

Logic, Automata,
and Algorithms

Mark A. Aiserman
Leonid A. Gusev
Lev 1. Rozonoer

lrina M. Smirnova
Aleksey A. Tal’

Institute of Automation and Remote Control
Academy of Sciences of the USSR, Moscow

Translated by Scripta Technica, Inc.

TRANSLATION EDITOR

George M. Kranc
City University of New York

New York, New York

ACADEMIC PRESS 1971 NEW YORK AND LONDON

COPYRIGHT 0 1971, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED
NO PART OF THIS BOOK MAY BE REPRODUCED I N ANY FORM,
BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY
OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM
THE PUBLISHERS.

ACADEMIC PRESS, INC.
I I 1 Fifth Avenue, New Y o r k , New York 10003

CJtiited Kittgdorii Edition published by
ACADEMIC PRESS, I N C . (LONDON) LTD.
Berkeley Square House, Lrmdon W1X 6BA

LIBRARY O r CONGRTSS CATALOG CARD NUMBER: 72-153664

Originally published as:
“Logika, Avtomaty, Algoritmy” by Gosud.
Iz - vo Fiziko - Matem. Literatury (State Press
for Physical and Mathematical Publications),
Moscow, 1963

PRINII-D IN I H F UNIIED S l A l E S OF AMrRlCA

Contents

PREFACE . ix
TRANSLATOR'SNOTE . X
I N T R O D U ~ I O N . xi

1 . Elements of Mathematical Logic
1.1. Introductory Notes . 1
1.2. Basic Concepts . 2
1.3. Propositional Calculus . 7
1.4. Two-Valued Predicate Calculus . 23

2 . Engineering Applications of Propositional Calculus
2.1. Combinational Relay Switching Circuits 27
2.2. Analysis of Combinational Relay Switching Circuits 33
2.3. Synthesis of Combinational Relay Switching Circuits 37

Practical Devices . 40

Logical Functions . 51

2.4.

2.5.

Other Methods for Converting Logical Functions into

The Problem of Minimization of Devices Performing

3 . Finite Automata and Sequential Machines: Basic Concepts
3.1. Discrete Time and Discrete Time Moments 58
3.2. On Dynamical Systems . 60
3.3, Finite Automata . 62
3.4. Sequential Machines . 66

Sequential Machines . 69
3.6. Recording the Operation of an Automaton 75
3.7. On the Restriction of Input Sequences 84

3.5. Techniques for Defining Finite Automata and

4 . Abstract Structure and Nets
4.1. The Concept of Substitution of Sequential Machines 86
4.2. The Abstract Structure of the Automaton 91
4.3. Nets . 97

Abstract Aggregates of Automata and Sequential
Machines . 107

4.4.

4.5. Abstract Neurons and Models of Neural Nets 109

V

vi CONTENTS

5 , Technical Embodiment of Finite Automata and Sequential
Machines

5.1.

5.2.

5.3.

5.4.

Two Methods for Technical Realization of Finite
Automata and sequential Machines 116
Aggregative Design of Finite Automata and
Sequential Machines. 1 17
Synthesis of Finite Automata and Sequential Machines
by Utilizing Inherent Delays as Well as Feedback. 124
Huffman’s Method and Realization 130

6 . Autonomous Finite Automata and Sequential Machines
6.1.

6.2.

What Autonomous Finite Automata and Sequential
Machines “Can Do” . 144
Synthesis of the Bistable Structure of an Autonomous
Sequential Machine . 150

7. Representation of Events in Finite Automata and Sequential
Machines

7.1. Statement of the Problem 159
7.2. Events. Representation of Events. 160
7.3. Operations on Sets of Input Sequences 163
7.4. Representability of Regular Events 17 1
7.5. Regularity of Representable Events.. 176
7.6. Do Irregular (Unrepresentable) Events Exist? 18 1
7.7. What a Finite Automaton “Can Do” 185

8. Recognition of Realizability of a Given Specification. Abstract
Synthesis of Finite Automata and Sequential Machines

8.1. Statement of the Problem . 187
8.2. The Case Where the Specification Enumerates the

Required Input-Output Correspondences. 189
8.3. Algorithmic Unsolvability of the Problem of Recognition

of Representability of Recursive Events 203
8.4. Synthesis of Finite Automata and Sequential Machines in

the Language of Regular Expressions. 207

9. Equivalence and Minimization of Sequential Machines
9.1.
9.2.

9.3.

9.4.

9.5.

The Problem of Recognition of Equivalent States 219
Algorithmic Unsolvability of the Generalized Recognition
Problem of Recognition of Equivalence of States. 221
Recognition of the Equivalence of States in the Case of an
Unrestricted Set of Input Sequences 223
Recognition of Equivalence of States for the Case of Input
Sequences of Limited Length 230
Equivalence, Mapping and Minimization of Sequential
Machines 235

CONTENTS vii

9.6.

9.7.

9.8.

9.9.

Minimization of a Sequential Machine with an
Unrestricted Set of Allowable Input Sequences 237
Minimization of a Sequential Machine When It
Operates as a Finite Automaton . 241
Minimization of Machines in the Case of Aufenkamp-
Type Constraints . 246
Another Definition of Equivalence of Sequential
Machines . 254

10 . Transformation of Clock Rates of Sequential Machines
10.1. General Considerations Regarding Clock Rate

Transformation . Definition of Representation and
Reproduction . 260
Examples of Representation and Reproduction 266
Reproduction of a Slow Machine on a Fast One in the
Case When the Cycle of the Slow Machine Is Governed
by the Change of Input State . 269
Minimization of the s-Machine of Section 10.3 274

10.2.
10.3.

10.4.

1 1 . Determination of the Properties of Sequential Machines from
Their Response to Finite Input Sequences
11.1.
11.2.

11.3.
11.4.

Definitions and Statement of Problem 284
Determination of Equivalence of States of s-Machines
from Their Response to Finite Inputs 286
Multiple Experiments on Sequential Machines 291
Simple Experiments on Sequential Machines 294

12 . Algorithms
12.1.
12.2.
12.3.
12.4.

12.5.

12.6.
12.7.
12.8.
12.9.
12.10.
12.11.
12.12.
12.13.

Examples of Algorithms . 304
General Properties of Algorithms 308
The Word Problem in Associative Calculus 310
Algorithms in an Alphabet A . Markov’s Normal
Algorithm . 314
Reduction of any Algorithm to a Numerical Algorithm .
Godelization . 321
Elementary and Primitive Recursive Functions 324
Predicates . Minimalization . 333
A Computable But Not Primitive Recursive Function 338
General Recursive Functions . 339
Explicit Form of General Recursive Functions 343
Church’s Thesis . 348
Recursive Real Numbers .
Recursively Enumerable and Recursive Sets 352

CONTENTS ...
Vl l l

13. Turing Machines
13.1.
13.2.
13.3.

Description and Examples of Turing Machines. 355
The Composition of Turing Machines 363
Computation on Turing Machines 366

Conclusion
1 .

2.

What Can a Finite Automaton or a Sequential Machine
“Do”? . 377
The Synthesis of a Practical Device Realizing a Finite
Automaton or Sequential Machine , 379

Problems

. 387
. 388

. 391

. 392

_ _ . 394

.

Chapter 1 0

Bibliography . . . 409

Addenda to Bibliography .427

Index . 430

Preface

This book deals with the general theory of finite automata and
sequential machines, a subject of great current theoretical and
practical importance and one likely to have an even greater impact
in the future.

In writing this text, w e had in mind a wide audience. We natur-
ally hoped i t would be useful to specialists in switching o r digital
computer theory and design. Such persons are alreadyfamiliar with
the necessary mathematical techniques, that is, propositional cal-
culus, general concepts of predicate calculus, and the fundamentals
of the theory of algorithms (theory of recursive functions). For
them, the book may serve as a reference on fundamentals. But our
primary audience is the beginner whose mathematical training is
confined to fundamentals of calculus, differential equations, and
mathematical physics. Aside from engineering students, such read-
ers may include specialists in automation, remote control and com-
munications, that is, those branches of engineering where lack of
fundamentals of mathematical logic and the theory of algorithms may
preclude the solution of a variety of problems.

In addition, we would like to think that the potential beneficiaries
may include the mathematician who is not alogician, as well as the
physicist, physiologist and biologist interested in the applications of
the theory of finite automata and sequential machines to idealized
models, such as those of nets of nerves. Basically, however, the
book is intended for engineers, which is why, in discussing some
problems of logic and algorithmic theory, we preferred to forego
mathematical r igor and concentrate on the clarity of exposition.

Thus, the objective of this bookis tointroduce the reader to this
new field and familiarize him with the basic concepts and the ways
in which particular problems are stated, as well as those solutions
which have been obtained so far. In the presentation, our own re-
sults are intertwined with those obtained from the relevant litera-
ture.

Since this text is designed for a diversified audience, we could
not organize i t in a manner that would suit any special group. The

ix

X PREFACE

disposition of subject matter is thus a compromise between con-
tending interests. In general, the material is arranged in order of
increasing difficulty, and each reader should thus proceed accord-
ing to his own needs and background. We would, however, like to
offer several suggestions:

1. The reader who is completely unfamiliar with the subject but
seeks detailed information should follow the sequence pre-
sented i n the book.

2. The reader interested only in a general acquaintance with the
subject should read the f i rs t seven chapters consecutively,
followed by Chapter 12; after this he may glance through
Chapter 13, and finish by reading Chapters 8, 9, 10, and
11.

3. The reader familiar with the fundamentals of mathematical
logic and its technical applications is advised to begin with
Chapter 3.

4. Finally, the mathematician interested in engineering applica-
tions may safely omit Chapters 1, 1 2 , and 13.

Sections 2.5 and 8.4 deal with the special problems of minimiza-
tions of Boolean functions and the realization of finite automata, de-
fined in the language of regular expressions; these sections (which
go beyond the basic principles of the general theory of finite auto-
mata and sequential machines) w e r e written, at the author’s request,
by V.D. Kazakov and O.P. Kuznetsov, respectively.

The authors would welcome all comments and suggestions.

TRANS LATO R’S NOTE

This translation of the original Russian edition contains problems, additions,
and revisions prepared by the author for the English edition.

Introduction

“Finite automaton’’ and “sequential machines” are two tradi-
tional terms that are widely used to designate a very simple class
of dynamical systems. The theory of this class evolved as a sep-
arate entity for the following two reasons:

1. These dynamical systems are frequently employed in tech-
nology, particularly in automatic and remote control and computer
engineering (digital computers are a special case of this class). The
needs of modern technology have therefore prompted an intensive
study of the general relationships governing this class, in order to
develop methods of analysis and of optimal synthesis of these dy-
nami cal systems .

2. The continuing progress in science and technology, particu-
larly in computers, increasingly poses questions such as: What can
a machine ccdo” and what is it incapable of “doing”? Could a ma-
chine perform any algorithm? In principle, could a machine do
something more than merely execute an algorithm? To what extent
is a machine capable or incapable of performing functions charac-
teristic of a human brain? All attempts at exact formulation of these
questions, let alone finding the answers, hinge uponour definition of
the term A s of now, i t is impossible to solve these
problems in terms of a very broad class of dynamical systems. If,
however, we define a machine as a restricted class of such sys-
tems-that known as “finite automata” and “sequential machines’ 7-

then the questions make sense. They can be exactly formulated and,
in some cases, answered.

There is another reason, peculiar to our present state of knowl-
edge, which helps maintain interest in systems of this class. The
brain consists of a very large number of nerve cells, or neurons.
By idealizing their properties to some extent, we can construct a
mathematical model of the brain-one that is valid, of course, only
within the limits of this idealization. This model is also a dynami-
cal system of the type we shall consider. Our expanding knowledge
of neurons and of the brain as a whole has shown that the above
idealization is inadequate and that more complexmodels are desir-
able. Nevertheless, the fact remains that within this idealized frame-

xi

xii INTRODUCTION

work, which is quite acceptable at our particular stage of knowledge,
both the human brain and ageneral-purpose digital computer can be
regarded as belonging to the same comparatively simple class of
dynamical systems. It is this fact thatlendsinterest to the study of
finite automata and sequential machines.

1

Elements of Mathematical Logic

1.1. INTRODUCTORY NOTES

Mathematical (symbolic) logic traces i t s origins to the so-called
traditional formal logic, from whichit emergedin response to a de-
sire to formalize certain aspects of intellectual activity. This de-
sire continued to influence i ts subsequent growth as an independent
science, when it addressed itself to the task of providing the logical
foundations of mathematics by tackling problems of consistency and
completeness of axiomatic systems underlying this science, the
problem of determining all the inferences derivable from these
axioms, as well as avariety of similar questions. Eventually mathe-
matical logic grew into a powerful research tool, but its use con-
tinued to be restricted to the domain of pure theory, even though
there w e r e men who recognized i ts potential in the field of applied
science (as long ago as1910 Paul Ehrenfest pointed out the possi-
bility of using the constructs of mathematical logic to describe the
operation of practical systems such as switching circuits). Be that
as it may, it w a s onlyin the thirties that the engineering application
of mathematical logic came into i ts own. It w a s during that time
that V.I. Shestakov [l l l , 1121 and C.E. Shannon [231] worked on the
application of mathematical logic to switching networks and led the
way for M.A. Gavrilov [21] and the independent theory of relay
switching. Before long mathematical logic penetrated even deeper
into the applied sciences. It w a s found that not only relay switching
networks but also many other discrete-action systems were sus-
ceptible to description by i ts techniques.

Thus mathematical logic became an accepted tool in the develop-
ment and design of a great variety of engineering systems, while at
the same time maintainingits extreme importance in theoretical re-
search. Its applied aspect proved especially valuable in recent
years , in connection with the research into the general l a w s of con-
trol which govern both technology and Nature.

1

2 ELEMENTS OF MATHEMATICAL LOGIC

Since there are two aspects of mathematical logic-the theoreti-
cal and the applied-the subject can be developed in two distinct
ways. In accordance with our main objective, w e shall confine our-
selves to the applied aspect, with the further restriction that we
shall now discuss only these elements of logic which are needed for
an understanding of later sections.

1.2. BASIC CONCEPTS

In discussing logic, we shall experience time and again the im-
portance of a fundamental mathematical concept-the&nctionaZ Y e -
lationship. In i t s most general form this conceptis associated with
the idea of existence of two sets and of mapping of one set onto the
other. Suppose we have sets X and Y consisting of elements x and y ,
respectively , that is,

x= (x) , Y= (y] .

If , by virtue of some condition, each element x belonging to set X
(this is written as x EX) is matched with a specific element y of
set Y (y E Y) , then the matching condition is said to define y a s a
function of x , or, alternatively, one says that set X maps into set Y .
The function y = y(x) is also said to be defined on the set X (called
the domain of the function) and to havevalues in set Y (the range of
the function); x is called the independent vaviabZe OY argument, and
g is called theficnction.

Every specific functional relationship is determined, on the one
hand, by the characteristics of sets X and Y and, on the other hand,
by the nature of elements x and y in these two sets.

Let u s consider some basic characteristics of sets. A set is
classed as either finite or in .n i t e , depending upon the number of
elements constitutingit. For example, the set of le t ters of the alpha-
bet is finite; the set of molecules i n a finite body is also finite; but
sets consisting of all positive integers, or of all rational numbers,
or of all real numbers are infinite. The set of all points on a line
segment and the set of all points in a plane figure are also infinite.

Sets may be compared according to their cardinality. Two sets
are said to have the same cardinality if a one-to-one correspondence
can be established between their elements. The concept of cardi-
nality of a set allows u s to distinguish two important classes of in-
finite sets. These are the countabZe* and the continuum sets.

*Also called denumerable.

BASIC CONCEPTS 3

Countable sets are sets that have the cardinality of the set of all
natural numbers, and continuum sets are sets that have the car-
dinality of the set of all real numbers.

In particular, the set of all even integersis countable, since the
elements of this set can be easilyplacedin a one-to-one correspon-
dence with the elements of the set of natural numbers. Indeed, by
arranging the even integers and the natural numbers in ascending
order, we can establish the following one-to-one correspondence
between the elements of these two sets:

2 , 4 , 6 , . . . , 2n . , . . .

1 , 2 , 3 , . . . , n , . .

The set of all algebraic numbers, the set of all rational numbers,
and so on, are also countable.

set of all points in a line segment, the set of all points on a plane
figure, and many others.

In some cases, comparison ofinfinite sets in terms of their car-
dinality leads to statements that may sound quite paradoxical. For
instance, i t would seem strange, a t a f i rs t glance, that the se t of
points in a segment (A B in Fig. 1.1)
and the set of points in a section of
the same segment (A C in Fig. 1.1)
should have the same cardinality.
This, however, may easily be proven
with the help of Fig. 1.1. Here, each 4 4
point M in segment A B may be con- I
netted by a ray to an origin 0 ; this I

r a y intersects segment A C at apoint A' k -
M' , which is seen to be in one-to-one
correspondence with point M of seg-
ment A B , showing that our two sets do indeed have the same car-
dinality. Similarly, i t may be demonstrated that the set of points in
a plane figure, or even in a three-dimensional body, has the same
cardinality as the set of points in a line segment, namely, that of
the continuum.

Let u s now return to functional relationships. A s already stated,
such a relationship is specified by the nature of the elements in the
sets on which i t is defined, and by the characteristic properties of
these sets. If a function is defined on the set X of all real numbers
x and assumes values from a se t Y which also consists of all real
numbers y, then we have a real function y of a single real variable

The continuum se t s include the se t of all irrational numbers, the

"
'\ *.
"

Fig. 1.1.

4 ELEMENTS OF MATHEMATICAL LOGIC

x , or y = y (x). If, however, the function assumes values from the same
set of real numbers y , but each element of the set 2 = {z} on which
i t is defined is a sequence of n real numbers x i , x2 , . . ., x n , then
w e are no longer dealing with a real function of a single real vari-
able, but with a real function y of n real variables x i , . . ., x, ,
that is, y = y (x i , x 2 , . . . , x , ~) .

The above functions are based on the set of real numbers, and i t
is this characteristic that unites them into asingle class. The dis-
tinguishing feature of this class of functions is that both the values
assumed by the function and the arguments of this function are de-
fined on continuum sets.

The basic characteristic of functions of mathematical logic is
that both their domain and their range (that i s , the sets which par-
ticipate in the mapping) consist of elements that, in general, have
no connection with any defined quantities whatsoever. We are thus
saying that we cannot distinguish between the elements of these sets
by any other means than assigning to them symbols of some kind,
for example, numerals.

The l ist of all symbols describing the elementsof a given set is
called the alphabet of this set; anundefined symbol, which may rep-
resent any element of the set , is called a logical vaviable. Each spe-
cific symbol is then one of thevalueswhich the logical variable can
assume.

Thus we have seen that, in terms of the properties of the ele-
ments of the mapped sets, logical functions a re functions of the most
general type. Moreover, they assume values from finite sets. In
this they differ from many other functions (for example, functions
of real variables, which are, in general, defined on continuum sets).

A s an example, consider two sets. Set X = { x) consists of all the
diffeevent white keys of the piano. Let u s denote these keys, from
left to right, by symbols XI, x2, . . . , x ~ , ; the l ist of these symbols
is alphabet of set X= (xlr x2, . . . , xg0]. Set Y = {y} consists of the
seven different notes contained in an octave, and i t s alphabet is
[Yl, Yz, . ., Y71, where the symbols YI, YZ. y3, y4. y5, q 6 1 and y7 denote
the notes c , d , e , f, g , a , and b , respectively. In a well-tuned piano
each symbol of the alphabet (x) is in a one-to-one correspondence
with a specific symbol of the alphabet {y). This means that the vari-
able y , which assumes the values yl, y2, . . . , y7, is a logical function
of the independent variable x , which assumes the values xI. x2, . . . , x50.

This function may be specified in several ways, for example, in the
form of a table (see Table 1.1).

The f i rs t classification to which w e may subjectthe functions of
mathematical logic is that based on the number of different sets

x2,

BASIC CONCEPTS 5

involved in the mapping of a givea function. If only one set is in-
volved, so that the set is mappedintoitself, the corresponding logi-
cal function is said to be homogeneous. A function involving map-
ping of one set onto a different s e t i s said to be hetevogeneous. For
example, the logical function given in Table 1.2 is homogeneous,
while that of Table 1.3 is heterogeneous.

Table 1.1

We said before that the se t from which a logical function takes
i t s values is finite; and since any homogeneous logical function rep-
resents the mapping of some set onto itself, i t follows that the set
constituting the range of a homogeneous logical function must be
finite. The corresponding logical variable may be two-valued, three-
valued, or, in general, m-valued.

Table 1.2 Table 1.3

Each of the values of the argument of a heterogeneous logical
function is usually called an object, and the function itself is called
a pyedicate. While the set of the argument values (the object set)
may be infinite, the heterogeneous logical functions themselves-
the predicates-may only be two-valued, three-valued, or , in gen-
eral, m-valued (where m must be finite).

In the theory of real variables, w e are accustomed to real func-
tions of n real arguments. In the same way, the theory of logical
variables admits of logical functions not only of one but also of n
independent variables.

We shall divide functions of several variables into two classes.
One of the classes shall include functionsin which all the arguments,
as well a s the function itself, a r e logical variables assuming values

6 ELEMENTS OF MATHEMATICAL LOGIC

from the same set. Again, w e shall call such functions “homogene-
ous.”* Our second class shall comprise all those logical functions
of several variables which do not belong to the f i rs t class; again,
we shall call such functions “heterogeneous.”

A s in the case of functions of one independent variable, the logi-
cal variables that are the arguments of the heterogeneous functions
of several variables are called objects; the functions themselves
are again called predicates.

Depending on the number of arguments in a given heterogeneous
logical function, we have one-place, two-place, and, in general,
n-place predicates. One-place predicates are sometimes called
pvoperties, while multiple-place predicates are called relations.

To illustrate these concepts and terminology, let u s consider a
few examples:

Suppose we examine the event: I shall meet a man whom I know.
This event may or may not occur, dependingon occurrence or non-
occurrence of the following elementary events constituting the com-
posite event: One of the persons I shall meet will be someone I know,
and this person shall also be a man. Here w e have a homogeneous
logical function with two arguments; i t is homogeneous because both
arguments and the function itself are events, that is, logical vari-
ables assuming values from the same binary set whose elements
are “the event shall occur” and “the event shall not occur.” By
denoting one argument (event: meeting a person whom I know) by
x,, the other (event: meeting a man) by x2, and the function (event:
meeting a man whom I know) by y, w e can represent their relation-

ship in the form of Table 1.4. The char-
Table 1.4 acters 0 and 1 in the table a re symbols

corresponding to the elements “the event
shall not occur” and “the event shall oc-

In our previous example of the piano
keys, the logical function was heterogene-
ous. There w e had a seven-valued, one-
place predicate whose object variable (the
number of the key) assumed values from
a fifty-element set.

The estimation of the truth value of astatement given by the al-

rji cur.”

gebraic expression
XI + x 2 > 10,

T h e mathematicians who developed the theory of homogeneous logical functions worked
with a set whose elements were called “true” and “false” propositions. For this reason
this theory is referred to a s “propositional calculus.”

BASIC CONCEPTS 7

which is true for some numerical values of x I and x2 and false for
other, leads us to an example of atwo-place, two-valued predicate;
here w e have two independentvariables, and they assume values from
a set of real numbers, which has the cardinality of the continuum.

Consider another example: it is no great trick to determine the
day of the week corresponding to a certain date (day, month, year).
The rules governing this problem constitute a heterogeneous logi-
cal function-a three-place, seven-valued predicate. The object
variables in this case assume values from three sets: one of these
contains 31 elements, another 12 elements, and the third a countable
number of elements.

No single mathematical theory applicable to all the possible
logical functions exists as yet. The theory which as of now has
reached the highest state of development is that governing two-
valued functions. This branch of mathematical logic (two-valued o r
binary logic) serves a dual function: on the one hand, i t supports
the entire edifice of mathematical logic; on the other hand, i t is
precisely this branch of the theory that i s , at present, of the great-
e s t applied value. The same, however, cannot be said about the
theory of many-valued logic, which is still along way from perfec-
tion. For this reason we shall not concern ourselves with i t any fur-
ther and shall proceed to the postulates of binary logic which in-
cludes the calculi of two-valued propositions and predicates.

1.3. PROPOSITIONAL CALCULUS

a) Definition of Logical Functions

We shall now discuss homogeneous binary logical functions

y = Y(X l , X2, . . . , Xn),

that is, functionsinwhichall theindependentvariables X I , x1, . . . , X n 9

as well a s the function g itself, assume values from the same binary
set M. We shall denote the two elements of this set by symbols 0
and 1 ; these symbols shall then constitute the entire alphabet of all
the logical variables which are arguments of these logical functions.

Now let us construct a table (see Table 1.5) of 2" columns and n
rows. The heading of each row shall be one of the n independent
variables. The heading of each column will be a numeral from the
set 0, 1, 2 , . . . , 2n - 1.

Next, let u s f i l l each column with asequence of symbols 0 and 1
such that this sequence, when read from bottom to top, shall form

8 ELEMENTS OF MATHEMATICAL LOGIC

Table 1.5

r = 2" columns

the binary representation of the numeral in the heading of the col-
umn. The best way to complete such a table i s as follows: We enter
in the f i rs t row (row xI) a string of pairs (01); in the second row
(row x 2) , a string of groups offour (0011); in the third row, a string
of groups of eight (00001111), and so on. Now each coiumn of the
table shows one of the possible combinations of values which may
be assumed by the 11 independentvariables. Thusit may be said that
each column corresponds to apoint in an n-dimensional binary logi-
cal space (a space constructed on the basis of the two-element set
hl). The table a s a whole (the aggregateof all the 2" columns) is a
complete description of the entire n-dimensional binary logical space
which consists of r = 2" points; the numeral k heading a column is
then a symbol denoting a point in this space.

In a more graphic representation of an fi-dimensional binary
logical space, 0 and 1 can be regarded a s real numbers. Then the
one-dimensional case may be represented in terms of two points on
a real axis (Fig. 1.2). The two-dimensional case may be repre-
sented in terms of four vertices of a unit square (Fig. 1.3), and the

three-dimensional case-by the

0 I 9 In general, the n-dimensional
binary logical space may be rep-
resented in terms of the set of

all the vertices of an a-dimensional unit cube.
To define a specific binary homogeneous logical function y =

y(xl , n?, . . . , x 7 ,) means to specify which of the two possible values

,. A > vertices of aunitcube (Fig. 1.4).

Fig. 1.2.

PROPOSITIONAL CALCULUS 9

(0 o r 1) will be assumed by the logical variable y at a point k of the
corresponding binary n-dimensional logical space (or at avertex of
the n-dimensional cube). This information is furnished by a table
of correspondences* (Table 1.6), which specifies our functionin the
form y = y(k) . A table of correspondences y = y (k) , together with a
table for then-dimensional binarylogical space k = k (x , , xq, . . . , x,,)
completely specifies the homogeneous binarylogical functiony = y (xl,
x2, , x,) of n arguments.

Fig. 1.3. Fig. 1.4.

At any k , the function y (k) can be either 0 or 1. It follows that
each function of n arguments can be represented in a table of cor-
respondences by some sequence of zeros and ones. The length of
this sequence is r = 2", so that the total number of different functions
that may possibly be constructed on the set of points of an n-dimen-
sional binary space is s= 2'= 2(*"). All these functions can there-
fore be enumerated and hence designated by anumeral (numbered).

Table 1.6

There is a convenient method for scanning and numbering all
these functions. This involves constructing a table such as 1.7 that
combines all the possible correspondence tables; i t containsr = 2"
columns and s = 2' rows. We cancomplete this table a s follows: We

T h e term table of combinations is also used,

10 ELEMENTS OF MATHEMATICAL LOGIC

Table 1.7

enter pairs (01) into the f i rs t column, then w e enter groups of four
(0011) into the second column, groups of eight (00001111) into the
third, and so on.* Then the string of zeros and ones in each row,
when read from right to left, will be the binary representation of
the number designating the function corresponding to this row. We
shall refer to such a table as ageneral correspondence table.

In addition to this tabular method of defining homogeneous binary
logical functions, there exists an analytical procedure which is
widely used. This procedure is based on our ability to transform
homogeneous functions into composite functions. Indeed, w e know
that both the homogeneous function and i t s argument assume values
from the same set. This means that the logical variable that is the
functional variable in one relation may be the argument in another
relation. The transformation into composite functions allows us to
express any homogeneous binary logical function in terms of cer-
tain simple functions. Naturally, the use of such functions and of the
related notation entails some specific rules, thatis, a special alge-
bra.

b) Functions of One and Two Variables

Let u s begin with the simplest case, where the function has only
one argument (n = I) , and where the general correspondence table

T h i s table differs from 1.5 in that we fill in the columns and not the rows.

PROPOSITIONAL CALCULUS 1 1

combined with the table of unidimensional binary logical space as-
sumes the form of Table 1.8.

Table 1.8

The number of points in this logical space is then r = 2“ = 2l = 2 ,
while the number of different functions is s = 2‘ = 22 = 4. These four
functions-yo, y1, y2, and y3- are shown in Table 1.8. There are no
other functions of one argument.

The values of the functions go and g3 do not vary with the values
of the argument, so that these functions are called constant. We
shall denote them by yo = 0, y3 = 1.

The function y2, called the identity finction, always assumes the
same value as the argument x ; the obvious notation is yz = x .

The function g1 becomes 1 when x = 0, and 0 when x = 1. It is
termed negation, and merits a special notation, yI = x; this is read
as “not x.” Note that two of the above four functions can always be
expressed as composite functions, using the symbolic notation for
the two other functions. Thus,

Therefore, w e can define any homogeneous binary function of one
argument in an analytical form by applying the special symbolic no-
tation for negation to the two functions y = 0 and y = x.

The general correspondence table for the case of functions of two
arguments XI and x2 (n = 2), is Table 1.9. Here the number of points

12 ELEMENTS OF MATHEMATICAL LOGIC

Table 1.9

in the logical space is r = 2" = 22 = 4, while the number of different
functions is s = 2r = Y 4 = 16. The column on the extreme right gives
the notation used for these functions. We see that s ix of these six-
teen functions were encountered among the functions of one argu-
ment. These include two constant functions (yo = 0 and 1 ~ 1 5 = I) , two
identity functions (ylo = X I and y12 = x 2) , andtwonegationfunctions

- -
(Y? = X z I l d 5J5 = XI).

PROPOSITIONAL CALCULUS 13

Of the remaining ten functions, two (y, and yII) are not indepen-
dent, since they differ from functions g2 and yI3 only in the relative
position of the two arguments. We are thusleft with eight new func-
tions of two independent variables. They have the following special
properties:

The functionylI = XI V x2 is 0 i f , and only i f , both arguments are
0. I t is called disjunction and is read “xI or x p .))

The function y13 = XI + X Z is called implication. It becomes 0 if,
and only if, the f i rs t argument (xI) is 1 and the second (x2) is 0; i t is
read “if x1 then x 2 ’) or ‘cfrom xI follows xz.)’

The function g9 = x1 - x2 is called equivalence. It becomes 1 if
both arguments have the same value, and i t is 0 if the arguments
have different values. It is read ‘‘xi is equivalent to x2,” or C‘xl i f ,
and only if, x2.”

The function = xi & x2 becomes 1 if, and onlyif, both arguments
are equal to 1. It is called conjunction and is read “xl andxz.”

The function y7 = x I / x 2 is called the Sheffeer stroke; i t is 0 if,
and only i f , both arguments are 1.

The function ys = x1 vxp is called the Exclusive OR; i t is 1 if
either the f i rs t or the second argument is 1 (but not i f both are equal

The function g2 = X I +- x2 is called, in technical applications, the
inhibit function. It is equal to the f i rs t argument (x ,) i f the second
argument (X Z) is 0; if the second argument is 1, the function be-
comes 0 , no matter what the f i rs t argument is.

The function YI = X I 4 x2 is called the Pierce stroke function; i t
becomes 0 if, and only if, both arguments are 0.

Now, we should also note that any function in the upper part of
the table (that i s , one of the functions go, yI, . . . , g7) is a negation of
some function from the lower part of the table (that is, one of the
functions 981 yg, . . . , gI5).

Consider, for example, the functions g6 and yg. We see from the
table thaty6 = 0 if (and onlyif)yg = 1 and, conversely, ye = 1 if yg = 0.
Thus, the variable gB may itself be considered an argument whose
values uniquely determine the values assumed by variable y9. From
our definition of negation, we have yb = yq. But y6 = xi V x2 and
g g = XI - x2. Consequently, xi V x2 = xi - x p . The table also shows
that this relationship holds for all pairs of functions which are ar-
ranged symmetrically around a line dividing the seventh and eighth
rows. We can w r i t e this relationship as y15 - = y l , where i = 0, I , 2,

Thus, the table implies that exactly half (i.e., four) of the eight
two-argument functions still under discussion, a r e not independent.

to 1).

-

-

. . ., 15.

14

Indeed,

-
y, = y,, i.e., x l / x r = x1 K. x2.

y,-yy,, i.e., x l V x ~ = = = x x , - x x , ~

y2==y13, i.e., X , ~ - X ~ = X ~ - - > X ~ .

y , =y,,, i.e., x, .i- x 2 = x 1 V x2. ,

~

~

-

ELEMENTS OF MATHEMATICAL LOGIC

Therefore we can now drop operations defined by / , v, t , and
$, and obtain a l ist of six simple logical functions

constant y = o ,

conjunction y = x1 Sr x2,
disjunction y = X I V Xg,

implication y = x i --> x,,

equivalence y - xl - x L

negation y = - 1 x,

I
I

(1.3)

which are sufficient, but by nomeans necessary, for expressing any
function of one or two independent variables in an analytical form.

To prove this, consider the function y = A', V x 2 . Because i t is a
function of two independent variables, i t must be equivalent to one
of those shown in Table 1.9. We shalldetermine which one by find-
ing i t s values at all four points of the corresponding two-dimen-
sional binary logical space, that is, at all possible v d u e s of argu-
ments x, and x2. The process of finding these values is illustrated
by Table 1.10, where we use the notation yi = T,; consequently
y = y I V x p . Our values of y show that y = x , + x 2 , which means that
w e a re dealing with the identity

Similarly, i t can be shown that

Identities (1.5) and (1.6) show that functions of one or two inde-
pendent variables may be completely described without employing
implication and equivalence. Thus our set of simple functions may
be further reduced to the following four:

PROPOSITIONAL CALCULUS 15

1
i

constant y = 0,
negation y = x.
conjunction y = x, 8: x2,
disjunction y = x, \/ x2.

-

A s w e shall see below, this is themost convenient set of simple
functions and hence is the one most frequently employed. However,
in principle, even this set can be still further reduced.

Indeed, the procedure used toestablishidentities (1.4), (1.5), and
(1.6), which enables us to dispense withimplication and equivalence,
may be employed to show that the following identities also hold:

- - Table 1.10
x, v x2 = x, a! x2,

x 1 8 : x , = x , - v % I (1.8)
O = X & X .

This means thateither of the las t twofunc-
tions, as well as the f i rs t function of set
(1.7) can also be dropped. We thus arrive
at a set consisting of only two functions

-
negation y = x,

conjunction y = x1 8: x2 } (1.9)
(or disjunction y = xtVx,),

by means of which w e can express any function of one or two argu-
ments.

We shall conclude this subsection by pointing out the special
properties of the Sheffer stroke y = x i / x z and the Pierce scroke y =

= xI .1 XZ. Either of these is sufficient for complete expression of any
function of one or twoindependentvariables by virtue of the fact that
both functions of the previously described set (1.0) may be expressed
by either of these forms. Thus

(1.10)

And since the set (1.9) is sufficient for complete description, so are
the two special functions.

16 ELEMENTS OF MATHEMATICAL LOGIC

c) Functions of n Variables.
Conjunctive and Disjunctive Normal Forms

The symbolism employed with one- and two-argument functions
may be extended to functions of three, four, and, in general, n inde-
pendent variables; for example,

y = (XI + X2) - cx, &! x3). (1.11)

We can construct a correspondence table for afunction of n argu-
ments. To complete i t , we scan all possible combinations of the
values XI, X Z , . . ., x,, (that is, all the points k O , k , , ... , k2n-1 in an
n-dimensional logical binary space) and determine the values of y
a t these points. For instance, for the function (1.11) at the point
k = 2, that is, at xi = 0, xz = 1, x3 = 0, w e have y(0, 1 , 0) = 0. Simi-
lar computations at all other points give Table 1.11.

Table 1.11
We shall now show that thesym-

bolism used for functions of one or
two arguments also allows u s toex-
p re s s in analytical form any function
of any number of independent vari-
able s .

A s an example, consider Table
1.11. We shall assume that this table
is given but that i t s analytical ex-
pression (1.11) is unknown, and w e
shall derive that expression from
the table. In so doing w e shall em-
ploy a procedure that is applicable
to any other similar table.

Let u s f i rs t consider anycolumn
in Table 1.11 in which E/ = 1: for instance, column k = 3. In this
column xi = I , x2 = 1, x:{ = 0. We therefore write yl = xi & x2&x3,
which, as can easily be seen, becomes 1 i f , and only i f , x , = 1, xz = 1,
and x3 = 0, that is, precisely at point k = 3. In an analogous man-
ner w e derive the functions

-

(1.12)

PROPOSITIONAL CALCULUS 17

that become 1 only at points numbered k = 4, k = 6, and k = 7 , re-
spectively, that is, at those points of Table 1.11 at which y = 1 .

Function y = y1 V y2 V y3 V y4 becomes 0 i f , and only i f , y, = 0,
y2 = 0, y3 = 0 and y4 = 0; in all other cases,y = 1. Since these “other
cases” are the points k = 3, k = 4, k = 6, and k = 7 , this means
that function

corresponds exactly to our starting Table 1.11. We have thus ob-
tained an analytical expression for the function given by Table 1.11.
However, our new expression is not in the form of Eq. (l.ll), but
in another, “standard,” form. While there is a marked difference
in the appearance of (1.11) and (1.13), both expressions represent
the same function, defined by Table 1.11; that i s , we have the iden-
ti ty

The technique just illustrated is quite general. Indeed, any func-
tion of n arguments can be given in the form of Table 1.12. Let u s
now take any column in which y = 1 and, writing out the conjunction
of all the n independent variables x , & x2 & x3 & . . . & x, , let u s mark
with the sign of negation those variables of this column that become
0. We then form such conjunctions for all the other columns where
y = 1, and we join them together by disjunction signs. Now we shall
have an expression containing several conjunctive terms joined by
disjunction signs. Each such term contains all the variables xi, x2, . .
. . . , x n , some o r all of which carry negation signs [for example,
w e may have xi & x2 & . . . &x, (no negated variables), as well as
xl & x2 & . . . &in (all the variables negated)]. The various functions
derived from the table and represented in this form can differ only
in the number of disjunctive terms andin the way in which the nega-
tion signs are distributed above the variables xi of the component
conjunctions.

Expressions of this type are veryimportant in propositional cal-
culus: the disjunctive expression, constructed of terms which are
different conjunctions of all the independent variables of a logical
function, or their negations, is called the complete (or full, or
perfect) disjunctive normal form of the function.

- -

18 ELEMENTS OF MATHEMATICAL LOGIC

Table 1.12

The complete (or full, or perfect) conjunctive normal form
is the conjunctive expression constructed of terms which are
different disjunctions of all the independent variables of a logical
function, o r their negations.

The term complete is usually omitted, that is, w e speak of a
disjunctive Iwrmal or a conjunctive normal form whenever i t is not
required that each term of such a form be a conjunction or a dis-
junction (as the case may be) of all the variables of a logical func-
tion.

Let us now consider the following property of normal forms. If
a function y is expressed by a normal (either simple or full) dis-
junctive (or conjunctive) form, and i f all theV signs in this expres-
sion are replaced by & and all the & signs are replaced by V, and
if a negation sign is placed above each variable (if the variable al-
ready carr ies such a sign, another identical sign is added to i t ; this
is equivalent to a removal of negation), then w e obtain function
written in normal (either simple or full) conjunctive (or disjunctive)
form. This property is a direct consequence of identities (1.8).*

In contrast to simple normal forms, the full normal forms are
unique in the sense that there is only one way in which each function
can be represented a s a ful l normal disjunctive o r conjunctive form
(that is, if we disregard permutations of disjunctive or conjunctive
terms and of independent variables).

W e shall illustrate the importance of these concepts by two prob-
lems.

T h i s is referred to as Duality o r L k Morgan’s Law.

PROPOSITIONAL CALCULUS 19

Problem 1. Determine whether a function n arguments y = y
(xi, x2, . . . , x,) can be reduced to a constant function y = 0.

This problem is solved by reducing the given function to i ts dis-
junctive normal form. Then, if one finds that each disjunctive term
contains at least one variable in conjunction with i t s negation (that
i s , xi & xi), the function is of the form y = 0. If this is not the case,
than we can always find values at which y = 1 ; that is, the function
is not a constant y = 0.

This problem has a dual in which i t is required to determine
whether a given function can be reduced to the form y = 6 = 1. The
solution is obtained by reducing the given function to i ts conjunctive
normal form. If one then finds that each conjunctive term contains
the expression xi V xi, then in this case (and only in this case) the
given function reduces to the form y = 1.

The question whether some function y = yixl , x p , . . . , x,) can be
reduced to the form y = 1 or y = 0 is called the decision pvoblem.
Within this problem, functions that reduce to the form y = 1 (or
y = 0) are called identically tme (or f a l s e) , whereas functions that
do not reduce to either y = 1 or y = 0 are called feasible.

Problem 2. Given a logical function of n arguments !I = y
(x i , X Z , . . . , x i) , find all sets of values of arguments at whichy = 1.

The problem would be solved if the given function could be re-
duced to i t s full disjunctive normal form.

The required number of sets of argumentvaluesis exactly equal
to the number of disjunctive terms in the full disjunctive normal
form of the function. The specific values of all the arguments in
each set is determined in the following manner. Each set of values
xi (where i = 1 , 2 , . . ., n) at which y = 1 (the values a re defined by the
jth parentheses) has the form

XI = X l i ’ x, =xzj , . . . , x, = x ‘ n l ’

where x i j is equal to 0 or 1, depending on whether the corresponding
ith independent variable appears in the jth conjunctive parenthesis
with or without a negation sign.

d) Functions of n Variables.
The Algebra of Propositional Calculus

The full disjunctive normal form (1.13) of our example defined
a function for which we already had a shorter expression. In other
cases, too, there exist functional expressions that are shorter and
more convenient to use than the full disjunctive normal forms. In

20 ELEMENTS OF MATHEMATICAL LOGIC

other words, there are other cases inwhichwe can establish identi-
ties similar to (1.14).

Thus far, we have proved all identities of functions of one, two,
o r more variables by a test involving substitution of all the possible
values of these variables. This method has two major disadvantages:
i t does not afford any opportunities for deriving new identities and
in this sense is passive; in addition, i t becomes more and more
laborious a s the number of variables increases. Fortunately, how-
ever , we have at our disposal another method based on the use of
certain rules for identical transformations. Thus the collection of
simple functions

-
y = o , y = x , y=x,8rx,, y = x , v x , ,

y = X I + x2. y = x, - x2 (1.15)

may be operated upon by means of a system of rules, usually re-
ferred to as the algebra of logic or Boolean algebra, which consists
of the following identities:

- -
x = x, (1.16)

-
X I --> X? = x , v X ? , (1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

Each of these identities may be proved by direct substitution of
all the possible values of the variables appearingin the left and the
right sides of the identity.

PROPOSITIONAL CALCULUS 21

The OR and AND operations of this algebra have much in com-
mon with addition and multiplication of ordinary algebra. Thus, they
obey the f i rs t and second commutative l a w s [identities (1.24)], as
well as the f i rs t and second associative l a w s [identities (1.25)].
However, in contrast to ordinary algebra, they obey two distributive
l a w s rather than one [identities (1.26)]; and “reduction of like
terms” or “multiplication of avariable by itself” are accomplished
via identities (1.19), without introducing any factors o r exponents.

This system of identities permits a purely analytical solution of
a great variety of problems. Moreover, standard methods may be
used for some of these solutions. For instance, any analytical func-
tion may be transformed directly into a normal disjunctive form, a
procedure illustrated by the following example.

EXAMPLE. Let the starting function be

First , let u s eliminate the -+ and - signs. Applying identities (1.17)
and (1.18), w e obtain

Next, let u s eliminate those negation signs that relate not just to a
single variable but to an entire aggregation of such variables. We
do this by means of identities (1.23) and (1.16) to obtain

Now, in order to arrive at adisjunctive normal form i t is sufficient
to expand the expression in the braces as specified by identity
(1.26a). Simplifying the intermediate results by means of (1.16) and
(1.19) as we go along, we obtain

y = (~ (X , ~ ~ , ~ x , ~ v ~ x 1 ~ X ~ ~ x , ~ 1 ~ ~ ~ 2 V ~ ~ ~ ~ v ~ ~ l ~ ~ ~ ~ =
_ _ _

= (x, & XI & 33 & X~)V(XI & ~3 8t X p) V (X I & X I & xg & X3)V (1.30)
v(X,&X,~x,)v(x,G).

The f i rs t , third, and fourthdisjunctive terms of the above disjunctive
normal form are 0, since they contain expressions of the form

22 ELEMENTS OF MATHEMATICAL LOGIC

x & x. The second and last terms lack suchexpressions, and there-
fore our function does not reduce to y = 0 ; i t may therefore be
written a s

Thus,

To reduce a given function to i t s complete disjunctive normal
form, i t must f i rs t be reduced to some normal disjunctive form by
the methods already discussed. Let u s follow the remainder of the
procedure on our example.

Our normal form (1.32) is notfull because i t s second disjunctive
term does not comprise all the variables: x, (or x;) is missing. HOW-
ever , i t is readily seen that the following identity is true:

Substituting the disjunction given by (1.33) for the second dis-
junctive term of the normal form (1.32), w e obtain

which is the full disjunctive normal form of the given function. Of
course, i f these transformations would have given an expression
containing several identical disjunctive terms, w e would have re-
tained only one of these.

Reduction to a conjunctive normal form differs from the above
technique only in the last step where, instead of expanding the ex-
pression derived in the preceding steps in accordance with identity
(1.26a), w e use the second distributive law, thatis, identity (1.26b).

EXAMPLE. Let the conjunctive normal form of a function of
three variables be

y :-- XI & (X, VX,VX,). (1.35)

To transform this into a complete normal form, w e use the identities

PROPOSITIONAL CALCULUS 23

and we get

which is the complete conjunctive normal form of the starting func-
tion.

So far , w e have demonstrated the use of Boolean algebra by re-
ducing a given logical function of several variables to i ts full nor-
mal (or any normal) disjunctive (or conjunctive) form. However, the
function may be given by means of atable. In this case, we can ob-
tain a unique complete disjunctive normal form via the method al-
ready described. We can then transform this expression by means
of Boolean identities and thus arrive at other analytic expressions
of the same function. Given the varietyofpossible forms of a func-
tion, we are faced with the problem of determining which of these is
optimum for our purposes. We shall return to this somewhat later.

1.4. TWO-VALUED PREDICATE CALCULUS

We shall now return to a subject which w e have briefly considered
a t the end of Section 1.2. Thus we shall consider two-valued predi-
cates, that is, logical functions which themselves assume only the
values of 0 or 1, but whose argumentsmay take on values from any
set whatsoever.

Predicate functions are denoted by capital letters. This permits
us to distinguish visually between a predicate (a nonhomogeneous
logical function) and a complex proposition (a homogeneous logical
function). Thus, an n-place predicate may be written a s

where x,= (xll, . . ., x l P] , . . ., x,, = { xn l , . . ., xnqj a re the objectvari-
ables and their alphabets.

Since two-valued predicates assume values from a binary set
0 and 1, they may themselves be the arguments of two-valued

24 ELEMENTS OF MATHEMATICAL LOGIC

homogeneous logical functions; for this reason, we can apply to
them the symbolism of propositional calculus. Thus, suppose we
have the predicates

We can subject these predicates to any one of the operations of
propositional calculus to obtain a new predicate; for example,

(1.39)

This use of operations of propositional calculus permits u s to achieve
several ends. To begin with, w e can relate several simple predicates
to each other and form a compound predicate, as in the above example.
Also, w e can relate predicates to any and all simple propositions,
as well a s to the compound propositions that can be formed from the
simple ones by the same operations of propositional calculus. Thus
from the predicates (1.38) and the binary logical variables

x 3 = [O, I] , xq= (9, 1)

we can construct a composite function, for example,

(1.40)

where Z can only be two-valued.
The only variables which w e have encountered in the compound

function of propositional calculus were the simple prepositions. In
the predicate calculus, however, not only simple propositions, but
also the object variables of the predicates, as well as variable
predicates can act a s variables. The presence of these elements
constitutes the main characteristic of this calculus, and necessi-
tates new operations that are qualitatively different from those em-
ployed in propositional calculus. The operators corresponding to
these new operations are called quantifiers.

There a re two types of quantifiers: the univevsal and the exis-
tential.

The universal quantifier is an, operator that matches any one-
place predicate q = P (x) with the binarylogicalvariable 2 which be-
comes 1 i f , and only i f , g = I a t all values of x . This is written

2 = (V X) IJ (X),

TWO-VALUED PREDICATE CALCULUS 25

where c c V ~ 9 7 is the universal quantifier. The above expression is
then read as “for all x there is P (x) . ”

The existential quantifier is an operator that matches a one-place
predicate y = P (x) with a binary logical variable z which becomes 0
if, and only i f , y = Oat all values of x. This is written

2 = (3x) P (x) ,

where “3x7’ is the existential quantifier. The above expression is
then read as “there is an x such thaty = P(n).”

Let u s discuss some general properties of these operators. In
accordance with the definitions of quantifiers, the logical variable
z in

(1.41)

is not a function of the object variable x ; here, z is an “integral”
characteristic of the predicate P (x) . To underscore the absence of
functional dependence of z on x, the object variable x in such cases
is said to be bound. Object variables that a r e not bound are said to
be free. Of course, the universal and existential quantifiers may
also be applied to functions of propositional calculus. But i f w e do
that, then they degenerate into finite conjunctions and disjunctions.
Indeed, suppose we have a functionq = y(x,, . . . , x,,) in which both
the variables and the function are two-valued logical variables. The
same function may be given in the form y = ~ (k) , where k is a nu-
meral denoting a point in an n-dimensional binary logical space.
From the definition of quantifiers, we have

For this reason we can consider the universal and existential
quanti f ie r s as generalized conjunction and generalized di s j unc ti on,
respectively. And because of the analogy between conjunction or dis-
junction and the summation of real numbers, one can draw an analogy
between the operations specified by quantifiers and the integration of
functions of a real variable. If one applies a quantifier (either uni-
versal o r existential) to an m-place (rather than a one-place) predi-
cate, the result is again a predicate; this time i t is, however, an
(rn - 1)-place predicate since one object variable becomes bound.

26 ELEMENTS OF MATHEMATICAL LOGIC

Thus, in dealing with predicates, we employ not only the opera-
tions of propositional calculus, but also operations involving binding
of object variables by universal andexistential quantifiers. The cal-
culus in which the above operations are used to construct compound
functions is called restricted predicate calculus.

This new operation of binding by quantifiers introduces identities
which differ from those of the Section 1.3. Examples of such identi-
ties are

(3x1 P (XI = (Vx) P(x).

(1.42a)

(1.42b)

The identities of propositional calculus, supplemented by identi-
ties (1.42), comprise a mechanism useful for solving a variety of
problems. A s in propositional calculus, the most important problem
of predicate calculus is that of decision, but because the independent
variables a re different, the manner in which this problem posed is
also somewhat different.

Thus, the decision problem of propositional calculus in deter-
mining whether a given compound functionis identically true, feasi-
ble, or identically false. However, the following must be asked in
predicate calculus: (a) I s a given compound function identically true;
that i s , does i t assume the value of 1 with any object variable and
any predicate? Or (b) I s i t identically true only over a certain set
of object variables; that is, does i t assume the value of 1 only over
a certain set of object variables and for any predicate from this s e t ?
Or (c) I s i t feasible; that i s , does i t assume the value of 1 at some
values of object variables and a t some predicates? And, finally, (d)
Is it, identically false, that i s , unfeasible? Incontrast to the case of
propositional calculus, the decision problem of predicate calculus
can be solved only for special kinds of compound functions.

2

Engineering Applications of
Propositional Calculus

2.1. COMBINATIONAL RELAY SWITCHING CIRCUITS

We have already said that the promise of mathematical logic in
engineering design f i rs t became apparent during the analysis of elec-
trical relay switching circuits. In time, i t became progressively
more evident that this logic is not only applicable to the analysis of
relay switching circuits but that the operation of such circuits mir-
rors the postulates of the logic. The result of this discovery was the
relay switching theory. Then, when contactless devices that perform
the same functions as relay switches came into existence, the spe-
cial theovy of relay circuits w a s extended into a general theory of
switching systems.

We shall now examine this most conspicuous example of appli-
cation of logic to engineering, concentrating on the so-called com-
binational relay switching circuits.

Every electric relay switching circuit contains two types of con-
verters: electrical-to-mechanical and mechanical-to-electvical.
The electromechanical relay converts electrical input signals into
a mechanical displacement of i t s contacts. On the other hand, the
mechanical-to-electrical converter is an electrical network com-
prising contacts and relay coils: i t converts the mechanical dis-
placement of i t s (input) contacts into electrical output signals (cur-
rents flowing in the coils of the relays). Connection of outputs of
converters of one type to the inputs of converters of the other type
gives a variety of relay switching networks.

The simplest electromechanical relay consists of a coil I , a core
2 , an armature 3 , and two groups of contacts: normally closed 4 ‘ ,
and normally open 4” (Fig. 2.1,a). If acurrent larger than the ac-
tuating current i2 (Fig. 2.1,b) flows in the coil, the armature is

27

28

Component

ELEMENTS OF MATHEMATICAL LOGIC

.
1 0

attracted to the core, and this causes all the normally open contacts
to close and all the normally closed contacts to open. On the other
hand, if a current smaller than i, flows in the coil (in particular,
when the coil is de-energized, the armature recedesfrom the core,
causing the normally closed contacts to close and the normally
open contacts to open. To avoid the complications arising in tran-
sient states, w e shall consider only the stable states of the relay,
that is, states when the coil current i has either of the following
values: i < i, or i > iz. Thus the relay has two stable states or, to
say i t in another way, there are two states which a re characteristic
for all the elements of the relay. We are, however, interested only
in the coil and in the contacts. Each contact has two states: closed
and open. We shall designate these states by 1 and 0, respectively;
that is, w e shall treat the state of a contact as a binary logical vari-
able assuming these values.

The coil also has two states. The f i rs t of these occurs at i > iz,
and we denote i t by 1. In the second state, denoted by 0 , the coil is
de-energized (i < it). Thus the coil states can also be represented
by a logical variable that can be either 0 or 1. The physical signifi-
cance of these values is shown in Table 2.1.

Table 2.1

Symbol

energized de-energized I Open

Contact closed

COMBINATIONAL RELAY SWITCHING CIRCUITS 29

The state of a relay contact is goverenedby the state of the coil
in the following manner:

- -
FQr a normally open contact x = X,
For a normally closed contact x‘ = X = x

where X, x , x’ are the logical variables specifying the states of the
coil, of the normally open contact and of the normally closed con-
tact, respectively.

If a relay has more than one coil, i t becomes convenient to an
“equivalent coil.” Thus, let the relay have two coils (XI and X,)
and le t these be so connected that the relay shall operate only if
both are energized, that is, if X, & X 2 = 1. Letus now imagine a coil
4, such that it wil l cause the relay to operate only if Xi & X2 = I . Ob-
viously the action of our equivalent coil, which is related to that of
the actual coils by

xe= x, & x,

and which governs the state of the relay contacts in accordance with

x = Xe
x’ = x, = ,? (for normally closed contacts),

(for normally open contacts)

is completely equivalent to the action of the two actual coils.
So far, w e have discussed a relay with two coils. By the same

reasoning, w e can imagine a relay with rn coils connected so that
the relay operates only a t certaincombinationsofthe 1 and 0 states
of the constituent coils.

A relay circuit incorporating m coils in a specific arrangement
is described by a logical function specific to this circuit:

x, = M (X,, x,, . . . , Xm).

However, this specificity does not change the general relationship
between the contacts of the relay and i t s equivalent coil.

We shall now turn to the representation of the mechanical-to-
electrical converter, that i s , of contacts connected to relay coils.
Let us s tar t with the case when the circuit (Figs. 2.2, a and 2.2,a‘)
consists of a contact I of an input relay and a coil 2 of another relay
(the output relay), the coil being either in series (Fig. 2.2,a) or in
parallel (Fig. 2.2,a’) with the contact.

30 ELEMENTS OF MATHEMATICAL LOGIC

-L -1

+oT

+
7

I Yz Y3 I

Retaining the symbols 0 and 1 for the states of the contacts and
the coils, we obtain Z = yfor acoil connectedin series andZ’ = c= z
for a coil connected in parallel; here, y is a logical variable spec-
ifying the state of the contact, and Z and Z’ specify the states of
the coils connected with i t in series and in parallel, respectively.

In the usual practical case, we do not deal with a single contact
I but wi th a group of contactsy,, yz, . . . , y n belonging to several re-
lays, all combined into an electrical network. We shall call an elec-
trical network incorporating contacts a switching netwovk. The
dashed lines in Figs. 2.2,b-e enclose examples of such networks.

Again, i t wi l l be convenient to use an equivalent variable-the
equivalent contact ye -whose properties a re analogous to those of
the equivalent coil in a multiple-coil relay. For example, with the
two contacts !/, and y2 of Fig. 2.2,b connected in series, the circuit
in section a b will be closed only if y i & y z = 1. By introducing the
equivalent contact

Ye = Y 1 & Y *

and setting up the relationships

COMBINATIONAL RELAY SWITCHING CIRCUITS 31

Z=y,

2’ = 7, = 2 for parallel connection (Fig. 2.2 ,b’),

for series connection Fig. 2.2,b)

we preserve all the characteristics of the circuit.

into circuits: w e thus obtain functions
Figure 2.2 also shows some other ways of arranging contacts

In the general case,

In this generalized function, the relationship between the coils and
the equivalent contact remains the same as that specified above (the
matching condition N must, of course, reflect the actual arrangement
of the contacts in the switching networkwhenthe function is used to
represent a specific circuit). The physical meaning of ye is that of
the conductivity of a two-terminal network containing the given
switching circuit.

Each of our converters has the ability to detect; that is, i t ex-
hibits a directional effect. In the electromechanical converter-the
“relay with contacts”-the contact state is governed by the coil
state, but the contacts have no effect on the coil state. In the
mechanical -to-ele ctri c a1 converter -the ‘ ‘ contact network with
coils’’-the coil state is governed by the states of the contacts, on
which the coil has no effect. This property of converters allows us
to treat them as devices with variable inputs and outputs. The input
variables XI , . , _ , X , of the electromechanical converter are the
states of the relay coils (energized o r de-energized); the two out-
put variables x and x’ of this device are the states of the two differ-
ent contacts (normally open o r closed). A s already stated, this de-
vice may be treated as consisting of two series-connected subunits:
The f i rs t performs the logical function

while the second realizes the functions

- -
x = x,, x’ = xe = x.

32 ELEMENTS OF MATHEMATICAL LOGIC

In the mechanical-to-electrical converter the states of the con-
tacts of the input relay act asinputvariables yi , . . ., y,,, and the coil
states of the two output relays act as output variables Z and 2’.
This device may again be treated as consisting of two series-
connected subunits, the f i r s t of which realizes the logical function

while the second performs the functions
- ..

z=ye, Z’=y,=Z

We see now that the two types of converters have identical prop-
ert ies. Any relay switching circuit may be broken down into units
having the above-described properties.

We shall assume that our combinational relay switching circuits
obey the following conditions: they consist of instantaneously
actuated, ideal relays; and they have no feedback loops; that is,
they consist only of subunits exhibiting a direction effect.

Figure 2.3,a shows the schematic of such a combinational relay
switching circuit and Fig. 2.3,b shows the correspondingblock dia-
gram; i t can be seen that the latter has no feedback loops. Contrast
this with the schematic diagram shown in Fig. 2.4,a: i t s block dia-
gram (Fig. 2.4,b) does show a feedback loop. The operation of such
a circuit cannot be analyzed without taking into account the relay-
actuating ti me.

Fig. 2.3.

In drawing relay switching circuits w e usually identify each coil
by means of the corresponding logical variable; contacts are usually
identified by an expression that specifies only the contact state (in
terms of the state of the coil governing it).

COMBINATIONAL RELAY SWITCHING CIRCUITS 33

Fig. 2.4.

2.2. ANALYSIS OF COMBINATIONAL RELAY
SWITCHING CIRCUITS

Consider the following problem: Given a combinational relay
switching circuit, it is required to find its mathematical descrip-
tion, that is, todetermine the logical function performed by this c i r -
cuit.

W e shall analyze only circuits with single-coil relays (these are
the most common switching circuits), We have already seen (Sec-
tion 2.1) that for these relays

x= X for in the case of normally open contacts
- -

X' = X = x for in the case of normally closed contacts,

where X , x , and x' are variables specifying, respectively, the states
of the coil, the normally open contact, and the normally closed con-
tact.

This means that a single-coil relay operating alone wi l l perform
either repetition or negation.

The great variety of combinational switching circuits that can
be synthesized is due to use of different arrangements of normally
open and normally closed contacts of single-coil relays. The re-
sulting switching network can be represented by the relationship

where xi, x i , and xeare variables specifying, respectively, the states
of the contacts of the i th relay and of the equivalent contact.

However complex and involved a switching networkmaybe, it is
always possible to represent i t in terms of

- -
x,= F (X 1 , XI, . . . , X " , xn).

34 ELEMENTS OF MATHEMATICAL LOGIC

Such a formula may be derived by a procedure which generalizes
the obvious fact that if two contacts x1 and x2 a re connected in ser ies ,
we have xe = xI & x2, while for contacts connectedinparallel w e have
x, = XI v x2.

To clarify the principles on which this procedureis based, con-
sider an example. The two-terminal switching circuit tobe analyzed
i s shown in Fig. 2.5,a. We shall gradually simplify this circuit by
introducing equivalent contacts. To s tar t with, w e shall eliminate
all the chains of series-connected contacts. Putting

we transform the original circuit into i t s equivalent shown in Fig.
2.5,b.

The next step is toeliminate all the groups of contacts connected
i n parallel. To do this we write

~-
X l j = . r2vx i ; xlq= x,vx,; X,J = x,vx,; X16 = x,vx,,

or , using the notation already introduced,

We then obtain the circuit shown in Fig. 2 . 5 , ~ .
Again, we shall eliminate the chains of series-connected con-

tacts in this new circuit. We do this by means of the following equiv-
alents:

We thus obtain the circuit shown in Fig. 2.5,d. This circuit cannot
be further simplified by the above methods of elimination.

Now, let us number all the modes of this circuit, using identical
numbers for those nodes which a re directly interconnected (without
intervening contacts). We thushave Fig. 2.5,d,withnodes I , 2, . . ., m
(in our case, ni = 4) . It is now convenient to transform this circuit

ANALYSIS OF COMBINATIONAL RELAY SWITCHING CIRCUITS 35

Line 1

Fig. 2.5.

into the form of Fig. 2.5,e, which is obtained by combining all the
nodes bearing identical numbers.

The circuit in Fig. 2.4,e canalsobe presented as a "tree" (Fig.
2.5,f) constructed in the following manner. We draw several t iers
and assign to them the numbers corresponding to the nz nodes of
Fig. 2.5,e; w e thus have t iers I , I I , ill, and I V . Node 1 is placed in

36 ELEMENTS OF MATHEMATICAL LOGIC

the f i rs t tier. From itwe draw acluster of m - 1 branches, all ter-
minating in the second tier. The ends of these branches are marked
with the numbersof the remainingnodesof the circuit [that i s , nodes
which together with the initial node of the cluster (node 1) constitute
the complete set]; in our case, that means the numbers 2 , 3, and 4.

Next, w e use each of these /n - I nodes of the second tier (but not
the node rn , that i s , 4) as the origin of a cluster of rrz ~ 2 branches
which terminate in the third tier. Thus, we obtain two clusters of
branches, originating at nodes 2 and 3, respectively. The third-tier
ends of the cluster drawn from node 2 are given the numbers of all
the second-tier nodes, with the exception of 2 (that is, the ends of
this cluster carry the numbers 3 and 4). In the same way, w e num-
ber the terminals of the cluster of m - 2 branches originating at
node 3 (but here we omit 3), and so on.

In the next step, each third-tier node, except those designated by
m , serves as the origin of a cluster of rn -- 3 branches joining the
third and the fourth tiers. The fourth-tier terminals are numbered
by the same procedure as the third. It is readily seen that the last
(or tilth) t ier will now hold only nodes designated by m , from which
no further branches can be drawn (dead-end nodes).

We now have a ‘‘tree” in which each “branch” connecting two
nodes corresponds to the w i r e performing the same function in the
circuit of Fig. 2.5,e.

The switching network of Fig. 2.5,f traces all the paths leading
from node 1 to node 4 and is equivalent to that of Fig. 2.5,e. Now,
w e can eliminate all groups of series-connected contacts by using

and w e get the circuit shown in Fig. 2.5,g. We then eliminate the
groups of parallel contacts by using

- X22 = X20VX1, =
= (Xi & x2 & Xj)V(X4&X2& X,)V(;EI & x3& XS) v (X, x j ‘3 Xd,
X23=X21VX19=(X, &X,&x,&x,)V(~,&X,&Xg)

and we get the diagram of Fig. 2.5,h.

this time using the expressions
Again, we eliminate the groups of series-connected contacts,

ANALYSIS OF COMBINATIONAL RELAY SWITCHING CIRCUITS 37

We thus obtain the circuitof Fig. 2.5,i. This last circuit can be rep-
resented by the function

This is the logical function performed by the original circuit of
Fig. 2.5,a. But i t is also performed by the circuit of Fig. 2.6; that
is, the circuit shown in Fig. 2.6 is equivalent to that of Fig. 2.5,a.

Incidentally, contact x4 of Fig. 2.5,a is absent
from the equivalent circuit of Fig. 2.6; this means
that it serves no purpose in the circuit, a fact
which can be readily verified. Indeed, Fig. 2.5,a
shows that the circuit can be closed by closing
contact x3 alone. If x 3 i s open, then w e can close
the circuit by closing x , , x 2 , and x5, and therefore
do not need x4.

We have considered only one example of a pro-
cedure which allows u s to derive the logical func-
tion corresponding to any given circuit. This pro-
cedure is called the analysis of the circuit. The
simplification of the starting functions, arrived at
by means of Boolean algebra, results in circuits
that are equivalent to the starting networks but have the great ad-
vantage of being much simpler.

In our example we were able to simplify the function to such an
extent that the practical switching circuit performing i t could be
drawn without further ado. This, however, is not always possible,
especially in the more complex cases. In these cases, the logical
function so derived is but the starting point in the synthesis of a
switching network capable of realizing it.

Line 1

-T
_ei

Line

Fig. 2.6.

2.3. SYNTHESIS OF COMBINATIONAL
RELAY SWITCHING CIRCUITS

Assume that we are given some logical function and that we are
required to construct a relay circuit embodying it. We shall discuss
only circuits consisting of single-coil relays and an output relay
whose coil is connected in ser ies with the contact network. We shall
assume that the logical function is given by a table enumerating all
possible combinations of values of the variables, each such combina-
tion corresponding to some value of the function (such tables were
described in Section 1.3).

38 E L E M E N T S OF MATHEMATICAL LOGIC

Table 2.2 Consider the function of three
variables y = L (xi , xz , x3), given by
Table 2.2. Its complete disjunctive
normal form (see Section 1.3) is:

This form is directly translatable
into a practical switching networkby
means of the following rules:

A s i n the case of analysis, a normally open contact is made
to correspond to xi (in this particular function, i = I , 2, 3), and a
normally closed contact to F7. Each conjunctive term (in paren-
theses) becomes a chain of series-connected contacts, whose states
a re specified by variables contained in the parenthesis. The com-
plete disjunctive normal form corresponds to parallel connection
of the above-mentioned ser ies chains.

Applying these ru l e s to our ex-
ample, we obtain the circuit shown
in Fig. 2.7.

Thi s canonical technique w i 11
translate any logical function into
a series-parallel switching net-
work. In some cases i t is thenpos-
sible to simplify the result, ob-
taining a c i r c u i t containing a
smaller number of elements (see
the example of Section 2.2).

There are, however, other techniques, which by abandoning the
canonical technique and the series-parallel network in favor of the
so-called bridge circuit, lead directly to more economical systems
embodying a given logical function. *

We shall now present, without proof, one such technique-devised
by A. Sh. Blokh.** Returning to Table 2.2, which defined our logi-
cal function, let u s write out the row containing the values of y , that

1
f 1, 1, 1,
a l " x " f 2 p
x3 x3 3 3 x3

Fig. 2.7.

*However, these techniques s t i l l do not assure c i rcui ts with a minimum number of ele-
ments. Thc synthesis of c i rcui ts that a r e "minimum" with respect to some design vari-
able is a ser ious problem f o r which there is, at present, no final solution. For a discus-
sion, see Section 2.6.

**See [7], which contains all the necessary proofs. However, Blokh does not use the
t e r m "canonical" in the same sense as we do.

SYNTHESIS OF COMBINATIONAL RELAY SWITCHING CIRCUITS 39

is

01 101001

We then group the symbols of this row into pairs as follows:

01 101001. _ _ _ -

Should any pair contain two identical symbols, that symbol is
written below that pair (there are no such pairs i n this example).
Otherwise, w e assign the symbols 2 and 3 to the remaining pairs as
follows:

01 10 1001
2 3 3 2
- _ -

These new symbols a re again grouped into pairs; the new pairs
are again grouped as above, and w e assign the symbol 4 to the group
23 and the symbol 5 to group 32. The new symbols a re again grouped,
and so on, until a complete triangular matr ixis obtained. This ma-
t r ix wil l always have k + I rows, where k is the number of arguments
of the function. Thus the function of Table 2.2 yields the matrix

01 10 1001
T 3 3 2

4 5
6

NOW we proceed with the design of the switching network. To
s tar t with, w e draw one horizontal line for each row of the matrix
(in this case, k + 1=4). We then enter each of the elements of the
matrix a s a point on the corresponding line, copying the respective
numeral above that point; we thus obtain a set of nodes which we
join into a “tree.” In drawing the tree, we omit branches that lead
to nodes denoted by 0 (see Fig. 2.8). On the branches originating in
the lowest t ier w e place the contacts of the third relay (xg and x,),
with x3 on the left- and x3 on the right-hand branch. Similarly, con-
tacts i* and x2 are positioned on the branches originating in the sec-
ond lowest tier, while contacts & and x1 are located on the branches
starting from the third tier. If the tree contains a branch joining
two nodes denoted by the same numeral, then the nodes a r e short-
circuited (no contact is placed on thebranch). For our example, we
obtain the circuit shown in Fig. 2.9.

For all practical purposes, we now have a network performing
the given function. This network may be simplified to i ts final form

40 E L E M E N T S OF MATHEMATICAL LOGIC

6

Fig. 2.8. Fig. 2.9.

by combining the nodes denoted by the same
numeral, thus reducing the number of com-
ponent contacts. Our final design will then
be the bridge circuit of Fig. 2.10.

The above technique yields a combina-
tional relay switching circuit for any given
logical function. This circuit usually con-
tains a smaller number of elements than that
synthesized by means of the canonical method
employing the full normal disjunctive form
of the function.

A-

zQ;
2.4. OTHER METHODS FOR CONVERTING

LOGICAL FUNCTIONS INTO
PRACTICAL DEVICES

4 li' x2g5
x3vx3 6

Fig. 2.10. Aside from electromechanical relays,
there a re other practical devices embodying

logical functions, that is, capable of executing the operations of
propositional calculus. We shall now give a few examples of these.

a) Diode Logic

A diode is an element with a nonlinear characteristic such that
a flow (an electric current, a stream of air or of liquid, or any
other flux) can pass through i t in one direction virtually without
resistance while a practically infinite resistance to this flow is
offered in the opposite direction. Thus, the diode acts as a gate,
allowing flow in one direction and blocking i t in the other. In dia-
grams i t is usually represented by the symbol shown in Fig. 2.11,
where the triangle points in the allowed direction of flow.

OTHER METHODS FOR CONVERTING LOGICAL FUNCTIONS 41

In relay switching circuits, the input of the
logical variables A', , X 1 ,and so on,is accomp-
lished by feeding current to the relay input.
Wherever a negation (complement) of these
variables is desired, one employs a nor- Fig. 2.11.
mally closed contact. However, this cannot
be done with diode circuits, because these circuits a r e incapable of
performing the operation of negation.

For this reason, not only the variables x,, x2, and so on, but also
their negations (complements) x I , x2, and so on, must be fed as in-
puts. These negations are performed outside the diode circuit by
other devices, for instance, by electromechanical relays.

We shall now show how any logical function can be embodied in
circuits employing only diodes and linear resistances. Let the func-
tion be given in its complete disjunctive normal form

- -

y = Y,VY2VY,VY, =

- - ((X1&XL&X1) \ / (X1&X,RX~)V(X, ,ex,& x,)V(x,Kx*&x,)

This function has three independent variables and so the circuit
must contain three pairs of lines-x, and XI, x2 and <, x3 and x3.
The number of output lines must equal the number of conjunctive
terms (in parentheses) of the function beingperformed. In our case,
there are four such terms (Fig. 2.12). All the output lines terminate
in diodes whose terminals a r e , in turn, tied to a single output re-
sistance. Such a circuit performs a disjunction in the same way as
any other parallel connection. The input signals are also fed through
resistances.

Y=Yl "Y2 "Y3VY4

+ +--
Fig. 2.12.

Each output line represents one of the conjunctive terms of our
functional form. But the logical variables, at leastin our case, are
contained in all such parentheses. For this reason, each output line

42 ELEMENTS OF MATHEMATICAL LOGIC

must be connected, via diodes, withall thoseinput lines which carry
the variables contained in a given conjunctive term. The connecting
diodes a re arranged so as to permit the current to pass from the
output to the input lines. In our example, the f i rs t conjunctive term
is

- -
y , = x, & x* & x3 .

Its corresponding diode switching circuit is shown in Fig. 2.13; the
complete diode circuit, performing the complete logical function, is
shown in Fig. 2.14.

Any other logical functions may be performedina similar fash-
ion.

This technique s tar ts from the complete disjunctive normal form
of the function and is therefore as canonical a method as that em-
ployed for the synthesis of the relay switching circuits of Section
2.3. However, i t usually yields circuits that are uneconomical be-
cause they require too many diodes. Although there are methods
for designing more economical circuits, we shall notdwell on them
here and shall refer the reader to the original publications (see, for
example, [127]).

? . 8 3

Fig. 2.13.

Fig. 2.14.

OTHER METHODS FOR CONVERTING LOGICAL FUNCTIONS 43

b) Triode Logic

A triode is an element exhibiting a variable resistance in re-
sponse to acontrol signal. All other conditions being equal, the plate
current of a triode (vacuum) tube, isdeterminedby the grid voltage;
in a transistor triode, the resistance varies as a function of an ex-
ternally applied signal.

The characteristic curve of any triode device exhibits a satura-
tion, at which the resistance is constant andmaximum. We can use
as logical variables (levels 0 and 1) the control signal levels which
produce the minimum and maximum resistances of the triode. These
resistances become the output of the device. Then various combina-
tions of these triodes with constant passive resistances allow u s to
realize the logical functions of one (Fig. 2.15) and of several (Fig.
2.1 6) independent variables.

I'

4- i-

Fig. 2.15.

44 ELEMENTS OF MATHEMATICAL LOGIC

y = XI vxi

c, b
b-

1-

b +

d) $-
d- o Y=X,l.,

Fig. 2.16.

If one can execute negation, conjunction and disjunction by means
of a set of devices, one can also perform any conjunctive term of
the complete disjunctive normal form of any logical function, as we l l
a s the disjunction of these terms. This being the case, triode cir-
cuits can embody any logical function. Again, however, the canoni-
cal synthesis proves uneconomical (it yields circuits with redundant
elements), so that one usually designs with more advanced tech-
niques.

c) Networks using Magnetic Components

There a re many w a y s of designing logical systems based on
magnetic amplifiers, but w e shall give only a brief description of a

OTHER METHODS FOR CONVERTING LOGICAL FUNCTIONS 45

greatly simplified version of one such system. Figure 2.17 is a
schematic of a magnetic amplifier with positive feedback, consist-
ing basically of a magnetic core 1 which is associated with several
windings*. The alternating current is supplied to windings w- and
w;, from which i t passes, via the diode bridge 2 and the load re-
sistance R e , to the positive feedback windings wfi and w;b. In addi-
tion, the core carries bias windings w b andwb, as we l l as one or
more control windings: Wcon 1 and dcon 1 , wcon 2 and wLon 2 , and
so on. The bias windings are suppliedwith a constant direct current
i b . The control windings a re also dc-fed, and the levels of this di-
rect current are used as the inputvariables of the system. The out-
put of the device is the rectified current il in the load circuit.

Fig. 2.17.

Consider f i rs t an amplifier with only one pair of control wind-
ings, wcon and wkon Figure 2.18 shows the characteristic of this
amplifier, that is, the dependence of the output (current i, in the
load circuit) on the input (current icon in the control windings) at
zero bias current (a bias current shifts this characteristic along
the icon axis).

If the value icon = 0 is made to correspond to the 0 level of the
input variable and any value icon < - i’,,, to the 1 level, and if the
lowest and highest levels of the output current (these being the only
possible levels, in accordance with the characteristic of Fig. 2.18)
are made the 0 and 1 levels of the output variable, then, at zero bias
current, the amplifier wi l l be a negation element.

T h e use of a split core and several pairs of windings eliminates ac pickup in the cir-
cuits carrying dc currents.

46 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 2.18.

Fig. 2.19.

The same amplifier can perform “rep-
etition.” In this case, a bias current ib is
used to shift the characteristic to the right
(as shown in Fig. 2.19), and the polarity
of the control signal is reversed. NOW the
lowest level of output dc appears at
icon = 0 ; that is, the output logical vari-
able is at level 0. If the input signal is 1
(i.e., icon is high), then the level of the
logical variable at the output wi l l also be 1
(the current in the load circuit wi l l be at
maximum).

The magnetic amplifier is thus a con-
tac tle s s analog of the e le c t r ome chani c a1
relay with normally closed or normally
open contacts.

We shall now consider a magnetic amp-
lifier with several control windings. The
characteristic of Fig. 2.19 will still hold
at the appropriate bias current but the ab-
scissa now denotes the total ampere-turns
of all the control windings.

Retaining the same 0 and 1 levels of the individual input variables
(that is, the same current values) in the corresponding windings as
in the case of an amplifier with a single control winding, w e now ob-
tain a device performing a disjunction of all the n input variables.
Indeed, i t is now sufficient to set any one of the control windings at
level 1 to obtain the maximum level of the output current.

If, however, the input current corresponding to level 1 in each
winding is now reduced by a factor of n (where n is the number of
input variables), then the number of ampere-turns necessary to ob-
tain the same output level 1 can be achieved only if ah? the inputs
are set equal to 1. The magnetic amplifier then embodies a con-
junction of n variables and is the contactless analog of the multiple-
coil elect r ome chanic a1 relay .

If the output of one magnetic amplifier is connected to the input
of another magnetic amplifier (or to the inputs of several ampli-
f iers) , w e have a network. In particular, w e can use a se t of these
amplifiers to synthesize any desired combinational switching cir-
cuit. And since the individual magnetic components can perform
negation, conjunction, and disjunction, a system of containing a mul-
tiplicity of such components can embody any desired logical func-
tion.

OTHER METHODS FOR CONVERTING LOGICAL FUNCTIONS 47

d) Pneumatically Operated Switching Circuits

A schematic diagram of a pneumatic switch is shown in Fig.
20.20,a and Fig. 2.20,b shows the conventional notation for it. The
switch housing contains four cham-
be r s (Ki, Kz , K 3 , and K 4) formed by the
diaphragms M I , MZ, and MB carriedby
a common piston rod R . Set-point
controlling pressures Pa and Pb may
be maintained in chambers K1 and K z
through ducts L , and L,; chamber K3

supply line via the axial duct C3, and
chamber K4 is vented to the atmos-
phere via duct L4. Axial duct C4 from
chamber Kq, and duct L3 from cham-

ps a)

is connected to a compressed-air pb P

P,t

ber KB a re interconnected on the out-
side by means of feedback line FB,
in which we establish the output pres-

b)
Po

Pb

sure P .
When the piston rod R i s in i t s ex -

treme (‘up’’ position, i t blocks duct
C3 and opens up duct C4; this produces
atmospheric pressure in the FB line at the output of the switch.
However, when the piston rod is in i t s extreme (‘down” position, i t
blocks C4 and opens C3; the output pressure then equals that in the
supply line.

The position of the piston rod depends on the direction of the
forces acting on i t s diaphragms, with the magnitude and direction
of these forces determined by the pressures in chambers K 1 , K 2 ,
and 4 3 , that i s , pressures Pa, Pb,and P . The opposing force ex-
erted by the output pressure P on the diaphragm-rod assembly con-
stitutes a positive feedback.

The response of this pneumatic switch, illustrating the above
properties, is presented in Fig. 2.21.

Now consider this switch when a constant pressure P b = Phl(the
back pressure, or bias pressure) is maintained in K Z . The shape of
the response remains unchanged from that of Fig. 2.21, but i t is
displaced to the right, the magnitude of the displacement increas-
ing with back pressure (bias) Pb (Fig. 2.22).

Such a device can be used to perform the logical operation of
“repetition.” This is done by assigning the level 1 to a pressure
higher than phi, and the level 0 t oa pressure lower than (ph1- A P) .

Fig. 2.20.

48 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 2.21. Fig. 2.22.

Obviously, the supply pressure P , is thatexceeding ph1. The switch
performing the repetition is shown in Fig. 2.23 in the conventional
notation of Fig. 2.20, with the chamberinwhich pressure P,, (first
back pressure) is maintained, indicated by cross-hatching.

The pneumatic switch may also be used
to perform negation. In this case a con-
stant pressure Ph2 is maintained in K i ,
and the response of the switch isshownin
Fig. 2.24. The simplified diagram is shown
in Fig. 2 . 2 5 , with K I , in which the con-
stant pressure p h 2 (differing from Phi)
is maintained, indicated by hatching. Pres-
su res Ph1 and Ph2 differ because Phlde-
termines the location of the right-hand and
Ph2 that of the left-hand vertical line of

Fig. 2.23. the hysteresis loop. Our device now per-
forms a negation. Thus w e make the inde-

pendent logical variable P , = 1 at P b > p h 2 + AP ; the output signal
then assumes level 0; if P b < Phz (that i s , when PI = O) , the output
pressure P = P,, and the output signal equals 1.

Y
I

P,

Fig. 2.24. Fig. 2.25.

OTHER METHODS FOR CONVERTING LOGICAL FUNCTIONS 49

So far , w e have shown how the switch
performs logical functions of one inde-
pendent variable. We shall now show
how the same switch can perform logi-
cal functions of two or more independent
variables.

The schematic diagram of Fig. 2.26
shows that the duct previously leading
to the supply line (Fig. 2.23)isnow con-
nected to the line producing a second in-
dependent input variable P z . The switch
will now perform the conjunction of two
independent variables because an above-atmospheric pressure will
exist in the output line if, and only if, both input signals are at
level 1.

A circuit of n- 1 devices, assembled as in Fig. 2.27, wi l l per-
form the conjunction of n independent variables.

,,,,I

Fig. 2.26.

xz? x 3 ~ ps

U U

x n l p"

I@ y=x, &

U

. &xn

Fig. 2.27.

Figure 2.28 shows a device performing the disjunction of two in-
dependent variables while the circuit of Fig. 2.29, which consists of
(n- 1) pneumatic switches, performs the
disjunction of n independent variables.

Since w e now have pneumatic devices
performing negation, conjunction, and dis-
junction, w e can design pneumatic switch-
ing circuits to perform any logical func-
tion. Here, too, the canonical method may
be used (as w e have already stated several
times, this method s t a r t s with a given
function in i t s complete disjunctive nor-
mal form). But, as before, this general
procedure yields switching circuits that

Y

Fig. 2.28.

-@ y = x, vxz

50 ELEMENTS OF MATHEMATICAL LOGIC

are uneconomical because they require too many components. We
can see this from the mere fact that our pneumatic switch, which
may be employed as a device performing negation, repetition, con-
junction, and disjunction of two independent variables, can also be
used as an implication (Fig. 2.30) o r a s a n inhibit device (Fig. 2.31).
The figure shows that implication can be achieved by means of a
single switch, whereas the canonical method, which expresses im-
plication by means of negation, conjunction, and disjunction, calls
for two such devices. This follows from the formula

-
P = P, + P, = P,V Pz.

. VX"

Fig. 2.29.

Y

Fig. 2.30.

I

Fig. 2.31.

Y

1

I Y
-43
y=x,-x7

Fig. 2.32.

OTHER METHODS FOR CONVERTING LOGICAL FUNCTIONS 51

A switching circuit performing implication as required by the
canonical method is shown in Fig. 2.32. This cumbersome arrange-
ment performs the same function as the simple switch of Fig. 2.30.

2.5. THE PROBLEM OF MINIMIZATION OF DEVICES
PER FORMING LOGICAL FUNCTIONS

The design of devices performing given functions immediately
entails the following problem: Given a set of blocks (elements) ca-
pable of performing simple logical functions, each kind of block be-
ing associated with some positive number called i ts “price” (this
may be the actual price or some conventional factor), and given also
the function to be executed (for example, i n i t s full normal disjunc-
tive form), w e want to determine which of the switching circuits ca-
pable of performing this function (and consisting of the blocks of the
given set) will have the minimum total price, defined as

where ai is the number of blocks of a particular kind, hi is the price
of one block, and r is the numberof different blocks in the set.

This problem, often referred to as the minimization problem, is
of fundamental importance in engineering applications of proposi-
tional calculus. A great deal of work has been devoted to i t , and nu-
merous algorithms* (procedures) suggested for i t s partial solution.
All these procedures consists of more or l e s s complex scanning
methods (that is, examination of all the different existing possibili-
ties), so that so far there are no convenient, practical techniques
for minimization; all that has been developed is various “paths”
along which one may hope to come acrossmore or less economical
de signs .

To give the reader at least some broad idea of what is involved,
w e shall briefly describe one of the many procedures for partial so-
lution of the minimization problem.

Suppose the logical function F is given in i t s complete disjunc-
tive normal form. If the set of blocksconsists of the AND, OR, and
NOT elements (both AND and OR having two inputs each) and all the
elements carry the same price tags, then the minimization problem
is reduced to finding that analytical expression of this function which

*The t e r m “algorithm,” translated here for convenience a s procedure, shall be fre-
quently encountered in subsequent chapters. it shall be defined in Chapter 7.

52 E L E M E N T S OF MATHEMATICAL LOGIC

contains only the symbols -, &, and V and in which the number of
these symbols is minimum.

Let u s describe Quine’s solution of this problem [214]. The full
form is simplified a s much a s possible by means of the identity

where A may be a conjunction of several variables. Then the same
operation is repeated on all the conjunctions obtained as a result of
the f i rs t simplification, and so on, until no further reduction of terms
is possible. The pairs of conjunctions (originating from the terms
of the complete form and from the form obtained as a result of the
simplification) which cannot be further reduced by means of the
simplifying identity (2.1) are called thepyime implicants of F. Quine
has shown that any minimal disjunctive normal expression of F is
a disjunction of certain prime implicants of F. Therefore, the next
step in finding the minimal expressions of F consists of determin-
ing these combinations of prime implicants whose disjunctions yield
minimal expressions. This technique (see [185]) gives combinations
of prime implicants whose disjunction is equivalent to F , but from
which not a single prime implicant may be eliminated without violat-
ing the condition of equivalence to F . Such disjunctions are called
“irredundant” expressions for F . Then w e count the number of
symbols -, &, and V in each of the irredundant expressions and se-
lect the expressions with the least total of these symbols. These are
the minimal expressions, according to our criterion of minimality.

Consider an example. We are given the Boolean function

A s a result of all possible pairwise reductions of t e rms of the com-
plete form (whereby each term of the disjunctiveform may be used
in more than one pair), w e obtain the conjunctions

which cannot be further reduced. These are also the only conjunc-
tions whose combination does not yield a single further reduction.
Thus they all are prime implicants of F. Although the disjunction
of all these prime implicants is equivalent to F , i t may be proven
directly that the deletion of the conjunction &x, does not violate
the condition for equivalence but that no other remaining conjunc-
tion can be deleted without violating that equivalence. Hence,

F = (xI & x,) V cXz & x:J V (~ 2 & 2 3)
-

THE PROBLEM OF MINIMIZATION OF DEVICES 53

is one of the irredundant expressions. I t may also be shown that

is also an irredundant expression. The function has no other such
expressions. A comparison of these two irredundant expressions
shows that they have the same number of -, &, and V symbols;
therefore they are minimal to the same degree.

So much for Quine’s procedure. We now have dozens of proce-
dures for finding prime implicants of logical functions. Some of
these are more suited for manual calculations, others for computa-
tions on computers; still others are mainly employed in research
on minimization problems. The methods of minimization also dif-
fer: one can use special diagrams [180], various constructs on n-
dimensional cubes [33], numerical calculations [161,127], and so on.

Several procedures (for example, [331) develop minimal normal
expressions by starting with the prime implicants.

The finding of minimal normal expressions of logical functions
of even a small number of variables (for instance, six or seven) is
a rather laborious process. But w e now have several useful simpli-
fied procedures which give normal expressions that are close to the
minimal and entail much less labor [216-2181.

The Quine procedure yields minimal disjunctive normal expres-
sions. However, the minimal conjunctive normal expressions may
sometimes prove to be “smaller’’ than the disjunctive forms. Be-
cause of that, one must examine both the disjunctive and the con-
junctive normal expressions to select the truly minimal expression.
Since the techniques for obtaining minimal conjunctive normal ex-
pressions are similar to those for the corresponding disjunctive
forms, w e shall not dwell on them.

The fact that a function yields aminimal normal expression does
not necessarily mean that an even simpler expression cannot be ob-
tained. For example, the minimal disjunctive normal expression of
the function

has thirteen & and V symbols, whereas the minimal conjunctive nor-
mal expression of the same function

54 ELEMENTS OF MATHEMATICAL LOGIC

contains 8 + 7 + 16 = 31 -, &, and V,symbols; thus, (2.2) is the mini-
mal normal expression. But another expression for the same func-
ti on

contains only nine & and v symbols.
In this case w e have reduced the minimal normal expression by

means of the identity(A&B) V (A & C) = A & (B v C). Sometimes,how-
ever , one can employ this distributive law to the hilt and still not
come up with the real minimumexpression. For example, our mini-
mal normal function (2.2) can be reduced still further

This form may be obtained from (2.3) by expanding the f i rs t term
of the disjunction

and employing the distributive law to reduce the new expression.
Obviously, the reduction of other functions requires other iden-

tities. It is very difficult, however, to select a priovi an identity
suitable for the reduction of a given expression. In fact, i t is even
difficult to saya priovi whether a given expression can be eventually
reduced to a more manageable form. Thus a great forward step
would be a procedure yielding expressions about which one could
confidently say that they are a s LLsmallyJ as can be found, that is,
that there are no other forms of a given function which are more
"minimal" [120, 1211. Such expressions are calledabsolutely mini-
mal, and their finding involves procedureswhich are far more com-
plex than those for minimal normal expressions. We shall therefore
not discuss them in detail, but shall simplypoint out that each such
nontrivial procedure (algorithm) should have the following two fea-
tures:

1. It should be able to predict the maximum complexity asso-
ciated with the absolutely minimal expressions of a given
function.

2. It should be able to give the absolutely minimal expressions
within the limits imposed by the predicted maximum com-
plexi ty .

THE PROBLEM OF MINIMIZATION OF DEVICES 55

For example, one can predict that the absolutely minimal ex-
pressions for the function (2.2) are not more complex than a “dis-
junction of conjunctions of disjunctions” (type I) and a “conjunction
of disjunctions of conjunctioris” (type 11). One thenuses special al-
gorithms to express (2.2) in terms of these limiting forms I and 11.
This gives two expressions of type I

and one “degenerate” expression of type I1

F (x , , . . . , x,) = (xlvx2vx3~ (X,VX,).

Notice that both expressions resemble irredundant forms. With
only three forms to scan, i t is easy to see which is the smallest.

In general, however, the number of expressions similar to the
irredundant forms is extremely large, even if the function has only
a few variables, and the above procedures for absolutely minimal
expressions are therefore not practical. For this reason the prob-
lem w a s attacked by developing procedures involving considerably
fewer elementary operations. Such procedures necessarily yield
expressions of a more complex form than the normal, but such ex-
pressions in general tend to approach the absolutely minimal. For
example, the procedure may involve successive applications of the
distributive law to the prime implicants of agiven function. The re-
sulting complex implicants may then themselves be treated as prime
implicants and serve a s a basis for developingirredundant expres-
sions. The final minimal irredundant expressions can then be se-
lected from these irredundant forms in the usual way.

However, there is another problem. Evenif the absolutely mini-
mal expression is known, the circuit based on i t may prove to be
nonminimal. For example, the absolutely minimal expression of the
function

immediately yields a switching circuit of ten elements. However, a
circuit performing this same function can also be constructed from
eight elements (Fig. 2.33). This is due to the fact that, in some
cases, one section or blockof asystemcan be used to,embody more
than one part of the minimal expression. Thus we can represent

56 ELEMENTS OF MATHEMATICAL LOGIC

(2.4) in the form

where

Our actual circuit of Fig. 2.33 can then be reduced to eight ele-
ments because the Q operation, which appears twice in the irredun-
dant expression, can be iterated through one and the same circuit
block.

t

Fig. 2.33.

We have briefly reviewed the minimization problem assuming
that all the elements carry the same price tag. It has been shown
[217] that the minimization of circuits comprising elements of dif-
fering prices can be achieved by modifications of the same methods.
The only difference is that a different criterion of the minimum is
used in selecting the minimal expressions from the irredundant
forms.

Our discussion w a s confined to minimization of sets consisting
only of NOT, AND, and OR blocks, where the AND and OR units had
only two inputs each. There are also solutions for similar problems
involving other sets. However, eachnew set requires a new solution
of the minimization problem. Thus, i f the set consists of blocks of
negation as well as of conjunction and disjunction of n variables, the
problem reduces to finding irredundant expressions (or expressions
similar to irredundant forms if we deal with compound expressions)
in which the number of prime implicants is minimum.

The minimization problem has become especially important due
to the advent of general-purpose elements, that is, blocks that, either
by means of simpler readjustment or by adding external connections

THE PROBLEM OF MINIMIZATION OF DEVICES 57

which cost little or nothing, may beusedto perform several differ-
ent functions. A typical example of such a block is the pneumatic
switch of Fig. 2.20. There are noacceptedsolutions of the minimi-
zation problem for these systems, despite many attempts at develop-
ing one. The present trend in these systems is to develop proce-
dures which would yield circuits that, while not minimal, are suffi-
ciently minimized for practical purposes.

3

Finite Automata and Sequential

Machines: Basic Concepts

3.1. DISCRETE T IME A N D DISCRETE T IME MOMENTS

Let {x l i (i= 1 , 2, . . ., a) and {y] be alphabets containing a finite
number of symbols. Then the functional relationship

matches any set of symbols, taken one at a time from alphabets
{XI,, [X I * , . . ., (x),, with one symbol of alphabet {y}.

Now consider an ideal device embodying relationship (3.1). This
device has n inputs and a single output. Inputs X I , XP, . , ., x, are fed
symbols from alphabets { X) ~ , { x) ~ , . . ., { x } , , respectively, all these
inputs being made in ablock, thatis, at exactly the same time. This
instantaneously generates a symbol from alphabet {y} at the output,
as specified by (3.1). We shall call such an instantaneously operating
ideal device ajknction converter. In the special case when each of
the alphabets {xI1, (x) ~ , . . ., (x) , and(y) consists of two symbols only,
that is, when X I , XZ, . . . , x, and y are logical variables and f is a
logical function, such a device is a logical conuevtev. Instantane-
ously responding combinational relay switching circuits and simi-
lar devices for performing the operations of propositional calculus
would be practical embodiments of the abstract concept of a “logi-
cal converter.”

So far , our functional relationships have neglected the time fac-
tor and w e have also assumed that the function converter acts in-
stantaneously. Now, however, w e shall introduce the concept of time.

We usually assume that time varies only in one direction (“into
the future”), that i t varies continuously, and that i t thus passes
through all possible values on the positive real axis. In other words,

58

DISCRETE TIME AND DISCRETE TIME MOMENTS 59

when time appears as an argument of a function, i t is usually de-
fined on a continuum, namely, the positive real axis (the time axis).

In contrast to this, i t is convenient to study discrete-action de-
vices in terms of a hypothetical discrete time. Let us imagine that
the continuous time axis can be divided into an infinite number of
finite intervals, not necessarily of equal length (Fig. 3.1). Moving
along the axis from t = 0 toward t = m,wemark the points separat-
ing these intervals by characters to, f l , t z , . . . These points then
constitute a countable set.

Let us further agree to represent the characters to, f l , tz , . . . by
a series of positive integers 0. 1, 2, . . . and call that imaginary time
which consecutively assumes only these integral values the discrete
time t .

The time instants fo, f!, tz, . . .,
now denoted by numbers 0, 1, : 1 t

2, . . ., shall be calleddiscretemo- to tr tz t3 4 t

ments, and the numbers 0, 1, 2, . . .
shall be treated as symbols con-
stituting an alphabet { t) .

The current discrete moment (the one corresponding to the pres-
ent instant) shall be denoted by p (present). Thus p divides all t’s
into those preceding p (p - 1, p - 2, . . .) and those following (p + 1 ,
p + 2 , . . .) [Fig. 3.21.

the variables of Eq. (3.1) as , *
time-variant. Assume now p-3 p-2 p-l p p+l p J ,p+3 t

that xI, x2, . . ., x, vary in the
discrete time. That is, the Fig. 3.2.

variables assume definite val-
ues for each t , so that w e have functions x, (t) , where t = 0, 1, 2, . . . ,
and where (xJ1 assumes values from alphabets (x) ~ (i = 1 , 2, . . . n).
Then, by virtue of (3.1), we can set up a correspondence between
these functions and the function

Fig. 3.1.

Thus far, we have treated

where y varies with the same t as xi and assumes values from
alphabet {g). Such a system operates in discrete time but “has no
memory” in the sense that the “output” value y at any instant t = p
depends solely on the values of the in puts"^, at that instant.

One can, however, imagine systems which also operate in dis-
crete time and whose inputs and outputs are also symbols drawn
from infinite alphabets, but in which the relationship between the

60 ELEMENTS OF MATHEMATICAL LOGIC

input and the output is not so simple. For example,

In other words, the value of y at any t = p depends not only on the
values of all the xi at p but also on their values of the preceding dis-
crete moment p - 1. Further, the value of y at t = p may even be a
function of the entire history of values y. Consider the case in which
y is a logical variable whose value at any p is specified as a nega-
tion of the value of y at the preceding moment p - 1:

Although the relation

is contradictory, Eq. (3.4) does not lead tocontradictions; it speci-
fies a function y(t)which consecutively assumes the values 1 and 0
even though there a re no input (external) signals.

These special dynamical systems differ from the common ones
(such a s the pendulum or the four-terminal network) in that they
operate in discrete time and their coordinates (inputs and outputs)
a r e defined on finite sets.

Henceforth w e shall be dealing with dynamical systems that are
distinguished by these two properties.

3.2. ON DYNAMICAL SYSTEMS

dynamical system is one involving time-varying processes.
The state of a natural o r man-made dynamical system at any instant
is given by some number (finite or infinite) of generalizedcoordi-
nates. Dynamical systems may be divided into several classes, de-
pending on:

a) whether they a r e time-continuous or time-discrete, that is,
whether the time is assumed to vary in a continuum or a countable
set;

b) whether the system has a finite or infinite number of general-
ized coordinates; and finally

ON DYNAMICAL SYSTEMS 61

c) the cardinality of the set of all possible values of each gener-
alized coordinate, that is, whether these se t s are finite, countably
infinite, or continua.

The concept “dynamical system” isusually associatedwith sys-
tems described by ordinary or partial differential equations. In sys-
tems of this type the number of generalizedcoordinates may be finite
(in which case they a re described by ordinary differential equations)
or infinite (described by partial differential equations), but in either
case both the coordinates and the time vary in continua.

In those cases where the time is discrete, that is, varies in a
countable set , while each of the finite or infinite number of gener-
alized coordinates may assume values from continuum sets, the be-
havior of the system is described by difference equations.

In a special class of dynamical systems the time is again dis-
crete but the generalized coordinates (whose number may be finite
o r infinite) assume values from finite sets.

Every dynamical system may be affected by externally generated
input signals. Suchinput signals may alsobe defined on a continuum,
a countable set , or a finite set. Dynamical systems described by
differential or difference equations are usually capable of handling
only a finite number of input signals; thelatter, however, may take
on any values from some continuum. Dynamical systems whose
generalized coordinates are defined on finite se t s are usually ana-
lyzed in terms of a finite number of input signals, and each of these
signals is also defined on a finite set.

Dynamical systems in which time is defined on a countable set ,
the coordinates and (externally generated) input signals are defined
on finite sets , and the number of input signals and coordinates is
finite will be called finite dynamical systems. Particular cases of
this class of systems are finite automata and sequential machines.

Systems that differ from the finite only in that they have an in-
finite number of generalized coordinates constitute a more general
class of dynamical systems. These include Turing machines * and
similar idealized devices.

The reader must be reminded at this point that an equation de-
scribes only an idealized model and not a real system. In this sense
any dynamical system is an abstraction. But althoughfinite dynami-
cal systems and Turing machines are no more than abstractions,
they are very important abstractions because many technical de-
vices and important natural processes lend themselves to represen-
tation by such abstractions.

*See Chapter 8.

62 E L E M E N T S OF MATHEMATICAL LOGIC

3.3. FINITE AUTOMATA

Consider a finite dynamical system whose state at any instant
is characterized by a finite number of generalized coordinatesx,, x2,
. . . , x,~. This system is subject to a finite number of externally
generated input signals p ~ (t) , p z (t) , prn(t) . We a re given either
a time scale divided into discrete moments or conditions that en-
able us to determine the instant at which the next discrete moment
wi l l occur. In our definition, the signals and the states of the system
are meaningful only at such discrete moments (and are neglected at
all other times).

At these moments, each of the generalized coordinates xz may
take on values only from a finite set , while each input p j also as-
sumes values only from its finite set (of input signals).

Let us introduce an n-dimensional vector x with coordinates
xl, x ~ , . . . , x,, and an rn-dimensional vector p with coordinates P I , p2.

. . . , plri. Because all the coordinates of the vector x , that is, x I , x2,
. . . , ?tn are defined on finite sets , the vector x is also defined on a
finite set. If the coordinate zz may take on E , values, then the vector

x may assume one of h = n E, values. Accordingly, the set on which

x is defined consists of k elements.
By exact analogy, the vector p with coordinates p,, pz, . . ., pm is

given on a finite set containing r elements, where Y = n r i j , and r i j

is the number of elements in the set on which p, is defined.
Let us consider an alphabet (x} = {x~, u2, . . . , xk) consisting of k

symbols, and let us match the various possiblevalues of the vector
x to the various symbols from thisalphabet. We shall call the vec-
tor x the state of our finite dynamical system.

Similarly, let u s introduce an alphabet

n

i = l

rn

] = I

{PI = {Pl, p2. . . . , P T } ,

consisting of r symbols, and match the variousvalues of the vector
p to the various symbols from thisalphabet. We shall call the vec-
tor p the input to the system.

Now we shall define ‘‘motion’’ in our system, that i s , w e shall
specify the method by which the state of the system is defined at
each discrete moment of time. One very important definition leads
to the concept a finite automation.

Definition. A finite dynamical system i s said to be afiniteauto-
maton i f its state at each discrete moment i s uniquely defined (a) by

FINITE AUTOMATA 63

i ts state in the preceding moment and (b) by i ts input atthepreced-
ing o r the current moment.

A finite automaton whose current state is defined by i ts state
and input at the preceding moment shall be called afinite automa-
ton of the P - P (past - past) type. An automaton whose current
state is defined by i t s state at the preceding moment and its current
input shall be called afinite automaton of the P - P r (past-present)

The term “finite automaton’’ also includes finite systems whose
states are defined by their states and inputs during any’ desired fi-
nite number of preceding moments. The term does not, however,
pertain to finite systems whose states a re defined by random fac-
tors or by their entire history (that i s , systems whose states and
inputs cannot be specified unless one knows their value at all the
preceding discrete moments).

To put the above definition of the finite automaton in other terms,
the symbol x at any discrete moment is uniquely defined by the x
of the preceding moment and p at the preceding or in the current
moment. That is, for a P - P automaton:

type.

x P t l = F (% p , f), p = o , I , 2, . . . , (3.5’)

and for a finite automation of the P - Pr type

x p t 1 = F h P , PP+l), p = o , 1, 2, . . .) (3.5”)

where F is a function in the sense of Chapter 1 (it matches a sym-
bol from the alphabet { x) with symbols from the alphabets {x} and {p}.
However, in contrast to the sense of Chapter 1, the symbol-argu-
ments and the symbol-function may now pertain to differing time
instants. For this reason formulas (3.5) do not specify a converter
but a dynamical system.

The discrete moments corresponding to given x and p are iden-
tified by superscripts, where p stands for the present, p + 1 the
next, and p - 1 the immediately preceding moment.

If a new symbol p is defined in the same alphabet (x) = {x,, XZ,
..., x k) as x , then relations (3.5’) and (3.5’3 can be treated as de-
rived from

64 ELEMENTS OF MATHEMATICAL LOGIC

In the f i rs t of these relations, all the symbols pertain to the same
tinie. If that time is p , that is,

p” = F (x p , p”),

when we add the second relations (3.6) and eliminate p w e get

that i s , relation (3.5’).

i s p + 1,that is
If, however, the time corresponding to the f i rs t of relations (3.6)

w e can add the second of relations (3.6), eliminate xP+l and get

that i s , relation (3.5”).
Let u s consider (3.5’):

Knowing po and Y O for the moment zero, we can, by putting p = 1, find
XI. Then, knowing X I and p‘, w e can find 9, and so on. The values of
X I , x2, . . . can be determined in a similar fashion from Eq. (3.5”),
starting from a given x0 and a giveninput sequence p’. p2, . . . In this
respect formulas (3.5) determine recurrence relations, which per-
mit u s to find consecutively all the xi , x2, . . . , provided the initial
state xo and the input sequence PO, p i , p2, . . . are known.

We have already stated that x and p as well as the behavior of
the system, in general, are significant only during discrete time
moments. Thus, in dealing with a real dynamical system (or pro-
cess) we imagine a device that records (samples) the values of x
and p at such moments*, and that the decision as to whether or not
the system is a finite automaton is made only on the strength of
such a sampling record. In this sense the abstract concept of a
“finite automaton” may also be employed to describe continu-
ous devices (devices exhibiting a continuum of states varying in

*Or that there exists a stroboscopic device illuminating the observed process only at
these instants.

FINITE AUTOMATA 65

continuous time), provided only that during the discrete sampling
moments, when the system is observed, the set of i t s possible states
is finite and that one of relations (3 .5) is satisfied. Thus, for ex-
ample, a continuous system having several equilibrium states may
be treated as a finite automaton. This ispossible provided the data
sampling moments are made to coincide with the instants at which
complete equilibrium becomes established and provided the state of
equilibrium is always uniquely determined by the system's preced-
ing equilibrium and by the input signals to which i t is subjected at
the instant when that equilibrium is disturbed (or established).

Since all real systems operate in continuous time, the use of dis-
crete time in our discussion calls for a special device, a synchro-
nizing source, which signals the advent of the next discrete time
moment (that i s , data sampling moment). We shall call such a source
a discrete clock (or simply a clock).

The clock is not an integral part of the finite automaton. The
signals it generates are external to the automaton in the same
sense a s are the input signals p. But the clock signals-the time
input-do differ from the externally generated input signals, since
they are not coded in symbols from the alphabet {p) and they do not
constitute arguments of function F in (3.5). If the finite automaton
is a process, the clock signals can be used only in some device that
records p and x at the various time instants. In technical embodi-
ments of a finite automaton, the clock signals a r e used only to de-
termine the advent of the next discrete time moment.

Let u s now examine some examples of thedivision of a continu-
ous time scale into discrete moments.

a) The continuous time is divided into equal intervals so that an
ordinary clock with a suitable regulated movement may serve a s a
synchronizing source. This is uniform time division.

b) The next discrete moment occurs wherever the symbol p is
changed, that is, whenever there is a changein the input. Here, the
continuous time is divided into a sequence ofintervals that are not,
in general, of the same length. The clock may then be any device
that responds to a change in input.

c) The next moment occurs whenever a symbol p l or p1 appears
at the input.

d) The next moment occurs whenever a symbol p with an odd
superscript is replaced by a p with aneven superscript; and so on.

Returning to formulas (3.5), let us now assume that the input p
does not vary. Then we have

66 ELEMENTS OF MATHEMATICAL LOGIC

* Q -
x

P P ~~

where p- is a constant value of p. We shall call such a finite auto-
maton self-contained or autonomous. It is independent of the exter-
nally generated input signals, but i t still employs clock signals to
indicate the next discrete time moment.

The symbol p = p::: may be regarded as a parameter because i t
may be assigned any symbol from the alphabet (p}. By so doing w e
obtain r autonomous automata. In this sense each finite automaton
may be transformed into r autonomous automata (some of which
may be identical).

There is still another, formal definition of a finite automaton.
This definition is unrelated to the concepts of a finite dynamical
system, a state or an input. It merely says that given two finite
alphabets of symbols {x} and {p}, as well as the variables x and p
which assume values from these alphabets, a Jinite automaton con-
sists of the recurrence relations(3.5) coupling these variables.

This is a very broad and avery abstract definition, but i t s value
lies precisely in i ts generality. I t applies to a great variety of
seemingly unrelated devices, processes and phenomena. By using
i t , one can introduce order where there seems to be none, and dis-
cover general laws governing all these systems, starting from the
most general assumptions. This is the object ofthe theory of finite
automata.

The instants at which the sym-
bols p and h appear coincide with
the discrete time scale specific to
the given automaton A. If one can

A

3.4. SEQUENTIAL MACHINES

Consider a system (Fig. 3.3) consisting of (a) a finite automaton
A , which converts symbols p of the alphabet(p} into symbols x of the
alphabet {x) as per Eq. (3.5') or (3.5"), where the function F is given,
and (b) a converter 0 which instantaneously and uniquely matches
each symbol x with a symbol h from an alphabet f h } :

SEQUENTIAL MACHINES 67

a relation of the form (3.5') or (3.5"), that is, if

then the system consisting of automaton A and converter 0 will also
be a finite automaton. Naturally, such a function F* is not always
available if for no other reason than thatthe alphabet {A) may differ
from the alphabet {x) in the number of symbols i t contains; that is,
the same symbol h may be used to code several symbols x.

For example, let the alphabets {x) and{h) consist of eight and two
symbols, respectively, and let the converter 0 generate the symbol
hl in response to an input of symbols xI to xq or the symbol h2 when
the input consists of any of the symbols x5 to m. We shall assume
that Eq. (3.5) holds and that F i s such that after pp = P I , n p = X I there
follows the symbol x P + I = x3, and after pp = P I , x p = x4 there follows
the symbol x P + l = 316. In the f i rs t instance the counting device wi l l
regi s te r

and in the second case

pp = pl, AP = A,, Ap t ' = A,.

Thus, identical AP and pp may be followed by different hp + I . This
means that our automaton-converter system is not in itself an auto-
maton, since i t does not preserve a relation of the form (3.5)) be-
tween symbols h and p.

The system shown in Fig. 3.3 is, however, a finite dynamical
system. We shall call i t a finite automaton with an output converter,
or simply aJinite automaton with output. In this case, the symbols
h are called the output symbols (as distinctfrom r . , the state sym-
bols), the alphabet {h) is called the outputalphabet, and the converter
@ is called the output converter.

In a more general case, the converter may have two inputs. The
symbols fed to one of them are again from the alphabet {x), while
the signals to the other are symbols p. The converter then instan-
taneously matches a symbol h with each (x, p) pair (Fig. 3.4). A
finite dynamical system obtained by coupling a finite automaton to
an output converter which admits the symbol p (Fig. 3.4) is called
a sequential machine (or, briefly, an smachine) . Of course, an
s-machine may also be a finite automaton. Whetherit is or not de-
pends on the form of the function F in Eqs. (3.5) for the automaton

68 ELEMENTS OF MATHEMATICAL LOGIC

A , as well as the type of converter CD used. In all cases, however,
the system of Fig. 3.4 is a finite dynamical system.

A sequential machine becomes a finite automaton (thatis, oper-
ates a s afinite automaton) if the values of h (the output) a r e uniquely
defined by the value h at the preceding discrete moment and the
value of p at the current moment, that is, if the relationship

holds. This, for example, will be the case when one uses an identity
converter whose alphabet {A) coincides with the alphabet{%}, that is,
a converter that generates a symbol h p coinciding with the input
symbol ~ t p regardless of pp. In this sense, the concept of a “finite
automaton” is a special case of the abstraction “sequential ma-
chine. y ’

Fig. 3.4.

A finite automaton with an output converter may be treated as a
special case of an s-machine in which the function @ is independent

At a f i rs t glance, the concept of a sequential machine appears
broader than that of a finite automaton with output. However, this
is not the case. This will be proven in Section 4.3, after we have
formulated the concept of a “net.”

A sequential machine is of the P - P or P - Pr type, depending
on the automaton i t contains. We shall now consider an arbitrary
s-machine of the P - Pr type:

of p.

Eliminating the symbol xr) from the converter equation, w e get

Let u s now introduce the symbol x, whichis defined in the alphabet

SEQUENTIAL MACHINES 69

{x) by the relation
-
.#.p+1= %P

After substitution, we obtain

AP = @ [F(.”, pp), p”] = p p) .

If we now employ in Eq. (3.10) for the automaton, we obtain

x P + 1 = FI.;P, p”];

that is, all these transformations give an s-machine of the P - P
type : *

Thus, any P- Pr type s-machine maybe transformed into P - P type
s-machine merely by replacing i t s output converter 0 by a cD* con-
verter. However, the reverse is not generally true. We shall return
to this problem in Section 5.4.

3.5. TECHNIQUES FOR DEFINING FINITE AUTOMATA AND
SEQUENTIAL MACH IN ES

Any function
z = F (x , Y),

where x and y assume values from finite sets , may be given by a
table such as 3.1 showing the corresponding values of z .

The equation of finite automaton of the P - P type
. # . P i 1 = F x P [9 P P 1

or the P - Pr type

y . P + l = F I x P , p”+’\

may be represented by an analogous Table 3.2, in which the d’+
symbol for a P - P automaton is represented by the intersection of
row x* and column p * , while the intersection of row x p and column
pp + I defines the symbol ~ t p + I for a P - Pr automaton. We shall call
this the basic table of the finite automaton.

*A finite automaton with an output converter described by Eqs. (3.5’) and (3.8) is fre-
quently referred to as a Moore machine (see [73]), and an s-machine given by Eq. (3.11)
is called a Mealy machine (see [190]).

70 ELEMENTS OF MATHEMATICAL LOGIC

Table 3.1 Table 3.2

Each column of such a basic table is, in turn, the basic table for
an autonomous automaton, which is obtained from the finite one by
making the

Consider one such autonomous automaton (for example, Table
3.3). If w e draw k circles on aplane, assign to each circle a symbol
x , and draw arrows which show the transitions occurring in the au-
tonomous automaton in accordance withits basic table, we obtain i t s
graph. Only one arrow can s tar t at each circle, but any number of
arrows (not exceeding k , however) may terminate at it. The graph
of Fig. 3.5 corresponds to Table 3.3. Since each finite automaton
yields r autonomous ones, the basic table of one finite automaton
yields r graphs of autonomous automata. Figure 3.6 shows the
graphs derived from Table 3.4.

value in the heading of that column a constant.

0
Fig. 3.5.

Since all these r graph;; consist of the same
k circles, they can be combined into one graph,
in whicheacharrow islabeledwith the p value
at which that arrow can beperformed. These
labels a r e placed at the origin of the arrow in
the case of the P - P automaton, and at i ts tip
in the case of the P - Pr machine. Figure 3.7
shows the combined graph for Table 3.4 and
Fig. 3.6, that is, for a P - Pr automaton.

Such a graph is called the state diagram
of the automaton. In this case, each c i r c l e i s
the origin of r arrows. If several of these ter-
minate at the same circle, they may becom-
bined into one, the labels indicating their p
values being joined by means of disjunction
signs. The state diagram is fully equivalent
and interconvertible with the basic table.

TECHNIQUES FOR DEFINING FINITE AUTOMATA

Table 3.3 Table 3.4

71

/o *=p3

Fig. 3.6.

Let u s construct a square k x k matrix C whose rows (from top
to bottom) and columns (from left to right) are headed by symbols
X I , ~ t p , . . . , xk. The matrix element at the intersection of the x,-th
row and the x,-th column is the label of the state diagram arrow
that connects the circle xq with the circle x ~ . This element may con-
sist of one symbol p or a disjunction of several p 's . If there is no
arrow between a circle and a circle xm, then the corresponding
square of matrix C contains a 0. Thus we obtain the matrix of
Table 3.5 for the state diagram of Fig. 3.7.

This matrix is called an interconnection (or transition) matrix
and is still another way ofdefiningafinite automaton. Here, just a s
in the case of a basic table, one must specify beforehand whether the

72 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 3.7.

Table 3.5

7.1 x2 'x3 7-4 x5 %6

P I P 2 V P 3 - 0 0 0 0

0

P I

0

0 0 0 P L V P Z V P O 0

0 P3 P l V P Z 0 0

0 P 2 P I 0 P3

8 3 0 0 0 P2

- 0 P I P3 0 P2

automaton i s of the P - Por the P - Pr type. Each row of the matrix
must contain every p i once, and only once. The matrix may be de-
rived directly from the basic table, dispensingwith the intermediate
state diagram.

Assume w e have a basic table for a P - P automaton, that i s , for
the relation

Y.P+l= F [x P , p"].

Then each cell of the basic table defines three symbols:

that i s , the row heading, the column heading, and the character con-
tained in the cell. Let u s call such a symbol triplet a triad. Since
the whole table has rk squares, andeachsquare defines a triad, the
table defines a set of rk triads. We shall say that a set of triads is
ordered if the f i rs t two symbols (xpand pp) of any two triads of that

TECHNIQUES FOR DEFINING FINITE AUTOMATA 73

s e t do not coincide. Any basic table of a finite automaton defines an
ordered finite set of triads. Conversely, any ordered set of r k triads
defines a basic table, that i s , a finite automaton.

The above also applies to P - Pr automata, that is, those defined
by

xp+1= FlxP, pP+']

However, in this case each triad consists of the symbol triplet

so that an ordered set is said to be one in which no two triads have
identical f i rs t two symbols X P and pp + I .

Now, if w e wish to define a sequential machine in a table form,
w e must consider simultaneously the equations of i t s constituent
automaton [(3.5') o r (3.5")] andconverter (3.8). Todo this, we draw
up the basic table for the finite automaton and add to each square
the symbol hp + resulting from the converter equation. This com-
bined table is the basic table of the s-machine.

If the automaton is of the P - P type [Eq. (3.5')], then w e add to
i t s table symbol hP. For example, the automaton of Table 3.4 plus
the converter of Table 3.6 define the s-machine basic table 3.7. If,
however, the automaton is of the P - Pr type [Eq. (3.5")], then we
add to each square the symbol P + l , obtained from the converter
table at the intersection of x P + ' (the symbol already present in the
square of the basic table) and p P + ' (the heading of the basic table
column in which the square is situated). Thus, i f the P - Pr auto-
maton is given by Table 3.4 and the associated converter by Table
3.6, then the basic table of the s-machineincorporating this P - Pr
automaton is Table 3.8.

Let u s note in passing that the converter table for the P - Pr
case may containblank spaces, because some x. values may be miss-
ing from the corresponding column of the automaton table. Thus we
could leave the square (pl, X I) of Table 3.6 blank, because column p l
of Table 3.4. contains no zl entries.

To obtain a state diagram of an s-machine, w e modify the dia-
gram of the corresponding automaton by including the appropriate
h symbol at each circle. However,inans-machine h is defined not
only by z , but also by p. For this reason the state diagram for an
s-machine differs from that of afinite automatonwith an associated
output converter in that the symbol h isnot written inside a circle,
but side b y side with the symbol p (above the arrow). The arrow
connects state xp with state XP + I. For a P - P automaton [Eq. (3.5')],

74 ELEMENTS OF MATHEMATICAL LOGIC

Table 3.6 Table 3.7

n

Fig. 3.8.

the symbol pair (p, A) is written at the origin of the arrow (Fig.
3.8,a), whereas in the case of P - Pr automaton [Eq. (3.5")], the
label i s at i t s tip (Fig. 3.8,b). In the f i rs t case, the output A is de-
fined in the converter table at the intersection of the symbol p,
written above the arrow, and the symbol ~t, written inside the circle
from which the arrow emerges: in the second case, the coordinates
are the p above the arrow and the x in the circle at the tip of the
arrow. Thus, Fig. 3.9 shows a state diagram based on Table 3.8.

TECHNIQUES FOR DEFINING FINITE AUTOMATA 75

Fig. 3.9.

The state diagram of a sequential
machine again gives an interconnec-
tion matrix. This matrix differs
from that describing afinite automa-
ton in that i t s elements consist of
labels at the tips of the arrows of the
state diagram, that is, the symbol
pairs (p. h) . If the basic table is 3.8,
then the interconnection matrix is
that of Table 3.9.

3.6. RECORDING THE OPERATION
OF AN AUTOMATON

So far , w e have established that
symbols p are sequentially “com-
municated” to the automaton (or

Table 3.8

s-machine) from the outside, and that they are independent of its
operation. The machine then processes the input p into symbols x

Now we shall call an input sequence any finite (but as large as
desired) series of p symbols, and we shall call the analogous set
of x or h symbols a state sequence (or an output sequence). The
number of symbols contained in such a set will be called the Eength
of the sequence.

(or a) .

76 ELEMENTS OF MATHEMATICAL LOGIC

h
I

d

N a v

0 0 0

h

d

-
a v

0

h
N ,.

0 a v

>
h -
4

N a v

0 0

>
h
0 d

I

a v

0 0

h

0
d d o 0 0 0
0 a v

RECORDING THE OPERATION OF AN AUTOMATON 77

Both the automaton and the sequential machine are operators
that process sequences of input symbols of one alphabet into se-
quences of output symbols of another alphabet. The basic table, the
se t of triads, the graphs, the state diagram, the interconnection ma-
tr ix, and the transition table are various methods of defining such
an operator, since any one of these is sufficient to recreate the cor-
responding sequence x (or A) if the sequence p and the initial state
xo are known.

Table 3.10

Consider now a three-row table 3.10, whose row 1 contains the
ordinal number of the discrete time moment,androws 2 and 3 con-
tain the corresponding p and x. The table may have as many columns
as desired. This is the tape of the finite automaton. Since a tape may
be compiled for each input sequence p (t) , each automaton may have
an infinite number of tapes.

Any initial piece of tape (from zero to any k th moment) contains
an input sequence and the corresponding state sequence of length
k + 1. Any three tape symbols, such a s those delineated by the heavy
line in Table 3.10, constitute a triad defining one cell of the basic
table of the automaton (we shall use a heavy line to isolate a P - P
triad, and a dotted line to delineate a P - Pr triad). Now, if we had
a scanner with a cutout matching either the heavy or the dotted out-
line of the Table 3.10, then, sliding this scanner along the tape, we
would consecutively see all the various tr iads contained in i t (ob-
viously, each tape has a finite number of such triads). If w e could
scan all the tapes of a given automaton (an infinite number), we could
then read the set of all the triads contained in all the tapes. But
since all these tapes are generated by a single automaton, the set
of triads must be finite. Infact , i t is the finite ordered set of triads
containing rk elements.

In the preceding section we showed that since an automaton is an
operator, i t can be definedbyafinite, ordered set of triads. We see
now that all the tapes of the automaton consist of triads of this set.

Let u s now select an alphabet of rk symbols, for instance, {T} , and
assign symbols T to all the tr iads of our automaton. Then the tape

78 ELEMENTS OF MATHEMATICAL LOGIC

shall be reduced to only two rows: the ordinal number of the dis-
crete moment and, the symbol ’I (see Table 3.11). However, this re-
duces the available degrees of freedom, for the sequence of triads
in such a tape cannot be arbitrzry. Indeed,let the f i rs t triad s5 con-
s is t of

‘7, P3, ‘12.

This immediately fixes the f i rs t symbol in the following triad, so
that only the two remaining symbols can vary; that is, the next triad
can only be some triad of the same set which s t a r t s with X I Z , for in-
stance, xI2 , p8, %6 or X I Z , 02, 3112, and so on. The triads corresponding
to a given triad 7, are those tr iadsfrom our ordered set whose f i rs t
symbol coincides with the last symbol of the given triad sj. All the
tapes of a finite automaton consist of triads arranged in such a way
that each triad is followed by any one of i t s corresponding triads.

Table 3.11

The concept of a tape may be extended to the sequential machine
by supplementing the finite automaton tape with a row of output sym-
bols A , after which the 3c row is deleted (Table 3.12). This tape may
also be split into triads such as

A P , P P , i.P+1 or k p , pP+l,),P+’.

This set of triads may contain, however, some ‘Lcontradictory” ele-
ments, in which the first two symbols iLP, pp (or A p , p p + *) are identical
but a r e followed by differing third symbols ?P + I , that is, the set is
not an ordered one. It becomes ordered i f , and only i f , the sequen-
tial machine a s a whole is a finite automaton.

Table 3.12

We shall now discuss still another way of describing the opera-
tion of a finite automaton. Let u s draw i t s state diagram (Fig. 3.10)

RECORDING THE OPERATION OF AN AUTOMATON 79

Ninth

and consider the two circles incorporating symbols xi and xj, respec-
tively. The transition from state xi to statexj may be accomplished
over one discrete moment, provided
the input is pl. The transition over
two moments may be accomplished
via the following alternative routes:
in the f i rs t moment, the input is p 2

or p3, and in the second moment i t is
p2; or it is p l in both moments. If
three discrete moments are avail-
able, then one can accomplish the
transition via nine different alter-
native routes (Table 3.13). Similar-
ly, we can derive all possible se-
quences of p that would transform the state xi into the state xj over
q discrete moments. Each such sequence is a path of length q lead-
ing from xi to xj , and we shall represent it as a sequence of q sym-
bols p; the aggregate of all the possible paths of length q shall be
represented as a disjunction of such sequences. Thus, for example,
Table 3.13 may be written in the form

Fig. 3.10.

P l P l P l v PlP3PI v P2PlP2 v P2P3P2 v P3PlP2 v P3P3P2 v PlP2P1 v P2P2P1 v P3P2P1 .
Let u s denote by Dyj a disjunction describing all the possible xi

to xj paths of lengthq. Then each disjunction{p}, shall comprise one
or more sequences consisting of exactly 9 elements pi, some of which
may coincide.

Table 3.13

P3 P2 P I

I Seventh . . . I t p I I p2 I p1 I

80 ELEMENTS OF MATHEMATICAL LOGIC

Let u s now construct a matrix U s) . This matrix will contain D7j
(at the intersection of the ith row and the jth column) if there is at
least one xi to xj pathoflength q, and 0 i f there is no such path. For
example,

This is the matrix of the path of length q . Just as in the intercon-
nection matrix, the rows (top to bottom) and the columns (left to
right) correspond to symbols XI, x2, . . . , X h and are so denoted.

The matrix C(q) contains all the paths leading from any initial
state to any final state (which may coincide with the initial state)
over q discrete moments. Because any sequence consisting of q
symbols p will transform the automaton from any state into the
same or another state, each row of the matrix C(q) contains, but
only once, all the possible sequences that may be formed from the
alphabet {p} by selecting q symbols at a time. Thus, for example,
each row of the matrix C(*) must contain the sequences

P I P I ; P2P2; P3P3: PIP2; P2P1; P1P3; P3P1; P3P2; P2P3.

Each row of the C(v) matrix may contain these groups of q symbols
in different disjunctive arrangements and they may be distributed
over different columns, in accordance with the basic table for a given
automaton.

A complete set of matrices C('), C(*), U3), . . . completely specifies
the operation of the automaton over any desired time period. How-
ever, such a set is not very useful and not really needed because
we can always rederive the entire set of matrices from the start-
ing interconnection matrix. We do this as follows.

To begin with, C(1) = C, that is, the matrix of path length 1 coin-
cides with the interconnection matrix since, by definition, i t s ele-
ments a re those values p which transform xito xj over one discrete
m ornent.

Let us now square the interconnection matrix, in accordance with
the following rules.

1. An element C'ij of the product matrix (located at the intersec-
tion of the ith row and jthco1umn)is specified, in accordance
with general rules of matrix multiplication, as the sum of the

RECORDING THE OPERATION OF AN AUTOMATON 81

products of the elements of the ith row of the f i rs t factor by
the elements of the jth column of the second factor. These
products are not commutative; that i s , in multiplying the ele-
ments, the positions of the factors cannot be interchanged.

2. Addition signs are replaced by disjunction signs throughout.
3. Multiplication signs define the operation of assigning sym-

For example, consider the matrix C for the state diagram of
bols p.

Fig. 3.7:

7-1 7-2 7-3 7-4 7-5

0 P3 0 O I

c = 7 - 3 1 0 P 3 P l V P Z 0 0

7-4 0 P2 P I

and square it in accordance with the above rules:

PIP3 -1 p2p3vP3P3 P l P 2 v P 2 p Z v P I P I

v P9P2

v P3P2 V P 3 P l v P3P3

0 P I P Z V P 2 P 2 V P I P I V P 2 P I V 0 P I P 3 V P Z P 3 V 0

0 P1PaVPzP3 P I P I V P 2 P I V P 3 P I V P 3 P 2 V 0 0

P3P3 PIP3 p l p I v P I p 2 P 2 P I V P 2 P Z v p3p2 P3PI

P2P3 P I P I PIP3 0 P3PI v P2P2 v P3P2 v P3P3 L

P2P3 P3P3 P 3 P I V P 3 P 2 P l P l V P l P 2 V P2PZ P Z P I

v PIP2 v P2PZ v P3P3

v P2P3

V P l P 2 V P 2 P I

v PIP3

We see that C2 = C(2), that i s , matrix C2 is composed of all the
possible paths of Fig. 3.7 which lead from one circle to another over
two discrete moments. For example, element C1~Consists of pzpl V
p3pl; thus, paths p2pt andp3p1are the only paths over which XI can be
transformed into x P in two moments.

The coincidence of C2 and C(2) in this case is no accident. We see
that C1: is the product of nonzero elements C,, and CG2. However,
such nonzero elements in C indicate that each of the transformations
xI to 316 and 316 to x2 requires one discrete moment, that is, that there

82 ELEMENTS OF MATHEMATICAL LOGIC

exist X I to x 2 paths which can be traversed in two moments. There-
fore the coincidence found in this example is actually a general rule
which states that the square of theinterconnection m a M x i s the ma-
trix of all the two -moment paths : C2 = UZ). By analogy C3 = C(3) , that
is, the cube of the interconnection matrix is the matrix of all the
three-moment paths and, generally, a matrix of all the qmoment
paths i s obtained by raising the interconnection matrix to the power

C(Y' = cq.

of q :

We now see why w e donot need the set C(I), C'2', C'3'. . .: all the pos-
sible paths over any number of moments qcan be derived via multi-
plication of the interconnection matrix by itself.

All of the above also pertains to sequential machines. One must
onlyremember that each arrow of the state diagram for the s-machine
ca r r i e s the two symbolspandA, so that a transition in the s-machine
is characterized by a pair (p k , As).

The "operation of symbol assignment'' is then performedin ac-
cordance with the following rules:

1. (P i 7 '1) (Pk, 's) = (Pipk,

2. (Pk, ',$) 0 = 0 (Pk, 's) 0.

If one wants to multiply disjunctions of pairs, one utilizes the dis-
tributive property of the operation of multiplication of disjunctions.
For example,

K P l 9)'A v tP2r 'dl I(PW 'JV(P5, '3)1 =

= (PlrJ87 A,',) v (PZPS. V,) v (PIP57 '3'3) v (PZP.5, 15'3).

A s an example, consider the interconnection matrix of the tr i-
state s-machine whose state diagram is shown in Fig. 3.11.

X I y.2 x3

(P2. *,I (PI,)\I) . " 1 x3 i (Pst (PI, '2) 0

0 (P,? * 3) V (P 2 , 4)
c = x 2 0

On squaring this matrix, w e obtain

*I

RECORDING THE OPERATION OF AN AUTOMATON 83

(p , . A J) v f P P ~ J (p , .Ad The very construction of matrix
C2shows that the element C;j repre-
sents the l ist of all the input (and the
corresponding output) sequences of
length 2 that will transform the ith
state of the s-machine into i t s jth
state over two discrete moments. Fig. 3.11.
Thus, in the case of the s-machine
shown in Fig. 3.11, sequences p2p1, p ~ p ~ and p1p2 transform the third
state into the second, a transformation accompanied by the appear-
ance of sequences ?&, ?&, or A2h2 at the output.

The matrix C2 can again be multiplied by C, using analogous
rules. The only difference is that the multiplication now involves
elements that may contain not only symbol pairs (ps, A t) , but also
pairs of symbol sequences (plpj, hk&). Multiplication then means the
operation of assigning symbols, for example:

(p l h ' T T Y (pz."J

In multiplying elements containing disjunction one alsouses the dis-
tributive law.

In our example the matrix C3 has the form

The elements of the matrix C3 thus indicate all the input sequences
which can transform one state into another over three discrete mo-
ments, as well as the corresponding output sequences. Continuing
the process of multiplying matrix C by itself, we finally obtain ma-
trix Cq and thus find all the input sequences which transform state X i

into state x, over 9 moments.*

T h e r e a r e yet other methods of specifying the operation of an automaton. For example,
Kobrinskiy and Trakhtenbrot [43] employ the "tree" of an automaton for this purpose, but
we shall not use this concept.

a4 ELEMENTS OF MATHEMATICAL LOGIC

3.7. ON THE RESTRICTION OF INPUT SEQUENCES

So far, we have assumed that the input symbol sequences may be
random, provided that each of these symbols w a s contained in the
alphabet {p). Thus, if the alphabet {p} consists of r symbols, we have
at our disposal rk different sequences of length k .

However, one frequently deals with problems in which one needs
to examine only those symbol sequences which satisfy some special
conditions. Sequences that satisfy such additional special restric-
tions are termed admissible (or allowable, o r legitimate). For ex-
ample, we could impose any of the following restrictions:

1.

2.

3.

The only admissible sequences are those in which even sub-
scripts of p alternate with odd ones. Under this restriction,
the sequence p7pZpIp4p7p6p3 . . . would be admissible, whereas
the sequence p7pZP4plp7 . . . would not be.
The only admissible sequences are those in which no two iden-
tical symbols p are consecutive. In this case, the sequence
p~p7p5p3p~p1 . . . would be admissible, whereas the s e q u e n c e
p~p7p5p5p3p~p~ . . .would not be.
The only admissible sequences are those in which pi is not
immediately followed by pj.

The restrictions imposed on sequences are often due to the man-
ner in which the continuous time is divided into discrete intervals.
Thus, if the next discrete moment occurs whenever the input is
changed, then the restriction on the sequences p (t) is that no two
identical symbols may be consecutive. Similar restrictions always
occur in the other cases in which the timing of the system is syn-
chronized with some input “event.”* Thus the restrictions on the
input sequences can be of two kinds:

1. They may be imposed by some characteristic of timing of the
system, in which case only admissible sequences will appear
at the output.

2. They may have no connection with timing, that is, generally
speaking, the s-machine can respond to any input sequences
p (t) , but under the operating conditions, only admissible se-
quences do appear at i ts input. This distinctionis immaterial
to u s at this point. There are, however, instances where the
input sequences cannot be arbitrary but must satisfy some
supplementary conditions. We shall discuss this subject later.

*We a re relying on the reader’s intuition in using the term “event” at this point, but
we shall define it at a later stage.

ON THE RESTRICTION OF INPUTSEQUENCES a5

In such cases the basic table alone is not sufficient for the
definition of an automaton. Just as i t must be supplemented
with conditions defining the clock of the system, so in these
instances it must be supplemented by the specification of a
legitimate input sequence.

4

Abstract Structure and Nets

4.1. THE CONCEPT OF SUBSTITUTION OF
SEQUENTIAL MACHINES

Consider two sequential machines: a machine s1 (Fig. 4.l,a),
which transforms symbols p of an alphabet (p) into symbols x of an
alphabet {x), and a machine sz (Fig. 4.l,b), which transforms sym-
bols q of an alphabet {q) into symbols of an alphabet (5) . Let us also

Fig. 4.1. Fig. 4.2.

introduce the function converters cD1 and @*, which perform
ri = @, (5 , PI.
Y = @* (5 , p).

respectively. That is, the converter Ql instantaneously and uniquely
matches a symbol q of the alphabet (q) with the symbol pair C
and p from the alphabets (5) and (p), respectively, whereas the con-
ver ter (& matches a symbol ?c of the alphabet (.} with the above pair.

Let us couple the converters 01 and n2 with the sequential ma-
chine s 2 as illustrated in Fig. 4.2. The resulting system is a new
s-machine that operates on the same alphabets as machine s I .

If machines s I and s 2 are given, i t may be possible to select
converters Ol and CD2 such that the resultingsystem of Fig. 4.2 will
duplicate any result produced by the machine sI. If that is possible,

86

THE CONCEPT OF SUBSTITUTION OF SEOUENTIAL MACHINES 87

we shall say that the machine s1 replaces the machine s2 or , what
is the same thing, that the machine s2 substitutes for the machine
s 1.

To give a strict definition of these terms, we must f i rs t define
what we mean by the statement that a system “duplicates any re-
sult produced by agiven s-machine.” We shall agree that a machine
s z substitutes foramachine s , i f fo reach initial state xo of s 1 there
exists at least one initial state Go of s 2 such that, for any input se-
quence of symbols from the alphabet (p], both the system produced
by coupling s2 to appropriate converters (D1 and (D I inthemanner of
Fig. 4.2 and the machine s I will generate the same output sequence
of symbols from the alphabet (x } , starting from Co and xo, respec-
tively. The fact that the machine s 2 can be substituted for the ma-
chine s I will be indicated by:

s2=3 s1

When we write s2=3sl, w e mean that the machine s 2 , appropriately
coupled with appropriate converters (Dl and c D 2 , can operate in the
same way a s the machine s , , thus replacing it. In this sense, the
system of Fig. 4.2 is also a sequential machine.

The fact that s2+ sI does not necessarily mean that sl+ s2. Our
definition of substitution is based on the complete independence of
the choice of converters and initial states from the sequence of in-
put symbols (p}. Naturally, w e could have given a broader definition,
relating the choice of converters and initial states to the input se-
quence. However, w e are not concerned with such a broad concept
(although i t may be useful in some problems). We can also intro-
duce the concept of relative substitution for an S-machine, i f the
set L of admissible input sequences of the machine s I is restricted.

The idea of substitution immediately involves the followingprob-
lem: Given two s-machines s I and s 2 determine whether s 2 can
substitute for s I , that is, whether there exist function converters @,
and such that the diagram of Fig. 4.2 describes a machine that
substitutes for the machine s l ; if the answer is affirmative, con-
struct converters 01 and @*. This problem has a trivial solution
-all that is necessary is to test all the (finitely many) pairs of
converters Cbl and D2. If any of these pairs proves “suitable,” then
s will be a substitute for s I. Obviously, this search method is cum-
bersome and cannot be used in practice. However, the present au-
thors know of no better method.

We shall now leave the generalized system of Fig. 4.2 and shall
consider those of i ts special cases which are shown in Fig. 4.3. Of
these, the system of Fig. 4.3,b is extremely important. Here, each

88 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 4.3. Fig. 4.4.

of the two converters performs functions of a single variable:

In this special case, the problem formulated above has, in addi-
tion to a trivial solution, the following additional solution: the ma-
chine sz substitutes for the machine s1 i f the state diagram of s , i s
superposable on the state diagram of s2(that is, is part of it) while
preserving the uniqueness of finctions (PI (p) and O2(5). We shall
illustrate this solution by an example.

Let u s introduce the concept of substitution fo r finite automata,
which is analogous to that of substitution for the s-machine: all the
definitions are retained, except that instead of sequential machines
s and s 2 , we a re given two finite automata A and B (Fig. 4.4,a,b),
and the substituting system is that of Fig. 4 . 4 , ~ which is similar to
that of Fig. 4.3,b.

(The above definitions obviously apply also to the special case of
autonomous automata. However, the definition is simpler in this
case since there are no input sequences and thus there is no need
for an input symbol converter.)

A s an example of the substitution of finite automata, let automata
A and B have the state diagrams of Figs. 4.5 and 4.6, respectively.
Then can automaton B, associated in the system of Fig. 4.4, substi-
tute for automaton A ? Converter O2 relabels the states of automaton
B (that is, i t relabels the circles in i ts state diagram), while con-
verter 01 changes the labels above the arrows in the state diagram.
(The usual condition of uniqueness must, of course, also be satisfied
in the case of converters (PI and 02, that is, different values of the
arguments should not result in the same value of the function.) If

THE CONCEPT OF SUBSTITUTION OF SEQUENTIAL MACHINES 89

after two such relabeling operations any part of the state diagram
of automaton B still coincides with the state diagram of automaton
A , then B substitutes for A.

In our example, the diagram
of Fig. 4.5 is superposable on
that part of Fig. 4.6 which con-
sists of circles &, g4 and & with

Fig. 4.5. Fig. 4.6.

the associated arrows. Therefore converter x = 02(g) is a device
for relabeling the states which operate in accordance with Table 4.1.

Table 4.1

The operation of converter 02(<) is unspecified in states 51 and
L3 of B , since these states do notoccur during operation of the sys-
tem. If desired, the operation of the converter in these states may
be specified in an arbitrary manner, for instance, as shown in
Table 4.2.

Table 4.2

Converter Q 2 (G) is now completely defined. I t i s seen from Table
4.2 that i t satisfies the condition of uniqueness; that is, a given 5
uniquely determines x.

90 ELEMENTS OF MATHEMATICAL LOGIC

Let us now discuss converter CDl(p). Thecircles x1 and xp in the
diagram of A (Fig. 4.5) a r e connectedby an arrow bearing the label
p i . Table 4.2 specifies that circle x1 i s matched by circle 52 in the
state diagram of automaton B (Fig. 4.6), and that circle x2 of Fig. 4.5
is matched by circle c5 in Fig. 4.6. The diagram of B shows that
circles 5 2 and ;S are connectedby anarrow labeled q 3 (that is, auto-
maton B transforms from the state 1 into state 5 upon an input of
q3). Since automaton A transforms from state xl to x2 upon an input
of pl, converter (DI must place symbol q3 into correspondence with
symbol pl.

A similar reasoning may be applied to other
portions of automatons A and B, and wi l l finally
result in Table 4.3 for converter CDI. This
means that relationships

Table 4.3

@ I (PI) = T 3 @ I (P2) = 711,

hold in every instance; that is, the condition
of uniqueness is satisfied for converter @,.

Now, if the labels above the branches of the state diagram of
Fig. 4.6 were to be changed in accordance with Table 4.3 and the
states were to be renumbered in accordance with Table 4.2, then
the diagram of Fig. 4.6 would correspond exactly to a part of the
diagram of Fig. 4.5.

To sum up, automaton A may be substituted by automaton B.
Still another variant of the same substitution is given by Tables

4.4 and 4.5 (instead of Tables 4.2 and 4.3).

Table 4.4 Table 4.5

If the diagram of B were that of Fig. 4.7, the diagram of A re-
mained the same (Fig. 4.5), then B could not substitute for A. In-
deed, in this case there are only two possible tables for converter
(D2: 4.6 or 4.7. However, the converter Ol is not unique in these
two cases since i t is required that (Dl (p l) = q 3 and a t the same time
that (pl) = q 2 . Substitution i s therefore impossible. But this con-
clusion only holds for the substitution system of Fig. 4.4,c, because

THE CONCEPT OF SUBSTITUTION OF SEQUENTIAL MACHINES 91

Table 4.6 Table 4.7

such substitution becomes possible with the generalized system of
Fig. 4.2. In that case, the converter 0 2 is described by Table 4.6.
The output *A. depends on only one input 5, that is, x = (&(<), but the
output of converter a, is a functionoftwo variables, that is, q =

(C, p) , and converter 0, is described by Table 4.8.
Previously, we referred to “super-

position of state diagrams.” We meant
by this not just the coincidence of the
circles and arrows, and the labels above
them, but also the coincidence of the posi-
tions of the labels above the arrows. In
other words, we were concernedwith sub-
stitution of automata and s-machines for
automata and s-machines of the same type.

We showed in Chapter 3 that an s-
machine of the P - Pr type could, as we expressed i t , always be
transfovrned into an s-machine of the P - P type. In using the term
cctransformationy7 we relied on the reader’s intuitive grasp of this
concept. Now, in the light of the definitions introduced in the present
chapter, it is clear that in Chapter 3 we were in fact dealing with
the substitution of s-machines of the P - P type for a machine of
the P - Pr type.

Table 4.8 ml
73 Ti2 Ti3

Pz ? I 91

4.2. THE ABSTRACT STRUCTURE OF THE AUTOMATON

In Chapter 3 the finite automaton w a s formally defined as an
operator “processing” a sequence of symbols p into a sequence of
symbols x in such a way that the sequences do not contain contra-
dictory triads. Put in these terms, the abstraction “finite automa-
ton’ ’ is represented by the recurrent relationship

x P + ’ = F (x p , P’)

x P + * = F(xP, p”+*)
for type P - P automata,
for type P - N automata,

where F is any unique function defined on sets (x) and {p).

92 ELEMENTS OF MATHEMATICAL LOGIC

Now let u s consider in detail how the description of a finite dy-
namic system such a s an automaton of, for example, the P - P type,
can be reduced to a relationship of the form (4.1).

Assume a finite dynamic system that has n generalized coordi-
nates x I . x2. . . ., x, and is subjected to s external (input) effects u I ,
u2, . . ., (I \ . We shall call each suchinputeffect an inputfiber. At the
sampling instants* 0, 1, . . , p , . . ., each of the generalized coordi-
nates may assume only one of a finite number of values.

Assume coordinate xi can have only one of kivalues(i = 1, 2, . . ., n).
Similarly, let each input effect u , ~ assume onlyone of r j values (j =1 ,
2, . . ., s) at these instants. The “motion” in the system is subject
to the condition that the value of each coordinate at the instant p + 1
must be .uniquely determined by the values of all the coordinates
x i (i and of all the inputs i f j (j = 1 , 2, . . _ 1 s) at the in-
stant p. If that is the case, then the motion is described by the sys-
tem of recurrence relations

1. 2, . . ., n)

(4.2)

By introducing an n-dimensional vector x with coordinates XI,
x2, . . _, x,,, an s-dimensional vector u with coordinates U I , UZ, . . ., u s ,
and a vector-function f with coordinates f l , f 2, f n , relations
(4.2) may be represented in vector form:

(4.3)

n

In the sampling instants, vectorx canassume one of the k = fl k ,

values, and the vector u , one of the r = n r, values. Therefore, by

selecting alphabets { x } and {p} consisting of kand r symbols, respec-
tively, and assigning various symbols x to the various vectors x
and symbols EJ to the vectorsu, we obtain, instead of relation (4.3),
a relation of the form of (4.1), inwhich there is a specific function F
on the right-hand side. This function F isderived from the vector-
function f (4.3) and is based on the coding selected for vectors x
and u.

It is now clear that the recurrence relations (4.2) represent a
finite automaton

S i-I

j-1

Ye. , discrete moments.

THE ABSTRACT STRUCTURE OF THE AUTOMATON 93

XP

x , x p ... x,

Relations (4.2) illustrate more clearly than (4.4) such important
features of a dynamic system as the number of i t s degrees of free-
dom, n , as well as the values of each of i t s generalized coordinates
as a function of the state of each input fiber.

Let us agree to call a system of relations such as (4.2) the ab-
stract structure of the finite automaton (4.4).

Thus a given abstract structure uniquely defines the correspond-
ing finite automaton; that is, relation (4.4) may be uniquely repro-
duced from (4.2). In this sense (4.2) defines the automaton just as
completely as (4.4) does. Accordingly, the concept of substitution
of automata applies fully to machines defined by relations of type
(4.2).

We shall now show that given a finite automaton A described by
relation of type (4.4), w e can specify a great number of abstract
structures which can substitute for this automaton.

Let automaton A be associated with alphabets (x) and {p), and let
k and r be given. We shall now select numbers n, s, ki (i = 1 , 2,
. . ., n) and r, (j = 1, 2, . . ., s) . The selection of these numbers is re-
stricted by only one condition: satisfaction of the inequalities

u p xP+ 1

. xP p/J x P + I

u, u.2 ... US x , x p . .

I

(4.5)

We now introduce n coordinates xI , x2, . . _, x,, (which assume
k l , k z , . . ., k, , values, respectively) and s input fibers u I , uz, . . . , us
(which assume r l . r2, . . ., rs values, respectively). We now complete
a table (Table 4.9) in the following manner.

Table 4.9

We enter all the possible combinations of values x I , xz, . . ., x,, and
u,, u2. . . ., u, into the left-hand columns x p , and up of the table. The

number of such combinations is fl R, n r j , and therefore Table 4.9

shall contain this number of rows.

I1 s

i = l J = 1

94 ELEMENTS OF MATHEMATICAL LOGIC

In order to fill i n column XI' let u s concentrate exclusively on

columns X I ' . We enter in these columns hi different combinations

of x I , .Y?, . . ., x , , . Let us select at random k of these combinations,
which w e shall call the basic combinations, assignto them symbols
x,, x 2 , . . ., xr,, and enter these symbols into the corresponding rows
of the X I ' column of Table 4.9. By virtue of inequalities (4.5) i t is

possible that n k i > k ; therefore some of the rows in column may

remain blank. If that is the case, we assign to those combinations of
x l , XZ, . . ., x , ! which were not included in the k selected combinations
the used symbols x (the order of assignmentis immaterial), and en-
ter these symbols into the blank rowsofcolumn xP. Now column x?'
i s completely filled in. We fill column p" in a similar manner, using
combinations of i l l , u2, . . ., u , entered in columns up.

At the end of this procedure, columns XP, p" contain all the pos-
sible combinations of the symbols x, p, but since the total number of
such Combinations is only

(= I

I1

i ~~ I

some combinations of X, p may recur.
We now return to our automaton A. Using one of i t s definitions,

for example, i ts basic table, we f i l l in column X P f l of Table 4.9.
But we have already associated one of the basic combinations of
xi, x 2 , . , ., x, , with each symbol X. We therefore enter in columns x p + I

the combinations corresponding to XP + I , thus completing the table.
This table defines the values of all the x"," starting from the given
xf and u7, that is, i t defines n functions f i in recurrence relations
(4.2).

If inequalities (4.5) were to be replaced by equations

(4.6)

then each pairwise combination of symbols H, p wouldbe encountered
only once in columns xP, pP of Table 4.9. If, however,

k < fi hi, Y = fi r j ,
i = I j = I (4.7)

then Table 4.9 would contain the same rows as in the case in which

THE ABSTRACT STRUCTURE OF THE AUTOMATON 95

(4.6) holds, and, in addition, some supplementary rows, correspond-
ing to the nonbasic combinations.

If we now attempted to derive an automaton from the abstract
structure of Table 4.9, w e would obtain an automaton differing from
the starting one. The state diagram of such a new automaton would
contain all the circles and branches of the diagram of the starting
machine (these would be defined by the rows containing the basic
combinations of x and [I) , but i t would also contain supplementary
circles and branches (corresponding to the nonbasic combinations
of x and u) . Since the conditions requiring unique operation of sym-
bol converters are satisfied (by the very construction), then, assum-
ing case (4.7) holds, the abstract structure defines an automaton
that substitutes for the given (starting) automaton.

When w e set up the abstract structure,
that i s , constructed the system of rela-
tions (4.2) from relation (4.4) with the aid
of Table 4.9, we had norestriction on the
selection of numbers n, s , k , and r J , pro-
vided conditions (4.5) were satisfied. It
is obvious now that not only the form of
the functions f z on the right-hand side of
(4.2) but also the number of relations in-
volved in that system depend onhow these
numbers have been selected. And i t is
because w e have this freedom thatwe can
construct a large number of abstract
structures, all which substitute for a
given finite automaton A .

An important special case is one in
which all the k , and r , equal two, that is,
all the x and u are logical variables. The
abstract structure in this case is

Table 4.10

x { " = L i p ? , x;, . . .) x,p; uf , u f , . . ., u q , (4.8)
i = l , 2 , . . . , n,

where all the Li are logical functions. We shall call such an abstract
structure logical or binary. In this case,

n S

i = l j - 1
n ki = 2' and n ri = 2'. (4.9)

If k and r are not integral powers of 2 (that is, they are not among

96 ELEMENTS OF MATHEMATICAL LOGIC

XP

XI x2 x3

0 1 0
0 0 1
1 0 1
1 0 0
0 1 0
0 0 0
0 1 1
1 0 0
0 0 1
0 0 0
0 0 0
0 1 0
1 0 1
0 1 1
0 1 0
1 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 0
0 1 0

numbers 2 , 4, 8, 16, 32, 64, 128,256,), then Eq. (4.6) cannot be
satisfied. To satisfy inequalities (4.5), n and s must be selected in
accordance with the conditions

k < 2" and r < 2".

Thus, for example, if the automation is defined (given) by its basic
table (Table 4.10), then k = 6, r = 3 , and we can select, for example,
I I = 3. s = 2. The completion of a table such as Table 4.9 for this case
is illustrated in Table 4.11.

Table 4.11

THE ABSTRACT STRUCTURE OF THE AUTOMATON 97

XI

0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1

We can also develop other binary structures that substitute for
the same automaton; thus, for instance, we can take n = 4. s = 3, or
n = 3, s = 3, and so on.

x2

0
1
2
0
1
2
0
1
2
0
1
2
0
1
2
0
1
2

Table 4.12

I

--L PP

P I
P I

P I
P I
P I
P I
P2

P 2

P 2

P2

P2
P2

P3

P3

P 3

P3
P 3

P3

d+'

XI

0
0
I
1
0
0
1
1
0
0
0
0
1
1
0
I
0
0

2
1
2
1
2
0
0
1
1
0
0
2
2
0
2
1
1
1

We shall now show that the same automatoncould be replaced by
an abstract structure that is not binary. Suppose,for example, that
n = 2, kl = 2, kl = 3, but that s = 1, rl = 3 as before. Then k = k l k 2 = 6,
and r = r l = 3; that is, Eqs. (4.6) are satisfied.

Completing Table 4.9 for this case, w e get an abstract structure
of Table 4.12, but this structure is no longer binary.

4.3. NETS

Suppose w e have the simplest finite automaton, for w'hich Eq.
(4.1) becomes

x P i l - P - P a (4.10)

In analyzing this automaton w e assume that even if the alphabet (x)
contains some symbols that are not contained in (p), these shall ap-
pear only at the initial instant. The symbol x produced by such an
automaton at the instant p is identical to the input symbol in the pre-
ceding instant p - 1. We shall call this simple automaton a o n e i n s t a n t
delay (or simply de lay) .

98 ELEMENTS OF MATHEMATICAL LOGIC

Returning to our P - Pautomatonandintroducing a new variable
11 (alphabet (~i) coincides with alphabet{x}), and replace (4.1) by rela-
tions

(4.11)

Such a relationship w a s alreadydiscussed
in Section 3.3. We shall now treat the first of
relations (4.11) a s representing an instan-
taneous converter of the symbols x and p into
symbols p, while the second relation defines a
delay. Accordingly, relations (4.11) may be
represented by the system of Fig. 4.8,where
the delay is shown as a circle.

Let u s now consider the abstract structure of some automaton,
for instance, of a P - P automaton, that is, a system of relations of
the form (4.2):

Fig. 4.8.

x y 1 =f,py. xf, . . ., x;; up, u;, . . ,) a:'],
(4.12)

i = l , 2 , . . . , n.

Since each relation of this system, for example,

may in itself be treated as combining the delay

and the function converter

Y, = f , 1x1, x2, . ' ' 9 x,!: u,, 1 4 , . . . , us] (4.13)

the entire abstract structure (4.12) may be represented by n delays
and n function converters. The input of each delay is connected to
the output of the corresponding converter. The outputs of all the de-
lays a re connected to the inputs of each of the converters. In addi-
tion, we feed external effects u to the inputs of all the converters
(Fig. 4.9).*

If we have several abstract structures, w e can derive new ab-
stract structures by "interconnecting" the original ones.

*In Fig. 4.9 and henceforth, circles represent delays and rectangles denote converters.

THE ABSTRACT STRUCTURE OF THE AUTOMATON 99

Fig. 4.9. Fig. 4.10.

By “interconnection of automata” we mean the identifying of the
output symbols of one automaton with the input symbols of another
automaton. In this sense the output of one automaton can act upon
the input of another one onlyif all the symbols of the output alphabet
of the f i rs t automaton are containedin the input of the second. If this
is not the case then “interconnection” of automata can be achieved
only by means of auxiliary converters.

For example, suppose w e have two abstract structures: struc-
ture A

xf+I =fL(q, xf, x;, xf; up, u{, uf), i = 1, 2, 3, 4 (4.14)

and structure B

y g + ’ = y 1 (y f , yg, y;, wf, w{, w{, Wf), j = l , 2, 3. (4.15)

Let u s supplement (4.14) and (4.15) with theequations of three con-
ver ter s :

(4.16)

Here wl and w2 are auxiliary input fibers of the converters. Figure
4.10 shows schematically the coupling of structures A and B by
means of these three converters.

100 ELEMENTS OF MATHEMATICAL LOGIC

Together, Eqs. (4.14), (4.15), and (4.16) again give an abstract
structure. Indeed, substituting (4.16) into (4.14) and (4.15), w e ob-
tain a system of seven recurrence relations with coordinates (xi. x2 ,
x3, x4) 41, 42 and y3) and input fibers(u2, u3, ~ ‘ 2 ~ wiand w,), of the same
type which w e already know as an “abstract structure.”

We shall designate by the term net a system of finite number of
recurrence relations similar to Eq. (4.2) and supplemented by con-
verter equations which express some of the inputs by means of co-
ordinates.

The net itself is an abstract structure. Its coordinates are all
the generalized coordinates of all i ts component abstract structures.
The input fibers of the net can be both the input fibers of the com-
ponent abstract structures that are not acteduponby converters, as
well a s the input fibers of the converters that are not acted upon by
the coordinates of the abstract structures constituting the net.

To obtain a system of relations such as (4.2) for the net, one
uses the converter equations to eliminate the input variables acted
upon by the converters.

Since the net itself is an abstract structure, i t substitutes for
some finite automaton. Thus when one uses converters to combine
abstract structures into nets, one generates new finite automata from
other finite automata.

We shall say that a net is adelay net if i t consists only of delays
connected by means of function converters. It follows from previous
discussion that any abstract structure and any net can be repre-
sented by a delay net. This was shown in Fig. 4.9. Such a repre-
sentation is not unique in the sense thatevery delay net may substi-
tute for some automaton, and, as w a s pointed out in the preceding
section, one can generate many abstract structures which can sub-
stitute for each automaton. This means that one can construct many

Fig. 4.11.

NETS 101

delay nets to represent the same automaton, such nets differing in
the number of constituent delays and in the alphabets on which the
delays are defined.

Among these delay nets w e can distinguish the subclass of Zoop-
free nets . A delay net is said to be a loopfree net if, starting from
any delay, one moves along the net in the direction of i t s operation
(along the arrows of the schematic such as Fig. 4.5) and never re-
turns to the starting delay. Figure 4.11 shows a loopfree net, while
Fig. 4.12 presents a net containing loops.

Fig. 4.12.

One important loop-free net is that consisting of q series-
connected delays (Fig. 4.13). If the inputs and outputs of the delays
are defined on different alphabets, then one must interpose convert-
ers between the delays (Fig. 4.14).

q delays

7
........

Fig. 4.13.

q delays

A

Fig. 4.14.

102 ELEMENTS OF MATHEMATICAL LOGIC

Let 11s call such anetadelay line, A s any other net, a delay line
is a finite automaton, but with an important difference. If the delay
line has an input ~i and an output pC,, then the symbol L I ~ ! will not be a
function of the symbol 1 1 generated during the preceding sampling in-
stant, but will be defined by the input symbol EL appearing 9 instants
before :

I*” ~ 11 f ((*”).
‘ 0

If the input and output symbols of all the delays are defined on
the same alphabet, then output pU will coincide with input p, supplied

instants before:

Let us now return to the diagram of Fig. 4.8, but let u s substitute
i ts delay by a delay line. We thenobtain Fig. 4.15. Then, instead of
relations (4.11), we have

(4.1 7)

Eliminating !I. we have

whereas by eliminating x from (4.17) [rather than p], we obtain

Ll delay line can also be connected to the input of a converter.

(4.20)

hotc that i f wc had designated by symbols x the state of the en-
t ire syslem, taking into account the outputs of all the delays, then

NETS 103

q delays p ”i;
Fig. 4.15.

at the instant p + 1 the x would depend only on the x at the instant p .
However, if we assign the symbol xonly to the output of the last de-
lay, w e can use this automaton to embody relation (4.19). This is
precisely what we meant when, on introducing the concept of a finite
automaton in Chapter 3, w e said that an expression such as (3.5’):

is so general that i t includes a finite automaton in whch the output
x p + * depends on the inputs xi’ and p introduces a finite number (4)
of instants previously.

Now let us return to the relationship between automata and se-
quential machines of the P - P and P - Pr types. Consider the sche-
matic of Fig. 4.8, described by Eq. (4.11). A s stated in Chapter 3,
Eq. (4.11) describes automata of either the P - P or P - Pr type.
depending on whether w e eliminate variable \ I or variable x. The
diagram of Fig. 4.8 can represent either case, depending on whether
the output variable is x (P - P automaton) or k i (P - Pr automaton).
Figures 4.16,a and b shows these two machines.

A s pointed out in Chapter 3, a P - P s-machine differs from
P - Pr machine only in that i t contains a P - P rather than a P - Pr
automaton. Thus such machines may be represented a s shown in
Fig. 4.17,a,b.

Let us recall that the P - P machine can always substitute for
a P - Pr machine simply by changing converter (€ 3 . However, the
converse statement, that is, that merely by exchanging the output
converter a P - Pr machine can be made to substitute for a P - P
machine, is not true. Now that we can define automata by means of
tables and have introduced diagrams such a s Figs. 4.16 and 4.17,
we can illustrate this statement by an example.

Assume an s-machine of the P - Ptype (Fig. 4.17,a) is given by
the tables of converter F (Table4.13) andconverter (I, (Table 4.14).

104 ELEMENTS OF MATHEMATICAL LOGIC

-a
I

I
I
I
I
I
I
I
I
I
I
I

Table 4.13

Converter F

n-------------

I - I

I P . I
: * F

I -
I
I

i
b)

Fig. 4.17.

Table 4.14

Converter

Retaining converter F as is, find a new table for a converter
7. = cf)’ (p, p) such that the s-machine Fig. 4.17, b incorporating i t
will substitute for the initial s-machine.

Consider, for example, the intersection of the first row and the
f i rs t column in the table for converter (Table 4.14), where one
finds symbol The corresponding square of Table 4.13 for con-
verter F contains the symbol x?. We shall thus write the symbol A2

at the intersection of the f i rs t column and the third row in the table
of the new converter @* (Table 4.15): w e can complete the remainder
of this table in the same manner.

NETS 105

Now, however, le t u s try to repeat the procedure, this time start-
ing with the square located in the f i rs t column and the second row of
Table 4.14 of the old converter @ . This square contains symbol 1.9,

and the corresponding square of Table 4.13 contains the symbol 3t3

as before.
Thus our new table would have tocon-

tain hain a square already occupied by sym-

tain a nonunique converter. Our example
confirms the statement that, in general, a
P - Pr machine cannot substitute for a
P - P machine if the only change intro-
duced into the P - Pr machine is that of
the output converter.

Now let us return to the relationship
between a finite automaton and a sequen-
tial machine. We have accumulated suffi-
cient material to define this relationship
more precisely, by means of the following
theorem. *

Theorem. For every sequential machine s there exists a system consisting
of a finite automaton A and an output converter such that, given any
initial state of S and any input sequence to it, there is an initial state of A
such that, at all p > I , the output sequence o f A is a repetition o f the output
sequence of S with a delay o f one sanipling instant. Conversely, for any
system consisting o f a finite automaton A and an output converter, there
exists a sequential machine s such that, given an initial state o f A and any
input sequence to it, there is an initial state o f S such that, at ull p > 0 the
output sequence of S repeats the output sequence o f A with a lead of one
sampling instan t.

Proof of the f i rs t statement. Assume a sequential machine s de-
scribed by equations

Table 4.15

bol A*. But this means that w e would ob- Converter W

(4.22)
(4.23)

We shall now construct a net consisting of two finite automata
and define i t by equations

(4.24)
(4.25)

*Compare this with Theorem 1 of [161.

1 06 ELEMENTS OF MATHEMATICAL LOGIC

and w e define the output converter of the net by

. J - J’ - (1, (y ” , ,$I, (4.26)

where the alphabets { ! I) and (z) coincide with the alphabets (x} and (A),
respectively; the alphabet { z } differs from(p) by one additional sym-
bol z , , ; the functioncl, in (4.26) coincides with the corresponding func-
tion in (4.23) for all pa i r s of symbolsfrom alphabets (x) and { I) } , but
is iiideterminate (or may be defined in any desired way) for z = 2 0 ;

the function/;,in (4.24) coincides with F in (4.22) for all combinations
of symbols that do not contain z0, but for 2,-containing combinations,
/.’I ii!, F,,) -- y . Equations (4.24) and (4.25) specify the finite automaton
A whose s ta tes a re coded by the symbolpair (! I , z) , while Eq. (4.26)
defines the output converter for this automaton. We shall now com-
pare with each initial s ta te x“ of S that initial state of automaton A
for which

When / I = - 0, i t follows from (4.24) that y i = 11” = d’. Whenph 1,
the symbol i! cannot be generated, so thatfor the sampling instants
the function / in (4.24) can be replaced by I , and

y” ” = F () f ” , z”), p > 1 . (4.28)

Introducing a new variable Y P = yo’+ i, (p > 0), and using (4.24), we
can write

YP+l = F(YP, p ’ j , p > 0, (4.29)

whereby Yo = y’ = xrl. Equations (4.22) and (4.29) and the initial con-
ditions % (0) = d1 coincide, so that for any p > I

Substituting (4.25) and (4.30) into (4.26) and comparing with (4.23),
w e get

7.p = (1) (z”, 1.1’) = >.’’-I, p >, 1,

which proves the f i r s t statement of the theorem.

NETS 107

We shall now prove the second statement. Let the finite automa-
ton A be

and i t s output converter

We shall now compare this automatonwith the sequential machine s:

(4.33)
(4.34)

where the alphabets (y) and (x) coincide. We shall match each initial
state of A with an initial state of S. Since Eqs. (4.31) and (4.33) and
the corresponding initial conditions coincide, w e have

)I” = 2 (4.35)

for all p > O . Substituting (4.35) into (4.34) and using (4.31) and
(4.32), w e have, for all p > O ,

q. e. d. Thus the entire theorem is proved.
If one wants to determine what a sequential machine or a finite

automaton “can do,” then, by virtue of the above theorem, one need
not examine these machines separately. However, the two abstract
concepts are not equivalent, in the sense that the same “task” may
be performed in a sequential machine with a smaller number of
states than in the corresponding automaton. This is important in
cases in which i t is desired to minimize the number of such states
(see Chapter 9).

4.4. ABSTRACT AGGREGATES OF AUTOMATA AND
SEQUENTIAL MACH IN ES

We have proved that an automaton may be replaced by a variety
of abstract structures, and that each abstract structure may itself
be replaced by a great variety of nets. On the other hand, if each
abstract structure is an automaton, then the very concept of a net

1 08 ELEMENTS OF MATHEMATICAL LOGIC

permits u s to devise new automata from other automata. This
reasoning leads to the following problem: is it possible to find such
a set of automata and converters that, by employing any devised
number of automata and converters of this set , one can construct
nets which would substitute for a variety of automata and sequential
machine s ?

The process of constructing nets by employing only automata and
converters of a given setwill be called the aggregation of JCinite auto-
mata and sequential machines.

Automata and converters contained in a set a r e said to be ele-
ments of the set. We shall say that a set is complete i f i t s elements
can be used to construct a net which can substitute for any a pm-om'
given finite automaton or sequential machine.

We have already shown that, given a set of any delay elements
(that is, operating in any alphabets) and any converters, one can
construct a net which will substitute for any given automaton.

Assume a delay element operating inalphabet{p}. If, in addition,
we had some set of elementary converters from which we could con-
struct any converter operating in alphabet (p}, thenwe would have a
complete set.

Thus, for example, one important complete set is that consisting
of a binary delay element (that is, a bistable delay element) plus
elements performing the operations of disjunction, conjunction, and
negation.

Indeed, any automaton may be replaced by an abstract logical
structure, that is, an abstract structure in which all the ki = 2 and
all the r , = 2 (i = I , 2, . . ., n ; j = I , 2, . . ., s). But such an abstract
structure may be represented by a net consisting exclusively of
binary delay elements and logical converters. But since any logical
function may be represented by a conjunction of disjunctive groups,
any logical converter can be constructed of converters performing
disjunction, conjunction, and negation (see Chapter 1 and 2) . There-
fore, the above set is complete.

Obviously, we would also have a complete set if the latter con-
sisted of the binary delay element plus a converter performing any
logical function (such as a converter performing the Sheffer stroke).

In a similar manner, one can develop complete sets operating in
alphabets containing more than two symbols (for instance, m sym-
bols); the problem then reduces to that of expressing any logical
function of m-valued logic by means of several primitive functions.
Such primitive functions, plus a delay element operating in the alpha-
bet of m symbols, constitute a complete set.

Chapter 5 wi l l describe the practical embodiments of various
complete sets as well as the construction of finite automata and

ABSTRACT AGGREGATES OF AUTOMATA AND SEQUENTIAL MACHINES 109

sequential machines basedon such sets. However, let u s f i rs t briefly
consider an important abstract model, which w a s developedin con-
nection with certain problems in physiology.

4.5. ABSTRACT NEURONS AND MODELS OF
NEURAL NETS

The behavior of nerve cells (neurons) and of nervous systems is
assumed to be representable by abstract (idealized) neurons and
abstract models of neural nets. The McCulloch - Pitts neural net
is one of the best known abstractions of this kind.*

The McCulloch-Pitts neuron is an imaginary logical element
which may exist in only one of two possible states:

Fig. 4.18.

‘‘stimulated” and “not stimulated.” A neuron may have any finite
number of inputs, but only one output which may, however, have
any finite number of branches (Fig. 4.18). Eachinput may terminate
in either of two endings: Ccinhibitoryyy (black dot in Fig. 4.18) or
Ccsimple” (arrow in Fig. 4.18). The branching output endings of a
neuron may act upon the inputs of other neurons or on their own in-
put. Some of the neuronal inputs may be externally stimulated.
Again, an external stimulus may either stimulate or not stimulate
the input. We can thus form abstract neural nets to simulate nerve
tissues (see Fig. 4.19).

L e t f (f j be the number of simple input (“+”) endings which are
stimulated at the instant t and act upon a given neuron and let g (t) be
the number of stimulated inhibitory endings (0) which also act upon
this neuron.

The functioning of a neuron (and, consequently, ofthe net) is de-
termined by the following condition of stimulation: A neuron is
stimulated at the instant t + ‘t if the following conditions are satis-
fied at the instant t :

g (4 = 0, f (4 >, h, (4.36)

*Developed in 1943 (see [62]), this abstraction has by now lost i ts value to physiology
because of more recent studies in the properties of neurons.

110 ELEMENTS OF MATHEMATICAL LOGIC

where h is a given finite number, called the thveshold of stimulation.
A neuron is not stimulated unless these conditions are met. Thus
the inhibitory ending has “veto power”; that i s , even if inequality
(4.36) is satisfied, the output is not stimulated if the input of the
neuron in question is connected to even one inhibitory branch of a
stimulated neuron. *

Fig. 4.19.

If u, is the state of the simple input fibers (i = 1 , 2, . . ., s) , vI is
the state of the inhibitory input fibers (j = 1, 2, . . ., q) , and x is the
state of the neuron, then the behavior of a McCulloch-Pitts neuron,
such that s = 3, h = 2, q = 2 is described by

Let u s mark off points 0, T, 27, 37, . . . on the time axis and observe
the neurons and neural nets only at suchinstants; that i s , let u s in-
troduce sampling instants. Instead of 0, ‘I, 27, 37, . . . we introduce in-
tegers 0, 1, 2 , . . ., P . . . respectively, to denote the occurrence of
these sampling instants. Then expression (4.37) may be written as

(4.38)

Now consider any McCulloch-Pitts abstract neural net consist-
ing of n neurons and having s ‘‘free” inputs, through which external
effects can be introduced. We shall label the neurons contained in
the net by 1, 2, . . ., 11 and the free input fibers by 1, 2, . . ., s; w e
shall also denote by x i the state of the ith neuron and by u j the state
of the jth input fiber of the net. Then we can write n equations of
the form (4.38). Eachinput of aneuron of the net is acted upon either

*Frequently, other conditions for the functioning of neurons a r e specified (see, for ex-
ample, [73]).

ABSTRACT N E U R O N S AND MODELS OF N E U R A L NETS 111

by the ending of one of the other neurons or by an external effect.
Therefore each w or v can be identified with an x or a u ; that is, w e
can introduce xp or upinto the right-hand sides of expressions (4.38),
to replace W P and UP, respectively.

It follows from the foregoing that the McCulloch-Pitts abstract
neural net can be described by the system of relations

xp+’= L,(Xf, “k, . . * , xg; uf, q, . . ., Uf).
i = l , 2 , . . . , I t ,

(4.39)

where Li are logical functions such as (4.38).
Thus, the McCulloch-Pitts abstract neural net is in effect a net

according to our definition of this term, and is therefore a finite
automaton. But since the right-hand side of (4.39) contains not jus t
any logical functions but functions of a special type [the (4.38) type],
there arises a question: Canwe construct aneural net to correspond
to any given finite automaton operating in the 0, 1 , 2, , , . (that i s ,
0, T, 27, . . .) timing sequence?

To answer this question, it will be pointedout, f i rs t of all, that
a self-simulated neuron with h = 1 and no inhibiting inputs (Fig.
4.20) is a blocked, or permanently simulated, neuron. Therefore
neurons may have permanently stimulated inputs (Fig. 4.21,a), de-
noted as shown in Fig. 4.21,b. We shall say in this case that the
stimulated input fiber is fixed.

We shall now consider a neuron with
h = 1, s = 1, and 9 = 0 (Fig. 4.22). Such a
neuron is described by

x P t l - - wp,

that i s , one neuron wi l l produce a delay

Fig. 4.20. Fig. 4.21.

of one sampling instant. By connecting 9 such neurons in ser ies
(Fig. 4.23), we can produce a delay of 9 sampling instants.

112 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 4.22.

Fig. 4.23.

Consider now a neuron for which h = I , s = 1 , q = 1, and fix the
input stimulus (Fig. 4.24). Then the neuronembodies the relationship

-
x P + l - P - v ,

that is, the single neuron performs the operation of negation with a
delay of one instant.

A neuron for which h = 1, q = 0, and s is any number (Fig.
4.25) is an embodiment of a disjunction of s variables with a delay
of one instant:

x ~ + ~ = w ; v w g / I . . vwg,

while a neuron with h = s (for any s) and q = 0 (Fig. 4.26) is an em-
bodiment of a conjunction of s variables with a delay of one instant.

Fig. 4.24. Fig. 4.25.

If we desire to perform a conjunction of s variables, some of
which a re negated, then the negated variables must be introduced at
the inhibitory inputs while h must equal the number of negated vari-
ables. Thus, for example, the conjunction

can be embodied by a single neuron, a s shown in Fig. 4.27.

ABSTRACT NEURONS AND MODELS OF NEURAL NETS 113

Fig. 4.26. Fig. 4.27.

Consider now an arbitrary disjunction of conjunctive groups. Let
such a disjunction contain rn groups. Then each conjunctive group
may be performed by a single neuron in accordance with Fig. 4.27.
The outputs of these neurons are connected to a neuron which per-
forms the disjunction (Fig. 4.25). Since all the neurons performing
conjunctions c'fire99 during one instant, and since just one additional
instant is required for performing a disjunction, the entire disjunc-
tive formmay be performedin twoinstants, that is, in time 2 ~ . Thus,

Fig. 4.28.

Fig. 4.28 shows ane t consisting of McCulloch-Pith neurons and em-
bodying the form

Since any logical function may be presented as a disjunction of
conjunctive groups, i t can be performed over two sampling instants
by an abstract net consisting of McCulloch-Pitts neurons. Thus any

114 ELEMENTS OF MATHEMATICAL LOGIC

logical converter L may be constructed from McCulloch-Pitts neu-
rons, but, i n contrast to our usual assumptions, such a converter
wi l l not be instantaneous, because i t w i l l require two sampling in-
stants to finish i t s operation.

Assume now that the inputs vary
and that the state of the net is observed
at instants 0. 2-, 37, With such a
timing, one can construct a net of
Mc Culloc h- Pit t s neurons that per -
forms any logical conversion over a
single sampling instant. Also, neurons
may be employed to form a delay ele-
ment for such a “doubled” timing; to
do this (see Fig. 4.23), two delay ele-
ments are connected in series. Now,
having a logical converter performing
any desired conversion and having a
delay element, w e can construct a net
embodying any desired automaton op-
erating with such a timing.

In Chapter 10 we shall consider
Fig. 4.29. methods for synthesizing automata

operating with any desired “slow)’
timing, starting from elements operating with “fast” timing, pro-
vided the synchronizing signals for the occurrence of the “slow” tim-
ing a re supplied from an outside source. We shall show that to syn-
thesize such systems we needelements capable of producing a delay
for any such externally supplied timing.

To finish the discussion of neural nets, w e shall show how such
a delay element may be synthesized from McCulloch-Pitts neurons.
Thus le t us construct a net (Fig. 4.29) that performs, over time 27,
the function

-
, p + 2 = (. u ? : ’ S r . u ? ~) V (~ ~ & . z e r ~) .

We combine two such nets into one net with two inputs (u and u t) , as
shown in Fig. 4.30. The input u is the basic input of the net, while
I / [is used for introduction of a synchronizing signal (it is assumed
that the next sampling instant occurs when u f changes from 1 to 0).

Figure 4.31 shows the variation of x and xI for some variations
of li and l i t . The value of x coincides with the value of u , but with a
delay of one sampling instant. The net wil l function correctly pro-
vided signals i ~ [follow each other at intervals not shorter than 4.c.
The arrows in Fig. 4.31 bracket intervals 2:.

ABSTRACT NEURONS A N D MODELS OF NEURAL NETS 115

I I

Fig. 4.30.

Fig. 4.31.

Thus, having a delay element for any external synchronizing
source, as w e l l as a converter “firing” in the time 2 ~ , one can, with
the aid of the methods of Chapter 10, use McCulloch-Pitts neural
nets to embody any automaton (or sequential machine) with any de-
sired timing, provided a single condition is satisfied: the interval
between sampling instants cannot be shorter than 4.c.

5

Technical Embodiment of Finite
Automata and Sequential Machines

5.1. TWO METHODS FOR TECHNICAL REALIZATION OF FINITE
AUTOMATA AND SEQUENTIAL MACHINES

In the preceding chapters we have formally introduced the con-
cepts of “finite automaton,’’ “sequential machines,” and “abstract
structure.” So far, these w e r e presented only as equations o r sys-
tems of equations, and w e did not deal with the physical nature of
the dynamic systems whose motion they describe. Now we shall
show that the above concepts describe important technical systems,
and we shall introduce techniques for determining the hardware
needed for realizing any given finite automaton o r s-machine.

We have shown in Chapter 4 that each finite automaton-or S -

machine may be represented by many abstract structures. But each
abstract structure may be embodied by some practical device that
functions just like this abstract structure. I t follows that any finite
automaton can have many technical embodiments. We shall also show
that any given abstract structure of any given automaton may be em-
bodied (realized) by many technical means.

In this chapter w e shall consider only embodiments (realiza-
tions) of binary abstract structures; that is, i t will be assumed
that the finite automaton is given by a system of relations

X?+’ = Fi [x:, x;, . . ., x;, u?, UP, . . ., US^]
(i = 1, 2, . . ., n),

(5.1)

where x i (i = 1 , 2, . . ., n) and I L ~ (j = 1 , 2, . . ., s) arelogicalvariables
which can be only 0 or 1, and F i (i = I , 2. . . ., n) are logical functions,
which also can be only 0 or 1. We also assume that the timing of
the automaton is given, that is, we aregiven the conditions defining
the occurrence of the discrete moments 0, I , 2, . . ., p on the con-
tinuous time scale.

116

AGGREGATIVE DESIGN OF FINITE AUTOMATA 117

To produce a technical device performing relation (5.1), one must
have logical converters performing the functions F i . We have already
described such devices in Chapter 2. Now, however, w e do not want
to perform functions Fi themselves, but want to embody relations
(5.1) of which such functions are a part. Thus, we are faced with
the question: What modification must be introduced into the func-
tion converters of Chapter 2 (or with what must these converters
be supplemented), in order to transform them into devices whose
states shall vary in time so as to model the abstract structure (5.1) ?

We shall now present two essentially different methods for solv-
ing the above problem.

5.2. AGGREGATIVE DESIGN OF FINITE AUTOMATA
AND SEQUENTIAL MACHINES

We already know that an abstract structure such as (5.1) can be
placed into correspondence with a structural diagram. Such a dia-
gram (for n = 3, s = 2) is shown in Fig. 5.1. The diagram contains
s input lines (input w i r e s u l , up, . . ., us) and n output lines (their co-
ordinates are states x I , x2, . . ., x.). Each of thenlogical converters
performing functions F , , F 2 , . . ., F,,, respectively, receives signals
from all the n + s lines; the output of the ith converter feeds the
line x i via a one-instant delay element (denoted by a circle in Fig.
5.1), whose output and input are related by

Direct examination shows that such a circuit models precisely
the structure of relations (5.1). To construct a technical device ac-
cording to this diagram, one must have one-instant delay elements
in addition to the requisite logical converters. Thus in order to
convert a set of elements sufficient for the embodiment of any logi-
cal function into a set of elements sufficientfor the realization of a
finite automaton, one needs only to supplement the f i rs t set with a
single element-a one-instant delay element.

Such a set is also sufficient for the construction of any sequen-
tial machine, since the latter differ’s from an automaton only in
having an output logical converter.

A one-instant delay element must have two inputs-the basic in-
put xin and an auxiliary (time) input xl. It also must have an output
x o u t . The conventional notation for such an element is shown in
Fig. 5.2.* The auxiliary (time) input receives the signals indicating

*One usually omits the input wire xs whenever such an omission does not hinder the
understanding of the operation of the circuit.

118 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 5.1.

the occurrence of the next discrete mo-
ment, such signals being supplied to the
automaton from an external signal-pro-
ducing device (a “clock” or “synchro-
nous source”).

The delay element operates in the
following manner: let xy, be the state
of the input to the element at the f i rs t
discrete moment. Then, after a short

p“ Fig. 5.2.

time interval T (the specific delay of the delay element), the output
shows xour = x : ~ .

I 1 I I I I cycle number
XLt lh I I I 1 1 I

! - - I I I 1 1 I

0 i I I i i i ?

Fig. 5.3.

After this, regardless of what happens at the input, the output
wi l l retain its value until the next discrete moment, when the same
procedure is repeated. The delay element does not react to any
changes occurring at the input during the time interval between the
discrete moments.

AGGREGATIVE DESIGN OF FINITE AUTOMATA 119

Figure 5.3 shows an example of changes occurring at the input
and output of a one-instant delay element. In this example the syn-
chronizing signals are short pulses. However, the synchronizing
signal often is each change of state of the auxiliary input, which can
also have only two values: it can be either 1 or 0 (Fig. 5.4) or, al-
ternatively, i t can only change from state 0 to state l (Fig. 5.5).

Consider the construction of a pneumatic one-instant delay ele-
ment. Such an element is based on so-called memory cells. Sche-
matic diagrams of two types of memorycell are shown in Figs. 5.6,a
and b, respectively, where the change of state of the “time input”
Pt from 0 to 1 serves as the synchronizing signal. A memory cell
consists of two pneumatic relays (see Section2.4). One of these (the
output) is connected so as to perform a “repetition,” maintaining
the output pressure P of the cell equal to pressure P h ; the other re-
lay (the input) performs the function of a pneumatic valve, opening
or closing the connection between the chamber where the pressure
Ph is established and the input lineP,. The operation of the pneu-
matic valve is governed by the pressure P t ; in the cell of the first
type (Fig. 5.6,a) the valve is closedwhen Pt = 1 and open when Pt = 0,
and, conversely, in the cell of the second type (Fig. 5.6,b) i t is
closed when Pt = 0 and open whenP, = 1. Because of this arrange-
ment, either the cell output is equal to i t s input (for the f i rs t cell
when P t = 0, and for the second cellwhenPt = I) , or the output is not
connected with the input andis constant (in the f i rs t cell when Pt = 1,
and in the second cell whenP, = 0) , i t s value being determined by the
magnitude of the pressure P h in the dead-end chamber.

A memory cell of the first type connected in series with a cell
of the second type constitutes a one-instant delay element (Fig.
5.6,~). This element operates in the following way: at t , , , when Pt
is 1 (the beginning of the nthdiscrete moment), the f i rs t cell “mem-
orizes” the value of the input, that is, P*(f,) = P ! (f , ,) . In the same
instant (more precisely, at time t , + A t , where the increment At is
caused by the fact that the working membrane of the second memory
cell must travel a longer path than thatin the f i r s t one), the second
memory cell transfers the value rememberedby the f i rs t cell to the
output of the system: the pressure P (f ,) = P * (t , ,) = P , (f ,) is thus
established at the output of the delay element. After this, as long as
P t = I , there can be no changes in the system, since i t s state is de-
termined by the fact that throughout all this time the first cell “re-
members” the input value P l (t ,) . This means that P (t) = P * (t) =
P I (f n) when in ,< t ,< t,, where t i is the instant at which Pt becomes 0.

At time t i (see Fig. 5.6,d) the input to the second memory cell
is P(tL)=P,(t,); the cell “memorizes” i t , and there is thus no

120 ELEMENTS OF MATHEMATICAL LOGIC

xtL n n

Fig. 5.4.

I P

1

0 1 2 3 4 5 S ' i
I I I I I I

Fig. 5.5.

I
I I
I I
I I *

t
d)

Fig. 5.6.

AGGREGATIVE DESIGN OF FINITE AUTOMATA 121

change in the output of the system, which is still at P(t;)= P, (in) ;
at time i: + A t , the first memory cell s tar ts to operate a s a repeater,
Subsequently, as long as Pt = 0, the output of this system (that is, the
delay element) will remain unchanged; i t can assume a new value
only if, at time t , + 1, the control !',(the time input) becomes 1 again.

Thus this pneumatic device performs the function of a one-instant
delay element: i t s output at the instant of the synchronizing signal
(when Pt = I) becomes equal to the input and then, no matter what
happens at the input, remains unchanged until the following syn-
chronizing signal (compare Fig. 5.6,d with Fig. 5.5).

Figure 5.7 shows an electromechanical embodiment of a one-
instant delay element, which has many conceptual similarities to
the above pneumatic delay element. Again, w e have two inputs, X
and X I , where X t is the time input-the change of X t from 0 to 1 being
the synchronizing signal for the delay element. Again the circuit
consists of two series-connected memory cells (I and 2 in Fig.
5.7,a). The state of the relay coil Y is the output of the element.

The cells memorize by using blocking contacts (contact y" in
cell I and contact y in cell 2). The time input Xi acts on the cell via
its associated contacts xt and xr in such a way that when the f i rs t

xt A

0. I I

Fig. 5.7.

122 ELEMENTS OF MATHEMATICAL LOGIC

cell “memorizes” (this wi l l occur at X i = I) , the second cell oper-
ates as a repeater of the f i rs t one (Y = Y *) , and, conversely, when
the second cell memorizes (atXi = O) , the f i rs tcel l repeats the in-
put (Y “ = A’). Figure 5.7,b shows that this system operates in pre-
cisely the same manner as the previously described pneumatic de-
lay element.

A s w e stated before, a delay element consisting of two memory
cells can operate correctly only if the theoretically simultaneous
change of state of the cells actually takes place in a certain speci-
fied sequence: that is, both cells respond initially by remaining in
a state of “memorizing,” and only thendoesone of the cells trans-
form i t s state into that of a repeater. In a pneumatic element this
is achieved by applying differingbackpressures P,, and Pu, where-
as in the relay switching element this same function is filled by the
specific delay T of relays Y and Y * .

Any finite automaton may be embodied by replacing the contacts
x (x I , . . ,, x .) of the delay element circuits (such as that of Fig. 5.7)
with chains of contacts f , , f z , . . ., f n . Such chains not only incor-
porate the input contacts xl, . . ., x,, but also include the contacts
yl, , . ., g,, of the output relays of the delay elements. This is shown
by the circuit diagram of the automaton (Fig. 5.8). Thus the u l , . . ., 11,

states of the input fibers of the automatonof Fig. 5.1 correspond to
the xl, . . ., x ,~ states of the input contacts of Fig. 5.8 and the x I , . . ., x,
states of the automaton of Fig. 5.1 correspond to state of the relay
coils Y1, . . ., Y , of Fig. 5.8, and, finally, the logical converters F 1 , . . .,
F,, of Fig. 5.1 correspond to the chains of contacts f l , . . ., f n in Fig.
5.8.

Obviously, the one-instant delay element is itself the simplest
finite automaton. If one desires to assemble not merely logical con-
ver ters but also automata then the set of constituent elements must
include either a one-instant delay element or some other elementary

.---$

I
i

Fig. 5.8.

AGGREGATIVE DESIGN OF FINITE AUTOMATA 123

I I I
I I
I I I
I I

I I *
I I t
I

I
I

I

I
P' I

5
I t

Fig. 5.9.

(nonautonomous) finite automaton. In another widely used method,
one supplements the logical elements with an elementary automaton
which, although it does not permit construction of all conceivable
finite automata, does give many finite automata of practical value.
One such elementary automaton is the complementary flip-flop (an
autonomous automaton). Figure 5.9 shows a gas-operated flip-flop
based on a pneumatic delay element. This flip-flop (Fig. 5.9,a) is
obtained from a delay element by switching i t s output into its own
input via a negation element (Fig. 5.9,b). Such a circuit is an au-
tonomous finite automaton operating according to xP+l = x p (here,
pressure P substitutes for x) , an operation shown in Fig. 5 . 9 , ~ .
Figure 5.10 shows an electromechanical flip-flop, also made from
a delay element by switching i t s output into i t s own input via a ne-
gation element.

124 ELEMENTS OF MATHEMATICAL LOGIC

This technique for the synthesis of auto-
mata involves supplementing the set of in-
stantaneously acting logical elements with 7T-X

d f I$‘ I some very simple automaton (for example,
a one-instant delay element, a flip-flop, and
so on). In addition, in using delayelements,
this technique assumes the availability of a
synchronous source whose output becomes
the time input of the delay elements. In many
cases, however, there is noneedfor supple-
menting the logical set with new elements:

one merely utilizes the fact that any real element has an inherent
time lag T; that is, any real element is an elementary automaton
operating in a discrete time scale devised by dividing the time axis
into uniform intervals of length T. The realization of this fact leads
to the most popular (although somewhat limited) technique for syn-
thesizing automata. This technique is applicable when the synchro-
nizing signal, defining the division of the continuous time into dis-
crete moments, is the change of the input state of the system.

Fig. 5.10.

- I L L

5.3. SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL
MACHINES BY UTILIZING INHERENT DELAYS

AS WELL AS FEEDBACK

Consider again the simplest electromechanical relay, which in
Chapter 2 w a s assumed to be acting instantaneously. In fact, how-
ever , relay actuation involves a short time lag T. This means that
even though the output (the state of contactsx) and the input (flow
of current in coil X), are both logical variables (that i s , can only
be 0 or l), their relationship involves a time element. Thus

,y‘+ = = X‘.

If time is uniformly divided into a succession of discrete mo-
ments 0, 7 , 27. :3.;, . . . and i f changes of the input as well as all out-
puts occur only at these moments, w e get

that is, the relay* is an elementary automaton of the “one-instant
time delay” type, operating at intervals T.

*We a r e referr ing here to a re lay with normally open contacts. If the actuation t ime
is also taken into account, then a re lay with normally closed contacts may be consid-
ered a s a circuit consisting of a one-instant t ime delay element and an instantaneous ne-
gation element.

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 125

Further, a real contact network synthesized by the methods of
Chapter 2 will not, in fact, perform the “instantaneous” function

but will be an automaton

operating at times 0, T, ZT, 3.c,
Consider now a relay network such that normally open contacts

of one relay close the circuit of the coil of the succeeding relay
(Fig. 5.11). Then the input of the whole network is the current in
the coil of the first relay, while itsoutput is the closing of the con-
tact x, of the last relay. Such a network can be described by

or

forming a typical loop-free automaton-an n-instants time delay
line.

+

Fig. 5.11. Fig. 5.12.

Let u s now construct an automaton with a loop, connecting the
coil of the f i rs t relay of this delay line with the contacts of the las t
relay; that is, we shall close the delay circuit by means of feedback
(Fig. 5.12). Again, all contacts are normally open. Then, following
some initial state of contacts, this automaton, operating at inter-
vals of T , will assume and stay in one of two possible stable states
(all contacts closed or all open). If, however, the f i rs t relay w a s
normally closed, while the others were normally open, then we
would have continuous cyclic switching of contacts. The diagram of

126 ELEMENTS OF MATHEMATICAL LOGIC

this automaton would show all i t s states connected into a closed
cycle. In particular, this is how the flip-flop circuit of Fig. 5.13
operates. Considered in this way, any relay switching circuit is an
automaton operating at intervals 9. A s we have seen, both loop-
free automata (for example, the delay line shown in Fig. 5.11) and
automata with loops (for example, those of Figs. 5.12 and 5.13) may
be synthesized by this method. However, the only automaton of this
type which makes sense is the autonomous one, since the assumption
that the input also changes at intervals ‘I would be unrealistic.

It should be pointed out that, in the case of
loop-free autonomous automata, the diagram can
have only one stable point (equilibrium) toward
which the automaton tends whatever the initial
state. In the case of automata with loops, how-
ever (that is, feedback circuits), the diagrams
may show closed cycles, several equilibria, and
so on (see Chapter 6). Even although such auto-
mata a re sometimes used, they are not of great
value since their cycle timing, that i s , the inter-

vals between successive discrete moments, is predetermined by the
delay inherent in the relay, and so is usually very fast.

The mostly widely used automata are those in which the cycle
timing is governed only by the change of the state of the input, such
changes being infrequent and spaced over longer intervals of time
than those required for the actuation time 9 of the relay. We shall
call such a cycle timing slow, while the cycle timing in which the
time is divided into uniform intervals ‘I shall be known as fast .

Automata with slow timing governed by a change at the input
may be synthesized from automata with fast timing, in which case
we have a transfornation of timing (see Chapter 10). To achieve
this, one takes advantage of the factthati t is possible to synthesize
fast, relay-based autonomous automata whose diagrams show sev-
eral stable states. Consider, for example, the simplest relay cir-
cuit (Fig. 5.14). This circuit containstworelays,whose coils Y , and
Y z are connected in subcircuits which also contain the contacts be-
longing to these relays. Consequently, we have afeedback circuit o r
an automaton with loops. In addition, the circuit also includes the
contacts x , and xz of two auxiliary relays X , and X z . These contacts
supply the input signals.

Let the input contacts be fixed in some position. Then, if the
initial state of the remaining contacts is given, the circuit operates
as an autonomous automaton with fast cycle timing, conforming to
the diagram of this automaton. If the diagram does not show any
closed cycles but has several possible equilibria, the system can

-

Fig. 5.13.

-_.i

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 127

Fig. 5.14.

only tend toward one of these. Precisely which equilibrium state
will be attained is determined by the initial state of the system.

Assume that the equilibrium state achieved is A. Then, some
time after ,4 has been established, let uschange the state of the in-
put contacts; after this, in accordance with previous discussion,
the new state of the input contacts remains fixed. Now, with this
new state of input contacts, the circuit is a new autonomous auto-
maton with a new diagram. This new diagram may also have sev-
eral possible equilibria, but the previous equilibrium A need not
be one of them. If this is the case, we have a new “transient pro-
cess”; that is, the automaton begins operating infast cycle timing,
tending toward a new equilibrium B , whose position is governed both
by the diagram of the new automatonandby the position of the state
A on this diagram.

This process is repeated whenever the state of the input con-
tacts is changed. However, if the input contacts rever t to their f i rs t
state sometime la ter , the system need not necessarily return to
equilibrium A . Indeed, in this case we recreate the initial autono-
mous automaton with the initial diagrams, but now the point B may
be positioned on some branch of the diagram other than that on which
the system was initially (prior to establishment of A) . The result
is that the new state of equilibrium will be other than A ; it may,
for example, be C , in conformance with our assumption that the dia-
gram of our autonomous automaton shows more than one state of
equilibrium.

Let us now imagine that we are recording the states of the in-
puts and outputs of our relay system a seconds after each change of
state of the input contacts. The value of a shall be made so large
that all “transient processes’’ occurring with fast cycle timing wi l l
have ended and a state of equilibriumattainedby the time the read-
ing is taken. However, a will not be so large that a change in the
state of the input will occur during it. Then, at instants a , w e shall

128 ELEMENTS OF MATHEMATICAL LOGIC

observe only equilibrium states; whether some state will occur wi l l
depend on the precedingequilibrium state and the state of the inputs;
that is, the finite automaton now embodied by the circuit no longer
operates with fast cycle timing but with a timing which is governed
by the changing of the state of the input.

If the output and perhaps even the input of this automaton, are
fed to a logical output converter, w e have a sequential machine with
slow cycle timing.

The circuit really operates with fast timing, but this is imma-
terial since we a re interested only in the states occurring after the
transient processes have terminated, and sowe simply neglect these
transient processes. We have thus transformed afast-cycling auto-
maton into a slow-cycling one. This technique of synthesizing finite
automata and s-machines is, in reality, the one used for systems
based on electromechanical relays, vacuum tubes, semiconductor
triodes o r diodes.

We come now to the following problem: can all a priori defined
automata (or s-machines) operating with a timing governed by the
change of i t s input states be synthesized via the above technique?
The answer is yes. One methodutilizing this technique is described
in Section 5.4.

A related problem is that of the most economical network, that
is, the network utilizing the above transformation technique to em-
body a given automaton and, at the same time, containing the least
number of relays, contacts and states (or minimizing some other
parameters affecting the cost of the circuit). Ageneral solution for
one such problem is given in Chapter 10.

The above transformation technique is based on the assumption
that the diagrams of the corresponding autonomous automata show
several states of equilibrium. However, this is possible only in the
case of automata with loops. It follows that a fast automaton must
of necessity be one with a loop, which in practice is achieved by
means of feedback, that is, by connecting the relay coils to their
own contacts. In this sense the resulting networks become slow
automata only because of feedback. Relays connected into feedback
circuits are sometimes called intermediate relays, as distinct from
relays that are employed for the control of input contacts (input
relays) or for picking up the signal resulting in the circuit (output
relays).

Comparing the aggregate method of synthesis of automata with
that based on multiple stable states, w e see that the aggregate
method is based on a special element-the one-instant delay ele-
ment-whereas the technique of multiple stable states requires no

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 129

other devices than the very same relays that are used in the logical
converters, while the spacing of the operation in time is achieved
by means of feedback loops and the special construction of contact
networks.

It is quite obvious that all the elements of an aggregate set , in
particular, i t s one-instant time delay elements, can themselves be
based on the multiple stable states concept (see the circuit of the
relay-based delay element, Fig. 5.7). However, such elements can
be utilized in the aggregate systems only in conjunction with output
power amplifiers; that i s , they must be active.

Relay circuits are frequently designed in such a manner that the
diagrams of the autonomous automata, resulting at all possible states
of the input contacts, are of the specific form shown in Fig. 5.15;
such diagrams show several equilibrium states (where the arrows
issuing from these states lead back to the same states), while all
the remaining, nonequilibirum, states are directly connected by
arrows with equilibrium states. Given such acircuit , only one auto-
maton cycle is required for attaining equilibrium; that is, equilib-
rium is achieved in time T. Therefore the time a needs to be only
slightly longer than T. In practice, this means that the state of a
slow automaton can be observed almost immediately after a change
of the input. It i s , of course, understood, that several relays may
operate simultaneously during this single cycle.

If the actuating time T were exactly
the same for all the relays, then thefact
that several relays are actuated simul-
taneously would cause no complications.
However, in real systems 7 is not ex-
actly the same for all relays. For this
reason, a system operating with fast
cycling time may change states in a se-
quence different from the one that i t would
have followed given exactly synchronized
relays. In this case, the type of result-
ing change of state would depend on which
relay is the f i rs t actuated, that i s , on factors that are random and
usually not controllable. An example of this phenomenon, known as
cr i t ical race of relays, is given in Section 5.4. This term empha-
sizes that the operation of the circuit is governed by the relay that
operates fastest. Since one shouldnotpermit the operation of a cir-
cuit to depend on random factors, critical competition of relays
must be prevented. To avoid this competition, the circuit embody-
ing a given finite automaton o r a sequential machine must satisfy

@$
Fig. 5.15.

130 ELEMENTS OF MATHEMATICAL LOGIC

some additional requirements: for example, one requirement may
be that the system shall be transformed from one state to another
during a single “fast” cycle via the operation of a single relay.
Such additional conditions necessitate more complex circuits, and
thus a larger number of constituent elements (relays, contacts).
Circuits satisfying these conditions are called Yealizations. There
a re a number of standard realizations. One of them, proposed by
Huffman, will be described in the next section.

Naturally the competition problem does not apply in cases where
the relays are strictly synchronized. Such a situation exists with
some systems synthesized from magnetic amplifiers and tube ele-
ments, since in such systems this time T is externally imposed on
all the elements by the frequency of the alternating current feeding
the system.

5.4. HUFFMAN’S METHOD AND REALIZATION

The early Huffman paper [170] on relay switching circuits still
does not contain the concept of a sequential machine or a finite auto-
maton, or their equivalents. While citing anumber of ways in which
the problem of synthesis of a relay switchingnetwork may be spec-
ified Huffman showed that one method is to s tar t from a special
table, which he calls the f low table. Assuming thereafter that the
flow table is given, Huffman shows how i t can be simplified (but
does not show the limits of such a simplification), and then develops
a general method for synthesis of relay switching circuits embody-
ing this flow table. Huffman’s circuit realizes the given table in i t s
equilibrium states. But since his paper w a s not based on the con-
cepts of a finite automaton and a sequential machine, Hoffman ob-
viously could not specify that his method actually involves an s -
machine with fast cycle timing which, in its stable states, realizes
the given s-machine. The latter already has slow cycle timing,
governed by changes in the states of the input.

We shall now develop Huffman’s method, making use of the con-
cepts of finite automaton, sequential machine, and cycle timing
transformation. Assume we are given an s-machine, that i s , two
tables: the base table of the finite automaton involved, and the out-
put converter table. We also assume that the cycle timing of the
automaton is governed by change of the states of the input. We want
to synthesize a relay network which, i n i t s stable states will realize
the given s-machine in accordance with the principles stated in
Section 5.3. This problem is solved by Huffman’s method on a simple

HUFFMAN’S METHOD AND REALIZATION 131

example, but the method is general and may be applied to other
cases in exactly similar manner.

a) The Type of Automaton
or Sequential Machine

Recall that any sequential machine (including any finite automa-
ton) may be defined by the system ofrelations (see Section 3.4)

where

This follows from the fact that sequential machines and automata
defined by

can always be reduced to the form (5.2) by introducing the function

The converse is nottrue; thatis, asystem defined in the form (5.2),
can only occasionally be reduced to (5.3) without a change in the
number of states. In particular, an automaton defined by

can always be represented by

132 ELEMENTS OF MATHEMATICAL LOGIC

whereas an automaton given by

(5.6)

cannot be reduced to form (5.3).
In Section 3.4, s-machines definedby (5.2) were called P -P ma-

chines, and s-machines given by (5.3) were named P - Pr machines.
We shall again use this terminology here.

Since the equation system (5.2) is universal, i t can be used as a
canonical method for defining finite automata and sequential ma-
chines. System (5.2) finds correspondence in two tables, each with
the arguments Y, and p. In order toemphasize that the arguments are
common to both tables, and also for the sake of conciseness, we
shall treat these two tables as one. Thus the data required for the
synthesis of the relay circuit wi l l be presentedas a combined table
of the automaton and the output converter. The columns of this table
correspond tovariousinput states, and the rows to the various states
of the automaton; in accordance with (5.2), the squares of this table
shall contain two symbols: that denoting the stateof the automaton,
and that describing the state of the output of thes-machine. The
combined table may be interpreted in the following manner. It may
be assumed that the headings of the rows and columns correspond
to the current states of the automaton and the input (the states a t
time p) ; then the symbols in the squares define the next state of
the automaton (state at time p + 1) and the current state of the out-
put of the s-machine. This is in accord with the representation of
system (5.2) in the form

Tables 5.1 - 5.5 show how the starting data may be given by
means of combined tables.

Table 5.1 defines an automaton that may beinterpreted as being
either of the P - P or the P - Pr type (there is a one-to-one cor-
respondence between 1., and y. in all the squares of the table).

Table 5.2 gives an automaton that cannot be of the P - Pr type
(different symbols 7, may correspond to the same symbol x within a
single column; for example, we have pairs x3h2 and x 3 h 3 in col-
umn P,) .

HUFFMAN'S METHOD AND REALIZATION 133

Table 5.1 Table 5.2

7 4

Table 5.3 defines a sequential machine that can be reduced to
a P - Pr machine (there is aunique relationship between each x. and
h within each column; in this particular case there is also a one-to-
one correspondence between x and 1. in each column).

Table 5.3

T:

P i

Tables 5.4 and 5.5 define sequential machines that cannot be re-
duced to the P - Pr type. Table 5.4 differs from Table 5.5 in that
in each of i t s columns there is a unique relationship between h and
x ; that is, each h is always paired with the same 3c but there is no
overall one-to-one correspondence between 7c and h.

Tables 5.1 - 5.4 have one common property: in each of them,
the next state of the automaton (symbol 3c in a square) is uniquely

134 ELEMENTS OF MATHEMATICAL LOGIC

Table 5.5 defined by the current states of the
input and output of the s-machine.
Table 5.5 does not follow this rule.

Huffman's method may be used
directly where the given circuit is not
of the form of Table 5.5. In other
words, this method realizes all auto-
mata (both those that can and cannot
be reduced to the P - Pr type), all
sequential machines that can be re-
duced to the P - Pr type, and some
sequential machines that cannot be
reduced to the P - Pr type but have
the properties specified in Table 5.4.

b) Development of a Flow Table from a Given Table
for an s-Machine

It is required to develop a sequential machine defined by its stable
states. The machine is given, in a P - P form, by a basic table,
which is the combined table of the automaton and the converter
(Table 5.6). We assume that the next (discrete) sampling instant,

Table 5.6 that is, the cycle timing of this ma-
chine, is governed by the instant of
change of its input states. We also
assume that the next state of the auto-
maton is uniquely defined by the cur-
rent states of the input and output of
the s-machine, that is, that there are
no table columns where one h i s paired
with different ?t. Table 5.6 satisfies
this requirement. To solve this prob-
lem by Huffman's method, w e must
convert this table into a f low table.
Do this as follows:

We add to machine Table 5.6 a
bottom row where we enter ai, the number of different output states
(different iL) the machine can have at any given ith input (in our case

CLI = 3, a2 = a3 = C L ~ = 2. We then compute a = xi , where r is the

number of different input states. In ourcase r = 4 and o = a1 + az +
a3 + a4 = 9. After this, w e develop Table 5.7 which has the same

r

i = l

HUFFMAN'S METHOD AND REALIZATION 135

number of columns as the basic Table 5.6, but has u rows. The input
(top) row again contains p, while the extreme left column carries
a sequence of new variables X' = { x i , . . . , ~11: in our case X' == { x ; , . . . ,
x i) . Now we fil l out the table. We copy into column p1 (beginning with
i t s f i r s t row) the various h (total number a,) from column p1 of the
basic table (here these are hi, h3, and A?). The sequence in which
these are entered into Table 5.7 is immaterial. Next to these sym-
bols h w e copy the symbols X I denoting the given rows of Table 5.7.
These squares correspond to equilibrium states; let u s mark them
with rectangles. We fill in the a2 squares of column pg in the same
manner, but here the entries do not s tar t from the f i rs t row but
from the first blank row (here, row xi). We thus enter pairs ~ ; h ,

and x,&. In a similar manner w e complete the a: squares of each
ith column.

Now, we find the symbol h in the top row of column p , of Table
5.7 (in our case

I

X 2

I

x3

I

x4

I

"6

,
" 8

I

X 9

this is hl); we find the square containingthe same

Table 5.7

I I
PI I P2 1 P3

I n

I y'

136 ELEMENTS OF MATHEMATICAL LOGIC

symbol in the f i rs t column of Table 5.6 and note the x appearing
in that pair (in our case this isx2).* We find the row headed by this
x in the basic table and, retaining the same sequence, copy the sym-
bols i. from this row into the corresponding blank squares of the
f i rs t row of Table 5.7 (here, LL, A, and A,, respectively, are copied
below p 2 , pg and p4). We proceed in the same manner with all rows
of Table 5.7, and w e enter symbols h in all i t s squares. Now we
match each lone i. of Table 5.7 with a symbol X I in such a manner that
in each column the A‘s are uniquely pairedwith x’; in other words,
w e pair the A’S of each column, withthe symbols x’ enclosed by the
equilibrium state rectangles. Now w e have afull Table 5.7, which is
equivalent to Huffman’s flow table, and represents the table of a
“fast” sequential machine defined in the P - P form. If the p
and 7. variables are sampled only inequilibrium states, this “fast”
machine wi l l operate exactly a s the starting one (Table 5.6).

c) Abbreviation (Compression) of the Flow Table

If the flow table has one or more identical rows, then this auto-
maton may be replaced by another “fast” automatonwith a smaller
number of states. We shall illustrate this with Table 5.7.

We introduce the new variable XI’, and place i t into correspon-
dence with d, making sure that wherever there are one or more
identical rows in Table 5.7, they correspond to the same x“. This
matching is best done by adding a right-hand side column of XI‘ to
the table of the f i rs t “fast” automaton. In our particular case,
this column (see Table 5.6) has two identical X” values (in the sixth
and ninth rows), corresponding to identical rows. We then develop
the compressed flow Table 5.8; it contains the same number of col-
umns as Table 5.7, but only as many rows as there are different
symbols x ” , and ?t” replaces x‘ throughout. The compressed table
thus obtained defines (in the P - P form) a “fast machine,” which,
when sampled only at i t s states of equilibrium, operates in the same
way a s the starting cLslow9’ machine, but has a minimum number of
states (this last statement will be clarified in Chapter 10). This, in
essence, concludes the synthesis of the sequential machine. All that
remains is to realize the machine by means of a relay circuit.

*In view of the rest r ic t ions imposed on the basic table, there is always one matching
x for th i s i,, although the s a m e x may appear in more than one row of each column.

HUFFMAN'S METHOD AND REALIZATION 137

Table 5.8

d) Compilation of the Table of the Relay Network

We encode the states of the "fast" automaton in binary notation
(Table 5.9), and do the same for i t s inputs p (Table 5.10) and out-
puts h (Table 5.11).

We now introduce relays in the same number as there are digits
in the binary coding of a given state. We use two digits to code the
inputs p (Table 5.10) and thus have two input relays. We also have
two output relays, from coding of Table 5.11. The states of the au-
tomaton (Table 5.9) are matched to intermediate relays, of which
there are thus three.

We then rewrite Table 5.8 (utilizing the notations of Tables 5.9 -
5.11) to obtain Table 5.12 (the automaton table) and Table 5.13, the
output converter table.

Now we have logical functions which can be realized by actual
circuits: the codes employed as headings of the rows and the col-
umns of Tables 5.12 and 5.13 give the values of logical variables

138 ELEMENTS OF MATHEMATICAL LOGIC

0 0 0
0 0 1
0 1 0
0 1 1

0 0 0 1 0 0 1 1 0 1 0 1
0 0 1 0 1 1 1 0 1 1 0 1
0 1 0 0 1 I 1 0 1 1 0 1
0 0 1 0 1 1 1 1 0 1 0 1

the states of the coctacts of the input relays, yl, yz, and y3 for the
states of the contacts of the intermediate relays, Yi , Y z , and Y 3 for
the states of the coils of the intermediate relays, and Z1 and Zzfor
the states of the coils of the output relays. We now obtain Table 5.14.

Table 5.12

States of contacts of the input relays

______- __

The top part of Table 5.14 shows all the possible combinations
of states of contacts.rl, XZ, yi, yz, andy3. For each column of this table,
there is an entry in Tables 5.12 and 5.13. We then copy into each
of the rows Y1, Y z , Y3. Z,, and Z2 of thelower part of Table 5.14 the

HUFFMAN'S METHOD AND REALIZATION

tacts of the I

139

I

Table 5.13

0 0
1 0
1 0
0 0
1 0
1 0
0 0
0 0
ZJ,

0 0
0 0
0 0
0 0
0 1
0 0
0 1
0 1
Z2-I

intermediate
relays 0 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Y3YZ)'l

0 0
1 0
0 1
1 0
0 1
0 0
0 1
1 0

Z J I

0 1
0 0
0 0
0 0
0 1
0 0
0 0
0 1

1 z2z

x2x I
1 0 1

numbers contained in the corresponding positions of Tables 5.12
and 5.13, and we thus complete Table 5.14.

Once w e have this table of logical functions, we can use any de-
sired method to derive the circuit corresponding to i t (see Section
2.3).

e) Huffman's Realization of the Circuit

So far w e have attempted to design a circuit that would sub-
stitute for a given sequential machine but we have not required a
realization, that is, we did not ensure hazard-free operation. For
example, w e did not prevent simultaneous actuation of several re-
lays. Thus, in the example of the preceding section there are con-
ditions under which transition from one equilibrium to another will
be sccompanied by simultaneous actuation of several relays. For
example, assume that the automaton is in state Y , = 0, Y 2 = 1,Y3 = 0,
with inputs at x1 = O,xp = 0 (first column, third row, Table 5.12).
Then at a new input xI = I , x p = 1 i t will go to state Y , = 1, Y 2 = 0,
Y3 = 1. This transition is accompanied by simultaneous actuation of
all three relays Y1, Y z andYB. If some of the relays are faster than
others, for example, if Y , and YB are already set to 1 when Y z is still
in the process of being set to 0, the circuit may assume a stable
state Y1 = I , Y2 = 1, Y3 = 1; that is, the automaton may work in an
undesirable fashion because i t s relays have inherent delays or op-
erate in an improper sequence.

An automaton based on delay elements gives completely hazard-
free operation. It i s , however, rather difficult to design the auto-
maton from delay elements when i t is required to operate with a

ELEMENTS OF MATHEMATICAL LOGIC

- l - l - l - l o

HUFFMAN‘S METHOD AND REALIZATION 141

cycle timing governed by the change of the input. In this case, w e
would also need a synchronous source which would respond to all
change at the input, in order to provide a timing signal for the de-
lay elements.

However, the flow table is actually the basic table of a “fast”
automaton which corresponds to the initial automaton in the sense
that sampling of its stable states gives a pattern describing the
operation of that initial automaton (which works in a timing gov-
erned by change of the input). We can therefore design from i t a “fast”
automaton, corresponding to the initial one, using delay elements,
and thus ensure hazard-free operation. This is easier to accom-
plish, since in this case the construction of the synchronous timing
source is simpler.

The Huffman realization is, in reality, such a procedure. We
design a “fast” automaton network from the flow table, using de-
lay elements based on relays, and we organize a relay switching
synchronous source. Thus the circuit of Huffman’s realization con-
tains an automaton based on delay elements (see Fig. 5.8) with con-
tact networks f i defined by the flow table.

Fig. 5.16.

If the flow table contains m rows, then this part of the circuit
will contain 2sl, relays (two relays ineachdelay element), where the
number SO of delay elements is equal to the smallest integer satis-
fying the inequality m >2”.

The contact networks f i are defined by the same logical functions
of the flow table that define the statesof the intermediate relays Y i
during the design of the switching network while ignoring hazards.

Figures 5.16 and 5.17 show block diagrams of relay switching
networks corresponding to the automaton synthesized in the example
of the preceding paragraph. The circuit of Fig. 5.16 ignores the
possibility of hazards whereas that of Fig. 5.17is a Huffman hazard-
free realization. In these diagrams f l , f z , and fsare the contact net-
works (same for both tables) defined by Table 5.14. These contact
networks may be synthesized from Table 5.14 by any desired method
(for example, Bloch’s method described in Section 2.3).

142 ELEMENTS OF MATHEMATICAL LOGIC

The contacts x t and xl of Fig. 5.17 govern the delay elements and
belong to a special relay X 1 at the output of the synchronous source
(clock). Huffman has presented a generalized circuit for such a
source. It is based on the following considerations.

The flow table is so constructed that after a change of i t s input
and at the end of one “fast” cycle, the corresponding automaton is
in equilibrium; that is, i t s state remains stable during subsequent

+ -

Fig. 5.17.

“fast” cycles. If delay elements are used in the circuit, the state
of equilibrium means the equivalence of inputs and outputs in each
delay element. Thus the beginning of anew cycle may be associated
with the instant at which there is aninequality (nonequivalence) be-
tween the input and output in some delay element (that is, when for
any delay element I‘; V Y , = l) , provided that such a nonequivalence
results from a change at the input and occurs in all those delay ele-
ments where i t should occur. This condition, with the additional
restriction that the synchronous source must return to its initial
state only when equivalence between inputs and outputs has been

Fig. 5.18.

HUFFMAN'S METHOD AND REALIZATION 143

reestablished in the delay elements, leads to the following logic for
the clock:

X t = [(Y ~ V Y ,) V (Y l ~ Y J 2) V

. . . v (Y*, v Y,)] { [(YT' - f l) & (Y; - f 2) & (Y*, - f ,*)I v +}.

A relay switching circuit of such a clock at n = 3 (to correspond
with our example), is shown in Fig. 5.18. Since the clock adds one
more relay to the 2sorelays already employed in the delay elements,
this Huffman realization is called the (2so + 1) realization.

Autonomous Finite Automata and
Sequential Machines

6.1. WHAT AUTONOMOUS FINITE AUTOMATA AND
SEQUENTIAL MACHINES “CAN DO”

This and the following chapter wi l l deal with the capabilities of
finite automata and sequential machines. We shall establish what
they “can do” and shall determine what is in principle beyond the
“capabilities” of any such machine. In the present chapter we shall
determine the capabilities of the autonomous finite automaton.

Recall that a finite automaton is autonomous if the variable p
under function F is fixed. Recall also that from this automaton,
whose equation is

one can compile r different autonomous automata (see Section 3.7)
xP+’ = F (P , pP),

2 + 1 = F(..” , P A (6.1)

because p. can coincide with any of the r symbols of alphabet (p}.
The constant pa may be treated a s a symbol-parameter.

If xn is given, then by virtue of (6.1) w e can find xl. Then, sub-
stituting X I into (6.1), w e can determine x 2 , and so on. Thus, an au-
tonomous finite automaton started at some initial symbol xo can
generate an infinite sequence of symbols x :

KO, ./?, 72, . . . , 7.P, . . .
The number of symbols in alphabet (x} is finite and equal to k .

For this reason, the automaton will generate, after a finite number
of time units q (9 ,< k) , a symbol, that has already appeared in the
sequence, for example, the symbol x6 in the sequence

x2%3x(jx5x4x7xG . . .
Thus, from thejq + 1)-th timeunitonward, the automaton wil l simply
periodically repeat this symbol sequence (the sequence of our ex-
ample is x ~ x ~ x (j . ~ ~ ~ 4 x 7 x ~ ~ j y $ ~ 7 ~ ~ ~ j % ~ . ~ 7 . . . where the recurring sequence 1s
underlined) .

f 44

WHAT AUTONOMOUS FINITE AUTOMATA "CAN DO" 145

It follows that an autonomous automaton, startedup at any initial
state will, after at most k time units, periodically repeat a sequence
of symbols x (whose length does not exceed k) . With any other initial
state, this automaton would also periodically repeat a sequence of
symbols x after some time. However, this sequence may not coin-
cide with that generated before.

A special case occurs when the sequence consists of a simple
symbol. This will occur when, for example,

or

A symbol that appears twice in succession in a sequence shall
be called a stable symbol. We shall say that the automaton becomes
stable during the time unit in which the stable symbol f i rs t appears.

Symbol x j is stable if

that i s , at p = p.::, symbol ?c, is translated by Eq. (6.1) into itself.
All these statements are illustrated by the diagram of the au-

tonomous automaton. This diagram contains k circles, correspond-
ing to all the possible symbols x that can be generated. Several
arrows may converge on each circle, but only one may be drawn
from it. For this reason, if we proceed in the direction of the ar-
rows, we are bound to return after no more than k steps to one of
the circles previously crossed (the arrows form a cycle, Fig. 6.1),
o r , alternatively, we shall arrive to a circle at which the leaving
arrow forms a loop, that i s , indicates equilibrium (see Fig. 6.2).

Figure 6.3 shows various diagrams for k = 12.
In the case of Fig. 6.3, the cycle involves all the available

circles. Here the machine generates from the outset a periodically

b
Fig. 6.1. Fig. 6.2.

146 ELEMENTS OF MATHEMATICAL LOGIC

recurring sequence consisting of all k symbols.* The initial state
determines only the order of the symbols in the sequence.

In Fig. 6.3,b the cycleencompasses onlyfive circles; the arrows
drawn from the remaining circles converge on one of the circles of
the cycle. Here the automaton generates a sequence of length 5;
this sequence will be generated after a maximum of one time unit,
regardless of the initial state of the automaton.

For the case of Fig. 6 . 3 , ~ the maximum number of time units
preceding the generation of the periodic sequence is four.

Figure 6.3,d shows an autonomous automaton that, depending on
i ts initial state, generates one of three sequences (of lengths 2 , 3,
and 5, respectively).

The automaton of Fig. 6.3,e can, depending on i ts initial state,
either attain equilibrium after a maximum of three time units, or

Fig. 6.3.

*In this and the following case we a r e assuming that i t is immaterial what the initial
symbol of the sequence is.

WHAT AUTONOMOUS FINITE AUTOMATA "CAN DO" 147

can s tar t to generate periodic sequence of length 4 after a maximum
of one time unit.

Finally, Fig. 6.3,f shows an autonomous automaton with three
equilibrium states: depending on i t s initial state, some equilibrium
is attained in at most two discrete time units.

If we want to synthesize an autonomous automaton generating a
periodic sequence of some given length q andwe impose some addi-
tional conditions as to the time preceding the generation of this
sequence, all we need to do is to draw a diagram satisfying these
conditions. This is because the diagram defines the autonomous
automaton uniquely [the basic table can be directly reconstructed
from i t (Chapter 3)].

Suppose that we want to generate periodic sequences of lengths
2 , 4, and 6. Which of the sequences shall be generated shall be de-
termined by the initial state of the automaton; in no case can the
generation of the sequence begin later than one time unit after start
UP.

The minimum k satisfying these conditions is 12. If h = 12 (Fig.
6.4), then the appropriate diagram is drawn by joining into cycles
any of two, four,andsixcircles. If,however, k > 12, for example, if
k = 16 (Fig. 6.5), then, to satisfy the conditions, the arrows emerg-
ing from circles not included in the cycles are directed to any of the
circles of the three cycles.

Fig. 6.4.

Problems involving variation of the parameter p. are solved in
a similar manner. For each p = p* there is an autonomous automa-
ton, that is, a diagram. However, all these automata operate in the
same alphabet {x) . For this reason, the diagramsof all autonomous
automata abtained by varying p* contain the same number k of
circles (nodes). Thus assume as before that the automaton gener-
a tes periodic sequences of lengths 2 , 4 , and 6. But now i t will be the
parameter p:% (P I , pz or p3) which wi l l determine which of these se-
quences shall be generated. A s before, the generation of the sequence

148 ELEMENTS OF MATHEMATICAL LOGIC

at any
up of the automaton.

shall begin no later than one discrete time unit after s tar t

Fig. 6.5. Fig. 6.6.

Obviously, k must be at least equal to the length of the longest
given sequence; otherwise i t would be impossible to design an au-
tonomous automaton generating that sequence at any p. Now, as-
suming, for example, that k = 6, we constructadiagram for p* = p3
(Fig. 6.6), connecting all the six nodes intoa cycle. Then the graph
for Q::: = p2 also contains six nodes, but only four of them (any four)
need to be connected into a cycle. The arrows drawn from the re-
maining two circles are therefore made to converge on the nodes
of the cycle (Fig. 6.7).

Finally, only two nodes are connected into a cycle for ph- = p l ,
while the arrows from the remaining circles are made to converge
on these nodes (Fig. 6.8).

Fig. 6.7. Fig. 6.8.

These three diagrams define the automaton, and its basic table
can be readily derived from them (Table 6.1).

WHAT AUTONOMOUS FINITE AUTOMATA “CAN DO” 149

Now let us proceed to the sequential machine, where the automa-
ton is supplemented by an output converter.* If the automaton
periodically generates a sequence of
symbols X , then the converter also
must periodically generate a sequence
of symbols h of the samelength. The
sequence of x cannot contain two iden-

of h may do so. For example, i f the

Table 6.1

tical symbols, buttheoutputsequence

automaton generates the recurrent
sequence xIx7X2X5X3, while the con-
verter embodies table

the sequence I&& will periodically

If the desired sequence of iL is

~ __--- - - ~ -

recur at the output of the converter. I y 6 1 x Z ~ ’ I i ’I 1
given, then one synthesizes an s-machine producing this sequence
by f i r s t synthesizing an automaton generating any sequence of x of
the same length as the given sequence of h. Then, by writing these two
sequences one below the other, we have produced the converter table.

The above discussion has important practical implications.
If a practical device can be considered described by the abstrac-

tion “autonomous finite automaton,” and if the symbols x charac-
terize the possible states of this device, then the device can either
attain equilibrium in a finite time, or it can periodically repeat a
finite sequence of states. I t can donothingelse. It also follows that
given any finite number of sequences of states of any finite length,
w e can always synthesize an automaton generating any of these se-
quences by a judicious choice of i t s initial state. Alternatively, we
can synthesize this automaton by identifying the parameter which
can remain constant throughout the operation and fixing its value
at the very outset.

To show the practical significance of this technically important
conclusion we shall now discuss the synthesis of a bistable abstract
structure substituting for an autonomous sequential machine, after
which we shall generalize our reasoning to other abstract struc-
tures.

*Since e , is fixed, in an autonomous automaton, “sequential machine” and “finite
(autonomous) automaton with an output converter” mean the same thing.

150 ELEMENTS OF MATHEMATICAL LOGIC

6.2. SYNTHESIS OF THE BISTABLE STRUCTURE OF AN
AUTONOMOUS SEQUENTIAL MACHINE

Consider first the case when parameter p = p* cannotbe varied;
that is, w e do not wish to synthesize a one-parameter family of fi-
nite automata o r sequential machines, but just one such machine.
We formulate the problem as follows: given the number of initial
states which determines the number of possible variants of the op-
eration of the machine; for each of these states we are given a
sequence of 0 and 1 that the machine must generate, starting the
generation no later than one time unit after the beginning of the op-
eration. I t is desired to synthesize the bistable structure of the
finite automaton and the bistable (logical) converter satisfying the
given conditions. We must determine not only the logical functions
in the right-hand sides of the equations for the bistable abstract
structure, but also the number n of such equations, whereby it is
required to obtain a solution with the minimum n. We shall consider
the problem solved if w e can synthesize a bistable abstract struc-
ture with a minimum number of equations, and shall forego further
simplification of these equations by means of propositional calculus
to meet optimization criteria.

This problem may be divided into for subproblems:
1. Determination of the minimal number n.
2. Synthesis of a finite automaton whose output consists of se-

quences of the given length.
3. Synthesis of a bistable abstract structure which can substitute

for this finite automaton.
4. Synthesis of the required output converter.
Consider f i rs t the case when we are given only one sequence of

0 and 1 of length q ; it is required to generate it periodically (as-
suming that the f i rs t output symbol can be any of these symbols)
from any initial state, the s-machine producing this sequence be-
ginning with the second discrete time unit after the s tar t of i ts op-
e ration.

Let u s select the smallest n satisfying the inequality

2 ” > q

and consider an automaton having k = 2?1 states. We shall make the
alphabet of i t s states {x) to coincide withthe series of integers {O, 1,
2, . , ., 2“ - I) . Assume that the diagram of this automaton shows the
f i rs t q nodes connected into a cycle; if 2’1 > q, then each of the re-
maining nodes is directly connected (by an arrow) to some node of

SYNTHESIS OF THE BISTABLE STRUCTURE 151

the cycle. For example, let us connect these nodes with
the node denoted by 0 (Fig. 6.9 shows an example for n = 3, q = 5) .

Table 6.2

Fig. 6.9.

This diagram immediately gives the basic table
of the autonomous automaton, Thus, we obtain
Table 6.2 for Fig. 6.9.

Now let u s synthesize the bistable abstract
structure of this automaton. We do this by the
method of Section 4.2, by selecting n logical co-
ordinates xi, x2, . . ., x,, (each of which may assume
values only from the alphabet (0, I}), and completing
Table 6.3. The table contains 2n rows andis divided in two parts by
columns headed x p and xp+l.

Column x p is filled from top to bottom with numbers 0, 1 , 2, . . .,
2" - 1 , that is, the subscripts of x in the f i rs t column of the basic
Table 6.2, while column x p + I contains the subscripts x from the
second column of that basic table.

Now w e f i l l out the left-hand part of Table 6.3 (columns,xIj) with
binary representation of numbers contained in column x p . It is con-
venient to use the rule alreadydescribedin Chapter 1. Thus the last
column on the right (for x g) is filled with alternating 0 and 1. Col-
umn xi has alternating pairs of 0 and 1, columnx2- alternating
quartets of 0 and 1, and so on. Thus the number of 0 and 1 in the
alternating groups doubles in each succeeding column from the right.

We also f i l l the right part of the table (columnx7J+I) with binary
representation of numbers contained in column ? t p + I.

Figure 6.4 shows the completion.of the generalized Table 6.3 for
the particular automaton of Fig. 6.9 and Table 6.2.

152 ELEMENTS OF MATHEMATICAL LOGIC

Now w e turn to the x,, column on the right of Table 6.3 (or 6.4),
and underline all rows where xo = 1. We write out a conjunction of
all xk contained in the f i rs t such row, putting a negative sign over
those x which are 0 in the same row of the left part of the table. In
the same way, w e w r i t e out conjunctions for the remaining under-
lined rows.

Table 6.3

Table 6.4

I Value of x" Value of x p + I

0 0 1 0 0 I
0 1 2 0 1 0

1 0 2 3 0 1 1
1 3 4 I 0 0
0 4 0 0 0 0
1 5 0 0 0 0

1 0 6 0 0 0 0
1 1 7 0 0 0 0

The conjunctive groups thus obtained are then joined by disjunction
symbols. The full disjunctive form of the conjunctive groups thus
obtained is the right-hand part of the f i rs t of the desired relations
of the binary abstract structure. For example, for Table 6.4 this
relationship is

- - -
.~"=[. ,pa~a~]v[. ,peixp&x~] = X g & X ; . (6.3)

We shall now treatthex, columnonthe right of Table 6.3 (or 6.4)
in an analogous manner and generate the right-hand part of the

SYNTHESIS OF THE BISTABLE STRUCTURE 153

second required relation. For Table 6.4, this becomes

(6.4)

For column x p , we obtain

and so on, until all the r z rows have been examined and all the re-
quired relations of the desired binary abstract structure have been
generated.

Now we synthesize the output converter

in the following manner. The q nodes ofthe cycle in the diagram of
our autonomous automaton (see Fig. 6.9) are already numbered con-
secutively from 0 to q - 1. We assign the same numbers (from 0 to
q- 1) to the 0 and 1 symbols comprisingour given sequence (whose
length is 9). Thus, for example, if our given sequence has a length
of 5 and the form 10010, w e create the following one-to-one corre-
spondence :

1 0 0 1 0
0 1 2 3 4

Let u s separate the nodes which correspond to the symbol 1 of
the given sequence. In our example, these nodes are 0 and 3, and
they correspond to states xo and x3.

We now compile a conjunction characterizing the values of all
the coordinates of one of the states we separated, for example, x * .
To do this we compile a conjunction of all the x i and place a nega-
tion sign over those which are 0 in the row x - in the left-hand part
of Table 6.3. We form similar conjunctions for all the states that
we have separated, and w e join these conjunctions by means of dis-
junction symbols. In our particular example, w e separated states
xo and x3. The row for x o in Table 6.4 contains only zeros, and thus
we put a negation sign over all three coordinates so, xi and x 2 . To
obtain the conjunction

State x3 yields (from the fourth row of Table 6.4) the conjunction

154 ELEMENTS OF MATHEMATICAL LOGIC

Joining these conjunctions, w e get the logical function

(6.7)

It is immediately seen that this logical function equals 1 if and
only if state x, coincides with any of the above-separated states.
that is, when 1 should be the output of the converter. Therefore,
this expression L (xo, xI, . . ., xn - i) does indeed define the desired
functional converter.

(These disjunctive descriptions of the operation of the automaton
and the converter may, of course, be further simplified by the
methods of propositional calculus to meet any criterion of opti-
mali ty .)

The above binary abstract structure of the autonomous s-machine
is a solution of our problem, and contains the necessary and suffi-
cient number of states n. This number is sufficient because we w e r e
able to synthesize the required automaton with thisvalue of n. It is
necessary because at a smaller n the number of nodes in the dia-
gram would be smaller than q , and therefore even if all the nodes
were connected into a cycle, the number of time units in the period
would be l e s s than q ; in that case, only a sequence smaller than q
could be generated.

Now let u s solve another problem. Assume w e are given m dif-
ferent sequences of length qi (i = 1, 2, . . ., m). Among them there
may also be sequences of length 1. We select the smallest n satis-
fying the inequality

i = m

2" > 2 qi.
i - 1

If

then the diagram of the automaton canhave precisely rn cycles, each
of length q i (i = I , 2, . . ., m) . If, however,

the diagram will contain nodes not connectedinto the cycles, and we
shall draw arrows from each of them to one of the nodes of the cycle.
After this, the bistable abstract structure of the automaton and the
output converter a r e synthesized in precisely the same manner as
in the case when one sequence was generated. In synthesizing the

SYNTHESIS OF THE BISTABLE STRUCTURE 155

converter we write out consecutively
all the given m sequences and w e num-
ber consecutively all the symbols (that
i s , 0 and 1) contained in these se-
quences.

Now let us consider the case when
the controlling parometers of the se-
quential machine pI, can be varied,
that i s , when the binary structure

Fig. 6.10.

(6.9) xf’-’= L, p g , xp, . . .) x i - , ; up, ug, . . ., u;],

i = o , 1, 2, . . .) n-1,
contains s binary parameters allowing 2 s possibilities.

Assume w e are given m sequences. It is required to construct a
binary abstract ‘structure of an s-machine in accordance with Fig.
6.10, that is, w e require a binary structure of the automaton A[Eq.
(6.9)] and of the converter

y = L [x,,. x,, . . . , / I , . N 2 , . . . , us\ (6.10)

and we want the machine to generate the given m sequences. The
additional requirement is that IZ and s shouldbe minimum. The se-
quence to be generated is selected by choosing one of the parameters
ui, u2, . . ., u,s.

Let u s separate the longest of the m given sequences. Let its
length be qm;,\-, that i s , let i t contain qmas symbols. We find the mini-
mum n and s satisfying the inequalities

(6.11)
(6.12)

Let u s call these values of n and s respectively rimin and smin. We
now draw m diagrams, each of which contains 2%ln nodes. Then we
number our given sequences consecutively. In the first diagram, w e
connect into a circle as many nodes as there are symbols in the f i rs t
sequence, and draw arrows from the “extra” nodes to some node of
the cycle. We do the same in the second diagram, except that now
the cycle contains as many nodes as there are symbols in the second
sequence, and so on. There will be a diagram for all our /n se-
quences because, by virtue of (6.11), the number of nodes in each
diagram is at least as large as the number of symbols in any given
sequence.

Now we use the previously described method to develop a table
such as 6.3 for each diagram; that is, w e determine the right-hand

156 ELEMENTS OF MATHEMATICAL LOGIC

parts in relations
x!+' = Li [x: , ~ f , . . ., x $ ~ ~ ,] , i = O , 1, . . . , nmIn - 1, (6.13)

for each diagram of the binary abstract structure.

are
Assume that for the jth diagram (j = 1 , 2, . . . , rn) these relations

and that rri relations are defined in this manner.
Now w e introduce slllill binary variables ujt (k = 1 , 2, . . ., smln) and

compile a table of all possible combinations of uk. This table
(Table 6.5) is developed in the same manner as the left-hand part of
Table 6.3. Table 6.5 contains 2'mill rows. The extreme right-hand
column contains numbers of the f i rs t m rows [this is possible since
by virtue of (6.12) the number of rows is not smaller than m] .

Table 6.5

Returning to relation (6.14) for the jth diagram, we add to the
right-hand parts of all the izlnin relations involved, conjunctions of
those symbols uk for which we have 1 in the jth row of Table 6.5.
Thus w e replace (61.4) with a relation

(6.15) ,y+' = Li , [X t , X ' f , XRml"-l] 8: urn, 8r ua2 . . . c3 Uak,

i=o, 1, 2, . . .) nmln- I .

SYNTHESIS OF THE BISTABLE STRUCTURE 157

XP' = {L i l [Xi, XP, . . . , X~,l,l,l-l] & Ill\ v
v (L iz xY, . . . j x:,~,,,,- 1 1 & I[,/ v

.
v (Lim [X & XY, . . ., X:",,n-l] & U r n) .

i = O , 1, 2 , . . ., iz,,ln- 1,

(6.16)

where llj (j = 1 , 2, . . ., rn) denotes the conjunction of all the terms
ukwhich are equal to 1 in the jth row of Table 6.5.

Let us treat all the u k as parameters and let u s select them, for
example, in accordance with the thirdrowof Table 6.5. ThenU3 = 1 ,
and all remaining U are zero; this means that only the third con-
junctive term will remain in each of relations (6.16). Equation sys-
tem (6.16) then coincides with system (6.14) for j = 3. The diagram
of this system consists of acycle containing as many nodes as there
are symbols (that i s , 0 and 1) inthe third of our given sequences.

Relations (6.16) are therefore an abstract structure substituting
for a finite automaton from which, by selecting vector 11 in accor-
dance with the first m rows of Table 6.5, one can regenerate rn dia-
grams of the same type as above, ensuring the generation of rn
sequences of given lengths.

In order for these sequences to coincide with the given ones, i t
remains to synthesize the output converter. To do this we first
synthesize (by the methods described above) an output converter
for each system of relations (6.14) separately, so that the jth re-
lation (6.14) can generate the jth of the given nz sequences.

Let these output converters be

Then the desired converter to be added to (6.16) is specified by the
relati on

158 ELEMENTS OF MATHEMATICAL LOGIC

It can readily be seen that this synthetic concept and procedure
hold not only for a binary abstract structure, but also for any other
structure.

In every case the abstract structure must yield a diagram in
which there are as many modes in a cycle as there are characters
in the given sequence. The transition from diagrams to the struc-
ture is accomplished by means of a table such as 6.3, but the com-
pletion of such a table and the number of its r o w s are determined by
the particular properties of the synthesized structure, that is, the
alphabet of i t s symbols.

Representation of Events in Finite
Automata and Sequential Machines

7.1. STATEMENT OF THE PROBLEM

Chapter 3 introduced the concept of tapes of a finite automaton
(p, ~t tape, Table 7.1) and of a sequential machine (p, x , >,tape, Table
7.2). Thus, w e know that a tape represents the operation of a finite
automaton (or an s-machine) when the input sequence of p's and the
initial state xo are given. The sequences of p from 0 time to time p
is finite; but since there is no limitation on the operating time of
the automaton, the length of each sequence, even though finite, may
be as long as desired, and the number of possible sequences of $J is

Table 7.1

l p
!
I

... -

Table 7.2

159

-

...

. . .

-

-

...

...

...

-

160 ELEMENTS OF MATHEMATICAL LOGIC

infinite. The automaton (or s-machine), which starts from an initial
state x@, establishes a correspondence between each sequence of p
and some sequence of y. (or i., in the case of an s-machine); that is,
i t transforms a sequence of symbols of one alphabet into a sequence
of symbols from another alphabet.

What then a re the general rules governing this transformation?
Let K be the set of all possible sequences of H , and E be the set

of all possible sequences of p. The two sets are equipollent. This
means that each sequence from K can be placed in correspondence
with a sequence from E. Now, if such a correspondence is estab-
lished in some arbitrary way, is it possible to devise a finite auto-
maton embodying this correspondence ? Alternatively, is i t possible
to indicate those correspondences between sequences that can be
embodied in a finite automaton, and those that cannot? If there are
correspondences that cannot be embodied in any finite automaton,
can these be separatedfrom those that can? Identical problems arise
with the sequential machines.

These problems can also be formulated in other terms. Assume
a finite automaton with a fixed initial state xo , and consider some
state x". In examining the p, z tape of the automaton, we mark all
instances where x* appears. Then w e write out all the sequences of
11 (beginning with discrete time 0) that lead to the generation of x".
Assume that w e could analogously process all the conceivable p, x.
tapes of the same automaton. Assume also that in a set E of all
conceivable input sequences of some automaton, we can distinguish
a subset G:' of all input sequences that lead to the generation of%*
in our f i rs t automaton. We shall then say that the automaton with
initial state x@ represents the input sequences of subset G?: by pro-
ducing the symbol x"at the output. Similarly, an s-machine Yepre-
sents input sequences of a subset G" by generating the symbol La
at the output. Our problem then is: Can any subset of input se-
quences be represented in an automaton or s-machine? If not, what
are the conditions for representability of a set of input sequences?
What are the properties of representable se t s?

To answer these questions we shall f i rs t have to formulate the
problem more precisely. Therefore, w e shall introduce the term
"event." and define the classification of events.

7.2. EVENTS. REPRESENTATION OF EVENTS

Let us examine the top strip, that is, the p sequence of the tape
of an automaton (or a sequential machine). Let u s call this s t r ip the
input tape of the machine (example: Table 7.3).

EVENTS. REPRESENTATION OF EVENTS 161

Table 7.3

Let G be the set of all conceivable input tapes of a given automa-
ton. Further, let u s agree that there is some criterion for distin-
guishing subset G* from the set G. Whatever this criterion, we shall
say that event G* OCCUYS whenever (that i s , at all the p’s such that)
the input tape of the automaton from time 0 to time p belongs to sub-
se t G*.

With time, that is, as p increases, the tape may cease to belong
to subset G*; that i s , an unfolding input tape may belong to G* at
some values of p and not belong to G* at other p’s.

Example 1. The event occurs if p5 and p3 are consecutive inputs
at sampling instant p and the preceding instant p - 1. For example,
the event occurs at time p if the input tapes are

and it does not occur with, for example, the input tapes

5

162 ELEMENTS OF MATHEMATICAL LOGIC

If the tape is

then the event occurs at p = 6, 1 I , 13, and 20, and i t does not occur at
all other p's.

Example 2. The event occurs if prior to the sampling instant [I

there is at least one 0 5 , p3 input sequence. This condition is met by
all the above tapes except 6; therefore, after some initial time, all
these tapes belong to subject G*. Thus tape 2 belongs toG*at PAS,
tape 3 at p>3, tape 4 at p >/ 4, and so on.

In other typical formulations, the event occurs i f :
Example 3. The input tape contains the sequence pz c)o pI between

Eiample 4. At least one of the sequences pIp2p6, Q Z p4 p5, or p3 pz PI

Example 5. There is no input p 3 between p - 2 and p .
Example 6. No input 1 3 1 is encounteredbetween p-4 and p unless i t

Example 7 . Input p5 appears a t least once prior to p.
Example 8. Input p7 is followed by p3 at least once prior to p.
Example 9. There is no p7 prior to p.
Example 10. Prior to p , there is no input sequence of three sym-

Example 11. At p = 2 , the input is p7.
Example 12. At p = 4, the input is pi, p6, or (12.

Example 13. At p = 2 , 6 , and8the inputis a with an odd subscript.

p-5 andp.

appears on the tape between p-2 and p .

follows 03.

bols p with odd subscripts after a Q with an even subscript.

EVENTS. REPRESENTATION OF EVENTS 163

Example 14. The input value is divisible by three(e.g., at p = g) .

Example 15. p = k .
Note: In this case, the set G a is equal to the set of all tapes of

length k .
Example 16. A symbol p with an even subscript is the input at all

p’s whose value is a square of aninteger (e.g., 1, 4, 9 , 16, 2 5 , . . .).
Example 17. Either p5 or PS appears at the input whenever the p is

a prime number (e.g., 2 , 3, 5, 7 , 11, and so on).
In considering the occurrence of events w e assumed that there

is someone examining the input tape and deciding whether the se-
quence of inputs y appearing on the tape at time p belongs to the given
set G*or not. Now, couldn’t thisverytask be performed by an auto-
maton or an s-machine? To formulate this question precisely, we
shall introduce the concept of representation of events by an auto-
maton and an s-machine.

. , XI, of a finite
automaton (which at t = 0 is in an initial state x o) , and select a non-
empty subset M (in particular, M may contain only one state). We
shall say that this automaton represents a given event G’ by states
from se tMi f , andonlyif, at t = p t 1 it i s in a state of set M solely
because of occuvrence of the input event G* at t = p .

If the automaton is associated with an output converter, the latter
can always be so designed that i t generates an output of 1 whenlt
belongs to M , and a 0 for other x.. In this case the automaton repre-
sents an event i f , and only i f , i t generates an output or 1 at t = p + 1
solely as a result of an event occurring at t = p .

Similarly, a sequential machine represents anevent by generating
211 output symbol 1 at t = p + 1 if , and only if, the event occurs at
the input at t = p .

We shall say that aneventG’ is representable in a finite automa-
ton if there exists a finite automaton A that represents the eventG*.

There is an important consequence of the general theorem proven
in Section 4.3: from the representability (or nonrepresentability)
of an event by an automaton follows i t s representability (or non-
representability) by a sequential machine. The converse statement
is also true. For this reason, in discussing representability of
events, w e need only to consider the case of finite automata.

Consider the set K of all possible states xi, x?,

7.3. OPERATIONS ON SETS OF INPUT SEQUENCES

Regular Events

So far,,when speaking of an input tape we meant the top strip of
the tape of the automaton, that is, the sequence of input. symbols

164 ELEMENTS OF MATHEMATICAL LOGIC

associated with a discrete time sequence and starting from f = 0.
However, in the f i rs t part of this section we shall deal merely with
sequences of input symbols p without in anyway associating the be-
ginning and the end of any such sequence with a specific time. We
shall denote specific, finite input sequences by a, 6, c , and so on or
n l , c l p , a3 , and so on.

Let A and B be sets (finite or infinite) of input sequences, com-
posed of elements al ,a2 , . . . and b, , h, . . . respectively. We shall form
new sets from sets A and B by means of three operations.

The set C , containing all se-
quences of set A and of set B , will be called the union (or sum) of
A and B and will be denoted by C = AVB. Thus, for example, i f the
set A consists of the four sequences

First operation: union of sets.

and the set B of the two sequences

then the set C will consist of all the above six sequences; that is,

c1 =a,, c2 = u2, c3 = u3, C~ = u4, c5 = 61, c6 = 6,.

Second operation: multiplication. From the sequences contained
in sets A and B , we form a new set of sequences via the following
rule: w e add to the right-hand side of any sequence of set A , for ex-
ample, ai, any sequence of set B , for example, bj, thus forming a new
sequence ch = n ib j . Let u s form all possible sequences of this type,
in turn adding to each sequence of A one of the possible sequences

EVENTS. REPRESENTATION OF EVENTS 165

of B. The new set of sequences C is

C R = alb,.

It shall be called the product of the sets A and B , and the operation
yielding C is the multiplication of A by L?. It is written as

C = A * B .

If, for example, set A consists of the four and set B of the two
A - B consists of sequences of the preceding example, then set C

the following eight sequences:

Third operation: iteration.. The first two operations were binary;
that is, a new set C w a s formed from two sets A and B. The third
operation is unary; that is, i t forms a new set C from some single
set.

Consider, for example, set B , and select a sequence from it. Then
add to its right side any sequence from the same set B (it may also
be the f i rs t sequence itself). Then addtothis new sequence another
sequence from set B , and so on, any (finite) number of times.

166 ELEMENTS OF MATHEMATICAL LOGIC

This process of adding sequences from set B one after the other
may be interrupted at any point, in particular after the f i rs t step,
that i s , after selection of the f i rs t sequence from B . At any time
during this process one can select any sequence from B , including
any of those already utilized before.

In forming all possible new sequences from sequences belonging
to H , that is, in running through all the possibilities of attaching one
sequence of B to another sequence from B , and interrupting this
process at every conceivable finite step, we form a new set of se-
quences C. If w e now add to set C an ‘‘emptyY’* sequence A (con-
taining no symbols), we shall obtain set C’, which is known as the
itemtiox of B, and is written as

Even if se t U is finite, set C’ = B* is infinite. Thus in our ex-
ample set B consisted of two elements

The elements of the infinite set C‘ = B e a r e , for example, the se-
quences

to = A (‘ ‘empty‘ ’ sequence),

*Multiplication of any sequence n by a n “empty” sequence A yields a: u i l = Aa = a.
Introducuon of “empty” sequences is convenient for writing of regular expressions (see
below, Example 2).

EVENTS. REPRESENTATION OF EVENTS 167

and so on.
We now see the relationship between multiplication and iteration:

iteration is the result of union of all the sets obtained by multiplying
se t B by itself some (finite) number of times. Accordingly, iteration
may be represented a s an “infinite series”*

B*= A V B V (B . B) V ((B . B) . B)V(((U . B) . B) . U)V . . .

The new sets generated from A and B can also be treated as ini-
tial sets: they can be operated upon to form new sets, and so on.
Even if the initial sets are finite (andeven if each contains only one
sequence consisting of one symbol), one iteration operation will
produce an infinite new set.

Let us introduce a universal set E , containing some input se-
quence of some (finite) length.

If the set is a set of sequences containing - only one symbol p ,
that is, if i t is assumed that = pi, u2 = pz, . . . , a, = pr , then the uni-
versal set E can be obtainedfrom theelements of by adding these
one after another in any desired number and in any desired order,
that is ,

-

‘These three operations just discussed were f i r s t introduced by Kleene [42]. Our ex-
position differs f rom that of Kleene in two respects: 1) Instead of the unary operation of
iteration, Kleene uses the binary operation C = A x B , whichmay be expressed by means
of our three operations: A * B = A v A + B*; 2) In contrast to Kleene, we add sequences
during multiplication and iteration on the right- and not the left-hand side.

168 ELEMENTS OF MATHEMATICAL LOGIC

In the following we shall call basic* a) any sets consisting of
one input sequence of finite length (a , b. c, . . .) and b) the universal
set E .

We shall call a regular set of input sequences:
1) any basic set;
2) any set of sequences that may be formedfrom the basic ones

by using union of sets, multiplication, or iteration over a finite
number of times.

Regular sets, of which a few examplesfollow, will be denoted by
R.

Example 1.

In this case the regular set is the union of the three basic se-

Example 2.
quences.

I? = [b . (a)*].

The regular set is the set of all sequences starting with b , fol-
lowed only by element (sequence) a, which may be repeated any num-
ber of times. For example:

b, ba, baa, baaa,
Note that because the definition of (a) * includes empty sequence

Example 3.
,\, se t R also contains symbol b by itself.

This set contains all sequences consisting of sequences a and b
repeated any desired number of times and in any order, and ter-
minating in sequence c. For example:

c, abc, bac, aabc, baabc, baaaabbc,

and so on.

*It should be pointed out that it would belogical t s t rea t a s basic sequences not those of
finite length but sequences of length 1: a , = p,, a2 = p2, ..., containing only one symbol.
Indeed, we can obtain finite sequences from these merely by multiplication. However, in
proving Kleene’s theorems, we shall find that basic sequences of finite length a r e more
convenient. Later, in Chapter 8, we shall give another proof of Kleene’s theorems, and
there we shall use basic sequences containing only one symbol.

EVENTS. REPRESENTATION OF EVENTS 169

Example 4.

Here R is the set of all sequences terminating in sequence a.
Example 5.

This set contains all sequences terminating in a sequence of se-
quences a and b.

Example 6.

R= (I!a ’ E) . (c . E) l b) .

In this case R contains all sequences startingwith a, terminating
in sequence 6 , and containing sequence c somewhere in between.

Expressions such as in the examples, that is, formed from the
basic sequences (a , b, c, . . . and E) connected by the signs for union
of sets, multiplication, and iteration (V, -, and *), shall be called
regular expressions.

In regular expressions, each sign for an operation may be used
only with a pair (in binary operations) or a single basic element (in
iteration), or with parentheses (brackets) containing the result of
such an operation. For this reason, a regular expression may con-
tain “parentheses within brackets” (see examples above).

The highest number of “parentheses (brackets) within brackets’’
in a regular expression (counting the external brackets) is known as
the depth of the regular expression. * In the above examples the depth
is equal to 1 only in Example 4; i t is 2 in Examples 1, 2 , and 5, and
3 in Examples 3 and 6.

We shall say that the depth of a regular expression is zero if it
contains no operations, for example, R = a, R = b, R = E , and so on.

Now, the same regular set of input sequences may be represented
by several different regular expressions. For example, expressions

R = [(a . 6) (c d)] and R = {[(a 6) . c] - d) ,

certainly describe the same set , but they are of different depth. For

T h e operations v, * , and * could be used as the basis f o r algebraic operations on
sets of input sequences. In particular, we could obtainidentities, for example: (E B) * = EB
(where B is an arbitrarily given set), which would enable us to simplify regular expres-
sions. However, we shall not need such an algebra in this book.

170 ELEMENTS OF MATHEMATICAL LOGIC

this reason depth relates to a specific regular expression rather
than to a regular set.

Let u s also point out that a subset of a regular set of input se-
quences may not necessarily be regular. This follows from the
simple fact that a universal set is regular by definition, whereas
irregular sets do exist (for an example of an irregular set , see
Section 7.6).

The reader will recall that the sequences treated so far in this
section did not carry anumber identifying the discrete time at which
they appeared at the input.

Let u s now consider a set S of such sequences and identify each
element of this set wi th a number describingt. We s tar t with t = 0.
Then w e obtain a set of input tapes from a set of input sequences.
Thus, for example, a set consisting of the three input sequences

becomes a set consisting of the three input tapes

rnent

A set of input tapes formed by such a method from a regular set
of input sequences will be called a regular s e t of input tapes. We
shall associate with each regular set of input tapes the same regular

REPRESENTABILITY OF REGULAR EVENTS 171

expression that describes the corresponding regular set of input
sequences.

We can now proceed to the classification of events at the input
of the automaton.

An input event of the automaton i s said to be vegulav i f the set
of input tapes (each examined completely fvorn t = 0 to t = p) defining
the occuvence of the event i s a vegulav set.

Among regular events we may distinguish a subclass of events
that are described by a regular expression

where A is any set of finite input sequences containing not more
than q symbols. Such a regular event is known as a specific event
of length q or simply a specijZc event. With a specific event, one
need not examine the entire input tape from t = 0 to t = p in order
to specify it: one merely looks over a length q of the “tail end” of
the tape, corresponding to t = p, p - 1, p - 2, . . ., p - q. One can
visualize this process as one in which the input tape lies under a
transparent runner (similar to hairline-carrying runner of a slide
rule) through which one can observe only some number q of tape
positions. With each discrete instant the runner is displaced one
position to the right, so that the extreme right position seen through
the runner always corresponds to t = p .

Specific events are distinguished by the fact that w e can so select
the runner (a specific one for each specific event) that at any time p
the occurrence or nonoccurrence of an event is indicated simply by
those positions on the input tape that can be seen through that runner.

7.4. REPRESENTABILITY OF REGULAR EVENTS

We can now formulate and prove the following fundamental theor-
ems.

Kleene’s f irs t theovem. Assuming a suitable initial state of the
automaton, any vegulay event can be repvesented in a finite auto-
maton equipped with an output convevtev by genevation of 1 at the
output of the convevtev.

We shall prove this theorem by showing one of the possible
methods for synthesizing an automaton representing a regular event
defined by an arbitrarily chosen regular expression. *

*Another proof of this theorem is given in Chapter 8 in connection with the descrip-
tion of Glushkov’s method.

172 ELEMENTS OF MATHEMATICAL LOGIC

We shall now introduce auxiliary automata with output convert-
ers (the converter output may only be 0 or 1) having, in addition to
input p , auxiliary inputs for symbols a from the alphabet (0, I}.*

Assume that a regular s e t of input sequences R is given. We shall
say that an event R, occurs at the input of the auxiliary automaton
a t time p if there exists a time t (0 4 t < p) such that:

1) the symbol a = 1 appears at the auxiliary input at t ; and
2) the sequence of symbols p that appear between times t and p

belongs to R.
For example, let the given set R include the three sequences

Then, given the input tape of our auxiliary automaton (Table 7.4),
the event R , will only occur at times 3, 5, 7 , 14, and 18.

We shall say that the generation of symbol 1 at the output of the
converter for the auxiliary automaton represents the event R, if, and
only i f , the event R, occurs at the input of this automaton.

Table 7.4 mi
P I P2 ?3 P5 ?3 P2 P I

1 1 1 0 1 0 1

Now let us imagine that there is an autonomous automaton with
an output alphabet {O, I } and that the output of this automaton coin-
cides with the w i r e a of the auxiliary automaton (Fig. 7.1). The
whole network so obtained constitutes an automaton with a single
input p. Further, let the autonomous automaton generate an output
of a = 1 at time zero, and a = 0 at all subsequent times. Then our
network will represent the event R by generating an output of 1.

Such an autonomous automaton can, indeed, be synthesized: this
may be, for example, a binary delay element whose input is always
zero, while its initial state is 1. Therefore, if w e can show that an
auxiliary automaton representing the event R, can be synthesized

*in other words, the input symbols of such an automaton are symbol pairs (p , 1) or
(P3 0) *

REPRESENTABILITY OF REGULAR EVENTS 173

regardless of the type of regular - - - - - - - - - - - - - -
event R , then we shall have proven

the senting existence any regular of an automaton event R . repre- Our g!Z'IG Auxiliary

proof will be inductive and be based
on the depth of the regular expression
defining the regular event R , being automaton
represented. We shall show first a
way of representing all regular events
Ra with a zero depth of the defining
regular expression R. Then w e shall prove that if a regular event
R, defined by a regular expression R of arbitrary depth v can be
represented, then any regular event R, defined by a regular expres-
sion R of depth v -k 1 can also be represented.

Recall that regular expressions of depth
ze ro are simply symbols corresponding to the given input sequences
a, b , c, . . ., as well as the symbol E, corresponding to the universal
set of input sequences.

Representation of the event R , de-
noted by symbol E means devising an
automaton with an output of lmaintained
from the f i rs t instance whena = 1 regard-
less of what the input sequence may be.
Such an automaton may be synthesized
from, among others, a binary delay unit
that is in its zero state at 1 = O . The input to this unit, via a dis-
junction element, is a symbol a and anoutput symbol* (Fig. 7.2.).

Let u s now construct an automaton representing the event R ,
when the set R contains only one input sequence of finite length q.
This machine consists of two delay lines (each with q delay units)
and a symbol converter (Fig. 7.3). The first (main) delay line oper-
ates in alphabet {p}, and the second (auxiliary) in binary alphabet {a}.
The converter output is 1 if, and only if, the symbols p at the outputs
of all the delay units of the main line form one given sequence of
length q, counting from the end of the delay line toward i t s beginning.
The initial state of the delay units in the main line is immaterial,
but all such units in the auxiliary line must be in state zero. The
output of the automaton is a conjunction of the outputs of the con-
ver ter and the auxiliary delay line.

The output will be 1 if, and onlyif: 1) at q discrete instants prior
to the sampling instant p there is an input of 1 at a (and therefore

automaton

Autonomous

Fig. 7.1.

First inductive step,

Fig. 7.2.

T o make this automaton conform to our other automata, we can assume that it also
has an input p, but that its output does not depend on p.

174

-
: Q , -

q delay units - ---- a
~ t

ELEMENTS OF MATHEMATICAL LOGIC

-
output

&--t

L

Fig. 7.3.

the auxiliary line has an output of 1 at t = p) and 2) there is an in-
put of the given sequence of symbols during the q discrete instants
preceding p (and therefore there is aconverter output of 1 at t = p).
It is seen from Fig. 7.3 that there cannot be an output of 1 until q
discrete instants after t = 0 (since at t = 0 all delay units in the aux-
iliary line are in state zero). It follows from this that the states of
the delay units in the mainline donot affect the output of the system
a t t = p ; that is, q instants after t = 0 , the states of these delay units
a r e determined only by the inputs.

This completes the f i rs t part of our proof. That is, we showed
that the system of Fig. 7.3 represents an event R, where R is any
regular expression of depth zero. We now proceed to the second
part of the proof.

Induction, We shall now prove that if thereexist auxiliary auto-
mata that represent events R, specified by any desired regular ex-
pressions of depth v (v > 0) . thenwe can synthesize an automaton that
W i l l represent the event R specified by any desired regular expres-
sion of depth v + 1.

From the definition of the concept “depth of a regular expres-
sion” i t follows that any regular expression of depth v + I is obtained
from one or two regular expressions of depth v via a single multi-
plication, iteration, or union of sets.

In this connection, and in order to complete the induction, i t
must be proved that if events R, , specified by regular expressions
R , and R 2 , are representable, then events R,, specified by expres-
sions

a re also representable.
Let u s consider these three operations separately. For the sake

of brevity and wherever there is no risk of ambiguity, w e shall de-
note the regular expression, the event corresponding to i t , and the
automaton representing the event R, by the same letter R.

REPRESENTABILITY OF REGULAR EVENTS 175

Union of sets An automaton representing a union

is obtained from two automata, respectively representing R , and Rz.
This is done by connecting their inputs and feeding their outputs t o
a common disjunction element (Fig. 7.4).

Multiplication. An automaton representing a product

is obtained from two automata, representing R I and R z , respectively,
by feeding the output of automaton R I into the auxiliary input of Rz
via a delay unit (Fig. 7.5). Then the auxiliary input line of RI be-
comes the auxiliary input to the system, while the output of Rz is the
output of the system. Indeed, the output of RZ will be 1 if R2 repre-
sents an event that has begun during the instant following an output
of 1 in R , . But an output of 1 in R1 means that the event R1 had al-
ready been represented prior to that instant, and that this event had
begun at the instant of occurrence of 1 at the auxiliary input of Ri
(and therefore at the input of our entire automaton system). Conse-
quently the automaton system as a whole represents the event R,
which is described by: “the event Rz occurred directly after the
event &,7i that i s , the product R, . Rz.

l l I -

Fig. 7.4. Fig. 7.5.

Iteration. If the automaton R1 representing the event R1 is given,
then the automaton representing an R E event: R = (Ri) may be ob-
tained by coupling R I toone disjunctionelement (Fig. 7.6). The dis-
junction element output is made to coincide with the auxiliary input
to R, , while the input of disjunctionelement consists of the auxiliary
input a to Rl as well as the R I output, which is made to pass through
a delay unit. Indeed, the output of this system is 1 whenever the
event Ri is represented, starting with the appearance of 1 at the
auxiliary input a, or from the instant directly following the repre-
sentation of the event R,. Therefore, there is a system output of 1

176 ELEMENTS OF MATHEMATICAL LOGIC

whenever the event R1 occurs (this can
happen any number of times in succes-
sion), which is what indeed constitutes
the representation of event R = (R *) .

This concludes the induction process
based on the depth of the regular ex-
pression, and therefore completes the
proof of the entire theorem.

First note. Our f o r m u l a t i o n of
Kleene’s f i rs t theorem included the statement about the choice of a
suitable initial state. It can be seen from the proof that a suitable
choice of the initial state reduces to: a) ensuring a state of 0 in all
units of the auxiliary delay line during representation of the given
set consisting of one input sequence (Fig. 7.3); b) ensuring a state
of 1 in the delay unit of the automaton representing a universal
event (Fig. 7.2); and c) ensuring a stateof 1 in the delay unit of the
autonomous automaton representing the event t = 0 (see above).

Second note. The representation of the event ER differs from
that of the event R only in the method of utilizing the auxiliary input
of the automaton which represents the event R,. To be precise, in
order to represent the event R , this input is connected to the autono-
mous automaton which produces 1 only at t = 0; however, in order to
represent the event ER , this input consists of the output of the auto-
maton representing the event E (Fig. 7.2); that i s , this input is
always 1. This applies, inparticular, to the representation of a spe-
cific event E . a.

Fig. 7.6.

7.5. REGULARITY OF REPRESENTABLE EVENTS

In this section w e shall prove a theorem that is the converse of
the one proved above.

Kleene’s second theorem. Only regular events are representa-
ble in a jinite automaton.

To prove this theorem we shall first introduce the concept of
regular sets of triad chains, then we shall prove an auxiliary lemma,
and finally with the help of this lemma, we shall prove the theorem.

The infinite set of
tapes which may be generated in a finite automaton contains only a
finite numberlzrof different triads. Letus denote these by PI , PZ, . . .,
phrand match each triad pi to a point in a plane.

The tv iad labyrinth and labyrinthine paths.

REGULARITY OF REPRESENTABLE EVENTS 177

bl r"t;/

Two adjacent triads must have one common symbol. For this
reason, the triad

,:: 1 %

must be followed by a triad containing x4at lower left, for example,

so that triads with any other symbols in this position, for example,

Fig. 7.8 has paths described by triad
chains. Fig. 7.7.

178 ELEMENTS OF MATHEMATICAL LOGIC

However, path

is not allowed since there is no arrow from p3 top6.
Now let u s proceed to the con-

cept of a regular set of triad
chains. By definition, all sets
containing only one triad are
regular; if A and B are regular
sets of triad chains, then, by in-
duction, the following are also
regular:

a) their union (A V B) , thatis,
a set containing both A and B;

b) their product (A . B) , that
is, a set of chains obtained by
adding some chain from B to the
right of each chain from A ;

c) their iteration (A *) , that i s , a setofchains obtained by adding
to the right-hand sides of all chainsfrom A any and all chains from
A (including itself o r any of those alreadyadded) and doing that any
desired number of times.

Lemma. The set of all paths leading from triad to triad in
the labyrinth of any finite automatonis aregular set of triad chains.

We shall prove this lemma by induction based on q, where 9 is
the number of different triads on the path from p to p.

For q = 1, the lemma is obvious: pcoincideswith p and only two
subcases are possible:

a) if all symbols 3t in the lower line of this triad p = pare not
the same, then the set of paths consists of only one path containing
this one triad i;

b) if all x in are the same, then the set of paths comprises all
triad chains repeating the same triad L, that i s , the iteration (;)*.

Consequently the set is regular for q = 1.
Now let the lemma hold for any set of paths with q < m. We shall

prove that i t also holds for any set of paths with q = m + 1. Thus
le t u s consider any pathwhere q = m + 1. Wewrite out all the tr iads
11 a s well as the triad at the end of the path, and replace the re-
maining triads of this path (including any triads ; that may occur
at points other than the end) by groups of dots:

Fig. 7.8.

- -

- -

-

- - - - - -
p . . . p . . . p . . . p . . . p . . . p .

R E G U L A R I T Y OF REPRESENTABLE EVENTS 179

Each group of dots stands for a path that does not contain the
triad 1.. For this reason, the number of different triads contained
in each path replaced by a group of dots is smaller than m + 1 by
at least 1, that i s , q < m. By induction, each path replaced by dots
is a regular set of triad chains. We shall denote these replaced paths
by Ti, r j , r g , and SO on.

To s tar t with, let p = p. Then one can imagine the entire path
from to p = p as consisting of triads F, with the regular sets r
interspersed among them. We write this as follows:

- - -
- -

- -

- - - - - - - - - _ _ -

vi rri rr, r rr, . . . t"rq r.
In this notation, the entire path consists of pairs of consecutive

paths. Each such pair is the product of two regular sets: a set con-
sisting of a single element i, and the corresponding set ;. Conse-
quently, such a pair must itself belong to a regular set - p. There-
fore, all paths leading from p to p = p are elements of the iteration

- - -
of p ' R

6 . R y . F ;
that i s , they constitute a regular set of triad chains.

from ,i to ;L" is
If i# then by the same reasoning the set of all paths leading

G . R)*. t.;
that is, i t is also regular. The lemma is thus proved.

This lemma can be readily ex-
plained on a triad labyrinth.

Consider the triadlabyrinth of Fig.
7.9 (where some arrows have been
omitted fo r clarity), and run through
the possible paths from p to p.

First , there is a choice of thetwo
paths

9

F

- -

r . 1 2 3 i

and
6 u

8 9 10 F. Fig. 7.9.

Second, the f i rs t path may be lengthenedbyincluding a loop, for ex-
ample,

p 1 2 3 5 7 6 4 1 2 3 ; .

180 ELEMENTS OF MATHEMATICAL LOGIC

The looping paths may be traversed any desired finite number of
times, for example,

F 1 2 3 5 7 6 4 1 2 3 5 7 6 4 1 2 3 5 7 6 4 1 2 3 ; ,

or the path may be complicated still further by including “loops
within loops,” for example,

r - 1 2 3 5 7 6 4 1 2 3 5 7 6 4 5 7 6 4 5 7 6 4 1 2 3 i , e t c .

This type of routing is not confined to our example. Each set of
paths from to contains,firstof all, several variants of simple
paths (a union!), and it may also consist of arrows traversed one
after another (a product!) and of loops traversed any desired finite
number of times along anywhere in the labyrinth (an iteration!). And
each path from p to p may consistof these three components. This
fact, almost obvious from the examination of the labyrinth, is really
what the lemma is stating.

From the lemma immediately follows the proof of Kleene’s sec-
ond theorem.

Proof of Kleene’s second theorem. Consider a finite automaton,
and write out all i t s triads (afinitenumber). Let M be a set of sev-
eral symbols x (we shall denote an element of this set by;), and
let the automaton (which s tar ts withaninitial state xo = z) represent
an input event by the appearance of a state k. Now, let u s select a
triad ;I such that the k in itslower right belongs to M (the other two
symbols of the triad need not be par t of M):

- -

Let us also select a triad containing x in i t s lower left, the
other two symbols being completely arbitrary:

Then, by virtue of the lemma just proved, the set of all paths - -
leading from p to p is a regular set of triad chains.

DO IRREGULAR (UNREPRESENTABLE) EVENTS EXIST? 181

Consider sets K and A” of all possible t r i a d s i and;. The set of
all paths connecting any triad of A” is the
union of the sets of paths leading from p to p; that is, i t is regular.

To each triad there corresponds a symbol p in the top strip of
the tape, and to a chain of tr iads there corresponds a sequence of p.
If a set of triad chains is regular then the set of corresponding se-
quences of p is a regular set of sequences, as defined in Section 7.3.
Indeed, in devising new paths (from the givenones) by union, multi-
plication and iteration of chains of triads, we used operations anal-
ogous to those introduced in Section 7 . 3 for obtaining regular sets
of sequences, and applied those to the p sequences in these chains.

We have not imposed any restrictions on the automaton, that i s ,
on the number and the nature of its triads, o r on the choice of the
initial state. We have therefore proved that in any automaton, start-
ing from any initial state, the set of input sequences leading from
any initial state xo to a state comprised in M is regular; that i s , we
have proved Kleene’s second theorem.

of K with any triad - -

7.6. DO IRREGULAR (UNREPRESENTABLE) EVENTS EXIST?

Irregular events, which cannot be represented in an automaton,
do exist, as we shall prove by examples. Moreover, we shall show
that there exists an entire class of events, a p&ri known to be ir-
regular.

Suppose we are given an infinite sequence of p, for example,

PS P2 P I PS P4 P3 P2 P I . ’ .

which w e shall call 9. We wi l l say that 3’is ultimately periodic i f ,
starting with the q t h symbol from the left, the sequence contains a
periodically recurring segment of finite length.

Consider an event such that the input sequence of p coincides a t
at all times p with the segment ofzbracketed by i t s 0th and the pth
symbols. If such an event can be represented by an automaton, w e
shall say that the automaton represents sequence 3

Theorem. A giveninfinite sequence 9 of input symbols p is rep-
resentable in a finite automaton if and only if 3 is “an ultimately
periodic sequence .”

Proof. First , we shall prove that all ultimately periodic se-
quences are representable. Let such a sequence consist of an “ini-
tial segment’’ A of finite length h and then a periodically recurring
“segment” B of finite length T . Consider all the initial sections

182 ELEMENTS OF MATHEMATICAL LOGIC

x

B,, Bz, . . ., BT of segment B (B , contains only the f i r s t symbol of
B ; BZ contains the f i rs t two symbols, andso on), as well as the ini-
tial sections A , , A*. . . . of segment A . Thus theultimately periodic
sequence-that i s , the input event-really consists of segment A fol-
lowed by segment B, which is then repeateda number of times; the
sequence terminates in one of the sections Bt, Bz, . . ., BT-1, B .
Therefore 2 c a n be written as a regular expression

R = ([A(B)*] (BiVBZV . . . V Bp1VB)}V(A1VA2V . . .),
and, by virtue of Kleene’s f i rs t theorem, such an event is represent-
able in a finite automaton.

Now let us prove the converse statement, thatis, that all repre-
sentable sequences are ultimately periodic. Let s e q u e n c e n e rep-
resented by a finite automaton which has k internal states. W i t h 3
a s the input, let u s examine what happens during the first k + 1 samp-
ling instants. Since t = k + 1, and the machine can have only k states,
there must be at least one internal state that will be repeated at
least twice during this time, Let that occur in instants t’ and f”
(0 4 f’ < t” 4 k + 1) . Now let us compile a sequence?,which differs
from 2 in that the segment from t’ to t” has been thrown out; we
then make 2 the input of the same automaton. Thus, if withk = 8
sequence 2 corresponds to a tape inwhicht‘ = 3, t” = 6 (Table 7.5),
the tape for 9 t h e n would be that of Table 7.6.

... i ... I ...

Table 7.5

f’ = 31 4 1 5 /t‘ =6(7

P I 1 P I 1 Pe 1 P I 2 1 PI0
x I . . . l . . .) x I...
Table 7.6

-
...
-
...
-
...
-

DO IRREGULAR (UNREPRESENTABLE) EVENTS EXIST? 183

After t” (that is, from instant 7), the sequence of x on the f i rs t
tape coincides with thex sequence appearing on the second tape after
t’ (that i s , from instant 4) . This is because from these instants on,
the inputs p are the same in both cases, as are the initial states;
of the automaton. And since 3 i s represented by the automaton, 2
must also be represented by it. This, however, does not contra-
dict our definition of representability, according to wh ich2and 2
can be represented by the same automaton only if they coincide.
For two infinite sequences of symbols, 3 and 5, where 3differs
from 9 by the fact that i t lacks all symbols between t’ and tN, may
coincide only if beginning from t’, 3 periodically repeats the seg-
ment occurring between t’ and t”.

The theorem is thus proved.
This theorem enables u s to specify an infinite number of ex-

amples of unrepresentable events, but w e shall give only two such
examples.

Example 1. An event occurs if the automaton input at t = a2
(a = 1, 2, 3, . . .) is pi, and if the input i s p z at all other times.

Example 2. An event occurs if the number of symbols p2 between
two nonadjacent symbols pl of the input sequence always doubles.
Thus the event takes place if the sequence has the form

P1 Pz P I Pz Pz P1 Pz P2 Pz Pz P I P I Pz Pz P2 Pz Pz Pz Pz Pz PI P1 P1 * * - v

and does not take place when the sequence is

P I Pz P1 P2 P2 P I Pz PZ PZ Pz P1 P I Pz Pz P1 *

The events of each of the above examples are unrepresentable
since the corresponding sequences are not ultimately periodic.

It must not be assumed, however, that all not representable
events are embraced by this theorem. For example, we may have
an input alphabet p consisting of two symbols (0, l}, and w e may de-
fine an event so that at t = p , the number of symbols 1 in the output
sequence is equal to the number of symbols 0. This event does not
belong to the class considered above (since the occurrence of this
event is determined not by one specific sequence but by an entire
class of such sequences), but at the same time it is not represent-
able. We shall prove this.

Assume we are given some finite automaton A , and that its in-
put sequence consists of zeros only. Then at least one internal state
x of the automaton must sooner or later recur. Let that happen at
t’and t” (0 ,< t’ < t ”) . Now consider the following two input sequences:

-

184 ELEMENTS OF MATHEMATICAL LOGIC

1) 9, consisting of t” zeros followed by t” symbols 1 and 2) 9, con-
sisting of f’zeros followed by f”symbo1s 1. The corresponding tapes
are shown in Tables 7.7 and 7.8.

Table 7.7

Beginning at t’and ending at t’ + t ” , thesequence of x in the L?*
tape coincides with that x sequence of the 3 t a p e which s tar ts at t”
and ends at 2t”. This is because the initial states (at t’ and t”, re-
spectively) and the input sequences (,’’ symbols 1 in succession)
coincide in the two cases. Therefore, given tape 2: the automaton
will attain state x* at t’ + t”; this state will coincide with the state
occurring at 2t”with tape 3. However, the event does occur with
input sequence 3 (the number of symbols 1 is equal to the number
of zeros), whereas i t does notoccurwithZ*(the number of symbols
1 exceeds that of zeros), even though the automaton A achieves the
same state in both cases. This means that automaton A cannot rep-
resent this event. Q.E.D.

It is easy to perceive why the events of these examples can not
be represented. The reason is that, by definition, the finite automa-
ton (with a finite number of states) has a “finite memory.” But in
the above examples, the amount of information which the machine
must “remember” to be able to “decide” at any given instant
whether an event does take place, becomesinfinitewith time (in the
f i rs t example, the machine must “remember” how many instants
have elapsed prior to sampling; in the second example, the machine

WHAT A FINITE AUTOMATON “CAN DO” 185

T

must “count’ ’ the zeros occurring between two nonconsecutive sym-
bols of 1, and this number also goes to infinity).

Let u s point out that a set of sequences specifying an irregular
(nonrepresentable) event may itself be a subset of a regular set of
sequences. For example, an event specified a s “two symbols 1 never
appear consecutively at the input’’ is representable. However, the
input sequences of Example 1 (see above)whichare a subset of this
regular set , constitute an irregular set.

7.7. WHAT A FINITE AUTOMATON ”CAN DO”

In the preceding chapter we found out what an autonomous auto-
maton “can do.” Now w e have mastered the representability of
events and w e can thus answer that question for nomutonornous
automata.

Let A be an automatonwith an output converter, or an s-machine
representing a regular input event by generating a symbol (say, a 1)
at the output. Further, le t A stop as soon as 1 is generated at i t s
output and let i t trigger an autonomous automaton B that generates
a predetermined sequence M. The output of B then becomes the in-
put of automaton C which represents the event M, and the generation
of a 1 at the output of C is used to trigger A and stop B (Fig. 7.10).
This is done by the automaton 0, which represents a simple event:
the appearance of a given input symbol. Therefore this entire sys-
tem constitutes a finite automaton. Such afinite automaton responds
to any regular event by generating at the output any predetermined
finite sequence of states (symbols), after which i t is again ready to
receive external stimuli, that is, to respond to events.

The automaton of Fig. 7.10, does not respond to those input sym-
bols p that appear during the operationof B . If the (discrete) timing
of B is so fast that its entire periodic output sequence is generated

n

Fig. 7.10.

186 ELEMENTS OF MATHEMATICAL LOGIC

between two sampling instants of A , then there is no need for auto-
maton @, and the output of A can be used as the input of B. Such an
automaton maintains an output of any given periodic sequence of
symbols throughout the representation of the event, andwill gener-
ate another predetermined periodic sequence of symbols when no
event is represented.

Naturally, other combinations of automata are also possible.
But the above two combinations already show that an automaton can
respond to any regular event by generating any predetermined cycle.

Can an automaton do something more than this? And if so, what?
The answers to such questions depend on what language is used to
formulate the laws for the handling of sequences by a finite auto-
maton. Kleene’s theorems formulate these l a w s in the language of
representation of events. So far, there are no other convenient lan-
guages capable of describing (in terms of necessary and sufficient
conditions) what a finite automaton “can do” andwhat, in principle,
i t “cannot do.” This raises a number of new problems discussed
in the next chapter.

8
Recognition of Realizability

of a Given Specification.
Abstract Synthesis 0f Finite Automata

and Sequential Machines

8.1. STATEMENT OF THE PROBLEM

The design of any specific automatic device involves several in-
dependent stages. Thus the designer s tar ts by analyzing and then
“idealizing” the operations required of the device. Here, the designer
may obtain an idealization which specifies the problem in terms of
discrete time and afinite number of variables, each assuming only a
finite number of values. If that is the case, he may be able to employ
a finite automaton or a sequential machine. We say “may be able”
because not all problems, even if formulated in terms of discrete
time and a finite number of variables, can be performed in a finite
automaton o r an s-machine. For example, these machines cannot
“forecast” the state of the input, that i s , they are unable to generate,
at t = p , an output corresponding to an input at t = p + 1. But even if
our specification calls for an output depending only on the preceding
input states, there may notexist a machine embodying the specifica-
tions. We have seen this in our attempt to synthesize an automaton
for representation of irregular events (Chapter 7).

Thus the second design stage involves finding out whether finite
automata o r s-machines are suitable for agiven task, a problem we
shall denote as that of Yecognition of Yealizability of a given specifi-
cation (or simply the recognition problem).

Assuming that our specification is realizable in either of these
discrete devices, we enter stage three, where we determine their
basic tables. This is the stage of abstract synthesis.

Afte r abstract synthesis, the most important phase of the design
is ended. Before i t , the designer deals onlywith the specification of
the ultimate automatic device, that is, withgiven input and output se-
quences and the specified relationships between them. After the ab-
s t ract synthesis stage, he has a table of the automaton (and of the
converter, if an s-machine is involved), andin all subsequent stages

I a7

188 ELEMENTS OF MATHEMATICAL LOGIC

works only with these tables. He now simplifies them as much as
possible, selects the best overall means of their realization, and
solves the practical problems related to specific technology of the
selected devices. This brings the logic design to an end.

With the exception of Chapter 7 , w e have always assumed that
the automaton and converter tables were given, and did not bother
with the problem of how these tables were obtained. Now w e shall
deal with the techniques for generating these tables starting from
specifications for the device; that i s , w e shall deal with problems
of recognition and the abstract synthesis.

In speaking of “specification of the device,” we assumed that the
reader has an intuitive understanding ofwhat is involved. Now, how-
ever, w e must define just what this sentence means.

In all cases “specification of the device” means the definition of
the correspondences between the given input and output sequences.
The simplest case is that of finite number of given input and output
sequences, where “specification of the device” assumes the very
definite meaning of enumeration of all the given sequences and all the
correspondences between them. This type of specificationis treated
in Section 8.2.

The situationis much more complicatedin the general case, when
the number of given sequences (and, consequently, their lengths) can
be infinite. Here i t is impossible to employ enumeration, and the in-
finite input and output sequences, a s wel l as the correspondences be-
tween them a re specified by means of a defining language.

The problems of recognition and abstract synthesis maybe for-
mukted a s follows: w e have adefininglanguage andwe have described
the sets of input and output sequences and the correspondences be-
tween them in this language. Now we must find an algorithm (that i s ,
a procedure) for determining whether there exists an automaton (or
s-machine) capable of setting up such correspondences, and whether
there exists an algorithm capable of generating the basic table of the
automaton (and the converter), i f such machines do exist.

I t turns out, however, that the very ability to find such algorithms
depends on the defining language. If this language is too broad, then
there a re no such algorithms; that is, the problems of recognition
and abstract synthesis are algorithmically unsolvable (see Section
8.3). Thus there is the problem of narrowing the language in which
the design specification is stated. One of suchnarrow languages-the
language of regular formulas-is describedin Section 8.4, where i t is
shown how, startingfrom a given regular formula, one can synthesize
a relatively economical (insofar as the number of states is con-
cerned) s-machine which realizes the specification. The problem as

THE REQUl RED INPUT-OUTPUT CORRESPONDENCES 189

to whether such a machine is at all possible does not arise here,
since the language can only describe events that are realizable.

8.2. THE CASE WHERE THE SPECIFICATION ENUMERATES
THE REQUIRED INPUT-OUTPUT CORRESPONDENCES

Assume we want to synthesize an s-machine specified as follows:
We are given a finite number of tapes (which can be of different, but
finite, lengths), with a blank “2’ row, for example, the four tapes of
Tables 8.1 - 8.4. The required s-machine must realize these tapes,
starting from a given initial state xo.

This specification does not say anything about other possible tapes
(at other input sequences) of this same s-machine. If there are no
specific instructions to this effect, w e shall assume that no other in-
put sequences are possible or , which amounts to the same, that all
other tapes may be arbitrarily chosen. The specification may also
include additional conditions, for example, the requirement that any
other tape must contain some specific symbol (for example, 7..o) at all
sampling instants, starting from the instant in which the prow of such

Table 8.1 Table 8.2

Table 8.3 Table 8.4

190 ELEMENTS OF MATHEMATICAL LOGIC

sampling instants, starting from the instantinwhich thep row of such
a tape begins to differ from the p rows of the tapes enumerated in the
specification. If the main tapes are those of Tables 8.1 - 8.4, then
this additional condition could, for example, lead to an s-machine
having tapes showninTables 8.5 - 8.7 (where the instants of genera-
tion of ho are marked off with heavy lines).

Table 8.5

Table 8.7

Table 8.6

4
~ ~

PI

Because w e stipulated that all the giventapesmust s tar t with lco,

our specification may prove to be an impossible one. For example,
consider Tables 8.8 and 8.9. Obviously, there is no s-machine which
has both these tapes: for thismachine wouldgenerate, from the same
initial state xo and the same input sequenceplpspo, two different outputs
(3., in the case of 8.8, and lb3in the case of 8.9). Suchanoperationcan-
not be expected of an s-machine, which by definition is a determinate
device. The specification is thus contvadictovy.

Now i t is clear thatbefore proceedingwith the synthesis, the de-
signer must check the specification for contradictions. He does this
by inspecting sections of the given tapes, as shown below. The speci-
fication is not contradictory i f , and only i f , no two sections show dif-
fering outputs at identical inputs.

THE REQUI R E D INPUT-OUTPUT CORRESPONDENCES

Table 8.8 Table 8.9

191

Thus, in the example of tapes 8.8 and 8.9, the tapes are split up
as follows:

for p = 1

192 ELEMENTS OF MATHEMATICAL LOGIC

for p =:

L I L I

The contradiction becomes apparent after p = 3.
Assume that w e s tar t with a noncontradictory specification so

that we can immediately proceed with the synthesis, that i s , develop
the tables of the finite automaton and of the converter of the s-
machine. If we are given all the x rows on the given tapes, than w e
can pick out the triads directlyfrom the tapes and write out at least
some of the squares of these tables. The other squares could be filled
out arbitrarily, if no additional conditions are imposed on the ma-
chine, or in some other way,if there are such conditions. Thus the
synthesis of an s-machine reduces to filling out the x rows of the
tapes in a noncontradictory manner.

If the specification can be realized in some s-machine A , then it
can also be realized in any s-machine B which can substitute for A .
If all w e require is some machine realizing the specification, that is,
if w e impose no additional requirements on the s-machine, then the
solution is trivial, and may involve one of the following two methods:

a) The x rows may be filled with nonrecurring x t , the number of
the different states xi thus obtained being equal to the sum of lengths
of the (given) tapes.

b) We can construct an automatonwith an output converter which
represents the specific events "recorded" on the (given) tapes. Thus,
w e extract from the tapes all those input sets G I , Gz, and so on, which
generate outputs I., , k 2 , and so on, respectively. Then, using methods
of Chapter 7 , w e synthesize automata I, 11, and so on, respectively
representing the specific events G I , G2, and so on by outputs of 1. We

THE REQUIRED INPUT-OUTPUT CORRESPONDENCES 193

now connect the outputs of these automata to a converter generating
an output of iil if there is a 1 on the f i rs t converter input, hZ with a 1
on the second input, and so on.

The s-machines synthesized by either of these methods usually
have anextremelylarge number of states. Therefore, quite often one
is faced with a much more difficult problem, where one wants to syn-
thesize an s-machine conforming to a given specification but having
fewer states than any other machine also conforming to this specifi-
cation.

The solution is usually divided into two phases: 1) synthesis of
some (any) machine conforming to specifications; and 2) i ts minimi-
zation, that i s , the derivation, from this preliminaryversion, of an-
other s-machine which also conforms to the specification but which
has the least possible number of statesk.

The minimization problem of phase 2 is discussed in Chapter 9.
However, the methods of that chapter are difficultto apply if the s-
machine of phase 1 has many states, a condition produced by the use
of the above trivial methods in phase 1. For this reason one re-
sor ts , if possible, toother phase 1 techniques: these give s-machines
which, even though not minimal, are apr ior i known to have a small-
e r number of states. We shall describe one such method.

Let u s begin with the following example. Suppose w e want to syn-
thesize an s-machine which, startingfrom the same state x0 = xo, wil l
realize the two tapes of Tables 8.10 and 8.11. The tapes generated at
other input sequences can be arbitrary.

Let u s prepare a blank form for the tables of the automaton and
the converter (Table 8.12 for the automaton and Table 8.13 for the
converter). Since the ultimate number of the states is still unknown,
the number of the rows in these tables is still undetermined.
time being, we have only one line-for xo.

Table 8.10 Table 8.11

For the

In further filling out thexrow , w e must a lways check whether the
new entry does not contradict the preceding one; that is, that i t does

194 ELEMENTS OF MATHEMATICAL LOGIC

Table 8.12
Automaton

Table 8.13
Converter

not produce contradictory triads in the automaton or impose incom-
patible requirements on the converter.

In the f i rs t square of row II of Table 8.10 we write xo (in accord-
ance with the specification). There is also no reason why xo cannot be
entered in the second square of this tape. We alsowritexoin thecor-
responding square of the basic table of the automaton (Table 8.12).
We fill the corresponding squares (X O , PO) and (KO, p3) of the converter
table with the symbol hi (from columns 0 and 1 of Table 8.10). Again
we observe that nothing prevents u s from entering the same symbol
x o into the column 2 of Table 8.10 and into the corresponding squares
of Tables 8.12 and8.13. This results in Tables 8.14 - 8.16.

Table 8.14
Tape

Table 8.15 Table 8.16
Basic Table of the Automaton Converter Table

THE REQUIRED INPUT-OUTPUT CORRESPONDENCES 195

So f a r , w e enteredxowithout producing contradictions. Let us try
to enter i t in the next (fourth) square of the tape (Table 8.14). This
produces no contradictions in the automaton table since this symbol
goes into a blank square, but an attempt to write in h2 into the square
(p3, xo) of the converter does lead to contradiction since this square
already contains h,. We have no other alternative but to enter a new
symbol x I into the fourth square of the tape (Table 8.14). This, of
course, gives new rows in the tables of the automaton and the con-
ver ter , where w e enter the corresponding symbols.

Now w e try to enter xo into the next (fifth) square of the tape : there
is no contradiction. Had there been one, then w e would have had to
t ry xl and, if this led to a contradiction, w e would have to introduce
x2 and s tar t a new row in the tables. We repeat this procedure all
along the tape of Table 8.14 andwe thus complete its x row. Now w e
turn to the second tape (Table 8.11) and fi l l itsxrow in the same man-
ner. Here we must make sure that the symbol being entered not only
does not contradict the previous entries on this tape, but that it does
not contradict those of the first tape. We then have complete tables
for the automaton and the converter (Tables 8.17 - 8.20). Now these
tables have blank squares which may be filledin any desired manner,
since w e have stiuplated at the outset that the tapes obtained at input
sequence other than the given ones are arbitrary.

Table 8.17
First Tape

Table 8.19
Basic Table of the Automaton 1

Table 8.18
Second Tape

Table 8.20
Converter Table

196 ELEMENTS OF MATHEMATICAL LOGIC

The above example has been chosen so as to present no difficulties
in completing thexrows. However, consider the tapes of Tables 8.21
and 8.22. We leave the intermediate details to the reader, and shall
discuss only the final results. Thus, in tape 1, w e can enter xo into
the second and the third squares without raising any contradictions,

Table 8.21

First Tape

Table 8.22

Second Tape

but since xo in the fourth square produces a contradiction in the con-
ver ter table, w e must w r i t e x i in this square. A xo in the fifth square
does not, in itself, lead to a contradiction, but we then must have xo
in the sixth square to avoid a contradiction in the automaton table
[since the (xo. "0) combinationwas alreadyusedin the f i r s t column of
the tape and required a xoin the following column]. But ?coin the sixth
square contradicts the converter table. We must, therefore, go back
to the fifth square and tryx,. This gives no contradiction, and we can
thus tryx, in the sixth square. No(p2, x,)combination has yet been en-
countered and, therefore, from the point of view of the table of the
automaton, we can use any symbol in the seventh tape square. How-
ever, x 0 and ~~canno tbeusedbecause combinations (p l , x 0) and (p l , z l)
already specify entries other than in the converter table. There-
fore, w e use a new symbol x2 in the seventh square.

Now let u s examine tape 2 (Table 8.22). The (p2, x0) combination
has already been encountered in the third column of tape 1; there-
fore, to avoid contradictions in the automaton table, we can only use
x I in the second square of tape 2. But this causes a contradiction in
the converter table, so we have no alternative but to go back to the
third square of the tape 1 , remove the x0, and f i l l inx3. Now w e can
proceed with the completion of the tape 2 without altering tape 1, re-
solving only contradictions that may arise in the same manner as when
completing tape 1. No states other thanxo, X I , x2andxsneed tobe used
in this example, which finally results in Tables 8.23 - 8.26.

THE REQUl RED INPUT-OUTPUT CORRESPONDENCES 197

Table 8.23

First Tape

Table 8.25

Basic Table of the Automaton

Table 8.24

Second Tape

Table 8.26

Converter Table

P2

Rather than replacing the xo in the third square of tape 1 with a
new symbol x3, we could have tried to use one of the old ones (x, or
x2), altering, if necessary, the other squares of tape 1. This would
have given other tables for the automaton and converter, and these
might have had a different number of rows (that is, states).

Themethod demonstrated aboveisnot a regular, straightforward
procedure, and shows the complexities which may arise in phase 1
of the synthesis, where w e are merely trying to obtain any s-machine
satisfying .the stipulated conditions.

Let us now develop a regular method for uniform synthesis of
relatively economical s-machines realizing any given noncontradic-
tory finite set of finite tapes. We shall confine ourselves to the case
where the tapes generated at input sequences other than those stipu-
lated in the specification may be arbitrary. Againwe shall startwith
the blanks for the tables of the automaton and the converter, and w e

198 ELEMENTS OF MATHEMATICAL LOGIC

shall increase the number of rows in these tables as new states ?t are
introduced. Assume, however, that the given tapes and the two tables
are already partly filled. We shall say that these already-present
entries are correct if they meet the following conditions:

1. The entries in the tapes and the tables do not conflict; that is,
the tapes contain no triads producing contradictions in the automaton
and the converter and, conversely, the only filled positions in the
automaton and converter tables are those which correspond to tr iads
already present on the tapes.

2. The last column of each tape contains a (p, x) pair which de-
fines a still empty square in the automaton table.

3. If two or more of these last(@, ?c) pairs contain identical sym-
bols 11, and if the corresponding tapes show identical p ' s during one
or more subsequent sampling instants, then these tapes must also
show identical symbols 1, during these instants.

For example, Tables 8.27 - 8.30 are correctly filled.

Table 8.27

First Tape

Table 8.29

Basic Table of the Automaton

Table 8.28

Second Tape

Table 8.30

Converter Table

However, the tables of the following three examples are incorrectly
filled.

Example I (Tables 8.31 - 8.34) violates condition 1:

THE REQUIRED INPUT-OUTPUT CORRESPONDENCES 199

Table 8.31
First Tape

Table 8.32
Second Tape

Table 8.33 Table 8.34

Basic Table of the Automaton Converter Table

Table 8.35

First Tape

Example 2 (Tables 8.35 - 8.38) violates condition 2:

Table 8.36

Second Tape
__
Dis-
crete
mo- ment

P

~

7.

Example 3 (Tables 8.39 - 8.41) violates condition 3:
Provided the specification is not contradictory, the initial (given)

tapes which contain onlyxofor t = 0, together with a completely blank
automaton table and a converter table withentries only in the squares
corresponding to t = 0 for all the tapes, are one case of correct filling.

200 ELEMENTS OF MATHEMATICAL LOGIC

Table 8.37
Basic Table of the Amomaton

Table 8.38
Converter Table

Table 8.41
Third Tape

i, 5

I
Table 8.40
Second Tape

Here conditions 1 and 2 are automatically
met, and the noncontradictory nature of
the specification is precisely what condi-
tion 3 is about.

We shall now describe the algorithm
for entering states Y, in the blanks of the
tape, assuming that the tape already con-
tains some (not necessarily initial) cor-
rect entries of XO. %I, . . ., x~. We star t by
numbering the (given) tapes in any desired
order. Then:

1. We turn to the f i rs t blank square ofrow x in tape 1 and try to
enter ZO, checking whether this does not raise contradictions in the
converter table. If there is a contradiction, we try XI, again checking
for contradiction. If none of the symbols XI], X I , . . ., %. removes the
contradiction, we introduce a new symbol K ~ + ~ and add a new row to
the tables of the automaton and the converter. Let x'be the f i rs t sym-
bol which produces no contradictions in the converter. If x' = X.stl,

then we make corresponding entries in the tape and the tables and
proceed immediately to step 3 of the algorithm. If, however, Y,' = x k
(0 < i'z < s), w e again make the corresponding entries andproceed to
step 2.

THE REQUl RED INPUT-OUTPUT CORRESPONDENCES 201

2. Turning to the automaton table (now supplemented with a new
square in accordance with step 1), w e ascertain whether w e can con-
tinue filling tape 1 (without filling in new squares in the automaton
table). If this is possible, we keep on filling the tape, making sure
that no contradictions arise in the converter table. If no contradic-
tions occur, w e keep on filling the tape until w e encounter a blank
square in the automaton table or until tape 1 is completed, whereupon
w e proceed to step 3 of the algorithm; If acontradictionwith the con-
ver ter table does occur, we return to that square of tape 1 where at
the end of step 1 we wrote x’ = xk: we erase XI< from all of our tables,
and we also erase the other entries associated with i t and made in
step 1. We then continue the search for a suitable x as per step 1,
starting this search with W ~ + I . After a finite number of tr ials, we
must be able toproceedwithstep 3of the algorithm (because if d is
not in the sequence x0, x I , . . ., x s , thenwe mustintroduce a new sym-

3. Assume that the procedures of steps 1 and 2 finally give a
suitable, noncontradictory symbol x” = x m (where k < rn < s + 1).
We now return to the entries already present on tape 1 at the s tar t
of our procedure, and we take the (p, x) pair in the last correctly
filled column. We then check the las t correctly filled columns of the
remaining tapes for the presence of this pair. If no such pairs a r e
present, we proceed to step 4 of the algorithm. If, however, there
are such pairs, then w e try to continue filling, as per step 2 , each
tape in which the last “correct” (p, x) pair coincides with the last
“correct” (p, x) pair of tape l.* Here, there are two possibilities:
a) w e may be able to f i l l these tapes to the end (that is, until w e reach
a blank square in the automaton table, or until the tape is completed),
whereupon w e proceed to step 4 of the algorithm, or b) w e may ar-
rive at a contradiction with the converter table. If the latter is the
case, we return to step 1 of the algorithm, drop symbol x),,, erase
all the entries associated withit, andcontinue the search for a suit-
able x’ as per step 1, starting with x m +]. After a finite number of
tr ials, w e must be able to proceed to step 4 of the algorithm be-
cause, if no other x’is found, we will use xF + which definitely allows
u s to go to step 4.

4. We check the tapes for conformitywith condition 3 for correct
entries. If this condition is met, we have again arrived at correct
entries. We can then return to algorithm step 1, and continue filling
the tapes and tables. However, if the tape does not meet condition 3,
w e erase all tape and table entries associated with x“ = x?,!, and

bol xs + I) a

*If a new symbol x , had been introduced, then the maximum possible advance is one
square.

202 ELEMENTS OF MATHEMATICAL LOGIC

continue the search for a suitablex'asper step 1, starting the search
with x , , ~ + ~ . However, if X" = xr+lr then the check of step 4 will always
show that condition 3 holds; thus, this check can be omitted.

The reader is advised touse this algorithm to synthesize the auto-
maton realizing the tapes of Tables 8.42 - 8.44. In this case the al-
gorithm must be used six t imes and finally gives the tapes and Tables
8.45 - 8.49.

Table 8.42
First Tape

~

Dis-
crete
m e
ment

~

P
__

x

A

Table 8.45
First Tape

Table 8.43 Table 8.44
Second Tape Third Tape

Table 8.48
Basic Table of the Automaton

Table 8.46
Second Tape

Table 8.47
Third Tape

Table 8.49
Converter Table

1
P I I P z I P3

1 2 j J , 4

-~
~~ _-

I -

ALGORITHMIC UNSOLVABILITY OF THE PROBLEM 203

The same algorithm will also solve the less stringently specified
problem where we are given afinitenumberof tapes of finite length
and it is required to synthesize an s-machine realizing these tapes,
but where the tapes need not all have the same initial state. In this
case there is no need for checkingwhether the specification is con-
tradictory, and the initial correct entries may be written immedi-
ately by appropriately selecting the initial states for each tape.

The key concept involved in our algorithm is the maximum use
of states already present on the tapes, whereby new states are added
only when absolutely necessary. This design procedure leads to a
relatively economical machine. However, i t does not, ingeneral, give
a minimal s-machine. This is because i t may prove convenient to in-
troduce a new state even though an already-existing state is
suitable, if that will reduce the number of states in succeeding stages
of synthesis.

So f a r , we have assumed that the number of pairs of input and
output sequences is finite, and that all of these are enumerated in
the specification. Now we shall discuss the general synthesis prob-
lem, where we do not assume that the number of the given corre-
spondences between the input and output sequences is finite.

8.3. ALGORITHMIC UNSOLVABILITY OF THE PROBLEM
OF RECOGNITION OF REPRESENTABILITY OF

RECURSIVE EVENTS*

Let u s assume that w e have some description of the relations be-
tween the input and the output sequenceswhichwe want to duplicate.
These relations may be completely arbitrary as long as their speci-
fications can be effectively descvibed. An effectively described spec-
ification is one which allows anyone familiar with the description to
find that unique output sequence which corresponds to any input se-
quence of the specification.

To find out whether there exist s-machines capable of providing
the desired input-output relations, we f i rs t must formalize the effec-
tive description of such relations. To do this, we turn to recursive
description, which is the only known means of formalizing that which
we intuitively express by the phrase “all that can be effectively
specified by a human language.’’

*Readers not familiar with the theory of algorithms and recursive functions should
read Chapter 12 prior to this section.

204 ELEMENTS OF MATHEMATICAL LOGIC

One method of describing input-output relations is basedon rep-
resentability of events, a concept we encountered in Chapter 7. In-
deed, instead of specifying separately the output corresponding to
each input sequence, we can specify the set Gi of all input sequences
causing the operation of a given output hi. If such sets Go, G I , . . ., GI
are specifiedfor all outputs l o , ?,,, . . ., A,, we have aunique input-output
relation. Forexample, suppose that the input alphabetis Ip1,p2,p3,p41
and the output alphabet is (h,,h2,X31, and suppose further that:

a) the output 7.1 is generated at instant p if during the preceding
two instants [(p - 2) and (p - l)] theinput sequence contained p1 fol-
lowed by p4;

b) the output ?.* is generated if the conditions of a) are not met
and if there is no input p3 during the internal (p - 3) to p ;

c) the output k3 is generated in all the other instances. If this is
the case, we can readily write out the output generated at any input
sequence.

With this method of specifyinginput-output relations, the machine
synthesis problem may be formulated as follows: given the events
G I , G1, . . ., G,, w e require an s-machine representingtheevent Gi by
generating an output L i from alphabet (1.1, 2.2, . . . , A t } . Then the for-
malization of an effective specification of the Yelation between
sequences, reduces to the formalization of an event which can be
effectively defined. This last concept again can only be formalized in
terms of a recursive description. Thus, whenwe say that an event G
is given, w e shall mean that what is given is a recursive description
of the input sequence set Gi.

Let us agree that an event Gi is Yecuvsive if the set Gi of input.
sequences is Yecursive.*

We have already proved (Chapter 7) that only regular events are
representable in an s-machine; we have also proved that irregular
events do exist. Therefore, the problem of recognizing whether there
exists an s-machine realizing some specific and effectively specified
input-output relation becomes one of finding outwhether some speci-
fic recursive event isregular ; thatis,wemustfindoutif thereexists
an algorithm which, given any recursive event, can recognize whether
this event is regular or not.

Theovem 1 **. The pvoblem of Yecognition of regularity of Ye-
cuvsive events is algovithmically unsolvable.

+For definition of a recursive se t of sequences, see Chapter 12.
**A statement equivalent to this theorem was first advanced (without proof) inSec. 5of

a paper by B. A. Trakhtenbrot [1011 (see also [1331 and [1431). (Footnote continued page 205)

ALGORITHMIC UNSOLVABILITY OF THE PROBLEM 205

Proof. Our proof will consist of formulating a problem narrower
than that of recognition of representability of recursive events, and
showing that even this narrow problem is algorithmically unsolvable.
The broader theorem will then also have been proved.

Assume we are given a recursive function cp (t) defined on the set
of integers and assuming values from the finite set (0. 1 , . . ., r - 1).
Then suppose we have an automaton A with an input alphabet {po, P I ,
. . ., Q , - ~ } . Of all its possible inputs, we shall note in particular the
sequences

P,(OP

P,CO) P+P

P d O) P,(I) P d 2 b

where p (i) is a character from { p i } , whose subscript coincides with
the value of the recursive function cp(t) at t = i.

Now consider an event S’ consisting of the fact the input of the au-
tomaton contains one of the above sequences at that instant. In other
words, an event S’ occurs when, and onlywhen, the subscripts of the
inputs p coincide throughout (thatis, at all instants 0, 1 , 2, . . ., p) with
the consecutive values c p (O) , cp(l) , cp(2), . . ., cp(p) ofthegivenrecur-
sive function cp.

We shall say that the automaton A represents the recursive func-
tion cp if that automaton also represents the event S. But we already
defined representation of events in Section 7.2 (p. 160). By analogy
with that section, w e shall say that an automaton represents a recur-
sive function p(t) only if all of its states x (p) belong to the allowed
set A4, and that these states can belong to M i f , and only i f , the sub-
scripts of all inputs between t = 0 and t = pare consecutive values of
function cp (t) .

There exist recursive functions that are a pr ior i known to be
representable (for example, any periodic function is representable,
since here the event Sip is regular), as well as those that are a p r i o r i
known to be unrepresentable (for example, the function p (t) that be-
comes 1 at t = n2andiszeroinal l the other instances). But in other
cases , w e are faced with the problem of recognizing the represent-
ability (or lack of i t) of recursive functions. It can easily be seen that

Theorem 1 could be considered a direct result of Rice’s theorem [1031, i f the d a s s of
recursive evenfs were regarded a s a class of events “generated” by all the possible re-
cursive functions. However, one can also have recursive events “generated” by primitive
recursive functions, and this case needs special treatment. Our proof, in addition to being
general, is also completely applicable to events generated exclusively by primitive recur-
sive functions.

206 ELEMENTS OF MATHEMATICAL LOGIC

this problem is a special case of our overall problem of recognition
of recursive events.

In accordance with the theorem provedin Section 7.6, a recursive
event 9 is regular if , andonlyif, the recursive functionrg(f) is ulti-
mately periodic. But since w e know * that the problem of recognizing
whether a given recursive functionisultimatelyperiodic is algorith-
mically unsolvable, the same is true of the problem of recognition of
regularity of event Sv, and is all the more true of the broader prob-
lem of regularity of recursive events. This proves the Theorem 1.

Thus there is no algorithm capable of deciding whether a given
recursive event is regular or not. The problem must be handled
piecemeal, resorting in each particular instance to a “creativey’ (as
opposed to a “mechanical,yy that is, algorithmic) solution. Assume,
however, that we are always able to separate out, in one way or an-
other, the recursive events which are regular. Then,on the face of
i t , i t would appear thatwe could design an algorithm for synthesizing
automata representing those recursive events which are regular.
However, i t turns out that even this problem does not lend itself to a
generalized solution. This is statedin another theorem of Trakhten-
brot, which w e shall cite witnout proof.

Theorem 2. The p o b l e m of synthesis of an automaton repye-
senting an event from tha set of all Yecuvsive events that aye regu-
lay is algorithmically unsolvable.

The above two theorems lead to a very important conclusion: un-
l e s s the allowable methods of specifying the desired machine (that
is, the language describing the specification) is restricted in some
way, any attempt to find an algorithmic methodfor synthesizing this
s-machine wil l be meaningless. More than that, unless the language
is restricted, any attempt to find aprocedure for answering the mere
question whether a machine realizing this specificationexists at all
wi l l be doomed to failure. Fortunately, however, the language can be
so restricted that any specification expressed in i t will be a priori
realizable by an s-machine. In this way, the recognition problem is
completely avoided, and one needs toworry only about the synthesis
problem.

One such restrictedlanguage is that of regular expressions, where
the specifications a re always written in terms of regular events. It
is a pwvi known that there exists an algorithm for the synthesis of
an s-machine specified in this restricted language. This existence
follows from the reasoning employed in the proof of Kleene’s f i rs t
theorem (Chapter 7) . A similar algorithm, again written in the

*See, for example, [1421.

SYNTHESIS OF FINITE AUTOMATA AND SEGUENTIAL MACHINES 207

language of regular expressions but more convenient and yielding
fewer states, is shown in Section 8.4. And B.A. Trakhtenbrot [101,
1021 devised apredicate language also suitable for writing specifica-
tions which are a p ~ i o r i known to be realizable in some s-machine
and for which there exists a synthesis algorithm.

However, the practical u s e of such languages merely shifts all
the difficulties associated with the synthesis phase to the initial de-
sign phase, where the specifications are written. Indeed, the advan-
tages inherent in these restricted languages are fully realized only
if there are no intermediate translationsteps, thatis, if the specifi-
cation is from the outset formulated in the appropriate language.
Therefore, the designer issuing the specification must “think’ ’ in
that language, that is, have the ability toexpress himself directly in
it. However, in practice, the f i rs t definition of the required s-machine
is inevitably expressed inwords. This verbal definition must then be
translated into the language of regular expressions. And one cannot
accomplish this translation unless one knows beforehand that the spe-
cification is expressible in the language of regular expression. We
are thus again trapped in a vicious circle.

A language suitable for specification and the subsequent synthesis
must, therefore, satisfy the following three requirements:

1) Those verbal descriptions which are natural and frequently
encountered must be easily translatable into this language.

2) The language must be so broad that those natural and frequently
encountered verbal descriptions which are not realizable by an s-
machine could also be translated into it.

3) Both the recognition and the synthesis problems must be al-
gorithmically solvable for all the specifications written in this lan-
guage.

So far, there are no languages satisfying all these conditions.
In the next section we shall consider a synthesis algorithm for

the relatively easy case where the specification is given in the lan-
guage of regular formulas, and the recognition problem therefore
does not arise.

8.4. SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL
MACHINES IN THE LANGUAGE OF REGULAR EXPRESSIONS

Assume now that we are given one or more regular expressions
(see Section 7.3), and i t isrequired to synthesize an s-machine rep-
resenting the input events specified by these expressions by

208 ELEMENTS OF MATHEMATICAL LOGIC

generating the appropriate output symbols. * The problem then re-
duces to the synthesis of a finite automaton representing each of
these events by an appropriate set of states.

Actually, this problem w a s already solved in Chapter 7 , where
Kleene’s f i rs t theorem w a s effectively proved, that i s , the proof of
the theorem contained a method for constructing an automaton rep-
resenting any event specified by a regular expression. If more than
one regular expression is given, w e can construct an automaton rep-
resenting each of them separately, and thenfeed the outputs into the
input of a common converter. However, we are confronted here with
a situation similar to that already encountered in Section 8.2: w e
know a solution for the problem, but w e are not content with i t be-
cause the least number of states k in the resulting machine is too
large for subsequent minimization.

We shall now present a method which does not suffer from this
disadvantage, and which is an adaptation of aprocedure proposed by
V.M. Glushkov [252]. To begin with, assume w e have one regular
expression. We shall write i t in aform somewhat different from that
of Chapter 7. Thus in forming regular expression of Chapter 7 ,
w e startedwithfinite segments of input tapes (thatis,finite sequences
of inputs p t) , which we then denoted by a, b , c, . . . , Now w e shall s tar t
the inputs pi themselves, that is, w e shall employ only input sequences
of length 1.

A regular expression consisting of finite sequences a, b , c, . . .may
be written in the form of a product. For example, the sequence
a = p1 p5 p3 p 4 corresponds to the expression

K = { [(P I . Ps) * P31 * P41.

A regular expression consisting of a, 6, r , . . . thus immediately
yields the corresponding regular expression consisting of symbols
pi. For example, when a -1 p,, 0 == p2 . pB and c = p, . pz , the regular ex-
pression of Chapter 7

R= i(K ? 2 . PJV(P1 . PZ)I*)VlP, * (P1 . P 2) l l .

It is obvious that the depth of this new regular expression may be
much greater than that of the starting one.

*We a r e not concerned here with the c r i te r ia for the selection of these regular expres-
sions.

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 2 09

The next step in our synthesis is representation of our regular
expression in the form of a graph. To start with w e adopt the fol-
lowing convention for expressions of depth 1:

.Terminal

Origin Terminal Origin
Terminal

.Terminal

Fig. 8.1.

Thus, a disjunction(p, V p j) i s shown (Fig. 8.1,a) by two arrows origi-
natingfrom apoint andlabeledpi andpj, respectively. This graph has
one origin and two terminals. A product(pi-pj)is shown (Fig. 8.1,b)
by two respectively labeled arrows connected in series. This graph
has one origin and one terminal. The iteration (p i)* is shown (Fig.
8 . 1 , ~) by an appropriately labeled arrow closing upon itself. The
origin of this graph is also its terminal.

In exactly the same manner, w e define the operations of graphs
of regular expressions R I mdRZ of depth >, 1. Each such graph has
one origin and at leastone terminal (the origin and the terminal may
also coincide, a s i n Fig. 8 .1 ,~) . The graphof the expression (R I V R2)

is obtainedby combining the origins of graphs for R1 and Rz. The re-
sulting graph has one origin and as many terminals as there are in
the graphof R , plusthe graphof R 2 . The graph of (R , - Rz) is obtained
by connecting all the terminals of the graph of R , with the origin of
R2 (so that the arrows in R I now point to the origin of R z) . The origin
of the graph of (R I - R2) then coincides with that of the graph of R1,
while the terminals are all those of the graph of Rz. The graph of
(R I) * is obtained from the graph of R I by joining all its terminals to
its origin. The origin of this graph (which also is the origin of R 1)
is thus also i t s terminal.

We shall now show a few examples of graphs of regular expres-
sions.

The regular expression

R = IP, * KPZVP3)*1)

has the graphof Fig. 8.2 (which also shows the intermediate graphs).

210 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 8.2.

The regular expression

R = i t I(P2 . PB)V(P* * PZ)l*) . [PI . (PI . P2) l l

has a graph of Fig. 8.3.

9. j z >*
Terminal

Fig. 8.3.

Let us stipulate that a graph depicting a regular expression must
satisfy the following conditions: any path from the origin to a term-
inal must define a sequence whose input to the automaton signals
the event specified by the given regular expression R ; and, con-
versely, the graph must contain a path from the origin to one of the
terminals for any input sequence signaling the occurrence of the
regular event.

The graphs of Figs. 8.2 and 8.3 do satisfy these conditions.
There are, however, regular expressions with graphs not conforming
to these requirements. For example, the graph of

/i = (([PI . (PZ)*IVP2) . P31

(see Fig. 8.4) contains “false paths.” Here the path indicating an
input sequence ~ 2 ~ 2 ~ 3 (heavy line) also corresponds to the expression

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 21 7

that i s , it does not signal the occurrence of the required event R.
Again, Fig. 8.5 shows the graph of the regular expression

R = M P z) * . PBIVPIJ .

But the heavy-line path does not signal the occurrence of event R.
Finally, consider the regular expression

whose graph is shown in Fig. 8.6. The graph contains a path P I p3 p2 p4

which does not correspond to any specified event.

Origin Terminal

Fig. 8.4. Fig. 8.5.

These three examples describe the three ways in which false
paths may be generated. Thus, false path may result from the fol-
lowing operations :

Fig. 8.6.

1) Multiplication by adisjunctive expressioninwhich at least one
of the disjunctive terms terminates in an iteration

2) Disjunction, in which at least one of the disjunctive terms
starts with an iteration

212 ELEMENTS OF MATHEMATICAL LOGIC

3) Multiplication of two iterations

[(A)* * M*l.
To avoid “false paths,” the rules for construction of graphs are

amended in these three cases to include empty awows not labeled

p3 -.
Terminal

A ~

Origin Terminal

Fig. 8.7. Fig. 8.8.

with symbols p. An empty arrow merely indicates the direction of
movement along the graph and is ‘‘traversed” instantaneously, that
is, i t does not correspond to a discrete instant of operation of the
automaton.

0” Terminal
0-.

Origin P

Fig. 8.9.

We can now correct the graphs of Figs. 8.4 - 8.6 by means of
empty arrows, to give Figs. 8.7-8.9. In the first case, the empty
arrow s t a r t s at the end of the iteration; in the second case, i t is in-
terposed between the common origin of the graph and the s tar t of the
iteration; in the third case, the empty arrow is interposed between
the end of the first and the s tar t of the second iteration. The cor-
rected graphs still represent the respective regular expressions,
but no longer contain false paths.

We shall demonstrate the synthesis of the automaton correspond-
ing to the regular expression

Its correct graph is shown in Fig. 8.10.

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 213

Fig. 8.10.

Now w e number consecutively, from left to right, all the symbols p
in this expression, entering the resulting ordinal numbers as super-
scripts (this will result in different superscripts on identical p i ’s) .
We then obtain

The same superscripts are then assigned to the corresponding
labels pi on the graph*, as shown in Fig. 8.10.

Now w e wr i t e out at each node of the graph the superscripts of
the pi’s of the arrowsconverging upon it, assigning the superscript
0 to the starting node. The number of the node which is the origin of
an empty arrow is written at the node upon which that empty arrow
converges. If two or more arrows with identical label superscripts
converge on a single node, the superscript is written at that node
only once. Figure 8.11 shows the graph of our example‘with all the
numbers in place.

We now construct a table whose column headings correspond to
the various pi’s of the regular expression. The heading of the f i rs t row
is the symbol *,whichisalsoenteredin the entire row (Table 8.50).
The heading of the second row is 0, and each column p i contains the
superscripts of all the arrows labeled pt and originating from the
nodes whose description includes 0. We thus obtain Table 8.51.

*With this method, it is usually convenient to number the symbols of the regular ex-
pression f i rs t , and only then construct the graph.

214 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 8.11.

Table 8.50 Table 8.51

! I 1, 7, 12 10

Now we add as many rows as there are different entries in row 0,
with these entries becoming the headings of the new rows. We then
obtain Table 8.52. The columns p i in each new row are now filled
in a manner similar to that used in filling row 0. Forexample,the
intersection of row I , 7, 12, and column p3 contains the superscripts
k of the labels p t of all the arrows originating from the nodes whose
description includes 1 , 7 , or 12. If there are no such arrows, then we
enter the symbol x. As a re su l t of this procedure, we get Table 8.53.
After this, w e add to Table 8.53asmany rows as there are new en-
t r ies in the three rows justcompleted, andfill in the columns in the
manner just demonstrated. The table will be completed in a finite
number of steps, since the number of different combinations of super-
scripts k is finite. If N is the number of characters in the given regu-
lar expression, then w e have a total of N + I superscripts and no more
than 2” + 1 different superscript combinations, that is, different table

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 215

Table 8.52 Table 8.53

entries. The number of the rowsinthe table cannot, therefore, ex-
ceed 2” + I .

Finally, w e check off (on the left margin) all those rows whose
headings contain a superscript appearing in the description of a term-
inal node of the graph, and obtain Table 8.54.

The next step is to code the row headings of the table by means
of consecutive symbols x0, x,, . . . ; we code the table entries accord-
ingly.

Table 8.55 thus constructedis the basic table of afinite automaton
which, startingfrom aninitial state x I , represents the events defined
by the regular expression (8.1) by the set of checked-off states (states
XZ, xg, x7, x9, X I O . X I I , x 1 2 , ~ 1 3 . ~ 1 ~) . To convince ourselves of this, let our
automaton be in an initial state andlet the input sequence bep, p3 PI.
The automaton will then go to state ~ 1 3 . The symbol icI3 (compare
Tables 8.54 and 8.55) is the code forthe superscript set 7 , 12. But
then it follows from the veryprocedure for construction of Table 8.54
that the graph of Fig. 8.11 contains a path p ; ~ i.2 p f 3 (starting at the
origin and possibly including some empty arrows) such that pi’ is
equivalent to p: o r p iz , that is, i3 = 7 , o r i3 = 12. Now, does the se-
quence plp3pl signal the occurrence of the specified event? We can
reformulate this question a s follows: is there a graph path plp3pl
from the origin to one of the terminals? Table 8.54 and Fig. 8.11
provide the answer: since path plp3pl canterminatein p:’ and an ar-
row so labeled does lead to a terminal node, this path does exist.
Thus, whenever an input sequence resets the automaton into a
checked-off state, this means that the corresponding graph path leads

276 E L E M E N T S OF MATHEMATICAL LOGIC

Table 8.54 Table 8.55

to a terminal node, that is, this input sequence corresponds to a path
from the origin to a terminalnode. Butthis, in turn, means that the
specified event has occurred. Therefore, our automaton represents
this specified event. Whenever the input sequence is not the initial
segment of any sequence specifying anevent (and therefore no event
will occur), our automaton is reset into state 310 and stays in it. In
Table 8.55, such a situation arises with input sequences plplpl,

P I P ~ P Z P I , and so on.
If more than one regular event (R l , R P , . . ., R,) is specified, our

method is modified as follows: The symbols in the regular expres-
sion are numbered consecutively (thatis, the pi ' s i n R I are assigned
superscripts I , 2, . . ,, nz, those in K 2 a r e assigned superscripts m + I ,
m + 2 . . . n , and so on). A separate graph is then constructed for each
expression. The superscript 0 is assigned to the origins of all the

SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 217

graphs. A common table is constructed, so that an intersection of a
row and a column may contain superscripts from several graphs.
Then the rows containing the superscripts marking terminal nodes of
all graphs are checked off (that i s , the sets of symbols representing
each of the events R1, Rz, . . ., R,? are determined). Thenone designs
an output converter which places an appropriate symbol A with each
of these sets of states.

Example. Given three events

The corresponding graph is shown in Fig. 8.12, and the above-de-
scribed algorithm produces Tables 8.56 and 8.57. However, now
we do not use check marks, but label the states representing the
events R1, R2, and R3 with symbolsL,, A2, and k 3 , respectively. State x5
is labeledwith two symbols (A 1 , h3) because events RI and R3 contain a
common sequence (p l . p2) leading to x 5 . Therefore, we either identify
k1 with L3 (thatis,failtodistinguishbetween events R I and R 3) , or we
must label x5 with a new symbol 7.4.

We could have synthesized our automaton directly from the regu-
lar expression, without using a graph. Infact, this is the procedure
used by the author of our method, V.M. Glushkov, and i t may prove
to be more convenient in those cases where the regular expressions
R , yield complicated, cumbersome graphs. That procedure is, how-
ever , not as easy to visualize as that employed in this book.

Fig. 8.12.

The obvious problem which arises in connection with the Glushkov
method is that of a priovi estimation of the number of states in the
final automaton. We shall present (without proof) an estimate for the

218 ELEMENTS OF MATHEMATICAL LOGIC

Table 8.56 Table 8.57

the automaton represents specific events* (specific
events are a subclass of regular events).

formula
Let specific events E R , , ER,, . . ., ER,,, be given. Now consider the

This formula contains no iterations (since the events are specific)
and, therefore, graph S has noloops (thatis, nopath crosses the same
node twice). Formula S can be transformed t o a form S’ such that:
a) the graph of S’ will be a t r e e , that i s , only one arrow will termi-
nate in each node, and, therefore, differentpaths will always lead to
different nodes; and b) if two o r more arrows originate at a single
node, they all will be labeled with different characters of the input
alphabet. Formula S’ will be equivalent to S, but may differ from it
in the number of charactersit contains. Letus denote the number of
characters in S’ as N ’ . Then one cansynthesize an automaton rep-
resenting the system of events ER,, ER2, . . ., ER,. The number of
states in this automaton will not exceed N‘ + 1 . In practice, however,
this method yields automata with a much smaller number of states
than Ri’ + 1.

*The upper limit for the number of s ta tes in the case of an arb i t ra ry regular event
was estimated by Glushkov in [29].

9

Equivalence and Minimization
of Sequential Machines

9.1. THE PROBLEM OF RECOGNITION
OF EQUIVALENT STATES

We have already said in Section 3.7 that the class of possible
input sequences to a machine may be restricted for some reason,
and we have seen such a case in Chapter 5. Now consider other
constraints that may be imposed on the possible input sequences.
They may include the following:

a) Identical symbols shall not appear consecutively.
b) Symbol p3 shall not follow symbol pi.
c) An input sequence shall not begin (or, conversely, must be-

d) If the sequence contains ps or pt then i t cannot containp,.
In these examples, the infinite set E containing all the possible

input symbol sequences of any desired but finite length is split into
two subsets: a subset L c E (which may be finite o r infinite), con-
taining all the input sequences allowable in a given s-machine, and
a complement of this subset t, consisting of the se t of forbidden
input sequences. A special case is that of L = E, which means that
any input sequence is allowable in the given machine.

Let us note that constraints a - d are in no way related to the
state in which the machine happens to be. There may, however,
exist other constraints, imposed by the design of the s-machine.
For example, i t s state diagram may show an ith state such a s
that of Fig. 9.1. Here, the machine
cannot accept an input p2, and the COP,-

s traint on the input sequence is thus
imposed by the properties of the ma-
chine itself. Such constraints maybe
imposed on one, several, or even all
the states of the machine. The con-
straints on different states need not Fig. 9.1.

gin) with pk.

(p , JJ --o=c G3.4,

219

220 ELEMENTS OF MATHEMATICAL LOGIC

be identical, and different states may thus forbid different input
signal s.

If a given input sequence does notviolate the constraints imposed
by state x i and all the states following xi, i t is said to be an input
sequence allowed in state xi. The set of all sequences allowed in
state x i is denoted by L x i .

Constraints imposed by the properties of the machine are known
as Aufenkamp constraints. If Aufenkamp constraints are operative,
then there is no single, all-encompassing set L such that any mem-
ber of L would be an allowed input sequence regardless of the ini-
tial state of the machine. With Aufenkamp constraints, each of the
possible k states of the machine has i ts own LXi which, in general,
is different from the other sets Li

This case differs from that in which the constraints are inde-
pendent of the states of the s-machine (thatis, where there exists a
single set L) and where the algorithm for recognizing whether a
given sequence belongs to set L can be formulated in terms unre-
lated to the initial state of the machine (or even completely unre-
lated to the machine). When the recognition algorithm exists per se ,
that is, may be expressed in terms unrelated to the machine, the
corresponding constraints are said to be constyaints per s e , and
the set of the possible input sequences is said to be restrictedper se .

Considering for the time being only sequences restrictedper s e ,
let us introduce the concept of equivalence of states of an s-machine
(or a finite automaton). Assume we aregiventhe set L of allowable
input sequences, as wel l as two s-machines S and G (in particular,
S may coincide with G). Then state 3c1 of S and state X j of G are equiv-
alent in terms of L if the two machines (in these two respective
states) process the same input sequence from L into identical out-
puts. If the machines S and G are identical, then this definition
merely describes the conditions for equivalence (in terms of L) of
the two states of a single s-machine (or automaton). If L = E , .that
is, if the set of allowable input sequences contains all possible se-
quences, then states x i and x j are simply equivalent.

Our definition of equivalent states underlies the following analyti-
cal problem: Given an s-machine and i t s set of allowable input se-
quences L , find an algorithm for deciding whether two arbitrarily
chosen states of that s-machine are equivalent in terms of L. If
w e had such an algorithm, w e could splitthe set of all states E into
groups of those that are equivalent in terms of L. By agroup of
states equivalent in terms of L w e mean a set of states of the s-
machine such that: (1) any two states in the group are equivalent in
terms of L ; and (2) no state from one group is equivalent (in terms

(j + i).

PROBLEM OF RECOGNITION OF EQUIVALENCE OF STATES 22 1

of L) to any other state of any other group. This grouping of states
i s , as will be seen la ter , ofparamountimportance in the minimiza-
tion of s -machine s.

Our generalized analytic problem would be solvable if w e had an
algorithm for recognizing the equivalence of states, given any s-
machine and any set L. But we will show in Section 9.2 that this
generalized problem is algorithmically unsolvable, and so we shall
be forced to tackle recognition problems one specific case after an-
other, as in Sections 9.3 and 9.4.

9.2. ALGORITHMIC UNSOLVABILITY OF THE GENERALIZED
RECOGNITION PROBLEM OF RECOGNITION OF

EQUIVALENCE OF STATES

To be useful, the set of allowable input sequences L should be
,effectively specified. In other words, for each specified set L there
should exist an algorithm for recognizing whether agiven finite se-
quence of input symbols belongs to L. For example, a finite set L.
can be effectively specified by simple enumeration of all sequences
contained in it. But this cannot be done for an infinite set L , which
must be specified in some other way, for instance, by specifying a
recognition algorithm. Set L may, for example, be specified ver-
bally by stating that:

1) it contains all sequences longer than three symbols, wherein
the fourth symbol is pi; or

2) i t contains only those sequencesendinginpi which do not com-
prise pp.

These sets, even though infinite, are fully characterized by their
respective verbal descriptions, and thus i t is always possible to tell
whether they contain any given sequence. The mere fact that such
an effective verbal description can be formulated shows that there
must exist an algorithm accomplishing the same thing, that i s ,
recognizing whether a given sequence belongs to the given set L . In
this sense, the recognition algorithm is the least artificial and the
broadest language for effective definition of infinite sets L .

We shall now try to ascertainwhether i t i s possible to determine
the equivalence of two states with respect to an arbitrary effectively
specified set L , that is, a set L defined by a recognition algorithm.
To s tar t with, we must formalize the concept of a recognition al-
gorithm. A s usual, we turn for help tothe theory of algorithms and
recursive functions,* which a s se r t s that any se t of sequences for

S e e Chapter 12, and also Section 8.3.

222 ELEMENTS OF MATHEMATICAL LOGIC

which one can define “recognition rules” is recursive; conversely,
one can define such recognition rules for any recursive set (this
assertion is a direct result of Church’s theses - Lee Section 12.11).

Let L be an arbitrary recursive
set of input sequences, and let x i and
X j be arbitrary states of s-machines
S and G , respectively. Then the fol-
lowing theorem is true:

Theorem. The problem ofrecogni-
tion of equivalence of states xt andx,
in terms of an arbitravy, effectively
defined set L i s algorithmically un-
solvable.

We shall prove this theorem by
demonstrating the algorithmic un-
solvability of the narrower problem
of recognition of equivalence of states
in a special machine, whose allowed

set L belongs to a special subclass of recursive sets. If the prob-
lem is algorithmically unsolvable in this special case, then i t is
certainly unsolvable in the general case.

Consider a three-state, s-machine N and its state diagram (Fig.
9.2). In this machine r = 2, that is, the input alphabet consists of
only two symbols {0, 1) . The output can be either ho o r A,.

Now we shall deal with a special class of recursive sets con-
taining sequences of 0 and 1 , and defined as follows: Letg,(t) be an
arbitrary general recursive function, and let the set L , contain only
the following sequences* of 0 and 1:

Fig. 9.2.

and so on.

Then set L, is recursive at any recursive functioncp(t). Indeed, each
(p + 1) long sequence of 0 and 1 can be placed into correspondence
with a definite value of the integer function

t = p

t = O
(D (P) = r, sg(y (4) 2‘+ P’

*The notation sg(x) denotes a function which is equal to 1 forx >, land equal to 0 for
x = O.The function is undefined for x < 0.

CASE OF A N UNRESTRICTED SET OF INPUT SEQUENCES 223

defined on set A (L,) . Function CD (p) is an increasing function and, by
virtue of the recursivity of cp(t), is also recursive.* Consequently,
set A(L,) is consecutively enumerated as the recursive function
(d) @ increases, and therefore is a recursive set. Hence the set
L , must also be recursive.

It is readily seen that the states x i and x j (where i, j = 1, 2, 3;
i#j) of the machine N (Fig. 9.2) are equivalent to each other in
t e rms of L, i f , and only if, L, contains no sequences comprising PO.
Thus the problem of recognition of equivalence of states of A! is
algorithmically solvable only if there exists an algorithm capable
of recognizing whether L, contains even one sequence comprising pa.
But such an algorithm cannot be writtenunless there is an algorithm
for recognizing whether a given arbitrary recursive function cp(f)
becomes ze ro at some t = t,. And i t has been proved I1421 that no
such algorithm exists. For that reason, our narrow recognition
problem is algorithmically unsolvable, and the generalized problem
of 'recognition equivalence of two states of an arbitrary s-machine
with respect to an arbitrary recursive set L is a fortiori algorith-
mically unsolvable. This proves the theorem. **

9.3. RECOGNITION OF THE EQUIVALENCE OF STATES
IN THE CASE OF AN UNRESTRICTED SET OF

INPUT SEQUENCES

Let no restrictions be imposed on the set of allowable input se-
quences, that i s , let f, = E. In this case the algorithm merely recog-
nizes the simple equivalence of the s-machine states. For this case
we have a straightforward and convenient algorithm, which is due
to Aufenkamp and Hohn.***

To s tar t with, let u s point out an obvious attribute of equivalence
of states: if any two states of ans-machine are equivalent with re-
spect to set f,, , then they will alsobe equivalent with respect to set
L p , provided L2 E LI.**** Conversely, two states can be equivalent
with respect to LI, where L I 2 L1, only if they are also equivalent
with respect to L P .

*See Sections 12.6 and 12.13.
**But in no way implies that the problem is unsolvable in special cases.
***Aufenkamp and Hohn [6] proved only the sufficiencyof this algorithm. We shall give

a somewhat different proof for i ts sufficiency, and shall also prove i ts necessity.
***This is read as L1 is a subset of 151.

224 ELEMENTS OF MATHEMATICAL LOGIC

Now assume that w e are given some s-machine, for which we
write the interconnection matrix, obtaining, for example, matrix C

We decompose this matrix into groups of rows containing iden-
tical symbol pairs. Thus rows X I , x4, and x3 fall into group I, and
rows x2 , x 5 , and x6 into group 2. We rewrite matrix C so as to be
able to reflect this grouping with a minimum amount of effort, and
transpose the columns in the same way. We draw a horizontal line
between the groups, and obtain matrix

which differs from the original matrix C in that rows and columns
X P and x., are transposed.

Note that the states of each group areequivalent in terms of the
set L' comprising all allowable input sequence of unit length. In-
deed, within each group the output is independent of the state of the
s-machine. For example, an input PO will alwaysproduce an output
i.1 regardless of whether the machine is in state x I , x 3 , o r x.,. Fur-
thermore, only states belonging to the same group can be equivalent
a t arbitrary allowable input sequences. States belonging todifferent
groups are a p i o r i nonequivalent in such cases because they a re
nonequivalent even in terms of set L' containing sequences of only
unit length.

Our grouping into submatrices is helpful in clarifying some of
the equivalence relations in the matrix, but is not sufficient. It does
not guarantee that two states of a groupwill not become nonequiva-
lent during later operation of the machine. To elucidate all of the
possible equivalence relationships, w e introduce a further decom-
position of our matrix into symmetrical submatrices. Thus if the
previously drawn horizontal line separated the kth and the (k $- 1)th

CASE OF A N UNRESTRICTED SET OF INPUT SEQUENCES 225

rows, we now draw a vertical line to separate the kth and the
(k + 1)th columns. In our example such a symmetrical decomposi-
tion is obtained by drawing a vertical line to separate columns 313

and x2.

A submatrix in which any pair of symbols present in any row is
also present in all the other rows is called a 1-matrix. In our ex-
ample, the two submatrices below the horizontal line are 1-matrices,
but the other two are not (for example, the top left-hand submatrix
has a pair (p2, hl) in the third row not present in the other rows).
We shall try to decompose them symmetrically into 1-matrices.
Such a decomposition is achieved by f i rs t drawing the minimum
number of horizontal lines sufficient to convert the entire matrix
into 1-matrices. But this partitioning will not be symmetrical. For
this reason, one also draws vertical lines between the columns
corresponding to the rows already separated by the horizontal
lines. After this, we check whether all resulting submatrices are
1-matrices. If not, w e again draw horizontal lines, and so on, until
w e obtain a completely symmetrical decomposition consisting only
of 1-matrices.

In our example we draw a horizontal betweenrows x4 and x3. All
the resulting submatrices are 1-matrices, and the vertical, drawn
between columns 314 and x3 to achieve symmetry, does not upset this
property :

XI 7-2 7-5 *6

0 (21, J.2) 0 (P2 ,) , I)

0 (P2 , A ,) (P O !) * I) (P I , E'2) 0

0

0

In the general case, this symmetrical decomposition will produce,
after a finite number of steps, either of the following two situations:

1. The decomposition is trivial, that is, all the resulting sub-
matrices are of the I x 1 order (there are separating lines between
all the rows and all the columns).

226 E L E M E N T S OF MATHEMATICAL LOGIC

.

.

. (: < , I , ,)
__ . -___

. i__-!___

. 1 I- ' I--- I_'- I

.

. I

.
~~~ .. ~~~ -~ ~~~ - _- 

2 .  The decomposition is nontrivial, that is, we have at  least  one 
submatrix of the order nz x n ,  where max(rn,  n)  > 1. In conrast to 
the trivial case, this partitioning gives groups of states. For ex- 
ample, the matrix shown above is split into three groups {XI ,  %}, 

The Aufenkamp-Hohn Theorem. The states of an smachine are 
equivalent i f s  and only i f s  they aye membevs of the samegrouP 
fovmed by symmetrical decomposition of the given maCvix C.  

Proof of suf$ciency of the condiCions of the theorem. Suppose 
matrix C can be symmetrically and nontrivially decomposed into 
1-matrices, and consider f i rs t  the simple case when the matrix is 

{ X . 3 ) ,  { X 2 ,  y . 2 ,  %}a 

- 

- 

- " k  I- 2 

Here, w e  have only one group containing more than one state. This 
is the group of k states {xl, x2, . . . .  xk), that is, the k x k 1-matrix 
CI1. Let u s  wr i te  out all the input symbols appearing in CI1, and let  
these symbols be pa,, psz, . . . .  p Z i ,  where i < Y .  The symbols with sub- 
scripts a2 + toa,donotappearinC,,. Now we shall prove that states 
x l ,  x P ,  . , wi a re  equivalent. 

Assume w e  have an arbitrary input sequence 

po p' . . .  :'j :' j !-' . . .  (9.1) 

and that pi+' = pRi is the f i r s t  input symbol of this sequence which 
does not occur inCli. With this input sequence, the machine output 
is independent of i t s  initial state (which, by our assumption, must 
be one of the states of group{xl, m, . . . .  xii} ). Indeed, until time j the 
input symbol p must belong inC',,, and therefore the machine must 
assume one of the states {XI.  XP, . . . .  wL}. But as long as the machine 
assumes one of these states, its outputwill depend only on the input 
(since C l l  is a 1-matrix inwhichallthe member pairs  are identical. 



CASE OF A N  UNRESTRICTED SET OF INPUT SEQUENCES 227 

... 7.n-1 

. . . . . . . . .  

_ _ _ ~ -  

. . . . . . . .  

_ _ _ _ _ _  
. . . . . . . . .  
--__- 
. . . . . . . . .  
. . . . . . . . .  

Therefore, until time j the output sequence does not depend on which 
of the states ( X I ,  x2, . . . .  x k )  is the initial state of the machine. Then, 
at time j + I ,  the input signal becomes p j +  I .  This input signal always 
shifts the machine into the same state xl, regardless of which of the 
states { X I ,  x 2 ,  . . . .  x k }  the machine happens to bein. This is because 
C,,, C,,, . . . .  C l ( n - k )  are all 1-matrices. Thus, the output is again 
independent of the previous state of the machine. The subsequent 
output of the machine is governed by the fact that at time j + 1 i t  is 
in the state xL and, accordingly, i t  ceases to depend on the initial 
conditions . 

Since sequence (9.1) was chosen at random, states X I ,  X Z ,  . . . .  X k  

are equivalent. 
Now consider the general case. Let C be symmetrically decom- 

posed into 1-matrices 
x, - 

- 

" k +  I 

y-k+l  
C = .  

% k t s  

7% - I 

C* I 

. .  

We shall prove that the states occurring in any one group are equiva- 
lent. Indeed, any input signal can produce one of the following ef- 
fects: (1) i t  can shift the machine from a state belonging to some 
group into a state belonging to the same group; in this case the out- 
put depends only on the input, andnot on the state the machine is in; 
(2) i t  can shift the machine from a state of the ith group into a state 
of the jth group (i # j). However, i t  is seen from the structure of 
matrix C ,  that in this case this input signal also shifts all the other 
states of group i into the states of group j .  And once the machine is 
in a state of group j,itsoutput again does not depend on the specific 
state in which it happens to be in; (3) it can shift the machine from 
a state of group i into a state X I  not occurring in any group. If that 
happens, the input will also shift all the other states of group i into 



228 ELEMENTS OF MATHEMATICAL LOGIC 

state x / ,  and the subsequent output of the machine will depend only 
on XI. 

The above reasoning holds for any of the groups of the matrix. 
Therefore, the output of the s-machine is alwaysindependent of the 
specific initial state of group i in which the machine happens to be. 
This being the case,  groups of equivalent states behave a s  if each 
group were a single state. This proves the sufficiency of the condi- 
tions of the theorem. 

Fig. 9.3. 

Pyoof of necessity of the conditions of 
the theorem. Consider first a simple case. 
Let the states X I ,  XZ, . . ., ?lk form agroup of 
equivalent states of the s-machine, and let  
states xk + I, x k  + z ,  . . ., ltn be nonequivalent 
to each other and to any state of the above 
group. Let us  draw the state diagram of 
this machine. We shall now show that if 
state xi of group ( X I ,  xz, . . . , xk) is con- 
nected to any state X k  +m outside that group 
by a path labeled ps , . ., then all the other 
states of that group must also be connected 
to the same state X k  +m, and their connect- 

ing paths must also be labeled ps . . . . That is, the f i r s t  symbols of 
the path labels must coincide. For example, if state x2 of Fig. 9.3 is 
connected to x l2  + by apathwhose label includes ps as the f i rs t  sym- 
bol, than the other states of the groupof which xz is a member (that 
is, XI,  x3. x4, . . ., x i 3 )  must also be connected to xil +3, and the connect- 
ing paths must also carry ps as the f i rs t  symbol of their labels. To 
prove this statement, consider state x z  of the same group as x3. On 
the face of i t ,  the path labeled ps . . ., and originating in x3 could fol- 
low one of the following courses: 

1) i t  could lead from x,? to one of the states of group {xI, xZ, 
. . . , Xk}; 

2 )  i t  could lead from x3 to one of the states X k + i  (where i # 3) ,  
for example, to state Xk + I ;  

3) i t  could lead to state mi + 3 ,  that is, to the same state as the 
path labeled ps. . . , originating in x3. 

We shall now show that case (3)is the only one possible. Indeed, 
assume for a moment that case (1) is possible. That would mean that 
the same input p. could cause the machine to shift from state xz to 
state xll  + 3, and from state x3, which is equivalent to x P ,  to some state 
xj of group { X I ,  x, . . . , xk}. But state xii +3 is by definition nonequiva- 
lent to any of .the states of group(x1, x2, . . . . xh};consequently, %k + 3  

is also nonequivalent to xj, and thus thsre would exist a sequence 
pT,  p,, pu, . . . , such that i t s  input to the machine would cause the latter 



CASE OF A N  UNRESTRICTED SET OF INPUT SEQUENCES 229 

to generate different output sequences, depending on which of the 
states--./.j or xk + -is the initial state of the machine. However, if 
this were the case, then the input sequence p,F ?,, p,, p v 3 . .  . would also 
cause the generation of differing output sequences, depending on 
whether the initial state of the machine is 1t2 or x3. But that would 
be contrary to the assumed equivalence of states X P  andx.3. Thus, 
case (1) is impossible. 

Now assume that case (2) holds. Then an input p, would shift 
the machine from state x2 to state + 3,  and from state 1t3 to state 
%k + I. But %k + I i s ,  by definition, not equivalent to + 3 ;  consequently, 
there would exist, just as in case (l), a sequence pP, ?j2 pg.. . . , such 
that i t s  input to the machine would cause the latter to generate dif- 
ferent outputs, depending on which of the states-xh + I or  %k + 3-is 
the initial one. But then the input of sequence p, pp,  pB2 p P s . .  .would 
again prove the nonequivalence of states xz  and x3, which would con- 
tradict the starting assumptions. Consequently, case (2) cannot 
hold, and the only possible case is (3), shown in Fig. 9.4. Here  all 
states of group{xl, x2, . . . , x a )  are connected to the same state Xk t 3 

outside the group, and all the connecting paths bear a label whose 
f i r s t  symbol is p.*. The second symbol of the label must also coin- 
cide, since otherwise it would be possible to prove by means of an 
input signal of length 1 that some pair of states from group {XI, XZ, . . ., 
X k } .  is nonequivalent, which would contradict the conditions of the 
problem. 

It follows that i f  any state of group { X I ,  XZ, . . . , y.k) i s  connected 
with one of the states Xk+l, xISt2, . . . , x n  by apath labeled (P,~, L), then 
all the states of group {xl, x2, . . , , X h }  are also connected to that state 
by paths labeled (p,?, hm) [see Fig. 9.41 . 

Fig. 9.4. 



230 ELEMENTS OF MATHEMATICAL LOGIC 

It also follows from the above thatifa path labeled (ps, a,) con- 

then all the other similarly labeled paths f rom all the other states 
nects a state of group (XI, XZ, . . . .  X k }  withanotherstateofthatgroup, 

{x , ,  x2, .... xk} must also terminate in  states belonging to thatgroup. 
. . . . . .  That i s ,  rw path labeled (ps, L,) leads to a state %+I ,  Xh+2,  Xn 

outside the group. 

wil l  be 
If this is so, then the interconnection matrix of our machine 

7-1 . . .  . .  

. .  

"k+Z 

c13 

. .  

. .  

. .  

. .  

. .  

. .  

. . .  

. . .  

. . .  

. . .  

Here all the submatrices CI1, Clz, .... C1(, - k + ,) a re  1-matrices 
by virtue of the above italicized statements. The other submatrices 
Cij (where i = 2, 3, .... n - k + 1 and j = 1, 2, .... n - k + 1 )are also 
1-matrices since they all contain only one row (or one member). 

Our arguments also hold in  the general case where there are sev- 
eral groups of pairwise equivalent states. However, some of the 
individual states Xk+1, %+2, . . . .  3tn must then be replaced by groups 
of states; each of these groups behaves in a manner completely 
analogous to the group{xl, 3t2, . . . .  x,) of our particular case. This 
concludes the proof of the theorem. 

The Aufenkamp and Hohn theorem results in a simple and very 
convenient algorithm for  determining which groups of states of a 
given s-machine are equivalent. This algorithm merely consists 
of symmetrical decomposition of the interconnection matrix of the 
given s -machine. 

9.4 RECOGNITION OF EQUIVALENCE OF STATES FOR THE 
CASE OF INPUT SEQUENCES OF LIMITED LENGTH 

We shall now consider the problem of equivalence of states when 
the se t  L of allowable input sequences cannot contain sequences 



CASE OF INPUTSEQUENCES OF LIMITED LENGTH 23 1 

comprising more than q symbols (that i s ,  we analyze the operation 
of the s-machine during the firstqdiscrete instants after the input). 
It is required to find an algorithm recognizing those states which 
are equivalent in terms of L , and to group these states together. 

Since the total number of differing input symbols pi is finite, 
and since no sequence can contain more than q such symbols, the 
number of different sequences in set  L must be finite. This being 
the case,  the required algorithm must exist. To ascertain that any 
two states xi and xj of a machine are equivalent in  terms of L ,  i t  is 
sufficient to prove that given identical inputs from L , the machine 
starting from state x z  will  generate the same output as the same 
machine starting from state xj ,  and that this wi l l  happen at all pos- 
sible inputs from L . One can prove this by scanning either the state 
diagram of the machine, its interconnection matrix, or any other of 
i t s  representations, or by an experiment on an existing machine. 
The algorithm for recognizing equivalence thus entails scanning of 
all the input-output relationships which are possible for a given set 
of two states. This obviously is a huge task. One way of organizing 
and, possibly, minimizing this unwieldy scanning procedure is to 
raise the interconnection matrix of the given s-machine to a power, 
a procedure described in Section 3.6. Letus  now recall the proper- 
ties of matrix C4. 

1. The element Cy, of C4 enumerates all those input sequences of 
length q which shift the machine from state xt to state x j ,  as well  as 
the corresponding output sequences. 

2. Since the state of the machine at t = p + 1 is uniquely defined by 
its state and input at  t = p , a single row of Cq cannot contain two 
elements whose terms comprise identical input sequences. 

3. Each input sequence of length q must appear in  each row of 
Cq . 

Starting from these properties of C q ,  one can derive the follow- 
ing method for determining the states equivalentin terms of L .  Let 
u s  arrange set L in order of-increasing sequence length. We now 
take the shortest sequence of L (if there are several such sequences, 
all of equal length, w e  can use any one of these), and find in  matrix 
Cq (where q is the maximum length of a sequence of L ) all those in- 
put sequences whose initial segments coincide with our shortest 
sequence. We mark these coinciding segments in some way, for 
instance, by placing dots over each of their constituent symbols. We 
repeat this procedure witheach successive sequence of L (sequences 
of equal length can be taken in an arbitrary order). Each symbol of 
Cq is marked only once; that i s ,  if w e  find a matching sequence in 



232 ELEMENTS OF MATHEMATICAL LOGIC 

C q ,  we place dots only over those symbols which a re  still unmarked. 
This matching procedure finally gives a matrixwhich has sequences 
carrying dots over all their symbols as well as sequences that have 
only some initial segments marked, or  no markingsat all. 

For example, if  q = 3 ;  the set  L contains the four sequences 

and the s-machine has  the state diagram of Fig. 3.11 (for its matrix 
C3 see Section 3.6), then the matrix sequences a re  marked as follows: 

After marking, we delete from Cq all those input sequences (to- 
gether with the corresponding outputs) which do not ca r ry  dots (in 
our example of C3,  these are the sequences 0102p2 ana 0 2 p 2 p 1 ) .  In in- 
put sequences where dots appear only over the initial segments, we 
delete the unmarked symbols, that i s ,  the tail ends. We also chop 
off the corresponding tail-end sections of the output sequences, and 
we obtain a C q  matrix abm'dged by L. For example, our C3 matrix is 
abridged by L to give 

Thus the abridged matrix contains only those input sequences 
(and the corresponding outputs) which a re  present in L .  Now we can 



CASE OF INPUTSEQUENCES OF L I M I T E D  LENGTH 233 

define a simple scheme for recognition of equivalence of states: 
Two states x i  and xi  of an smachine are equivalent in terms of L 
if, and only i f ,  the pairs of input and outputsequences ofrow i ofits 
abridged (by L )  Cq matrix match exactly those of row j and there aye 
no unmatched pairs in either row. Thus, in the abridged matrix of 
our example there are no tworowswithexactly the same pairs, and 
therefore this s-machine has no states equivalent to each other in 
terms of L .  

However, even this algorithm, which is an improvement over the 
disorganized scanning of all possible input-output relationships, 
is stillunwieldy, especially atlarge values of q. For this reason, one 
t r ies  to avoid the necessity of scanning allinput sequences from L .  
Instead, one t r ies  to reduce each problem to those particular cases 
where such scanning is not needed. Let us  consider one such case. 

Let set  L contain all the sequences of length smaller or equal 
to q. Set L is a subset of set  E containing all input sequences. For 
that reason, any two states equivalent in terms of E (that is, simply 
equivalent) are also equivalent in terms of L.  Now we have to ask 
ourselves when do groups of states of a given machine, which are 
equivalent in terms of E,  coincide with the groups equivalent in 
terms of L ;  that i s ,  when are the states which are equivalent in 
terms of L also equivalent in terms of E ?  If these two decomposi- 
tions into groups coincide, then we can use the Aufenkamp - Hohn 
algorithm: however, if the groupings do not coincide, w e  may have 
to r e so r t  to the scanning procedure described above, or to some 
new method. 

The answer to this question is associated with the relationship 
between the number of states of the machine k ,  and the maximum 
length of an allowable input sequence q. We shall show that if q is 
sufficiently large then i t  may be possible to recognize all the non- 
equivaEent states. Then each pair of states nonequivalent in terms 
of E will also be nonequivalent in terms of L .  

Assume that we are given a sequential machine S with k states, 
and that we symmetrically decompose its interconnection matrix 
by means of the Aufenkamp - Hohn method. Now w e  have k* groups 
of equivalent states (obviously, k* 4 k ) .  

We shall try to prove that if q >, k* - 1, then the grouping of equiv- 
alent states,  obtained by the Aufenkamp - Hohn procedure, produces 
groups which coincide with those equivalent in terms of L ; if  that 
is true, then at  q >, k* - 1 we can solve the equivalence problem by 
means of the Aufenkamp - Hohn algorithm, and the number of result- 
ing groups will  indeed be equal to k * .  

Let us  devise a machine S* having k' states and the following 
characteristics: (a) for each state of machine S there is an equivalent 



234 ELEMENTS OF MATHEMATICAL LOGIC 

state of machine S* and, conversely, for each state of machine S* 
there is an equivalent state of machine S ;  (b) no two states of S* 
are equivalent. It will be shown in Section 9.7 that such a machine 
can always be devised, 

We shall now apply Moore’s theorem (Section 11.2)which states 
that if a machine N has k states and all the states are nonequivalent 
to each other, then for each pair of states xi and x i  there always 
exists an input sequence not longer than k - 1 that allows us  to dif- 
ferentiate between these two states. Since all the states of S* are 
painvise nonequivalent [see characteristic (b) above 1, sequences not 
longer than k* - 1 will  differentiate between all the nonequivalent 
states of this machine. Therefore, if 9 3 ,  k* - 1 ,  all these “differ- 
entiating” sequences are contained in L , all states nonequivalent in 
terms of L can be distinguished, and the Aufenkamp - Hohn algorithm 
can be used. 

However, if q < k* - 1, then the grouping in terms of L may not 
coincide with the grouping with respect to E.  In this case one may 
be forced to resort  to the scanning procedure in order to obtain a 
grouping in terms of L (one way of accomplishing such scanning is 
the above method of raising matrix C to the power of 9 ) .  

Sometimes one can avoid the scanning in  such cases by estimat- 
ing the lower bound of the number of states equivalent in terms of L .  
Thus let u s  partition matrix C into 1-matrices using only horizontal 
lines. Then the states of the machine are divided into rn groups. 
These wi l l  be groups of states equivalent with respect to set LI of 
all the input sequences of length 1 (set L f  coincides with the alpha- 
bet (PI, p2, . . . , pr } ) .  Obviously, the number of groups of states equiv- 
alent with respect to L cannot be less than rn , since 9 1 and Ll E L 
and, consequently, any two states equivalent with respect to L are ‘ 
also equivalent with respect to L’ .  Thus, rn is the desired lower 
bound. 

For the same reason, k* is the upper bound of the number of 
groups of states which are equivalent in terms of L , since L C E , so 
that any two simply equivalent states are also equivalent in terms 
of L .  

Thus, if rn turns out to be equal to k* then, despite the fact that 
(I < k“ - 1 ,  one can use the Aufenkamp - Hohn algorithm. 

In the practical application of the Aufenkamp - Hohn algorithm, 
m and k* are obtained at different stages of the computation. Thus 
rn is obtained in the first stage, when horizontal lines are drawn to 
partition matrix C into groups. If, however, the vertical lines drawn 
subsequently to achieve symmetry “spoil” this grouping, then other 
horizontal lines must be drawn, and so on, so that ultimately one 



EQUIVALENCE, MAPPING AND MINIMIZATION 2 35 

one obtains k * >  m. Thus one knows immediately whether the 
Aufenkamp - Hohn algorithm is applicable. 

Restricting our discussion of the equivalence problem to the 
cases described in this and the previous sections, w e  shall make two 
brief observations regarding other definitions of the allowable input 
sequences L .  

1. One important case (particularly in the theory of relay-con- 
tact circuits) is that where L contains all sequences in which no two 
identical symbols are  repeated consecutively. It can be shown that 
for this case there exists an algorithm for recognizing equivalent 
states. However, the present authors know of no algorithm which 
would be suitable for practical use. 

2. If Aufenkamp constraints are  operative, then the very state- 
ment of the problem must be changed: in this case it makes no sense 
to talk of two equivalent states x1 and xj since states x, and x I  may 
allow different sets of input sequences. Here L,, may be forbidden 
in xJ, and vice versa. However, in this case one may sometimes use 
a concept which is akin to that of equivalence. This is the concept 
of compatibility of states, which is defined a s  follows: 

Two states-state x, of machine Sand state c, of machine G-are 
said to be compatible if, and only if both machines-machine S in 
initial state x, and machine G in  initial state C J  -having acquired any 
input sequence f rom the intersection* of set LK, with set  Lr,, will 
generate identical output sequences(in particular, S and G may be 
the same machine). In accordance with this definition, states x, and 
& must be compatible if  that intersection is an empty set ,  that is, 
if states xl and 5 ,  have no allowable input sequences in common, If 
LK, and Lc  coincide then, of course, compatibilityreduces to equiva- 
lence in d r m s  of the common set. 

Now, the group of states {XI, X Z ,  . . . , 3tk) is said to be agroup of 
pseudoequivalent states if,  and only if, any two states x, and x, of 
that group are  compatible. This concept is frequently very useful; 
in particular, it can be applied for minimization of an s-machine 
which is subject to Aufenkamp constraints (see Section 9.8). 

9.5. EQUIVALENCE, MAPPING AND MINIMIZATION 
OF SEQUENTIAL MACHINES 

So far ,  w e  discussed the equivalence of individual states; now w e  
shall turn to the equivalence of entire s-machines. 

*An intersection of two sets contains all points belonging to both sets. 



236 ELEMENTS OF MATHEMATICAL LOGIC 

Two s-machines,S and G,are said to be equivalent in terms of L 
i f ,  and only if f o r  each state x, of S there exists atleast one state 5, 
of G equivalent to i t  in terms of L and, conversely, ifforeach state 
G of (; there exists at  least one state HI of S equivalent to it with re-  
spect to L .  

This definition says  any input sequence from L must be allowed 
both in S and in  G. If the set  of all scquences allowed in S is Ls , and 
the analogous set  for G is L G ,  then L must satisfy the condition 

where L , n L ,  denotes the intersection of sets  L s  and LG. When 
I ,  = E (that is, I, contains all the possible sequences), w e  shall say 
that the machines S and G are simply equivalent. In this case Ls = 

Machine S maps onto machine G in terms of set  L (or G maps 
S in terms of /.) i f ,  and onlyif, for each state xi of S there exists at 
least one state ;, of G equivalent to i t  in terms of L .  If L = E ,  then 
S simply maps onto G .  

From our definitions of mapping and equivalence w e  can deduce 
the following: if machine S maps onto machine G in terms of L ,  and 
G maps onto S in terms of the same L ,  then S and G are machines 
which are  equivalent in terms of L.  

The equivalence relationship between S and G is denoted by 
S - G ,  while the mapping of S onto G is written as S c G. 

Equivalent machines are identical as far as processing of input 
sequences into output sequences is concerned. If machine S maps 
(or maps in terms of L )  ontomachine G ,  then this means that G sub- 
stitutes for S (however, the converse is not true). 

Consider two equivalent s-machines S ,  and Sz, and let their 
states be partitioned into groups of equivalent states. Now we take 
some such group s; of S ,  and select any state x, from this group. 
Then S 2  will  have a state x1 equivalent to x z .  Let x ,  belong to the 
group (of equivalent states) s j  of S,. If that is so, then any state 
belonging to s; of S ,  is equivalent to any state belonging to sj of 
S,.  However, none of the states of sy of S ,  is equivalent to any of 
the states of s: of S, , if 7 + 8 .  Therefore, each group of equivalent 
states of SI  corresponds to one and only one group of equivalent 
states of Sz. The symmetry of the equivalence relationship (it fol- 
lows from S ,  - S z  that Sz - Sl),  implies that the converse statement 
is also true, that is, each group of equivalent states of S 2  corre- 
sponds to one, and only one group of equivalent states of S , .  Accord- 
ingly, the two equivalent machines Sl and S1 contain the same number 

Lc  = L = E .  



UNRESTRICTED SET OF ALLOWABLE INPUT SEQUENCES 237 

of groups of equivalent states, andmachines S ,  and S2 differ only in 
the number of states in each of the corresponding equivalent groups. 

If, however, we are giventwomachinesS and G such that G maps 
S (S c G ) ,  there is no one-to-one correspondence between their groups 
of equivalent states: all we cansay i s  that to each group of equiva- 
lent states of S there corresponds one and only one group of equiva- 
lent states of G. However, the converse is not true. Accordingly, 
G may have more groups of equivalent states than S; thus, machines 
S and G may differ not only in the number of states in each (equiv- 
alent) group, but also in the number of (equivalent) groups. 

All  of the above also holds if  we consider equivalence and 
mapping in relation to a set L restricted p e r  se. 

Now let  us  discuss the minimizationof ans-machine S. Minimi- 
zation of an s-machine S with respect to a set L (of allowable se- 
quences) shall mean finding another s-machine G satisfying these 
two conditions: 

1) G maps S ( G I S )  with respect to L .  
2) There is noothers-machine mappingsin terms of L and con- 

taining fewer  states than G. 
An s-machine G satisfying these conditions is said to be minimal 

fo r  S in terms of L. 
Let u s  point out that if there exists an algorithm for recognizing 

states equivalent in terms of L then, in principle, there also exists 
a trivial minimization algorithm in terms of L .  Indeed, if  machine 
S has k states,  then the number of internal states in G (which is 
minimal for S) cannot exceed k .  In principle, therefore, we could 
scan all the machines whose number of states does not exceed k 
(there is a finite number of such machines). And since there must 
exist  an algorithm for recognizing states equivalent with respect 
to L ,  we can check whether each of these machines maps S. Ob- 
viously, such a trivial algorithm has no practical value, and w e  would 
like to find practical algorithms. So far ,  such an algorithm exists 
only for  the case where all input sequences a re  allowed. We shall 
describe i t  in the next section. 

9.6. MINIMIZATION OF A SEQUENTIAL MACHINE WITH AN 
UNRESTRICTED SET OF ALLOWABLE INPUT SEQUENCES 

Let S be a sequential machine with k internal states decomposed 
into groups of equivalent states as in Section 9.3. (Figure 9.5 shows 
a section of the state diagram of this machine.) Consider the f i rs t  
of these groups. Its states are the termini of paths from other states. 



238 ELEMENTS OF MATHEMATICAL LOGIC 

In turn, as w e  have shown in Section 9.3, any state of Group 1 may 
also be the origin of either of the following paths: 

a) a path leading to another state of Group 1. If the f i rs t  symbol 
in the label of this pathis p P r  then all similarly labeled paths, origi- 
nating in any state of Group 1, must also terminate a t  a state of this 
group. The second symbols in the labels of all these paths are iden- 
tical. 

b) a path leading to a state of another group, for example, state 
X, of Group M. If the first symbol in the label of this path is ps,  
then all similarly labeled paths, originating in any state of Group 1, 
must also terminate in x ~ .  The second symbols in the labels of all 
these paths are identical. 

Because they exhibit these characteristics, we can replace all the 
states of Group 1 by a single state. All the paths to the individual 
states now terminate in the circle replacing that group. The paths 
originating in the states of this group will, in case (a), be replaced 
by a loop labeled (pP, ?.,[), and, in the case (b) by a path labeled (ps, h l )  
originating in the new circle and leading to a circle replacing the 
states of Group M. Figure 9.6 shows such a replacement for the 
partial state diagram of Fig. 9.5. 

In the same way, we replace all the 
other groups of states. A s  a result, the 
machine S is transformed into machine 
G. It is evident that G is equivalent to S. 

roup 1 Group 2 

Group 2 

Group 3 

Group 3 

Fig. 9.5. Fig. 9.6. 

Indeed, by virtue of characteristics (a) and (b), the output of S at  any 
input sequence and in any initial state is identical to that which 
would be generated by G atthe same input sequence, provided G w a s  
in the initial state 1cj which replaces the group of which xi w a s  a 
member. At the same time, the number of states of machine G is 



UNRESTRICTED SET OF ALLOWABLE INPUT SEQUENCES 239 

equal to the number of groups of equivalent states of S, and one can- 
not further reduce this number by combining these states into 
groups. 

It has been shown in Section 9.5 that all equivalent machines have 
the same number of equivalent groups, and that the number of such 
groups in machines mapping such equivalent machines cannot be 
lower. Thus a minimal machine cannothave fewer  states than there 
are groups of equivalent states in the machine being minimized. For 
this reason, machine G i s ,  indeed, minimalfor S. It follows from 
this that, in the absence of bounds on the set  of inpidt sequences , 
(a) the minimal machine belongs to the class of equivalent machines , 
and (b) the minimization problem i s  merely one offindinggroups of 
equivalent states,  that i s ,  i t  can be solved by  means of the Aufen- 
kamp - Hohn algorithm (see Section 9.3). 

Since this algorithm is used, it is convenient to work with ma- 
tr ix C rather than the state diagram, and replace groups of states 
by a single one directly in the matrix. For example, consider the 
matrix C of Section 9.3 

XI 

7-2 

7.3 

7-4 

7-5 

C =  

y.6 

By symmetrical decomposition into 1-matrices we obtain 

Thus w e  have three groups of equivalent states,  ( X I ,  xd), {~s},and 

The replacement of groups of states of a state diagram by a 
single state is equivalent to the replacement of each 1-matrix of 
the symmetrical decomposition by a single element, whichis a dis- 
junction (union) of all the elements of the 1-matrix being replaced. 

b z ,  x5, X 6 ) .  



240 ELEMENTS OF MATHEMATICAL LOGIC 

In our example, this replacement will  give the following intercon- 
nection matrix for the minimal machine G: 

Its state diagram is shown in Fig. 9.7. 
So far we have dealtwith the minimization of an s-machine whose 

se t  of input sequences is infinite. The problem of minimization of an 
s-machine in which p e r  se restrictions a re  operative is tied to the 
still unsatisfactorily solved problem of finding groups of states equiv- 
alent in terms of L for the same case (see Section 1 and Section 9.4). 

Fig. 9.7. 

In addition, minimization with respect to 
L f E is associated with the following 
additional difficulty, which would exist 
even if  we  had an algorithm for finding 
groups of states equivalent in terms of 
L.  Thus, earlier in this sectionwe w e r e  
able to replace a group of states by a 
single state by using properties of the 
paths in the state diagram (see p. 238). 
However, i f L  f E, then, generally speak- 
ing, the paths do not possess the proper- 
ties specified in (a) and (b), p. 238. Thus 
two paths, the labels of which contain 
identical first symbols and originating 
in states which are equivalent in terms 
of L may terminate in states which are 

nonequivalent in terms of L.  Consider, for example, the section of 
the state diagram (Fig. 9.8) for the case where L does not contain 
any sequence with two consecutive identical symbols. Let states K~ 

and K~ be equivalent in terms of L ,  that is, belong to one group. Fur- 
ther, let states K~ and K~ be equivalentin terms of L’ which contains 
all the sequences of L except those beginning with the symbol p,, and 
let  K : )  and q be nonequivalent in terms of L since they generate dif- 
ferent output symbols at  those sequences from L which begin with p,. 
Then the paths of Fig. 9.8 do not contradict the equivalence of K *  and 
K~ in t e rms  of L (for L does not contain any sequences beginning 
with two consecutive symbols p s ) ,  but they do contradict condition 
(b) of p. 238. 



SEQUENTIAL MACHINE WHEN I T  OPERATES AS A FINITE AUTOMATON 241 

It follows from the foregoing that at 
L f E the states belonging to one group 
of equivalent states cannot, generally 
speaking, be replaced by a single state. 
If this were done, two paths labeled with 
an identical first symbol p, would origi- 
nate in the same new state and lead to two 
different states-a condition which con- 
tradicts the very definition of an s- 
machine. 

So f a r  we have not imposed any re- 
strictions on the processing of sequences 
by the s-machine which is beingmini- 
mized. However, in the next sectionwe shall consider a special case 
where the s-machine operates as a finite automaton. 

Fig. 9.8. 

9.7. MINIMIZATION OF A SEQUENTIAL MACHINE 
WHEN I T  OPERATES AS A FINITE AUTOMATON 

Assume that we are given the basic table of a finite automaton 
whose states a re  coded in symbols from the alphabet ( x i ,  xp, . . . , xh). 
Let us  recode the symbols, replacing all xi by ki; we shall assume 
that 1 = k ,  where 1 is the number of symbols )>. Obviously, the basic 
table of the finite automaton now contains h’s with the subscripts 
of the x ’ s  they replace. 

It is required to devise aminimal sequential machine which would 
realize this automaton, that i s ,  would process inputsinto outputs in 
the same way a s  the automaton. The set of allowable input sequences 
may be restricted or unrestricted. 

We shall consider two cases: acase where there a re  no restric- 
tions on the input sequences, and a case where the input sequences 
may not contain two consecutive identical symbols. 

Case 1. Set L Contains All Possible 
Sequences (that is, L = El  

We shall analyze this case on an automaton A given in the form 
of Table 9.1. 

We have shown in Section 9.6 that, in the absence of restrictions 
on the input sequences, the minimal s-machine for a given machine 
N belongs to the class of machines equivalent to N ,  and that none of 



242 ELEMENTS OF MATHEMATICAL LOGIC 

i t s  states has other equivalents. Consequently, our required minimal 
s-machine must also be equivalent to automaton A .  

Table 9.1 
Let us  f i rs t  construct an s-machine 

which is not minimal, butwhichis suitable 
for further minimization. It will  have as 
many states as there are rows in the auto- 
maton of Table 9.1, and i t s  state diagram 
(Fig. 9.9) has as many circles, numbered 
consecutively 1 - 4. We draw paths be- 
tween these circles as per  the Table 9.1. 
Each path has a label whose first symbol 
is the subscript of the corresponding p 
from the table, while the second symbol 
is the number of the circle in which the 
path terminates. Since this is a diagram 
of some s-machine, w e  replace the num- 

bers  in each circle bysymbolsxiandthe numbers (m,  n)  in the paths 

Fig. 9.9. Fig. 9.10. 

labeled by symbols (P,,~, L); this gives Fig. 9.10, Now we derive the 
interconnection matrix of this machine: 

By analogy with the above state diagram, all the nonzero elements 
of the interconnection matrix belonging to the same column have 
identical subscripts on the h symbol. These subscripts coincide 



SEQUENTIAL MACHINE WHEN I T  OPERATES AS A FINITE AUTOMATON 243 

with the number of the column. This matrix C can be transformed 
into the interconnection matrix C’ of an equivalent minimal s- 
machine, which therefore is a minimal s-machine operating in the 
same way as automaton A.  

Firs t  we decompose C into 1-matrices by means of horizontals 
only. We get a 1-matrix from rows 1 and 4. We transpose these 
rows and get 

XI x4 X 2  x3 

_. 
- 1 x3 ‘I (Pz, hdV(P3r 4) 0 (PI, 4) 0 

0 (PI, h4) (P39 A,) (Pz, 13) 

C z x 4  0 (PI9 h4) (P3, A,) (Pz, A3) 

X 2  (PI? 4) (P3, (Pz, Az) 0 - 

Now we draw horizontals between rows K~ and K ~ ,  and between rows 
K~ and K ~ ,  and obtain three 1-matrices whose columns contain either 
zeros  o r  identical pairs [for example, the two-row matrix on top 
has  only zeros  in column 1, only pairs (PI, A4)  in column 2,  and so 
on]. This is the result of the previously mentioned property of C: 
the second digits are the same in each column of C. But in 1- 
matrices, where the columns contain only identical pairs,  the f i rs t  
digits of each column will  also coincide. If this is so, then all we 
need to do in order to form groups of equivalent states to partition 
C into 1-matrices by horizontals only: since the elements in the 
columns of each 1-matrix coincide, vertical lines cannot “spoil” 
this symmetrical grouping. 

This property, in turn, means the following: the groups of states 
of an s-machine (with matrix C) which are simply equivalent, and 
those which are equivalent in terms of set  L ,  comprising all input 
sequences of length 1 ,  coincide. Therefore, to find all the groups 
of equivalent states, i t  is sufficient to 
partition C into groups of states equiva- 
lent in terms of L , ,  apartition achieved 
simply by decomposing C into l-ma- 
trices by means of horizontal lines. 

In our example, state x1 of matrix C 
is equivalent to state x4. To construct a 
minimal s -machine, we replace these 
two states with a single state x i .  Then 
we draw verticals between columns 2 
and 3 and 3 and 4 of C. In this symmet- 
rical decomposition we replace each 
newly generated 1-matrix by the union Fig. 9.11. 



244 ELEMENTS OF MATHEMATICAL LOGIC 

of all i t s  elements, and obtain the interconnection matrix C‘ of the 
minimal s-machine: 

The corresponding state diagram is shown in Fig. 9.11. 
Note also that for each set  of identical rows of matrix C (in our 

case,  rows 1 and 4) there always exists a set of identical rows in 
the automaton table (here, rows 1 and 4 of Table 9.1), and vice 
versa. Consequently, inspection of the automaton table immediately 
shows the number of states of a minimal s-machine realizing this 
automaton (one needs only to count the number of differing rows in 
the table of the automaton). 

Fig. 9.12. 

Having the state diagram, w e  can compile the table of the auto- 
maton A‘ and converter 0 which comprise the minimal s-machine 
operating as automaton A in accordance with Fig. 9.12. Our state 
diagram (Fig. 9.10) thus yields Tables 9.2 and 9.3. 

Table 9.2 Table 9.3 

Again, the table of automaton A‘ (Table 9.2) could have been obtained 
directly from the table of automaton A (Table 9.1) merely by deleting 
one of the identical rows (the fourth; if there are several such rows, 



SEQUENTIAL MACHINE WHEN I T  OPERATES AS A FINITE AUTOMATON 245 

all but one are deleted), and then replacing throughout the remainder 
of the table those symbols which are the same as the heading(s) of 
the deleted row(s) [h4 in our example] by the heading of the retained 
row (in our case, we replace h4 by L1 ). 

The converter table can also be obtaineddirectlyfrom the auto- 
maton table. Again w e  delete superfluous identical rows of Table 
9.1 (row 4), and in the remaining table substitute x i ' s  for ?ki's in all 
row headings. 

Thus w e  have a simple, straightforward algorithm for direct 
derivation of the tables of automaton A' and converter @ which, in 
accordance with the scheme of Fig. 9.12, constitute the minimal 
s-machine realizing automaton A.  The state diagram and the inter- 
connection matrix were only necessary for proving the validity of 
this algorithm. 

Case 2. Set L Has No Sequences Comprising 
Two Consecutive Identical Symbols 

If L ,  is the set  of input sequences of length 1, and E is the set 
containing all possible input sequences, then obviously we shall have 
the f 011 owing re lati ons hip : 

L,  c L c E. (9.2) 

If the number of groups of equivalent states is m*, the numbers 
of groups of states equivalent in terms of L and L I  a r e ,  respectively, 
m and m**, then by virtue of (9.2) 

In Case 1 we have shown that the groupings of equivalent states 
and of states equivalent in terms of L ,  coincide. Consequently, 
m** = m*, and from (9.2) we get 

For this reason states equivalentintermsof L ,  will also be equiva- 
lent in terms of E in this case. Therefore one can minimize the 
numbers of states by replacing each group by a single state, using 
the above method where i t  w a s  assumed that L = E .  Thus minimal 
s-machines for sets E and L coincide i n c a s e  2 ,  and the minimiza- 
tion proceeds as if there were no restrictions on the input sequences. 



246 ELEMENTS OF MATHEMATICAL LOGIC 

9.8. MINIMIZATION OF MACHINES IN THE CASE OF 
AUFENKAMP-TYPE CONSTRAINTS 

The obvious approach to the minimization problem in this case 
is as follows. 

Let N be an s-machine with& states, subject to arbitrary Aufen- 
kamp-type constraints. We shall say that to minimize N means de- 
vising a new machine P with a minimal number of states such that 
for each state xi of N there is at least  one state Xi of P. States x i  

must satisfy the following conditions: 
a) Any input sequence allowed in xi of N is allowed in xi of P. 
b) If N is in state xi and P is in state x,, and if some arbitrary 

sequence from the set  of input sequences allowed in N when in the 
state xi  is fed to both machines, then both will  convert it into iden- 
tical output sequences. 

We shall say that a machine P (which need not necessarily be 
minimal) satisfying conditions (a) and (6) realizes a pseudomapping 
of machine N .  Thus P “can do” whatever N can. That i s ,  i t  can 
take any input sequence allowed in N and process i t  into the same 
output sequence. 

We shall now describe an Aufenkamp algorithm resulting in a 
machine P which is a pseudomapping of machine N and has fewer 
states than N,  but is not necessarily minimal. 

On a state diagram, the presence of Aufenkamp-type constraints 
manifest itself in that the number of paths originating at some 
circles is smaller than that of various inputs pi,  ~ 2 ,  . . . , p r .  This 
means that the machine cannot respond to someinputs when i t  is in 
certain states. 

The state diagram, in turn, is the startingpoint for the construc- 
tion of the interconnection matrix. Again, the effect of the con- 
straints on that matr ixis  that the latter may contain rows with fewer 
symbol pairs than there are inputs p l ,  pz. . . . , p,. For example, con- 
sider the matrix 

The f i rs t  row lacks a symbol pair incorporating the input pz, the 
second lacks the pair associated with P I ,  and the fourth contains 
only a single pair (that associated with p2). 



CASE O F  AUFENKAMP-TYPE CONSTRAINTS 247 

We shall say that a submatrix of aninterconnection matrix C is 
a generalized 1-matrix if it has  the following property: i f  any row 
of the generalized 1 m a M x  contains a pair (pm, A n ) ,  then none of 
the remaining YOWS of that matrix will contain pairs in which this 
input symbol pm i s  associated with a different symbol A. 

We shall cite here,  without proof, the following theorem of Aufen- 
kamp [ 5 ] :  Assume the interconnection matrix C is decomposed by 
horizontal lines into groups of rows constiktirg generalized 1 m a -  
tr ices ,  and is then ficrther partitioned by  vertical lines to achieve a 
s ymmetrical decomposition into generalized 1 m a t r i c e s .  Provided 
no two generalized l-matrices of a given group contain the same 
input symbol pm, the states of thisgroup are pseudoequivalent. Thus, 
machine N can be minimized by replacing each group of pseudo- 
equivalent states by a single state. This is done by replacing each 
generalized I-matrix of a symmetrical decomposition by one term 
which represents a union (disjunction) of all the elements of the 
1-matrix being replaced. This gives a matrix C’ of machine P which 
realizes a pseudomapping of N and has fewer states provided, of 
course, that the symmetrical decomposition of C is nontrivial. 

To illustrate, let  N have the state 
diagram of Fig. 9.13, with matrix C 
shown above (p. 246). First ,  we  draw 
horizontals to decompose C into gener- 
alized 1-matrices. In contrast to the 
case where there were no restrictions 
and there w a s  only one way of parti- 
tioning C into 1-matrices, now we have 
several possibilities. For example, the 
rows of C may be divided into three 
groups, the f i rs t  comprising the rows 1 
and 4, the second-rows 2 and 3, and 
the third-row 5 .  However, we can also 
divide C into two groups, the f i rs t  com- Fig. 9.13. 

prising 1, 2 and 3, and the second-rows 4 and 5. It is important to 
realize that the mode of partitioning will  definitely affect the possi- 
bility of minimizing N .  For example, let us  partition C in the most 
economic way, that is, into the twogroupsdiscussed above. We thus 
draw a horizontal between rows 3 and 4 and obtain two generalized 
1-matrices. Then, for symmetry, we draw avertical  betweencolumns 
3 and 4. This “spoils” our decomposition because the top group of 
rows now contains two generalized 1-matrices, each containing PI ,  
and p3 in violation of the above-cited theorem of Aufenkamp. The 
states of the group are thus not pseudoequivalent. To remedy this 
situation, we draw horizontals between rows 1 and 2 ,  and 2 and 3 



248 ELEMENTS OF MATHEMATICAL LOGIC 

(in the general case,  there a r e  several possibilities for achieving 
such adjustments), so that w e  now have four groups, none of which 
contains two generalized 1-matrices with the same symbol p. But, 
for symmetry, w e  must also draw verticals between columns 1 and 
2 ,  and 2 and 3. This again spoils the decomposition because the 
group comprising rows 4 and 5 now has two generalized 1-matrices, 
each containing a pair with p2. We are therefore forced to draw a 
horizontal between rows 4 and 5, and a corresponding vertical be- 
tween the columns. Obviously this decompositionis trivial, and thus 
the machine cannot be minimized in this way. 

Assume, however, that w e  start with a seeminglyless economi- 
cal partition of c, thatis,  the one comprising three groups discussed 
above (group 1 comprises rows 1 and 4,group 2-rows 2 and 3, and 
group 3-rOW 5). We thus rewrite C as follows: 

r K~ K 4  

K 1  I O 0 

C =  -- - .  

Here w e  have only one conflict-two matrices of group 2 contain p3. 
This is easily fixed by drawing a horizontal between rows 3cz and x3, 
and a corresponding vertical between the columns. We now have one 
group of pseudoequivalent states comprising more than one row, that 
is, group 1. This group canbereplacedby a single state, giving the 
matrix of a somewhat minimized machine P’ (it has four states v s  
the five of N )  which realizes the pseudomapping of N .  

Finally, w e  could partition C into the following three groups: 
group 1 comprising rows 1 and 2, group2-rows 3 and 4, and group 
3-row 5. This immediately yields a symmetrical decomposition 
which needs no “fixing”: 



CASE OF AUFENKAMP-TYPE CONSTRAINTS 249 

Its state diagram is shown in Fig. 9.14. 
Thus to achieve optimum results in applying this algorithm one 

must t ry  out all the possibilities for symmetrical decomposition of 
C into generalized 1-matrices. * Furthermore, this algorithm does 
not necessarily yield aminimal machine P :  the matrix C of machine 
N may be decomposed into groups of pseudoequivalent states re- 
placeable by a single state thereby minimizing it without fulfilling 
the conditions of the second Aufenkamp theorem. For example, con- 
sider the machine of Fig. 9.15. Here, state x I  does not admit an in- 
put p i .  The corresponding interconnection matrix C is 

% 1 2 *3 

*! 
c=x, 

x3 

Fig. 9.14. Fig. 9.15. 

*Note that this algorithm is tantamount to  the scanning of all the possible additional 
definitions of this s-machine, that is, to the scanning of all the possibilities for drawing 
missing paths on the state diagram, with subsequent minimization of machines so obtained 
without any restrictions on the input sequence. 



250 ELEMENTS OF MATHEMATICAL LOGIC 

Obviously, neither decomposition satisfies the second Aufenkamp 
theorem: in the first case,  the twotopgeneralized 1-matrices con- 
tain the same pair(@*, while in  the second case the common pairs  
are (p2, h,) and (p3, Lo).  Nevertheless this machine can-be minimized, 
the corresponding minimal s-machine (two states) being that of 
Fig. 9.16. Here state xA of the pseudomapping corresponds to States 
xl and xZ of the original machine, while state XH is equivalent to state 
X 3 .  * 

Now w e  shall describe a method devised by Gill [149], which 
yields a minimal machine for  any given s-machine subject to Aufen- 
kamp-type constraints. This method requires, as a first step, that 
all pairs of compatible states of the given machine be determined. 
There are methods for determining the compatibility of states, but 
w e  shall describe only one. 

Fig. 9.16. 

Suppose, for example, that we want to find out 
whether the ith and the jth states of a given machine 
are compatible. To achieve this, w e  construct a 
"tree" from the common starting point ( i ,  j ) .  Its 
branches correspond to the inputs which are com- 
mon to states xi andxj. If this procedure yields 
different outputs even for a single input, then we 
immediately know that states xi and xj are not com- 
patible. If ,  however, the states prove compatible, 
then we write over the branches the corresponding 
input-output pairs,  and at their ends the pairs of 
states into which x, and x J  are shifted by these in- 
puts. Each pair of such states then serves as the 
starting node for another branch of the tree. During 

T h i s  example also shows that no additionaldefinition of the machine of  Fig. 9.15 yields 
a minimal machine with two states: for no path containing p,  in the label and originating at  
X I  will generate equivalent states, regardless of what h is in  the label. 



CASE OF AUFENKAMP-TYPE CONSTRAINTS 25 1 

this construction w e  keep on crossing out nodes if:  
1. The same node (that is ,  a node with a label consisting of the 

same symbols) has already been encountered anywhere else on the 
tree. 

2. The node label consists of two identical digits, that is, i f  an 
input shifts both states xi and x j  into the same state x,. 

3. No new branches can be drawn from this node, that is, the 
states corresponding to that node have no common inputs. 

We stop either if  states xi and xj are incompatible or if all the 
paths of the tree lead to crossed out nodes. In the latter case, we 
may conclude that the pairs of states corresponding to all the nodes 
(crossed out or otherwise) of the tree are also compatible. 

For example, Fig. 9.17 illustrates the tree for states andm 
of the machine of Fig. 9.15, while Fig. 9.19 shows the tree for states 
xp and xs of the machine of Fig. 9.18. In either case, the tested states 
prove to be compatible; in the first  case, w e  also have another pair 
of compatible states (x, and x3), in addition to x1 and xp, whereas in 
the second case, x4 and X6, ~3andx5, and x l  and x2 turn out to be com- 
patible, in addition to xz and x3. 

This procedure also yields an estimate of the maximum number 
of steps (the worst case) needed to determine the compatibility of 
two states of a machine with n states. This estimate is obtained 
from* 

M w 

01 ( y  

"?,I 

I=- nz- 2 .  n s v  

(1.3) M Now we can determine all the pairs of 
compatible states for any machine. The 
machine of Fig. 9.15 has two such pairs 
[{XI ,  XP} and {XI ,  x 3 } ] ,  while that of Fig. 9.18 
has nine { x , ,  4 ,  {xl, x 3 ] ,  {xl, x 5 ] ,  { x 2 ,  x 3 ) ,  

1x2, x4),(xzt XJ, (x39 xs ) ,  (x3, X C l ,  {.A@ xsI*These 
pairs can now be divided into groups of 
pseudoequivalent states. For example, the preceding list contains 
pairs {XI, xz), (xl. x,) and (xz,  x3J, so that statss xlr  x2 and x 3  form a 
group of pseudoequivalent states { x ~ ,  x2, x3}. ** 

Following this line of reasoning, we can divide the states of the 
machine into a minimal number of groups of pseudoequivalent states. 

GW 
(1.2) 

Fig. 9.17. 

T h i s  estimate is accurate, since there are cases where 1 is attained. It is interesting 
to  compare this estimate withthat forthenumber of steps necessary to recognize the non- 
equivalence of states in a machine without restrictions (see Section 11.2); in this case, 
I = ( n  - I ) ,  that is, the n* t e rms  do not appear. 

**Remember that a group of pseudoequivalent'states is one in which all the states a r e  
pairwise compatible. 



252 ELEMENTS OF MATHEMATICAL LOGIC 

Fig. 9.18. 

In our  example, there will  be four such groups: 

(J,U />, w In the general case (just as in our ex- 
ample), these groups intersect. 

Let u s  now return to the minimizationof 
an s-machine subject to Aufenkamp-type 
constraints. Assume an arbitrary s-machine 
with I Z  states, and assume that at  least  one 
minimal machine Snlin with k states can be 
constructed for it. If k < n ,  then at  least one 
state of Smln must pseudomap two or more 
states of S. Assume that Zi  is the set of all 
states of S which correspond to state Xi of 

S,,,,, and assume that such sets  of states Z1,  Zz, . . . , Zl l  of S can be 
assembled for all the states x l ,  312, . . ., X k  of Smln. Such grouping of 
states of S has the following properties: 

1. The grouping C,, C,, . . ., C k  embraces all the states ofS, that 
is, each state of S belongs to at  least  one set Z. 

2. States belonging to any one set Zi are  pseudoequivalent. 
3. All  states of a given group Z i  which allow a given input ps ,  

a re  shifted by i t  into states of the same new group Z j  (in particular, 
i can be equal to j ) .  

While the f i rs t  two of these properties are obvious, the third re- 
quires an explanation. For example, let state xi of Smin belong to Xi, 
and let state x j  , into which x i  is shifted by input ps,  belong to group 
Xi. Now assume that there exists a state of Z i  which is shifted by 
pc into a state xi not belonging to Z,. Then observation of the 

(4,s) 

*- 

( Z J )  

Fig. 9.19. 

.-. 

s 



CASE OF AUFENKAMP-TYPE CONSTRAINTS 253 

A .  

behavior of S and Sm,,, at allinput sequences allowed for states of Z, 
leads to the following conclusions: (a) any input allowed in state xl 
of S is also allowed in state xj of Smin; and (b) if  the input is a se- 
quence allowed in state xi, then both machines (that is, S starting 
from XI, and &,,, startingfrom xj) will  generate identical output se- 
quences. But this simply means that state corresponds to state xj 
under pseudomapping and consequently it must, contrary to our ini- 
tial assumption, belong to group Z,, so that the third property must 
hold. 

The grouping X I ,  C2, . . ., Z , , i s  known as the specific grouping of 
states of machine S.  

It follows from the foregoing that the minimization algorithm in- 
volves finding a minimal specific grouping of states of S (of which 
there may be one or more),  and the subsequent replacement of each 
group C i  by a single state. Since all states of each group are pseudo- 
equivalent, any group Zi must belong to (or coincide with) some 
group of the minimal decomposition of the states of S into groups of 
pseudoequivalent states. Thus, this minimization algorithm consists 
of scanning of all various possible specific groupings of S in the 
search for the minimal one-a very cumbersome procedure. How- 
ever ,  there are algorithms for organizing this scanning to reduce 
waste motions (see, for example, [149]). There are also “inter- 
mediate” algorithms which, while reducing the amount of scanning 
required, give better results than Aufenkamp’s algorithm, even 
though they do not assume minimality. 

Let us  now return to our two examples (Figs. 9.15 and 9.18). 
For the machine of Fig. 9.15, the grouping into pseudoequivalent 

states {xl, xp} and {x,, x3}  is also the minimal specific grouping. We 
shall prove this. 

Let u s  code group {xI, xz} by A, and group {XI, xg} by B. Now let 
u s  trace the possible results of various inputs: 

P1 

Pz 

P3 
\ 

€3 ’ 

I B  
I A  

IA  
I A  

x1 Shifts to 7-1. 

xz shifts to x 3 ,  

x1 shifts t o  xZr 
x2 shifts to r2.  

x I  does not allow pl, 
x3 shifts to x3,  

x3  shifts to  x p .  

xi  shifts to  ~ 2 ,  
x3  shifts to X I .  

13 

x1 shifts to x1, 

I 

P I  

P2 

P3 



254 ELEMENTS OF MATHEMATICAL LOGIC 

Now w e  readily construct two minimal machines for the machine 
of Fig. 9.15, replacing states of A by a s t a t e x ~ a n d  those of B b y x ~  
(Figs. 9.16 and 9.20). For the machine of Fig. 9.18 there also are 

Fig. 9.22. 

two possible minimal specific groupings: { x l ,  x 2 ) ,  ( x 3 ,  4, and [x4, x 6 )  , 
or  ( x , ,  x s ) ,  [ x 2 ,  x4) ,  and ( x 3 ,  x 6 ] .  The state diagram ofthe minimal ma- 
chine corresponding to the first of these is shown in Fig. 9.21, while 
that of the second one is represented in Fig. 9.22. 

9.9. ANOTHER DEFINITION OF EQUIVALENCE OF 
SEQUENTIAL MACHINES 

Sometimes one encounters in the literature a definition of equiva- 
lence of sequential machines which differs from that of Section 9.4. 



ANOTHER DEFINITION OF EQUIVALENCE OF SEQUENTIAL MACHINES 255 

Outwardly, that definition appears similar to ours,  but in reality 
there is a vast difference between them. 

That other definition may be formulated as follows: two s- 
machines S and G are equivalent if at any (identical) input to both 
machines, there is at least one state Ej  of G for each state xi of S, 
and at  least one state x i  of S for each state E j  of G such that S and 
G ,  starting from xi and Ej, respectively, will generate identical out- 

In this case, the equivalence between states depends, in general, 
on the input sequence. At  some inputs some states of S may corre- 
spond to some states of G ,  but at  other inputs the same states of S 
may correspond to different states of G (and conversely). The only 
requirement is that there be a unique relationship between states 
at any one input. 

From the practical pOint of view, the disadvantage of this defini- 
tion is that in order tofindaninitial state equivalent to a given one, 
one must know beforehand the corresponding input sequence. How- 
ever ,  in most problems of practical importance the input sequence 
is not known in advance. 

The definition of Section 9.4 imposes more stringent require- 
ments: the equivalence between the states ofS and G should not de- 
pend on any one input, but must hold for all allowable inputs. Thus 
if state xi of machine S corresponds to state E j  of an equivalent 
machine G , then S and G ,  starting from states xi  and Ej , respectively, 
must generate identical outputs at all identical inputs (provided, of 
course, the inputs are allowed).* 

Since the above definition of equivalence is 
less stringent than that of Section 9.4, i t  should 
yield minimal equivalent s-machines with few - 
e r  states than those possible in t e rms  of the 
definition of Section 9.4. Let u s  illustrate this 
on an example. 

Example. We are given an automaton A and 
a set L of allowed input sequences; the latter 
consists of all sequences which do not have 
two consecutive identical symbols. It is re- 
quired to construct a minimal s-machine map- 
ping (in t e rms  of L )  the automaton Aspecified 
by the basic Table 9.4. ** The state diagram of A is shown in Fig. 9.23. 
In accordance with Section 9.7, i t  follows fromTable 9.4, that when 

puts. 

Table 9.4 

I 

*In some papers equivalence in the sense of Section 9.4 is referred to a s  strong equiva- 

**In Table 9.4, x i  is already replaced by Xi (see Section 9.7). 
lence, while that defined above is called weak. 



256 ELEMENTS OF MATHEMATICAL LOGIC 

the definition of Section 9.4 is used, the 
minimal s-machine operating in the same 
way as A will  have three states (since no 
two rows of Table 9.4 coincide). 

Let us  now use the other definition of 
equivalence and modify the state diagram of 
Fig. 9.23, replacing it with the diagram of 
an equivalent (in the sense of Section 9.4) 
machine, which is convenient for further 
minimization. The modification procedure 
is as follows: we replace each circle ?ti of 
Fig. 9.23 by r circles denoted by X I ,  .;I. 
.p , . . ,. From each of the r new circles w e  
draw the same paths, with the samelabels, 

as those which originated in circlexi. However, the paths terminat- 
ing in circle xz will  now be redirected to the new circles in the fol- 
lowing manner: circle xi will  be the terminal of only those paths 
(previously leading to the circle x;) whose label contains pi as 
the first symbol; similarly circle .A;, will  be the terminal of paths 
whose label has pz, and so on. We thus obtain the diagram of Fig. 

Fig. 9.23. 

Fig. 9.24. 

9.24. Note that the loop at  circlexzof 
Fig. 9.23, labeled ( P I ,  b), is consid- 
ered as both originating and terminat- 
ing in that circle; in Fig. 9.24 i t  is 
replaced by paths, originating in  
circles xi and and terminatingonly 
in circle x';. Circle xi is seen to be 
associated with a loop path. Let u s  
also mention that because only paths 
labeled hi lead to circle x i  of Fig. 
9.23 (this is because the s-machine 
operates as an automaton), the dia- 
gram of Fig. 9.24 has the correspond- 
ing property: a circle of group x ; ,  

x ; ,  x y ,  etc., can only be the terminal 
of paths labeled A i m  In Fig. 9.24, 
these groups of circles are encircled 
with dotted lines. 

The modified state diagram of Fig. 
9.24 is that of a machine "which 
is equivalent (in the sense of Sec- 

tion 9.4) to A (in terms of the set E of all possible input sequences). 
To check whether the diagrams of Figs. 9.23 and 9.24 pertain to 



ANOTHER DEFINITION OF EQUIVALENCE OF SEQUENTIAL MACHINES 257 

equivalent machines, itis sufficient toprove that those states in each 
group of Fig. 9.24 which are encircled by a dotted line, are equiva- 
lent (that i s ,  form a group of equivalent states). We replace each 
such group by single state and return to Fig. 9.23. 

We now have machine N’ which is equivalent (in the sense of 
Section 9.4) to A but has many more states ( m  states). However, 
N’ allows u s  an easy transition from per se constraints on the in- 
put sequences to Aufenkamp-type constraints. 

Our inputs to N’ shall be exclusively from L (since L c E ) ,  N’ is 
also equivalent to A ,  in the senseof Section 9.4, in t e rms  of L .  Now 
consider some state of N’,  for in- 
stance, .:. We can reachx’ionlyvia 
path (pz, A , ) ,  that is, uponaninput p2; 

since two inputs pz cannot succeed 
each other (condition of problem, see 
p. 255). It seems, therefore, thatwe 
shall never be able touse path(pz, A3),  
leaving x : ,  with the exception of the 
case in which the machine s t a r t s  to 
work in state x’i: in this case, anin- 
put pz shifts i t  to xi. Butwe can now 
use our new definition of equivalence 
to avoid this complication, for we 
can now substitute 4 [from which 
there is a path (pz, h3) to 3t:] for the 
initial state x;, which solves our 
problem. Therefore, we can delete path (pz. h3) from x‘; to x;. 

Following this line of reasoning, we can delete from the state 
diagram all the paths marked ( = ). The general “algorithm for de- 
leting path” is asfollows: the pathlabeled pr originating at ?tf (where 
s is the number of primes) should be deleted. The diagram of Fig. 
9.24, minus the deleted paths, is shownin Fig. 9.25, and represents 
machine N ” .  That machine operates exactly as N’ (and also as A ) ,  
provided all the inputs belong to set  L. But something has happened 
in this transformation, because now N” is equivalent, in terms of 
L ,  to N’ (and consequently, also to A )  in a new sense: correspond- 
ence between states of N” and ”now depends on the input sequence. 
Also, the diagram of N” shows that agiven circle (state) is no longer 
the origin of all paths that started in circles of machine A ;  that is, 
w e  have transformed the machine from one subject to constraints 
per se to one with Aufenkamp-type constraints. 

We shall now minimize N” by means of the algorithm of Section 9.8. 

we can leave 4 on1yviapath(p19 a 3 ) 1 .  i‘ 

Fig. 9.25. 



258 ELEMENTS OF MATHEMATICAL LOGIC 

In general, C“ has a property which follows from the above-men- 
tioned properties of the state diagram: the column with the heading 
x ;  (where s is the number of primes) can contain only pairs (ps, A i ) .  

Our algorithm minimizes the number of states of the machine by 
symmetrical decomposition of the starting matrix into generalized 
1-matrices. In the case of C” , w e  need only to draw horizontals to 
obtain generalized 1-matrices: verticals cannot “spoil’’ the group- 
ing. These horizontals may be drawn in many ways. One way is to 
draw them between rows 2 and 3, and 4 and 5. This partitions the 
states of N” into groups ( x i ,  x ; } ,  { x i ,  x i }  and { xj, x i ) .  If we then re- 
place each group with a single state, we  get again the starting auto- 
maton A of Fig. 9.23, which had three states. However, a better 
grouping is obtained by drawing a horizontal between rows 3 and 4 
of C”. This divides all the statesintogroups { x ; ,  x ; ,  x ; }  and{%;, x i ,  x l ) .  
(There is no way of obtaining fewer  than two groups because rows 
1 and 4 can never be part  of one generalized 1-matrix.) Now, we 
draw a symmetrical vertical line between columns 3 and 4, com- 
bine the elements of each generalized 1-matrix, and get the inter- 
connection matrix C”’ of a minimal s-machine N”’ 

X I  X 2  

0 
0 

(PI1 *3)V(P2, *3)  , I x2 [ (PI?  &!)V(P2, *I) 

C‘“ = *I 

whose state diagram is shownin Fig. 9.26. Machine N“’ is a pseudo- 
mapping of N”. But here the sets  of inputs allowable in all the states 
of A’” coincide with each other andwith L .  Therefore, N N  also maps 

N ”  in terms of set L .  
h, 7 W/PA Note that C” contains two pairs of 

identical rows: 1 and 3, and 4 and 6. 
Row 1 corresponds to state n; of Fig. 
9.25, and the row 4 to state x i .  Figure 
9.25 shows that these states can only act 

as initial ones, since there are no paths to them. Therefore, we can 
further simplify this state diagram by removing these states: thus, 

KT3 
fp, 9 V b 2  3 A, 

Fig. 9.26. 



ANOTHER DEFINITION OF EQUIVALENCE OF SEQUENTIAL MACHINES 259 

x; can act for x i  as an initial state [an identical path (p2, h3) leads 
from x i  to xi]. Similarly, X J  can be replaced by x i .  

Making similar preliminary simplifications wherever possible, 
w e  shall arrive at a diagram with fewer states,  that i s ,  at  an inter- 
connection matrix of a lower order. In our example, we could have 
started the algorithmic minimization with a matrix simpler than 
C"-one with no rows o r  columns composed exclusively of zeros: 

xf x' 3 x3 

0 (PI, 1'3) 0 

x; ( P z 9  1,) 0 0 0 

XI 

0 (P2, 131 . 1 *-I O 0 (P I?  12)  0 0 

C" - x '  0 0 

Then, symmetric decomposition of C: gives the same result a s  that 
obtained with C" as the starting matrix. 

Compare now machine N"' (Fig. 9.26) with the initial automaton 
A (Fig. 9.23): w e  see that indeed i t  is the input sequence which 
governs the equivalence of states of the two machines. Thus, assume 
the machine of Fig. 9.23 s tar ts  up in state xz,  and the input is plpzpl 
p2p1pz . . . . Then, to obtain the same output with the machine of Fig. 
9.26, the latter must be started from state xz; i f ,  however, the ma- 
chine of Fig. 9.23 s tar ts  from this state x2 with aninput p z p ~ p ~ p ~ p ~ p ~  . . . , 
then, to obtain the same output from the machine of Fig. 9.26, the 
latter must be started from state X I .  



10 
Transformation of Clock Rates 

of Sequential Machines 

10.1. GENERAL CONSIDERATIONS REGARDING 
CLOCK RATE TRANSFORMATION. DEFINITION 

OF REPRESENTATION AND REPRODUCTION 

In discussing various practical embodiments of finite automata 
and sequential machines in Chapter 5, w e  have singled out a design 
method whereby an s-machine with a desired clock rate is created 
on the basis of the equilibrium states of another s-machine, operat- 
ing at a much faster rate. W e  shall now return to this problem, and 
shall analyze i t  inmore general terms. First ,  however, we shall re- 
call some concepts and definitions of Chapter 5. 

Assume w e  have an s-machine S, to which we feed (at discrete 
moments 0 ,  1, . . . p )  a sequencePo p’ . . . p. We thus 
of Table 10.1: 

Table 10.1 

... 

... 

. . .  

obtain the tape 

Now w e  select some sequence of discrete moments, for example, 
moments 0 ,  1, 4, and so on, which lie on a continuous scale such that 

f , ,<t ,<t ,< ... <t , .  (10.1) 

We then extract from the tape of Table 10.1 the columns correspond- 
ing to this sequence. We thus get Table 10.2: 

260 



CONSIDERATIONS REGARDING CLOCK RATE TRANSFORMATION 26 1 

Table 10.2 

We now introduce another clock rate to match our selected sequence 
of discrete moments, assuming that moment 0 of that sequence 
occurs at time t o ,  moment 1-at time f l ,  and so on. We then rewrite 
Table 10.2 in terms of this new clock rate ,  and obtain Table 10.3: 

Table 10.3 

The tape of Table 10.3 may be regarded as produced by some new 
machine G. In fact, if the given tape of machine S (Table 10.1) and, 
therefore, the tape obtained from it  by clock rate transformation 
(Table 10.3) are both finite, then there must exist an s-machine G 
producing that last  tape (see Section 8.2). 

To illustrate this concept, imagine an s-machine whose tape is 
flash-illuminated at  times to, t l ,  . . ., t,, corresponding to the se- 
quence of discrete moments of our second clock rate. Machine S 

into the sequence A'o, )!I, . . ., )!s in accordance with Table 10.3, 
whereas in reality i t  is operating in accordance with Table 10.1, 
processing the sequence p o ,  pl, . . . , p p  into the sequence A', A', . . . , A'. 

Let us  now assume that the sequence of times to,  t , ,  . . ., at which 
the flashes illuminate tape S, is so fortuitously chosen that what- 
ever the input sequence processed by S andwhatever i ts  initial state 
3c:, w e  shall always perceive a sequence of input-output pairs that 
could be attributed to some s-machine G ,  which s t a r t s  up from some 
state x: (whereby X: may vary with eachinput sequence). If that is 
the case, w e  have aclockyate Cvansformatwn-machine S ,  operating 
a t  a rate which, by convention, w e  shallcall fast, serves as a basis 

wi l l  then appear to u s  to be processing the sequence p'o, p f l ,  . . . , rifS , 



262 ELEMENTS OF MATHEMATICAL LOGIC 

for another machine G operating at  clock rate which we shall call 
slow. * We shall also say  that the fast machine S represents the slow 
machine G.  

These concepts are  quite broad, but have adrawback. The point 
is that the initial state x& of G is governed not only by the initial 
state x: of S ,  but also by the input sequence p(f) .  This means that 
at  different p ( f )  , there will be different z: for the same x; . Thus 
to find the appropriate state %& of G one must not only know before- 
hand the state %: of S ,  but alsothe input sequence which will be fed 
into S. This is not unlike the situation encountered in Chapter 9 in 
connection with the definition of equivalence of s-machines. There 
the problem was solved by narrowing the concepts of equivalence in 
such a way that the choice of the initial state did not require an 
a Pyiori knowledge of the input sequence. However, the present 
authors' attempt to similarly narrow the definitions of representa- 
tion and transformation of clock rate wasunsuccessful. This is be- 
cause a rigid adherence to a scheme whereby any state %: of S would 
always correspond to the same x i  of G ,  regardless of the input se- 
quence, would have prevented us  from investigating several im- 
portant practical cases of clock rate transformation (we shall return 
to this question at  a later stage and shall then clarify this statement 
by an example). We shall, therefore, r e so r t  to other definitions 
which a re  narrower than those above and donot require an a priori 
knowledge of the entire input sequence in order to determine the 
initial state of the represented machine. 

The algorithm for selecting the appropriate time sequence fo, f,, 
f 2 ,  . . . synchronizing S and G ,  will  be called the rule of clock rate 
Cyansfovmation. We shall define i t  by saying that the fast  machine S 
YepYesents ihe slow machine G i f  for  any initial state x: of S and 
any input sequence pOp*p* . . . there exists at  least one initial state 
of G such that G , starting porn this state and pyocessing a sequence 
r , l c  , 2 t I p f . . ., will genevate a tape coinciding with the image obtained by 
viewing the tape of S at times fo, t l ,  t 2 ,  . . . . 

of G i s  deter- 
mined by the state x i  of S and the j%st term of the in@t sequence 
to s. 

Note now that the fast machine S ,  which admits any arbitrary 
input sequence, usually represents a machine G which can admit 
inputs only from a restricted set  Lo.  This means that an image of 

Given this definition of representation, state 

*It is convenient, but not necessary,toimaginethat the fast machine does indeed oper- 
ate at a faster clock ra te  than the slow machine. In general, however, S and G a r e  totally 
unrelated. Our further discussion shall deal with the general case,  in which S and G may 
operate at any desired clock rates. 



CONSIDERATIONS REGARDING CLOCK RATE TRANSFORMATION 263 

the tape of S ,  obtained by viewing it at  to, f l ,  tz ,  . . . , may represent 
only one of the several possible variants of operation of G. We shall 
encounter a case of this kind in Section 10.2, where set  LG will con- 
sist of sequences containing only one symbol. In general, represen- 
tation is not aunique relationship, because at  any specific clock rate 
transformation, a Sven  machine S may represent several different 
machines G I ,  Gz, G3, . . .. This conclusion also holds for the case where 
there is no restriction on the set of input sequences of G ,  that is, 
when LG = E .  

By analogy with relative equivalence (see Chapter 9), we can 
also define relative representation. The definition of relative rep- 
resentation differs from that of representation in general only in 
that the fast  machine S may not admit avbitvavy input sequences but 
only those belonging to set Ls  of sequences allowed in  S . We shall 
say that in this case machine S Yepresents machine G i n  tevms of 
set LS 

When Ls E 15, then L,  may coincidewith L s ,  be narrower or  broad- 
er, intersect with i t ,  etc. In particular, whenL, = E, LG may be re- 
stricted, and, conversely, it can happen that Ls c E and LG = E. 

It is quite obvious that the mode of representation by S of any 
machine G is closely related to the time sequence to, t , ,  t z ,  . . . at 
which the tape of S is viewed. In the general case,  this time se- 
quence may be such that S does not represent any sequential 
machine. 

The choice of the (viewing) times to, t l ,  t z ,  . . . may depend on the 
input sequence p ( t ) ,  the output sequence k ( t ) ,  the sequence x ( t )  of the 
states of machine S ,  as well  as the time t .  

The ‘Lclock,” which is a machine that signals the advent of the 
“slow” discrete (viewing) moments to, t l ,  tz, . . . , must allow the in- 
put of time t and the symbols p ( t )  , h ( t ) ,  and x ( t )  [or some of these 
symbols], all of which are related to the operation of the fast ma- 
chine S .  The “clock” must be able toperform an algorithm* which 
processes a given sequence of symbols of the s-machine into the 
sequence to,  t l ,  t 2 ,  . . . . 

We shall assume that the clock itself is a finite automaton with 
an output converter which operates at  the same fast clock rate as 
the s-machine S .  The alphabet of this automatonis obtained by com- 
bining all or  part  of alphabets {p}, {x}, and {A}, depending on the fac- 
tors  determining the sequence to, t , ,  tZ ,  . . . . The process of producing 
a synchronizing signal indicating the advent of a discrete moment 
such as fo, t l ,  . . ., can then be regarded as a representation of an 
event at  the input of this clock automaton. 

T h a t  is, i t  is a Turing machine (see Chapter 13). 



264 ELEMENTS OF MATHEMATICAL LOGIC 

Having defined representation (or relative representation), w e  
are faced with the following problems: 

1. Given a machine S ,  a set  L s ,  and a clock (that is, an automa- 
ton .4 with a converter 0). find atleast one machine G which can be 
represented by S in terms of L s ,  as well as i t s  set  of allowed input 
sequences LG. 

2. Given a machine S and a machine G ,  find whether there exists 
a clock rate transformation such that S will  represent G ,  and i f  so, 
determine i t  (construct automaton A and converter CD of the clock). 

A similar problem also arises with respect to relative represen- 
tation (here, the set  Lc must also be determined). 

3. Given a machine S ,  a set L s ,  and the clock rate transforma- 
tion, construct a minimal machine G,,,, represented by S in terms 
of L s ,  and find i t s  set  of allowed input sequences LGmln. 

No  general solutions to these problems existasof now, and i t  is 
possible that some of them wi l l  prove to be algorithmically un- 
solvable. 

In conclusion of our discussion of representation and clock rate 
transformation, let us  note that these concepts could be broadened 
by permitting the use of converters p* = O i ( p )  and h* = Oz(h) ,  in 
accordance with Fig. 10.1. In this scheme, the input-output pairs 
occurring at fo, t , ,  t2 ,  . . .  a r e  not(p. ?.), but(p*, h*) .  However, we do 
not need this broader definition for our discussion. 

Fig. 10.1. 

Assume now that w e  are given a specific clock rate  transforma- 
tion, a slow machine G and a fast machine S,  and the set  LG of G 
(since G and LG are given, w e  can determine the output of G at  any 
input from LG and a t  any initial state x:). Now let us  define relative 
vepoduction. We shall say that S vepyoduces G in tevnzs of set LG 
i f  fov any x: of G and at any input sequence p* ( t )  = pop'p2 . . . pfrom 
Lc there exist a t  least one initial state xg of S ,  detevmined by m: 
and by  2he fivst term po of p * ( t ) ,  as well as at least one sequence 
p ( t )  such that the tape of S , which operates under these conditions 
and i s  viewed only duving the discvete moments of the ccslowJ' time 
sequence to, t l ,  tS, . . . ,  coincides with the tape of G ,  When LG = E,  
relative reproduction and (simple) reproduction become identical. 

- 



CONSIDERATIONS REGARDING CLOCK RATE TRANSFORMATION 265 

To avoid confusion, we must s t r e s s  that representation and re- 
production (both relative and nonrelative) are two entirely different 
and even opposing concepts. Thus representation requires coinci- 
dence between each tape of the fast machine S ,  when viewed at  
to,  t l ,  tP,  . . . , and one of the tapes of the slow machine G ; on the other 
hand, reproduction requires that for each tape of G there be a tape 
of the fast machine S such that when it is viewed at  to, t , ,  t2, . . . , it 
will coincide with the given tape of G. =presentation does not imply 
reproduction, because S may represent G but not reproduce i t ,  and 
vice versa. Again, reproductionis not unique: for any given specific 
clock rate transformation there may exist many different fast ma- 
chines s,, S p ,  s,, . . . , each of which will  reproduce a given slow ma- 
chine G.  

The set  Ls  allowed in a fast machine S reproducing a given 
machine G in  terms of L,,* is also not unique;** and what is more, 
in many cases  Ls may contain symbols which do not appear in LG. 

Indeed, according to the definition of reproduction, for each se- 
quence p* ( t )  E LG and state x: there will  be at  least  one correspond- 
ing sequence i(t) allowed as an input to S .  However, in the general 
case,  for each p* ( t )  and x t  there maybe not one, but many (possibly 
even an infinite number) of different sequences G ( t ) .  These se- 
quences p"(t), corresponding to all the p * ( t )  at all possible x:, may 
form many (possibly even aninfinite number) of different sets  LL, L i ,  
L:, . . . , each of the sets L i  containing at  least  one sequence i ( t )  
corresponding to any given p* ( t )  E L, and x: .  

Each of the sets  Lk may be considered as a set  of inputs allowed 
in the fast machine S which reproduces G in terms of LG. Which of 
these sets  is selected depends on additional, practical considera- 
tions-sometimes i t  is convenient to use L s = U L i ,  and on other 
occasions set  E (which is always usable) is selected as the set  of 
inputs allowed in S .  

The concept of reproduction gives rise to the same problems as 
representation [(l) given a clock and one of the machines, find the 
other machine; (2) given the two machines, find the clock; and (3) 
the minimization problem]. 

In conclusion let  us point out that the definition of reproduction 
entails the same restriction as that of representation: that is, the 
state x$ of machine S i s  determined by the state x t  of machine G 
and only the f i rs t  term of input p * ( t ) .  If 2: were related to x t  and 
the entire input sequence, w e  should obtain a broader, but also a 

*LG may coincide with E ,  that is, the reproduction may be nonrelative. 
**This nonuniqueness is not encountered in the case of representation where, given 

L s ,  a specific clock rate transformation, andmachine& the set  LC is uniquely determined. 



266 ELEMENTS OF MATHEMATICAL LOGIC 

more inconvenient definition of reproduction [we would have to knov, 
a p y i o r i ,  the entire input sequence p* ( t )  1. 

We shall now clarify representation and reproduction by two 
simple examples. 

10.2. EXAMPLES OF REPRESENTATION 
AND REPRODUCTION 

a. Flip-Flop 

Our f i rs t  example involves the flip-flop of Chapter 5. 

Table 10.4 Table 10.5 

Consider a P-Pr automaton with a basic Table 10.4. It accepts 
inputs from set  R ,  containing all sequencesinwhich no two succes- 
sive symbols are identical. The blanks in the table indicate that the 
automaton is never in these internal states, so that the correspond- 
ing squares may be filled in anydesiredfashion, for instance, as in 

Table 10.5. This automaton is dia- 
grammed in Fig. 10.2. We shall ob- 
serve it only at  t imes to, t r ,  t2  . . . , 
when the state of the input changes 
from pl = 0 to p2 = 1 ,  and shall find 
which machine G is represented by 
this automaton in terms of R .  

First  of all, let us  determine the 
set  L G  of G. Since we observe this 
automaton only when p = pz = 1, LG 
will  contain only unit sequences. In 
other words, G wi l l  be an autonomous 

An analysis of operation of the 
automaton of Fig. 10.2 shows that the s-machine G(or, to be precise, 
one of the many possible machines G),  which the automaton represents 

Fig. 10.2. s-machine. 



EXAMPLES OF REPRESENTATION A N D  REPRODUCTION 267 

"1 

"2 

"3 

X4 

has the state diagram of Fig. 10.3, that i s ,  

ous states automaton S and flip-flop G is 

, , a , )  aC"0 the slow machine G is a flip-flop (see Sec- 
tion 5.2). The relationship between the vari- 

given in Table 10.6. 
Now, if the blank squares of Table 10.4 

were filled differently, for example, a s  in 
Table 10.7, then the relationship between the states of S and G would 
be' represented by Table 10.8. 

( p i ,  4) 

Fig. 10.3. 

XI0 

"20 

"10 

" 2 0  

Table 10.6 

S 

7" 

"2 

"2 

"3 

x3 

"4 

G 

"10 

" I 0  

"20 

"20 

" I 0  

"20 

Table 10.7 

Type of input 

independent of input sequence 
i f  the input sequence begins with p ,  = 0 

if the input sequence begins with p2 = 1 

if the  input sequence begins with p, = 0 

if the input sequence begins with p 2  = 1 

independent of input sequence 

Table 10.8 

Type of input 

independent of input sequence 

independent of input sequence 

independent of input sequence 

independent of input sequence 

In this example the clock is a finite automaton which represents 
the event "p2occurs after pi.'' Note that S not only represents G with 
respect to R ,  but also reproduces it in terms of set LG of unit length 
input sequences. To achieve reproduction the set Ls of sequences 
allowed in the automaton can coincide either with E (which contains 
all sequences of 0 and l), or with set R ,  or with any set  contain- 
ing R. 



268 ELEMENTS OF MATHEMATICAL LOGIC 

b. Delay Line 

Our second example involves reproduction of a slow s-machine 
G by a fast machine S built from fast delay elements. Assume we 
require an s-machine G in which the interval between discrete mo- 
ments (clock rate) is T seconds, andwhere the set  Lc coincides with 
the set  E of all allowed input sequences. The input alphabet of G 
contains r differing characters p. 

There is no problem in synthesizing a machine G from n-ary delay 
elements operating in given clock rate T. However, we have only 
“fast” w a r y  delay elements operating at rate q times faster than T ,  

that is, at intervals of $, where q A 2 .  We shall now use  these ele- 
ments to synthesize a fast machine S ,  andwe shall find a clock rate 
transformation such that S will  reproduce G. 

The equation for the fast delay element (Fig. 10.4) is 

(10.2) 

while that for the required slow element is 

x ( t  + T) = u ( t ) .  (10.3) 

Now, a chain of q fast delay elements (Fig. Fig. 10.4. 

10.5) is described by a system of recurrence relations 

(10.4) 
. . . . . . . . . 

Eliminating all x i  except x ,  w e  get for  the entire chain 

x (t  + .) = u (t). (10.5) 

Equation (10.5) coincides with Eq. (10.3) for the slow delay element; 
therefore, a chain of q fast elements is equivalent to one slow element. 

Fig. 10.5. 

Bearing this in mind, w e  construct the s-machine S in the following 
manner. Assuming for a moment that w e  have at  our disposal the 



REPRODUCTION OF A SLOW MACHINE 269 

slow delay elements of Eq. (10.3), we construct from these elements 
and from instantaneous logical converters a machine G ,  using one 
of the methods of Chapter 5. Now, we replace each slow element of 
G by a chain of q fast delays. The resulting s-machine S will oper- 
ate at a fast  clock rate, that of the fast delay elements. But if S is 
observed only at to,  t l ,  t z ,  . . . , coinciding with moments 0, 7, 27, 37, 
then S will  reproduce G ,  since the cycle of a fast delay chain coin- 
cides with that of one slow element. 

The relationship between the states of S and G is independent of 
the input: for each state xiG of G there exists such a state of all the 
fast delays of S at which the state of the initial fast delays of each 
chain coincides with that of the corresponding slow delays. Calcula- 
tions show that for each of the r k  states of G there are rk(q - I )  states 
of S reproducing it. The set  LG of S may be either set  E ,  or set  R 
(in which there are no sequences with repeating symbols), o r  setM 
which contains all sequences such as 

P,,P,, * . * P,, Pa,Pal . * * Pa, P,,P,, * * - Pa, * . * PmSPaJ * * * PmS 
_ _ T _ _ -  

q times Y times 0 times q times 

1 3  

( possible p, = p a  
f 1 t . I  

o r  another of the many possible sets  (all these se t s  must have the 
following property: if the symbols in positions 0, q, 29, 3q, . . . are 
extracted from each sequence belonging to agiven se t  and arranged 
into a new set, then this new se t  must be the set E ) .  

The clock suitable for this case is a ring scaler (which is an 
autonomous finite automaton) made up of fast delay elements and 
emitting a signal indicating the occurrence of a “slow” discrete 
moment every q “fast” moments. 

It may be pointed out that in this example (just as in the preced- 
ing one) the synthesis w a s  so successful that machine S not only 
reproduces, but also represents machine G (both in terms of E and 
in terms of any other set). The relationship between the states of 
the two machines in the case of representation remains the same as 
in the case of reproduction. 

10.3 REPRODUCTION OF A SLOW MACHINE ON A FAST ONE 
IN THE CASE WHEN THE CYCLE OF THE SLOW MACHINE IS 

GOVERNED BY THE CHANGE OF INPUT STATE 

This problem mentioned w a s  already discussed in Chapter 5, 
where w e  arrived at a solution. We shall produce here another 
solution which is suitable for any machine. 



270 ELEMENTS OF MATHEMATICAL LOGIC 

Suppose w e  are  given some slow s-machine G whose cycle (that 
is, clock rate) is governed by change of input. Let this G be given 
a s  an interconnection matrix o r  a state diagram. The se t  LG of G 
contains all the possible sequences except those with two identical 
symbols in a row. We need a fast s-machine S which reproduces G 
in terms of L c ,  and whose clock rate is related to that of G in the 
following manner: G operates at  instants to, t , ,  t ~ ,  . . ., t,s whichoccur 
when S reaches equilibrium after any change ofinput. Assume that 
the maximum number of fast cycles necessaryfor S to go from one 
equilibrium state to another upon a change of input is in. We shall 
then assume that, at reproduction, the set LG of S contains all the 
sequences such as 

P,"P,, . . . P,, P,,P., - . P,, . . r .  . p m i p o i  . . . PCLi ( PKi + PZi-+ ,) ! 
__y__ .- (10.6) 

40 times 4 ,  times q1 times 

where qz >, m for all i = I ,  2 3, . . . . This means that an input to S can- 
not change until the machine is in equilibrium. 

Assuming that qz >, q", the set of sequences such as (10.6), will  
be denoted by T q T .  The sets  T,,* satisfy the relationship 

T l ~ T 2 2 T 2 2 . .  . 2 T 4 * 2 . .  ., (10.7) 

whereby T I  = E .  Thus, provided q* >, rn, any set T ;  can serve as 
the set  L.. of S .  

If the condition of replacement of G by S specifies that the two 
machines must operate synchronously, then condition q* >, m means 
that there are at  least rn cycles of S between two successive cycles 
of G. 

We shall construct machine S by transforming the state diagram 
of the given machine G. Assume that state :ti of this diagram has the 
form of Fig. 10.6. We shall replace xi  with as many states as there 
a re  different paths terminating in that state (a loop path is con- 
sidered to be both terminating and originating in state Xi). This 
gives the four states xL1 ,  x t 2 ,  xLd, xZ4 (surrounded by a dotted line) of 
Fig. 10.7, where each of these new states also ca r r i e s  a loop path 
labeled in the same way a s  the path terminating in that state. 

From each of the new states w e  draw the same paths as those 
which originated in state x t  of Fig. 10.6; however, we need not draw 
those paths carrying the same p symbol as the loop at  the state from 
which that path would originate (see Fig. 10.7). 

We do the same thing for all states of G ,  and obtain the state 
diagram of a machine S which reproduces G in t e rms  of L G ,  the 
relationships between the states of G and Sbeing as follows (Figs. 10.6 



REPRODUCTION OF A SLOW MACHINE 27 1 

and 10.7): at  p =p.,state xJ1 of G cor- 
responds to state xl l  of S ,  where xI1 is 
the equilibrium state of S at input ps; 
obviously, at  input ps the same statex,, 
of S also corresponds to state x1 of G ;  
similarly, at  p = p p  the state xJ2 of G 
corresponds to state 31%2 of S ,  xt2 being 
the state of equilibrium of S at p = pp, 
and so on. The general correspondence 
is established in a similar manner. 
Now it is readily seen from the state 
diagram that S goes from one state of 
equilibrium to another at any change of 
the input and that this transitionis ac- 
complished in one “fast” cycle. That 
is, m =  1. In addition, the d i a g r a m  
shows that machine S has no unstable 
states at  any input, because each state has a loop path and therefore 
is a state of equilibrium for some specific input. 

An input sequence of the reproducing machine S , corresponding 
to the input sequence P.&P,, . . . P,~ . . . ( p O L  + p a , + , )  of the slow machine 
G ,  has the form of Eq. (10.6), where all the q,>, 1. Using q = 1, we 
find that one of the (corresponding) input sequences of S is p,,p,,p,, . . . , 
that i s ,  i t  coincides with the input sequence to G. 

Fig. 10.6. 

Fig. 10.7. 

The instants to, t l ,  tZ ,  . . ., atwhich the fast machine S is “viewed” 
(that i s ,  at  which information is extractedfrom the tape of S)  occur 
one L‘fast9’ cycle after the change of the state of input of S .  If the 
input sequence of S is made to coincide with that of G ,  then infor- 
mation is extracted from S in all fast cycles. 

Thus, our transformation of the state diagram of G solves the 
problem of synthesis of a fast s-machine S which reproduces, in 



272 ELEMENTS OF MATHEMATICAL LOGIC 

terms of L G ,  a given s-machine G responding to the change of the 
input state. Here we used the state diagram only for better visuali- 
zation of the problem. In practice, i t  may be more convenient to 
transform the interconnection matrix. This is done as follows: 

Assume the interconnection matrix C G  of G is given, and let  it 
conform to Fig. 10.6, so  that i t s  ith row and column are 

... i ... j S  ... j 6  ... 

We shall now replace this row and column with as many rows 
and columns as there a re  different pairs  in the ith column of CC.  

Since there a re  four such pairs [(ps, A,), (pp ,  la), (pg,Ap), and(pg, Xu)], 
w e  introduce the rows and columns i l ,  i2, i3 and i4: 

il i2 i3 i4  ... j 5  ... j G  

J3 

j 4  



REPRODUCTION OF A SLOW MACHINE 273 

For diagonal elements of the submatrix comprising these four 
rows and columns we take (in any desired order) all the different 
pairs  of the ith column of CG. Furthermore, the intersection of row 
j l  and column i of CG contains the pair (pa, A(); we retain i t  in row 
jl of the new matrix C ,  but place it in the column where(p,, A T )  is 
already present, that i s ,  column il. We do the same with the pairs 
of rows j 2 ,  j 3  and j4 of the ith column of CG. Now the columns i l 4 4  
are complete, and each contain only identical pairs. We then f i l l  in 
rows il-i4 of C as follows: a l l thepairs  of the ith row of C" [except 
for  pair (ps, h,) whichis present on the diagonal of CG] are transposed 
into all four rows (ll-i4), retaining these pairs in the same columns 
as in Cc. However, if the p symbol of the pair being transposed into 
a given row coincides with the p symbol of a pair already present in 
that row, then there is no need for this transposition-the space is 
left blank. The pair  (ps, A,) is transposedintoall rows i 1 4 4 ,  being 
placed in that column in whichit already appears as a result of fill- 
ing in the disposal elements. To be specific, the ith row of our ex- 
ample of CG contains pairs (ps, AT), (pp, A,), (pg, AJ. Row i l  of C already 
contains pair (ps, A,) ; we transpose into itpair(p,, h6) and place i t  in 
column j 5 ,  and the pair (ps, la) incolumnj6. We add to the row 12 the 
pair (ps, h r )  in column i l  and the pair (&,A,) in the columnj6 [pair 
(pp, La)  is omitted from column j 5  since row i2 already contains pair 
(pp, Am)]. Rows 13 and i4 are filled in the same manner. 

The above procedure must be repeated for all the ith rows and 
columns of CG. A s  a result, w e  obtain a matrix C which actually is 
the interconnection matrix Cs of the fast machine S. Note one prop- 
e r ty  of Cs : all columns of this matrix contain (only) identical pairs. 

It is obvious that the transformation of the interconnection ma- 
tr ix CG into CS is a procedure identical to that employed in the pre- 
viously described transformation of state diagrams. 

Let u s  conclude this section with two notes. 
Note 1 .  In this section, just as in Section 10.2, we  devised the 

machine S so Lcsuccessfully9' that it not only reproduces but also 
represents machine G. In representation, the set of allowed input 
sequences may be any set ,  including set E ,  since the inputs to S can 
change at a rate coincidingwith the clock rate of the fast machine S. 
This is because m of S is 1. In representation, the correspondences 
between the states of G and S arethe same as in reproduction. 

Note 2. The above technique is only one of the available methods 
for synthesizing a fast s-machine S ,  reproducing agiven s-machine 
G in terms of LG. Other techniques are also possible, since S is not 
the only machine reproducing G with respect to LG. For this reason 
there arises the problem of minimization of S ,  that i s ,  the problem 



274 ELEMENTS OF MATHEMATICAL LOGLC 

of synthesizing the machine S in such a way that i t  will contain a 
minimal number of states. 

10.4. MINIMIZATION OF THE S-MACHINE 
OF SECTION 10.3 

We shall minimize the machine of Section10.3, that is, synthesize 
a machine SDli, reproducing the given machine G in terms of L G ,  but 
having the least  possible number of internal states. The required 
machine Smin will  have to satisfy two conditions. 

Condition 1. Each state of S,,, must be an equilibrium state for 
at  least  one input. 

Condition 2. Regardless of what changes are made at the input, 
S,,in must reach a new equilibrium in one fast cycle (that is, mSmin = 1). 

Fig. 10.8. 

W e  shall now prove that these conditions do not restrict  the generality of our  minimi- 
zation. Assume that machine S,ni,,does not satisfy condition 1. This would mean thatSmi, 
has at least one statexh whichis not a state of equilibrium, and is represented in the state 
diagram by a circle h not associated with a loop path (Fig. 10.8). If this is so, we can drop 
this state xh  from the diagram, replacing the path labeled (pg,. . . .)* from x ,  to xli (and 
passing through x h )  by a direct path (pg,. . .) from x ,  to %,I. The path (pS,. . .) from xh 
to x j P ,  may be dropped because no path with the same label terminates in 7.h. W e  thus 
obtain Fig. 10.9, from which all the nonequilibrium states have been removed. 

This transformation modifies the operationSmI, only during the interval between two 
equilibria of Sm,,, when we do not care  what the machine does anyway. The order in which 
the equilibrium states change remains unaltered and consequently the modified machine 
will reproduce the given machine G in the same way a s  before. However, the very fact 
that we a re  able to reduce the number of states insrn,” by this transformation contradicts 
our  statement that Sluin is a minimal machine. Therefore a minimal machine Sminmust 
satisfy condition 1. 

Fig. 10.9. 

*Dots in the label indicate that the output symbol can be arbitrary. 



MINIMIZATION OF THE s-MACHINE OF SECTION 10.3 275 

In general, for  any givenmachine G there may exist several different minimal machines 
Smin,each reproducing G in terms ofL,;. However, all these machines must have the same 
number of states kml,,, Our minization problem will be solved when we shall find at least 
one of these machines. 

Let us now turn to condition 2. We shall prove the following statement: if there exists 
a machines,,,,", withk,,,,,internal states,reprcducingG in terms LC and not satisfying con- 
dition 2, then there must exist another machine x,,,,, with the same number of internal 
states kmi,,, which also reproduces G in terms of L o  but which satisfies condition 2. This 
will show that condition 2 does not restrict  the generality of the solution. To prove this 
statement we shall show that the state diagram of s",,, can be obtained from that of Smln by 
a transformation which does not alter the number of states. 

Let Sm,,go from state x i ,  which is an equilibrium forp = pp ,  to state x i  which is an 
equilibrium for p = pB. Letthis beaccomplishedinm fast cycles. ThenSmln will go through 
(m - 1 )  intermediate states x i i ,  x ,p , .  . ., xi(,,, - 1) (because none of these is an equilibrium 
state, they cannot contain closed loops). For example, Fig. 10.10 illustrates what happens 
in a section of some machine at rn = 3. 

Fig. 10.10. 

If the circles i, i l ,  i2, . . . , l ( m  -1)are directly connected to circle j by paths labeled 
(ps, A$), then we obtain the state diagram of Fig. 10.11. Now pp shifts the machine from 
state xi and from states x i l ,  x i2 ,  . . . , ,)to the state xj in one fast cycle. If we transform 

Fig. 10.11. 

the entire-statediagramof Smlninthe same manner, then the state diagram of the resulting 
machine_ Smln will have the same number of states. The operation of Smln will differ from 
that of Smln only during the intervals between equilibria, when we do not care  what these 
machines do anyway. However, an allowable input willchange the states of equilibrium in 
Sml,input sequences in the same way a s  in Smin. This proves our statement. 

Having proved that conditions 1 and 2 are not restrictive, let u s  
look for our minimal machine among the machines S,, SB, S3, . . . , 
which reproduce the given machine G in terms of LG and which sat- 
isfy these conditions. 



276 ELEMENTS OF MATHEMATICAL LOGIC 

As w e  have already pointed out in the preceding section, repro- 
duction requires that for any input sequence 

(10.8) 

of machine G there be an input sequence 

Pn0Pno ' ' ' Pa, P,,P,, . * * Pa, . . Pa,Pas . * . Pas (Poi P,,+J 
qdtimes- 4, times 4$ times 

of machine S ,  where qi >rn ( i  = 1, 2, . . .). Since rn = 1 for any S i ,  
the set  L,? of input sequences allowedinSi can be any set T,* (q* = 1, 
2 ,  3, . .  .) of sequences such as (10.6), assuming q i 3 , q *  ( i  = 1, 2, 
3, . . .); in particular, Ls can be the set E = T I .  

Assume w e  want Si to reproduce G ,  andlet the set T? be used as 
the set  Ls . We shall then prove the following statement (A): if  state 
xai  of machine S,  and state xp, of machine Sp are equivalent in terms 
of set  T?, then they are also equivalent with respect to all the sets 
T , ,  T ,  TB, , . . ; that is, they are simply equivalent, since TI = E ( S ,  
and S, may also refer to the same machine). If q > p, our state- 
ment is obviously true, since in this case T 4 c T 2  [see Section 10.3, 
Eq. (10.7)]. If q < ;*, the truth of our statement follows from the 
fact that with any change of input, all machines Si wil l  go to an equi- 
librium in one discrete instant, after which repetition of an input 
symbol will not change the state of the machine, regardless of the 
number of times this symbol is fed to the machine. 

Every machine Si reproduces G in terms of set  L O ,  that is, in 
terms of the formula of Eq. (10.8). This means that given any initial 
state x: and any allowedinput to G , there must exist an initial state 
xi) of Si at  which that machine, accepting a corresponding input from 
s, se t  Tq* [in the form of Eq. (lO.6)J and observed only upon attainment 

of equilibrium after a change of input, generates the same output as 
G. Without sacrificing generality, we may assume that xo will be a 

si 
state of equilibrium for Si at p = pmo; were this not so, then Si  would 
go in one "fast" cycle from x!i toxk which would have to be a state 
of equilibrium at p = p,,. In that case, xiiwould be the state corre- 
sponding to x: of G. 

Now consider any two machines Si and Sj from the set S,, S1, 
S B ,  . . . . Suppose that at  p = p,",state x: of G corresponds to state x$ 
of Si  and to the state x"  of Sj. Then, since states x!. and x o  cor- 

s/ respond to the same state of G for the same pao, th; outputs of Si 
and S j ,  which s tar t  from x" and x ! j ,  respectively, wil l  coincide for 
any input from T? which begins witn pa,, this coincidence occurring 
one "fast" cycle after a change of input. But if there is no change 
of input, then the machine is also in equilibrium at all other times, 
and the outputs at these times will  also coincide. Thus, the states 

f 

1 

sI . 



MlNlMlZATlON OF THE s-MACHINE OF SECTION 10.3 277 

x!t and x ! ,  are equivalent at  all those input sequences from T,, which 
begin with pco. But these states will  also be equivalent in terms of 
set  T,-,, since they are equilibrium states at p = p.,. Indeed, if the 
input sequence were to begin with some pBo# pa,, then i t  would be 
possible to write the sequence 

I 

(10.9) 

which does begin with p,, and does belong toT4*. With respect to 
this sequence, the states 31" and x\ areequivalent. At  the end of q* 
cycles, the machines star&g from these states, are again in these 
states; thus the initial conditions are not changed, and we may take 
the (p + I)-th fast  cycle as the reference time. If w e  do that, then 
the sequence (10.9), taken as of the (? + I)-th fast cycle, begins 
with pp. 

Thus we have shown that all the states of Si ( i  = 1 ,  2, 3, . . .) cor- 
responding to the same state x: of G ,  are equivalent with respect 
to the chosen set  T,-. at p = p,,. It  then follows from statement (A) 
proved above that they are also equivalent with respect to TI = E ,  
that is, they are simply equivalent. 

Let us  now assume that set  S , ,  Sz, S3,  . . . yields a fast machine 
S which not only reproduces G in terms of L G ,  but also represents 
it in t e rms  of E * This means that for each state of s and for any 
p = p,, we can find a state of G ,  such that there is representation. 

Let us  take any state xs ofS ,  and let GS be an equilibrium state 
for p pa,. Then, under representation, the corresponding state of 
G is xG. Observing the operation of s and G of various inputs to 
beginning with p m o ,  we come to the conclusion that if Go corresponds, 
at p = puo, to {$ under representation, then x"_ corresponds, at  the 
same p , to x G  under reproduction (that i s ,  machine represents 
and reigoduces machine G). Since g3 may be any state of 5, i t  fol- 
lows that for each state ks of s there exist suitable Go and pa, of G 
such that $ reproduces xG at p = pa,. But from this i t  follows di- 
rectly that for any state Xs of S the re  exists a state X. equivalent to 
it in any machine Si. This means that all machines Si may be 
mapped onto machine 3 (some of these Si may, of course, also be 
equivalent to 3 ) .  Therefore, all we have to do is to minimize ma- 
chine s, that is construct aminimal sequential machine s,,, equiva- 
lent to 3. And this can be done by means of the Aufenkamp-Hohn 
algorithm (see Section 9.6).* The machine S,,, so obtained will  be 
the minimal s-machine reproducing G in terms of LG. 

I 

- 

S 

'i 

*For machine S , ,  the decomposition of all the s ta tes  into groups equivalent in t e r m s  
of se t  T- ,  coincides with groupings equivalent in  t e r m s  of E. 



278 E L E M E N T S  OF MATHEMATICAL LOGIC 

A s  already pointed out in Section 10.2, the machine S ,  derived 
by transforming the interconnection matrix of G , both reproduces 
G in terms of LG and representsit in terms of E .  This machine also 
satisfies conditions 1 and 2 of the present section. Consequently, 
to obtain S,,,,, (to be precise, one of the possible minimal machines) 
it is  suf8cient to minimize S by symmetrical decomposition of its 
intevconnectbn matvix. The result of the minimizationdoes not de- 
pend on which of the sets  T? isused as the set  Ls of input sequences 
allowed in S under reproduction. In this case, restricting the num- 
ber of sets  of input sequences does not further reduce the number of 
states of the reproducing machine. 

We shall now construct a minimal s-machine Smi, reproducing a 
given machine G in terms of LG. 

Example. Let the interconnection matrix CG of a given “slow” 
machine G operating in alphabets (p) = 1 1 ,  2, 3). ( x } =  (1, 2, 3) and 
{ k j  = { 1, 2) be 

1 2 3  
( 1 9 1 )  (271) (3,1) I‘ cG=t  [ (2,2)“(1,2) 0 (3,l) 

3 (2,2)V(1,1) 6 2 )  0 

The state diagram of G is shown in Fig. 10.12. 

Fig. 10.12. 

Tr*ansforming CG as in Section 10.3, we obtain the matrix Cs of 
the ‘‘fast’’ machine S reproducing G : 

11  12 13 21 22 3 
0 0 0 (3,1) 

(1,l)  (2,2) 0 0 0 (3,l) 
o (1,2) (2,i) o (3,i) 



MINIMIZATION OF THE S-MACHINE OF SECTION 10.3 279 

The 
mize S 

Now 
form 

let u s  mini- 
1 -matrices. 

Fig. 10.13. 

Let u s  rewrite C* so that these rows appear one after another, and 
then carry out the symmetrical grouping: 

After all the intermediate steps, we get the interconnection matrix 
C:," of the minimal machine SmI, with four states XI ,  XP, x3, x4: 



28 0 ELEMENTS OF MATHEMATICAL LOGIC 

The state diagram of Smi, is given in Fig. 10.14. 

Fig. 10.14. 

By virtue of the previously noted factthateachcolumn of Cs can 
contain only identical pairs, matrix CS,,,, has the following property: 
no column of C;," can contain two pairs with identical f i rs t  and dif- 
ferent second subscripts. This means that the state diagram of Smin 
may be treated, at will, either as the diagram of an s-machine of 
the P - P type, or  as the diagram of an s-machine of the P - Pr type 
(see the note in Section 3.4). Assume, for example, that the diagram 
is that of a P - Pr machine. Now, let  us  show the construction of a 
relay circuit realizing this machine. To s tar t  with, the state dia- 
gram yields the tables of the automaton andof the converter of 
(Tables 10.9 and 10.10). 

Table 10.9 can be regarded as aHuffmanflow table; all we have 
to do is to draw squares around the equilibrium states 31: ; that i s ,  
those states whose subscripts a r e  the same as the ordinal numbers 
of the matrix rows. After this Table 10.9 assumes the form of Table 
10.11. From Tables 10.10 and 10.11 w e  can design a relay circuit 
realizing S,,,,,, by means of the method described in Section 5.4. To 
do this, w e  assign binary numbers to the symbols x, p and A ,  as 
shown in Tables 10.12 - 10.14. Then Tables 10.9 and 10.10 can be 
expressed in the form of Tables 10.15 and 10.16, from which we de- 
rive the combined Table 10.17. 



MINIMIZATION OF THE +MACHINE OF SECTION 10.3 28 1 

Table 10.9 Table 10.10 

Table 10.17 defines three logical functions Y 1 ,  Y2 and 2 of four 
independent variables XI ,  x2,  yI ,  and y2. We shallnow assume xI and 
xz represent the states of the input contacts, y1 and y2-the states 
of contacts of the secondary relays, and Y I  and Y,-the states of the 

Table 10.11 

Table 10.12 Table 10.13 Table 10.14 

I i I  



282 ELEMENTS OF MATHEMATICAL LOGIC 

coils (energized or deenergized) of these secondary relays; the state 
of the coil of the output relay will  be Z . Now, any network made up 
of contacts x l ,  xz, gI, and yz, as wel l  as coils Y 1 ,  Y z ,  and 2 and re- 
alizing the table of logical functions of Table 10.17 wi l l  also realize 
machine Smin. A network of this type may be constructed by any 
method of Chapter 2.  

Table 10.15 Table 10.16 

Now let u s  compare our minimization methodwith that of Huffman 
(Section 5.4). The main difference between the two methods is that 

Table 10.17 

0 1 0 1 0 1 0 1 0 1 0 1  

0 0 1 1 0 0 1 1 0 0 1 1  

0 0 0 0 1 1 1 1 0 0 0 0  

0 0 0 0 0 0 0 0 1 1 1 1  

0 0 0 0 0 1 0 1 1 1 1 1  

0 1 1 0 0 0 0 0 0 0 0 1  

1 0 0 1 0 1 0 1 0 0 0 1  

there a re  no restrictions on the applications of our method, while 
that of Huffman (as already pointed out in Chapter 5) may only be 
used to construct those s-machines in which the next state of the 
automaton of this machine is uniquely determined by the present 
states of the input and the output of the machine. Where both methods 
a re  applicable, they yield identical results, even after minimization. 

In concluding this section, let us  point out that the algorithm for 
deriving additional states (Section 10.3) is also applicable when the 
given slow machine G is subject to Aufenkamp-type constraints. 
The machine S (which reproduces G in terms of L,) constructed by 
means of this algorithm will  also be subject to the same constraints. 
Therefore i t  should be minimized by the technique described at the 
end of Section 9.8 (or some other method for full minimization of 
machines subject to Aufenkamp-type constraints). The fact that this 



MINIMIZATION OF THE s-MACHINE OF SECTION 10.3 283 

minimization of the fast machine S gives aminimal machine repro- 
ducing G may be proved by the same reasoning as that given in the 
present section, assuming no constraints (the only additional re- 
quirement is finding the set  of input sequences allowed for each of 
the states). 



Determination of the Properties 
of Sequential Machines from 

Their Response to Finite 
Input Sequences 

11.1. DEFINITIONS AND STATEMENT OF PROBLEM 

We shall now consider finite automata and s-machines as objects 
on which one can experiment but about whose internal structure one 
possesses only limited information. It is also assumed that the ex- 
periments can only consist of observing the outputs generated by 
these machines in response to finite inputs. Our problem is to deter- 
mine the specific structure of a given finite automaton or s-machine, 
i ts  present state and, if possible, i t s  state diagram. 

We shall say that by feeding a sequence of (finite) length 1 to the 
s-machine we are performing an experiment of length 1. The input 
of sequence p ( t )  = pop1 . . . pp produces a synchronous output of the 
sequence k ( t )  = hob' . . . LP, which we shall call the response of the 
s-machine to the input of p ( t ) .  In this chapter, w e  shall call the input 
and the corresponding output, that is, the tape of the s-machine, the 
result of the experiment. 

One can perform a variety of experiments. Thus when only one 
s-machine of a given type is available, and the input is a predeter- 
mined sequence, we have a simple nonbranching experiment. If, 
however, each consecutive input symbol selected by the experimen- 
ter  depends on the preceding output symbols, then the experiment is 
said to be simply branching (or just branching). When several 
identical s-machines are available and all are in the same initial 
state, one can perform a multiple experiment, whereby different in- 
puts are fed to each machine. A variant of the multiple experiment 
is one in which there is a single s-machine equipped with a reset  
button, that is, a device returning the machine to its initial state 
upon completion of an experiment. 

The problem of determining the specific structure of a given 
s-machine from the results of a finite experiment can be defined 
only after all the a priori known factsabout this machine have been 

284 



DEFINITIONS AND STATEMENT OF PROBLEM 285 

exactly stated. A s  will  be shown below, any new data about this 
s-machine which can be produced by the experiment depend on this 
a priori known information. 

At the outset we can make the following intuitively obvious state- 
ment: if we do not know anything about a given s-machine, then there 
is no finite experiment which will  tell useven as much as the num- 
be r  of i t s  states. Obviously, tostudyagiven machine we must know 
beforehand the nature and the number r of the input symbols p. 

Let S be an s-machine with kinternal states X I ,  XZ, . . ., l l k  (where 
k is unknown!) which we subject to a finite experiment of length I .  
Then it is always possible todevise another s-machine S* which has  

Fig. 11.1. 

more states thank and which operates exactly as S in experiments 
not exceeding length I ,  and which becomes different from S only in 
experiments longer than 1. 

Assume, for example, that we have 
a finite automaton A and anassociated 
output converter (see diagram of Fig. 
ll.l), on which w e  perform experi- 
ments of length 1 ,< 3. It is easily seen 
that if 1 < 3 and the initial state i s x l  o r  
xz, automaton B (diagram of Fig. 11.2) 
generates the same output h as A ;  
thus, at  1 < 3, A and B do not differ. 
They become dissimilar only when the 
input consists of the fourth symbol. 

This argument shows that in order 
to experimentally determine the spe- 
cific internal structure of agiven auto- 
maton o r  s-machine one must have, in 
addition to the number of input symbols 
r ,  an estimate of the number k of i t s  

Fig. 11.2. 

states. We shall assume from now on that the k and r are always 
known. Then we can consider the following experimental problems: 

a) Determination of equivalence of two states of either the same, 
o r  of different s-machines. 

b) Determination of equivalence of two s-machines. 
c) Determination of the state diagram of an s-machine. 



286 ELEMENTS OF MATHEMATICAL LOGIC 

d) Determination of the state in which the machine w a s  at  the 
beginning of the experiment o r ,  alternatively, i t s  reduction to a spe- 
cific state at  the end of the experiment. 

To solve these problems one mustknow what experiments can be 
carried out with the given se t  of s-machines (for example, whether 
one can perform a multiple experiment), as well as some additional 
data on this set  (:3r example, this information may consist of the 
number of states k ,  as well  as of the fact that all of these states are 
nonequivalent). 

The next section shows a determination of the equivalence of 
states of an s-machine (Moore’s theorem). Subsequent sections deal 
with the study of s-machines when multiple experiments are pos- 
sible (Section 11.3), as well  as with the case where only a simple 
experiment (in particular, a branching one) is possible (Section 11.4). 

11.2. DETERMINATION OF EQUIVALENCE OF 

RESPONSE TO FINITE INPUTS 
STATES OF S-MACHINES FROM THEIR 

Consider two equivalent states of some s-machine. By definition, 
the outputs in this case will  coincide at  any input, regardless of 
which of these equivalent states is the initial one. Conversely, if 
the initial states a re  nonequivalent, then there exists an input such 
that, starting with the 9th cycle, the two outputs will  differ. Here, 
9 depends not only on the specific s-machine under consideration 
(its internal structure and the number of its states lz), but also on 
the “discriminating” input sequence. Our problem consists of find- 
ing what is the minimal length of an input sequence capable of 
demonstrating the nonequivalence of two states of the given s- 
machines. It turns out that w e  canevaluate this length starting only 
with number ( k )  of the states of the machine. This length is given by 
the following theorem: 

Theovern 1 (Moore’s Theovern)*. If all k states of an s-machine 
,V are nonequivalent, then for  each pair  of these states theve exists 
an input sequence not longer than k - 1, capable of discviminating 
between them. 

Consider the decomposition of the set of states of N into groups 
equivalent in terms of set  L,  of all sequences of length s (s = 1 ,  
2, . . ., n - 1) .  We shall prove the theorem by induction with respect 
to s. W e  shall prove that if  the number of groups of states equivalent 

~ 

*See [72]; see also [98] where the same theorem has been independently proven. 



DETERMINATION OF EQUIVALENCE OF STATES 287 

in t e rms  of L,  is m, , then the number of groups equivalent in terms 
of L,+,  is not less than m, + 1 (that i s ,  m,+ > m, + I) .  

If s = I ,  that i s ,  all input sequences consist of one symbol, then 
we can decompose the set of states of N into at least  two groups of 
states equivalent in terms of Li .  Indeed, if all states of Nwere equiv- 
alent in terms of L , ,  they would also be equivalent in terms of set 
E of all possible sequences (since in this case the output of the 
machine would be governed only by its input). However, this is not 
the case here because N has no states equivalent in terms of E .  Con- 
sequently, rn l>  2. 

Now select two states xi and xJ which are equivalent in terms 
of L,. By our specification of N ,  xi and xj are nonequivalent states; 
therefore there must exist some input sequence capable of discrimi- 
nating between them, but this sequence does not belong to L,. Let 
the minimum length of this sequence be q (where q > 1) .  Then the 
first q -  (s + 1) symbols of this sequence will cause the machine to 
shift from the states xi and Xj to states xg and xh, respectively, 
which are alsoequivalentinterms of L,. In fact, since q is the mini- 
mum length of the discriminatinginput, then, if the initial states are 
xi and xj , the respective outputs must coincide from the ( q  - s - 1 )  -th 
to the ( q  - 1)-th machine cycle inclusively. For this reason, the out- 
puts will  coincide from the time q - s - 1 (at which the machine will 
be in states xg and X h ,  respectively). However, we  also know apviori 
that states xg and xh can be discriminated by an input of length s + 1, 
since the (s + 1 )  -th cycle after the initial states xg and X h  is the qth 
cycle after the initial states xi and xj, and q w a s  a priOri chosen in 
such a way that the outputs in the qth cycle will  be different. Con- 
sequently, states x g  and 3crL are apriori known to belong to different 
groups which are equivalent in  terms of L,+ ,. 

Let u s  note now that if two states xg and xh, which are equiva- 
lent in terms of L,, are nonequivalent in  terms of L, + then the group 
of states equivalent in terms of L,  to which lcg and X h  belong may be 
decomposed into at 'least two groups equivalent in t e rms  of L,  + 

This proves that m, + >/ m, + 1. 
It follows from this inequality and the inequality rnl >,2 proved 

above that there always exists a q* < k - 1 such that the number of 
groups of states equivalent in t e rms  of L,* is exactly equal to k ;  
that is, any two states of N are nonequivalent in terms of L,.. But 
this means that for each pair of statesof machine N there exists an 
input sequence from L,* no longer than q* = R - 1 at  which the outputs 
do not coincide. This proves Moore's theorem. 

Now, for  a few notes in connection with this theorem. 
Note 1. If the given automaton is associated with anoutput con- 

ver ter ,  and if w e  know not only the number k of nonequivalent states 



288 ELEMENTS OF MATHEMATICAL LOGIC 

but also the number 1 of symbols in the table of the output converter, 
then, instead of the estimate of ( k  - l ) ,  the estimate of q* = k - I + 1 
will apply. The proof of this statement follows the above proof of 
Moore’s theorem word for word, the only change being that in this 
case the inequality m ,  3, 1 applies instead of the inequality ml >2; 
that is, the number of groups of states equivalent in terms of L ,  
cannot be less than 1. If, however, 1 is not known a priori ,  then one 
uses the “worst” case in the estimate, that i s ,  the case when1 = 2 

Note 2. We can easily show that the estimate of the length of the 
sequence capable of discriminating between nonequivalent states and 
given by Theorem 1 is exact in the sense that this length cannot be 
shortened regardless of which s-machine with knonequivalent states 
is used. This follows from the fact that for each k we may devise 
machines in which two nonequivalent states are apriori  known to be 
indistinguishable if  the “discriminating” input is shorter thank - 1. 

Example. Consider a finite automaton (Table 11.1) associated 
with an output converter (Table 11.2) whose state diagrar is shown 
in Fig. 11.3. It is easily seen that to establish nonequibilence of 

and k - I + 1 = k - 1. 

Fig. 11.3. 

Table 11.1 Table 11.2 



DETERMINATION OF EQUIVALENCE OF STATES 289 

states Xk - I and the input sequence cannot be shorter than k - 1; 
this is because the machine startingfrom these states, will  generate 
only ho at any input shorter than k - 1. If, however, the output of 
machine in state 312 w e r e  12, then the nonequivalence of X k  - I and X k  

could be established by a sequence only k - 2 long (that i s ,  k - 1 + 1, 
where 1 = 3) .  

Note  3. The arguments used in the proof of Theorem 1 may also 
be used for proving the equivalence (or nonequivalence) of two states 
of a single s-machine of known structure (that is, a malaline with 
known state diagram, or tables of the automaton and converter). In 
that proof the machine states must f i r s t  be divided into groups equiv- 
alent in terms of L, ;  each of the groups so obtained must then be 
subdivided into groups equivalent in 
t e rms  of Ls ,  and so on, until the two 
states under consideration appear in dif- 
ferent groups. If this does not occur by 
the ( k -  I)-th step (that is, after all the 
states have been subdivided into groups 
equivalent in terms of L!, - ]), thenbyvir- 
tue of Theorem 1 the two states under 
consideration are equivalent. We used an 
essentially similar argument in Section 
9.4. 

Note  4. Although any two nonequiva- 
lent states can be distinguishedby aninputnot longer than k - 1, this 
discriminating input does, in general, vary in length with different 
pairs  of (nonequivalent) states. Thus, in general, thereis  no single 
finite input sequence capable of discriminating any one of the states 
from all the others. 

Example .  Consider a finite automaton (Table 11.3) associated 
with an output converter (Table 11.4), shown in Fig. 11.4. Here one 

Fig. 11.4. 

Table 11.3 Table 11.4 



290 ELEMENTS OF MATHEMATICAL LOGIC 

can distinguish between states X I  and x2 if the input sequence s tar ts  
withpo ; but discrimination between states X I  and x3 requires that the 
input s t a r t s  with p l .  

Note  5 (which is the direct consequence of Note 4 ) .  There 
exists no simple experiment which car, tell, even if the state dia- 
gram of the s-machine is available, what the state of the machine 
w a s  at  s tar t  of the test. Indeed, it has been shown that there is no 
finite experiment capable of distinguishing between a given initial 
state and all the others. And if wecarry out some experiment cap- 
able of distinguishing a given state xi from some subset S of the 
set  I( of all the states of this s-machine, the very experiment will 
automatically shift this s-machine out of the state xi, and thus we 
will  be unable to determine inwhich of the states of the subset K - S 
it  had been initially, 

It can, of course, be easily seen that when the machine has no 
equivalent states and w e  can perform a multiple experiment (that 
i s ,  we  have several identical s-machines, or  a machine with re- 
set) ,  w e  can always find the initial state. 

Note  6. Theorem 1 gives an estimate of the length of experiment 
capable of determining the nonequivalence of the states of two s- 
machines, having k l  and k2 internal states, respectively. This can 
be done by regarding these states as states of a single s-machine 
obtained by simple union*of these two s-machines. After this union, 
the nonequivalence of the two states may be established by an ex- 
periment not longer than q* = k ,  + lz, - 1. 

The nonequivalence of states of two different automatawith out- 
put converters can be established by anexperiment (see Note 1) not 
longer than q* = ill + h, - I+ 1. 

For the two s-machines q* = 2k - 1, and for the two automata with 
converters q* = 2k - I+ 1. The next example will  show that these 
values cannot be improved upon. 

E x a m p l e .  Figure 11.5 shows the diagrams of twofinite automata 
without output converters, where thenumber of output symbols 1 = 2. 
It is readily seen that an experiment establishing the nonequivalence 
of states X; and x; cannot be shorter than 7 (for example, the input 
sequence could be p ( t )  = p o p o p o p o p ~ p ~ p ~ ) .  If ,  however, statesxi and x i  
of these automata were associated with a new output h ~ ,  that is, if 
1 were 3, then experiment of length 6 is sufficient, Similar examples 
can be devised for k .  

If k l  = k Z ,  then the respective estimates become: 

.The state diagram of the combined machine is a simple union of the diagrams of the 
component machines. 



MULTIPLE EXPERIMENTS ON SEQUENTIAL MACHINES 291 

Fig. 11.5. 

11.3. MULTIPLE EXPERIMENTS ON 
SEQUENTIAL MACHINES 

The multiple experiment requires several identical s-machines 
o r  a machine with reset. In these experiments we consider only 
those states which the machine may attain in a finite number of 
steps, starting from state xo. 

A sequential machine is said to be xO-connected if i t  has a dia- 
gram such that for eachstatex, ( i  = l ,  2, . . ., k )  there exists an input 
capable of shifting this machine from itsinitial state xo to state xi. 
It is quite obvious that our discussion shouldnot go beyond xo -con- 
nected machines: if  the machine were not xo-linked, then our mul- 
tiple experiment will permit us  to study only that section of i t  which 
is xo -connected. For that reason, we shall discuss only xo -connected 
machines with reset. With such machines there is no problem of 
machine states at  the beginning or the end of the experiment, and 
the only problems which can be considered are those of the equiva- 
lence of two s-machines and of determining thediagram of the ma- 
chine. 

Let u s  f i rs t  discuss the equivalence problem. It is obviom that 
the determination of equivalence of two xo -connected s-machines 
may be reduced to a determination of equivalence of the two states 
xo in these two machines. But we have shown in the Section 11.2 
that the nonequivalence of states of two such s-machines can be 
proven by an experiment not longer than 2k - 1 o r ,  in the case of 
two automata with converters, by an experiment not longer than 
2k - 1 + 1. Thus the multiple experiment can discriminate a speci- 
fic xo -connected, s-machine from the whole class of x" -connected 
machines which are nonequivalent to i t  and whose diagrams are 
known. From this follows a technique for solving the second prob- 
lem,  that of constructing the diagram of this xo-connected, s- 
machine, the algorithm of which is as follows: 



292 ELEMENTS OF MATHEMATICAL LOGIC 

1. We preform all the possible experiments of length 2 k -  1 on 
the machine (a total of rZk  - I experiments). We record the results in 
the form of tables (tapes), leaving blank the table entries corre- 
sponding to the states of the s-machine. 

2 .  We assign some number i ( 1  < i .< k )  to the initial state of the 
machine and substitute this number into the corresponding positions 
of the table. 

3. After the f i rs t  step of the experiment, the machine will be in 
one of states x1 , of which there can be no more than r .  We use all 
the inputs of lengthk - I to find out whether there are any equivalents 
among the states xo and X I .  We assign arbitrary and different num- 
bers  L and r ( 1  < i ,  j ,< h )  to a 1  the states 3t1 which are nonequiva- 
lent to each other and to state x o .  Those states that are equivalent 
are coded by the same number. Let the number of different states 
X I  be r l .  

4. From each of the states so coded no more than r new states 
x2 may be reached in one step, so that the total number of states x2 
cannot exceed rlr .  We use all the possible input sequences of length 
k ~ 1 to ascertain whether there are equivalents among states 3to, x1 
and 1c2. We assign numbers tostates 3t2 in the same way as w e  have 
coded states X I .  

5. We continue this process until we find k states nonequivalent 
to each other. It is obvious that this number will  be reached in less 
than 2 k -  I steps (that is, w e  need not scan all the experimentally 
derived tapes). 

6. We construct a state diagram, a basic table, or an intercon- 
nection matrix in accordance with the experimental results. 

Note.  Because the output of a finite automaton with an output 
converter is governed by i t s  state 1c and is independent of the input 
p supplied at  the given time, we need only r * k  - 1 experiments of length 
2k - 1 + 1 (instead of rZk  - 1 + I )  to derive the diagram of this automaton. 

In addition, the las t  input symbol in 
each experiment may be arbitrary,  for 
example, the same one for all experi- 

Example. Suppose we know that a 
automaton associated with an 

output converter has k = 3 nonequiva- 
lent states, r = 2 inputs, and 1 = 3 out- 
put symbols. Then experiments of 
length 2k - 1 + 1 = 4 ,  performedin this 
automaton as per the above algorithm, 

Fig. 11.6. allow us to enter the states into the 



MULTIPLE EXPERIMENTS ON SEQUENTIAL MACHINES 293 

table (see the symbols in parentheses of Table 11.5) and to con- 
struct the state diagram of the automaton (Fig. 11.6). 

Table 11.5 



294 ELEMENTS OF MATHEMATICAL LOGIC 

11.4. SIMPLE EXPERIMENTS ON 
SEQUENTIAL MACHINES 

If multiple experiments cannot be performed, we can study 
s-machines by means of simple experiments. 

The problem of discerning nonequivalence and determining the 
internal structure of s-machines by simple experiments has been 
solved only for the case of the set  of machines in which all the states 
are nonequivalent. Such a set is that of differing strongly connected 
machines. A sequential machine is said to be strongly connected if 
for each pair x i  and xj of its states there exists an input sequence 
capable of shifting i t  from state xi to state xi. 

Because the class of strongly connected machines is narrower 
than that of xO-connected machines, i t  follows from Section 11.3 
that two strongly connected s-machines are equivalent i f  at least 
two states of these machines are equivalent. Therefore all the states 
of all the machines of a set  consisting of differing strongly con- 
nected machines are nonequivalent. 

A s  stated in Note 5 to Theorem 1 (see Section 11.2), in general 
there is no simple experiment capable of distinguishing an initial 
xo of an s-machine from all the other states which are nonequivalent 
to it. For this reason we would want to find a simple experiment 
which would shift the machine into a state which could be uniquely 
specified; in other words, we desire an experiment in which there 
exists a unique correspondence between the result and the last  state 
of the experiment x p  (the state that corresponds to the last  input 
symbol being tested). That an experiment exists, and that the entire 
class of s-machines may be subjectedtoit is  proved by Theorem 2 ,  
which also provides an estimate of its length. 

Theorem 2 (the Moore-Karatsuba Theorem). The last state of a 
given s -machine with k nonequivalent intevnal states is obtainable 

k ( k - 1 )  from an experiment not Eongev than -7 or ,  in  the case of a fi- 
( k  - 1) ( k  - 2) 

nite automaton, not longer than 2 + 1. 
proof. Assume that the state diagram ofthe s-machine is given. 

We shall try to find the input sequencediscriminating the last state 
of this machine in the form of a series of consecutive sequences 
(that i s ,  experiments) a,  (s = I ,  2, . . .). These sequences shall be such 
that the set  T ,  of the possible states* occurring after the input of 

*In papers [72], [25], [41], [59] ,  and [60], the set T ,  is called the set  of associated 
states. Let us emphasize that T ,  is the set of those states which occur after the input 
of sequence a,, and is is not the set of possible states which govern the last observed 
output symbol (and thus determine thedecompositionofthe set of all the states into groups 
equivalent in te rms  of u s ) .  



SIMPLE EXPERIMENTS ON SEQUENTIAL MACHINES 295 

the last symbol of experiment a, (these states are therefore the pos- 
sible initial states for the next experiment a,+ I )  will contain not 
more than k - s  elements. If the s-machine is an automaton, then 
such states would include at least two states which can be distin- 
guished by an experiment of length 1, that i s ,  by any input symbol. 

This condition is satisfied before the beginning of the experi- 
ment, when s = 0, Now w e  shall prove thatif this condition is satis- 
fied for  a,, then there exists an as+ for which it also holds. The 
initial machine state for the experiment a, + 1 must belong to the set  
of states T,. Using Theorem 1 and the set  of arguments used in i t s  
proof, we find that the elements of T ,  (there can be no more than 
k - s such elements, in accordance with the condition of Theorem 2)  
may belong to: 

a) at least  two groups of states equivalent in terms of set  L s + l  
of all experiments not longer thans + 1 (there are at least s + 2  such 
groups; see Theorem 1); and 

of all experiments not longer thans + 2(there are at  least s+ 3 such 
groups). 

Consequently, for any s-machine there will  always be, among the 
k - s states of s e t  T ,  , a pair  of states which can be distinguished by 
an s + 1 long experiment a,  + For this reason set T ,  + will  contain 
at least  one element less than T, ,  that i s ,  i t  will  contain not more 
than k -  (s + 1 )  states. 

If, however, our machine is an automaton, then,by virtue of (b), 
set T ,  will  always contain a pair of states that can be distinguished 
by an s + 2 long experiment, in which the sequence of the first s + 1 
symbols is regarded as the experiment a, + The theorem stipulates 
that in an automaton there are at  least two states of T ,  that are  dis- 
tinguishable by any input symbol. For this reason, the f i rs t  symbol 
of the experiment a, + will discriminate between these symbols. 
Consequently, set  T ,  + will  contain at least  one element less than 
set T,<,  that is,itwillcontaink - ( s  + l)states,  at  least two of which, 
by virtue of our choice of experiment a, + ,w i l l  be discriminated by 
any input symbol. 

Since the theorem holds for s and s + 1 ,  i t  follows by induction 
that i t  wil l  hold for any positive integral s ; thus Tk - will  contain 
not more than two states which, in the case of an s-machine, can be 
distinguished by an experiment a k  - ,  not longer than k - 1 o r ,  in the 
case of an automaton, by an input symbol (that is, by an experiment 
of length 1). 

Thus, none of the experiments a, is longer than s , and the last 
state of the s-machine may be determined by an experiment not 

b) at least three groups of states equivalent in terms of set  L,  + 



296 

longer than 

ELEMENTS OF MATHEMATICAL LOGIC 

b - 1  - p~ k ( k - 1 )  
2 (11.1) q ' i i  s=- 

while the length of a similar experiment required in the case of a 
finite automaton is 

I, - 2  

+ 1 .  
( k -  I )  ( k - 2 )  

2 
q - v  = ~ s +  1 =- (11.2) 

Note 1 ,  The two examples given below show that the above- 
calculated required experimental length cannot be shortened. 

Example 1. In order to distinguish the las t  state of an automa- 
ton with diagram of Fig. 11.7, w e  require an experiment pIp2pIpI 

Fig. 11.7. 
( k -  1) ( k - 2 )  of length 4, that is, of length exactlyequal to 2 + 1. 

Example 2. In order to distinguish the last state of an s-machine 
with diagram of Fig. 11.8, w e  require an experiment P ~ P I P ~ ~ ~ P I P ~  of 
the length k ( k  - 1) - 

It is readily shown that no shorter experiment will accomplish 
this in either example. The technique for devising similar examples 
for any k is obvious. 

-6 .  

Fig. 11.8. 

Note 2, If the output alphabet is taken to contain 1 symbols then, 
by a similar reasoning, w e  arrive at  an estimate of the length of 
experiment determining the last state of an automaton with an out- 
put converter: 

- ( k - l +  l ) ( k - l )  
4' 2 - + I  (11.3) 



SIMPLE EXPERIMENTS ON SEQUENTIAL MACHINES 297 

In the case of automaton without a converter(k = I ) ,  w e  obtain 
the obvious estimate of 1. 

Note  3. The experiment determining the last  state is shorter in 
cases where the initial states are knowntobe a subset of the entire 
s e t  of states k .  If the total number of possible initial states is 
1 < v , < k ,  and among those states there are states which can be 
distinguished by any input symbol, then we can prove by reasoning 
similar to that used in the proof of Theorem 2 that the length of an 
experiment discriminating the last  state of an automaton with a con- 
ver ter  must be 

(11.4) - v - 2  
q = 7 ( 2 k - 2 2 1 - ~ + 3 ) + 1 .  

When none of the v initial states of an automaton with a converter 
is distinguishable by an experiment of length 1 ,  then the length of 
the required experiment will  be 

(11.5) - ( ~ - 1 ) ( 2 k - 2 2 1 - ~ + 4 )  
4 =  2 

Example  3. If the only initial states of the automaton of Fig. 11.7 
are 1c3 and x4, then the last state will  be distinguished by an ex- 
periment p2p1p2 of length 3, that i s ,  of length exactly equal to 

. If, however, only l c l  and x3. are initial states ( v  - 1) ( 2 k  - 21 - Y + 4) 

then the last state will  be distinguishedbyany input symbol, that is, 
by an experiment of length 

2 

( ' z 2 )  (2k-2l-v+3)+ 1 = 1 

Note  4. In discussing the shortest possible experiments, we 
should note that if T ,  contains less than k - s elements (for example, 
k - s - m elements), then reasoning similar to that used in proving 
Theorem 2 will show that the length of the sequence which follows 
as is not s + 1, but s + m + 1. However, in this case the total length 
of an experiment shifting the machine into a specific last  state is 
shorter because sequences ranging in lengthfroms + 1 tos + m drop 
out. 

We shall now illustrate a regular technique for finding the short- 
e s t  experiment giving the las t  state of an automaton with a converter. 
This procedure follows directly from Theorem 2 .  

Example  4. Consider a finite automaton associated with an out- 
put converter whose diagram is that of Fig. 11.9, the basic table is 
Table 11.6, and the converter Table is 11.7. Table 11.8 shows the 
procedure for finding the shortest experiment for determining the 
las t  state of this automaton. 



298 

S 

0 
1 

4 
5 

ELEMENTS OF MATHEMATICAL LOGIC 

a,  T S  Number of elements 
in T, 

>> I7-I.% x3.7-4, 7-5. 7-6V7-71 k = 7  
a1 = P I N 1  C A ~ }  {xq.  x3. x4, x I )  k-s-m =7-1-2=4 

a, = PoPoQoPiPt ( r l }  {xZ, ~ 3 ,  xI) k-~=7-4=3 
a5 ~ P o P o P o P o P I  ( ~ O V ~ I )  ('3) { X g .  XI) k-s=7-5=2 

POVPl 

Table 11.6 Table 11.7 

Table 11.8 



SIMPLE EXPERIMENTS ON SEQUENTIAL MACHINES 299 

Fig. 11.9. 

to each other, then theve exists a simple branching expevimnt which 
permits us to distinguish any element S, of set  (SJ from all the other 
elements of that set .  

There a re  two lines of approach to devising this experiment and 
to estimating its length. First ,  we can devise a branching experi- 
ment consisting of a series of sequences, each of which will shift 
each of the machines of the set into some known final state. These 
sequences are  then followed by sequences discriminating these final 
states from each other. This is the approach proposed by Moore 
[72]. Thus, if w e  deal with an s-machine set  { S }  consisting of Si 
elements with internal states (where i = 1, 2, . . . , N ) ,  then the length 
of such an experiment will be [from (11.3) and (11.7)] 

1). (11.6) 
i - 1  

where k,,ax and kzrnax are  the maximal numbers of states. 

length of the experiment will obviously be 
If all machines have the same number of internal states, the 

(11.7) k ( k - I )  q i = N  + ( N - l ) ( 2 k - l ) .  

In the case of finite automata with converters we get from 
(11.4) and (11.9) 

(11.8) 



300 ELEMENTS OF MATHEMATICAL LOGIC 

o r ,  when all machines have the same number of states 

(11.9) 

Finally, if we  are dealing with an automaton not associated with 
a converter, that is, if k = I ,  then any input symbol will  determine 
the state in which each automaton is (see Note 2)  and the length of 
the experiment permitting the discrimination of one of the N auto- 
mata will be 

If w e  have one real machine S,  of the given set { S }  and the state 
diagrams of all the machines of the set ,  then w e  can devise such an 
experiment in the following manner: 

1) From their state diagrams we find all the possible experi- 
ments determining the final states of all the machines of set ( S } .  
Assume that for machines SI, Sz ,  . . ., S N  w e  have experiments 
a,,az, . . ., aM ( M  N ) .  Even though all these machines are nonequiv- 
alent, each of these experiments may give identical results (the re- 
sults can depend on the initial state of a machine). Thus, each of 
these experiments can produce identical results in the machine 
whose final state the experiment uniquely determines, aswell as in 
the other machines of the set. 

2 )  We perform a mental experiment a l  on machine S1 consecu- 
tively, starting from all of its possible initial states. We also per- 
form the same experiment of the real machine S ,  under investigation. 
If at  any of the initial states the experimental results for S ,  coincide 
with those for S,, we have determined afinal state of SI which may 
also possibly be a final state of S,. If the results of the experiment 
a l  with S ,  differ from those of the same experiment with S ,  at all 
possible initial states of S I ,  we eliminate this machine from further 
considerati on. 

If the same experiment a l  determines the final states of several 
machines of set  ( S }  , for example, those of machines Sbl , Se , . . . , Sa , 
and i f  all (or some) of these results,  at  some initial sthes: coincide 
with the experimental results on S,, w e  have determined the final 
states of these machines, which may alsopossiblybe final states of 
S,. If there is no such matching of results w e  eliminate these ma- 
chines from further discussion. 

3) We perform a mental experiment a2 with the corresponding 
machine Sz (or with machines S,,, SB2, . , ., Sp,) at all of i t s  possible 
initial states. We carry out the same experiment with the real 



SIMPLE EXPERIMENTS O N  SEQUENTIAL MACHINES 30 1 

machine S,, as well  as with machine S ,  o r  with those of machines 
S=,, Sm2, . . ., Sm which were not eliminated in (1) and(2). The initial 
states taken fdr machines SI or Sa,) Sb19 . . . , Scl are those determined 
by their final states and the last symbol of experiment a l .  We then 
drop those of machines SI and Sz (or Sm , Sa , . . ., Sa o r  S,,, Sp2, . ., Sp,) 

for which the results of experiment a2 do not coincide with the re- 
sults of the experiment with the realmachine S,, and thus establish 
the final states of the remaining machines. 

We continue in the same manner with other experiments until 
we have performed all the experiments ai whichdetermine the final 
states of all the machines of set  (S} .  Our result may then show that 
S ,  can belong to a subset [s) C ( S )  of machines reduced to some defi- 
nite states. 

If the given set  contains automata without converters, then, as 
w e  have already indicated, any input symbol will  yield the final 
states of all the automata. 

4) We find from the state diagrams anexperiment 61, discrimi- 
nating between the states of any two machines S, and S ,  of (3) .  
We then perform this experiment on S, andS, and on the real ma- 
chine s,. This eliminates either both of these machines, or one of 
them. We note the final state of the remaining machine. 

5) We select another one or two machines from {3} and perform 
on i t  (or them) the same experiment b l .  If the result(s) match that 
obtained in  (4) on S,, we note the final state of the remaining machine 
(or machines). 

6) We find an experiment discriminating between the state of the 
machine remaining in (4) and that of the machine(s) remaining in 
(5). We perform experiment bZ with this pair of machines and with 
the machines S,, as indicated in (4). We then follow the instructions 
of the algorithm (1-5) until all the machines set {s) but one are 
eliminated, the state diagram of the remaining machine being that 
of the real machine S,. 

Example 5. Assume we are given the diagrams of three auto- 
mata (Fig. 11.10) and w e  are required to find out which of these 
diagrams corresponds to that of some real automaton whose dia- 
gram is unknown but which is available for  experimentation. 

Assume that real automaton happens to be SB in initial state 1123. 
Then the input of any symbol (for example, p2) to this automaton 
immediately shows the possible initial states ( ~ 2 1 ,  ~ 2 2 ,  and x23, in this 
case) of this machine. Then a further input of a four-symbol se- 
quence p2pIplp2 enables u s  to distinguish between the states x l l  and 
x12 (of the three possible states xl l ,  xI2 ,  and XI3 into which the machine 
could be shifted by the input of p2 ). Finally, the sequence p2plp2p2 

1 2  4 



302 ELEMENTS OF MATHEMATICAL LOGIC 

Fig. 11.10. 

enables us  to distinguish between states x I 2  and xI3 which the machine 
can assume after the input of the f i rs t  five symbols. Thus the en- 
t ire branching experiment p 2 p ~ p 1 p 1 p ~ p ~ p ~ p ~ p ~  enabling us  to distinguish 
one automaton from a given se t  will  have a length of 9; that is, will  
exactly equal the result of expression (11.10). It is readily seen 
that w e  could have used a shorter experiment, for example, p1p2plp1p2, 
to accomplish the same purpose. But in this case w e  would have to 
carefully select all the sequences comprising the entire experiment 
(that is, the first step p l  aswellas the sequences p2pl and pIp2 dis- 
criminating between the states), inspecting beforehand all the pos- 
sible final states which can be arrived at  from all possible initial 
states, and this would greatly complicate the algorithm of the ex- 
periment. 

One can also find out the length of a simple nonbranching ex- 
periment which would enable u s  to distinguish one specific machine 
from a given set  { S L ]  in which all states are nonequivalent to one 
another. This could be obtained by another method, starting with 
the simple union of elements of the given set  (see the footnote on 
p. 290). An experiment which would determine the final state of 
such a combined machine at  all possible initial states,  would ob- 
viously enable us  to distinguish any machine of the set. 

In accordance with Note 6 to Theorem 1, any two states of such 
a combined machine can be distinguished by an experiment not 
longer than k,, + k,, - 1 (or k,, + km, - I +  1 in the case of automata 
associated with converters), where k,=, and k,, are the largest of 
all k , .  For this reason, the experiment determining the final state 
of a combined machine will  consist of sequences whose estimated 
length increases from 1 to k,, + k,, - 1 (or km, + km, - 1 + 1 for auto- 
mata with converters), and then remains constant. 

Using reasoning analogous to that employed in the proof of Theor- 
em 2 ,  we obtain the following estimates: for a set  of machines, 



SIMPLE EXPERIMENTS ON SEQUENTIAL MACHINES 

each with the same number of states 

qun = k (2k - 1) ( N -  l ) ,  

for automata associated with converters 

1 
quA = (2k - I + 1) ( N k  - k - ?) + 1, 

303 

(11.11) 

(11.12) 

for automata without converters, or at  k = I 

It can be shown that theestimates (11.11) - (11.13) for the length 
of a nonbranching experiment, applicable to the union of all the ma- 
chines of the set ,  are usually not as good as the estimates (11.7), 
(11.9), and (11.10) for the length of a nonbranching experiment ob- 
tained by shifting each machine of the set  into some specified state 
and then comparing those states. Moreover, the second method is 
much more complicated than the first because in searching for in- 
dividual sequences constituting this experiment w e  do not deal with 
the individual machines of the set, but with the set  as a whole. 



12 

0 I 0  1 0  1 0  1 0  1 0  

Algorithms 

1 ... 

12.1. EXAMPLES OF ALGORITHMS 

0 7 5 3 0 7 5 3 0 7 5 

In our previous discussion we have examined many infinite se- 
quences without stopping to think what i t  means “to examine” an 
infinite sequence. Obviously, we cannot scan i t ,  and the only under- 
standing of such a sequence which we can achieve derives from the 
analysis of i t s  properties. We shall illustrate this concept by some 
examples. 

Determination of a term in an infinite sequence. Consider the 
sequence 

3 ... 

1 0 0  1 0 0 0 0  1 0 0 0 0 0 0 1 0 0  

There is little that w e  can forecast about its further behavior. How- 
ever ,  i f  we know that the symbols 0 and l always alternate, we can 
predict the term appearing in any position, because 0 always appears 
in an odd-numbered, and 1 in an even-numbered position. 

Now consider the sequence 

... 

If w e  know that groupO, 7 , 5 , 3  is recurrent, and i f  we know the first 
term of this sequence, w e  can again determine any subsequent term. 
To find the term appearing in the nth position, we divide n by the 
number of terms in the recurrent group. The remainder obtained 
in this division indicates tine position of the term in the recurrent 
group. If the remainder is 0,  the nth term coincides with the last 
term of that group. 

A s  a final example, consider the sequence 

304 



EXAMPLES OF A L G O R I T H M S  3 05 

Here  1 appears only in  positions whose LLaddresses” a re  squares 
of integers. If we know that, we know everything about the sequence. 
To find the nth term, w e  merely take the square root of n. If i t  is 
an integer, the nth term is 1. Otherwise, it is 0. 

These three examples had one common “property” which en- 
abled u s  to reconstitute the entire infinite sequence starting from a 
small segment of it. In all cases w e  had a “prediction procedure,” 
that is, a procedure for determining any term, given i t s  “address.” 
To be more exact, in all three caseswe dealt with an algorithm for 
finding the t e rm,  given the ordinal number of i t s  position in the se- 
quence. 

An algorithm usually means a set  of formal directions for ob- 
taining the required solution. This formulation is not exact but 
ra ther  expresses an intuitive concept which dates back to antiquity. * 

To clarify the characteristic properties of an algorithm, let  u s  
consider some typical examples. 

The Euclidean algorithm, This algorithm determines the great- 
e s t  common divisor of two positive integers a and b ,  and may be 
described by the following sequence of directions: 

1. Compare a and b ( a  = b, or a < b ,  or  a > b ) .  Go on to 2. 
2. If a = b then either is the greatest common divisor. Stop the 

computation. If a + b go on to 3. 
3. Subtract the smaller from the larger number and write down 

the subtrahend and the remainder. Go to the next instruction. 
4. Assign symbol a to the subtrahend, and symbol b to the re- 

mainder. Return to direction 1. 
The procedure is repeated until a = b. Then the computation is 

stopped. 
The above set  of directions, each consisting of a simple arith- 

metical operation (subtraction, comparison) can obviously be made 
more detailed, in which case the direction will  be still simpler. 

Algorithms which reduce the solution to arithmetical operations 
are termed numerical algorithms. Our three previous examples be- 
longed to this class, as do formulas and procedures for solution of 
any class of problems, provided such formulas fully express both 
the nature of the operations (multiplication, subtraction, or  division) 
and the order in which they must be performed. 

A logical algorithm. Now consider an algorithm for solving a 
logical problem-that of finding a path in a finite labyrinth. 

T h e  term “algorithm” itself derives from the name of the ninth century Uzbek mathe- 
matician al-Khuwarizrni, who formulated a set of formal directions, that is, rules for 
carrying out the four operations of arithmetic in the decimal system. 



306 ELEMENTS OF MATHEMATICAL LOGIC 

Imagine a finite system of rooms, each of which is the origin of 
one or  more corridors. Each corridor joins two adjacent rooms, 
and a room may thus be connected to several other rooms. On the 
other hand, i t  may open only intoasingle corridor,  in which case i t  
will  be a “dead-end” room. Graphically, the resultinglabyrinth may 
be shown as a system of circles A ,  B ,  C. . . .,joined by straight lines 
(Fig. 12.1). We shall say that room Y is accessible from room X 
if  there exists apathleadingfrom X to Y via intermediate corridors 
and rooms. This means that either X and Y are adjacent rooms or 
there exists a sequence of adjacent roomsX, X,, X,, X,, . . ., X,,, Y.  
If Y is accessible from X, then the path from X to Y must be simple 
(loopless); that is, each intermediate room is traversed only once. 
Thus, in the labyrinth of Fig. 12.1, one simple path from H to B is 
H D C B ;  but L is inaccessible from A .  

Fig. 12.1. 

Suppose that we wish  to ascertain whether F is accessible from 
A and that, if so, wewishtofind a path from A to F ; but,if F proves 
inaccessible, we wish to return to A at the end of the search. We 
have no map of this labyrinth and for that reason shall employ a 
general search procedure applicable to any labyrinth containing a 
finite number of rooms, with any mutualdispositionof rooms A and 
F within it. In one such procedure, the searcher, like the mythical 
Theseus, holds a ball of thread, one end of which is tied down in the 
starting room A .  In addition, the searcher can paint the corridors 
a s  he walks along them. He is thus able to distinguish those never 
passed before (green), those passed once (yellow), and those passed 
twice (red). The searcher can getfromanyroom to an adjacent one 
by either of two moves: 

a) He can unwind the thread. He thus stretches the thread along 
a “green” corridor,  which then becomes “yellow.” 

b) He can wind the thread on the ball. He thus returns from a 
given room to an adjacent one, walking along a “yellow” corridor. 



EXAMPLES OF ALGORITHMS 3 07 

He picks up the thread as he walks  along, and the corridor now be- 
comes crred.99* 

Having arrived into any given room, the searcher may encounter 
any one of five possibilities: 

1. This is room F ,  the object of the search. 
2. At least  two “yellow)’ corridors radiate from this room, that 

is, a thread is already stretched across it. The searcher now 
realizes that he has just traversed a loop. 

3. A t  least  one “green” corridor originates in this room. 
4. This is the starting room A .  
5. None of the above. 
Now the search procedure can be specified by the following 

Evidence in the ~ o o m  

table : 

Next move 

1. 
2. 
3. 
4. 
5. 

In 

Room F stop 
Loop Wind the thread 
“Green’ corridor Unwind the thread 

Fifth possibility Wind the thread 

each room, the searcher must decide on his next move by 

Room A stop 

scanning the table in numerical order and ascertaining which of the 
possibilities listed matches the evidence in the room. Having found 
the first match, he makes the necessary move without checking for 
other applicable possibilities. He continues to move in this fashion 
until the instructions are to stop. 

For this procedure, we can prove the following: 
1. After a finite number of moves, the searcher will  stop at 

either A or F ,  regardless of the mutual dispositions of A and F. 
2. If he stops at  F ,  then he has reached his object, and the thread 

is now stretched along a simple path from A to F .  
3. If he stops at A ,  then F is inaccessible. 
Let u s  illustrate the procedure on the labyrinth of Fig. 12.1. 

We represent the procedure in the form of Table 12.1 and see that 
F is accessible from A .  We write down those corridors of column 
4 which remain “yellow)’ to the very end. These constitute the 
simple path from A to F .  

This procedure involves an element of choice which did not exist 
in the pregiously discussed examples. Thus, two different calcula- 
t o r s  trying to find the greatest common divisor of two numbers by 

*In fact, the searcher needs only two colors-green and red; this is because the 
“yellow” corridors contain the stretched thread. 



308 

1 
2 
3 
4 
5 

ELEMENTS OF MATHEMATICAL LOGIC 

Table 12.1 

Green corridor 

Evidence in room 
Move NO. determining 1 1 next move 

6 
7 
8 
9 

10 
11 

Fifth case 

Green  corridor 
Loop 
Green corridor 
Room F 

1 Path 1 Corridor 
Next Move (‘Or- color after q$cJ this move 

Unwind thread 

I t  

Wind thread 

Unwind thread 
Wind thread 

,. 

Unwind thread 
STOP 

AB 
BC 
CD 
DH 
HI 
IH 
HD 
DB 
BD 
DF 

Yellow 

I .  

I ’  

Red 

Yellow 
Red 
Yellow 

Euclid’s algorithm performs operations coinciding in every detail: 
there is no room for individual judgment. But in the labyrinth pro- 
cedure, two searchers may go from ,4 to F via distinctly difterent 
paths. 

Traditionally, the term “algorithm” is restricted to an exactly 
defined set  of instructions. In this sense, the labyrinth search pro- 
cedure is not an algorithm. To become one, i t  would have to be sup- 
plemented by an exact specification on what to do in the case of 
“green” corridors (for example, this supplemental instruction may 
specify that if several “green” corridors originate from the same 
room, the searcher must select the f i rs t  one to the right of the en- 
trance). 

12.2. GENERAL PROPERTIES OF ALGORITHMS 

The above examples point out some overall properties charac- 
teristic of any algorithm: 

(a) Detevminancy. The procedure is specified so clearly and 
precisely that there is no room for arbitraryinterpretation. A pro- 
cedure of this kind can be. communicated to another person by a finite 
number of instructions. The operations described by these instruc- 
tions do not depend on the whim of the operator and constitute a 
determinate process which is completely independent of the person 
carrying i t  out. 

(b) Generalityy. An algorithm is applicable to more than just one 
specific problem: i t  is used for solving a class of problems, with 
the procedural instructions valid for any particular set of initial 
data. Thus, Euclid’s algorithm is applicable to anypair of integers 



GENERAL PROPERTIES OF ALGORITHMS 309 

a > 0,  6 > 0; the rules of arithmetic apply to all numbers; and the 
search rules hold for any finite labyrinth, however intricate. 

In mathematics one considers a series of problems of a specific 
kind to be solved when an algorithm has been found (the finding of 
such algorithms is really the object of mathematics). But in the 
absence of an algorithm applicable to aEZ problems of a given type, 
one is forced to devise a special procedure valid in some but not 
other cases. However, such a procedure is not an algorithm. For 
instance, there is no algorithm for finding out whether the solution 
of equation 

X” + y” = 2“ (12.1) 

is an integer at any iz = 1, 2, 3 ,4 ,  . . .. This problem may neverthe- 
less be solved for particular values of n. Thus, for n = 2 ,  we can 
easily find three numbers ( x  = 3, y = 4, z = 5)  satisfying Eq. (12.1). 
And i t  may be proved that Eq. (12.1) has no integer solutions for 
n = 3. However, this proof cannot be extended to other values of n. 

(c) Efficacy. This property, sometimes called the directionality 
of an algorithm, means that application of an algorithmic procedure 
to any problem of a given kindwill lead to a “stop” instruction in a 
finite number of steps, at  which point one must be able to find the 
required solution. Thus, no matter now intricate the (finite) labyrinth, 
the search algorithm must lead to a “stop” instruction in a finite 
number of steps. The stop will  occur either at  F or at A ,  enabling 
u s  to decide whether F is accessible or not. Again, the use of the 
Euclidean algorithm with any two numbers a >, 1, b>,  1 will  sooner 
o r  later lead to a “stop” instruction, at which point one can deter- 
mine the value of the greatest common divisor. However, nothing 
prevents u s  from using the Euclidean algorithm with a h 0  and 
b>O , or  with any pair of integers (positive or negative). There is 
no ambiguity at any step of the algorithm, but the procedure may 
not come to a stop. For example, if a = 0, 6 = 4 ,  our sequence of 
instructions (1-4) gives the pairs 0,  4; 0 ,  4; 0,  4.. . and so  on ad 
infiniturn. The same wi l l  happen with the pair a = -2, 6 = 6. 

Thus, the concept of efficacy of an algorithm naturally leads to 
the concept of its range of application. The range of application is 
the largest range of initial data for which the algorithm will  yield 
results;  in other words, if  the problemis stated within the range of 
application, then the algorithm wi l l  work up the (given) conditions 
into a solution, after which the procedure will  come to a stop; if, 
however, the problem conditions are outside this range, then either 
there will  be no stop, or there wi l l  be a stop but w e  shall not be able 
to obtain a result. Thus, the range of application of the Euclidean 



310 ELEMENTS OF MATHEMATICAL LOGIC 

algorithm is the set of natural numbers ( 1 ,  2, 3, 4, . . .}, and the 
range of application of the search algorithm is the set  of all finite 
labyrinths. 

Now, the number of individual operations which must be per- 
formed in an algorithmic procedure is not known beforehand and 
depends on the choice of the initial data. For this reason, an al- 
gorithm should be understood primarily as a potentially feasible 
procedure. In some specific problems stated within the range of 
application of the algorithm there may be no practical solution: the 
procedure may be so long that the calculator will  run out of paper, 
ink, or time, or  the computer executing the algorithm may not have 
a large enough memory. 

De te rmi nancy , generality , and efficacy are e mpi ri c a1 proper tie s. 
They are present in all algorithms constructed so far. However, 
these empirical properties are too vague andinexact to be useful in 
a mathematical theory of algorithms. We shall try to refine them 
in subsequent sections. 

12.3. THE WORD PROBLEM IN 
ASSOCIATIVE CALCULUS 

The previously described search procedure w a s  restricted to 
finite, though arbitrary,  labyrinths. There exists,  however, a far 
reaching generalization of this problem which, in a sense, consti- 
tutes a search in an infinite labyrinth. This is the wordproblem.  
It arose f i r s t  in algebra, in the theory of associative systems, and 
in the group theory, but the conclusions derived from i t  have since 
transcended these specialized fields. * 

Let any finite system of differing symbols constitute an alpha- 
bet, and let the constituent symbols be i t s  characters. For instance, 
{u, 5, ?, 7, *} is an alphabet, whereas u, 5, ?, 7 and * are its charac- 
ters. Any finite sequence of characters from an alphabet is called 
a word of that alphabet. Thus, the three-character alphabet ( a ,  b ,  c} 
will yield words ac ,  a ,  abbca, bbbbb, bbacab ,  etc. Anemptyword, con- 
taining no characters,  is denoted by A. 

Consider two words L and M in some alphabet A. If L is a part  
of M ,  then we say that L occurs in M. For example, the word L = ac 
occurs in M = bbacab. In general, L may occur inM many times; 
thus bch occurs t z c e  in abcbcbab. 

I 

*Important contributions to i t s  solution were made by A.A. Markov, P.S. Novikov and 
their  students. Familiarity with this problem will help us  to understand the theory of re- 
cursive functions. 



THE WORD PROBLEM IN ASSOCIATIVE CALCULUS 31 1 

We shall now describe the process of transformation of words, 
whereby new words are obtained from given ones. We s tar t  by 
setting up a finite system of substitutions allowable in a given al- 
phabet: 

P-QQ; L - M M ;  ...; S - T ,  

where P ,  Q, L ,  M, . . ., S ,  T are wordsin thisalphabet, andthe dashes 
between them denote substitution. Thus, an L-M substitution in a 
word R of this alphabet may be defined as follows: if L occurs one 
or more times in R ,  then any one of these occurrences may be re- 
placed with M; conversely, ifMoccurs in R , then i t  may be replaced 
with L.  For example, there are fourpossible substitutions ab - bcb 
in abcbcbab. Replacement of each subword bcb with ab yields aabcbab 
and abcabab, respectively, whereas the replacement of each ab 
yields the words bcbcbcbab and abcbcbbcb. However, the substitution 
a6-bcb in bacb is not allowed since neither a6 nor bcb occurs in it. 

The words obtained by means of allowable substitutions may be 
again replaced, which yields yet new words. 

The aggregate of all the words inagiven alphabet, together with 
an appropriate set of allowable substitutions, is called an associa- 
tive calculus. To define an associative calculus, i t  is sufficient to 
define the alphabet and the set of substitutions. 

Two words PI and Pz of an associative calculus are said to be 
adjacent if one may be transformedinto the other by a single allow- 
able substitution. A sequence of words P ,  P I ,  P p ,  PB, . . ., Q iscalled 
a deductive chain leading from P to Q if every two consecutive words 
in this chainare adjacent. Twowords P and Q are said to be equiva- 
lent if thereexists adeductive chainleadingfrom P to Q. The equiv- 
alence relationship is shown as P - Q. It is obvious that if P - Q, 
then Q - P ,  since the allowable substitutions may be used in either 
direction. 

Example. Assume w e  have the following associative calculus: 

(a,  b,  c, d ,  el-alphabet 
ac - ca 

ad - da  
bc - Cb 

bd -db  - allowable 
substitutions 

abac - abacc 
eca - ae 
edb - be 



312 ELEMENTS OF MATHEMATICAL LOGIC 

Here, the words abcde and acbdc are adjacent, since abcde may 
be transformed into acbde by the substitution bc-cb. However, aaabb 
has  no adjacent words, since none of thegiven substitutions may be 
applied to it. The word abcde is equivalent to cadedb, since there 
exists a deductive chain of adjacent words: abcde, acbde, cabde, 
cadbe, cadedb , derived by successive use of thFthird,%rst, fourth, 
andTifth of the above substitutions. 

An associative calculus may be put in correspondence with an 
infinite labyrinth by matching a specific room of the labyrinth with 
a word from the alphabet. Since the number of words which may be 
formed from the characters of agiven alphabet is infinite, i t  follows 
that the labyrinth can have an infinite number of rooms. 

Two adjacent rooms of the labyrinth correspond to adjacent 
words. Now, if two words P andQ are equivalent, then the labyrinth 
room corresponding to word Q is accessible from the room corre- 
sponding to P ,  that is, there exists a path from P to Q.* 

In each associative calculus there occurs a specific word 
probZem, whereby i t  is required to recognize whether two words of 
this calculus are equivalentor not, This problemis identical to our 
problem of accessibilityin a labyrinth, except that here the labyrinth 
is infinite. But our previous algorithm is now useless because an 
infinite labyrinth cannot be searched in a finite time. 

Since each associative calculus contains aninfinite set  of differ- 
ent words, i t  involves an infinite number of problems of equivalence 
between two words. All these problems mustinvolve the same pro- 
cedures, and w e  therefore naturally think of a solution consisting 
of an algorithm for recognizing the equivalence (or nonequivalence) 
of any pair of words. We shall seein the next section whether such 
a solution does exist. 

However, w e  can immediately find the algorithm for the re-  
stricted word problem, where one wants to know whether a given 
word can be transformed into another by using the allowable substi- 
tutions a maximum of k times; herekis  an arbitrary but fixed num- 
ber. In the previous search problem, we imposed a restriction on 
the labyrinth, which had to be finite. Here ,  however, i t  is the num- 
ber  of moves which is restricted: w e  must inspect all those rooms 
of an finite labyrinth which are separated from the starting one by 

*Sometimes one uses a form of associative calculus defined by an alphabet and a sys- 
tem of oriented substitutions p - Q . The arrow means that only left-to-right substitution 
is allowed; that is, the word P may be replaced with Q. but not the other way around. This 
associative calculus may be graphically represented by aninfinite labyrinth in which each 
of the corridors is unidirectional. Obviously, the equivalence P ru Q in no way implies That 
Q Tu p in this case. 



THE WORD PROBLEM IN ASSOCIATIVE CALCULUS 313 

not more than k corridors; the remainder of the labyrinth is of no 
interest. In terms of associative calculus this means that one de- 
termines all words adjacent to one of the given words (by substitu- 
tion); then for each of the new words so derived one determines all 
words adjacent to i t ,  and so on, k times in all. We finally obtain a 
l ist  of all words which may be derived from the given one by using 
the allowable substitutions at mostktimes. If the second given word 
appears in that l ist ,  then the answer to the restricted word problem 
is yes; if  i t  does not appear, the answer is no. This scanning al- 
gorithm may then be further improved by removing from i t  all su- 
perfluous iterations (loops). 

However, the solution of the restricted word problem does not 
bring us  nearer to the solution of our basic “unlimited” problem. 
Here, the length of the deductive chain (if i t  exists) from word P to 
word Q may be extremely great (or infinite). For this reason, the 
scanning algorithm, restricted as i t  is to k substitutions, generally 
cannot tell whether an equivalence is present or, to put it another 
way, when to stop the search for such an equivalence. Thus w e  must 
turn to other, more sophisticatedalgorithms, aswe shall do in later 
sections. 

The reader will  now recognize that logical deductive processes 
other than the search problem may also be treated as associative 
calculi. For instance, any logical formula may be interpreted as a 
word in some alphabet containing the characters denoting logical 
variables, logical functions, and logical connectives V, &, -, --t (, ) ,  
etc. The process of infevence may be treated as a formal word 
transformation similar to the substitution in associative calculus, 
in which an elementary act of logical inference is made to corre- 
spond to a single act of substitution. The substitutions themselves 
may be written as logical rules or identities, for example, x-x 
(which means “double negation may be removed”), or 

By making such substitutions in a given premise (that is, in the 
wording representing such a premise), we can obtain many further 
inferences (conclusions). 

Now, in propositional calculus there exist methods for deriving 
all the conclusions which follow from a given set  of axioms. There 
also exists an algorithm for recognizing deducibility, that is, a pro- 
cedure for checking whether a given statement follows from a given 
axiom o r  not. However, propositional calculus cannot encompass 
both these procedures, since i t  isunable toexpress the relationship 



314 ELEMENTS OF MATHEMATICAL LOGIC 

between one object and another within the confines of a single state- 
ment; this calls for predicate calculus-which can also be inter- 
preted as an associative calculus. A s  aresul t ,  w e  arrive at a variant 
of associative calculus-the logical calculus with a given system of 
allowable substitutions, The problem of recognition of deducibility 
now becomes one of existence of a deductive chain from the word 
representing the premise to the word representing the inference, a 
problem which the reader will  recognize as that of equivalence of 
words in associative calculus. 

In the same sense, all derivations of formulas, and all mathe- 
matical computations and transformations, are processes of con- 
structing deductive chains in the corresponding associative calculi. 
And we shall prove in the next section that arithmetic itself may 
also be treated as an associative calculus. 

Given the universal applicability of associative calculus, i t  would 
be natural to postulate i t  as a generalmethod for defining determi- 
nate data processing procedures, that is, algorithms. However, be- 
fore  w e  can advance this postulate, w e  must state precisely what 
w e  mean by an algorithm in a given alphabet. 

12.4. ALGORITHMS IN AN ALPHABET A .  
MARKOV’S NORMAL ALGORITHM 

By analogy with the intuitive definition of Section 12.1 f f ,  w e  
could intuitively define an “algorithm in alphabet A” as follows: 

Definition I. An algorithm in alphabet A is a universally under- 
stood exact instruction specifying a potentially realizable operation 
on words from A ;  this operation admits any word from A as the 
initial one, and specifies the sequence in which it is transformed 
into new words of this alphabet. An algorithm is applicable to a word 
P i f ,  starting from that word and acting in accordance with this in- 
struction, w e  ultimately derive a new word Q,  whereupon the process 
comes to a halt. We then say that the algorithm processes P into Q. 

For example, the following instruction satisfies our definition: 
Copy agiven word, beginningfiom the end. The word so obtained 

This algorithm is an exact instruction applicable to any word. 
Nevertheless, Definition I is too broad, and w e  shall refine the 

concept “algorithm in alphabet A” by means of associative calculus. 
Definition 11, We shall say that an algorithm in alphabet A i s  

a set allowable substitutions , supplemented by a universally 

i s  the result. Stop. 



ALGORITHMS I N  AN ALPHABET A 315 

understood exact insCvuctwn which specifies the order and manner 
of using these allowable substibutions and the conditions a t  which a 
stop occurs.* 

The following is an example of an algorithmin the sense of Defi- 

Let alphabet A contain three characters: A = {a, 6 ,  c}, andlet the 
nition 11. 

algorithm be defined by a set  of substitutions 

1 cb - CC, 

cca - ab, 
ab - bca 

and the following instructions regarding the use of these substitu- 
tions: 

Starting from any word P ,  one scans the above set  of substitu- 
tions, in the order given, seeking the first formula whose left-hand 
part  occurs in P .  If there is nosuch formula, the procedure comes 
to a halt, Otherwise, one substitutes the fight-handpart of thejZrst 
such formula for the f i ~ s t  occuwence of i t s  left-hand part  in P ;  
this yields a new word P ,  of alphabet A.  Afte r  this, the new word P ,  
is used as starting one ( P  in the above), and the procedure is re- 
peated. It comes to halt upon generation of a word P ,  which does 
not contain any of the left-hand parts of the allowable substitutions. 

This set  of substitutions and the instructions for i t s  use define 
an algorithm in alphabet A which processes the word babaac into the 
word bbcaaac by means of the third substitution, at  w g c h  point the 
procedure comes to a halt. Similarly the word’cbacacb may be suc- 
cessively transformed into words ccacacb, ccacaccabcacc , and bcacacc, 
at which point the procedure again comes to an &d. However, the 
word bcacabc generates the recurring sequence bcacabc, bcacbcac, 
bcacccac, bcacabc , and so on, where no stop can occur; thYereforgour 
algorithm is n’>t applicable to the word bcacabc. 

This algorithm is somewhat reminiscent of the following instruc- 
tions for motion in an infinite labyrinth: having arrived into a room, 
go to the f i rs t  corridor on your right, and so on. Here, a stop wil l  
occur when a dead end is reached and, as in the algorithm, there 
are three possibilities: starting from any room, we can either enter 
a dead end corridor (compare the case of word babaac), o r  move 
in a loop ad infiniturn (compare the case of word bcacubc), or  keep 
going for  an infinitely long time without getting trapped in a loop. 

I- 

*Since an alphabet and a system of allowable substitutions define an associative calculus 
which, a s  we know, can be placed into correspondence with an infinite labyrinth, that par t  
of the definition which relates  to instructions for using the substitutions may be treated 
as exact instructions for moving in  an infinite labyrinth. 



316 ELEMENTS OF MATHEMATICAL LOGIC 

At f i rs t  glance one may conclude that Definition I1 is narrower 
than Definition I. It turns out, however, thatthis is not so, since for  
any known algorithm defined in sense I we may construct an equiva- 
lent algorithm in sense 11. This, of course, does not prove that Defi- 
nitions I and I1 a r e  equally strong; there can be no such proof, in 
view of the vagueness of both definitions (for instance, both contain 
the undefined phrase “universally understood exact instructions’’). 
Still, Definition I1 is a substantial stepforward, a s  we shall see be- 
low. 

Now let us  define equivalence of algorithms: two algorithms A I  
and A z  in some alphabet a r e  equivalent if  their ranges of application 
coincide and if  they process any word from their common range of 
application into the same result. In other words, if  algorithm A1 is 
applicable to a word P ,  then A 2  must also be applicable to that word, 
and conversely; also, both algorithms must transform the word P 
into the same word Q. I f ,  however, oneof the algorithms is not ap- 
plicable to a word B ,  then the other algorithm must also be in- 
applicable. 

At this point, Definition I1 may be transformed into an exact 
mathematical definition of an algorithm by a single step f i rs t  pro- 
posed by A.A. Markov. His  normal algorithm is identical to that of 
Definition I1 except that the “universally understood” instructions 
are replaced bya standard, once and for all fixed, and exactly speci- 
fied procedure for the use of substitutions. This normal algorithm 
is specified as follows: To s tar t  with, the alphabet A is defined and 
the set  of allowable substitutions is fixed. Then some word P in A 
is selected, and the substitution formulas are scanned (in the order 
given in the set) to find aformulawhose left-hand par t  occurs in P. 
If there is no such formula, the procedure comes to a halt. Other- 
wise the right-hand member of the f i rs t  of such formulas is substi- 
tuted for the f i rs t  occurrence of i t s  left-hand member in P. This 
yields a new word PI in alphabet A .  After this one proceeds to the 
second step, which differs from the first one only in that PI now 
acts a s  P .  Then one goes to the third analogous step, and so on, 
until the process comes to a halt. However, the process can be 
terminated in only two ways: (1) when i t  generates a word P, such 
that none of the left-hand parts of the formulas of the substitution 
se t  occurs in i t ;  and ( 2 )  when the word P ,  is generated by the las t  
formula of the set. 

We see that the algorithm of Definition I1 is an “almost normal” 
algorithm, the only difference being that i t  comes to a halt in only 
one case (when none of the allowable substitutions is applicable), 
whereas in the normal algorithm there are two possible causes for 
a “stop’ ’ instruction. 



ALGORITHMS I N  AN ALPHABET A 317 

Two normal algorithms differ only in their alphabets and their 
set  of allowable substitutions. Again, to define a normal algorithm 
i t  is sufficient to define its alphabet and its set of substitutions. 

Examples of Normal Algorithms. 

Let the alphabet A and the set  of allowable substitutions be 
A = ( l ,  +} 1 + 4 1 1  

f l  + l  
1 4 1  

(the arrows are a convention denoting a Markov normal algorithm, 
to differentiate i t  from the usual associative calculus). 

Now let  u s  see how this algorithm transforms the word 1 1 1 1 f 
+ 1 1 + 1 1 1. We obtain successively the words: 

l l l l + l l + l l l  
l l l + l l l + l l l  
l l + l l l l + l l l  
l + l l l l l + l l l  

+ l l l l l l + l l l  
+ l l l l l + l l l l  
+ 1 1 1 1 + 1 1 1 1 1  
+ l l l + l l l l l l  
+ l l + l l l l l l l  
+ l + l l l l l l l l  
+ + l l l l l l l l l  

+ l l l l l l l l l  
1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1  

The procedure comes to a halt on the use of the last  substitution 

Now let  the set  of substitutions (in the same alphabet) be 
1 + 1, which processes the word 1 1  11  11 1 1  I into itself. 

+-A 

1-1 

(A is again an empty word). Then 11  + 1 1 1  + 1 + 1 1  will  be trans- 
formed as follows: 

l l + l 1  I + l + l 1  
1 1 1 1 1 + 1 + 1 1  
1 1  1 1 1  l + l  1 
1 1  1 1 1  1 1  1 
1 1  1 1 1  1 1  1. 



318 ELEMENTS OF MATHEMATICAL LOGIC 

We see that both algorithms produce a sum of symbols 1; that i s ,  
they perform addition, and i t  not difficult to show that they are equiv- 
alent. 

A third normal algorithm, equivalent to the above, is defined by 
a set  

l t - + + l ,  
++3+, 

+ -+ A. 

The reader is invited to verify that the normal algorithm A =  

*11+ V*l ,  
* I  + V, 

l V - t V l ? ,  
?\ /  + V?, 
? l +  l ? ,  
V l + V ,  
V?+?, 

? + l ,  
1 -?- 1 

(1, *, v, ? I  

transform eachword of the form 11 11 . . . 11 * 11 1 . . . 11 1 into the word 

111 . . . 111, ; that i s ,  i t  performs a multiplication. 
rn times n times 

r 
rn.n times 

Markov also refined the concept of an algorithm in an alphabet 
by postulating that each algorithm i n  an alphabet is equivalent to 
some normal algorithm in the same alphabet. This is a hypothesis 
which cannot be rigorously proved, since it contains both the vague 
statement “each algorithm” and the exact concept of a “normal 
algorithm.” This statement may be regarded as a law which has 
not been proved but which has been confirmed by all accumulated 
experience. It is supported by the fact that no one has so far suc- 
ceeded in formulating an algorithm for which there is no normal 
algorithm equivalent to i t  (in the same alphabet). 

Now w e  can return to the problem of universal definition of al- 
gorithms (see end of Section 12.3). In view of what we said above, 
the Markov normal algorithm seems a convenient “standard form” 
for defining any algorithm, that i s ,  we assume that any algorithm 
may be defined as a Markov normal algorithm. This i s ,  of course, 
no more than a hypothesis and, at that, much less well-founded than 
the Markov hypothesis discussed above, since it cannoteven be ex- 
pressed in exact terms. However, i t s  intuitive meaning is obvious. 



ALGORITHMS IN AN ALPHABET A 319 

A s  soon as we accept this hypothesis, w e  have a way of rigor- 
ously proving the algorithmic unsolvability of generalized problems. 
For example, w e  can prove the algorithmic unsolvability of the word 
problem; that i s ,  w e  can prove that there is no algorithm applicable 
to all associative calculi and capable of determining whether two 
words P and Q are equivalent. All we have to do in order to prove 
this is to demonstrate the existence of one associative calculus in 
which there is no normal algorithm fo r  recognizing the equivalence 
of words. Examples of such calculi were f i rs t  given by A.A. Markov 
(1946) and E. Post (1947). After that itbecame clear that a fortiori 
there can be no algorithms capable of recognizing the equivalence 
of words in all associative calculi. 

The examples of Markov and Post were unwieldy and com- 
prised hundreds of allowable substitutions. Later,  G. S. Tseytin 
exhibited an associative calculus containing only seven allowable 
substitutions, in which the problem of word equivalence was  also 
algorithmic ally unsolvable. 

A s  an illustration w e  shall show one proof of algorithmic un- 
solvability. Let U be a normal algorithm defined in an alphabet 
A = {a,, a2, . . . , a,} with the aid of a set  of substitutions. In addition 
to the characters of alphabet A ,  this algorithm also uses the sym- 
bols -+ and , . By assigning to these symbols new characters a,+] 
and an+2, w e  can represent U by a word in an expanded alphabet 
A = [u,, a2, . . . , un+J. Let u s  now apply U to the word representing 
it. If algorithm U transforms thiswordinto another one, after which 
there is a stop, this means that(/ is applicable to its own represen- 
tation-the algorithm is selfdppl icable .  Otherwise, the algorithm 
is mnseZf*pplicabZe. Now there arises the problem of recognition 
of self-applicability, that i s ,  finding out from the representation of 
a given algorithm whether i t  is self-applicable or not. 

This problem would be solved by a normal algorithm V ,  which, 
upon application to any representation of a self-applicable algorithm 
U ,  would transform that representation into a word M and which 
would transform all representations of a nonself-applicable al- 
gorithm U into another word L.  Thus the application of the recog- 
nition algorithm V would show whether U is self-applicable or not. 

However, i t  has been proved that such anormal algorithm I/' does 
not exist (see [64] ), which alsoprovesthat the problem of recogni- 
tion of self-applicability is algorithmically unsolvable. The proof, 
by reducCio ad absurdurn, is as follows. Suppose that we do have a 
normal algorithm V and that i t  transforms each representation of 
a self-applicable algorithm into M andeach representation of a non- 
self-applicable algorithm into L .  Then, by some modification of the 

- 



320 ELEMENTS OF MATHEMATICAL LOGIC 

substitution system of the algorithm V ,  we may devise another al- 
gorithm p which would again transform each representation of a 
nonself-applicable algorithm into L but which would be inapplicable 
to representations of a self-applicable algorithm (because the al- 
gorithm does not come toastop).  Suchan algorithm v" leads to con- 
t r  adic ti ons. Indeed, 

is self-applicable (there is a stop), that is, i t  can 
be applied to i t s  own representation (whichis in the form of a word). 
But this simply means that 

2. Suppose v" is nonself-applicable. Then i t  can be applied to 
i t s  own representation (since i t  is applicable to any representation 
of a nonself-applicable algorithm). But this simply means that 
is self -applicable. 

The resulting contradiction proves the algorithmic unsolvability 
of the problem of recognition of self-applicability. 

Thus there is no a p r i o r i  proof for the existence or nonexistence 
of an algorithm for a given problem. But the nonexistence of an al- 
gorithm for a class of problems merely means that this class is so 
broad that there is no single effective methodfor the solution of all 
the problems contained in it. Thus, even though the generalized 
problem of recognition of word equivalence is algorithmically un- 
solvable in Tseytin's associative calculus, under normal conditions 
w e  can still find a w a y  for proving the equivalence or nonequivalence 
of a specific pair of words. 

There is an interesting history to the problem of algorithmic 
unsolvability. Prior to Markov's refinement of the concept of an 
algorithm, mathematicians held one or the other of the following 
points of view: 

1. Problems for which there is no algorithm are still,  in prin- 
ciple, algorithmically solvable; the desired algorithm is unavail- 
able simply because the existing mathematical machinery is unequal 
to the task of devising this algorithm. In other words, our knowl- 
edge is insufficient to solve problems w e  call algorithmically un- 
solvable, but such algorithms will  be found in the future. 

2. There a re  classes of problems for which there are no al- 
gorithms. In other words, there are problems thatcannot be solved 
mechanically by means of reasoning and computations and that re- 
quire creative thinking. 

This is a very strong statement because i t  says to all future 
mathematicians: Whatever the means at  your disposal may be, do 
not waste your time searching for nonexistent algorithms! 

But how does one p o v e  the nonexistence of an algorithm? 
So long as the definition of an algorithm comprised the phrase 

1. Suppose 

is nonself-applicable. 



REDUCTION OF ANY ALGORITHM TO A NUMERICAL ALGORITHM 32 1 

“universally understood instruction’’ such a proof w a s  unthinkable, 
because one cannot conceive of all possible “universally understood 
instructions” and prove that none of these is applicable. 

Thus the very survival of this second viewpoint is related to the 
daring hypotheses on the existence of “standard forms” for defin- 
ing an algorithm (such as the Markov normal algorithm), that i s ,  
hypotheses permitting the formulation of the concepts of “algorithm” 
and “algorithmically unsolvable problem” in exact terms. 

12.5. REDUCTtON OF ANY ALGORITHM TO A 
NUMERICAL ALGORITHM. GODELIZATION 

The advent of computers has prompted much work in the theory 
of numerical algorithms with which these machines operate. In the 
course of this work it has been shown that any logical algorithm 
can be reduced to a numerical algorithm. A s  the methods for doing 
this improved, i t  also became clear that all algorithms can be re- 
duced to numerical ones, and thus the theory of numerical algorithms 
(which w e  shall also call the theory of computable functions) became 
a generalized mechanism for study of all algorithmic problems. 

We shall now show how any algorithmic problemcan be reduced 
to a computation of values of an integer-valued function of integer 
arguments. 

Assume some algorithm is applicable to a range of data. We 
shall represent each set of data comprised in this range by means 
of a unique nonnegative integer A,,; when we have done this, we have, 
instead of the original data, o r  collection of numerals (labels) 
A,,A,,A,, . . . , A,, . . . representing these data. 

Similarly, w e  assign a unique numeral to each of the possible 
solutions derived with our algorithm from the above data and thus 
obtain a sequence of numerals (labels) B,, B,,  B,, . . ., B,,?, . . . repre- 
senting these solutions. 

Now this labeling or numbering permits us  to dispense with the 
data and solutions themselves and to operate instead on numerals 
yepresentirg these quantities. For i t  is fairly obvious that if we 
have an algorithm processing a set  of data into a solution, we can 
also devise an algorithm processing the numeral A ,  denoting these 
data into the numeral B ,  representing the corresponding solution. 

It is also obvious that this algorithm must be a numerical one, 
of the type rn = p (n). 

In general, if there exists an algorithm for solving any given 
problem (that is, transforming a set  of data into a solution), then 



322 ELEMENTS OF MATHEMATICAL LOGIC 

there must also exist an algorithm for computing the values of the 
corresponding function m=T(n). Indeed, to find the value of q ( n )  a t  
n = n * ,  one can reconstitute the set of data represented by n* from 
a table of values of nvs. these data; then one can employ the (exist- 
ing) algorithm to find a solution for the problem. Having the value 
of the solution, one can go to a table of values of solutions vs. m to 
find the numeral m* representing m .  Consequently, 

'p (n") = m*. 

Conversely, i f  there exists an algorithm for conputing the values of 
tp(n), there must be an algorithm for solving the given problem. In- 
deed, one can find from the table of the data vs. n the numerical n* 
representing n. Then one can compute m* = q ( n * ) ;  having rn* , one 
can determine the value of the actual solution from another table. 

Let u s  now present a widely used method of numbering (that is, 
unique labeling), namely, the method of Gadel. Suppose w e  have a 
numbern. Then, by virtue of the fact that any composite integer can 
be uniquely decomposed into prime factors, w e  have 

where po = 2, p1 = 3, p2 = 5 ,  and, in general, p m  is the nith prime 
number. Thus n - the GGdel number -is the product of successive 
primes, which are raised to powers from the set  a ~ ,  a2, ..., a,. 
Any Gddel number n is uniquely related to a specific set  al, a2. . . ., 
a,,,, and, conversely, each set  a,, a2, . . ., a,,, is uniquely associated 
with a specific number n. For example, if n = 60, w e  have: 60 = 223151, 
that is, a,=2, a2=1, a,=1. 

Now, Gsdel numbering (or gtjdelization) allows us  to uniquely 
label any sequence of m members. Consider a few examples: 

1. Any pair of numbers a l  and U Z ,  for which w e  seek the great- 
e s t  common divisor 9 ,  can be assigned a unique G6del number 
n = 2"' 3O'. Now, Euclid's algorithm reduces to the computation 
of 9 = tp,fn). 

2. We want to find the sumbol in the rth position of a purely 
periodic sequence produced by endless repetition of the numerical 
sequence al ,  a2, . . ., a,. The statement of the problem can then be 
associated with the Gadel number 

The algorithm for finding the r th symbol then reduces to computation 



REDUCTION OF ANY ALGORITHM TO A NUMERICAL ALGORITHM 323 

of values of the function 

where 9 may assume values only from the set [u,, u2, .... urn]. 
3. An nth-degree equation 

(where bi are general symbols, not specific coefficients) can be 
assigned a number n; it is obvious that, knowing n, one can easily 
reconstruct the original equation. 

When n = 2 ,  the equation is 

Its solution may be expressed in terms of coefficients b : 

(12.2) 

Let  u s  rewrite Eq. (12.2) on one line 

x = -  6 ,  : 2+ - i /  (b ,  x 6, : 4-6J, 

where the square root sign applies to the entire expression in paren- 
theses. Assume that we intend to find anexpression for the solution 
of the nth-degree equation in terms of the radical signs. It is obvious 
that, whatever the form of the solution, it may consist only of the 
following symbols : 

+, -, X, : ,  (, ), 1, b,, b,, . . . .  b,, 1/, 1/, .... i /  
Also, w e  can use  symbol 1 and the addition sign + to express any 
number which may be present as the sum 1 + 1 + 1 + . . .  + 1. Let u s  
code the above symbols by means of the following numerals: 

2 3  

i /  is assigned the number 2r ) is assigned the number 13 
+ >> >> 3 1 >> >> 15 
- >> >> 5 6, >> >> 17 
X >> >> 7 b, >> >> 19 

( 

>> .. 9 . . . . . . . . . . . .  
>> .. 11 . . . . . . . . . . . .  

>> >> (2nt15) .  6, 



324 ELEMENTS OF MATHEMATICAL LOGIC 

Then each expression consisting of these symbols is uniquely 
represented by a set  of numerals. For example, the set  

6, 11, 17, 3,  19, 13 

corresponds to the expression 

This set  of numerals, as w e  already know, describes a Godel 
number equal to 

Conversely, given a G6del number, we can always reconstitute 
the corresponding set  of numerals; each numeral can then be re- 
placed by the symbol for which i t  stands. Thus, Gadel numbering 
permits us  to code in a unique fashion any formula, any expression, 
whether i t  be composed of numbers or  letters,  signs denoting op- 
erations, or any combination of those above. 

4. Assume w e  want to number all possible words which can be 
written in some alphabet A .  This is easily done by matching a 
numeral with each character of the alphabet. Then each word will 
become a sequence of numerals, and w e  can obtain the G6del num- 
ber corresponding to each such word. And, if  desired, w e  can also 
number all the sequences of such words (for example, all the deduc- 
tive chains) to obtain Gijdel numbers for the sequence of G6del num- 
bers  of the individual words, a s  well  as a Gadel number for the 
entire collection of such sequences. 

We have now seen that the gijdelization procedure reduces not 
only arithmetical algorithms but also any normal Markov algorithm 
to a computation of values of some integer-valued function. There- 
fore, the algorithm for such a computation is the universal algorith- 
mic form w e  have sought from the beginning. 

In concluding, w e  must point out that all of the above discussion 
was based on the assumption that, even though the set  of data for a 
problem which can be processed by a given algorithm may be in- 
finitely large,  i t  is, nevertheless, countable. Our subsequent discus- 
sion of algorithms will  also assume a countable set  of conditions. 

12.6. ELEMENTARY AND PRIMITIVE 
RECURSIVE FUNCTIONS 

Functions such as I! = cp(? i l ,  xg, . . ., x,,) are called arithmetical if 
both the arguments and the functions themselves may assume values 



ELEMENTARY A N D  PRIMITIVE RECURSIVE FUNCTIONS 325 

only from the set  {0,1,2, . . .}. From now on, we  shall discuss only 
arithmetical functions. Logical functions (Chapter 1) are a special 
case of arithmetical functions. 

We shall also introduce the following system of notation: 
Variables will  be denoted by lower-case Latin letters:  

a , b , c  , . . . ,  m , n  , . . . ,  x , y , z  o r  x , , x , , e t c .  

Functions wi l l  be denoted by lower-case Greek letters: 

Predictions will  be denoted by Latin capitals: 

A, B, P,  Q ,  R, S , etc. 

Specific numbers or constants will  also be denoted by lower-case 
Latin letters but wi l l  carry an asterisk: 

a*, b*, x*, ya, etc. 

We shall now define a computable arithmetical function and a 
solvable predicate. 

A function y = q ( . ~ i ,  x2, . . . , x n )  is said to be algorithmically C O W -  

putable (or just computable) i f  there exists an algorithm for  finding 
the value of this function at all values of variables xl, x2, . . .  x?, .  

A predicate P ( x , ,  x2 ,  . . ., x,,)defZned on the set of integers i s  said 
to be algorithmically solvable (or just solvable) i f  there exists an 
algorithm for  finding the value of this predicate at all values of 
variables x,,  x2 .  . . . ,  x,. 

These definitions are intuitive and inexact, since w e  have not 
yet defined a computing algorithm. In order to refine them, we shall 
have to develop the class of computable functions, starting with the 
most elementary computable functions. 

We shall call elementary those arithmetical functions which can 
be obtained from nonnegative integers and variables by means of a 
finite number of additions, arithmetical subtractions (by which we 
mean obtaining Ix - yl), multiplications, arithmetical divisions (by 
which we mean deriving the integer part of the quotient [+] for 
b f o ) ,  a s  well  as from constructions involving sums and products. 
The computability of elementary functions is undisputable since 
there are algorithms for all the separate operations involved in such 
functions, and thus the aggregate function must also be algorithmic- 
ally computable. 



326 ELEMENTS OF MATHEMATICAL LOGIC 

To construct elementary functions w e  need only one number, 
namely, 1, since 

0=11--11, 2 = 1  + I ,  3=(1+1)+1, etc. 

Now let us  see what functions are elementary. 
1. All the simple functions such as 

cp(x)zzx+I, ‘p(y)212y, +(u, 6, c ) ~ u ~ + c ,  x ( 6 ) = b 2  

(since b* = 6 . b ) ,  etc., are elementary. 

are elementary. For example: 

1 when x > l ,  { 0 when x==O. 

2. Many of the frequently employed functions of number theory 

a) min (x,  y)  = [ 
b) sg(x)= 

l ( ~ + Y ) - l ~ - Y l l  . 
2 1 9  

Function s g ( x )  may be expressed by means of functionmin ( x ,  y) : 

sg (x)  = min  (x, l).* 

From s g ( x )  one can obtain s g ( x ) :  

1 when x =0, 
0 when x > l .  

- 
s g ( x ) =  1 1  - sg(x) /  = 

3. The inequality x $!y is equivalent to the min(x, y) = x or 
lrnin i x ,  y )  - X I  = 0 .  Then the predicate “x is smaller than or equal 
to y” may be written as 

P ( x ,  y ) = = G ( j m i n ( x ,  y) - -x l ) .  

Indeed, i f  x* <y*,  then P ( x * ,  y*) = I ,  that i s ,  i t  is a true statement; 
otherwise P = 0. 

4. Later we shall use the function 

I Y  --XI, if Y >,x, 
y - x (  0 , i f y < x .  

This is also an elementary function since it can be expressed as 
y - x =  ( y - x j S g ( j m i n ( x ,  y)-xxj). 

5. The residue obtained upon division of a by rz 

res(a, n ) = l u - - n [ G ] )  

is again an elementary function. 
Now, is the class of all computable functions broader than that 

of elementary functions? In other words, is there a computable 
function which is not elementary? To answer, let  u s  follow some 

*See Section 9.2f for notation. 



ELEMENTARY AND PRIMITIVE RECURSIVE FUNCTIONS 327 

elementary functions to see at  what point they cease to be elemen- 
tary. 

Of the simple elementary functions, the one that increases the 
most rapidly is the product. The product an arises from adding a to 
itself n times; thus, multiplication is iterated addition. 

Raising to a power is, in turn, iterated multiplication: 
n 

u n = a . u . u .  ... . u = ~ u .  

This function is still elementary since i t  is expressed by a product. 
It increases very rapidly with and n. 

A still more rapidly increasing function involves the iteration 
of the operation of raising to a power: 

1 

+ ( O ,  a)=a,  qJ(1, a)=aC,  qJ(2, a)=a'n"' 

and, in general, 
(li (n + 1, a) = a'+ (n, @. (12.3) 

Here the increase is so rapid that i t  becomes impossible to "keep 
pace" with the increase in $(n, a )  by devising elementary functions 
(for proof, see [77]); to be more precise, this function, starting 
from some a = a",  majorizes all elementary functions; that i s ,  for 
any elementary function cp(a) there i s  always some m*such that the 
inequality 

wil l  be satisfied at all a>, a" .  Butif this is the case, then it is easy 
to show that the function ~ ( n )  = $ ( n ,  n )  is not elementary. 

Indeed, if +(n ,  rz) were an elementary function, thenwe could find 
some nzx (it may be assumed that m* > 2 because the function$(n, a )  
is monotonic) such that +(n ,  n )  < +(m*, 1 2 )  for r?, >2 .  This inequality 
would, in particular, hold when n = m* since m*> 2. We then get 
$(m*,  m*) < $ ( m * ,  m*) ,  which is impossible. 

Thus, iteration of the operation of raising to a power gives a 
nonelementary function. But, at the same time, $ ( n ,  a )  is a p y i o r i  
known to be computable. Indeed, suppose wewant to compute $ ( n ,  a )  

for  any n = IZ ', a = a*. For a = a " ,  Eq. (12.3) becomes 

+ (n + 1, a*) = (a*)* =*I. 

Let  us  denote ( a * ) m  = x ( m ) ;  hereX(m) isanelementary single-valued 
computable function, whose computation algorithm merely consists 



328 ELEMENTS OF MATHEMATICAL LOGIC 

of multiplication by (I+, repeated m times. The formula 

9 ( I 2  + I ,  a‘) = ;c (1) (IZ, a ) ) (12.4) 

relates the value of (I at apointwith its value at the preceding point. 
Now i t  is sufficient to specify the initialvalue Q(0, a * )  = a* in order 
to obtain a computing procedure, which successively yields 

9 (1 9 a*) = x (+ (0, a’) ) = x (a*), 
9 (2, a*) = x (1% (1, a*) ) = z (x (a*) ). 
9 (3, a*) = x (9 (2, a*) ) = x (x (x (a3 ) ), 
. . . . . . . . . . . . . . . . .  

This process is continued until the value of + ( i t * ,  a*)  is obtained. It 
is obvious that this method specifies Q at all points and does so 
uniquely, since the computation of i t s  values reduces to the compu- 
tation of  in), which is a determinate and unique function at all 
points. 

Our previous example has shown that computable functions need 
not be elementary. To continue our delineation of the class of com- 
putable functions, let u s  examine the methodof defining + ( n ,  a ) .  This 
function w a s  defined by induction: that is, we w e r e  given the initial 
value of the function, namely, Q (0 ,  a ) ,  and were told by what allowable 
operations the successive values of this function are derived from 
their predecessors. Now we shall use  this induction method for 
specifying all computable functions. But f i rs t  we must refine and 
broaden this method. 

Derivation by induction can, generally speaking, be used with 
any ordered set  in which the concepts of “predecessor” and ‘(suc- 
cessor” are meaningful. Let u s  denote by x’ the successovfinctwn 
which describes the transition to the next member of the given set. 
We shall assume that our given set  is always [O, 1 ,  2, . . . I ,  so that 
0’- 1 ;  l ’ = Z ;  2’2-3, or,ingeneral ,  X ’ E X  + 1. 

The generalized procedure for defining a function ~ ( x )  can now 
be precisely defined as follows: 

1. Give the value of q ( 0 ) .  

2. Specify the manner of expressing ~ ( x ’ )  in termsof x and q(x) 
a t  any x: 

(12.5) 

In amore general case,  there may also occur parametersx2, x3,  , . . 
. .  ., x n ,  which remain unaltered i n  the induction process. Then the 
defining equation (12.5) is modified to 



E L E M E N T A R Y  AND P R I M I T I V E  RECURSIVE FUNCTIONS 329 

If 0 and x are known and computablefunctions, then the scheme 
of Eq. (12.6) may be used to develop a computation procedure, which 
wil l  give, consecutively, ? ( I ,  x;, . . ., xi ) ,  ~ ( 2 , .  xi, . . ., x:), andsoon. 
Consequently, this scheme does indeed specify a computable func- 
tion. 

Let u s  now see which arithmetical functions can be derived by 
induction and how broad is the class of such functions. To state the 
problem exactly, w e  must specify which function w e  consider in- 
itially (that is, a pYioYi) known and which operations (in addition to 
the above-described induction procedure) are allowable in the deri- 
vation of subsequent functions. 

We shall consider the following functions as initially known 
(fundamental) or  primitive: 

I. p(x)  = x' , the successov function described above, applied to 
the set  consisting of' 0 and all natural numbers. Its abbreviated no- 
tation is S .  

11. p(xI, x p ,  . . ., x,) = q ,  where q = const ,  a constant&n&on. 
It is denoted by CG. 

111. p(xl ,  x2,  . . ., x,) = xi, the identity &nction.* It is denoted 
by Ul .  

In addition to the induction procedure [Eqs. (12.5) or  (12.6)], we 
shall include the substitution pvocedure IV among the allowable 
operations. 

IV. 

Let u s  now write out all the allowable operations into one column: 

p(x1, xp, 1 .  ., x , )  =0(xl(xI, xz ,  . . ., &I), XZ(XI, x2, ... x n ) ,  . . .. Xrn(XI, 
xz, . . ., x7l)). 

1. 'p (x) = s (x) = x'.  
11. ' p ( X 1 ,  xq, . . .) xn)= c,"=q. 

111. 'p(x,, x,, . . . , X,,)  = U? I - x p  - 

1v. 'p (XI, x,, . * ., X " )  = + ( X l  @ I ?  xz, * * .  9 XR)' 

X q ( X 1 ,  xq, . * -, Xn)r . . - 9  XI, PI, x2, . ' ., X J ) ,  

P (0) = 

'p (x') = x ( x ,  'p (4 ). ~ , a .  { 
'Rather than employ an identity function, we could consider the variables themselves 

originally known, a s  we have done in  defining elementary functions. The identity function 
is introduced here  merely for  the sake of uniform exposition. Again, instead of the con- 
stant function, the null-function @( xl, x 2 ,  . . , x,) = 0 could have been used a s  a fundamental 
function, s ince repeated applications of the successor  function then gives a l l  the constants: 
1 = 0', 2 = I ;  etc. 



330 ELEMENTS OF MATHEMATICAL LOGIC 

Operations 1-111 specify the primitive functions and assume the 
role of axioms, whereas IV and V act as rules of inference. 

Definition. A function ’p(x1, XZ, . . . , %,) i s  a primitive recursive 
function i f  it can be defined by means offlnite number of applica- 
tions of operations I-V. 

We shall say that afunction ‘p depends directly on other functions 
i f ,  for  any given rn and n ,  i t  satisfies operation IV for some $, X I ,  ~ 2 ,  

. , x m )  or if ,  
for  any given q i t  satisfies V, a or V, b for some $, x (here, 9 is 
directly dependent on J, and x). 

Definition. A sequence of functions pl ,  p2, . . ., ‘pk such that each 
function of the sequence either i s  primitive or  depends directly on 
the preceding functions of the sequence while the last &netion ’ph 

i s  cp is  called a primitive recursive description of the primitive 
recursive function c p ( ~ 1 ,  X Z ,  . . , x,,). We shall call k the depth of the 
primitive recursive description of the function p . 

A primitive recursive description is simply the series of func- 
tions obtained by successive applications of operations I-V in the 
definition of function p .  Indeed, we s tar t  from the initial (starting) 
functions (which become the beginning of our trainof functions) and 
then proceed step by step toward the function p. 

We shall now show examples of derivation of some primitive 
recursive functions. 

1. We define the function p ( x , y )  as: 

, x n L  (in this case,  p isdirectlydependenton (J, x I ,  x2, 

‘p(0, x ) = x ,  

Y(Y 9 4 = I’p (Y 41’. 
We thus have 

cp(1, X ) = X ’ = x +  1 ,  
(p(2,  x ) = [ p ( l ,  n ) l ’ = ( x +  l ) ’=x+ 1 + 1 =x+2, 

‘p(3, ~ ) = [ ( p ( 2 ,  x ) ~ ’ = ( x  +2)’=x + 2 +  1 = ~ + 3 ,  

o r ,  in general, 

Y(Y, x ) = x + Y .  

To get a primitive recursive description of this function, write 
out in full the operation V, b as applied to ‘p (y,x) = x -k y: 

(12.7) 



ELEMENTARY AND PRIMITIVE RECURSIVE FUNCTIONS 33 1 

Here, $ ( x )  assumes the form + ( x )  ~ x ,  that is, i t  is the original 
identity function Q ( x )  3 U: (x). 

The function x(y, z, x )  = z’can be obtained from the initial func- 
tion & ( y ,  z ,  x )  = z by means of operation IV, where the successor 
function S ( z )  = Z’ is taken as $. One can, therefore, write 

x(y, 2, x )=s [u : ( y ,  2, 41. 
One primitive recursive description of the function x will be the 

sequence lJ;, S ,  x,. Adding to i t  the function +(x)  5 U ;  (x) ,  on which 
cp(y,x) depends directly in accordance with Eq. (12.7),  we get the 
primitive recursive description of ~ ( y ,  x )  : 

u;! s, x, u:, ’p. 

2. In order to define the next primitive recursive function, w e  
shall use the fact that the sum x + y has already been defined as a 
primitive recursive function. We set  

‘p(0, x)=O, 

‘p(Y’, x)=’p(y, x)+x. 
Then, we obtain in succession 

y(1 ,  x)=y(O, x)+x= o+x=x,  
Q(2, x ) = p ( I ,  x ) + x =  x+x=2x, 
‘p(3, x)  = ‘p ( 2 ,  x)+x=== ax-+ x = 3x 
. . . .  . . . . . . . . . . . . . . 

o r ,  in general, 
Y(Y, x)=Yx. 

Consequently, the product is also a primitive recursive function. 
3. Using the result of Example 2 ,  let u s  define 

y ( 0 ,  4 = l ,  
‘P (Y’, x) = Q (Y, X )  X .  

It is easily shown that this function means raising to a power: 

4. q ( 0 )  = 1. 
5. The function “predecessor of x” 

q(y ,  x) = x v .  
cp(x’) = q(x)x ’ .  It can be seen easily that q ( x )  = x! .  

0 if x=O, 
Pd (4 = ( Ix-11 if x>O 

is a primitive recursive function since i t  is defined by operation V, a 

pd (0) = 0 
pd (x’)  = X .  



332 ELEMENTS OF MATHEMATICAL LOGIC 

6. The previously encountered function x-- g is defined as 

x--o=x, 

x- y' = pd ( X A  y). 

7. The function min(x, y) can now be defined by using operation 
IV : 

rn in  (x, y ) = y --I (y x). 

8. rnax(x,  y )= (x+y) -min (x ,  Y). 
9. sg(x)= min(x ,  1). - 

10. sg (x) = 1 I. x. 
11. lx-yl =(X"y)+(yAx).  
12. The remainder obtained upon division of y by x [this function 

is denoted by res(y,  x )  ] is defined as 

res(0, x)=0, 
res(y', x)=(res(y,  x ) ) ' .  sgjx-((res(y, x))'l. 

13. [$I is defined as 

14. Primitive recursion may be used to define finite sums and 
products such a s  

V 1' 

Indeed, 

0 

Among the primitive recursive functions just definedwe find the 
sum x + y ,  the absolute difference \x  - yI, the product xy, the quo- 
tient [ : ] , as well  as finite sums and products. Consequently, all the 
elementary functions discussed at  the beginning of this section are 



PREDICATES. MlNlMALlZATlON 333 

primitive recursive functions -which is the same as saying that 
elementary functions are a subclass of primitive recursive func- 
tions. 

12.7. PR EDICATES. M I N I M AL I ZATl ON 

In logic, predicates are introduced whenever i t  is necessary to 
represent symbolically a relationship between several objects (see 
Chapter 1). In general, a predicate is defined on a set  (finite or  
infinite) of objects and may assume two values: true o r  false (1 or 
0). However, w e  shall discuss only arithmetic predicates defined 
on the set (0 ,  1, 2, . . .). 

The predicate P ( x , ,  x 2 ,  . . ., x , )  depends on n variables (it is an 
n-place predicate). The variables appearing under the quantifier 
signs in front of the predicate are bound; the other variables are 
f m e .  For example, the predicate P ( x ,  y, z, t )  is dependent on four 
variables. In ( V x )  ( 3 y )  P ( x ,  y ,  z ,  t )  ,* however, ?c and y are bound and 
the predicate depends on the free variables z and t. For this reason, 
the expression ( V x )  (3y) P ( x ,  y,  z ,  t )  really represents the predicate 
Q ( z ,  t ) .  

t v-4 @ Y ) P ( X ,  y ,  2, 4 5 Q (2, t). 

Indeed, this notation means the following: depending on the z* 
and t“ values, there may exist for all x a y such that P ( x ,  y, z “ ,  t ” ) ;  
o r  this may not be the case. In the f i rs t  case Q is true (orQ = I ) ,  
and in the second, i t  is false (orQ = 0). 

Just  as a function, a predicate may be specified by induction. 
For example, the operation 

E ( 0 )  ( o r  E(O)= l), 

E (a’) = E (a )  

defines the predicate E ( a )  = ‘ ‘a  is even.” By analogy with the deri- 
vation of primitive recursive functions, this points to a procedure 
fo r  deriving predicates and to the concept of a “primitive recur- 
sive predicate.” However, w e  shall not follow this path. Instead, 
we shall show another definition of a primitive recursive predi- 
cate-that proposed by Gb’del in 1931. To star t  with, w e  define a 
representative function of a predicate P ( x , ,  xz, . . ., x,) as a function 
p ( x l ,  xa, . . ., x,) which vanishes at  those X I ,  x2 ) .  ., x,, for which 

*It is read as: “for all x thereexists a y such that P ( x ,  y, z, t)is true.” The phase “is 
true” is often omitted. 



334 ELEMENTS OF MATHEMATICAL LOGIC 

P ( x l ,  x2, . . ., x,) is true and only at  those. Then the assertion that 
P ( x , ,  x p ,  . . ., x T L )  is true may be expressed 

Obviously, a single predicate may have several representative func- 
tions, the zeros of which coincide. 

Definition. A predicate is primitive recursive if theve exists a 
primitive vecuvsive function representing that pvedicate. 

Let us  assume that the predicate Q (xi, x 2 ,  , . ., x,) is defined by a 
primitive recursive predicate P ( x I ,  x2, . . ., x,,,  y) ,  using a bounded 
universal quantifier 

or,  more explicitly, 

The predicate Q ( x l ,  x2 ,  . . ., x,) corresponds to the statement 
that, given x , ,  x2. . . , x r ,  the predicate P ( x i ,  x q ,  . ., x n ,  Y )  is true for 
all y L z. The predicate Q(xI ,  yZ, . . ., x,) so defined is primitive 
recursive since i ts  representative function q ( x l ,  x2, . . ., x , )  can be 
expressed in terms of the representative function g, ( X I ,  x2, . . ., x,, g )  of 
predicate P :  

Let u s  note there that z may also depend on xl. x2,  . . ., r,; if all the 
inferences are  to remain valid, this dependence must also be primi- 
tive recursive. 

An analogous conclusion may be drawnwith respect to a predicate 
Q defined by using a bounded existential quantifier 

o r ,  more explicitly, 

Here the representative function of the predicate Q is given by 
the product 

z 

x2, ..., x n ) = I I y ( x 1 ?  ~ 2 ,  xn, y ) *  
Y 30 



PREDICATES. MINI MALI ZATION 335 

Now let u s  introduce the minimalization operator. 
Assume that we are given a primitive recursive predicate 

P ( x l ,  xz,  . . ., x,, g) and that i t  is known a PriOri. that the condition 

(12.10) 

is satisfied; that is, for any set  xl, x 2 ,  . . ., x ,  there exists at least  
one g < z such that P ( x l ,  x p ,  . . ., xn, y )  will  be true. 

Then the predicate P may be used to define a function $(xl, x z ,  
. . ., x, )  in the following manner: given x;, XI, . . . , x; the value of func- 
tion $(x;, xi, . . ., x:) is the, smallest number g* at which P (x;, x;, 
. , ., x:, y*) is true. We shall indicate this by writing 

+(XI, x27 a e . 9  ~, )=PYy_<*P(XI ,  xp, . - * ,  x,, y). (12.11) 

By virtue of Eq. (12.10), such a g exists for  all x l ,  x2, . . ., x , ;  con- 
sequently, $(xI, x2 ,  . . ., x,) is defined at  all points. 

If we deal with the representativefunctionq(x,, x2,  . . ., x,, y)of the 
predicate P ( x l ,  xz, .. ., x,, g) rather than the predicate itself, then 
Eq. (12.11) becomes 

+(XI* x2, * . * #  Xn)=Pyy<,((P(x,, ~ 2 ,  * * * ,  xn, Y)=OI, 
that i s ,  the smallest y a t  which rp(xl. x2, . . ., x,, y) vanishes is taken 
as the value of the function $(XI, X Z ,  . . ., X n ) .  

Thus, the minimalization operator is a means for deriving new 
functions, starting from primitive recursive ones. 

We shall now show that the function CC, (xlr x2,  . . . , x r L ) ,  defined by 
means of the minimalization operator, is primitive recursive. For 
this purpose, w e  shall explicitlyexpress the (I)(xI, x2,  . . ., x , )  in terms 
of the representative function q ( x l ,  x p ,  . . ., x, ,  y)  of the predicate P 

That Eq. (12.12) does indeed express $(x l ,  x 2 ,  . . . , X n )  canbe verified 
in the following manner: le t  us  expand expression (12.12): 

+ (x1, X2' . . . , x,) = sg ['p @l, x2, * * 9 x,, O)] + 
+ sg ['p(x,, xz. * * ., x,, 0) * 'p(x1, x2t . . ., Jc,t 111 + 
+sg[ 'p(x, ,  x2, . . ., x,, 0). 'p(X1, 4, . . ., x,, 1) * 

. 'p (XI, x2, . . ., x,, 2,] + . . . 
All of the above summands which include terms preceding 

cp(xI, x2,  . . . . . ., x,, g) = 0 are equal to 1; all succeeding summands 
are 0. Thus, the entire operation amounts to adding 1 to itself y 
times; that i s ,  the addition gives the number y. 



336 ELEMENTS OF MATHEMATICAL LOGIC 

Since +(x,, x2, . . ., x, )  is defined in terms of sums,products, and 
the function s g ( x ) ,  i t  is a primitive recursive function. 

Previously (Section 12.6), we have cited res (a ,  n )  as an example 
of a primitive recursive function. This function alsogives the num- 
ber of divisors of a. Let u s  divide a successively by 1, 2, 3, 4, ... 
and count the number of times the division gives no remainder. This 
w i l l  give the number of divisors of a, which w e  denote by ~ ( a ) .  The 
function p ( a )  is primitive recursive since 

,I 

p (a )  = 2 (res (a,  i) ). 
i = l  

If a is a prime number, then p ( a )  = 2, since a prime number is 
divisible only by 1 and by itself. Then 

- 1, if a is a prime number, 
0 in all other cases. sg ( I  :> (a )  - 2 I )  = 

It is now easy to add up the number of prime numbers which do 
not exceed y. Let this number be ~ ( y ) :  

\’ 
1 -  

TC (Y) = ZI s:: ( I ?  (a) - 2 I). 
a=2  

The addition s tar ts  at n = 2 ,  since we do not consider 0 and 1 as 
prime numbers: the zeroth prime number will  then be 2 ,  the f i rs t  
w i l l  be 3 ,  and so on: 

p , j = 2 ,  / ,1=3,  F ) * = 5 , p s = 7 ,  . . .  

Now let u s  tabulate some values of ~ ( y ) :  

x(2 )=  1, 
i: (3) = 2, 
i; (4) = 2 ,  
:: (5) = 3, 
:: (6) = 3, 
;.(7)=4, 
T: (8) = 4, 
T: (9) = 4, 
i: ( 10) = 4, 
r ( l l ) = 5  , etc. 

We shall now define [ i n  = ~ ( n )  as a function which, for given 11, 

yields the rzth prime number. It is known from number theory that 
the nth prime number does not exceed 2 2 ” ” .  We can, therefore, 
w r i t e  

t I J n +  1 
17” = py [ y  < I a 7i ( y )  = n + 11. 



PREDICATES. MlNlMALlZATlON 337 

since the nth prime number is the smallest such that the numbers 
not greater than it include exactly n + 1 primes. For example, 

cp(1) =pl = py Iy 
~ ( 2 )  = p 2 =  py [y 

16 & x (y) = 21 = 3, 
256 8z ~ ( y )  = 31 = 5 .  

The function pn = cp ( n )  is primitive recursive since i t  is defined 
by means of the minimalization operator [the primitive recursive 
function z ( n )  = 22"'' acts as a bound z ( n )  in this instance], as wel l  
as the primitive recursive relationship of n(y) = n + 1.  

Let u s  define still another function-that giving the number of 
times a prime pa occurs in the decomposition of n, and let us  de- 
note the function by p,(n). Obviously, the value of ex p,(n) is the 
largest  q for which pz is still a divisor of n, or ,  alternatively, the 
smallest y at  which pg+I fails to be a divisor of 1 2 .  We can then w r i t e  

expu(n)=py[y -SnSrp;+' is not a divisor of n] 

eXPa  (n) = PY [Y 4 n & res (n, P;+') + 01. (12.13) 

Inspection of Eq. (12.13) shows that ex p a ( n ) i s  a primitive recursive 
function. Now, the reader will recall that gcdelization is associated 
with the decomposition of a given number into prime factors and 
determination of the exponentwithwhich the prime number pa occurs 
in this decomposition. Consequently, godelization is  associated only 
with primitive recursive j2nctwns. 

In conclusion we shall cite, without proof, two additional primi- 
tive recursive functions. Let ml,  rnZ, . . ., m, be a set  of numbers 
whose Godel number is a, and let  n l ,  n2, . . ., n, be a set  whose G3del 
number is b. We shall now form a new sequence m l ,  m2, . .  ., m,, 
n l ,  n2, . . ., n, by appending the sequence n l ,  n2,  . . ., n, to the sequence 
m,, m2, . . ., mr. We want to determine, from the known Gb'del numbers 
a and b,  the G6del number y for the composite sequence. The func- 
tion thus defined is denoted by writing y = sob, and is primitive 
recursive. 

Now let m l ,  m2, . , ., m,, miil, . . ., m3, m,+l, . . ., m,, be a sequence 
of numbers whose Gadel number is a. We shall cut out from this 
sequence the segment beginning with mi and ending with m, (this seg- 
ment is underlined in the above expression), and insert  in i t s  place 
another sequence whose Gadel number is b. We want to determine 
the Gb'del number g for the new sequence. The function giving this 
number in terms of known a, i ,  1 ,  and b is denoted by 

or  

and is primitive recursive. 



338 ELEMENTS OF MATHEMATICAL LOGIC 

Now recall the transformation of words in associative calculus. 
The operation of substitution following g6delization of an associa- 
tive calculus reduces to the above inclusion operation. Consequently, 
transformation of words in associate calculus is also associated 
only with primitive recursive functions. 

These conclusions will  be useful in the discussion of general 
recursive functions. 

12.8. A COMPUTABLE BUT NOT PRIMITIVE 
RECURSIVE FUNCTION 

So fa r ,  we have dealt with primitive recursive functions. The 
very nature of the derivation of such functions shows that all primi- 
tive recursive functions a re  computable. But is the converse true? 
A r e  all computable functions primitive recursive ? The answer  is 
no. We know this from the work Pkter and Ackermann who, almost 
simultaneously and in entirely different ways, constructedexamples 
of a computable but not primitive recursive function. Let u s  follow 
Phter's reasoning. 

Pe'ter w a s  the f i rs t  to notice that the set of primitively recur- 
sive functions is countable. Indeed, the class of primitive functions 
is countable (since the number of different variables xi and con- 
stants q is countable). Consequently, the class of primitive recur- 
sive functions, derived by a single application of operations IV or 
V of Section 12.6, is also countable, since the set  of the sets  
+, x,, xL. . . ., xnL used in operation IV is countable, as is the set  of 
pairs +, x for operation V; this must be so since these sets  are 
formed from elements of a countable class. 

Further, the set  of primitively recursive functions derived by 
means of two applications of operations IV or V is countable, and 
so on. By the same reasoning, the set  of primitive recursive func- 
tions is, in general, countable. In particular, the set of primitive 
functions of one variable is countable (because i t  is contained in 
this countable set). 

Pgter succeeded in actualby numbeving all the primitive recur- 
sive functions of one variable, that i s ,  in arranging them into a se- 
quence 

so that from the form of a function one can determine its num- 
ber, while (conversely) the form of the function is given by the 



GENERAL RECURSIVE FUNCTIONS 339 

corresponding number. Then it became possible to construct an 
example of a computable function which is not primitively recur- 
sive. 

Suppose we have afunction $ iy, x) 1. rpy(x) ; (I (yx) is countable [since 
from the value Y = Y*  one can find the corresponding function P , Y + ( ~ )  
and compute its value for a given n = x * ;  this would automatically 
give the value of $(Y*, x*)]. This functionisnot primitive recursive. 
Indeed, i f  $(y, x) were primitive recursive, sowould $(x, x) be, which 
is a function of one variable. Then $(x, X )  4- 1,would also be primi- 
tive recursive, since the addition of 1 constitutes an allowable opera- 
tion of “succession.” But since the series (12.14) contains all the 
primitive recursive functions of one variable, there would exist a 
number y*, such that 9 (x, x)+  1 ==y,*(x) for all x. In other words, 
9 (x, x) 4- 1 = + (y*, x ) .  Since this identity must hold for all x ,  i t  holds, 
in particular, for x = y*. But then 

qJ (Y*> Y*) + 1 = 9 (y*,  y*L 

which is impossible. It means that the enumerating function (I(y, x) 
is not primitive recursive. This function is known, however, to be 
computable. Consequently, the class of primitive recursive func- 
tions does not encompass all computable functions. It must be 
broadened to serve our purposes. 

Whereas in the case of elementary functions we were limited 
by the fact that w e  were unable to construct very rapidly increas- 
ing functions by means of allowable operations, in the case of primi- 
tive recursive functions we are limited by our form of induction. 
The trouble is that we have fixed in advance the operation (V), that 
is, the form in which the induction must appear. 

Extension of the class of primitively recursive functions w a s  
proposed by G6del in 1934, based on a bold idea of Herbrand. 

12.9. GENERAL RECURSIVE FUNCTIONS 

The Herbrand-Godel Definition 

So far, w e  have dealt with recursive functions, where a function 
rp was defined in t e rms  of several functions x and + , assumed to be 
known apriori . Now le tus  examine twocomputations using only one 
auxiliary function x. 

Example 1. Assume we are given the system 

(12.15) 
(12.16) 



340 ELEMENTS OF MATHEMATICAL LOGIC 

7 (0) = '1, (12.17) 
(12.18) 'p(Y') = x iY ,  'p (Y)). 

I t  is required to find the chain of formal inferences which yields 

1. In (12.18) w e  set  y = 0: 
( ~ ( 2 )  = 7, starting from Eqs. (12.15) to (12.18). 

'9(I)=x(0,  'p(0)). (12.19) 

2. In (12.19) w e  replace cp(0) by 4, in accordance with (12.17): 

'p (1) = x (0, 4). (12.20) 

3. We then use (12.15): 

'(1)=7. 

Continuing in a similar manner, w e  get successively: 
4. ' p m = X . ( l >  Cp(1)). 
5. ' p (2 )=x(1 ,  7). 
6 .  'p(2)= 7 
Example 2, Assume that function cp(n, a)  is given by 

'9 (0, a )  = a,  

Y(n  + 1, a)='p(n. a)+ 1 

(12.21) 
(12.22) 

and that we want to find the value of q ( 3 , 5 ) .  By a formal analysis, 
w e  shall find the operations needed for computing ~ ( $ 5 )  by means 
of Eqs. (12.21) and (12.22). 

1. In Eq. (12.22), w e  set  n = 2, a = 5. Then 

'p (3.5) = 'p (2.5) + 1. (12.221) 

2. Now we set  n = 1, a = 5 in (12.22) and determine cp (2,5): 

p (2.5) = 9(1.5)+ 1. (12.222) 

3. Again 

'P (1.5) = '~(0.5) + 1. 

4. We set  a = 5 in Eq. (12.21). Then 

'p (0.5) = 5. 

(12.22 3) 

(1 2.2 24) 

5. We substitute this value of cp (0,5) into (12.223) and get 

'p(1.5)=5+ 1 =6.  (12.225) 



GEN E R AL RE CU RS I V E F UN CT I ONS 341 

6. Now, substituting this value of ( ~ ( 1 . 5 )  into (12.223), w e  get 

‘p (2.5) = 6 + 1 = 7. (12.2 2 6) 

7. Finally, substituting this value of cp (2.5) into (12.221), we get 

‘p (3.5) = 7 + 1 = 8. (12.227) 

We required only two operations to compute the answers for the 
above two examples. These operations were (1) replacement of 
symbols (variables) by numbers and (2) substitution of equivalents, 
whereby w e  used one side of an equation as a replacement for the 
other (see steps 5 and 6 above). 

If one can, by means of these two operations, deduce another 
equation from a given system of equations E ,  then this equation is 
said to be deducible in the sys tem E. Since deducibility is crucial 
to the theory of general recursive functions, we shall consider i t  in 
detail. First ,  we shall introduce a broad and exact definition of 
deducibility. We begin by defining a “term,” an “equation,” and an 
“inference.?’ 

The letters used so far to denote functions ‘p, x, X ,  a, ‘p,, ‘p2, cp3, 

‘p4, . . . shall be called thefunctional signs (the l ist  of functional signs 
is infinite). The variables will again be denoted by xJ Y, Z,  t ,  rn, a, 
a, b, c, xi, x 2 J  x3, * * . 

We shall define a “term” by induction: 
1. 0 is a term. 
2. Each variable is a term. 
3. R’ is a term if R is a term. 
4. q ( R 1 ,  Rz, ..., R,) is a term if ‘p is a functional sign and 

5. There are no other terms. 
The following are examples of forms: 
1. The number 3 is a term (because 0 is a term, hence 0’ = 1 is 

2. Any constant is a term. Again, constants shall be denoted as 

3. cp (2) is a term. The following are also terms: 

R, ,  R2,  . . ., R ,  are terms. 

a term,  hence 1’ = 2 is a term, so that 2’ = 3 is a term). 

x*, ya, z*, t*, m*, n*, . . . . 
4. q(x, Y). 
5. 
6. X(X’, Y). 
7. 0 (Y’, x ,  (9 (4 ) ’) , e tc. 

~p (x, X I  (8, Y), XZ (395) 9 X 3  ( Y t  2) ) * 

The following are not terms: 

1. y(4J); 2. 5(x);  3. y (cp); 4. ‘p (2, qJ) 



342 ELEMENTS OF MATHEMATICAL LOGIC 

and so on. Thus, terms are specific expressions which are com- 
posed of symbols denoting variables, constants, and functional signs 
by means of brackets and primes. 

Now let u s  define equations. An equation shall be an expesswn  
R = S , where R and S are terms. Newequations shall be deducible 
from a given system of equations E by means of the following opera- 
tions: 

1. Substitution of numbers for symbols of variables. 
2 .  Transformation of expressions R = S and H = P whichdonot 

contain variables (where R, S ,  If, P a re  terms) into an expression 
derived from R = S by one of more simultaneous substitutions of 
p for occurrences of H .  

The reader will  recall that these w e r e  the only two operations 
used in the two examples considered above. 

Now, our scheme for deriving primitive recursive functions in- 
volved the following “properties”: 

a) The values of the functions were derived fromequations by a 
method which can be formally analyzed. 

b) Each definition w a s  arrived at  by mathematical induction. 
We have already established above that primitive recursive func- 

tions a re  a restricted class because of the mode of induction which 
was fixed in advance. The a prwri fixingof the inductive method is 
the root of the difficulty. W e r e  we to adopt another, possibly even 
a broader induction method, we  would still have no guarantee that the 
new method would not lead to a quite restricted class of recursive 
functions. Herbrand therefore suggested that the induction method 
be left open (not fixed) and that property (a) itself be used as a defi- 
nition. The Herbrand-G6del definition of the general recursive func- 
tion is as follows: 

Ajimction q (x,, xq, . . . , x,) is general recursive if there exists a 
finite system of equations E such that, f o r  any set of x;, x;. . . . , x:, , 
there i s  one and only one y * ,  such that the equation ‘p(x;, xi, 
. . . , x;) = y can be deduced from E by  a finite number of applica- 
tions of operations 1 and 2 (that is, replacement of variables by 
numbers and substitution of equivalents). 

The system E is the defining system of equations; one also says 
that C defines tJ2e function y, recuvsively. 

This definition does not require that a function be computable 
from i t s  values at precedingpoints; i t  does not require that the aux- 
iliary functions contained in the system E be computable at all 
points; and no induction method isfixeda pnh’y*i. The only require- 
ment is that the system E define a particular value of q (with the 
aid of other values of q and values of auxiliary functions) in such a 



EXPLICIT FORM OF GENERAL RECURSIVE FUNCTIONS 343 

way that q will  be uniquely computable from E at all points. Unique- 
ness  in this instance means that E does not simultaneously yield 
two contradictory equations. 

This definition of a general recursive function is not by itself 
a computation procedure. The definition merely says thatif a given 
system of equations E recursively defines afunction q ,  then for any 
x;, x;, . . ., x*, there exists a y* such that the equation 

y p ; ,  x;, ..., x*n)=y* 

can be deduced from E .  Buthow does one go about such a deduction? 
How does one find y*?  One obviousway is to keep on deducing equa- 
tions derivable from E until a suitable equation comes up. But that 
may take an infinite time. The reader will  recall that a poorly or- 
ganized search can lead to infinitely long wandering and no result 
even in  a finite labyrinth. Thus some organization is a necessity if 
equation ~ ( x f ,  xi, . . ., xi)=y* is to be deduced inafinite, though not 
a p r i o r i  bounded, number of steps. We shall not dwell on the de- 
scription of the techniques employed. Suffice i t  to say that g6deliza- 
tion allows us  to reduce the scanning of all the possible deductions 
to the application of the operator minimalization. This operator also 
permits another method of defining recursive functions. 

12.10. EXPLICIT FORM OF GENERAL 
RECURSIVE FUNCTIONS 

In Section 12.7 we introduced the bounded smallest-number 
operator which places a primitive recursive predicateP(x,, x2, . . . , 
x,,y), or a primitive recursive function  XI, xz, . . ., x,, y) repre- 
senting P ,  into correspondence with a primitive recursive function 
$ ( X I ,  XP, . * .v xn): 

+(XI, Xp, - * - 3  X , ) = P Y y , c z P ( X l ,  Xp, * - ., Xnr y ) =  (12.23) 

= P y y s z [ Y ( x 1 ,  x,, * . . >  X,? y,=o1 

provided 

( Q n J P x , ) .  * .  ( Q X , ) ( ~ Y ) , , ~ ~ ( X , >  Xp, * * ., x,, y )  

or 
( Q x , ) ( v ~ , ) .  . (QX,)(~Y),,~[Y(X,, XZ, - * . ,  X n r  Y)=OI ,  

where z may, in general, be a primitive recursive function of 
X I ,  x,, . . . I  x,: 

z = 2 (XI, x2, . . . , x n ) .  



344 ELEMENTS OF MATHEMATICAL LOGIC 

Let u s  now consider a case where the operator is not bounded. 
Let ~ ( x , ,  x2, . . ., x,, y) be a primitive recursive function such that 

Here there is no upper bound for y. The only stipulation is that for 
all x I ,  x2,  . . ., x ,  there exist a y such that 

' 9 ( X , ,  X.2, . . ., x,, y)=O. 

In this case the function $(XI, x p ,  . . ., x n ) ,  defined by means of the 
minimaliz ation operator 

is a pviovi computable. Indeed, to compute i t s  values at  a point 
x;, x;, . . ., x : ,  i t  is sufficient to compute successively ~ ( x ; ,  x;, . . ., 
x;, 0), ~ ( x ; ,  xi, . . . , x i ,  l), y ( x t  xi, . . ., xi, 2) and so on, until one ob- 
tains a y* such that y(x; ,  xi, . . . , xfn, y') = I ) .  The value of y* is then 
the value of $ at the point under consideration. 

This computation procedure must endin afinite number of steps, 
because Eq. (12.24) indicates the existence of a y* at which y = O .  
Now we want to know whether the computable functiong(x1, XZ, . . ., x,)  
defined by Eq. (12.25) subject to condition (12.24) is general recur- 
sive. It turns out that thereisasystem of equations E which recur- 
sively defines $ ,  that is, $ is a general recursive function. To 
simplify the derivation, w e  shall consider afunction of one variable 

+ ( X ) = r y  IFJ(X, v)=O]  

( v d ( 3 y  ) 1'9 ( X ,  Y ) = 01. 
(12.2 6) I and 

Here, the system E ,  which defines $ ( x )  recursively, is as follows: 
1. a@, X ,  y ) = y ,  

3. +(x) - -a Ip I X ,  O ) ,  X ,  01. 
Let u s  prove that E does indeeddefine $(x)  recursively. Suppose 

that A *  is a number and we want to determine $ ( x * ) .  According to 
Eq. 3 of E ,  

2 .  o ( 2  + 1, x ,  y ) = o l y ( x ,  y +  I ) ,  x ,  Y +  11, ] (E) 

+ (x") = 0 1'9 ( X * ,  01, x*, 01. 

Now there are two possibilities: either y @ * ,  O), vanishes or  i t  
does not. If q ( x * ,  0)  = 0 ,  we can only use the f i rs t  equation of E :  

o (0, x*, 0) = 0, that is, + (2) = 0. 



EXPLICIT FORM OF GENERAL RECURSIVE FUNCTIONS 345 

But then the value of JI must alsobe zero in accordance with (12.26). 
If, however, J, (x* ,  0) # 0 ,  i ts  value may be represented as z + 1 ,  and 
w e  can use the second defining equation of E :  

o [ y ( x * ,  O), x*, 01 = O [ Y ( X * ,  I ) ,  x*, 11. 

Here again there are two possibilities: either cp(x*, 1)  vanishes 
or i t  does not. If cp(x*, 1) = 0, then w e  can use only Eq. 1 of E :  

a [0 ,  x*, I ]  = 1 

and, consequently, J , ( x * )  = I .  In this case Eq. 1 of E does in fact 
yield the value of J, indicatedby Eq. (12.26). If, however, cp(x*, 1 )  # 
0, we may represent i t  as z + 1 and again use  Eq. 2 of E :  

a "p (x", 1 ), x', 11 = a [ y  (x* ,  Z), x*, 21. 

We continue this procedure until we find a y* such that ( P ( x * .  y*) = 0. 
That value of y* will be the value of J , ( x * ) .  

Therefore, the system E does indeed recursively define the 
function 

+ W = t L y  lCp(X? Y)=01 

and consequently J,(x) is a general recursive function. 
In the above proof w e  did not use the fact that the function 

cp(x,, x p ,  . . ., x,, y) of Eq. (12.25) is primitive recursive. For this 
reason, the argument holds completely even if function ( ~ ( x l ,  xp, . . . , 
x,, y) is assumed to be general recursive. 

Thus, if condition (12.24) is satisfied, the minimalization opera- 
tor  py permits u s  to derive general recursive functions from primi- 
tive recursive functions (predicates). Further work has also shown 
that the difference between primitive recursive and general recur- 
sive functions resides entirely in the operator p q .  Thus i t  has been 
proved that any general recursive finctwn (P(XI, X Z ,  . . ., Xn) may be 
represented as 

where Ji and 7 are primitive recursive functions, while the follow- 
ing statement holds for the function 7 : 

Equation (12.27) is the explicit form of general recursive func- 
tions. Let u s  sketch out the proof of the above statement. Assume 
E = {eo, el,  . . ., e,} is a system of equations defining a function 
cp (xl, xz,  . . ., x,) recursively. Each equation has a G6del number mi, 



346 ELEMENTS OF MATHEMATICAL LOGIC 

Then the Godel number for the entire system E is 

w =py"p;r'p;' . . . p?. 

Now, w e  shall deduce new equations from the system E .  This 
means that w e  shall successively obtain equations 

(12.28) 

If ri i  is the Godel number of equation ei, then each inference [that 
is, each string such as (12.28)j can beput into correspondence with 
the GGdel number of this inference 

- - -  - 
e,, e , ,  e2, . . ., e,, . . . . 

2 =po""p;' . . . p:' . 

Suppose we want to evaluate p at point x;, xi ,  . . ., xz, that is, 
w e  wish to derive from the system E an equation of the form 

y (x;, x;, . . . , x;,> = y*. (12.29) 

What a re  the properties of the Gijdel number z of this inference? 
1) Equations can be inferred from other equations, as w e  already 

know, by substitution of numbers for variables and replacement of 
occurrences. In these procedures, the Gadel numbers of the re- 
sulting new equations are primitive recursive functions of the Godel 
numbers of the starting equations, since the operations of replace- 
ment of occurrences, substitution, and the determination of the Gadel 
number a re  associated only with primitive recursive functions. Some 
of these functions w e r e  already considered above [ e x p ,  (x), a o b,  
siihSt, ( L76' ) , p ,  = ~ ( I z )  , etc.]. 

Therefore, the f i rs t  requirement which z must satisfy is this: 
each of the exponents no, nl ,  n2, . . . of the decomposition of z into 
primes must be either the G6del number of one of the defining equa- 
tions e ,  or  the value of some primitive recursive function of these 
(Godel) numbers. 

2)  The las t  exponent / I ,  of the decomposition of z must be the 
G8del number of an equation such as (12.29). 

It turns out that the predicate 

i \ z is the G8del number of the 

i 7 (xy, xi, . . ., x,:, z )  = < inference of the value of 
I ? (x,, xi, . . . , 4,) 

is a primitive recursive predicate. Consequently, i t s  representing 
function .(xi, xi, . . ., xil, z) is also primitive recursive, and it is 
equal to zero for  those z which are the G6del numbers of inferences 



EXPLICIT FORM OF GENERAL RECURSIVE FUNCTIONS 347 

terminating in the equation 
y(x;, xi ,  . . . )  q = y *  

and only for those. 
For this reason, our problem of finding the desired inference 

may be formulated as follows: find at least  one number z ' ,  such 
that 

qx;, X i ,  . . ., X ; j ,  z')=O. (12.30) 

Since an inference must exist at all points (by definition, E re- 
cursively defines p recursively), the function T has the property 

(Vx , )  (Vx,) . . . (VX,) (22) [T ( x ~ ,  x?, . . . , x,, Z )  = 01. (12.31) 

Having found a Z* which Eq. (12.30) is satisfied, w e  can decode 
this G6del number and get 

y* = (z*), 

whereby (L, also turns out to be aprimitive recursive function, since 
the decoding reduces to the following primitive recursive opera- 
tions: determination of the las t  exponent n, in the decomposition of 
z* followed by decoding of the numbern, [which is the Gijdel number 
of our Eq. (12.29)]. Moreover, (~(2) turns out to be a universal primi- 
tive recursive function, identical for all systems E (that is, for all 
general recursive functions c p ) ,  since the decoding of the G6del num- 
ber  of the inference always proceeds in a standard way. 

If, w e  we have established, any z for which 

qx;, x;, . . ., x;, z)=O, 

is the Godel number of the desired inference, then 

is also the Gadel number of this inference. We shall, therefore, 
finally get 

y = y ( x , ,  xp, ..., X,)=~{PZ[T. (x , '  Xp,  . * . ,  x,, z,=Ol}. 

where I$ and 7 are primitive recursive functions and the condition 
(12.31) is satisfied for T. 

I t  should be pointed out that from theform of expression (12.30) 
immediately indicates that all general recursive functions form a 
countable set. * This conclusion arises from the fact that the number 

T h i s  conclusion could have been arrived at earlier,  by observing that the set of dif- 
ferent systems E recursively defining functions 9 is countable, since all these systems E 
can be tagged by means of GMel numbers. 



348 ELEMENTS OF MATHEMATICAL LOGIC 

of different recursive functions 7 defining general recursive func- 
tions by means of the scheme (12.30) is also countable (denumer- 
able). 

However, in contrast with primitive recursive functions, the set 
of general recursive functions is not effectively countable (for fur- 
ther details, see Section 12.12), and, consequently, Pe‘ter’s method 
does not allow u s  to construct anexample of an enumerable function 
more general than the general recursive. 

To conclude this section, let u s  write out the operations defining 
general recursive functions. H e r e ,  operations I - V are the already 
familiar schemes for defining primitively recursive functions, while 
operation VI is the explicit form of a general recursive function: 

I .  ?(X)===X’, 

11. 7 ( X I ,  x2, . . . , x,J = q,  
111. 7 (Xi .  x,, . . . , x,) =xi, 
IV. ? ( X I ’  x 2 ,  . . . ,  x,,)=$(%l (XI, xq, . . . 

. . . .  x,,!, %&. xz, , . ., X n ) ,  I . .  , %,n(x , ,  x2, . ., X J ) ?  

Lia. y (0)  = q ,  ? (Y’) = y. (y, p ( y )  ), 

F ( y ’ ,  xp . . . 1  xn )=%(y ,  .(y, x2, . . . ,  xJ, xp, . . . ,  xnh 
VI. p ( x l ,  X?, . . ., x,z) =,+ [py [.(XI, X?,  . . ., x,, y)=Ojj, 

( \ . Y , )  ( Y X ? )  . . . ( V . q I )  (3Y) 1. (x,, xj,  . . . , x,,, y)  = 01. 

Vb p(0 ,  x2, . . ., x,) =$+(x,, . . ., xn) ,  

where by 

Now w e  can define a general recursive function: A function 
i?(xr7 xz, . . ., xr61 is said to be general recursive i f  it can be defined 
by using operations I - IV  a finite number of times. 

Since operations I - V defining the primitive recursive functions 
a r e  encompassed by operations I - VI defining general recursive 
functions, primitive recursive functions are a special case of gen- 
e ra l  recursive functions; every primitive recursive function is a 
general recursive function. However, the converse is not true. 

12.71. CHURCH‘S THESIS 

Let u s  now return to our initial problem, that of defining the class 
of computable functions. In solving this problem, w e  have defined 
in succession, the class of elementary functions, then the class of 
primitive recursive functions, and finally the broad class of general 
recursive functions. Now we must ask: is this the final solution? Or 
must the class of general recursive functions be further broadened? 



CHURCH’S THESIS 349 

The many attempts a t  broadening the class of general recursive 
functions have all ended in failure. And in 1936 Church suggested 
that every effectively countable function (or effectively solvable 
predicate) is general recursive (see [llo]). By virtue of this thesis, 
the class of computable functions coincides with the class of general 
recursive ficnctions. 

Church’s thesis cannot be proved, since it contains, on the one 
hand, the vague concept of a computable function and, on the other, 
the mathematically exact concept of a general recursive function. 
The thesis is a hypothesis supoorted by several valid arguments 
which no one has so far succeeded in refuting. One such argument 
is that the various refinements of the concept of an algorithm turn 
out to be equivalent. Thus, for instance, Markov’s normal algorithm 
proved to be reducible to general recursive functions. 

Previously we said that an  algorithm'' and a “computation of 
the values of an arithmetical function)’ a re  identical concepts. In the 
light of Church’s thesis a problem is algorithmically solvable only 
if  the arithmetical function to the computation of which we reduce 
our problem is general recursive. 

To sum up, an algorithm can exist o d y  if a corresponding gen- 
eral recursive function can be constmccted. 

Conversely, by virtue of Church’s thesis, the algorithmic un- 
solvability of a problem means that the arithmetical function to the 
computation of which the problem is reduced is not general recur- 
sive. 

The proof of algorithmic unsolvability is often as involved, diffi- 
cult and time-consuming as the search for an algorithm. However, 
algorithmic unsolvability can be proved in some cases. We shall 
give, without proof, two examples of this type: 

Example 2. If we had an algorithm which, given the GCSdel num- 
ber w of an equation system E ,  would be capable of deciding by in- 
spection of w whether E defines a general recursive function, then 
we could define once and for all which systems E define general re- 
cursive functions, andwe could effectively number all such functions. 
In other words, we needageneralrecursivefunction $(w) such that: 

= O  if w is the G5del number of 
system E defining a general 
recursive function, 

> 0 in all other cases. 

ti) (w) 

It has been proved [42] that such a general recursive function 
~ ( w )  does not exist. Therefore, the problem of recognizing those 



350 ELEMENTS OF MATHEMATICAL LOGIC 

systems E which define general recursive functions is algorithmic- 
ally unsolvable. The set  of general recursive functions turns out 
to be countable, but not effectively so. 

Example 2. The following problem turns out to be algorithmically 
unsolvable: it is required to find an algorithm for recognizing, for 
any primitive recursive function ~ ( x ,  y) [or for any primitive recur- 
sive predicate T ( x ,  y) ]  whether that function has the property 

or in the case of a predicate, whether ( V x ) ( x y )  T ( x ,  y ) ] .  
Since primitive recursive functions can be effectively and dis- 

tinctively labeled (numbered), the problem reduces to finding a 
computable function + ( r )  such that: 

= O  if  r is the number of a primitive 
+ ( r )  < recursive function having the 1 property (12.32). 

, > 0 in all other cases. 

This function proved not to be general recursive and, conse- 
quently, is noncomputable. 

Even if condition (12.32) is somewhat weakened, the problem is 
still algorithmically unsolvable. Thus the following simple problem 
is algorithmically unsolvable: given a primitive recursive function 
q(x, g)  i t  is required to find, for any x * ,  whether the following con- 
dition holds for that x " :  

P Y )  IT (x** Y) = 01. 

Yet another algorithmically unsolvable problem is this: for any 
primitive recursive predicate P (y )  , it is required to find whether 
i t  is true that 

In all cases, the proof reduces toproving that the corresponding 
recognition function is not general recursive. 

One often proves the algorithmic unsolvability of a given prob- 
lem by showing that i t  reduces to anotherproblem, whose algorith- 
mic unsolvability has already been proved. Sometimes it suffices 
to show that a narrower problem, which is a special case of the given 
problem, is algorithmically unsolvable. In Chapters 8 and 9 ,  we 
used the method in proving algorithmic unsolvability of the two basic 
problems of the theory of finite automata and sequential machines. 



RECURSIVE REAL NUMBERS 35 1 

12.12. RECURSIVE REAL NUMBERS 

Recursive real numbers occur in cons&ucCive mathematics, an 
approach which has developed from the desire to avoid getting en- 
trapped in logical contradictions (antinomies). In this approach, a 
proof is considered complete if, inaddition toestablishing a mathe- 
matical fact, one is able to demonstrate that the corresponding 
mathematical objects can also be computed. 

The machinery of recursive functions plays an important role 
in constructive mathematics: i t  is in terms of these functions that 
the algorithms for effective construction of required objects are 
usually defined. 

Consider a typical constructive formulation of a frequent prac- 
tical problem. In analysis one often comes across the statement 
“for every small E > 0 there exists a number A’ such that some 
quantity (which is afunction ofn) becomes smaller than E for n >, N.” 
Now, what is the constructive variant of this statement? In order to 
arrive at it ,  we require: 

1. A more precise definition of what w e  understand by “every 
small E.” To define such E, we may assume, for example, E = ;, 
where rn is a positive integer which maybe as large as desired. 

2. An effective method for determining N , starting from E (that 
is, from m). 

Therefore, an effective formulation of the above statement is: 
“there exists a general recursive function v ( m )  such that some 
quantity which is a function of n becomes smaller thanmfor 
n >v(m)  .” 

This kind of formulation can be related to convergence of a se- 
quence of rational numbers. Let us say that a sequence of rational 
numbers a,, a,, a,, ..., a,, ... is recursive if  there exist general 
recursive functions a ( n ) ,  p(n) [where ‘t >, 11 such that 

1 

1 

a (4 - P (4 
r ( n )  * 

a, = 

We shall say that the sequence converges recursively (or ef- 
fectively) i f  there exists a-general recursive function v ( m )  such that 
for any arbitrarily large m > 0,  

The number r ,  defined by this effectively convergent sequence, is 
called a recursive real number. 

It can be shown that the recursivity of r (that is, the fact that 
there exists a sequence of rational numbers which, in the limit, 
recursively approaches Y )  does not imply that Y can be expanded 



352 ELEMENTS OF MATHEMATICAL LOGIC 

into a recursive decimal fraction. That i s ,  the recursivity does not 
imply the existence of a general recursive function $ ( n )  < 9  such 
that 

co 

y9(k) 
’=A 10k 

However, there exists one special sequence whose recursive con- 
vergence implies the possibility of recursive expansion of r in any 
number systems. This is the factorial expansion 

k=O 

where u, ti - 1 for large n. If there exists a general recursive 
function x(n) such that a, = x(n), this series always converges re- 
cursively and defines a recursive real number, which can be ex- 
panded into a recursive fraction in any number system. 

Let u s  also mention here that the setof recursive real numbers 
is not larger than the set of general recursive functions; that is, 
this set  is not larger  than a countable set ,  whereas the set  of all 
real  numbers is a continuum. In this sense, only a very small frac- 
tion of all real numbers are recursive. 

To summarize, a recursive real number is really a number 
which may be computed to any degree of accuracy by means of an 
algorithm. All numbers usually employed in mathematical analysis 
(e, IT, fl, and so on) are recursive real numbers. 

12.13. RECURSIVELY ENUMERABLE AND 
R ECU RSlVE SETS 

There are several equivalent formulations defining recursive 
and recursively enumerable sets of integers. For convenience, 
w e  shall assemble these definitions into a table: 

Recursive sets of numbers 1 Recursively enumerable sets of 
numbers 

1A. A set  is said to be recursively enu- 
merable if it consists of values of some 
general recursive function i f ,  alterna- 
tively, i f  there exists a general recur- 
sive function enumerating it,  even ifthis 
involves repetitions. The empty set is 
deemed to be recursivelyenumerable. 
2A. A set C containing at least one ele- 
ment is recursively enumerable i f  and 
only if the predicate “veC”  can be ex- 
pressed in the form ( < x ) P ( x , y ) .  where 
P (x, y )  is general recursive. 

16. A set C is said to be recursive if 
there exists an algorithm for determining 
whether a given number y belongs to C. 
26. A set C is said toberecursiveif the 
predicate “yeC” can be expressedinthe 
form P ( y ) ,  where P is general recursive. 
36. A set C is said to be recursive if both 
the set and its complement c arerecur- 
sively enumerable. 
46. An infinite set C is recursive i f  and 
only i f  it  can be enumerated byageneral 
recursive function without repetition and 
in increasing order of i ts  elements [that 
is if q(O) ,  ~ ( l ) ,  q(2) ,  . . . give the ele- 
ments of C in increasing order]. 



RECURSIVELY ENUMERABLE AND RECURSIVE SETS 353 

Now, a few remarks regarding these definitions: 
Note  on U. It has been proved that, if a set  can be enumerated 

be a general recursive function with repetition, i t  can also be 
enumerated without repetition (by another general recursive func- 
tion). 

Note on 2%. We shall show that definition 2A follows from 1A. 
Let C be the set of values of a general recursive function cp(x) .  
Then, the fact that a number y belongs to C means that there exists 
an x such that 

y = '9 (4, 

( 3 4  Is = '9 (41. 
or that 

Equation y = cp(x) may be regarded as a general recursive relation- 
ship of equality between two general recursive functions 

P ( x ,  Y ) = l x l ( x 7  Y ) = x z ( x 7  Y) l>  

X I @ ?  Y)"Y ,  X2(X. Y ) = Y ( X ) .  

where 

Note  on 2B. Definition 2B is merely a more exact version of 
definition 1B. 

Note  on 3B. If condition 3B is satisfied, thenit follows that con- 
dition 1B is also satisfied. Indeed, let  C be enumerated by function 
cpl (x), and set by the function ~ ( x ) .  To ascertain whether a given 
number belongs to C ,  w e  shall compute the parallel sequences 

Since y belongs either to C o r  to c, sooner o r  later i t  will  appear 
either in row I o r  in row 11. If it appears in row I,  then y C , and 
if  in row 11, then y E c. Thus, there exists an algorithm for deter- 
mining whether any y belongs to C. 

Note  on 4B. When condition 4B holds, there also exists an al- 
gorithm for recognizing the membership of any y in set  C. Indeed, 
let  us  compute the sequence q ( 0 ) ,  q (  I ) ,  cp(2). . . .. If, at some n, w e  
arrive at ~ ( n )  > y , then there is no need to continue the computation, 
and w e  may conclude that y E. C; i f ,  however, w e  find rn x n such that 
cp(rn) = y, then y EC. 

We shall give a few examples of recursive sets: 
1) The two-element set  (0, I }  is recursive by virtue of condi- 

tion 1B or  2B. 



354 ELEMENTS OF MATHEMATICAL LOGIC 

2)  Any finite set  is recursive by virtue of condition 1B or  2B. 
3) The set of even numbers {O, 2, 4, 6, 8, . .) is recursive. Here 

y E C = [ITS (y, 2)  = 01, and the set is recursive by virtue of 2B; or  
q ( x )  = 2 x ,  and the set  is recursive by virtue of 4B. 

Now, let us  give examples of sets  that are and sets  that are not 
recursively enumerable. 

According to definition 2A, the set of all y for which ( a x ) P ( x ,  g) 
a t  some general recursive P ( x ,  g)  is recursively enumerable. One 
can so select P (x,  g) that the set  {g} will  be recursively enumerable, 
but not recursive; i t s  complement {i) will  be the se t  of those y for 
which 

(2x1 P (x ,  Y) = ( v 4  (x, Y) = (vx) Q (x, y )  

(where Q is a general recursive predicate); this set  {i} will  be 
neither recursive nor recursively enumerable, 

The set  of Gb’del numbers z of systems E which define a general 
recursive function is neither recursive nor recursively enumerable. 

In conclusion, let  u s  point out that the comparison of 1 A  and 4B, 
as well as the fact that any finite set is both recursive and recur- 
sively enumerable imply that any recursive set is recursively 
enumerable. The converse, however, is not true. 

The concept of recursive real  numbers and recursively enu- 
merable sets  is important in determining whether a machine “can 
do” more than just realize a given algorithm. For w e  have shown 
above that any algorithm reduces to the computation of the values of 
a computable integer function. Thus, i f  a device generates an output 
of a set of numbers and that set is not recursively enumerable, we 
immediately know that the operation of this device cannot be repre- 
sented by an algorithm; that i s ,  this device ‘‘does more” than just 
realize an algovithm 



13 

Turing Machines 

13.1. DESCRIPTION AND EXAMPLES 
OF TURING MACHINES 

In Chapter 12 w e  showed that the fundamental, intuitively obvious 
requirements to which any algorithm must conform are those of 
determinacy, generality, and applicability (efficacy). In addition, the 
result  of an algorithmic procedure must be completely independent 
of the person executingit. Theexecutor merely acts like a machine: 
there is no “creative” work involved here,  because the executor 
needs only to follow instructions. If this is so, then why not dele- 
gate the execution of the algorithm to amachine? This chapter will  
present one class of machines capable of executingsuch tasks. 

The above properties of an algorithm also pertain to a machine 
executing this algorithm. To begin with, such a machine must be 
fully determinate, operating within the specified rules. Second, i t  
must allow the input of a variety of “initial data,” that is, of a 
variety of individual problems from a given class of problems. 
Third, the specified operational rules for the machine and the class 
of problems which can be solvedmustbe matched in such a way that 
the result of machine operation will always be ‘‘readable’ ’ (that i s ,  
the machine will  give a useful result). 

There are many constants capable of executing algorithms. The 
most graphic of these is the scheme proposedin 1936 by the English 
mathematician Turing. We shall now describe one of the possible 
variants of this machine. 

The basic component of our Turing machine is an infinitely long 
tape divided lengthwise into squares. The tape extends in only one 
direction (to the right), so that we can meaningfully talk about a 
“leftmost” square. Each square may contain only one symbol s; 
f rom a finite alphabet [so, . . ., s,]. We shall ascribe a special sig- 
nificance to the symbol SO: its presence in a square shall denote 
that the square is blank. In any tape, the number of nonblank squares 
is always finite (but as large as desired), all the other squares be- 
ing blank. 

355 



356 ELEMENTS OF MATHEMATICAL LOGIC 

The second component of the Turing machine is aread-erase-  
recovd head. This special device can move along the tape, either 
to the left or to the right, one square at  a time. Upon an external 
command, the head can erase a symbol present in the tape square 
that happens to face the head at  a given moment, and i t  can print 
another one in its stead. The external commandscausing these ac- 
tions are issued by a controller, a device which is itself governed 
by the signals generated by the head (these signals indicate the 
presence of symbols s,  in a given tape square). The controller 
operates in discrete time t = 0, 1, 2, . . . , and it may assume a finite 
number rn + 1 of internal states 40, . . ., q,,,. Its input consists of sym- 
bols of s,  read and generated by the head, while its output consists 
of commands to the head (these commands indicate what symbol, if 
any, should be printed in a given tape square, a s  well as the direction 
of motion of the head). For example, assume that at  time t the head 
faces the l th  square from the left, that this square contains the sym- 
bol s,, and that the controller is in state q3. The head reads the sym- 
bol sz andgenerates a signal correspondingtoit. In response to this, 
the controller generates a symbol sk whichcauses the head to erase 
the old symbol s ,  and print sk on the tape. Then the controller pro- 
duces one of the symbols R ,  L, S (‘‘right,” “left,” “stop”), in 
compliance with which the head moves one square to the right or 
left o r  stays put. After this, the controller assumes a new state qr, 
which is uniquely determined by the previous state q1 and the signal 
s,. After the entire operation has beencompleted(at time t + l ) ,  the 
lth square contains the symbol &, the controller is in  state q., and 
the head is situated opposite either the ( I  + l)st,  the ( I  - l)st ,  or the 
lth square (depending on whether the motion commandwas R ,  L, or 
S). Thus, the controller is a sequential machine with two output 
converters. I t s  inputs are symbols from the alphabet {SO, . . ., sn}, 
received from the read-record head. Its states are symbols from 
the alphabet (4”. . . . , q,,l}. Its first output is a signal commanding the 
head to print a symbol from the alphabet (so, . . . , s,] , whereas its 
second output is a signal commanding a shift of the head and belong- 
ing to the alphabet { R ,  L, s}. Theoperation of this s-machine can 
be specified by means of three tables-those for an automaton and 
for two converters. However, i t  is customary to combine these into 
one basic table. Thus the automaton Table 13.1, the first converter 
Table 13.2, and the second converter Table 13.3 may all be com- 
bined, in that order,  into Table 13.4, whichfully describes the opera- 
tion of this Turing machine. Again, if the basic table of a Turing 
machine is given, then its operation is uniquely specified. 



DESCRIPTION A N D  EXAMPLES OF TURING MACHINES 357 

Table 13.1 Table 13.2 Table 13.3 m, 
40 40 

Table 13.4 

State of the controller shall denote the r e s t  state of the Turing 
machine; that is, row qfl of the basic table has the following proper- 
ties: (1) The f i rs t  symbol in every square of this row shall always 
be qo (never q j  if  j # 0);  (2) The second symbol of each square will  
be si, the same symbol as in the respective column heading (never 
sk if  k -A i); (3) The third symbol of every square shall be the sym- 
bol S (never R o r  I,). For anillustration of row qfl ,  see Tables 13.4 
and 13.5. 

Table 13.5 

Now, if the controller is at  any time t in state qfl ,  then whatever 
the position of the head, andwhatever the symbol in the correspond- 
ing tape square, the controlling device will  remain in state 4 0 ,  the 
head will  not move, and the tape entries will  remain the same as be- 
fore. To simplify the basic table, we shall therefore omit row qo 
(see Table 13.6). 

For simplicity, w e  shall also assume that the alphabet (si] con- 
s is ts  of only two symbols; blank (that i s ,  0) and nonblank (that is, 1) .  



358 

Time 

0 

1 

ELEMENTS OF MATHEMATICAL LOGIC 

~ 

Tape printout 

41 

(1 I 
. . . 1 0 7 0 1  , . . 

. . . l o r 0 1  . . . 

Table 13.6 Table 13.7 
Machine A 

Now let  us  discuss a few simple Turing machines. 
1) Machine A (Table 13.7). This machine operates as follows. 

Assume that at  t = 0 , the controller is in state q l ,  and the head faces 
a nonblank square. The machine then “looks” for the first blank 
square to the right, prints the symbol 1 in i t ,  and stops. If, how- 
ever ,  the head faces a blank square at t = 0 ,  then the machine prints 
1 in that square, and stops (no motionof the head). Tables 13.8 and 
13.9 illustrate two possible modes of operation of this machine. 
(A bar above a tape square indicates that the head faces that square 

Table 13.8 

Table 13.9 



DESCRIPTION AND EXAMPLES OF TURING MACHINES 359 

the symbols are  known to remain un- 

time considered (the head does not 
changed throughout the operating 

0 1 

, 

41 410L qoo L 

Table 13.11 

3) Machine C (Table 13.12). At t = O ,  this machine may face 
either a blank o r  a nonblank square. The head then moves to the 
right until i t  finds the f i rs t  group of symbols 1 after a group of 

Table 13.12 
Machine C 



360 ELEMENTS OF MATHEMATICAL LOGIC 

Time 

zeros,  and stops at  the last  1 of that group. One version of this 
machine is shown in Table 13.13. 

Tape printout 

( 1 1  

. . . 0 l l 0 0 1 1 0 0 . .  . 

. . . O l T 0 O l l O O . .  . 

. . . 0 1  1 0 0 1  1 0 0 . .  . 

. . . o l l o o l l o o . .  . 

. . . 0 1 1 0 0 l 1 0 0 . .  . 

. . . O l l 0 0 l T O 0 . .  . 

. . . 0 1 l 0 0 1 1 0 0 . .  . 

. . . o l l o o l T o o . .  . 

“ 1  

rll 

(12 

(12 

q 3  

(13 

(10 

In some cases the Turing machine may be incompletely speci- 
fied, in that some of the squares of the basic table contain no sym- 
bols. This is permissible in those cases where one can predict 
that these combinations of machine states and tape symbols will  
never occur. Consider an example. 

Table 13.14 
Machine D 



DESCRIPTION AND EXAMPLES OF TURING MACHINES 36 1 

2 

3 

4 

4) Machine D (Table 13.14). This machine searches for the group 
of zeros  between the first two groups of ones to the right of the 
position of the head at t = 0 .  It then replaces all but one of these 
zeros  with ones. If the combinations q,,  0 and q4, 0 are avoided at 
t = 0 ,  they will not occur in the future because state q,  will  never 
occur, whereas the machine will assume state q4 only after the last  
symbol 1 has been printed. One variant of this machine is shown in 
Table 13.15. 

We shall sometimes deal with machines havingnotone, but sev- 
eral r e s t  states (q;, qc, and so on). Consider a typical example. 

5) Machine E (Table 13.16). At t = 0 ,  the head of this machine 
always faces a nonblank square. Then, depending on whether the 
next square to the left contains 0 or 1 ,  the machine assumes either 
state qi or 46,  and stops facing the initial square. Variants of this 
machine are shown in Tables 13.17 and 13.18. 

. . . 0 1 1 l 0 0 0  1 1  0 0  

. . . 0 1  1 1 0 0 0 1  1 0 0  

. . .  0 l l 1 1 0 0 1 1 0 0  

q 2  

q 3  

Table 13.15 

I T ime 1 Tape printout 

In concluding this section w e  shall present, without special ex- 
planations, a few Turing machines which we shall need at  a later 
stage. 

6 )  Machine F (Table 13.19). This machine searches for the near- 
e s t  group of 1’s which follow a group of zeros to the left of the 
position of the head at  t = 0. 



362 ELEMENTS OF MATHEMATICAL LOGIC 

Table 13.16 
Machine E 

Table 13.17 

Time 1 Tape printout 

41 
... 0 0 1 7 1  ... 

42 
... 0 O i l  1 ... 

4; 

... 0 0  I T 1  ... 1 

Table 13.18 

T i m e  Tape  printout I 
41 

... 0 0 i - 1  ... 

... oB1 1 ... 
42 

40 
... 0 o-i  1 ... 

Table 13.19 Table 13.20 Table 13.21 
Machine F Machine G Machine H 

7 )  Machine G (Table 13.20). This machine e rases  all the 1’s (if 
such symbols are  present) to the left of the position of the head at 
t = 0 , and continues doing so until i t  encounters a 0. 

8) Machine H (Table 13.21). It differs from Machine A only in 
that i t  prints the symbol 1 not in the first but in the second blank 
square on the right. 

9) Machine I (Table 13.22). This machine s tar ts  at a nonblank 
square, e rases  the symbol 1 in i t ,  and transfers i t  to the nearest 
blank square on the left (in other words, i t  shifts a group of ones 
one square to the left of the starting position). 

10) Machine K (Table 13.23). I terases  the symbol 1 in the square 
on the right of the initial one (if that square contains a 1). 



THE COMPOSITION OF TURING MACHINES 363 

Table 13.22 Table 13.23 
Machine I Machine K 

11) Machine L (Table 13.24). It s tar ts  at a nonblank square, 
moves to the left, and stops at the second blank square to the left 
of the first group of ones. 

Table 13.24 Table 13.25 
Machine L Machine M 

12) Machine M (Table 13.25). It can assume two rest states. 
Depending on whether it faces a blank or nonblank square, it as- 
sumes state q; or  4;. 

13.2. THE COMPOSITION OF TURING MACHINES 

As we have just seen, what a Turing machine does i s  uniquely 
determined by the controller functioning in accordance with a basic 
table. We shall assume that the machine always starts from an ini- 
tial state denoted by q l ,  and that it assumes the rest state 90 when 
it ceases to work. Now we can define the operations on Turing ma- 
chines so that we can derive new basic tables from the given ones. 
Thus imagine that we have two machines T I  and T 2 ,  and that at t = 0 
the collection of symbols on the tape is such that T1 s tar ts  operating. 
At  thispoint,T,isinstateq;, and the head is opposite the loth square. 
Then, a t  t = i:, machine T I  assumes the res t  state q:, and the head 
stops opposite the Ihth square. Now machine T I  shuts off, and ma- 
chine T2 takes over, starting from state q : ,  the head of T2 at t = th 
facing the same square /A at which T I  ceased operating. Then, at 
t = t i ,  T2 shuts off and assumes the rest state q i ,  while i ts  head 
stops opposite square l i .  This consecutive operation of machines 
T1 and T 2 ,  is equivalent to the operation of a single Turing machine 



364 ELEMENTS OF MATHEMATICAL LOGIC 

T , the basic table of which i s  synthesized according to the following 
rule: if the controllers of TI  and T z  can assume k l  and kz states*, re- 
spectively, then the controller of T can have k, + kz  states, the ini- 
tial and r e s t  states of T being 9: and qa, respectively. The basic 
table of T consists of two parts,  of which the top describes TI, and 
the bottom TZ. The r e s t  state q: of T ,  is the initial state 91 ofT,. 
For example, i f  T ,  is machine F (Table 13.19) and T 2  i s  machine G 
(Table 13.20), then machine T (Table 13.26) will  have a table with 
2 + 1 = 3 states, where q,=qK is the rest  state of G.  If w e  recode 
the states of T ,  Table 13.26 will  take the form of Table 13.27. 

Table 13.26 Table 13.27 Table 13.28 

Machine T so obtained is the product of TI and T 2 ;  that is, T = 

= Ti. T 2 .  The operation of deriving a third machine from two given 
ones is the multiplication of machines. Thus Tables 13.26 and 13.27 
are tables of machine F .  G. Multiplication of machines is obviously 
a noncommutative operation: T I .  T 2  + TZ. T I  (Table 13.28 shows the 
product G. F ,  and it  obviously differs from Table 13.27). However, 
multiplication is associative; that i s ,  with three machines TI ,  T z ,  
and T 3 ,  w e  have ( T I .  T,) . T 3  = T I .  ( T , .  T,).** Accordingly, no paren- 
theses are used in writing the product of several machines. 

The operation of vaising to a powev is defined in the usual way: 
the rzth power of machine T is the product obtained by multiplying 
T by itself n times. 

So far w e  have discussed the multiplication of machines with 
one r e s t  state. If one of the machines of the product has two o r  more 
r e s t  states (for example, if i t  is machine E or M of the preceding 
section), the multiplication i s  the same, but one must indicate which 
of the r e s t  states of thefirstconstituentmachine shall be the initial 
state of the second machine. For example, if T I  has two re s t  states, 

*Henceforth, the number of states shall not include the res t  states, of which there may 

**From now on, we shall omit the dots in the product of machines. 
be several, as  in machine M above. 



THE COMPOSITION OF TURING MACHINES 365 

, or as 

, depending on whether the initial state of T 2  is the 

f i r s t  o r  the second r e s t  state of T , .  Machine T also has two rest 
states,  the f i r s t  of which is one of the r e s t  states of T I ,  while the 
second is the r e s t  state of Tz. 

i ifi T2  
w e  shall, write the product of T I  and T 2  as T=T, 

{ ( 2 )  T2 
T = T ,  

Now, the meaning of an expression such as 

is also clear here. Here, there are two independent multiplica- 
tions, involving the f i rs t  and the second r e s t  states of machine T I .  

There also exists the operation of iteration of a single machine. 
Thus let  machine T I  have s rest states. We select its rth rest state 
and make i t  the initial state of machine T ,  which is then shown as 

T = T I  I '  (i), 
1 .  
I :  (4 

This machine is the result of iteration of' T I .  Here, the dots above the 
le t ters  indicate that the r thrests ta te ismade the initial state of the 
iterating machine TI. If TI  has only one r e s t  state, then iteration 
yields a machine with no r e s t  states. 

Henceforth, w e  shall use the following notation. If we perform 
iteration on a machine which itself is the result  of multiplication 
and iteration of other machines, then we place corresponding num- 
be r  of dots above those machines whose states ( res t  or  initial) are 
used in the new machine. For example, the expression 

(1) f , ,  
T =  T I T 2  ( 2 )  T4T5 ,  I (3) 7.6 

means that the r e s t  state of machine T , i s  made the initial state of 
machine T ,  and that the rest state of T5 is made the initial state of TP.  

Now let  u s  synthesize a machine by rceans of multiplication and 
iteration. Let our constituent machines be C, G, L, and M ,  described 
in Section 13.1, and le t  u s  use them to synthesize a machine N by 



366 ELEMENTS OF MATHEMATICAL LOGIC 

means of the above rules. Our machine 
Machine N N 

(1) c, 1 (2 )  G 
N =  LM 

will have the basic Table 13.29 (obtained 
from Tables 13.12, 13.20, 13.23, and 
13.25). At  t = 0 ,  machine N is in state 
q l ,  and its head is opposite a nonblank 
tape square. It then proceeds toerase all 
the symbols 1 to the left of i ts  initial 
position, and continues doing so until 
i t  encounters two consecutive blank 
squares. At this point, the head returns 

to the right and stops opposite the extreme right nonblank square 
in that group of 1’s opposite i t  at  s tar t  of the operation. Table 13.30 
shows one variant of iV , showing only those tape conditions at which 
the machine assumes a new state (to reduce clutter, state symbols 
qI are indicated only by their ordinal numbers i). 

Here the use  of iteration yielded a machine N repeating the 
operation of erasing groups of 1’s until itis given a specified com- 
mand to cease. 

13.3. COMPUTATION ON TURING MACHINES 

We shall show that whatever the algorithm, there will  always be 
a Turing machine capable of executing this algorithm. To formu- 
late this statement in precise terms,  we must first formalize the 
concept of an algorithm in some manner. Here, we shall use 
Church’s thesis according to which every algorithm is merely a 
computation of a recursive function. Because of that, w e  must f i rs t  
define what w e  mean by “computing” of arithmetical functions on 
a Turing machine. 

To s tar t  with, let u s  specify the representation of natural num- 
bers  and zero on the tape of aTuring machine. We shall use a code 
in which numbers are written in the natural (“unary7’) system of 
notation, so that a number n is represented by n +1 symbols 1 lo- 
cated in consecutive squares of the tape. Thus zero is represented 
by a single symbol 1, cnity-by two symbols 1, etc.* 

*We could represent  n by n consecutive symbols 1 ,  but then we would have to represent  
zero by a blank square. This  would interfere  with our scheme, in  which we need blank 
squares  both for separating numbers and f o r  carrying out computations. 



COMPUTATION ON TURING MACHINES 367 

Table 13.30 

Tape printout 

1 
1 1 0  0 1 1  1 0 1  I 0  I I T 1  0 

1 1 0 0 1 1 1 0 1 1 ~ 1 1 1 1 0  

1 1 0 0 1 1 1  O l i o  1 1  1 1  0 

1 1 0 0 1 1 1 0 1 i 0 1 1 1 1 0  

1 1  0 0 1 1  1 0 0 0  0 1 1 1 1 0  

1 1 0 0 1 1 1 T 0 0 0 1 1 1 1 0  

. . . . . . . . . . . . . . . . . . . . .  
1 

2 

4 

. . . . . . . . . . . . . . . . . . . . .  
4 

1 

Time 

0 

. . . .  

. . . .  

. . . .  

I . .  . .  

L 

n 
L 

1 1 0 0 1 1 i 0 0 0 0  1 1  1 1  0 

1 1 0  0 1 1 T o o o  0 1 1  1 1  0 

1 1 0 ~ 0 0 0  0 0 0  0 1 1  1 1 0  

1 1 0 0 0 0 0  0 0 0  0 1 1  1 1  0 

4 

. . . . . . . . . . . . . . . . . . . . .  
4 

1 

L 

1 1 0 0 0 0 0  0 0 0  0 1 1  1 1  0 

1 1 T 0 0 0 0  0 0 0  0 1 1  1 I 0  

1 1 0 0 0 0 0 0 0 0 0  1 1  1 1  0 

1 1 0  0 0 0 0  0 0 0  o i  1 1  1 0  

1 1 0  0 0 0 0  0 0 0  0 1 i 1 1  0 

6 
1 1 0  0 0 0 0  0 0 0  0 1 1  1 1  u 
1 1 0  0 0 0 0  0 0 0  0 1 1  1 T o  

3 

5 

. . . . . . . . . . . . . . . . . . . . .  
5 

6 

. . . . . . . . . . . . . . . . . . . . .  

0 

Two numbers are said to be located next to each other if their 
coded expressions a re  separated by a single blank square. Thus 
Table 13.31 contains consecutively (from the left) the numbers 3, 
0 ,  and 2. 

Table 13.31 

0 0 1 1 1 1 0 1 0 1 1 1 0  



368 E L E M E N T S  OF MATHEMATICAL LOGIC 

Now let  us  specify the recording and readout of arguments and 
values of functions on the tape. Thus assume w e  want machine T to 
compute the value of the function q(xl . . ., x,) of n variables x,, . . ., x, 
if the values of the arguments are x1 = a*, . . ., x, = a,. Recall that 
the leftmost tape square of our Turing machine is considered the 
f i rs t  one. Let us  leave the f i rs t  two squares blank (as in Table 
13.31). Then, beginning with the third square, we record (in our 
code) the n consecutive numbers a l ,  . . ., a,, pertaining to the inde- 
pendent variables x l ,  x2, .  . ., x,.Table 13.32 illustrates this for n = 3 ,  
where x, = 2, x2 = I ,  and x3 = 3. 

Table 13.32 

o o l l l o l l o l l l i o  
Q l  

From now on if there is no risk of confusion, we shalluse xl, . . ., x, 
to denote both the independent variables (arguments) and the specific 
numerical values assumed by these variables. 

We shall also say that the read-record head senses the system 
of numbers ( x , ,  . . ., x,) in t h e s t a d a r d  positionif these numbers are 
consecutively recorded on the tape, and if the head is opposite the 
rightmost square involved in the representation of the last number 
(x,). For example, see Table 13.32, where the position of the head 
is, as  usual, denoted by a bar. 

Now we can define what w e  mean by computation on a Turing 
machine. Assume we  have machine T and that the following holds 
at  t = O :  

a) T is in the initial state q l ;  
b) a system of n numbers (xi, . , ., x,) isrepresentedon the tape, 

c) all squares to the right of the one opposite the head are blank. 
Now T s t a r t s  working. We shall say that T computes the function 

x = (p(xI, . . ., x,) of n variables if, regardless of what kind of num- 
be r s  xl, . . ., x, are involved, there arr ives  a time when 

d) T assumes the rest stateq,; 
e) the tape represents (n  + I )  numbers xI, . . ,, x , ~ ,  x [where x = cp 

(x i .  , . ,, s,,)], and the head again senses the entire number system 
in the standard position; 

f )  all squares to the right of that opposite the head are blank. 
If however, the machine never stops, or if it does stop but con- 

dition (e) o r  (f) are not fulfilled, then this machine does not compute 
function (p for this particular set of arguments ( x l ,  . . ., x,). 

and the head senses i t  in the standard position; 



COMPUTATION ON TURING MACHINES 369 

For example, to illustrate a Turing machine which does compute, 
let  n = 3 and q ( x l ,  x2,  x g )  = x ,  + x z  + x3. Then, for XI  = 2, x2 = 1 ,and 
x3 = 3 ,  the starting tape is that of Table 13.32, while the final tape 
(after the machine has stopped) is that of Table 13.33. 

Table 13.33 

0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 i - 0 0  
40 

Now w e  shall introduce a few specialized Turing machines. 
Machine P is synthesized by multiplication and iteration of ma- 

chines I, M,  C, K ,  and A of Section 13.1: 

p = i M  (1 )  c 
l ( 2 )  KCA. 

This machine places numbers next to eachother. It does this by 
transposing to the left the nonblank squares in the tape representa- 
tion of a given number (see Table 13.36). The basic table is shown 
in  Fig. 13.34. However, analysis shows that the same result can be 
obtained with the machine of Table 13.35, whichhas half the number 
of states. 

Table 13.34 
Machine P 

Table 13.35 

Machine P 

Since we do not care what the actual logic of the machine is as 
long as w e  obtain the desired result, we shall understand that the 
machine performing the function of P can be either that of Table 
13.34 or of Table 13.35. One variant of P (corresponding to Table 
13.35) is shown in Table 13.36. 



370 ELEMENTS OF MATHEMATICAL LOGIC 

Machine R,,, is a synthesis by multiplication and iteration of 
machines H ,  F ,  E ,  D ,  C, 5, and A of Section 13.1: 

( 1 ) L)C"'. i ( 2 )  BC"ZA, K,,, = H P E  

Table 13.36 Table 13.37 
- 
Time 

0 

1 
. . .  

. . .  

. . .  

. . .  

Tape printout 

1 

o i ~ i o o o ~ i ~ i o  

0 l 1 l 0 0 0 1 1 T 0 0  
2 

n 
L 

0 l l 1 0 0 0 l l l 0 0  

0 1  1 1  0 0 1  1 1  1 0 0  

0 1 1  1 O o - l l l  I 0 0  

3 

4 

4 

0 1 1 1 0 0 1 1 1 1 0 0  

o l l l o o l l l T o o  
1 

. . . . . . . . . . . .  
1 

0 1 1 1 0 1 1 1 T 0 0 0  

0 l 1 1 0 l l T 0 0 0 0  

0 1  1 1 0 1  1 1 0 0 0 0  

o l l r l l l l o o o o  

o l l l r l l l o o o o  

2 

. . . . . . . . . . . .  
2 

3 

5 

6 

o l l l o r l l o o o o  
. . . . . . . . . . . .  

6 

0 
0 1 1 1  0 1 1  l o o 0 0  

o l l I o l l l T o o 0  

where the superscript m indicates the power of a given machine. 
For example, 



COMPUTATION ON TURING MACHINES 37 1 

Time 

0 
. . .  

Machine R,, operates a s  follows: if the numbers x l ,  . _ . ,  x, are  
represented on the tape in the standard position at t = 0 ,  then R,, 
prints the first of these numbers (thatis,x,) to the right of the rep- 
resentation of ( X I ,  . . ., x,) and stops; after this, the tape contains a 
system of rn + 1 numbers ( X I ,  . . ., x,, x , )  in standard position. How- 
ever,  if at t = 0 the tape contains, in standard position, the numbers 
xI, . . ., x,, where n > rn, then R,, prints the number xn -,+ I on the 
right-hand side of the representation of this system of numbers and 
stops; after this, the tape contains the number system (xl ,  x2. . . ,, 
x,,, x,- ,+~) .  An example of the operation of machine R1 is shown 
in Table 13.37 (the letters on the right indicate which of the com- 
ponent machines of R I  are  responsible for a given step of the op- 
eration; the symbols O1 and 02 are  the res t  states of machine E ) .  

It can be shownthatthe mthpower R," of the machine R ,  operat- 
ing on numbers ( X I ,  . . ., x,) in standard position, copies the entire 
system next to and on the right-hand side of the original representa- 
tion, the final result being a system of Zrnnumbers (xI,  ..., x,, 
xI, . . ., x,) in standard position. The starting and the final tapes 
of R$ at rn = 3, x1 = 1, x2 = 0, and x3 = 2 are  shown in Table 13.38. 

Tape printout 

1 

o o l l o l o l l i o o o o o o o o o o o  
. . . . . . . . . . . . . . . . . . . . .  

0 

0 0 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 ~ 0 0  



372 ELEMENTS OF MATHEMATICAL LOGIC 

Time 

0 
. . .  

Tape printout 

1 

0 0 l l O l 0 l l i 0 0 0 0 0 0 0 0 0 0 0  
. . . . . . . . . . . . . . . . . . . . .  

0 

0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 To 

Table 13.40 

Time Tape printout 

0 
. . .  

0 0 1 1 1 1 0 1 1 l i 0 0  fl 0 0 1  1 1  1 0 1  1 1  1 7 0  

1 
0 0 1  1 l i 0 0 0 0 0 0 0  
. . . . . . . . . . . . .  Ri 

least  number operator increases the maximum depth of any function 
subjected to these operations by 1. Since all recursive functions can 
be derived from the basic functions by finite repetition of these three 
operations, w e  need only to show that there exist Turing machines 



COMPUTATION ON TURING MACHINES 

0 
. . .  

373 

1 

. . . . . . . . . . . . .  H 

A 

' A  

0 0 l l 0 1 0 i 0 0 0 0 0  

0 0 l l 0 1 0 l 0 i 0 0 0  
0 0 1 1 0 1 0 1 0 1 1 0 0  

0 0 1 1 0 1 0 1 0 1 1 1 0  

Table 13.41 

1 Time 1 Tape printout I 

capable of realizing the operations of superposition, induction and 
the least number operator. 

For simplicity, we shall avoid details of synthesis of Turing 
machines realizing these operations and shall res t r ic t  ourselves to 
the simpler special cases. For example, instead of dealing with 
superposition with respect to n variables, w e  shall consider super- 
position with respect to only one suchvariable.* We thus obtain the 
following: 

IV. Superposition. Let M ,  and M ,  be Turingmachines computing 
the recursive functions $(x) and x ( x )  whose depths are CI and p ,  re- 
spectively. We desire a Turing machine M, computing the function 
q(x) = x($(x)) with a depth r n a x ( a ,  0) + 1. This will  be accomplished 
by the machine 

MY = S ,  M ,  NM, NP. 

V. Induction. Let M ,  be a machine computing arecursive func- 
tion x ( x )  of depth a. We shall devise a machine M ,  computing the 
recursive function q(x) of depth a + 1 specified by the induction 
scheme 

'Q (0) = qj Y (x ' )  = x ('p (4 )* 

This machine is given by 

(1) BCP, 

( 2 )  B C M , N P .  
M ,  = S,Aq+' FE 

VI. The smallest number operator. Let M, be a machine com- 
puting the function ~ ( x ,  y)  of depth a. We shall devise a machine Mu 

*For a precise description of generalized Turing machines realizing these operations, 
see 1421. 



374 ELEMENTS OF MATHEMATICAL LOGIC 

computing the function q ( x )  = pd/[x(x, y) = 01 of depthn + 1. Thisma- 
chine is 

( 1 )  GFP,  

(2)  GFA. 
M ,  = S,GAM,E 

Machine M, wil l  stop only ifxsatisfies the relation ( % ~ ) [ x ( x ,  y) = 01. 
We shall now illustrate the computation by inductionand the use 

of the smallest number operator so as to elucidate the operation of 
machines V and VI. 

Table 13.42 

Time 

0 
. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

Tape printout 

1 

0 0 1 l T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 1  1 1 0 0 1  l - ~ 0 0 0 0 0 0 0 0 0 , 0 0 0 0 0  

0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0  

. . . . . . . . . . . . . . . . . . . . . . . .  s,  

. . . . . . . . . . . . . . . . . . . . . . . .  A‘’ 

. . . . . . . . . . . . . . . . . . . . . . . .  FE 
0, 

0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ~  
O O l l l O O l T O O l l O 0 O O O 0 O 0 0 0 0 0  

0 0 1 1 1 0 0 1 1 0 0 1 T 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 T 0 0 0 0 0 0  

0 0 l l 1 0 0 l 1 0 0 0 0 0 l l 1 1 l 0 0 0 0 0 0  

0 0 l 1 1 0 0 l l 0 1 1 l l f 0 0 0 0 0 0 0 0 0 0  

0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 ~  

0 0 1 1 1 0 0 1 0 0 1 1 l 1 1 0 0 0 0 0 0 0 0 0 0  

0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  

0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 l l T 0  

0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 l l 0  

0 0 1 1 1 0 0 1 0 1 1 1 1  1 1 1 i 0 0 0 0 0 0 0 0  

. . . . . . . . . . . . . . . . . . . . . . . .  c 

. . . . . . . . . . . . . . . . . . . . . . . .  M 

. . . . . . . . . . . . . . . . . . . . . . . .  N 

. . . . . . . . . . . . . . . . . . . . . . . .  p 

. . . . . . . . . . . . . . . . . . . . . . . .  F E  
02 

. . . . . . . . . . . . . . . . . . . . . . . .  c 

. . . . . . . . . . . . . . . . . . . . . . . .  M 

. . . . . . . . . . . . . . . . . . . . . . .  N 

. . . . . . . . . . . . . . . . . . . . . . . .  P 

. . . . . . . . . . . . . . . . . . . . . . . .  FE 
0,  

O o l l l O o l o l l l l l l l l O O o o o O O o B  
0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  

0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 i - 0 0 0 0 0 0 0 0  

0 0 1 1 1 0 1 1 1 1 1 1 1 ~ 0 0 0 0 0 0 0 0 0 0 0  

. . . . . . . . . . . . . . . . . . . . . . . .  c 

. . . . . . . . . . . . . . . . . . . . . . . .  F’ 
0 



COMPUTATION ON TURING MACHINES 375 

T i m e  

0 
. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

Tape printout 
1 

0 0 l l T 0 0 0 0 0 0 0 0 0 0  

0 0 1  1 l 0 0 l 0 0 0 0 0 0 0  

0 0 1 1 1 0 0 1 0 1 1 l l i O  

0 0 1 1 1 0 0 1 ~ 0 0 0 0 0 0  
0 0 1  1 l 0 0 T 0 0 0 0 0 0 0  
0 0 1  I t o o i ~ i - o o o o o o  A 

o o I I I o o 1 I 0 1 1 I T o  
0 0 1 l l 0 o l l 0 0 0 0 0 0  
0 0 1  1 i o o i ~ i o o o o o o  
0 0 1 1 1 0 0 1 1 - 1 0 0 0 0 0  A 

. . . . . . . . . . . . . . .  S , G A  

. . . . . . . . . . . . . . .  M,E 
02 

. . . . . . . . . . . . . . .  G 

. . . . . . . . . . . . . . .  M,E 
02 

G . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  M,E 
0 2  

0 0  1 1  1 0 0  1 1  1 0  11-1 -0  

0 0 1  1 1 0 0 1  1 l - d 0 0 0 0  
o o 1 1 1 o o i 1 1 ~ o o o o o  

G . . . . . . . . . . . . . . .  

0 0 1 1 1 0 0 1 1 1 T 0 0 0 0  A 
. . . . . . . . . . . . . . .  MXE 

02 
0 0 1 1 l 0 0 1 1 1 1 0 1 1 0  

0 0 1 1 1 0 0 1 1 1 1 0 0 0 0  
0 0 1 1 1 0 0 1 1 1 7 0 0 0 0  

0 0 1 1 1 0 0 1 1 1 1 1 0 i o  

0 0 1 1 1 0 0 1 1 1 1 1 0 3 - 0  
0 0 1 1 1 0 0 1 1 1 1 1 0 - 0 0  
O 0 l l l 0 0 l l l l T O 0 0  F 

0 0 1  I 1 0 1  1 I l ' i - 0 0 0 0  

. . . . . . . . . . . . . . .  G 

o o ~ i ~ o o i i i i i o o o  A 
. . . . . . . . . . . . . . .  M ,  

01 E 

P 
0 



376 ELEMENTS OF MATHEMATICAL LOGIC 

function ~ ( y )  while keeping a check on how many times this compu- 
tation has  been repeated. 

The result of the computation: ~ ( 2 )  = 7. 
Selecting the operator of the smallest number. Let x ( x ,  y) = 

I x2 - y I ,  so that 

cp ( x )  = P Y [ I X 2 - Y I  = 01. 

W e  want to compute ~ ( 2 ) .  
The machine operation is shown in Table 13.43: here,  we deter- 

mine the consecutive values of x ( x ,  0) ,  x ( x ,  I ) ,  and so on, until 
x ( x ,  y) = 0. The result of the computations is q ( 2 )  = 4. 

Let us  also point out that all machines synthesized according to 
schemes I - VI must be so designed that they wi l l  never go beyond 
the left-hand edge of the tape. 

We have thus shown that any recursive function can be com- 
puted on a Turing machine. It can alsobe shown that only recursive 
functions may be computed on Turing machines. This is proved by 
means of g6delization of tape representations and verification of the 
fact that any change in such representations can be expressed by 
means of recursive functions (see the proof ofthis in [42]). 

By virtue of the equivalence of the concepts of “recursive func- 
tion” and of “function computable on a Turing machine”, as wel l  as 
by virtue of Church’s thesis, we can now define an algorithm as 
follows: An algorithm i s  any procedure which reduces to the com- 
putation of the values of aninteger-valued function on an appropriate 
Turing machine 



Conclusion 

We now return to the two fundamental problems posed in the 
Introduction, namely: (1) Finding out what a finite automaton or a 
sequential machine can and cannot r rdo,y3 and (2) the development 
of techniques for syntheses of devices which are dynamical sys- 
tems of this class andperform specific tasks. The answers to these 
problems have been gradually accumulating in the course of our 
presentation of the theory. We shall now endeavor to combine the 
solutions scattered through previous chapters into one coherent 
system. 

1. WHAT CAN A FINITE AUTOMATON OR A 
SE QU EN T I AL MACH I N E “DO“? 

That depends whether the machine in question is autonomous or 
not. 

If the finite automaton is autonomous, then beginning with some 
cycle it will  only generate a periodically recurring sequence of 
states (the corresponding s-machine can only generate a fixed se- 
quence of outputs). If this is a one-symbol sequence, then the ma- 
chine will achieve a state of equilibrium within a finite number of 
cycles. If this is a multisymbol sequence, then the automaton will  
assume, one after another, all the states corresponding to these 
sequence, and will  continue doing so ad in,nitum. That is all an 
autonomous machine can “do.” 

However, regardless of what this finite periodic sequence of 
states i s ,  one can always synthesize an autonomous finite automa- 
ton which will s tar t  to generate this sequence as early a s  its second 
cycle. Because of that, and because a fixed cycle of successive 
operations is characteristic of much of modern technology, dynami- 
cal systems which within allowable idealizations may be regarded 
as autonomous automata are widely used. A very old example of 
such automata are the animated figurines which go through com- 
plex sequences of motions, for instance, writing down a text on a 
piece of paper, playing predetermined music on an instrument, and 
so on. Modern examples range from washing machines to auto- 
matic lathes, assembly lines and control systems for cyclic opera- 
tions. 

377 



378 ELEMENTS OF MATHEMATICAL LOGIC 

If the automaton is nonautonomous, that is, i t s  input state varies 
from cycle to cycle, then the answer to the question of what i t  can 
or cannot ‘‘do” can be formulatedin avariety of terms,  for example, 
in the language of representation of events. Indeed, a nonautono- 
mous finite automaton (or s-machine) merely transforms sequences 
of input symbols into sequences of states (or outputs). Therefore, 
if we ask what suck a machine can or cannot do, we are merely 
specifying which sequences can be transformed in a given machine 
and which cannot. But since the number of states (or of outputs, in 
the case of the s-machine) is finite, our question is equivalent to the 
following: which specific inputs produce each of the possible states 
of the automaton (or,  each of the possible outputs of the s-machine)? 
In the terminology of the theory of finite automata this question is 
formulated as follows: Which events can (andwhichcannot) be rep- 
resented by each of the possible states of the automaton (or by each 
of the outputs of the s-machine)? Theexactanswer, in terms of the 
necessary and sufficient conditions for representability of events in 
the machine, is given by the theorems of Kleene. JSleene’s theorems 
state that only regular events can be represented in a finite auto- 
maton, a regular event being the input of sequence belonging to the 
class of regular sets. Thus in  the language of representation of 
events our question receives an unambiguous answer: Afinite auto- 
maton can only represent regular events. 

Many important input sets  encountered in practice are known to 
be regular. For instance, the following are regular: (a) the set 
consisting of any finite number of input sequences of finite length; 
(b) the set  of any periodically repeatinginput sequences; (c) the set 
of infinitely long sequences which always terminate in specified 
finite sequences; and so on. However, in general, if  we are faced 
with an infinitelylong set  of input sequences, we do not know a Pwri 
whether this set  is regular or not. This is because we only have 
techniques for genevating regular sets  (by induction), but lack ef- 
fective solution for the inverse problem of finding out whether a 
given set  is regular or not. Thus, even though the theorems of 
Kleene do answer the question as to what a finite automaton can do, 
the answer is not an effective one. Present research attempts to 
construct other languages in which the answer could be given more 
effectively. This language problem is also of cardinal importance 
in the initial steps of the synthesis of automata, that i s ,  i t  also fig- 
u re s  in the second of the two problems formulated above. 

Our class of dynamical systems consisting of “finite automaton” 
and “sequential machine,’’ can be extended by providing the machines 
with an infinite memory (this can be done by letting the machine 



THE SYNTHESIS OF A PRACTICAL DEVlCE 379 

have an infinite number of states, o r  providing i t  with an infinite 
tape, and so on). This gives a broader class of abstract systems- 
the Turing machines. The answer to the question, “what can they 
do?” is much simpler: they can realize any a Pyiovi specified 
algorithm. Now in modern mathematics the algorithm itself is de- 
fined as a computation of values of some recursive function. And 
since w e  know so precisely and unambiguously what a Turing ma- 
chine can do, we can use this machine to define the concept of the 
algorithm. We thus close our chain of reasoning with the state- 
ment: an algorithm is any process which can be realized in a finite 
automaton supplemented by an infinite memory, that is, in a Turing 
machine. 

2. THE SYNTHESIS OF A PRACTICAL DEVICE 
REALIZING A FINITE AUTOMATON OR 

SEQU ENTl AL MACH IN E 

If w e  wish to sample the input and the output of a system only at 
some specified discrete times (where these instants can either be 
specified a priOri ,  o r  may be the resultof the very operation of the 
system), then we have every reason to suspect that the device em- 
bodying our requirements will  be afinite automaton or  an s-machine. 
Since the object of the design is toensure the generation of desired 
outputs in response to specified inputs, we could specify our device 
by enumerating all the possible input-output relationships. If this 
enumeration results in a finite list of noncontradictory sequences 
of a finite length,* then w e  can be sure  that our specification can be 
embodied by a finite automaton or  an s-machine. Furthermore 
given these input-output relationships, we can derive from them the 
basic table of the finite automaton and the table of the output conver- 
t e r ;  together, these form one of the possible s-machines realizing 
the specification (the algorithm for the synthesis of such tables is 
described in Section 8.2**). 

It is much more difficult to ensure the generation of specific 
outputs in response to infinitely long inputs. Such cases are fre- 
quently encountered in practice, when the duration of the operation 

*We assume a peon‘ that either there canbe no other inputs, o r  that if there a re  such 
inputs, then i.ie output may be arbitrary or,  finally, that any other input will be signaled 
by the appearance of some symbol indicating that input. 

* T h i s  type of definitionis frequentlyencountered in the design of relay circuits, where 
the required input-output relationships may be enumerated, for example, by means of the 
so-called switching tables, 



380 ELEMENTS OF MATHEMATICAL LOGIC 

of the device being designed cannot be predetermined, and when the 
outputs must indicate some general properties of the input se- 
quences, a s  from the f i rs t  beat of the operation of the machine. In 
such cases a basic question arises: Inwhatway can the relationship 
between the infinite input and output sequences be defined, since a 
direct enumeration of the sequences is impracticable in this in- 
stance. No matter how this relationship has been defined, i t  boils 
down in the end to the definition of an algorithm enabling i t  to be 
established for each beat what the input and the output symbols are 
in that beat. 

If definition of the relationship between the infinite sequences is 
not restricted in some way, then from the very start we again come 
up against the same difficulty as that discussed at the end of the pre- 
ceding section, i.e., there is no effective method of establishing 
whether the event which is to be represented by the automaton is 
regular. This means that if the language in which the definition is 
formulated is not restricted in some way, then there is no way of 
even establishing whether some finite automaton or an s-machine 
is capable of realizing the definition. Therefore there is no point 
in talking of a method for the synthesis of an automaton o r  an 
s-machine realizing the definition. Once more as a central prob- 
lem arises that of finding a language sufficiently broad for the 
definitions of an automaton o r  an s-machine to be expressed in i t ,  
of great importance in technology; this language is to be such that 
there exist recognition algorithms as to whether there is an auto- 
maton or an s-machine capable of realizing the definition, and, when 
the answer is in the affirmative, the algorithms are to enable the 
required s-machine to be constructed. 

Accordingly, in the formulation of definitions of an automaton 
(in the case of infinite sequences) special methods are employed 
(or,  in other words, special languages) to avoid this difficulty. One 
of such methods is to write down the definition directly using the 
description of the regular events which the automaton is to repre- 
sent, rather than the description of the correspondence between the 
input and the output sequences. This method is described in Sec- 
tion 8.4, where an effective method is indicated for  the construction 
of the basic table of the automaton and the table of the converter, 
which together form the s-machine representing the given events. 

Another, considerably less economical (as regards the number 
of the states of the automaton required) method has been described 
in Section 7.4, in the course of theproof of Kleene’s theorems. 

Other languages are also known, characterized by the fact that 
every definition which is expressible in the languageis known to be 



THE SYNTHESIS OF A PRACTICAL DEVICE 38 1 

realized by an s-machine, and the correspondings-machine (i.e., i t s  
tables) is effectively constructible from that expression. An example 
is Trakhtenbrot’s predicate language, which has been briefly men- 
tioned in the presentbook. Theuse of these languages i s ,  in essence, 
based on the assumption that man is capable of nonalgorithmically 
(creatively) solving the problem indicated above, translating the defi- 
nitions from the ordinary general language in which he thinks, into 
a special language in which the problem of recognition of repre- 
sentability of events does not arise. If one w a s  unsuccessful in ex- 
pressing a definition in such a language, the question remains open 
as to whether this has been caused by the fact that the definition 
cannot be translated into that language, and therefore realized by an 
s-machine, or  because one failed to do so “creatively.” 

It follows from the foregoing that the f i rs t  stage of the synthesis 
is in some cases carried out according to standard rules, and in  
some other cases  i t ,  in principle, requires creative action; but, in 
any case,. provided the definitionis realizable, the result of the first 
stage of the synthesisis the table of the automaton and the converter 
table, which form one of the s-machines realizing the definition. An 
s-machine so constructed is not unique; generally speaking, there is 
a set  of other s-machines fulfilling the same definition, i.e., those 
equivalent to the one constructed by us,  o r  representing it. Such 
s-machines may differ in the number n of the symbols in the state 
alphabet (x}, i.e., in the number of rows in the basic table of the auto- 
maton. The smaller the number n ,  the simpler is subsequent con- 
struction o r  the scheme of the real machine. Accordingly, the next, 
the second stage of the synthesis is the minimization of the machine 
obtained, i.e., the construction of an s-machine equivalent to the one 
evolved in the first stage of the synthesis and, at  the same time, 
having the least possible number of states n. 

The solution of the minimization problem depends essentially on 
the set  of sequences which may appear at the input of the automaton 
during its operation. The set is of course, indicated in the original 
definition. 

The simplest case is one where the set of the input sequences is 
not restricted in any way, i.e., when any sequence may appear at the 
input of the automaton, In this case theproblem of the construction 
of a minimal s-machine, in the sense indicated, has been fully 
solved, i.e., the necessary and sufficient conditionsfor the minimi- 
zation have been found. A method realizing the construction of a 
minimal S-machine involves breaking down the connection matrix 
into certain submatrices; i t  has been described in Section 9.6. 

M a t t e r s  are rather more complicated when the set  of possible 
input sequences is restricted in some way.. Assuming that the 



382 ELEMENTS OF MATHEMATICAL LOGIC 

constraints are arbitrary,  i.e., that some arbitrary algorithm is 
given enabling i t  to be established whether a sequence satisfies the 
given constraints, the minimization problem turns out tobe unsolv- 
able (see Section 9.2). Accordingly, there is no minimization method 
suitable for any constraints and one can only attempt to find the 
necessary and sufficient conditions of minimization for some given 
particular form of constraints. However, excluding a complete sort- 
ing, even in the case of the most frequently encountered forms of 
constraints (e.g., when the constraint consists in only sequences of 
a given length appearing at the input, or sequences of any length but 
containing no identical symbols in succession, etc.), such neces- 
sary and sufficient conditions have not so far been found. Some ob- 
servations on minimization in such cases were producedin Sections 
9.4 and 9.7. 

We know of only two problems with constraints imposed on the 
input sequences which have a full solution. These are the problem 
of construction of a minimal s-machine in the case when i t  is to 
operate as a finite automaton and the input sequences contain no 
identical symbols in succession, and the problem of construction 
of a minimal s-machine in the case of Aufenkamp-type constraints 
(see Section 9.8). 

So, as a result  of the second stage of the synthesis, provided it 
proved to be realizable, a basic table of an automaton and a con- 
verter table are constructed, which together determine an s-machine 
fulfilling the given definition and, at  the same time have the least  
possible number of states. In the general case this completes the 
formation of the basic table of the automaton and the converter table 
and i t  is possible topass on to the third stage of the synthesis, which 
consists of the construction of the abstract structure of the s- 
machine being designed. However, there is a particular case,  fre- 
quently encountered in practice, where the input sequences are 
restricted, and some further work is required to construct a mini- 
mal s-machine. We are referring to the case where the rhythm of 
the operation of the machine being designed is determined by the 
change of the states at the input and there are, therefore, no input 
sequences containing identical symbols in succession. 

In this case further work in constructing the tables of the s- 
machine is dependent on the technical procedures used to construct 
the tables. More precisely, i t  is essential to lay down beforehand 
which of two possible ways is to be followed. The first way is that 
of applying delay elements to a beat signal fed from outside, with 
special devices signaling the occurrence of a beat (i.e., a change 
in the input state). The second way doesnot require the application 



THE SYNTHESIS OF A PRACTICAL DEVICE 383 

of any special delay elements, but utilizes the fact that real ele- 
ments have a certain inherent delay in operation and permit the con- 
struction of a machine by making use of steady states. 

If the f i rs t  way is used, the second stage of the synthesis de- 
scribed above, as far as it can be carried out to the end bearing in 
mind the constraints imposed on the input sequences, completes the 
construction of the tables of the s-machine and is immediately fol- 
lowed by the third stage of the synthesis: the transition to a n  ab- 
s t ract  structure (see further on), 

If the second way is used, furtherprocessingof the tables of the 
automaton and the converter is necessary. This means construct- 
ing the tables of another s-machine, which operates at  a faster 
rhythm (as determined by the delay time in the elements employed 
in the construction of the s-machine), and which reproduces in i ts  
steady state the s-machine being designed, operating at a Lslow’ 
rhythm which is determined by the moments when there is a change 
of state at  the input. 

To do this a “fast” machine satisfying this condition is f i rs t  
constructed, and this machine is then minimized, i.e., the second 
stage of the synthesis is repeated (for further details see Sections 
10.2 and 10.3). In the end, by this second way we also obtain the 
tables of a minimal s-machine and can once more pass on to the 
third stage of the synthesis. 

At the third stage of the synthesis an abstract structure is con- 
structed, i.e., from the tables of the s-machine obtained in the pre- 
ceding stage, the logical equations of an abstract structure repre- 
senting this s-machine are set  up, i.e., logical functions Fi and 4?j in 
equations of the form* 

x f = F i ( x p - ’ ,  xf-1, . . ., xnp-1; up-’, u;-’, , . .) .,p-’), 

p = Q .  xp, xg, . . . , x,p; q, ug, . . . , uf ), zi I( 

i = l ,  2 ) . . . )  n, 

j = l ,  2 ) . . . )  1. 
Depending on the number of states in the elements at  our dis- 

posal for the construction of the machine, the functions will  be those 
of two-, three-, and generally of m-valued logic. The method of 
coding and the construction of these functions is given in Section 4.2. 

In the case of construction of an automaton based on steady 
states,  the coding and construction of the functions Fi and @j are 
given in Section 5.4. 

A s  a result  of the third stage of the synthesis the problem is 
reduced to one which is muchmore familiar to the project engineer, 

‘The equations are written out for a machine of the P-P type. 



384 ELEMENTS OF MATHEMATICAL LOGIC 

that of realizing a system of logical relations with the technical 
means at  his disposal. At this point, broadly speaking, the prob- 
lems of abstract synthesis are no longer relevant. Consequently, 
there are no problems of the general theory of finite automata and 
sequential machines which are applicable. From this moment on, 
the problem belongs to the realm of technical realizations of the 
abstract structure which has been obtained. 

The problems arising in this connection are studiedin the theory 
of switching circuits and the theory of logical systems, in the nar- 
row sense of these terms. The problems solvable by these theories 
have hardly been considered in this book, o r  a mere mention of 
them has been made in passing. 

If the subsequent construction of the scheme is based on delay 
elements, then the number of such elements is predetermined by 
the number of the equations in the abstract structure, which is known 
to be minimal if the second stage of the synthesis has been carried 
out to the end. It w a s  just this obtaining of a scheme with a minimal 
number of elements of delay that constituted the second stage of the 
synthesis. The problem of technical realization then reduces to the 
construction of logical converters realizing the functions Fi  and Oj 
contained in the right-hand sides of the equations of the abstract 
structure. From one and the same set  of logical elements the con- 
ver ters  may be constructed in various ways. This too has i t s  own 
minimization problems, but these in fact concern converters and not 
sequential machines, i.e., they relate to statics and not to dynamics, 
and, therefore, only a brief mention of them has been made in Sec- 
tion 2.6. 

If the available set  of logical elements does not contain a ready- 
made delay element, this does not exclude the possibility of con- 
structing schemes, since the delay element itself, being the simplest 
automaton, can be constructed from the elements of the set ,  for ex- 
ample, using the steady states of equilibrium. 

If the entire machine is constructed using steady states, i.e., 
without special delay elements for the beat signal fed from without, 
this means that a fast machine is to be constructed according to the 
abstract structure obtained at  the end of the third stage; elements 
which have an inherent delay (e.g., repeaters) serve a s  delayers. In 
particular, in the common case when the schemes are assembled 
from relays, the delayer for the “fast” s-machine will  be the inter- 
mediate relays,  while the converters Fi  and cPj a re  formed from 
chains of contacts of the input and intermediate relays. 

With such a circuit construction (using steady states),  there 
arise additional technical difficulties, in connection with the fact 



THE SYNTHESIS OF A PRACTICAL DEVICE 385 

that in a nonsynchronized systems the delay time of the elements 
is not strictly the same. This leads to the danger of relay “com- 
petition” arising, which may sometimes result in an incorrect 
operation of the circuit. In such cases the danger of competition 
is obviated by special circuits, called realizations; in these circuits 
either not more than one relay operates in each beat, o r  the feed- 
back circuits are artificially cut off at the switching moments. 

There are various methods for the construction of realizations, 
only one of which has been briefly described in Section 5.4, since 
realization problems do not relate to the general theory of finite 
automata and sequential machines. In the construction of circuits 
using delayers, with the beat signal to them from outside,. there is 
no likelihood of competition arising and, therefore, the realization 
problem does not arise. 



Problems * 

CHAPTER 1 

1. Show that the set  of points on a semicircle has the cardinality 
of the continuum. 

2. Show that the union of two countable sets  is countable. 

3. Show that the set  of rational numbers is countable. 

4. We know that an infinite subset of a countable set  is countable. 
U s e  this fact to show that the set  of primes is countable. 

5. U s e  equivalent transformations to convert the following six 
functions to a form containing only disjunction, conjunction, and 
negation: 

1. f ( x , ,  x,) = (x ,  v x2) V ( l l x 2 )  

2. f ( x , ,  x2) = x,/(x,+ x2) 

3. f (x , ,  x2) = x1 W(Xl  .L x,) 

4. f ( x , ,  x2) = x, V(Xl /X2)  

5 .  f ( x l ,  X I ,  x3) = ( x l l  x2) + (x3/x,) 

6. f (x , ,  x2, x 3 )  = (X,/X,)V (K3 + X I )  

6. Find the complete disjunctive normal form of the function 
f (x1, x2)  = x, v x2 & (x, & x2)  . 

7. Find the complete conjunctive normal form of the function 

f (x, ,  x2, X j )  = (x,  v x,) & (P, v x 3 )  & (x ,  v 3,)  & (x2 'c7 x,) - 
8. For each of the following two functions, find the complete 

disjunctive and conjunctive normal forms, constructing as a 
preliminary the characteristic table : 

*In all problems the symbol x corresponds to the symbol 5 originally used in  the 
Russian edition and throughout the text. Reader is advised to note the difference in 
solving the problem. 

386 



PROBLEMS 387 

9. For the function f ( x l ,  x,) = x1 v z2 construct the complete 
disjunctive normal form, simplifying this function as a pre- 
liminary. 

10. Given the predicate P ( x ,  y, z )  = [x --f ( y  + z ) ]  find the predicate 
Q(y, Z )  = ( V X )  P ( x ,  y, Z )  

11. Given the predicate P ( x ,  y. z )  = [K V ( y  - z ) ]  find the predicate 
Q(y, Z )  = ( 3 ~ )  P ( x ,  Y ,  z). 

CHAPTER 2 

1. For the following four contact diagrams, find the simplest 
equivalent circuits: 

2. Each of the following two tables gives the values of two logical 
functions y1 and y2 (all told, four functions). Construct the 
contact diagrams corresponding to these functions 

a) by the canonical method, 

b) by the block method. 



388 ELEMENTS OF MATHEMATICAL LOGIC 

Table 1 Table 2 

3. From a given logical function Y = (x,  & x2) O(Xl & x2) construct 
the diagram at the diodes that realize this function. 

4. From a given logical function Y = ( x 2  & x 3 )  & XI construct the 
scheme on the triodes that realize this function. 

5. With the aid of Quine’s algorithm, find the minimum dis- 
junctive normal form of the following functions: 

CHAPTER 3 

1. Give an example of a dynamic system that can be treated as a 
finite automaton. 

2 .  The table below is a combined table of an automaton and a 
transformer. Construct the graph and the interconnection 
matrix of unions of this sequential machine. 



PROBLEMS 389 

3. Suppose that you are given the interconnection matrix C shown. 
Construct a table of an automaton of the P - P  type and the table 
of transformations. 

4. Suppose that w e  have an s-machine of the P - P r  type defined 
by two tables, namely, the basic table of the automaton and the 
table of the output transformer. Construct i ts  diagram of states 
and interconnection matrix. 

Automaton Transformer 

5. Do the same thing for the following machine of the P - P r  type: 

Automat on Transformer 



390 ELEMENTS OF MATHEMATICAL LOGIC 

6. On the basis of the examples given, state the general properties 
of the interconnection matrix of an s -machine of the P - Pr type. 

7. Suppose that w e  are given a finite automaton of the P - P r  type 
with output transformer as shown: 

Automaton Transformer 

is the entire system an automaton, that is, does there exist a 
single-valued function F* such that A P  = F*(AP - 7 P O ) .  

8. Suppose that w e  a re  given an s-machine of the P - P  type 
together with a table of the automaton and the output trans- 
former. Let u s  assign to each pair piAj the symbol O k  from the 
alphabet { o l ,  0 2 ,  O , ,  . . . , B I G l .  I s  there a single-valued function 
F* such that O P  = F*(oP - I ,  pp)? 



39 1 PROBLEMS 

CHAPTER 4 

1. Construct a block diagram of the automaton described by 
table 4.10 in  the following cases: 

(a) for every i, hi = 2 and = 3 ; 

(b) for every i, h i  = 3 and r j  = 2 ; 

(c) for every i, h i  = r i  = 3. 

2. From the neurons of McCulloch and Pitts all logical functions 
of two variables. 

3. Construct a trigger from the neurons of McCulloch and Pitts. 

CHAPTER 5 

1. From the following four tables, determine the types of 
automata o r  sequential machines. 

Table 1 

Table 3 

Table 2 

P1 P2 P 3  P 4  

P 1  P 2  P 3  P 4  

2. From the tables of the preceding exercise, construct the 
tables of transitions and minimize them. 

3. From the same tables, construct (2S0 + 1) realizations of 
Huffman. 



392 ELEMENTS OF MATHEMATICAL LOGIC 

CHAPTER 6 

1. Synthesize an s-machine with input alphabet Ipl,  p 2 ,  p3l and 
output IX1X21 such that, for an initial state xo and fixed p* , 
i f  p* = p 1 ,  the periodic sequence X1X1X2X1 w i l l  be generated; 
if p* = p 2 ,  the periodic sequence h1h2X2 will  be generated; 
for p* = p 3 .  the periodic sequence X2X1X2 will  be generated. 

2. Do the same thing as in problem 1 but with the alphabet 
p = I f l ,  p 2 1  and the alphabet x = Ih,, h 2 ,  h j l  
If p* = pl, the sequence h3h1h1h2X2h1h2h2 will be generated 
with period X 1 X d 2 ;  

if p* = p 2 ,  the sequence A2X3h2X,X1h,X1hl will  be generated 
with period XI. 

3.  A periodic input sequence is applied at  the input of an arbitrary 
S-machine. Show that the periodic sequence of output symbols 
is determined by a finite number of moments at  the output 
of that machine. 

CHAPTER 7 

1. Show that the events mentioned in examples 1-14 of Section 
7.2 are regular and, by using the concept of chains of triads, 
construct automata representing these events. 

2. Suppose that w e  are given the alphabet { p l ,  p 2 1 .  The set L 
contains all words consisting of letters of that alphabet with 
the exception of words in which the same letter occurs twice 
in a row. Show that the set  L is regular. Write the regular 
expression for it. 

3. Do the same thing as in problem 2 for the alphabetip,, p 2 ,  p 3  1. 
I s  the assertion of regularity of the set  L so constructed 
true for an arbitrary finite alphabet? 

4. What event is represented by the automaton shown in Fig. 3 
of Chapter 2 by means of the set  of eventslx,, x31if i t  begins 
from the initial state x l ?  Write the regular expression for 
this event. 

5. Show that the intersection of two regular sets  is regular. 



PROBLEMS 393 

6. An s -machine is said to be strongly connected i f ,  for every pair 
x i  and xi of states of that machine there exists an input 
sequence that takes the machine from the state xi into the state 

Let S denote the subset of the states of a strongly connected 
machine. Let X k  denote the initial state. We denote by R k  the 
event that the subset S is in the initial state Xk. 
Show that u RK = ER, where E is the universal event and R is 

some regular event. 
7. Let f ( t )  denote an integer-valued function such that 0 5 f ( t )  I t 

and 

xi. 

K 

Show that the event “the number of symbols p1  from the 
zeroth to the t t h  moment is equal to f ( t ) ”  is not regular. 

8. Suppose that w e  are given a finite automaton A with  initial 
state x o .  Let R denote a set  of sequences at the input. Sup- 
pose that to each of these sequences is assigned a sequence 
in a set K of sequences of states. Show that, if  R is regular, 
so is K .  Does nonregularity of R imply nonregularity of K ?  

9. Suppose that w e  are given an s-machine with initial state xo. 
At the input of this machine, sequences from theuniversal 
set E are applied. Show that the set  of output sequences of 
the machine is regular. 

10. Under the conditions of exercise 9, suppose that only sequences 
belonging to some regular set L are applied at  the input. Is 
the assertion that the output sequences constitute a regular 
set  valid in this case? 

CHAPTER 8 

1. Synthesize a finite automaton that represents by the appearance 
of the symbol h l  at the output the regular event 



394 ELEMENTS OF MATHEMATICAL LOGIC 

2. Do the same thing for 

3. Synthesize a finite automaton representing the following 
definite event: the input sequence terminates with the symbols 
p l p z  or  p3p4p1. Wri te  the regular expression for this event. 

4. Synthesize the indicator of evenness of a discrete time 
moment. The regular expression corresponding to it has  
the form 

CHAPTER 9 

1. ~y uslng the algorithm of Aufenkamp and Hohn, show that the 
machine of Fig. 1 is minimal. The alphabets: p = I p l ,  ,321 

Fig. 1 



PROBLEMS 395 

3. Show whether the following machine does or does not have 
equivalent states: 

4. Minimize the following machine (with respect to strong 
equivalence) : 

5. From the interconnection matrix C draw a diagram of the 
Minimize i t  by using the algorithm of states of the machine. 

Aufenkamp and Hohn (strong equivalence). 

x1 x2 - 
P2*0 PIX1 

0 P2hO 

0 0 

0 0 

I 0  0 
I 

L P l b  0 

x 3  x 4  x 5  x 6  

0 0 0 0 

PlXO 0 0 0 

P 2 X o  PlhO 0 0 

0 Pzho f l h l  0 

0 0 P 2 h  

0 

0 



396 ELEMENTS OF MATHEMATICAL LOGIC 

6. Show that the machine of Fig. 2 is minimal (strong equiva- 
lence). Find the groups of equivalent states in the case of the 
set  of admissible input sequences L that contain all sequences 
of length 2 .  

Fig. 2 

7. Show whether the machine of Fig. 3 does o r  does not have 
equivalent states. For this machine, construct partitions of 
all states into equivalence classes with respect to input se- 
quences of length 1, 2 ,  3, and 4. 

Fig. 3 

8. Show whether the machine of Fig. 4 has equivalent states 
Construct partitions into groups of equivalent states or  not. 

with respect to input sequences of length 1, 2 ,  and 3. 



PROBLEMS 397 

Fig. 4 

9. The machine of Fig. 5 does not have equivalence states. 
However, if  w e  take the definition of weak equivalence, cor- 
responding to this machine is a minimal machine with three 
states. Construct it. 

Fig. 5 

10. Minimize the machine of Fig. 6 with respect to weak equiva- 
lence. 

Fig. 6 



398 ELEMENTS O F  MATHEMATICAL LOGIC 

11. Denote by E[ the set  of all input sequences of length 1 .  For 
arbitrary fixed Z* , construct for a given machine A (see Fig. 7) 
a machine B equivalent to A in the sense of weak equivalence 
with respect to E l .  but not equivalent with respect to El.. 
for 1** > I*. 

Machine A 
Fig. 7 

12. An s-machine is said tobe stronglyconnectedif, for  every pair  
Xi and x, of states of that machine there exists an input sequence 
that converts the machine from the state xi to the state x i .  

Show that, for strongly connected machines, weak equivalence of 
two machines implies their strong equivalence ( so  that in this 
case the concepts of strong and weak equivalence coincide.) 

13. Show that, for completely determined automata (that is, automata 
without restrictions of the Aufenkamp type) for an arbitrary set 
of input sequences L and arbitrary x i ,  xi, l k  the equivalences 
with respect to L 

imply xi - X k  (transitivity of equivalence). Show that the num- 
ber of groups of equivalent states with respect to L is the 
same in all machines that are pairwise equivalent with 
respect to L .  

14. The set  L contains a single sequence P I P 2 .  Minimize the 
machine of Fig. 8 up to the 4th states with respect to L 
(strong equivalence) 

Fig. 8 



PROBLEMS 399 

(Hint: direct the arrow h l  from the state x4x5 to the state x1 

and remove the arrow p2hl from x 5  to x2.) 

15. The set  L contains a single sequence p1p2p2. Minimize up to 
the 4th states the machine of Fig. 9 with respect to L (strong 
equivalence). 

Fig. 9 

16. Suppose that w e  a r e  given the machine of Fig. 10 and the set  
L containing a single sequence p l p 2 p 2  . In the machine the 
states x 2  and x 5  are equivalent with respect to L .  However, it 
is imposible to minimize the machine of Fig. 10. Prove 
this. (Here, it is a question of minimization with respect to L 
in the sense of either strong or weak equivalence.) 

Fig. 10 



400 ELEMENTS OF MATHEMATICAL LOGIC 

17. The set  L contains all sequences of input symbols such that 
a single symbol does not appear twice in arow.  Minimize 
the machine of Fig. 11 with respect to L up to the 3rd states 
with respect to strong equivalence and up to the second 
states with respect to weak equivalence. 

Fig. 11 

18. Suppose that w e  a r e  given the automaton of Fig, 12 with 
input alphabet Ip p 2 ,  p3  and restrictions of the Aufenkamp 
type. Write the regular expressions of the set  of admissible 
input sequences for  the states xl, x 2 ,  x 3 ,  x 4 ,  and x5 

Fig. 12 

19. Do the same thing as in exercise 18 for the automaton of 
Fig. 13. 

Fig. 1 3  



PROBLEMS 401 

Is the set  of admissible input sequences for an arbitrary 
state x i  of the automaton with restrictions of the Aufenkamp 
type always regular? 

20. Suppose that we are given an arbitrary s-machine with 
restrictions of the Aufenkamp camp that is in the initial state 
x,,. All sequences in the se t  Lx0 of sequences admissible for  
the state xo are applied at the input. I s  the set of output 
sequences of this machine regular? 

21. Is the theorem of regularity of representable events for an 
automaton with restrictions of the Aufenkamp type valid? 

22. Minimize the s-machine of Fig, 14 with restrictions of 
the Aufenkamp type. 

Fig. 14 

23. To simplify the work, suppose that the following procedure is 
chosen for minimizing an s-machine with restrictions of the 
Aufenkamp type: First, w e  minimize the given machine in  
accordance with Aufenkamp’s algorithm (symmetric partition- 
ing into generalized i-matrices) and then w e  minimize the 
resulting machine by Hill’s method. Does this approach 
guarantee construction of a minimal machine? 

24. Figure 15 shows a diagram of the states of the s-machine. 
In that machine there are no restrictions of the Aufenkamp type 
(all transfers are determined) but the output transformer is 
undetermined: w e  do not know the value of h for x 2  and p l  

(the loop in the diagram of the states). One can easily show 
that no extension of the definition of the output transformer 
will  make it possible to minimize the machine of Fig. 15; 
that i s ,  equivalence states do not arise. 



402 ELEMENTS OF MATHEMATICAL LOGIC 

However, it is possible to minimize this machine if w e  
understand the word minimize in thefollowingway: for a given 
s-machine M ,  i t  is required to construct an s-machine N such 
that the following two conditions are satisfied: (1) To every 
state x i  of the machine M there corresponds at  least  one state 
x i  of the machine N such that, for an arbitrary input sequence 
with the initial states .xz and x,, the output sequence of the 
machine M coincides, wherever i t  is designed, with the output 
sequence of the machine N .  

(2) No s-machine N’ exists satisfying condition (1) wi th  
fewer states than the machine N .  

Minimize the machine of Fig. 15  in accordance with this 
definition up to the 2nd states. 

Fig. 15 

CHAPTER 10 

1. Suppose that w e  are given a slow machine G (see Fig. 1). 
Construct a minimal fast machine reproducing it under a 
clock-rate transformation with the clock rate determined by 
a change in the state at  the input of the machine G. 

Fig. 1 

2 .  Do the same thing as in problem 1 for the slow machine G of 
Fig. 2 .  



PROBLEMS 403 

3. 

Fig. 2 

In the following problems, the law of transformation of the 
clock rate is as follows: a slow moment occurs at the instant 
p + 1 if a regular event R occurs at the instant p ,  that is ,  the 
sequence p o p l  . . . p p  belongs to a regular set R.  

Show that the machine S the diagram of the states of which is 
shown in Fig. 3 does not represent any slow machine if the 
law of transformation of clock rate is given by the regular 
set R = ( p T p 2 ) * .  

Fig. 3 

4. A fast machine S is shown in Fig. 4. The law of trans- 
formation of clock rate is determined by a regular set R that can 
be represented in the automaton A (see Fig. 5) from the initial 
state a. by a set of states {a,, a l ,  a 2 ,  a 3 j .  Construct a machine 
G that the machine S represents under such a transformation 
of clock rate. 

Fig, 4 



404 ELEMENTS OF MATHEM.4TlCAL LOGIC 

Fig. 5 

5. Let S denote an arbitrary machine with initial state x o  and let  
R denote a regular set  defining a transformation of clock rate. 
Consider the set of all slow tapes obtained from fast  ones as a 
result of the transformation of clock-rate. In this set ,  let  u s  
denote by A, some event G i  (corresponding to the set  of slow 
input sequences that lead to the occurence Xi). Show that the 
set  G i  is regular. 

6. For the machine S shown in Fig. 4 and the machine G shown 
in Fig. 6, construct a regular set R such that the machine 
S reproduces the machine G under a transformation of clock 
rate determined by the set R.  

Fig. 6 

(Hint: consider the following correspondence of events: 

7. Let S and G denote machines. Let xG denote a state of the 
machine G .  What conditions must the machine S satisfy for i t  
to be possible to construct a regular set  R such that corre- 
sponding to the state xG there wi l l  be a state x s  of the machine 
S in the sense of reproduction. 



PRO6 LEMS 405 

CHAPTER 11 

1. Suppose that Fig. 1 is the diagram of states of a strongly 
connected s -machine S. 

Fig. 1 

Construct a diagram of states of .the s-machine N for which 
the result of an experiment of length q coincides with the 
result of the experiment with the givenmachine S for arbitrary 
initial states of the s-machine N. (this last condition differs 
from the condition of the example given on page 399 of 
original Russian, Figs. 11.1 and 11.2). 

2. Suppose that Fig. 2 is the diagram of states of an s-machine. 
Find the shortest experiment determining the last state of 
this machine under the condition that all the states can be 
initial. 

Fig. 2 

3. Show that the estimates (11.17) and (11.18) are  exact for 
arbitrary N. To do this, construct diagrams of the states of 
an s-machine and a finite automaton with N states. To de- 
termine the last states of these, it is necessary to make 
experiments the lengths of which are determined by these 
estimates. 

4. Figure 3 shows the diagrams of the states of three finite 
automata. Show that it is possible to single out any one of 
them by an experiment of length not exceeding 4. 



406 E L E M E N T S  OF MATHEMATICAL LOGIC 

Fig. 3 

5. Find an experiment with the aid of which w e  can ascertain 
the structure of any one of four finite automata shown in 
Fig. 4, that is, w e  can run through all states and all arrows 
of any one of these automata if the state K 2  is the initial state. 

Fig. 4 

6. Construct the diagram of the states of a strongly connected 
s-machine with N states to which it necessary to apply an 
input sequence of length N2/4 in order to go through all its 
states. I s  the quantity N2/4  maximum for the length of the 
experiment as a result of which an arbitrary strongly con- 
nected machine goes through all states or is it possible to find 
a strongly connected machine for which an experiment of 
greater length is required if the machine is to go through all 
states? 

7. Suppose that w e  are given the set  of all strongly connected 
machines with N states. Show that there exists an experiment 
making it possible to go through all states of any one of these 



PROBLEMS 407 

machines independently of its initial state and estimate the 
length of the experiment. 

8. Figure 5 shows the diagram of the states of a strongly con- 
nected s-machine with four nonequivalent states. One can 
easily show that it is possible to set  up the following one-to- 
one correspondence between the results of experiments and 
states into which the s-machine goes at  the end of these 
experiments. 

Fig. 5 

The result corresponds to a transfer of the s-machine into the 
state 

Try to show that for a given strongly connected s-machine 
with N nonequivalent states, then to each of its states x i  i t  



408 ELEMENTS OF MATHEMATICAL LOGIC 

is possible to assign an experiment of length not exceeding 
N the result of which indicates unambiguously that the 
machine has gone into just that state xi. (In this example, 
this estimate is attained.) 

9. Suppose that w e  a r e  given a set  of 2" strongly connected 
finite automata of the form shown in Fig. 6 (locks). 

Fig. 6 

At the beginning of the experiment, the finite automata are in 
the state K I  . Show that an upper bound q of the length of the 
experiment necessary for attaining the state K ,  of any one of 
these automata is determined by the equation = 2" Inn. 



Bibliography 

1. AIZERMAN, M. A., GUSEV, L. A., ROZONOER, L. I., SMIR- 
NOVA, I. M. and TAL’, A. A., Finite Automata, 1. Avtomatika 
i Telemekhanika, Vol. 21, No. 2 ,  1960. 

2. AIZERMAN, M. A. et al., Finite Automata, 2. Avtomatika i 
Telemekhanika, Vol. 21, No. 3, 1960. 

3. AIZERMAN, M. A. et al., Methods of realization of a finite 
automaton whose rhythm is determined by variation of the in- 
put state, Avtomatika i Telemekhanika, Vol. 2 1 ,  No. 12, 1960. 

4. AIZERMAN, M. A. et al., Algorithmic unsolvability of the recog- 
nition problem relating to representation of recursive events 
in finite automata, Avtomatika i Telemekhanika, Vol. 22, No. 6, 
1961. 

5. AUFENKAMP, D. D., Analysis of sequential machines, 11. 
Matematika (a periodic collection of translations of foreign arti- 
cles) 3:6, 1959. 

6. AUFENKAMP, D. D. and HOHN, F. E., Analysis of sequential 
machines, I. Matematika (aperiodic collection of translations of 
foreign articles) 3:3, 1959. 

7. AUFENKAMP, D. D., HOHN, F. E. and SECHU, S., Theory of 
nets, Matematika (aperiodic collection of translations of foreign 
articles) 3:3, 1959. 

8. BAZILEVSKY, Yu. Ya., Problems of the theory of temporal 
logical functions, Voprosy Teorii Matemat. Machin (a collec- 
tion), No. 1 ,  Fizmatgiz Press, 1958. 

9. BAZILEVSKY, Yu. Ya., Some transformations of finite auto- 
mata. Theory and Application of Discrete Automatic Systems 
(a collection), Ya. Z. Tsypkina (ed.), Acad. Sci. Press ,  Moscow, 
1960. 

10. BAZILEVSKY, Yu. Ya., Solution of temporal logical equations 
by the reduction method. A Collection of Works of the Con- 
ference on the Theory and Application of Discrete Automatic 
Systems, Acad. Sci. Press, Moscow, 1960. 

11. BERKELEY, E., Symbolic Logic andIntelligent Machines, Rein- 
hold Publishers, N. Y., 1959; Berkeley Enterprises, Inc., New- 
tonville, Mass., 1959. 

409 



41 0 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

2 3. 

24. 

2 5. 

2 6. 

2 7. 

5 I8 LI OG RAPHY 

BERENDS, T. K. and TAL’, A. A., Pneumatic re lay schemes,  
Avtomatika i Telemekhanika, Vol. 20, No. 11, 1959. 
BLOCH, A. Sh., Synthesis of multistage circui ts ,  Sbornik Trudov 
Instituta Mashinovedeniya i Avtomatizatsii AN BSSR, No. 1 ,  
1961. 
BLOCH, A. Sh., A canonical method for the synthesis of elec- 
tronic circuits. Sbornik Trudov Instituta Mashinovedeniya i 
Avtomatizatsii AN BSSR, No. 1 ,  1961. 
BLOCH, A. Sh., The synthesis of re lay contact c i rcui ts ,  Dok- 
lady Akad. Nauk SSSR, Vol. 117, No. 4, 1957. 
BLOCH, A. Sh., Problems solvable by sequential machines, 
Problemy Kibernetiki (a  collection), No. 3, Fizmatgiz Press, 
Moscow, 1960. 
BLOCH, A. Sh., A canonical method for  the synthesis of contact 
c i rcui ts ,  Avtomatika i Telemekhanika, Vol. 22, No. 6,1961. 
WANG HA0 and McNAUGHTON, R., Axiomatic Systems in  Set 
Theory, IL, Moscow, 1963. 
VAVILOV, E. N., and OSINSKY, L. M., Amethod for  the s t ruc-  
tural  synthesis of finite automata, Avtomatika, No. 2.1963. 
GAVRILOV, M. A . ,  The present  state of the art and fundamental 
trends in the development of the theory of re lay circui ts ,  Papers  
on the All-Union Conference on the Theory of Relay Devices, 
(a  collection), Acad. Sci. P r e s s ,  Moscow, 1957. 
GAVRILOV, M. A., The Theory of Relay Contact Circuits, Acad. 
Sci. P r e s s ,  Moscow-Leningrad, 1950. 
GAVRILOV, M. A., The s t ructural  theory of re lay devices (a 
lecture). VZEI, par t  1 ,  1959; par t  2 ,  1960; par t  3, 1961. VZEI 
Press. 
GAVRILOV, M. A., Minimization of Boolean functions charac- 
terizing relay networks, Avtomatika i Telemekhanika, Vol. 20, 
No. 9, 1959. 
HILBERT, D., and ACKERMANN, W., Principles of Mathemati- 
cal Logic, Chelsea Publishing Co., N. Y. 
GINSBURG, S., The length of the shortest  experiment determin- 
ing the terminal states of a machine, Kiberneticheskiy Sbornik 
No. 3 ,  IL, Moscow, 1961. 
GLEBSKY, Yu. V., Coding with the aid of automata with a finite 
internal memory, Problemy Kibernetiki (a collection), No. 7, 
Fizmatgiz P r e s s ,  Moscow, 1962. 
GLUSHKOV, V. M., Abstract theory of automata, Uspekhi 
Matem. Nauk, Vol. 16,  NO. 5 ( lo) ,  1961; Vol. 17, No. 2 (104\, 
1962. 



BIBLIOGRAPHY 41 1 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

GLUSHKOV, V. M., Some synthesis problems of digital auto- 
mata, Zh. Vychislit. Matemat. i Matem. Fiz., Vol. 1, No. 3, 
May-June, 1961. 
GLUSHKOV, V. M., Abstract automata and splitting of the free 
semigroups, Doklady Akad. Nauk SSSR, Vol. 136, No. 4, 1961. 
GOODSTEIN, R. L., Mathematical Logic, A collection, edited 
and prefaced by S. A. Yanovskaya, IL, Moscow, 1961. 
DAVIS, M. D., A note on universal Turingmachines, Automata 
(a collection), edited by C. E. Shannon and J. McCarthy, IL, 
Moscow, 1956; see also: Shannon, C. E. and J. McCarthy, Auto- 
mata Studies, Princeton University P res s ,  Princeton, N. J., 
1956. 
ZHURAVLEV, Yu. I., Various concepts of the minimality of dis- 
junctive normal forms, Sibirsky Matem. Zh., Vol. 1, No. 4, 
November-December, 1960. 
ZHURAVLEV, Yu. I., Separability of subsets of the vertices of 
an n-dimensional unit cube, Trudy Matem. In-ta im. V. A. Stek- 
lova, Vol. 51, Acad. Sci. Press, 1958. 
ZAVOLOKINA, Z. I., Magnetic Elements in Digital Computers, 
Gosenergoizdat Press, Moscow-Leningrad, 1958. 
ZAKREVSKIY, A. D., Minimization of structural formulas of 
mu1 ti stage circuits , Trudy Sibir skogo Fizi ko- Tekhniche skogo 
In-ta pri  Tomskom Gos. Universitete im. Kuybysheva, No. 40, 
1961. 
ZAKREVSKIY, A. D., The synthesis of sequential automata, 
Trudy Sibirskogo F’iziko-Tekhnicheskogo Instituta No. 40,1961. 
KAZAKOV, V. D., and KUZNETSOV, 0. P., List  of foreign 
works on the theory of relay action devices and finite automata 
for the year 1958, Avtomatika i Telemekhanika, Vol.21, No. 9, 
1960; List  of Soviet works on the theory of relay circuits and 
finite automata for the year 1959, Avtomatikai Telemekhanika, 
Vol. 22, No. 2 ,  1961; Vol. 24, No. 5, 1963. 
KOL’MAN, E., The significance of symbolic logic, Studies in 
Logic. A collection edited by E. Kol’man e t  al., Acad. Sci. 
Press, Moscow, 1959. 
CULBERTSON, J. T., Some uneconomical robots, Automata. 
A collection edited by C. E. Shannon and J. McCarthy, IL, Mos- 
cow, 1956; see also Culbertson, J. T., Minds of Robots, U. of 
Illinois Press, Urbana, Ill., 1963; also: Shannon, C. E. and J. 
McCarthy, Automata Studies, Princeton University Press, 
Princeton, N. J., 1956. 
KARATSUBA, A. A., Solution of aproblem of the theory of finite 
automata, Uspekhi Matem. Nauk.,Vol. 15, No. 3., 1960. 



412 BIBLIOGRAPHY 

41. KLEENE, S. C., Representation of events in nerve nets  and 
finite automata, Automata. A collection edited by C. E. Shannon 
and J. McCarthy, IL, Moscow, 1956; see also: Shannon, C. E. 
and J. McCarthy, Automata Studies, Princeton University P r e s s ,  
Princeton, N. J., 1956. 

42. KLEENE, S. C., Introduction to Metamathematics, D. Van Nos- 
trand Publishers, N. y., 1952. 

43. KOBRINSKY, N. E., and TRAKHTENBROT, B. A., The construc- 
tion of a general theory of logical networks. Studies in Logic. 
A collection edited by E. Kol’manet al., Acad. Sci. P r e s s ,  Mos- 
cow, 1959, 

44. KOBRINSKY, N. E., and TRAKHTENBROT, B. A., Introduction to 
the theory of Finite Automata, Fizmatgiz P r e s s ,  Moscow, 1961. 

45. CALDWELL, S., Logical Synthesis of Relay Devices, IL, Mos- 
cow, 1961; see Caldwell, S .  H., Switching Circui ts  and Logical 
Design, John Wiley & Sons, N. Y., 1958. 

46. COPE, I. M., ELGOT, C. C., and WRIGHT, J. B., Realization of 
events in logical nets ,  Kiberneticheskiy Sbornik, No. 3, IL, 
Moscow, 1961. 

47. KUDRYAVTSEV, V. B., Completeness theorem for  one c lass  
of loop-free automata, Doklady Akad. Nauk SSSR, Vol. 132, No. 
2, 1960. 

48. KUDRYAVTSEV, V. B., Problems of completeness relating to 
systems of automata, Doklady Akad. NaukSSSR, Vol. 130, No. 6, 
1960. 

49. KAZAREV, V. G., and PIYL’, E. I., Amethod for the synthesis 
of finite automata, Avtomatika i Telemekhanika, Vol. 22, No. 9 ,  
1961. 

50. LAZAREV, V. G., A method for determination of the number 
of re lays  necessary for the construction of re lay circui ts  f rom 
given operation conditions, Problemy Peredachi Informatsii, 
No. 1 ,  Acad. Sci. P r e s s ,  1959. 

51. LAZAREV, V. G., Determination of the minimal number of in- 
termediate re lays  in the synthesis of multistage circui ts ,  Sbor- 
nik rabot po provodnoy svyazi, No. 5, Acad. Sci. P r e s s ,  1956. 

52. LAZAREV, V. G. and PIYL’, E. I., Reduction of the number of 
s ta tes  in one c lass  of finite automata, Doklady Akad. Nauk SSSR, 
Vol. 143, No. 5, 1962. 

53. LETICHEVSKY, A. A., Synthesis of finite automata, Doklady 
Akad. Nauk UkrSSR, Vol. 11, No. 2 ,  1961. 

54. LETICHEVSKY, A. A., Conditions of completeness for  finite 
automata, Zh. Vychislit. Matemat. i Matem. Fiz.,Vol.l,  No. 4, 
1961. 



BIB LlOG RAPHY 413 

55. LUNTS, A. G., Application of matrix Boolean algebra to the 
analysis and synthesis of relay contact circuits, Doklady Akad. 
Nauk SSSR, Vol. 70, No. 3, 1950. 

56. LUPANOV, 0. B., Asymptotic evaluation of the number of graphs 
and networks with n edges, Problemy Kibernetiki (a collection), 
No. 4,'Fizmatgiz P res s ,  Moscow, 1960. 

57. LUPANOV, 0. B., A method for circuit synthesis, Izvestiya 
Vuzov, Radiofizika, No. 1 ,  1958. 

58. LUPANOV, 0. B., The possibilities of synthesis of circuits 
from arbitrary elements, Trudy Matem. Instituta im. V. A. 
Steklova, Vol. 51, Acad. Sci. Press, 1958. 

59. LUPANOV, 0. B., The possibilities of synthesis of circuits 
from diverse elements, Doklady Akad. Nauk SSSR, Vol. 103, 
No. 4, 1955. 

60. LUPANOV, 0. B., Realization of the algebra of logic functions 
by finite class formulas (by formulas of bounded depth on the 
basis of &, V, - ), Problemy Kibernetiki (a collection), No. 6,  
1961. 

61. LUPANOV, 0. B., The principle of local codingand realization 
of functions of certain classes by circuits of functional elements, 
Doklady Akad. Nauk SSSR, Vol. 140, No. 2, 1961. 

62. McCULLOCH, W. S., and PITTS, W., A logical calculus of the 
ideas related to nervous activity, Automata. A collection edited 
by C. E. Shannon and J. McCarthy, IL, Moscow, 1956; see also: 
Shannon, C. E. and J. McCarthy, Automata Studies, Princetan 
University P res s ,  Princeton, N. J., 1956. 

63. McCARTHY, J., The inversion of functions defined by Turing 
machines, Automata. A collection edited by C. E. Shannon and 
J. McCarthy, IL, Moscow, 1956; see also: Shannon, C. E. and 
J. McCarthy, Automata Studies, Princeton University Press ,  
Princeton, N. J., 1956. 

64. MARKOV, A. A., The algorithm theory, Trudy Matem. Instituta 
im. V. A. Steklova, Vol. 42, 1954. 

65. MARKOV, A. A., Mathematical logic and computer mathematics, 
Vestnik A N  SSSR, No. 8, 1957. 

66. MARTYNYUK, V. V., Relationship between the memory and cer- 
tain potentialities of a finite automaton, Problemy Kibernetiki 
(a collection), No. 5, Fizmatgiz Press, Moscow, 1961. 

67. MEDVEDEV, Yu. T., A class of events representable in a finite 
automaton, Supplement to Automata. A collection edited by C. E. 
Shannon and J. McCarthy, IL, Moscow, 1956; see Shannon, C. E. 
and J. McCarthy, Automata Studies, Princetonuniversity Press, 
Princeton, N. J., 1956. 



414 BIBLIOGRAPHY 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

7 5. 

76. 

77. 
78. 

79. 

80. 

81. 

MEKLER, Ya. I., Simplification of the algebraic synthesis of 
relay circuits, Avtomatika i Telemekhanika, Vol. 19, No. 12, 
1958. 
MINSKIY, M. L., Some universal elements for finite automata, 
Supplement to Automata. A collection edited by C. E. Shannon 
and J. McCarthy, IL, Moscow, 1956; see Shannon, C. E. and J. 
McCarthy, Automata Studies, Princeton University Press ,  
Princeton, N. J., 1956. 
MOISIL, G. C., Algebraic theory of the operation of real relay 
contact circuits, Papers on the All-Union Conference on the 
Theory of Relay Devices (a collection), Acad. Sci. Press, 1957. 
MOISIL, G. C., and IOANIN, G., Synthesis ofrelay contact cir- 
cuits for given operation conditions of the executive elements, 
Zh. Chistoy i Priklad. Matemat., Akad. RNR, Vol. 1, No. 2 ,  
1956. 
MOORE, E. F., Gedanken-experiments on sequential machines, 
Automata. A collectionedited by C. E. Shannon and J. McCarthy, 
IL, Moscow, 1956; see Shannon, C. E. and J. McCarthy, Auto- 
mata Studies, Princeton University Press, Princeton, N. J., 
1956. 
NEUMANN (von) J., Probabilistic logics and the synthesis of 
reliable organisms from unreliable components, Automata. A 
collection edited by C. E. Shannon and J. McCarthy, IL, Moscow, 
1956; see Shannon, C. E. and J. McCarthy, Automata Studies, 
Princeton University P res s ,  Princeton, N. J., 1956. 
NECHIPORUK, E. I., The synthesis of R-circuits, Doklady Akad. 
Nauk SSSR, Vol. 137, No. 5, 1961. 
NOVIKOV, P. S., Elements of Mathematical Logic,Fizmatgiz 
P res s ,  Moscow, 1959. 
OSTIANU, V. M., and TOMFEL’D, Yu. L., One application of 
mathematical logic, Uch. Zapiski Kishinevskogo Gos. Un-ta, 
Vol. 29, 1957. 
PETER, R., Recursive Functions, Pergamon Press, N. Y. 
POVAROV, G. N., The logical synthesis of electronic computer 
and control circuits. Studies in Logic, edited by E. Kol’man 
e t  al., Acad. Sci. Press, 1959. 
POVAROV, G. N., The symmetry of Boolean functions, Trudy 
Vsesoyuznogo Matematicheskogo ~ ” y e z d a ,  Vol. 4 (abrief sum- 
mary of the papers), Acad. Sci. Press, 1959. 
POVAROV, G. N., Functional separability of Booleanfunctions, 
Doklady Akad. Nauk SSSR, Vol. 94, No. 5, 1954. 
POVAROV, G. N., The study of symmetrical Boolean functions 
from the viewpoint of relay contact circuits, Doklady Akad. 
Nauk SSSR, Vol. 104, No. 2 ,  1955. 



BIBLIOGRAPHY 41 5 

82. POVAROV, G. N., The structural theory of communicationnet- 
works, Problemy Peredachi Informatsii (a collection), No. 1 ,  
Acad. Sci. Press, 1959. 

83. PARKHOMENKO, P. P., Block analyzer of relay circuits, 
Tekhnicheskiye Sredstva Avtomatizatsii i Telemekhaniki (a 
collection), No. 14, Moscow, 1961. 

84. POPOVICH, K., Minimal disjunctive form of Booleanfunctions, 
Papers on the All-Union Conference on the Theory of Relay De- 
vices (a collection), Acad. Sci. Press, 1957. 

85. POSPELOV, D. A., Arithmetical and Logical Principles of Dig- 
ital Computers, Part I: Arithmetical and logical principles of 
digital computers; Pa r t  11: Algebra of logic functions, the 
synthesis and analysis of circui t s  having time-independent oper- 
ation, ME1 Press, Moscow, 1960. 

86. U s e  of Logic in Science and Technology. A collection edited by 
P. V. Tavanets et  al., Acad. Sci. Press, 1960. 

87. ROGINSKIY, V. N., Elements of the Structural Synthesis of 
Relay Control Circuits, Acad. Sci. Press, 1959. 

88. ROGINSKIY, V. N., Equivalent transformations of relay circuits, 
Sbornik nauchnykh rabot PO provodnoy svyazi, No. 6,1957. 

89. ROGINSKIY, V. N., A graphical method for the construction of 
contact circuits, Elektrosvyaz’ , No, 11, 1957. 

90. RANI, J. N., Sequential functions, Kiberneticheskiy Sbornik, No. 
3, IL, Moscow, 1961. 

91. A collection of articles on mathematical logic and i t s  applica- 
tion to certain problems of cybernetics, Trudy Matem. Instituta 
im. V. A. Steklova, Vol. 51, Acad. Sci. Press, 1958. 

92. SKORNYAKOV, L. A., A class of automata (neutral nets) 
Problemy Kibernetiki (a collection), No. 4, Fizmatgiz P res s ,  
Moscow, 1960. 

93. SOKOLOV, 0. B., The construction of functionally stable auto- 
mata, Summary of 1960 scientific conference of the Kazan’ 
State University, Kazan’, 1960. 

94. SORKIN, Yu. I., Algorithmic solvability of the isomorphism 
problem in relation to automata, Doklady Akad. Nauk SSSR, Vol. 
137, No. 4, 1961. 

95. STOGNIY, A. A., The synthesis of an abstract automaton from 
the event representable by i t ,  Zh. Vychislit. Matemat. i Matem. 
Fiz., Vol. 1, No. 3, 1961. 

96. TARSKI, A., Introduction to Logic and to the Methodology of 
Deductive Sciences, 2nded. rev. 1946; 3rded. Oxford University 
Press. 

97. TRAKHTENBROT, B. A., Algorithms and Mechanical Solution 
of Problems, Fizmatgiz P res s ,  Moscow, 1957. 



416 BIBLIOGRAPHY 

98. TRAKHTENBROT, B. A., Operators realizable in logic nets, 
Doklady Akad. Nauk SSSR, Vol. 1 1 2 ,  No. 6, 1957. 

99. TRAKHTENBROT, B. A., The synthesis of logical nets whose 
operators are described by means of one-place predicate cal- 
culus, Doklady Akad. Nauk SSSR, Vol. 118, No. 4, 1958. 

100. TRAKHTENBROT, B. A., Asymptotic estimate of the complex- 
ity of logical nets with a memory, Doklady Akad. Nauk SSSR, 
Vol. 127 ,  No. 2, 1959. 

101. TRAKHTENBROT, B. A., Some constructions in one-place 
predicate logic, Doklady Akad. Nauk SSSR, Vol. 138, No. 2, 
1961. 

102. TRAKHTENBROT, B. A., Finite automata and one-place 
predicate logic, Doklady Akad. Nauk SSSR, Vol. 140, No. 2, 
1961. 

103. USPENSKIY, B. A., Lectures on Computable Functions, Fizmat- 
giz Press, Moscow, 1960. 

104. FEL’DBAUM, A. A., Computers in Automatic Systems, 
Fizmatgiz Press, Moscow, 1959. 

105. KHARKEVICH, A. D., Commutational circuits and their logic. 
Studies in Logic (a collection), Acad. Sci. Press, 1959. 

106. TSEYTIN, G. S., Algorithmic operators in constructive metric 
spaces, Trudy Matem. In-ta im. V. A. Steklova, Vol. 67, 1962. 

107. TSETLIN, M. L., Imprimitive circuits, Problemy Kibernetiki 
(a collection), No. 1, Fizmatgiz, 1958. 

108. TSETLIN, M. L., Some problems relating to the behavior of 
finite automata, Doklady Akad. Nauk SSSR, Vol. 139, NO. 4, 
1961. 

109. CHURCH, A., Introduction to Mathematical Logic, Princeton 
University P res s ,  Princeton, N. J., 1956. 

110. SHANNON, C. E., Auniversal Turingmachine with two internal 
states, Automata. A collection edited by C. E. Shannon and J. 
McCarthy, IL, Moscow, 1956; see Shannon, C. E. and J. 
McCarthy, Automata Studies, Princeton University Press, 
Princeton, N. J., 1956. 

111. SHESTAKOV, V. I., An algebraic method for the analysis of 
autonomous systems of two-position relays, Avtomatika i 
Telemekhanika, Vol. 15, No. 2,1954; Vol. 15, NO. 4, 1954. 

112. SHESTAKOV, V. I. ,Vectorial-algebraic method for the analysis 
and synthesis of multistage relay circuits, Trudy I11 VSeSOyUz- 
nogo Matematicheskogo ~ ” y e z d a ,  Vol. 1, 1956. 

113. SHREYDER, Yu. A., The problem of dynamic planning and 
automata, Problemy Kibernetiki (a collection), No. 5, Fizmat- 
giz Press, Moscow, 1961. 



81 BLIOGRAPHY 41 7 

114. ASHBY, W. R., Introduction to Cybernetics, John Wiley and 
Sons, N. Y., 1956. 

115. YABLONSKIY, S. V., Functional constructions in many-valued 
logics, Trudy I11 Vsesoyuznogo Matematicheskogo S”yezda, 
Vol. 2 ,  Acad. Sci. P re s s ,  1956. 

116. YABLONSKIY, S. V., On boundary logics, Doklady Akad. Nauk 
SSSR, Vol. 118, No. 4, 1958. 

117. YABLONSKIY, S. V. ,  Algorithmic difficulties in the synthesis 
of minimal contact circuits, Problemy Kibernetiki (a collec- 
tion), No. 2, Fizmatgiz P res s ,  Moscow, 1959. 

118. YANOVSKAYA, S. A., Some features of mathematicallogic and 
i ts  relation to technical applications. U s e  of Logic in Science 
and Technology (a collection), Acad. Sci. Press, 1960. 

119. YANOVSKAYA, S. A., Mathematical logic and the foundations 
of mathematics. Mathematics in USSR over 40 Years (1917- 
1957) [a collection], Vol. 1, Fizmatgiz Press, Moscow, 1959. 

120. ABHYANKAR, S., Minimal ‘‘sum of products of sum” expres- 
sion of Boolean functions, IRE Trans., Vol. EC-7, No. 4, 1958. 

121. ABHYANKAR, S., Absolute minimal expressions of Boolean 
functions, IRE Trans., Vol. EC-8, No. 1 ,  1959. 

122. ARANT, G. W., A time-sequential tabular analysis of flip-flop 
logical operation, IRE Trans., Vol. EC-6, June, 1957. 

123. ARBIB, M., Turing machines, finite automata andneural nets, 
J. Assoc. Cornp. Machines, Vol. 8, No. 4, 1961. 

124. ARDEN, D., Delayed logic and finite state machines. Sympo- 
sium on Switching Circuit Theory and Logical Design, AIEE, 
Detroit, Michigan, October, 1961. 

125. AUFENKAMP, D. D., and HOHN, F. E., Oriented graphs and 
sequential machines, Bell Laboratories Reports, 30,1954. 

126. BALDA, M., Classification of automata, Automatizace, Vol. 4, 
No. 2, 1961. 

127. BEATSON, T. J., Minimization of components in electronic 
switching circuits, Communication and Electronics, No. 4, 
July, 1958. 

128. BELLMAN, R., Sequential machines ambiguity and dynamic 
programming, J. Assoc. Comp. Machines, Vol. 7 ,  No. 1, 1960. 

129. BELLMAN, R., Adaptive control processes. A guided tour. 
Princeton, New Jersey, 1961. 

130. BELLMAN, R., HOLLAND, J.,  and KALABA, R., On an ap- 
plication of dynamic programming to the synthesis of logical 
systems, J. Assoc. Comp. Machines, Vol. 6, No. 4, 1959. 

131. BIANCHII, R., and FREIMAN, C., Oninternal variable assign- 
ment for sequential switching circuits, IRE Trans., Vol. EC-10, 
No. 1, March, 1961. 



41 8 B I B LI OG RAP HY 

132. BUCHI, J. R., Weak second-order arithmetic and finite auto- 
mata, Zeitschrift fur  Mathematische LogikundGrundlagen der  
Math., Vol. 6, No. 1, 1960. 

133. BUCHI, J. R., ELGOT, C. C., and WRIGHT, J. B., The non- 
existence of cer ta in  algorithms of finite automata theory (Ab- 
s t racts) .  Notices Amer. Math. SOC., Vol. 5, 1958. 

134. BURKS, A. W., and WANG, H., The logic of automata, par t s  
1-11, J. Assoc. Comp. Machines, Vol. 4, 1957. 

135. BURKS, A. W., The logic of fixed and growing automata, Intern. 
Symp. on the Theory of Switching, Vol. 29, par t  1 ,  1959. 

136. CADDEN, W. J., Equivalent sequential c i rcui ts ,  IRE Trans., 

137. CHURCH, A., Application of recursive arithmetic in  the theory 
of computers and automata, Lecture Notes, Summer Confer- 
ence, University of Michigan, June, 1958. 

138. CHU, J. T, ,  Some methods for simplifying switching circui ts  
using don’t c a r e  conditions, J. Assoc. Comp. Machines, Vol. 
8, No. 4, 1961. 

139. CULBERTSON, J. T., Robots and automata; a short  history. 
Pa r t s  1-11. Computers and Automation, Vol. 6, No. 3-4, 1957. 

140. CULBERTSON, J. T., Mathematics and logic for  digital de- 
vices, Princeton Univ. P r e s s ,  Princeton, N. J., 1958. 

141. CULIK, K., Some notes on finite-state languages and events 
represented by finite automata using labelled graphs, Casopis 
pro p6st. Mot., Vol. 86, No. 1, 1961. 

142. DAVIS, M. D., Computability and Unsolvability, N. Y., 1957. 
143. ELGOT, C. C., Decisionproblems offinite automatadesign and 

related arithmetics, Trans. Amer. Math. SOC., Vol. 98, No. 4, 
1961. 

144. ELGOT, C. C., Lectures  on switching and automata theory. 
The University of Michigan Research Institute, Technical Re- 
port, January, 1959. 

145. ELGOT, C. C., and RUTLEDGE, J. D., Operations on finite 
automata. Symposium on Switching Circuit Theory and Logical 
Design, AIEE, Detroit, Michigan, October, 1961. 

146. ELSPAS, B., The theory of autonomous l inear  sequential net- 
works,  IRE Trans., Vol. CT-6, No. 1 ,  1959. 

147. FITCH, F. B., Representation of sequential circuit in combina- 
tory logic, Philosophy, Vol. 25, No. 4, October, 1958. 

148. GEORGE, F. H., Behaviour network sys tems for finite auto- 
mata. Methodos, Vol. 9, No. 35-37, 1957. 

149. GILL, A., Introduction to the Theory of Finite-State Machines, 
McGraw-Hill Book Co., N. Y., 1Y62. 

Vol. CT-6, NO. 1 ,  1959. 



BIBLIOGRAPHY 419 

150. GILL, A., Comparison of finite-state models, IRE Trans., Vol. 
CT-7, No. 2, June, 1960. 

151. GILL, A,, State-indentification experiments in finite automata, 
Information and Control, Vol. 4, No. 23, Sept., 1961. 

152. GILL, A , ,  Cascaded finite state machines, IRE Trans., Vol. 
EC-10, No. 3, Sept., 1961. 

153. GINSBURG, S., Compatibility of states of input independent 
machines, J. Assoc. Comp. Machines, Vol. 8, No. 3, July, 1961. 

154. GINSBURG, S., On the reduction of superfluous states in a 
sequential machine, J. Assoc. Comp. Machines, Vol. 6, April, 
1959. 

155. GINSBURG, S., Connective properties preserved in minimal 
state machines, J. Assoc. Comp. Machines, Vol. 7, No. 4, 
1960. 

156. GINSBURG, S., A technique for the reduction of a given ma- 
chine to a minimal state machine, IRE Trans., EC-8, No. 3, 
1959. 

157. GINSBURG, S., Sets of tapes accepted by different types of au- 
tomata, J. Assoc. Comp. Machines, Vol. 8, No. 1, January, 
1961. 

158. GINSBURG, S., Some remarks on abstract machines, Trans. 
Amer. Math. SOC., Vol. 96, No. 3, 1960. 

159. HAKIMI, S. L., On realizability of a set  of trees,  IRE Trans., 
Vol. CT-8, No. 1, March, 1961. 

160. HARING, D. R., The sequential transmission expression for 
flow-graphs, MIT Electronics Systems Laboratory Technical 
Memorandum, No. 7848-T-14-3, November, 1960. 

161. HARRIS, B., An algorithm for determining minimal represen- 
tation of alogicfunction,IRE Trans., EC-6, No. 2, 1957. 

162. HIBBARD, T. N., Least upper boundonminimal terminal state 
experiments for  two classes of sequential machines, J. Assoc. 
Comp. Machines, Vol. 8, No. 4, October, 1961. 

163. HIGONNET, R. A., and GREA, R. A., Logical Design of Elec- 
tr ical  Circuits, McGraw-Hill Book Co., N. Y., 1958. 

164. HILTON, A. M., Logic and switching circuits, Electric Manu- 
facturing, April, 1960. 

165. HOFFMAN, A. J., and SINGLETON, R. P., On Moore graphs 
with diameter 2 & 3, IBM Journ. of Research and Develop., 
Vol. 4, No. 5, 1960. 

166. HOHN, F. E., Some mathematical aspects of switching, Amer. 
Mathem. Monthly, Vol. 62, 1955. 

167. HOHN, F. E., Applied Boolean Algebra. An Elementary Intro- 
duction, McMillan Publ., N. Y., 1960. 

168. HOLBROOK, E. L. Pneumaticlogic. 1-11. Control Engineering, 
Vol. 8,  NO. 7-8, 1961. 



420 BIBLIOGRAPHY 

169. HOLLAND, L., Cycles and automata behaviour. Prel iminary 
report. Session on Advanced Theory of Logical Design of Dig- 
ital Computers, Univ. of Michigan, June, 1958. 

170. HUFFMAN, D. A., The synthesis of sequential switching cir- 
cuits, Journ. Franklin Inst., Vol. 257, No. 3-4, 1954. 

171. HUFFMAN, D. A., The design anduse of hazard-free switching 
networks, J. Assoc. Comp. Machines, Vol. 4, January, 1957. 

172. HUFFMAN, D. A.,  Sequential transducer. Papers  Buyer’s 
Guide, IRE Trans., Vol. CT-6, No. 1 ,  March, 1959. 

173. HUMPHREY, W. S., Switching Circuitswith Computer Applica- 
tions, John Wiley and Sons, N. Y., 1958. 

174. HUZINO, S., On some sequential machines and experiments, 
Mem. Fac. Sci. Kyusyu University, Vol. A12, No. 2 ,  1958. 

175. HUZINO, S., Reduction theorems on sequential machines, Mem. 
Fac. Sci. Kyusyu Univ., Vol. A12, No. 2, 1958. 

176. HUZINO, S., On the existence of Scheffer s t roke class in the 
sequential machines, Mem. Fac. Sci. Kyusyu Univ., Vol. A13, 
No. 2, 1959. 

177. HUZINO,S., Theory of finite automata, Mem. Fac. Sci. Kyusyu 
Univ., Vol. A16, No. 2 ,  1962. 

178. HUZINO, S., Turing transformation and strong computability 
of Turing computers, Mem. Fac. Sci. Kyusyu Univ., Vol. A13, 
No. 2 ,  1959. 

179. HUZINO, S., On some sequential equations, Mem. Fac. Sci. 
Kyusyu Univ., Vol. A14, No. 1 ,  1960. 

180. KARNAUGH, M., The map method for  synthesis of combinator- 
ial logic c i rcui ts ,  AIEE Trans., Vol. 72, 1953. 

181. KELLER, H. B., Finite automata, pattern recognition andper-  
ceptrons, J. Assoc. Comp. Machines, Vol. 8 ,  No. 1 ,  1961. 

182. LEE,  C. I., Automata and finite automata. Bell Syst. Techn. 
Journal, Vol. 39, No. 5, 1960. 

183. LEE,  C. I., Categorizing automata by W-machine programs,  
J. Assoc. Comp. Machines, Vol. 8, No. 3, 1961. 

184. LOW, P. R., and MALEY, G. A., Flow table logic, Proc. IRE, 
Vol. 49, No. 1 ,  1961. 

185. McCLUSKEY, E. J., Minimization of Boolean functions, Bell. 
Syst. Techn. Journ., Vol. 35, 1956. 

186. McCLUSKEY, E. J., Minimal sums for  Booleanfunctions having 
many unspecified fundamental products, Communication and 
Electronics, No. 63, November, 1962. 

187. McNAUGHTON, R. F., and YAMADA, H., Regular expressions 
and s ta te  graphs for  automata, IRE Trans., Vol. EC-9, No. 1, 
1960. 



BIBLIOGRAPHY 421 

188. 

189. 

190. 

191. 

192. 

193. 

194. 

195. 

196. 

197. 

198. 

199. 

200. 

201. 

202. 

203. 

204. 

205. 

206. 

McNAUGHTON, R. F., The theory of automata, a survey. Ad- 
vances in Computers, Vol. 2 ,  ed. by Franz L. Alt, 1962. 
MAYEDA, W., Synthesis of switching functions by linear graph 
theory, IBM Journ. of Research and Develop., Vol. 4, No. 3, 
1960. 
MEALY, G. H., A method of synthesizing sequential circuits, 
Bell. Syst. Techn. Journ., Vol. 34, Sept., 1955. 
MEZEI, J. E., Minimal characterizing experiments for  finite 
memory automata, IRE Trans., Vol. EC-10, No. 2, June, 1961. 
MLEZIVA, M., The theory of finite automata (neutral nets), 
Rokvoky matematiky, fysiky a astronomie, Vol. 5, No. 6, 1960. 
MOISIL, G. C., Mathematical logic and modern technology, 
Acad. RPR, Inst. de Stud. Romino-Sovietia, 1960. 
MOISIL, G. C.,  Rapport su r  le developpementdansla R. P. R. 
de la th6orie des mhcanismes automatiques, Analele Univer- 
sitgtii C. I. Pahon, Bucuregti, Seria Acta Logica,No. 1, 1959. 
MOISIL, G. C., Behavior of a multistage system with an ideal 
relay, Acad. RPR, Bucharest, 1960. 
MOORE, E. F., A simplified universal Turing machine, Proc. 
Assoc. Comp. Mach., 1953. 
MOTT, T. H., J r . ,  An algorithmfor determiningminimal nor- 
mal forms of an incomplete truth function, Commun. and 
Electronics, No. 3, March, 1961. 
MULLER, D. E., and BARTKY, W. S., A theory of asynchronous 
circuits, Intern. Symp. on the Theory of Switching. Par t  I. The 
Annals of the Comp. Lab. Harvard Univers., Vol. 29, 1959. 
MYHILL, J., Finite automata and the representation of events, 
WADC Technical Report, No. 57-624, 1957. 
MYHILL, J., Linear bounded automata, U. S. Govt. Research 
Reports, Vol. 35, March 10, 1961. 
NASLIN, P., Introduction B 1’6tude des automatismes A s6- 
quences. 1-e partie, Les fonctions logiques e t  l e s  circuits 
combinatoires, Automatisme, Vol. 3, No. 1 ,  1958. 
NASLIN, P., Circuits & relais e t  automatismes sequences, 
Dunod, Paris, 1958. 
NASLIN, P., A note on the simplificationof Boolean functions, 
Process Control andAutomation, Vol. 8, No. 6,1961. 
NEDELCU, M., Teoria algebrica a schemelor cu functionare 
discreta, Automatica Yi electronica, Vol. 4, No. 6,1960. 
NERODE, A., Linear automaton transformations, Proc. Amer. 
Math. Society, Vol. 9, 1958. 
NETHERWOOD, D. B., Minimal sequential machines, IRE 
Trans., Vol. EC-8, No. 3, 1959. 



422 BIBLIOGRAPHY 

207. NEUMANN, J. von, The general  andlogical theory of automata. 
In coll.: Cerebral  MechanismsinBehaviour,  N. Y., 1951. 

208. OTT, G . ,  and FEINSTEIN, N. H., Design of sequential machines 
f rom their  regular  expressions,  J. Assoc. Comp. Machines, 
Vol. 8, No. 4 ,  1961. 

209. PXULL, M. C., and UNGER, S. H., Minimizing the number of 
s ta tes  in completely specified sequential switching functions, 
IRE Trans. ,  Vol. EC-8, No. 3, 1959. 

210. PERCUS, J. K. ,  Matrix analysis of oriented graphs with ir- 
reducible feedback loops, IRE Trans. ,  Vol. CT-2, 1956. 

211. PFEIFEK, J. E.. Symbolic logic, Scientific American, Vol. 
183, No. 6,  1950. 

212. PHISTER, M., J r . ,  Logical Design of Digital Computers,  John 
Wiley & Sons, N. Y., 1959. 

213. PUTNARI, H., Decidability andessential  undecidability, Journ. 
Symb. Logic, Vol. 22, 1957. 

214. Q U I N E ,  W. V., Way to simplify truth functions, Amer. Math. 
Monthly, Vol. 62, 1955. 

215. RIEGEH, O teorii  neuronovych s i t i ,  Aplikace Matematiky, Vol. 
3, No. 4 ,  1958. 

216. RUTH, J. P., Minimization of nonsingular Boolean t rees , IBM 
Journ. of Research and Develop., Vol. 3, No. 4, 1959. 

217. ROTH, J. P., Minimization over Boolean t r ees ,  IBM Journ. of 
Research and Develop., Vol. 4,  No. 5, 1960. 

218. IlOTH, J. P., Algebraic topological methods for  the synthesis 
of switching systems,  I. Trans.  Amer. Math. SOC., Vol. 88, 
J ~ l y ,  1958. 

219. LtUBINOFF, M. ,  Remarks on the design of sequential c i rcui ts ,  
International Symp. on the Theory of Switching, Part 11. Annals 
of the Comp. Lab. HarvardUniversity,  Vol. 30,1959. 

220. SCHUBERT, E. J., Matrix algebra of sequential logic, Com- 
munic. and Electronics,  Vol. 46, No. 1, 1960. 

221. SCHUBERT, E. J., Simultaneous logical equations, Communic. 
and Electronics,  Vol. 46, No. 1 ,  1960. 

222. SCHUBEItT, E. J., Symnietric switchingfunctions, Communic. 
and Electronics,  Vol. 46, No. 1 ,  1960. 

223. SCHOTZENBERGER, M. P., A r emark  on finite t ransducers ,  
Information and Control, Vol. 4,  No. 2-3, 1961. 

224. SCHUTZENBERGER, M. P., On the definition of a family of 
automata, Informationand Control, Vol. 4 ,  No. 2-3,1961. 

225. SECHU, S., On electric circui ts  and switching circui ts ,  IRE 
Trans., “01. CT-3, 1956; Vol. CT-4, No. 3, 1957. 



BIBLIOGRAPHY 423 

226. SECHU, S., Mathematical models for  sequential machines, 
IRE Convent. Record, Vol. 7, par t  2 ,  1959. 

227. SECHU, S., MILLER, R. E., and METZE, G., Transition ma- 
trices of sequential machines, IRE Trans., Vol. CT-6, No. 1, 
1959. 

228. SEMON, W., Matrix methods in the theory of switching, Inter- 
national Symposium on the Theory of Switching, Par t .  11. Annals 
Comp. Lab. Harvard Univ., Vol. 30, 1959. 

229. SHANNON, C. E., Von Neumann’s contributions to automata 
theory, Bull. Amer. Math. SOC., Vol. 64, par t  2, 1958. 

230. SHANNON, C. E., Computers and automata, Proc. IRE, Vol. 
43, 1953. 

231. SHANNON, C. E., A symbolic analysis of re lay and switching 
circui ts ,  Trans. AIEE, Vol. 57, 1938. 

232. SIMON, J. M., Anote on the memory aspect of sequence trans- 
ducers ,  IRE Trans., Vol. CT-6, No. 1 ,  1959. 

233. SIMON, J. M., Some aspects of the network analysis of se- 
quence t ransducers ,  Journ. Franklin Inst., Vol. 65, June, 1958. 

234. SRINIVASAN, C. F., and NARASIMHAN, R., On the synthesis 
of finite sequential machines, Proc. Indian Acad. Sci., Vol. 
A50, No. 1 ,  1959. 

235. SRINIVASAN, C. V., State diagram of linear sequential ma- 
chines, Journ. Franklin Inst., Vol. 273, 1962. 

236. SUCHESTON, L., Note on mixing sequences of events, Acta 
Mathematica, Acad. Sci. Hung., Vol. 11,fasc. 3-4,1960. 

237. SUTO, S., and WATANABE, T., The theory of analysis of se- 
quential time switching circui ts ,  Journ. Inst. Electr. Com- 
munic. Engrs. (Japan), Vol. 42, No. 6, 1959. 

238. TANG, D. T., Analysis and synthesis techniques of oriented 
communications m t s ,  IRE Trans., Vol. CT-8, No. 1,1961. 

239. TURING, A. M., On computable numbers with an application 
to  the entscheidungsproblem, Proc. London Math. SOC., Vol. 
42, 1936-1937. With a correction, Vol. 43, 1947. 

240. UNGER, S. H., Hazards and delays in asynchronous sequential 
switching circui ts ,  IRE Trans., Vol. CT-6, No. 1,1959. 

241. URBANO, R. H., and MUELLER, R. K., A topological method 
for the determination of minimal forms  of Boolean functions, 
IRE Trans., Vol. EC-5, No. 3, 1956. 

242. WALD, A., Sequential Analysis, John Wiley Sr. Sons, N. Y., 
1947. 

243. WANG, HAO, Circuit synthesis by solving sequential Boolean 
equations, Zeitschrift fur Mathematische Logik und Grund- 
lagen der  Math., Vol. 5, 1959. 



424 

244. 

245. 

246. 

247. 

248. 

249. 

250. 

251. 

252. 

2 53. 

2 54. 

2 55. 

256. 

2 57. 

258. 

2 59. 

260. 

BIBLIOGRAPHY 

WANG, HAO, A variant to Turing’s theory of computing ma- 
chines, J. Assoc. Comp. Machines, Vol. 4, Jan.,1961. 
WATANABE, S., Five-symbol 8-state and 5-symbol 6-state 
universal Turing machines, Ibid., Vol. 8, No. 4, 1961. 
WATANABE, S., On a minimum universal Turing machine, 
MCB Report, Tokyo, 1960. 
WHITESITT, J. E., Boolean Algebra and Its Applications, Addi- 
son-Wesley Pub. Co. Inc., Reading, Mass,, 1961. 

SUPPLEMENT TO BIBLIOGRAPHY 

AIZERMAN, M. A. e t  al., Transformation of rhythm in se- 
quential machines and the synthesis of re lay circui ts ,  Avto- 
matika i Telemekhanika, Vol. 23, No. 11,  1962. 
BELYAKIN, N. V., A c l a s s  of Turingmachines, Doklady Akad. 
Nauk SSSR, Vol. 148, No. 1, 1963. 
BERGE, C., Theory of Graphs andIts  Applications, John Wiley 
&Sons ,  N. Y., 1962. 
BURKS, A., and WRIGHT, J., The theory of logical nets ,  
Kiberneticheskiy Sbornik, No. 4, IL, Moscow, 1962. 
GLUSHKOV, V. M., The Synthesis of Digital Automata, Fiz- 
matgiz P r e s s ,  Moscow, 1962. 
FOZMIDIADI, V. A., and CHERNYAVSKY, V. S., The ordering 
of the set of automata, Voprosy Teorii Matem. Machin (a col- 
lection), No. 2, 1962. 
KORPELEVICH, G. M., The relationship between the concepts 
of solvability and enumerability in regard  to finite automata, 
Doklady Akad. Nauk SSSR, Vol. 149. No. 5, 1963. 
LEVENSHTEIN, V. I., The inversion of finite automata, Dok- 
lady Akad. Nauk SSSR, Vol. 147, No. 6, 1962. 
LETICHEVSKIY, A. A.,  Completeness conditions in the class of 
Moore’s automata, Materialy nauchnykh seminarov PO teoret. 
i prikl. voprosam kibernetiki, Vol. 1, No. 2 ,  1963. 
LUNTS, A. G., Finite p-adic automata, Doklady Akad. Nauk 
SSSR, Vol. 150, No. 4, 1963. 
MOISIL, G. C., Algebraic Theory of Automatic Mechanisms, 
Pergamon P r e s s ,  N. Y., 1964. 
RABIN, M. O., and SCOTT, D., Finite automata and problems 
to be solved, Kiberneticheskiy Sbornik, No. 4 ,  IL, MOSCOW, 
1962. 
SIVINSKI, E., The synthesis of multistage sys tems with delay 
elements, Archiwum automatyki i Telemechaniki, Vol. 7,  Issue 
1-2, 1962. 



BIBLIOGRAPHY 425 

261. SPIVAK, M. A., A new algorithm for  the abstract  synthesis of 
automata, Materialy nauchnykh seminarov PO teoret. i prikl. 
voprosam kibernetiki, Vol. 1 ,  No. 3 ,  1963. 

262. SHEPHERDSON, J. C., Reduction of bilateral automata to 
unilateral automata, Kiberneticheskiy Sbornik, No. 4 ,  IL, Mos- 
cow, 1962. 

263. YANOV, Yu. I., Identical transformations of regular expres-  
sions, Doklady Akad. NaukSSSR, Vol. 147, No. 2 ,  1962. 

264. ARTHUR, M. E., Geometric mapping of switching functions, 
IRE Trans., Vol. EC-10, No. 4, December, 1961. 

265. BAR-HILLEL, J., and SHAMIR, E., Finite-stage languages: 
formal  representations and adequacy problems, Bull. Res. 
Concil I s rae l ,  Vol. 8F, 1960. 

266, BEATTY, J., and MILLER, R. E., Some theorems for  incom- 
pletely specified sequential machines with application to state 
minimization. Switching Circuits Theory and Logical Design 
(Proc. of the Third Annual AIEESymposium), September, 1962. 

267. BRZOZOWSKI, J. A., and McCLUSKEY, E. J., Signal flow 
graph techniques for  sequential circuit state diagrams, U. S. 
Government Research Reports, Vol. 37, May 20, 1962. 

268. BURKS, A. W., and WRIGHT, J. B., Sequence generators ,  
graphs and formal  languages, Inform. and Control, Vol. 5, 
No. 3 ,  September, 1962. 

269. ELGOT, C. C., andRUTLEDGE, J. D., Machine properties pre- 
served under state minimization. Switching Circuits Theory 
and Logical Design (Proc. of the Third Annual AIEE Sympo- 
sium), September, 1962. 

270. GINSBURG, S., and ROSE, G. F., A comparison of the work 
done by generalized sequential machines and Turing machines, 
Trans. Amer. Math. SOC., Vol. 103, No. 3, 1962. 

271. GRZEGORCZYK, A., Outline of Mathematical Logic, Warsaw, 
1961. 

2 72. HARTMANIS, J., Maximal autonomous clocks of sequential ma- 
chines, IRE Trans., Vol. EC- l l ,  No. 1 ,  1962. 

273. HARTMANIS, J., Loop-free s t ructure  of sequential machines, 
Information and Control, Vol. 5, No. 1 ,  March, 1962. 

274. HARTMANIS, J., The equivalence of sequential machine 
models, IEEE Trans., Vol. EC-12, No. 1 ,  February, 1963. 

275. HARTMANIS, J., and STEARNS, R. E., Some dangers in  state 
reduction of sequential machines, Information and Control, 
Vol. 5, No. 3, September, 1962. 

276. JAMADA, H., Disjunctively linear logic nets ,  IRE Trans., Vol. 
EC-11, No. 5, October, 1962. 



426 BIBLIOGRAPHY 

277. KAUTZ, W. H., Some unsolved problems in switching theory. 
Switching Circuits Theory and Logical Design, conference 
paper, Detroit, October, 1962. 

278. McCLUSKEY, E. J., Jr., Minimum state sequential circuitsfor 
a restricted class of incompletely specified f low tables, Bell 
Syst. Tech. J., Vol. 41 ,  No. 6 ,  November, 1962. 

279. NXRASIMIIAN, It., Minimizing incompletely specified sequen- 
tial switching functions, IRE Trans., Vol. EC-10, No. 3, Sep- 
tember, 1961. 

280. S E M I T Z ,  W., and REEVES,  R., A mathematical theory of 
switching circuits, Mathematical Magazine, Vol. 33, No. 1 ,  
1959. 

281. SHEPHEHDSOK, J. C., and STURCIS, H. E., Computability of 
recursive functions, J. Assoc. Comp. Machines, Vol. 1 0 ,  No. 2 ,  
.Ipril, 1963. 

282. WEEG,  G. P., Finite automata and connectionmatrices, Com- 
munications of the ACM, Vol. 3, No. 7 ,  1960. 

283. WEEG,  G. P.. and KATELEY,  J., Some propertiesof strongly 
connected machines, Communications of the ACM, Vol. 3, No. 
7 ,  1960. 

234. ZEMANEK, H., Sequentielle asynchrone logik, Elektronische 
Kechenanlagen, Vol. 4, No. 6 ,  1962. 



Addenda to Bibliography 

1. BABAYEV, 0. B. A method of synthesis of many-moment 
schemes,  Izvestiya Vuzov, Priborostroyeniye, Vol. 7 ,  No. 6.  
1964. 

2. BARZDIN’, YA. M. The capacity of a medium and the behavior 
of automata, Doklady Akad. Nauk, Vol. 160, No. 2 ,  1965. 

3. BODNARCHUK, V. G. Systems of equations in the algebra of 
events, Zh. Vychislit. Matemat. i Matemat. Fiz., Vol. 3, No. 
6 ,  Nov.-Dec., 1963. 

4. VAVILOV, Ye. N. and OSINSKIY, L. M. Structural synthesis of 
automata that operate with supplementary moments (in Ukrain- 
ian), Avtomatika, No. 2, 1964. 

5. GECHEG, F. On the group of one-to-one transformations de- 
fined by finite automata, Kibernetika, No. 1, 1965. 

6. GLUSHKOV, V. M. Introduction to Cybernetics, Acad. Sci. 
P r e s s ,  Ukr. SSR, Kiev, 1964. 

7. GLUSHKOV, V. M. Theory of automata and some applications 
of i t ,  Vestnik Akad. Nauk SSSR, No. 7 ,  1964. 

8. DOBROV, D. Extreme automata, Fiz.-Matem. Spisaniye, Vol .  
7 ,  No. 1 ,  1964. 

9. Completed works in the field of the theory of re lay devices, 
finite automata, and coding (1962-1963), Pribory i Sredstva 
Avtomatizatsii, No. 10, 1964. 

10. ZAKROVSKIY, A. D. On the shortening of sorting in the solu- 
tion of cer ta in  problems in the synthesis of discrete  automata, 
Izvestiya Vuzov, Radiofizika, 1964, Vol. 7 ,  No. 1. 

11. ZAROVNYY, V. P. On the group of automatic one-to-one map- 
pings, Doklady Akad. Nauk, Vol. 156, No. 6, 1964. 

12. ZAROVNYY, V. P. Automatic interlacing of groups, Doklady 
Akad. Nauk, Vol. 160, No. 3, 1965. 

13. ZYKIN, G. P. A r emark  on a theorem of Hao Wang, Algebra i 
Logika (Institute of Mathematics of the Siberian Division of 
the Academy of Sciences of the USSR), Vol. 2, No. 1 ,  1963. 

427 



428 ADDENDA TO BIBLIOGRAPHY 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

2 3. 

2 4. 

2 5. 

2 6. 

2 7. 

2 8. 

ION, I. D. On the connection between theorems of algorithms 
and the abstract  theory of automata, Revue de Mathdmatiques 
Pures  e t  AppliquGes (BPR), Vol. 8 ,  No. 4, 1963. 
KOLMOGOROV, A. N. Discrete automata and finite automata 
(Text of an address) ,  Proceedings of the 4th All-Union 
Mathematical Congress, Vol. 1 ,  plenary addresses ,  Acad. 
Sci. P r e s s ,  Leningrad, 1963. 
KRATKO, M. I. On the reducibility of acombinatorialproblem 
of Post to cer ta in  mass  problems in the theory of finite auto- 
mata, Sbornik Vychislitel’nyye Sistemi, No. 9 Novosibirsk, 
1963. 
KRIZTKO, M. I. Algorithmic insolvability of a problem in the 
theory of finite automata, Diskretnyy Analiz, No. 2 ,  Novosi- 
birsk,  1964. 
KRATKO, M. I. On the existence of nonrecursive bases  of 
finite automata, Algebra i Logika, seminar ,  Vol. 3, No. 2 ,  1964. 
KRATKO, M. I. Algorithmic insolvability of problem of 
recognition of completeness for finite automata, Doklady 
Akad. Nauk, Vol. 155, No. 1, 1964. 
LAZAREV, V. G., and PIYL’, Ye. I. Oncertain c lasses  of finite 
automata, Zh. Vychislit. Matemat. i Matemat. Fiz., Vol. 2, 

V. G. LAZAREV and PIYL’, Ye. I. Synthesis of Asynchronic 
Finite Automata, Nauka Press, 1964. 
LEVENSHTEYN, V. I. On stable extension of the definition of 
partial automata, in the collection: Problemy Kibernetiki, No. 
1 0 ,  edited by A. A. Lyapunov, Fizmatgiz P r e s s ,  Moscow, 1963. 
LETICHEVSKIY, A. A. On the minimization of finite automata, 
Kibernetika, No. 1 ,  1965. 
LUNTS, A. G. A method of analysis of finite automata, Doklady 
*ad. Nauk, Vol. 160, No. 4, 1965. 
LYUBICH, Yu. I. Estimates for  an optimal determination of 
indeterminate autonomous automata, Sibirskiy Matematicheskiy 
Zhurnal. Vol. 5, No. 2 ,  March-April, 1964. 
MARKOV, V. L. Turing machines and binary automata, 
Sibirskiy Matematicheskiy Zhurnal, Vol. 5, No. 1 ,  January- 
February, 1964. 
PIYL’, Ye. I. A method of distribution of internal states of a 
finite automation, in the collection: Printsipy Postroyeniya 
Setey i Sistem Upravleniya,” Nauka Press, Moscow, 1964. 
SORKIN, Yu. I. The theory of determining relations for  auto- 
mata ,  in the collection: Problemy Kibernetiki, No. 9, Fiz- 
matgiz P r e s s ,  Moscow, 1963. 

NO. 4, July-August, 1962. 



ADDENDA TO BIBLIOGRAPHY 429 

29. SRAGOVICH, V. G. and Yu. A. FLEROV. Construction of a 
class of optimal automata, Doklady Akad. Nauk, Vol. 159, No. 6, 
1964. 

30. TRAKHTENBROT, €3. A. On an estimate of the weight of a 
finite t ree ,  Sibirskiy Matematicheskiy Zhurnal, Vol. 5. No. 1, 
January- February, 1964. 

31. The Theory of Finite and Probabilistic Automata, Proceedings 
of the International Symposium on the Theory of Relay Devices 
and Finite Automata (IFAK), Nauka P r e s s ,  Moscow, 1965. 



A 

Abstract s t ructures ,  149-151 
binary.116 
bistable, 149, 150 
concept of, 116 
techmcal embodiment of, 116 

Abstract synthesis, 187 
problems of, 188 

Algorithms, 304-354 
concept of recognition of, 221 
defined, 376 
directionality of, 309 
equivalence of, 316 
Euclidean, 305, 308, 309, 322 
general properties of, 308 
logical, 305 
Markov’s normal, 314, 316-318, 321, 

324, 349 
mathematical theory of, 310 
normal, 317, 318 

examples of, 317 
numerical, 305 

theory of, 321 
range of application of, 309 
theory of, 203, 221 

Amplifier, magnetic, 44, 46 
Arithmetical functions, 324, 325 
Associative calculus, 311-314, 317, 319 

Associative systems,  theory of, 310 
Aufenkamp algorithm 246, 401 
Aufenkamp constraints, 220, 235, 246, 250, 

Aufenkamp-Hohn algorithm 394, 395 
Aufenkamp-Hohn theorem 226, 230 
Aufenkamp-type restr ic t ions 398, 400, 401 
Aufenkamp’s theorem 247, 249, 250 
Automata, abstract  aggregates of, 107 

word problem in, 310 

252, 257, 282, 382 

finite, 61-63 
abstract concept of, 64 
theory of, 66 

terminology in, 378 
interconnection of, 99 

Automaton, abstract s t ructure  of, 91, 93 
autonomous, 66, 123, 126-128, 144-148, 

finite, 62, 63 

151, 153, 172, 173, 176, 185 
diagrams of, 129 

basic  table of, 69 
bistable s t ructure  of, 149, 150 
concept of, 68, 116 
definition of, 63 
tapes  of, 159 

nonautonomous, 185 
self-contained, 66 
s ta te  diagram of, 70 
tape of, 77, 78 

Automaton-converter system, 67 

B 

Bloch’s method, 141 
Boolean algebra, 20, 23, 37 
Boolean function, 52 
Boolean identities, 23 

C 

Church’s thesis, 222, 348, 349, 366, 376 
Circuit, analysis of, 37 

Clock ra te  transformation, 260-283 
theory of relay-contact, 235 

law of, 403 
rule  of, 262 

Components, magnetic, 44 
networks using, 44 

Compurable functions, theory of, 321 
Contact diagrams, 387 

construction of, 387 
by block method, 387 
by canonical method, 387 

Continuum sets, 61 

430 



INDEX 43 1 

Converters, electrical-to-mechanical, 27 
functions, 58 
logical, 58 

mechanical-to-electrical, 27, 29, 32 
output, 67 

abstract concept of, 58 

Coordinates, generalized, 60 
Correspondences, table of, 9, 10 
Cycle timing, fast, 126-128 

Cycle timing transformation, concept of, 
slow, 126 

130 

D 

Decision problem, 19 
Defining language, 188 
Delay element, one-instant 117, 119, 121, 

electromechanical embodiment of, 121 
124, 128, 129 

relay-based, 121, 129 
Delay line 102, 268 
De Morgan’s law, 18 
Diode logic, 40 
Discrete-action devices, 59 
Discrete-action systems, 1 
Discrete clock, defined, 65 
Discrete devices, 187 
Discrete moments, 59 
Discrete time, 59 
Disjunctions, multiplication of, 82 
Dynamical systems, 60, 61 

finite, 61, 62 
time-continuous, 60 
time-discrete, 60 

E 

Electromechanical relays, 128 
Euclidean algorithm, 305, 308, 309, 322 

range of application of, 309, 310 
Events, classification of, 160 

representation of, 163, 186 
concept of, 163 
language of, 186 

specific, 171 

F 

Flip-flop, 266, 267 
electromechanical, 123 
gas-operated, 123 

Function converter, 58 
Functional relationship, 2, 3 
Functional signs, 341 
Functions, identity, 11 

heterogeneous, 5 
homogeneous, 5, 6 

theory of, 6 
table of, 282 

logical, 5 

two-valued, 7 

G 

Gill’s method, 250 
Glushkov’s method, 171, 217 
Gadelization procedure, 324, 337, 338, 343 
G a e l  number, 322, 324, 337, 345, 346,347, 

Godel’s definition, 333 
G a e l ’ s  method, 322 
G a e l ’ s  proposal, 339 

349,354 

H 

Herbrand-Gael definition, 339, 342 
Hill’s method, 401 
Huffman realizations, 391 
Huffman’s circuit, 130 
Huffman’s flow table, 130, 134, 136, 280 
Huffman’s method, 130, 134 
Huffman’s minimization method, 282 
Huffman’s realization, 130, 141, 143 

I 

Infinite labyrinth, search in, 310 
Infinite sequences, determination of a term 

in. 304 
Inhibit function, 13 
Interconnection matrix, 71, 75, 76, 80, 82 

transformation of. 272, 273. 278 . .  
Intermediate relays, i28 
input sequences, 84 

Input tapes, regular set of, 170, 171 
restriction of, 84 

K 

Kleene’s operations, 164-167 
Kleene’s theorems, 168, 186, 378, 380 
Kleene’s first theorem 171, 176, 182, 206, 

Kleene’s second theorem, 176 
208 

proof of, 180, 181 

L 

Labyrinthine paths, 176, 177 
Language, defining, 188 
Logic, binary, 7 

formal, 1 
mathematical, 1~ 

aspects of, 2 
basic concepts of, 2, 4 
constructs of, 1 

Logical algorithms, 305 
Logical converter, 58 

triode, 43 

abstract concept of, 58 



432 INDEX 

Logical functions, 325 
Logical systems, theory of, 384 

M 

McCulloch-Pitts neural net, 109-111, 115 
McCulloch-Pitts neurons 109,I10,113,II4, 

Markov’s hvoothesis. 318 
391 

Markov’s normal algbrithm, 314, 316, 
317, 318, 321, 324, 349 

Markov’s refinement. 318. 320 
Matrix, interconneciion, .71, 75, 76, 80, 

82 
transformation of, 272, 273, 278 

Mealy machine, 69 
Memory cells, schematic diagrams of, 

Minimalization operator, 335, 337, 344, 

Minimization problem, 51 
Moore machine, 69 
Moore-Karatsuba theorem, 294 
Moore’s approach, 299 
Moore’s theorem, 234, 286, 288 

119, 120 
series-connected, 121 

345 

proof of, 287 

N 

Nets, concept of, 68 
defined, 100 
delay, 100 
loop-free, 101 
neural, 109 

McCulloch-Pitts, 109-1 11, 115 
models of, 109 

Networks, four-terminal, 60 
pendulum, 60 
switching, 30,31 
two-terminal, 3 1 

Neurons, abstract, 109 
Number theory, 326, 336 
Numerical algorithms, 305 

theory of, 321 

P 

Pei rce  s t roke function, 13, 15 
Pendulum networks, 60 
Peter’s  method, 348 
Peter’s  reasoning, 338 
Predicate calculus, res t r ic ted,  26 

Predicates, 333 

Propositional calculus, 6, 7 

two-valued, 23 

primitive-recursive, 334, 343, 345 

algebra of, 19 
functions of, 25 
methods of, 154 
symbolism of, 24 

Pseudoequivalent states, 235 

Q 

Quantifiers, defined, 24 
existential, 24, 25 
universal, 24, 25 

Quine’s algorithm, 388 
Quine’s procedure, 53 
Quine’s solution, 52 

R 

Real variables, theory of, 5 
Realizations, defined, 130 
Recognition problem, 187 
Recursive events, regularity of, 206 
Recursive functions, 203, 205, 376 

theory of, 221, 310 
Regular expressions, 169 

language of, 206, 207 
Regular formulas, language of, 188, 207 
Relay circuits, 129 

theory of, 27 
Relay switching, theory of, 1, 27 
Relays, cr i t ical  r a c e  of, 129 

electromechanical, 128 
input, 128 
intermediate, 128 
multiple-coil, 30 
output, 128 

Representation, definition of relative, 263 
Reproduction, relative, 264-266 
Rice’s theorem, 205 

S 

Sequential machines, 61, 66-68, 78, 103 
abstract aggregates of, 107 
basic table of, 73 
concept of, 116 
equivalence of, 262 

technique of synthesizing, 128 
Sets, finite, 2 

infinite, 2 
union of, 164, 168, 169, 174, 175 

definition of, 254, 255 

Sheffer stroke, 13, 15 
Specific event, 171 
Stable symbol, 145 
State diagrams, superposition of, 91 
Stimulation, threshold of, 110 
Switching circuits, 1 

analysis of relay, 27 
combinational relay, 27 

analysis of, 33 
schematic of, 32 
synthesis of, 37 

pneumatically operated, 47, 49 
theory of, 384 

Switching network, design of, 39 
Systems, discrete-actions, 1 



INDEX 433 

T 

Tape representations, gijdelization of, 376 
Timing, transformation of, 126 
Trakhtenbrot’s predicate language, 381 
Trakhtenbrot’s theorem, 206 
Triad chains, regular set  of, 178, 179 
Triad Labyrinth, 176, 177, 179 
Triode logic, 43 
Tseytin’s associative calculus, 320 
Turing machines, 61, 263, 355-376, 379 

basic components of, 355, 356 
composition of, 363 
computation on, 366 
proof of existence of, 372 
res t  state of, 357 
synthesis of, 373 

U 

Union of sets, 164, 168, 169, 174, 175 

V 

Variable, independent, 2, 5 
logical, 4 

theory of, 5 

W 

Words, process of transformation of, 311 


	Contents
	Preface
	Introduction
	1 Elements of Mathematical Logic
	2 Engineering Applications of Propositional Calculus
	3 Finite Automata and Sequential Machines: Basic Concepts
	4 Abstract Structure and Nets
	5 Technical Embodiment of Finite Automata and Sequential Machines
	6 Autonomous Finite Automata andSequential Machines
	7 Representation of Events in FiniteAutomata and Sequential Machines
	8 Recognition of Realizability of a Given Specification. Abstract Synthesis 0f Finite Automata and Sequential Machines
	9 Equivalence and Minimizationof Sequential Machines
	10 Transformation of Clock Ratesof Sequential Machines
	11 Determination of the Properties of Sequential Machines fromTheir Response to FiniteInput Sequences
	12 Algorithms
	13 Turing Machines
	Conclusion
	Problems
	Bibliography
	Addenda to Bibliography

