 + e2 and e2 + e1,

(2) ((e1 + e2) + e3) and (e1 + (e2 + e3)),

(3) ((e1e2)e3) and (e1(e2e3)),
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(4) (e1(e2 + e3)) and ((e1e2) + (e1e3)),

(5) ((e1 + e2)e3) and ((e1e3) + (e2e3)),

(6) e∗∗ and e∗,

(7) 0 + e and e,

(8) 1e and e,

(9) 0∗ and 1,

(10) (e1 + e2)
∗ and (e∗1e2)

∗e∗1.

Section 3

6. A well-parenthesised word is a word on the alphabet {(, )} containing as
many left parenthesises as right parenthesises and such that each of its pre-
fixes contains at least as many left parenthesises than right parenthesises. For
instance, ((()())()) is a well-parenthesised word, but ((()()))()) is not.

Prove that the language of all well parenthesised words is not recognisable.

7. Prove that the following languages are not recognisable:

(1) {u ∈ {a, b}∗ | |u|a = |u|b},

(2) {anbm | n,m > 0 and n = 2m},

(3) {u ∈ A∗ | u = ũ}

(4) {vṽw | v, w ∈ {a, b}+}

(5) {u ∈ a∗ | |u| is a prime number }

8. Let A = {a, b, c}. Show that the language

L = {(ab)ncn | n > 0}+A∗bbA∗ +A∗aaA∗

is not recognisable, but satisfies the pumping lemma: there is an integer n > 0
such that every word u of L of length greater than or equal to n can be factorised
as u = xyz with x, y, z ∈ A∗, |xy| 6 n, y 6= 1 and, for all k > 0, xykz ∈ L.

9. Prove that, for each n > 0, the language

Ln = {u ∈ {a, b}∗ | |u|a ≡ |u|b mod n}

is recognisable, and compute its minimal automaton.

10. Let An = ({0, 1, . . . , n − 1}, {a, b}, En, {0}, {0}) be the nondeterministic
automaton defined by

En = {(i, a, i+ 1) | 0 6 i 6 n− 1} ∪ {(n− 1, a, 0)}∪

{(i, b, i) | 1 6 i 6 n− 1} ∪ {(i, b, 0) | 1 6 i 6 n− 1}}

and represented in Figure 6.31. Show that any deterministic automaton equiv-
alent to An has at least 2n states.
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Figure 6.31. The automaton An.

Section 4

11. The shuffle of two words u and v is the language u xxy v consisting of all
words

u1v1u2v2 · · ·ukvk

where k > 0, the ui and vi are words of A∗, such that u1u2 · · ·uk = u and
v1v2 · · · vk = v. For instance,

ab xxy ba = {abab, abba, baba, baab}.

By extension, the shuffle of two languages K and L is the language

K xxy L =
⋃

u∈K,v∈L

u xxy v

Prove that the shuffle is a commutative and associative operation, which dis-
tributes over union. Show that if K and L are recognisable, then K xxy L is
recognisable.

12. Compute the minimal automaton of the language (a(ab)∗b)∗.

13. Consider the sequence of languages Dn defined by D0 = {1} and Dn+1 =
(aDnb)

∗. Compute the minimal automaton of D0, D1 and D2. Guess from these
examples the minimal automaton of Dn and prove that your guess is correct.

Let, for u ∈ A∗, ||u|| = |u|a − |u|b. Show that, for all n > 0, the following
conditions are equivalent:

(1) u ∈ Dn,
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(2) ||u|| = 0 and for all prefixes v of u, 0 6 ||v|| 6 n.

Conclude that, for all p, q > 0, Dp xxy Dq = Dp+q.
Let D =

⋃
n>0Dn. Show that that D is not recognisable.

Section 5

14. For each of these languages on the alphabet {a, b}, compute their minimal
automaton, the transition monoid of this minimal automaton and a rational
expression representing them:

(1) The language a(a+ b)∗a.

(2) The set of words containing two consecutive a.

(3) The set of words with an even number of b and an odd number of a.

(4) The set of words not containing the factor abab.

15. This exercise relies on the notion of a countable set. Let A be a finite
nonempty alphabet. Prove that A∗ and the set of recognisable languages of A∗

are countable. (Hint: one can enumerate the finite automata on the alphabet
A). Arguing on the fact that the set of subsets of an infinite set in uncountable,
deduce that there exist some nonrecognisable languages on A∗.

Use a similar argument to prove that there are some nonrational languages
on A∗.
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Chapter IV

Recognizable and rational

sets

The notions of rational and recognisable sets are usually defined for finitely
generated free monoids, under the common name of regular sets. Following
Eilenberg [27], one can extend these notions to arbitrary monoids. The price to
pay is that Kleene’s theorem does not extend to arbitrary monoids. Although
the classes of rational and recognisable sets coincide in finitely generated free
monoids, they form in general incomparable classes.

1 Rational subsets of a monoid

Let M be a monoid. We have already seen that the set P(M) of subsets of M
is a semiring with union as addition and product defined by the formula

XY = {xy | x ∈ X and y ∈ Y }

For this reason, we shall adopt the notation we already introduced for languages.
Union is denoted by +, the empty set by 0 and the singleton {m}, for m ∈ M
by m. This notation has the advantage that the identity of P(M) is denoted
by 1.

The powers of a subset X of M are defined by induction by setting X0 = 1,
X1 = X and Xn = Xn−1X for all n > 1. The star and plus operations are
defined as follows:

X∗ =
∑

n>0

Xn = 1 +X +X2 +X3 + · · ·

X+ =
∑

n>0

Xn = X +X2 +X3 + · · ·

Note that X∗ [X+] is the submonoid [subsemigroup] of M generated by X.
The set of rational subsets of a monoid M is the smallest set F of subsets of M
satisfying the following conditions:

(1) F contains 0 and the singletons of P(M),

(2) F is closed under union, product and star (in other words, if X,Y ∈ F ,
then X + Y ∈ F , XY ∈ F and X∗ ∈ F).

73
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Example 1.1 In a finite monoid, all subsets are rational.

Example 1.2 The rational subsets of Nk are the semilinear sets, which are
finite unions of subsets of the form

{v0 + n1v1 + · · ·+ nrvr | n1, . . . , nr ∈ N}

where v0, v1, . . . , vr are vectors of Nk.

The rational subsets are by construction closed under union, product and
star. They are also stable under morphisms.

Proposition 1.1 Let ϕ : M → N be a monoid morphism. If R is a rational
subset of M , then ϕ(R) is a rational subset of N . If further ϕ is surjective, then
for each rational subset S of N , there exists a rational subset R of M such that
ϕ(R) = S.

Proof. Denote by F the set of subsets K of M such that ϕ(K) is a rational
subset of N . The set F contains the finite sets, since, if K is finite, ϕ(K) is also
finite and hence rational. Furthermore, F is stable under union: ifK andK ′ are
in F , that is, if ϕ(K) and ϕ(K ′) are rational, then ϕ(K) +ϕ(K ′) = ϕ(K +K ′)
is rational, and hence K +K ′ is in F . The proof that KK ′ and K∗ are in F is
similar but rests on the formulas

ϕ(KK ′) = ϕ(K)ϕ(K ′) and ϕ(K∗) = (ϕ(K))∗.

It follows that F contains the rational subsets of M . By the definition of F ,
this means that if L is rational, so is ϕ(L).

For the second part of the statement, assume that ϕ is surjective and consider
the set S of subsets S of N such that S = ϕ(R) for some rational subset R ofM .
First observe that ∅ ∈ S since ϕ(∅) = ∅. Since ϕ is surjective, every element n
of N can be written as ϕ(m) for some m ∈M . Thus S contains the singletons.
Further, the formula

ϕ(R)ϕ(R′) = ϕ(RR′) ϕ(R+R′) = ϕ(R) + ϕ(R′) ϕ(R∗) = (ϕ(R))∗

show that S is closed under union, product and star. Consequently, S contains
the rational subsets of N , which concludes the proof.

However, the rational subsets of a monoid are not necessarily closed under
intersection, as shown by the following counterexample:

Example 1.3 Let M = a∗ × {b, c}∗. Consider the rational subsets

R = (a, b)∗(1, c)∗ = {(an, bncm) | n,m > 0}

S = (1, b)∗(a, c)∗ = {(an, bmcn) | n,m > 0}

Their intersection is
R ∩ S = {(an, bncn) | n > 0}

Let π be the projection fromM onto {b, c}∗. If R∩S was rational, the language
π(R ∩ S) = {bncn | n > 0} would also be rational by Proposition 1.1. But
Corollary III.3.5 shows that this language is not rational.



2. RECOGNIZABLE SUBSETS OF A MONOID 75

It follows also that the complement of a rational subset is not necessarily
rational. Otherwise, the rational subsets of a monoid would be closed under
union and complement and hence under intersection.

Rational subsets are closed under direct products, in the following sense:

Theorem 1.2 Let R1 [R2] be a rational subset of a monoid M1 [M2]. Then
R1 ×R2 is a rational subset of M1 ×M2.

Proof. Let π1 : M1 → M1 ×M2 and π2 : M2 → M1 ×M2 be the morphisms
defined by π1(m) = (m, 1) and π2(m) = (1,m). Then we have

R1 ×R2 = (R1 × {1})({1} ×R2) = π1(R1)π2(R2)

which shows, by Proposition 1.1, that R1 ×R2 is rational.

Recall that a monoid is finitely generated if it admits a finite set of generators.

Proposition 1.3 Each rational subset of a monoid M is a rational subset of a
finitely generated submonoid of M .

Proof. Consider the set R of subsets R of M that are rational subsets of a
finitely generated submonoid of M . It is clear that R contains the empty set
and the singletons, since {m} is a rational subset of m∗. If R and S are in R,
there exist some finite subsets F and G of M such that R is a rational subset of
F ∗ and S is a rational subset of G∗. It follows that R+ S and RS are rational
subsets of (F + G)∗, and R∗ is a rational subset of F ∗. Consequently, R + S,
RS and R∗ are also in R, proving that R contains the rational subsets ofM .

2 Recognizable subsets of a monoid

Recognizable languages are usually defined in terms of automata. This is the
best definition from an algorithmic point of view, but it is an asymmetric notion.
It turns out that to handle the fine structure of recognisable languages, it is
more appropriate to use a more abstract definition, using monoids in place
of automata, due to Rabin and Scott [89]. Although these definitions will be
mainly used in the context of free monoids, it is as simple to give them in a
more general setting.

2.1 Recognition by monoid morphisms

Let ϕ : M → N be a monoid morphism. A subset L of M is recognised by ϕ if
there exists a subset P of N such that

L = ϕ−1(P ).

If ϕ is surjective, we say that ϕ fully recognises L. Note that in this case, the
condition L = ϕ−1(P ) implies P = ϕ(L).

Proposition 2.4 If ϕ :M → N recognises L, then the morphism from M onto
ϕ(M) induced by ϕ fully recognises L.



76 CHAPTER IV. RECOGNIZABLE AND RATIONAL SETS

Proof. Since ϕ recognises L, there exists a subset P ofN such that L = ϕ−1(P ).
It follows that L = ϕ−1(P ∩ ϕ(M)) which proves the result.

Let us say that a congruence ∼ on M saturates a subset L of M if the
conditions u ∈ L and u ∼ v imply v ∈ L. Let us start by an elementary, but
useful observation:

Proposition 2.5 Let ϕ :M → N be a monoid morphism and let L be a subset
of M . The following conditions are equivalent:

(1) L is recognised by ϕ,

(2) L is saturated by ∼ϕ,

(3) ϕ−1(ϕ(L)) = L.

Proof. (1) implies (2). If L is recognised by ϕ, then L = ϕ−1(P ) for some
subset P of N . Thus if x ∈ L and x ∼ϕ y, one has ϕ(x) ∈ P and since
ϕ(x) = ϕ(y), y ∈ ϕ−1(P ) = L. Therefore L is saturated by ∼ϕ.

(2) implies (3). Suppose that L is saturated by ∼ϕ. If x ∈ ϕ−1(ϕ(L)), there
exists y ∈ L such that ϕ(x) = ϕ(y), that is, x ∼ϕ y. It follows that x ∈ L,
which proves the inclusion ϕ−1(ϕ(L)) ⊆ L. The opposite inclusion is trivial.

(3) implies (1). Setting P = ϕ(L), one has ϕ−1(P ) = L. Thus L is recognised
by ϕ.

By extension, one also says that a monoid N [fully ] recognises a subset L
of a monoid M if there exists a [surjective] monoid morphism ϕ :M → N that
recognises L.

Example 2.1 Let (T,⊕) be the commutative monoid defined on {0, 1, 2} by

x⊕ y = min{x+ y, 2}

and let ϕ be the surjective morphism from (N,+) onto T defined by ϕ(0) =
0, ϕ(1) = 1 and ϕ(n) = 2 for all n > 2. The subsets of N recognised
by ϕ are ϕ−1(∅) = ∅, ϕ−1(0) = {0}, ϕ−1(1) = {1}, ϕ−1(2) = {2, 3, . . .},
ϕ−1({0, 1}) = {0, 1}, ϕ−1({0, 2}) = {0, 2, 3, 4, . . .}, ϕ−1({1, 2}) = {1, 2, 3, 4, . . .}
and ϕ−1({0, 1, 2}) = N.

Example 2.2 Let M = B1
2 = {1, a, b, ab, ba, 0} be the multiplicative monoid

defined by the relations aba = a, bab = b, aa = bb = 0. Let A = {a, b}
and let ϕ : A∗ → M be the morphism defined by ϕ(a) = a and ϕ(b) = b.
One has ϕ−1(1) = {1}, ϕ−1(a) = (ab)∗a, ϕ−1(b) = (ba)∗b, ϕ−1(ab) = (ab)+,
ϕ−1(ba) = (ba)+ and ϕ−1(0) = A∗aaA∗ +A∗bbA∗.

Example 2.3 Recall that U2 denotes the monoid {1, a1, a2} defined by a1a1 =
a2a1 = a1 and a1a2 = a2a2 = a2. Let π : A∗ → U2 be a morphism and let A1 =
{a ∈ A | π(a) = a1}, A2 = {a ∈ A | π(a) = a2} and B = {a ∈ A | π(a) = 1}.
Then π−1(1) = B∗, π−1(a1) = A∗A1B

∗ and π−1(a2) = A∗A2B
∗.

We conclude this section by a very useful property of a morphism recognising
a subset of a monoid.

Proposition 2.6 Let M be a monoid, P a subset of M and ϕ : M → N be a
morphism recognising P . Then for each subset R of M , one has
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(1) ϕ(R ∩ P ) = ϕ(R) ∩ ϕ(P ),

(2) ϕ(R ∪ P ) = ϕ(R) ∪ ϕ(P ),

(3) ϕ(R− P ) = ϕ(R)− ϕ(P ).

Proof. (1) The inclusion ϕ(P ∩R) ⊆ ϕ(P ) ∩ ϕ(R) is clear. To prove the oppo-
site inclusion, consider an element s of ϕ(P )∩ϕ(R). Then one has s = ϕ(r) for
some r ∈ R. It follows that r ∈ ϕ−1(s), wherefore r ∈ ϕ−1(ϕ(P )) and finally
r ∈ P . Thus r ∈ P ∩R and s ∈ ϕ(P ∩R), which proves (1).

(2) is trivial.
(3) Let r ∈ R − P . Then ϕ(r) ∈ ϕ(R). Further, if ϕ(r) ∈ ϕ(P ), then r ∈ P

since ϕ recognises P . Therefore ϕ(R− P ) ⊆ ϕ(R)− ϕ(P ).
To establish the opposite inclusion, consider an element x of M such that

ϕ(x) ∈ ϕ(R) − ϕ(P ). Then ϕ(x) ∈ ϕ(R) and thus ϕ(x) = ϕ(r) for some
r ∈ R. If r ∈ P , then ϕ(x) ∈ ϕ(P ), a contradiction. Therefore r ∈ R − P and
ϕ(x) ∈ ϕ(R− P ).

Corollary 2.7 Let M be a monoid, P a subset of M and ϕ : M → N be
a morphism recognising P . If P = X1 − X2 with X2 ⊆ X1, then ϕ(P ) =
ϕ(X1)− ϕ(X2).

Proof. When X2 is a subset of X1, the conditions P = X1 − X2 and X2 =
X1−P are equivalent. Proposition 2.6 now shows that ϕ(X2) = ϕ(X1)−ϕ(P ),
which in turn gives ϕ(P ) = ϕ(X1)− ϕ(X2).

2.2 Operations on sets

Simple operations on sets have a natural algebraic counterpart. We now study
in this order complement, intersection, union, inverses of morphisms and left
and right quotients.

Proposition 2.8 Let L be a subset of the monoid M . If L is recognised by
ϕ :M → N , then M − L is also recognised by ϕ.

Proof. If L = ϕ−1(P ) then, by Proposition I.1.18, M − L = ϕ−1(N − P ).

For 1 6 i 6 n, let ϕi : M → Mi be a surjective monoid morphism. The
product of these morphisms is the surjective morphism

ϕ :M → Im(ϕ) ⊆M1 × · · · ×Mn

defined by ϕ(x) = (ϕ1(x), . . . , ϕn(x)).

Proposition 2.9 Let L1, . . . , Ln be subsets of M . If each Li is recognised by
ϕi, then the sets ∩16i6nLi and ∪16i6nLi are recognised by ϕ.

Proof. Suppose that Li = ϕ−1
i (Pi) for some subset Pi ofMi. The result follows

immediately from the two formulas
⋂

16i6n

Li = ϕ−1(P1 × · · · × Pn)

⋃

16i6n

Li = ϕ−1
( ⋃

16i6n

M1 × · · · ×Mi−1 × Pi ×Mi+1 × · · · ×Mn

)
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Proposition 2.10 Let η : R → M and ϕ : M → N be two morphisms of
monoids. If ϕ recognises a subset L of M , then ϕ ◦ η recognises η−1(L).

Proof. Suppose that L = ϕ−1(P ) for some subset P of N . Then η−1(L) =
η−1(ϕ−1(P )) = (ϕ ◦ η)−1(P ). Thus ϕ ◦ η recognises η−1(L).

Recall that, for each subset X of M and for each element s of M , the left
[right ] quotient s−1X [Xs−1] of X by s is defined as follows:

s−1X = {t ∈M | st ∈ X} and Xs−1 = {t ∈ S | ts ∈ X}

More generally, for any subset K of M , the left [right] quotient K−1X [XK−1]
of X by K is

K−1X =
⋃

s∈K

s−1X = {t ∈M | there exists s ∈ K such that st ∈ X}

XK−1 =
⋃

s∈K

Xs−1 = {t ∈M | there exists s ∈ K such that ts ∈ X}

Proposition 2.11 Let ϕ :M → N be a morphism of monoids. If ϕ recognises
a subset L of M , it also recognises K−1L and LK−1 for every subset K of M .

Proof. Suppose that L = ϕ−1(P ) for some subset P of N , and let R = ϕ(K).
We claim that ϕ−1(R−1P ) = K−1L. Indeed, one has the following sequence of
equivalent statements:

m ∈ ϕ−1(R−1P )⇐⇒ ϕ(m) ∈ R−1P

⇐⇒ there exists r ∈ R such that rϕ(m) ∈ P

⇐⇒ there exists k ∈ K such that ϕ(k)ϕ(m) ∈ P

⇐⇒ there exists k ∈ K such that km ∈ ϕ−1(P )

⇐⇒ there exists k ∈ K such that km ∈ L

⇐⇒ m ∈ K−1L

Thus ϕ recognises K−1L. A similar proof works for LK−1.

2.3 Recognizable sets

A subset of a monoid is recognizable if it is recognised by a finite monoid. We
denote by Rec(M) the set of recognisable subsets of M . We shall see shortly in
Section 3 that if M = A∗, then Rec(A∗) is the set of recognisable languages, as
defined in Section 3.1. Thus our new definition is consistent with the old one.

Notice that Propositions 2.8, 2.9, 2.10 and 2.11 subsume Propositions III.4.8,
III.4.10, III.4.11, III.4.12, III.4.13, III.4.15, III.4.16 with a shorter proof. One
can summarize these results in the following statement:

Corollary 2.12 For any monoid M , Rec(M) is closed under Boolean opera-
tions and left and right quotients. Further, if ϕ : N → M is a morphism,
L ∈ Rec(M) implies ϕ−1(L) ∈ Rec(N).
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Although Kleene’s theorem does not extend to arbitrary monoids, a weaker
property holds for finitely generated monoids.

Theorem 2.13 (McKnight) Let M be a monoid. The following conditions
are equivalent:

(1) M is finitely generated,

(2) every recognisable subset of M is rational,

(3) the set M is a rational subset of M .

Proof. (1) implies (2). Let M be a finitely generated monoid. Then there
exists a finite alphabet A and a surjective morphism π from A∗ onto M . Let R
be a recognisable subset ofM . By Corollary 2.12, the set π−1(R) is recognisable
in A∗ and hence is rational by Kleene’s theorem. Now, since R = π(π−1(R)),
Proposition 1.1 shows that R is rational.

(2) implies (3) is clear, since M is a recognisable subset of M .
(3) implies (1) follows immediately from Proposition 1.3.

Let us come back to arbitrary monoids. We have seen that the intersection
of two rational subsets is not necessarily rational, but that the intersection of
two recognisable sets is recognisable. What about the intersection of a rational
subset and a recognisable subset?

Proposition 2.14 The intersection of a rational subset and of a recognisable
subset of a monoid is rational.

Proof. Let R be a rational subset of a monoid M . By Proposition 1.3, R is a
rational subset of a finitely generated submonoid N of M . Let us denote by ι
the identity mapping from N into M . Since N is finitely generated, there exist
a finite alphabet A and a surjective morphism π : A∗ → N . By the second
part of Proposition 1.1, there exists a rational language K of A∗ such that
ι(π(K)) = R. If S is a recognisable subset of M , then S ∩ N , which is equal
to ι−1(S), is a recognisable subset of N by Proposition 2.10 and, for the same
reason, π−1(S ∩ N) is a recognisable subset of A∗. By Kleene’s theorem, the
language K ′ = K ∩ π−1(S ∩ N) is also rational. It follows by Proposition 1.1
that ι(π(K ′)) is a rational subset of M . Now, since π is surjective, Proposition
I.1.19 gives the relations

π(K ′) = π(K ∩ π−1(S ∩N)) = π(K) ∩ (S ∩N)

and since ι is injective, one has by Proposition I.1.17:

ι(π(K ′)) = ι(π(K) ∩ (S ∩N)) = ι(π(K)) ∩ ι(S ∩N) = R ∩ S

It follows that R ∩ S is a rational subset of M .

The next theorem gives a description of the recognisable subsets of a finite
product of monoids. Note that this result does not extend to finite products of
semigroups.

Theorem 2.15 (Mezei) Let M1, . . . ,Mn be monoids and let M =M1 × · · · ×
Mn. A subset of M is recognisable if and only if it is a finite union of subsets
of the form R1 × · · · ×Rn, where each Ri is a recognisable subset of Mi.
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Proof. Since Ri is recognisable, there exists a morphism αi fromMi onto some
finite monoid Fi such that α−1(α(Ri)) = Ri. Let α : M → F1 × · · · × Fn be
the product morphism defined by α(m1, . . . ,mn) = (α1(m1), . . . , αn(mn)). The
relations

α−1(α(R1 × · · · ×Rn)) = α−1
1 (α1(R1))× · · · × α

−1
n (αn(Rn))

= R1 × · · · ×Rn

show that R1×· · ·×Rn is recognisable. Further, Corollary 2.12 shows that any
finite union of subsets of this form is recognisable.

Consider now a recognisable subset R of M . Then there exist a morphism
α from M onto a finite monoid F such that R = α−1(α(R)). For 1 6 i 6 n, let
us define a morphism βi :Mi → F by setting βi(mi) = α(1, . . . , 1,mi, 1, . . . , 1).
We also define a morphism β :M → Fn by setting

β(m1, . . . ,mn) = (β1(m1), . . . , βn(mn)).

Setting
Q = {(x1, . . . , xn) ∈ F

n | x1 · · ·xn ∈ α(R)}

and observing that β1(m1) · · · βn(mn) = α(m1, · · · ,mn), one gets

β−1(Q) = {(m1, . . . ,mn) ∈M | β1(m1) · · · βn(mn) ∈ α(R)}

= {(m1, . . . ,mn) ∈M | α(m1, · · · ,mn) ∈ α(R)}

= α−1α(R) = R

Further, β−1(x1, . . . , xn) = β−1
1 (x1)× · · · × β

−1
n (xn) and therefore

R = β−1(Q) =
⋃

(x1,...,xn)∈Q

β−1
1 (x1)× · · · × β

−1
n (xn)

Since the sets β−1
i (xi) are by construction recognisable subsets ofMi, the desired

decomposition is obtained.

One of the most important applications of Theorem 2.15 is the fact that
the product of two recognisable relations over finitely generated free monoids is
recognisable. Let A1, . . . , An be finite alphabets. Then the monoid A∗

1×· · ·×A
∗
n

is finitely generated, since it is generated by the finite set

{(1, . . . , 1, ai, 1, . . . , 1) | ai ∈ Ai, 1 6 i 6 n}

Proposition 2.16 Let A1, . . . , An be finite alphabets. The product of two recog-
nisable subsets of A∗

1 × · · · ×A
∗
n is recognisable.

Proof. Let M = A∗
1× · · ·×A

∗
n and let X and Y be two recognisable subsets of

M . By Theorem 2.15, X is a finite union of subsets of the form R1 × · · · ×Rn,
where Ri is a recognisable subset of A∗

i and Y is a finite union of subsets of the
form S1 × · · · × Sn, where Si is a recognisable subset of A∗

i . It follows that XY
is a finite union of subsets of the form R1S1 × · · · × RnSn. Since A∗

i is a free
monoid, the sets Ri and Si are rational by Kleene’s theorem. It follows that
RiSi is rational and hence recognisable. Finally, Theorem 2.15 shows that XY
is recognisable.
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3 Connexion with automata

The case of the free monoid is of course the most important. There is a natural
way to associate a finite monoid with a finite automaton. We start by explaining
this construction for deterministic automata, which is a bit easier than the
general case.

3.1 Transition monoid of a deterministic automaton

Let A = (Q,A,E) be a deterministic automaton. Each letter a ∈ A defines a
partial transformation q → q · a on Q, which maps each state q onto the unique
state q · a (when it exists) such that (q, a, q · a) ∈ E. If there is no such state,
q · a is undefined.

More generally, each word u defines a partial transformation q → q ·u on Q,
which maps each state q onto the end state of the unique path of label u and
origin q (when it exists). One can also define q ·u by induction on the length
of u. First, the empty word defines the identity transformation: for each state
q, q · 1 = q. Next, for every word u ∈ A+ and for every letter a ∈ A, one sets
q · (ua) = (q ·u)· a if (q ·u) and (q ·u)· a are defined.

Example 3.1 Let A be the automaton of Figure III.3.4. One has 1· ba = 2,
2· ba = 1 and 3· ba = 5 and for q = 4, 5, the value of q · ba is undefined. Similarly,
the partial transformation associated to babbb is defined on its domain {1, 2} by
1· babbb = 2 and 2· babbb = 1.

The partial function (q, a)→ q · a from Q×A into Q is called the transition
function of A. If A is complete, it is a total function. Note that the set E
of transitions completely determines the transition function and can also be
recovered from it. For this reason, a deterministic automaton is often given as
a triple (Q,A, · ), where “·” denotes the transition function.

It follows from the definitions that the function which maps a word u onto
the partial transformation q → q ·u defines a morphism from A∗ into the monoid
F(Q) of partial transformations on Q. The range of this map is a monoid, called
the transformation monoid of A.

We now present an algorithm to compute a presentation of the transition
monoid of a finite automaton. Rather than giving a formal description of the
algorithm, we shall explain it step by step on an example. Consider the finite
deterministic automaton represented in Figure 3.1.

1 2 3

b a, c b, c

a

b

a

Figure 3.1. A deterministic automaton.

We start our computation by giving the generators of its transition monoid.
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1 1 2 3

a 2 2 2

b 1 3 3
c - 2 3

Thus a maps all states onto state 2 and c defines a partial identity: it maps
states 2 and 3 onto themselves and is undefined on state 1.

The transition monoid is equal to the transformation monoid generated by
these generators. In order to compute it, we proceed as follows. We first fix a
total order on the alphabet, for instance a < b < c, but any total order would
do. We also denote by < the shortlex order induced by this total order (see
Section 1.2 for the definition). We maintain simultaneously a list of elements,
in increasing order for <, and a list of rewriting rules of the form u→ v, where
v < u.

We compute the elements of the transition monoid by induction on the rank
of the words in the shortlex order. The partial transformation associated with
the empty word is the identity and the partial transformations associated with
the letters are the three generators.

The general principle is now the following. Each time we consider a new
word w, we first try to use an existing rewriting rule to reduce w. If this is
possible, we simply consider the next word in the shortlex order. If this is not
possible, we compute the partial transformation associated with w and check
whether this partial transformation already appeared or not in our list of partial
transformations. If it already appeared as u, we add w → u to the list of the
rewriting rules, otherwise, we add w to the list of elements. Let us also mention
a convenient trick to compute the partial transformation associated with w when
w is irreducible. Suppose that w = px, where x is a letter. Since w is irreducible,
so is p and hence p is certainly in the list of elements. Therefore we already
know the partial transformation associated with p and it suffices to compose it
with x to get the partial transformation associated with w.

Let us go back to our example. Since we already considered the words of
length 6 1, we now consider the first word of length 2, namely aa. The partial
transformation associated with aa can be computed directly by following the
transition on Figure 3.1, or by using the table below. One can see that aa
defines the same partial transformation as a and thus we add the rewriting rule
aa → a to our list. Next, we compute ab. This transformation maps all states
to 3 and is a new partial transformation. We then proceed by computing ac,
which defines the same partial transformation as a, and then, ba, bb (which give
the new rewriting rules ba→ a and bb→ b), bc and ca (which define new partial
transformations) and cb and cc (which give the new rewriting rules cb→ bc and
cc→ c). At this stage our two lists look like this:

1 1 2 3

a 2 2 2

b 1 3 3
c - 2 3
ab 3 3 3
bc - 3 3
ca - 2 2

Rewriting rules

aa→ a bb→ b
ac→ a cb→ bc
ba→ a cc→ c
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The next step is to compute the partial transformations corresponding to the
words of length 3, but it suffices to consider the words starting with ab, bc or ca,
since the other words can be reduced using the rewriting rules we have already
produced. Now aba can be reduced by using ba→ a, abb can be reduced by using
bb→ b. The word abc defines the same partial transformation as ab, which gives
the new rule abc → ab. Similarly, bca defines the same partial transformation
as ca, giving the rule bca→ ca. Further, bcb, bcc and caa can be reduced using
cb → bc, cc → c and aa → a respectively. Finally, cab defines the same partial
transformation as bc, which gives the new rule abc→ bc and cac can be reduced
by using the rule ac→ a.

No word of length 3 defines a new partial transformation and thus the algo-
rithm terminates. A presentation of the transition monoid of A is given in the
following table:

1 1 2 3

a 2 2 2

b 1 3 3
c - 2 3
ab 3 3 3
bc - 3 3
ca - 2 2

Rewriting rules

aa→ a bb→ b abc→ ab
ac→ a cb→ bc bca→ ca
ba→ a cc→ c cab→ bc

One can show that the rewriting system obtained at the end of the algorithm
is converging, which means that every word has a unique reduced form. In
particular, the order in which the reduction rules are applied does not matter.
The rewriting system can be used to compute the product of two elements. For
instance abbc→ abc→ ab and thus (ab)(bc) = ab.

A presentation of the transition monoid is obtained by replacing the symbol
→ by =. In our example, the presentation would be 〈 {a, b, c} | aa = a, bb =
b, abc = ab, ac = a, cb = bc, bca = ca, ba = a, cc = c, cab = bc 〉.

3.2 Transition monoid of a nondeterministic automaton

Let now A = (Q,A,E, I, F ) be a nondeterministic finite automaton. To each
word u ∈ A∗, there corresponds a relation on Q, denoted by µ(u), and defined
by (p, q) ∈ µ(u) if there exists a path from p to q with label u.

Proposition 3.17 The function µ is a morphism from A∗ into the monoid of
relations on Q.

Proof. Clearly, µ(1) is the identity relation. Let now u and v be two words of
A∗. Then one has (p, r) ∈ µ(u)µ(v) if and only if there is a state q such that
(p, q) ∈ µ(u) and (q, r) ∈ µ(v). By definition of µ, this means there is a path
from p to q with label u and path from q to r with label v. Therefore, there is
a path from p to r with label uv and (p, r) ∈ µ(uv).

Conversely, suppose that (p, r) ∈ µ(uv). Then there is a path from p to r
with label uv. Let q the state reached on this path after reading u:

p q r
u v
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Then (p, q) ∈ µ(u) and (q, r) ∈ µ(v) and hence (p, r) ∈ µ(u)µ(v).

The monoid µ(A∗) is called the transition monoid of A and denoted by
M(A). For practical computation, it can be conveniently represented as a
monoid of Boolean matrices of order |Q|×|Q|. In this case, µ(u) can be identified
with the matrix defined by

µ(u)p,q =

{
1 if there exists a path from p to q with label u

0 otherwise

Example 3.2 If A is the automaton below, one gets

1a 2 a, b

a

b

µ(a) =

(
1 1
0 1

)
µ(b) =

(
0 0
1 1

)
µ(aa) = µ(a)

µ(ab) =

(
1 1
1 1

)
µ(ba) = µ(bb) = µ(b)

Thus the transition monoid of A is the monoid of Boolean matrices

µ(A∗) =
{(1 0

0 1

)
,

(
0 0

1 1

)
,

(
1 1

0 1

)
,

(
1 1

1 1

)}
.

3.3 Monoids versus automata

We now show that our definition of recognisable sets is equivalent with the
standard definition using automata.

Proposition 3.18 If a finite automaton recognises a language L, then its tran-
sition monoid recognises L.

Proof. Let A be a finite automaton recognising L and let µ : A∗ → M(A) be
the natural morphism from A∗ onto the transition monoid of A. Observe now
that a word u is recognised by A if and only if (p, q) ∈ µ(u) for some initial
state p and some final state q. It follows that L = µ−1(P ) where

P = {m ∈M(A) | mp,q = 1 for some initial state p and some final state q}

It follows that µ recognises L.

Example 3.3 Let A = {a, b} and let A be the (incomplete) deterministic au-
tomaton represented below.
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1 2

a

b

Figure 3.2. A deterministic automaton.

It is easy to see that A recognises the language (ab)∗a. The transition monoid
M of A contains six elements which correspond to the words 1, a, b, ab, ba
and aa. Furthermore aa is a zero of S and thus can be denoted 0. The other
relations defining M are aba = a, bab = b and bb = 0.

1 a b aa ab ba

1 2 − − 1 −

2 − 1 − − 2

One recognises the monoid B1
2 defined on page 16.

Converting a monoid into an automaton is also very easy.

Proposition 3.19 If a language is recognised by a finite monoid, then it is also
recognised by a finite deterministic automaton.

Proof. Let L be a language recognised by a finite monoid M . Then there is
a morphism ϕ : A∗ → M and a subset P of M such that L = ϕ−1(P ). Take
the right representation of A on M defined by s· a = sϕ(a). This defines a
deterministic automaton A = (M,A, · , 1, P ). Now, a word u is accepted by A
if and only if 1·u ∈ P . Since 1·u = ϕ(u), this condition means ϕ(u) ∈ P or
u ∈ ϕ−1(P ). Since L = ϕ−1(P ), we conclude that A recognises L.

Example 3.4 Let ϕ : {a, b}∗ → B1
2 = {1, a, b, ab, ba, 0} be the morphism de-

fined by ϕ(a) = a and ϕ(b) = b. By applying the algorithm described above,
one gets the automaton pictured in Figure 3.3, which also recognises (ab)∗.

a ab

1 0

b ba

a a b

b b a

b

a

a, b

a

b

Figure 3.3. The automaton associated with ϕ.

We can now summarize the results of this section.
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Theorem 3.20 Let L be a language. The following conditions are equivalent

(1) L is recognised by a finite deterministic automaton,

(2) L is recognised by a finite automaton,

(3) L is recognised by a finite monoid.

Proof. (1) implies (2) is clear and (2) implies (3) follows from Proposition 3.18.
Finally, (3) implies (1) follows from Proposition 3.19.

This result implies that any finite automaton is equivalent to a deterministic
one, a good illustration of the power of the algebraic approach. Indeed, the
usual proof requires the subset construction, but the proof is straightforward
with monoids.

4 Syntactic monoid

The syntactic congruence is one of the key notions of this chapter. Roughly
speaking, it is the monoid analog of the notion of minimal automaton, but it
can be defined for any subset of a monoid.

4.1 Definitions

The main definition was already given in Section 3.7. Given a subset L of M
the syntactic congruence of L in M is the relation ∼L defined on M by u ∼L v
if and only if, for all x, y ∈M ,

xuy ∈ L⇐⇒ xvy ∈ L (4.1)

The quotient M/∼L is the syntactic monoid of L and the natural morphism
ηL : M → M/∼L it the syntactic morphism of L. Finally, the set ηL(L) is
called the syntactic image of L. The syntactic monoid of a language L is often
denoted M(L) and we shall use freely this notation.

The syntactic congruence is characterised by the following property.

Proposition 4.21 The syntactic congruence of L is the coarsest congruence
that saturates L. Furthermore, a congruence ∼ saturates L if and only if ∼L is
coarser than ∼.

Proof. We first need to show that ∼L saturates L. Suppose that u ∈ L and
u ∼L v. Then, one has, by taking x = y = 1 in (4.1),

u ∈ L⇐⇒ v ∈ L

and thus v ∈ L. It follows that ηL recognises L.
Suppose now that a congruence ∼ saturates L and that u ∼ v. Since ∼ is a

congruence, we also have xuy ∼ xvy for every x, y ∈ M . Since ∼ saturates L,
it follows that xuy ∈ L if and only if xvy ∈ L and hence u ∼L v. Therefore, ∼L

is coarser than ∼.
Finally, if ∼L is coarser than ∼, the condition u ∼ v implies u ∼L v. There-

fore, if u ∈ L, then v ∈ L and ∼ saturates L.

It is sometimes convenient to state this result in terms of morphisms:
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Corollary 4.22 Let ϕ :M → N be a surjective morphism of monoids, let L be
a subset of M and let ηL :M →M(L) be the syntactic morphism of L. Then ϕ
recognises L if and only if there is a surjective morphism π : N → M(L) such
that ηL = π ◦ ϕ.

M(L)

M N

ηL π

ϕ

One says that ηL factorises through ϕ.

Corollary 4.22 is often used in the following simpler form, which implies that
the syntactic monoid of a subset is the smallest monoid recognising this subset.

Corollary 4.23 Let L be a subset of a monoidM . A monoid N fully recognises
L if and only if the syntactic monoid of L is a quotient of N .

Let us state another useful result:

Proposition 4.24 Let ϕ : M → N be a surjective morphism and let L be a
subset of N . Then the syntactic monoid of L in N is equal to the syntactic
monoid of ϕ−1(L) in M .

Proof. Let u, v ∈ M . We claim that u ∼ϕ−1(L) v if and only if ϕ(u) ∼L ϕ(v).
Indeed, the condition u ∼ϕ−1(L) v means that, for all x, y ∈M ,

xuy ∈ ϕ−1(L)⇐⇒ xvy ∈ ϕ−1(L)

or, equivalently

ϕ(xuy) ∈ L⇐⇒ ϕ(xvy) ∈ L

Since ϕ is surjective, this latter condition exactly means that ϕ(u) ∼L ϕ(v),
proving the claim. It follows that M/∼ϕ−1(L) is isomorphic to N/∼L, which
gives the result.

4.2 Syntactic monoid of a language

Corollary 4.22 applies in particular when M is a free monoid A∗. In this case,
one can characterise the syntactic monoid in terms of division.

Proposition 4.25 Let L be a language of A∗ and let M(L) be the syntactic
monoid of L.

(1) A monoid M recognises L if and only if M(L) divides M .

(2) If M recognises L and if M divides N , then N recognises L.

Proof. (1) Let ϕ : A∗ →M be a morphism recognising L. Then the morphism
ϕ : A∗ → ϕ(A∗) also recognises L and by Corollary 4.22, M(L) is a quotient of
ϕ(A∗) and thus divides N .

Let η : A∗ → M(L) be the syntactic morphism of L. If M(L) divides M ,
there is a submonoid N of M and a surjective morphism β : N → M(L).
According to Corollary II.5.30, there exists a morphism ϕ : A∗ →M such that
η = β ◦ ϕ. Let P = β−1(η(L)).
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A∗

M(L)

N ⊆ Mη

ϕ

β

Then
L = η−1η(L) = ϕ−1(β−1(η(L)) = ϕ−1(P )

and hence M recognises L.
(2) If M recognises L, then by (1), M(L) divides M . Thus if M divides N ,

M(L) also divides N and by (1) again, N recognises L.

It is interesting to translate the results of Section 2.2 in terms of syntactic
monoids. In the next proposition, we denote by M(L) the syntactic monoid of
a language L.

Proposition 4.26 Let L, L1, L2 and K be languages of A∗. Then the following
properties hold:

(1) M(Lc) =M(L),

(2) M(L1 ∩ L2) divides M(L1)×M(L2),

(3) M(L1 + L2) divides M(L1)×M(L2),

(4) M(LK−1) and M(K−1L) divide M(L),

(5) If ϕ : B∗ → A∗ is a morphism, then M(ϕ−1(L)) divides M(L).

Proof. This is an immediate consequence of Propositions 2.8, 2.9, 2.10, 2.11
and 4.21.

Note that the proof of these results is notably shorter than their automata
theoretic counterpart.

4.3 Computation of the syntactic monoid of a language

The easiest way to compute the syntactic monoid of a recognisable language L
is to first compute its minimal (deterministic) automaton and then to apply the
following result.

Proposition 4.27 The syntactic monoid of a recognisable language is equal to
the transition monoid of its minimal automaton.

Proof. Let A = (Q,A, · , q−, F ) be the minimal automaton of a recognisable
language L of A∗ and let M be its transition monoid. It suffices to verify that
two words u, v ∈ A∗ satisfy u ∼L v if and only if they define the same transition
in M .

Suppose that u ∼L v and let p ∈ Q. Since A is trim, there exists a word
x ∈ A∗ such that q− ·x = p. Now since u ∼L v, one has, for all y ∈ A∗,

xuy ∈ L⇐⇒ xvy ∈ L

that is,

q− ·xuy ∈ F ⇐⇒ q− ·xvy ∈ F
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or yet

(p·u)· y ∈ F ⇐⇒ (p· v)· y ∈ F .

Therefore, the states p·u and p· v are Nerode equivalent and hence equal by
Corollary III.4.20. Thus u and v define the same transition in M .

Suppose now that u and v define the same transition inM . Then if xuy ∈ L,
then q− ·xuy ∈ F . Since xuy and xvy define the same transition in M , one also
gets q− ·xvy ∈ F , and hence xvy ∈ L.

5 Recognition by ordered structures

We have seen that a subset of a monoid and its complement have the same
syntactic monoid. Similarly, a language and its complement have the same
complete minimal automaton. Although this property is usually very conve-
nient, there are cases where it is desirable to distinguish between a subset and
its complement. Introducing a partial order on monoids solves this problem in
an elegant way.

5.1 Ordered automata

An ordered automaton is a deterministic automaton A = (Q,A, · ) equipped
with a partial order 6 on Q such that, for all p, q ∈ Q and a ∈ A, p 6 q implies
p· a 6 q · a. This implies in particular that, for all u ∈ A∗, p·u 6 q ·u.

There is a natural way to define a preorder on the set of states of any de-
terministic automaton. Let A = (Q,A, · , q−, F ) be a deterministic automaton.
Define a relation 6 on Q by setting p 6 q if and only if, for all u ∈ A∗, p·u ∈ F
implies q ·u ∈ F . This preorder turns out to be an order if A is minimal and
complete.

Proposition 5.28 If A is a minimal complete deterministic automaton, the
relation 6 is a partial order on Q.

Proof. The relation 6 is clearly reflexive and transitive. Suppose that p 6 q
and q 6 p. Then, for all u ∈ A∗, p·u ∈ F ⇔ q ·u ∈ F . Since A is minimal, this
implies p = q. Thus 6 is an order.

Further, if p 6 q, then for all a ∈ A, p· a 6 q · a since, for all u ∈ A∗,
p· au ∈ F implies q · au ∈ F .

Example 5.1 Consider the minimal complete automaton of (ab)∗, represented
in Figure III.4.22. The order on the set of states is 0 < 1 and 0 < 2. Indeed,
one has 0·u = 0 for all u ∈ A∗ and thus, the formal implication

q ·u ∈ F ⇒ 0·u ∈ F

holds for any q ∈ Q. One can verify that there is no other relations among the
states of Q. For instance, 1 and 2 are incomparable since 1· ab = 1 ∈ F but
2· aba = 0 /∈ F and 1· b = 0 /∈ F but 2· b = 1 ∈ F .

Example 5.2 Consider the minimal complete automaton of aA∗b, represented
in Figure III.4.23. The order on the set of states is 0 < 1 < 2 < 3.
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5.2 Recognition by ordered monoids

A congruence on an ordered monoid (M,6) is a stable preorder which is coarser
than 6. In particular, the order relation 6 is itself a congruence. If 4 is
a congruence on M , then the equivalence relation ∼ associated with 4 is a
congruence on M . Furthermore, there is a well-defined stable order on the
quotient set M/∼, given by

[s] 6 [t] if and only if s 4 t

Thus (M/∼,6) is an ordered monoid, also denoted M/4.
Let ϕ : M → N be a surjective morphism of ordered monoids. A subset Q

of M is recognised by ϕ if there exists an upper set P of N such that

Q = ϕ−1(P )

This condition implies that Q is an upper set of M and that

ϕ(Q) = ϕ(ϕ−1(P )) = P

By extension, a subset Q of M is said to be recognised by an ordered monoid N
if there exists a surjective morphism of ordered monoids from M onto N that
recognises Q.

It is sometimes convenient to formulate this definition in terms of congru-
ences. Let M be an ordered monoid and let 4 a congruence on M . A subset Q
of M is said to be recognised by 4 if, for every q ∈ Q, q 4 p implies p ∈ Q. It
is easy to see that a surjective morphism of ordered monoids ϕ recognises Q if
and only if the nuclear congruence 4ϕ recognises Q.

How does this definition relate to the standard definition using monoids?
Simply by considering a monoid as an ordered monoid, with the equality relation
as an order relation.

Example 5.3 Consider the monoidB1
2 = {1, a, b, ab, ba, 0} and let π : {a, b}∗ →

M be the morphism defined by π(a) = a and π(b) = b. Let us define an order on
B1

2 by setting ab 6 1, ba 6 1, and 0 6 x for all x ∈ B1
2 . Then the set I = {1, ab}

is an upper set and π−1(I) = (ab)∗. Thus the language (ab)∗ is recognised by
the ordered monoid (B1

2 ,6).

It suffices to reverse the order to recognise the complement of a language.

Proposition 5.29 Let L be a language of A∗. If L is recognised by an ordered
monoid (M,6), then Lc is recognised by the ordered monoid (M,>).

Proof. Let ϕ : A∗ → M be a morphism and let P be an upper set of (M,6)
such that ϕ−1(P ) = L. Then ϕ−1(P c) = Lc and it suffices to show that P c is
a >-upper set. Suppose that x ∈ P c and x > y. If y ∈ P , then x ∈ P , since P
is a 6-upper set. Thus y ∈ P c, which concludes the proof.

5.3 Syntactic order

First note that, if (M,6) is an ordered monoid, the congruence 6 recognises
every upper set of M . The syntactic congruence of an upper set Q of M is the
coarsest congruence among the congruences on M that recognise Q.
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Let M be an ordered monoid and let P be an upper set of M . Define a
relation 4P on M by setting u 4P v if and only if, for every x, y ∈M ,

xuy ∈ P ⇒ xvy ∈ P

One can show that the relation 4P is a congruence of ordered monoids on M
that recognises P . This congruence is called the syntactic congruence of P in
M .

The ordered monoid (M(P ),6) = M/4P is the syntactic ordered monoid
of P , the order relation on M(P ) the syntactic order of P and the quotient
morphism ηP from M onto M(P ) the syntactic morphism of P .

The syntactic congruence is characterised by the following property.

Proposition 5.30 The syntactic congruence of P is the coarsest congruence
that recognises P . Furthermore, a congruence 4 recognises P if and only if 4P

is coarser than 4.

It is sometimes convenient to state this result in terms of morphisms:

Corollary 5.31 Let ϕ : M → N be a surjective morphism of ordered monoids
and let P be an upper set of M . The following properties hold:

(1) The morphism ϕ recognises P if and only if ηP factorises through it.

(2) Let π : N → R be a surjective morphism of ordered monoids. If π ◦ ϕ
recognises P , then ϕ recognises P .

5.4 Computation of the syntactic ordered monoid

We already know that the syntactic monoid of a language is equal to the tran-
sition monoid of its minimal automaton. Its syntactic order can be computed
in two different ways: either directly on the syntactic monoid or by using the
order on the complete minimal automaton.

Let L be a language, let η : A∗ → M be its syntactic monoid and let
P = η(L). The syntactic order 6P is the partial order on M defined as follows :
u 6P v if and only if, for every s, t ∈M ,

sut ∈ P ⇒ svt ∈ P

Let A = (Q,A, · , q−, F ) be the minimal automaton of L and let 6 be the natural
order on Q. The next proposition gives the relations between 6L, 6P and 6.

Proposition 5.32 Let u and v be two words of A∗. The following conditions
are equivalent:

(1) u 6L v,

(2) η(u) 6P η(v),

(3) for all q ∈ Q, q ·u 6 q · v.

Proof. (1) implies (2). Suppose that u 6L v and let s, t ∈ M be such that
sη(u)t ∈ P . Since η is surjective, there exist some words x, y such that η(x) =
s and η(y) = t. Observing that sη(u)t = η(x)η(u)η(y) = η(xuy), one gets
η(xuy) ∈ P and hence xuy ∈ L as η recognises L. Condition (1) implies
that xvy ∈ L, or equivalently, η(xvy) ∈ P . By a similar argument, we get
η(xvy) = sη(v)t and thus sη(v)t ∈ P , which proves (2).
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(2) implies (1). Suppose that η(u) 6P η(v) and let x, y ∈ A∗ be such that
xuv ∈ L. Then η(xuv) ∈ P and since η(xuv) = η(x)η(u)η(y), one gets by (2)
η(x)η(v)η(y) ∈ P . Observing again that η(x)η(v)η(y) = η(xvy), one concludes
that η(xvy) ∈ P and finally xvy ∈ L. Thus u 6L v.

(1) implies (3). Suppose that u 6L v and let q be a state of Q. Since A
is trim, there is a word x such that q− ·x = q. Let y be a word such that
(q ·u)· y ∈ F . Then q− ·xuy ∈ F and thus xuy ∈ L. Since u 6L v, one has
xvy ∈ L and hence (q · v)· y ∈ F . Thus q ·u 6 q · v.

(3) implies (1). Assume that, for every q ∈ Q, q ·u 6 q · v. Let x, y ∈ A∗.
If xuy ∈ L, then q− ·xuy ∈ F and since q− ·xu 6 q− ·xv, one gets q− ·xvy ∈ F
and finally xvy ∈ L. Thus u 6L v.

Corollary 5.33 The syntactic ordered monoid of a recognisable language is
equal to the transition monoid of its ordered minimal automaton.

Example 5.4 Let A be the deterministic automaton of (ab)∗ (Example 5.1).
Its transition monoid was calculated in Example 3.3. Its syntactic monoid and
its syntactic order are represented below (an arrow from u to v means that
u < v).

Elements

1 2

1 1 2

a 2 0

b 0 1

aa 0 0

ab 1 0

ba 0 2

Relations

bb = aa
aba = a
bab = b

ab a b ba

aa

1

Syntactic order

Example 5.5 The ordered minimal automaton of the language aA∗b was com-
puted in Example 5.2. This automaton is represented again below, but the sink
state 0 is omitted. The order on the states is 0 < 1 < 2 < 3. The elements of
the syntactic monoid, the relations defining it and the syntactic order are also
presented in the tables below.

1 2 3

a b

a

a

b
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Elements

1 2 3

1 1 2 3

a 2 2 2

b 0 3 3

ab 3 3 3

ba 0 2 2

Relations

aa = a
bb = b
aba = a
bab = b

ab

a 1 b

ba

Syntactic order

6 Exercises

Section 1

1. (Difficult). Show that the rational subsets of a finitely generated commuta-
tive monoid form a Boolean algebra.

2. (Difficult). Show that the rational subsets of a finitely generated free group
form a Boolean algebra.

Section 2

3. Show that the set {0} is a rational subset of the additive group Z but is not
recognisable.

4. Describe the rational [recognisable] subsets of the additive monoids N and
Z.

5. (Difficult). Let G be a group and let H be a subgroup of G.

(1) Show that H is a recognisable subset of G if and only if H has finite index
in G.

(2) Show that H is a rational subset of G if and only if H is finitely generated.

Section 3

6. Let A be a complete n-state deterministic automaton. Show that the tran-
sition monoid of A has at most nn elements. Can this bound be reached?

Suppose now that A is an n-state nondeterministic automaton. Show that
the transition monoid of A has at most 2n

2

elements. Can this bound be
reached?

Section 4

7. Compute the syntactic monoid of the following languages on the alphabet
{a, b}∗:

(1) {u | |u| is odd}

(2) a∗

(3) {aba, b}



94 CHAPTER IV. RECOGNIZABLE AND RATIONAL SETS

(4) (ab)∗

(5) (aba)∗

(6) A∗aA∗aA∗bA∗

(7) A∗aaA∗

(8) A∗abA∗

(9) A∗abaA∗

(10) (a(ab)∗b)∗

(11) (aa+ bb)∗

(12) (ab+ ba)∗

(13) (a+ bab)∗

(14) (a+ bb+ aba)∗

Section 5

8. Compute the minimal ordered automaton and the ordered syntactic monoid
of the languages of Exercise 7.



Chapter V

Green’s relations and local

theory

Green’s relations were introduced and studied by Green in 1951 [37]. These
relations can be considered as a noncommutative generalisation to semigroups
of the standard notion of being a multiple among integers or polynomials. They
also have a natural interpretation in the Cayley graph of an A-generated monoid.
They are essential for understanding the structure of semigroups.

1 Green’s relations

Let S be a semigroup. We define on S four preorder relations 6R,6L,6J and
6H as follows

s 6R t if and only if s = tu for some u ∈ S1

s 6L t if and only if s = ut for some u ∈ S1

s 6J t if and only if s = utv for some u, v ∈ S1

s 6H t if and only if s 6R t and s 6L t

These relations can be considered as a noncommutative generalisation of the
notion of multiple over the integers. For instance s 6R t if s is a right multiple
of t, in the sense that one can pass from t to s by right multiplication by some
element of S1. These definitions can be reformulated in terms of ideals as follows

s 6R t⇐⇒ sS1 ⊆ tS1

s 6L t⇐⇒ S1s ⊆ S1t

s 6J t⇐⇒ S1sS1 ⊆ S1tS1

s 6H t⇐⇒ s 6R t and s 6L t

Thus s 6J t [s 6R t, s 6L t] if the ideal [right ideal, left ideal] generated by
s is contained in the ideal [right ideal, left ideal] generated by t. The following
diagram summarises the connexions between these four preorders.

95
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s 6H t

s 6R t

s 6L t

s 6J t

The equivalences associated with these four preorder relations are denoted by
R, L, J and H, respectively. Therefore

s R t⇐⇒ sS1 = tS1

s L t⇐⇒ S1s = S1t

s J t⇐⇒ S1sS1 = S1tS1

s H t⇐⇒ s R t and s L t

Thus two elements s and t are R-equivalent if they generate the same right
ideal, or, equivalently, if there exist p, q ∈ S1 such that s = tp and t = sq.
The equivalence classes of the relation R are the R-classes of S. The L-classes,
J -classes and H-classes are defined in a similar way. If s is an element of S,
its R-class [L-class, J -class, H-class] is denoted by R(s) [L(s), J(s), H(s)]. If
K is one of the Green’s relations, we shall use the notation s <K t if s 6K t but
s 6K t.

If M is an A-generated monoid, the relations R and 6R [L and 6L] have a
natural interpretation on the right [left] Cayley graph of M .

Proposition 1.1 Let M be an A-generated monoid and let s, t ∈ M . Then
s 6R t [s 6L t] if and only if there is a path from t to s in the right [left ] Cayley
graph of M . Further s R t [s L t] if and only if s and t are in the same strongly
connected component of the right [left ] Cayley graph of M .

Proof. Suppose that s 6R t. Then tp = s for some p ∈ M . Since M is A-
generated, p can be written as a product of elements of A, say p = a1 · · · an.
Therefore there is a path

s
a1−→ sa1

a2−→ · · · s(a1 · · · an−1)
an−→ s(a1 · · · an) = t

The other cases are similar.

It follows in particular that the R-classes [L-classes] of M correspond to the
strongly connected components of the right [left] Cayley graph.

Example 1.1 Let us consider the monoid M considered in Section 3.1.
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1

a

b

c

ab

bc

ca

a

b

c

a, c

b

ab

c

a

b

c

a

b, c

a

b, c

a, c

b

Figure 1.1. The right Cayley graph of M .

The right Cayley graph of M is represented in Figure 1.1. The strongly con-
nected components of this graph are the R-classes of M : {1}, {b}, {c}, {a, ab}
and {bc, ca}.

The next propositions summarize some useful properties of Green’s relations.

Proposition 1.2 In each semigroup S, the relations 6R and R are stable on
the left and the relations 6L and L are stable on the right.

Proof. Indeed, if s 6R t, then sS1 ⊆ tS1 and thus usS1 ⊆ utS1. It follows
that us 6R ut. The other cases are analogous.

Proposition 1.3 Let S be a semigroup.

(1) Let e be an idempotent of S. Then s 6R e if and only if es = s and s 6L e
if and only if se = s.

(2) If s 6R sxy, then s R sx R sxy. If s 6L yxs, then s L xs L yxs.

Proof. We shall prove only the first part of each statement, since the other
part is dual.

(1) If s 6R e, then s = eu for some u ∈ S1. It follows that es = e(eu) =
(ee)u = eu = s. Conversely, if es = s, then s 6R e by definition.

(2) If s 6R sxy, then s 6R sxy 6R sx 6R s, whence s R sx R sxy.

The first part of Proposition 1.3 can be extended to the preorder 6H.

Proposition 1.4 Let S be a semigroup. Let s ∈ S and e be an idempotent of
S. Then s 6H e if and only if es = s = se.

Proof. It follows from Proposition 1.3.

The restriction of the preorder 6H to E(S) is actually an order, called the
natural order on E(S) and denoted by 6.
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Corollary 1.5 Let S be a semigroup and let e and f be idempotents of S. The
following conditions are equivalent:

(1) e 6 f ,

(2) ef = e = fe,

(3) fef = e.

Proof. The equivalence of (1) and (2) follows from Proposition 1.4 and that of
(2) and (3) from the Simplification lemma.

Despite its elementary nature, the next proposition is one of the cornerstones
of semigroup theory.

Proposition 1.6 In each semigroup S, the relations 6R and 6L [R and L]
commute.

Proof. Suppose that s 6R r and r 6L t. Then s = rv and r = ut for some
u, v ∈ S1. It follows that s = utv 6L tv 6R t. Thus 6L ◦6R ⊆ 6R ◦6L. The
opposite inclusion holds by duality and hence 6R and 6L commute. The proof
for R and L is similar.

Here is a first consequence of Proposition 1.6.

Proposition 1.7 The relation 6J is equal to 6L ◦6R and to 6R ◦6L. It is
also the preorder generated by 6R and 6L.

Proof. It follows directly from Proposition I.2.21.

We now introduce the fifth Green’s relation D, which is the preorder gen-
erated by R and L. Propositions 1.6 and I.2.21 immediately leads to an easier
definition.

Proposition 1.8 The relation D is equal to L ◦ R and to R ◦ L.

One can therefore give the following definition of D:

s D t⇐⇒ there exists u ∈ S such that s R u and u L t

⇐⇒ there exists v ∈ S such that s L v and v R t.

The equivalence classes of D are called the D-classes of S, and the D-class of
an element s is denoted by D(s).

It is easy to see that s D t implies s J t. Indeed, if s D t, there exists u ∈ S
such that s R u and u L t. It follows that sS1 = uS1 and S1u = S1t, whence
S1sS1 = S1tS1. The following diagram summarises the connexions between the
five Green’s relations.

s H t

s R t

s L t

s D t s J t
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The equality D = J does not hold in arbitrary semigroups (see Example 1.2
below) but it holds for finite semigroups.

Theorem 1.9 In a finite semigroup, the Green’s relations J and D are equal.
Furthermore, the following properties hold:

(1) If s 6J sx (in particular if s J sx), then s R sx;

(2) If s 6J xs (in particular if s J xs), then s L xs.

(3) If s J t and s 6R t, then s R t;

(4) If s J t and s 6L t, then s L t;

(5) if s = usv for some u, v ∈ S1, then us H s H sv.

Proof. If x D y, there exist z ∈ S such that x R z and z L y. It follows that
x J z and z J y, whence x J y.

Conversely, suppose that x J y. Then there exist s, t, u, v ∈ S1 such that
y = txu and x = syv, whence x = stxuv. By multiplying on the left by st and
on the right by uv, we obtain by induction the relation (st)nx(uv)n = x for all
n > 0. By Proposition II.6.33, one can choose n such that both (st)n and (uv)n

are idempotent. It follows that (st)nx = (st)n(st)nx(uv)n = (st)nx(uv)n = x
and similarly x = x(uv)n. Therefore tx L x and xu R x. The first relation
implies y = txu L xu and finally y D x.

(1) If s 6J sx, there exist u, v ∈ S1 such that usxv = s. By multiplying
on the left by u and on the right by xv, we obtain by induction the relation
uns(xv)n = s for all n > 0. By Proposition II.6.33, one can choose n such that
un is idempotent. It follows that s = uns(xv)n = ununs(xv)n = uns, whence
s(xv)n = s. It follows that s R sx, since (sx)(v(xv)n−1) = s.

(2) is dual from (1).

(3) If s 6R t, there exist u ∈ S1 such that s = tu. If further s J t, then
t J tu and t R tu by (1). Thus s R t.

(4) is dual from (3).

(5) If s = usv then s 6J us. It follows by (1) that s R sv and a dual
argument shows that s L us. Since the relation R is stable on the left, one has
us R usv = s and dually, sv L s. Thus us H s H sv.

Example 1.2 Let S be the infinite semigroup of matrices of the form

(
a 0
b 1

)

where a and b are strictly positive rational numbers, equipped with the usual
multiplication of matrices. Then the four relations R, L, H and D coincide with
the equality, but S has a single J -class.

Proposition 1.8 shows that for two elements s and t, the three conditions
s D t, R(s)∩L(t) 6= ∅ and L(s)∩R(t) 6= ∅ are equivalent. It is therefore possible
to represent D-classes by an “egg-box picture”, as in Figure 1.2.
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∗

∗

∗

∗

∗

∗

Figure 1.2. A D-class containing some idempotents.

Each row represents an R-class, each column an L-class and each cell an H-
class. The possible presence of an idempotent within an H-class is indicated by
a star. We shall see later (Proposition 1.13) that these H-classes containing an
idempotent are groups, and that all such groups occurring within a given D-class
are isomorphic. The next proposition describes the structure of a D-class.

Proposition 1.10 (Green’s lemma) Let s and t be two R-equivalent ele-
ments of S. If s = tp and t = sq for some p, q ∈ S1, then the map x → xp is
a bijection from L(t) onto L(s), the map x → xq is a bijection from L(s) and
L(t). Further, these bijections preserve the H-classes and are inverse one from
the other.

Proof. Let n ∈ L(s) (see Figure 1.3). Since L is stable on the right, nq ∈ L(sq).
Furthermore, there exist u ∈ S1 such that n = us, whence nqp = usqp = utp =
us = n. Similarly, if m ∈ L(t), then mpq = m and thus the maps x → xp and
x→ xq define inverse bijections between L(s) and L(t). Moreover, Proposition
1.2 shows that the maps x→ xp and x→ xq preserve the H-classes.

L(s)
↓

L(t)
↓

n nq

s t

p

q

Figure 1.3. An illustration of Green’s lemma.

There is of course a dual version of Green’s lemma for L-equivalent elements.
Green’s lemma has several important consequences. First, the “Location theo-
rem” of Clifford and Miller:

Theorem 1.11 (Location theorem) Let D be a D-class of a semigroup S,
and let s and t be elements of D. The following conditions are equivalent:
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(1) st ∈ R(s) ∩ L(t),

(2) R(t) ∩ L(s) contains an idempotent,

(3) s̄st = t and stt̄ = s for some inverse s̄ of s and some inverse t̄ of t.

If S is finite, then these conditions are equivalent to

(4) st ∈ D.

Proof. (1) implies (2). If st ∈ R(s) ∩L(t), the multiplication on the right by t
is, by Green’s lemma, a bijection from L(s) onto L(t) preserving the H-classes.
In particular, there exists an element e ∈ R(t) ∩ L(s) such that et = t. Since
e R t, one has e = tv for some v ∈ S1 and ee = etv = tv = e. Thus e is
idempotent.

s

t

st

e
∗

L(s) L(t)

R(s)

R(t)

(2) implies (3). Let e be an idempotent of R(t) ∩ L(s). First, one gets et = t
and se = s by Proposition 1.3. Since t R e, e = tt′ for some t′ ∈ S1. Setting
t̄ = t′e, we get tt̄t = tt′et = eet = t and t̄tt̄ = t′ett′e = t′e = t̄. Thus t̄ is an
inverse of t. Furthermore, stt̄ = stt′e = se = s. The proof of the existence of s̄
is dual.

(3) implies (1) is clear.

Finally, if S is finite, Conditions (1) and (4) are equivalent By Theorem 1.9.

Proposition 1.12 Let D be a D-class of a semigroup S. If D contains an
idempotent, it contains at least one idempotent in each R-class and in each
L-class.

Proof. Suppose that D contains an idempotent e and let s ∈ D. Then e R r
and r L s for some r ∈ D. Thus er = r by Proposition 1.3 and ru = e for some
u ∈ S1. It follows that ur is idempotent, since urur = u(ru)r = uer = ur.
Furthermore r(ur) = er = r. Consequently r L ur, L(s) = L(r) = L(ur) and
thus the L-class of s contains an idempotent.

Here is a useful consequence of the Location theorem.

Proposition 1.13 Let H be an H-class of a semigroup S. The following con-
ditions are equivalent:

(1) H contains an idempotent,

(2) there exist s, t ∈ H such that st ∈ H,

(3) H is a group.

Further, every group of S is contained in an H-class.
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Proof. The equivalence of (1) and (2) follows from Theorem 1.11. Furthermore,
it is clear that (3) implies (1). Let us show that (1) implies (3).

Let H be a H-class containing an idempotent e. Then H is a semigroup:
indeed, if s, t ∈ H, we have st ∈ R(s) ∩ L(t) = H. Moreover, if s ∈ H, we have
s R e and hence es = s by Proposition 1.3. Further, by Green’s lemma, the
map x→ xs is a permutation on H. In particular, there exists t ∈ H such that
ts = e, and thus H is a group with identity e.

Finally, if H is a group with identity e, then H is contained in the H-class
of e. Indeed, if t is the inverse of an element s of H, then st = ts = e and
se = es = s, which proves that s H e.

The following is another remarkable consequence of Green’s lemma.

Proposition 1.14 Two maximal subgroups of a D-class are isomorphic.

Proof. From Proposition 1.13, the two groups are of the form H(e) and H(f)
for some idempotent e, f of the same D-class D. Since e D f , there exists
s ∈ R(e) ∩ L(f). Thus es = s, sf = s and ts = f for some t ∈ S1. By Green’s
lemma, the function ϕ defined by ϕ(x) = txs is a bijection from H(e) onto
H(f), which maps e to f since tes = ts = f .

e s

f

s

t

Figure 1.4. The D-class D.

We claim that ϕ is a morphism. First observe that st is idempotent, since
stst = sft = st. Furthermore, st R s since sts = sf = s. If y ∈ H(e), then
y R e R s R st and by Proposition 1.3, (st)y = y. It follows that for all
x, y ∈ H(e),

ϕ(xy) = txys = tx(sty)s = (txs)(tys) = ϕ(x)ϕ(y)

proving the claim. Thus H(e) and H(f) are isomorphic.

For finite semigroups, some other properties hold.

Corollary 1.15 Let S be a finite semigroup and let s, t ∈ S be two J -related
elements of S. If st L s or ts R s, then H(t) is a group. If st = s or ts = s,
then t is idempotent.

Proof. Suppose that st L s (the other case is dual) and let J be the common
J -class of s, t and st. Since st 6L t, Theorem 1.9 shows that t L st, whence
s L t since st L s. Thus L(s) = L(t) and R(t) ∩ L(s) = H(t). Since st ∈ J ,
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Theorem 1.11 shows that H(t) contains an idempotent. Thus by Proposition
1.13, H(t) is a group.

Suppose that st = s and let e be the idempotent of H(t). By Green’s
lemma, the left multiplication by s induces a bijection from H(t) onto H(st).
But since e L s, se = s by Proposition 1.3. Thus se = s = st, whence e = t.

The case t = s is worth a separate statement, that should be compared with
Proposition 1.13.

Corollary 1.16 Let S be a finite semigroup and let s ∈ S. If s J s2, then
H(s) is a group.

We conclude this section by two results on the maximal J -classes of a finite
semigroup.

Proposition 1.17 In a finite monoid, the J -class of the identity is a group.

Proof. Let J be the J -class of 1. If e is an idempotent of J , then e 6 1 by
Corollary 1.5 whence e = 1 by Theorem 1.9. It follows that J contains a unique
idempotent and by Proposition 1.12, a unique R-class and a unique L-class.
Thus J is an H-class and thus a group.

Proposition 1.18 Let J be a 6J -maximal J -class of a semigroup S. If J is
finite, it is either regular or reduced to a single null element.

Proof. Let J be a maximal J -class. Suppose that J is not regular and contains
two distinct elements s and t. Then s = utv and t = xsy for some x, y, u, v ∈ S1.
Thus s = uxsyv and since s 6= t, we may assume that (u, v) 6= (1, 1) whence
u ∈ S or v ∈ S. Suppose that u ∈ S, the other case being dual. Then ux ∈ S and
since s 6J ux, it follows that s J ux since J is maximal. Similarly, s 6J svy,
whence svy ∈ J . Thus J contains ux, svy and their product. Therefore it is
regular by Corollary 2.25.

2 Inverses, weak inverses and regular elements

In this section, we study in more detail the notion of semigroup inverse intro-
duced in Chapter II.

2.1 Inverses and weak inverses

An element s̄ of a semigroup S is a weak inverse of an element s if s̄ss̄ = s̄. It
is an inverse (or a semigroup inverse) of s if, furthermore, ss̄s = s. Note that
any idempotent is its own inverse.

We denote the set of all weak inverses [inverses] of the element s by W (s)
[V (s)].

Proposition 2.19 If s̄ is a weak inverse of s, then s̄s and ss̄ are idempotents
and ss̄s is an inverse of s̄. Furthermore, the relations ss̄ L s̄ R s̄s and s̄s L
ss̄s R ss̄ hold.
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Proof. If s̄ is a weak inverse of s, then s̄ss̄ = s̄. Thus ss̄ss̄ = ss̄ and s̄ss̄s = s̄s.
Furthermore, since s̄(ss̄s)s̄ = s̄ss̄ and (ss̄s)s̄(ss̄s) = ss̄s, ss̄s is an inverse of s̄.
The relations of the statement follow immediately.

Corollary 2.20 If s̄ is an inverse of s, then s̄s and ss̄ are idempotents. Fur-
thermore, s and s̄ are in the same D-class and the relations ss̄ L s̄ R s̄s L s R ss̄
hold.

Proof. If s̄ is an inverse of s, then ss̄s = s and the result follows from Propo-
sition 2.19.

The case where s̄ is a weak inverse [an inverse] of s is depicted in Figure 2.5.
However, it may happen that some of the elements represented in different H-
classes are actually in the same H-class. In particular, if s = s̄, the H-class of
s is a group H whose identity is the idempotent e = ss̄ = s̄s. Furthermore s, s̄
and e are all in H and s̄ is the group inverse of s in H.

s̄
∗
s̄s

∗
ss̄ ss̄s

s̄
∗
s̄s

∗
ss̄ s

Figure 2.5. Two egg-box pictures. On the left, s̄ is a weak inverse of s.
On the right, s̄ is an inverse of s.

In general, an element may have several inverses. However, it has at most one
inverse in a given H-class.

Proposition 2.21 An H-class H contains an inverse s̄ of an element s if and
only if R(H) ∩ L(s) and R(s) ∩ L(H) contain an idempotent. In this case, H
contains a unique inverse of s.

Proof. Suppose that H contains an inverse s̄ of s. Then by Corollary 2.20, the
idempotent s̄s belongs to R(s̄) ∩ L(s) and the idempotent ss̄ to R(s) ∩ L(s̄).
Conversely, suppose that R(s)∩L(H) contains an idempotent e and R(H)∩L(s)
an idempotent f . Then e R s and thus es = s by Proposition 1.3. Now, by
Green’s lemma, there exists a unique element s̄ ∈ H such that s̄s = f . Since
s L f , sf = s and hence ss̄s = s. Similarly, f R s̄, whence fs̄ = s̄ and s̄ss̄ = s̄.
Thus s̄ is an inverse of s.

Finally, suppose that H contains two inverses s̄1 and s̄2 of s. Then Corollary
2.20 shows that ss̄1 and ss̄2 are idempotents of the same H-class and hence are
equal. Similarly, s̄1s and s̄2s are equal. It follows that s̄1ss̄1 = s̄2ss̄1 = s̄2ss̄2,
that is, s̄1 = s̄2.

Two elements s and t of a semigroup S are said to be conjugate if there
exist u, v ∈ S1 such that s = uv and t = vu. Conjugate idempotents can be
characterised as follows:

Proposition 2.22 Let e and f be two idempotents of a semigroup S. The
following conditions are equivalent:
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(1) e and f are conjugate,

(2) there exist two elements u, v ∈ S such that u D v D e D f , uv = e and
vu = f ,

(3) e and f are D-equivalent.

Proof. It is clear that (2) implies (1) and (3).
(1) implies (3). Suppose first that e = uv and f = vu for some u, v ∈ S1.

Then uvuv = uv and vuvu = vu, whence uv R uvu and uvu L vu. Thus
e = uv D vu = f .

(3) implies (2). Suppose that e D f . Then there exists s ∈ S such that
e R s and s L f . By Green’s lemma, there exists an element s̄ ∈ L(e) ∩ R(f)
such that s̄s = f . Thus ss̄s = sf = s and s̄ss̄ = fs̄ = s̄. It follows that s̄ is an
inverse of s. By Corollary 2.20, s̄s is an idempotent of the same H-class as e
and thus is equal to e.

We conclude this section by an elementary result on idempotents.

Proposition 2.23 Let e be an idempotent of a semigroup S. If e = xy for
some x, y ∈ S, then ex and ye are mutually inverse elements.

Proof. Indeed, (ex)(ye)(ex) = exyex = ex and (ye)(ex)(ye) = yexye = ye.

2.2 Regular elements

An element is regular if it has at least one inverse. A semigroup is called regular
if all its elements are regular. Similarly, a D-class [L-class, R-class, J -class] is
called regular if all its elements are regular. A nonregular D-class is also called
a null D-class.

The set of regular elements of a semigroup S is denoted by Reg(S). Since
an idempotent is its own inverse, E(S) is a subset of Reg(S).

The next proposition gives various characterisations of regular elements.

Proposition 2.24 Let s be an element of a semigroup S. The following con-
ditions are equivalent:

(1) s is regular,

(2) ss̄s = s for some s̄ ∈ S,

(3) D(s) contains an idempotent,

(4) R(s) contains an idempotent,

(5) L(s) contains an idempotent,

Proof. (1) implies (2) by definition. Condition (2) states that s is a weak
inverse of s̄. Thus Proposition 2.19 shows that (2) implies (1), (3), (4) and (5).
The equivalence of (3), (4) and (5) follows from Proposition 1.12.

(4) implies (1). Let e be an idempotent such that s R e. Then es = s
and st = e for some t ∈ S1. We claim that s̄ = tst is an inverse of s. Indeed
ss̄s = ststs = ees = es = s and s̄ss̄ = tststst = s̄. Thus s is regular.

It is useful to restate Proposition 2.24 in terms of D-classes.
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Corollary 2.25 Let D be a D-class of a finite semigroup. The following con-
ditions are equivalent:

(1) D is regular,

(2) D contains a regular element,

(3) D contains an idempotent,

(4) each R-class of D contains an idempotent,

(5) each L-class of D contains an idempotent,

(6) there exist two elements of D whose product belongs to D.

Corollary 2.25 shows that a regular D-class contains at least one idempotent
in each R-class and in each L-class. It follows that all the R-classes and L-
classes contained in a regular D-class are regular.

Let K be one of the Green’s relations R, L, J or H. A semigroup is K-trivial
if and only if a K b implies a = b.

Proposition 2.26 Let S be a finite semigroup and let K be one of the Green’s
relations R, L, H or J . Then S is K-trivial if and only if its regular K-classes
are trivial.

Proof. Let n be the exponent of S.
(a) K = R. Suppose x R y. Then there exist c, d ∈ S1 such that xc = y,

yd = x, whence xcd = x. One has (cd)n R (cd)nc and since the restriction
of R to the regular R-class is trivial, one gets (cd)n = (cd)nc. It follows that
x = x(cd)n = x(cd)nc = xc = y and therefore S is R-trivial.

(b) K = L. The proof is dual.
(c) K = J . By (a) and (b), S is R-trivial and L-trivial. Since J = D =

R ◦ L, S is J -trivial.
(d) K = H. Suppose that x H y. Then there exist a, b, c, d ∈ S1 such that

ax = y, by = x, xc = y and yd = x. It follows that x = axd and therefore
anxdn = x. Since an is idempotent and since an+1 H an, one gets an+1 = an

since the H-class of an is regular. It follows that x = anxdn = an+1xdn =
a(anxdn) = ax = y. Therefore S is H-trivial.

A finiteH-trivial semigroup is also called aperiodic. See Proposition VII.4.22
for more details. We conclude this section by another property of finite semi-
groups.

Proposition 2.27 Let S be a finite semigroup and let T be a subsemigroup of
S. Let s ∈ T and let e be an idempotent of S. Suppose that, for some u, v ∈ T 1,
e RS us, us LS s, s RS sv and sv LS e. Then e ∈ T and e RT us LT s RT

sv LT e.

e us

sv

∗

s
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Proof. Since RS(us) ∩ LS(sv) contains an idempotent, Green’s lemma shows
that svus belongs to RS(sv) ∩ LS(us), which is equal to HS(s). It follows that
the right translation ρvus is a permutation on HS(s). Since T is finite, some
power of vus, say (vus)n is an idempotent f of T . Since ρvus is a permutation
on HS(s), ρf is also a permutation on HS(s) and since f2 = f , this permutation
is the identity. In particular, sf = s, that is, s(vus)n = s. It follows that s RT

sv RT svus and a dual argument shows that s LT us LT svus. Thus svus ∈
RT (sv) ∩ LT (us) and by Green’s lemma again, RT (us) ∩ LT (sv) contains an
idempotent. This idempotent belongs to the H-class RS(us) ∩ LS(sv), thereby
it is equal to e. Thus e ∈ T .

3 Rees matrix semigroups

The Location Theorem indicates the product of two elements s and t of the same
D-class D either falls out of D or belongs to the intersection of the R-class of
s and of the L-class of t. In the latter case, the location of st in the egg-box
picture is precisely known and the intersection of the R-class of t and of the
L-class of s is a group. This suggests that the structure of a regular D-class
depends primarily on the coordinates of its elements in the egg-box picture and
on its maximal groups. This motivates the following definition.

Let I and J be two nonempty sets, G be a group and P = (pj,i)j∈J,i∈I be a
J × I-matrix with entries in G. The Rees matrix semigroup with G as structure
group, P as sandwich matrix and I and J as indexing sets, is the semigroup
M(G, I, J, P ) defined on the set I ×G× J by the operation

(i, g, j)(i′, g′, j′) = (i, gpj,i′g
′, j′) (3.1)

More generally, if P = (pj,i)j∈J,i∈I is a J × I-matrix with entries in G0, we
denote by M0(G, I, J, P ) the semigroup, called a Rees matrix semigroup with
zero, defined on the set (I ×G× J) ∪ 0 by the operation

(i, g, j)(i′, g′, j′) =

{
(i, gpj,i′g

′, j′) if pj,i′ 6= 0

0 otherwise

As suggested by the terminology, Rees matrix semigroups can be equivalently
defined as semigroups of matrices. We first equip G0 with a semiring structure
as follows. We define an addition on G0 by setting g + 0 = 0 + g = g for all
g ∈ G0 and g + g′ = 0 for all g, g′ ∈ G. This addition is associative and the
multiplication on G0 distributes over this addition and thus G0 is a semiring.
We now identify each element ofM0(G, I, J, P ) with an I×J-matrix with entries
in G0: 0 is identified with the null matrix and (i, g, j) with the matrix whose
sole nonzero entry is g in row i and column j. The product of two matrices
X and Y in M0(G, I, J, P ) is XPY . Note that all products can be calculated
using only trivial sums 0 + g = g + 0 = g.

Example 3.1 A Brandt semigroup is a Rees matrix semigroup in which I = J
and P is the identity matrix. Therefore, the product is defined by

(i, g, j)(i′, g′, j′) =

{
(i, gg′, j′) if j = i′,

0 otherwise.
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A Brandt aperiodic semigroup is a Brandt semigroup whose structure group is
trivial. If I = {1, . . . , n}, this semigroup is denoted by Bn. For instance, B2 is
the semigroup of 2× 2 Boolean matrices

B2 =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)}

under multiplication. This semigroup is studied in more detail in Section 2.1.

The regularity of a Rees matrix semigroups depends only on its sandwich
matrix.

Proposition 3.28 A Rees matrix semigroup with zero is regular if and only if
every row and every column of its sandwich matrix has a nonzero entry.

Proof. Let S = M0(G, I, J, P ) be a regular Rees matrix semigroup with zero
and let s = (i, g, j) be a nonzero element of S. Since s is regular, there exists a
nonzero element s̄ = (i′, g′, j′) such that ss̄s = s. It follows that pj,i′ 6= 0 and
pj′,i 6= 0. Consequently, every row and every column of P has a nonzero entry.

Conversely, assume that in P , every row j contains a nonzero entry pj,ij
and every column i contains a nonzero entry pji,i. Then each nonzero element
s = (i, g, j) admits as an inverse the element s̄ = (ij , p

−1
j,ij
g−1p−1

ji,i
, ji) since

ss̄s = (i, gpj,ijp
−1
j,ij
g−1p−1

ji,i
pji,ig, j) = s and

s̄ss̄ = (ij , p
−1
j,ij
g−1p−1

ji,i
pji,igpj,ijp

−1
j,ij
g−1p−1

ji,i
, ji) = s̄

Thus S is regular.

Green’s relations in a regular Rees matrix semigroup with zero are easy to
describe.

Proposition 3.29 Let S = M0(G, I, J, P ) be a regular Rees matrix semigroup
with zero. Then S is 0-simple. In particular, D = J in S and all the elements
of S−0 are in the same D-class. Furthermore, if s = (i, g, j) and s′ = (i′, g′, j′)
are two elements of S − 0, then

s 6R s′ ⇐⇒ s R s′ ⇐⇒ i = i′, (3.2)

s 6L s
′ ⇐⇒ s L s′ ⇐⇒ j = j′, (3.3)

s 6H s′ ⇐⇒ s H s′ ⇐⇒ i = i′ and j = j′. (3.4)

Proof. Proposition 3.28 implies that in P , every row j contains a nonzero entry
pj,ij and every column i contains a nonzero entry pji,i.

Formula 3.1 shows that if s 6R s′, then i = i′. The converse is true, since

(i, g, j)(ij , p
−1
j,ij
g−1g′, j′) = (i, gpj,ijp

−1
j,ij
g−1g′, j′) = (i, g′, j′)

This proves (3.2). Property (3.3) is dual and (3.7) is the conjunction of (3.2)
and (3.6).

Setting t = (i, 1, j′), it follows in particular that s R t L s′, whence s D s′.
Thus the relations D and hence J are universal on S − 0. Finally, if e and f
are nonzero idempotents such that e 6 f , e H f by (3), and hence e = f by
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Proposition 1.13. Thus every nonzero idempotent of S is 0-minimal and S is
0-simple.

j j′

i (i, g, j) (i, gpj,i′g
′, j′)

i′
∗

(i′, g′, j′)

Figure 3.6. The product of two elements when pj,i′ 6= 0.

A slightly more precise result holds for Rees matrix semigroups.

Proposition 3.30 Let S = M(G, I, J, P ) be a Rees matrix semigroup. Then
S is simple. In particular, D and J are both the universal relation and every
H-class is a group. Furthermore, if s = (i, g, j) and s′ = (i′, g′, j′) are two
elements of S, then

s 6R s′ ⇐⇒ s R s′ ⇐⇒ i = i′, (3.5)

s 6L s
′ ⇐⇒ s L s′ ⇐⇒ j = j′, (3.6)

s 6H s′ ⇐⇒ s H s′ ⇐⇒ i = i′ and j = j′. (3.7)

Proof. The proposition mostly follows from Proposition 3.29 by considering
S0. A complementary property is that s R ss′ L s′, which shows that the
relations D and J are universal on S. It follows that S is simple. Taking s = s′,
we get s H s2 and thus by Proposition 1.13, H(s) is a group. Consequently,
each H-class is a group.

We remind the reader that a semigroup S is simple if its only ideals are ∅
and S. It is 0-simple if it has a zero, denoted by 0, if S2 6= 0 and if ∅, 0 and
S are its only ideals. By Proposition II.3.19, a simple semigroup has a single
J -class, and a 0-simple semigroup has a single nonzero J -class.

Proposition 3.31 A 0-simple semigroup contains a single nonzero D-class and
this D-class is regular.

Proof. Let S0 be a simple semigroup. By Proposition II.3.19, S is a regular
D-class of S0. Furthermore, if s ∈ S, then s2 ∈ S and Corollary 1.16 shows that
s H s2. It follows by Proposition 1.13 that H(s) is a group.

A similar result holds for simple semigroups.

Proposition 3.32 A simple semigroup contains a single D-class. This D-class
is regular and each of its H-classes is a group.

We can now state the main theorem of this section.
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Theorem 3.33 (Rees-Sushkevich theorem)

(1) A semigroup is simple if and only if it is isomorphic to some Rees matrix
semigroup.

(2) A semigroup is 0-simple if and only if it is isomorphic to some regular
Rees matrix semigroup with zero.

Proof. By Proposition 3.29, every regular Rees matrix semigroup with zero is
0-simple. Similarly by Proposition 3.30, every Rees matrix semigroup is simple.

Let S be a 0-simple semigroup. Let (Ri)i∈I [(Lj)j∈J ] be the set of R-classes
[L-classes] of S and let e be an idempotent of S. We denote by Hi,j the H-class
Ri ∩ Lj . By Propositions 1.13 and 3.31, the H-class of e is a group G. Let us
choose for each i ∈ I an element si ∈ L(e) ∩ Ri and for each j ∈ J an element
rj ∈ R(e) ∩ Lj . By Proposition 1.3, erj = rj and sie = si. Consequently, by
Green’s lemma the map g → sigrj from G into Hi,j is a bijection. It follows
that each element of S − 0 admits a unique representation of the from sigrj
with i ∈ I, j ∈ J and g ∈ G.

Let P = (pj,i)j∈J,i∈I be the J × I matrix with entries in G0 defined by
pj,i = rjsi. By Theorem 1.11, rjsi ∈ G if Hi,j contains an idempotent and
rjsi = 0 otherwise. Define a map ϕ : S →M0(G, I, J, P ) by setting

ϕ(s) =

{
(i, g, j) if s = sigrj

0 if s = 0

Clearly ϕ(s)ϕ(0) = ϕ(0)ϕ(s) = 0 = ϕ(0). Let now s and s′ be nonzero elements.
Setting ϕ(s) = (i, g, j) and ϕ(s′) = (i′, g′, j′), we have

ϕ(s)ϕ(s′) = (i, g, j)(i′, g′, j′) =

{
(i, grjsig

′, j) if Hi′,j contains an idempotent

0 otherwise

Since s ∈ Hi,j and s′ ∈ Hi′,j′ , Theorem 1.11 shows that ss′ 6= 0 if and only if
Hi′,j contains an idempotent and in this case, ss′ = sigrjsig

′rj = si(grjsig
′)rj .

Therefore ϕ is a morphism, bijective by construction and hence is an isomor-
phism.

The case of simple semigroups can be handled in a similar way.

Example 3.2 Let S be the semigroup generated by the following transforma-
tions:

1 2 3 4 5 6

∗ a 1 1 1 4 4 4

∗ b 2 2 2 5 5 5

∗ c 3 3 3 6 6 6

∗ d 1 4 0 4 1 0



3. REES MATRIX SEMIGROUPS 111

The elements of S and a set of relations defining S are given below

1 2 3 4 5 6

∗ a 1 1 1 4 4 4

∗ b 2 2 2 5 5 5

∗ c 3 3 3 6 6 6

∗ d 1 4 0 4 1 0

bd 4 4 4 1 1 1

∗ cd 0 0 0 0 0 0

db 2 5 0 5 2 0

dc 3 6 0 6 3 0

bdb 5 5 5 2 2 2

bdc 6 6 6 3 3 3

dbd 4 1 0 1 4 0

∗ dbdb 5 2 0 2 5 0

dbdc 6 3 0 3 6 0

Relations:

aa = a ab = b ac = c ad = a ba = a

bb = b bc = c ca = a cb = b cc = c

da = d dd = d cd = 0 dcd = 0 bdbd = a

Finally, its D-class structure is the following:

∗
a bd

∗
b bdb

∗
c bdc

∗
d dbd

∗
dbdb db dc dbdc

∗
0

It follows that S is a 0-simple semigroup, isomorphic to the Rees matrix semi-
group M(Z/2Z, 2, 3, P ), where Z/2Z is the multiplicative group {1,−1} and

P =



1 1
1 −1
1 0




The isomorphism is given by a = (1, 1, 1), b = (1, 1, 2), c = (1, 1, 3) and d =
(2, 1, 1).

The Rees-Sushkevich theorem has some particular cases of interest. If G is
trivial and Pi,j = 1 for all i ∈ I and j ∈ J , then M(I, J,G, P ) is isomorphic to
a rectangular band B(I, J), which is the set I × J with the multiplication

(i, j)(k, ℓ) = (i, ℓ)

If I = {1, . . . , n} and J = {1, . . . ,m}, the notation B(n,m) is also used.
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Corollary 3.34 Let S be a nonempty finite aperiodic semigroup. The following
conditions are equivalent:

(1) S is simple,

(2) S is idempotent and for all e, f, s ∈ S, esf = ef ,

(3) S is isomorphic to a rectangular band.

Proof. The equivalence of (1) and (3) follows directly from the Rees-Sushkevich
theorem.

(3) implies (2) since in B(I, J), (i, j)(k, ℓ)(ℓ,m) = (i,m) = (i, j)(ℓ,m).
(2) implies (1). Let I be a nonempty ideal of S and let s ∈ I and e ∈ S.

Since I is an ideal, ese ∈ I. Further, one has by (2), ese = ee = e. It follows
that e ∈ I and hence I = S. Therefore S is simple.
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Figure 3.7. An aperiodic simple semigroup: the rectangular band B(4, 6).

Furthermore, if I [J ] is a singleton and then M(I, J,G, P ) is a right [left] zero
semigroup. Conversely, any right [left] zero semigroup is isomorphic to such a
Rees matrix semigroup.

∗

∗

∗

∗ ∗ ∗ ∗

Figure 3.8. A left zero semigroup and a right zero semigroup.

4 Structure of regular D-classes

Let D be a regular D-class of a semigroup S. We define a semigroup D0 whose
support is D ∪ 0 and multiplication (denoted by ∗) is given by

s ∗ t =

{
st if st ∈ D,

0 otherwise

We then have the following proposition.

Proposition 4.35 If D is a regular D-class of a semigroup, D0 is a regular
0-simple semigroup.
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Proof. We first verify that all elements of D are D-equivalent in D0. Let
s, t ∈ D and let r ∈ D be such that s R r L t. Let u and v be elements of
S1 such that r = su and s = rv. Since D is regular, L(s) [L(r)] contains an
idempotent e [f ]. Thus se = s and rf = r by Proposition 1.3. It follows that
r = s(eu) and s = r(fv). Furthermore, eu L su since e L s and thus eu ∈ D.
Similarly, fv ∈ D and hence s R r in D0. Dually, r L t in D0 and finally, s D t
in D0.

It follows that 0 and D0 are the only ideals of D0. Thus D0 is 0-simple.
Since D is regular, D0 is also regular.

An important particular case occurs when D is itself a semigroup. We say
in this case that is a full D-class of S.

Proposition 4.36 Let D be a regular D-class of a semigroup. The following
conditions are equivalent:

(1) D is full,

(2) D is a simple semigroup,

(3) every H-class of D contains an idempotent,

(4) the product of any two idempotents of D is also in D,

(5) D is a isomorphic to some Rees matrix semigroup.

Proof. The equivalence of (1) and (2) is trivial and that of (2) and (5) follows
from Theorem 3.33.

(1) implies (4) is trivial.
(4) implies (3). Let H be an H-class of D and let x ∈ H. Since D is regular,

there exist by Proposition 1.12 an idempotent e in R(x) and an idemptotent f
in L(x). By (4), fe belongs to D and thus, by the Location theorem (Theorem
1.11), R(e)∩L(f) contains an idempotent. But R(e)∩L(f) is equal to H, which
proves (3).

(3) implies (1) also follows from the Location theorem.

G

...

G

G

G

...

G

G

. . .

. . .

. . .

. . .

G

...

G

G

Figure 4.9. A completely regular D-class.

4.1 Structure of the minimal ideal

Proposition 4.37 Let S be a finite semigroup. Then S has a unique minimal
ideal. This ideal is a regular simple semigroup.
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Proof. The set of all ideals has a 6J -minimal element I, which is the unique
minimal ideal of S. By construction, I is simple. Let s ∈ S. The descending
sequence s >J s2 >J s3 . . . is stationary. In particular, there exists an integer
n such that sn J s2n and hence sn H s2n. It follows by Proposition 1.13
that H(sn) contains an idempotent. Thus E(S) is nonempty and contains a
6J -minimal element e. This minimal idempotent belongs to I and thus I is
simple.

It follows that the minimal ideal of a finite semigroup has the following
structure. Every H-class is a group and all these groups are isomorphic.

∗

∗

∗

∗
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∗

∗

∗

∗
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Figure 4.10. The minimal ideal of a finite semigroup.

5 Green’s relations in subsemigroups and quo-

tients

Let us start with a trivial observation: Green’s relations are stable under mor-
phisms.

Proposition 5.38 Let ϕ : S → T be a morphism and let K be one of the
relations 6R, 6L, 6H, 6J , R, L, H, D or J . If s K t, then ϕ(s) K ϕ(t).

Let now T be a subsemigroup [a quotient] of a semigroup S. It is often
useful to compare Green’s relations defined in S and T . For this purpose, if K
is any one of Green’s relations or preorders, we denote by KS [KT ] the Green’s
relation or preorder defined in the semigroup S [T ].

5.1 Green’s relations in subsemigroups

We first consider the case of subsemigroups.

Proposition 5.39 Let T be a subsemigroup of a finite semigroup S and let
s, t ∈ T with t regular in T . Let K be one of the relations 6R, 6L, 6H, R, L
or H. If s KS t, then s KT t.

Proof. Suppose that s 6RS
t. If t̄ is an inverse of t in T , then t RT tt̄ and

thus s 6RS
tt̄. Since tt̄ is idempotent, it follows from Proposition 1.3 that

tt̄s = s. Thus s 6RT
tt̄ and finally s 6RT

t. The proof for the other relations
is similar.
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Proposition 5.39 does not extend to 6J , D nor J . Let S be, unsurprinsingly,
the universal counterexample B2 = {a, b, ab, ba, 0}, with aba = a, bab = b and
a2 = b2 = 0. Let T = E(S) = {ab, ba, 0}. Then ab JS ba, but ab 66JT

ba.
However, if T is an ideal of S, the following property holds:

Proposition 5.40 Let T be an ideal of a finite semigroup S and let s, t ∈ T
with s or t regular in T . Let K be one of the relations 6R, 6L, 6H, 6J , R, L,
H or J . If s KS t, then s KT t.

Proof. Suppose that s 6JS
t. Then s = utv for some u, v ∈ S1. If s is regular,

let s̄ be an inverse of s in T . Then s = ss̄ss̄s = ss̄utvs̄s. Since T is an ideal,
ss̄u and vs̄s are elements of T . Thus s 6JT

t. If t is regular, let t̄ be an
inverse of t in T . Then s = utv = utt̄tt̄tv. Since T is an ideal, utt̄ and t̄tv are
elements of T . Thus s 6JT

t. The proof for the other relations is similar.

If T is a local subsemigroup of S (see Exercise II.10), a similar result holds
without any regularity assumption.

Proposition 5.41 Let e be an idempotent of a finite semigroup S and let T =
eSe. Let K be one of the relations 6R, 6L, 6H, 6J , R, L, H or J . If two
elements s and t of T satisfy s KS t, then s KT t.

Proof. Suppose that s 6RS
t. Then s = tu for some u ∈ S1. Since s = ese

and t = ete, s = ese = eteu = eteeue. Thus s 6RT
t. The proof for the other

relations is similar.

A useful consequence of Proposition 5.39 is the following corollary:

Corollary 5.42 Let T be a subsemigroup of a finite semigroup S and let D be
a regular DT -class of T . Then the restrictions to D of the Green’s relations in
S and T coincide.

Proof. Since D is a DT -class of T , the relations DT , DS , JT and JS are
universal on D and hence equal. The rest of the corollary follows directly from
Proposition 5.39.

5.2 Green’s relations in quotient semigroups

In this subsection, ϕ will denote a surjective morphism from a semigroup S onto
a semigroup T . Little can be said in the general case.

Proposition 5.43 Let K be one of the relations R, L, H, D or J and let K
be a KT -class of T . Then ϕ−1(K) is a union of KS-classes.

Proof. The result follows immediately from Proposition 5.38.

More precise results hold for finite semigroups.

Proposition 5.44 Suppose that S is finite. Let J be a J -class of T and let I
be a 6J -minimal J -class of S contained in ϕ−1(J). Then

(1) ϕ(I) = J and ϕ induces a surjective morphism from I0 onto J0,
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(2) each R-class [L-class ] of S contained in I maps under ϕ onto an R-class
[L-class ] of T contained in J ,

(3) I is regular if and only if J is regular. In this case, I is the unique minimal
J -class of ϕ−1(J).

(4) If J is null, then every J -class in ϕ−1(J) is null.

Proof. (1) First, by Proposition 5.43, ϕ−1(J) is a union of J -classes of S. Since
S is finite, there exists a 6J -minimal J -class I of S contained in ϕ−1(J).

Let s ∈ I and t ∈ J . Since ϕ(s) J t and ϕ is surjective, one has t =
ϕ(u)ϕ(s)ϕ(v) for some u, v ∈ S1. Therefore ϕ(usv) = t and usv ∈ ϕ−1(J).
Since s ∈ I and I is a minimal J -class in ϕ−1(J), it follows that usv ∈ I.
Therefore ϕ(I) = J .

Let s, t ∈ I. If st ∈ I, then ϕ(st) ∈ J . If st /∈ I, then st <J s and hence
ϕ(st) /∈ J : otherwise, I would not be a minimal J -class in ϕ−1(J). Therefore,
ϕ induces a well-defined surjective morphism from I0 onto J0.

(2) Let R be an R-class of I. Let r ∈ R and let t be an element of J R-
equivalent to ϕ(r). Then t = ϕ(r)x for some x ∈ T 1 and since ϕ is surjective,
ϕ(u) = x for some u ∈ S1. It follows that ϕ(ru) = ϕ(r)ϕ(u) = ϕ(r)x = t and
therefore ru ∈ ϕ−1(J). Since ru 6R r and I is a minimal J -class of ϕ−1(J)
containing ru, one gets ru ∈ I. It follows by Theorem 1.9 that ru ∈ R and thus
t ∈ ϕ(R). Consequently, ϕ maps R onto an R-class of T containing in J . The
proof is dual for the L-classes.

(3) If I is regular, it contains an idempotent e. Therefore ϕ(e) is an idem-
potent of J , and J is regular. Suppose now that J is regular an let e be an
idempotent of J . By (1), there is an element x ∈ I such that ϕ(x) = e. It
follows that ϕ(xω) = e and since xω 6 x and I is a 6J -minimal J -class, one
gets xω ∈ I. Thus I is regular.

Let I1 and I2 be two 6J -minimal J -classes of ϕ−1(J). The previous ar-
gument shows that there exist two idempotents e1 ∈ I1 and e2 ∈ I2 such that
ϕ(e1) = ϕ(e2) = e. It follows that ϕ(e1e2) = e and thus e1e2 ∈ ϕ

−1(J). But
since e1e2 6J e1 and e1e2 6J e2, one gets e1e2 ∈ J1 ∩ J2, a contradiction.

(4) is a consequence of (3) since a J -class is null if and only if it is not
regular.

One says that an element y of T is lifted to an element x of S if ϕ(x) = y.
Similarly, a subset Y of T is lifted to a subset X of S if ϕ(X) = Y .

Theorem 5.45 (Lifting lemma) If ϕ is a morphism from a finite semigroup
onto a finite semigroup, then

(1) every idempotent lifts to an idempotent,

(2) every J -class lifts to a J -class,

(3) every regular R-class [L-class, H-class ] lifts to a regular R-class [L-class,
H-class ],

(4) every group lifts to a group.

Proof. (1) has been proved several times, but we repeat the argument. If e
is an idempotent of T , and x is an element of S such that ϕ(x) = e, then
ϕ(xω) = e.

(2) follows from Proposition 5.44.
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(3) Let R be a regular R-class of T and let r ∈ R. Let J be the regular
J -class of T containing R. By Proposition 5.44, there is a unique 6J -minimal
J -class I of S contained in ϕ−1(J). Choose s ∈ I such that ϕ(s) = r. By
Proposition 5.44 again, the R-class of s maps onto an R-class of J , which is
necessarily R. Similarly, the L-class of s maps onto the L-class of r and hence,
the H-class of s maps onto the H-class of r.

(4) If H is a group of T , it is contained into a maximal group G of T which
is also an H-class. Then we may use the argument of (3) with r idempotent
and we may choose by (1) s to be also idempotent. Then G lifts to an H-
class containing an idempotent, which is therefore a group K. In particular, ϕ
induces a group morphism from K onto G and the group ϕ−1(H) is mapped
onto H. This proves that H lifts to a group.

The following example shows that Property (2) in Proposition 5.44 does not
extend to H-classes.

Example 5.1 The minimal automata of the languages

K = {aibaj | i ≡ 0 mod 2 and j ≡ 0 mod 2}

L = {aibaj | i+ j ≡ 0 mod 2}

are represented in Figure 5.11:

1 2

3 4

a

a

b b

a

a

1 2

3 4

a

a

b

a

a

Figure 5.11. The minimal automata of K and L.

Their syntactic monoids M (on the left) and N (on the right) are respectively

1 1 2 3 4

a 2 1 4 3

b 3 0 0 0

ab 0 3 0 0

ba 4 0 0 0

bb 0 0 0 0

aba 0 4 0 0

1 1 2 3 4

a 2 1 4 3

b 3 4 0 0

ab 4 3 0 0

bb 0 0 0 0

The monoid M = {1, a, b, ab, ba, bab, 0} is presented on {a, b} by the relations
aa = 1, bab = 0 and bb = 0. The monoid N = {1, a, b, ab, 0} is presented on
{a, b} by the relations aa = 1, ba = ab and bb = 0.

The J -class structure of M and N is represented below:
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∗
1, a

∗
1, a

b ba

ab aba
ab, b

∗
0

∗
0

Let ϕ : M → N be the surjective morphism defined by ϕ(1) = 1, ϕ(a) = a,
ϕ(b) = b, ϕ(ab) = ab, ϕ(ba) = ab and ϕ(aba) = b. Then J = {ab, b} is both a
J -class and an H-class of N and I = {b, ab, ba, aba} = ϕ−1(J) is a J -class of
M . However no H-class of I is mapped onto J .

6 Green’s relations and transformations

Semigroups are often given as transformation semigroups. We shall therefore
examine the Green’s relations in such semigroups.

Given an element a ∈ T (E), we denote by Im(a) the range of a and by
Ker(a) the partition on E induced by the equivalence relation ∼a defined by

p ∼a q ⇐⇒ p· a = q · a

Finally, we set rank(a) = | Im(a)| = |Ker(a)|. For example, if

a =

(
1 2 3 4 5 6 7
1 4 5 5 5 4 1

)

we have Im(a) = {1, 4, 5}, Ker(a) = 17/26/345 and rank(a) = 3.
We first mention an elementary property of the rank.

Lemma 6.46 Let a, b ∈ T (E). Then rank(ab) 6 max{rank(a), rank(b)}.

Proof. This follows from the two relations Im(ab) ⊆ Im(b) and Ker(ab) ⊆
Ker(a).

One can now describe the Green’s relations in the semigroup T (E).

Proposition 6.47 Let a, b be elements of T (E). Then

(1) a 6R b if and only if Ker(a) is a partition coarser than Ker(b) and a R b
if and only if Ker(a) = Ker(b),

(2) a 6L b if and only if Im(a) ⊆ Im(b) and a L b if and only if Im(a) = Im(b),

(3) a 6J b if and only if rank(a) 6 rank(b) and a J b if and only if rank(a) =
rank(b).

Proof. (1) If a 6R b, there exists u ∈ T (E), such that a = bu and therefore
Ker(a) is coarser than Ker(b). Conversely, if this condition is satisfied, the
relation u = a ◦ b−1 is a function such that bu = a. Therefore a 6R b. The
result for R follows immediately.
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(2) If a 6L b, there exists u ∈ T (E), such that au = b and therefore
Im(a) ⊆ Im(b). Conversely, if Im(a) ⊆ Im(b), there exists for each q ∈ E an
element q′ such that q′ · b = q · a. The function q → q′ defines a transformation
u such that ub = a and thus a 6L b. The result for L follows immediately.

(3) If a 6J b, there exist u, v ∈ T (E) such that a = ubv and therefore
rank(a) 6 rank(b). Conversely, suppose that rank(a) 6 rank(b). We construct
a transformation u by sending each class of Ker(a) onto an element of Im(b) and
two distinct classes onto two distinct elements; this is possible since | Im(a)| =
|Ker(a)| 6 | Im(b)|. Then Ker(u) = Ker(a) and Im(u) ⊆ Im(b) by construction.
Therefore a R u by (1), u 6L b by (2) and finally a 6J u 6J b. The result for
J follows immediately.

We can now pass to the general study of transformation semigroups. Given
a set E and a partition E = {E1, . . . , En} of E, we say that a subset F of E is
a tranversal of E if, for 1 6 i 6 n, |Ei ∩ F | = 1.

Proposition 6.48 Let S be a subsemigroup of T (E). An element a belongs to
a group of S if and only if Im(a) is a transversal of Ker(a).

Proof. If a belongs to a group, then an = a for a certain n > 2 and therefore a
induces a bijection on Im(a). Let K be a class of Ker(a). If |K∩Im(a)| > 2, two
elements of Im(a) have the same image under a, which contradicts the above
property. Therefore |K ∩ Im(a)| 6 1 for every K ∈ Ker(a). Furthermore, if
K ∩ Im(a) = ∅ for a class K of Ker(a), it follows that

| Im(a)| =
∑

K∈Ker(a)

|K ∩ Im(a)| < |Ker(a)|

a contradiction. Therefore Im(a) is a transversal of Ker(a).
Conversely, if this condition is satisfied, a induces a bijection on its image

and therefore an = a for some n > 2. It follows by Proposition 1.13 that a
belongs to a group of S.

Part of Proposition 6.47 extends to all transformation semigroups.

Proposition 6.49 Let S be a subsemigroup of T (E). Then

(1) if a 6R b, then Ker(a) is a coarser partition than Ker(b) and if a R b,
then Ker(a) = Ker(b),

(2) if a 6L b, then Im(a) ⊆ Im(b) and if a L b, then Im(a) = Im(b),

(3) if a 6J b, then rank(a) 6 rank(b) and if a J b, then rank(a) = rank(b).

Proof. See the proof of Proposition 6.47.

Note that the equivalences stated in Proposition 6.47 for T (E) do not hold
for all transformation semigroups. For instance, in the semigroup S represented
in Figure A.2, the elements acb and acbc have the same image but are not L-
equivalent. Similarly, rank(acac) = rank(cbcb), but these two idempotents are
not J -equivalent.

However, Proposition 6.48 enables us to locate very easily the elements of a
group in S. One can then reconstruct completely the regular D-class of such an
element x by the following algorithm:
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(1) Calculate all the sets of the form Im(xr) (where r ∈ S1) such that
| Im(xr)| = | Im(x)|. For each such set I, remember an element r such
that I = Im(xr).

(2) In parallel to (1), calculate all the transformations xr (r ∈ S1) such that
Im(xr) = Im(x). One obtains the H-class of x.

(3) Calculate all the partitions of the form Ker(sx) (where s ∈ S1) such that
|Ker(sx)| = |Ker(x)|. For each such partition K, remember an element s
such that K = Ker(sx).

(4) Among the sets calculated in (1), retain only those which are transver-
sals of one of the partitions calculated in (3): one obtains a set I =
{Im(xr1), . . . , Im(xrn)}, where r1 = 1. Similarly, among the partitions
calculated in (3), retain only those which admits as a transversal one of
the sets calculated in (1). We obtain a set K = {Ker(s1x), . . . ,Ker(smx)},
where s1 = 1.

(5) The results are summarized in the double-entry table below, representing
the egg-box picture of the D-class of x. If Hi,j = Rsix ∩ Lxrj , one has
Hi,j = siHrj , which enables us to calculate the D-class completely. Fi-
nally, the H-class Hi,j is a group if and only if Im(xrj) is a transversal of
Ker(six).

H xrj

six Hi,j

smx

Im(xr1) Im(xrj) Im(xrn)

Ker(x) = Ker(s1x)

Ker(smx)

Justification of the algorithm.
Recall that x is an element of a group in S. Suppose that rx R x and let

e ∈ E(S) and s ∈ S1 are such that x R xr, xr L e, e R sx and sx L x.

x xr

sx e

then by Proposition 6.48 Im(e) is a transversal of Ker(e) and by Proposition
6.49, Im(e) = Im(xr) and Ker(sx) = Ker(e), so that Im(xr) is a transversal of
Ker(sx). Converserly, suppose that Im(xr) is a transversal of a certain Ker(sx),
where | Im(xr)| = | Im(x)| and |Ker(sx)| = |Ker(x)|. Let eT (E) be a transfor-
mation with range Im(xr) and with kernel Ker(sx). Then by Proposition 6.47



7. SUMMARY: A COMPLETE EXAMPLE 121

one has in T (E), x D xr D sx, xr L e and e L sx. It follows that x R xr,
xr L e, e R sx and sx L x. Now, x, xr and sx belong to S and by Proposition
2.27, one has e ∈ S and x, xr, sx and e are in the same D-class of S.

This proves that the algorithm computes the R-class of x.

In practice, this algorithm is only useful for computing regular D-classes.

7 Summary: a complete example

We compute in this section the minimal ordered automaton and the ordered
syntactic monoid of the language L = (a + bab)∗(1 + bb). We invite the reader
to verify this computation by hand. It is the best possible exercise to master
the notions introduced in the first chapters.

The minimal automaton of L is represented in Figure 7.12.

0

1

2

3

4

a, b

a

b

a

b
a

a, b

b

Figure 7.12. The minimal automaton of L.

The order on the set of states is 2 < 4 and 0 < q for each state q 6= 0. The
syntactic monoid of L has 27 elements including a zero: b2a2 = 0.

1 2 3 4

∗ 1 1 2 3 4

a 1 3 0 0

b 2 4 1 0

∗ a2 1 0 0 0

ab 2 1 0 0

ba 3 0 1 0

b2 4 0 2 0

a2b 2 0 0 0

aba 3 1 0 0

ab2 4 2 0 0

ba2 0 0 1 0

bab 1 0 2 0

∗ b2a 0 0 3 0

b3 0 0 4 0

1 2 3 4

a2ba 3 0 0 0

a2b2 4 0 0 0

aba2 0 1 0 0

∗ abab 1 2 0 0

ab2a 0 3 0 0

ab3 0 4 0 0

ba2b 0 0 2 0

∗ baba 1 0 3 0

bab2 2 0 4 0

∗ b2a2 0 0 0 0

∗ aba2b 0 2 0 0

abab2 2 4 0 0

babab 2 0 1 0
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It is defined by the following set of relations:

a2a = a2 b2ab = ba2 b3a = 0 b4 = 0 a2ba2 = 0

a2bab = a2 a2b2a = 0 a2b3 = 0 ababa = a ab2a2 = 0

ba2ba = b2a ba2b2 = b3 baba2 = a2 bab2a = a2ba bab3 = a2b2

b2a2 = 0 babab2 = b2

It contains 7 D-classes, 15R-classes, 10 L-classes and 23H-classes. The minimal
ideal reduces to the zero, but there is a unique regular 0-minimal ideal. Its D-
class structure is represented below:

∗
1

b

∗
baba ba bab babab

aba a
∗
abab ab

abab2

ab2

b2

bab2

∗
a2 a2ba a2b

ba2
∗
b2a ba2b

aba2 ab2a
∗
aba2b

a2b2

ab3

b3

∗
0

The syntactic preorder satisfies 0 < x for all x 6= 0. The other relations are
represented below, with our usual convention: an arrow from u to v means that
u < v.
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1

a

b

aa

ab ba

bb

aab

aba

abbbaa

bab

bba

bbb

aaba

aabb

abaa

abab

abba

abbb baab

baba

babb

abaab

ababb

babab

8 Exercises

1. Describe Green’s relations in the syntactic monoids of Exercise IV.7.

2. Describe Green’s relations in the following monoids:

(1) the monoid of all functions from {1, 2, 3} into itself,

(2) the monoid of all order-preserving functions from {1, 2, 3} into itself (a
function f is order-preserving if i 6 j implies f(i) 6 f(j)),

(3) the monoid of all partial functions from {1, 2, 3} into itself,

(4) the monoid of all relations on {1, 2, 3},

(5) the monoid of all reflexive relations on {1, 2, 3},

(6) the monoid of all upper-triangular Boolean matrices of size 3× 3,

(7) the monoid of all unitriangular Boolean matrices of size 3 × 3 (a matrix
is unitriangular if it is upper-triangular and if its diagonal entries are all
equal to 1).

3. Let M be a finite monoid. Let P(M) be the set of subsets of M .

(1) Show that P(M) is a monoid for the following product: given two subsets
X and Y , XY = {xy | x ∈ X, y ∈ Y }.

(2) Show that the set P1(M) of subsets of M containing 1 is a submonoid of
M . Show that this monoid is J -trivial.

4. Let s and t be regular elements of a semigroup S. Show that the following
conditions are equivalent:

(1) s R t,

(2) there exists s̄ ∈ V (s) and t̄ ∈ V (t) such that ss̄ = tt̄,

(3) for all s̄ ∈ V (s), there exists t̄ ∈ V (t) such that ss̄ = tt̄.

A dual result holds for L. Finally, show that the following conditions are equiv-
alent:

(1) s H t,

(2) there exists s̄ ∈ V (s) and t̄ ∈ V (t) such that ss̄ = tt̄ and s̄s = t̄t,
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(3) for all s̄ ∈ V (s), there exists t̄ ∈ V (t) such that ss̄ = tt̄ and s̄s = t̄t.

5. Let S be a finite semigroup. Show that the number of inverses of an element
s of S is equal to the product of the number of idempotents of the R-class of s
by the number of idempotents of the L-class of s.

6. Let S be a regular semigroup. Show that the following conditions are equiv-
alent:

(1) S is simple,

(2) for all s ∈ S, every weak inverse of s is also an inverse of s,

(3) for all s, t in S, if us = ut and sv = tv for some u, v ∈ S, then s = t.

7. A right group is a semigroup that is right simple and left cancellative. Prove
that if G is a group and S is a right zero semigroup, the G×S is a right group.

Show that the following conditions are equivalent:

(1) S is a right group,

(2) S is right simple and contains at least one idempotent,

(3) for each s, t ∈ S, the equation ax = b has a unique solution in S,

(4) S is isomorphic with a Rees matrix semigroupM(G, I, J, P ), where |I| = 1
and P is the J×I column matrix whose entries are all equal to the identity
of G.

8. A monoidM is an inverse monoid if every element ofM has a unique inverse.
Show that a finite monoid is inverse if and only if M is regular (that is, every
element of M is regular) and the idempotents commute in M .

9. Let Q be a finite set and let I(Q) be the monoid of partial injective functions
from Q to Q under composition. Show that I(Q) is an inverse monoid and that
if M is a finite inverse monoid, then M is isomorphic to a submonoid of I(M).



Chapter VI

Profinite words

The results presented in this chapter are a good illustration of the following
quotation of Marshall Stone [103]: A cardinal principle of modern mathematical
research may be stated as a maxim: “One must always topologize”. Indeed, a
much deeper insight into the structure of recognisable languages is made possible
by the introduction of topological concepts.

1 Topology

We start with a brief reminder of the elements of topology used in the sequel:
open and closed sets, continuous functions, metric spaces, compact spaces, etc.
This section is by no means a first course in topology but is simply thought as
a remainder.

1.1 General topology

Recall that a topology on a set E is a set T of subsets of E satisfying the following
conditions:

(1) The empty set and E are in T ,

(2) The union of arbitrary many elements of T is an element of T ,

(3) The intersection of finitely many elements of T is an element of T .

The elements of T are called the open sets. The complement of an open set is
called a closed set. A set is clopen if it is both open and closed.

The closure of a subset X of E, denoted by X, is the intersection of the
closed sets containing X. A subset of E is dense if its closure is equal to E.

A topological space is a set E together with a topology on E. A topology T1
on a set is a refinement of a topology T2 on the same set, if each open set for
T1 is also an open set for T2. One also says that T1 is coarser than T2 or that
T2 is stronger than T1.

The coarsest topology on E is the trivial topology, which reduces to the
empty set and E. The strongest topology is the discrete topology defined by
T = P(E).

If F is a subset of a topological space (E, T ), then the traces F ∩ X for
X ∈ T , define a topology on F , called the relative topology.

125
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It is sometimes convenient to give a basis for a topology on E. This is a
collection B of subsets of E such that every open set is the union of elements of
B. An equivalent condition is that B satisfies the two following conditions:

(i) E is the union of all the elements of B,

(ii) every finite intersection of elements of B is a union of elements of B.

The open sets of the topology generated by B are by definition the arbitrary
unions of elements of B.

A map from a topological space into another one is continuous if the inverse
image of each open set is an open set. It is an homeomorphism if it is a con-
tinuous bijection and the inverse bijection is also continuous. Two topological
spaces are homeomorphic is there is an homeomorphism between them.

Let (Ei, Ti)i∈I be a family of topological spaces, and let E =
∏

i∈I Ei be
the cartesian product of the Ei’s. Denote by πi the natural projection from E
onto Ei, defined by πi((ej)j∈I) = ei. The product topology on E is the topology
generated by the basis consisting of the finite intersections of sets of the form
π−1
i (Xi) where Xi is an open set of Ei. These sets are nothing else than the

products
∏

i∈I Xi where the Xi’s are open sets of Ei and where Xi = Ei except
for a finite number of indices. The natural projections πi : E → Ei are then
continuous and a mapping ϕ : F → E is continuous if and only if the mappings
πi ◦ ϕ : F → Ei, for i ∈ I, are all continuous.

A topological space (E, T ) is Hausdorff if for each u, v ∈ E with u 6= v,
there exist disjoint open sets U and V such that u ∈ U and v ∈ V . If f is a
continuous map from a topological space X into an Hausdorff space Y , then the
graph of f is closed in X × Y .

1.2 Metric spaces

A metric d on a set E is a map d : E → R+ from E into the set of nonnegative
real numbers satisfying the three following conditions, for every x, y, z ∈ E:

(1) d(x, y) = 0 if and only if x = y,

(2) d(y, x) = d(x, y),

(3) d(x, z) 6 d(x, y) + d(y, z)

A metric space is a set E together with a metric d on E.

The topology defined by d is obtained by taking as a basis the open ε-balls
defined for x ∈ E and ε > 0 by

B(x, ε) = {y ∈ E | d(x, y) < ε}

Every metric space is Hausdorff. Indeed, given two distinct elements x and y,
the open balls B(x, ε) and B(y, ε) are disjoint if ε is set to be half the distance
between x and y.

A sequence (xn)n>0 of elements of a metric space (E, d) is converging to a
limit x if, for each ε > 0, there exists an integer k such that for each n > k,
d(xn, x) < ε. A sequence is said to be converging if it admits a limit.

Limits are convenient to characterise other topological properties of metric
spaces. For instance, a subset F of E is closed if and only if, for every sequence
(xn)n>0 of elements of F converging to a limit x, x itself belongs to F . A map
ϕ : (E, d)→ (E′, d′) between two metric spaces is continuous if and only if, for
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every sequence (xn)n>0 of elements of E converging to a limit x, the sequence
(ϕ(xn))n>0 converges to ϕ(x).

A Cauchy sequence in a metric space (E, d) is a sequence (xn)n>0 of elements
of E such that for each ε > 0, there exists an integer k such that for each n > k
and m > k, d(xn, xm) < ε. Every converging sequence is a Cauchy sequence,
but the converse does not hold in general. A metric space in which each Cauchy
sequence is convergent is said to be complete. Every closed subset of a complete
space is complete.

Let (Ei, di)16i6n be a finite family of metric spaces. Then (E1×· · ·×En, d)
is a metric space, where d, defined by

d((x1, . . . , xn), (y1, . . . , yn)) = max{d(x1, y1), . . . , d(xn, yn)}

is a metric that defines the product topology.
Let (E, d) and (E′, d′) be two metric spaces. A function ϕ from E into

E′ is said to be uniformly continuous if for each ε > 0, there exists δ > 0
such that the relation d(x, y) < δ implies d′(ϕ(x), ϕ(y)) < ε. If ϕ is uniformly
continuous, the image under ϕ of a Cauchy sequence of E is a Cauchy sequence
of E′. We say that ϕ is a uniform homeomorphism if it is a uniformly continuous
bijection and ϕ−1 is also uniformly continuous. Two metric spaces are uniformly
homeomorphic if there is a uniform homeomorphism between them.

We say that ϕ is an isometry if it is a bijection from E onto E′ such that,
for each x, y ∈ E,

d(x, y) = d′(ϕ(x), ϕ(y))

The completion of a metric space E is a complete metric space Ê together with
an isometric embedding of E as a dense subspace of Ê. One can prove that every
metric space admits a completion, which is unique up to isometric equivalence:
if Ê1 and Ê2 are two completions of E, there exists an isometry of Ê1 onto Ê2,
whose restriction to E is the identity.

The completion of E can be constructed as follows. Let C(E) be the set of
Cauchy sequences in E. Define an equivalence relation ∼ on C(E) as follows.
Two Cauchy sequences x = (xn)n>0 and y = (yn)n>0 are equivalent if the
interleave sequence x0, y0, x1, y1, . . . is also a Cauchy sequence. The completion
of E is defined to be the set Ê of equivalence classes of C(E). The metric d on

E extends to a metric on Ê defined by

d(x, y) = lim
n→∞

d(xn, yn)

where x and y are representative Cauchy sequences of elements in Ê. The
definition of the equivalence ensures that the above definition does not depend
on the choice of x and y in their equivalence class and the fact that R is complete
ensures that the limit exists.

1.3 Compact spaces

An important notion is that of compact space. A family of open sets (Ui)i∈I

is said to cover a topological space (E, T ) if E =
⋃

i∈I Ui. A topological space
(E, T ) is said to be compact if it is Hausdorff and if, for each family of open sets
covering E, there exists a finite subfamily that still covers E.
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Compact metric spaces admit two important characterisations. First, a met-
ric space is compact if and only if every sequence has a convergent subsequence.
Second, a metric space is compact if and only if it is complete and precompact,
which means that, for every n > 0, the space can be covered by a finite number
of open balls of radius < 2−n.

If X is a closed set of a compact space E, then X, equipped with the relative
topology, is also a compact space. We shall use freely the well-known result that
every product of compact spaces is compact (Tychonov’s theorem).

One can show that if ϕ : E → F is a continuous map from a topological
space E into a topological Hausdorff space F , the image of a compact under ϕ
is still compact. Further if E is a compact metric space and F is a metric space,
then every continuous function from E to F is uniformly continuous.

We conclude this section with a useful extension result that is worth to be
stated separately.

Proposition 1.1 Let E and F be metric spaces. Any uniformly continuous
function ϕ : E → F admits a unique uniformly continuous extension ϕ̂ : Ê → F̂ .
Further, if Ê is compact and if ϕ is surjective, then ϕ̂ is surjective.

In particular, if F is complete, any uniformly continuous function from E to F
admits a unique uniformly continuous extension from Ê to F .

1.4 Topological semigroups

A topological semigroup is a semigroup S equipped with a topology for which the
semigroup operation is continuous. This means that the function from S × S
into S which maps (x, y) onto xy is continuous. A compact semigroup is a
topological semigroup which is compact as a topological space.

2 Profinite topology

2.1 The free profinite monoid

Let A be a finite alphabet. A morphism ϕ : A∗ → M separates two words u
and v of A∗ if ϕ(u) 6= ϕ(v). By extension, we say that a monoid M separates
two words if there is a morphism from A∗ onto M that separates them.

Example 2.1

(1) The words ababa and abaa can be separated by a group of order 2. Indeed,
let π : A∗ → Z/2Z be the morphism defined by π(x) = |x| (mod 2). Then
π(ababa) = 1 and π(abaa) = 0 and hence π separates u and v.

(2) More generally, two words u and v of unequal length can be separated by
a finite cyclic group. Indeed, suppose that |u| < |v| and let n = |v|. Let
π : A∗ → Z/nZ be the morphism defined by π(x) = |x| (mod n). Then
π(v) = 0 but π(u) 6= 0. Note that u and v can also be separated by a finite
monoid of size |u|+2. Define an addition ⊕ on M = {0, 1, . . . , |u|+1} by
s ⊕ t = min{s + t, |u| + 1} and let ϕ : A∗ → M be the morphism defined
by ϕ(x) = min{|x|, |u|+ 1}. Then ϕ(u) = |u| and ϕ(v) = |u|+ 1.

(3) A similar idea can be applied if the number of occurrences of some letter
a is not the same in u and v. Assume for instance that |u|a < |v|a and let
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n = |v|a. Then the morphism π : A∗ → Z/nZ defined by π(a) = 1 and
π(c) = 0 for c 6= a separates u and v.

(4) Recall (see Section 2.2) that the monoid U2 is defined on the set {1, a, b}
by the operation aa = ba = a, bb = ab = b and 1x = x1 = x for all
x ∈ {1, a, b}. Let u and v be words of {a, b}∗. Then the words ua and vb
can be separated by the morphism π : A∗ → U2 defined by π(a) = a and
π(b) = b since π(ua) = a and π(ub) = b.

These examples are a particular case of a general result.

Proposition 2.2 Any pair of distinct words of A∗ can be separated by a finite
monoid.

Proof. Let u and v be two distinct words of A∗. Since the language {u} is
recognisable, there exists a morphism ϕ from A∗ onto a finite monoid M which
recognises it, that is, such that ϕ−1(ϕ(u)) = {u}. It follows that ϕ(v) 6= ϕ(u)
and thus ϕ separates u and v.

We now define a metric on A∗ with the following intuitive idea in mind: two
words are close for this metric if a large monoid is required to separate them.
Let us now give the formal definition. Given two words u, v ∈ A∗, we set

r(u, v) = min {|M | |M is a monoid that separates u and v}

d(u, v) = 2−r(u,v)

with the usual conventions min ∅ = +∞ and 2−∞ = 0. The following proposi-
tion establishes the main properties of d.

Proposition 2.3 The function d is an ultrametric, that is, satisfies the follow-
ing properties, for all u, v, w ∈ A∗,

(1) d(u, v) = 0 if and only if u = v,

(2) d(u, v) = d(v, u),

(3) d(u,w) 6 max{d(u, v), d(v, w)}.

It also satisfies the property

(4) d(uw, vw) 6 d(u, v) and d(wu,wv) 6 d(u, v).

Proof. (1) follows from Proposition 2.2.
(2) is trivial.
(3) Let M be a finite monoid separating u and w. Then M separates either

u and v, or v and w. It follows that min(r(u, v), r(v, w)) 6 r(u,w) and hence
d(u,w) 6 max{d(u, v), d(v, w)}.

(4) A finite monoid separating uw and vw certainly separates u and v. There-
fore d(uw, vw) 6 d(u, v) and, dually, d(wu,wv) 6 d(u, v).

Thus (A∗, d) is a metric space, but it is not very interesting as a topological
space.

Proposition 2.4 The topology defined on A∗ by d is discrete: every subset is
clopen.
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Proof. Let u be a word of A∗ and let n be the size of the syntactic monoid
M of the language {u}. Then if d(u, v) < 2−n, r(u, v) > n and in particular,
M does not separate u and v. It follows that u = v. Therefore the open ball
B(u, 2−n) is equal to {u}. It follows that every singleton is open. Now if U is
a language of A∗, one has U =

⋃
u∈U{u} and hence U is open. For the same

reason, U c is open and thus every subset of A∗ is clopen.

The completion of (A∗, d), denoted by Â∗, is much more interesting. Its
elements are called the profinite words on the alphabet A.

Theorem 2.5 The set of profinite words Â∗ is compact if and only if A is finite.

Proof. Suppose that A is finite. Since Â∗ is complete, it suffices to verify that,
for every n > 0, A∗ is covered by a finite number of open balls of radius < 2−n.
Consider the congruence ∼n defined on A∗ by

u ∼n v if and only if ϕ(u) = ϕ(v) for every morphism ϕ

from A∗ onto a monoid of size 6 n.

Since A is finite, there are only finitely many morphisms from A∗ onto a monoid
of size 6 n, and thus ∼n is a congruence of finite index. Furthermore, d(u, v) <
2−n if and only if u and v cannot be separated by a monoid of size 6 n, i.e.
are ∼n-equivalent. It follows that the ∼n-classes are open balls of radius < 2−n

and cover A∗.
If A is infinite, let (an)n>0 be an infinite sequence of letters of A. Then, for

all i, j > 0 with i 6= j, d(ai, aj) = 2−2 since the morphism ϕ : A∗ → U1 defined
by ϕ(ai) = 1 and ϕ(ak) = 0 for k 6= i separates ai and aj . It follows that the

sequence (an)n>0 has no convergent subsequence and thus Â∗ is not compact.

The density of A∗ in Â∗ has several useful consequences, which are summa-
rized in the next propositions.

Proposition 2.6 The function (u, v) → uv from A∗ × A∗ to A∗ is uniformly
continuous.

Proof. By Proposition 2.3, one has for all u, u′, v, v′ ∈ A∗,

d(uv, u′v′) 6 max{d(uv, uv′), d(uv′, u′v′)} 6 max{d(v, v′), d(u, u′)}

which proves the result.

It follows from Proposition 1.1 that the product on A∗ can be extended
in a unique way, by continuity, to Â∗. Since the formulas (xy)z = x(yz) and
1x = x = x1 are preserved by passage to the limit, this extended product is also
associative and admits the empty word as identity element. The product on Â∗

is also uniformly continuous and makes Â∗ a topological monoid. It is called
the free profinite monoid because it satisfies a universal property comparable to
that of A∗. Before stating this universal property precisely, let us state another
useful consequence of the density of A∗.
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Proposition 2.7 Every morphism ϕ from A∗ into a discrete finite monoid M
is uniformly continuous and can be extended (in a unique way) to a uniformly

continuous morphism ϕ̂ from Â∗ into M .

Proof. If d(u, v) < 2−|M |, then ϕ does not separate u and v and hence ϕ(u) =
ϕ(v). It follows that ϕ is a uniformly continuous function from A∗ into the dis-
crete metric spaceM . Therefore ϕ has a unique uniformly continuous extension
ϕ̂ from Â∗ into M . It remains to prove that ϕ̂ is a morphism. Let

D = {(u, v) ∈ Â∗ × Â∗ | ϕ̂(uv) = ϕ̂(u)ϕ̂(v)}

We claim that D = Â∗ × Â∗, which exactly says that ϕ̂ is a morphism. We
already have ϕ̂(uv) = ϕ̂(u)ϕ̂(v) for u, v ∈ A∗ since ϕ is a morphism, and thus

D contains A∗ × A∗. Since A∗ × A∗ is dense in Â∗ × Â∗, it suffices to prove
that D is closed, which essentially follows from the uniform continuity of the
product. In more details, let π : A∗×A∗ → A∗ be the map defined by π(u, v) =
uv. Proposition 2.6 shows that π is uniformly continuous and has a unique
continuous extension π̂ from Â∗ × Â∗ to Â∗ (the product on Â∗). With this
notation in hand, we get

ϕ̂(uv) = (ϕ̂ ◦ π̂)(u, v) and ϕ̂(u)ϕ̂(v) = (u, v)ARevoir

It follows that

D =
⋃

m∈M

(ϕ̂ ◦ π)−1(m) ∩ (π̂ ◦ (ϕ̂× ϕ̂))−1(m)

Since ϕ̂ ◦ π and π̂ ◦ (ϕ̂ × ϕ̂) are both continuous and {m} is a closed subset of
M , it follows that D is closed, which concludes the proof.

However, there are some noncontinuous morphisms from Â∗ onto a finite
monoid. For instance, the morphism ϕ : Â∗ → U1 defined by

ϕ(u) =

{
1 if u ∈ A∗

0 otherwise

is not continuous since ϕ−1(1) = A∗ is not closed. Now, the restriction of ϕ to

A∗, which is continuous, has a continuous extension to Â∗. But this extension
maps every profinite word to 1 and is therefore not equal to ϕ.

2.2 Universal property of the free profinite monoid

We are ready to state the universal property of Â∗.

Proposition 2.8 If ϕ is a function from A into a finite monoid M , there exists
a unique (uniformly) continuous monoid morphism ϕ̂ : Â∗ → M such that, for
each a ∈ A, ϕ̂(a) = ϕ(a). Moreover, ϕ̂ is surjective if and only if the set ϕ(A)
generates M .

Proof. First, there exists by Proposition II.5.28 a unique morphism from A∗

into M which extends ϕ and by Proposition 2.7, a unique uniformly continuous
morphism ϕ̂ from Â∗ into M that extends ϕ.
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One has ϕ̂(Â∗) ⊆ ϕ(A∗). Since M is discrete, it follows that ϕ̂ is surjective
if and only if ϕ(A) generates M .

One can also use Proposition 2.7 to define directly the metric on Â∗. Let us
say that a morphism ϕ from A∗ onto a finite monoid M separates two profinite
words u and v of Â∗ if ϕ̂(u) 6= ϕ̂(v).

Given two profinite words u, v ∈ Â∗, we set

r(u, v) = min {|M | |M is a finite monoid that separates u and v}

d(u, v) = 2−r(u,v)

with the usual conventions min ∅ = +∞ and 2−∞ = 0.
The term profinite is justified by the following property, which often serves

as a definition in the literature.

Proposition 2.9 The profinite topology on Â∗ is the least topology which makes
continuous every morphism from A∗ onto a finite discrete monoid.

Proof. Proposition 2.7 shows that every morphism from A∗ onto a finite dis-
crete monoid is continuous for the topology defined by d.

Suppose now that Â∗ is equipped with a topology T such that every mor-
phism from A∗ onto a finite discrete monoid is continuous. We claim that for
all ε > 0 and for all x ∈ Â∗, the ball

B(x, ε) = {y ∈ Â∗ | d(x, y) < ε}

is open in T . First observe that d(x, y) < ε if and only if x and y cannot be
separated by a monoid of size < n, where n is the smallest positive integer such
that 2−n < ε. It follows that B(x, ε) is the intersection of the sets ϕ−1(ϕ(x)),
where ϕ runs over the set of all morphisms from A∗ onto a monoid of size < n.
By the property of T , each set of the form ϕ−1(ϕ(x)) is open and since A is
finite, there are finitely many morphisms from A∗ onto a monoid of size < n.
This proves the claim and the proposition.

What about sequences? First, every profinite word is the limit of a Cauchy
sequence of words. Next, a sequence of profinite words (un)n>0 is converging
to a profinite word u if and only if, for every morphism ϕ from A∗ onto a finite
monoid, ϕ̂(un) is ultimately equal to ϕ̂(u).

2.3 ω-terms

It is relatively difficult to give “concrete” examples of profinite words which are
not words. One such example is the profinite word xω, associated with every
profinite word x. The formal definition is

xω = lim
n→∞

xn!

and is justified by the following result, which shows that the sequence xn! has
indeed a limit in Â∗.
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Proposition 2.10 For each x ∈ Â∗, the sequence (xn!)n>0 is a Cauchy se-

quence. It converges to an idempotent element of Â∗.

Proof. For the first part of the statement, it suffices to show that for p, q > n,
xp! and xq! cannot be separated by a monoid of size 6 n. Let indeed ϕ : Â∗ →M
be a monoid morphism, with |M | 6 n, and put s = ϕ(x). Since M is finite,
s has an idempotent power e = sr, with r 6 n. By the choice of p and q, the
integer r divides simultaneously p! and q!. Consequently, sp! = sq! = e, which
shows that M cannot separate xp! and xq!.

For n large enough, we also have ϕ(xn!)ϕ(xn!) = ee = e = ϕ(xn!). It follows
that the limit of the sequence (xn!)n>0 is idempotent.

Note that xω is simply a notation and one should resist the temptation to
interpret it as an infinite word. The right intuition is to interpret ω as the
exponent of a finite semigroup. To see this, let us compute the image of xω

under a morphism to a finite monoid.
LetM be a finite monoid of exponent ω, let ϕ : A∗ →M a morphism and let

s = ϕ(x). Then the sequence sn! is ultimately equal to the unique idempotent
sω of the subsemigroup of M generated by s. Consequently, we obtain the
formula

ϕ̂(xω) = ϕ(x)ω

which justifies the notation xω. Note also that xωxω = xω and (xω)ω = xω.
Two related examples are the profinite words xω+1 and xω−1, which are

defined in a natural way by the formulas

xω+1 = lim
n→∞

xn!+1 and xω−1 = lim
n→∞

xn!−1

It follows immediately from the definition that xxω = xω+1 = xωx and that
xxω−1 = xω = xω−1x. With the notation of the previous paragraph, one also
gets ϕ(xω+1) = sω+1 but the interpretation of xω−1 is a little bit more subtle.
Let us first recall the structure of the subsemigroup generated by s: its minimal
ideal is a group G whose identity is sω. It is tempting to write ϕ(xω−1) = sω−1,
but it may happen that sω−1 is not inG. Worse, ifM is idempotent, its exponent
is 1 and sω−1 is not even defined. In fact, in M one has lim

n→∞
sn!−1 = s2ω−1 and

thus the right formula is ϕ(xω−1) = s2ω−1.

•
s

•
s2

•
s3 . . . . . . . . . . . .si+p = si

•

s2ω−1

•

sω•

sω+1•

Figure 2.1. The semigroup generated by s.

Note that s2ω−1 is the inverse of sω+1 in G and this is the right interpretation.
Indeed, one can show that in the free profinite monoid, x generates a compact
semigroup whose minimal ideal is a monogenic compact group with identity xω.
Then xω−1 is the inverse of xω+1 in this group.
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The ω-terms on A form the smallest submonoid of Â∗ containing A∗ and
closed under the operations x → xω, x → xω+1 and x → xω−1. For instance,
if A = {a, b, c}, abc, aω and ((abωc)ω−1ab)ω are examples of ω-terms. These
ω-terms represent the most intuitive examples of profinite words, but unfortu-
nately, they are way more profinite words than ω-terms. To be precise, the free
profinite monoid Â∗ is uncountable (even on a one letter alphabet!) while the
set of ω-terms is countable.

3 Recognizable languages and clopen sets

There is a strong connexion between recognisable and clopen subsets. We start
by considering the recognisable subsets of Â∗.

Proposition 3.11 Let P be a subset of Â∗ and let M be its syntactic monoid.
The following conditions are equivalent:

(1) P is clopen,

(2) the syntactic congruence of P is a clopen subset of Â∗ × Â∗,

(3) P is recognisable and its syntactic morphism is a continuous map from

Â∗ onto the discrete finite space M .

Proof. Let us denote by ∼P the syntactic congruence of P and by η̂ : Â∗ →M
its syntactic morphism. Recall that s ∼P t if, for all u, v ∈ Â∗, the conditions
usv ∈ P and utv ∈ P are equivalent.

(1) implies (2). It follows from the definition of ∼P that

∼P =
⋂

u,v∈Â∗

(
(u−1Pv−1 × u−1Pv−1) ∪ (u−1P cv−1 × u−1P cv−1)

)
(3.1)

If P is clopen, each set u−1Pv−1 is also clopen. Indeed, u−1Pv−1 is the inverse
image of the clopen set P under the continuous function x 7→ uxy. Now, Formula
(3.1) shows that ∼P is closed.

In order to show that the complement of ∼P is closed, consider a sequence
(sn, tn) of elements of (∼P )

c, converging to a limit (s, t). Since sn 6∼P tn, there
exist some profinite words un, vn such that unsnvn ∈ P and untnvn /∈ P . Since
Â∗ × Â∗ is compact, the sequence (un, vn) has a convergent subsequence. Let
(u, v) be its limit. Since both P and P c are closed and since the multiplication

in Â∗ is continuous, one gets usv ∈ P and utv /∈ P . Therefore, s 6∼P t, which
shows that (∼P )

c is closed. Thus ∼P is clopen.

(2) implies (3). If ∼P is clopen, then for each s ∈ Â∗, there exists an open
neighborhood U of s such that U × U ⊆ ∼P . Therefore U is contained in the
∼P -class of s. This proves that the ∼P -classes form an open partition of Â∗. By
compactness, this partition is finite and thus P is recognisable. Further, since
each ∼P -class is open, the syntactic morphism of P is continuous.

(3) implies (1). Let π : Â∗ → M be the syntactic morphism of P . Since
P is recognisable, M is finite. One has P = π−1(π(P )) and since M is finite,

π(P ) is clopen in M . Finally, since π is continuous, P is clopen in Â∗.

We now turn to languages of A∗.
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Proposition 3.12 If L is a language of A∗, then L = L ∩ A∗. Further, the
following conditions are equivalent:

(1) L is recognisable,

(2) L = K ∩A∗ for some clopen subset K of Â∗,

(3) L is clopen in Â∗,

(4) L is recognisable in Â∗.

Proof. The inclusion L ⊆ L ∩ A∗ is obvious. Let u ∈ L ∩ A∗ and let M be
the syntactic monoid of {u}. Since M separates u from any word v different
from u, one gets r(u, v) 6 |M | if u 6= v. Let (un)n∈N be a sequence of words
of L converging to u. If d(un, u) < 2−|M |, one has necessarily u = un and thus
u ∈ L.

(1) implies (2). If L is recognisable, there is a morphism ϕ from A∗ onto
a finite monoid M such that L = ϕ−1(ϕ(L)). Let K = ϕ̂−1(ϕ(L)). Since M
is discrete, ϕ(L) is a clopen subset of M and since ϕ̂ is continuous, K is also
clopen. Further, ϕ and ϕ̂ coincide on A∗ and thus L = ϕ̂−1(ϕ(L))∩A∗ = K∩A∗.

(2) implies (3). Suppose that L = K ∩ A∗ with K clopen. Since K is open

and A∗ is dense in Â∗, K ∩ A∗ is dense in K. Thus L = K ∩A∗ = K. Thus L
is clopen in Â∗.

(3) implies (4) follows from Proposition 3.11.

(4) implies (1). Let η̂ : Â∗ → F be the syntactic morphism of L and let
P = η̂(L). Let η be the restriction of η̂ to A∗. Then we have L = L ∩ A∗ =
η̂−1(P ) ∩A∗ = η−1(P ). Thus L is recognisable.

We now describe the closure in Â∗ of a recognisable language of A∗.

Proposition 3.13 Let L be a recognisable language of A∗ and let u ∈ Â∗. The
following conditions are equivalent:

(1) u ∈ L,

(2) ϕ̂(u) ∈ ϕ(L), for all morphisms ϕ from A∗ onto a finite monoid,

(3) ϕ̂(u) ∈ ϕ(L), for some morphism ϕ from A∗ onto a finite monoid that
recognises L,

(4) η̂(u) ∈ η(L), where η is the syntactic morphism of L.

Proof. (1) implies (2). Let ϕ be a morphism from A∗ onto a finite monoid

F and let ϕ̂ be its continuous extension to Â∗. Then ϕ̂(L) ⊂ ϕ̂(L) since ϕ̂ is
continuous, and ϕ̂(L) = ϕ̂(L) = ϕ(L) since F is discrete. Thus if u ∈ L, then
ϕ̂(u) ∈ ϕ(L).

(2) implies (4) and (4) implies (3) are trivial.

(3) implies (1). Let ϕ be a morphism from A∗ onto a finite monoid F .
Let un be a sequence of words of A∗ converging to u. Since ϕ̂ is continuous,
ϕ̂(un) converges to ϕ̂(u). But since F is discrete, ϕ̂(un) is actually ultimately
equal to ϕ̂(u). Thus for n large enough, one has ϕ̂(un) = ϕ̂(u). It follows
by (3) that ϕ(un) = ϕ̂(un) ∈ ϕ(L) and since ϕ recognises L, we finally get
un ∈ ϕ

−1(ϕ(L)) = L. Therefore u ∈ L.

Let us denote by Clopen(Â∗) the Boolean algebra of all clopen sets of Â∗.
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Theorem 3.14 The maps L 7→ L and K 7→ K ∩ A∗ define mutually inverse
isomorphisms between the Boolean algebras Rec(A∗) and Clopen(Â∗). In par-
ticular, the following formulas hold, for all L,L1, L2 ∈ Rec(A∗):

(1) Lc = (L)c,

(2) L1 ∪ L2 = L1 ∪ L2,

(3) L1 ∩ L2 = L1 ∩ L2.

Proof. Property (1) follows from Proposition 3.13. Indeed, let η be the syn-
tactic morphism of L. Then since L = η−1(η(L)) and Lc = η−1(η(L)c), one has
η(Lc) = η(L)c. Therefore, one gets the following sequence of equalities:

Lc = η̂−1(η(Lc)) = η̂−1(η(L)c) = [η̂−1(η(L))]c = (L)c

Property (2) is a general result of topology and (3) is a consequence of (1) and
(2).

Theorem 3.14 shows that the closure operator behaves nicely with respect
to Boolean operations. It also behaves nicely for the left and right quotients
and for inverse of morphisms.

Proposition 3.15 Let L be a recognisable language of A∗ and let x, y ∈ A∗.
Then x−1Ly−1 = x−1Ly−1.

Proof. Let η be the syntactic morphism of L. Since η also recognises x−1Ly−1,
Proposition 3.13 can be used twice to get

u ∈ x−1Ly−1 ⇐⇒ η̂(u) ∈ η(x−1Ly−1)⇐⇒ η(x)η̂(u)η(y) ∈ η(L)

⇐⇒ η̂(xuy) ∈ η(L)⇐⇒ xuy ∈ L⇐⇒ u ∈ x−1Ly−1

which gives the result.

Proposition 3.16 Let ϕ : A∗ → B∗ be a morphism of monoids and L be a
recognisable language of B∗. Then ϕ̂−1(L) = ϕ−1(L).

Proof. Let η be the syntactic morphism of L and let N = η ◦ ϕ(A∗). Then N
is a submonoid of M and the surjective morphism η ◦ ϕ : A∗ → N recognises
ϕ−1(L). Using Proposition 3.13 and observing that η̂ ◦ ϕ = η̂ ◦ ϕ̂, we have on
the one hand

u ∈ ϕ̂−1(L)⇐⇒ ϕ̂(u) ∈ L⇐⇒ η̂(ϕ̂(u)) ∈ η(L) ∩N ⇐⇒ η̂ ◦ ϕ(u) ∈ η(L) ∩N

Using again Proposition 3.13, and observing that ϕ(ϕ−1(L)) = L ∩ ϕ(A∗) we
get on the other hand

u ∈ ϕ−1(L)⇐⇒ η̂ ◦ ϕ(u) ∈ η(ϕ(ϕ−1(L))⇐⇒ η̂ ◦ ϕ(u) ∈ η(L ∩ ϕ(A∗))

Now, by Proposition IV.2.6, η(L∩ϕ(A∗)) = η(L)∩ η(ϕ(A∗)) = η(L)∩N . Thus
the two conditions u ∈ ϕ̂−1(L) and u ∈ ϕ−1(L) are equivalent, which concludes
the proof.



Chapter VII

Varieties

The definition of a variety of finite monoids is due to Eilenberg [27]. It is inspired
by the definition of a Birkhoff variety of monoids (see Exercise 1) which applies
to infinite monoids, while Eilenberg’s definition is restricted to finite monoids.
The word “variety” was coined after the term used in algebraic geometry to
designate the solutions of a set of algebraic equations. This is no coincidence:
a theorem of Birkhoff states that a Birkhoff variety can be described by a set of
identities (see Exercise 2). The counterpart of Birkhoff’s theorem for varieties
of finite monoids was obtained by Reiterman [91]. The statement is exactly
the same: any variety of finite monoids can be described by a set of identities,
but the definition of an identity is now different! For Birkhoff, an identity is
a formal equality between words, but for Reiterman, it is a formal equality
between profinite words. One must always topologize. . .

Warning. Since we are mostly interested in finite semigroups, the semigroups
and monoids considered in this chapter are either finite or free, except in Exer-
cises 1 and 2.

1 Varieties

A variety of semigroups is a class of semigroups V such that:

(1) if S ∈ V and if T is a subsemigroup of S, then T ∈ V,

(2) if S ∈ V and if T is a quotient of S, then T ∈ V,

(3) if (Si)i∈I is a finite family of semigroups of V, then
∏

i∈I Si is also in V.

Conditions (1) and (2) can be replaced by a single condition: if S ∈ V and if T
divides S, then T ∈ V. Therefore, a variety of semigroups can be defined as a
class of semigroups closed under division and finite products.

A more subtle point: condition (3) can be replaced by the conjunction of
conditions (4) and (5):

(4) the trivial semigroup 1 belongs to V,

(5) if S1 and S2 are semigroups of V, then S1 × S2 is also in V.

Indeed, condition (4) is obtained by taking I = ∅ in (3).

Example 1.1

137
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(1) The class S of all semigroups forms a variety of semigroups.

(2) The smallest variety of semigroups is the trivial variety, consisting of the
empty semigroup and of the semigroup with one element 1. This variety
is denoted by 1.

Varieties of monoids, varieties of ordered semigroups and varieties of ordered
monoids are defined in the same way: it suffices to replace every occurrence of
semigroup by monoid [ordered semigroup, ordered monoid ] in the definition.

We shall sometimes use the term “variety” as a shorthand for variety of semi-
groups [monoids, etc.]. Examples of varieties are deferred to Section 4.

Let C be a class of monoids [semigroups, ordered monoids, ordered semi-
groups]. The intersection of all varieties containing C is a variety, called the
variety generated by C and denoted by 〈C〉. The next proposition provides a
more explicit description.

Proposition 1.1 A monoid belongs to 〈C〉 if and only if it divides a finite
product of monoids of C.

Proof. Let V be the class of all monoids dividing a finite product of monoids
of C. Since a variety is closed under division and finite product, every monoid of
V belongs to 〈C〉. Therefore, it suffices to prove that V is a variety. Proposition
II.3.14 shows that V is closed under product and Proposition II.3.9 shows that
V is closed under division. Thus V is a variety.

The supremum of two varieties V1 and V2 is the variety generated by V1

and V2. It is denoted by V1 ∨V2. A direct application of Proposition 1.1 gives
the following characterisation.

Corollary 1.2 A monoid belongs to V1 ∨V2 if and only if it divides a monoid
of the form M1 ×M2, with M1 ∈ V1 and M2 ∈ V2.

2 Free pro-V monoids

We introduced the free profinite monoid Â∗ in Section 2. A similar notion, the
free pro-V monoid, can be defined for each variety of monoids [semigroups] V.

A monoid M separates two words u and v of the free monoid A∗ if there
exists a morphism ϕ from A∗ ontoM such that ϕ(u) 6= ϕ(v). Let V be a variety
of monoids. We set

rV(u, v) = min
{
Card(M) M is a monoid of V that separates u and v }

and dV(u, v) = 2−rV(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
We first establish some general properties of dV.

Proposition 2.3 The following properties hold for every u, v, w ∈ A∗

(1) dV(u, v) = dV(v, u)

(2) dV(uw, vw) 6 dV(u, v) and dV(wu,wv) 6 dV(u, v)

(3) dV(u,w) 6 max{dV(u, v), dV(v, w)}
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Proof. The first assertion is trivial. A monoid of V separating uw and vw
certainly separates u and v. Therefore dV(uw, vw) 6 dV(u, v), and dually,
dV(wu,wv) 6 dV(u, v).

Let M be a monoid of V separating u and w. Then M separates either u
and v, or v and w. It follows that min(rV(u, v), rV(v, w)) 6 rV(u,w) and hence
dV(u,w) 6 max{dV(u, v), dV(v, w)}.

In the general case, dV is not always a metric, because one may have
dV(u, v) = 0 even if u 6= v. For instance, if V is the variety of commuta-
tive monoids, dV(ab, ba) = 0, since there is no way to separate ab and ba by a
commutative monoid. To work around this difficulty, we first observe that, by
Proposition 2.3, the relation ∼V defined by

u ∼V v if and only if dV(u, v) = 0

is a congruence on A∗. Then Proposition VI.2.6 can be generalised as follows.

Proposition 2.4

(1) The function dV is an ultrametric on A∗/∼V.

(2) The product on A∗/∼V is uniformly continuous for this metric.

Proof. (1) follows directly from Proposition 2.3, since dV(u, v) = 0 implies
u ∼V v by definition. We use the same proposition to obtain the relation

dV(uv, u′v′) 6 max{dV(uv, uv′), dV(uv′, u′v′)} 6 max{dV(v, v′), dV(u, u′)}

which proves (2).

The completion of the metric space (A∗/∼V, dV) is denoted by F̂V(A) and
called the free pro-V monoid on A. Its main properties are presented in the
next three propositions:

Proposition 2.5 The following properties hold for each finite alphabet A:

(1) The monoid F̂V(A) is compact.

(2) There is a surjective uniformly continuous morphism πV from Â∗ onto
F̂V(A).

Proof. (1) Since F̂V(A) is complete, it suffices to verify that, for every n > 0,
A∗ is covered by a finite number of open balls of radius < 2−n. Consider the
congruence ∼n defined on A∗ by

u ∼n v if and only if ϕ(u) = ϕ(v) for every morphism ϕ from A∗

onto a monoid of size 6 n of V.

Since A is finite, there are only finitely many morphisms from A∗ onto a monoid
of size 6 n, and thus ∼n is a congruence of finite index. Furthermore, dV(u, v) <
2−n if and only if u and v cannot be separated by a monoid of V of size 6 n,
i.e. are ∼n-equivalent. It follows that the ∼n-classes are open balls of radius
< 2−n and cover A∗.

(2) Let πV be the natural morphism from A∗ onto A∗/∼V. Since dV(u, v) 6

d(u, v), πV is uniformly continuous, and since Â∗ is compact, Proposition VI.1.1
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shows that it can be extended to a uniformly continuous morphism from Â∗ onto
F̂V(A).

The monoid F̂V(A) has the following universal property:

Proposition 2.6 For each mapping ϕ from A into a monoid M of V, there
is a unique uniformly continuous morphism ϕ̂ : F̂V(A) → M such that, for all
a ∈ A, ϕ(a) = ϕ̂(πV(a)).

Proof. Let ϕ be a continuous morphism from Â∗ into a monoid M of V. Up
to replacing M by ϕ(A∗), we may assume that ϕ is onto. Since A∗ is dense in

Â∗, andM is discrete, the restriction of ϕ to A∗ is also surjective. Furthermore,
since u ∼V v implies ϕ(u) = ϕ(v), Proposition II.3.22 shows that there is a
surjective morphism π from A∗/∼V onto M such that ϕ = π ◦ πV. We claim
that this morphism is uniformly continuous. Indeed if dV(u, v) < 2−|M |, then
u and v cannot be separated by M , and hence ϕ(u) = ϕ(v). Since A∗/∼V is

dense in F̂V(A), π can be extended by continuity to a surjective morphism from

F̂V(A) onto M . Thus M is a quotient of F̂V(A).

Proposition 2.7 A finite A-generated monoid belongs to V if and only if it is
a continuous quotient of F̂V(A).

Proof. IfM is an A-generated monoid of V, there exists a surjective morphism
ϕ from A∗ onto M . Following the argument used in the proof of Proposition
2.6, if dV(u, v) < 2−|M |, then ϕ(u) = ϕ(v), and thus ϕ is uniformly continuous
with respect to dV. By Proposition VI.1.1, ϕ can be extended to a uniformly
continuous morphism from F̂V(A) onto M .

Conversely, assume thatM is a finite quotient of F̂V(A) and let π : F̂V(A)→
M be a surjective morphism. The set

D = {(u, v) ∈ F̂V(A)× F̂V(A) | π(u) = π(v)}

is the inverse image under π of the diagonal of M ×M , and since M is discrete
and π is continuous, it is a clopen subset of F̂V(A)× F̂V(A). Let F be the class
of all morphisms from F̂V(A) onto a monoid of V. For each ϕ ∈ F , let

Cϕ = {(u, v) ∈ F̂V(A)× F̂V(A) | ϕ(u) 6= ϕ(v)}

Each Cϕ is open by continuity of ϕ. Furthermore, if (u, v) does not belong
to any Cϕ, then u and v cannot be separated by any monoid of V and hence
dV(u, v) = 0, which gives u = v and π(u) = π(v). It follows that the family

D ∪ (Cϕ)ϕ∈F is a covering of F̂V(A) × F̂V(A) by open sets, and since F̂V(A)
is compact, it admits a finite subcovering, say D ∪ (Cϕ)ϕ∈F . Therefore, if
ϕ(u) = ϕ(v) for each ϕ ∈ F , then π(u) = π(v). Consequently M is a quotient

of a submonoid of the finite monoid
∏

ϕ∈F ϕ(F̂V(A)) and thus belongs to V.

Given a variety V, it is in general a hard problem to describe the structure
of F̂V(A). However, if V is generated by a single monoid M , then F̂V(A) has
a simple structure. Let MA be the set of all functions from A to M . Each
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function ϕ : A → M extends in a unique way to a monoid morphism from A∗

into M , also denoted by ϕ. Denote by MMA

the monoid of all functions from
MA to M under pointwise multiplication.

For each letter a ∈ A, let ã be the function from MA to M defined by

ã(ϕ) = ϕ(a). This defines a function a 7→ ã from A into MMA

, which can be

extended to a morphism u 7→ ũ from A∗ into MMA

. We claim that, for any
function ϕ : A → M , one has ũ(ϕ) = ϕ(u) for each word u ∈ A∗. Indeed, if
u = a1 · · · an, one gets by definition

ũ(ϕ) = ã1(ϕ) · · · ãn(ϕ) = ϕ(a1) · · ·ϕ(an) = ϕ(u)

The image of A∗ under the map u 7→ ũ is a submonoid F of MMA

.

Proposition 2.8 If V is generated by a single monoid M , then F̂V(A) is equal

to F . In particular, F̂V(A) is a submonoid of MMA

and hence is finite.

Proof. It suffices to prove that u ∼V v is equivalent to ũ = ṽ. Recall that
u ∼V v if and only if, for each morphism ϕ : A∗ → N , where N ∈ V, one has
ϕ(u) = ϕ(v).

Suppose that u ∼V v and let ϕ : A → M be a function, which extends
to a morphism from A∗ to M . Since M ∈ V, one has ϕ(u) = ϕ(v) and thus
ũ(ϕ) = ṽ(ϕ). It follows that ũ = ṽ.

Suppose now that ũ = ṽ. Since V is generated by M , every monoid N of V
divides a power ofM . Therefore there exist a positive integer n, a submonoid T
of Mn and a surjective morphism π : T → N . By Corollary II.5.30, there exists
a morphism α : A∗ → T such that ϕ = π ◦ α. It follows that u ∼V v if and
only if, for each n and for each morphism α : A∗ → Mn, one has α(u) = α(v).
Denoting by πi the i-th projection from Mn onto M and setting αi = πi ◦ α,
we get α(u) = (α1(u), . . . , αn(u)). Now since αi is a morphism from A∗ to M ,
one has αi(u) = ũ(αi). It follows immediately that if ũ = ṽ, then α(u) = α(v).
Therefore u ∼V v, which concludes the proof.

A variety such that F̂V(A) is finite for each alphabet A is called locally
finite. It is tempting to guess, in view of Proposition 2.8, that every locally
finite variety is generated by a single monoid. However, this is not the case:
one can show that the variety of idempotent monoids is locally finite but not
finitely generated.

3 Identities

3.1 What is an identity?

Let A be a finite alphabet and let u and v be two profinite words of Â∗. A
monoid M satisfies the profinite identity u = v if, for each monoid morphism
ϕ : A∗ → M , one has ϕ̂(u) = ϕ̂(v). Similarly, an ordered monoid (M,6)
satisfies the profinite identity u 6 v if, for each monoid morphism ϕ : A∗ →M ,
one has ϕ̂(u) 6 ϕ̂(v). An identity u = v [u 6 v] where u and v are words is
sometimes called an explicit identity.

One can give similar definitions for [ordered] semigroups, by taking two
nonempty profinite words u and v. A semigroup S satisfies the identity u = v if,
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for each semigroup morphism ϕ : A+ → S, one has ϕ̂(u) = ϕ̂(v) [ϕ̂(u) 6 ϕ̂(v)].
The context is usually sufficient to know which kind of identities is considered.
In case of ambiguity, one can utilise the more precise terms [ordered ] monoid
identity or [ordered ] semigroup identity.

Formally, a profinite identity is a pair of profinite words. But in practice,
one often think directly in terms of elements of a monoid. Consider for instance
the explicit identity xy3z = yxyzy. A monoid M satisfies this identity if, for
each morphism γ : {x, y, z}∗ → M , one has γ(xy3z) = γ(yxyzy). Setting
γ(x) = s, γ(y) = t and γ(z) = u, this can be written as st3u = tstut. Since this
equality should hold for any morphism γ, it is equivalent to require that, for all
s, t, u ∈ M , one has st3u = tstut. Now, the change of variables is unnecessary,
and one can write directly that M satisfies the identity xy3z = yxyzy if and
only if, for all x, y, z ∈ M , one has xy3z = yxyzy. Similarly, a monoid is
commutative if it satisfies the identity xy = yx.

It is also possible to interpret directly any ω-term in a finite semigroup
[monoid] S. As it was already mentioned, the key idea is to think of ω as
the exponent of S. For instance, an identity like xωyω = yωxω can be readily
interpreted by saying that idempotents commute in S. The identity xωyxω = xω

means that, for every e ∈ E(S) and for every s ∈ S, ese = e. Propositions 4.23
and 4.27 provide other enlighting examples.

3.2 Properties of identities

Let us now state some elementary but important properties of identities. We
consider identities of ordered monoids, but the result can be readily adapted to
the other types of identities.

Proposition 3.9 Let u and v be profinite words on the alphabet A and let M
be an ordered monoid satisfying the identity u 6 v. Then for all x, y ∈ Â∗, M
satisfies the identity xuy 6 xvy. Further, for each morphism γ : A∗ → B∗, M
satisfies the identity γ̂(u) 6 γ̂(v).

Proof. Let ϕ : A∗ →M be a monoid morphism. Since M satisfies the identity
u 6 v, one has ϕ̂(u) 6 ϕ̂(v). Since ϕ̂ is a morphism, it follows that ϕ̂(xuy) 6

ϕ̂(xvy) for all x, y ∈ Â∗. Therefore, M satisfies the identity xuy 6 xvy.

Let γ : A∗ → B∗ and α : B∗ →M be morphisms. Then α ◦ γ is a morphism
from A∗ into M . Since M satisfies the identity u 6 v and since α̂ ◦ γ = α̂ ◦ γ̂,
one has α̂(γ̂(u)) 6 α̂(γ̂(v)). Therefore M satisfies the identity γ̂(u) 6 γ̂(v).

It is a common practice to use implicitly the second part of Proposition 3.9
without giving the morphism γ explicitly, but simply by substituting a profinite
word for a letter. For instance, one can prove that the monoid identity

xyx = x (3.1)

implies the identity x2 = x by taking y = 1 in (3.1). Similarly, the identity
xωyxω = xω implies the identity xω+1 = xω by taking y = x, since xωxxω =
xωxωx = xωx.
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3.3 Reiterman’s theorem

Given a set E of profinite identities, the class of monoids [semigroups, ordered
monoids, ordered semigroups] defined by E is the class of all monoids [semi-
groups, ordered monoids, ordered semigroups] satisfying all the identities of E
and is denoted by JEK.

The main result of this section, Reiterman’s theorem 3.13, states that va-
rieties can be characterised by profinite identities. We first establish the easy
part of this result.

Proposition 3.10 Let E be a set of identities. Then JEK is a variety of
monoids [semigroups, ordered monoids, ordered semigroups ].

Proof. We treat only the case of ordered monoids, but the other cases are
similar. Since varieties are closed under intersection, it suffices to prove the
result when E consists of a single identity, say u 6 v. Let M be an ordered
monoid satisfying this identity. Clearly, every submonoid of M satisfies the
same identity.

Let N be a quotient of M and let π :M → N be a surjective morphism. We
claim that N also satisfies u 6 v. Indeed, if ϕ : A∗ → N is a morphism, there
exists by Corollary II.5.30 a morphism ψ : A∗ →M such that ϕ = π◦ψ. SinceM
satisfies the identity u 6 v, one gets ψ̂(u) 6 ψ̂(v) and thus π(ψ̂(u)) 6 π(ψ̂(v)).

Finally, since ϕ̂ = π ◦ ψ̂, one obtains ϕ̂(u) 6 ϕ̂(v), which proves the claim.
Finally, let (Mi)i∈I be a finite family of ordered monoids satisfying the iden-

tity u 6 v. We claim that their product M =
∏

i∈I Mi also satisfies this
identity. Indeed, let πi denotes the projection from M onto Mi and let ϕ be a
morphism from A∗ into M . Since πi ◦ ϕ is a morphism from A∗ into Mi and
since π̂i ◦ ϕ = πi ◦ ϕ̂, one has πi ◦ ϕ̂(u) 6 πi ◦ ϕ̂(v). As this holds for each
i, one has ϕ̂(u) 6 ϕ̂(v). This proves the claim and concludes the proof.

A variety V satisfies a given identity if every monoid of V satisfies this
identity. We also say in this case that the given identity is an identity of V.
Identities of V are closely related to free pro-V monoids.

Proposition 3.11 Let A be a finite alphabet. Given two profinite words u and
v of Â∗, u = v is an identity of V if and only if πV(u) = πV(v).

Proof. If u = v is an identity of V, then u and v cannot be separated by any
monoid of V. Thus dV(u, v) = 0, u ∼V v and πV(u) = πV(v). Conversely
if πV(u) = πV(v), then by Proposition 2.5, ϕ(u) = ϕ(v) for every continuous

morphism ϕ from Â∗ into a monoid of V, and thus u = v is an identity of V.

Corollary 3.12 Let V and W be two varieties of monoids satisfying the same
identities on the alphabet A. Then F̂V(A) and F̂W(A) are isomorphic.

In particular, an identity of a monoid of V can be given as a pair (u, v) of
elements of F̂V(A). Given a set E of identities, we denote by JEK the class
of monoids satisfying all the identities of E. Reiterman’s theorem states these
classes are exactly the varieties of monoids [semigroups, ordered monoids, or-
dered semigroups].
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Theorem 3.13 (Reiterman) A class of [ordered ] monoids [semigroups ] is a
variety if and only if it can be defined by a set of profinite identities.

Proof. The first part of the theorem follows from Proposition 3.10. Let now V
be a variety of monoids. Let E be the class of all identities which are satisfied by
every monoid of V and let W = JEK. Clearly V ⊆W. Let M ∈W. Since M
is finite, there exists a finite alphabet A and a surjective morphism ϕ : A∗ →M
which can be extended to a uniformly continuous morphism from Â∗ onto M .
Let π : Â∗ → F̂V(A) be the natural morphism and let u, v ∈ Â∗. By Proposition
3.11, if π(u) = π(v), then u = v is an identity of V and thus, is satisfied by M .
In particular, π(u) = π(v) implies ϕ(u) = ϕ(v) and by Proposition II.3.22, ϕ
factors through π. Therefore M is a quotient of F̂V(A) and by Proposition 2.5,
M is in V. Thus V = W.

4 Examples of varieties

We now illustrate Reiterman’s theorem by giving identities defining various
varieties.

4.1 Varieties of semigroups

Nilpotent semigroups

A semigroup S is nilpotent if it has a zero and Sn = 0 for some positive integer
n. Recall that Sn denotes the set of all products of the form s1 · · · sn, with
s1, . . . , sn ∈ S. Equivalent definitions are given below.

Proposition 4.14 Let S be a nonempty semigroup. The following conditions
are equivalent:

(1) S is nilpotent,

(2) S satisfies the identity x1 · · ·xn = y1 · · · yn, where n = |S|,

(3) for every e ∈ E(S) and every s ∈ S, one has es = e = se,

(4) S has a zero which is the only idempotent of S.

Proof. (1) implies (2). This follows immediately from the definition.

(2) implies (3). Let s ∈ S and e ∈ E(S). Taking x1 = s and x2 = . . . =
xn = y1 = . . . = yn = e, one gets s = e if n = 1 and se = e if n > 1. Therefore
se = e in all cases. Similarly es = e, which proves (3).

(3) implies (4). Since S is a nonempty semigroup, it contains an idempotent
by Corollary II.6.32. Further, by (3), every idempotent of S is a zero of S, but
Proposition II.1.2 shows that a semigroup has at most one zero.

(4) implies (1). Denote by 0 the zero of S. Then by Corollary II.6.35,
Sn = SE(S)S = S{0}S = 0.

Nilpotent semigroups form a variety, denoted by N, and defined by the
identities xωy = xω = yxω.
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Lefty and righty trivial semigroups

A semigroup is called lefty [righty ] trivial if, for every idempotent e of S, the
semigroup eS [Se] is trivial. Equivalently, e is a left [right] zero of S, that is,
for every s ∈ S, one has es = e [se = e]. Equivalent definitions are possible:

Proposition 4.15 Let S be a nonempty semigroup and let I be its minimal
ideal. Let n = |S|. The following conditions are equivalent:

(1) S is lefty trivial,

(2) I is a left zero semigroup and is equal to E(S),

(3) I is a left zero semigroup and Sn = I,

(4) S satisfies the identity x1 · · ·xnx = x1 · · ·xn.

Proof. (1) implies (2). Let s ∈ I. Then for every e ∈ E(S), one has e = es ∈ I
since I is an ideal and therefore E(S) ⊆ I. Moreover if e ∈ E(S) and s, t ∈ S1,
(set)(set) = se(tset) = se = set since e is a left zero of S. It follows that E(S)
is a nonempty ideal of S contained in I and hence E(S) = I since I is minimal.
Further, since every idempotent of S is a left zero, I is a left zero semigroup.

(2) implies (3). By Corollary II.6.35, Sn = SE(S)S. If I = E(S), this gives
Sn = SIS = I.

(3) implies (4). Suppose that (3) holds and let x, x1, . . . , xn ∈ S. Then
x1 · · ·xn ∈ I and since I is an ideal, x1 · · ·xnx ∈ I. Now since I is a left zero
semigroup,

x1 · · ·xn = (x1 · · ·xn)(x1 · · ·xnx) = (x1 · · ·xn)(x1 · · ·xn)x = (x1 · · ·xn)x

which proves (4).
(4) implies (1). Let s ∈ S and e ∈ E(S). Taking x = s and x1 = . . . = xn =

e, one gets es = e and hence S is lefty trivial.

Note that, in a lefty trivial semigroup, all regular elements are in the minimal
ideal. Further, all nonregular D-classes are trivial. Let us state the dual result
for the righty trivial semigroups.

Proposition 4.16 Let S be a nonempty semigroup and let I be its minimal
ideal. Let n = |S|. The following conditions are equivalent:

(1) S is righty trivial,

(2) I is a right zero semigroup and is equal to E(S),

(3) I is a right zero semigroup and Sn = I,

(4) S satisfies an identity of the form xx1 · · ·xn = x1 · · ·xn.

The lefty [righty] trivial semigroups form a variety of finite semigroups, de-
noted by ℓ1 [r1], and defined by the identity xωy = xω [yxω = xω]. For historical
reasons, a different notation is often used in the literature. The variety ℓ1 is
denoted by K and the variety r1 by D.

Locally trivial semigroups

A semigroup is called locally trivial if for every s ∈ S and e ∈ E(S), ese = e.
Equivalent definitions are given below.
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Figure 4.1. A lefty trivial semigroup (on the left) and a righty trivial
semigroup (on the right).

Proposition 4.17 Let S be a nonempty semigroup and let n = |S|. The fol-
lowing conditions are equivalent:

(1) S is locally trivial,

(2) the minimal ideal of S is equal to E(S),

(3) for every e, f ∈ E(S) and every s ∈ S, one has esf = ef ,

(4) S satisfies an identity of the form x1 · · ·xnxx1 · · ·xn = x1 · · ·xn.

Proof. (1) implies (2). Let s ∈ I. Then for every e ∈ E(S), one has e = ese ∈ I
since I is an ideal and therefore E(S) ⊆ I. Moreover if e ∈ E(S) and s, t ∈ S1,
(set)(set) = se(ts)et = set and thus set is idempotent. It follows that E(S) is
a nonempty ideal of S contained in I and hence E(S) = I.

(2) implies (3). Suppose that I = E(S). Then I is an aperiodic semigroup,
which is also simple by Proposition V.4.37. Let s ∈ S and let e, f ∈ E(S).
Then e, f, esf ∈ I since I is an ideal. It follows by Corollary V.3.34 that
esf = eesff = e(esf)f = ef .

(3) implies (4). By Corollary II.6.35, Sn = SE(S)S. Let x, x1, . . . , xn ∈ S.
Then x1 · · ·xn ∈ S

n and hence x1 · · ·xn = set for some s, t ∈ S and e ∈ E(S).
It follows by (3)

x1 · · ·xnxx1 · · ·xn = (set)x(set) = s(etxse)t = set = x1 · · ·xn

which gives (4).

(4) implies (1). Let s ∈ S and e ∈ E(S). Taking x = s and x1 = . . . = xn =
e, one gets ese = e and hence S is locally trivial.
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Thus the locally trivial semigroups form a variety of finite semigroups, denoted
by L1, and defined by the identity xωyxω = xω.

Locally groups

A semigroup is locally a group if for every e ∈ E(S), the semigroup eSe is a
group. Equivalent definitions are given below.

Proposition 4.18 Let S be a nonempty semigroup. The following conditions
are equivalent:

(1) S is locally a group,

(2) every idempotent of S belongs to the minimal ideal of S,

(3) S satisfies the identity (xωyxω)ω = xω,

Proof. Let I be the minimal ideal of S and let n be the exponent of S.
(1) implies (2). Let s ∈ I and let e ∈ E(S). Since eSe is a group whose

identity is e, one has (ese)n = e. Now, I is an ideal and thus e ∈ I. It follows
that E(S) is a subset of I.

(2) implies (3). Suppose that E(S) ⊆ I. By Proposition V.4.37, I is a simple
semigroup. Let s ∈ S and let e ∈ E(S). Since I is an ideal, one has e, ese ∈ I
and thus e J ese. Since ese 6R e and ese 6L e, Theorem V.1.9 shows that
ese H e. Therefore (ese)n = e and S satisfies the identity (xωyxω)ω = xω.

(3) implies (1). Let s ∈ S and e ∈ E(S). Taking x = e and y = s, one gets
(ese)ω = e, which shows that S is locally a group.

Semigroups which are locally a group form a variety of finite semigroups, de-
noted by LG and defined by the identity (xωyxω)ω = xω.

Simple semigroups

Proposition 4.19 A semigroup is simple if and only if it satisfies the identities
xω+1 = x and (xyx)ω = xω.

Proof. Let S be a simple semigroup. By Proposition V.3.32, S has a single
D-class, which is a union of groups. Let x, y ∈ S. One has xω+1 6H x and
(xyx)ω 6H x and hence by Theorem V.1.9 (3) and (4), xω+1 H x and (xyx)ω H
xω. It follows immediately that (xyx)ω = xω since an H-class contains a unique
idempotent and xω+1 = x since xω is the identity of the H-class containing x
and xω+1.

Conversely, suppose that S satisfies the two identities

xω+1 = x and (xyx)ω = xω

The first identity shows that every element x is H-equivalent to xω and to xω+1

and hence belongs to the maximal group whose identity is xω. In particular,
all the elements of S are regular. Further, if x, y ∈ S, one has y 6J xyx 6J

(xyx)ω = xω J x. It follows that y 6J x and by duality x 6J y. It follows
that all elements of S are J -equivalent.

Simple semigroups form a variety of semigroups, usually denoted by CS.
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4.2 Varieties of monoids

Groups

The next proposition shows that groups form a variety of monoids, denoted by
G.

Proposition 4.20 The class of all groups is a variety of monoids, defined by
the identity xω = 1.

Proof. Finite groups are closed under quotients and finite direct products and
it follows from Proposition II.3.13 that a submonoid of a group is a group.

Since a monoid is a group if and only if its unique idempotent is 1, the
identity xω = 1 characterises the variety of finite groups.

Subvarieties of G include the variety Gcom of commutative groups and,
for each prime number p, the variety Gp of p-groups. Recall that a group is a
p-group if its order is a power of p.

Commutative monoids

A monoid is commutative if and only if it satisfies the identity xy = yx. There-
fore, the commutative monoids form a variety of monoids, denoted by Com.

Proposition 4.21 Every commutative monoid divides the product of its mono-
genic submonoids.

Proof. LetM be a commutative monoid and let N be the product of its mono-
genic submonoids. Let ϕ : N → M be the morphism which transforms each
element on N into the product of its coordinates. Then ϕ is clearly surjective
and thus M is a quotient of N .

Aperiodic monoids

A monoid M is aperiodic if there is an integer n > 0 such that, for all x ∈ M ,
xn = xn+1. Since we assume finiteness, quantifiers can be inverted in the
definition: M is aperiodic if for each x ∈ M , there is an integer n > 0 such
that xn = xn+1. Other characterisations of aperiodic monoids are given in
Proposition 4.22 (see also Proposition V.2.26).

Proposition 4.22 Let M be a finite monoid. The following conditions are
equivalent:

(1) M is aperiodic,

(2) M is H-trivial,

(3) the groups in M are trivial.

Proof. Let n be the exponent of M .
(1) implies (3). Let G be a group in M with identity e and let x ∈ G. Then

the elements xn = e and xn+1 = ex are also in G. By (1), one gets xn = xn+1

and thus ex = e. It follows that x = e since a group is cancellative. Thus G is
trivial.
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(1) implies (2). Suppose a H b. Then there exist u, v, x, y ∈ S1 such that
ua = b, vb = a, ax = b and by = a, whence uay = a and therefore unayn = a.
Since un H un+1, un = un+1 and thus a = unayn = un+1ayn = u(unayn) =
ua = b. Therefore M is H-trivial.

(3) implies (2) follows from the fact that each group in M is contained in an
H-class.

(2) implies (1). Let x ∈ M . Then the H-class of the idempotent xn is a
group G, which is trivial by (3). Since xn and xn+1 belong to G, one gets
xn = xn+1.

We denote by A the variety of aperiodic monoids. A monoid is aperiodic
if and only if it satisfies the identity xω = xωx, which can also be written, by
abuse of notation, xω = xω+1.

J -trivial, R-trivial and L-trivial monoids

We denote by J [R, L], the variety of J -trivial [R-trivial, L-trivial] monoids.
The identities defining these varieties are given in the next proposition.

Proposition 4.23 The following equalities hold

R = J(xy)ωx = (xy)ωK

L = Jy(xy)ω = (xy)ωK

J = Jy(xy)ω = (xy)ω = (xy)ωxK = Jxω+1 = xω, (xy)ω = (yx)ωK

Moreover, the identities (xωyω)ω = (xωy)ω = (xyω)ω = (xy)ω are satisfied by
J.

Proof. (1) Let M be a monoid and let x, y ∈ M . If ω is interpreted as the
exponent of M , we observe that (xy)ωx R (xy)ω since ((xy)ωx)(y(xy)ω−1) =
(xy)2ω = (xy)ω. Thus if M is R-trivial, the identity (xy)ωx = (xy)ω holds in
M .

Conversely, assume that M satisfies the identity (xy)ωx = (xy)ω and let
u and v be two R-equivalent elements of M . Then, there exist x, y ∈ M
such that ux = v and vy = u. It follows that u = uxy = u(xy)ω and thus
v = ux = u(xy)ωx. Now, since (xy)ωx = (xy)ω, u = v and M is R-trivial.

(2) The proof is dual for the variety L.
(3) Since J = R ∩ L, it follows from (1) and (2) that J is defined by the

identities y(xy)ω = (xy)ω = (xy)ωx. Taking y = 1, we obtain xω = xωx and also
(xy)ω = y(xy)ω = (yx)ωy = (yx)ω. Conversely, suppose that a monoid satisfies
the identities xω+1 = xω and (xy)ω = (yx)ω. Then we have (xy)ω = (yx)ω =
(yx)ω+1 = y(xy)ωx, whence (xy)ω = yω(xy)ωxω = yω+1(xy)ωxω = y(xy)ω and
likewise (xy)ω = (xy)ωx.

Note that the following inclusions hold: J ⊂ R ⊂ A and J ⊂ L ⊂ A.

Semilattices

A semilattice is an idempotent and commutative monoid. Semilattices form a
variety, denoted by J1 and defined by the identities x2 = x and xy = yx.
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Proposition 4.24 The variety J1 is generated by the monoid U1.

Proof. Proposition 4.21 shows that the variety J1 is generated by its monogenic
monoids. Now, there are only two monogenic idempotent monoids: the trivial
monoid and the monoid U1 considered in Section 2.2. It follows that U1 generates
J1.

Let us also mention a useful property

Proposition 4.25 A J -trivial idempotent monoid is a semilattice.

Proof. Let M be a J -trivial idempotent monoid. Proposition 4.23 show that
M satisfies the identity (xy)ω = (yx)ω. Since M is idempotent, this identity
becomes xy = yx and thus M is comutative. Therefore M is a semilattice.

Idempotent and R-trivial [L-trivial] monoids

Idempotent and R-trivial [L-trivial] monoids form a variety of monoids, denoted
by R1 [L1].

Proposition 4.26 The variety R1 [L1 ] is defined by the identity xyx = xy
[xyx = yx ].

Proof. We give only the proof for R1, since the case of L1 is symmetric.
Let M be an idempotent and R-trivial monoid. Let x, y ∈ M . Since M is

idempotent,one gets xy = xyxy and thus xy R xyx. But M is R-trivial and
thus xy = xyx. It follows that R1 satisfies the identity xy = xyx.

Conversely, let M be a monoid satisfying the identity xyx = xy. Taking
y = 1 gives x2 = x and thus M is idempotent. It follows also that M satisfies
the identity (xy)ωx = (xy)ω and hence is R-trivial by Proposition 4.23.

We shall see later (Proposition IX.1.6) that the variety R1 [L1] is generated
by the monoid U2 [Ũ2].

The variety DS

A monoid belongs to the variety DS if each of its regular D-class is a semigroup.
In this case, every regular D-class is completely regular (See Figure V.4.9).

The next proposition gathers various characterisations of DS and shows in
particular that DS = J((xy)ω(yx)ω(xy)ω)

ω
= (xy)ωK.

Proposition 4.27 Let M be a monoid. The following conditions are equiva-
lent:

(1) M belongs to DS,

(2) M satisfies the identity ((xy)ω(yx)ω(xy)ω)
ω
= (xy)ω,

(3) every regular H-class of M is a group,

(4) if s, t ∈M , s is regular and s 6J t, then s R st and s L ts,

(5) for each idempotent e ∈M , the set

Me = {s ∈M | e 6J s}

is a subsemigroup of M .
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Proof. (1) implies (2). Let x, y ∈M . By Proposition V.2.22, (xy)ω and (yx)ω

are conjugate idempotents. In particular, they belong to the same D-class D.
Since M ∈ DS, D is a simple semigroup and by Proposition 4.19, it satisfies the
identity (xyx)ω = xω. Therefore, condition (2) is satisfied.

(2) implies (3). Let x be regular element, let D be its D-class and let y
be an inverse of x. Then e = xy and f = yx are two idempotents of D. The
H-class H of x is equal to R(e)∩L(f). Further, condition (2) gives (efe)ω = e.
It follows that ef J e J fe and hence ef and fe also belong to D. Thus by
Theorem V.1.11, R(e) ∩ L(f) contains an idempotent and Proposition V.1.13
shows that H is a group, which proves (3).

(3) implies (1). Let D be a regular D-class. If each regular H-class of D is a
group, then each regular H-class contains an idempotent and D is a semigroup
by Theorem V.1.11.

Thus (1), (2) and (3) are equivalent. We now show that (1)–(3) implies (4).
Let s be a regular element ofM . By (3), s H sω. If s 6J t, then s = xty for some
x, y ∈ M . Now (xty)ω = ((xty)ω(yxt)ω(xty)ω))ω and hence (xty)ω J t(xty)ω.
It follows that

s J sω = (xty)ω J t(xty)ω = tsω 6J ts 6J s

and hence s J ts. It follows from Theorem V.1.9 that s L ts. Similarly, s R st.
(4) implies (3). Condition (4) applied with s = t shows that, if s is regular,

then s R s2 and s L s2. Therefore s H s2 and by Proposition V.1.13, theH-class
of s is a group, which establishes (3). Thus conditions (1)–(4) are equivalent.

(1)–(4) implies (5). Let e be an idempotent and let s, t ∈Me. Then e 6J s,
e 6J t and by (4), te L e and e R es. Since M ∈ DS, the D-class D of e is
a semigroup. Since es, te ∈ D, one gets este ∈ D and hence e J este 6J st.
Thus st ∈Me. This proves (5).

(5) implies (1). Let D be a regular D-class of M and let e be an idempotent
of D. If s, t ∈ D, then s, t ∈ Me and by (5), st ∈ Me, that is e 6J st. Since
st 6J s J e, one has e J st and hence st ∈ D.

It is also useful to characterise the monoids that are not in DS.

Proposition 4.28 Let M be a monoid. The following conditions are equiva-
lent:

(1) M does not belong to DS,

(2) there exist two idempotents e, f ∈M such that e J f but ef 6J e,

(3) B1
2 divides M ×M .

Proof. (1) implies (2). If M does not belong to DS, M contains a regular
D-class D which is not a semigroup. By Proposition V.4.36, one can find two
idempotent e, f ∈ D such that ef /∈ D.

(2) implies (3). Let D be the D-class of e. Since e J f , Proposition V.2.22
shows that there exist two elements s, s̄ ∈ D such that ss̄ = e and s̄s = f . Since
ef /∈ D, Theorem V.1.11 shows that L(e) ∩ R(f) contains no idempotent and
thus s̄2 /∈ D. Let N be the submonoid of M ×M generated by the elements
a = (s, s̄) and ā = (s̄, s). Then a and ā are mutually inverse inN and the element
aā = (e, f) and āa = (f, e) are idempotent. Therefore, the four elements a, ā,
aā and āa form a regular D-class C.
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a
∗
aā

∗
āa ā

Further, aa = (ss, s̄s̄) and bb = (s̄s̄, ss). Since s̄2 /∈ D, it follows that aa and bb
are not in C and in fact N−(C∪{1}) is the ideal of N consisting of all elements
x such that x <J a. It follows that N/J is isomorphic to B1

2 , which proves (2).
(3) implies (1). Suppose thatM ∈ DS. Since DS is a variety of monoids,M×

M ∈ DS and since B2
1 dividesM×M , B2

1 also belongs to DS, a contradiction.

The variety DA

A monoid M belongs to the variety DA if each regular D-class of M is an
aperiodic semigroup. It is equivalent to require that every regular D-class is a
rectangular band.

∗

...

∗

∗

∗

...

∗

∗

. . .

. . .

. . .

. . .

∗

...

∗

∗

Figure 4.2. A regular D-class in a monoid of DA.

The next proposition gathers various characterisations of DA and shows in
particular that DA = DS ∩A = J(xy)ω(yx)ω(xy)ω = (xy)ω, xω+1 = xωK.

Proposition 4.29 Let M be a monoid. The following conditions are equiva-
lent:

(1) M belongs to DA,

(2) M is aperiodic and belongs to DS,

(3) M satisfies the identities (xy)ω(yx)ω(xy)ω = (xy)ω and xω+1 = xω,

(4) for each e ∈ E(M) and each s ∈M , e 6J s implies ese = e,

(5) M is aperiodic and for each e, f ∈ E(M), e J f implies efe = e.

Proof. We prove (3)⇒ (2)⇒ (1)⇒ (4)⇒ (5)⇒ (3) in this order.
(3) implies (2) follows from Proposition 4.27.
(2) implies (1). If M ∈ DS, each regular D-class is completely regular and

hence is a simple semigroup. Further, if M is aperiodic, each regular D-class is
a simple aperiodic semigroup and hence is idempotent by Corollary V.3.34.

(1) implies (4). LetM ∈ DA. Let e ∈ E(M) and s ∈M be such that e 6J s.
Since M ∈ DS, Proposition 4.27 (4) shows the set Me = {x ∈ M | e 6J x}
is a subsemigroup of M . Since s and e belong to Me, one also has ese ∈ Me,
and hence e 6J ese. Since ese 6J e one gets finally ese J e. But each regular
D-class of M is a rectangular band, and thus ese = e.
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(4) implies (5). For each x ∈ M , one has xω 6J x, and thus by (4),
xω+1 = xω. Therefore M is aperiodic. Further if e and f are two J -equivalent
idempotents of M , then e 6J f and by (4), efe = e.

(5) implies (3). Suppose that M satisfies (5). Then M is aperiodic and
satisfies the identity xω+1 = xω. Further if x, y ∈ M , the elements (xy)ω and
(yx)ω are two conjugate idempotents, which are J -equivalent by Proposition
V.2.22. It follows that (xy)ω(yx)ω(xy)ω = (xy)ω.

4.3 Varieties of ordered monoids

A nilpotent ordered semigroup is positive [negative] if it satisfies the identity
xω 6 y [y 6 xω]. Positive [negative] nilpotent ordered semigroups form a
variety, denoted by N+ [N−], and defined by the identities yxω = xω = xωy
and xω 6 y [yxω = xω = xωy and y 6 xω].

We denote by J+
1
[J−

1
] the variety of ordered monoids defined by the identities

x2 = x, xy = yx and x 6 1 [1 6 x]. Proposition 4.24 can be readily adapted to
the ordered case.

Proposition 4.30 The variety J+
1

[J−
1
] is generated by the monoid U+

1 [U−
1 ].

We denote by J+ [J−] the variety of ordered monoids defined by the identity
x 6 1 [1 6 x]. The notation is justified by the following result.

Proposition 4.31 An ordered monoid satisfying the identity x 6 1 [1 6 x ] is
J -trivial.

Proof. Recall that the profinite word xω is defined as the limit of the sequence
xn!. Similarly, the profinite word xω−1 is defined as the limit of the sequence
xn!−1. It follows that (xy)ω = (xy)ω(xy)ω = (xy)ωx(yx)ω−1y.

Let M be an ordered monoid satisfying the identity x 6 1. This identity
gives (yx)ω−1y 6 1 and thus (xy)ω = (xy)ωx(yx)ω−1y 6 (xy)ωx 6 (xy)ω.
Therefore, M satisfies the identities (xy)ωx = (xy)ω and, by a dual argument,
y(xy)ω = (xy)ω. It follows by Proposition 4.23 that M is J -trivial.

A locally positive J -trivial is an ordered semigroup S such that, for each
idempotent e ∈ S, the ordered semigroup eSe is positive J -trivial. Locally
positive J -trivial semigroups form a variety of ordered semigroups, denoted by
LJ+ and defined by the identity Jxωyxω 6 xωK. This variety plays a crucial role
in the study of the polynomial closure (see Chapter XII).

4.4 Summary

We summarize in the next table the varieties defined so far.
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G Groups Jxω = 1K

Com Commutative monoids Jxy = yxK

J J -trivial monoids Jy(xy)ω = (xy)ω = (xy)ωxK

R R-trivial monoids J(xy)ωx = (xy)ωK

L L-trivial monoids Jy(xy)ω = (xy)ωK

J1 Semilattices Jx2 = x, xy = yxK

R1 Idempotent and R-trivial Jxyx = xyK

L1 Idempotent and L-trivial Jxyx = yxK

A Aperiodic monoids Jxω+1 = xωK

DA
Regular D-classes are J(xy)ω(yx)ω(xy)ω = (xy)ω,

aperiodic semigroups xω+1 = xωK

DS
Regular D-classes

J((xy)ω(yx)ω(xy)ω)
ω
= (xy)ωK

are semigroups

Notation Name Profinite identities

N Nilpotent semigroups Jyxω = xω = xωyK

ℓ1 or K Lefty trivial semigroups Jxωy = xωK

r1 or D Righty trivial semigroups Jyxω = xωK

L1 Locally trivial semigroups Jxωyxω = xωK

LG Locally groups J(xωyxω)ω = xωK

CS Simple semigroups Jxω+1 = x, (xyx)ω = xωK

N+ Positive nilpotent Jyxω = xω = xωy, xω 6 yK

N− Negative nilpotent Jyxω = xω = xωy, y 6 xωK

J+
1

Positive semilattices Jx2 = x, xy = yx, x 6 1K

J−
1

Negative semilattices Jx2 = x, xy = yx, 1 6 xK

J+ Positive J -trivial Jx 6 1K

J− Negative J -trivial J1 6 xK

LJ+ Locally positive J -trivial Jxωyxω 6 xωK

5 Exercises

In Exercises 1 and 2, we exceptionally consider infinite monoids.

1. A Birkhoff variety of monoids is a class V of (possibly infinite) monoids such
that:

(1) if S ∈ V and if T is a submonoid of S, then S ∈ V,

(2) if S ∈ V and if T is a quotient of S, then S ∈ V,
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(3) if (Si)i∈I is a (possibly infinite) family of monoids of V, the product∏
i∈I Si is also in V.

Show that the class of all commutative monoids forms a Birkhoff variety, but
that the class of all groups does not (consider the submonoid N of Z).

2. Let A be an alphabet and let u, v ∈ A∗. A monoid M satisfies the identity
u = v if and only if, for each monoid morphism ϕ : A∗ →M , ϕ(u) = ϕ(v).
Show that a class of monoids is a Birkhoff variety if and only if it can be
defined by a set of identities (Birkhoff’s theorem). Birkhoff’s theorem can be
extended to any variety of algebras, including semigroups, ordered semigroups
and ordered monoids.

We are now back with the usual convention of this chapter: semigroups are
either finite or free.

3. Let GS be the variety of semigroups generated by all groups. Show that
GS = Jxωy = yxω = yK.

4. Show that the variety N is defined by the identity yxωz = xω. Show that
the group Z/2Z satisfies the semigroup identity yxωy = xω. Conclude that this
identity does not define N.

5. Let V be a variety of [ordered] monoids. A semigroup S is locally V if,
for every idempotent e of S, the [ordered] semigroup eSe belongs to V. Show
that the locally V [ordered] semigroups form a variety of [ordered] semigroups,
denoted by LV.

6. Let V be the variety of monoids. Given a monoid M , denote by 〈E(M)〉 the
submonoid of M generated by the idempotents of M . Show that the monoids
M such that 〈E(M)〉 belongs to V form a variety of monoids, denoted by EV.
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Chapter VIII

Equations and languages

In this chapter, we show how profinite words can be used to give algebraic
descriptions of certain classes of regular languages. Examples are deferred to
the next chapter.

1 Equations

Formally, a profinite equation is a pair (u, v) of profinite words of Â∗. We also
use the term explicit equation when both u and v are words of A∗. We say
that a recognisable language L of A∗ satisfies the profinite equation u → v (or
v ← u) if the condition u ∈ L implies v ∈ L.

Proposition VI.3.13 gives immediately some equivalent definitions:

Corollary 1.1 Let L be a recognisable language of A∗, let η be its syntactic
morphism and let ϕ be any morphism onto a finite monoid recognising L. The
following conditions are equivalent:

(1) L satisfies the equation u→ v,

(2) η̂(u) ∈ η(L) implies η̂(v) ∈ η(L),

(3) ϕ̂(u) ∈ ϕ(L) implies ϕ̂(v) ∈ ϕ(L).

2 Equational characterisation of lattices

Given a set E of equations of the form u→ v, the subset of Rec(A∗) defined by
E is the set of all recognisable languages of A∗ satisfying all the equations of E.

A lattice of languages of A∗ is a set of recognisable languages of A∗ containing
the empty language ∅, the full language A∗ and which is closed under finite union
and finite intersection.

Proposition 2.2 The set of recognisable languages of A∗ defined by a set of
equations form a lattice of languages.

Proof. Let E be a set of equations and let L be the class of languages of A∗

defined by E. We claim that L is a lattice. First, it is clear that the empty
language and the full language A∗ satisfy any equation of the form u → v.
Therefore, these two languages are in L.

157
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Let now L1 and L2 be languages of L and let u → v be an equation of E.
Then, for i = 1, 2, the condition u ∈ Li implies v ∈ Li. Recall that, by Theorem
VI.3.14, one has L1 ∪ L2 = L1 ∪ L2 and L1 ∩ L2 = L1 ∩ L2. Suppose that
u ∈ L1 ∪ L2. Then either u ∈ L1 or u ∈ L2 and thus either v ∈ L1 or v ∈ L2

and finally v ∈ L1 ∪ L2. Similarly, if u ∈ L1 ∩ L2, then u ∈ L1 and u ∈ L2,
whence v ∈ L1 and v ∈ L2 and finally v ∈ L1 ∩ L2.

It follows that L1 ∩ L2 and L1 ∪ L2 satisfy all the equations of E and thus
L is a lattice of languages.

Our aim is now to show that the converse of Proposition 2.2 also holds. We
start with a result on languages interesting on its own right. Note in particular
that there is no assumption on the languages in this proposition.

Proposition 2.3 Let L, L1, . . . , Ln be languages. If L satisfies all the explicit
equations satisfied by L1, . . . , Ln, then L belongs to the lattice of languages gen-
erated by L1, . . . , Ln.

Proof. We claim that

L =
⋃

I∈I

⋂

i∈I

Li (2.1)

where I is the set of all subsets I of {1, . . . , n} for which there exists a word
v ∈ L such that v ∈ Li if and only if i ∈ I.

Let R be the right member of (2.1). If u ∈ L, let I = {i | u ∈ Li}. By
construction, I ∈ I and u ∈ ∩i∈ILi. Thus u ∈ R. This proves the inclusion
L ⊆ R.

To prove the opposite direction, consider a word u ∈ R. By definition, there
exists a set I ∈ I such that u ∈ ∩i∈ILi and a word v ∈ L such that v ∈ Li

if and only if i ∈ I. We claim that the equation v → u is satisfied by each
language Li. Indeed, if i ∈ I, then u ∈ Li by definition. If i /∈ I, then v /∈ Li

by definition of I, which proves the claim. It follows that v → u is also satisfied
by L. Since v ∈ L, it follows that u ∈ L. This concludes the proof of (2.1) and
shows that L belongs to the lattice of languages generated by L1, . . . , Ln.

An important consequence of Proposition 2.3 is that finite lattices of lan-
guages can be defined by explicit equations.

Corollary 2.4 A finite set of languages of A∗ is a lattice of languages if and
only if it can be defined by a set of explicit equations of the form u→ v, where
u, v ∈ A∗.

Proof. Proposition 2.2 shows that a set of recognisable languages defined by a
set of equations form a lattice of languages.

To prove the opposite direction, consider a finite lattice L of languages and
let E be the set of explicit equations satisfied by all the languages of L. Propo-
sition 2.3 shows that any language L that satisfies the equations of E belongs
to L. Thus L is defined by E.

We now are now ready for the main result.
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Theorem 2.5 A set of recognisable languages of A∗ is a lattice of languages
if and only if it can be defined by a set of equations of the form u → v, where
u, v ∈ Â∗.

Proof. For each recognisable language L, set

EL = {(u, v) ∈ Â∗ × Â∗ | L satisfies u→ v}

Lemma 2.6 For each recognisable language L, EL is a clopen subset of Â∗×Â∗.

Proof. One has

EL = {(u, v) ∈ Â∗ × Â∗ | L satisfies u→ v}

= {(u, v) ∈ Â∗ × Â∗ | u ∈ L implies v ∈ L}

= {(u, v) ∈ Â∗ × Â∗ | v ∈ L or u /∈ L}

= (L
c
× Â∗) ∪ (Â∗ × L)

The result follows since, by Proposition VI.3.12, L is clopen.

Let L be a lattice of languages and let E be the set of profinite equations
satisfied by all languages of L. We claim that E defines L. First, by definition,
every language of L satisfies the equations of E. It just remains to prove that
if a language L satisfies the equations of E, then L belongs to L.

First observe that the set

{EL} ∪ {E
c
K | K ∈ L}

is a covering of Â∗ × Â∗. Indeed, if (u, v) /∈ ∪K∈LE
c
K , then (u, v) ∈ ∩K∈LEK ,

which means that u→ v is an equation satisfied by all languages of L. It follows
that L also satisfies this equation, and thus (u, v) ∈ EL. Further, Lemma 2.6

shows that the elements of this covering are open sets. Since Â∗×Â∗ is compact,
it admits a finite subcovering, and we may assume that this covering contains
EL and is equal to

{EL} ∪ {E
c
L1
, . . . , Ec

Ln
}

for some languages L1, . . . , Ln of L. By the same argument as above, it follows
that if an equation u → v is satisfied by L1, . . . , Ln, then it is satisfied by L.
By Proposition 2.3, L belongs to the lattice of languages generated by L1, . . . ,
Ln and hence belongs to L.

Writing u ↔ v for (u → v and v → u), we get an equational description of
the Boolean algebras of languages.

Corollary 2.7 A set of recognisable languages of A∗ is a Boolean algebra of
languages if and only if it can be defined by a set of equations of the form
u↔ v, where u, v ∈ Â∗.

We now specialize Theorem 2.5 and Corollary 2.7 to interesting subcases.
We consider lattices of languages closed under quotient in Section 3, streams
of languages in Section 4, C-streams in Section 5 and varieties of languages in
Section 6.
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3 Lattices of languages closed under quotients

We say that a class L of recognisable languages is a lattice of languages closed
under quotients if for every L ∈ L and u ∈ A∗, u−1L and Lu−1 are also in L.

Let u and v be two profinite words of Â∗. We say that L satisfies the
equation u 6 v if, for all x, y ∈ Â∗, it satisfies the equation xuy → xvy. Since
A∗ is dense in Â∗, it is equivalent to state that L satisfies these equations only
for all x, y ∈ A∗. But there is a much more convenient characterisation using
the syntactic ordered monoid of L.

Proposition 3.8 Let L be a recognisable language of A∗, let (M,6L) be its
syntactic ordered monoid and let η : A∗ →M be its syntactic morphism. Then
L satisfies the equation u 6 v if and only if η̂(u) 6L η̂(v).

Proof. Corollary 1.1 shows that L satisfies the equation u 6 v if and only if,
for every x, y ∈ A∗, η̂(xvy) ∈ η(L) implies η̂(xvy) ∈ η(L). Since η̂(xuy) =
η̂(x)η̂(u)η̂(y) = η(x)η̂(u)η(y) and since η is surjective, this is equivalent to
saying that, for all s, t ∈M , sη̂(u)t ∈ η(L) implies sη̂(v)t ∈ η(L), which exactly
means that η̂(u) 6L η̂(v).

We can now state the equational characterisation of lattices of languages
closed under quotients.

Theorem 3.9 A set of recognisable languages of A∗ is a lattice of languages
closed under quotients if and only if it can be defined by a set of equations of
the form u 6 v, where u, v ∈ Â∗.

Proof. Let L be a recognisable language satisfying the equation u 6 v and let
x, y ∈ A∗. Since L satisfies the equation xuy → xvy, the condition xuy ∈ L im-
plies xvy ∈ L and hence u ∈ x−1Ly−1 implies v ∈ x−1Ly−1. Since x−1Ly−1 =
x−1Ly−1 by Proposition VI.3.15, the language x−1Ly−1 satisfies the equation
u 6 v. It follows that the set of recognisable languages defined by a set of
equations of the form u 6 v is a lattice of languages closed under quotients.

In the opposite direction, let L be a lattice of languages of A∗ closed under
quotients. By Theorem 2.5, L can be defined by a set E of equations of the form
u → v, where u, v ∈ Â∗. Let now u → v be an equation of E, L a language of
L and x, y two words of A∗. Since L is closed under quotient, x−1Ly−1 belongs
to L and thus satisfies also the equation u → v. It follows that L satisfies the
equation xuy → xvy and hence L satisfies the equation u 6 v. It follows that L
is defined by the equations of the form u 6 v where u→ v is an equation of E.

Theorem 3.9 can be readily extended to Boolean algebras. Let u and v be
two profinite words. We say that a recognisable language L satisfies the equation
u = v if it satisfies the equations u 6 v and v 6 u. Proposition 3.8 now gives
immediately:

Proposition 3.10 Let L be a recognisable language of A∗ and let η be its syn-
tactic morphism. Then L satisfies the equation u = v if and only if η̂(u) = η̂(v).

This leads to the following equational description of Boolean algebras of
languages closed under quotients.
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Corollary 3.11 A set of recognisable languages of A∗ is a Boolean algebra of
languages closed under quotients if and only if it can be defined by a set of
equations of the form u = v, where u, v ∈ Â∗.

4 Streams of languages

A class of recognisable languages is a correspondence F which associates with
each alphabet A a set F(A∗) of recognisable languages of A∗ in such a way that,
if σ : A → B is a bijection, a language L belongs to F(A∗) if and only if σ(L)
belongs to F(B∗). It follows that, if we fix for each nonnegative integer n an
alphabet An = {a1, . . . , an}, the class F is completely determined by the family
(F(A∗

n))n∈N.
We use here the terms class and correspondence instead of set and function

to avoid any paradox of set theory, since it is known, for instance, that the finite
sets do not form a set. However, we shall use the term “bijection” instead of
“one-to-one and onto correspondence”.

A positive stream of languages is a class of recognisable languages V such that

(1) for each alphabet A, V(A∗) is a lattice of languages,

(2) for each morphism of monoid ϕ : A∗ → B∗, X ∈ V(B∗) implies ϕ−1(X) ∈
V(A∗),

A stream of languages is a positive stream of languages closed under comple-
mentation. This amounts replacing (1) by (1’) in the previous definition

(1′) for each alphabet A, V(A∗) is a Boolean algebra.

In the sequel, we fix for each nonnegative integer n an alphabet An =
{a1, . . . , an}. Let u and v be two profinite words of Â∗

n and let L be a recog-
nisable language of A∗. One says that L satisfies the profinite identity u → v
[u↔ v] if, for each morphism γ : A∗

n → A∗, L satisfies the equation γ̂(u)→ γ̂(v)
[γ̂(u)↔ γ̂(v)]. The next proposition gives an alternative definition.

Proposition 4.12 Let L be a recognisable language of A∗ and let ϕ : A∗ →M
be any surjective morphism onto a finite monoid recognising L. Then L satisfies
the profinite identity u→ v, where u, v ∈ Â∗

n, if and only if, for every morphism
α : A∗

n →M , α̂(u) ∈ ϕ(L) implies α̂(v) ∈ ϕ(L).

Proof. Suppose that, for every morphism α : A∗
n → M , α̂(u) ∈ ϕ(L) implies

α̂(v) ∈ ϕ(L). If γ : A∗
n → A∗ is a morphism, then ϕ̂(γ̂(u)) ∈ ϕ(L) implies

ϕ̂(γ̂(v)) ∈ ϕ(L) and thus L satisfies the equation γ̂(u)→ γ̂(v).
In the opposite direction, suppose that L satisfies the profinite identity u→ v

and let α : A∗
n →M be a morphism. By Corollary II.5.30, there is a morphism

γ : A∗
n → A∗ such that ϕ◦γ = α. Now L satisfies the equation γ̂(u)→ γ̂(v) and

thus, by Corollary 1.1, ϕ̂(γ̂(u)) ∈ ϕ(L) implies ϕ̂(γ̂(v)) ∈ ϕ(L). Since ϕ̂◦ γ̂ = α̂,
one gets α̂(u) ∈ ϕ(L) implies α̂(v) ∈ ϕ(L).

Theorem 4.13 A class of recognisable languages of A∗ is a positive stream of
languages if and only if it can be defined by a set of profinite identities of the
form u→ v. It is a stream of languages if and only if it can be defined by a set
of profinite identities of the form u↔ v.
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Before proving this theorem, let us clarify one point: the identities defining
a stream are not necessarily on the same alphabet.

Proof. Let V be a class of languages defined by a set E of profinite identities
of the form u → v. For each n, let En be the set of all identities u → v of
E such that u, v ∈ Â∗

n. By definition, V(A∗) is the set of languages satisfying
all the equations of the form γ(u) → γ(v), where (u, v) ∈ En for some n and
γ : A∗

n → A∗ is a morphism. In particular, Theorem 3.9 shows that V(A∗) is a
lattice of languages.

To prove that V is a positive stream of languages, it remains proving that
it is closed under inverse of morphisms. Let ϕ : A∗ → B∗ be a morphism and
let L ∈ V(B∗). We claim that ϕ−1(L) satisfies all the identities of E. Indeed,
let (u, v) ∈ En and let γ : A∗

n → B∗ be a morphism. We want to show that
ϕ−1(L) satifies the equation γ̂(u) → γ̂(v). Suppose that γ̂(u) ∈ ϕ−1(L). Since
Proposition VI.3.16 states that ϕ−1(L) = ϕ̂−1(L), one gets ϕ̂(γ̂(u)) ∈ L. Since
ϕ̂◦ γ̂ = ϕ̂ ◦ γ, we finally get ϕ̂ ◦ γ(u) ∈ L. Now, as L satisfies the identity u→ v,
one obtains ϕ̂ ◦ γ(v) ∈ L, which, by the same argument in reverse order, implies
that γ̂(v) ∈ ϕ−1(L). This proves that ϕ−1(L) satifies the equation γ̂(u)→ γ̂(v)
and thereby the identity u → v. This validates the claim and confirms that
ϕ−1(L) belongs to V(A∗). Therefore V is a positive stream of languages.

Let now V be a positive stream of languages. Then, for each n, the set V(A∗
n)

is a lattice of languages and by Theorem 2.5, it is defined by a set En of profinite

equations of the form u→ v, with u, v ∈ Ân

∗
. We claim that these equations are

actually identities satisfied by V. Let γ : A∗
n → A∗ be a morphism and let u→ v

be an equation of En. If L ∈ V(A∗), then γ−1(L) ∈ V(A∗
n) and thus γ−1(L)

satisfies the equation u → v. Thus u ∈ γ−1(L) implies v ∈ γ−1(L). Now,
Proposition VI.3.16 shows that γ−1(L) = γ̂−1(L) and thereby, the conditions
x ∈ γ−1(L) and γ̂(x) ∈ L are equivalent. Thus γ̂(u) ∈ L implies γ̂(v) ∈ L,
which means that L satisfies the equation γ̂(u) → γ̂(v). Therefore u → v is
an identity of V. It follows that V is defined by a set of identities of the form
u→ v.

5 C-streams

Let C be a class of morphisms between finitely generated free monoids that
satisfies the following properties :

(1) C is closed under composition. That is, if A, B and C are finite alphabets,
and f : A∗ → B∗ and g : B∗ → C∗ are elements of C, then g ◦ f belongs
to C.

(2) C contains all length-preserving morphisms.

Examples include the classes of all length-preserving morphisms (morphisms for
which the image of each letter is a letter), of all length-multiplying morphisms
(morphisms such that, for some integer k, the length of the image of a word is k
times the length of the word), all non-erasing morphisms (morphisms for which
the image of each letter is a nonempty word), all length-decreasing morphisms
(morphisms for which the image of each letter is either a letter of the empty
word) and all morphisms.

A positive C-stream of languages is a class of recognisable languages V such
that :
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(1) for every alphabet A, V(A∗) is a lattice of languages,

(2) if ϕ : A∗ → B∗ is a morphism of C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗),

A C-stream of languages is a positive C-stream of languages closed under com-
plement.

Let u and v be two profinite words of Â∗
n and let L be a recognisable language

of A∗. One says that L satisfies the profinite C-identity u→ v [u↔ v] if, for each
C-morphism γ : A∗

n → A∗, L satisfies the equation γ̂(u)→ γ̂(v) [γ̂(u)↔ γ̂(v)].

Theorem 5.14 A class of recognisable languages of A∗ is a positive C-stream
of languages if and only if it can be defined by a set of profinite C-identities of
the form u→ v. It is a stream of languages if and only if it can be defined by a
set of profinite C-identities of the form u↔ v.

Proof. The proof of Theorem 4.13 carries over by changing every occurrence
of “morphism” by “C-morphism”. Note however that the closure of C under
composition is needed to show that γ ◦ ϕ belongs to C.

The notion of C-identity can be sometimes confusing. Let us illustrate it by
a few examples.

Example 5.1 TO DO.

6 Varieties of languages

A positive variety of languages is a class of recognisable languages such that

(1) for each alphabet A, V(A∗) is a lattice of languages,

(2) for each morphism of monoid ϕ : A∗ → B∗, X ∈ V(B∗) implies ϕ−1(X) ∈
V(A∗),

(3) If X ∈ V(A∗) and u ∈ A∗, u−1X ∈ V(A∗) and Xu−1 ∈ V(A∗).

A variety of languages is a positive variety of languages closed under comple-
mentation. This amounts replacing (1) by (1’) in the previous definition

(1′) for each alphabet A, V(A∗) is a Boolean algebra.

Let u and v be two profinite words of Â∗
n and let L be a recognisable language

of A∗. One says that L satisfies the profinite identity u 6 v [u = v] if, for all
morphisms γ : A∗

n → A∗, L satisfies the equation γ̂(u) 6 γ̂(v) [γ̂(u) = γ̂(v)].

Theorem 6.15 A class of recognisable languages of A∗ is a positive variety of
languages if and only if it can be defined by a set of profinite identities of the
form u 6 v. It is a variety of languages if and only if it can be defined by a set
of profinite identities of the form u = v.

Proof. The proof, which combines the arguments of Theorems 3.9 and 4.13 is
left as an exercise to the reader.

A positive C-variety of languages is a class of recognisable languages V such that

(1) for every alphabet A, V(A∗) is a lattice of languages,

(2) if ϕ : A∗ → B∗ is a morphism of C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗),

(3) if L ∈ V(A∗) and if a ∈ A, then a−1L and La−1 are in V(A∗).
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A C-variety of languages is a positive C-variety of languages closed under com-
plement.

Let u and v be two profinite words of Â∗
n and let L be a recognisable language

of A∗. One says that L satisfies the profinite C-identity u 6 v [u = v] if, for all
C-morphisms γ : A∗

n → A∗, L satisfies the equation γ̂(u) 6 γ̂(v) [γ̂(u) = γ̂(v)].

Theorem 6.16 A class of recognisable languages of A∗ is a positive C-variety
of languages if and only if it can be defined by a set of profinite identities of the
form u 6 v. It is a C-variety of languages if and only if it can be defined by a
set of profinite identities of the form u = v.

Proof. The proof, which combines the arguments of Theorems 3.9 and 5.14 is
left as an exercise to the reader.

When C is the class of all morphisms, we recover the definition of a variety
of languages. When C is the class of length-preserving [length-multiplying, non-
erasing, length-decreasing] morphisms, we use the term lp-variety [lm-variety,
ne-variety, ld-variety] of languages.

7 The variety theorem

In this section, we present a slightly different algebraic point of view to charac-
terise varieties of languages, proposed by Eilenberg [27].

If V is a variety of finite monoids, denote by V(A∗) the set of recognisable
languages of A∗ whose syntactic monoid belongs to V. The following is an
equivalent definition:

Proposition 7.17 V(A∗) is the set of languages of A∗ recognised by a monoid
of V.

Proof. If L ∈ V(A∗), then the syntactic monoid of L, which recognises L,
belongs to V. Conversely, if L is recognised by a monoid M of V, then by
Proposition IV.4.25, the syntactic monoid of L divides M and thus belongs also
to V.

The correspondence V → V associates with each variety of finite monoids a
class of recognisable languages. We shall see later (Proposition 7.20) that V is a
variety of languages. For now, we show that this correspondence is one to one.

Theorem 7.18 Let V and W be two varieties of finite monoids. Suppose that
V→ V and W→W. Then V ⊆W if and only if, for every finite alphabet A,
V(A∗) ⊆ W(A∗). In particular, V = W if and only if V =W.

Proof. If V ⊆ W, it follows immediately from the definitions that V(A∗) ⊆
W(A∗). The proof of the opposite inclusion is based on the following proposi-
tion.

Proposition 7.19 Let V be a variety of monoids and let M ∈ V. Then there
exist a finite alphabet A and languages L1, . . . , Lk ∈ V(A∗) such that M is
isomorphic with a submonoid of M(L1)× · · · ×M(Lk).



7. THE VARIETY THEOREM 165

Proof. SinceM is finite, there exists a finite alphabet A and a surjective monoid
morphism ϕ : A∗ → M . For each s ∈ M , put Ls = ϕ−1(s). Then Ls is
recognised by M and thus Ls ∈ V(A

∗). Let Ms be the syntactic monoid of Ls.
By Proposition IV.4.24, it is also the syntactic monoid of the singleton {s} in
M . We denote by πs : M → Ms the projection and by π : M →

∏
s∈M Ms

the morphism of monoids defined by π(x) = (πs(x))s∈M . We claim that π is
injective. If π(x) = π(y), then in particular, πy(x) = πy(y). This means that,
for every s, t ∈ M , syt = y if and only if sxt = y. Applying this result with
s = t = 1, one gets x = y. This proves the claim and shows thatM is isomorphic
with a submonoid of

∏
s∈M Ms.

We can now complete the proof of Theorem 7.18. Suppose that V(A∗) ⊆
W(A∗) for every finite alphabet A and let M ∈ V. Then by Proposition
7.19, M is isomorphic with a submonoid of the form M(L1) × · · · × M(Lk),
where L1, . . . , Lk ∈ V(A∗). It follows that L1, . . . , Lk ∈ W(A∗) and hence
M(L1), . . . ,M(Lk) ∈W. Therefore M ∈W.

We now characterise the classes of languages which can be associated with
a variety of monoids.

Proposition 7.20 Let V be a variety of finite monoids. If V → V, then V is
a variety of languages.

Proof. Let L,L1, L2 ∈ V(A∗) and let a ∈ A. Then by definitionM(L), M(L1),
M(L2) are in V. By Proposition IV.2.9, the languages L1 ∪L2 and L1 ∩L2 are
recognised by a submonoid T of M(L1) ×M(L2). Now since V is a variety of
monoids, T ∈ V and thus L1∪L2 and L1∩L2 belong to V(A∗). Since ∅ and A∗

are recognised by the trivial monoid, which is certainly in V, V(A∗) is a Boolean
algebra of languages. Similarly, Proposition IV.2.11 shows that the languages
a−1L and La−1 are recognised by M(L) and Proposition IV.2.10 shows that, if
ϕ : B∗ → A∗ is a monoid morphism, then ϕ−1(L) is recognised by M(L). Thus
V is a variety of languages.

To each variety of languages V, we associate the variety of monoids V gener-
ated by the monoids of the form M(L) where L ∈ V(A∗) for a certain alphabet
A. This defines a correspondence V → V. We are now ready to state Eilenberg’s
variety theorem.

Theorem 7.21 The correspondences V → V and V → V define mutually in-
verse bijective correspondences between varieties of finite monoids and varieties
of languages.

Proof. Let V be a variety of languages and suppose that V → V and V→W.
We claim that V = W. First, if L ∈ V(A∗), one has M(L) ∈ V by definition
and therefore L ∈ W(A∗), still by definition. Therefore, for every alphabet A,
V(A∗) ⊆ W(A∗).

The inclusion W(A∗) ⊆ V(A∗) is more difficult to prove. Let L ∈ W(A∗).
Then M(L) ∈ V and since V is the variety generated by the monoids of the
form M(L) where L is a language of V, there exist an integer n > 0 and, for
1 6 i 6 n, alphabets Ai and languages Li ∈ Vi(A∗

i ) such that M(L) divides
M(L1)×· · ·×M(Lk). Denote byM this product of monoids. SinceM(L) divides
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M , it is a quotient of a submonoid T of M . By Corollary IV.4.22, T recognises
L. Therefore there exists a surjective morphism of monoids ϕ : A∗ → T and a
subset P of T such that L = ϕ−1(P ). Let πi :M →M(Li) be the i-th projection
defined by πi(s1, . . . , sn) = si. Put ϕi = πi ◦ ϕ and let ηi : A

∗ →M(Li) be the
syntactic morphism of Li. Since ηi is onto, there exists by Corollary II.5.30 a
morphism of monoids ψi : A

∗ → A∗
i such that ϕi = ηi ◦ ψi. We can summarize

the situation in a diagram:

A∗ A∗
i

T ⊆M M(Li)

ψi

πi

ηi
ϕiϕ

We recall that we are seeking to prove that L ∈ V(A∗), which is finally obtained
by a succession of reductions of the problem. First, one has

L = ϕ−1(P ) =
⋃

s∈P

ϕ−1(s)

Since V(A∗) is closed under union, it suffices to establish that for every s ∈ P ,
one has ϕ−1(s) belongs to V(A∗). Setting s = (s1, . . . , sn), one gets {s} =⋂

16i6n π
−1
i (si). Consequently

ϕ−1(s) =
⋂

16i6n

ϕ−1(π−1
i (si)) =

⋂

16i6n

ϕ−1
i (si)

As V(A∗) is a lattice, it suffices to establish that, for 1 6 i 6 n, ϕ−1
i (si) ∈ V(A∗).

Since ϕi = ηi ◦ψi, one has ϕ
−1
i (si) = ψ−1

i (η−1
i (si)). Now since V is a variety

of languages, it suffices to prove that η−1
i (si) ∈ V(A

∗
i ), which results from the

following lemma.

Lemma 7.22 Let V be a variety of languages and let η : A∗ → M be the
syntactic morphism of a language L of V(A∗). Then for every x ∈ M , η−1(x)
belongs to V(A∗).

Proof. Let P = η(L). Then L = η−1(P ). Setting E = {(s, t) ∈M2 | sxt ∈ P},
we claim that

{x} =
( ⋂

(s,t)∈E

s−1Pt−1
)
−
( ⋃

(s,t)∈Ec

s−1Pt−1
)

(7.2)

Let R be the right hand side of (7.2). It is clear that x belongs to R. Conversely,
let u be an element of R. If sxt ∈ P , then u ∈ s−1Pt−1, that is, sut ∈ P . And if
sxt /∈ P , then u /∈ s−1Pt−1. It follows that u ∼L x and thus u = x, which proves
the claim. Since η−1 commutes with Boolean operations and quotients, η−1(x)
is a Boolean combination of quotients of L and hence belongs to V(A∗).

There is an analoguous theorem for varieties of ordered monoids.
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Theorem 7.23 The correspondences V → V and V → V define mutually in-
verse bijective correspondences between varieties of finite ordered monoids and
positive varieties of languages.

Eilenberg’s +-varieties

In his original presentation, Eilenberg introduced a variant of his variety the-
orem. We shall briefly review this version and discuss its connexion with the
point of view presented in this chapter.

The first difference is that languages are now subsets of a free semigroup,
instead of a free monoid in the usual case. In this setting, it is natural to use
semigroups instead of monoids and in particular, there is a notion of syntactic
semigroup. A +-variety of languages is a class of recognisable languages such
that

(1) for each alphabet A, V(A+) is a Boolean algebra,

(2) for each semigroup morphism ϕ : A+ → B+, ifX ∈ V(B+) then ϕ−1(X) ∈
V(A+),

(3) If X ∈ V(A+) and u ∈ A∗, u−1X ∈ V(A+) and Xu−1 ∈ V(A+).

Positive +-varieties of languages can be defined in the same way. The second
Eilenberg’s

Theorem 7.24 The correspondences V → V and V → V define mutually in-
verse bijective correspondences between varieties of finite semigroups and +-
varieties of languages.

There is an analoguous theorem for varieties of ordered semigroups.

Theorem 7.25 The correspondences V → V and V → V define mutually in-
verse bijective correspondences between varieties of finite ordered semigroups
and positive +-varieties of languages.

To interpret this result in the context of this chapter, let us introduce a
notation: if S is a semigroup, denote by SI the monoid S ∪ {I}, where I is a
new identity.

LetV be a variety of finite semigroups and let V be the corresponding variety
of languages. We define another class of languages V ′ as follows. For each
alphabet A, V ′(A∗) consists of all languages of A∗ recognised by a morphism
ϕ : A∗ → SI such that the semigroup ϕ(A+) is in V. This is the case in
particular if S ∈ V and ϕ : A+ → S is a surjective morphism. Then one can
show that V is a ne-variety of languages. Further, every language of V(A+) is
a language of V ′(A∗). Conversely, if L is a language of V ′(A∗), then L ∩ A+ is
a language of V(A+).

8 Summary

We summarize on a table the various types of equations we have used so far.
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Closed under Equations Definition

∪,∩ u→ v η̂(u) ∈ η̂(L)⇒ η̂(v) ∈ η̂(L)

quotient u 6 v xuy → xvy

complement u↔ v u→ v and v → u

quotient and complement u = v xuy ↔ xvy

Closed under inverse of morphisms Interpretation of variables

all morphisms words

nonerasing morphisms nonempty words

length multiplying morphisms words of equal length

length preserving morphisms letters



Chapter IX

Algebraic characterisations

In this chapter, we give explicit examples of the algebraic characterisations
described in Chapter VI.

1 Varieties of languages

The two simplest examples of varieties of languages are the variety I corre-
sponding to the trivial variety of monoids 1 and the variety Rat of rational
languages corresponding to the variety of all monoids. For each alphabet A,
I(A∗) consists of the empty and the full language A∗ and Rat(A∗) is the set of
all rational languages on the alphabet A.

We provide the reader with many more examples in this section. Other
important examples are the topic of Chapters X, XI and XIV.

1.1 Locally finite varieties of languages

Let V be a [positive] variety of languages. One says that V is locally finite if
the corresponding variety of [ordered] monoids is locally finite. Here is a more
combinatorial characterisation.

Proposition 1.1 A [positive] variety of languages V is locally finite if and only
if, for each alphabet A, V(A∗) is a finite set.

Proof. Let V be the variety of [ordered] monoids corresponding to V. If V

is locally finite, then, for each alphabet A, F̂V(A) is a finite monoid which
recognises all the languages of V(A∗). It follows that V(A∗) is a finite set.

Conversely, suppose that for each alphabet A, V(A∗) is a finite set. Define an
equivalence ≡V on A∗ by u ≡V v if and only if, for all L ∈ V(A∗), the conditions
u ∈ L and v ∈ L are equivalent. Since V(A∗) is finite, this equivalence has finite
index. We claim that u ≡V v implies u ∼V v. Indeed, let ϕ be a morphism
from A∗ onto a monoid M of V and suppose that u ≡V v. Then the language
L = ϕ−1(ϕ(u)) belongs to V(A∗) and since u ∈ L, one gets v ∈ L, that is
ϕ(v) = ϕ(u), which proves the claim. It follows that ∼V has finite index and

thus F̂V(A) is a finite monoid.

169
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A combinatorial description

Proposition VII.2.8 shows that if V is generated by a single [ordered] monoid,
then V is locally finite. In this case, one can give a more precise description of
V.

Proposition 1.2 Let V be a variety of ordered monoids generated by a single
ordered monoid M and let V be the corresponding positive variety. Then, for
each alphabet A, V(A∗) is the lattice generated by the sets of the form ϕ−1(↑m),
where ϕ : A∗ →M is an arbitrary morphism and m ∈M .

Proof. It is clear that ϕ−1(↑ m) ∈ V(A∗) and thus V(A∗) also contains the
lattice generated by these sets. Conversely, let L ∈ V(A∗). Then there exists
an integer n > 0, a morphism ϕ : A∗ →Mn and an upper set I of M such that
L = ϕ−1(I). Since ϕ−1(I) =

⋃
m∈P ϕ

−1(↑m), it is sufficient to establish the
result when L = ϕ−1(↑m) where m ∈ Mn. Denote by πi the i-th projection
from Mn onto M . Setting m = (m1, . . . ,mn), we have m =

⋂
16i6n π

−1
i (mi),

whence

ϕ−1(↑m) =
⋂

16i6n

(πi ◦ ϕ)
−1(↑mi)

Since mi ∈M and πi ◦ ϕ is a morphism from A∗ into M , the result follows.

There is of course a similar result for the varieties of monoids, the proof of
which is similar.

Proposition 1.3 Let V be a variety of monoids generated by a single monoid
M and let V be the corresponding variety of languages. Then, for every alphabet
A, V(A∗) is the Boolean algebra generated by the sets of the form ϕ−1(m), where
ϕ : A∗ →M is an arbitrary morphism and m ∈M .

Languages corresponding to J1, J
+
1

and J−
1

Let us denote by J1 [J +
1 , J−

1 ] the [positive] variety of languages corresponding
to J1 [J+

1
, J−

1
].

Proposition 1.4 For each alphabet A, J1(A
∗) is the Boolean algebra generated

by the languages of the form A∗aA∗ where a is a letter. Equivalently, J1(A
∗)

is the Boolean algebra generated by the languages of the form B∗ where B is a
subset of A.

Proof. The equality of the two Boolean algebras considered in the statement
results from the formulas

B∗ = A∗ −
⋃

a∈A−B

A∗aA∗ and A∗aA∗ = A∗ − (A− {a})∗

Since J1 is generated by U1, one can use Proposition 1.3 to describe J1. Let ϕ :
A∗ → U1 be a morphism, and let B = {a ∈ A | ϕ(a) = 1}. Then ϕ−1(1) = B∗

and ϕ−1(0) = A∗ −B∗, which establishes the proposition.
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If B is a subset of A, denote by F (B) the set of words of A∗ containing at
least one occurrence of each letter of B. Thus

F (B) =
⋂

a∈B

A∗aA∗

The next proposition is thus a variant of Proposition 1.4 and its proof is left as
an exercise to the reader.

Proposition 1.5 For each alphabet A, J−
1 (A∗) is the set of finite unions of

languages of the form F (B) where B ⊆ A. Similarly, J +
1 (A∗) is the set of

finite unions of languages of the form B∗ where B ⊆ A.

Languages corresponding to R1 and L1

Another interesting example of locally finite variety is the variety R1 of idem-
potent and R-trivial monoids.

Proposition 1.6 Let L be a recognisable subset of A∗ and letM be its syntactic
monoid. The following conditions are equivalent:

(1) M divides Ũn
2 for some n > 0,

(2) M belongs to R1,

(3) M satisfies the identity xyx = xy,

(4) L is a disjoint union of sets of the form

a1{a1}
∗a2{a1, a2}

∗a3{a1, a2, a3}
∗ · · · an{a1, a2, . . . , an}

∗

where the ai’s are distinct letters of A,

(5) L is a Boolean combination of sets of the form B∗aA∗, where a ∈ A and
B ⊆ A.

Proof. (1) implies (2) since Ũ2 ∈ R1.
(2) implies (3). Let x, y ∈ M . Since M is idempotent, xy = xyxy and thus
xy R xyx. But M is R-trivial and therefore xy = xyx.
(3) implies (4). Let ρ : A∗ → A∗ be the function which associates with any
word u the sequence of all distinct letters of u in the order in which they first
appear when u is read from left to right. For example, if u = caabacb, then
ρ(u) = cab. In fact ρ is sequential function, realised by the sequential transducer
T = (P(A), A, ∅, ., ∗), where the transition and the output functions are defined
by

B · a = B ∪ {a}

B ∗ a =

{
1 if a ∈ B

0 otherwise

Define an equivalence ∼ on A∗ by setting u ∼ v if ρ(u) = ρ(v). It is easy to see
that the equivalence classes of ∼ are the disjoint sets

L(a1,...,an) = a1{a1}
∗a2{a1, a2}

∗a3{a1, a2, a3}
∗ · · · an{a1, a2, . . . , an}

∗

where (a1, . . . , an) is a sequence of distinct letters of A. We claim that ∼ is
a congruence. If u ∼ v, then u and v belong to some set L(a1,...,an). Let
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a be a letter. If a = ai for some i, then ua, va ∈ L(a1,...,an), and au, av ∈
L(a,a1,...,ai−1,ai+1,...,an

. Thus ua ∼ va and au ∼ av. If a /∈ {a1, . . . , an}, then
ua, va ∈ L(a1,...,an,a) and au, av ∈ L(a,a1,...,an) and thus again ua ∼ va and
au ∼ av, which proves the claim.

Let η : A∗ → M be the syntactic morphism of L. If u ∈ L(a1,...,an), then
u = a1u1a2u2 · · · anun where ui ∈ {a1, . . . , ai}

∗ for 1 6 i 6 n and thus by (3),
η(u) = η(a1 · · · an). It follows that u ∼ v implies η(u) = η(v) and therefore L is
a disjoint union of equivalence classes of ∼, that is of sets of the form L(a1,...,an).
(4) implies (5). First observe that

L(a1,...,an) = A∗
n ∩

⋂

16i6n

A∗
i−1aiA

∗ where Ai = {a1, . . . , ai} and A0 = ∅

Condition (5) is now a consequence of the following equalities:

A∗
i = A∗ −

⋃

a/∈Ai

A∗aA∗ A∗
i−1aiA

∗
i = A∗

i−1aiA
∗ ∩A∗

i

(5) implies (1). By the variety theorem (Theorem VIII.7.18), it is sufficient
to show that, for B ⊆ A and a ∈ A, B∗aA∗ is recognised by Ũ2. Let Ũ2 =
{1, a1, a2} and let ϕ : A∗ → Ũ2 be the morphism defined by

ϕ(a) = a1

ϕ(b) =

{
1 if b ∈ B − {a}

a2 for b ∈ A− (B ∪ {a})

Then ϕ−1(a1) = B∗aA∗, which concludes the proof.

There is of course a dual version for the variety L1 of idempotent and R-
trivial monoids.

Proposition 1.7 Let L be a recognisable subset of A∗ and letM be its syntactic
monoid. The following conditions are equivalent:

(1) M divides Un
2 for some n > 0,

(2) M belongs to L1,

(3) M satisfies the identity xyx = yx,

(4) L is a disjoint union of sets of the form

{a1, a2, . . . , an}
∗an{a1, a2, . . . , an−1} · · · {a1, a2}

∗a2{a1}
∗a1

where the ai’s are distinct letters of A,

(5) L is a Boolean combination of sets of the form A∗aB∗, where a ∈ A and
B ⊆ A.

1.2 Commutative languages

We now come to the study of commutative languages. We study successively
the languages corresponding to aperiodic and commutative monoids (variety
Acom), to commutative groups and to arbitrary commutative monoids.
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Languages recognised by aperiodic commutative monoids

If a is a letter of an alphabet A, let us denote by L(a, k) the set of words of A∗

which contain exactly k occurrences of a

L(a, k) = {u ∈ A+ | |u|a = k}

Then the following result holds.

Proposition 1.8 For each alphabet A, Acom(A∗) is the Boolean algebra gen-
erated by the sets of the form L(a, k) where a ∈ A and k > 0.

Proof. First, every set of the form L(a, k) is recognised by an aperiodic com-
mutative monoid. Indeed, let N = {1, x, x2, . . . , xk, xk+1} be the cyclic monoid
defined by the relation xk+2 = xk+1, and let ϕ : A∗ → N be the morphism
defined by ϕ(a) = x and ϕ(b) = 1 if b 6= a. Then clearly L(a, k) = ϕ−1(xk).

By Proposition VII.4.21, Acom is generated by its cyclic monoids, and
Proposition 1.3 can be used to describe Acom. Let M = {1, x, x2, . . . , xn} be
a cyclic monoid, defined by the relation xn+1 = xn, and let ϕ : A∗ → M be a
morphism. Then for each a ∈ A there exists an integer na such that ϕ(a) = xna .
Let k be an integer such that 0 6 k < n. Then

ϕ−1(xk) = {u ∈ A∗ |
∑

a∈A

na|u|a = k}

=
⋃ ⋂

a∈A

L(a, ka)

where the union is taken over the set of families (ka)a∈A such that
∑

a∈A naka =
k. Finally, for k = n, we have

ϕ−1(xn) = A∗ −
⋃

06k<n

ϕ−1(xk)

which concludes the proof.

Languages recognised by commutative groups

For each positive integer n, let Ab(n) be the variety of all abelian groups of
exponent dividing n. This variety is known to be generated by the cyclic groups
of order n. Let us call n-commutative a language recognised by a group in
Ab(n). A description of these languages was given in [27].

Proposition 1.9 For each alphabet A, the n-commutative languages of A∗ form
the Boolean algebra generated by the languages of the form

F (a, k, n) = {u ∈ A∗ | |u|a ≡ k mod n} = ((B∗a)n)∗(B∗a)kB∗,

where a ∈ A, B = A− {a} and 0 6 k < n.

We shall present an improved version of this result, which avoids using com-
plementation. Let A = {a1, . . . , as} be an alphabet. Let us call n-elementary
commutative a language of the form

F (r1, . . . , rs, n) = {u ∈ A
∗ | |u|a1

≡ r1 mod n, . . . , |u|as
≡ rs mod n}
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where r1, . . . , rs ∈ {0, . . . , n− 1}. Thus, with the notation of Proposition 1.9,

F (r1, . . . , rs, n) = F (a1, r1, n) ∩ . . . ∩ F (as, rs, n)

Proposition 1.10 A language is n-commutative if and only if it is a disjoint
union of n-elementary commutative languages.

Proof. Let A = {a1, . . . , as}, let G be a group in Ab(n) and let ϕ : A∗ → G be
a morphism. If L is recognised by ϕ, then L = ϕ−1(P ) for some subset P of G.
Put ϕ(a1) = g1, . . . , ϕ(as) = gs. Let u ∈ A∗ and, for 1 6 i 6 s, let |u|ai

≡ ri
mod n. Adopting an additive notation for G, we get

ϕ(u) =
∑

16i6s

|u|ai
gi =

∑

16i6s

rigi

Therefore u ∈ L if and only if
∑

16i6s rigi ∈ P and hence

L =
⋃

(r1,...,rs)∈E

F (r1, . . . , rs, n)

where E = {(r1, . . . , rs) |
∑

16i6s rigi ∈ P}. This concludes the proof, since the
languages F (r1, . . . , rs, n) are clearly pairwise disjoint.

Languages recognised by commutative monoids

Let Com be the variety of languages corresponding to the variety of commutative
monoids. The following result is now a consequence of Propositions 1.8 and 1.10.

Proposition 1.11 For each alphabet A, Com(A∗) is the Boolean algebra gener-
ated by the languages of the form L(a, k), where a ∈ A and k > 0, and F (a, k, n),
where a ∈ A and 0 6 k < n.

1.3 R-trivial and L-trivial languages

We study in this section the languages whose syntactic monoids are R-trivial
or L-trivial. Surprinsingly, the corresponding results for J -trivial and H-trivial
monoids are noticeably more difficult and will be treated in separate chapters
(Chapters X and XI).

Let A = (Q,A, · ) be a complete deterministic automaton. We say that A
is extensive if there is a partial ordering 6 on Q such that for every q ∈ Q
and for every a ∈ A, one has q 6 q · a. It is important to note that although
Q is equipped with a partial order, we do not require A to be an ordered
automaton. In other words, we do not assume that the action of each letter is
order preserving.

Proposition 1.12 The transition monoid of an extensive automaton is R-
trivial.

Proof. Let A = (Q,A, · ) be an extensive automaton and let u, v, x, y be words
of A∗. Suppose that ux and v on the one hand, and vy and u on the other
hand, have the same action on Q. It then follows, for every q ∈ Q, that q ·u 6
q ·ux = q · v and q · v 6 q · vy = q ·u, whence q ·u = q · v and therefore u and v
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have the same action on Q. It follows from this that the transition monoid of
A is R-trivial.

One can deduce from Proposition 1.13 a first characterisation of languages
recognised by an R-trivial monoid.

Proposition 1.13 A language is recognised by an R-trivial monoid if and only
if it is recognised by an extensive automaton.

Proof. If a language is recognised by an extensive automaton, it is recognised
by the transition monoid of this automaton by Proposition IV.3.18. Now this
monoid is R-trivial by Proposition 1.12.

Conversely, let L be a language of A∗ recognised by an R-trivial monoid.
Then there exist a morphism η : A∗ → M and a subset P of M such that
η−1(P ) = L. We have seen in Section 3 that the automaton A = (M,A, · ),
defined bym· a = mη(a), recognises L. Sincem >R mη(a), the order >R makes
A an extensive automaton. Thus L is recognised by an extensive automaton.

We now descrive the variety of languages R corresponding to R.

Theorem 1.14 For each alphabet A, R(A∗) consists of the languages which
are disjoint unions of languages of the form A∗

0a1A
∗
1a2 · · · akA

∗
k, where k > 0,

a1, . . . , ak ∈ A, Ak ⊆ A and, for 0 6 i 6 k − 1, Ai is a subset of A− {ai+1}.

Proof. Let L = A∗
0a1A

∗
1a2 · · · akA

∗
k, with k > 0, a1, . . . , ak ∈ A, Ak ⊆ A

and, for 0 6 i 6 k − 1, Ai is a subset of A − {ai+1}. Let us set, for 0 6 i 6 k,
A′

i = A−(Ai∪{ai+1}). Then the automaton represented in Figure 1.1 recognises
L.

0 1 n− 1 n

n+ 1

a1 a2 an

A′
0

A′
1

A′
n−1

A′
n

A0 A1 An−1 An

A

. . .

Figure 1.1. An automaton recognising L.

Since this automaton is extensive for the natural order on the integers, it follows
by Proposition 1.13 that L belongs to L(A∗).

Conversely, let L ∈ L(A∗). By Proposition 1.13, L is recognised by an
extensive automaton A = (Q,A, · , q−, F ). Let S be the set of sequences of the
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form (q0, a1, . . . , ak, qk) such that q0 = q−, q0 · a1 = q1, . . . , qk−1 · ak = qk and
qk ∈ F . Setting, for q ∈ Q, Aq = {a ∈ A | q · a = q}, we claim that

L =
⋃

(q0,a1,...,ak,qk)∈S

A∗
q0a1A

∗
q1 · · ·A

∗
qk−1

akA
∗
qk

(1.1)

Note also that this union is disjoint since A is deterministic. Let K be the right
hand side of (1.1). If u ∈ K, there is a sequence (q0, a1, . . . , ak, qk) ∈ S and a
factorisation u = u0a1u1 · · · akuk such that u0 ∈ A

∗
q0 , . . . , uk ∈ A

∗
qk
. It follows

that q0 ·u0 = q0, q0 · a1 = q1, . . . , qk−1 · ak = qk and qk ·uk = qk. Therefore,
q0 ·u = qk and thus u ∈ L since q0 = q− and qk ∈ F .

Conversely, let u ∈ L. Since A is extensive, the successful path of label u
visits successively an increasing sequence of states q− = q0 < q1 < . . . < qk ∈ F .
This gives a factorisation u = u0a1u1 · · · akuk, such that q0 ·u0 = q0, q0 · a1 = q1,
. . . , qk−1 · ak = qk and qk ·uk = qk. Consequently, u belongs to K. This proves
the claim and the theorem.

A dual result holds for the variety of languages L corresponding to L.

Theorem 1.15 For each alphabet A, L(A∗) consists of the languages which
are disjoint unions of languages of the form A∗

0a1A
∗
1a2 · · · akA

∗
k, where k > 0,

a1, . . . , ak ∈ A, A0 ⊆ A and, for 1 6 i 6 k, Ai is a subset of A− {ai}.

We conclude this section with a representation theorem for R-trivial monoids.
Let us denote by En the submonoid of Tn consisting of all extensive functions
from {1, . . . , n} into itself.

Proposition 1.16 For every n > 0, the monoid En is R-trivial.

Proof. Let f, g ∈ En such that f R g. There exist a, b ∈ En such that fa = g
and gb = f . Let q ∈ {1, . . . , n}. Since a is extensive one has q · f 6 q · fa = q · g
and likewise q · g 6 q · gb = q · f . It follows that f = g and thus En is R-trivial.

Theorem 1.17 A finite monoid is R-trivial if and only if it is a submonoid of
En for some n > 0.

Proof. If M is R-trivial, the relation >R is a partial ordering. It follows that,
for every m ∈M , the right translation ρm :M →M defined by ρm(x) = xm is
extensive for this order. We have seen in Proposition II.4.25 that the function
m 7→ ρm is an injective morphism from M into T (M). Therefore, M is a
submonoid of En with n = |M |.

Conversely, suppose that M is a submonoid of En. Then En is R-trivial by
Proposition 1.16 and M is also R-trivial since the R-trivial monoids form a
variety of monoids.

1.4 Some examples of +-varieties

Varieties corresponding to N, N+ and N−

Let us denote by N [N+, N−] the +-variety corresponding to N [N+, N−].
Recall that a subset F of a set E is cofinite if the complement of F in E is
finite.
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Proposition 1.18 For each alphabet A,

(1) N−(A+) consists of the empty subset and of the cofinite languages of A+,

(2) N+(A+) consists of A+ and of the finite languages of A+,

(3) N (A+) is the set of finite or cofinite languages of A+.

Proof. (1). Denote by ϕ : A+ → S the syntactic morphism of L. If L is empty,
S is trivial, and thus belongs to tN−. If L is a cofinite subset of A+, there exists
an integer n such that L contains all the words of length > n. If u is such a
word, we have xuy ∈ L for each x, y ∈ A∗, thereby showing that all the words of
A+ of length > n are syntactically equivalent and have the same image e under
ϕ. By Proposition VII.4.14, S is thus nilpotent. There remains to prove that
s 6 e for every s ∈ S. Let v ∈ ϕ−1(s). Then the formal implication

(xvy ∈ L⇒ xuy ∈ L)

shows that v 6L u, whence s 6 e in S. Therefore S ∈ N−.
Conversely, let (S,6) ∈ N−, I be an upper set of S and let ϕ : A+ → S

be a morphism of semigroups. If I is empty, ϕ−1(I) is empty also. Otherwise,
I contains necessarily 0, since 0 is maximal for 6. Let u be a word of length
greater than or equal to |S|. By Proposition VII.4.14, ϕ(u) = 0 and hence
ϕ(u) ∈ I. Therefore ϕ−1(I) is cofinite.

(2) follows from (1) by taking the complement.
(3) What precedes shows that the syntactic semigroup of a finite or cofinite

subset is a nilpotent semigroup. To prove the converse, consider a nilpotent
nonempty semigroup S. Let P be a subset of S and let ϕ : A+ → S be a
morphism of semigroups. Then 0 belongs either to P , or to S − P and the
argument above shows that ϕ−1(P ) is either finite or cofinite.

Varieties corresponding to ℓ1, r1 and L1

Let us denote by LI [ℓI, rI] the +-variety corresponding to L1 [ℓ1, r1].

Proposition 1.19 For each alphabet A, ℓI(A+) [ rI(A+) ] is the set of lan-
guages of the form FA∗ ∪G [A∗F ∪G ] where F and G are finite languages of
A+. It is also the Boolean algebra generated by the languages of the form uA∗

or {u}, where u ∈ A+.

Proof. Let L be a language of the form FA∗ ∪ G, where F and G are finite
languages of A+. We claim that the syntactic semigroup of L belongs to ℓ1.
Since the syntactic semigroup of G is nilpotent by Proposition 1.18, it suffices to
consider the syntactic semigroup S of the language FA∗. Let n be the maximum
length of the words of F and let u be a word of length greater than or equal to
n. Then for every word v ∈ A∗, one has uv ∼FA∗ u, since the three conditions
xuvy ∈ FA∗, xu ∈ FA∗ and xuy ∈ FA∗ are clearly equivalent. It follows that
ts = t for every t ∈ Sn and by Proposition VII.4.15, S belongs to ℓ1.

Conversely, let L be a language recognised by a semigroup S ∈ ℓ1 and let
n = |S|. Then there exists a morphism ϕ : A+ → S such that L = ϕ−1(ϕ(L)).
Let u be a word of L of length greater than or equal to n. Let us write u =
vs with |v| = n and s ∈ A∗. By Proposition VII.4.15 (4), one has ϕ(u) =
ϕ(v)ϕ(s) = ϕ(vA∗). It follows that L = FA∗ ∪G, where F is the set of words
of L of length n and G is the set of words of L of length less than n.
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The second part of the statement is easy to prove. First, we know that
ℓI(A+) is a Boolean algebra and by the first part of the statement, it contains the
languages of the form uA∗ or {u}, where u ∈ A+. Further, the Boolean algebra
generated by the languages of the form uA∗ or {u} contains the languages of
the form FA∗ ∪G, with F and G finite.

Proposition 1.20 For each alphabet A, LI(A+) is the set of languages of the
form FA∗G ∪ H where F , G and H are finite languages of A+. It is also
the Boolean algebra generated by the languages of the form uA∗ or A∗u, where
u ∈ A+.

Proof. Let L be a language of the form FA∗G ∪ H, where F , G and H are
finite languages of A+. We claim that the syntactic semigroup of L belongs
to L1. Since the syntactic semigroup of H is nilpotent by Proposition 1.18,
it suffices to consider the syntactic semigroup S of the language FA∗G. Let
n be the maximum length of the words of F and G let u be a word of length
greater than or equal to n. Then for every word v ∈ A∗, one has uvu ∼FA∗G u,
since the conditions xuvuy ∈ FA∗G and xuy ∈ FA∗G are clearly equivalent. It
follows that tst = t for every t ∈ Sn and by Proposition VII.4.17, S belongs to
L1.

Conversely, let L be a language recognised by a semigroup S ∈ L1 and let
n = |S|. Then there exists a morphism ϕ : A+ → S such that L = ϕ−1(ϕ(L)).
Let u be a word of L of length greater than or equal to 2n. Let us write u = pvs
with |p| = |s| = n. By Proposition VII.4.17, one has ϕ(u) = ϕ(ps) = ϕ(pA∗s)
and hence pA∗s ⊆ L. It follows that L is a finite union of languages of the form
pA∗s, with |p| = |s| = n and of a set of words of length less than 2n.

The second part of the statement is easy to prove. First, we know that
LI(A+) is a Boolean algebra and by the first part of the statement, it contains
the languages of the form uA∗, A∗u or {u}, where u ∈ A+. Further, the
Boolean algebra generated by these languages contains the languages of the
form FA∗G ∪H, with F , G and H finite.

2 Lattices of languages

We first give a number of examples of lattices of languages. We start by revisit-
ing some classical examples studied between 1960 and 1980. Then we consider
some more recent examples.

2.1 The role of the zero

An element 0 of a monoid M is a zero if, for all m ∈ M , 0m = 0 = 0m. It is
easy to see that a monoid has at most one zero element. This allows one to use
the notation 0 for the zero without ambiguity. Observe that the trivial monoid
has a zero, but this is the only case for which 1 = 0. Also note that the minimal
ideal of a monoid with zero reduces to {0}. A quotient of a monoid with zero
also has a zero, but this is not the case for a submonoid.
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Languages with zero

A language with zero is a language whose syntactic monoid has a zero, or equiv-
alently, a language fully recognised by a monoid with zero.

Proposition 2.21 The class of recognisable languages with zero is closed un-
der Boolean operations and under quotients. It is not closed under inverses of
morphisms, even for length-preserving morphisms.

Proof. Let C be the class of recognisable languages with zero. The empty
language and the full language belong to C, since their syntactic monoid is
trivial. Proposition IV.2.8 shows that C is closed under complement. Let L1

and L2 be two languages of C and let ϕ1 : A∗ → M1 and ϕ2 : A∗ → M2

be their respective syntactic morphisms. By Proposition IV.2.9, L1 ∩ L2 is
recognised by the morphism ϕ : A∗ → Im(ϕ) ⊆ M1 ×M2 defined by ϕ(u) =
(ϕ1(u1), ϕ2(u2)). We claim that the monoid M = Im(ϕ) has a zero. Indeed,
let u1 and u2 be words such that ϕ1(u1) = 0 and ϕ2(u2) = 0. Then the
element ϕ(u1u2) is a zero of M . Indeed, if ϕ(u) is an element of M , then
ϕ(u)ϕ(u1u2) = ϕ(uu1u2) = (ϕ1(uu1u2), ϕ2(uu1u2)) = (0, 0) = ϕ(u1u2) and
similarly, ϕ(u)ϕ(u1u2) = ϕ(u1u2). This proves the claim and shows that L1∩L2

is a language with zero. Thus C is closed under Boolean operations.

Let L be a recognisable language with zero and letM be its syntactic monoid.
Let u be a word of A∗. It follows from Proposition IV.2.11 that the languages
u−1L and Lu−1 are also recognised by M . It follows that the syntactic monoid
of these languages is a quotient of M and hence has a zero. Thus C is closed
under quotients.

Finally let A = {a, b} and let ϕ : A∗ → A∗ be the length-preserving mor-
phism defined by ϕ(a) = ϕ(b) = a. If L = (a2)∗, then ϕ−1(L) = (A2)∗. Now
L has a zero, but the syntactic monoid of (A2)∗ is the cyclic group of order 2,
which has no zero.

According to Corollary VIII.3.11, the class of recognisable languages with
zero has an equational definition, but finding one explicitly requires a little bit
of work.

Let us fix a total order on the alphabet A. Let u0, u1, . . . be the ordered
sequence of all words of A+ in the induced shortlex order. For instance, if
A = {a, b} with a < b, the first elements of this sequence would be

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .

It is proved in [90, 4] that the sequence of words (vn)n>0 defined by

v0 = u0, vn+1 = (vnun+1vn)
(n+1)!

converges to an idempotent ρA of the minimal ideal of the free profinite monoid
on A. This profinite element can be used to give an equational characterisation
of the recognisable languages with zero.

Proposition 2.22 A recognisable language has a zero if and only if it satisfies
the equation xρA = ρA = ρAx for all x ∈ A∗.
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Proof. Let L be a recognisable language and let η : A∗ → M be its syntactic
monoid. Since ρA belongs to the minimal ideal of Â∗, η(ρA) is an element of the
minimal ideal of M . In particular, if M has a zero, η(ρA) = 0 and L satisfies
the equations xρA = ρA = ρAx for all x ∈ A∗.

Conversely, assume that L satisfies these equations. Let m ∈ M and let
x ∈ A∗ be such that η(x) = m. Then the equations η(xρA) = η(ρA) = η(ρAx)
give mη(ρA) = η(ρA) = η(ρA)m, showing that η(ρA) is a zero of M . Thus L
has a zero.

In the sequel, we shall use freely the symbol 0 in equations to mean that
a monoid has a zero. For instance the equation x 6 0 of Theorem 2.25 below
should be formally replaced by the two equations xρA = ρA = ρAx and x 6 ρA.

Nondense languages

A language L of A∗ is dense if, for every word u ∈ A∗, L ∩ A∗uA∗ 6= ∅, or,
equivalently, if (A∗)−1L(A∗)−1 = A∗. Note that dense languages are not closed
under intersection: (A2)∗ and (A2)∗A ∪ {1} are dense, but their intersection is
not dense.

Proposition 2.23 Nondense or full languages are closed under finite union,
finite intersection and left and right quotients.

Proof. Let L1 and L2 be two nondense languages of A∗. Then there exist two
words u1, u2 ∈ A∗ such that L1 ∩A∗u1A

∗ = ∅ and L1 ∩A∗u2A
∗ = ∅. It follows

that (L1 ∩L2)∩A
∗u1A

∗ = ∅ and (L1 ∪L2)∩A
∗u1u2A

∗ = ∅. Thus L1 ∩L2 and
L1 ∪ L2 are nondense. If L1 = A∗, then L1 ∩ L2 = L2 and L1 ∪ L2 = A∗. Thus
nondense or full languages are closed under finite union and finite intersection.

Let L be a nondense language. Then there exists a word u ∈ A∗ such that
L∩A∗uA∗ = ∅. Let x, y ∈ A∗. We claim that x−1Ly−1∩A∗uA∗ = ∅. Otherwise,
there exist two words s, t such that sut ∈ x−1Ly−1. It follows that xsuty ∈ L, a
contradiction, since L∩A∗uA∗ = ∅. Thus x−1Ly−1 is nondense. If L = A∗, then
x−1Ly−1 = A∗ for all words x, y ∈ A∗. Therefore nondense or full languages
are closed under left and right quotients.

Proposition 2.24 Nondense or full languages are not closed under inverse of
morphisms, even for length-preserving morphisms.

Proof. Let ϕ : {a, b}∗ → {a, b}∗ be the morphism defined by ϕ(a) = ϕ(b) = a.
Then a+ is nondense in {a, b}∗, but ϕ−1(a+) = {a, b}+ is dense and not full.

We now give an equational description of nondense or full languages of the form
foretold by Theorem VIII.3.9.

Theorem 2.25 A language of A∗ is nondense or full if and only if it satisfies
the identity 0 6 x.

Proof. Let L be a recognisable language of A∗, let η : A∗ →M be its syntactic
monoid and P its syntactic image. First observe that the identity 0 6 x means
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that if 0 ∈ P , then P =M and hence M = {0} since M is the syntactic monoid
of P .

Suppose that L is nondense. Then there exists a word u ∈ A∗ such that
L ∩ A∗uA∗ = ∅. It follows that for all x ∈ A∗, xu ∼L u ∼L ux and hence η(u)
is a zero in M . Further 0 /∈ P . If now L is full, then M is the trivial monoid
which has a zero. Thus the identity is satisfied in both cases.

Conversely, assume that M satisfies the identity 0 6 x. Then M has a zero.
If 0 ∈ P , then M is the trivial monoid and L is full. Otherwise, 0 /∈ P . Let u
be a word such that η(u) = 0. Then η(A∗uA∗) = 0 and hence L ∩ A∗uA∗ = ∅.
Thus L is nondense.

2.2 Languages defined by density

The density of a language L ⊆ A∗ is the function which counts the number of
words of length n in L. More formally, it is the function dL : N→ N defined by

dL(n) = |L ∩A
n|

where |E| denotes the cardinality of a set E. We first state some elementary
properties of this function.

Proposition 2.26 Let L1 and L2 be two languages. Then, for all n,

(1) dL1∪L2
(n) 6 dL1

(n) + dL2
(n),

(2) dL1∩L2
(n) 6 min{dL1

(n), dL2
(n)},

(3) dL1L2
(n) 6

∑
06k6n dL1

(k)dL2
(n− k).

Proof. The double relation

(L1 ∩ L2) ∩A
n ⊆ (L1 ∪ L2) ∩A

n = (L1 ∩A
n) ∪ (L2 ∩A

n)

gives immediately (1) and (2). Relation (3) follows from the fact that L1L2∩A
n

is the union of the languages (L1 ∩Ak)(L2 ∩An−k), for 0 6 k 6 n.

If dL(n) = O(1), then L is called a slender language. A language that has
at most one word of each length is called a thin language. Finally, a language is
sparse if it has a polynomial density, that is, if dL(n) = O(nk) for some k > 0.
See [122] for a general reference.

Slender languages

Not that if |A| 6 1, all recognisable languages are slender. This is trivial if the
alphabet is empty. If A = {a}, every recognisable language of A∗ is a finite
union of languages of the form ak = ak1∗1, and aka∗ = aka∗1.
Recognizable slender languages have a simple description (see [122, Theorem
3.6]).

Theorem 2.27 A recognisable language is slender if and only if it is a finite
union of languages of the form xu∗y, where x, u, y ∈ A∗.

Since we only consider lattices of recognisable languages, we are interested
in the class of recognisable languages which are either slender or full. We first
study their closure properties.
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Proposition 2.28 Recognizable slender languages are closed under finite union,
finite intersection, quotients and morphisms.

Proof. Since any language contained in a slender language is also slender, recog-
nisable slender languages are closed under finite intersection. Closure under
finite union is a direct consequence of Theorem 2.27. Closure under morphisms
is trivial.

Let a be a letter of A and let x, u, y be words of A∗. Then

a−1(xu∗y) =





(a−1x)u∗y if x 6= 1,

(a−1u)u∗y if x = 1 and u 6= 1,

a−1y if x = 1 and u = 1.

Therefore a−1(xu∗y) is a recognisable slender language in all cases. It follows
now from Theorem 2.27 that recognisable slender languages are closed under
left quotient by letters, and, by induction, by any word. The proof for right
quotients is similar.

Proposition 2.29 Recognizable slender languages are not closed under inverse
of morphisms, even for length-preserving morphisms.

Proof. We use the same example as for Proposition 2.24. Let ϕ : {a, b}∗ →
{a, b}∗ be the morphism defined by ϕ(a) = ϕ(b) = a. Then a+ is slender in
{a, b}∗, but ϕ−1(a+) = {a, b}+ is nor slender nor full.

Recall that a cycle in a directed graph is a path such that the start vertex
and end vertex are the same. A simple cycle is a closed directed path, with
no repeated vertices other than the starting and ending vertices. The following
result is folklore, but we give a self-contained proof for the convenience of the
reader.

Theorem 2.30 Let L be a recognisable language and let A be its minimal de-
terministic trim automaton. The following conditions are equivalent:

(1) L is slender,

(2) A does not contain any connected pair of cycles,

(3) A does not contain any connected pair of simple cycles.

v

x y

Figure 2.2. Two connected cycles, where x, y ∈ A+ and v ∈ A∗.

Proof. (1) implies (2). If A contains a connected pair of cycles, then L contains
a language of the form ux∗vy∗w where u, v, w ∈ A∗ and x, y ∈ A+. In particular,
it contains the words uxi|y|vy(n−i)|x|w for 0 6 i 6 n. Therefore dL(|uvw| +
n|xy|) > n and thus L is not slender.
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(2) implies (3) is clear.
(3) implies (1). Let n be the number of states of A and let w be a word of L
of length > n. Consider a successful path p for w. Since |w| > n, this path
has a loop, which by (3), is necessarily an iteration of a unique simple cycle, as
pictured in Figure 2.3.

p1

p2

p3

Figure 2.3. The path p.

In other words, one can write p = p1p
k
2p3 for some k > 0. It follows that L is a

subset of
⋃

|u|,|x|,|v|6n ux
∗v and hence is slender.

We now state the equational characterisation of slender or full languages.
We denote by i(u) the first letter (or initial) of a word u.

Theorem 2.31 Suppose that |A| > 2. A recognisable language of A∗ is slender
or full if and only if it is nondense or full and satisfies the equations xωuyω = 0
for each x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).

Proof. Let L be a recognisable language of A∗. If L is slender, it is sparse and
we shall see independently in Corollary 2.35 that, since |A| > 2, this implies
that L is nondense. Therefore, by Theorem 2.25, L has a zero and satifies the
equations 0 6 x for all x ∈ A∗. It suffices now to prove that if i(uy) 6= i(x),
then xωuyω 6 0. This formally means that, for every v, w ∈ A∗,

η̂(vxωuyωw) ∈ η(L)⇒ η(v)0η(w) ∈ η(L) (2.2)

But η(v)0η(w) = 0 and 0 /∈ η(L) since L is a nondense language. It follows
that (2.2) holds if and only if η̂(vxωuyωw) /∈ η(L). Let A = (Q,A, · , i, F )
be the minimal trim automaton of L. If η̂(vxωuyωw) ∈ η(L), then the state
i· vxωuyωw is a final state. Setting p = i· vxω and q = p·uyω, we have p·xω = p
and q · yω = q. Further, the condition i(uy) 6= i(x) ensures that the paths defined
by xω and by uy are distinct. It follows that A contains a connected pair of
cycles, a contradiction with Theorem 2.30.

Suppose now that L is nor slender nor full and let A be the minimal au-
tomaton of L. By Theorem 2.30, A contains a connected pair of simple cy-
cles. Therefore, there exist some words x, y ∈ A+, u0, u1, u2 ∈ A∗ such that
i(u1y) 6= i(x) and u0x

∗u1y
∗u2 ⊆ L. It follows that η̂(u0x

ωu1y
ωu2) ∈ η(L) and

thus L does not satisfy the equation xωu1y
ω 6 0.

Let us add two comments to this result. First, on a one letter alphabet,
every recognisable language is slender, but not necessarily nondense or full: on
the alphabet {a}, the language a+ is slender, dense, but not full. Second, it
looks a little bit suspicious to characterise a class of languages which is not
closed under complement by equations of the form u = v and not by equations
of the form u 6 v, as Theorem VIII.3.9 would suggest. The explanation lies in
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the first condition, “nondense or full”, which, by Theorem 2.25, can be defined
by equations of the form x 6 0.

We now consider the Boolean closure of slender languages. A language is
called coslender if its complement is slender.

Proposition 2.32 Recognizable slender or coslender languages are closed under
Boolean operations. They are also closed under quotients but not under inverse
of morphisms, even for length-preserving morphisms.

Proof. Let C be the class of recognisable slender or coslender languages. It
is clearly closed under complement. Let L1, L2 ∈ C. If L1 and L2 are both
slenders, then L1 ∩ L2 is also slender by Proposition 2.28. Suppose now that
L1 and L2 are coslender. Then Lc

1 and Lc
2 are slender and so is their union by

Theorem 2.27. Since (L1 ∩ L2)
c = Lc

1 ∪ L
c
2, it follows that L1 ∩ L2 is coslender.

Thus C is closed under finite intersection and hence under Boolean operations.
Since slender languages are closed under quotients and since quotients com-

mute with complement (in the sense that u−1Lc = (u−1L)c) C is closed under
quotients.

Finally, let ϕ : {a, b, c}∗ → {a, b, c}∗ be the morphism defined by ϕ(a) =
ϕ(b) = a and ϕ(c) = c. Then a+ is slender in {a, b}∗, but ϕ−1(a+) = {a, b}+ is
nor slender nor coslender.

We now come to the equational characterisation.

Theorem 2.33 Suppose that |A| > 2. A recognisable language of A∗ is slender
or coslender if and only if its syntactic monoid has a zero and satisfies the
equations xωuyω = 0 for each x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).

Proof. This is an immediate consequence of Theorem 2.31.

Note that if A = {a}, the language (a2)∗ is slender but its syntactic monoid,
the cyclic group of order 2, has no zero. Therefore the condition |A| > 2 in
Theorem 2.33 is mandatory.

Sparse languages

The closure properties of sparse languages are similar to that of slender lan-
guages. See [122, Theorem 3.8].

Proposition 2.34 Sparse languages are closed under finite union, finite in-
tersection, product and quotients. They are not closed under inverses of mor-
phisms, even for length-preserving morphisms.

Proof. Proposition 2.26 implies immediately that sparse languages are closed
under finite union, finite intersection and product.

Closure under quotients can be proved exactly in the same way as for slender
languages and we omit the details. Finally, the example used in the proof of
Proposition 2.29 also shows that recognisable slender languages are not closed
under inverse of length-preserving morphisms.

Corollary 2.35 Suppose that |A| > 2. Then any recognisable sparse language
of A∗ is nondense.
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Proof. Let L be a recognisable sparse language. Then by Proposition 2.28,
the language (A∗)−1L(A∗)−1 is also slender. Therefore this language has a
polynomial density and since |A| > 2, it can not be equal to A∗. Therefore L is
nondense.

Recognizable sparse languages have been characterised in [33, 115, 59]. See
also [122, Theorem 3.6]. We gather these results in a slightly different form.

Theorem 2.36 Let L be a recognisable language. The following conditions are
equivalent:

(1) L is sparse,

(2) L is a finite union of languages of the form u0v
∗
1u1 · · · v

∗
kuk, where u0, v1,

. . . , vk, uk are words.

(3) the minimal deterministic trim automaton of L does not contain any pat-
tern of the form

q

yx

Figure 2.4. The forbidden pattern.

where x and y are nonempty words such that i(x) 6= i(y).

Proof. (2) implies (1). Since recognisable sparse languages are closed under
finite union, it suffices to verify that each language L of the form u0v

∗
1u1 · · · v

∗
kuk

is sparse. Considering a typical word u0v
r1
1 u1 · · · v

rk
k uk of L, one gets

dL(n) = Card({(r1, . . . , rk) | |u0 · · ·uk|+ r1|v1|+ . . .+ rk|vk| = n})

6 Card({(n0, . . . , nk) | n0 + n1 + . . .+ nk = n})

=

(
n+ k

k

)

Since

(
n+ k

k

)
= O(nk), the language L is sparse.

(1) implies (3). Let A = (Q,A, · , q0, F ) be the minimal deterministic trim
automaton of L. Suppose that the forbidden pattern occurs in A. Since A is
trim, the state q is accessible and co-accessible and there exist two words u and
v such that q0 ·u = q and q · v ∈ F . It follows that L contains the language
u{x, y}∗v and a fortiori the language K = u{x|y|, y|x|}∗v. Setting r = |x||y| and
s = |uv|, we get dK(s+ rn) = 2n and thus L is not sparse.

(3) implies (2). If (3) is satisfied, every path of A contains only elementary
loops. It follows that each word of L belongs to some language u0v

∗
1u1 · · · v

∗
kuk

contained in L, where k and the length of the words ui and vi is bounded by
the number of states of A. There are only finitely mnay languages of this form
and their union is L. Therefore L is sparse.

It follows that a minimal deterministic automaton recognises a sparse lan-
guage if and only if it does not contain two cycles reachable from one another.
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Corollary 2.37 Recognizable sparse languages are closed under morphisms.

Proof. This follows immediately from Condition (2) in the previous theorem.

Note that the condition recognisable in Corollary 2.37 is mandatory. Indeed,
consider a bijection f from {a, b}∗ onto N such that f(u) > |u| for all u ∈ {a, b}∗.
One can construct such a bijection by taking f(u) to be the rank of u in the
shortlex order: 1, a, b, aa, ab, ba, bb, aaa, aab, aba, . . . . Now, let

L = {ucf(|u|)−|u| | u ∈ {a, b}∗}

The property of f implies that L is a thin language. Let now π be the projection
morphism from {a, b, c}∗ onto {a, b}∗ defined by π(a) = a, π(b) = b and π(c) = 1.
Then π(L) = {a, b}∗ and this language is not sparse.

Theorem 2.38 Suppose that |A| > 2. A recognisable language of A∗ is sparse
or full if and only if it is nondense or full and satisfies the equations (xωyω)ω = 0
for each x, y ∈ A+ such that i(x) 6= i(y).

Proof. The proof is similar to that of Theorem 2.31. Let L be a recognisable
language of A∗.

If L is sparse, then it is nondense by Corollary 2.35. Therefore, by Theorem
2.25, L has a zero and satifies the equations 0 6 x for all x ∈ A∗. It suffices
now to prove the relation (xωyω)ω 6 0 when i(x) 6= i(y), which formally means
that, for every v, w ∈ A∗,

η̂(v(xωyω)ωw) ∈ η(L)⇒ 0 ∈ η(L) (2.3)

But 0 /∈ η(L) since L is a nondense language and thus (2.3) holds if and only if
η̂(v(xωyω)ωw) /∈ η(L). Let A = (Q,A, · , i, F ) be the minimal trim automaton
of L. If η̂(v(xωyω)ωw) ∈ η(L), then the state i· v(xωyω)ωw is a final state.
Setting p = i· v(xωyω)ωxω, we get p·xω = p and p· yω(xωyω)ω−1 = p and thus
A contains the pattern of Figure 2.4. This contradicts Theorem 2.36.

If L is not sparse, then its minimal deterministic trim automaton contains
the pattern represented in Figure 2.4. Consequently, there exist some words
u, v ∈ A∗ and x, y ∈ A+ such that i(x) 6= i(y) and u{x, y}∗v ⊆ L. It follows that
η̂(u(xωyω)ωv) ∈ η(L) and thus L does not satisfy the equation u(xωyω)ωv 6
0.

Pursuing the analogy with slender languages, we consider now the Boolean
closure of sparse languages. A language is called cosparse if its complement is
sparse.

Theorem 2.39 Suppose that |A| > 2. A recognisable language of A∗ is sparse
or cosparse if and only if its syntactic monoid has a zero and satisfies the equa-
tions (xωyω)ω = 0 for each x, y ∈ A+ such that i(x) 6= i(y).

Proof. This is an immediate consequence of Theorem 2.38.
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2.3 Cyclic and strongly cyclic languages

Cyclic languages

A language is cyclic if is closed under conjugation, power and root. Thus L is
cyclic if and only if, for all u, v ∈ A∗ and n > 0,

(1) un ∈ L if and only if u ∈ L,

(2) uv ∈ L if and only if vu ∈ L.

Let L ∈ Rec(A∗), let ϕ : A∗ →M be a surjective morphism fully recognising L
and let P = η(L). A direct translation of the definition shows that a recognisable
language is cyclic if and only if it satisfies, for all x, y ∈M and n > 0,

(xy ∈ P ⇐⇒ yx ∈ P ) and (xn ∈ P ⇐⇒ x ∈ P )

With the notation of Section 1, we get:

Proposition 2.40 A recognisable language is cyclic if and only if it satisfies
the identities xy ↔ yx and xω ↔ x.

The closure properties of cyclic languages are summarized as follows.

Proposition 2.41 Recognizable cyclic languages are closed under inverse of
morphisms and under Boolean operations but not under quotients.

Proof. The first part of the statement follows from Theorem VIII.4.13 and
Proposition 2.40. Further, the language L = {abc, bca, cab} is cyclic, but its
quotient a−1L = {bc} is not cyclic.

Here is a useful property of the groups of a monoid fully recognising a cyclic
language. This property holds of course for the syntactic monoid but we shall
need this slightly more general result in the proof of Theorem 2.51.

Proposition 2.42 Let M be a monoid fully recognising a recognisable cyclic
language L and let H be a group of M . Let also P be the image of L in M .
Then either H and P are disjoint or H is a subset of P . In the latter case, all
the groups of the D-class of H are also contained in P .

Proof. Suppose that P ∩H contains some element x. Then xω is the identity
of H and it belongs to P by Condition (1) of the definition of a cyclic language.
Now, for any element h ∈ H, we get hω = xω and thus h ∈ P by (1). Therefore
H is contained in P .

Suppose now that P contains H and let H ′ be another group of the same D-
class. Let e and e′ be the idempotents ofH andH ′, respectively. By Proposition
V.2.22, e and e′ are conjugate and it follows from Condition (2) that e′ is in P .
Now, by the first part of the proposition, H ′ is contained in P .

Corollary 2.43 The syntactic monoid of a recognisable cyclic language has a
zero.

Proof. Let I be the minimal ideal of M . By Proposition V.4.37, I is a regular
simple semigroup and by Proposition 2.42, one has either I ⊆ P or I ∩ P = ∅.
It follows that any two elements s and t of I satisfy s ∼P t. Indeed, for all
x, y ∈ M , one gets xsy, xty ∈ I and thus the conditions xsy ∈ P and xty ∈ P
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are equivalent. Since M is the syntactic monoid of P , one has s = t, which
means that I has a unique element and this element is necessarily a zero of
M .

Example 2.1 Consider the language L = b(b+ ab)∗(1 + a) + ab(b+ ab)∗. The
minimal automaton of this language is represented in Figure 2.5.

1 2 345
b

a

b

a

b

a

b

b

Figure 2.5. The minimal automaton of L.

The syntactic monoid of L is the monoid with zero presented by the relations

b2 = b a2 = 0 aba = a bab = b

Its transition table and its J -class structure are represented below. The syn-
tactic image of L is {b, ab, ba}. It follows that L is cyclic, a property that is not
so easy to see from the regular expression representing L.

∗
1

a
∗
ab

∗
ba
∗
b

∗
a2

Strongly cyclic languages

Let A = (Q,A, · ) be a finite (possibly incomplete) deterministic automaton. A
word u stabilizes a subset P of Q if P ·u = P . Given a subset P of Q, we denote
by Stab(P ) the set of all words that stabilize P . We also denote by Stab(A)
the set of words which stabilize at least one nonempty subset P of Q: it is by
definition the language that stabilizes A.

Proposition 2.44 The language Stab(A) is the set of words u such that, for
some state q of A, q ·un is defined for all n > 0.

Proof. If u ∈ Stab(A), then u stabilizes some nonempty subset P of Q. There-
fore for each state q ∈ P , q ·un is defined for all n > 0.

Conversely, suppose that for some state q of A, q ·un is defined for all n > 0.
Then there exist two integers k < m such that q ·uk = q ·um. It follows that u
stabilizes the set {q ·ui | k 6 i 6 m}.
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Example 2.2 If A is the automaton represented in Figure 2.6, then

Stab({1}) = (b+ aa)∗, Stab({2}) = (ab∗a)∗, Stab({1, 2}) = a∗

and Stab(A) = (b+ aa)∗ + (ab∗a)∗ + a∗.

1 2

a

a

b

Figure 2.6. The automaton A.

A language is strongly cyclic if it stabilizes some finite deterministic automaton.

Proposition 2.45 Let L be a nonfull recognisable language. The following con-
ditions are equivalent:

(1) L is strongly cyclic,

(2) there is a morphism ϕ from A∗ onto a finite monoid T with zero such that
L = ϕ−1({t ∈ T | tω 6= 0}),

(3) the syntactic monoid M of L has a zero and its syntactic image is the set
of all elements s ∈M such that sω 6= 0.

Proof. (1) implies (2). If L is strongly cyclic, it stabilizes a trim automaton
A. Let T be the transition monoid of A, let k be the exponent of T and let
ϕ : A∗ → T be the natural morphism. Let u ∈ A∗ and let t = ϕ(u). If u /∈ L
then by Proposition 2.44, there exists for each state q an integer nq such that
q ·unq is undefined. Consequently, if n is larger than all the nq, then q ·un is
undefined for every q. Therefore tn = tω and this element is a zero of T . If now
u ∈ L, then for some state q of A, q ·un is defined for all n > 0 and thus tω is
not a zero of T . This proves (2).

(2) implies (3). Suppose that (2) holds and let R = {t ∈ T | tω 6= 0}. Let
η : A∗ → M be the syntactic morphism of L and let P be its syntactic image.
By Proposition IV.4.24, there is a surjective morphism π : T → M such that
η = π ◦ ϕ and R = π−1(P ). It follows that M has a zero. Further, this zero is
not in P , otherwise R would contain the zero of T . Let now u be a word of A∗.
Let t = ϕ(u) and s = π(t). If tω = 0, then sω = 0. If tω 6= 0, then tω ∈ R. It
follows that sω ∈ P and thus sω 6= 0. Consequently, the conditions tω 6= 0 and
sω 6= 0 are equivalent, which proves (3).

(3) implies (1). Suppose now that M has a zero and that P is the set of
all elements s ∈ M such that sω 6= 0. We modify the construction given in the
proof of Proposition IV.3.19. We take A = (M − 0, A, · , 1, P ) where the action
is defined as follows

s· a =

{
sη(a) if sη(a) 6= 0

undefined otherwise

We claim that L stabilizes A. Let u ∈ A∗ and s = η(u). If u ∈ L, then s·un =
sn+1. This element is nonzero, for otherwise one would have (sn+1)ω = sω = 0
which is not possible by the definition of P . If now u /∈ L, then there is an
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integer n such that sn = 0 and thus the transition q ·un is undefined for all
q ∈M − 0 which proves the claim.

Example 2.3 Let L = (b+ aa)∗ +(ab∗a)∗ + a∗ be the strongly cyclic language
considered in Example 2.2. The syntactic monoid of L is the monoid with zero
presented by the relations aa = 1, bb = b, abab = 0 and bab = 0. Its transition
table and its J -class structure are represented below. The syntactic image of L
is {1, a, b, aba}.

1 2 3 4 5 6

∗ 1 1 2 3 4 5 6

a 3 5 1 6 2 4

∗ b 4 2 2 4 0 0

ab 2 0 4 0 2 4

ba 6 5 5 6 0 0

∗ aba 5 0 6 0 5 6

∗ bab 0 0 0 0 0 0

∗
1 a

∗
aba ab

ba
∗
b

∗
0

It remains to give the equational description of strongly cyclic languages.

Proposition 2.46 A recognisable language is strongly cyclic if and only if it
satisfies the identities uxωv → xω and xω ↔ x.

Let us first prove a technical lemma.

Lemma 2.47 A language which satisfies the identities uxωv → xω and xω ↔ x
also satisfies the identities xy ↔ yx and 0 6 x.

Proof. Let L be a language which satisfies the identities uxωv → xω and xω ↔
x. The main trick to get the identity xy ↔ yx is hidden in the fact that (xy)ω

and (yx)ω are conjugate. More precisely, the derivation

xy ↔ (xy)ω = (xy)ω(xy)ω = (xy)ω−1xy(xy)ω−1xy

= ((xy)ω−1x)(yx)ωy → (yx)ω ↔ yx

shows that xy → yx and the opposite identity yx→ xy follows by symmetry.
Theorem 2.25 shows that L satisfies the identity 0 6 x if and only if it is

nondense or full. Let n be the exponent of L. Suppose that L is not full and
let us prove that it is nondense. Let x /∈ L. We claim that for all u, v ∈ A∗,
uxnv /∈ L. Indeed, if uxnv ∈ L, the identity uxωv → xω gives xn ∈ L and the
identity xω ↔ x gives x ∈ L, a contradiction. This proves the claim and the
lemma.

Let us now come back to the proof of Proposition 2.46.

Proof. Let L be a recognisable strongly cyclic language, let M be its syntactic
monoid and let P be its syntactic image. Lemma 2.47 shows that L has a zero.
Observing that xω = (xω)ω, one gets

x ∈ P ⇐⇒ xω 6= 0⇐⇒ (xω)ω 6= 0⇐⇒ xω ∈ P
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which proves that L satisfies the identity xω ↔ x. Finally, if uxωv ∈ P , then
(uxωv)ω 6= 0. Therefore xω 6= 0, whence x ∈ P and finally xω ∈ P since xω ↔ x.
Thus L satisfies the identity uxωv → xω.

Conversely, suppose that L satisfies the two identities of the statement. By
Lemma 2.47, M has a zero and 0 /∈ P . By Proposition 2.45, it suffices to prove
that x ∈ P if and only if xω 6= 0. First, if x ∈ P , then xω ∈ P and since 0 /∈ P ,
one has xω 6= 0. Now, if xω 6= 0, then uxωv ∈ P for some u, v ∈M (since xω is
not equivalent to 0 in the syntactic equivalence of P ). It follows xω ∈ P by the
first identity and x ∈ P by the second one.

The next corollaries allows a precise comparison between cyclic and strongly
cyclic languages.

Corollary 2.48 Any recognisable strongly cyclic language is cyclic.

Proof. It suffices to prove that a recognisable strongly cyclic language also
satisfies the identity xy ↔ yx. Indeed, for each x, y ∈ M , (xy)ω and (yx)ω are
two conjugate idempotents. It follows that (xy)ω 6= 0 if and only if (yx)ω 6= 0.

Corollary 2.49 Let L be a recognisable cyclic language. Let M be its syntactic
monoid and let P be its syntactic image. Then L is strongly cyclic if and only
if for all idempotent e, f of M , the conditions e ∈ P and e 6J f imply f ∈ P .

The proof is again a typical exercise on identities.

Proof. Let ϕ : A∗ → M be the syntactic morphism of L. Suppose that L is
strongly cyclic and let e, f be two idempotents of M such that e 6J f . Also let
s, t ∈M be such that e = sft. Lifting up to A∗, one can find words x, y, u, v such
that ϕ(x) = e, ϕ(y) = f , ϕ(u) = s and ϕ(v) = t. By Proposition 2.46, L satisfies
the identities (a) uxωv → xω and (b) xω ↔ x. Now ϕ̂(uyωv)ω = sft = e ∈ P ,
and thus by (b) ϕ̂(uyωv) ∈ P . Since ϕ̂(uyωv) = ϕ̂(u)ϕ̂(y)ωϕ̂(v), it follows by
(a) that ϕ̂(y)ω ∈ P and thus f ∈ P .

In the opposite direction, suppose that for all idempotent e, f of M , the
conditions e ∈ P and e 6J f imply f ∈ P . Since L is cyclic it satisfies the
identity xω ↔ x by Proposition 2.40. We claim that it also satisfies the identity
uxωv → xω. First, ϕ̂(uxωv) ∈ P implies ϕ̂(uxωv)ω ∈ P since xω ↔ x. Further,
since ϕ̂(uxωv)ω 6J ϕ̂(xω), one also has ϕ̂(xω) ∈ P , which finally gives ϕ̂(x) ∈ P
since xω ↔ x.

Proposition 2.50 Recognizable strongly cyclic languages are closed under in-
verse of morphisms, finite intersection and finite union but not under quotients.

Proof. Theorem VIII.4.13 and Proposition 2.46 show that strongly cyclic lan-
guages form a positive stream of languages. It remains to show that there are
not closed under quotients. The language L = (b+aa)∗+(ab∗a)∗+a∗ of Exam-
ple 2.3 is strongly cyclic. However, its quotient b−1L = (b+aa)∗ is not strongly
cyclic, since aa ∈ (b+ aa)∗ but a /∈ (b+ aa)∗.

We now give the connexion between cyclic and strongly cyclic languages.

Theorem 2.51 A recognisable language is cyclic if and only if it is a Boolean
combination of recognisable strongly cyclic languages.
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Proof. Propositions 2.40 and 2.46 and the remark preceeding Proposition 2.50
show that a Boolean combination of recognisable strongly cyclic language is
cyclic.

We now show that any cyclic language L is a Boolean combination of recog-
nisable strongly cyclic languages. The proof is by induction on the size of a
monoid with zero fully recognising L. Such a monoid always exists, since by
Corollary 2.43, the syntactic monoid of L has a zero.

Let T be a monoid with zero, let ϕ : A∗ → T be a surjective morphism
recognising L and let P = ϕ(L). We may also assume that 0 /∈ P . Otherwise,
observing that 0 /∈ P c, it suffices to prove the result for Lc, which is also cyclic
and fully recognised by ϕ.

If T is trivial, then 1 = 0 and P is empty. Thus L is necessarily the empty
language, which is strongly cyclic since it stabilizes the empty automaton. Sup-
pose now that T is nontrivial. Let us set

R = {t ∈ T | tω 6= 0}, S = R− P, U = ϕ−1(R) and V = U − L

Proposition 2.45 shows that U is strongly cyclic. Further P is a subset of R and
thus L is contained in U . Also note that V = ϕ−1(S). Let D be a 0-minimal
J -class of T and let s ∈ D. Then s is a nonzero element such that t 6J s
implies t J s or t = 0.

Suppose first that P ∩D = ∅. We claim that s ∼P 0. Indeed, let x, y ∈ T .
Since x0y = 0 and 0 /∈ P , it suffices to prove that xsy /∈ P . But this is clear,
since xsy belongs to D ∪ {0}, which is disjoint from P . Therefore L is fully
recognised by T/∼P , a strict quotient of T , and the induction hypothesis gives
the result.

Suppose now that P ∩ D 6= ∅ and let t ∈ P ∩ D. Then tω ∈ P since L is
cyclic. In particular tω 6= 0 and thus tω ∈ P ∩D. We claim that t ∼S 0. Again,
as 0 /∈ S, it suffices to prove that for all x, y ∈ T , xty /∈ S. We consider two
cases. If (xty)ω = 0, then xty /∈ R by the definition of R. Now, if (xty)ω 6= 0,
then (xty)ω J tω since D is a 0-minimal J -class. But since tω ∈ P , we also
have (xty)ω ∈ P by Proposition 2.42.

It follows that the language V is fully recognised by T/∼S , a strict quotient
of T . Since V is a cyclic language, the induction hypothesis tells us that V
is a Boolean combination of recognisable strongly cyclic languages and so is
L = U − V .

3 Exercises

1. Consider the variety of semigroups Nk = Jx1 · · ·xk = y1 · · · ykK and let Nk

be the corresponding +-variety of languages.

(1) Show that a nonempty semigroup S is in Nk if and only if it has a zero
and satisfies Sk = 0.

(2) Show that, for every alphabet A, Nk(A
+) is the Boolean algebra generated

by the languages of the form {u} where |u| < k.

2. Consider the variety of semigroups ℓ1k = Jx1 · · ·xky = x1 · · ·xkK and let ℓIk
be the corresponding +-variety of languages. Show that, for every alphabet A,
ℓIk(A

+) is the set of all languages of the form FA∗ ∪ G, where F and G are
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subsets of A+ formed of words of length equal to or less than k and less than k
respectively.

3. Consider the variety of semigroups L1k = Jx1 · · ·xkyx1 · · ·xk = x1 · · ·xkK
and let LIk be the corresponding +-variety of languages. Show that, for every
alphabet A, LIk(A

+) is the Boolean algebra generated by the languages of the
form uA∗ and A∗u, where |u| 6 k.

4 Notes

The results of Section 2.3 are adapted from [6].
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Chapter X

Star-free languages

The characterisation of star-free languages, obtained by Schützenberger in 1965,
is the second most important result of the theory of finite automata, right after
Kleene’s theorem.

1 Star-free languages

Let A be a finite alphabet. The set of star-free languages of A∗ is the smallest
set R of languages of A∗ such that

(a) R contains the empty set, the set {1} and, for each a ∈ A, the singleton
{a}.

(b) R is closed under finite union, finite product and complement.

Thus the definition of the star-free languages follows the same definition scheme
as the one of rational languages, with the difference that the star operation
is replaced by the complement. Since the rational languages are closed under
complement, every star-free subset is rational, but we shall see later on that the
converse is not true. It follows also immediately from the definition that every
finite set is star-free.

We shall follow the notation of Chapter IV. Union will be denoted additively,
the empty set will be denoted by 0, the singleton {u} will be simply denoted
by u, the product will be denoted by simple juxtaposition and Lc will denote
the complement of a subset L of A∗. The star-free sets are thus described by
expressions using the letters of the alphabet A, the constants 0 and 1 and the
three operators union, product and complement. It is not always easy to find
such an expression, as is shown in the examples below.

Example 1.1

(1) A∗ is a set star-free, since A∗ = 0c

(2) If B is a subset of A, A∗BA∗ is star-free by (1). It follows that B∗ is
star-free, since

B∗ = A∗ −
∑

a∈A−B

A∗aA∗ =
( ∑

a∈A−B

0ca0c
)c

(3) If A = {a, b}, the set (ab)∗ is star-free. Indeed

(ab)∗ = (b0c + 0ca+ 0caa0c + 0cbb0c)c

195
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2 Schützenberger’s theorem

Recall that a finite monoid M is aperiodic if there exists an integer n such that,
for all x ∈M , xn = xn+1.

Proposition 2.1 Aperiodic monoids form a variety of finite monoids.

We also prove a useful property of aperiodic monoids.

Proposition 2.2 A finite ordered monoid M is aperiodic if and only if it sat-
isfies the identity xn+1 6 xn for some n > 0.

Proof. IfM is aperiodic, it satisfies by definition an identity of the form xn+1 =
xn and the identity xn+1 6 xn is trivially satisfied. Conversely, suppose that
M satisfies the identity xn+1 6 xn for some n > 0. Let ω be a multiple of the
exponent of M such that ω > n. Then

xω = x2ω 6 x2ω−1
6 x2ω−2

6 . . . 6 xω+1
6 xω

whence xω = xω+1 for all x ∈M . Thus M is aperiodic.

We are now ready to state Schützenberger’s theorem.

Theorem 2.3 (Schützenberger) A language is star-free if and only if its syn-
tactic monoid is aperiodic.

Proof. The easiest part of the proof relies on a syntactic property of the con-
catenation product1. Let L0 and L1 be two recognisable languages of A∗ and
let L = L0L1. Let M0, M1 and M be the ordered syntactic monoids of L0, L1

and L.

Lemma 2.4 If M0 and M1 are aperiodic, so is M .

Proof. Let n0, n1 and m be the respective exponents of M0, M1 and M and
let n = n0 + n1 + 1. We claim that, for all x ∈ M , xn+1 6 xn. By Proposition
2.2, this property will suffice to show that M is aperiodic.

By the definition of the syntactic order, the claim is equivalent to proving
that, for each x, u, v ∈ A∗, uxnv ∈ L implies uxn+1v ∈ L. One can of course
suppose that x 6= 1. If uxnv ∈ L, there exists a factorisation uxnv = x0x1
with x0 ∈ L0 and x1 ∈ L1. Two cases are possible. Either x0 = uxn0r with
rx1 = xn−n0v, or x1 = sxn1v with x0s = uxn−n1 . Let us consider the first case,
since the second case is symmetric. SinceM0 is aperiodic and since uxn0r ∈ L0,
we have uxn0+1r ∈ L0 and hence uxn+1v ∈ L.

Let us fix an alphabet A and let A(A∗) be the set of recognisable languages
of A∗ whose syntactic monoid is aperiodic. An elementary computation shows
that the syntactic monoid of the languages {1} and a, for a ∈ A, is aperi-
odic. Therefore, the set A(A∗) contains the languages of this type. Further,
by Proposition IV.2.8, a language and its complement have the same syntactic
monoid, A(A∗) is closed under complement. It is also closed under finite union
by Proposition IV.2.9 and hence under Boolean operations. Lemma 2.4 shows

1an improved version of this result is given in Theorem XIII.5.19
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that A(A∗) is also closed under product. Consequently, A(A∗) contains the
star-free sets.

To establish the converse2, we need two elementary properties of aperiodic
monoids. The first property is a simple reformulation of Theorem V.1.9 (5) in
the case of aperiodic monoids.

Lemma 2.5 (Simplification Lemma) Let M an aperiodic monoid and let
p, q, r ∈M . If pqr = q, then pq = q = qr.

Proof. Let n the exponent of M . Since pqr = q, we also have pnqrn = q. Since
M is aperiodic, we have pn = pn+1 and hence pq = ppnqrn = pnqrn = q and,
in the same way, qr = q.

The second property leads to a decomposition of each subset of an aperiodic
monoid as a Boolean combination of right ideals, left ideals, or ideals.

Lemma 2.6 Let M be an aperiodic monoid and let m ∈ M . Then {m} =
(mM ∩Mm)− Jm, with Jm = {s ∈M | m /∈MsM}.

Proof. It is clear that m ∈ (mM ∩ Mm) − Jm. Conversely, if s ∈ (mM ∩
Mm)− Jm, there exist p, r ∈M such that s = pm = mr. Moreover, as s /∈ Jm,
m ∈ MsM . It follows by Theorem V.1.9 that m H s and by Proposition
VII.4.22 that m = s since M is aperiodic.

We now need proving that if ϕ : A∗ → M is a morphism from A∗ into an
aperiodic monoid M , the set ϕ−1(P ) is star-free for every subset P of M . The
formula

ϕ−1(P ) =
∑

m∈P

ϕ−1(m)

allows one to assume that P = {m}. We shall show that ϕ−1(m) is star-free by
induction on the integer r(m) = |M −MmM |. The initial step is treated in the
next lemma.

Lemma 2.7 If r(m) = 0, then m = 1 and ϕ−1(m) is star-free

Proof. If r(m) = 0, then M = MmM and there exist u, v ∈ M such that
umv = 1. Further, the Simplification Lemma applied to (um)1(v) = 1 and to
(u)1(mv) = 1 gives u = v = 1 and hence also m = 1. Let us show that ϕ−1(1) =
B∗, where B = {a ∈ A | ϕ(a) = 1}. If u ∈ B∗, we have of course ϕ(u) = 1.
Conversely, if ϕ(u) = 1, the Simplification Lemma shows that ϕ(a) = 1 for each
letter a of u, and hence u ∈ B∗. Now, as was shown in example 1.1, (2), B∗ is
a star-free set.

Assume now that r(m) > 0 and that the property has been established for
each element s such that r(s) < r(m). We shall now prove the formula

ϕ−1(m) = (UA∗ ∩A∗V )− (A∗CA∗ ∪A∗WA∗) (2.1)

2Another proof is given on page 255.
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where

U =
∑

(n,a)∈E

ϕ−1(n)a V =
∑

(a,n)∈F

aϕ−1(n)

C = {a ∈ A | m /∈Mϕ(a)M} W =
∑

(a,n,b)∈G

aϕ−1(n)b

with

E = {(n, a) ∈M ×A | nϕ(a) R m but n /∈ mM}

F = {(a, n) ∈ A×M | ϕ(a)n L m but n /∈Mm}

G = {(a, n, b) ∈ A×M ×A |

m ∈ (Mϕ(a)nM ∩Mnϕ(b)M)−Mϕ(a)nϕ(b)M}

Denote by L the right hand side of (2.1). We first prove the inclusion ϕ−1(m) ⊆
L. Let u ∈ ϕ−1(m) and let p be the shortest prefix of u such that ϕ(p) R m.
The word p cannot be empty, since otherwise m R 1, whence m = 1 by the
Simplification Lemma. Put p = ra with r ∈ A∗ and a ∈ A and let n = ϕ(r).
By construction, (n, a) ∈ E since

(a) nϕ(a) = ϕ(r)ϕ(a) = ϕ(p) R m,

(b) sincem 6R ϕ(p) = nϕ(a) 6R n, one has n /∈ mM , for otherwise we would
have n R m.

It follows that p ∈ ϕ−1(n)a and u ∈ UA∗. A symmetric argument would
show that u ∈ A∗V . If u ∈ A∗CA∗, there exists a letter a of C such that
m = ϕ(u) ∈ Mϕ(a)M , a contradiction with the definition of C. Similarly,
if u ∈ A∗WA∗, there exist (a, n, b) ∈ G such that m ∈ Mϕ(a)nϕ(b)M , a
contradiction this time with the definition of G. Therefore u ∈ L.

Conversely, let u ∈ L and let s = ϕ(u). Since u ∈ UA∗, we have u ∈
ϕ−1(n)aA∗ for some (n, a) ∈ E and hence s = ϕ(u) ∈ nϕ(a)M . Now, since
(n, a) ∈ E, nϕ(a)M = mM and thus s ∈ mM . A dual argument shows that
u ∈ V A∗ implies s ∈ Mm. By Lemma 2.6, in order to prove that s = m, and
hence that u ∈ ϕ−1(m), it suffices to prove that s /∈ Jm, that is, m ∈ MsM .
Supposing the contrary, consider a factor f of u of minimal length such that
m /∈Mϕ(f)M . The word f is necessarily nonempty. If f is a letter, this letter
is in C and u ∈ A∗CA∗, which is impossible. We may thus set f = agb, with
a, b ∈ A. Set n = ϕ(g). Since f is of minimal length, we have m ∈ Mϕ(a)nM
andm ∈Mnϕ(b)M . Consequently (a, n, b) ∈ G and f ∈W , which is impossible
again.

Formula (2.1) is thus established and it suffices now to show that U , V
and W are star-free, since we have already seen in Example 1.1 that A∗CA∗

is star-free. Let (n, a) ∈ E. Since nϕ(a)M = mM , we have MmM ⊆ MnM
and hence r(n) 6 r(m). Moreover, as m 6R n, Theorem V.1.9 shows that
if MmM = MnM , we have n R m, which is not possible since n /∈ mM .
Therefore r(n) < r(m) and U is star-free by the induction hypothesis.

A symmetric argument would work for V . There remains to treat the case
W . Let (a, n, b) ∈ G. One has r(n) 6 r(m) since m ∈ MnM . Suppose
that MmM = MnM . Then in particular n ∈ MmM and as m ∈ Mϕ(a)nM
and m ∈ Mnϕ(b)M , it follows n ∈ Mϕ(a)nM and n ∈ Mnϕ(b)M , whence
n L ϕ(a)n and n R nϕ(b). By Proposition V.1.10, nϕ(b) L ϕ(a)nϕ(b), and
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hence m J ϕ(a)nϕ(b), a contradiction with the definition of G. Consequently
r(n) < r(m) and W is star-free by the induction hypothesis.

Example 2.1 Let A = {a, b} and let L = (ab)∗. The minimal automaton of L
is represented in Figure 2.1.

1 2

a

b

Figure 2.1. The minimal automaton of (ab)∗.

The syntactic monoid M of L is the monoid consisting of the six matrices

I =

(
1 0
0 1

)
a =

(
0 1
0 0

)
b =

(
0 0
1 0

)

aa =

(
0 0
0 0

)
ab =

(
1 0
0 0

)
ba =

(
0 0
0 1

)

and it is defined by the relations a2 = b2 = 0, aba = a and bab = b. Its D-class
structure is given in Figure 2.2:

∗
1

∗
ab a

b
∗
ba

∗
0

Figure 2.2. The D-class structure of M .

This monoid is aperiodic, since x2 = x3 for each x ∈M , and hence L is star-free.

Example 2.2 Let A = {a, b} and let L′ = (aa)∗. The minimal automaton of
L′ is represented in Figure 2.3:

1 2

a

a

Figure 2.3. The minimal automaton of (aa)∗.



200 CHAPTER X. STAR-FREE LANGUAGES

The syntactic monoid M ′ of L′ is the monoid consisting of the three matrices

I =

(
1 0
0 1

)
a =

(
0 1
1 0

)
b =

(
0 0
0 0

)

and it is defined by the relations a2 = 1 and b = 0. Its D-class structure is given
in Figure 2.4:

∗
1, a

∗
0

Figure 2.4. The D-class structure of M ′.

This monoid is not aperiodic, since, for each n > 0, an 6= an+1 and hence L′ is
not star-free.



Chapter XI

Piecewise testable

languages

Simon’s theorem shows that the languages recognised by J -trivial monoids are
exactly the shuffle ideals. This result has far reaching consequences, both in
semigroup theory and in automata theory. We shall present two of the seven
published proofs of Simon’s theorem: the first one, due to Imre Simon, is based
on a careful analysis of the subword ordering and has a strong combinatorial
flavour. The second one, due to Straubing and Thérien, is more algebraic in
nature.

As a preliminary step, we shall explore the properties of the subword ordering
and give an algebraic characterisation of the shuffle ideals.

1 Subword ordering

Let A be a finite alphabet. Recall that a word u = a1 . . . ak ∈ A∗ (where
a1, . . . , ak are letters) is a subword of a word v ∈ A∗ it there exist words
v0, v1, . . . , vk ∈ A∗ such that v = v0a1v1 · · · akvk. One also says that v is a
superword of u. For instance, ardab is a subword of abracadabra.

The subword ordering is a partial ordering on A∗, which is compatible with
the concatenation product. Here is another important property of the subword
ordering, due to Higman:

Theorem 1.1 A set of words of A∗ that are pairwise incomparable for the sub-
word ordering is necessarily finite.

Proof. A sequence of words (un)n>0 is said to be subword-free if, for all i < j,
ui is not a subword of uj . We claim there exist no infinite subword-free sequence.
Otherwise, one would be able to find an “earliest” subword-free sequence, in the
following sense:

(1) u0 is a shortest word beginning a subword-free sequence of words,

(2) u1 is a shortest word such that u0, u1 is the beginning a subword-free
sequence of words,

(3) u2 is a shortest word such that u0, u1, u2 is the beginning a subword-free
sequence of words, and so on.

201
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Since A is finite, there exist infinitely many ui that begin with the same letter a,
say ui0 = avi0 , ui1 = avi1 , . . . , with i0 < i1 < . . . Let us show that the sequence

u0, u1, . . . , ui0−1, vi0 , vi1 , . . . (1.1)

is subword-free. First of all, the sequence u0, u1, . . . , ui0−1 is subword-free. Next,
the sequence vi0 , vi1 , . . . is subword-free: if ir < is, then uir is not a subword
of uis and hence vir is not a subword of vis . Finally, if 0 6 k < i0 and r > 0,
then uk is not a subword of vir , for otherwise it would be a subword of uir .
Now, since vi0 is shorter ui0 , the sequence (1.1) is “earlier” that our original
sequence, a contradiction. This proves the claim and the theorem follows.

For each n > 0, we define an equivalence relation ∼n on A∗ by u ∼n v if and
only if u and v have the same subword of length 6 n. For instance, abbac ∼1 cab,
since these two words have the same letters a, b and c, and ababab ∼3 bababa
since any word of length 6 3 is a subword of both words.

Proposition 1.2 The relation ∼n is a congruence of finite index on A∗.

Proof. Suppose that u ∼n v and let x, y be two words of A∗. Let w be a
subword of xuy of length less 6 n. The word w can be factorised as w0w1w2

where w0, w1 and w2 are subwords of x, u and y, respectively. Since w1 is
shorter that w, |w1| 6 n and thus w1 is also a subword of v. It follows that
w0w1w2 is a subword of xvy. Dually, every subword of xvy of length 6 n is a
subword of xuy. Thus xuy ∼n xvy, showing that ∼n is a congruence.

The ∼n-class of u is entirely determined by the set of subwords of u of length
6 n. Since there are finitely many such words, the congruence ∼n has finite
index.

We shall now establish some useful properties of this congruence.

Proposition 1.3 Let u, v ∈ A∗ and a ∈ A. If uav ∼2n−1 uv, then either
ua ∼n u or av ∼n v.

Proof. Suppose that ua 6∼n u and av 6∼n v. Then there exists a word x of
length 6 n which is a subword of ua but not of u. Likewise there exists a word
y of length 6 n which is a subword of av but not of v. Necessarily one has
x = x′a and y = ay′ and x′ay′ is a word of length 6 2n− 1 which is a subword
of uav but not of uv. Therefore uav 6∼2n−1 uv.

If u is a word, we denote by c(u) the content of u, that is, the set of letters
of A occurring in u. For instance, c(babaa) = {a, b}.

Proposition 1.4 Let u, v ∈ A∗ and let n > 0. Then u ∼n vu if and only if there
exist u1, . . . , un ∈ A∗ such that u = u1 · · ·un and c(v) ⊆ c(u1) ⊆ . . . ⊆ c(un).

Proof. First of all, the result is trivial if u = 1. We shall suppose from now on
that u is nonempty.

Let us show that the condition is necessary by induction on n. If n = 1,
u ∼1 vu implies that u and vu have the same content and hence c(v) ⊆ c(u).
Suppose that u ∼n+1 vu and let un+1 be the shortest suffix of u such that
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c(un+1) = c(u). Since u is nonempty, so is un+1. Put un+1 = au′ with a ∈ A.
By definition of un+1, c(u

′) is strictly contained in c(u) and thus a is not a letter
of u′. We claim that w ∼n vw, where w is the prefix of u such that u = wau′.
Let x be a subword of vw of length 6 n. Then xa is a subword of length 6 n+1
of vwa and therefore of vu. Since u ∼n+1 vu, xa is a subword of u = wau′ and,
since a is not a letter of u′, xa is a subword of wa. Therefore x is a subword
of w. Conversely, it is clear that every subword of w is a subword of vw, which
proves the claim. By the induction hypothesis, there exist u1, . . . , un ∈ A

∗ such
that w = u1 · · ·un and c(v) ⊆ c(u1) ⊆ . . . ⊆ c(un). Now u = wun+1 and
c(un) ⊆ c(u) = c(un+1), which concludes the induction step.

We now show that the condition is sufficient, again by induction on n. For
n = 1, u1 = u and c(v) ⊆ c(u) implies c(u) = c(vu), that is, u ∼1 vu. Suppose
that u = u1 · · ·un+1 with c(v) ⊆ c(u1) ⊆ . . . ⊆ c(un+1). Then c(vu) = c(u) =
c(un+1) and u1 · · ·un ∼n vu1 · · ·un by the induction hypothesis. Let x be a
nonempty subword of length 6 n + 1 of vu. Let x′ be the longest suffix of x
such that x′ is a subword of un+1 and put x = x′′x′.

v u1 u2 un+1

x′′ x′

vu

x

Since c(vu) = c(un+1), the factor un+1 contains each letter of vu, and hence of
x, at least once. In particular, x′ is nonempty. Further, by the definition of x′,
x′′ is a subword of length 6 n of vu1 · · ·un. Since u1 · · ·un ∼n vu1 · · ·un, x′′ is
a subword of u1 · · ·un and therefore x is a subword of u. Consequently, every
subword of u is a subword of vu and therefore u ∼n+1 vu, which completes the
proof.

Corollary 1.5 For every u, v ∈ A∗, one has (uv)nu ∼n (uv)n ∼n v(uv)
n.

Proof. The formula (uv)n ∼n v(uv)
n follows from Proposition 1.4. The other

part of the formula is dual.

We conclude this section with a remarkable combinatorial property of the
congruence ∼n.

Proposition 1.6 If f ∼n g, there exists h such that f and g are subwords of h
and f ∼n h ∼n g.

Proof. The proof is achieved by induction on k = |f |+ |g|−2|f ∧g| where f ∧g
is the largest common prefix of f and g. If k = 0, then f = g and it suffices to
take h = f = g. The result is also trivial if f is a subword of g (or g is a subword
of f). These cases are excluded from now on. Thus one has f = uav, g = ubw
with a, b ∈ A and a 6= b. We claim that either ubw ∼n ubav or uav ∼n uabw.
Suppose that none of these assertions is true. Since ubw = g ∼n f and f is
a subword of ubav, there exists a word r of length 6 n which is a subword of
ubav but not of ubw. Likewise, there exists a word s of length 6 n which is a
subword of uabw but not of uav.
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g u b w f u a v

r r1 b r2 s s1 a s2

u b a v u a b w

Necessarily r = r1br2 where r1 is a subword of u and r2 is a subword of av,
and s = s1as2 where s1 is a subword of u and s2 is a subword of bw. It follows
that r1b is not a subword of u (for otherwise r = r1br2 would be a subword of
uav = f and therefore of g). Likewise s1a is not a subword of u.

Since r2 is a subword of av, one has r2 = r′′2 r
′
2 where r′′2 = 1 or a and r′2 is

a subword of v. Likewise, since s2 is a subword of bw; one has s2 = s′′2s
′
2 where

s′′2 = 1 or b and s′2 is a subword of w. Finally

|r1bs
′
2|+ |s1ar

′
2| 6 |r1as2|+ |s1br2| 6 |r|+ |s| 6 2n

and therefore one of the words r1bs
′
2 or s1ar

′
2 is of length 6 n. Suppose for

example that this is r1bs
′
2. Then r1bs

′
2 is a subword of ubw = g and therefore

also of f = uav. However, r1b is not a subword of u. Thus bs′2 is a subword of
v, and a fortiori s2 is a subword of v.

u a v

r1 b s′2

Thus s = s1as2 is a subword of uav = f , a contradiction. This proves the claim.
Suppose, for example, that f = uav ∼n uabw. Then

|uav|+ |uabw| − 2|uav ∧ uabw| 6 |f |+ |g|+ 1− 2|ua|

6 |f |+ |g|+ 1− (2|f ∧ g|+ 2)

< k

By the induction hypothesis, there exists h such that f = uav is a subword of
h, uabw is a subword of h and f ∼n h ∼n uabw. The proposition follows from
this, since g is a subword of uabw.

Example 1.1 Let f = a3b3a3b3 and g = a2b4a4b2. We have f ∼4 g since all
words of length 4 except baba are subwords of f and g. Applying the algorithm
described in the proof of Proposition 1.6, we obtain successively

f = (aa)a(b3a3b3) ∼4 (aa)b(b3a4b2) = g

whence

(aa)a(b3a3b3) ∼4 (aa)ab(b3a4b2) or (aa)b(b3a4b2) ∼4 (aa)ba(b3a3b3)
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The second possibility can be ruled out, for baba is a subword of a2bab3a3b3.
Therefore

(a3b3)a(a2b3) ∼4 (a3b3)b(a4b2)

and consequently

(a3b3)a(a2b3) ∼4 (a3b3)ab(a4b2) or (a3b3)b(a4b2) ∼4 (a3b3)ba(a2b3)

The first possibility can be ruled out, for baba is a subword of a3b3aba4b2. Then

(a3b4a3)a(b2) ∼4 (a3b4a3)b(b2)

and consequently

(a3b4a3)a(b2) ∼4 (a3b4a3)ab(b2) or (a3b4a3)b(b2) ∼4 (a3b4a3)ba(b2)

The second possibility can be ruled out, for baba is a subword of a3b4a3bab2.
Therefore

a3b4a4b2 ∼4 a
3b4a4b3

It follows from this that f and g are subwords of h = a3b4a4b3 and that f ∼4

h ∼4 g.

2 Simple languages and shuffle ideals

The shuffle of two languages L1 and L2 of A∗ is the language L1 xxy L2 of A∗

defined by:

L1 xxy L2 = {w ∈ A∗ | w = u1v1 · · ·unvn for some n > 0 such that

u1 · · ·un ∈ L1, v1 · · · vn ∈ L2}

In particular, if L is a language of A∗, a language of the form L xxy A∗ is called
a shuffle ideal. Thus a language L of A∗ is a shuffle ideal if every superword of
a word of L is also in L.

A simple language is a shuffle ideal of the form

A∗
xxy a1 . . . ak = A∗a1A

∗a2A
∗ · · ·A∗akA

∗

where a1, . . . , ak ∈ A. Thus A
∗a1A

∗a2A
∗ · · ·A∗akA

∗ is the set of superwords of
the word a1 · · · ak. We can now state our first characterisation of shuffle ideals:

Theorem 2.7 A language is a shuffle ideal if and only if it is a finite union of
simple languages.

Proof. Clearly, every finite union of simple languages is a shuffle ideal. Con-
versely, let L be a shuffle ideal and let F be the set of all minimal words of
L for the subword ordering. Thus L is the set of all superwords of F , that is
L = F xxy A∗. Furthermore, since the elements of F are pairwise incomparable
for the subword ordering, Higman’s theorem (Theorem 1.1) shows that F is
finite. Therefore L is the finite union of the simple languages A∗ xxy u, where
the union runs over all words u ∈ F .

One can give a constructive proof which does not rely on Higman’s theorem.
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Proposition 2.8 Let L be recognisable language such that L xxy A∗ = L. Then
one can effectively find a finite language F such that L = F xxy A∗.

Proof. Let n be the number of states of the minimal automaton A of L. Set

F = {u ∈ L | |u| 6 n} and K = F xxy A∗

We claim that L = K. Since F ⊆ L, one has F xxy A∗ ⊆ L xxy A∗ = L and
hence K ⊆ L. If the inclusion is strict, consider a word u of minimal length
in L −K. Necessarily, |u| > n, for otherwise u ∈ F . Let u = a1 · · · ar and let

q0
a1−→ q1 · · · qr−1

ar−→ qr be a successful path of label u in A. As r > n, there
exist two indices i < j such that qi = qj . Thus the word v = a1 · · · aiaj+1 · · · ar
is also accepted by A and therefore belongs to L. Furthermore, since v is shorter
than u, v belongs to K and u belongs to K xxy A∗. Now, since

K xxy A∗ = (F xxy A∗) xxy A∗ = F xxy (A∗
xxy A∗) = F xxy A∗ = K

one has u ∈ K, a contradiction. This proves the claim and the proposition.

Corollary 2.9 Every shuffle ideal is a recognisable language.

We now come to the algebraic characterisation of shuffle ideals.

Theorem 2.10 A language is a shuffle ideal if and only if its ordered syntactic
monoid satisfies the identity 1 6 x.

Proof. Let L be a language and let η : A∗ → (M,6) be its ordered syntactic
morphism. Suppose that L is a shuffle ideal. If uv ∈ L, then uxv ∈ L for each
x ∈ A∗. Therefore 1 6L x and thus M satisfies the identity 1 6 x.

Conversely, if M satisfies the identity x 6 1, then, for every x ∈ A∗, 1 6L x,
that is, the condition uv ∈ L implies uxv ∈ L. Therefore L is a shuffle ideal.

3 Piecewise testable languages and Simon’s the-

orem

A language is called piecewise testable if and only if it is a union of ∼n-classes
for some positive integer n.

The terminilogy chosen can be explained as follows: a language L is piecewise
testable if there exists an integer n > 0 such that one can test whether or not a
word belongs to L by simple inspection of its subwords of length 6 n. Here is
a first description of these languages.

Proposition 3.11 A language of A∗ is piecewise testable if and only if it be-
longs to the Boolean algebra generated by the simple languages on A∗.

Proof. Let L = A∗a1A
∗ · · · anA

∗ be a simple language of A∗. If u ∈ L, then
a1 · · · an is a subword of u. Therefore, if u ∼n v, a1 · · · an is also a subword of v
and v ∈ L. This shows that L is saturated by ∼n and therefore is a finite union
of ∼n-classes.
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Let u be a word of A∗. A moment’s reflexion should suffice to verify the
following formula:

{v ∈ A∗ | v ∼n u} =
( ⋂

a1···ak∈E

A∗a1A
∗ · · · akA

∗
)
−
( ⋃

a1···ak∈F

A∗a1A
∗ · · · akA

∗
)

where E is the set of subwords of u of length 6 n and F is the set of words
of length 6 n which are not subwords of u. It follows from this formula that
if L is a union of ∼n-classes for some positive integer n, then L belongs to the
Boolean algebra generated by the simple languages on A∗.

The syntactic characterisation of piecewise testable languages is the main
result of this chapter. It relies on two results of semigroup theory of independent
interest.

Proposition 3.12 Any finite ordered monoid satisfying the identity x 6 1 is
J -trivial.

Proof. Let x and y be two elements of M such that x J y. Then x = rys
and y = uxv for some r, s, u, v ∈ M . Since r 6 1 and s 6 1, it follows that
x = rys 6 y and similarly, y 6 x. Thus x = y.

Theorem 3.13 (Simon) Let M be a finite J -trivial monoid and let n be the
maximal length of strict <J -chains in M . If ϕ : A∗ → M is a surjective
morphism, then M is a quotient of the monoid A∗/∼2n−1.

Proof. By Proposition II.3.22, it suffices to show that if f ∼2n−1 g, then ϕ(f) =
ϕ(g). By Proposition 1.6, we may assume that f is a subword of g. We note
furthermore that if f is a subword of h and h is a subword of g, then we also have
f ∼2n−1 h. This enables us to assume that f = uv and g = uav for some a ∈ A.
In this case, Proposition 1.3 shows that either ua ∼n u or av ∼n v. Assuming
the latter, there exists by Proposition 1.4 a factorisation v = v1v2 · · · vn such
that {a} ⊆ c(v1) ⊆ . . . ⊆ c(vn). Consider the 6J -chain of length n+ 1

ϕ(v1 · · · vn) 6J ϕ(v2 · · · vn) 6J · · · 6J ϕ(vn) 6J 1

By the choice of n, this chain is not strict and there exists an index i such
that ϕ(vi · · · vn) J ϕ(vi+1 · · · vn). Since M is J -trivial, one has ϕ(vi · · · vn) =
ϕ(vi+1 · · · vn) = s. Let b ∈ c(vi). Then vi = v′ibv

′′
i for some v′i, v

′′
i ∈ A

∗ and thus
s = ϕ(vi · · · vn) 6J ϕ(bv′′i vi+1 · · · vn) 6J ϕ(v′′i vi+1 · · · vn) 6J ϕ(vi+1 · · · vn) =
s. Since M is J -trivial, we get

s = ϕ(vi · · · vn) = ϕ(bv′′i vi+1 · · · vn) = ϕ(v′′i vi+1 · · · vn) = ϕ(vi+1 · · · vn).

Consequently, one has ϕ(b)s = s for each b ∈ c(vi) and hence also for b ∈ c(vi−1),
. . . , b ∈ c(v0) and b = a. Therefore ϕ(v) = ϕ(v1 · · · vn) = s = ϕ(a)s = ϕ(av).
It follows that ϕ(f) = ϕ(uav) = ϕ(uv) = ϕ(g), which concludes the proof.

We now return to the announced characterisation of piecewise testable lan-
guages.
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Theorem 3.14 (Simon) A language is piecewise testable if and only if its syn-
tactic monoid is finite and J -trivial.

Proof. Let L be a simple language. Then by Theorem 2.10, the ordered syn-
tactic monoid of L satisfies the identity x 6 1. By Proposition 3.12, this monoid
is J -trivial. Now if L is piecewise testable, it is by Proposition 3.11 a Boolean
combination of simple languages, its syntactic monoid divides a product of finite
J -trivial monoids and hence is itself finite and J -trivial.

Conversely, if the syntactic monoid of L is finite and J -trivial, then by
Theorem 3.13, L is a union of ∼2n−1-classes, where n is the maximal length of
strict <J -chains in M . Thus L is piecewise testable.

4 Some consequences of Simon’s theorem

Simon’s theorem has unexpected consequences in semigroup theory. We start
by defining, for each integer n > 0, three monoids Cn, Rn and Un which will
serve us as examples of J -trivial monoids.

The monoid Cn is the submonoid of Tn consisting of all order preserving and
extensive functions from {1, . . . , n} into itself. Recall that a transformation a
on {1, . . . , n} is order preserving if p 6 q implies p· a 6 q · a and extensive if for
all p, p 6 p· a.

The monoid Rn is the monoid of all reflexive relations on {1, . . . , n}. It
is convenient to consider Rn as the monoid of Boolean matrices of size n × n
having only one entries on the diagonal. For example

R2 = {( 1 0
0 1 ) , (

1 1
0 1 ) , (

1 0
1 1 ) , (

1 1
1 1 )}

Finally, Un is the submonoid of Rn consisting of the upper triangular matrices
of Cn. The matrices of Un are called unitriangular. For example,

U3 =
{(

1 ε1 ε2
0 1 ε3
0 0 1

)
| ε1, ε2, ε3 ∈ {0, 1}

}

Proposition 4.15 For each n > 0, the monoids Cn, Rn and Un are J -trivial.

Proof. Let us show that Cn is J -trivial. If f, g ∈ Cn and f J g, then g = afb
and f = cgd for some a, b, c, d ∈ Cn. Let p ∈ {1, . . . , n}. Since a is extensive,
one has p 6 p· a and since f is order-preserving, one has p· f 6 p· af . It follows,
since b is extensive, that p· af 6 p· afb and finally p· f 6 p· afb = p· g. Similar
reasoning would show that p· g 6 p· f . It follows that f = g and thus Cn is
J -trivial.

Since Un is a submonoid of Rn, it is sufficient to establish that Rn is J -
trivial. But Rn is naturally ordered by the order defined by m 6 n if and only
if, for all i, j, mi,j 6 ni,j and this order is stable under product. Since all entries
on the diagonal are equal to 1, the identity 1 6 x holds in Rn and thus Rn is
J -trivial by Proposition 3.12.

The next proposition gives another property of the monoids Cn, Rn and Un.

Proposition 4.16 For each n,m > 0, the monoid Cn×Cm, [Rn×Rm,Un×Um]
is isomorphic to a submonoid of Cn+m [Rn+m,Un+m].



4. SOME CONSEQUENCES OF SIMON’S THEOREM 209

Proof. Let ϕ : Cn × Cm → Cn+m be the function defined by ϕ(f, g) = h where

p·h =

{
p· f if 1 6 p 6 n,

(p− n)· g + n if n+ 1 6 p 6 n+m

Then ϕ is clearly an injective morphism and therefore Cn×Cm is isomorphic to
a submonoid of Cn+m.

Let now ψ : Rn×Rm → Rn+m be the function defined by ψ(R,S) = T where
T is the relation defined by (i, j) ∈ T if and only if (i, j) ∈ R or (i−n, j−n) ∈ S.
Then ψ is an injective morphism and therefore Rn × Rm is isomorphic to a
submonoid of Rn+m. The proof is similar for Un.

The next result shows that the monoids Cn, Rn and Un generate the variety
of J -trivial monoids.

Theorem 4.17 Let M be a finite monoid. the following conditions are equiva-
lent:

(1) M is J -trivial,

(2) there exists an integer n > 0 such that M divides Cn,

(3) there exists an integer n > 0 such that M divides Rn,

(4) there exists an integer n > 0 such that M divides Un.

Proof. By Proposition 4.15, the monoids Cn, Rn and Un are J -trivial. There-
fore each of the conditions (2), (3) or (4) implies (1). Moreover (4) implies (3)
since Un is a submonoid of Rn. It remains to prove that (1) implies (2) and (4).

Let M be a J -trivial monoid. By Proposition VIII.7.19, there exist a finite
alphabet A and languages L1, . . . , Lk ∈ J (A

∗) such that M is isomorphic with
a submonoid ofM(L1)×· · ·×M(Lk). Now by Theorem 3.14 and by Proposition
3.11, each Li is a Boolean combination of simple languages. It follows now from
Proposition IV.4.26 that M divides a product of syntactic monoids of simple
languages. Therefore, by Proposition 4.16, it suffices to establish (2) and (4)
when M is the syntactic monoid of a simple language L = A∗a1A

∗ · · · anA
∗.

The minimal automaton A of L is pictured in Figure 4.1:

0 1 n− 1 n
a1 a2 an

A− a1 A− a2 A− an A

. . .

Figure 4.1. An automaton recognising L.

Since the transitions of A are increasing and extensive functions, the transition
monoid of A, which is also the syntactic monoid of L, is a submonoid of Cn+1,
which proves that (1) implies (2).

Further, L is also recognised by the nondeterministic automaton B repre-
sented in Figure 4.2:
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0 1 n− 1 n
a1 a2 an

A A A A

. . .

Figure 4.2. A nondeterministic automaton recognising L.

The transition monoid of B is a monoid of unitriangular Boolean matrices, that
is, a submonoid of Un+1. It follows that M divides Un+1.

Theorem 3.13 has another very important consequence.

Theorem 4.18 Every finite J -trivial monoid is a quotient of a finite ordered
monoid satisfying the identity 1 6 x.

Proof. Let M be a J -trivial monoid. By Theorem 3.13, M is a quotient of
the monoid of the form A∗/∼k. Now, the subword ordering induces a stable
partial order on A∗/∼k. Furthermore, since the empty word is a subword of
every word, the identity 1 6 x holds in this ordered monoid.

5 Exercises

1. Let L = A∗
0a1A

∗
1 · · · anA

∗
n, where a1, . . . , an ∈ A, A0, . . . , An ⊆ A and a1 /∈

A0 ∪A1, a2 /∈ A1 ∪A2, . . . , an /∈ An−1 ∪An. Show that L is piecewise testable.
Use this result to show that the language abab∗ca∗b is piecewise testable.

2. Let L be a language. Prove that the following conditions are equivalent:

(1) L is the complement of a shuffle ideal,

(2) L is a finite union of languages of the form A∗
0(1 + a1)A

∗
1 · · · (1 + an)A

∗
n,

where a1, . . . , an ∈ A and A0, . . . , An ⊆ A,

(3) L satisfies the identity x 6 1.



Chapter XII

Polynomial closure

The polynomial closure Pol(L) of a class of languages L of A∗ is the set of
languages that are finite unions of marked products of the form L0a1L1 · · · anLn,
where the ai are letters and the Li are elements of L.

The main result of this chapter gives an equational description of Pol(L),
given an equational description of L, when L is a lattice of languages closed
under quotient. It can be formally stated as follows:

If L is a lattice of languages closed under quotients, then Pol(L) is
defined by the set of equations of the form xω 6 xωyxω, where x, y are
profinite words such that the equations x = x2 and x 6 y are satisfied
by L.

1 Polynomial closure of a lattice of languages

Let L be a set of languages of A∗. An L-monomial of degree n is a language
of the form L0a1L1 · · · anLn, where each ai is a letter of A and each Li is a
language of L. An L-polynomial is a finite union of L-monomials. Its degree
is the maximum of the degrees of its monomials. The polynomial closure of L,
denoted by Pol(L), is the set of all L-polynomials.

Our main result gives an equational description of Pol(L), given an equa-
tional description of L, when L is a lattice of languages closed under quotients.
To state this result in a concise way, let us introduce a convenient notation.
Given a set R of recognisable languages, denote by Σ(R) the set of equations

of the form xω 6 xωyxω, where x, y are profinite words of Â∗ such that the
equations x = x2 and x 6 y are satisfied by R. Note that the function mapping
R to the class of languages satisfying Σ(R) is monotonic for the inclusion. We
can now state our main result:

Theorem 1.1 If L is a lattice of languages closed under quotients, then Pol(L)
is defined by the set of equations Σ(L).

The proof is divided into several parts. We first prove in Proposition 1.2
that Pol(L) satisfies the equations of Σ(L). To establish the converse of this
property, we consider a language K satisfying all the equations of Σ(L). We
convert this property into a topological property (Proposition 1.3) and then
use a compactness argument to show that K satisfies the equations of Σ(F),

211
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where F is a finite sublattice of L (Proposition 1.4). The final part of the proof
consists in proving that K belongs to Pol(F). This is where the factorisation
forest theorem arises, but a series of lemmas (Lemmas 1.5 to 1.10) are still
necessary to find explicitly a polynomial expression for K.

Proposition 1.2 If L is a lattice of languages, then Pol(L) satisfies the equa-
tions of Σ(L).

Proof. Since, by Theorem VIII.2.5, the set of languages satisfying Σ(L) is a
lattice of languages, it suffices to prove the result for any L-monomial. Let
L = L0a1L1 · · · anLn be an L-monomial and let η : A∗ → M be its syntactic
morphism. Let, for 0 6 i 6 n, ηi : A

∗ → Mi be the syntactic morphism of Li.
Let x and y be two profinite words such that each Li satisfies the two equations
x = x2 and x 6 y.

Since A∗ is dense in Â∗, one can find a word x′ ∈ A∗ such that r(x′, x) >
max{|M0|, . . . , |Mn|, |M |}. It follows that η(x′) = η̂(x) and, for 0 6 i 6 n,
ηi(x

′) = η̂i(x). Similarly, one can associate with y a word y′ ∈ A∗ such that
η(y′) = η̂(y) and, for 0 6 i 6 n, ηi(y

′) = η̂i(y). It follows that each Li satisfies

the equations x′ = x′
2
and y′ 6 x′ and that L satisfies the equation xω 6 xωyxω

if and only if it satisfies the equations x′
ω
6 x′

ω
y′x′

ω
. In other terms, it suffices

to prove the result when x and y are words.
We need to establish the relation

η̂(xω) 6 η̂(xωyxω) (1.1)

Let k be an integer such that k > n and η̂(xω) = η(xk). Since η̂(xωyxω) =
η(xkyxk), proving (1.1) amounts to showing that xk 6L xkyxk. Let u, v ∈ A∗

and suppose that uxkv ∈ L. Thus uxkv = u0a1u1 · · · anun, where, for 0 6
i 6 n, ui ∈ Li. Since k > n, one can find h ∈ {0, . . . , n}, j ∈ {1, . . . , k}
and u′h, u

′′
h ∈ A

∗ such that uh = u′hxu
′′
h, ux

j−1 = u0a1u1 · · · ahu
′
h and xk−jv =

u′′hah+1uh+1 · · · anun. Since uh ∈ Lh and Lh satisfies the equations x = x2 and
x 6 y, one has u′hx

k−j+1yxju′′h ∈ Lh, and since

uxkyxkv = u0a1u1 · · · ah(u
′
hx

k−j+1yxju′′h)ah+1uh+1 · · · anun

one gets uxkyxkv ∈ L. Thus xk 6L xkyxk, which completes the proof.

The rest of this section is devoted to showing the converse implication in The-
orem 1.1. Let us introduce, for each recognisable language L of A∗, the sets

EL =
{
(x, y) ∈ Â∗ × Â∗ | L satisfies x = x2 and x 6 y

}

FL =
{
(x, y) ∈ Â∗ × Â∗ | L satisfies xω 6 xωyxω

}
.

Lemma VIII.2.6 shows that the set EL is clopen in Â∗×Â∗. A similar argument,
using the continuous map β : Â∗ × Â∗ →M2 defined by

β(x, y) =
(
η̂(xωyxω), η̂(xω)

)

would show that FL is clopen.
We now convert our equational conditions into a topological property. Recall

that a cover [open cover ] of a topological space X is a collection of subsets [open
subsets] of X whose union is X.
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Proposition 1.3 Let F be a set of recognisable languages of A∗ and let K be
a recognisable language of A∗. The following conditions are equivalent:

(1) K satisfies the profinite equations of Σ(F),

(2) the set {FK} ∪ {Ec
L | L ∈ F} is an open cover of Â∗ × Â∗.

Proof. Indeed F satisfies the two profinite equations x = x2 and x 6 y if
and only if (x, y) ∈

⋂
L∈F EL or, equivalently, (x, y) /∈

⋃
L∈F E

c
L. Similarly, K

satisfies the equation xω 6 xωyxω if and only if (x, y) ∈ FK . Now, condition
(1) is equivalent to saying that (x, y) /∈

⋃
L∈F E

c
L implies (x, y) ∈ FK , which is

another way to say that {FK} ∪ {Ec
L | L ∈ F} is a cover of Â∗ × Â∗. Since FK

and EL are clopen, it is an open cover.

Proposition 1.4 If K satisfies the equations of Σ(L), there is a finite subset
F of L such that K satisfies the equations of Σ(F).

Proof. Proposition 1.3 shows that {FK} ∪ {E
c
L | L ∈ L} is a cover of Â∗ × Â∗.

Since Â∗ is compact, one can extract from this cover a finite cover, say {FK} ∪
{Ec

L | L ∈ F}. By Proposition 1.3 again, K satisfies the profinite equations
of the form xω 6 xωyxω such that all the languages of F satisfy the equations
x = x2 and x 6 y.

Let K be a recognisable language satisfying all the equations of Σ(L) and
let η : A∗ → M be its syntactic morphism. Let also F = {L1, . . . , Ln} be a
finite subset of L as given by Proposition 1.4. For 1 6 i 6 n, let ηi : A

∗ → Mi

be the syntactic morphism of Li. Let µ : A
∗ →M1× · · ·×Mn be the morphism

defined by µ(u) = (η1(u), . . . , ηn(u)). Finally, let V = µ(A∗) and, for 1 6 i 6 n,
let πi : V →Mi be the natural projection. We set S = {(η(u), µ(u)) | u ∈ A∗}.
Then S is a submonoid of M × V and the two morphisms α : S → M and
β : S → V defined by α(m, v) = m and β(m, v) = v are surjective. Further,
the morphism δ : A∗ → S defined by δ(u) = (η(u), µ(u)) satisfies η = α ◦ δ and
µ = β ◦ δ. The situation is summarized in the following diagram:

M VS

A∗

Mi
α β

η µ
δ

ηi

πi

We now arrive at the last step of the proof of Theorem 1.1, which consists in
proving that K belongs to Pol(F).

We start with three auxiliary lemmas. The first one states that every down-
ward closed language recognised by µ belongs to L and relies on the fact that
L is a lattice of languages closed under quotients. The second one gives a key
property of S and this is the only place in the proof where we use the equations
of Σ(L). The third one is an elementary, but useful, observation.

Lemma 1.5 Let t ∈ V . Then the language µ−1(↑ t) belongs to L.



214 CHAPTER XII. POLYNOMIAL CLOSURE

Proof. Let t = (t1, . . . , tn) and let z be a word such that µ(z) = t. Then
ti = ηi(z) and µ−1(↑ t) =

⋂
16i6n η

−1
i (↑ ti). Moreover, one gets for each i ∈

{1, . . . , n},

η−1
i (↑ ti) = {x ∈ A

∗ | ηi(z) 6 ηi(x)} = {x ∈ A
∗ | z 6Li

x} =
⋂

(u,v)∈Ei

u−1Liv
−1

where Ei = {(u, v) ∈ A∗ × A∗ | uzv ∈ Li}. Since Li is recognisable, there
are only finitely many quotients of the form u−1Liv

−1 and hence the intersec-
tion is finite. The result follows, since L is a lattice of languages closed under
quotients.

Lemma 1.6 For every idempotent (e, f) ∈ S and for every (s, t) ∈ S such that
f 6 t, one has e 6 ese.

Proof. Let x and y be two words such that δ(x) = (e, f) and δ(y) = (s, t).
Then η(x) = e, µ(x) = f , η(y) = s and µ(y) = t and since f is idempotent and
f 6 t, F satisfies the equations x = x2 and x 6 y. Therefore K satisfies the
equation xω 6 xωyxω. It follows that η̂(xω) 6 η̂(xωyxω), that is e 6 ese.

Before we continue, let us point out a subtlety in the proof of Lemma 1.6.
It looks like we have used words instead of profinite words in this proof and
the reader may wonder whether one could change “profinite” to “finite” in the
statement of our main result. The answer is negative for the following reason: if
F satisfies the equations x = x2 and x 6 y, it does not necessarily imply that L
satisfies the same equations. In fact, the choice of F comes from the extraction
of the finite cover and hence is bound to K.

We now set, for each idempotent f of V , L(f) = µ−1(↑f).

Lemma 1.7 For each idempotent f of V , one has L(1)L(f)L(1) = L(f).

Proof. Since 1 ∈ L(1), one gets the inclusion L(f) = 1L(f)1 ⊆ L(1)L(f)L(1).
Let now s, t ∈ L(1) and x ∈ L(f). Then by definition, 1 6 µ(s), f 6 µ(x) and
1 6 µ(t). It follows that f = 1f1 6 µ(s)µ(x)µ(t) = µ(sxt), whence sxt ∈ L(f).
This gives the opposite inclusion L(1)L(f)L(1) ⊆ L(f).

We now come to the combinatorial argument of the proof. By Theorem
II.6.40, there exists a factorisation forest F of height 6 3|S| − 1 which is Ram-
seyan modulo δ. We use this fact to associate with each word x a certain
language R(x), defined recursively as follows:

R(x) =





L(1)xL(1) if |x| 6 1

R(x1)R(x2) if F (x) = (x1, x2)

R(x1)L(f)R(xk) if F (x) = (x1, . . . , xk), with k > 3 and

δ(x1) = · · · = δ(xk) = (e, f)

In particular R(1) = L(1), since L(1) is a submonoid of A∗.
Denote by E the finite set of languages of the form L(f), where f is an idem-

potent of V . We know by Lemma 1.5 that E is a subset of L. Let us say that an
E-monomial is in normal form if it is of the form L(1)a0L(f1)a1 · · ·L(fk)akL(1)
where f1, . . . , fk are idempotents of V .
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Lemma 1.8 For each x ∈ A∗, R(x) is equal to an E-monomial in normal form
of degree 6 2h(x).

Proof. We prove the result by induction on the length of x. The result is true
if |x| 6 1. Suppose that |x| > 2. If F (x) = (x1, x2), then R(x) = R(x1)R(x2)
otherwise R(x) = R(x1)L(f)R(xk). We treat only the latter case, since the
first one is similar. By the induction hypothesis, R(x1) and R(xk) are equal to
E-monomials in normal form. It follows by Lemma 1.7 that R(x) is equal to
an E-monomial in normal form, whose degree is lesser than or equal to the sum
of the degrees of R(x1) and R(xk). The result now follows from the induction
hypothesis, since 2h(x1) + 2h(xk) 6 21+max{h(x1),...,h(xk)} 6 2h(x).

Lemma 1.9 For each x ∈ A∗, one has x ∈ R(x).

Proof. We prove the result by induction on the length of x. The result is
trivial if |x| 6 1. Suppose that |x| > 2. If F (x) = (x1, x2), one has x1 ∈
R(x1) and x2 ∈ R(x2) by the induction hypothesis and hence x ∈ R(x) since
R(x) = R(x1)R(x2). Suppose now that F (x) = (x1, . . . , xk) with k > 3 and
δ(x1) = · · · = δ(xk) = (e, f). Then R(x) = R(x1)L(f)R(xk). Since x1 ∈ R(x1)
and xk ∈ R(xk) by the induction hypothesis and µ(x2 · · ·xk−1) = f , one gets
x2 · · ·xk−1 ∈ L(f) and finally x ∈ R(x1)L(f)R(xk), that is, x ∈ R(x).

If R is a language, let us write η(x) 6 η(R) if, for each u ∈ R, η(x) 6 η(u).

Lemma 1.10 For each x ∈ A∗, one has η(x) 6 η(R(x)).

Proof. We prove the result by induction on the length of x. First, applying
Lemma 1.6 with e = f = 1 shows that if (s, t) ∈ S and 1 6 t, then 1 6 s. It
follows that 1 6 η(µ−1(↑1)) = η(L(1)) = η(R(1)).

If |x| 6 1, one gets R(x) = L(1)xL(1) and η(x) 6 η(L(1))η(x)η(L(1)) =
η(R(x)) since 1 6 η(L(1)). Suppose now that |x| > 2. If F (x) = (x1, x2),
then R(x) = R(x1)R(x2) and by the induction hypothesis, η(x1) 6 η(R(x1))
and η(x2) 6 η(R(x2)). Therefore, η(x) = η(x1)η(x2) 6 η(R(x1))η(R(x2)) =
η(R(x)). Finally, suppose that F (x) = (x1, . . . , xk) with k > 3 and δ(x1) =
· · · = δ(xk) = (e, f). Then R(x) = R(x1)L(f)R(xk). By the induction hypoth-
esis, e 6 η(R(x1)) and e 6 η(R(xk)). Now, if u ∈ L(f), one gets f 6 µ(u). Since
(η(u), µ(u)) ∈ S, it follows from Lemma 1.6 that the relation e 6 eη(u)e holds
in M . Finally, we get η(x) = e 6 eη(L(f))e 6 η(R(x1))η(L(f))η(R(xk)) =
η(R(x)).

We can now conclude the proof of Theorem 1.1. We claim that K =⋃
x∈K R(x). The inclusion K ⊆

⋃
x∈K R(x) is an immediate consequence of

Lemma 1.9. To prove the opposite inclusion, consider a word u ∈ R(x) for some
x ∈ K. It follows from Lemma 1.10 that η(x) 6 η(u). Since η(x) ∈ η(K), one
gets η(u) ∈ η(K) and finally u ∈ K. Now, by Lemma 1.8, each language R(x)
is an E-monomial of degree 6 2h(x). Since h(x) 6 3|S| − 1 for all x, and since E
is finite, there are only finitely many such monomials. Therefore K is equal to
an E-polynomial. Finally, Lemma 1.5 shows that each E-polynomial belongs to
Pol(L), and thus K ∈ Pol(L).
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2 A case study

As an application of this result, we establish a set of profinite equations defining
the class of languages of the form L0a1L1 · · · anLn, where each language Li is
either of the form u∗ (where u is a word) or A∗ (where A is the alphabet) and
we prove that this class is decidable.

We have seen that the recognisable languages that are either slender or full
form a lattice of languages closed under quotients, denoted by S in the sequel.
One can show that the languages of Pol(S) are finite unions of languages of the
form L0a1L1 · · · anLn, where the ai are letters and the Li are languages of the
form A∗ or u∗ for some word u. In particular, Pol(S) contains all recognisable
sparse languages but it also contains the nonsparse language A∗ if |A| > 2.

An equational description of Pol(S) was given in [9]. Let us denote by Σ′(S)
the set of equations of the form

(xωyω)ω 6 (xωyω)ωz(xωyω)ω

where z ∈ A∗ and x, y ∈ A+ and i(x) 6= i(y).

Theorem 2.11 A recognisable language of A∗ belongs to Pol(S) if and only if
it satisfies the equations of Σ′(S).



Chapter XIII

Relational morphisms

Relational morphisms form a powerful tool in semigroup theory. Although
the study of relational morphisms can be reduced in theory to the study of
morphisms, their systematic use leads to concise proofs of nontrivial results.
Furthermore, they provide a natural definition of the Mal’cev product and its
variants, an important tool for decomposing semigroups into simpler pieces.

1 Relational morphisms

A relational morphism between two semigroups S and T is a relation τ : S → T
which satisfies

(1) for every s ∈ S, τ(s) 6= ∅,

(2) for every s1, s2 ∈ S, τ(s1)τ(s2) ⊆ τ(s1s2)

For a relational morphism between two monoids S and T , a third condition is
required

(3) 1 ∈ τ(1)

The graph of a relational morphism τ is the subset R of S × T defined by

R = {(s, t) ∈ S × T | t ∈ τ(s)}

The following result is an immediate consequence of the definition of a relational
morphism.

Proposition 1.1 The graph of a relational morphism between two semigroups
[monoids ] S and T is a subsemigroup [submonoid ] of S × T .

Let us also mention another immediate result.

Proposition 1.2 The composition of two relational morphisms is a relational
morphism.

Examples of relational morphisms include two standard classes:

(1) morphisms,

(2) inverses of surjective morphisms.

217
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Indeed if α : S → T is a surjective morphism, then the relation α−1 : T → S
is a relational morphism. These two classes generate all relational morphisms.
More precisely, every relational morphism is the composition of a morphism and
the inverse of a surjective morphism.

Proposition 1.3 Let τ : S → T be a relational morphism and let R be its graph.
Then the projections from S × T onto S and T induce morphisms α : R → S
and β : R→ T such that α is surjective and τ = β ◦ α−1.

Proof. The factorisation of τ as β ◦ α−1 is an immediate consequence of the
definition. The surjectivity of α stems from the fact that, for all s ∈ S, τ(s) is
nonempty.

The factorisation τ = β ◦ α−1, pictured in Figure 1.1 is called the canonical
factorisation of τ .

S T

R ⊆ S × T

α

τ = β ◦ α−1

β

Figure 1.1. The canonical factorisation of a relational morphism.

We shall see that in most cases the properties of τ are bounded to that of β (see
in particular Propositions 2.5 and 3.11).

The next result extends Proposition to II.3.8 to relational morphisms. We
remind the reader that if τ is a relation from S into T and T ′ is a subset of T ,
then τ−1(T ′) = {s ∈ S | τ(s) ∩ T ′ 6= ∅}.

Proposition 1.4 Let τ : S → T be a relational morphism. If S′ is a subsemi-
group of S, then τ(S′) is a subsemigroup of T . If T ′ is a subsemigroup of T ,
then τ−1(T ′) is a subsemigroup of S.

Proof. Let t1, t2 ∈ τ(S′). Then t1 ∈ τ(s1) and t2 ∈ τ(s2) for some s1, s2 ∈ S′.
It follows that t1t2 ∈ τ(s1)τ(s2) ⊆ τ(s1s2) ⊆ τ(S′) and therefore τ(S′) is a
subsemigroup of T .

Let s1, s2 ∈ τ−1(T ′). Then by definition there exist t1, t2 ∈ T ′ such that
t1 ∈ τ(s1) and t2 ∈ τ(s2). Thus t1t2 ∈ τ(s1)τ(s2) ⊆ τ(s1s2), whence s1s2 ∈
τ−1(t1t2). Therefore s1s2 ∈ τ−1(T ′) and hence τ−1(T ′) is a subsemigroup of
S.

Example 1.1 Let E be the set of all injective partial functions from {1, 2, 3, 4}
into itself and let F be the set of all bijections on {1, 2, 3, 4}. Let τ be the
relation that associates to each injective function f the set of all possible bijective
extensions of f . For instance, if f is the partial function defined by f(1) = 3
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and f(3) = 2, then τ(f) = {h1, h2} were h1 and h2 are the bijections given in
the following table

1 2 3 4

h1 3 1 2 4

h2 3 4 2 1

Let Id be the identity map on {1, 2, 3, 4}. Then τ−1(Id) is the set of partial
identities on E, listed in the table below:

1 2 3 4

- - - -

- - - 4

- - 3 -

- - 3 4

- 2 - -

- 2 - 4

- 2 3 -

- 2 3 4

1 2 3 4

1 - - -

1 - - 4

1 - 3 -

1 - 3 4

1 2 - -

1 2 - 4

1 2 3 -

1 2 3 4

2 Injective relational morphisms

According to the definition of an injective relation given in Chapter I, a relational
morphism τ : S → T is injective if, for every s1, s2 ∈ S, the condition s1 6= s2
implies that τ(s1) and τ(s2) are disjoint, or equivalently, if τ(s1) ∩ τ(s2) 6= ∅
implies s1 = s2. Note in particular that if α : R→ T is a surjective morphism,
then α−1 : T → R is an injective relational morphism.

Proposition 2.5 Let S
α−1

−→ R
β
−→ T be the canonical factorisation of a re-

lational morphism τ : S → T . Then τ is injective [surjective ] if and only if β
is injective [surjective ].

Proof. By Proposition I.1.8, α−1 is an injective relational morphism. It is
also surjective, since (s, t) ∈ α−1(s) for every (s, t) ∈ R. Thus if β is injective
[surjective], then τ = β ◦ α−1 is also injective [surjective].

Suppose now that τ is injective. Let r1 and r2 be two elements of R such that
β(r1) = β(r2) = t. Since α is surjective, r1 ∈ α

−1(α(r1)) and r2 ∈ α
−1(α(r2)).

It follows that t ∈ β
(
α−1 (α(r1))

)
∩ β

(
α−1 (α(r2))

)
= τ (α(r1)) ∩ τ (α(r2)),

whence α(r1) = α(r2) since τ is injective. Therefore r1 = (α(r1), β(r1)) is equal
to r2 = (α(r2), β(r2)).

Finally, if τ is surjective, then β is surjective by Proposition I.1.14.

Proposition 2.5 has two interesting consequences.

Corollary 2.6 A semigroup S divides a semigroup T if and only if there exists
an injective relational morphism from S into T .

Proof. If S divides T , there exists a semigroup R, a surjective morphism α :
R → S and an injective morphism β : R → T . Then α−1 is an injective
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relational morphism and thus τ = β ◦ α−1 is an injective relational morphism
from S into T .

Conversely, if τ is an injective relational morphism from S into T and if

S
α−1

−→ R
β
−→ T is the canonical factorisation of τ . Proposition 2.5 shows that

β is injective. Since α is surjective, S divides T .

Corollary 2.7 Let τ : S → T be an injective relational morphism. Then for
any subsemigroup T ′ of T , τ−1(T ′) divides T ′. Furthermore τ−1(E(T )) ⊆ E(S).

Proof. Let S
α−1

−→ R
β
−→ T be the canonical factorisation of τ . Then β is

injective by Proposition 2.5 and thus β−1(T ′) is isomorphic to a subsemigroup
of T ′. Finally, τ−1(T ′) is equal to α(β−1(T ′)) and thus divides T ′.

Let s ∈ τ−1(E(T )). Then τ(s) contains some idempotent f of T . As
τ(s)τ(s) ⊆ τ(s2), τ(s2) also contains f . Thus f ∈ τ(s) ∩ τ(s2) whence s = s2

since τ is injective. Thus s is idempotent and τ−1(E(T )) ⊆ E(S).

If T is finite, Corollary 2.7 can be improved as follows.

Proposition 2.8 Let T be a finite semigroup and let τ : S → T be an injective
relational morphism. Then τ−1(E(T )) = E(S).

Proof. Let e ∈ E(S). By Proposition 1.4, τ(e) is a subsemigroup of T , which,
by Corollary II.6.32, contains an idempotent. Thus e ∈ τ−1(E(T )), showing
that E(S) ⊆ τ−1(E(T )). The opposite inclusion follows from Corollary 2.7.

3 Relational V-morphisms

Let V be a variety of finite semigroups. A [relational] morphism τ : S → T is
said to be a [relational ] V-morphism if, for every subsemigroup T ′ of T which
belongs to V, the semigroup τ−1(T ′) also belongs to V.

The definition can be readily adapted to the case of varieties of ordered
semigroups. Let V be a variety of finite ordered semigroups and let S and T
be two ordered semigroups. Then a [relational] morphism τ : S → T is said to
be a [relational] V-morphism if, for every ordered subsemigroup T ′ of T which
belongs to V, the ordered semigroup τ−1(T ′) also belongs to V.

In practice, V is often one of the following varieties:

(1) A, the variety of aperiodic semigroups,

(2) N, the variety of nilpotent semigroups,

(3) L1 = Jese = eK, the variety of locally trivial semigroups,

(4) LJ− = Je 6 eseK, the variety of ordered semigroups S, such that, for all
e ∈ E(S), the ordered submonoid eSe satisfies the identity 1 6 x.

A relational A-morphism is also called an aperiodic relational morphism and a
relational L1-morphism is also called a locally trivial relational morphism.

The definition of relational V-morphism is formally reminiscent of that of
a continuous function. This analogy is confirmed by the following proposition,
whose proof is immediate.

Proposition 3.9 Relational V-morphisms are closed under composition.
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Let us mention another elementary result.

Proposition 3.10 Injective relational morphisms are relational V-morphisms
for every variety V.

Proof. This follows directly from Corollary 2.7.

Note that the converse to Proposition 3.10 does not hold. Let N2 = {0, a}
and N3 = {0, a, b} be the nilpotent semigroups with two and three elements,
respectively and let ϕ : N3 → N2 be the morphism defined by ϕ(a) = ϕ(b) = a
and ϕ(0) = 0. Then the only subsemigroups of N2 are 0 and N2. It follows
that ϕ is a relational V-morphism for every variety V since ϕ−1(0) = 0 and
ϕ−1(N2) = N3, which divides N2 ×N2. However, ϕ is not injective.

We can now state our announced result on canonical factorisations.

Proposition 3.11 Let S
α−1

−→ R
β
−→ T be the canonical factorisation of a re-

lational morphism τ : S → T . Then τ is a relational V-morphism if and only
if β is a V-morphism.

Proof. First, α−1 is an injective relational morphism and thus a relational V-
morphism by Proposition 3.10. Thus if β is a relational V-morphism, then τ is
a relational V-morphism by Proposition 3.9.

Conversely, suppose that τ is a relational V-morphism. Let γ : S × T →
T × T be the relational morphism defined by γ(s, t) = τ(s) × {t}. Let T ′ be a
subsemigroup of T belonging to V. Setting D = {(t, t) | t ∈ T ′}, one gets

γ−1(D) = {(s, t) ∈ S × T | t ∈ τ(s) ∩ T ′} = β−1(T ′)

It follows that β−1(T ′) is a subsemigroup of τ−1(T ′) × T ′ and thus is in V.
Thus β is a relational V-morphism.

Relational morphisms can be restricted to subsemigroups.

Proposition 3.12 Let τ : S → T be a relational morphism and let T ′ be a
subsemigroup of T . Then the relation τ̂ : τ−1(T ′) → T ′, defined by τ̂(s) =
τ(s) ∩ T ′, is a relational morphism. Furthermore, if τ is injective [a relational
V-morphism ], so is τ̂ .

Proof. Let s ∈ τ−1(T ′). Then by definition τ(s) ∩ T ′ 6= ∅ and thus τ̂(s) 6= ∅.
Let s1, s2 ∈ τ

−1(T ′). One gets

τ̂(s1)τ̂(s2) = (τ(s1) ∩ T
′)(τ(s2) ∩ T

′)

⊆ τ(s1)τ(s2) ∩ T
′) ⊆ τ(s1s2) ∩ T

′ ⊆ τ̂(s1s2)

and thus τ̂ is a relational morphism. The second part of the statement is
obvious.

We now turn to more specific properties of relational V-morphisms.
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3.1 Aperiodic relational morphisms

Theorem 3.13 Let S
α−1

−→ R
β
−→ T be the canonical factorisation of a rela-

tional morphism τ : S → T . The following conditions are equivalent:

(1) τ is aperiodic,

(2) for every idempotent e ∈ T , τ−1(e) is aperiodic,

(3) the restriction of τ to each group in S is injective,

(4) the restriction of τ to each H-class in a regular D-class of S is injective.

Moreover, one obtains four equivalent conditions (1’)–(4’) by replacing τ by β
and S by R in (1)–(4).

Proof. The equivalence of (1) and (1’) follows from Proposition 3.11. Further-
more, (1) implies (2) and (4) implies (3) are obvious.

(3) implies (1). Let T ′ be an aperiodic subsemigroup of T , S′ = τ−1(T ′) and
let H be a group in S′. Since S, T and R are finite, there exists by Theorem
V.5.45 a group H ′ in R such that α(H ′) = H. Now β(H ′) is a group in T ′,
but since T ′ is aperiodic, this group is a singleton {e}. Let h1, h2 ∈ H and
h′1, h

′
2 ∈ H ′ be such that α(h1) = h′1 and α(h′2) = h2. Then e = β(h′1) =

β(h′2) ∈ τ(h1)∩ τ(h2). It follows from Condition (3) that h1 = h2, which shows
that H is trivial. Therefore S′ is aperiodic.

(2) implies (4). Given a regular H-class H, there exists an element a ∈ S
such that the function h→ ha is a bijection from H onto a group G of the same
D-class. Let e be the identity of G and let h1 and h2 be elements of H such
that τ(h1) ∩ τ(h2) 6= ∅. Then we have

∅ 6= (τ(h1) ∩ τ(h2))τ(a) ⊆ τ(h1)τ(a) ∩ τ(h2)τ(a) ⊆ τ(h1a) ∩ τ(h2a)

Setting g1 = h1a, g2 = h2a and g = g2g
−1
1 , we obtain in the same way

∅ 6= (τ(g1) ∩ τ(g2))τ(g
−1
1 ) ⊆ τ(e) ∩ τ(g)

Furthermore, we have

(τ(e) ∩ τ(g))(τ(e) ∩ τ(g)) ⊆ (τ(e) ∩ τ(g))τ(e)

⊆ τ(e)τ(e) ∩ τ(g)τ(e) ⊆ τ(ee) ∩ τ(ge) = τ(e) ∩ τ(g)

which proves that τ(e)∩τ(g) is a nonempty semigroup. Let f be an idempotent
of this semigroup. Then e, g ∈ τ−1(f), whence e = g since τ−1(f) is aperiodic.
It follows that g1 = g2 and hence h1 = h2, which proves (4).

The equivalence of the statements (1)–(4) results from this. Applying this
first theorem to β gives the equivalence of (1’)–(4’).

3.2 Locally trivial relational morphisms

Theorem 3.14 Let S
α−1

−→ R
β
−→ T be the canonical factorisation of a rela-

tional morphism τ : S → T . The following conditions are equivalent:

(1) τ is locally trivial,

(2) for every idempotent e ∈ T , τ−1(e) is locally trivial,
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Moreover, one obtains two equivalent conditions (1’)–(2’) by replacing τ by β
and S by R in (1)–(2).

Proof. The equivalence of (1) and (1’) follows from Proposition 3.11. Further-
more, (1) implies (2) is obvious.

(2) implies (1). Up to replacing τ by the relational morphism τ̂ : S → τ(S)
defined in Proposition 3.12, we may assume that τ is surjective. Further, it
follows from Theorem 3.13 that τ is an aperiodic relational morphism.

Let T ′ be a locally trivial subsemigroup of T and let S′ = τ−1(T ′). Since
T ′ is an aperiodic semigroup and τ is an aperiodic relational morphism, S′ is
aperiodic. Let e, f be idempotents of S′. Since τ(e) and τ(f) are nonempty
subsemigroups of T ′, there exist idempotents e′, f ′ ∈ T ′ such that e′ ∈ τ(e) and
f ′ ∈ τ(f). Now since T ′ is locally trivial, e′ J f ′ and thus e′ = a′f ′b′ for some
a′, b′ ∈ T ′. Choose a, b ∈ S′ such that a′ ∈ τ−1(a) and b′ ∈ τ−1(b). Then we
have

e′ = a′f ′b′ ∈ τ(a)τ(f)τ(b) ⊆ τ(afb)

and therefore e, afb ∈ τ−1(e′). Since τ−1(e′) is locally trivial by (2), e is in the
minimal ideal of τ−1(e′) and hence e 6J afb 6J f . A dual argument would
show that f 6J e and hence e J f . Thus all the idempotents of S′ belong to its
minimal ideal and S′ is aperiodic. These two properties show that S′ is locally
trivial.

The equivalence of the statements (1)–(2) results from this. Applying this
first theorem to β gives the equivalence of (1’)–(2’).

Proposition 3.15 Let π : S → T a surjective, locally trivial, morphism. Then
S and T have the same number of regular J -classes.

Proof. It suffices to show that if x, y are two regular elements of S, x J y if
and only if π(x) J π(y). One direction is easy, since π maps a regular D-class
onto a regular J -class.

Suppose now that π(x) J π(y) and let e and f respectively be idempotents
of the D-classes of x and y. Since e J x and f J y, we also have

π(e) J π(x) J π(y) J π(f)

In particular, π(f) = xπ(e)y for some x, y ∈ T . Since π is surjective, one has
x = π(c) and y = π(d) for some c, d ∈ S. It follows that π(e) = π(cfd). Now
since π(e) is idempotent, the semigroup π−1(π(e)) is locally trivial and since
e, cfd are both in it, one has ecfde = e. Thus e 6J f and a similar reasoning
would show that f 6J e. Therefore e J f , which shows that x J y.

3.3 Relational Jese 6 eK-morphisms

Recall that if S is an ordered semigroup, the upper set generated by an element
x ∈ S is the set ↑x of all y ∈ E such that x 6 y.

Proposition 3.16 Let S be an ordered semigroup and let e ∈ E(S). Then the
ordered semigroup e(↑e)e belongs to the variety Je 6 eseK.
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Proof. Let R = e(↑e)e. Let r ∈ R and f ∈ E(R). Then f = ege with e 6 g and
r = ese with e 6 s. It follows ef = f = fe and f = fef 6 fsf = fesef = frf .
Thus R ∈ Je 6 eseK.

Proposition 3.17 Let τ : S → T be a relational morphism. The following
conditions are equivalent:

(1) τ is a relational Je 6 eseK-morphism,

(2) for any e ∈ E(T ), τ−1(e(↑e)e) is an ordered semigroup of Je 6 eseK,

(3) for any e ∈ E(T ), f ∈ E(τ−1(e)) and s ∈ τ−1(e(↑e)e), f 6 fsf .

Proof. Proposition 3.16 shows that (1) implies (2) and (2) implies (3) is trivial.
Let us show that (3) implies (1). Assuming (3), let R be an ordered subsemi-
group of T such that R ∈ Je 6 eseK. Let U = τ−1(R), s ∈ U , r ∈ τ(s) ∩ R
and f ∈ E(U). Since τ(f) ∩ R is a non empty subsemigroup of T , it contains
an idempotent e. Now e 6 ere since R ∈ Je 6 eseK and thus e, ere ∈ e(↑
e)e. Furthermore f ∈ τ−1(e), and since ere ∈ τ(f)τ(s)τ(f) ⊆ τ(fsf), fsf ∈
τ−1(ere). It follows by (3) that f 6 fsf and thus U ∈ Je 6 eseK. Therefore, τ
is a relational Je 6 eseK-morphism.

4 Four examples of V-morphisms

Let M is a monoid and let E be the set of its idempotents. Let us denote by
2E the monoid of subsets of E under intersection.

Theorem 4.18 Let M be a monoid.

(1) If M is R-trivial, the map π :M → 2E defined by π(s) = {e ∈ E | es = e}
is a surjective K-morphism.

(2) If M is L-trivial, the map π :M → 2E defined by π(s) = {e ∈ E | se = e}
is a surjective D-morphism.

(3) If M is J -trivial, the map π : M → 2E defined by π(s) = {e ∈ E | es =
e = se} is a surjective N-morphism.

(4) If M belongs to DA, the map π : M → 2E defined by π(s) = {e ∈ E |
ese = e} is a surjective L1-morphism.

5 Three examples of relational morphisms

In this section, we give three examples of relational morphisms stemming from
the theory of automata and recognisable languages. Our first example describes
an important property of the concatenation product. The second one deals with
purity, a property of the star of a language. The third one gives a nice syntactic
property of the flower automata.

5.1 Concatenation product

Let, for 0 6 i 6 n, let Li be a recognizable language of A∗, let ηi : A
∗ →M(Li)

be its syntactic morphism and let

η : A∗ →M(L0)×M(L1)× · · · ×M(Ln)
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be the morphism defined by

η(u) = (η0(u), η1(u), . . . , ηn(u))

Let a1, a2, . . . , an be letters of A and let L = L0a1L1 · · · anLn. Let µ :
A∗ → M(L) be the syntactic morphism of L. The properties of the relational
morphism

τ = η ◦ µ−1 :M(L)→M(L0)×M(L1)× · · · ×M(Ln)

were first studied by Straubing [107] and later in [67, 83, 73].

M(L) M(L0)×M(L1)× · · · ×M(Ln)

A∗

µ

τ = η ◦ µ−1

η

Theorem 5.19 The relational morphism τ :M(L)→M(L0)×M(L1)× · · · ×
M(Ln) is a relational Je 6 eseK-morphism.

Proof. Let R be an ordered subsemigroup of M(L0) ×M(L1) × · · · ×M(Ln)
satisfying the identity xω 6 xωyxω, and let x, y ∈ η−1(R). Let k be an integer
such that µ(xk) and η(xk) are idempotent. It suffices to show that for every
u, v ∈ A∗, uxkv ∈ L implies uxkyxkv ∈ L. Let r = 2n+1. Then η(xrk) = η(xk),
and since uxkv ∈ L, uxrkv ∈ L. Consequently, there is a factorisation of the
form uxrkv = u0a1 · · · anun, where ui ∈ Li for 0 6 i 6 n. The next step is a
lemma of independent interest.

Lemma 5.20 Suppose that ufrv = u0a1 · · · anun, with r > n. Then one of the
words ui contains f as a factor.

Proof. Otherwise each factor f should contain at least one letter ai.

u f f f · · · v

u0 a1 u1 a2 u2 a3 u3 a4 u4 · · · an un

Since r > n, this would give a contradiction.

By Lemma 5.20 applied to f = xk, there exist 1 6 h 6 n and 0 6 j 6 r − 1
such that uh = u′hx

2ku′′h for some u′h, u
′′
h ∈ A∗, uxjk = u0a1 · · · ah−1u

′
h and

x(r−j−1)kv = u′′hah · · · anun. Now since η(x) and η(y) belong to R,

η(xk) 6 η(xk)η(y)η(xk)

and by projection onto M(Lh), ηh(x
k) 6 ηh(x

k)ηh(y)ηh(x
k). In particular, the

condition u′hx
ku′′h ∈ Lh implies u′hx

kyxku′′h ∈ Lh. Thus ux(j+1)kyx(r−j)kv ∈ L
and hence uxkyxkv ∈ L, which concludes the proof.

Theorem 5.19 is often used in the following weaker form.
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Corollary 5.21 The relational morphism τ :M(L)→M(L0)×M(L1)× · · · ×
M(Ln) is an aperiodic relational morphism.

Proof. By Theorem 5.19, τ is a relational Je 6 eseK-morphism. In particular,
for each idempotent e, τ−1(e) is a semigroup satisfying the identity e 6 ese.
In particular, it satisfies the identity xω 6 xωxxω, that is xω 6 xω+1 and is
aperiodic by Proposition X.2.2. Thus τ is aperiodic.

Let L0, L1, . . . , Ln be languages of A∗ and let a1, . . . , an be letters of A. The
(marked) product

L = L0a1L1 · · · anLn

is said to be unambiguous if every word of L admits a unique decomposition of
the form u = u0a1u1 · · · anun with u0 ∈ L0, . . . , un ∈ Ln.

Example 5.1 Let A = {a, b, c}. The marked product {a, c}∗a{1}b{b, c}∗ is
unambiguous.

Theorem 5.22 If the product L0a1L1 · · · anLn is unambiguous, the relational
morphism τ :M(L)→M(L0)×M(L1)×· · ·×M(Ln) is a locally trivial relational
morphism.

Proof. By Theorem 3.14, it suffices to show that if e is an idempotent of
M(L0)×M(L1)× · · · ×M(Ln), then the semigroup τ−1(e) is locally trivial. It
follows from Theorem 5.19 that τ−1(e) satisfies the identity xω 6 xωyxω and
it just remains to prove the opposite identity xωyxω 6 xω. Let x, y ∈ η−1(e),
let k be an integer such that µ(xk) is idempotent and let h = xk. It suffices to
show that uhyhv ∈ L implies uhv ∈ L. Let r = n+ 2. Then η(hr) = η(h), and
if uhyhv ∈ L, then uhryhrv ∈ L. Consequently, there is a factorisation of the
form uhryhrv = u0a1 · · · anun, where ui ∈ Li for 0 6 i 6 n.

uhryhrv

u0 a1 u1 a2 u2 · · · an un

First assume that one of the words ui contains hyh as a factor, that is, ui =
u′ihyhu

′′
i with u0a1 · · · aiu′i = uhr−1 and u′′i ai+1 · · · anun = hr−1v. Since η(x) =

η(y) = e, one has ηi(hyh) = ηi(h) and hence, u′ihyhu
′′
i ∈ Li implies u′ihu

′′
i ∈ Li.

Consequently, one has

uh2r−1v = uhr−1hhr−1v = u0a1 · · · ai(u
′
ihu

′′
i )ai+1 · · · anun

which shows that uh2r−1v belongs to L. Since η(h2r−1) = η(h), it follows that
uhv is also in L, as required.

Suppose now that none of the words ui contains hyh as a factor. Then there
are factorisations of the form

uhr−1 = u0a1 · · · aiu
′
i hyh = u′′i ai+1 · · · aju

′
j hr−1v = u′′j aj+1 · · · anun

with ui = u′iu
′′
i and uj = u′ju

′′
j . By Lemma 5.20 applied to the word u0a1 · · · aiu′i,

one of the words u0, . . . , ui−1, u
′
i contains h as a factor. Similarly, one of the
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words u′′j , uj+1, . . . , un contains h as a factor. Therefore one gets factorisations

uhr−1 = u0a1 · · · aℓu
′
ℓhu

′′
ℓ aℓ+1 · · ·u

′
i

hr−1v = u′′j aj+1 · · · amu
′
mhu

′′
mam+1 · · · anun

with

u0a1 · · · aℓu
′
ℓ = uhp u′ℓhu

′′
ℓ = uℓ u′′ℓ · · ·u

′
i = hr−p−1

and

u′′j aj+1 · · · am = hq u′mhu
′′
m = um u′′m · · · anun = hr−q−1v

Since h ∼Lℓ
hr−pyhp and u′ℓhu

′′
ℓ ∈ Lℓ, one also has u

′
ℓh

r−pyhpu′′ℓ ∈ Lℓ. By a sim-
ilar argument, one gets u′mh

r−q−1yhq+1u′′m ∈ Lm. Finally, the word uhryhryhrv
can be factorised either as

u0a1 · · ·uℓ−1aℓ(u
′
ℓh

r−pyhpu′′ℓ )aℓ+1 · · · anun

or as

u0a1 · · · am(u′mh
r−q−1yhq+1u′′m)am+1 · · · anun

a contradiction, since this product should be unambiguous.

5.2 Pure languages

A submonoid L∗ of A∗ is pure if for all u ∈ A∗ and n > 0, the condition un ∈ L∗

implies u ∈ L∗.
Let η : A∗ → M(L) be the syntactic morphism of L and µ : A∗ → M(L∗)

be the syntactic morphism of L∗. Then τ = η ◦ µ−1 is a relational morphism
from M(L∗) to M(L).

M(L∗) M(L)

A∗

µ

τ = η ◦ µ−1

η

The following result is due to Straubing [107].

Theorem 5.23 If L is pure, the relational morphism τ : M(L∗) → M(L) is
aperiodic.

Proof. Let e be an idempotent ofM(L) and let x ∈ η−1(e). Let k be an integer
such that k > |x| and µ(xk) is idempotent. By Proposition X.2.2, it suffices to
show that for every u, v ∈ A∗,

uxkv ∈ L∗ implies uxk+1v ∈ L∗ (5.1)

Suppose that uxkv ∈ L∗. Then uxkv = u1 · · ·un, where each ui belongs to
L− {1}. Let us say that the r-th occurrence of x is cut if, for some j, uxr−1 is
a prefix of u1 · · ·uj and u1 · · ·uj is a proper prefix of uxr.
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uxr−1 x xk−rv

u1 · · ·uj uj+1 · · ·un

There are two cases to consider. First assume that one of the occurrences of x is
not cut. Then for some j ∈ {1, . . . , n}, the word uj contains x as a factor, that
is, uxr−1 = u1 · · ·uj−1f , uj = fxtg and xqv = guj+1 · · ·un for some f, g ∈ A∗

and t > 0 such that r + t+ q − 1 = k.

uxr−1 xt xqv

u1 · · ·uj−1 f xt g uj+1 · · ·un

︸ ︷︷ ︸

uj

Since x ∼L x
2 and since t > 0, one gets fxtg ∼L fx

t+1g and thus fxt+1g ∈ L.
It follows that uxk+1v = u1 · · ·uj−1fx

t+1guj+1 · · ·un ∈ L∗, proving (5.1) in this
case.

Suppose now that every occurrence of x is cut. Then for 1 6 r 6 k, there
exists jr ∈ {1, . . . , n} and fr ∈ A

∗, gr ∈ A
+ such that

uxr−1fr = u1 · · ·uj , x = frgr and grx
k−rv = ujr+1

· · ·un

Since there are |x| factorisations of x of the form fg, and since |x| < k, there exist
two indices r 6= r′ such that fr = fr′ and gr = gr′ . Thus, for some indices i < j
and some factorisation x = fg, one has uxr−1f = u1 · · ·ui, gx

sf = ui+1 · · ·uj
and gxtv = uj+1 · · ·un. It follows that gxsf = g(fg)sf = (gf)s+1. Since
gxsf ∈ L∗ and since L is pure, gf ∈ L∗. Therefore, uxk+1v = uxr−1xxsxxxtv =
(ur−1f)(gxsf)(gf)(gxtv) ∈ L∗, proving (5.1) in this case as well.

Corollary 5.24 If L is star-free and pure, then L∗ is star-free.

Proof. By Theorem X.2.3, L is star-free if and only ifM(L) is aperiodic. Now,
if L is pure, the relational morphism τ is aperiodic and henceM(L∗) is aperiodic.
It follows that L∗ is star-free.

5.3 Flower automata

Let L be a finite language if A∗. The flower automaton of L∗ is the finite
nondeterministic automaton A = (Q,A,E, I, F ), where Q = {1, 1} ∪ {(u, v) ∈
A+ ×A+ | uv ∈ L}, I = F = {(1, 1)}. There are four types of transitions:

{
((u, av)

a
−→ (ua, v)) | uav ∈ L, (u, v) 6= (1, 1)

}
{
((u, a)

a
−→ (1, 1)) | ua ∈ L, u 6= 1

}
{
((1, 1)

a
−→ (a, v)) | av ∈ L, v 6= 1

}
{
((1, 1)

a
−→ (1, 1)) | a ∈ L

}

It is easy to see that this automaton recognises L∗.
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Example 5.2 Let A = {a, b} and L = {a, ba, aab, aba}.

(1, 1)

(a, ba)

(ab, a)(a, ab)

(aa, b)

(b, a)

a

a

b

aa

a

b

ba

Figure 5.2. A flower automaton.

The transition monoid of the flower automaton of L∗ is called the flower monoid
of L∗. Since it recognises L∗, the syntactic monoid of L∗ is a quotient of it.

Recall that a subset X of the free monoid A∗ is a code over A if for all
n,m > 0 and x1, . . . , xn, x

′
1, . . . , x

′
m ∈ X, the condition

x0x1 · · ·xn = x′1x
′
2 · · ·x

′
m

implies n = m and xi = x′i for 1 6 i 6 n. In other words, a set X is a code if
any word in X+ can be written uniquely as a product of words in X.

Theorem 5.25 Let X be a finite code. The natural morphism from the flower
semigroup of X+ onto its syntactic semigroup is a locally trivial morphism.

Proof. TO DO
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Chapter XIV

Unambiguous star-free

languages

Recall that DA denotes the class of finite semigroups in which every regular D-
class is an aperiodic semigroup (or idempotent semigroup, which is equivalent in
this case). Several characterisations of DA were given in Proposition VII.4.29.

1 Unambiguous star-free languages

Let A be a finite alphabet. The set of unambiguous star-free languages of A∗ is
the smallest set of languages of A∗ containing the languages of the form B∗, for
B ⊆ A, which is closed under finite union and unambiguous marked product.

Let us start by an elementary observation.

Proposition 1.1 Every finite language is unambiguous star-free.

Proof. If a1, . . . , ak are letters of A, the marked product {1}a1{1}a2 · · · ak{1} is
unambiguous. It follows that for any word u, the language {u} is unambiguous
star-free. Further, any finite language is the disjoint union of the languages {u},
for u ∈ F . Thus every finite language is unambiguous star-free.

Example 1.1 The language {a, c}∗a{1}b{b, c}∗ is unambiguous star-free (see
Example XIII.5.1).

The aim of this section is to prove the following theorem

Theorem 1.2 A language is unambiguous star-free if and only if its syntactic
monoid is finite and belongs to DA.

Proof. The easiest part of the proof relies on Theorem XIII.5.22. Let

L = L0a1L1 · · · anLn

be an unambiguous marked product. Let M0, . . . , Mn and M be the respective
syntactic monoids of L0, . . . , Ln and L.

Lemma 1.3 If M0, . . . , Mn belong to DA, so is M .

231
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Proof. Since the monoids M0, . . . , Mn are all in DA, so is their product N .
Further, by Theorem XIII.5.22, there is a locally trivial relational morphism

τ from M into N . Let M
α−1

−→ R
β
−→ N be the canonical factorisation of τ .

Since M is a quotient of R, it suffices to prove that R belongs to DA. By
Theorem XIII.3.14, β is a locally trivial morphism. Let D be a regular D-class
of R. Then β(D) is a regular D-class of N and since N belongs to DA, this
D-class is an aperiodic simple semigroup. In particular, β(D) is in L1 and since
β is a locally trivial morphism, the semigroup β−1(β(D)) also belongs to L1.
It follows in particular that D is an aperiodic simple semigroup and thus R
belongs to DA.



Chapter XV

Wreath product

In this chapter, we introduce two important notions: the semidirect product
of semigroups and the wreath product of transformation semigroups. We also
prove some basic decomposition results.

1 Semidirect product

Let S and T be semigroups. We write the product in S additively to provide a
more transparent notation, but it is not meant to suggest that S is commutative.
A left action of T on S is a map (t, s) 7→ t· s from T 1 × S into S such that, for
all s, s1, s2 ∈ S and t, t1, t2 ∈ T ,

(1) t1 · (t2 · s) = (t1t2)· s

(2) t· (s1 + s2) = t· s1 + t· s2
(3) 1· s = s

If S is a monoid with identity 0, the action is unitary if it satisfies, for all t ∈ T ,

(4) t· 0 = 0

The semidirect product of S and T (with respect to the given action) is the
semigroup S ∗ T defined on S × T by the multiplication

(s, t)(s′, t′) = (s+ t· s′, tt′)

2 Wreath product

Let X = (P, S) and Y = (Q,T ) be two transformation semigroups. To make
the notation more readable, we shall denote the semigroup S and its action on
P additively and the semigroup T and its action on Q multiplicatively. The
wreath product of X and Y , denoted X ◦ Y , is the transformation semigroup
(P ×Q,W ) where W consists of all pairs (f, t), with f is a function from Q into
S and t ∈ T . Since we are thinking of f as acting on the right on Q, we will use
the more suitable notation q · f in place of f(q). The action of W on P × Q is
given by

(p, q)· (f, t) = (p+ q · f, q · t) (2.1)

We claim that this action is faithful. Indeed, if (p, q)· (f, t) = (p, q)· (f ′, t′) for all
(p, q) ∈ P×Q, then q · t = q · t′ for all q ∈ Q and thus t = t′ since T acts faithfully

233
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on Q. On the other hand, p+ q · f = p+ q · f ′ for all p ∈ P and thus q · f = q · f ′

since S acts faithfully on P . Thus f = f ′, proving the claim. In particular W
can be considered as a subset of the semigroup of all transformations on P ×Q.
We leave it to the reader to verify that W is closed under composition and that
the product on W is defined by

(f, t)(f ′, t′) = (g, tt′)

where g is defined, for each q ∈ Q by

q · g = q · f + (q · t)· f ′

Let us now verify that Formula (2.1) really defines an action of W on P ×Q. If
(p, q) ∈ P ×Q and (f, t), (f ′, t′) ∈W , we have

(
(p, q)· (f, t)

)
· (f ′, t′) = (p+ q · f, q · t)· (f ′, t′) = (p+ q · f + (q · t)· f ′, q · tt′)

= (p, q)
(
(f, t)(f ′, t′)

)

Given two semigroups S and T , consider the wreath product (S1, S)◦ (T 1, T ) =
(S1 × T 1,W ). The semigroup W is called the wreath product of S and T and
is denoted S ◦ T . The connexions with the semidirect product and the product
are given in the next propositions.

Proposition 2.1 Let S and T be semigroups. Then every semidirect product of
S and T is a subsemigroup of S ◦T . Furthermore, S ◦T is a semidirect product
of ST 1

and T .

Proof. Let S ∗T be a semidirect product of S and T . Let ϕ : S ∗T → S ◦T be
the function defined by ϕ(s, t) = (f, t) where f : T 1 → S is given by t· f = t· s
for every t ∈ T 1. It is easy to verify that ϕ is a semigroup morphism.

For the second part of the statement, define a left action (t, f) 7→ t· f of T on

ST 1

as follows: t· f is the function from T 1 into S defined by t′ · (t· f) = (t′t)· f .
Then the semidirect product defined by this action is isomorphic to S ◦ T .

Proposition 2.2 Let X and Y be transformation semigroups. Then X × Y
divides X ◦ Y .

Proof. Let X = (P, S) and Y = (Q,T ). Since the transformation semigroups
X × Y and X ◦ Y have the same set of states, P × Q, it suffices to show that
S × T can be embedded into SQ × T . With each pair (s, t), associate the pair
(f, t), where f is the constant map onto s. Then, for every pair (p, q) ∈ P ×Q,
(p, q)· (s, t) = (p + s, q · t) = (p + q · f, q · t) = (p, q)· (f, t), which concludes the
proof.

A routine computation shows that the wreath product on transformation
semigroups is associative. The wreath product also preserves division.

Proposition 2.3 If (P1, S1) divides (Q1, T1) and (P2, S2) divides (Q2, T2), then
(P1, S1) ◦ (P2, S2) divides (Q1, T1) ◦ (Q2, T2).
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Proof. Let π1 : Q1 → P1 and π2 : Q2 → P2 be the surjective mappings defining
the divisions. Let π = π1 × π2 : Q1 × Q2 → P1 × P2. For (f, s2) ∈ (P1, S1) ◦

(P2, S2), define (̂f, s2) = (g, ŝ2) by choosing a cover ŝ2 of s2 and, for each
q2 ∈ Q2, a cover g(q2) of f(π2(q2)). Now, for each (q1, q2) ∈ Q1 ×Q2,

π(q1, q2)· (f, s2) = (π1(q1), π2(q2))· (f, s2) = (π1(q1)· f(π2(q2)), π2(q2)· s2)

= (π1(q1 · g(q2)), π2(q2 · ŝ2)) = π(q1 · g(q2), q2 · ŝ2)

= π((q1, q2)· (g, ŝ2))

and this computation concludes the proof.

In view of Proposition 2.3, we have the following corollary.

Corollary 2.4 If S1 divides T1 and S2 divides T2, then S1 ◦S2 divides T1 ◦T2.

If X = (P, S) is a transformation semigroup, then X1 denotes the transfor-
mation semigroup obtained by adjoining to S the identity map 1P on P . If p is
a state, we denote by cp the constant map defined, for all q ∈ P , by cp(q) = p.
The transformation semigroup obtained by adjoining to S all the constant maps
cp is denoted by X.

Proposition 2.5 Let X and Y be transformation semigroups. Then (X ◦ Y )1

divides X1 ◦ Y 1 and X ◦ Y divides X ◦ Y .

Proof. Let X = (P, S) and Y = (Q,T ). First note that the four transformation
semigroups X ◦ Y , X ◦ Y , (X ◦ Y )1 and X1 ◦ Y 1 have the same set of states,
P×Q. Next, 1P×Q has the same action as (f, 1Q) ∈ (S1)Q×T , where f(q) = 1P
for all q ∈ Q. Thus (X ◦ Y )1 embeds into X1 ◦ Y 1.

Finally, if (p, q) ∈ P ×Q, the constant map c(p,q) has exactly the same action

as the pair (g, cq) ∈ S
Q
× T where g(x) = cp for all x ∈ Q. Thus X ◦ Y embeds

into X ◦ Y .

3 Basic decomposition results

In this section, we give some useful decomposition results. Let us first remind
Proposition VII.4.21, which gives a useful decomposition result for commutative
monoids and Proposition 3.6, which gives a decomposition involving Ũn and Un.

Proposition 3.6 For every n > 0, Un divides Un
2 and Ũn divides Ũn

2 .

Proof. Arguing by induction on n, it suffices to verify that Un divides Un−1 ×
U2. But a simple computation shows that Un is isomorphic to the submonoid
N of Un−1 × U2 defined as follows:

N = {(1, 1)} ∪ {(ai, a1) | 1 6 i 6 n− 1} ∪ {(a1, a2)}

A dual proof works for Ũn.

A more precise result follows from Proposition IX.1.6: a monoid is idempo-
tent and R-trivial if and only if it divides Ũn

2 for some n > 0. Dually, a monoid
is idempotent and L-trivial if and only if it divides Un

2 for some n > 0.
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Proposition 3.7 For every n > 0, Ũn divides Un ◦ U2.

Proof. Let π : Un×U2 → Ũn be the surjective partial map defined by π(1, a1) =
1 and, for 1 6 i 6 n, π(ai, a2) = ai.

For 1 6 j 6 n, we set âj = (fj , a2) where fj : U2 → Un is defined by
1· fj = a2 · fj = 1 and a1 · fj = aj . We also set 1̂ = (f, 1) where f : U2 → Un is
defined by 1· f = a1 · f = a2 · f = 1. Now a simple verification shows that π is
indeed a cover:

π(ai, a2)· 1 = π(ai, a2) = π(ai + a2 · f, a2 · 1) = π((ai, a2)· 1̂)

π(1, a1)· 1 = π(1, a1) = π(1 + a1 · f, a1 · 1) = π((1, a1)(f, 1)) = π((1, a1)· 1̂)

π(ai, a2)· aj = ai = π(ai, a2) = π(ai + a2 · fj , a2 · a2) = π((ai, a2)· âj)

π(1, a1)· aj = aj = π(aj , a2) = π(1 + a1 · fj , a1 · a2) = π((1, a1)· âj)

Thus Ũn divides Un ◦ U2.

It follows now immediately from Propositions 3.7 and 3.6:

Corollary 3.8 For every n > 0, Ũn divides U2 ◦ · · · ◦ U2︸ ︷︷ ︸
n+1 times

.

For each n > 0, let Dn be the class of finite semigroups S such that, for
all s0, s1, . . . , sn in S, s0s1 · · · sn = s1 · · · sn. In such a semigroup, a product
of more than n elements is determined by the last n elements. By Proposition
VII.4.15, these semigroups are lefty trivial. We shall now give a decomposition
result for the semigroups in Dn. As a first step, we decompose n̄ as a product
of copies of 2̄.

Lemma 3.9 If 2k > n, then n̄ divides 2̄k.

Proof. The result is trivial, since if T is any subset of size n of 2̄k, (T, T ) is a
sub-transformation semigroup of 2̄k isomorphic to n̄.

We now decompose the semigroups of Dn as an iterated wreath product of
transformation semigroups of the form (T, T ).

Proposition 3.10 Let S be a semigroup of Dn and let T = S ∪ {t}, where t is
a new element. Then (S1, S) divides (T, T ) ◦ · · · ◦ (T, T )︸ ︷︷ ︸

n times

.

Proof. Let ϕ : Tn → S1 be the partial function defined on sequences of the
form (t, . . . , t, xi, . . . , x1), where x1, . . . , xi ∈ S, by

ϕ(t, . . . , t, xi, . . . , x1) =

{
xi · · ·x1 if i > 0

1 if i = 0

Clearly ϕ is surjective. If s ∈ S, we set ŝ = (fn−1, . . . , f1, s), where, for 1 6 i 6
n− 1, fi : T

i → T is defined by (ti, . . . , t1)· fi = ti. Thus

(tn, . . . , t1)ŝ = (tn−1, . . . , t1, s)
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It follows that if p = (t, . . . , t, xi, . . . , x1) is in the domain of ϕ, then p· ŝ is
also in the domain of ϕ and ϕ(p· ŝ) = ϕ(p)· s. This proves the proposition.

Proposition 3.10 and Lemma 3.9 now give immediately.

Corollary 3.11 Every semigroup of Dn divides a wreath product of copies of
2̄.

The R-trivial monoids admit also a simple decomposition.

Theorem 3.12 A monoid is R-trivial if and only if it divides a wreath product
of the form U1 ◦ · · · ◦ U1.

Proof. We first show that every monoid of the form U1 ◦ · · · ◦ U1 is R-trivial.
Since U1 itself is R-trivial, and since, by Proposition 2.1, a wreath product is a
special case of semidirect product, it suffices to show that the semidirect product
S ∗T of two R-trivial monoids S and T is again R-trivial. Indeed, consider two
R equivalent elements (s, t) and (s′, t′) of S ∗ T . Then, (s, t)(x, y) = (s′, t′) and
(s′, t′)(x, y) = (s, t) for some elements (x, y) and (x′, y′) of S ∗ T . Therefore,
on one hand s + tx = s′ and s′ + t′x = s and on the other hand, ty = t′ and
t′y′ = t. It follows that s R s′ and t R t′. Therefore s = s′ and t = t′, and S ∗T
is R-trivial.

Let M = {s1, . . . , sn} be an R-trivial monoid of size n. We may assume
that si 6R sj implies j 6 i. Let us identify the elements of Un

1 with words of
length n on the alphabet {0, 1}. Let ϕ : U1 × · · · ×U1 →M be the onto partial
function defined by

ϕ(1n−j0j) = sj (0 6 j 6 n)

Thus ϕ(u) is not defined if u /∈ 1∗0∗. For each s ∈M , let

ŝ = (fn−1, . . . , f2, a1)

with

a1 =

{
1 if s = 1

0 if s 6= 1

where fi+1 : U1 × · · · × U1︸ ︷︷ ︸
i times

→ U1 is defined by

fi+1(1
i−j0j) =

{
1 if sjs = sk and k 6 i

0 if sjs = sk and k > i

If u /∈ 1∗0∗, the value of fi+1(u) can be chosen arbitrarily.
Let p = 1n−j0j and s ∈ M . Let k be such that sk = sjs. Since sk 6R sj ,

k > j. Then

pŝ = (fn−1, . . . , f2, a1)(1
n−j0j)

= 1n−k0k

whence ϕ(pŝ) = sk = sjs = ϕ(p)s. Therefore, M divides U1 ◦ · · · ◦ U1.

As a preparation to the next theorem, we prove another decomposition re-
sult, which is important in its own right.
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Proposition 3.13 Let M be a finite aperiodic monoid and let π : A∗ → M be
a surjective morphism. Then one of the following cases occur:

(1) M is a monogenic monoid,

(2) M is isomorphic to Ũn for some n > 0,

(3) there is a proper partition A = B ∪C such that π((B∗C)∗) and π(B∗) are
proper submonoids of M .

Proof. Let S = M − {1}. Since M is aperiodic, S is a subsemigroup of M .
Let L be an L-class of S, maximal for the order 6J . First assume that S
is the semigroup generated by L. If |L| = 1, S is monogenic and so is M .
Otherwise, |L| > 1 and by Proposition V.1.18, L is regular and thus consists
of L-equivalent idempotents. Now, Proposition V.1.3 shows that if e and f
are L-equivalent idempotents, then ef = e and fe = f . It follows that L is a
semigroup and hence S = L. In particular, we are in the second case.

Now assume that the semigroup generated by L is strictly contained in S
and put

B = {a ∈ A | π(a) ∈ L} and C = A−B

As π(A) generates S and π(B) does not, B is a strict subset of A, so that C
is nonempty. We claim that π(B+) and π(B∗C)+ are proper subsemigroups of
S. For the first part of the claim, we observe that π(B) is contained in L and
thus π(B+) is contained in the subsemigroup of S generated by L, which is a
proper subsemigroup of S. For the second part, we observe that every element
of π(B∗C)+ is <J -below L and thus π(B∗C)+ is contained in S −L. It follows
now from the claim that we are in the third case of the proposition.

Proposition 3.14 Let M be a monoid. Suppose that M = L∪N where L is a
left ideal and N is a submonoid of M . Then M divides L1 ◦ N̄ .

Proof. Let ϕ : L1 × N → M be the map defined by ϕ(l, n) = ln. Since
M = L ∪N and L ∪N ⊆ L1N , M = L1N , and ϕ is onto.

Let m ∈ M . If m ∈ L, we set m̂ = (g, c1), where g : N → L1 is defined
by g(n) = nm for all n ∈ N . Otherwise, if m /∈ L, we set m̂ = (f,m), where
f(n) = 1 for all n ∈ N .

Let (l, n) ∈ L1 ×N . Then

ϕ(l, n)·m = (ln)·m = lnm

Now, if m ∈ L,

(l, n)· m̂ = (l, n)(g, c1) = (l· g(n), 1) = (lnm, 1)

and since L is a left ideal, lnm ∈ L. On the other hand, if m ∈ N ,

(l, n)· m̂ = (l, n)(f,m) = (l· f(n), nm) = (l, nm)

and since N is a monoid, nm ∈ N . In both cases, ϕ((l, n)· m̂) = lnm. It follows
that ϕ is a covering and thus M divides L1 ◦N .

Theorem 3.15 A monoid is aperiodic if and only if it divides a wreath product
of the form U2 ◦ · · · ◦ U2.
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Proof. Let M be an aperiodic monoid. Consider the three cases given by
Proposition 3.13. If M is monogenic, then it is R-trivial, and the result follows
from Theorem 3.12. If M is isomorphic to Ũn for some n > 0, the result follows
from Corollary 3.8. Finally, suppose there is a proper partition A = B ∪C such
that L = π((B∗C)∗) and M = π(B∗) are proper submonoids of M . Then L is a
left ideal of M , and since A∗ = (B∗C)∗ ∪B∗, M = L∪N . Thus by Proposition
3.14, M divides L1 ◦N . Arguing by induction on |M |, we may assume that L
and N divide wreath products of copies of U2. It follows, by Proposition 2.5,
that L1 and N also divide wreath products of copies of U2, since U2 = U1

2 = U2.
Finally, M itself divides a wreath product of copies of U2.

Proposition 3.16 Let X = (P, S) be a transformation semigroup such that
P ·S = P . Then 2̄ ◦X divides X ◦ (R,R), where R is the set {1, 2}P × S.

Proof. Define ϕ : P ×R→ {1, 2}×P by setting ϕ(p, f, s) = (p· f, p· s) for each
p ∈ P , f ∈ {1, 2}p and s ∈ S. Given a transformation v = (g, t) of 2̄ ◦X, with
g ∈ {1, 2}P and t ∈ S, define the transformation v̂ of X ◦ (R,R) by setting

(p, f, s)· v̂ = (p· s, g, t)

then we have

ϕ(p, f, s)· v = (p· f, p· s)(g, t) = (p· f + (p· s)· g, p· st)

((p· s)· g, p· st) = ϕ(p· s, g, t) = ϕ((p, f, s)· v̂)

Thus 2̄ ◦X divides X ◦ (R,R).

Given a property P, we say that a semigroup S is locally in a variety V if
the local semigroup of each idempotent is in V. For instance, a semigroup S is
locally trivial if, for each s ∈ S and e ∈ E(S), ese = e.

We shall admit without proof our last decomposition result (see the Notes
section).

Proposition 3.17 A semigroup is locally R-trivial if and only if it divides a
wreath product of the form U1 ◦ · · · ◦ U1 ◦ 2̄ ◦ · · · ◦ 2̄.

Proof. TO DO.

We now turn to groups.

Proposition 3.18 Let π : G → H be a surjective morphism and let K =
π−1(1). Then G is isomorphic to a subgroup of K ◦H.

Proof. For each h ∈ H, select an element ph of G such that π(ph) = h. For
each g ∈ G, define a map ĝ : H → K by setting ĝ(h) = phgp

−1
hπ(g). Finally, let

ϕ : G→ K ◦H be the map defined by

ϕ(g) = (ĝ, π(g))

Let us show that ϕ is a group morphism. By Proposition II.3.6, it suffices to
prove that ϕ is a semigroup morphism. Let g1, g2 ∈ G and let s1 = π(g1) and
s2 = π(g2). One gets

ϕ(g1)ϕ(g2) = (ĝ1, s1)(ĝ2, s2) = (ĝ1 + s1ĝ2, s1s2)
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with, for each h ∈ H,

(ĝ1 + s1ĝ2)(h) = ĝ1(h)ĝ2(hs1) = phg1p
−1
hs1
phs1g2p

−1
hs1s2

= phg1g2p
−1
hs1s2

= ĝ1g2(h)

and thus ϕ(g1)ϕ(g2) = ϕ(g1g2).
Finally, we prove that ϕ is injective. If ϕ(g1) = ϕ(g2), then π(g1) = π(g2) = s

and ĝ1(1) = ĝ2(1), that is, p1g1p
−1
s = p1g2p

−1
s , whence g1 = g2. It follows that

G is isomorphic to a subgroup of K ◦H.

A subgroup H of a group G is normal if, for each h in H and each g in G,
the element hgh−1 is still in H. A group G is soluble if there is an ascending
chain of subgroups 1 = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G such that, for 1 6 i 6 n,
Gi−1 is normal in Gi and Gi/Gi−1 is a commutative group.

Proposition 3.19 A group is soluble if and only if it divides a wreath product
of cyclic groups.

Proof. TO DO.

Theorem 3.20 (Krohn-Rhodes) Let M be a monoid. Then there exists a
sequence G1, . . . , Gn of groups dividing M and a sequence M0, . . . ,Mn of ape-
riodic monoids such that M divides M0 ◦G1 ◦M1 · · · ◦Gn ◦Mn..

Proof. TO DO.

4 Exercises

Section 3

1. Show that any finite inverse monoid divides a semidirect product of the
form S ∗G, where S an idempotent and commutative monoid and G is a finite
group. Actually, a stronger result holds: a finite monoid divides the semidirect
product of an idempotent and commutative monoid by a group if and only if
its idempotents commute.



Chapter XVI

Sequential functions

So far, we have only used automata to define languages but more powerful
models allow one to define functions or even relations between words. These
automata not only read an input word but they also produce an output. These
devices are also called transducers. In the deterministic case, which forms the
topic of this chapter, they define the so called sequential functions. The com-
position of two sequential functions is also sequential.

Straubing’s “wreath product principle” [105, 110] provides a description of
the languages recognised by the wreath product of two monoids. It has nu-
merous applications, including Schützenberger’s theorem on star-free languages
[20, 57], the characterisation of languages recognised by solvable groups [105] or
the expressive power of fragments of temporal logic [19, 121].

1 Definitions

1.1 Pure sequential transducers

A pure sequential transducer is an 6-tuple T = (Q,A,R, q0, · , ∗), where Q is
a finite set of states, A is a finite alphabet called the input alphabet, R is a
semigroup (possibly infinite) called the output semigroup, q0 ∈ Q is the initial
state, (q, a) 7→ q · a ∈ Q and (q, a) 7→ q ∗ a ∈ R are partial functions with the
same domain contained in Q×A, called respectively the transition function and
the output function. Both functions are conveniently represented in Figure 1.1,
in which the vertical slash is a separator.

q q · a
a | q ∗ a

Figure 1.1. A transition and its output function.

The transition and the output functions can be extended to partial functions

241
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Q×A∗ → Q (resp. Q×A∗ → R1) by setting, for each u ∈ A∗ and each a ∈ A:

q · 1 = q q ∗ 1 = 1

q · (ua) = (q ·u)· a if q ·u and (q ·u)· a are defined

q ∗ (ua) = (q ∗ u)((q ·u) ∗ a) if q ∗ u, q ·u and (q ·u) ∗ a are defined

To decongest this type of formulas, it is convenient to fix some priority rules on
the operators. Our choice is to give highest priority to concatenation, then to
dot and then to star. For instance, we write q ·ua for q · (ua), q ∗ ua for q ∗ (ua)
and q ·u ∗ a for (q ·u) ∗ a.

Proposition 1.1 Let T = (Q,A,R, q0, · , ∗) be a pure sequential transducer.
Then the following formulas hold for all q ∈ Q and for all u, v ∈ A∗:

(1) q ·uv = (q ·u)· v

(2) q ∗ uv = (q ∗ u)(q ·u ∗ v)

q q ·u q ·uv
u | q ∗ u v | (q ·u) ∗ v

uv | q ∗ uv

Proof. The first formula is a standard property of deterministic automata. The
second one can be proved by induction on the length of v. If v = 1, it is obvious.
If v = wa, where a is a letter, one gets successively

q ∗ uv = q ∗ uwa = (q ∗ uw)(q ·uw ∗ a)

= (q ∗ u)(q ·u ∗ w)((q ·u)·w ∗ a)

= (q ∗ u)(q ·u ∗ wa) = (q ∗ u)(q ·u ∗ v)

which gives the result.

The function realised by the pure sequential transducer T is the partial function
ϕ : A∗ → R1 defined by

ϕ(u) = q0 ∗ u

A pure sequential function is a partial function that can be realised by a pure
sequential transducer. Pure sequential functions preserve prefixes: if u is a
prefix of v, and if ϕ(v) is defined, then ϕ(u) is defined and is a prefix of ϕ(v).

Example 1.1 The transducer pictured in Figure 1.2 converts text from upper-
case to lowercase.

1

a|a
b|b

...

A|a
B|b

...

Figure 1.2. Convertion from uppercase to lowercase.
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Example 1.2 Consider the prefix code P = {0000, 0001, 001, 010, 011, 10, 11}
represented by the tree pictured in Figure 1.3.

b

b
0

b0

b0
b0

b
1

b
1

b1

b0

b
1

b1
b0

b
1

Figure 1.3. A prefix code.

Since P is a prefix code, the coding function ϕ : {a, b, c, d, e, f}∗ → {0, 1}∗

defined by

ϕ(a) = 0000 ϕ(b) = 0001 ϕ(c) = 001 ϕ(d) = 010

ϕ(e) = 011 ϕ(f) = 10 ϕ(g) = 11

is injective. The corresponding decoding function from {0, 1}∗ to {a, b, c, d, e, f}∗

can be realised by the pure sequential transducer pictured in Figures 1.4 and
1.5.

1

1

1

1

1

1

1

1

1 | ε

0 | ε

1 | g

0 | f

1 | ε

0 | ε

1 | e

0 | d

1 | c

0 | ε

1 | b

0 | a

Figure 1.4. A pure sequential transducer for the decoding function.
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1 2

34

5

6
0 | ε

0 | ε
1 | c

0 | ε

1 | ε

0 | a

0 | d
0 | f

1 | ε

1 | b

1 | e

1 | g

Figure 1.5. The same pure sequential transducer, folded up.

Example 1.3 Let ϕ : {a, b}∗ → (N,+) be the function which counts the num-
ber of occurrences of the factor aba in a word. It is a pure sequential function,
realised by the transducer represented in Figure 1.6.

1 2 3
a | 0

b | 0 a | 0

b | 0

a | 1

b | 0

Figure 1.6. A function computing the number of occurrences of aba.

1.2 Sequential transducers

Let a and b be two distinct letters. A function as simple as the function u→ ua
is not pure sequential since b is a prefix of bb, but ba is not a prefix of bba.
However, it is easy to realise this function by a machine which reproduces its
input as its output and concatenates an a at the end of the final output. Such a
machine is an example of a sequential transducer. Here is the formal definition.

A sequential transducer is an 8-tuple T = (Q,A,R, q0, · , ∗,m, ρ), where
(Q,A,R, q0, · , ∗) is a pure sequential transducer, m ∈ R1 is the initial prefix
and ρ : Q→ R1 is a partial function, called the terminal function.

The function realised by the sequential transducer T is the partial function
ϕ : A∗ → R1 defined by

ϕ(u) = m(q0 ∗ u)ρ(q0·u)

A sequential function is a partial function that can be realised by a sequential
transducer.
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Example 1.4 Let u, v ∈ A∗. The map ϕ : A∗ → A∗ defined by ϕ(x) = uxv is
realised by the sequential transducer represented in Figure 1.7. Its initial prefix
is u and its terminal function ρ is defined by ρ(1) = v.

u v
1

a | a

Figure 1.7. A sequential transducer realising the function x → uxv.

Example 1.5 The function ϕ : A∗ → A∗ defined by ϕ(x) = x(ab)−1 is realised
by the sequential transducer represented in Figure 1.8.

1 1
1 2 3

a | 1 b | 1

a | ab

b | abb

b | b a | a

Figure 1.8. A sequential transducer realising the function x → x(ab)−1.

Example 1.6 In the reverse binary representation, a binary word a0a1 · · · an
represents the number

∑
06i6n ai2

i. For instance, the word 1011 represents
1 + 4 + 8 = 13. Multiplication by 3 can then be performed by the following
sequential transducer.

0 1 20 | 0 1 | 1

1 | 1 1 | 0

0 | 00 | 1
ε 1 01

Figure 1.9. A sequential transducer realising the multiplication by 3.

For instance, on the input 1011, which represents 13, the output would be
111001, which represents 1 + 2 + 4 + 32 = 39.

2 Composition of sequential functions

The goal of this section is to establish that the composition of two [pure] se-
quential functions is also a [pure] sequential function.
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Let ϕ : A∗ → B∗ and θ : B∗ → C∗ be two pure sequential functions, realised
respectively by the pure sequential transducers

A = (Q,A,B, q0, · , ∗) and B = (P,B,C, p0, · , ∗)

The composition of these two functions can be realised by feeding B with the
output of A. This observation leads to the following definition. The wreath
product of B by A is the pure sequential transducer

B ◦ A = (P ×Q,A,C, (p0, q0), · , ∗)

defined by

(p, q)· a = (p· (q ∗ a), q · a) and (p, q) ∗ a = p ∗ (q ∗ a)

(p, q) (p· (q ∗ a), q · a)
a | p ∗ (q ∗ a)

Figure 2.10. A transition and its output in B ◦ A.

Intuitively, the second component of (p, q) is used to simulate A. The first com-
ponent and the output function are obtained by using the output of a transition
in A as input in B.

q q · a
a | q ∗ a

p p· (q ∗ a)
(q ∗ a) | p ∗ (q ∗ a)

Figure 2.11. The ouput of A as input of B.

This definition can be extended to sequential transducers as follows. Let

A = (Q,A,B, q0, · , ∗, n, ρ) and B = (P,B,C, p0, · , ∗,m, σ)

be two sequential transducers. The wreath product of B by A is the sequential
transducer

B ◦ A = (P ×Q,A,C, (p0 ·n, q0), · , ∗,m(p0 ∗ n), ω)

defined by

(p, q)· a = (p· (q ∗ a), q · a)

(p, q) ∗ a = p ∗ (q ∗ a)

ω(p, q) = (p ∗ ρ(q))σ(p· ρ(q))

The computation of the initial prefix and of the terminal function are illustrated
in Figure 2.12.
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q0
n

p0
m n | p0 ∗ n

Figure 2.12. The initial prefix.

The next proposition describes the behaviour of B ◦ A.

Proposition 2.2 The following formulas hold for all states (p, q) of B ◦A and
for all u ∈ A∗:

(p, q)·u = (p· (q ∗ u), q ·u)

(p, q) ∗ u = p ∗ (q ∗ u)

Proof. We prove the result by induction on the length of u. If u = 1, one gets
on the one hand (p, q)· 1 = (p, q) and on the other hand q ∗ 1 = 1 and q · 1 = q,
whence (p· (q ∗ 1), q · 1) = (p· 1, q) = (p, q), which proves the first formula. The
second one is trivial since by definition (p, q) ∗ 1 = 1 = p ∗ (q ∗ 1).

Suppose by induction that the formulas are true for a word u of length n
and let a be a letter. Setting v = ua, w = q ∗ u and w′ = (q ·u) ∗ a, one gets
q ∗ v = q ∗ (ua) = (q ∗ u)((q ·u) ∗ a) = ww′ and

(p, q)· v = (p· (q ∗ u), q ·u)· a = (p·w, q ·u)· a

= (p·w· (q ·u ∗ a), (q ·u)· a) = (p·ww′, q · v) = (p· (q ∗ v), q · v)

which proves the first formula. Further

(p, q) ∗ v =
(
(p, q) ∗ u)

)(
(p, q)·u ∗ a

)
=

(
p ∗ (q ∗ u)

)((
p· (q ∗ u), q ·u

)
∗ a

)

= (p ∗ w)
(
(p·w, q ·u) ∗ a

)
= (p ∗ w)

(
(p·w) ∗ (q ·u ∗ a)

)

= (p ∗ w)
(
(p·w) ∗ w′

)
= p ∗ (ww′) = p ∗ (q ∗ v)

which gives the second one.

Example 2.1 Let A = {a, b}, B = {a, b} and C = {a, b, c} and let A and B be
the pure sequential transducers represented in Figure 2.13.

1 2

1 2

3

a | aa b | a

b | ab b | 1
b | b

a | b

a | a

a | ba | c

b | cc

Figure 2.13. The transducers A (on the left) and B (on the right).
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The wreath product B ◦ A is defined by the formula

(1, 1)· a = (3, 1) (1, 1) ∗ a = ab (1, 1)· b = (1, 2) (1, 1) ∗ b = ab

(1, 2)· a = (1, 1) (1, 2) ∗ a = ab (1, 2)· b = (2, 2) (1, 2) ∗ b = a

(2, 1)· a = (1, 1) (2, 1) ∗ a = bc (2, 1)· b = (2, 2) (2, 1) ∗ b = 1

(2, 2)· a = (2, 1) (2, 2) ∗ a = 1 (2, 2)· b = (3, 2) (2, 2) ∗ b = b

(3, 1)· a = (2, 1) (3, 1) ∗ a = ca (3, 1)· b = (2, 2) (3, 1) ∗ b = cc

(3, 2)· a = (2, 1) (3, 2) ∗ a = cc (3, 2)· b = (1, 2) (3, 2) ∗ b = c

and is represented in Figure 2.14.

1, 1

1, 2

2, 1

2, 2

3, 1 3, 2

a | ab

b | a

a | bc

b | b

a | ca

b | cc

a | cc

b | 1a | 1b | aba | ab

b | c

Figure 2.14. The wreath product B ◦ A.

Theorem 2.3 Let A and B be two [pure] sequential transducers realising the
functions ϕ : A∗ → B∗ and θ : B∗ → C∗. Then B◦A realises the function θ ◦ϕ.

Proof. Let A = (Q,A,B, q0, · , ∗, n, ρ) and B = (P,B,C, p0, · , ∗,m, σ) be two
sequential transducers realising the fonctions ϕ : A∗ → B∗ and θ : B∗ → C∗,
respectively. Let η be the function realised by B ◦ A and let u ∈ A∗. Setting
p = p0 ·n, q = q0 ·u and v = q0 ∗ u, one gets ϕ(u) = n(q0 ∗ u)ρ(q0 ·u) = nvρ(q).
The computation of η(u) gives

η(u) = m(p0 ∗ n)((p, q0) ∗ u)ω((p, q0)·u)

= m(p0 ∗ n)(p ∗ (q0 ∗ u))ω(p· (q0 ∗ u), q0 ·u)

= m(p0 ∗ n)(p ∗ v)ω(p· v, q)

Further, one has

ω(p· v, q) = (p· v ∗ ρ(q))σ((p· v)· ρ(q))

= (p· v ∗ ρ(q))σ(p· vρ(q))

= (p· v ∗ ρ(q))σ(p0 ·nvρ(q))

= (p· v ∗ ρ(q))σ(p0 ·ϕ(u))
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Coming back to the computation of η(u), we get:

η(u) = m(p0 ∗ n)(p ∗ v)ω(p· v, q)

= m(p0 ∗ n)(p ∗ v)(p· v ∗ ρ(q))σ(p0 ·ϕ(u))

= m(p0 ∗ n)(p0 ·n ∗ v)(p0 ·nv ∗ ρ(q))σ(p0 ·ϕ(u))

= m(p0 ∗ nvρ(q))σ(p0 ·ϕ(u))

= m(p0 ∗ ϕ(u))σ(p0 ·ϕ(u))

= θ(ϕ(u))

which proves that η = θ ◦ ϕ.

Corollary 2.4 The composition of two [pure] sequential functions is a [pure]
sequential function.

3 Sequential functions and wreath product

Since the wreath product is better defined in terms of transformation semi-
groups, we need to adapt two standard definitions to this setting.

First, the transformation semigroup of a sequential transducer is the trans-
formation semigroup of its underlying automaton. Next, a subset L of a semi-
group R is recognised by a transformation semigroup (P, S) if there exist a
surjective morphism ϕ : R → S, a state p0 ∈ P and a subset F ⊆ P such that
L = {u ∈ R | p0 ·ϕ(u) ∈ F}.

Theorem 3.5 Let σ : A+ → R be a sequential function realised by a sequential
transducer T , and let (Q,T ) be the transformation semigroup of T . If L is a
subset of R recognised by a transformation semigroup (P, S), then σ−1(L) is
recognised by (P, S) ◦ (Q,T ).

Proof. Let T = (Q,A,R, q0, · , ∗,m, ρ). Since L is recognised by (P, S), there
is a surjective morphism ϕ : R → S, a state p0 ∈ P and a subset F ⊆ P such
that L = {u ∈ R | p0 ·ϕ(u) ∈ F}. Let (P, S) ◦ (Q,T ) = (P ×Q,W ) and define
a morphism ψ : A+ →W by setting

(p, q)·ψ(u) = (p·ϕ(q ∗ u), q ·u)

By hypothesis, the map q 7→ ϕ(q ∗ u) is a function from Q into S and thus ψ is
well defined. Let

I = {(p, q) ∈ P ×Dom(ρ) | p·ϕ(ρ(q)) ∈ F}

Now, since
(p0 ·ϕ(m), q0)·ψ(u) = (p0 ·ϕ(m)ϕ(q0 ∗ u), q0 ·u)

one has

σ−1(L) = {u ∈ A+ | σ(u) ∈ L} = {u ∈ A+ | p0 ·ϕ(σ(u)) ∈ F}

= {u ∈ A+ | p0 ·ϕ(m(q0 ∗ u)ρ(q0 ·u)) ∈ F}

= {u ∈ A+ | p0 ·ϕ(m)ϕ(q0 ∗ u)ϕ(ρ(q0 ·u)) ∈ F}

= {u ∈ A+ | (p0 ·ϕ(m), q0)·ψ(u) ∈ I}

Therefore, σ−1(L) is recognised by (P ×Q,W ).
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4 The wreath product principle and its conse-

quences

The aim of this section is to characterise the languages recognised by the wreath
product of two transformation semigroups.

4.1 The wreath product principle

Let X = (P, S) and Y = (Q,T ) be two transformation semigroups, let Z =
X ◦ Y = (P × Q,W ), and let L be a language of A+ recognised by Z. Then
there exist a state (p0, q0), a subset F of P × Q and a morphism η : A+ → W
such that L = {u ∈ A+ | (p0, q0)· η(u) ∈ F}. Denote by π the natural projection
from W onto T , defined by π(f, t) = t and let ϕ = π ◦ η : A+ → T .

A+

TW

η ϕ

π

Let B = Q×A. Define a function σ : A+ → B+ by

σ(a1a2 · · · an) = (q0, a1)(q0 ·ϕ(a1), a2) · · · ((q0 ·ϕ(a1 · · · an−1)), an)

Note that σ is a sequential function, realised by the transducer (Q,A,B+, q0, · , ∗)
where q · a = q ·ϕ(a) and q ∗ a = (q, a).

q qϕ(a)
a | (q, a)

Figure 4.15. A pure sequential transducer realising σ.

We are now ready to state the wreath product principle.

Theorem 4.6 (Wreath product principle) Each language of A+ recognised
by Z is a finite union of languages of the form U ∩ σ−1(V ), where U ⊆ A+ is
recognised by Y and V ⊆ B+ is recognised by X.

Proof. First, we may assume that F = (p, q) for some (p, q) ∈ P ×Q. This is
a consequence of the formula

L =
⋃

(p,q)∈F

{u ∈ A+ | (p0, q0)·u ∈ (p, q)}

For each letter a, set η(a) = (fa, ta). Note that ϕ(a) = ta. Define a function
α : B → S by setting α(q, a) = q · fa and extend it into a morphism α : B+ → S.
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Let u = a1a2 · · · an be a word. Then

(p0, q0)·u = (p0, q0)· (fa1
, ta1

)(fa2
, ta2

) · · · (fan
, tan

)

=
(
p0 + q0 · fa1

+ · · ·+ (q0 · ta1
· · · tan−1

)fan
, q0 · ta1

· · · tan

)

=
(
p0 + α(q0, a1) + · · ·+ α(q0 ·ϕ(a1 · · · an−1), an), q0 ·ϕ(u)

)

=
(
p0 + α(σ(u)), q0 ·ϕ(u)

)

It follows that (p0, q0)·u ∈ F if and only if the following two conditions are
satisfied:

(1) p0 + α(σ(u)) = p,

(2) q0 ·ϕ(u) = q.

Setting U = {u ∈ A+ | q0 ·ϕ(u) = q} and V = {v ∈ B+ | p0 + α(v) = p},
condition (1) can be reformulated as u ∈ σ−1(V ), and condition (2) as u ∈ U .
Thus

L = U ∩ σ−1(V )

Now, U is recognised by Y and V is recognised by X, which concludes the
proof.

We now derive a variety version of Theorem 4.6. It is stated in the case where
both V and W are varieties of monoids, but similar statements hold if V or W
is a variety of semigroups. Let us define the variety V ∗W as the class of all
divisors of wreath products of the form S ◦ T with S ∈ V and T ∈W.

Corollary 4.7 Let V and W be two varieties of monoids and let U be the
variety of languages associated with V ∗W. Then, for every alphabet A, U(A∗)
is the smallest lattice containing W(A∗) and the languages of the form σ−1

ϕ (V ),
where σϕ is the sequential function associated with a morphism ϕ : A∗ → T ,
with T ∈W, and V ∈ V((A× T )∗).

Proof. Since W is contained in V ∗W, W(A∗) is contained in U(A∗). Fur-
thermore, if V and σϕ are given as in the statement, then σ−1

ϕ (V ) ∈ U(A∗) by
Theorem 3.5.

It follows from the definition of V ∗W and from Proposition IV.4.25 that
every language of U(A∗) is recognised by a wreath product of the form S ◦ T ,
with S ∈ V and T ∈W. Theorem 4.6 now suffices to conclude.

5 Applications of the wreath product principle

In this section, we give several applications of the wreath product principle. We
study the operations L 7→ LaA∗ and L 7→ La, where a is a letter of A. Then
we give a description of the languages corresponding to J1 ∗V, Jyx = xK ∗V
and r1∗V, where V is a variety of monoids (resp. semigroups). Recall that the
variety r1 is defined by the identity yxω = xω.

5.1 The operations T 7→ U1 ◦ T and L 7→ LaA∗

The study of this operation is based on the following proposition.
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Proposition 5.8 Let A be an alphabet, let a ∈ A and let L be a language of
A∗ recognised by a monoid T . Then LaA∗ is recognised by the wreath product
U1 ◦ T .

Proof. Let ϕ : A∗ → T be a morphism recognising L, let B = T × A and let
σϕ : A

∗ → B∗ be the sequential function associated with ϕ. Let P = ϕ(L) and
C = {(p, a) | p ∈ P}. Then we have

σ−1
ϕ (B∗CB∗) = {a1a2 · · · an ∈ A

∗ | σϕ(a1a2 · · · an) ∈ B
∗CB∗}

= {a1a2 · · · an ∈ A
∗ | there exists an i such that

(ϕ(a1a2 · · · ai−1), ai) ∈ C}

= {a1a2 · · · an ∈ A
∗ | there exists an i such that

ai = a and a1a2 · · · ai−1 ∈ ϕ
−1(P )}

= LaA∗

Since B∗CB∗ is recognised by U1, the proposition follows from Theorem 3.5.

Proposition 5.8 leads to the following result on varieties.

Theorem 5.9 Let V be a variety of monoids and let V be the corresponding
variety. Then the variety W which corresponds to J1 ∗V is defined as follows.
For each alphabet A, W(A∗) is the Boolean algebra generated by the languages
L and LaA∗, where a ∈ A and L ∈ V(A∗).

Proof. For each alphabet A, denote by V ′(A∗) the Boolean algebra generated
by the languages L and LaA∗, where a ∈ A and L ∈ V(A∗).

We first show that V ′(A∗) ⊆ W(A∗). Since J1 ∗ V contains V, W(A∗)
contains V(A∗). Let L ∈ V(A∗) and a ∈ A. Then L is recognised by some
monoid T of V and, by Proposition 5.8, LaA∗ is recognised by U1 ◦ T . This
monoid belongs to J1 ∗V and hence LaA∗ ∈ W(A∗).

To establish the opposite inclusion, it suffices now, by Corollary 4.7, to
verify that L ∈ V ′(A∗) for every language L of the form σ−1

ϕ (V ), where σϕ is
the sequential function associated with a morphism of monoids ϕ : A∗ → T ,
with T ∈ V, and V is a subset of (T × A)∗ recognised by a monoid of J1. Let
B = T × A. By Proposition IX.1.4, V is a Boolean combination of languages
of the form B∗CB∗, for some subset C of T × A. LetSince Boolean operations
commute with σ−1

ϕ , we may assume that V = B∗CB∗, where C = (t, a) for
some (t, a) ∈ B. In this case

L = {u ∈ A∗ | σϕ(u) ∈ B
∗CB∗}

= {a1a2 · · · an ∈ A
∗ | (ϕ(a1 · · · ai−1), ai) = (t, a) for some i} (5.1)

= ϕ−1(t)aA∗

Now, ϕ−1(t) is recognised by T and thus ϕ−1(t) ∈ V(A∗). It follows that
ϕ−1(t)aA∗ ∈ V ′(A∗) and thus L ∈ V ′(A∗). Therefore W(A∗) ⊆ V ′(A∗).
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5.2 The operations T 7→ 2̄ ◦ T and L 7→ La

Recall that 2̄ denotes the transformation semigroup {{1, 2}, {1, 2}} with the
action defined by r· s = s. The results are quite similar to those presented in
Section 5.1, but the monoid U1 is now replaced by 2̄.

Proposition 5.10 Let A be an alphabet, let a ∈ A and let L be a language of
A∗ recognised by a monoid T . Then La is recognised by the wreath product 2̄◦T .

Proof. Let ϕ : A∗ → T be a morphism recognising L, let B = T × A and let
σϕ : A

∗ → B∗ be the sequential function associated with ϕ. Let P = ϕ(L) and
C = {(p, a) | p ∈ P}. Then we have

σ−1
ϕ (B∗C) = {u ∈ A∗ | σϕ(u) ∈ B

∗C}

= {a1a2 · · · an ∈ A
+ | (ϕ(a1a2 · · · an−1), an) ∈ C}

= {a1a2 · · · an ∈ A
+ | an = a and a1a2 · · · an−1 ∈ ϕ

−1(P )}

= La

Since the language B∗C is recognised by 2̄, the proposition now follows from
Theorem 3.5.

A result similar to Proposition 5.10 holds if T is a semigroup which is not a
monoid. The proof is left as an exercise to the reader.

Proposition 5.11 Let A be an alphabet, let a ∈ A and let L be a language of
A+ recognised by an semigroup T such that T 6= T 1. Then the languages La
and {a} are recognised by the wreath product 2̄ ◦ (T 1, T ).

We now turn to varieties. Observe that the semigroup 2̄ generates the variety
Jyx = xK.

Theorem 5.12 Let V be a variety of monoids and let V be the corresponding
variety. Let W be the variety corresponding to Jyx = xK ∗ V. Then, for each
alphabet A, W(A+) is the lattice generated by the languages L (contained in
A+) or La, where a ∈ A and L ∈ V(A∗).

Proof. For each alphabet A, let V ′(A+) be the lattice generated by the lan-
guages L (contained in A+) or La, where a ∈ A and L ∈ V(A∗).

We first show that V ′(A+) ⊆ W(A+). Since Jyx = xK ∗V contains V, every
language of V(A∗) contained in A+ is also inW(A+). Let L ∈ V(A∗) and a ∈ A.
Then L is recognised by some monoid T of V and, by Proposition 5.10, La is
recognised by 2̄ ◦ T . Now this semigroup belongs to Jyx = xK ∗ V and thus
La ∈ W(A+).

To establish the opposite inclusion, it suffices now, by Corollary 4.7, to
verify that L ∈ V ′(A+) for every language L of the form σ−1

ϕ (V ), where σϕ
is the sequential function associated with a morphism of monoids ϕ : A∗ → T ,
with T ∈ V, and V is a language of (T × A)+ recognised by a transformation
semigroup of Jyx = xK. Let B = T ×A. Then V is a finite union of languages of
the form B∗c, for some letter c ∈ B. Since union commutes with σ−1

ϕ , we may
assume that V = B∗c, where c = (t, a) for some (t, a) ∈ B. In this case

L = {u ∈ A+ | σϕ(u) ∈ B
∗c}

= {a1a2 · · · an ∈ A
+ | (ϕ(a1 · · · an−1), an) = (t, a)}

= ϕ−1(t)a
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Now, ϕ−1(t) is recognised by T and thus ϕ−1(t) ∈ V(A∗). It follows that
ϕ−1(t)a ∈ V ′(A+) for each letter a and thus L ∈ V ′(A+). Therefore W(A+) ⊆
V ′(A+).

The semigroup version of Theorem 5.12 can be obtained by using Proposition
5.11 instead of Proposition 5.10.

Theorem 5.13 Let V be a variety of semigroups which is not a variety of
groups, and let V be the corresponding variety. Let W be the variety corre-
sponding to Jyx = xK ∗V. Then, for each alphabet A, W(A+) is the Boolean
algebra generated by the languages L, {a} or La, where a ∈ A and L ∈ V(A+).

The smallest variety of semigroups containing B(1, 2) and closed under semidi-
rect product is known to be the variety r1 [27]. Therefore, Theorems 5.12 and
5.13 lead to a language interpretation of the operation V→ r1 ∗V.

Corollary 5.14 Let V be a variety of monoids and let V be the corresponding
positive variety. Let W be the positive variety corresponding to r1 ∗V. Then,
for each alphabet A, W(A+) is the smallest lattice containing V(A∗) and closed
under the operation L 7→ Lu, for each u ∈ A∗.

Corollary 5.15 Let V be a variety of ordered semigroups which is not a variety
of groups and let V be the corresponding positive variety. Let W be the positive
variety corresponding to r1 ∗ V. Then, for each alphabet A, W(A+) is the
smallest lattice containing V(A+) and the languages {a}, for each a ∈ A, and
closed under the operation L 7→ Lu, for each u ∈ A∗.

5.3 The operation T 7→ U2 ◦ T and star-free expressions

Recall that U2 denotes the monoid {1, a1, a2} defined by a1a1 = a2a1 = a1 and
a1a2 = a2a2 = a2.

Proposition 5.16 Let A be an alphabet and let T be a monoid. Then every
language of A∗ recognised by U2 ◦ T is a Boolean combination of languages of
the form K or Ka(LbA∗)c where a, b ∈ A and K and L are recognised by T .

Proof. Let L be a language of A∗ recognised by U2 ◦ T and let B = T × A.
The wreath product principle tells us that L is a finite union of languages of the
form U ∩ σ−1(V ), where U ⊆ A∗ is recognised by T and V ⊆ B∗ is recognised
by U2. By Proposition IX.1.7, every language of B∗ recognised by U2 is a
Boolean combination of languages of the form B∗bC∗, where b ∈ B and C ⊆ B.
Therefore, it suffices to prove that a language of the form σ−1(V ) has the right
form. We claim that

σ−1(B∗bC∗) = ϕ−1(m)a

( ⋃

(n,c)/∈C

ϕ−1
((
mϕ(a)

)−1
n
)
cA∗

)c

(5.2)

Indeed, let b = (t, a) and let u = a1a2 · · · an be a word of A∗. Then σ(u) be-
longs to B∗bC∗ if and only if there exists an i such that ϕ(a1a2 · · · ai−1) =
m, ai = a and, for i 6 j 6 n − 1, (ϕ(a1 · · · aj), aj+1) ∈ C. The nega-
tion of the latter condition can be stated as follows: there is a j such that
(ϕ(a1 · · · aj), aj+1) /∈ C. In other words, ϕ(a1 · · · aj) = n and aj+1) = c for
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some (n, c) /∈ C. Now, if ϕ(a1a2 · · · ai−1) = m, ai = a and ϕ(a1 · · · aj) = n,

then mϕ(a)ϕ(ai+1 · · · aj) = n and therefore ϕ(ai+1 · · · aj) ∈
(
mϕ(a)

)−1
n and

ai+1 · · · an ∈ ϕ−1
((
mϕ(a)

)−1
n
)
cA∗. This justifies 5.2.

Now, each language ϕ−1(m) and ϕ−1
((
mϕ(a)

)−1
n
)

is recognised by T ,

which concludes the proof.

Proposition 5.16 leads to a new proof of the fact that a language recognised
by an aperiodic monoid is star-free, the difficult part of Theorem X.2.3. Propo-
sition 5.16 shows that if all the languages recognised by T are star-free, then
U2◦T has the same property. Now Theorem XV.3.15 shows that every aperiodic
monoid divides a wreath product of copies of U2 and it suffices to proceed by
induction to conclude.
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Chapter XVII

An excursion into logic

1 Introduction

2 The formalism of logic

In this section, we review some basic definitions of logic: first-order logic, second-
order, monadic second-order and weak monadic second-order logic.

2.1 Syntax

Let us start by defining the syntax of first-order logic.

The basic ingredients are the logical symbols which encompass the logical
connectives: ∧ (and), ∨ (or), ¬ (not), → (implies), the equality symbol =, the
quantifiers ∃ (there exists) and ∀ (for all), an infinite set of variables (most often
denoted by x, y, z, or x0, x1, x2,. . . ) and parenthesis (to ensure legibility of the
formulas).

In addition to these logical symbols, we make use of a set L of nonlogi-
cal symbols. These auxiliary symbols can be of three types: relation symbols
(for instance <), function symbols (for instance min), or constant symbols (for
instance 0, 1). Expressions are built from the symbols of L by obeying the
usual rules of the syntax, then first-order formulas are built by using the logical
symbols, and are denoted by FO[L]. We now give a detailed description of
the syntactic rules to obtain the logical formulas in three steps, passing succes-
sively, following the standard terminology, from terms to atomic formulas and
subsequently to formulas.

We first define the set of L-terms. It is the least set of expressions containing
the variables, the constant symbols of L (if there are some) which is closed under
the following formation rule: if t1, t2, . . . , tn are terms and if f is a function
symbol with n arguments, then the expression f(t1, t2, . . . , tn) is a term. In
particular, if L does not contain any function symbol, the only terms are the
variables and the constant symbols.

Example 2.1 Let us take as set of nonlogical symbols

L = { < , g, 0}

257
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where < is a binary relation symbol, g is a two-variable function symbol and 0
is a constant. Then the following expressions are terms:

x0 g(0, 0) g(x1, g(0, x2)) g(g(x0, x1), g(x1, x2))

The atomic formulas are formulas either of the form

(t1 = t2)

where t1 and t2 are terms, or of the form

R(t1, . . . , tn)

where t1, . . . , tn are terms and R is a n-ary relation symbol of L.

Example 2.2 Continuing Example 2.1, the following expressions are atomic
formulas:

(g(x1, g(0, x2)) = x1) (g(0, 0) < 0)

(g(g(x0, x1), g(x1, x2)) < g(x3, x1))

Notice that, in order to improve legibility, we did not apply literally the defi-
nition of atomic formulas: indeed, since < is a symbol of binary relation, one
should write <(t1, t2) instead of t1 < t2.

Finally, the first-order formulas on L form the least set of expressions con-
taining the empty formula and the atomic formulas and closed under the fol-
lowing formation rules:

(i) If (ϕi)i∈I is a finite family of first-order formulas, so are the expressions

(
∧

i∈I

ϕi) and (
∨

i∈I

ϕi)

(ii) If ϕ and ψ are first-order formulas, so are the expressions

¬ϕ and (ϕ→ ψ)

(iii) If ϕ is a first-order formula and if x is a variable, then the expressions

(∃xϕ) and (∀xϕ)

are first-order formulas.

To make notations easier, we set

true =
∧

i∈∅

ϕi and false =
∨

i∈∅

ϕi

Example 2.3 The following expressions are first-order formulas of our example
language:

(∃x (∀y ((y < g(z, 0)) ∧ (x < 0)))) (∀x (y = x))

Again, it is convenient to simplify notation by suppressing some of the paren-
thesis and we shall write the previous formulas under the form

∃x ∀y (y < g(x, 0)) ∧ (z < 0) ∀x y = x
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In a first-order formula, some variables occur after a quantifier (existential or
universal): the occurrences of these variables are said to be bounded and the
other occurrences are said to be free. For example, in the formula

∃x (y < h(x, 0)) ∧ ∀y (z < y)

the simply underlined occurrences of x and y are bounded and the occurrences
of z and y doubly underlined are free. A variable is free if at least one of its
occurrences is free. The set FV (ϕ) of free variables of a formula ϕ can be
defined inductively as follows:

(1) If ϕ is an atomic formula, FV (ϕ) is the set of variables occurring in ϕ,

(2) FV (¬ϕ) = FV (ϕ)

(3) FV (
∧

i∈I ϕi) = FV (
∨

i∈I ϕi) =
⋃

i∈I FV (ϕi)

(4) FV (ϕ→ ψ) = FV (ϕ) ∪ FV (ψ)

(5) FV (∃xϕ) = FV (∀xϕ) = FV (ϕ)− {x}

A sentence is a formula in which all occurrences of variables are bounded. For
example, the formula

∃x ∀y (y < f(x, 0))

is a sentence.
We shall denote by ϕ(x1, x2, . . . , xn) a formula ϕ in which the set of free vari-

ables is contained in {x1, . . . , xn} (but is not necessarily equal to {x1, . . . , xn}).
The variables used in first-order logic, or first-order variables, are interpreted,

as we shall see, as the elements of a set. In second-order logic, one makes
use of another type of variables, called second-order variables, which represent
relations. These variables are denoted traditionally by capital letters: X0, X1,
etc.. One builds in this way the set of second-order formulas on L, denoted by
F2(L). The set of terms is the same as for first-order. The atomic formulas are
either of the form

(t1 = t2)

where t1 and t2 are terms, or of the form

R(t1, . . . , tn) or X(t1, . . . , tn)

where t1, . . . , tn are terms, R is a n-ary relation symbol of L and X is a variable
representing a n-ary relation.

Finally, second-order formulas on L form the least set of expressions con-
taining the atomic formulas and closed under the following formation rules:

(i) If ϕ and ψ are second-order formulas, then so are

¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ)

(ii) If ϕ is a second-order formula, if x is a variable and if X is a variable of
relation, then the expressions

(∃xϕ) (∀xϕ) (∃Xϕ) (∀Xϕ)

are second-order formulas.

We call monadic second-order logic the fragment of second-order logic in which
the only relation variables are unary relation variables, in other words, variables
representing subsets of the domain. By convenience, they are called set vari-
ables. We denote by MSO(L) the set of monadic second-order logic on L. We
shall also use the notation x ∈ X instead of X(x).
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2.2 Semantics

We have adopted so far a syntactic point of view to define formulas with no
reference to semantics. But of course, formulas would be uninteresting if they
were meaningless. Giving a precise meaning to formulas requires to specify the
domain on which we want to interpret each of the symbols of the language L.
Formally, a structure S on L is given by a nonempty set D, called domain and
by a map defined on L, called an assignment which associates

(1) with each n-ary relation symbol of L, a n-ary relation defined on D,

(2) with each n-ary function symbol f of L, a n-ary function defined on D,

(3) with each constant symbol c of L, an element of D.

To improve notations, we shall use the same notation for the relation [function,
constant] symbols and for the relations [functions, constants] represented by
these symbols. The context will allow us to determine easily what the notation
stands for. For example, we shall always employ the symbol < to designate the
usual order relation on a set of integers, independently of the domain (N, Z, or
a subset of N).

We still have to interpret variables. Let us start by first-order variables.
Given a fixed structure S on L, with domain D, a valuation on S is a map ν
from the set of variables into the set D. It is then easy to extend ν to a function
of the set of terms of L into D, by induction on the formation rules of terms:

(1) If c is a constant symbol, we put ν(c) = c,

(2) if f is a n-ary function symbol and if t1, . . . , tn are terms,

ν
(
f(t1, . . . , tn)

)
= f(ν(t1) . . . ν(tn))

If ν is a valuation and a an element of D, we denote by ν
(
a
x

)
the valuation ν′

defined by

ν′(y) =

{
ν(y) if y 6= x

a if y = x

The notion of interpretation can be now easily formalized. Define, for each
first-order formula ϕ and for each valuation ν, the expressions “the valuation ν
satisfies ϕ in S”, or “S satisfies ϕ[ν]”, denoted by S |= ϕ[ν], as follows:

(1) S |= (t1 = t2)[ν] if and only if ν(t1) = ν(t2)

(2) S |= R(t1, . . . , tn)[ν] if and only if
(
ν(t1), . . . , ν(tn)

)
∈ R

(3) S |= ¬ϕ[ν] if and only if not S |= ϕ[ν]

(4) S |= (
∧

i∈I

ϕ)[ν] if and only if for each i ∈ I, S |= ϕi[ν]

(5) S |= (
∨

i∈I

ϕ)[ν] if and only if there exists i ∈ I, S |= ϕi[ν]

(6) S |= (ϕ→ ψ)[ν] if and only if S 6|= ϕ[ν] or S |= ψ[ν]

(7) S |= (∃xϕ)[ν] if and only if S |= ϕ[ν
(
a
x

)
] for some a ∈ D

(8) S |= (∀xϕ)[ν] if and only if S |= ϕ[ν
(
a
x

)
] for each a ∈ D

Note that, actually, the truth of the expression “the valuation ν satisfies ϕ in
S” only depends on the values taken by the free variables of ϕ. In particular,
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if ϕ is a sentence, the choice of the valuation is irrelevant. Therefore, if ϕ is a
sentence, one says that ϕ is satisfied by S (or that S satisfies ϕ), and denote by
S |= ϕ, if, for each valuation ν, S |= ϕ[ν].
Next we move to the interpretation of second-order formulas. Given a structure
S on L, with domain D, a second-order valuation on S is a map ν which asso-
ciates with each first-order variable an element of D and to each n-ary relation
variable a subset of Dn (i.e. a n-ary relation on D).
If ν is a valuation and R a subset of Dn, ν

(
R
X

)
denotes the valuation ν′ defined

by

ν′(x) = ν(x) if x is a first-order variable

ν′(Y ) =

{
ν(Y ) if Y 6= X

R if Y = X

The notion of interpretation, already defined for first order, is supplemented by
the following rules:

(9) S |= (X(t1, . . . , tn))[ν] if and only if
(
ν(t1), . . . , ν(tn)

)
∈ ν(X)

(10) S |= (∃Xϕ)[ν] if and only if there exists R ⊆ Dn, S |= ϕ[ν
(
R
X

)
]

(11) S |= (∀Xϕ)[ν] if and only if for each R ⊆ Dn, S |= ϕ[ν
(
R
X

)
]

Weak monadic second-order logic is composed with the same formulas than
monadic second-order logic, but the interpretation is even more restricted: are
only considered valuations which associate with set variables finite subsets of
the domain D.

Two formulas ϕ and ψ are said to be logically equivalent if, for each structure
S on L, we have S |= ϕ if and only if S |= ψ.

It is easy to see that the following formulas are logically equivalent:

(1) ϕ ∧ ψ and ¬(¬ϕ ∨ ¬ψ)

(2) ϕ→ ψ and ¬ϕ ∨ ψ

(3) ∀xϕ and ¬(∃x ¬ϕ)

(4) ϕ ∨ ψ and ψ ∨ ϕ

(5) ϕ ∧ ψ and ψ ∧ ϕ

(6) ϕ ∧ false and false

(7) ϕ ∨ false and ϕ

Consequently, up to logical equivalence, we may assume that the formulas are
built without the symbols ∧, → and ∀.

Logical equivalence also permits one to give a more structured form to for-
mulas. A formula is said to be under disjunctive normal form if it can be written
as disjunction of conjunctions of atomic formulas or of negations of atomic for-
mulas, in other words under the form

∨

i∈I

∧

j∈Ji

(ϕij ∨ ¬ψij)

where I and the Ji are finite sets, and where the ϕij and the ψij are atomic
formulas. The next result is standard and easily proved.
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Proposition 2.1 Every quantifier free formula is logically equivalent to a quan-
tifier free formula in disjunctive normal form.

One can set up a hierarchy inside first-order formulas as follows. Let Σ0 = Π0

be the set of quantifier-free formulas. Next, for each n > 0, denote by Σn+1 the
least set ∆ of formulas such that

(1) ∆ contains the Boolean combinations of formulas of Σn,

(2) ∆ is closed under finite disjunctions and conjunctions,

(3) if ϕ ∈ ∆ and if x is a variable, ∃xϕ ∈ ∆.

Similarly, denote by Πn+1 the least set Γ of formulas such that

(1) Γ contains the Boolean combinations of formulas of Πn,

(2) Γ is closed under finite disjunctions and conjunctions,

(3) if ϕ ∈ Γ and if x is a variable, ∀xϕ ∈ Γ.

In particular, Σ1 is the set of existential formulas — that is of the form

∃x1 ∃x2 . . . ∃xk ϕ

where ϕ is quantifier-free.
Finally, we denote by BΣn the set of Boolean combinations of formulas of Σn.
A first-order formula is said to be in prenex normal form if it is of the form

ψ = Q1x1 Q2x2 . . . Qnxn ϕ

where the Qi are existential or universal quantifiers (∃ or ∀) and ϕ is quantifier-
free. The sequence Q1x1 Q2x2 . . . Qnxn, which can be considered as a word
on the alphabet

{ ∃x1, ∃x2, . . . , ∀x1, ∀x2, . . . },

is called the quantification prefix of ψ. The interest of these formulas in prenex
normal form comes from the following result.

Proposition 2.2 Every first order-formula is logically equivalent to a formula
in prenex normal form.

Proof. It suffices to verify that if the variable x does not occur in the formula
ψ then

∃x(ϕ ∧ ψ) ≡ (∃xϕ) ∧ ψ

∃x(ϕ ∨ ψ) ≡ (∃xϕ) ∨ ψ

and the same formulas hold for the quantifier ∀. Hence it is possible, by renaming
the variables, to throw back the quantifiers to the outside.

Proposition 2.2 can be improved to take into account the level of the formula
in the Σn hierarchy.

Proposition 2.3 For each integer n > 0,

(1) Every formula of Σn is logically equivalent to a formula in prenex normal
form in which the quantification prefix is a sequence of n (possibly empty)
alternating blocks of existential and universal quantifiers, starting with a
block of existential quantifiers.
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(2) Every formula of Πn is logically equivalent to a formula in prenex normal
form in which the quantification prefix is a sequence of n (possibly empty)
alternating blocks of existential and universal quantifiers, starting with a
block of universal quantifiers.

For example, the formula

∃x1 ∃x2 ∃x3︸ ︷︷ ︸
block 1

∀x4 ∀x5︸ ︷︷ ︸
block 2

∃x6 ∃x7︸ ︷︷ ︸
block 3

ϕ(x1, . . . , x6)

belongs to Σ3 (and also to all Σn’s such that n > 3). Similarly the formula

︸︷︷︸
block 1

∀x4 ∀x5︸ ︷︷ ︸
block 2

∃x6 ∃x7︸ ︷︷ ︸
block 3

ϕ(x1, . . . , x7)

belongs to Σ3 and to Π2, but not to Σ2, since the counting of blocks of a Σn-
formula should always begin by a possibly empty block of existential quantifiers.

One can also introduce normal forms and a hierarchy for monadic second-
order formulas. Thus, one can show that every monadic second-order formula
is logically equivalent to a formula of the form

ψ = Q1X1 Q2X2 . . . QnXn ϕ

where theQi are existential or universal quantifiers and ϕ is a first-order formula.

2.3 Logic on words

The logical language that we shall use now was introduced by Büchi under the
name of “sequential calculus”. To interpret formulas on words, one considers
each word as a map associating a letter with each index. Let u = a0a1 . . . an−1,
where a0, . . . , an−1 are letters, be a nonempty word on the alphabet A. The
domain of u, denoted by Dom(u) is the set

Dom(u) = {0, . . . , |u| − 1}

Define for each letter a ∈ A a unary relation a on the domain of u by

a = {i ∈ Dom(u) | ai = a}.

Finally, let us associate with each word u the structure

Mu =
(
Dom(u), (a)a∈A

)
,

For example, if u = abbaab, then Dom(u) = {0, 1, . . . , 5}, a = {0, 3, 4} and
b = {1, 2, 5}. We shall also consider various other nonlogical symbols, notably
<, S, min and max, that will be interpreted respectively as follows:

(1) the symbol < will represent the usual order;

(2) the symbol S will represent the successor relation on Dom(u), defined by
S(x, y) if and only if y = x+ 1.

(3) the symbols min and max will represent the minimum and the maximum
of the domain: 0 and |u| − 1.
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From now on, we shall interpret logical formulas on words, that is, on a structure
of the formMu as explained above. Let ϕ be a sentence. A nonempty word u
satisfies ϕ if the structureMu satisfies ϕ. This is denoted by u |= ϕ. We also
say that u is a model of ϕ. The language defined by ϕ is the set

L(ϕ) = {u ∈ A+ | u satisfies ϕ}

From now on, all the variables will be interpreted as natural integers. Therefore,
we shall use logical equivalence restricted to interpretations of domain N .

In the sequel, we shall mainly consider two logical languages: the language

L< = {<} ∪ {a | a ∈ A}

will be called the language of the linear order and the language

LS = {S} ∪ {a | a ∈ A}

will be called the language of the successor. The atomic formulas of the language
of the linear order are of the form

a(x), x = y, x < y

and those of the language of the successor are of the form

a(x), x = y, S(x, y).

We shall denote respectively by FO[<] and MSO[<] the set of first-order and
monadic second-order formulas of signature {<, (a)a∈A}. Similarly, we denote
by FO[S] and MSO[S] the same sets of formulas of signature {S, (a)a∈A}.
Inside first order, the Σn[<] (resp. Σn[S]) hierarchy is based on the number of
quantifier alternations.

We shall now start the comparison between the various logical languages we
have introduced. First of all, the distinction between the signatures S and <
is only relevant for first order in view of the following proposition. A relation
R(x1, · · · , xn) on the integers is said to be defined by a formula ϕ(x1, . . . , xn)
if, for each i1, . . . , in ∈ Dom(u), one has R(i1, . . . , in) if and only if ϕ(i1, . . . , in)
is true.

Proposition 2.4 The successor relation can be defined in FO[<], and the order
relation on integers can be defined in MSO[S].

Proof. The successor relation can be defined by the formula

(i < j) ∧ ∀k
(
(i < k)→ ((j = k) ∨ (j < k))

)

which states that j = i + 1 if i is smaller than j and there exist no element
between i and j. The formula i < j can be expressed in MSO[S] as follows:

∃X

[
∀x∀y

((
(x ∈ X) ∧ S(x, y)

)
→ (y ∈ X)

)]
∧ (j ∈ X) ∧ (i /∈ X)

which intuitively means that there exists an interval of Dom(u) of the form
[k, |u| − 1] containing j but not i.
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If x is a variable, it is convenient to write x+ 1 [x− 1] to replace a variable
y submitted to the condition S(x, y) [S(y, x)]. However, the reader should be
aware of the fact that x+ y is not definable in MSO[<].

We shall also use the symbols 6 and 6= with their usual interpretations:
x 6 y stands for (x < y) ∨ (x = y) and x 6= y for ¬(x = y).

The symbols min, max can also be defined in FO[S] with two alternations
of quantifiers:

min : ∃min ∀x ¬S(x,min)

max : ∃max ∀x ¬S(max, x)

We shall sometimes need a parametrized, or relative, notion of satisfaction
for a formula. Let indeed ϕ(x, y) be a formula with only two free variables x
and y. Let u = a0 · · · an−1 be a nonempty word and let i, j ∈ Dom(u). Then u
is said to satisfy the formula ϕ between i and j if ai . . . aj−1 |= ϕ.

Proposition 2.5 For each sentence ϕ, there exists a formula ϕ(x, y) with the
same signature, the same order (and, in the case of a first-order formula, the
same level in the hierarchy Σn), having x and y as unique free variables and
which satisfies the following property: for each word u and for each s, t ∈
Dom(u), u |= ϕ(s, t) if and only if u satisfies ϕ between s and t.

Proof. The formulas ϕ(x, y) are built by induction on the formation rules as
follows: if ϕ is an atomic formula, we set ϕ(x, y) = ϕ. Otherwise, we set

(¬ϕ)(x, y) = ¬ϕ(x, y)

(ϕ ∨ ψ)(x, y) = ϕ(x, y) ∨ ψ(x, y)

(∃zϕ)(x, y) = ∃z ((x 6 z) ∧ (z < y) ∧ ϕ(x, y))

(∃Xϕ)(x, y) = ∃X ((∀z (X(z)→ (x 6 z) ∧ (z < y)) ∧ ϕ(x, y))

It is easy to verify that the formulas ϕ(x, y) built in this way have the required
properties.

3 Monadic second-order logic on words

This section is devoted to the proof of a result of Büchi stating that the subsets
of A∗ definable in monadic second-order logic are exactly the rational sets.

Theorem 3.6 A language is definable by a formula of MSO[S] if and only if
it recognisable.

The proof of this result can be decomposed into two parts: passing from
words to formulas, and from formulas to words. To pass from words to formulas,
we simulate the behaviour of an automaton by a formula.

Proposition 3.7 For each automaton A = (Q,A,E, I, F ), there exists a for-
mula ϕ of MSO[<] such that L(ϕ) = L+(A).

Proof. Suppose that Q = {1, . . . , n}. We first write a formula ψ expressing the
existence of a path of label u. To this purpose, we associate with each state q a
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set variable Xq which encodes the set of positions in which a given path visits
the state q. The formula states that the Xq’s are pairwise disjoint and that if
a path is in state q in position x, in state q′ in position x + 1 and if the x-th
letter is an a, then (q, a, q′) ∈ E. This gives

ψ =
( ∧

q 6=q′

¬∃x(Xq(x) ∧Xq′(x))
)
∧

(
∀x∀y S(x, y)→

∨

(q,a,q′)∈E

(
Xq(x) ∧ a(x) ∧Xq′(y)

))

There remains to state that the path is successful. It suffices to know that 0
belongs to one of the Xq’s such that q ∈ I and that max belongs to one of the
Xq’s such that q ∈ F . Therefore, we set

ψ+ = ψ ∧
(∨

q∈I

Xq(0)
)
∧
(∨

q∈F

Xq(max)
)

The formula

ϕ = ∃X1∃X2 · · · ∃Xn ψ+

now entirely encodes the automaton.

To pass from sentences to sets of words, a natural idea is to argue by in-
duction on the formation rules of formulas. The problem is that the set L(ϕ)
is only defined when ϕ is a sentence. The traditional solution in this case con-
sists of adding constants to interpret free variables to the structure in which the
formulas are interpreted. For the sake of homogeneity, we proceed in a slightly
different way, so that these structures remain words.

The idea is to use an extended alphabet of the form

Bp,q = A× {0, 1}p × {0, 1}q

such that p [q] is greater than or equal to the number of first-order [second-order]
variables of ϕ. A word on the alphabet Bp,q can be identified with the sequence

(u0, u1, . . . , up, up+1, . . . , up+q)

where u0 ∈ A∗ and u1, . . . , up, up+1, . . . , up+q ∈ {0, 1}∗. We are actually inter-
ested in the set Kp,q of words of B

∗
p,q in which each of the components u1, . . . , up

contains exactly one occurrence of 1. If the context permits, we shall note B
instead of Bp,q and K instead of Kp,q. We also set

K = K ∩B∗

For example, if A = {a, b}, a word of B∗
3,2 is represented in Figure 3.1.
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u0 a b a a b a b

u1 0 1 0 0 0 0 0
u2 0 0 0 0 1 0 0
u3 1 0 0 0 0 0 0

u4 0 1 1 0 0 1 1
u5 1 1 0 1 0 1 0

Figure 3.1. A word of B∗
3,2.

The elements of K are called marked words on A. This terminology expresses
the fact that the elements of K are (finite or infinite) words in which labels
marking certain positions have been added. Each of the p first rows only marks
one position and the last q ones an arbitrary number of positions.

We first prove the following property.

Proposition 3.8 For each p, q > 0, the set Kp,q is a star-free language of B∗
p,q.

Proof. Set, for 1 6 i 6 p,

Ci = { (b0, b1, . . . , bp+q) ∈ B | bi = 1 }

Then K is the language of B∗ containing exactly one letter of each Ci, for
1 6 i 6 p. Now the formula

K =
⋂

16i6p

B∗CiB
∗ −

⋃

16i6p

B∗CiB
∗CiB

∗.

shows that K is a star-free subset of B∗.

The interpretation of formulas on the words of B∗
p,q follows the main lines

of the interpretation described in Section 2.3 although the interpretation of a is
slightly modified. Let u0 = a0a1 . . . an−1, where a0, . . . , an−1 are letters. Then

a = {i ∈ Dom(u0) | ai = a}.

Let ϕ(x1, . . . , xr, X1, . . . , Xs) be a formula in which the first-order [second-order]
free variables are x1, . . . , xr [X1, . . . , Xs], with r 6 p and s 6 q. Let u =
(u0, u1, . . . , up+q) be a word of Kp,q and, for 1 6 i 6 p, denote by ni the
position of the unique 1 of the word ui. In the example above, one would have
n1 = 1, n2 = 4 and n3 = 0. A word u is said to satisfy ϕ if u0 satisfies ϕ[ν],
where ν is the valuation defined by

ν(xj) = nj (1 6 j 6 r)

ν(Xj) = { i ∈ Dom(u0) | up+j,i = 1 } (1 6 j 6 s)

In other words, each Xj is interpreted as the set of positions of 1’s in up+j , and
each xj as the unique position of 1 in uj . Note that for p = q = 0, we recover
the customary interpretation of sentences.

Set

Sp,q(ϕ) = { u ∈ Kp,q | u satisfies ϕ(x1, . . . , xp, X1, . . . , Xq) }

Again, we shall sometimes simply use the notation L(ϕ) instead of Sp,q(ϕ).
Conjunctions and disjunctions are easily converted into Boolean operations.



268 CHAPTER XVII. AN EXCURSION INTO LOGIC

Proposition 3.9 For each finite family of formulas (ϕi)i∈I , the following equal-
ities hold:

(1) L(
∨

i∈I ϕi) =
⋃

i∈I L(ϕi),

(2) L(
∧

i∈I ϕi) =
⋂

i∈I L(ϕi),

(3) L(¬ϕ) = Kp,q − L(ϕ)

Proof. This is an immediate consequence of the definitions.

To conclude the proof of Theorem 3.6, it remains to prove by induction on
the formation rules of formulas that the sets L(ϕ) are rational. Let us start
with the atomic formulas. As for the set K, we prove a slightly more precise
result that will be used later on in this chapter.

Proposition 3.10 For each variable x, y, for each set variable X and for each
letter a ∈ A, the sets of the form L(a(x)), L(x = y), L(x < y) and L(X(x)) are
star-free, and hence rational, subsets of B∗.

Proof. Set, for i, j ∈ {1, . . . , p+ q}

Cj,a = {b ∈ Bp,q | bj = 1 and b0 = a}

Ci,j = {b ∈ Bp,q | bi = bj = 1}

Ci = {b ∈ Bp,q | bi = 1}

Then we have, by setting B = Bp,q

L(a(xi)) = K ∩B∗Ci,aB
∗

L(xi = xj) = K ∩B∗Ci,jB
∗

L(xi < xj) = K ∩B∗CiB
∗CjB

∗

L(Xi(xj)) = K ∩B∗Ci+p,jB
∗

which establishes the proposition.

Proposition 3.9 allows one to treat logical connectives. There remains to
treat the case of the formulas of the form ∃xϕ and ∃Xϕ. Denote by πi the
function that erases the i-th component, defined by

πi(b0, b1, . . . , bp+q) = (b0, b1, . . . , bi−1, bi+1, . . . , bp+q)

Thus πi should be considered as a function from Bp,q into Bp−1,q if i 6 p and
into Bp,q−1 if p < i 6 p+ q.

Proposition 3.11 For each formula ϕ, the following formulas hold

(1) Sp−1,q(∃xpϕ) = πp(Sp,q(ϕ))

(2) Sp,q−1(∃Xqϕ) = πp+q(Sp,q(ϕ))

Proof. This follows from the definition of existential quantifiers.

We are now ready to show that if L(ϕ) is rational, then so are L(∃xϕ) and
L(∃Xϕ). We may assume that x = xp and X = Xq. Then, by Proposition 3.11,
we have L(∃xpϕ) = πp(L(ϕ)) and L(∃Xqϕ) = πp+q(L(ϕ)). Since morphisms
preserve rationality, the result follows.
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This concludes the proof of Büchi’s theorem. Note that the proof of Proposi-
tion 3.7 shows that the hierarchy on formulas of MSO[<] based on the number
of alternations of second-order quantifiers collapses to the first level. We have
indeed the following result.

Proposition 3.12 Every formula of MSO[<] is equivalent to a formula of the
form

∃X1 . . . ∃Xk ϕ(X1, . . . , Xk)

where ϕ is a first-order formula.

In fact, one can even show that every formula of MSO[<] is equivalent to a
formula of the form ∃Xϕ(X) where ϕ is a first-order formula.

4 First-order logic of the linear order

We now study the language FO[<] of the first-order logic of the linear order. We
shall, in a first step, characterise the sets of words definable in this logic, which
happen to be the star-free sets. Next, we shall see in Section 4.2 how this result
can be refined to establish a correspondence between the levels the Σn-hierarchy
of first-order logic and the concatenation hierarchy of star-free sets.

4.1 First order and star-free sets

We shall prove the following key result.

Theorem 4.13 A language is star-free if and only if it is definable by a formula
of FO[<].

The first part of the proof consists in converting languages into formulas.
To start with, the equalities

L(true) = A∗ L(false) = ∅

show that the basic star-free sets are definable by a formula of FO[<]. The
Boolean operations are easily converted into connectives as in Proposition 3.9.

We now treat the marked product. We shall use Proposition 2.5 to replace
each formula ϕ ∈ FO[<] by a formula ϕ(x, y) ∈ FO[<] such that for each word
u = a0 · · · an−1 and each s, t ∈ Dom(u), we have u |= ϕ(s, t) if and only if
asas+1 . . . at |= ϕ. The next result, whose proof is immediate, shows that if
X1 ⊂ A∗ and X2 ⊂ A∗ are definable in FO[<], then so is the marked product
X1aX2 for each a ∈ A.

Proposition 4.14 Let X1 ⊂ A∗ and X2 ⊂ A∗. If X1 = L(ϕ1) and X2 =
L(ϕ2), then X1aX2 = L(ϕ) with ϕ = ∃y ϕ1(0, y − 1) ∧ a(y) ∧ ϕ2(y,max).

For the opposite implication, from formulas to words, we show by induction
on the formation rules of formulas that L(ϕ) is star-free for every formula ϕ ∈
FO[<]. In order to treat formulas with free variables, we shall work with the
extended alphabets Bp,q introduced in Section 3. But since there is no set
variables any more, we may assume that q = 0, which permits one to eliminate
the q indices in the notation. Therefore, we simply set Bp = A × {0, 1}p and
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we denote by Kp (or simply K) the set of the words u of B∗
p in which the

components u1, . . . , up contain exactly one occurrence of 1. Note that K0 = A∗,
but that Kp does not contain the empty word for p > 0.

We also set, for each formula ϕ = ϕ(x1, . . . , xp),

Sp(ϕ) = {u ∈ Kp | u |= ϕ}

By Proposition 3.10, the sets L(a(x)), L(x = y) and L(x < y) are star-free.
By Proposition 3.8, the set K is also star-free. The Boolean operations are
translated in the usual way by connectives. There remains to treat the case of
quantifiers. We shall use the following result.

Proposition 4.15 Let B be an alphabet and let B = C ∪ D be a partition of
B. Let X be a star-free language of B∗ such that every word of X has exactly
one letter in C. Then X can be written under the form

X =
⋃

16i6n

YibiZi

with n > 0, bi ∈ C, and where the Yi ⊂ D
∗ and Zi ⊂ D

∗ are star-free sets.

Proof. Let µ : B∗ →M be the syntactic morphism of X. Since X is star-free,
Theorem X.2.3 shows that M is aperiodic. Then

X =
⋃
µ−1(s)bµ−1(u)

where the union runs over all the triples (s, b, u) such that s ∈ M , b ∈ C,
u ∈ M and sµ(b)u ∈ µ(X). Since M is an aperiodic monoid, the sets µ−1(s)
and µ−1(u) are star-free by Theorem X.2.3.

We now treat the case of the existential quantifiers. Suppose that X = L(ϕ)
is star-free. Denote by π : Bp → Bp−1 the projection which erases the compo-
nent corresponding to xp (we may assume x = xp). Let us apply Proposition
4.15 withX = L(ϕ), B = Bp, C = {b ∈ Bp | bp = 1} andD = {b ∈ Bp | bp = 0}.
The fact that each word of X contains exactly one occurrence in C follows from
the inclusion X ⊂ K. Therefore

π(X) =
⋃

16i6n

π(Yi)π(bi)π(Zi)

Since the restriction of π to D∗ is an isomorphism, the sets π(Yi) and π(Zi) are
all star-free. Therefore L(∃xϕ) = π(X) is a star-free subset. This concludes the
proof of Theorem 4.13.

The proof of Theorem 4.13 given above makes use of the syntactic charac-
terisation of star-free sets. One can also show directly that L(ϕ) is aperiodic
for ϕ ∈ FO[<].

We can now prove the result announced before.

Corollary 4.16 One has FO[<] <MSO[<].

Proof. We have already seen that FO[<] 6 MSO[<]. Let ϕ be a formula of
MSO[<] such that L(ϕ) is not a star-free set. Then, by Theorem 4.13, there
are no formula of FO[<] equivalent to ϕ.
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Example 4.1 Let ϕ be the formula

ϕ = ∃X
(
X(min) ∧ ∀x (X(x)↔ ¬X(x+ 1)) ∧ ¬X(max)

)

where ↔ is the connective designating logical equivalence.
A finite word u satisfies ϕ if and only if |u| is even. Thus X = L(ϕ) is

not star-free and hence ϕ cannot be equivalent to any formula of FO[<] or,
equivalently, X is not definable in FO[<].

4.2 Logical hierarchy

We shall see in this section how to refine the characterisation of the first-order
definable sets of the logic of the linear order (Theorem 4.13). We shall actu-
ally establish a bijection between the concatenation hierarchy of star-free sets
defined in Chapter VII and the logical hierarchy Σn(<). Since the concatena-
tion hierarchy is infinite, it will show that the hierarchy defined on formulas by
quantifier alternation is also infinite.

Let us recall the notation introduced in Section 2: we denote by Σn(<)
the set of formulas of the language FO[<] with at most n alternating blocks
of quantifiers and by BΣn(<) the set of Boolean combinations of formulas of
Σn(<).

Theorem 4.17 For each integer n > 0,

(1) A language is definable by a formula of BΣn(<) if and only if it is a
star-free set of level n.

(2) A language is definable by a formula of Σn+1(<) if and only if it is a
star-free set of level n+ 1/2.

Proof. The first part of the proof consists in converting sets of words to for-
mulas. To start with, the equalities

L(true) = A∗ L(false) = ∅

show that each star-free subset of level 0 is definable by a formula of BΣ0.
By induction, suppose that the star-free sets of level n + 1/2 are definable

by a formula of Σn+1(<). Proposition 3.9 shows now that the star-free sets of
level n+ 1 are definable by a formula of BΣn+1(<).

Suppose now that the star-free sets of level n are definable by a formula of
BΣn(<). If X is a star-free subset of A∗ of level n + 1/2, X can be written as
a finite union of subsets of the form

X0a1X1a2 · · · akXk

where k > 0, X0, X1, . . . , Xk are star-free sets of level n of A∗ and a1, . . . , ak
are letters.

We now use again the “relativised” version of the first-order formula given
by Proposition 2.5. If X0 = L(ϕ0), X1 = L(ϕ1), . . . , Xk = L(ϕk), we have
X0a1X1 · · · akXk = L(ϕ), where ϕ is the formula

∃x1 · · · ∃xk
∧

16i6k−1

(xi < xi+1)
∧

16i6k

ai(xi) ∧ ϕ1(0, x1 − 1)

∧

16i6k−1

ϕ(xi + 1, xi+1 − 1) ∧ ϕ(xk,max)
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showing that X0a1X1 · · · akXk is definable by a formula of Σn+1. It follows, by
Proposition 3.9, that if the star-free subsets of level n are definable by a formula
of BΣn(<), the star-free subsets of level n + 1/2 are definable by a formula of
Σn+1(<).

We now arrive at the second part of the proof, the conversion from formulas
to star-free sets. We recall the scheme of the proof of Theorem 4.13, which
consists in arguing by induction on the formation rules of formulas. For this
purpose, we build, for each alphabet B, a hierarchy of star-free subsets of B∗

which differs from the usual hierarchy, in particular at level 0.
The induction that follows forces very precise requirements on the subsets

of B∗ of level 0. In particular, they have to contain the subsets of the form
L(a(xi)), L(xi = xj) and L(xi < xj) and to be closed under quotient. This
leads us to the following definition, which will be subsequently justified by the
lemmas 4.19 and 4.20. For each ε = (ε1, . . . , εp) ∈ {0, 1}

p, we set

K(ε) = {u ∈ B∗
p | for 1 6 i 6 p, ui contains exactly εi occurrences of 1}

Note that Kp = K(1, . . . , 1). For a ∈ A, i ∈ {1, . . . , p} and ε ∈ {0, 1}p, we set

K(a, i, ε) = {u ∈ K(ε) | if ui,ni
= 1, then u0,ni

= a}

This definition is interesting only if εi = 1. In this case, K(a, i, ε) is the set of
the words of K(ε) such that, if ni is the unique position of 1 in ui, the letter of
u0 in position ni is an a. Finally, if i, j ∈ {1, . . . , p}, we set

K=(i, j, ε) = {u ∈ K(ε) | ui,n = 1 if and only if uj,n = 1}

K<(i, j, ε) = {u ∈ K(ε) | if ui,ni
= 1 and uj,nj

= 1, then ni < nj}

Again, these definitions are only interesting if εi = εj = 1. In this case,
K=(i, j, ε) [K<(i, j, ε)] is the set of the words of K(ε) such that the unique
position of 1 in ui is equal to [precedes] the unique position of 1 in uj .

The languages of B∗
p of level 0 form the least set of subsets closed under

finite intersection and finite union and containing the subsets of the form K(ε),
K(a, i, ε), K=(i, j, ε) and K<(i, j, ε) for each ε ∈ {0, 1}p, a ∈ A and i, j ∈
{1, . . . , p}.

Next, level n+1/2 is the least set of subsets closed under finite intersection
and finite union and containing the subsets of the form

L0b1L1b2 · · · bkLk

where k > 0, b1, . . . , bk ∈ Bp and L0, L1, . . . , Lk are subsets of level n of B∗
p .

The level n+1 is the closure of level n+1/2 under finite union, finite intersection
and the operations X → Y −X where Y is a subset of level 0.

For p = 0, we recover the usual hierarchy.

Lemma 4.18 The hierarchy of subsets of B∗
0 coincides with the concatenation

hierarchy.

Proof. We have B0 = A and the only subsets of level 0 are ∅ and A∗. It follows
that the two hierarchies coincide.

The subsets of level n [n+ 1/2] are closed under quotient.
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Lemma 4.19 Let n > 0 and let X be a language of B∗
p of level n [n + 1/2].

For each u, v ∈ B∗
p , the languages u−1X and Xv−1 are of level n [n+ 1/2].

Proof. Arguing by induction on the length of u, it suffices to treat the case
where u = b, with b ∈ Bp. we treat only the case of a right quotient, the other
case being dual.

We already know that the quotients commute with Boolean operations: if
X1 and X2 are languages of B∗

p , then

(X1 ∪X2)b
−1 = X1b

−1 ∪X2b
−1

(X1 ∩X2)b
−1 = X1b

−1 ∩X2b
−1

(X1 −X2)b
−1 = X1b

−1 −X2b
−1

Moreover, if b1, . . . , bk are letters of Bp, L0, L1, . . . , Lk are languages of B∗
p ,

one has the formula

(L0b1L1b2 · · · bkLk)b
−1 =

{
L0b1L1b2 · · · bk(Lkb

−1) ∪ L0b1L1b2 · · · bk−1Lk−1 if 1 ∈ Lk and b = bk

L0b1L1b2 · · · bk(Lkb
−1) otherwise

(4.1)

We now conclude the proof by induction. The subsets of level 0 are closed under
quotient. Let indeed K ′ be one of the subsets K ′(ε), K ′(a, i, ε), K ′

=(i, j, ε) or
K ′

<(i, j, ε). If u is not a suffix of any word of K ′, then of course K ′u−1 = ∅.
Otherwise, we have in particular, denoting by ε′i the number of occurrences of
1 in ui, ε

′
i 6 εi and

K ′(ε)u−1 = K ′(ε− ε′)

K ′(a, i, ε)u−1 = K ′(a, i, ε− ε′)

K ′
=(i, j, ε)u

−1 = K ′
=(i, j, ε− ε

′)

K ′
<(i, j, ε)u

−1 = K ′
<(i, j, ε− ε

′)

If the subsets of level n are closed under quotient, the formula 4.1 shows that
every quotients of a marked product of such subsets is of level n + 1/2. It
follows that the subsets of level n+1/2 are closed under quotient since quotients
commute with Boolean operations. Next, the same argument shows that the
subsets of level n + 1 are closed under quotient, completing the induction.

We come back to the conversion of formulas into star-free sets. The induction
starts by the formulas of BΣ0.

Lemma 4.20 If ϕ ∈ BΣ0, Lp(ϕ) is a subset of level 0 of B∗
p .

Proof. We may assume that ϕ is in disjunctive normal form. Then we get rid
of the negations of atomic formulas by replacing

¬(x = y) by (x < y) ∨ (y < x)

¬(x < y) by (x = y) ∨ (y < x)

¬a(x) by
∨

b 6=a

b(x)
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Thus ϕ is now a disjunction of conjunctions of atomic formulas, and by Propo-
sition 3.9, we are left with the case of atomic formulas. Finally, the formulas

Lp(a(xi)) = K(a, i, 1, . . . , 1)

Lp(xi = xj) = K=(i, j, 1, . . . , 1)

Lp(xi < xj) = K<(i, j, 1, . . . , 1)

conclude the proof since these subsets are of level 0 by definition.

The key step of the induction consists to convert existential quantifiers into
concatenation products.

Lemma 4.21 Let ϕ be a formula of Σn and xi1 , . . . , xik be free variables of
ϕ. If Lp(ϕ) is a subset of level n of B∗

p , then Lp−k(∃xi1 · · · ∃xikϕ) is a subset
of level n+ 1/2 of B∗

p .

Proof. Up to a permutation of the free variables, we may assume that xi1 = x1,
. . . , xik = xk. We first establish the formula

Lp−k(∃xi1 · · · ∃xikϕ) = π(Lp(ϕ)) (4.2)

where π : Bp → Bp−k is the function erasing the components of index 1 to k,
defined by:

πi(b0, b1, . . . , bp) = (b0, bk+1, . . . , bp)

Indeed, if u = (u0, u1, . . . , up) ∈ Lp(ϕ), we have in particular u ∈ Kp. For
1 6 i 6 p, denote by ni the position of the unique 1 of the word ui. Then we
have u0 |= ϕ[ν], where ν is the valuation defined by ν(xi) = ni for 1 6 i 6 p.
Now ν = ν′[

(
n1

x1

)
· · ·

(
nk

xk

)
], where ν′ is the valuation defined by ν′(xi) = ni for

k + 1 6 i 6 p. It follows u0 |= (∃x1 · · · ∃xkϕ)[ν
′] and as π(u)0 = u0, it follows

π(u) ∈ Lp−k(∃x1 · · · ∃xkϕ).
Conversely, if v ∈ Lp−k(∃x1 · · · ∃xkϕ), there exist positions n1, . . . , nk such

that
v0 |= ϕ[ν′

(
n1

x1

)
· · ·

(
nk

xk

)
].

Let u be the unique word of Kp such that π(u) = v and such that, for 1 6 i 6 k,
the position of the unique 1 of ui is ni. Then u0 = v0, and as ν = ν′[

(
n1

x1

)
· · ·

(
nk

xk

)
],

we have u0 |= ϕ[ν], whence u ∈ Lp(ϕ), proving Formula 4.2.
We shall now express Lp(ϕ) as a finite union of marked products of subsets

of level n. Set L = Sp(ϕ), D = { b ∈ Bp | for 1 6 i 6 k, bi = 0 } and, for
I ⊆ {1, . . . , p},

CI = { b ∈ Bp | for each i ∈ I bi = 1 }

If u ∈ L, there exists, for 1 6 i 6 k, a unique position ni such that ui,ni
= 1.

Then there exists an ordered partition P = (I1, . . . , Ir) of {1, . . . , k} such that u
is uniquely factorised as u = u0b1u1b2 · · · brur, where bj ∈ CIj , u0, . . . , ur ∈ D

∗.

a1 a2 a3 · · ·
0 0 1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 1 0 · · ·
0 0 0 0 0 1 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0 · · ·

... · · ·
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Next we obtain the formula below, in which Q(x) = {u ∈ B∗
p | u

−1L = x−1L}
and P denotes the set of ordered partitions of {1, . . . , k}:

L =
⋃

P∈P

⋃

(x0,b1,x1,...,br,xr)∈EP

[Q(x0)] b1 [(x0b1)
−1Q(x0b1x1)] b2 · · ·

· · · br [(x0b1x1 · · · br)
−1Q(x0b1x1 · · · brxr)] (4.3)

in which if P = (I1, . . . , Ir) is an ordered partition, EP is the set of

(x0, b1, x1, . . . , br, xr)

such that x0b1x1 · · · brxr ∈ L, with x0, x1, . . . , xp ∈ B∗
p and, for 1 6 j 6 r,

bj ∈ CIj .
Let L′ be the right hand side of the formula 4.3. First of all, if u ∈ L,

there exists an ordered partition (I1, . . . , Ir) of {1, . . . , k} and a factorisation
u = u0b1u1 · · · brur, with, for 1 6 j 6 r, bj ∈ CIj . Now, by construction,
x ∈ Q(x) for each x, and hence

u0 ∈ Q(u0), u1 ∈ (u0b1)
−1Q(u0b1u1), . . . ,

ur ∈ (u0b1 · · ·ur−1br)
−1Q(u0b1 · · ·ur−1brur)

thereby establishing the inclusion L ⊆ L′. Conversely, if there exists an ordered
partition P of {1, . . . , k} and if

u ∈ [Q(x0)] b1 [(x0b1)
−1Q(x0b1x1)] b2 · · ·

bk [(x0b1x1 · · · br)
−1Q(x0b1x1 · · · brxr)]

for some (x0, b1, x1, . . . , bk, xr) ∈ EP , we have u = u0b1u1 · · · brur, with bj ∈ CIj

and

u0 ∈ Q(x0), u1 ∈ (x0b1)
−1Q(x0b1x1), . . . ,

ur ∈ (x0b1x1 · · · br)
−1Q(x0b1x1 · · · brxr)

Therefore, for 0 6 i 6 r, x0b1x1 · · · biui ∈ Q(x0b1x1 · · · bixi), whence

(x0b1x1 · · · biui)
−1L = (x0b1x1 · · · bixi)

−1L

Next we show that x0b1x1 · · · bixibi+1ui+1 · · · brur ∈ L by induction on r−i. For
i = r, the result follows from the fact that (x0, b1, x1, . . . , br, xr) ∈ EP . Next, if

x0b1x1 · · · bixibi+1ui+1 · · · brur ∈ L

we have bi+1ui+1 · · · brur ∈ (x0b1x1 · · · bixi)
−1L and hence

bi+1ui+1 · · · brur ∈ (x0b1x1 · · · biui)
−1L

whence x0b1x1 · · · bi−1xi−1biui · · · brur ∈ L, allowing the induction. Conse-
quently

u = u0b1u1 · · · brur ∈ L

and the inclusion L′ ⊆ L is proved.
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A second formula gives an expression of Q(x) in terms of the quotients of L.

Q(x) = (
⋂

y∈x−1L

Ly−1) − (
⋃

y/∈x−1L

Ly−1) (4.4)

Let indeedQ′(x) be the right hand side of (4.4). If u ∈ Q(x), then u−1L = x−1L.
Therefore the following sequence of equivalences hold

y ∈ x−1L⇐⇒ y ∈ u−1L⇐⇒ uy ∈ L⇐⇒ u ∈ Ly−1

showing that Q(x) ⊆ Q′(x). Let now u ∈ Q′(x). If y ∈ x−1L, then u ∈ Ly−1

and hence uy ∈ L and y ∈ u−1L. Similarly, if y /∈ x−1L, then y /∈ u−1L.
Therefore u−1L = x−1L and u ∈ Q(x), proving (4.4).

Since L is recognisable, Proposition III.4.17 shows that L has only finitely
many quotients on the right and on the left. It follows that only finitely many
unions and intersections occur in Formulas (4.3) and (4.4). Besides, Lemma
4.19 shows that all the quotients of L are of level n. Consequently, the subsets
of the form Q(x) and their quotients are of level n. Formula 4.3 now gives an
expression of Lp(ϕ) as a finite union of products of the form X0b1X1 · · · brXr

where bj ∈ CIj and the X0, . . . , Xr−1 [Xr] are level n subsets of D∗. By
Formula 4.2, Lp−r(∃xi1 · · · ∃xirϕ) is thus a finite union of subsets of the form
π(X0b1X1b2 · · · brXr). Therefore, proving that Lp−r(∃xi1 · · · ∃xikϕ) is of level
n+ 1/2, amounts to proving that if X is a subset of B∗

p of level n contained in
D∗, then π(X) is a subset of B∗

p−k of level n.
Let δ : Bp−k → Bp be the function defined by

δ(b0, . . . , bp−k) = (b0, 0, . . . , 0, b1, . . . , bp−k)

Then we have, for each subset X of D∗,

π(X) = δ−1(X)

Thus, it suffices to verify by induction that the subsets of level n [n+ 1/2] are
stable under δ−1. For level 0, this follows from the formulas

δ−1(K(ε1, . . . , εp−k)) = K(0, . . . , 0, εk+1, . . . , εp)

δ−1(K(a, i, ε1, . . . , εp−k)) = K(a, k + i, 0, . . . , 0, εk+1, . . . , εp)

δ−1(K=(i, j, ε1, . . . , εp−k)) = K=(k + i, k + j, 0, . . . , 0, εk+1, . . . , εp)

δ−1(K=(i, j, ε1, . . . , εp−k)) = K<(k + i, k + j, 0, . . . , 0, εk+1, . . . , εp)

and from the fact that δ−1 commutes with the Boolean operations. This latter
property also permits one to pass from level n+1/2 to level n+1 in the induction
step. Passing from level n to level n+ 1/2, requires the formula

δ−1(X0b1X1 · · · bkXk) =
⋃

c1∈δ−1(b1)

...

ck∈δ−1(bk)

δ−1(X0)c1δ
−1(X1) · · · ckδ

−1(Xk)

which follows from the fact that δ is length preserving.
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We can now conclude the second part of the proof of Theorem 4.17. Since
the only variable-free formulas of BΣ0 are true and false, the only subsets of
A∗ definable by a formula of BΣ0(<) are ∅ and A

∗, which are indeed of level 0.
By Lemma 4.20, for each formula ϕ of BΣ0(<), Lp(ϕ) is a subset of B∗

p of
level 0. Suppose by induction that, for each formula ϕ of BΣn(<), Lp(ϕ) is a
subset of B∗

p of level n. Consider the set ∆ of formulas ϕ such that, for each
p > 0, Lp(ϕ) is a subset of B∗

p of level n + 1/2. The set ∆ contains BΣn(<)
by the induction hypothesis and, by Proposition 3.9, it is closed under finite
disjunction and finite conjunction. Finally, Lemma 4.21 shows that if ϕ ∈ ∆
and if x1, . . . , xk are free variables of ϕ, then ∃x1 · · · ∃xkϕ ∈ ∆. Therefore
∆ contains Σn+1(<) and each formula of Σn+1(<) defines a subset B∗

p of level
n+ 1/2.

To conclude, suppose by induction that for each formula ϕ of Σn+1(<),
Lp(ϕ) is a subset of B∗

p of level n + 1/2. The proof of Proposition 3.8 shows
that Kp is of level 1 and thus Proposition 3.9 shows that for each formula ϕ of
BΣn+1(<), Lp(ϕ) is a subset of B∗

p of level n+ 1.
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Annex A

A transformation semigroup

We compute in this section the structure of a 4-generator transformation semi-
group S. We compute successively the list of its elements, a presentation for
it, its right and left Cayley graphs, its D-class structure and the lattice of its
idempotents.

∗ 1 1 2 3 4

a 2 3 4 0

b 3 1 4 0

c 2 1 4 3

a2 3 4 0 0

ab 1 4 0 0

ac 1 4 3 0

ba 4 2 0 0

b2 4 3 0 0

bc 4 2 3 0

ca 3 2 0 4

cb 1 3 0 4

a3 4 0 0 0

aba 2 0 0 0

ab2 3 0 0 0

abc 2 3 0 0

aca 2 0 4 0

acb 3 0 4 0

ba2 0 3 0 0

bab 0 1 0 0

bac 3 1 0 0

b2a 0 4 0 0

bca 0 3 4 0

bcb 0 1 4 0

cab 4 1 0 0

1 2 3 4

cac 4 1 0 3

cba 2 4 0 0

cbc 2 4 0 3

∗ a4 0 0 0 0

∗ bab 1 0 0 0

∗ cac 1 0 3 0

acbc 4 0 3 0

∗ baba 0 2 0 0

bcac 0 4 3 0

∗ bcbc 0 2 3 0

cabc 3 2 0 0

∗ caca 0 2 0 4

cacb 0 3 0 4

cbac 1 3 0 0

cbca 3 0 0 4

∗ cbcb 1 0 0 4

acbca 0 0 4 0

cacac 0 1 0 3

cacbc 0 4 0 3

cbcac 4 0 0 3

cbcbc 2 0 0 3

∗ acbcac 0 0 3 0

∗ cacbca 0 0 0 4

cacbcac 0 0 0 3

279
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Relations :

c2 = 1 a2b = a3 a2c = b2 b3 = b2a

b2c = a2 ca2 = b2 cb2 = a2 a4 = 0

aba2 = ab2 abac = abab ab2a = a3 abca = a2

abcb = ab acab = abab acba = a3 ba3 = b2a

bab2 = ba2 babc = baba baca = ba bacb = b2

b2a2 = 0 b2ab = 0 b2ac = ba2 bcab = b2a

bcba = baba caba = baba cab2 = ba2 cba2 = ab2

cbab = abab ababa = aba acaca = aca acacb = acb

acbcb = acbca babab = bab bcaca = acbca bcacb = acbca

bcbca = bca bcbcb = bcb

The idempotents of S are 1, a4 = 0 and

e1 = acac e2 = cbcb e3 = caca e4 = bcbc

e5 = abab e6 = cacbca e7 = baba e8 = acbcac

Recall that the natural order on idempotents is defined as follows: e 6 f if and
only if ef = e = fe (or, equivalently, if fef = e).

1

e1 e2 e3 e4

e5 e6 e7 e8

0

Figure A.1. The lattice of idempotents.

TheD-class structure of S is represented in Figure A.2. Note that the nonregular
elements bac and cbac have the same kernel and the same range but are not H-
equivalent.
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01234

0/1/2/3/4
∗
1, c

0234 0134

1/2/3/04 a ac

1/2/4/03 ca cac

1/2/3/04 bc b

1/2/4/03 cbc cb

013 024

1/3/024
∗
acac aca

2/4/013 cacac
∗
caca

034

acb acbc

cacb cacbc

1/2/034 bac ba

1/2/034 cbac cba

a2

b2

abc ab 1/2/034

cabc cab 1/2/034

bca bcac

cbca cbcac

034

∗
bcbc bcb 2/3/014

cbcbc
∗
cbcb 1/4/023

023 014

01 02

1/0234
∗
abab aba

2/0134 bab
∗
baba

03 04

ab2 a3

ba2 b2a

∗
acbcac acbca 3/0124

cacbcac
∗
cacbca 4/0123

0

01234
∗
0

Figure A.2. The D-class structure of S.
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1

c

a

ac

ca

cac

b

bc

cb

cbc

aa

abba

bb aaa

aba

abb

abc

aca

acb

baa

bab

bac

bba

bca

bcb

cab cba

0

0

abab

acac

acbc

baba

bcac

bcbc

cabc

caca

cacb

cbac

cbca

cbcb

acbca

cacac

cacbc cbcac

cbcbc

acbcac

cacbca

cacbcac

a
b

c

a

b

c

a

b

c

a b

c
a, b

c

a
b

c

a

b

c

a
b

c

a, b
c

a
b

c

a

b

c

a

b

c

a, b

c
a

b, c

a, b, c

a

b, c a

b

c

a, b

c

a, b, c

a, c

b

a, c

b

a, b

c

a, b

c

a

b

c

a
b

c

a

b

c

a
b

c

a

b

c

a, b, c

a, b, c

a, c

b

a, c

b

a, b

c

a

b, c

a, b

c

a

b, c

a

b, ca

b

c

a, b

c

a, c

b

a, b

c

a

b

c

a, b

c

a, c

b

a, b

c

a, b

c

a

b, c

a, b, c

a, b

c a, b, c

Figure A.3. The right Cayley graph of S. To avoid unesthetic crossing
lines, the zero is represented twice in this diagram.
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1

c

a

ac

ca

cac

b

bc

cb

cbc

aa

ab

ba

bb

aaa

aba

abb abc

aca

acb

baa

bab

bac

bba

bca

bcb

cab

cba

00abab

acac

acbc

baba

bcac

bcbc

cabc

caca

cacb

cbac

cbca

cbcb

acbca

cacac

cacbccbcac

cbcbc

acbcac

cacbca

cacbcac

ab

c

a

b
c

a

b

c

a b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c
a

b, c

a

b, c

a

b, c

a

b

c

a

b

c

a

b

c

a, c

b

a, c

ba

b

c

a, c

b

a

b
c

a

bc

a

b

c

a

b

c

a

b

c

a

b

c

a, b, ca, b, c

a

b, c

a

b

c

a

b

c

a, c

b

a

bc

a

b c

a

b

c

a, c

b

a, c

b

a

b

c

a

b, c

a

b, c

a

b

c

a, c

b

a, c

ba

b, c

a

b, c

a

b

c

a, b, c

a, b, c

Figure A.4. The left Cayley graph of S. To avoid unesthetic crossing
lines, the zero is represented twice in this diagram.
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[6] M.-P. Béal, O. Carton and C. Reutenauer, Cyclic languages and
strongly cyclic languages, in STACS 96 (Grenoble, 1996), pp. 49–59, Lect.
Notes Comp. Sci. vol. 1046, Springer, Berlin, 1996.

[7] J. Berstel, Transductions and context-free languages, Teubner, 1979.

[8] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge
Phil. Soc. 31 (1935), 433–454.

[9] M. J. Branco and J.-E. Pin, Equations for the polynomial closure, in
ICALP 2009, Part II, S. Albers and W. Thomas (eds.), pp. 115–126, Lect.
Notes Comp. Sci. vol. 5556, Springer, Berlin, 2009.

[10] J. Brzozowski, K. Culik and A. Gabrielan, Classification of non-
counting events, J. Comput. Syst. Sci. 5 (1971), 41–53.

[11] J. A. Brzozowski and F. E. Fich, Languages of R-Trivial Monoids, J.
Comput. Syst. Sci. 20,1 (1980), 32–49.

[12] J. A. Brzozowski and I. Simon, Characterizations of locally testable
events, Discrete Math. 4 (1973), 243–271.

285



286 BIBLIOGRAPHY

[13] J. Carroll and D. Long, Theory of finite automata with an intro-
duction to formal languages, Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

[14] O. Carton, Langages formels, calculabilité et complexité, Vuibert, 2008.
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