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Preface

This book deals with the general theory of finite automata and
sequential machines, a subject of great current theoretical and
practical importance and one likely to have an even greater impact
in the future.

In writing this text, we had in mind a wide audience. We natur-
ally hoped it would be useful to specialists in switching or digital
computer theory and design. Suchpersons are already familiar with
the necessary mathematical techniques, that is, propositional cal-
culus, general concepts of predicate calculus, and the fundamentals
of the theory of algorithms (theory of recursive functions), For
them, the book may serve as a reference on fundamentals, But our
primary audience is the beginner whose mathematical training is
confined to fundamentals of calculus, differential equations, and
mathematical physics. Aside from engineering students, such read-
ers may include specialists in automation, remote control and com-
munications, that is, those branches of engineering where lack of
fundamentals of mathematical logic and the theory of algorithms may
preclude the solution of a variety of problems,

In addition, we would like tothink thatthe potential beneficiaries
may include the mathematician who is not alogician, as well as the
physicist, physiologist and biologist interested inthe applications of
the theory of finite automata and sequential machines to idealized
models, such as those of nets of nerves. Basically, however, the
book is intended for engineers, which is why, in discussing some
problems of logic and algorithmic theory, we preferred to forego
mathematical rigor and concentrate on the clarity of exposition.

Thus, the objective of this bookis tointroduce the reader to this
new field and familiarize him with the basic concepts and the ways
in which particular problems are stated, as well as those solutions
which have been obtained so far. In the presentation, our own re-
sults are intertwined with those obtained from the relevant litera-
ture.

Since this text is designed for a diversified audience, we could
not organize it in a manner that would suit any special group. The
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disposition of subject matter is thus a compromise between con-
tending interests. In general, the material is arranged in order of
increasing difficulty, and each reader should thus proceed accord-
ing to his own needs and background. We would, however, like to
offer several suggestions:

1.

4,

The reader who is completely unfamiliar with the subject but
seeks detailed information should follow the sequence pre-
sented in the book.

The reader interested only in a general acquaintance with the
subject should read the first seven chapters consecutively,
followed by Chapter 12; after this he may glance through
Chapter 13, and finish by reading Chapters 8, 9, 10, and
11.

The reader familiar with the fundamentals of mathematical
logic and its technical applications is advised to begin with
Chapter 3.

Finally, the mathematician interested inengineering applica-
tions may safely omit Chapters 1, 12, and 13.

Sections 2.5 and 8.4 deal with the special problems of minimiza-
tions of Boolean functions and the realization of finite automata, de-
fined in the language of regular expressions; these sections (which
go beyond the basic principles of the general theory of finite auto-
mata and sequential machines)were written, at the author’s request,
by V.D. Kazakov and O,P, Kuznetsov, respectively,

The authors would welcome all comments and suggestions,

TRANSLATOR’S NOTE

This translation of the original Russian edition contains problems, additions,
and revisions prepared by the author for the English edition.



Introduction

‘“Finite automaton’’ and ‘‘sequential machines’’ are two tradi-
tional terms that are widely used to designate a very simple class
of dynamical systems. The theory of this class evolved as a sep-
arate entity for the following two reasons:

1. These dynamical systems are frequently employed in tech-
nology, particularly in automatic and remote control and computer
engineering (digital computers are a special case of this class). The
needs of modern technology have therefore prompted an intensive
study of the general relationships governing this class, in order to
develop methods of analysis and of optimal synthesis of these dy-
namical systems.

2. The continuing progress in science and technology, particu-
larly in computers, increasingly poses questions such as: What can
a machine ‘‘do’’ and what is it incapable of ¢‘doing’’? Could a ma-
chine perform any algorithm? In principle, could a machine do
something more than merely execute an algorithm? To what extent
is a machine capable or incapable of performing functions charac-
teristic of a humanbrain? All attempts atexact formulation of these
questions, let alone finding the answers, hinge upon our definition of
the term ‘‘machine.”” As of now, it is impossible to solve these
problems in terms of a very broad class of dynamical systems. If,
however, we define a machine as a restricted class of such sys-
tems—that known as <‘finite automata’’ and ‘‘sequential machines’’—
then the questions make sense. They canbe exactly formulated and,
in some cases, answered,

There is another reason, peculiar to our present state of knowl~
edge, which helps maintain interest in systems of this class. The
brain consists of a very large number of nerve cells, or neurons.
By idealizing their properties to some extent, we can construct a
mathematical model of the brain—one that is valid, of course, only
within the limits of this idealization. This model is also a dynami-
cal system of the type we shall consider. Our expanding knowledge
of neurons and of the brain as a whole has shown that the above
idealization is inadequate and that more complex models are desir-
able, Nevertheless, the factremains that within thisidealized frame-
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work, which is quite acceptable at our particular stage of knowledge,
both the human brain and ageneral-purpose digital computer can be
regarded as belonging to the same comparatively simple class of
dynamical systems, It is this fact thatlendsinterest to the study of
finite automata and sequential machines.



Elements of Mathematical Logic

1.1. INTRODUCTORY NOTES

Mathematical (symbolic) logic traces its origins tothe so-called
traditional formal logic, from whichitemergedinresponse to a de~
sire to formalize certain aspects of intellectual activity, This de-
sire continued to influence its subsequent growth as an independent
science, when it addressed itself to the task of providing the logical
foundations of mathematics by tackling problems of consistency and
completeness of axiomatic systems underlying this science, the
problem of determining all the inferences derivable from these
axioms, as well as a variety of similar questions. Eventually mathe-
matical logic grew into a powerful research tool, but its use con-
tinued to be restricted to the domain of pure theory, even though
there were men who recognized its potential in the field of applied
science (as long ago as 1910 Paul Ehrenfest pointed out the possi-
bility of using the constructs of mathematical logic to describe the
operation of practical systems such as switching circuits). Be that
as it may, it was onlyin the thirties that the engineering application
of mathematical logic came into its own, It was during that time
that V.I. Shestakov [111, 112] and C.E. Shannon [231] worked on the
application of mathematical logic to switching networks and led the
way for M.A. Gavrilov {21] and the independent theory of relay
switching. Before long mathematical logic penetrated even deeper
into the applied sciences. It was found thatnot only relay switching
networks but also many other discrete-action systems were sus-
ceptible to description by its techniques.

Thus mathematical logic became an acceptedtool in the develop~
ment and design of a great variety ofengineering systems, while at
the same time maintainingits extreme importance in theoretical re-
search, Its applied aspect proved especially valuable in recent
years, in connection with the research into the general laws of con-
trol which govern both technology and Nature.

1



2 ELEMENTS OF MATHEMATICAL LOGIC

Since there are two aspects of mathematical logic—the theoreti-
cal and the applied—the subject can be developed in two distinct
ways., In accordance with our main objective, we shall confine our-
selves to the applied aspect, with the further restriction that we
shall now discuss only these elements oflogic which are needed for
an understanding of later sections.

1.2. BASIC CONCEPTS

In discussing logic, we shall experience time and again the im-
portance of a fundamental mathematical concept—the functional ve-
lationship, In its most general form this conceptis associated with
the idea of existence of two sets and of mapping of one set onto the
other. Suppose we have sets X and Y consisting of elements x and y,
respectively, that is,

X={x}, V={y}

If, by virtue of some condition, each element x belonging to set X
(this is written as x € X) is matched with a specific element y of
set Y (y€Y), then the matching condition is said to define y as a
function of x, or, alternatively, one saysthatset X maps into set Y.
The function y = y(x)is also said to be defined on the set X (called
the domain of the function) and to have values in set ¥ (the range of
the function); x is called the independent vaviable ov argument, and
y is called the function.

Every specific functional relationship is determined, on the one
hand, by the characteristics of sets X and Y and, on the other hand,
by the nature of elements x and y in these two sets.

Let us consider some basic characteristics of sets. A setis
classed as either finite or infinite, depending upon the number of
elements constitutingit. For example, the set of letters of the alpha-
bet is finite; the set of molecules ina finite body is also finite; but
sets consisting of all positive integers, or of all rational numbers,
or of all real numbers are infinite, The set of all points on a line
segment and the set of all points in a plane figure are also infinite.

Sets may be compared according to their cardinality. Two sets
are said tohave the same cardinalityif a one-to-one correspondence
can be established between their elements. The concept of cardi-
nality of a set allows us to distinguish two important classes of in-
finite sets. These are the countable* and the confinuum sets,

*Also called denumerable.
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Countable sets are sets that have the cardinality of the set of all
natural numbers, and continuum sets are sets that have the car-
dinality of the set of all real numbers.

In particular, the set of all even integersis countable, since the
elements of this set canbe easily placedin a one-~to-one correspon-
dence with the elements of the set of natural numbers. Indeed, by
arranging the even integers and the natural numbers in ascending
order, we can establish the following one-to-one correspondence
between the elements of these two sets:

2, 4,6, ..., 91, ...
1, 2,3, ..., =n,

The set of all algebraic numbers, the set of all rational numbers,
and so on, are also countable.

The continuum sets include the setof allirrational numbers, the
set of all points in a line segment, the set of all points on a plane
figure, and many others,

In some cases, comparison ofinfinite setsinterms of their car-
dinality leads to statements that may sound quite paradoxical. For
instance, it would seem strange, at a first glance, that the set of
points in a segment (AB in Fig. 1.1)
and the set of points in a section of
the same segment (AC in Fig. 1.1)

I
should have the same cardinality. i S
This, however, may easily be proven | \\\
with the help of Fig. 1.1, Here, each A4$—NZ 3
point M in segment 4B may be con- | Y
nected by a ray to an origin O; this H ¢ S~
ray intersects segment AC at apoint 4% 7 . 8
M’, which is seen to be in one-to-one Fig. L1,

correspondence with point M of seg-

ment AB, showing that our two sets do indeed have the same car-
dinality. Similarly, it may be demonstrated that the set of points in
a plane figure, or even in a three-dimensional body, has the same
cardinality as the set of points in a line segment, namely, that of
the continuum,

Let us now return to functional relationships. As already stated,
such a relationship is specified by the nature of the elements in the
sets on which it is defined, and by the characteristic properties of
these sets. If a function is defined on the set X of all real numbers
x and assumes values from a set Y which also consists of all real
numbers y, then we have a real function y of a single real variable
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x,o0r y = y(x). If, however, the function assumes values from the same
set of real numbers y, but each element of the set Z = {2} on which

it is defined is a sequence of n real numbers x;, x3, ... Xn, then
we are no longer dealing with a real function of a single real vari-
able, but with areal function y of n real variables x;, Xy, ..., Xa,
that is,y = y(xy, x9, ..., Xxn).

The above functions are based on the set of real numbers, and it
is this characteristic that unites them into a single class. The dis-
tinguishing feature of this class of functions is that both the values
assumed by the function and the arguments of this function are de-
fined on continuum sets.

The basic characteristic of functions of mathematical logic is
that both their domain and their range (that is, the sets which par-
ticipate in the mapping) consist of elements that, in general, have
no connection with any defined guantities whatsoever. We are thus
saying that we cannot distinguish between the elements of these sets
by any other means than assigning to them symbols of some kind,
for example, numerals.

The list of all symbols describing the elements of a given set is
called the alphabet of this set; anundefined symbol, which may rep-
resent any element of the set, is called a logical variable, Each spe-
cific symbol is then one of the valueswhich the logical variable can
assume.

Thus we have seen that, in terms of the properties of the ele-
ments of the mapped sets, logical functions are functions of the most
general type. Moreover, they assume values from finite sets. In
this they differ from many other functions (for example, functions
of real variables, which are, ingeneral, defined on continuum sets).

As an example, consider two sets. Set X = {x} consists of all the
diffevent white keys of the piano. Let us denote these keys, from
left to right, by symbols xi, X ..., x5; the list of these symbols
is alphabet of set X={x, Xy, ..., x5}. Set Y = {y} consists of the
seven different notes contained in an octave, and its alphabet is
(¥ ¥ - ., ¥;}, where the symbols yi, ys, ¥s, Ya. Ys, Ys, and y7 denote
the notesc, d, e, f, g, a, and b, respectively. In a well-tuned piano
each symbol of the alphabet {x} is in a one-to-one correspondence
with a specific symbol of the alphabet {y}. This means that the vari-
able y, which assumes the values yi. y», ..., y7,isa logical function
of the independent variable x, which assumes the values xy, x3, ..., xso.
This function may be specified in several ways, for example, in the
form of a table (see Table 1.1).

The first classification to which we may subjectthe functions of
mathematical logic is that based on the number of different sets
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involved in the mapping of a given function. If only one set is in-
volved, so that the set ismappedintoitself, the corresponding logi-
cal function is said to be homogeneous. A function involving map-
ping of one set onto a different setis said to be helervogeneous. For
example, the logical function given in Table 1.2 is homogeneous,
while that of Table 1.3 is heterogeneous.

Table 1.1
XXy [ Xl Xg| Xa] X5 | X6 | X7 | K| Xo|Xio] - |Xaa|Xes|Xa6|Xar[X4as| X49|Xs50
Y| Ye| Yo [Yr[Ye|Ya|yY [Ys|Ys|Yr| 1 Yo Yl Yo Ys| Ya|¥s|Ys

We said before that the set from which a logical function takes
its values is finite; and since any homogeneous logical function rep-
resents the mapping of some set onto itself, it follows that the set
constituting the range of a homogeneous logical function must be
finite. The correspondinglogical variable may be two-valued, three-
valued, or, in general, m-valued.

Table 1.2 Table 1.3
oy ) ) 4 4 L2 a3 %4
2q &y ) ag a2 81 31 B3

Each of the values of the argument of a heterogeneous logical
function is usually called an object, and the function itself is called
a predicale. While the set of the argument values (the object set)
" may be infinite, the heterogeneous logical functions themselves—
the predicates—may only be two-valued, three-valued, or, in gen-
eral, m-valued (where m must be finite).

In the theory of real variables, we are accustomed to real func-
tions of n real arguments. In the same way, the theory of logical
variables admits of logical functions not only of one but also of n
independent variables.

We shall divide functions of several variables into two classes.
One of the classes shall include functionsinwhich all the arguments,
as well as the function itself, arelogical variables assuming values
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from the same set. Again, we shall call such functions ‘‘homogene-
ous,’’* QOur second class shall comprise all those logical functions
of several variables which do not belong to the first class; again,
we shall call such functions ‘‘heterogeneous.’”’

As in the case of functions of one independent variable, the logi-
cal variables that are the arguments of the heterogeneous functions
of several variables are called objects; the functions themselves
are again called predicates.

Depending on the number of arguments in a given heterogeneous
logical function, we have one-place, two-place, and, in general,
n-place predicates, One-place predicates are sometimes called
properties, while multiple-place predicates are called velations.

To illustrate these concepts and terminology, let us consider a
few examples:

Suppose we examine the event: I shall meeta man whom I know.
This event may or may not occur, depending on occurrence or non-
occurrence of the following elementary events constituting the com-
posite event: One of the persons I shall meet will be someone I know,
and this person shall also be a man. Here we have a homogeneous
logical function with two arguments; itis homogeneous because both
arguments and the function itself are events, that is, logical vari-
ables assuming values from the same bhinary set whose elements
are “the event shall occur’’ and ‘‘the event shall not occur.’’ By
denoting one argument (event: meeting a person whom I know) by
x;, the other (event: meeting a man) by x,;, and the function (event:
meeting a man whom I know) by y,we can represent their relation-

ship in the form of Table 1.4. The char-

Table 1.4 acters 0 and | in the table are symbols
corresponding to the elements ‘‘the event
shall not occur?’’ and ‘‘the event shall oc~

*2 0 1 I
" cur,
In our previous example of the piano
0 0 0 keys, the logical function was heterogene-
ous, There we had a seven-valued, one-
1 0 1 place predicate whose object variable (the

number of the key) assumed values from
a fifty-element set,

The estimation of the truth value of astatement given by the al-
gebraic expression

X+ X9 > lO,
*The mathematicians who developed the theory of homogeneous logical functions worked

with a set whose elements were called ‘‘true’’ and ‘‘false’’ propositions. For this reason
this theory is referred to as ‘‘propositional calculus.”’
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which is true for some numerical values of x, and x, and false for
other, leads us to an example of atwo-place, two-valued predicate;
here we have twoindependent variables, and they assume values from
a set of real numbers, which has the cardinality of the continuum.

Consider another example; it is no great trick to determine the
day of the week corresponding to a certain date (day, month, year).
The rules governing this problem constitute a heterogeneous logi-
cal function—a three-place, seven-valued predicate. The object
variables in this case assume values from three sets: one of these
contains 31 elements, another 12 elements, and the third a countable
number of elements.

No single mathematical theory applicable to all the possible
logical functions exists as yet. The theory which as of now has
reached the highest state of development is that governing two-
valued functions. This branch of mathematical logic (two-valued or
binary logic) serves a dual function: on the one hand, it supports
the entire edifice of mathematical logic; on the other hand, it is
precisely this branch of the theory that is, at present, of the great-
est applied value. The same, however, cannot be said about the
theory of many-valued logic, which is still along way from perfec-
tion. For this reason we shall not concern ourselves with it any fur-
ther and shall proceed to the postulates of binary logic which in~-
cludes the calculi of two-valued propositions and predicates.

1.3. PROPOSITIONAL CALCULUS
a) Definition of Logical Functions

We shall now discuss homogeneous binary logical functions
y=uy(x1, X2, ..., Xn),

that is, functionsinwhich all the independent variables xi, xs, ..., Xa,
as well as the function y itself, assume values from the same binary
set M. We shall denote the two elements of this set by symbols 0
and |; these symbols shall then constitute the entire alphabet of all
the logical variables which are arguments of these logical functions.

Now let us construct a table (see Table1.5) of 27 columns and n
rows. The heading of each row shall be one of the n independent
variables. The heading of each column will be a numeral from the
set0,1,2,...,2" — 1,

Next, let us fill each column with a sequence of symbols 0 and 1
such that this sequence, when read from bottom to top, shall form
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Tabie 1.5

r = 2" columns

Nlofife|s|als|e]| 7], [|or—gfn—1
wlflol1]oli]lol1iio]n 0 1
s lolol1l1]oloj1]1 1 1
wmw
§ s, JoJolololi1 1)1 1 1
=
s flofololololofofo 1 1

the binary representation of the numeral in the heading of the col-
umn, The best way to complete such a table is as follows: We enter
in the first row (row x;) a string of pairs (01); in the second row
(row x;), a string of groups of four (0011); in the third row, a string
of groups of eight (00001111), and so on. Now each coiumn of the
table shows one of the possible combinations of values which may
be assumed by the n independent variables. Thusit may be said that
each column corresponds to apointinann~dimensional binary logi-
cal space (a space consiructed on the basis of the two-element set
M). The table as a whole (the aggregate of all the 2" columns) is a
complete description of the entire n-dimensional binary logical space
which consists of r = 2" points; the numeral £ heading a column is
then a symbol denoting a point in this space.

In a more graphic representation of an n-dimensional binary
logical space, 0 and 1 can be regarded as real numbers. Then the
one-dimensional case may be represented in terms of two points on
a real axis (Fig. 1.2). The two-dimensional case may be repre-
sented in terms of four vertices of a unit square (Fig. 1.3), and the

three-dimensional case—by the

. vertices of aunit cube (Fig. 1.4).
0 ! z In general, the n-dimensional
Fig. 1.2. binary logical space may be rep-

resented in terms of the set of

all the vertices of an n-dimensional unit cube,
To define a specific binary homogeneous logical function y =
ylxy, Xs, ..., x,) means to specify which of the two possible values
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(0 or 1) will be assumed by the logical variable y at a point # of the
corresponding binary n-dimensional logical space (or atavertex of
the n-dimensional cube), This information is furnished by a table
of correspondences* (Table 1,6), which specifies our functionin the
form y = y(k). A table of correspondences y = y(k), together with a
table for the n-dimensional binary logical space & = &k{x;, Xs, ..., Xn)
completely specifies the homogeneous binarylogical functiony = y(x;,
Xo, o , Xn) of n arguments,

I,

1p—=------

[, S

&

Fig. 1.3, Fig. 1.4,

At any k, the function y(%) can be either 0 or 1. It follows that
each function of n arguments can be represented in a table of cor-
respondences by some sequence of zeros and ones, The length of
this sequence is r = 27, so that the total number of different functions
that may possibly be constructed on the set of points of an n-dimen-
sional binary space is s=2"=2(", All these functions can there-
fore be enumerated and hence designated by anumeral (numbered).

Table 1.6
k 0 1 2 3 on__9 on 1
y y©@ |y [ y@[yB ... | y@=2) | y@2"—1])

There is a convenient method for scanning and numbering all
these functions. This involves constructing a table such as 1.7 that
combines all the possible correspondence tables; it containsr = 2»
columns and s = 2r rows. We cancomplete this table as follows: We

*The term table of combinations is also used,
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Table 1.7
o | 1| 21 3 r—1

y

¥o ol o] o] o 0
¥ 1 0 0 0 0
v o | 1] 0| o 0
vs vl oo 0
vsr 1 | 1| R A

enter pairs (01) into the first column, then we enter groups of four
(0011) into the second column, groups of eight (00001111) into the
third, and so on.* Then the string of zeros and ones in each row,
when read from right to left, will be the binary representation of
the number designating the function corresponding to this row, We
shall refer to such a table as a geneval corvespondence table,

In addition to this tabular method of defining homogeneous binary
logical functions, there exists an analytical procedure which is
widely used. This procedure is based on our ability to transform
homogeneous functions into composite functions. Indeed, we know
that both the homogeneous function and its argument assume values
from the same set. This means that the logical variable that is the
functional variable in one relation may be the argument in another
relation. The transformation into composite functions allows us to
express any homogeneous binary logical function in terms of cer-
tain simple functions. Naturally, the use of such functions and of the
related notation entails some specific rules, thatis, a special alge-
bra.

b) Functions of One and Two Variables

Let us begin with the simplest case, where the function has only
one argument (n = 1), and where the general correspondence table

*This table differs from 1.5 in that we fill in the columns and not the rows,
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combined with the table of unidimensional binary logical space as-
sumes the form of Table 1.8,

Table 1.8

k 0 1

Notation
x 0 1
Yo 0 0 Yo =0
Y1 1 0 Vi =X
Ya 0 1 Y= X
Y3 1 1 ys=1

The number of points inthislogical spaceis then r =2 = 2! = 2,
while the number of different functions is s = 2" = 22 = 4. These four
functions—yo, yi, yi, and y;— are shown in Table 1.8, There are no
other functions of one argument.

The values of the functions y,; and y; do not vary with the values
of the argument, so that these functions are called constant. We
shall denote them by yo = 0, y3 = 1.

The function y,, called the identity function, always assumes the
same value as the argument x; the obvious notation is y, = x.

The function y, becomes 1 when x =0, and 0 when x = 1. It is
termed negation, and merits a special notation, y; = x; this is read
as ‘‘not x.”’ Note that two of the above four functions can always be
expressed as composite functions, using the symbolic notation for
the two other functions. Thus,

(1.1)

<
Il
<l
<
I
%l O
Il

N
I
[
l
a

Therefore, we can define any homogeneous binary function of one
argument in an analytical form by applying the special symbolic no-
tation for negation to the two functions y = 0 and y = x.

The general correspondence table for the case of functions of two
arguments x; and x; {n = 2), is Table 1.9, Here the number of points
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Table 1.9
k 0 1 2 3
X, 0 1 0 1 Notation
X, 0 0 1 1
Yo 0 0 0 0 o =0
V1 1 0 0 0 y1= Xy { X
Vo 0 1 0 0 Yo == Xq € Xy
s 1 1 0 0 V3= X,
Yo 0 0 1 0 Vo= Xy« X;
Vs L 1 0 1 0 ¥s = X,
Yo 0 1 1 0 Yo = x1V X
¥r 1 1 1 0 Y= X1/ %y
Vs 0 0 0 1 ye=x, & x,
Yo 1 0 0 1 Yo == X ~ X,
Y10 0 1 0 1 Yio = X,
Yu 1 1 Y 1 Y11 = X > Xy
Y12 0 0 1 1 Y12 = X,
Yis 1 0 1 1 Vi3 = X1 —> X,
Yia 0 1 1 1 Yie = XV X,
Yis 1 1 1 1 yis=1

in the logical space is r = 2" = 22 = 4, while the number of different
functions is s = 2" = 24 = 16, The column on the extreme right gives
the notation used for these functions, We see that six of these six-
teen functions were encountered among the functions of one argu-
ment, These include two constant functions (y; = 0 and y;5 = 1), two
identity functions (y0» = x; and yi2 = x2), and twonegation functions
(y3 = x; and ys = x,).
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Of the remaining ten functions, two (y, and y.) are not indepen-
dent, since they differ from functions y. and y; only in the relative
position of the two arguments, We are thusleft with eight new func-
tions of two independent variables, They have the following special
properties:

The functionyis = x1 V x, is 0 if, and only if, both arguments are
0. It is called disjunction and is read “‘x, or x;.”’

The function y13 = x; = x» is called éimplication. It becomes 0 if,
and only if, the first argument (x;)is1 and the second (x») is 0; it is
read ¢“if x; then xy’’ or ‘“from x, follows x,.”’

The function yy = x; ~ x, is called equivalence, It becomes 1 if
both arguments have the same value, and it is 0 if the arguments
have different values. Itis read ‘‘x; is equivalent to xy,”’ or ‘‘x; if,
and only if, x,.”’

The function ys = x; & x, becomes 1if, and onlyif, both arguments
are equal to 1, It is called conjunction and is read “‘x; and x,.”’

The function y; = x;/x; is called the Skeffer stroke; it is 0 if,
and only if, both arguments are 1.

The function ys = x, \/ x, is called the Exclusive OR; itis 1 if
either the first or the second argumentis1 (but not if both are equal
to 1).

The function y, = x; < x2 is called, in technical applications, the
inhibit function. It is equal to the first argument (x,) if the second
argument (x,;) is 0; if the second argument is 1, the function be-
comes 0, no matter what the first argument is.

The function y; = x; | Xy is called the Pierce stroke function; it
becomes 0 if, and only if, both arguments are 0,

Now, we should also note that any function in the upper part of

the table (that is, one of the functions y,, 4, ..., y;) is a negation of
some function from the lower part of the table (that is, one of the
functions ys, ys, ..., yis).

Consider, for example, the functions ys and ys, We see from the
table thatys = 0 if (and onlyif)y, = 1 and, conversely, ys = 1 if y = 0.
Thus, the variable y; may itself be considered an argument whose
values uniquely determine the values assumed by variable y,. From
our definition of negation, we have y; = qu But ys=x; V x» and
ys = X; ~ 1. Consequently, x, V x, = x; ~ ¥, The table also shows
that this relationship holds for all pairs of functions which are ar-
ranged symmetrically around a line dividing the seventh and eighth
rows. We can write this relationship as y;5 - ; = y;, where i =0, 1, 2,

.., 15

Thus, the table implies that exactly half (i.e., four) of the eight

two~argument functions still under discussion, are notindependent.
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Indeed,

V;=VYs L€, X6y = x, & xy,

s = Yoo 1., X, V==X~ Xy,
Y6 =Y 1A ! 2 (1.2)

Ya=VYip l.&., xj<xy=x,->x

Vi =Y Le., x| X5=x;V X

Therefore we can now drop operations defined by /. y, <, and
¢, and obtain a list of six simple logical functions

constant y=0, ]
negation y=ux.
conjunction y=ux,&x,,

disjunction y=x,V Xy
implication y=x, —>.x, {

(1.3)

equivalence y--x, ~x,

which are sufficient, but by nomeansnecessary, for expressing any
function of one or two independent variables in an analytical form.

To prove this, consider the function y = x, \V x,. Because itis a
function of two independent variables, it must be equivalent to one
of those shown in Table 1.9. We shall determine which one by find-
ing its values at all four points of the corresponding two-dimen-
sional binary logical space, that is, at all possible values of argu-
ments x; and x;. The process of finding these values is illustrated
by Table 1,10, where we use the notation y; = xi; consequently
y =1y V x. Our values of y show that y = x; - x;, which means that
we are dealing with the identity

Xy > Xy = Xy VX (1.4)

Similarly, it can be shown that

X, Xy = x, & x,, 1.5)
Xy~ Xy = (0 VX & (X V xy)- (1.6)

Identities (1.5) and (1.6) show that functions of one or two inde-
pendent variables may be completely described without employing
implication and equivalence. Thus our set of simple functions may
be further reduced to the following four:
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constant y =0, l
negation y =X
o B (1.7
conjunction y==x,&x,,
disjunction y=ux, \/ x,.

As we shall see below, this is the most convenient set of simple
functions and hence is the one most frequentlyemployed. However,
in principle, even this set can be still further reduced.

Indeed, the procedure used toestablishidentities (1.4), (1.9), and
(1.6), which enables us todispense withimplication and equivalence,
may be employed to show that the following identities also hold:

_— Table 1.10
XV Xy =x,& x,,

X & xy=x, \/ %2 (1.8) Bl o 1] 2|3
0=x&x.

X 0 1 0 1
This means thateither of the last two func- 1

tions, as well as the first function of set
(1.7) can also be dropped. We thus arrive
at a set consisting of only two functions

% 0o o 1|1

negation y=x,

conjunction y=x,&x,

} (1.9)

(or disjunction y=x;V x,),

by means of which we can express any function of one or two argu-
ments.

We ghall conclude this subsection by pointing out the special
properties of the Sheffer stroke y = x,/x, and the Pierce stroke y =
= x1 | x2. Either of these is sufficient for complete expression of any
function of one or twoindependent variablesby virtue of the fact that
both functions of the previously described set (1.0) may be expressed
by either of these forms. Thus

x= xjx=x| X,
Xy & Xo = (1 /Xg)(X1/ %), (1.10)
Xy V Xg=(Xy § %) | (X1 | X)-

And since the set (1.9) issufficient for complete description, so are
the two special functions.
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c) Functions of n Variables.
Conjunctive and Disjunctive Normal Forms

The symbolism employed with one- and two-argument functions
may be extended to functions of three, four, and, in general, n inde-
pendent variables; for example,

)’——"(xl”*)—cz)"‘(}x&xg). (1.11)

We can construct a correspondence table for afunction of # argu-
ments. To complete it, we scan all possible combinations of the
values Xi, %z, ..., ¥n (that is, all the points By, Bys «ees By inan
n-dimensional logical binary space) and determine the values of y
at these points. For instance, for the function (1.11) at the point
k=2, that is, at x;, =0, xs=1, x3=0, we have y(0, 1, 0) = 0. Simi-
lar computations at all other points give Table 1.11.

We shall now show that the sym-
Table 1.11 bolism used for functions of one or
two arguments also allows us toex-

press in analytical form any function
N0 1213|4567 of any number of independent vari-
ables.
xp oy bjofrioy10i}1 As an example, consider Table
1.11. We shall assume that this table
x loloj1r|f1fofofl]l is given but that its analytical ex~
pression (1.11) is unknown, and we
xg lolojolofrjrf1yl shall derive that expression from
the table. In so doing we shall em-~
y olojofijrjofry1 ploy a procedure that is applicable
to any other similar table.

Let us first consider any column
in Table 1.11 in which y = 1: for instance, column % = 3. In this
column %=1, x»=1, x =0. We therefore write y, = x; & ¥, & X3,
which, as caneasily be seen, becomes 1if,andonlyif, x; =1, x2 =1,
and x; = 0, thatis, precisely at point £ = 3. In an analogous man~
ner we derive the functions

Vo= X, & Xy & X3,
Vo= X, & x, & X, (1.12)
Vo= x, & x, & x5, ‘
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that become 1 only at points numbered £k =4, k=6, and k=7, re-
spectively, that is, at those points of Table 1.11 at which y =1,

Function y = 4y, V y2 V y3 V y» becomes 0 if, and only if, y, = 0,
y2=0, y3 =10 and Y. = 0, inall othercases,y = I. Since these ‘‘other
cases’’ are the points £=3, k=4, k=6, and k£ =7, this means
that function

Y= (06, & o, & )V (6, & 3, & x) V(06 & o, & x5) V (o6, & ey & ) (1.13)

corresponds exactly to our starting Table 1.11, We have thus ob-
tained an analytical expression for the functiongivenby Table 1.11,
However, our new expression is not in the form of Eq. (1.11), but
in another, ¢‘standard,’’ form. While there is a marked difference
in the appearance of (1.11) and (1.13), both expressions represent
the same function, defined by Table 1.11; that is, we have the iden-
tity

(06— Xa) ~ (36, & x5 = (6, &, & X)) (1.14)

\/(;Cl &;Cz&xs) \Y% (E&xz&xs) V(%) & x, & x3).

The technique just illustrated is quite general, Indeed, any func-
tion of n arguments can be given in the form of Table 1,12, Let us
now take any column in which y = | and, writing out the conjunction
of all the n independent variables x; & x; & x3& ... & xa, let us mark
with the sign of negation those variables of this column that become
0. We then form such conjunctions for all the other columns where
y = 1, and we join them together by disjunction signs. Now we shall
have an expression containing several conjunctive terms joined by
disjunction signs. Each such term contains all the variables x, x,, .

., Xn, some or all of which carry negation signs [for example,
we may have x; &x.&...&x, (no negated variables), as well as
x1 &%, & ... &x, (all the variables negated)]. The various functions
derived from the table and represented in this form can differ only
in the number of disjunctive terms andinthe way in which the nega-
tion signs are distributed above the variables x; of the component
conjunctions.

Expressions of this type are veryimportantinpropositional cal-
culus: the disjunctive expression, constructed of terms which are
different conjunctions of all the independent variables of a logical
function, or their negations, is called the complete (or full, or
perfect) disjunctive novmal form of the function.
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Table 1.12
k 0 1 2 3 k on 1
£ 0 1 0 1 xR ] 1
% 0 0 1 1 R T N i
X, || 0 0 0 0 | ... | x| ... 1
y [y@ | v iy@ [yB ... | y(&) e p@ET—=1

The complete (or full, or perfect) conjunctive novmal form
is the conjunctive expression constructed of terms which are
different disjunctions of all the independent variables of a logical
function, or their negations.

The term complete is usually omitted, that is, we speak of a
disjunctive novmal or a conjunctive novmal form whenever it is not
required that each term of such a form be a conjunction or a dis-
junction (as the case may be) of all the variables of a logical func-
tion.

Let us now consider the following property of normal forms. If
a function y is expressed by a normal (either simple or full) dis-
junctive (or conjunctive) form, and if all theV signs in this expres-
sion are replaced by & and all the & signs are replaced by V/, and
if a negation sign is placed above each variabie (if the variable al-
ready carries such a sign, another identical signis added to it; this
is equivalent to a removal of negation), then we obtain function y
written in normal (either simple or full) conjunctive (or disjunctive)
form, This property is a direct consequence of identities (1.8).*

In contrast to simple normal forms, the full normal forms are
unique in the sense that thereisonlyone way in which each function
can be represented as a full normal disjunctive or conjunctive form
(that is, if we disregard permutations of disjunctive or conjunctive
terms and of independent variables),

We shall illustrate the importance of these concepts by two prob-
lems.

*This is referred to as Duality or De Morgan's Law,
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Problem 1. Determine whether a function n arguments y =y
(x4, X2, ..., xn) can be reduced to a constant function y = 0.

This problem is solved by reducing the given function to its dis-
junctive normal form. Then, if one finds that each disjunctive term
contains at least one variable in conjunction with its negation (that
is, x; & x;), the function is of the form y = 0. If this is not the case,
than we can always find values at which y = 1; that is, the function
is not a constant y = 0.

This problem has a dual in which it is required to determine
whether a given function can be reduced to the form y =0 = 1. The
solution is obtained by reducing the givenfunctionto its conjunctive
normal form, If one then finds that each conjunctive term contains
the expression x; \/ x;, then in this case (and only in this case) the
given function reduces to the formy = 1.

The question whether some function y = y{x;, x2, ..., x,) can be
reduced to the form y = 1 or y = 01is called the decision problem.
Within this problem, functions that reduce to the form y =1 (or
y =0) are called identically true (or false), whereas functions that
do not reduce to either y =1 or y = 0 are called feasible.

Problem 2. Given a logical function of » arguments y =y
(%1, X3, ..., xx), find all sets of values of arguments at whichy = 1.

The problem would be solved if the given function could be re-
duced to its full disjunctive normal form,

The required number of sets of argument valuesis exactly equal
to the number of disjunctive terms in the full disjunctive normal
form of the function, The specific values of all the arguments in
each set is determined in the following manner. Each set of values
x; (where i =1,2,..., n) at which y =1 (the values are defined by the
jth parentheses) has the form

X=Xy, Xg == Kyjy oy X, = Xy

where x;; is equal to O or 1, depending on whether the corresponding
ith independent variable appears in the jth conjunctive parenthesis
with or without a negation sign.

d) Functions of n Variables.
The Algebra of Propositional Calculus

The full disjunctive normal form (1.13) of our example defined
a function for which we already had a shorter expression. In other
cases, too, there exist functional expressions that are shorter and
more convenient to use than the full disjunctive normal forms, In
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other words, there are other casesinwhichwe can establish identi-
ties similar to (1.14),

Thus far, we have proved all identities of functions of one, two,
or more variables by a testinvolving substitution of all the possible
values of these variables. This method has twomajor disadvantages:
it does not afford any opportunities for deriving new identities and
in this sense is passive; in addition, it becomes more and more
laborious as the number of variables increases. Fortunately, how-
ever, we have at our disposal another method based on the use of
certain rules for identical transformations. Thus the collection of
simple functions

y=20, y=x =x 80, y=xVx,
Y==X > Xy Y= Xy~ X (1.15)

may be operated upon by means of a system of rules, usually re-
ferred to as the algebra of logic or Boolean algebra, which consists
of the following identities:

X=x, (1.16)
Xy Xy = X, \/ Xy, (1.17)
Xy~ Xy == (X, = X)) & (X, — x)), (1.18)
(a) x&x =x, (o) xvx =ux, (1.19)
(a) x&x =0 (b) xVx =1, (1.20)
(a) x&1 =ux, (b)y xv1 =1, 1.21)
(a) x&0 =0, (b) x\/O =x, (1.22)
(a) X, &x, =X,V x5, (0) X,V = x, & x,, (1.23)
(@) x, & xy=x,& x,, (b) X1V X=X,V x,, (1.24)
(a) x, &(x,& x3) = (b) X, \Vi(xy V xy) =
= (X, & o) &y, = (X, X))V X3, (1.25)
(a) x, & (x5 = (b) xy v/ (xry & y) =
= (x; & x)V/ (x; & xy), = (0, X9) & (o, \/ x3). (1.26)

Each of these identities may be proved by direct substitution of
all the possible values of the variables appearingin the left and the
right sides of the identity.
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The OR and AND operations of this algebra have much in com-
mon with addition and multiplication of ordinary algebra. Thus, they
obey the first and second commutative laws [identities (1.24)], as
well as the first and second associative laws [identities (1.25)].
However, in contrast to ordinary algebra, they obey two distributive
laws rather than one [identities (1.26)]; and ‘‘reduction of like
terms?’ or ‘‘multiplication of avariable by itself’’ are accomplished
via identities (1.19), without introducing any factors or exponents.

This system of identities permits a purely analytical solution of
a great variety of problems. Moreover, standard methods may be
used for some of these solutions. Forinstance, any analytical func-
tion may be transformed directly into a normal disjunctive form, a
procedure illustrated by the following example,

EXAMPLE. Let the starting function be

)’lel_’(}l “’xa)&(-xQ_’}a)]\/(xl_’xa)- (1.27)

First, let us eliminate the — and ~ signs. Applying identities (1.17)
and (1.18), we obtain

Y= [0,V (X V X5) & (3 )] & (6, V%)V (V). (1.28)

Next, let us eliminate those negation signs that relate not just to a
single variable but to an entire aggregation of such variables. We
do this by means of identities (1.23) and (1.16) to obtain

Y = [0 & (3, V 55) & (3 %)) & (1, )] V(3 & ) =
=[x & (xl\/xa)\/('gii\/;l)& (-;2\/-;3)1 V (x, &-;3)2 (1.29)
= [y & [(r, & Xp) V/ (33 & ) [& (6, )}V (%, & xy).
Now, in order to arrive at adisjunctive normal form it is sufficient
to expand the expression in the braces as specified by identity

(1.26a). Simplifying the intermediate results by means of (1.16) and
(1.19) as we go along, we obtain

y={l(x §‘}1 %EB)Y(XI &x, & x])]_& (EQVES)l\/(x_l & -;_3) =
= (0, & X, & x3 & )V (X & x3 & X)) V (x; & Xy & x5 & X3) (1.30)
V(& x5 & X3) V(X & Xa)-

The first, third, and fourth disjunctive terms of the above disjunctive
normal form are 0, since they contain expressions of the form
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x & x. The second and last terms lack suchexpressions, and there-
fore our function does not reduce to y = 0; it may therefore be
written as

y == (X, & o & )V () & Xy). (1.31)

Thus,

y= [;‘;1-"(}1;’xgj&(x-z”}3)l\/(x—l‘:’?sjz

- 1.32
:(Xl&X-z&xs)\/(xl&XS)' ( )

To reduce a given function to its complete disjunctive normal
form, it must first be reduced to some normal disjunctive form by
the methods already discussed. Let us follow the remainder of the
procedure on our example.

Our normal form (1.32) is notfull becauseits second disjunctive
term does not comprise all the variables: x; (Or x,) is missing, How-
ever, it is readily seen that the following identity is true:

Xy & Xy = X, & 06, & (X, Xg) = (o0, & Xy & XV (x, & X & k). (1.33)

Substituting the disjunction given by (1.33) for the second dis-
junctive term of the normal form (1.32), we obtain

y:(xl&/zz&X's}\/(xl&xz&;;s)\/(xl&;c2&}3) (1.34)

which is the full disjunctive normal form of the given function. Of
course, if these transformations would have given an expression
containing several identical disjunctive terms, we would have re-
tained only one of these.

Reduction to a conjunctive normal form differs from the above
technique only in the last step where, instead of expanding the ex-
pression derived in the preceding steps in accordance with identity
(1.26a), we use the second distributive law, thatis, identity (1.26b).

EXAMPLE, Let the conjunctive normal form of a function of
three variables be

y= Xl&()?l\/}z\/x;a)- (1.39)

To transform thisinto a complete normal form, we use the identities
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Xy == X0 V(X & ) == (X, xg) & (6, V%),
XV Xy ==V XV (X & x) = (4, V 0V X) & (X, VX0V ), (1.36)
XV X=XV %V (%3 & Xg) == (X, V %,V %3) & (X, %,V ).

and we get

Y= 06V 5V X0 &6V 2V ) & (6, V6V ) & (1.37)

& (X VXV X5) & (X, V X,V Xy),
which is the complete conjunctive normal form of the starting func-
tion.

So far, we have demonstrated the use of Boolean algebra by re-
ducing a given logical function of several variables to its full nor-
mal (or any normal) disjunctive (or conjunctive) form. However, the
function may be given by means of atable. In this case, we can ob-
tain a unique complete disjunctive normal form via the method al-
ready described. We can then transform this expression by means
of Boolean identities and thus arrive at other analytic expressions
of the same function. Given the variety of possible forms of a func-
tion, we are faced with the problem of determining which of these is
optimum for our purposes, We shall return tothis somewhat later.

1.4. TWO-VALUED PREDICATE CALCULUS

We shall now return to a subject whichwe have briefly considered
at the end of Section 1.2. Thus we shall consider two-valued predi-
cates, that is, logical functions which themselves assume only the
values of 0 or 1, but whose arguments may take on values from any
set whatsoever.

Predicate functions are denoted by capital letters. Thispermits
us to distinguish visually between a predicate (a nonhomogeneous
logical function) and a complex proposition (2 homogeneous logical
function)., Thus, an n-place predicate may be written as

y=~P(x, ..., x,),
where x, =[xy, .-+, X}, -5 X, =[x, ..., X,,} are the objectvari-
ables and their alphabets.

Since two-valued predicates assume values from a binary set
0 and 1, they may themselves be the arguments of two-valued
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homogeneous logical functions; for this reason, we can apply to
them the symbolism of propositional calculus., Thus, suppose we
have the predicates

= P(x,), where x,={x,, ..., x;,},

V1 ( 1 1 f 11 1[)} } (1.38)
¥y == Q (x;y), Where xy = {Xxo1, ..., Xy}

We can subject these predicates to any one of the operations of
propositional calculus to obtain a new predicate; for example,

R (xy, X} =P (x)V Q (xp). (1.39)

This use of operations of propositional calculus permitsus toachieve
several ends. Tobeginwith, we canrelate several simple predicates
to each other and form a compound predicate, as in the above example.
Also, we can relate predicates to any and all simple propositions,
as well as to the compound propositions that can be formed from the
simple ones by the same operations of propositional calculus. Thus
from the predicates (1.38) and the binary logical variables

K= 10,1}, x=1{0, 1]
we can construct a composite function, for example,
z2={P(x) > [Q (x)V (x3 & xp)|} ~ x5 (1.40)

where Z can only be two-valued.

The only variables which we have encountered in the compound
function of propositional calculus were the simple prepositions. In
the predicate calculus, however, not only simple propositions, but
also the object variables of the predicates, as well as variable
predicates can act as variables. The presence of these elements
constitutes the main characteristic of this calculus, and necessi~
tates new operations that are qualitatively different from those em-
ployed in propositional calculus. The operators corresponding to
these new operations are called quantifievs.

There are two types of quantifiers: the universal and the exis-
tential.

The universal quantifier is an operator that matches any one-
place predicate y = P(x) with the binarylogical variable Z which be-
comes 1 if, and only if, y = | at all values of x. This is written

2= (Vx)P(x),



TWO-VALUED PREDICATE CALCULUS 25

where ‘Vx?’ is the universal quantifier. The above expression is
then read as ‘“for all x there is P(x).”’

The existential quantifier is an operator that matches a one-place
predicate y = P(x) with a binary logical variable z which becomes 0
if, and only if, y = Oat all values of x, This is written

z=(Fx)P(x),

where ‘“x’? is the existential quantifier. The above expression is
then read as ‘‘there is an x such thaty = P(x).”’

Let us discuss some general properties of these operators. In
accordance with the definitions of quantifiers, the logical variable
2 1n

2= (Vx) P (x),

_ (1.41)
z=(dx) P (x)

is not a function of the object variable x; here, z is an ‘‘integral?’
characteristic of the predicate P(x). To underscore the absence of
functional dependence of z on x, the object variable x in such cases
is said to be bound. Object variables that are not bound are said to
be free. Of course, the universal and existential quantifiers may
also be applied to functions of propositional calculus. But if we do
that, then they degenerate into finite conjunctions and disjunctions.
Indeed, suppose we have a functiony = y(xy, ..., x,) in which both
the variables and the function are two-valuedlogical variables. The
same function may be given in the form y = y{k), where % is a nu-
meral denoting a point in an n-dimensional binary logical space.
From the definition of quantifiers, we have

VE) Y (B) =y () &y (D& ... &y (R)& ... &y (@ —1),
@Ry (B =y OVY (V... VYRV ... Vy (2" — 1),

For this reason we can consider the universal and existential
quantifiers as generalized conjunction and generalized disjunction,
respectively. And because of the analogy between conjunction or dis-
junction and the summation of real numbers, one can draw an analogy
between the operations specified by quantifiers and the integration of
functions of a real variable. If one applies a quantifier (either uni-
versal or existential) to an m~place (rather than a one-place) predi-
cate, the result is again a predicate; this time it is, however, an
(m — 1)-place predicate since one object variable becomes bound.
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Thus, in dealing with predicates, we employ not only the opera-
tions of propositional calculus, but alsooperations involving binding
of object variables byuniversal and existential quantifiers. The cal-
culus in which the above operations areusedto construct compound
functions is called vestvicted predicate calculus.

This new operation of binding by quantifiersintroducesidentities
which differ from those of the Section 1.3. Examples of such identi-
ties are

(Vx) P(x)=(Fx) P{x). (1.422a)

(Fx) P (x) = (Vx) P(x). (1.42b)

The identities of propositional calculus, supplementedbyidenti-
ties (1.42), comprise a mechanism useful for solving a variety of
problems. As in propositional calculus, the mostimportant problem
of predicate calculus is that of decision, but because the independent
variables are different, the manner in which this problem posed is
also somewhat different.

Thus, the decision problem of propositional calculus in deter-
mining whether a given compound functionisidentically true, feasi~
ble, or identically false. However, the following must be asked in
predicate calculus: (a) Isagiven compound functionidentically true;
that is, does it assume the value of 1 with any object variable and
any predicate? Or (b) Is it identically true only over a certain set
of object variables; that is, does it assume the value of 1 only over
a certain set of object variables and for any predicate from this set?
Or (c) Is it feasible; that is, does it assume the value of 1 at some
values of object variables and at some predicates? And, finally, (d)
Is it identically false, that is, unfeasible? Incontrast to the case of
propositional calculus, the decision problem of predicate calculus
can be solved only for special kinds of compound functions,
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Engineering Applications of

Propositional Calculus

2.1. COMBINATIONAL RELAY SWITCHING CIRCUITS

We have already said that the promise of mathematical logic in
engineering designfirstbecame apparent during the analysis of elec-
trical relay switching circuits. In time, it became progressively
more evident that this logic is not only applicable to the analysis of
relay switching circuits but that the operation of such circuits mir-
rors the postulates of the logic. The resultof this discovery was the
relay switching theory. Then,when contactless devices that perform
the same functions as relay switches came into existence, the spe-
cial theory of velay civcuits was extended into a general theory of
switching systems.

We shall now examine this most conspicuous example of appli-
cation of logic to engineering, concentrating on the so-called com-
binational relay switching circuits.

Every electric relay switching circuit contains twotypes of con-
verters: electrical-to-mechanical and mechanical~to-electrical.
The electromechanical relay converts electrical input signals into
a mechanical displacement of its contacts, On the other hand, the
mechanical-to-electrical converter is an electrical network com-~
prising contacts and relay coils: it converts the mechanical dis-
placement of its (input) contacts into electrical output signals (cur-
rents flowing in the coils of the relays). Connection of outputs of
converters of one type to the inputs of converters of the other type
gives a variety of relay switching networks.

The simplest electromechanical relay consists ofa coil /, a core
2, an armature 3, and two groups of contacts: normally closed ¢/,
and normally open 4" (Fig. 2.1,a). Ifacurrent larger than the ac~
tuating current i; (¥ig. 2.1,b) flows in the coil, the armature is

27
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attracted to the core, and this causes all the normally open contacts
to close and all the normally closed contacts to open. On the other
hand, if a current smaller than j; flows in the coil (in particular,
when the coil is de-energized, the armature recedes from the core,
causing the normally closed contacts to close and the normally
open contacts to open. To avoid the complications arising in tran-
sient states, we shall consider only the stable states of the relay,
that is, states when the coil current { has either of the following
values: [ <i; or (> i, Thus the relay has two stable states or, to
say it in another way, there are two states which are characteristic
for all the elements of the relay. We are, however, interested only
in the coil and in the contacts. Each contact has two states: closed
and open. We shall designate these states by 1 and 0, respectively;
that is, we shall treatthe state of a contact as a binary logical vari-
able assuming these values.

The coil also has two states. The first of these occurs at i > i,
and we denote it by 1. In the second state, denoted by 0, the coil is
de-energized (i < {;), Thus the coil states can also be represented
by a logical variable that canbe either 0 or 1. The physical signifi-
cance of these values is shown in Table 2.1,

Table 2.1
Symbol
Component
1 0
Contact closed open }
Coil energized de-energized
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The state of a relay contact is goverened by the state of the coil
in the following manner:

For a normally open contact x = X,
For a normally closed contact x" = X = x.

where X, x, ¥’ are the logical variables specifying the states of the
coil, of the normally open contact and of the normally closed con-
tact, respectively.

If a relay has more than one coil, it becomes convenient to an
“‘equivalent coil.’’ Thus, let the relay have two coils (X; and X;)
and let these be so connected that the relay shall operate only if
both are energized, that is, if X; & X = 1. Letus now imagine a coil
Xs, such that it will cause the relay to operate only if X, & X; = 1. Ob-
viously the action of our equivalent coil, which is related to that of
the actual coils by

X=X & X,
and which governs the state of the relay contacts in accordance with

x =X, (for normally open contacts)

x'= X,= x (for normally closed contacts),

is completely equivalent to the action of the two actual coils.

So far, we have discussed a relay with two coils. By the same
reasoning, we can imagine a relay with m coils connected so that
the relay operates only at certain combinations of the 1 and 0 states
of the constituent coils.

A relay circuit incorporating = coils in a specific arrangement
is described by a logical function specific to this circuit:

KXe= M(X,, Xy ..., X,

However, this specificity does not change the general relationship
between the contacts of the relay and its equivalent coil.

We shall now turn to the representation of the mechanical-to-
electrical converter, that is, of contacts connected to relay coils.
Let us start with the case when the circuit (Figs. 2.2, a and 2.2,a")
consists of a contact / of aninput relay and a coil 2 of another relay
(the output relay), the coil being either in series (Fig. 2.2,a) or in
parallel (Fig. 2.2,a’) with the contact.
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Retaining the symbols 0 and 1 for the states of the contacts and
the coils, we obtain Z = yfor acoil connectedinseriesandZ’ =y = 7
for a coil connected in parallel; here, y is a logical variable spec-
ifying the state of the contact, and Z and Z’ specify the states of
the coils connected with it in series and in parallel, respectively.

In the usual practical case, we do not deal with a single contact
/ but with a group of contactsyy, g, ..., y. belonging to several re-
lays, all combined into anelectrical network. We shall call an elec-
trical network incorporating contacts a switching neiwovk. The
dashed lines in Figs. 2.2,b-e enclose examples of such networks.

Again, it will be convenient to use an equivalent variable—the
equivalent contact y,~whose properties are analogous to those of
the equivalent coil in a multiple~coil relay. For example, with the
two contacts y, and y, of Fig. 2.2,b connected in series, the circuit
in section ab will be closed only if y; &y, = 1. By introducing the
equivalent contact

Ye=y:1 &y,

and setting up the relationships
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Z=y, for series connection Fig. 2.2,b)
Z’ =y, =2Z for parallel connection (Fig. 2.2,b%),

we preserve all the characteristics of the circuit.
Figure 2.2 also shows some other ways of arranging contacts
into circuits; we thus obtain functions

Ye=¥:1 VY, (Fig. 2.2,c,c’y,
Ve=Y1&(¥2VY3) (Fig. 2.2,d,d'),
Vo= [y, &y, Vy )y, (Fig. 2.2,e,e’).

In the general case,
Ye= N Yo, - s Yaki

In this generalized function, the relationship between the coils and
the equivalent contact remains the same as that specified above (the
matching condition N must, of course, reflect the actual arrangement
of the contacts in the switching network when the function is used to
represent a specific circuit). The physical meaning of y, is that of
the conductivity of a two-terminal network containing the given
switching circuit,

Each of our converters has the ability to detect; that is, it ex-
hibits a directional effect. In the electromechanical converter—the
‘‘relay with contacts’’—the contact state is governed by the coil
state, but the contacts have no effect on the coil state. In the
mechanical-to-electrical converter—the <‘‘contact network with
coils?’’ —the coil state is governed by the states of the contacts, on
which the coil has no effect. This property of converters allows us
to treat them as devices with variable inputs and outputs. The input
variables X, ..., X,, of the electromechanical converter are the
states of the relay coils (energized or de-energized); the two out-
put variables x and x’ ofthis device are the states of the two differ-
ent contacts (normally open or closed). As already stated, this de-
vice may be treated as consisting of two series~connected subunits:
The first performs the logical function

Xe=M(X,, ..., X,),

m

while the second realizes the functions
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In the mechanical-to-electrical converter the states of the con-
tacts of the input relay act asinputvariables yy, ..., y,, and the coil
states of the two output relays act as output variables Z and Z’.
This device may again be treated as consisting of two series-
connected subunits, the first of which realizes the logical function

Ye=NG, - s Yu)

while the second performs the functions
Z=y, Z'=y,=LZ.

We see now that the twotypes of converters have identical prop-
erties. Any relay switching circuit may be broken down into units
having the above-described properties.

We shall assume that our combinational relay switching circuits
obey the following conditions: they consist of instantaneously
actuated, ideal relays; and they have no feedback loops; thatis,
they consist only of subunits exhibiting a direction effect.

Figure 2.3,a shows the schematic of such a combinational relay
switching circuit and Fig. 2.3,b shows the corresponding block dia-
gram; it can be seen that the latter has no feedback loops. Contrast
this with the schematic diagram shown in Fig. 2.4,a: its block dia-
gram (Fig. 2.4,b) does show a feedback loop. The operation of such
a circuit cannot be analyzed without taking into account the relay-
actuating time.

Xr l
> Z

v, P 24§ o=

b)

Fig. 2,3.

In drawing relay switching circuits we usually identify each coil
by means of the correspondinglogical variable; contacts are usually
identified by an expression that specifies only the contact state (in
terms of the state of the coil governing it).
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2.2. ANALYSIS OF COMBINATIONAL RELAY
SWITCHING CIRCUITS

Consider the following problem: Given a combinational relay
switching circuit, it is required to find its mathematical descrip~-
tion, that is, todetermine the logical function performed by this cir-
cuit,

We shall analyze only circuits with single-coil relays (these are
the most common switching circuits). We have already seen (Sec-
tion 2.1) that for these relays

x =X for in the case of normally open contacts
x’ = X =x for in the case of normally closed contacts,

where X, x, and x’ arevariables specifying, respectively, the states
of the coil, the normally open contact, and the normally closed con-
tact.

This means that a single-coil relay operating alone will perform
either repetition or negation.

The great variety of combinational switching circuits that can
be synthesized is due to use of different arrangements of normally
open and normally closed contacts of single-coil relays. The re-
sulting switching network can be represented by the relationship

Xe=F(x, X'y ooy X0 X)),
where x;, x;, and x.are variables specifying, respectively, the states
of the contacts of the ith relay and of the equivalent contact,
However complex and involved a switching network maybe, it is

always possible to represent it in terms of

xe= F()Cl, )_(_71, ey X )_C,,)
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Such a formula may be derived by a procedure which generalizes
the obvious fact thatif two contacts x;and x, are connected in series,
we have x.= x, & x,, while for contacts connectedinparallel we have
Xe= X1\ Xo.

To clarify the principles on which this procedureis based, con-
sider an example, The two-terminal switching circuit tobe analyzed
is shown in Fig. 2.5,a. We shall gradually simplify this circuit by
introducing equivalent contacts. To start with, we shall eliminate
all the chains of series-connected contacts., Putting

Xo= X3 & X5 X;=x3& X, Xg=X; & X}

K= X & Xy X=X & X5y X=X &y X=X &x,

we transform the original circuit into its equivalent shown in Fig.
2.5,b.

The next step is toeliminate all the groups of contacts connected
in parallel. To do this we write

Xy == VX5 X=XV X X5 == X5V X Xyg = XV Xy,
or, using the notation already introduced,

Xy = X,V & Ky = :’51 v x?V
s == (X &)V (G & X e = 0V (0 & xy).

We then obtain the circuit shown in Fig. 2.5,c.

Again, we shall eliminate the chains of series-connected con-
tacts in thisnew circuit. We dothis by means of the following equiv-
alents:

Xy == X &y = 0 &L Vi &)= (0 & xg V(X & xg &),
Xy == Xy &xp == (}1\/}2) &(x, & }3)\/()(1 & xg)| =

= (X & 2 & ) V(& g & ),
Xy == X1 & X o = [,V (0, & )] & xy & g =

= (0 & X & x5V (X, & X & xg)

We thus obtain the circuit shown in Fig. 2.5,d. This circuit cannot
be further simplified by the above methods of elimination,

Now, let us number all the modes of this circuit, using identical
numbers for those nodes which are directly interconnected (without
intervening contacts). We thus have Fig.2.5,d,withnodes 1, 2, ..., m
(in our case, m = 4). It is now convenient to transform this circuit
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into the form of Fig. 2.5,e, which is obtained by combining all the
nodes bearing identical numbers.

The circuit in Fig. 2.4,e canalsobe presented as a ‘‘tree’’ (Fig.
2.5,f) constructed in the following manner. We draw several tiers
and assign to them the numbers corresponding to the m nodes of
Fig. 2.5,e; we thus have tiers /, J/, //], and [V, Node / is placed in
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the first tier. From itwe draw acluster of m — 1 branches, all ter-
minating in the second tier. The ends of these branches are marked
with the numbers of the remainingnodes of the circuit {that is, nodes
which together with the initial node of the cluster (node 1) constitute
the complete set]; in our case, that meansthe numbers 2, 3, and 4.

Next, we use each of these /m — I nodes of the second tier (but not
the node m, thatis, 4) asthe origin of a cluster of m — 2 branches
which terminate in the third tier. Thus, we obtain two clusters of
branches, originating at nodes 2 and 3, respectively. The third-tier
ends of the cluster drawn from node 2 are given the numbers of all
the second-tier nodes, with the exception of 2 (that is, the ends of
this cluster carry the numbers 3 and 4). In the same way, we num-
ber the terminals of the cluster of m — 2 branches originating at
node 3 (but here we omit 3), and so on.

In the next step, each third~tier node, except those designated by
m, serves as the origin of a cluster of m --3 branches joining the
third and the fourth tiers. The fourth~tier terminals are numbered
by the same procedure as the third. It is readily seen that the last
(or mth) tier will now hold only nodes designated by m, from which
no further branches can be drawn (dead-end nodes).

We now have a ‘‘tree’’ in which each ‘*branch’’ connecting two
nodes corresponds to the wire performing the same function in the
circuit of Fig. 2.5,e.

The switching network of Fig. 2.5,f traces all the paths leading
from node 1 to node 4 and is equivalent to that of Fig. 2.5,e. Now,
we can eliminate all groups of series-connected contacts by using

Kgp == Xy & g = (6, &, & x )V (2, & x, & ),
= X &g =00 & Xy & xg & Xy

and we get the circuit shown in Fig. 2.5,g. We then eliminate the
groups of parallel contacts by using

Kp =XV Xig= : B :
= (0, & X9 & x5)V (K, & Xy & x5)V (6 & 3 & x) V(g & g & ),
x23=x21\/x19:(xl&xQ&xs&)—c3)V(;c4&x2&xs)

and we get the diagram of Fig. 2.5,h.

Again, we eliminate the groups of series-connected contacts,
this time using the expressions

Xy = Xgp & X =1 & X, & x5,
Xos == Xya & Xy = 0.
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We thus obtain the circuit of Fig. 2.5,i. This last circuit can be rep-
resented by the function

Ko = X9V Xo5 V X3 = (X, & xp & X5)V/ X

This is the logical function performed by the original circuit of
Fig. 2.5,a. But it is also performed by the circuit of Fig. 2.6; that
is, the circuit shown in Fig. 2.6 is equivalent to that of Fig. 2.5,a,

Incidentally, contact x, of Fig. 2.5,a is absent
from the equivalent circuit of Fig, 2.6; this means Line 1

that it serves no purpose in the circuit, a fact
which can be readily verified. Indeed, Fig. 2.5,a 1
shows that the circuit can be closed by closing 3
contact x3 alone. If x;is open, then we can close I $
the circuit by closing x,, x5, and x5, and therefore & {33
do not need x4. I

We have considered only one example of a pro- I
cedure which allows us to derive the logical func- T
tion corresponding to any givencircuit, This pro- Line 2
cedure is called the analysis of the circuit, The
simplification of the starting functions, arrivedat Fig. 2,6,

by means of Boolean algebra, results in circuits
that are equivalent to the starting networks but have the great ad-
vantage of being much simpler.

In our example we were able to simplify the function to such an
extent that the practical switching circuit performing it could be
drawn without further ado. This, however, is not always possible,
especially in the more complex cases. In these cases, the logical
function so derived is but the starting point in the synthesis of a
switching network capable of realizing it.

2.3. SYNTHESIS OF COMBINATIONAL
RELAY SWITCHING CIRCUITS

Assume that we are given some logical function and that we are
required to construct a relay circuitembodyingit. We shall discuss
only circuits consisting of single-coil relays and an output relay
whose coil is connected in series with the contact network. We shall
assume that the logical function is given by a table enumerating all
possible combinations of values of the variables, each such combina-
tion corresponding to some value of the function (such tables were
described in Section 1.3).
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Table 2.2 Consider the function of three
variables y = L(xy, x5, x3), given by
Table 2.2. Its complete disjunctive

o o] TjopT oot normal form (see Section 1.3) is:
: ! 001 — o - —~
w00 1 1 y = (X, &, &x) V (x, & x, & xy)
a0l ololollt] VA & &) V(& oy & ).
vy ol Ljprjofrjofof1 This form is directly translatable

into a practical switchingnetwork by
means of the following rules:

As in the case of analysis, a normally open contact is made
to correspond to x; (in this particular function,i=1, 2, 3), and a
normally closed contact to x;. Each conjunctive term (in paren-
theses) becomes a chain of series-connected contacts,whose states
are specified by variables contained in the parenthesis. The com-
plete disjunctive normal form corresponds to parallel connection
of the above-mentioned series chains.
Applying these rules toour ex-

l l I l ample, we obtain the circuit shown
Z Z Z Zr in Fig. 2.7,

I_ I I_ This canonical technique will
2 e 52 Jz translate any logical function into
Ij If 1: I; a series-parallel switching net-
T’ 13 13 I"’ work. Insome casesitisthenpos-

sible to simplify the result, ob-

taining a circuit containing a

Fig. 2.7. smaller number of elements (see

the example of Section 2.2).

There are, however, other techniques, which by abandoning the

canonical technique and the series~parallel network in favor of the

so-called bridge circuit, lead directly to more economical systems
embodying a given logical function, *

We shall now present, without proof, one such technique —devised

by A. Sh. Blokh.** Returning to Table 2.2, which defined our logi-

cal function, let us write out the row containing the values of y, that

*However, these techniques still do not assure circuits with 2 minimum number of ele~
ments, The synthesis of circuits that are “‘minimum’’ with respect to some design vari-
able is a serious problem for which there is, at present, no final solution, For a discus~
sion, see Section 2,6,

**See [7], which contains all the necessary proofs, However, Blokh does not use the
term ‘‘canonical’’ in the same sense as we do,
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is
01101001.

We then group the symbols of this row into pairs as follows:
01101001,

Should any pair contain two identical symbols, that symbol is
written below that pair (there are no such pairs in this example).
Otherwise, we assign the symbols 2 and 3to the remaining pairs as
follows:

These new symbols are again grouped into pairs; the new pairs
are again grouped as above, and we assignthe symbol 4 to the group
23 and the symbol 5 togroup 32. The new symbols are again grouped,
and s0 on, until a complete triangular matrixis obtained. This ma-
trix will alwayshavek + lrows, where kis the number of arguments
of the function. Thus the function of Table 2.2 yields the matrix

Now we proceed with the design of the switching network. To
start with, we draw one horizontal line for each row of the matrix
(in this case, k + l=4). We then enter each of the elements of the
matrix as a point on the corresponding line, copying the respective
numeral above that point; we thus obtain a set of nodes which we
join into a ““tree.’’ In drawing the tree, we omit branches that lead
to nodes denoted by 0 (see Fig. 2.8). On the branches originating in
the lowest tier we place the contacts of the third relay (x; and xs),
with x; on the left- and x; on the right-hand branch. Similarly, con-
tacts x; and x, are positioned onthe branches originating in the sec-
ond lowest tier, while contacts x-l and x; are located on the branches
starting from the third tier, If the tree contains a branch joining
two nodes denoted by the same numeral, then the nodes are short-
circuited (no contact is placed on the branch). For our example, we
obtain the circuit shown in Fig, 2,9.

For all practical purposes, we now have a network performing
the given function, This network may be simplifiedto its final form
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Fig, 2.8, Fig. 2.9.

Fig. 2,10,

by combining the nodes denoted by the same
numeral, thus reducing the number of com-
ponent contacts. Qur final design will then
be the bridge circuit of Fig, 2.10.

The above technique yields a combina-
tional relay switching circuit for any given
logical function., This circuit usually con-
tains a smaller number of elements than that
synthesized by means of the canonical method
employing the full normal disjunctive form
of the function,

2.4. OTHER METHODS FOR CONVERTING
LOGICAL FUNCTIONS INTO
PRACTICAL DEVICES

Aside from electromechanical relays,
there are other practical devices embodying

logical functions, that is, capable of executing the operations of
propositional calculus. We shall now give a few examples of these.

a) Diode Logic

A diode is an element with a nonlinear characteristic such that
a flow (an electric current, a stream of air or of liquid, or any
other flux) can pass through it in one direction virtually without
resistance while a practically infinite resistance to this flow is
offered in the opposite direction. Thus, the diode acts as a gate,
allowing flow in one direction and blocking it in the other, In dia-
grams it is usually represented by the symbol shown in Fig. 2,11,
where the triangle points in the allowed direction of flow.
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In relay switching circuits, the input of the
logical variables X,, X;,and soon,isaccomp- >|[
lished by feeding current to the relay input.

Wherever a negation (complement) of these

variables is desired, one employs a nor- Fig. 2.11.

mally closed contact. However, this cannot

be done with diode circuits, because these circuits are incapable of
performing the operation of negation,

For this reason, not only the variables x|, x;, and so on, but also
their negations (complements) x,, x;, and so on, must be fed as in-
puts. These negations are performed outside the diode circuit by
other devices, for instance, by electromechanical relays.

We shall now show how any logical function can be embodied in
circuits employing only diodes andlinear resistances. Let the func-
tion be given in its complete disjunctive normal form

Y=Y VY VysVy,=
== (0, & X, & )V (00, & 0, & X6V (06 & X, & X))V (6 & X, & Xy).

This function has three independent variables and so the circuit
must contain three pairs of lines—x, and x,, xo and xs, x; and x;.
The number of output lines must equal the number of conjunctive
terms (in parentheses) of the function being performed. In our case,
there are four such terms (Fig.2.12). Allthe output lines terminate
in diodes whose terminals are, in turn, tied to a single output re-
sistance. Such a circuit performs a disjunction in the same way as
any other parallel connection. The input signals are also fed through
resistances.

—— =
ST s

A p

Fig. 2.12.

Each output line represents one of the conjunctive terms of our
functional form. But the logical variables, at leastin our case, are
contained in all such parentheses. For thisreason,each output line
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must be connected, via diodes, with all those input lines which carry
the variables contained in a given conjunctive term. The connecting
diodes are arranged so as to permit the current to pass from the
output to the input lines, In our example, the first conjunctive term
is

Yi=x & x,&X;.

Its corresponding diode switching circuit is shown in Fig, 2.13; the
complete diode circuit, performing the complete logical function,is
shown in Fig. 2.14.

Any other logical functions may be performedina similar fash-~
ion.

This technique starts from the complete disjunctive normal form
of the function and is therefore as canonical a method as that em~
ployed for the synthesis of the relay switching circuits of Section
2.3. However, it usually yields circuits that are uneconomical be-
cause they require too many diodes. Although there are methods
for designing more economical circuits, we shall notdwell on them
here and shall refer the reader to the original publications (see, for
example, [127]).

l l ' | .loutput
i r‘ r! U=2,8 2,83,
z I, z, I, I I
e
Fig. 2,13.
+
s~

]
R

Fig. 2,14,
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b} Triode Logic

A triode is an element exhibiting a variable resistance in re-
sponse to acontrol signal. All other conditions being equal, the plate
current of a triode (vacuum) tube, isdeterminedby the grid voltage;
in a transistor triode, the resistance varies as a function of an ex~
ternally applied signal.

The characteristic curve of any triode device exhibits a satura-
tion, at which the resistance is constant and maximum. We can use
as logical variables (levels 0 and 1) the control signal levels which
produce the minimum and maximum resistances of the triode. These
resistances become the output of the device, Thenvarious combina-
tions of these triodes with constant passive resistances allow us to
realize the logical functions of one (Fig. 2.15) and of several (Fig.
2.16) independent variables.

Fig. 2,15,
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If one can execute negation, conjunction and disjunction by means
of a set of devices, one can also perform any conjunctive term of
the complete disjunctive normal form of any logical function, as well
as the disjunction of these terms. This being the case, triode cir-
cuits can embody any logical function. Again, however, the canoni-
cal synthesis proves uneconomical (it yields circuits with redundant
elements), so that one usually designs with more advanced tech-
niques.

¢) Networks using Magnetic Components

There are many ways of designing logical systems based on
magnetic amplifiers, but we shall give only a brief description of a
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greatly simplified version of one such system. Figure 2.17is a
schematic of a magnetic amplifier with positive feedback, consist-
ing basically of a magnetic core / which is associated with several
windings*. The alternating current is supplied to windings w_ and
w’,, from which it passes, via the diode bridge 2 and the load re-
sistance Re, to the positive feedback windings wg and wg . In addi-
tion, the core carries bias windings w, and w’b, as well as one or
more control windings: Weon1 and @'con1s Weon2 and Ween o, and
so on. The bias windings are suppliedwith a constant direct current
ip. The control windings are also dc-fed, and the levels of this di-
rect current are used asthe input variables of the system. The out-
put of the device is the rectified current i; in the load circuit.

v

Ly wy, wy

Fig. 2.17.

Consider first an amplifier with only one pair of control wind-
ings, w.,,; and weq, ;. Figure 2,18 showsthe characteristic of this
amplifier, that is, the dependence of the output (current i; in the
load circuit) on the input (current i.,, in the control windings) at
zero bias current (a bias current shifts this characteristic along
the iqon axis).

If the value i, =0 is made to correspond to the 0 level of the
input variable and any value icop << —igon tO the 1 level, and if the
lowest and highest levels of the output current (these being the only
possible levels, in accordance with the characteristic of Fig. 2.18)
are made the 0 and1 levels of the output variable, then, at zero bias
current, the amplifier will be a negation element.

*The use of a split core and several pairs of windings eliminates ac pickup in the cir-
cuits carrying dc currents.
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le The same amplifier canperform ““rep-
etition,” In this case, a bias currentiy is
H used to shift the characteristic tothe right
A (as shown in Fig. 2.19), and the polarity
| of the control signal is reversed. Now the
e e lowest level of output dc appears at
L . icon = 0; that is, the output logical vari-
able is at level 0. If the input signal is 1
(i.e., icon 1S high), then the level of the
logical variable at the outputwill alsobe 1
(the current in the load circuit will be at
maximum),

(i, The magnetic amplifier is thus a con-
tactless analog of the electromechanical
! ; relay with normally closed or normally

Y4 open contacts.
R B We shall now consider a magnetic amp-
lifier with several control windings. The
‘con characteristic of Fig. 2.19 will still hold
at the appropriate bias current but the ab-
Fig. 2.19. scissa now denotes the total ampere-turns

of all the control windings,

Retaining the same 0 and 1 levels of the individual input variables
{that is, the same current values) in the corresponding windings as
in the case of anamplifier with a single control winding, we now ob-
tain a device performing a disjunction of all the n input variables.
Indeed, it is now sufficient to set any one of the control windings at
level 1 to obtain the maximum level of the output current,

If, however, the input current corresponding to level 1 in each
winding is now reduced by a factor of n {where n is the number of
input variables), then the number of ampere-turns necessary to ob-
tain the same output level 1 can be achieved only if all the inputs
are set equal to 1. The magnetic amplifier then embodies a con-
junction of n variables and is the contactless analog of the multiple-
coil electromechanical relay.

If the output of one magnetic amplifier is connected to the input
of another magnetic amplifier (or to the inputs of several ampli-
fiers), we have a network, In particular, we can use a set of these
amplifiers to synthesize any desired combinational switching cir-
cuit. And since the individual magnetic components can perform
negation, conjunction, and disjunction, a system of containing & mul-
tiplicity of such components can embody any desired logical func-
tion.
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d} Pneumatically Operated Switching Circuits

A schematic diagram of a pneumatic switch is shown in Fig.
20.20,a and Fig. 2.20,b shows the conventional notation for it. The
switch housing contains four cham-
bers (K,, K, K3, and K,) formed by the
diaphragms M;, M,, and M; carriedby
a common piston rod R. Set-point
controlling pressures P, and Pp may
be maintained in chambers K, and K,
through ducts L, and L,; chamber K3
is connected to a compressed-air
supply line via the axial duct C,, and
chamber K, is vented to the atmos-
phere via duct L,, Axial duct C, from
chamber K,, and duct L; from cham-
ber K; are interconnected on the out-
side by means of feedback line FB,
in which we establish the output pres-
sure P,

When the piston rod R isinitsex-
treme ‘‘up’’ position, it blocks duct
C3 and opensupduct C,; this produces
atmospheric pressure in the FB line at the output of the switch.
However, when the piston rod is in its extreme ‘‘down’’ position, it
blocks C; and opens C;; the output pressure then equals that in the
supply line.

The position of the piston rod depends on the direction of the
forces acting on its diaphragms, with the magnitude and direction
of these forces determined by the pressures in chambers K, K,
and Ks, that is, pressures P,, Pp,and P. The opposing force ex-
erted by the output pressure P onthe diaphragm-rod assembly con-
stitutes a positive feedback.

The response of this pneumatic switch, illustrating the above
properties, is presented in Fig. 2.21,

Now consider this switch when a constant pressure P, = Py (the
back pressure, or bias pressure) is maintained in K,. The shape of
the response remains unchanged from that of Fig. 2.21, butitis
displaced to the right, the magnitude of the displacement increas-
ing with back pressure (bias) Py (Fig. 2.22).

Such a device can be used to perform the logical operation of
“repetition,’” This is done by assigning the level 1 to a pressure
higher than Py, and the level 0 toa pressure lower than (Py)— AP).

Fig. 2.20.
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Obviously, the supply pressure Pgisthatexceeding Pp;. The switch
performing the repetition is shown in Fig, 2,23 in the conventional
notation of Fig. 2,20, with the chamberinwhich pressure Py, (first
back pressure) is maintained, indicated by cross-hatching.

The pneumatic switch may alsobe used
to perform negation. In this case a con-
stant pressure Py, is maintained in Ki,
and the response of the switch is shownin
Fig.2.24. The simplified diagram is shown
in Fig, 2.25, with K,, in which the con-

7) stant pressure Pyy (differing from Py))

y=z is maintained, indicated by hatching, Pres-

sures Py and Py, differ because Py de-

termines the location of the right-hand and

Ppy that of the left-hand vertical line of

Fig, 2,23, the hysteresis loop. Our device now per-

forms a negation. Thus we make the inde-

pendent logical variable P, = 1at Pp> Py;+ AP; the output signal

then assumes level 0; if Py < Pys (that is, when P, = 0), the output
pressure P = Pg, and the output signal equals 1.

g |

A v
I 1
R p
b<dp = z =
| =
! | il [ y-z
¢ th phl BB

Fig, 2,24, Fig, 2.25,



OTHER METHODS FOR CONVERTING LOGICAL FUNCTIONS 49

So far, we have shown how the switch
performs logical functions of one inde-
pendent variable. We shall now show
how the same switch can perform logi-
cal functions of two or more independent
variables.

The schematic diagram of Fig. 2,26 -'ll“-‘
shows that the duct previously leading
to the supply line (Fig.2,23)isnow con-
nected to the line producing a secondin-
dependent input variable P,. The switch Fig. 2.26.
will now perform the conjunction of two
independent variables because an above-atmospheric pressure will
exist in the output line if, and only if, both input signals are at
level 1.

A circuit of n— 1 devices, assembled as in Fig. 2,27, will per-
form the conjunction of n independent variables.

z |5

Y=z &%,

P

Y

'IIH’— ~|]|I}— -1II|‘—- el

y=5,&.. &2,

Fig. 2,27,

Figure 2,28 shows a device performingthe disjunctionof two in-
dependent variables while the circuit of Fig,2.29,which consists of
{(n— 1) pneumatic switches, performs the
disjunction of n independentvariables.

Since we now have pneumatic devices
performing negation, conjunction, and dis-
junction, we can design pneumatic switch-
ing circuits to perform any logical func-
tion, Here, too, the canonical method may
be used (as we have already stated several
times, this method starts with a given
function in its complete disjunctive nor-
mal form). But, as before, this general
procedure yields switching circuits that Fig. 2,28,
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are uneconomical because they require too many components. We
can see this from the mere fact that our pneumatic switch, which
may be employed as a device performing negation, repetition, con-
junction, and disjunction of two independent variables, can also be
used as an implication (Fig.2.30)or as an inhibit device (Fig. 2.31).
The figure shows that implication can be achieved by means of a
single switch, whereas the canonical method, which expresses im~
plication by means of negation, conjunction, and disjunction, calls
for two such devices. This follows from the formula

P=P,—>P,=P\/P,

Fig. 2,31, Fig. 2,32,
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A switching circuit performing implication as required by the
canonical method is shown in Fig. 2.32. This cumbersome arrange-
ment performs the same function as the simple switch of Fig. 2.30.

2.5. THE PROBLEM OF MINIMIZATION OF DEVICES
PERFORMING LOGICAL FUNCTIONS

The design of devices performing given functions immediately
entails the following problem: Given a set of blocks (elements) ca-
pable of performing simple logical functions, eachkind of block be-
ing associated with some positive number called its ‘‘price’’ (this
may be the actual price or some conventional factor), and given also
the function to be executed (for example, inits full normal disjunc~
tive form), we want to determine which of the switching circuits ca-
pable of performing this function (and consisting of the blocks of the
given set) will have the minimum total price, defined as

p=2 wh;,
i=1

where o; is the number of blocks of a particular kind, k; is the price
of one block, and r is the number of different blocks in the set.

This problem, often referred to as the minimizationproblem, is
of fundamental importance in engineering applications of proposi-
tional calculus. A great deal of workhasbeen devoted to it, and nu-
merous algorithms* (procedures) suggested for itspartial solution.
All these procedures consists of more or less complex scanning
methods (that is, examination of all the differentexisting possibili-
ties), so that so far there are no convenient, practical techniques
for minimization; all that has been developed is various ‘‘paths’’
along which one may hope to come across more or less economical
designs.

To give the reader at least some broad idea of what is involved,
we shall briefly describe one of the many procedures for partial so-
lution of the minimization problem.

Suppose the logical function F is given in its complete disjunc-
tive normal form. If the set of blocks consists of the AND, OR, and
NOT elements (both AND and OR having twoinputs each) and all the

elements carry the same price tags, thenthe minimization problem
is reduced to finding that analytical expressionof this function which

*The term ‘‘algorithm,’’ translated here for convenience as procedure, shall be fre-
quently encountered in subsequent chapters. It shall be defined in Chapter 7,
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contains only the symbols ™, &, and V and in which the number of
these symbols is minimum.

Let us describe Quine’s solution of this problem [214]. The full
form is simplified as much as possible by means of the identity

(A& )V (A& x)=A, 2.1)

where A may be a conjunction of several variables, Then the same
operation is repeated on all the conjunctions obtained as a result of
the first simplification, and so on, until no further reduction of terms
is possible. The pairs of conjunctions (originating from the terms
of the complete form and from the form obtained as a result of the
simplification) which cannot be further reduced by means of the
simplifying identity (2.1) are called the prime implicants of F. Quine
has shown that any minimal disjunctive normal expression of F is
a disjunction of certain prime implicants of F. Therefore, the next
step in finding the minimal expressions of F consists of determin-
ing these combinations of prime implicants whose disjunctions yield
minimal expressions. This technique (see [185])gives combinations
of prime implicants whose disjunction is equivalent to F, but from
which not a single prime implicant may be eliminated without violat-
ing the condition of equivalence to F. Such disjunctions are called
“irredundant’’ expressions for F. Then we count the number of
symbols ~, &, and V in each of the irredundant expressions and se~
lect the expressions with the least total of these symbols. These are
the minimal expressions, according to our criterion of minimality.
Consider an example. We are given the Boolean function

F (%, Xy, X3) = (%1 & X, &)V (0, & X & X))V
V(x5 & 5 & X))V (3, & 26 & xg) V(o 8y & ).

As a result of all possible pairwise reductions of terms of the com-
plete form (whereby each term of the disjunctive form may be used
in more than one pair), we obtain the conjunctions

X & x5 X & Xy, Xo& Xy, Xy & X,

which cannot be further reduced. These are also the only conjunc-
tions whose combination does not yield a single further reduction.
Thus they all are prime implicants of F. Although the disjunction
of all these prime implicants is equivalent to F, it may be proven
directly that the deletion of the conjunction x;&x, does not violate
the condition for equivalence but that no other remaining conjunc-
tion can be deleted without violating that equivalence. Hence,

F=(x, & x)\/ (%, & %)V (%, & x3)
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is one of the irredundant expressions, It may also be shown that
(o0, & )V (2, & X3) V/ (%, & X3)

is also an irredundant expression. The function has no other such
expressions. A comparison of these two irredundant expressions
shows that they have the same number of —, & and \/ symbols;
therefore they are minimal to the same degree.

So much for Quine’s procedure. We now have dozens of proce-
dures for finding prime implicants of logical functions. Some of
these are more suited for manual calculations, others for computa-
tions on computers; still others are mainly employed in research
on minimization problems. The methods of minimization also dif-
fer: one can use special diagrams [180], various constructs on 7n-
dimensional cubes {33], numerical calculations [161,127], and so on.

Several procedures (for example, [33]) develop minimal normal
expressions by starting with the prime implicants,

The finding of minimal normal expressions of logical functions
of even a small number of variables (for instance, six or seven) is
a rather laborious process. But we now have several useful simpli-
fied procedures which give normal expressions that are close to the
minimal and entail much less labor [216-218].

The Quine procedure yields minimal disjunctive normal expres-
sions. However, the minimal conjunctive normal expressions may
sometimes prove to be ‘‘smaller’’ than the disjunctive forms. Be-
cause of that, one must examine both the disjunctive and the con-
junctive normal expressions to select the truly minimal expression.
Since the techniques for obtaining minimal conjunctive normal ex~
pressions are similar to those for the corresponding disjunctive
forms, we shall not dwell on them.

The fact that a functionyields a minimal normal expression does
not necessarily mean that an even simpler expression cannot be ob-
tained. For example, the minimal disjunctive normal expression of
the function

Flxy, ooy Xe) = (X & x3 & xy & xg) V() & Xy & x5) 2.2)
V(% & xy & xg) V() & x5 & x4 & )

has thirteen & andV symbols, whereas the minimal conjunctive nor-
mal expression of the same function

Flxy ..o, xs):(El&)Ea)vgl&)E,)\/(ﬂfg&@\/(ﬂ@&}g\/
V{x; & )V (5 & X6V (X, & xs)\/(;cs&;e)
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contains 8 + 7 4+ 16 = 31", & and V,symbols; thus, (2.2)is the mini-
mal normal expression, But another expression for the same func-
tion

Fxy, -0y Xg) =[x, & xo & x5V x6)]V/ {3 & x, & [(x, & x5) V (%, & x)]} (2.3)

contains only nine & and \/ symbols.

In this case we have reduced the minimal normal expression by
means of the identity (A&B) VvV (A&C) = A& (B V C). Sometimes, how-
ever, one can employ this distributive law to the hilt and still not
come up with the real minimum expression. For example, our mini-
mal normal function (2.2) can be reduced still further

Flxy, -y xg)= [(xl&x?)\/(xs&x4)]&[(xl&xs)\/(xz&xs)]-

This form may be obtained from (2.3) by expanding the first term
of the disjunction

Xy &y & (o5 V Xg) = Xy & Xy & () & X5)V (6 & X)),

and employing the distributive law to reduce the new expression.

Obviously, the reduction of other functions requires other iden-
tities. It is very difficult, however, to select a priori an identity
suitable for the reduction of a given expression. In fact, it is even
difficult to saya priovi whether a givenexpression can be eventually
reduced to a more manageable form. Thus a great forward step
would be a procedure yielding expressions about which one could
confidently say that they are as ¢‘small’’ as can be found, thatis,
that there are no other forms of a given function which are more
“minimal’>’ [120, 121]. Such expressions are calledabsolutely mini-
mal, and their finding involves procedures which are far more com-
plex than those for minimal normal expressions. We shall therefore
not discuss them in detail, but shall simply point out that each such
nontrivial procedure (algorithm) should have the following two fea-
tures:

1. It should be able to predict the maximum complexity asso-~
ciated with the absolutely minimal expressions of a given
function.

2. It should be able to give the absolutely minimal expressions
within the limits imposed by the predicted maximum com-
plexity.
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For example, one can predict that the absolutely minimal ex-
pressions for the function (2.2) are not more complex than a ‘‘dis-
junction of conjunctions of disjunctions?’’ (type I) and a ‘‘conjunction
of disjunctions of conjunctions?’ (type II). One thenuses special al-
gorithms to express (2.2) in terms of these limiting forms I and II.
This gives two expressions of type I

F(xy, ..., xp)=|x& (7\:1_\/ }E)]V({? & xg),
Fxy, o0, x5 =1x& (x, VX3) |V (x, & x3)

and one ‘‘degenerate’’ expression of type II
Fxy, ooy X = (2, VX,V 23) & (5, X5).

Notice that both expressions resemble irredundant forms. With
only three forms to scan, it is easy to see which is the smallest.

In general, however, the number of expressions similar to the
irredundant forms is extremely large, even if the function has only
a few variables, and the above procedures for absolutely minimal
expressions are therefore not practical. For this reason the prob-
lem was attacked by developing procedures involving considerably
fewer elementary operations. Such procedures necessarily yield
expressions of a more complex form than the normal, but such ex-
pressions in general tend to approach the absolutely minimal. For
example, the procedure may involve successive applications of the
distributive law to the prime implicants of agiven function. The re-
sulting complex implicants may then themselves be treated as prime
implicants and serve as a basis for developingirredundant expres-
sions. The final minimal irredundant expressions can then be se-
lected from these irredundant forms in the usual way.

However, there is another problem. Evenif the absolutely mini-
mal expression is known, the circuit based on it may prove to be
nonminimal. For example, the absolutely minimal expression of the
function

F=x3&[x5& (6, V X) V(x5 & )]V (2.4)
V {26 & (2, & x5) V(X & )]},

immediately yields a switching circuit of ten elements. However, a
circuit performing this same function can also be constructed from
eight elements (Fig. 2.33). This is due to the fact that, in some
cases, one section or block of a system can be used to.embody more
than one part of the minimal expression. Thus we can represent
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(2.4) in the form

F = {x; &[(x5 & X))V (65 & x) V(o & )]}V [ & [ & )V
V(& )]} = {0 &{QV (665 & xep) [}V (56 & Q)

where
Q = (X, & x5) V {x; & x,), (2.9)
Our actual circuit of Fig, 2.33 can then be reduced to eight ele-
ments because the Q operation, which appears twicein the irredun-

dant expression, can be iterated through one and the same circuit
block.
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Fig. 2.33.

We have briefly reviewed the minimization problem assuming
that all the elements carry the same price tag. It has been shown
{217] that the minimization of circuits comprising elements of dif-
fering prices can be achieved by modifications of the same methods.
The only difference is that a different criterion of the minimum is
used in selecting the minimal expressions from the irredundant
forms.

Our discussion was confined to minimization of sets consisting
only of NOT, AND, and OR blocks, where the AND and OR units had
only two inputs each. There are also solutions for similar problems
involving other sets. However, eachnew setrequires a new solution
of the minimization problem. Thus, if the set consists of blocks of
negation as well as of conjunction anddisjunction of »n variables, the
problem reduces to finding irredundant expressions (or expressions
similar to irredundant forms if we deal with compound expressions)
in which the number of prime implicants is minimum.

The minimization problem has become especially important due
to the advent of general-purpose elements, thatis, blocks that, either
by means of simpler readjustmentor by adding external connections
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which cost little or nothing, may beusedto perform several differ-
ent functions. A typical example of such a block is the pneumatic
switch of Fig. 2.20. There are no accepted solutions of the minimi-
zation problem for these systems, despite many attempts at develop-
ing one. The present trend in these systems is to develop proce~
dures which would yield circuits that, while not minimal, are suffi-
ciently minimized for practical purposes.



3

Finite Automata and Sequential

Machines: Basic Concepts

3.1. DISCRETE TIME AND DISCRETE TIME MOMENTS

Let {x); =1, 2, ..., n) and {y) be alphabets containing a finite
number of symbols. Then the functional relationship

y=rx5, x5 .0y X)) (3.1)

matches any set of symbols, taken one at a time from alphabets
{x}y, Ix}e - .., {x),, with one symbol of alphabet {y}.

Now consider an ideal device embodying relationship (3.1). This
device has n inputs and a single output. Inputs x), x, ..., x, are fed
symbols from alphabets {x},, {x},, ..., {x},, respectively, all these
inputs being made in ablock, thatis, at exactly the same time, This
instantaneously generates a symbol from alphabet{y} at the output,
as specified by (3.1). We shall call such an instantaneously operating
ideal device a function convertev. In the special case when each of
the alphabets {x],, {x}s ..., {x), and{y]}consists of two symbols only,
that is, when x), xo, ..., X, and y are logical variables and fis a
logical function, such a device is a logical converier, Instantane-
ously responding combinational relay switching circuits and simi-
lar devices for performing the operations of propositional calculus
would be practical embodiments of the abstract concept of a ‘“logi-
cal converter.”’

So far, our functional relationships have neglected the time fac-
tor and we have also assumed that the function converter acts in-
stantaneously, Now, however, we shall introduce the concept of time.

We usually assume that time varies only in one direction (‘‘into
the future’’), that it varies continuously, and that it thus passes
through all possible values onthe positive real axis. In other words,

58
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when time appears as an argument of a function, it is usually de-
fined on a continuum, namely, the positive real axis (the time axis),

In contrast to this, it is convenient to study discrete-action de-
vices in terms of a hypothetical discrete time. Let us imagine that
the continuous time axis can be divided into an infinite number of
finite intervals, not necessarily of equal length (Fig. 3.1). Moving
along the axis from ¢ = 0 toward ¢ = oo, we mark the points separat-

ing these intervals by characters f, %, t;, ... These points then
constitute a countable set.

Let us further agree to represent the characters f,, #, f, ... by
a series of positive integers0, I, 2, ... andcall that imaginary time

which consecutively assumes only these integral values the discrete
time ¢.
The time instants fy, £, £, ...,

now denoted by numbers 0, 1, fL ; . . . M
2, ..., shall be calleddiscretemo- t 4 & 4 t
ments, and the numberso, 1, 2, ...

shall be treated as symbols con~ Fig. 3.1,

stituting an alphabet {¢}.

The current discrete moment (the one corresponding to the pres-
ent instant) shall be denoted by p (present). Thus p divides all #’s
into those preceding p (p—1, p—2,...) and those following (p + 1,
p+2,...) [Fig. 3.2].

Thus far, we have treated
the variables of Eq. (3.1) as ,___| - , , —
time-variant, Assume now PSS p2 ptop o opd opd pd

that x,, x5 ... x, vary in the
discrete time. That is, the Fig. 3,2,

variables assume definite val-

ues for each ¢/, so that we have functions x;(f),where t =0, 1, 2, ...,
and where {x}, assumes values from alphabets {x}; (=1, 2, ... n).
Then, by virtue of (3.1), we can set up a correspondence between
these functions and the function

yO=s1x(8, %), ..., x, @), (3.2)

where y varies with the same ¢ as x; and assumes values from
alphabet {y}. Such a system operates in discrete time but ‘‘has no
memory’’ in the sense that the ¢‘oufput’” valuey at any instant { = p
depends solely on the values of the ‘‘inputs’’ x; at that instant.

One can, however, imagine systems which also operate in dis-
crete time and whose inputs and outputs are also symbols drawn
from infinite alphabets, but in which the relationship between the
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input and the output is not so simple. For example,

yvip)=flx@—1), x(p—1), ..., x,(p—1)

3.3
X (p) 52D - s 2 (D). (3.9)

In other words, the value of ¥ at any { = p depends not only on the
values of all the x; at pbutalso on their values of the preceding dis-
crete moment p — I, Further, the value of y at ¢ = p may even be a
function of the entire history of values y. Consider the case in which
y is a logical variable whose value at any p is specified as a nega-
tion of the value of y at the preceding moment p — 1:

yp)=yp@-—1- (3-4)
Although the relation

y=y

is contradictory, Eq. (3.4) does not lead to contradictions; it speci-
fies a function y(f)which consecutively assumes the values 1 and 0
even though there are no input (external) signals.

These special dynamical systems differ from the common ones
(such as the pendulum or the four~terminal network) in that they
operate in discrete time and their coordinates (inputs and outputs)
are defined on finite sets.

Henceforth we shall be dealing with dynamical systems that are
distinguished by these two properties.

3.2. ON DYNAMICAL SYSTEMS

A dynamical system is one involving time-varying processes,
The state of a natural or man-made dynamical system at any instant
is given by some number (finite or infinite) of generalized coordi-
nates, Dynamical systems may be divided intoseveral classes, de-
pending on:

a) whether they are time-continuous or time-discrete, that is,
whether the time is assumed to vary in a continuum or a countable
set;

b) whether the system has a finite or infinite number of general-
ized coordinates; and finally
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¢) the cardinality of the set of all possible values of each gener-
alized coordinate, that is, whether these sets are finite, countably
infinite, or continua.

The concept ‘‘dynamical system’’ isusually associatedwith sys~
tems described by ordinary or partial differential equations. In sys-
tems of this type the number of generalized coordinates may be finite
(in which case they are described by ordinary differential equations)
or infinite (described by partial differential equations), butin either
case both the coordinates and the time vary in continua,

In those cases where the time is discrete, that is, varies in a
countable set, while each of the finite or infinite number of gener-
alized coordinates may assume values from continuum sets, the be-
havior of the system is described by difference equations.

In a special class of dynamical systems the time is again dis-
crete but the generalized coordinates (whose number may be finite
or infinite) assume values from finite sets.

Every dynamical system may be affected by externally generated
input signals. Suchinputsignals may alsobe defined on a continuum,
a countable set, or a finite set. Dynamical systems described by
differential or difference equations are usually capable of handling
only a finite number of input signals; thelatter, however, may take
on any values from some continuum. Dynamical systems whose
generalized coordinates are defined on finite sets are usually ana-
lyzed in terms of a finite number of input signals, and each of these
signals is also defined on a finite set.

Dynamical systems in which time is defined on a countable set,
the coordinates and (externally generated) input signals are defined
on finite sets, and the number of input signals and coordinates is
finite will be called finite dynamical systems., Particular cases of
this class of systems are finite automata and sequential machines.

Systems that differ from the finite only in that they have an in-
finite number of generalized coordinates constitute a more general
class of dynamical systems. These include Turing machines* and
similar idealized devices,

The reader must be reminded at this point that an equation de-
scribes only an idealized model andnotareal system. In this sense
any dynamical system is anabstraction, Butalthough finite dynami-
cal systems and Turing machines are no more than abstractions,
they are very important abstractions because many technical de-
vices and important natural processeslend themselves torepresen-
tation by such abstractions.

*See Chapter 8,
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3.3. FINITE AUTOMATA

Consider a finite dynamical system whose state at any instant

is characterized by a finite number of generalized coordinatesx,, x,,

.., %, This system is subject to a finite number of externally
generated input signals pi(f), p2(8),......, p,{#) We are given either
a time scale divided into discrete moments or conditions that en-
able us to determine the instant at which the next discrete moment
will occur. In our definition, the signals and the states of the system
are meaningful only at such discrete moments (and are neglected at
all other times).

At these moments, each of the generalized coordinates x; may
take on values only from a finite set, while each input p; also as~-
sumes values only from its finite set (of input signals).

Let us introduce an n-dimensional vector x with coordinates
%1, %2, ..., ¥n and an m-dimensional vector p with coordinates p;, p2,

, pm. Because all the coordinates of the vector », that is, %, x,,
.., ®» are defined on finite sets, the vector » is also defined on a
finite set. If the coordinate x; may take on &; values, then the vector

n
» may assume one of £ = [] £, values. Accordingly, the set on which
i=1

» is defined consists of £ elements.
By exact analogy, the vector p with coordinates p;, ps, ..., pm 18
mn

given on a finite set containing r elements, where r= H N and uh
j=1

is the number of elements in the set on which p; is defined.

Let us consider an alphabet {x} = {5, %9, ..., %} consisting of %
symbols, and let us match the various possible values of the vector
% to the various symbols from this alphabet, We shall call the vec-
tor » the state of our finite dynamical system.

Similarly, let us introduce an alphabet

{0} ={ov 2 ... 01}

consisting of r symbols, and match the variousvalues of the vector
p to the various symbols from this alphabet, We shall call the vec-
tor p the imput to the system.

Now we shall define ¢‘motion’’ in our system, that is, we shall
specify the method by which the state of the system is defined at
each discrete moment of time, One very important definition leads
to the concept a finite automation.

Definition. A finite dynamical system is said to be a finite auto-
maton if its state at each discrete moment is uniquely defined (a) by
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its state in the preceding moment and (b) by its input atthe preced-
ing ov the curvent moment,

A finite automaton whose current state is defined by its state
and input at the preceding moment shall be called a finite automa—
ton of the P - P (past — past) type, An automaton whose current
state is defined by its state at the preceding moment and its current
input shall be called a finite automaton of the P ~ Pr (past-present)
type,

The term ‘‘finite automaton’’ also includes finite systemswhose
states are defined by their states and inputs during any desired fi-
nite number of preceding moments. The term does not, however,
pertain to finite systems whose states are defined by random fac-
tors or by their entire history (that is, systems whose states and
inputs cannot be specified unless one knows their value at all the
preceding discrete moments).

To put the above definition of the finite automaton in other terms,
the symbol x at any discrete moment is uniquely defined by the x
of the preceding moment and p at the preceding or in the current
moment, That is, for a P - P automaton:

=P, 0P), p=0,1,2 ..., (3.5")

and for a finite automation of the P - Pr type

‘Lp+1::F(Kp, Pp+l), p:O, 1’ 2 ..., (3.5Il)

where F is a function in the sense of Chapter 1 (it matches a sym-
bol from the alphabet {x} with symbols from the alphabets {x} and {p}.
However, in contrast to the sense of Chapter 1, the symbol-argu-
ments and the symbol-function may now pertain to differing time
instants. For this reason formulas (3.5) do not specify a converter
but a dynamical system.

The discrete moments corresponding to given x and p are iden-
tified by superscripts, where p stands for the present, p + 1 the
next, and p — 1 the immediately preceding moment.

If a new symbol pn is defined in the same alphabet {x} = {x), s,
..., %)} as %, then relations (3.5) and (3.5’) can be treated as de-
rived from

p=F, p),}

1
‘;(,p+:p

L

(3.6)
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In the first of these relations, all the symbols pertain to the same
time. If that time is p, that is,

P“p = F(xp! pp),
when we add the second relations (3.6) and eliminate p? we get
.,_ﬂ+1:F(xP, pP),

that is, relation (3.5%).
If, however, the time corresponding tothe first of relations (3.6)
is p + I, that is

P_I?-H :F(\,’P-H, Pﬂﬂ),
we can add the second of relations (3.6), eliminate xP+! and get
l_,_P+I :F(P‘p’ pP+l),

that is, relation (3.5’).
Let us consider (3.5’):

W= F (7, ).

Knowing ¢® and «* for the moment zero, we can, by putting p = 1, find
»x!. Then, knowing »! and p', we can find %2, and so on. The values of
x!, ¥2, ... can be determined in a similar fashion from Eq. (3.5%%),
starting from a given x° and a giveninput sequence p!, p? ... In this
respect formulas (3.5) determine recurrence relations, which per-
mit us to find consecutively all the x!, »? ..., provided the initial
state % and the input sequence p° p!, p?% ... are known,

We have already stated that » and p as well as the behavior of
the system, in general, are significant only during discrete time
moments, Thus, in dealing with a real dynamical system (or pro-~
cess) we imagine a device that records (samples) the values of »
and p at such moments*, and that the decision as to whether or not
the system is a finite automaton is made only on the strength of
such a sampling record. In this sense the abstract concept of a
“finite automaton’’ may also be employed to describe continu-
ous devices (devices exhibiting a continuum of states varying in

*Or that there exists a stroboscopic device illuminating the observed process only at
these instants,
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continuous time), provided only that during the discrete sampling
moments, when the systemis observed, the setof its possible states
is finite and that one of relations (3.5) is satisfied. Thus, for ex-
ample, a continuous system having several equilibrium states may
be treated as a finite automaton. This ispossible provided the data
sampling moments are made to coincide with the instants at which
complete equilibrium becomes established and provided the state of
equilibrium is always uniquely determined by the system’spreced-
ing equilibrium and by the input signals to which it is subjected at
the instant when that equilibrium is disturbed (or established).

Since all real systems operate incontinuoustime, the use of dis-
crete time in our discussion calls for a special device, a synchro-~
nizing source, which signals the advent of the next discrete time
moment (thatis, data sampling moment). We shall call such a source
a discvete clock (or simply a clock).

The clock is not an integral part of the finite automaton. The
signals it generates are external to the automaton in the same
sense as are the input signals p. But the clock signals—the time
input—do differ from the externally generated input signals, since
they are not coded in symbols from the alphabet {p} and they do not
constitute arguments of function F in (3.5). If the finite automaton
is a process, the clock signals canbeused only in some device that
records o and » at the various time instants. In technical embodi-
ments of a finite automaton, the clock signals are used only to de-
termine the advent of the next discrete time moment.

Let us now examine some examples of the division of a continu-
ous time scale into discrete moments.

a) The continuous time is divided into equal intervals so that an
ordinary clock with a suitable regulated movement may serve as a
synchronizing source. This is uniform time division.

b) The next discrete moment occurs wherever the symbol p is
changed, that is, whenever there is a change in the input. Here, the
continuous time is divided into a sequence ofintervals that are not,
in general, of the same length. The clock may then be any device
that responds to a change in input.

¢) The next moment occurs whenever a symbol p; or p; appears
at the input.

d) The next moment occurs whenever a symbol p with an odd
superscript is replaced by a p with aneven superscript; and so on.

Returning to formulas (3.5), let us now assume that the input p
does not vary. Then we have

P =F[", o1, (3.7}
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where p.is a constant value of p. We shall call such a finite auto-
maton self-contained or autonomous., Itisindependent of the exter-
nally generated input signals, but it still employs clock signals to
indicate the next discrete time moment.

The symbol ¢ = p, may be regarded as a parameter because it
may be assigned any symbol from the alphabet {p}. By so doing we
obtain r autonomous automata. In this sense each finite automaton
may be transformed into r autonomous automata (some of which
may be identical).

There is still another, formal definition of a finite automaton.
This definition is unrelated to the concepts of a finite dynamical
system, a state or an input, It merely says that given two finite
alphabets of symbols {x} and {p}, as well as the variables » and p
which assume values from these alphabets, a finite automaton con-
sists of the recuvvence velations(3,5) coupling these variables.

This is a very broad and avery abstract definition, but its value
lies precisely in its generality. It applies to a great variety of
seemingly unrelated devices, processes and phenomena. By using
it, one can introduce order where there seems to be none, and dis-
cover general laws governing all these systems, starting from the
most general assumptions. This is the object of the theory of finite
automata.

3.4. SEQUENTIAL MACHINES

Consider a system (Fig. 3.3) consisting of (a)a finite automaton
A, which converts symbols p of the alphabet{p} into symbols » of the
alphabet {} asper Eq. (3.5") or (3.5"’), where the function F is given,
and (b) a converter @ which instantaneously and uniquely matches
each symbol x with a symbol A from an alphabet {A}:

MW= 0 (xF). (3.8)

The instants at which the sym-
bols p and A appear coincide with
> 4 > @ the discrete time scale specific to
the given automaton A. Ifonecan
select a single-valued function F*
(which may differ from F) insuch
Fig. 3.3. a way as tomake symbols A satisfy
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a relation of the form (3.5%) or (3.5"), that is, if
AP+ :_.F* [)\ﬂ’ PP] or )\P+1 =F* [)\P’ pP+ll’ (3.9)

then the system consisting of automaton 4 and converter @ will also
be a finite automaton. Naturally, such a function F* is not always
available if for no other reason than thatthe alphabet {A} may differ
from the alphabet {x} in the number of symbols it contains; that is,
the same symbol A may be used to code several symbols x.

For example, let the alphabets {x} and{A} consist of eight and two
symbols, respectively, and let the converter @ generate the symbol
A in response to an input of symbols %; to »x, or the symbol i, when
the input consists of any of the symbols %5 to xs. We shall assume
that Eq. (3.5) holds and that F is such that after p? = p;, x? = %, there
follows the symbol »Pt! = 3 and after p? = p1, »P = x4 there follows
the symbol »P+! = x¢. In the first instance the counting device will
register

pP=pn M=k, Wil=},
and in the second case
pP=p, M=k, MW=k,

Thus, identical » and p? may be followed by different A7+!, This
means that our automaton-converter system isnotinitself an auto-
maton, since it does not preserve a relation of the form (3.5') be-~
tween symbols A and p.

The system shown in Fig. 3.3 is, however, a finite dynamical
system. We shall call ita finite automaton with an output converter,
or simply a finite automaton with output, In this case, the symbols
A are called the output symbols (as distinctfrom =, the state sym-
bols), the alphabet {A}is called the output alphabet, and the converter
@ is called the output converter,

In a more general case, the converter may have two inputs. The
symbols fed to one of them are again from the alphabet {x}, while
the signals to the other are symbols p. The converter then instan-
taneously matches a symbol A with each (x, p) pair (Fig. 3.4). A
finite dynamical systeni obtained by coupling a finite automaton to
an output converter which admits the symbol p (Fig. 3.4) is called
a sequential machine {(or, briefly, an s—machine). Of course, an
s-machine may also be a finite automaton, Whetherit is or not de-
pends on the form of the function F in Egs. (3.5) for the automaton
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A, as well as the type of converter @ used. In all cases, however,
the system of Fig. 3.4 is a finite dynamical system,

A sequential machine becomes a finite automaton (thatis, oper-
ates as afinite automaton) if the values of A (the output) are uniquely
defined by the value A at the preceding discrete moment and the
value of p at the current moment, that is, if the relationship

W = F* W2, pP 1]

holds. This, for example, will be the case when one uses an identity
converter whose alphabet {A} coincides with the alphabet{x}, that is,
a converter that generates a symbol AP coinciding with the input
symbol =P regardless of pP. In this sense, the concept of a ““finite
automaton’’ is a special case of the abstraction ‘“sequential ma-
chine,”’

Fig. 3.4.

A finite automaton with an output converter may be treated as a
special case of an s-machine in which the function ® is independent
of p.

At a first glance, the concept of a sequential machine appears
broader than that of a finite automaton with output. However, this
is not the case, This will be proven in Section 4.3, after we have
formulated the concept of a ‘““net.”

A sequential machine is of the P -~ P or P - Pr type, depending
on the automaton it contains, We shall now consider an arbitrary
s-machine of the P - Pr type:

1p+1:F[.Lp’ {/p+1], )‘p:q)l,’p’ p”]A (3.10)
Eliminating the symbol »? from the converter equation, we get
WH— D [F(XP, pﬂ+1)pﬂ+1].

Let us now introduce the symbol %, whichis defined in the alphabet
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{#} by the relation

;p+1=Xp_
After substitution, we obtain
W =@ [F @, p?), pP|= 0*(«*, pP).

If we now employ % in Eq. (3.10) for the automaton, we obtain

;p+1:FI.Zp' o”);

that is, all these transformations give an s-machine of the P - P
type:*

WP =F (P, 17), W=*@", ). (3.11)

Thus, any P- Pr type s-machine may be transformed into P - P type
s-machine merely by replacing its output converter ® by a ®* con-
verter, However, the reverse isnotgenerally true. We shall return
to this problem in Section 5.4.

3.5. TECHNIQUES FOR DEFINING FINITE AUTOMATA AND
SEQUENTIAL MACHINES

Any function

z=F(x, y),

where x and y assume values from finite sets, may be given by a
table such as 3.1 showing the corresponding values of z.
The equation of finite automaton of the P - P type

P +1 :F[xli’ ppl
or the P - Pr type
7_P+1:F[1P’ pp+ll

may be represented by an analogous Table 3.2, in which the »» +!
symbol for a P - P automaton is represented by the intersection of
row x»? and column p?, while the intersection of row %? and column
p?+1 defines the symbol x?+! for a P- Pr automaton. We shall call
this the basic table of the finite automaton.

*A finite automaton with an output converter described by Eqgs. (3.5') and (3.8) is fre-
quently referred to as a Moore machine (see [73]), and an s~machine given by Eq. (3.11)
is called a Mealy machine (see [190]).
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Table 3.1 Table 3.2
y p
P N Yo | +-- Ym P 1 P2 Pr
X, 2y | 2 | .o 2 % * | o2 ... %
X -2 -7 2, %g %y %o | oo | %
Xyt o2s | 25 | ... 23 %z % | %y | ... %5

Each column of such a basic tableis,in turn, the basic table for
an autonomous automaton, which is obtained from the finite one by
making the p value in the heading of that column a constant.

Consider one such autonomous automaton (for example, Table
3.3). If we draw kcircles onaplane, assign to each circle a symbol
%, and draw arrows which show the transitions occurring in the au-
tonomous automaton in accordance withits basic table, we obtain its
graph, Only one arrow can start at each circle, but any number of
arrows (not exceeding &, however) may terminate at it, The graph
of Fig. 3.5 corresponds to Table 3.3. Since each finite automaton
yields r autonomous ones, the basic table of one finite automaton
yields r graphs of autonomous automata. Figure 3.6 shows the
graphs derived from Table 3.4.

Since all these r graphs consist of the same

k circles, they canbe combinedinto one graph,

@ in whicheach arrow islabeled with the p value

a at which that arrow can be performed. These
labels are placed at the origin of the arrow in

@ the case of the P ~ Pautomaton, and at its tip
in the case of the P - Pr machine, Figure 3.7

shows the combined graph for Table 3.4 and

% (%) Fig. 3.6, that is, for a P - Pr automaton.

Such a graph is called the state diagram
of the automaton, In this case, each circleis
the origin of r arrows. If several of these ter-
minate at the same circle, they may be com-
bined into one, the labels indicating their p
values being joined by means of disjunction
signs. The statle diagram is fully equivalent

Fig. 3.5. and interconvertible with the basic table.
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Table 3.3 Table 3.4

>« ? pj=r¢" NG P P2 f3
%t %3 %y Ky %g *g
g g g Yy %y %y
*a *3 %3 T3 Y3 L2
%4 %2 %y *3 L) %5
*g Yy g g Ly %y
“6 %4 Xg % Y %3

VPR

‘@ / ’? R

G
VT /e '
D~

PP
Fig. 3.6.

Let us construct a square k£ X £ matrix C whose rows (from top
to bottom) and columns (from left to right) are headed by symbols
%y, %2, ..., . The matrix element at the intersection of the »,-th
row and the x,~th column is the label of the state diagram arrow
that connects the circle », with the circlex,. This element may con-
sist of one symbol p or a disjunction of several p’s. If there is no
arrow between a circle »; and a circle xm, then the corresponding
square of matrix C contains a 0. Thus we obtain the matrix of
Table 3.5 for the state diagram of Fig. 3.7.

This matrix is called an interconnection (or transition) matrix
and is still another way of defining a finite automaton. Here, just as
in the case of abasictable, one must specify beforehand whether the



72 ELEMENTS OF MATHEMATICAL LOGIC

Fig. 3.7.
Table 3.5

g *y % % %5 g
% 0 0 0 0 4 P2V Ps
*y 0 0 0 P1VPVes 0 0
%3 0 fa PV oy 0 0 0
¥y 0 Pa 1 0 P 0
%5 fa 0 0 0 P2 1
%6 0 1 Pa 0 P2 0

automaton is of the P- Por the P - Pr type. Each row of the matrix
must contain every p: once, and only once. The matrix may be de-
rived directly from the basic table, dispensingwith the intermediate
state diagram,

Assume we have a basic tablefora P - P automaton, that is, for
the relation

WP+l —= F 47, o®].

Then each cell of the basic table defines three symbols:

XP’ Pp, v_P-H’

that is, the row heading, the columnheading, and the character con-
tained in the cell. Let us call such a symbol triplet a triad. Since
the whole table has rk squares, and each square defines a triad, the
table defines a set of rk triads. We shall say that a set of triads is
ordered if the first two symbols (xPand p?) of any two triads of that
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set do not coincide. Any basic table of a finite automaton defines an
ordered finite setoftriads. Conversely, any ordered set of rk triads
defines a basic table, that is, a finite automaton.

The above also applies to P~ Pr automata, that is, those defined
by

WPH = FuP, (P,

However, in this case each triad consists of the symbol triplet

WP, pPH1 xPH

so0 that an ordered set is said to be one in which no two triads have
identical first two symbols »x? and pP+!,

Now, if we wish to define a sequential machine in a table form,
we must consider simultaneously the equations of its constituent
automaton [(3.5’) or (3.5’’)] and converter (3.8). Todo this, we draw
up the basic table for the finite automaton and add to each square
the symbol A?+! resulting from the converter equation. This com-
bined table is the basic table of the s-machine.

If the automaton is of the P - P type [Eq. (3.5")], then we add to
its table symbol AP. For example, the automaton of Table 3.4 plus
the converter of Table 3.6 define the s-machine basic table 3.7. If,
however, the automaton is of the P - Pr type [Eq. (3.5’)], then we
add to each square the symbol AP+!, obtained from the converter
table at the intersection of x? +! (the symbol already present in the
square of the basic table) and p?*+! (the heading of the basic table
column in which the square is situated). Thus, if the P - Pr auto-
maton is given by Table 3.4 and the associated converter by Table
3.6, then the basic table of the s-machineincorporating this P - Pr
automaton is Table 3.8.

Let us note in passing that the converter table for the P - Pr
case may contain blank spaces, because some x values may be miss-
ing from the corresponding column of the automaton table. Thus we
could leave the square (pi, x1) of Table 3.6 blank, because column p;
of Table 3.4, contains no x,; entries.

To obtain a state diagram of an s-machine, we modify the dia-
gram of the corresponding automaton by including the appropriate
A symbol at each circle, However,inan s-machine A is defined not
only by x, but also by p. For this reason the state diagram for an
s-machine differs from that of afinite automatonwith an associated
output converter in that the symbol A isnot written inside a circle,
but side by side with the symbol p (above the arrow), The arrow
connects state x? with state x?+!, Fora P - P automaton [Eq. (3.5")],



74 ELEMENTS OF MATHEMATICAL LOGIC

Table 3.6 Table 3.7
OO e e e W7 ?’ d P2 Ps
% PR A P ¥ % %5, A %g, Ao gy Mg
%g ke | 2o | 23 %y %qy Ay %y Aoy %4, hg
%3 DV I VR Y % %3, Ay %3, A %9, Ag
k) ks IR %q %3 Ay %9, Ay %5, by
%5 PN I YO I 8 % %G, Ry 5 M %y, Ay
Lg S I PR g %9y A3 %g, g %, Ay

b)

Fig. 3.8.

the symbol pair (p, A) is written at the origin of the arrow (Fig.
3.8,a), whereas in the case of P - Pr automaton [Eq. (3.5'")], the
label is at its tip (Fig. 3.8,b). In the first case, the output A is de-
fined in the converter table at the intersection of the symbol p,
written above the arrow, and the symbol x, written inside the circle
from which the arrow emerges; in the second case, the coordinates
are the p above the arrow and the » in the circle at the tip of the
arrow. Thus, Fig. 3.9 shows a state diagram based on Table 3.8.
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Fig. 3.9.

The state diagram of a sequential
machine again gives aninterconnec-
tion matrix. This matrix differs
from thatdescribing a finite automa-
ton in that its elements consist of
labels at the tips of the arrows of the
state diagram, that is, the symbol
pairs (p, A). Ifthebasictableis 3.8,
then the interconnection matrix is
that of Tahble 3.9,

3.6. RECORDING THE OPERATION
OF AN AUTOMATON

So far, we have established that
symbols p are sequentially ‘‘com-
municated’’ to the automaton (or

75
Table 3.8
P+l
¢
1 Pa P

*y x5, by xg Ay xg Ay
g *a ]\3 Xy Ay sy }-2
*3 %3 M x A Xg, Ay
%y *3 Ay xg Ay x5, Ay
X5 %5 M3 75, Ay %, Ay
*g %y, Ao x5 A 1y Ay

s-machine) from the outside, and that they are independent of its
operation. The machine then processes the input ¢ into symbols x

(or 1).

Now we shall call an input sequence any finite (but as large as
desired) series of p symbols, and we shall call the analogous set
of x or A symbols a state sequence (or an output sequence). The
number of symbols contained in such a set will be called the length

of the sequence,
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Both the automaton and the sequential machine are operators
that process sequences of input symbols of one alphabet into se-
quences of output symbols of another alphabet. The basic table, the
set of triads, the graphs, the state diagram, the interconnection ma-
trix, and the transition table are various methods of defining such
an operator, since any one of these is sufficient to recreate the cor-
responding sequence x (or i) if the sequence p and the initial state
%0 are known,

Table 3.10
Dis-
crete 0 I 2 3 4 5 6 7 8
mo-
ment
p P3 P8 P P3 P4 Pe P2 P8 P12
* *y *3 *7 *1 *2 | %2 *s *3 *g

Consider now a three-row table 3.10, whose row 1 contains the
ordinal number of the discrete time moment, androws 2 and 3 con-
tain the corresponding p and x. The table mayhave as many columns
as desired. Thisis the tape of the finite automaton, Since a tape may
be compiled for each input sequence p(f), each automaton may have
an infinite number of tapes.

Any initial piece of tape (from zero toany kth moment) contains
an input sequence and the corresponding state sequence of length
k + 1. Any three tape symbols, such as those delineated by the heavy
line in Table 3.10, constitute a triad defining one cell of the basic
table of the automaton (we shall use a heavy line to isolate a P - P
triad, and a dotted line to delineate a P - Pr triad). Now, if we had
a scanner with a cutout matching either the heavy or the dotted out-
line of the Table 3.10, then, sliding this scanner along the tape, we
would consecutively see all the various triads contained in it (ob-
viously, each tape has a finite number of such triads). If we could
scan all the tapes of agiven automaton (an infinite number), we could
then read the set of all the triads contained in all the tapes. But
since all these tapes are generated by a single automaton, the set
of triads must be finite. Infact,itis the finite ordered set of triads
containing rk elements.

In the preceding section we showed that since an automaton is an
operator, it can be defined by a finite, ordered set of triads., We see
now that all the tapes of the automaton consist of triads of this set.

Let us now select an alphabet of r£ symbols, for instance, {t}, and
assign symbols t to all the triads of our automaton. Then the tape
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shall be reduced to only two rows: the ordinal number of the dis-
crete moment and, the symbol 1 (see Table 3.11). However, this re-
duces the available degrees of freedom, for the sequence of triads
in such a tape cannot be arbitrery, Indeed, let the first triad s con-
sist of

X7 Par %1

This immediately fixes the first symbol in the following triad, so
that only the two remaining symbols canvary; that is, the next triad
can only be some triad of the same set which starts with %2, for in-
stance, wi, ps, #6 Or %2, P2, #12, and so on, The triads corresponding
to a given triad «; are those triads from our ordered set whose first
symbol coincides with the last symbol of the given triad 1;, All the
tapes of a finite automaton consist of triads arranged in such a way
that each triad is followed by any one of its corresponding triads.

Table 3.11

Dis-
crete 3| 1 2 3 4 5 6

ment

1 Ts T L P I 2 Tg

The concept of a tape may be extended to the sequential machine
by supplementing the finite automaton tape with arow of output sym-
bols %, after which the » row isdeleted (Table 3.12). This tape may
also be split into triads such as

W, 0P, WPHLOT WP, gPHL JPHL

This set of triads may contain, however, some ‘‘contradictory’’ ele-
ments, in which the first two symbols »?, ¢? (or 7, p?+1) are identical
but are followed by differing third symbols A?+1, that is, the set is
not an ordered one. It becomes ordered if, and only if, the sequen-
tial machine as a whole is a finite automaton,

Table 3.12

Di st—
getell o | 1| 21 3| 4] 561 7]|8
ment

p Pa Pe 01 Ps Pe Pg & P8 Piz

AR 0 VA N VA S VAR 0 VR N U O VO I Y B VO B

We shall now discuss still another way of describing the opera-
tion of a finite automaton, Let usdrawits state diagram (Fig. 3.10)
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and consider the twocirclesincorporating symbolsx; and x;, respec-
tively. The transition from state x; to state x; may be accomplished
over one discrete moment, provided
the input is p;. The transition over
two moments may be accomplished
via the following alternative routes:
in the first moment, the input is p,
or p3, and inthe second momentitis
p2; or it is p; in both moments. If
three discrete moments are avail-
able, then one can accomplish the
transition via nine different alter-
native routes (Table 3.13). Similar-
ly, we can derive all possible se-
quences of p that would transform the state x; into the state »; over
g discrete moments. Each such sequence is a path of length g lead-
ing from x; to »;, and we shall represent it as a sequence of g sym-
bols p; the aggregate of all the possible paths of length ¢ shall be
represented as a disjunction of such sequences. Thus, for example,
Table 3.13 may be written in the form

Fig, 3.10.

P1P1P1V P1PaP1 V P2oP1P2 V PoP3P2 V P3P1Pa V PaP3Pa V P1P2P1 V PaPaPr V PaPafy

Let us denote by DY; a disjunction describing all the possible %;
to x; paths of lengthg. Then each disjunction{p}, shall comprise one
or more sequences consisting of exactly g elements p;, some of which
may coincide.

Table 3.13
Discrete moment
Path

g 1 2
First . . .. Py Py P1
Second . . . . P1 Pa P1
Third . . . .- P2 P1 P2
Fourth ... P2 Ps P2
Fifth . . . .. P3 01 P2
Sixth . ... s p3 P2
Seventh . . . P1 P2 Py
Eighth . . . . P P p1
Ninth .. .. P3 P2 N
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Let us now construct a matrix C@. This matrix will contain D,
(at the intersection of the ith row and the jth column) if there is at
least one %: to »; path of length ¢, and 0 if there is no such path. For
example,

%y %y A3 Yy
D% o o DY
2| 0 0 D% o
0 DY D¥ DY
o DE o o0

=

C(Q) —

x
W

x
S

This is the matvix of the path of length g. Just as in the intercon-
nection matrix, the rows (top to bottom) and the columns (left to
right) correspond to symbols %1, %3, ..., %z and are so denoted.

The matrix C9 contains all the paths leading from any initial
state to any final state (which may coincide with the initial state)
over ¢ discrete moments. Because any sequence consisting of g
symbols o will transform the automaton from any state into the
same or another state, each row of the matrix C@ contains, but
only once, all the possible sequences that may be formed from the
alphabet {p} by selecting g symbols at a time. Thus, for example,
each row of the matrix C® must contain the sequences

P1P1s PaPos PaPat PiP2s PoPrs PiPss PaPrs PaPas PaPa-

Each row of the C@ matrix may contain these groups of g symbols
in different disjunctive arrangements and they may be distributed
over different columns, in accordance with the basic table for a given
automaton,

A complete set of matrices Ch, C@, CO, .. completely specifies
the operation of the automaton over any desired time period., How-
ever, such a set is not very useful and not really needed because
we can always rederive the entire set of matrices from the start-
ing interconnection matrix. We do this as follows.

To begin with, C) = C, that is, the matrix of path length 1 coin-
cides with the interconnection matrix since, by definition, its ele-
ments are those values p which transform »:to »; over one discrete
moment.

Let us now square the interconnectionmatrix, in accordance with
the following rules.

1. An element C%; of the product matrix (located at the intersec-

tion of the ith row and jth column)is specified, in accordance
with general rules of matrix multiplication, as the sum of the
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products of the elements of the ith row of the first factor by
the elements of the jth column of the second factor., These
products are not commutative; that is,in multiplying the ele~
ments, the positions of the factors cannot be interchanged.
2. Addition signs are replaced by disjunction signs throughout.
3. Multiplication signs define the operation of assigning sym-
bols p.
For example, consider the matrix C for the state diagram of
Fig, 3.7:

Xy %y %3 %y %5 *g

w0 o o0 0 o T
x| 0 0 0 nivVeeVes 0 0
c=" 0 Ps VP2 0 0 0
x| 0 P2 1 0 P3 0
%5 | Pa 0 0 0 P2 3]
Xg B 0 Ps 0 P2 0

and square it in accordance with the above rules:

* X2 *g X4 X %g
1 [p10g P2PsV Pap 0 AR A
Vpspe
%] 0 pipa VRV pipr VetV 0 P1P3V papsV 0
VPapy V pspi V PaPs
xg] O PiPaVpaps  PiP1V PPV PePiVPaPaV 0 0
Ccr— Vp1p2 V P2Pe V paPs
%, | PaPs  PiPs P21V P12 Paf1 VPaDe V PaPz PPy
V PaPs
x| 0203 PiP1 P10 0 Pap1V paP2V PaPaV PapsV
VP2 V p2f:
xg | P2P3 PaPs PsP1VPsp2 Pip1 VPPV P2P2 Paf1
L VPiPs .

We see that C? = C®, that is, matrix C2? is composed of all the
possible paths of Fig, 3.7 whichlead from one circle to another over
two discrete moments. For example, element C12200nsists of pep1V
psp1; thus, paths psp: andpsp;are the only paths over which %; can be
transformed into %, in two moments.

The coincidence of C? and C® in this case is no accident. We see
that C,4% is the product of nonzero elements C,, and Cg,. However,
such nonzero elements in C indicate thateach of the transformations
%1 to % and %s tO %xp requires one discrete moment, that is, that there
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exist % to »e paths which can be traversed in two moments. There-
fore the coincidence found in thisexampleis actually a general rule
which states that the squave oftheintevconnection matvixis the ma-~
trix of all the two-moment paths: C? = C®, By analogy C? = C®, that
is, the cube of the interconnection matrix is the matrix of all the
three-moment paths and, generally, a matrix of all the g-moment
paths is obtained by vaising the intevconnection matvix to the power

of q:
C(d) — CQ_

We now see why we donotneed the set ¢1,C2) ¢, | : all the pos-
sible paths over any number of moments gcan be derived via multi-
plication of the interconnection matrix by itself.

All of the above also pertains to sequential machines. One must
only remember thateach arrow of the state diagram for the s-machine
carries the twosymbolspand?, sothat a transition in the s-machine
is characterized by a pair (pa, As).

The ‘‘cperation of symbol assignment’’ is thenperformedin ac~
cordance with the following rules:

1. (o )‘j) (Prr Xs) = (i )‘j)‘s)r
2. (Pk’ )‘s)ozo(pkr )‘s):O'

If one wants to multiply disjunctions of pairs, one utilizes the dis-
tributive property of the operation of multiplication of disjunctions,
For example,

o M)V (2o A5)] ‘(Ps’ AWV (ps, M) =
== (p1pg> Aah )V (Popgs Ash) V (P1Pss Aaha) V (PaPss Ashg)

As an example, consider the interconnection matrix of the tri-
state s-machine whose state diagram is shown in Fig. 3.11.

* %o *3
M1 O (101! )‘3)V(p2) )\l) O
C=rx, 0 (ps Xo) (ev M) |-
g L(pg, Ay) (pr M) 0

On squaring this matrix, we obtain

%y *g *3
* 0 (Prpr Asha) V (popo, Mhe)  (pap1, Ashi)V
V (201, Aihy)
Cl=ry 1 (o102, Mhs) (P2 Rohy) V (pip1, AiR3) (21, Aohy)
*3 0 (201, Aahg) V (papz, Rsh)V (pipys Aohy)
V(p102, Aohs)
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The very construction of matrix
C?shows that the element C3; repre-
sents the list of all the input (and the
corresponding output) sequences of
length 2 that will transform the /th
state of the s-machine into its jth
state over two discrete moments. Fig. 3,11
Thus, in the case of the s-machine
shown in Fig. 3.11, sequences psp1, p202 and pipe transform the third
state into the second, a transformation accompanied by the appear-
ance of sequences Asks, Azhi Or Aghg at the output,

The matrix C? can again be multiplied by C, using analogous
rules. The only difference is that the multiplication now involves
elements that may contain not only symbol pairs (ps, A¢), but also
pairs of symbol sequences (p:p;, Axh))e Multiplication then means the
operation of assigning symbols, for example:

(g r VM) (o 1)

(P3f5s Meha) (Bas o) == (40504, Pghohs).

In multiplying elements containing disjunction one alsouses the dis-
tributive law.
In our example the matrix C*has the form

%y g *3
2 1019102 MshRa) V [(B10202: Mshohod V (papafa Axdaho) vV [(01p201. Rahohy) v ]
V(020102 MKV (pipipss AahiAg) V (papipr, MAADT W (papapr, MiAgA))
2| (Papifa, AMids)  [(Prpapss Mikaka) V(pifapa, MASR)V [(papany, Rakph)V
V{(PaPapa Aahaha) V (P181p2, MMV V (prpipr, Midohy)]
V (pap1p1, Aohids)]
%3] (P1P1p2 Ahika)  [(p2pana, Ashahe) V (apapas Aahiha) V' [(papipy, Ashshi) vV
V (P102fa, MahaRo) V (p1p1e1s AhiA)] v (pgpapi, RahiR)) v
- V(016281 Aahoh )]

Ci=:

The elements of the matrix C? thus indicate all the input sequences
which can transform one state into another over three discrete mo-
ments, as well as the corresponding output sequences. Continuing
the process of multiplying matrix C by itself, we finally obtain ma-
trix C¢and thus find all the input sequences which transform state x;
into state »; over ¢ moments. *

*There are yet other methods of specifying the operation of an automaton, For example,
Kobrinskiy and Trakhtenbrot [43] employ the ‘‘tree’’ of an automaton for this purpose, but
we shall not use this concept.



84 ELEMENTS OF MATHEMATICAL LOGIC

3.7. ON THE RESTRICTION OF INPUT SEQUENCES

So far, we have assumed that the input symbol sequences may be
random, provided that each of these symbols was contained in the
alphabet {p}. Thus, if the alphabet {p} consists of r symbols, we have
at our disposal r* different sequences of length 4.

However, one frequently deals with problems inwhich one needs
to examine only those symbol sequences which satisfy some special
conditions. Sequences that satisfy such additional special restric-
tions are termed admissible (or allowable, or legitimate), For ex-
ample, we could impose any of the following restrictions:

1. The only admissible sequences are those in which even sub-
scripts of p alternate with odd ones. Under this restriction,
the sequence p7p2010:070603 - .. would be admissible, whereas
the sequence prp204p1p7 - .. would not be.

2. The only admissible sequences are those inwhichno two iden-
tical symbols p are consecutive. In this case, the sequence
p20705p30801 . -. would be admissible, whereas the sequence
020705 P5030808 - - .would not be.

3. The only admissible sequences are those in which p; is not
immediately followed by p;.

The restrictions imposed on sequences are often due to the man-
ner in which the continuous time is divided into discrete intervals.
Thus, if the next discrete moment occurs whenever the input is
changed, then the restriction on the sequences p(f) is that no two
identical symbols may be consecutive, Similar restrictions always
occur in the other cases in which the timing of the system is syn-
chronized with some input ‘“‘event.’’* Thus the restrictions on the
input sequences can be of two kinds:

1. They may be imposed by some characteristic of timing of the
system, in which case only admissible sequences will appear
at the output.

2. They may have no connection with timing, that is, generally
speaking, the s-machine can respond to any input sequences
p(f), but under the operating conditions, only admissible se-
quences do appear at its input. Thisdistinctionis immaterial
to us at this point. There ai'e, however, instances where the
input sequences cannot be arbitrary but must satisfy some
supplementary conditions, We shall discuss this subjectlater.

*We are relying on the reader’s intuition in using the term ‘‘event’’ at this point, but
we shall define it at a later stage.
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In such cases the basic table alone is not sufficient for the
definition of an automaton. Just as it must be supplemented
with conditions defining the clock of the system, so in these

instances it must be supplemented by the specification of a
legitimate input sequence.



4

Abstract Structure and Nets

4.1. THE CONCEPT OF SUBSTITUTION OF
SEQUENTIAL MACHINES

Consider two sequential machines: a machine s, (Fig. 4.1,a},
which transforms symbols p of an alphabet {p} into symbols » of an
alphabet {x}, and a machine s, (Fig. 4.1,b), which transforms sym-
bols n of analphabet {n}into symbolsZ of an alphabet {¢}. Let us also

TN R
a) 1
P = s, A P
- 7 I x
7 4 F -
v 5, —
b)
Fig. 4.1. Fig. 4.2.

introduce the function converters @, and ®;, which perform
n= (Dl (C’ ?)
== D, (, p).
respectively. That is, the converter @, instantaneously and uniquely
matches a symbol n of the alphabet {n} with the symbol pair ¢
and p from the alphabets {{} and {p}, respectively, whereas the con-
verter @, matches a symbol » of the alphabet {»} with the above pair,
Let us couple the converters @, and @, with the sequential ma-
chine s; as illustrated in Fig. 4.2, The resulting system is a new
s-machine that operates on the same alphabets as machine s .
If machines s, and s, are given, it may be possible to select
converters @, and @, such that the resulting system of Fig. 4.2 will
duplicate any result produced by the machine s, If that is possible,

86
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we shall say that the machine s,veplaces the machine s, or, what
is the same thing, that the machine s, substitutes for the machine
Si.

To give a strict definition of these terms, we must first define
what we mean by the statement that a system ‘‘duplicates any re-
sult produced by agiven s-machine.”’ We shall agree that a machine
s substitutes for a machine s,if for each initial state »°® of s, there
exists at least one initial state £ of s, such that, for any input se-
quence of symbols from the alphabet {p}, both the system produced
by coupling s, to appropriate converters @, and @ inthe manner of
Fig. 4.2 and the machine s, will generate the same output sequence
of symbols from the alphabet {x}, starting from Z° and x°, respec-
tively. The fact that the machine s, can be substituted for the ma-
chine s, will be indicated by:

S,=> s,

When we write s;=> s, we mean that the machine s,, appropriately
coupled with appropriate converters @, and ®,, can operate in the
same way as the machine s,, thus replacing it. In this sense, the
system of Fig. 4.2 is also a sequential machine.

The fact that s,=) s, does notnecessarily mean that s,= s,. Our
definition of substitution is based on the complete independence of
the choice of converters and initial states from the sequence of in-
put symbols {p}. Naturally, we could have given a broader definition,
relating the choice of converters and initial states to the input se-
quence. However, we are not concerned with such a broad concept
(although it may be useful in some problems). We can also intro-
duce the concept of relative substitution for an S-machine, if the
set L of admissible input sequences of the machine s, is restricted.

The idea of substitution immediatelyinvolves the following prob-
lem: Given two s-machines $, and s, determine whether s, can
substitute for s,, that is, whether there exist function converters @,
and @, such that the diagram of Fig, 4.2 describes a machine that
substitutes for the machine s,; if the answer is affirmative, con-
struct converters @; and ®;. This problem has a trivial solution
—all that is necessary is to test all the (finitely many) pairs of
converters @, and ®,. If any of these pairs proves ‘‘suitable,’’ then
s will be a substitute for s,;. Obviously, this search method is cum-
bersome and cannot be used in practice., However, the present au-
thors know of no better method.

We shall now leave the generalized system of Fig. 4.2 and shall
consider those of its special cases which are shown in Fig. 4.3. Of
these, the system of Fig. 4.3,b is extremely important. Here, each
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: a) £ A 3
f tp, 7 S, e ?z '—ﬁ
r by L s &
a)
f——)- ?l —Z-» s, -g» ?2 —;‘- /_o_); w] __L. B8 (: (pz _i
b) 9
Fig, 4.3, Fig, 4.4,

of the two converters performs functions of a single variable:

n=0,(p). »=0,(0).

In this special case, the problem formulated above has, in addi-
tion to a trivial solution, the following additional solution: the ma-
chine s; substitutes for the machine s, if the state diagrvam of s,is
supevposable on the state diagvam of s,(that is, is pavt of it) while
presevving the uniqueness of functions ®,(p) and ®:(;). We shall
illustrate this solution by an example.

Let us introduce the concept of substitution for finite automata,
which is analogous to that of substitution for the s-machine: all the
definitions are retained, except that instead of sequential machines
s, and s,, we are given two finite automata 4 and B (Fig. 4.4,a,b),
and the substituting system is that of Fig. 4.4,c which is similar to
that of Fig. 4.3,b.

(The above definitions obviously apply also to the special case of
autonomous automata. However, the definition is simpler in this
case since there are no input sequences and thus there is no need
for an input symbol converter.)

As an example of the substitution of finite automata, let automata
A and B have the state diagrams of Figs, 4.5 and 4.6, respectively.
Then can automaton B, associated in the system of Fig. 4.4, substi-
tute for automaton 4? Converter @, relabels the states of automaton
B (that is, it relabels the circles in its state diagram), while con-
verter @, changes the labels above the arrowsin the state diagram,
(The usual condition of uniqueness must, of course, also be satisfied
in the case of converters @, and @,, that is, different values of the
arguments should not result in the same value of the function.) If
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after two such relabeling operations any part of the state diagram
of automaton B still coincides with the state diagram of automaton
A, then B substitutes for A.

In our example, the diagram
of Fig. 4.5 is superposable on
that part of Fig, 4,6 which con-
sists of circles &, & and {s with

Fig, 4.5. Fig, 4.6,

the associated arrows. Therefore converter x = @;(f) is a device
for relabeling the stateswhich operate inaccordance with Table 4.1.

Table 4,1

o & Ca [ ” Ls

x = 0y (%) * *3 *2

The operation of converter ®@,({)is unspecified in states £, and
Z3 of B, since these states do notoccur during operation of the sys-
tem. If desired, the operation of the converter in these states may
be specified in an arbitrary manner, for instance, as shown in
Table 4.2,

Table 4.2
4 C" ZZ CS Ca Q5
x= 0, (%) il %y 75 *3 *2

Converter @,(f) is now completely defined. Itis seen from Table
4,2 that it satisfies the condition of uniqueness; thatis, a given{
uniquely determines x.
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Let us now discuss converter @, (p). Thecircles »; and % in the
diagram of A (Fig. 4.5) are connected by an arrow bearing the label
o1 . Table 4.2 specifies that circle x, is matched by circle {; in the
state diagram of automaton B (Fig. 4.6), and that circle %, of Fig. 4.5
is matched by circle ¢ in Fig., 4.6. The diagram of B shows that
circles {; and {5 are connected by an arrow labeled ns (that is, auto-
maton B transforms from the state 1 into state 5 upon an input of
n3). Since automaton A transforms from state x; to x upon an input
of p;, converter ®, must place symbol v; into correspondence with
symbol p;.

A similar reasoning may be applied to other -

Table 4.3 portions of automatons 4 and B, andwill finally

result in Table 4.3 for converter ®,. This
means that relationships

O (p)="3, @y {p) ="y,

n=20, ()| 7 ull

hold in every instance; that is, the condition
of uniqueness is satisfied for converter @,.

Now, if the labels above the branches of the state diagram of
Fig. 4.6 were to be changed in accordance with Table 4.3 and the
states were to be renumbered in accordance with Table 4.2, then
the diagram of Fig. 4.6 would correspond exactly to a part of the
diagram of Fig. 4.5.

To sum up, automaton A may be substituted by automaton B.

Still another variant of the same substitution is given by Tables
4.4 and 4.5 (instead of Tables 4.2 and 4.3).

Table 4.4 Table 4.5

=Dy (%) 4 %y % | %3 | % 1=, (| M h

If the diagram of B were that of Fig. 4.7, the diagram of A re-
mained the same (Fig. 4.5), then B could not substitute for A, In-
deed, in this case there are only two possible tables for converter
®,: 4.6 or 4.7. However, the converter @; is not unique in these
two cases since it is required that ®,(p1}) = ns and at the same time
that @, (pi) = me. Substitution is therefore impossible. But thiscon-
clusion only holds for the substitution system of Fig. 4.4,c, because
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Table 4.6 Table 4.7

w== Oy (O | mg | %y | %s ] %3] % =Dy (L) || %g [ %) | %o | %a| %5

such substitution becomes possible with the generalized system of
Fig. 4.2, In that case, the converter ®@; is described by Table 4.6.
The output x depends on only one input {, that is, » = ®2({), but the
output of converter @, is a function of two variables, that is, 1 = @,
(¢, p), and converter U, is described by Table 4.8.

Previously, we referred to ‘‘super-
position of state diagrams.”’” We meant Table 4.8
by this not just the coincidence of the
circles and arrows, and the labels above ¢
them, but also the coincidence of the posi- P
tions of the labels above the arrows. In
other words, we were concerned with sub-
stitution of automata and s-machines for
automata and s-machines of the same type.

We showed in Chapter 3 that an s-
machine of the P - Pr type could, as we expressed it, always be
tvansformed into an s-machine of the P - P type. In using the term
<transformation’> we relied on the reader’s intuitive grasp of this
concept. Now, in the light of the definitionsintroduced in the present
chapter, it is clear that in Chapter 3 we were in fact dealing with
the substitution of s-machines of the P - P type for a machine of
the P - Pr type.

1 & &

2 s M2 M3

P2 T Ui T

4.2. THE ABSTRACT STRUCTURE OF THE AUTOMATON

In Chapter 3 the finite automaton was formally defined as an
operator ‘‘processing’’ a sequence of symbols p into a sequence of
symbols » in such a way that the sequences do not contain contra-
dictory triads. Put in these terms, the abstraction ‘‘finite automa-
ton’’ is represented by the recurrent relationship

Wl = F(x*, p*) for type P - P automata,

= F(”, p"*1) for type P- N automata, (4.1)

where F is any unique function defined on sets {x} and {p}.
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Now let us consider in detail how the description of a finite dy-~
namic system such as an automaton of, for example, the P - P type,
can be reduced to a relationship of the form (4.1).

Assume a finite dynamic system that has n generalized coordi~
nates x;, xo, ..., X, and is subjected to s external (input) effects u,,
us, ..., .. We shall call each suchinputeffect an input fiber. At the
sampling instants* 0, 1, ..., p, ..., each of the generalized coordi-
nates may assume only one of a finite number of values.

Assume coordinate x;can have only one of k;values(i = 1, 2, ..., n).
Similarly, let each input effect u; assume only one of r; values (j =1,
2, ..., s) at these instants. The “motion’’ in the system is subject
to the condition that the value of each coordinate at the instant p + 1
must be uniquely determined by the values of all the coordinates
xi{i=1.2, .., n}) and of all the inputs «; (j =1, 2, ..., s) at the in~
stant p, If that is the case, thenthe motion is described by the sys-
tem of recurrence relations

pil R
XPh =R xB o XP ub, g, u?),

(4.2)

By introducing an n-dimensional vector x with coordinates x,,
X9, ..., X,, an s~dimensional vector # with coordinates uy, 4., ..., us,
and a vector-function f with coordinates fi, fs, ..., fu, relations
(4.2) may be represented in vector form:

_x’-l’%—l:‘f‘l_"»:l’y uﬁ]. (4.3)

In the sampling instants, vector x can assume one of the ¢ = H R;

values, and the vector u, one of the r = Hr, values. Therefore by
j=I

selecting alphabets {x} and {p} consisting of kand r symbols, respec-
tively, and assigning various symbols x to the various vectors x
and symbols p to the vectors u, we obtain, instead of relation (4.3),
a relation of the form of (4.1), inwhich there is a specific function F
on the right-hand side. This function F isderived from the vector-
function f (4.3) and is based on the coding selected for vectors x
and u.

It is now clear that the recurrence relations (4.2) represent a
finite automaton

= F (P o*). (4.4)

*[.e., discrete moments.
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Relations (4.2) illustrate more clearly than (4.4) suchimportant
features of a dynamic system as the number of its degrees of free~
dom, n, as well as the values ofeach of its generalized coordinates
as a function of the state of each input fiber,

Let us agree to call a system of relations such as (4.2) the ab-
stract stvucture of the finite automaton (4.4).

Thus a given abstract structure uniquely defines the correspond-
ing finite automaton; that is, relation (4.4) may be uniquely repro-
duced from (4.2). In this sense (4.2) defines the automaton just as
completely as (4.4) does. Accordingly, the concept of substitution
of automata applies fully to machines defined by relations of type
(4.2).

We shall now show that given a finite automaton A described by
relation of type (4.4), we can specify a great number of abstract
structures which can substitute for this automaton,

Let automaton A be associated with alphabets {x} and {p}, and let

k and r be given. We shall now select numbers n, s, k; (i=1, 2,
.o n)yandr; (j=1,2, ..., 5). The selection of these numbers is re-
stricted by only one condition: satisfaction of the inequalities
n 8§
k<I[lki, r<_H1 r; (4.5)
i= j=
We now introduce n coordinates x;, xs, ... x, (which assume
ky, ks, ... k, values, respectively) and s input fibers w, w,, ..., u;
{(which assume ry, ry, ..., r, values, respectively). We now complete

a table (Table 4.9) in the following manner,

Table 4.9
xP ul xP+1
xP | o | wb+?
Xy xg |- x| ur U ... ] ug Xy | x| fxy
We enter all the possible combinations of values xj, xs,...,x, and
4y, g, ..., U, into the left-hand columns x?,and «? of the fable. The

n N

number of such combinations is H &, irj, and therefore Table 4.9
i=1 = j=

shall contain this number of rows.
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In order to fill in column =x? let us concentrate exclusively on

n
columns x?. We enter in these columns [[ k, different combinations
i=1

of xi, x2. ..., x,. Let us select at random k of these combinations,
which we shall call the basic combinations, assignto them symbols
%y, ¥, ... %, and enter these symbols into the corresponding rows

of the =7 column of Table 4.9. By virtue of inequalities (4.5) it is
possible that Il #, > k; therefore some of the rows in column »» may
P=1

remain blank, If that isthe case, we assign to those combinations of
X1, X2, ..., xn which were not included in the % selected combinations
the used symbols » (the order of assignmentis immaterial), and en~-
ter these symbols into the blank rows of column »?, Now column x?
is completely filled in. We fill column p? in a similar manner, using
combinations of uy, us, ..., u. entered in columns uP.

At the end of this procedure, columns »?, p? contain all the pos-
sible combinations of the symbols %, p,but since the total number of
such combinations is only

n S

kr <M1 & T 7,

i=i je1

some combinations of %, p may recur.

We now return to our automaton A. Using one of its definitions,
for example, its basic table, we fill in column »?*! of Table 4.9.
But we have already associated one of the basic combinations of
Xy, X, ..., X, With each symbol x. We therefore enter in columnsx?+!
the combinations corresponding tox?+! thus completing the table.
This table defines the values of all the x%7' starting from the given
x7 and uf, that is, it defines n functions f; in recurrence relations
(4.2).

If inequalities (4.5) were to be replaced by equations

n S
k= [I1 ky, r=]Ir, (4.6)
=1 j=1

then each pairwise combination of symbols », p would be encountered
only once in columns =?, p? of Table 4.9. If, however,

k< H k, r:]_]Jl_ ’i (4.7)

then Table 4.9 would contain the same rows as in the case in which
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(4.6) holds, and, in addition, some supplementary rows, correspond-
ing to the nonbasic combinations.

If we now attempted to derive an automaton from the abstract
structure of Table 4.9, we would obtain an automaton differing from
the starting one. The state diagram of such a new automaton would
contain all the circles and branches of the diagram of the starting
machine (these would be defined by the rows containing the basic
combinations of x and «), but it would also contain supplementary
circles and branches (corresponding to the nonbasic combinations
of x and ). Since the conditions requiring unique operation of sym-
bol converters are satisfied (by the very construction), then, assum-
ing case (4.7) holds, the abstract structure defines an automaton
that substitutes for the given (starting) automaton.

When we setup the abstract structure,
that is, constructed the system of rela- Table 4.10
tions (4.2) from relation (4.4) with the aid

of Table 4.9, we had no restriction on the :

selection of numbers n, s, k£; and r;, pro- N P1 P2 P3

vided conditions (4.5) were satisfied. It

is obvious now that not only the form of % % %4 g

the functions f; on the right-hand side of

(4.2) but also the number of relationsin- %y g % ”,

volved in that system depend on how these

numbers have been selected. And itis %3 g % 74

because we have this freedom thatwe can

construct a large number of abstract x, xg %, 5

structures, all which substitute for a

given finite automaton 4, %5 %3 %, %y
An important special case is one in

which all the k; and r; equal two, that is, X %, 74 -

all the x and u are logical variables. The

abstract structure in this case is

P,ul, ..., uf], (4.8)

where all the L; arelogical functions. We shall call such an abstract
structure logical or binary. In this case,

n N

I 2 =2"and [] r,=2 (4.9)
1] j2

i=1

If 2 and r are not integral powers of 2 (that is, they are not among
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numbers 2, 4, 8, 16, 32, 64, 128,256, .....), then Eq, (4.6) cannot be
satisfied. To satisfy inequalities (4.5), n and s must be selected in

accordance with the conditions

k< 2" and r < 2%

Thus, for example, if the automation is defined (given) by its basic
table (Table 4.10), thenk =6, r = 3, and we can select, for example,
n = 3, s = 2. The completion of a table such as Table 4.9 for this case

is illustrated in Table 4,11,

Table 4.11
e =t P
¥P~1 pp— 1 4P
X Xo | X3 iy Uy X1 Xy | X3
0 0 0 0 0 4 0 %3 0 1 0
0 0 1 0 0 %o P %o 0 0 1
0 1 0 0 0 %3 Py %g 1 0 1
0 1 1 0 0 %, P %y 1 0 0
1 0 0 0 0 Ly 0 %y 0 1 0
1 0 1 0 0 % P * 0 0 0
1 1 0 0 0 %, P2 *, 0 i 1
1 1 1 0 0 %y Oa %5 1 0 0
0 0 0 0 1 %3 0y %9 0 0 1
0 0 1 0 I %, P2 % 0 0 0
0 1 0 0 | % og %, 0 0 0
0 1 1 0 I %5 £ %3 0 i 0
1 0 0 0 1 % Ps %g 1 0 1
1 0 1 0 1 %y P3 %y 0 1 1
I I 0 0 i %3 p3 %3 4] i 0
1 1 1 0 1 %, 03 Y5 1 0 0
0 ] 0 i 0 %5 03 %y 0 0 1
0 0 1 1 0 %g Ps %g 0 0 1
0 1 0 1 0 % P %3 0 1 0
0 1 I 1 0 % 2 %3 0 1 0
1 0 0 1 0 % 0 %3 0 1 0
1 0 1 1 0 % Py %3 0 1 0
1 1 0 1 0 % Py %3 0 1 0
1 1 1 1 0 % o 73 0 1 0
0 0 0 1 1 *, Py %3 0 1 0
0 0 1 1 1 7 P %3 0 1 0
0 1 0 1 1 %, o1 *3 0 1 0
0 1 1 1 I x P *3 0 1 0
1 0 0 1 1 %y o %3 0 1 0
1 0 1 1 1 % o %q 0 1 0
1 1 0 1 1 % o %3 0 1 0
1 1 1 1 1 % o %3 0 1 0
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We can also develop other binary structures that substitute for
the same automaton; thus, for instance, we can take n =4, s = 3, or
n=23,s=23, and so on.

Table 4.12
x¥ xP+1
uP P o? WP
X Xg X1 Xg
0 0 0 % P 73 0 2
0 1 0 %y 6 %y 0 1
0 2 0 1y 0y %g 1 2
1 0 0 %4 P %5 1 1
1 1 0 %5 P %3 0 2
1 2 0 %6 P %) 0 0
0 0 1 *t P2 Ty 1 0
0 1 ! *3 P2 5 1 1
0 2 1 g po g 0 1
1 0 1 %y 0y %y 0 0
1 1 1 g N %y 0 0
1 2 ] Y 23 %q 0 2
0 0 2 % 3 %g 1 2
0 1 2 %y 23 %y 1 0
0 2 2 %3 Ps 73 0 2
1 0 2 Yy Ps %5 1 1
1 1 2 %5 P3 %y 0 1
1 2 2 6 3 *g Y 1

We shall now show that the same automaton could be replaced by
an abstract structure that is not binary. Suppose, for example, that
n=2 k =2 ky=23,but thats = 1, r;, = 3 asbefore. Thenk = &k, = 6,
and r = r; = 3; that is, Egs. (4.6) are satisfied.

Completing Table 4.9 for this case, we get an abstract structure
of Table 4.12, but this structure is no longer binary.

4.3. NETS

Suppose we have the simplest finite automaton, for which Eq.
(4.1) becomes

Y+l

=p”. (4.10)

In analyzing this automaton we assume that even if the alphabet {x]
contains some symbols that are not contained in {p}, these shall ap-~
pear only at the initial instant, The symbol » produced by such an
automaton at the instant pisidentical tothe input symbol in the pre-
ceding instant p — 1. We shall call this simple automaton a one-instant
delay (or simply delay).
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Returning to our P - Pautomatonandintroducing a new variable
u (alphabet {1} coincides with alphabet{x}), and replace (4.1} by rela-

tions

p? = F 27, o7, (4.11)

Such a relationship was already discussed

I B Ve x in Section 3,3. We shall now treat the first of
relations (4.11) as representing an instan-
‘ taneous converter of the symbols » and p into

symbols i, while the secondrelationdefinesa
delay. Accordingly, relations (4.11) may be
Fig. 4.8. represented by the system of Fig. 4.8, where
the delay is shown as a circle,
L.et us now consider the abstract structure of some automaton,
for instance, of a P~ P automaton, that is, a system of relations of
the form (4.2):

xf“:f[[x{’, XP, oL, XEub,oug, .. ué’],
] (4.12)
i=1 2,..., n
Since each relation of this system, for example,
x{””:fl [x{’, XB, o, XByouf, oup, .., ué’],
may in itself be treated as combining the delay
Y/ 3 .
xpHi=yf
and the function converter
yi=h1X0 Xy s Xpl Uy, Ug, oo, 1y (4.13)

the entire abstract structure (4.12) may be represented by n delays
and n function converters., The input of each delay is connected to
the output of the corresponding converter, The outputs of all the de-
lays are connected to the inputs of each of the converters, In addi-
tion, we feed external effects u to the inputs of all the converters
(Fig, 4.9).*

If we have several abstract structures, we can derive new ab-
stract structures by ‘‘interconnecting’’ the original ones.

*[n Fig. 4.9 and henceforth, circles representdelays and rectangles denote converters,
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u, o]
uy = Ys
u, f] b - Ty 4
u
“5l A <] ? 5 B Rz
t s ’
S celan < BT
fy "’( )——>— l
%
fe—
Ly 728
rig. 4.9. Fig. 4,10,

By “interconnection of automata’’ we mean the identifying of the
output symbols of one automaton with the input symbols of another
automaton., In this sense the output of one automaton can act upon
the input of another one onlyif all the symbols of the output alphabet
of the first automaton are containedin the input of the second. If this
is not the case then ““interconnection’’ of automata can be achieved
only by means of auxiliary converters.

For example, suppose we have two abstract structures: struc-
ture A

X = f(x{, X, o, xfub, uf, uf), i=1,2,34 (4.14)
and structure B

y!]’_'“:cpj (y!’, Ve, y8, of, 0f, o8, @f{), j=1, 2, 3. (4.15)
Let us supplement (4.14) and (4.15) with the equations of three con-

verters:

Uy == (Dl (JC3, Xgs wl)»
v, =Dy (y,, X)), (4.16)
uy == Ly(yy, W)

Here w, and w, are auxiliary input fibers of the converters. Figure

4,10 shows schematically the coupling of structures A and B by
means of these three converters.
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Together, Eqgs. (4.14), (4.15), and (4.16) again give an abstract
structure. Indeed, substituting (4.16) into (4.14) and (4.15), we ob-
tain a system of seven recurrence relations with coordinates (x;, x,,
X3 X4 Y1, yo and ys) and input fibers («s, us, vs, w;and w,), of the same
type which we already know as an ‘‘abstract structure.”’

We shall designate by the term net a system of finite number of
recurrence relations similar to Eq. (4.2) and supplemented by con-
verter equations which express some of the inputs by means of co-
ordinates.

The net itself is an abstract structure. Its coordinates are all
the generalized coordinates of allits component abstract structures.
The input fibers of the net can be both the input fibers of the com-
ponent abstract structures that are notacteduponby converters, as
well as the input fibers of the converters that are not acted upon by
the coordinates of the abstract structures constituting the net.

To obtain a system of relations such as (4.2) for the net, one
uses the converter equations to eliminate the input variables acted
upon by the converters.

Since the net itself is an abstract structure, it substitutes for
some finite automaton. Thus when one uses converters to combine
abstract structuresintonets, one generates new finite automata from
other finite automata.

We shall say that a netis adelay net if it consists only of delays
connected by means of function converters. It follows from previous
discussion that any abstract structure and any net can be repre-
sented by a delay net. This was shown in Fig. 4.9. Such a repre-
sentation is not unique in the sense thatevery delay net may substi-
tute for some automaton, and, as was pointed out in the preceding
section, one can generate many abstract structures which can sub-
stitute for each automaton., This meansthatone can construct many

~O~O— » O
% »Qf[i

Fig, 4.11.
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delay nets to represent the same automaton, such nets differing in
the number of constituent delays and in the alphabets on which the
delays are defined.

Among these delay nets we can distinguish the subclass of loop-
free nets. A delay net is said to be a loopfree net if, starting from
any delay, one moves along the net in the direction of its operation
(along the arrows of the schematic such as Fig. 4.5) and never re-

turns to the starting delay. Figure 4.11 showsa loopfree net, while
Fig. 4,12 presents a net containing loops.

%,

[

Fig. 4.12,

One important loop-free net is that consisting of ¢ series-
connected delays (Fig. 4.13). If the inputs and outputs of the delays
are defined on different alphabets, then one mustinterpose convert-
ers between the delays (Fig. 4.14).

g delays

Fig. 4.13.

¢ delays
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Let us call such anetadelay line, As any other net, a delay line
is a finite automaton, but with an important difference. If the delay
line has an inputu and an output p,, then the symbol n, will not be a
function of the symbol u generated during the preceding sampling in~
stant, but will be defined by the input symbol p appearing ¢ instants
before:

by = fph).
If the input and output symbols of all the delays are defined on

the same alphabet, then output p, will coincide with input u, supplied
¢ instants before:

(L[[;'H/: we.
Let us now returntothe diagram of Fig. 4.8, but let us substitute

its delay by a delay line. We then obtain Fig. 4.15. Then, instead of
relations (4.11), we have

P — F (‘/.p, pﬂ),
' 4.1
BORP: (@.17)
Eliminating u, we have
"‘IH ¢ - F(-"p, Plj), (4'18)

whereas by eliminating » from (4.17) [rather than u], we obtain
pf = F(pf, o7t (4.19)

A delay line can also be connected to the input of a converter.
Then, instead of relations (4.17), we get

) nII I /]
wf == F el 4P),

G (4.20)

AL
or, by climinating ¢ and =,
pl = F(p?, 7). (4.21)

Note that if we had designated by symbols » the state of the en-
tire system, taking into account the outputs of all the delays, then
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g delays

Fig. 4.15.

at the instant p + 1 the » would depend only on the x at the instant p.
However, if we assign the symbol »only to the output of the last de-
lay, we can use this automaton to embody relation (4.19). This is
precisely what we meant when, on introducing the concept of a finite
automaton in Chapter 3, we said that an expression such as (3.5"):

WPH = F («”, o7)

is so general that it includes a finite automaton in which the output
#Pte depends on the inputs x? and p? introduces a finite number (g)
of instants previously.

Now let us return to the relationship between automata and se-
quential machines of the P~ Pand P - Pr types. Consider the sche-
matic of Fig. 4.8, described by Eq. (4.11). As stated in Chapter 3,
Eq. (4.11) describes automata of either the P ~ P or P ~ Pr type,
depending on whether we eliminate variable w or variable x. The
diagram of Fig. 4.8 canrepresenteither case, depending on whether
the output variable is» (P ~ P automaton) or n (P - Pr automaton),
Figures 4.16,a and b shows these two machines.

As pointed out in Chapter 3, a P - P s-machine differs from
P - Pr machine only inthatitcontains a P - P rather than a P - Pr
automaton. Thus such machines may be represented as shown in
Fig. 4.17,a,b.

Let us recall that the P - P machine can always substitute for
a P - Pr machine simply by changing converter . However, the
converse statement, that is, that merely by exchanging the output
converter a P - Pr machine can be made to substitute fora P ~ P
machine, is not true. Now that we can define automata by means of
tables and have introduced diagrams such as Figs, 4.16 and 4.17,
we can illustrate this statement by an example.

Assume an s-machine of the P - Ptype (Fig. 4.17,a) is given by
the tables of converter F (Table4,13)andconverter @ (Table 4.14).
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Table 4.13 Table 4.14
Converter F Converter @
P P
1 P2 3 2 P2 P
’ "

% 73 % Ty %y Ay Ay A,
%g %3 %y %y i Ag A, X3
*g %y % %y %3 b L, Ay
%4 7y Ty 73 %y Ay A, ks

Retaining converter F as is, find a new table for a converter
r=®* (n, p) such that the s-machine Fig. 4.17, b incorporating it
will substitute for the initial s-machine.

Congider, for example, the intersection of the first row and the
first column in the table for converter ® (Table 4.14), where one
finds symbol 7., The corresponding square of Table 4.13 for con-
verter F contains the symbol »;, We shall thus write the symbol 2,
at the intersection of the first column and the third row in the table
of the new converter ®*(Table 4.15): we can complete the remainder
of this table in the same manner.
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Now, however, letus try to repeat the procedure, this time start-
ing with the square locatedin the first column and the second row of
Table 4.14 of the old converter @, Thissquare contains symbol %3,
and the corresponding square of Table 4,13 contains the symbol s
as before.

Thus our new table would have tocon- Table 4.15
tainA;in a square already occupied by sym-
bol 2,. But this means that we would ob-
tain a nonunique converter. Our example
confirms the statement that, in general, a Py Pa 03
P -~ Pr machine cannot substitute for a
P - P machine if the only change intro- %)
duced into the P - Pr machine is that of
the output converter. %y

Now let us return to the relationship
between a finite automaton and a sequen- g Ay
tial machine. We have accumulated suffi~
cient material to define this relationship N
more precisely, by means of the following
theorem, *

Converter ¢*

Theorem. For every sequential machine s there exists a system consisting
of a finite automaton A and an output converter such that, given any
initial state of S and any input sequence to it, there is an initial state of A
such that, at all p > 1, the output sequence of A is a repetition of the output
sequence of S with a delay of one sampling instant. Conversely, for any
system consisting of a finite automaton A and an output converter, there
exists a sequential machine s such that, given an initial state of A and any
input sequence to it, there is an initial state of S such that, at all p>> 0 the
output sequence of S repeats the output sequence of A with a lead of one
sampling instant.

Proof of the first statement. Assume a sequential machine s de-
scribed by equations

W =F(F, "), (4.22)

32 =P (xp’ .gp), (4.2 3)

We shall now construct a net consisting of two finite automata
and define it by equations

yiri=Fi(y?, 2", (4.24)

ZD+1 — PP‘ (4.25)

*Compare this with Theorem 1 of [16].
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and we define the output converter of the net by
7l =Py, 27), (4.26)

where the alphabets {y} and {;} coincide with the alphabets {»} and {A},
respectively; the alphabet {z} differsfrom{p} by one additional sym-
bol zy; thefunctiond in (4.26) coincides with the corresponding func-
tion in (4.23) for all pairs of symbols from alphabets {x} and {p}, but
is indeterminate (or may be defined in any desired way) for z = 2;
the function/in (4.24) coincides with £ in (4.22) for all combinations
of symbols that do not contain z,, but for z,-containing combinations,
Fitu, zy) — y. Equations (4.24) and (4.25) specify the finite automaton
A whose states are coded by the symbol pair (y, z), while Eq. (4.26)
defines the output converter for this automaton. We shall now com-
pare with each initial state »” of S that initial state of automaton A
for which

y‘" = ‘/_“, ZO = Z- (4'27)
When p == 0, it follows from (4.24) that y' = y® = %", Whenp> 1,

the symbol z° cannot be generated, so thatfor the sampling instants
the function /'; in (4.24) can be replaced by /, and

Y =Fur %), p> . (4.28)

Introducing a new variable Y7 = y’+b (p> 0), and using (4.24), we
can write

YPr= F(YP, 4P), p>0, (4.29)

whereby Y0 = y! = «° Equations (4.22) and (4.29) and the initial con-
ditions »(0) = »" coincide, so that for any p > 1

Y7 =+*,
But y”= Y”-', so that

Y=l p>l. (4.30)

Substituting (4.25) and (4.30) into (4.26) and comparing with (4.23),
we get
y'pr:,([)('/,p, p]))::).p“l, r>1,

which proves the first statement of the theorem.
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We shall now prove the second statement. Let the finite automa~
ton 4 be

P = F (P, oP) (4.31)

and its output converter
1P =D ") (4.32)
We shall now compare this automatonwith the sequential machine s:

yPH = F(y?, o), (4.33)
W= Q [F(y”. o), (4.34)

where the alphabets {y} and {x} coincide. We shall match each initial
state of A with an initial state of S, Since Eqgs. (4.31) and (4.33) and
the corresponding initial conditions coincide, we have

y]) — ‘/,‘” (4.35)

for all p > 0. Substituting (4.35) into (4.34) and using (4.31) and
(4.32), we have, for all p >0,

W— (F('/.”, Pp)] = O (+7 1) :Zﬂ+],
q. €. d. Thus the entire theorem is proved.

If one wants to determine what a sequential machine or a finite
automaton ¢“can do,’’ then, by virtue of the above theorem, one need
not examine these machines separately. However, the two abstract
concepts are not equivalent, in the sense thatthe same ‘‘task’’ may
be performed in a sequential machine with a smaller number of
states than in the corresponding automaton. This is important in

cases in which it is desired to minimize the number of such states
(see Chapter 9).

4.4. ABSTRACT AGGREGATES OF AUTOMATA AND
SEQUENTIAL MACHINES

We have proved that an automaton may be replaced by a variety
of abstract structures, and that each abstract structure may itself
be replaced by a great variety of nets. On the other hand, if each
abstract structure is an automaton, then the very concept of a net
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permits us to devise new automata from other automata. This
reasoning leads to the following problem: isitpossible to find such
a set of automata and converters that, by employing any devised
number of automata and converters of this set, one can construct
nets which would substitute for a variety of automata and sequential
machines?

The process of constructing nets by employing only automata and
converters of agiven set will be called the aggregation of finite auto~
mata and sequential machines.

Automata and converters contained in a set are said to be ele-
menls of the set. We shall say thata set is complete if its elements
can be used to construct a net which can substitute for any a priori
given finite automaton or sequential machine.

We have already shown that, given a set of any delay elements
(that is, operating in any alphabets) and any converters, one can
construct a net which will substitute for any given automaton,

Assume a delay element operating in alphabet{u}. If, in addition,
we had some set of elementary converters from which we could con-
struct any converter operating in alphabet {u}, thenwe would have a
complete set.

Thus, for example, one important complete setis that consisting
of a binary delay element (that is, a bistable delay element) plus
elements performing the operations of disjunction, conjunction, and
negation.

Indeed, any automaton may be replaced by an abstract logical
structure, that is, an abstract structure in which all the &2, = 2 and
all the r;=2 (i=1,2, .., n;j=1,2, ..., s). But such an abstract
structure may be represented by a net consisting exclusively of
binary delay elements and logical converters. But since any logical
function may be represented by a conjunction of disjunctive groups,
any logical converter can be constructed of converters performing
disjunction, conjunction, and negation (see Chapter 1 and2). There-
fore, the above set is complete.

Obviously, we would also have a complete set if the latter con-
sisted of the binary delay element plus a converter performing any
logical function (such as a converter performing the Sheffer stroke).

In a similar manner, one can develop complete sets operating in
alphabets containing more than two symbols (for instance, m sym-
bols); the problem then reduces to that of expressing any logical
function of m-valued logic by means of several primitive functions.
Such primitive functions, plus a delay element operatingin the alpha-
bet of m symbols, constitute a complete set,

Chapter 5 will describe the practical embodiments of various
complete sets as well as the construction of finite automata and
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sequential machines based on such sets. However, letus first briefly
consider an important abstract model, which was developedin con-
nection with certain problems in physiology.

4.5. ABSTRACT NEURONS AND MODELS OF
NEURAL NETS

The behavior of nerve cells (neurons) and of nervous systems is
assumed to be representable by abstract (idealized) neurons and
abstract models of neural nets. The McCulloch -~ Pitts neural net
is one of the best known abstractions of this kind.*

The McCulloch=-Pitts neuron is an imaginary logical element
which may exist in only one of two possible states:

Output

Input

Fig. 4.18.

“stimulated’’ and ‘‘not stimulated.’’ A neuron may have any finite
number of inputs, but only one output which may, however, have
any finite number of branches (Fig. 4.18). Eachinput may terminate
in either of two endings: ‘“nhibitory’’ (black dot in Fig. 4.18) or
““simple’” (arrow in Fig. 4.18), The branching output endings of a
neuron may act upon the inputs of other neurons or on their own in-
put. Some of the neuronal inputs may be externally stimulated.
Again, an external stimulus may either stimulate or not stimulate
the input. We can thus form abstract neural nets to simulate nerve
tissues (see Fig. 4.19).

Letf(f) be the number of simple input (‘*~-’’) endings which are
stimulated at the instant{and actupon a given neuron and let g(¢) be
the number of stimulated inhibitory endings (@) which also act upon
this neuron.

The functioning of a neuron (and, consequently, of the net) is de-
termined by the following condition of stimulation: A neuron is
stimulated at the instant{ + = if the following conditions are satis-
fied at the instant ¢:

g@)=0, ft)>r (4.36)

*Developed in 1943 (see [62]), this abstraction has by now lost its value to physiology
because of more recent studies in the properties of neurons.



110 ELEMENTS OF MATHEMATICAL LOGIC

where £ is a givenfinite number, called the threshold of stimulation.
A neuron is not stimulated unless these conditions are met. Thus
the inhibitory ending has ‘‘veto power?’’; that is, even if inequality
(4.36) is satisfied, the output is not stimulated if the input of the
neuron in question is connected to even one inhibitory branch of a
stimulated neuron, *

Fig. 4.19,
If w; is the state of the simple input fibers (i=1, 2, ..., s), v;is
the state of the inhibitory input fibers (j=1, 2, ..., ¢), and x is the

state of the neuron, then the behavior of a McCulloch-Pitts neuron,
such that s = 3, # = 2, ¢ =2 is described by

Xt 1y = {[w; (&) &w, () V [w, (1) & w5 (VY
Ve, (1) & wq (1)) & 0, () & 55 (D). (4.37)

Let us mark off points 0, 1, 21, 31,... onthe time axis and observe
the neurons and neural nets only at suchinstants; that is, let us in-
troduce sampling instants. Instead of0, 1, 21, 31,... weintroducein-
tegers 0, 1, 2, .., p... respectively, to denote the occurrence of
these sampling instants. Then expression (4.37) may be written as

X+ = (wp & wp)V (WP & wh)V (wf & wE)] & vf & vf. (4.38)

Now consider any McCulloch-Pitts abstract neural net consist-
ing of n neurons and having s “free’’ inputs, through which external
effects can be introduced. We shall label the neurons contained in
the net by 1, 2, ..., n and the free input fibers by 1, 2, ..., s; we
shall also denote by x; the state of the ith neuron and by u; the state
of the jth input fiber of the net. Then we can write n equations of
the form (4.38). Eachinput of aneuronof the net is acted upon either

*Frequently, other conditions for the functioning of neurons are specified (see, for ex~
ample, [73}).
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by the ending of one of the other neurons or by an external effect.
Therefore each w or v can be identified with an x or a u; that is, we
can introduce x? or urinto the right-hand sides of expressions (4.38),
to replace w? and v», respectively,

It follows from the foregoing that the McCulloch-Pitts abstract
neural net can be described by the system of relations

1 .
xp+ _-Lt(x{’, Xy ooy XBS U, ub, ..., ug),

4,39
i=1,2,...,n ( )

where L; are logical functions such as (4.38).

Thus, the McCulloch-~Pitts abstract neural net is in effect a net
according to our definition of this term, and is therefore a finite
automaton. But since the right-hand side of (4.39) contains not just
any logical functions but functions of a special type [the (4.38) type],
there arises aquestion: Canwe construct aneural net to correspond
to any given finite automaton operating in the 0, 1, 2, ... (thatis,
0, 1, 27, ...) timing sequence ?

To answer this question, it will be pointedout, first of all, that
a self-simulated neuron with 4 =1 and no inhibiting inputs (Fig.
4,20) is a blocked, or permanently simulated, neuron. Therefore
neurons may have permanently stimulated inputs (Fig. 4.21,a), de-
noted as shown in Fig, 4.21,b, We shall say in this case that the
stimulated input fiber is fixed.

We shall now consider a neuron with
h=1, s=1, and ¢ = 0 (Fig, 4.22), Such a
neuron is described by

xPH = P,

that is, one neuron will produce a delay

Fig. 4.20, Fig. 4,21,

of one sampling instant, By connecting ¢ such neurons in series
(Fig, 4.23), we can produce a delay of ¢ sampling instants.
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Fig., 4.23,

Consider now a neuron for which# =1, s=1, ¢ =1, and fix the
input stimulus (Fig. 4.24). Then the neuronembodies the relationship

xXPHI =P,

that is, the single neuron performs the operation of negation with a
delay of one instant.

A neuron for which A#=1, ¢ =0, and s is any number (Fig.
4,25) is an embodiment of a disjunction of s variables with a delay
of one instant:

X =wlNwp\ ... V@b,

while a neuron with 4 = s (for any s) and ¢ = 0 (Fig. 4.26) is an em-
bodiment of a conjunction of s variables with a delay of one instant.

Fig. 4.24, Fig. 4,25,
If we desire to perform a conjunction of s variables, some of
which are negated, then the negated variables mustbe introduced at

the inhibitory inputs while 4 must equal the number of negated vari-
ables, Thus, for example, the conjunction

xml:w{’&wg&u—!g&@

can be embodied by a single neuron, as shown in Fig. 4.27.
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w,

Ys

W3

A Ws Wy
Fig. 4.26, Fig. 4.27,

Consider now an arbitrary disjunction of conjunctive groups. Let
such a disjunction contain m groups. Then each conjunctive group
may be performed by a single neuron in accordance with Fig. 4.27.
The outputs of these neurons are connected to a neuron which per-
forms the disjunction (Fig. 4.25). Since all the neurons performing
conjunctions ‘“fire’’ during one instant, and since justone additional
instant is required for performing a disjunction, the entire disjunc-
tive form may be performedintwoinstants, that is, in time 2t. Thus,

Fig, 4.28,

Fig. 4.28 shows anet consisting of McCulloch~Pitts neurons and em-
bodying the form

xP+? = (wp & W)V (@) & W)V (W] & wE & W),
Since any logical function may be presented as a disjunction of

conjunctive groups, it can be performed over two sampling instants
by an abstract net consisting of McCulloch-Pitts neurons. Thus any
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logical converter L. may be constructed from McCulloch-Pitts neu~
rons, but, in contrast to our usual assumptions, such a converter
will not be instantaneous, because it will require two sampling in-
stants to finish its operation.

Assume now that the inputs vary
and that the state of the netis observed
at instants 0. 27, 41, ..., With such a
timing, one can construct a net of
McCulloch~Pitts neurons that per-
forms any logical conversion over a
single sampling instant. Also, neurons
may be employed to form a delay ele-
ment for such a ‘“‘doubled’’ timing; to
do this (see Fig. 4.23), two delay ele-
ments are connected in series. Now,
having a logical converter performing
any desired conversion and having a
delay element, we can construct a net
embodying any desired automaton op-

We erating with such a timing,
In Chapter 10 we shall consider
Fig. 4.29. methods for synthesizing automata

operating with any desired ‘‘slow’’
timing, starting from elements operating with ‘‘fast’’ timing, pro-
vided the synchronizing signals for the occurrence of the ¢‘slow?’? tim-
ing are supplied from an outside source. We shall show that to syn-
thesize such systems we needelements capable of producing a delay
for any such externally supplied timing,
To finish the discussion of neural nets, we shall show how such
a delay element may be synthesized from McCulloch-Pitts neurons.
Thus let us consfruct a net (Fig. 4.29) that performs, over time 21,
the function

X0+l = (w] & wf)V (wf & wy),

We combine two such nets into one net with two inputs (¢ and «,), as
shown in Fig. 4.30. The input u is the basic input of the net, while
u; is used for introduction of a synchronizing signal (it is assumed
that the next sampling instant occurs when u, changes from 1 to 0).

Figure 4.31 shows the variation of x and x, for some variations
of v and u,. The value of x coincides with the value of u, but with a
delay of one sampling instant. The net will function correctly pro-
vided signals u, follow each other at intervals not shorter than 4x,
The arrows in Fig. 4.31 bracket intervals 2-.
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Fig. 4.30.
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Fig. 4.3

Thus, having a delay element for any external synchronizing
source, as well as a converter ¢‘firing’’ in the time 21, one can, with
the aid of the methods of Chapter 10, use McCulloch-Pitts neural
nets to embody any automaton (or sequential machine) with any de-
sired timing, provided a single condition is satisfied: the interval
between sampling instants cannot be shorter than 4.
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Technical Embodiment of Finite
Automata and Sequential Machines

5.1. TWO METHODS FOR TECHNICAL REALIZATION OF FINITE
AUTOMATA AND SEQUENTIAL MACHINES

In the preceding chapters we have formally introduced the con-
cepts of ‘‘“finite automaton,’’ ‘‘sequential machines,’’ and ‘“‘abstract
structure.’’ So far, these were presented only as equations or sys-
tems of equations, and we did not deal with the physical nature of
the dynamic systems whose motion they describe. Now we shall
show that the above concepts describe important technical systems,
and we shall introduce techniques for determining the hardware
needed for realizing any given finite automaton or s-machine.

We have shown in Chapter 4 that each finite automaton-or s-
machine may be represented by many abstract structures. But each
abstract structure may be embodied by some practical device that
functions just like this abstract structure. It follows that any finite
automaton can have many technical embodiments, We shall also show
that any given abstract structure of any given automaton may be em-
bodied (realized) by many technical means.

In this chapter we shall consider only embodiments (realiza-
tions) of binary abstract structures; that is, it will be assumed
that the finite automaton is given by a system of relations

xPH = F, [xf, X8, ..., XB, ab, up, ..., ug] (5.1)

(i=1,2,..., n),
where x; (i=1, 2, .., n)andu; (j=1, 2, ..., s)arelogical variables
which can be onlyOorl,andF; (i=1, 2, ..., n)are logical functions,

which also can be only 0 or 1. We also assume that the timing of
the automaton is given, that is, we aregiven the conditions defining
the occurrence of the discrete moments 0, |, 2, ..., p on the con-
tinuous time scale.

116



AGGREGATIVE DESIGN OF FINITE AUTOMATA 17

To produce atechnical device performingrelation (5.1), one must
have logical converters performing the functions F;. We have already
described such devices in Chapter 2. Now,however,we do not want
to perform functions F; themselves, but want to embody relations
(5.1) of which such functions are a part. Thus, we are faced with
the question: What modification must be introduced into the func~
tion converters of Chapter 2 (or with what must these converters
be supplemented), in order to transform them into devices whose
states shall vary intime so as to model the abstract structure (5.1)?

We shall now present two essentially different methods for solv-
ing the above problem.

5.2. AGGREGATIVE DESIGN OF FINITE AUTOMATA
AND SEQUENTIAL MACHINES

We already know that an abstract structure such as (5.1) can be
placed into correspondence with a structural diagram. Such a dia-
gram (for n =3, s =2) is shown in Fig. 5.1, The diagram contains

s input lines (input wiresu,, us, ..., u;) and n output lines (their co-
ordinates are states xi, xs, ... X».). Each of thenlogical converters
performing functions F,, F,, ... F,, respectively, receives signals

from all the n + s lines; the output of the ith converter feeds the
line x; via a one-instant delay element (denoted by a circle in Fig.
5.1), whose output and input are related by

P+l — P
xout xin'

Direct examination shows that such a circuit models precisely
the structure of relations (5.1). To constructatechnical device ac-
cording to this diagram, one must have one-instant delay elements
in addition to the requisite logical converters, Thus in order to
convert a set of elements sufficient for the embodiment of any logi-
cal function into a set of elements sufficientfor the realization of a
finite automaton, one needs only to supplement the first set with a
single element—a one-instant delay element.

Such a set is also sufficient for the construction of any sequen-
tial machine, since the latter differs from an automaton only in
having an output logical converter.

A one-instant delay element must have two inputs—the basic in-
put x;, and an auxiliary {time) input x,. It also must have an output
Xout » The conventional notation for such an element is shown in
Fig. 5.2,* The auxiliary (time) input receives the signals indicating

*One usually omits the input wire x: whenever such an omission does not hinder the
understanding of the operation of the circuit,
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the occurrence of the nextdiscrete mo-~
——H\ wL ment, such signals being supplied to the
automaton from anexternal signal-pro-
£ ducing device (a ‘‘clock” or ‘‘synchro-
nous source?’’),

The delay element operates in the

’_“‘_N i following manner: let x; be the state
of the input to the element at the first

O“‘ f2 discrete moment. Then, after a short

T, T, T4 U U
Fig., 5.1. Fig. 5.2.

time interval t (the specific delay of the delay element), the output
shows x_, = x.

t
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Fig, 5.3.

After this, regardless of what happens at the input, the output
will retain its value until the next discrete moment, when the same
procedure is repeated. The delay element does not react to any
changes occurring at the input during the time interval between the
discrete moments,
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Figure 5.3 shows an example of changes occurring at the input
and output of a one-instant delay element. In this example the syn-
chronizing signals are short pulses, However, the synchronizing
signal often is each change of state of the auxiliary input, which can
also have only two values: it can be either 1 or 0 (Fig. 5.4) or, al-
ternatively, it can only change from state 0 to state 1 (Fig. 5.5).

Consider the construction of a pneumatic one-instant delay ele-
ment. Such an element is based on so-called memory cells. Sche-
matic diagrams of two types of memory cell are shown in Figs, 5.6,a
and b, respectively, where the change of state of the ‘‘time input®’
P, from 0 to 1 serves as the synchronizing signal. A memory cell
consists of two pneumatic relays (see Section2.4). One of these (the
output) is connected so as to perform a ¢‘repetition,’’ maintaining
the output pressure P of the cell equal to pressure P,; the other re-
lay (the input) performs the function of a pneumatic valve, opening
or closing the connection between the chamber where the pressure
P, is established and the input line P,. The operation of the pneu-
matic valve is governed by the pressufe P;; in the cell of the first
type (Fig. 5.6,a) the valveisclosedwhen P, = | and open when P, = 0,
and, conversely, in the cell of the second type (Fig. 5.6,b) it is
closed when P, = 0 and open when P, = |, Because of this arrange-
ment, either the cell output is equal to its input (for the first cell
when P, = 0, and for the second cellwhenP, = 1}, or the output is not
connected with the input andis constant (inthe first cell when P, = |,
and in the second cell whenP; = 0),its value being determined by the
magnitude of the pressure P, in the dead-end chamber.

A memory cell of the first type connected in series with a cell
of the second type constitutes a one-instant delay element (Fig.
5.6,c). This element operates in the following way: at ¢,, when P,
is 1 (the beginning of the nth discrete moment), the first cell ‘‘mem-
orizes?’ the value of the input, that is, P*(t,) = P,({.). In the same
instant (more precisely, at time ¢, + Af, where the increment A7 is
caused by the fact that the working membrane of the second memory
cell must travel a longer path than thatin the first one), the second
memory cell transfers the value remembered by the first cell to the
output of the system: the pressure P(¢,) = P*({,) = P,({») is thus
established at the output of the delay element, After this, as long as
P; =1, there can be no changes in the system, since its state is de~
termined by the fact that throughout all this time the first cell ‘‘re-
members?’ the input value P,(¢,). This means that P(f) = P*(¢{) =
Pi(tn) when tn <! <t., where ¢, is the instantat which P, becomes 0.

At time ¢ (see Fig. 5.6,d) the input to the second memory cell
is P*(t,)=P, (¢, the cell “memorizes” it, and there is thus no
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change in the output of the system, which is still atP(¢,)= P, (¢,);
at time ¢, + Af, the first memory cell starts to operate as a repeater,
Subsequently, as long as P, = 0, the output of this system (that is, the
delay element) will remain unchanged; it can assume a new value
only if, at time £, 11, the control P;(the time input) becomes 1 again,

Thus this pneumatic device performs the function of a one-instant
delay element: its output at the instant of the synchronizing signal
(when P, = 1) becomes equal to the input and then, no matter what
happens at the input, remains unchanged until the following syn-
chronizing signal (compare Fig. 5.6,d with Fig, 5,5).

Figure 5.7 shows an electromechanical embodiment of a one-
instant delay element, which has many conceptual similarities to
the above pneumatic delay element. Again, we have two inputs, X
and X,, where X, is the time input—the change of X, from 0 to 1 being
the synchronizing signal for the delay element. Again the circuit
consists of two series-connected memory cells (/ and 2 in Fig.
5.7,a). The state of the relay coil Y is the output of the element.

The cells memorize by using blocking contacts (contact y* in
cell / and contact y in cell 2), The time input X, acts on the cell via
its associated contacts x, and x, in such a way that when the first
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cell ‘‘memorizes?’ (this will occur at X, = 1), the second cell oper-
ates as a repeater of the first one (Y = Y *), and, conversely, when
the second cell memorizes (atX; = 0), the firstcell repeats the in-
put (Y* = X), Figure 5.7,b shows that this system operates in pre-
cisely the same manner as the previously described pneumatic de-
lay element,

As we stated before, a delay element consisting of two memory
cells can operate correctly only if the theoretically simultaneous
change of state of the cells actually takes place in a certain speci-
fied sequence: thatis, both cells respond initially by remaining in
a state of ‘‘memorizing,’’ and only thendoes one of the cells trans-
form its state into that of a repeater. In a pneumatic element this
is achieved by applying differingback pressures Py; and P, where-
as in the relay switching element this same function is filled by the
specific delay © of relays ¥ and Y*.

Any finite automaton may be embodied by replacing the contacts
x (x1, ..., x) of the delay element circuits (such as that of Fig. 5.7)
with chains of contacts [y, fs ..., fn. Such chains not only incor-
porate the input contacts x,, ..., x;, but also include the contacts
Y, ..., y. of the output relays of the delay elements., This is shown
by the circuitdiagram of the automaton ( Fig. 5.8). Thus the u,, ...,
states of the input fibers of the automaton of Fig., 5.1 correspond to
the x;, ..., x, states of theinput contactsof Fig, 5.8 and the x;, ..., x,
states of the automaton of Fig. 5.1 correspond to state of the relay
coils Yy, ..., Y, of Fig. 5.8, and, finally, the logical converters Fy, ...,
F, of Fig. 5.1 correspond to the chains of contacts [, ..., f» in Fig.
5.8.

Obviously, the one~instant delay element is itself the simplest
finite automaton. If one desires toassemble not merely logical con-
verters but also automata then the set of constituent elements must
include either a one-instantdelayelement or some other elementary
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(nonautonomous) finite automaton, In another widely used method,
one supplements the logical elements with anelementary automaton
which, although it does not permit construction of all conceivable
finite automata, does give many finite automata of practical value.
One such elementary automaton is the complementary flip-flop (an
autonomous automaton). Figure 5.9 shows a gas-operated flip~flop
based on a pneumatic delay element. This flip~-flop (Fig. 5.9,a) is
obtained from a delay element by switching its output into its own
input via a negation element (Fig. 5.9,b). Such a circuit is an au-
tonomous finite automaton operating according to x?+' = x» (here,
pressure P substitutes for x), an operation shown in Fig. 5.9,c.
Figure 5.10 shows an electromechanical flip-flop, also made from
a delay element by switching its output into its own input via a ne-
gation element,
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y I I This technique for the synthesis of auto-
Iy ] I ] mata involves supplementing the set of in-
i‘{ v g* f stantaneously acting logical elements with
> i I some very simple automaton (for example,
A I z, Z, i |
? 9 ? T a one-instant delay element, a flip-flop, and

so on), In addition, in using delayelements,
y” Y this technique assumes the availability of a
synchronous source whose output becomes
the time input of the delay elements. Inmany
Fig. 5.10, cases, however, there is noneed for supple~
menting the logical set with new elements:
one merely utilizes the fact that any real element has an inherent
time lag t; that is, any real element is an elementary automaton
operating in a discrete time scale devised by dividing the time axis
into uniform intervals of length 1. The realization of this fact leads
to the most popular (although somewhat limited) technique for syn-
thesizing automata. This technique is applicable when the synchro-
nizing signal, defining the division of the continuous time into dis-
crete moments, is the change of the input state of the system.

5.3. SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL
MACHINES BY UTILIZING INHERENT DELAYS
AS WELL AS FEEDBACK

Consider again the simplest electromechanical relay, which in
Chapter 2 was assumed to be acting instantaneously. In fact, how=-
ever, relay actuation involves a short time lag t. This means that
even though the output (the state of contacts x) and the input (flow
of current in coil X), are both logical variables (that is, can only
be 0 or 1), their relationship involves a time element. Thus

xt+t = X1,

If time is uniformly divided into a succession of discrete mo-
ments 0, =, 21, 3z, ... and if changes of the input as well as all out-
puts occur only at these moments, we get

P = XP’

that is, the relay*is an elementary automaton of the ‘‘one-instant
time delay’’ type, operating at intervals 1.

*We are referring here to a relay with normally open contacts, If the actuation time
is also taken into account, then a relay with normally closed contacts may be consid-
ered as a circuit consisting of a one-~instant time delay element and an instantaneous ne-
gation element.
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Further, a real contact network synthesized by the methods of
Chapter 2 will not, in fact, perform the ‘‘instantaneous’’ function

x=F(u,, g, ..., Uy,
but will be an automaton
Pl — F[u{’, ug, . u{;]’
operating at times 0, =, 21, 31, ...,
Consider now a relay network such that normally open contacts
of one relay close the circuit of the coil of the succeeding relay
(Fig. 5.11). Then the input of the whole network is the current in

the coil of the first relay, while itsoutput is the closing of the con-
tact x, of the last relay. Such a network can be described by

D+l __ yp » p+1 p
Xn -—Xn:xn—ls xn-lZX,,Al:xﬁ_g,
p+1 p p ptl
X9 :X2 = X1, X1 :le

or
ptn p
Xn __—Xl!

forming a typical loop-free automaton—an n-instants time delay
line,

Zr ""'z Tt l Z, ! Z, n-1
} XI xn
XS it 3 4 T Xl XZ '{9 X

Fig. S5.11. Fig. 5.12.

Let us now construct an automaton with a loop, connecting the
coil of the first relay of this delay line with the contacts of the last
relay; that is, we shall close the delay circuit by means of feedback
(Fig. 5.12). Again, all contacts are normally open. Then, following
some initial state of contacts, this automaton, operating at inter-
vals of 1, will assume and stay in one of two possible stable states
(all contacts closed or all open), If, however, the first relay was
normally closed, while the others were normally open, then we
would have continuous cyclic switching of contacts. The diagram of
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this automaton would show all its states connected into a closed
cycle. In particular, this is how the flip-flop circuit of Fig, 5.13
operates. Considered in this way, any relay switching circuit is an
automaton operating at intervals 1. As we have seen, both loop~
free automata (for example, the delay line shown in Fig, 5.11) and
automata with loops (for example, those of Figs. 5.12 and 5.13) may
be synthesized by this method. However, the only automaton of this
type which makes senseisthe autonomous one, since the assumption
that the input also changes at intervals t would be unrealistic.

It should be pointed out that, in the case of
loop-free autonomous automata, the diagram can
have only one stable point (equilibrium) toward
which the automaton tends whatever the initial
state. In the case of automata with loops, how-
ever (that is, feedback circuits), the diagrams
may show closed cycles, several equilibria, and
s0 on (see Chapter 6), Even although such auto-

Fig. 5.13. mata are sometimes used, they are not of great

value since their cycle timing, that is, the inter-
vals between successive discrete moments, is predetermined by the
delay inherent in the relay, and so is usually very fast.,

The mostly widely used automata are those in which the cycle
timing is governed only by the change of the state of the input, such
changes being infrequent and spaced over longer intervals of time
than those required for the actuation time 1 of the relay., We shall
call such a cycle timing slow, while the cycle timing in which the
time is divided into uniform intervals « shall be known as fast,

Automata with slow timing governed by a change at the input
may be synthesized from automata with fast timing, in which case
we have a transformation of timing (see Chapter 10). To achieve
this, one takes advantage of the factthatit is possible to synthesize
fast, relay-based autonomous automata whose diagrams show sev-
eral stable states. Consider, for example, the simplest relay cir-
cuit (Fig. 5.14), This circuit contains tworelays, whose coils Y, and
Y, are connected in subcircuits which also contain the contacts be-
longing to these relays. Consequently,we have afeedback circuit or
an automaton with loops. In addition, the circuit also includes the
contacts x; and x, of two auxiliary relays X, and X,. These contacts
supply the input signals.

Let the input contacts be fixed in some position, Then, if the
initial state of the remaining contacts is given, the circuit operates
as an autonomous automaton with fast cycle timing, conforming to
the diagram of this automaton., If the diagram does not show any
closed cycles but has several possible equilibria, the system can
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only tend toward one of these. Precisely which equilibrium state
will be attained is determined by the initial state of the system.

Assume that the equilibrium state achieved is A. Then, some
time after 4 has been established, let us change the state of the in-
put contacts; after this, in accordance with previous discussion,
the new state of the input contacts remains fixed. Now, with this
new state of input contacts, the circuit is a new autonomous auto-
maton with a new diagram. This new diagram may also have sev-
eral possible equilibria, but the previous equilibrium A need not
be one of them. If this is the case, we have a new ‘“‘transient pro-
cess’’; that is, the automaton begins operating infast cycle timing,
tending toward a new equilibrium B, whose position is governed both
by the diagram of the new automaton and by the position of the state
A on this diagram,

This process is repeated whenever the state of the input con-
tacts is changed. However, if the input contactsrevert to their first
state sometime later, the system need not necessarily return to
equilibrium A. Indeed, in this case we recreate the initial autono-
mous automaton with the initial diagrams, but now the point B may
be positioned on some branch of the diagram other than that on which
the system was initially (prior to establishment of 4). The result
is that the new state of equilibrium will be other than 4; it may,
for example, be C, in conformance with our assumption that the dia-
gram of our autonomous automaton shows more than one state of
equilibrium,

Let us now imagine that we are recording the states of the in-
puts and outputs of our relay system o seconds after each change of
state of the input contacts. The value of o shall be made so large
that all ‘‘transient processes’’ occurring with fastcycle timing will
have ended and a state of equilibrium attained by the time the read-
ing is taken, However, o« will not be so large that a change in the
state of the input will occur during it. Then, at instants o, we shall
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observe only equilibrium states; whether some state will occur will
depend on the preceding equilibrium state and the state of the inputs;
that is, the finite automaton now embodied by the circuit no longer
operates with fast cycle timing but with a timing which is governed
by the changing of the state of the input.

If the output and perhaps even the input of this automaton, are
fed to a logical output converter, we have a sequential machine with
slow cycle timing.

The circuit really operates with fast timing, but this is imma-
terial since we are interested only in the states occurring after the
transient processes have terminated, and sowe simply neglect these
transient processes, We have thus transformed a fast-cycling auto~
maton into a slow-cycling one. This technique of synthesizing finite
automata and s-machines is, in reality, the one used for systems
based on electromechanical relays, vacuum tubes, semiconductor
triodes or diodes.

We come now to the following problem: can all @ priori defined
automata (or s-machines) operating with a timing governed by the
change of its input states be synthesized via the above technique?
The answer is yes. One methodutilizing this technique is described
in Section 5.4,

A related problem is that of the most economical network, that
is, the network utilizing the above transformation technique to em-
body a given automaton and, at the same time, containing the least
number of relays, contacts and states (or minimizing some other
parameters affecting the cost of the circuit). A general solution for
one such problem is given in Chapter 10.

The above transformation technique is based on the assumption
that the diagrams of the corresponding autonomous automata show
several states of equilibrium. However, this is possible only in the
case of automata with loops. It follows that a fast automaton must
of necessity be one with a loop, which in practice is achieved by
means of feedback, that is, by connecting the relay coils to their
own contacts, In this sense the resulting networks become slow
automata only because of feedback. Relays connected into feedback
circuits are sometimes called intevmediate velays, as distinct from
relays that are employed for the control of input contacts (Zmput
relays) or for picking up the signal resulting in the circuit (output
relays).

Comparing the aggregate method of synthesis of automata with
that based on multiple stable states, we see that the aggregate
method is based on a gpecial element—the one-instant delay ele-
ment—whereas the technique of multiple stable stafes requires no
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other devices than the very same relaysthat are used in the logical
converters, while the spacing of the operation in time is achieved
by means of feedback loops and the special construction of contact
networks.

It is quite obvious that all the elements of an aggregate set, in
particular, its one-instant time delay elements, can themselves be
based on the multiple stable states concept (see the circuit of the
relay-based delay element, Fig. 5.7). However, such elements can
be utilized in the aggregate systems only in conjunction with output
power amplifiers; that is, they must be active,

Relay circuits are frequently designed in such amanner that the
diagrams of the autonomous automata, resulting at all possible states
of the input contacts, are of the specific form shown in Fig. 5.15;
such diagrams show several equilibrium states (where the arrows
issuing from these states lead back to the same states), while all
the remaining, nonequilibirum, states are directly connected by
arrows with equilibrium states. Givensuch acircuit, only one auto-
maton cycle is required for attaining equilibrium; that is, equilib~-
rium is achieved in time 1. Therefore the time « needs to be only
slightly longer than t. In practice, this means that the state of a
slow automaton can be observed almost immediately after a change
of the input. It is, of course, understood, that several relays may
operate simultaneously during this single cycle.

If the actuating time t were exactly
the same for all the relays, then the fact
that several relays are actuated simul-
taneously would cause no complications,
However, in real systems < is not ex-
actly the same for all relays. For this
reason, a system operating with fast
cycling time may change states in a se-
quence different from the one thatitwould
have followed given exactly synchronized
relays. In this case, the type of result-
ing change of state would depend on which
relay is the first actuated, that is, on factors that are random and
usually not controllable. An example of this phenomenon, known as
cvitical vace of relays, is given in Section 5.4. This term empha~
sizes that the operation of the circuit is governed by the relay that
operates fastest. Since one should not permit the operation of a cir-
cuit to depend on random factors, critical competition of relays
must be prevented. To avoid this competition, the circuit embody-
ing a given finite automaton or a sequential machine must satisfy

Fig. 5.15.
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some additional requirements: for example, one requirement may
be that the system shall be transformed from one state to another
during a single ‘‘fast’’ cycle via the operation of a single relay.
Such additional conditions necessitate more complex circuits, and
thus a larger number of constituent elements (relays, contacts).
Circuits satisfying these conditions are called realizations. There
are a number of standard realizations. One of them, proposed by
Huffman, will be described in the next section.

Naturally the competition problem does not apply in cases where
the relays are strictly synchronized. Such a situation exists with
some systems synthesized from magnetic amplifiers and tube ele-
ments, since in such systems this time 1 is externally imposed on
all the elements by the frequency of the alternating current feeding
the system,

5.4. HUFFMAN’'S METHOD AND REALIZATION

The early Huffman paper [170] on relay switching circuits still
does not contain the concept of a sequential machine or a finite auto-
maton, or their equivalents. While citing a number of ways in which
the problem of synthesis of a relay switching network may be spec-
ified Huffman showed that one method is to start from a special
table, which he calls the flow table. Assuming thereafter that the
fiow table is given, Huffman shows how it can be simplified (but
does not show the limits of such a simplification), and then develops
a general method for synthesis of relay switching circuits embody-
ing this fiow table. Huffman’s circuit realizes the given table in its
equilibrium states. But since his paper was not based on the con-
cepts of a finite automaton and a sequential machine, Hoffman ob-
viously could not specify that his method actually involves an s-
machine with fast cycle timing which, in its stable states, realizes
the given s-machine. The latter already has slow cycle timing,
governed by changes in the states of the input.

We shall now develop Huffman’s method, making use of the con-
cepts of finite automaton, sequential machine, and cycle timing
transformation, Assume we are given an S-machine, that is, two
tables: the base table of the finite automaton involved, and the out~
put converter table. We also assume that the cycle timing of the
automaton is governed by change of the states of the input, We want
to synthesize a relay network which, inits stable states will realize
the given S-machine in accordance with the principles stated in
Section 5.3. Thisproblemis solved by Huffman’s method on a simple
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example, but the method is general and may be applied to other
cases in exactly similar manner.

a) The Type of Automaton
or Sequential Machine

Recall that any sequential machine (including any finite automa-~
ton) may be defined by the system ofrelations (see Section 3.4)

p=F(x ph
whel=pP, (5.2)
A= D (x, p),
where
P “‘:{Kp ey Kk}r p:{pl, e Pr}’ )‘:{)\1’ ER] )\l}’

This follows from the fact that sequential machines and automata
defined by

p="F( p)
WPl =p?, (5.3)
A=19 (P" P);

can always be reduced to the form (5.2) by introducing the function
O (w, p)=D[F(x p) p].

The converse is nof true; thatis, a system defined in the form (5.2),
can only occasionally be reduced to (5.3) without a change in the
number of states. In particular, an automaton defined by

P= F(V., P);
WP =P, (5.4)
N = W,
can always be represented by
p=F{x p),
WP+ —pf, (5.5)
A= F( p),
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whereas an automaton given by

p=F( p),
y_p+1:}Ll7’ (5.6)

N
A==+,

cannot be reduced to form (5.3).

In Section 3.4, s-machines definedby (5.2) were called P -P ma-
chines, and s-machines given by (5.3) were named P - Pr machines,
We shall again use this terminology here.

Since the equation system (5.2) is universal, it can be used as a
canonical method for defining finite automata and sequential ma-
chines. System (5.2) finds correspondence in two tables, each with
the arguments x and p. Inorder toemphasize that the arguments are
common to both tables, and also for the sake of conciseness, we
shall treat these two tables as one. Thus the data required for the
synthesis of the relay circuit will be presentedas a combined table
of the automaton and the output converter. The columns of this table
correspond tovarious input states, and the rows to the various states
of the automaton; in accordance with (5.2), the squares of this table
shall contain two symbols: that denoting the state of the automaton,
and that describing the state of the output of the s-machine. The
combined table may be interpreted in the following manner, It may
be assumed that the headings of the rows and columns correspond
to the current states of the automaton and the input (the states at
time p); then the symbols in the squares define the next state of
the automaton (state at time p + 1) and the current state of the out-
put of the s-machine. This is in accord with the representation of
system (5.2) in the form

P == F (2P (7,
M =0 P, P).

Tables 5.1 - 5.5 show how the starting data may be given by
means of combined tables.

Table 5.1 defines an automaton that may be interpreted as being
either of the P - P or the P - Pr type (there is a one-to-one cor-
respondence between 2 and » in all the squares of the table).

Table 5.2 gives an automaton that cammot be of the P - Pr type
(different symbols » may correspond to the same symbol » within a
single column; for example, we have pairs x;A, and x3i; in col-
umn py).
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Table 5.1 Table 5,2
P 4
?1 P2 ] P4 § 1 P2 P3 Pa
% %
N rahg | Toky | Tshg | oM 7 %ahy | 24hy | vaky | %oky
%2 xghy | ks | rdg oy T wahy | ks |k | mds
%3 EZL VI I OV VA B2 N BT x3 ok | orghy | woky | %hy
*q nhg | xhg | vaky | %d 74 mby by [ oaghy gl
i

Table 5.3 defines a sequential machine that can be reduced to
a P - Pr machine (there is aunique relationship between each » and
% within each column; in this particular case there is also a one-to-
one correspondence between » and » in each column).

Table 5.4
\ 1
4
Table 5.3 \ o ’ o2 % S
f ) ) A
” 1 Pa Pa P4 1 Tahy | Xghy | Aahy | Tphy
% wahy |ty | 7ahe | ol "2 xhy |y | ahy kg
¥ EZ9 N 00 VO 3V VI 0 ¥ T3 Toks | ks | %y | %
Ty #ohg ‘ Tahg | Pohy | %ghg %q EAT CRN ST VN Y O Y
%y Pakg x| %ghg | %y a; 3 3 3 2

Tables 5.4 and 5.5 define sequential machines that cannot be re-
duced to the P - Pr type, Table 5,4 differs from Table 5,5 in that
in each of its columns there is a unique relationship between i and
»; that is, each A is always paired with the same « but there is no
overall one-to-one correspondence between x and A.

Tables 5.1 - 5,4 have one common property: in each of them,
the next state of the automaton (symbol x in a square) is uniquely
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Table 5.5 defined by the current states of the
input and output of the s-machine,
Table 5.5 does not follow this rule,
N} 0 ’ 0 | o 0, Huffman’s method may be used
* ! directly where the givencircuitisnot
| wa. | of the form of Table 5.5. In other
words, this method realizes all auto-
| wi | »g,| mata (both those that can and cannot
be reduced to the P - Pr type), all
sequential machines that can be re-
duced to the P - Pr type, and some
sequential machines that cannot be
reduced to the P - Pr type but have
the properties specified in Table 5.4,

oy | whg

%y kg | wghy

b} Development of a Flow Table from a Given Table
for an s-Machine

It is required todevelop a sequential machine defined by its stable
states. The machine is given, in a P - P form, by a basic table,
which is the combined table of the automaton and the converter
(Tabie 5.6). We assume that the next (discrete) sampling instant,
that is, the cycle timing of this ma-

Table 5.6 chine, is governed by the instant of

3 change of its input states, We also

/\ £y P2 P3 Ps assume that the next state of the auto-

= maton is uniquely defined by the cur-

* b | %A p ok L owh | rent states of the input and output of

the s-machine, that is, that there are

% why | %y | %t | %4, | no table columns where oneAis paired

with different »x. Table 5.6 satisfies

% g | wh | %dy | %t | this requirement. Tosolve this prob-

» —— | lem by Huffman’s method, we must

a ’ 3 J 2 ’ 2 } 2 convert this table into a flow fable.
L Do this as follows:

We add to machine Table 5.6 a
bottom row where we enter «;, the number of different output states
(different %) the machine can have atany given ith input (in our case

a1 =3, ag = a3 = o = 2. We then compute s — > a, , where r is the
i=1

number of different input states. In ourcase r =4 and ¢ = a; + a3 +
as; + a4 = 9. After this, we develop Table 5.7 which has the same
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number of columns as the basic Table 5.6, but has ¢ rows, The input
(top) row again contains p, while the extreme left column carries
a sequence of new variables »' = {x;, v.;}; inourcase v =—= {v.;, ..
#,}s Now we fill outthe table. We copy into column p, (beginning with
its first row) the various i (total number a,) from column p, of the
basic table (here these are ki, As, and A)). The sequence in which
these are entered into Table 5.7 is immaterial., Next to these sym-
bols A we copy the symbols x" denoting the given rows of Table 5.7,
These squares correspond to equilibrium states; let us mark them
with rectangles. We fill in the «; squares of column p, in the same
manner, but here the entries do not start from the first row but
from the first blank row (here, row x;). We thus enter pairs w},
and »,., In a similar manner we complete the «; squares of each
ith column,

Now, we find the symbol A in the top row of column p, of Table
5.7 (in our case, this is ;); we find the square containing the same

.

Table 5,7

P "
)\ | } P2 ¢3 Py K

7 s ’ 14 I ”

%y A Ashy %7k %ghy )

’ ’ ’ , , "
%y 9 |23 gk, Tgha %ghy %y
7 ’ ’ ’ s "
*g )\? %d) %ghy Yghy %3
7 7 7 s ’ "
%y %ohy A 2k %ghy %y

’ 7 ’ I "
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7
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symbol in the first column of Table 5.6 and note the x appearing
in that pair (in our case this isx.).* We find the row headed by this
» in the basic table and, retaining the same sequence, copy the sym-
bols 7. from this row into the corresponding blank squares of the
first row of Table 5.7 ( here, 7, 4, and A, respectively, are copied
below py.pg and p,). We proceed in the same manner with all rows
of Table 5.7, and we enter symbols 2 in all its squares. Now we
match each lone % of Table 5.7 with a symbol »"in such a manner that
in each column the A’s are uniquely pairedwith x’; in other words,
we pair the A’s of each column, with the symbols x” enclosed by the
equilibrium state rectangles., Now wehave afull Table 5.7, which is
equivalent to Huffman’s flow table, and represents the table of a
«fast’® sequential machine defined in the P - P form. If the p
and J. variables are sampled only inequilibrium states, this ‘“fast”’
machine will operate exactly as the starting one (Table 5.6).

¢) Abbreviation {Compression) of the Flow Table

If the flow table has one or more identical rows, then this auto-
maton may be replaced by another ‘‘fast” automatonwith a smaller
number of states. We shall illustrate this with Table 5.7.

We introduce the new variable »”, and place it into correspon-
dence with »’, making sure that wherever there are one or more
identical rows in Table 5.7, they correspond to the same x”. This
matching is best done by adding a right-hand side column of x” to
the table of the first «fast”’ automaton. In our particular case,
this column (see Table 5.6) has two identical x” values (in the sixth
and ninth rows), corresponding to identical rows. We then develop
the compressed flow Table 5.8; itcontains the same number of col-
umns as Table 5.7, but only as many rows as there are different
symbols =", and »” replaces »’ throughout, The compressed table
thus obtained defines (in the P - P form) a “fast machine,’’ which,
when sampled only at its states of equilibrium, operates in the same
way as the starting ¢slow’’ machine, but has a minimum number of
states (this last statement will be clarified in Chapter 10). This, in
essence, concludes the synthesis of the sequential machine. All that
remains is to realize the machine by means of a relay circuit.

*In view of the restrictions imposed on the basic table, there is always one matching
n for this A, although the same ® may appear in more than one row of each column,
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Table 5.8
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d) Compilation of the Table of the Relay Network

We encode the states of the ‘“fast’’ automaton in binary notation
(Table 5.9), and do the same for its inputs p (Table 5.10) and out-
puts A {Table 5.11).

We now introduce relays in the same number as there are digits
in the binary coding of a given state., We use two digits to code the
inputs p (Table 5.10) and thus have two input relays. We also have
two output relays, from coding of Table 5.11. The states of the au-
tomaton (Table 5.9) are matched to intermediate relays, of which
there are thus three.

We then rewrite Table 5.8 (utilizing the notations of Tables 5.9 -
5.11) to obtain Table 5,12 (the automaton table) and Table 5.13, the
output converter table.

Now we have logical functions which can be realized by actual
circuits: the codes employed as headings of the rows and the col-
umns of Tables 5.12 and 5.13 give the values of logical variables
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Table 5.9 (the states of the contacts of input and intermediate
relays), whereas the digits in the matrices them-

’_——lw—w selves are the values of the logical functions (cur-

% 000 rents in the coils of the intermediate and output
S relays).
74 ’ 001 To develop an expanded table of logical func-
o tions for our example, let us use x; and x, for the
73 i 010
— Table 5.10 Table 5.11
%y ' 011
g J 100 o1 00 A 00
%g { 101 o2 01 Ay ol
% l 110 03 10 by 10
g ’ 111 ba 11 A, 11
S S I R L |

the states of the contacts of the input relays, y, y» and y; for the
states of the contacts of the intermediate relays,Y,, Y, andY; for
the states of the coils of the intermediate relaysy, and Z, and Z, for
the states of the coils of the output relays. We now obtain Table 5.14.

Table 5.12
States of con-| States of contacts of the input relays o
tacts of the |
intermediate XXy XXy XXy XX}
relays 00 01 10 1
000 000 100 110 101
001 001 011 101 101
010 010 01t 101 101
011 001 011 110 101
100 010 100 101 111
101 000 011 101 101
110 010 011 110 111
111 001 100 110 111
i Ya¥a¥i VitV Y3¥pY, Ya¥qY, Ya¥pY,

The top part of Table 5.14 shows all the possible combinations
of states of contacts xy, %3, y1, y2, and ys. For each column of this table,
there is an entry in Tables 5,12 and 5.13. We then copy into each
of the rows Y,, Yy, Vs Z;, and Z, of thelower part of Table 5.14 the
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Table 5.13
1
States of cone States of contacts of the input relays
tacts of the
intermediate XoX) XpX) X9, Xk,
relays 00 01 10 1
0060 00 01 00 00
001 10 00 10 00
010 01 00 10 00
011 10 00 00 00
100 01 01 10 01
101 00 00 10 00
110 01 00 00 01
111 10 01 00 01
Ys¥a¥s Z,yZ, Z,Z, Z,Z, AYA

numbers contained in the corresponding positions of Tables 5.12
and 5.13, and we thus complete Table 5.14.

Once we have this table of logical functions, we can use any de-
sired method to derive the circuit corresponding to it (see Section
2.3).

e) Huffman'’s Realization of the Circuit

So far we have attempted to design a circuit that would sub-
stitute for a given sequential machine but we have not required a
realization, that is, we did not ensure hazard-free operation. For
example, we did not prevent simultaneous actuation of several re-
lays. Thus, in the example of the preceding section there are con-
ditions under which transition from one equilibrium to another will
be accompanied by simultaneous actuation of several relays. For

example, assume that the automaton is in stateY, =0, Yo = 1,Y3 =0,
with inputs at x; =0,xo=0 (first column, third row, Table 5.12),
Then at a new input x; =1, xo =1 it will go to state Y, =1, Y, =0,

Y; = 1. This transition is accompanied by simultaneous actuation of
all three relays Y,, Y, andYs. If some of the relays are faster than
others, for example, if Y, and Y; are already set to 1 when Y, is still
in the process of being set to 0, the circuit may assume a stable
state Y; =1, Y= 1, Y3 = 1; that is, the automaton may work in an
undesirable fashion because its relays have inherent delays or op-
erate in an improper sequence.

An automaton based on delay elements gives completely hazard-
free operation. It is, however, rather difficult to design the auto-
maton from delay elements when it is required to operate with a
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cycle timing governed by the change of the input. In this case, we
would also need a synchronous source which would respond to all
change at the input, in order to provide a timing signal for the de-
lay elements.

However, the flow table is actually the basic table of a ¢‘fast’’
automaton which corresponds to the initial automaton in the sense
that sampling of its stable states gives a pattern describing the
operation of that initial automaton (which works in a timing gov-~
erned by change of the input). We can therefore designfromita ‘‘fast*’
automaton, corresponding to the initial one, using delay elements,
and thus ensure hazard-free operation. This is easier to accom-
plish, since in this case the construction of the synchronous timing
source is simpler.

The Huffman realization is, in reality, such a procedure, We
design a ‘‘fast’’ automaton network from the flow table, using de-
lay elements based on relays, and we organize a relay switching
synchronous source. Thus the circuit of Huffman’s realization con-
tains an automaton based on delay elements (see Fig. 5.8) with con-
tact networks f; defined by the flow table.

+

| I |

K }f, 7 s

% X, % Y

<

Fig, 5.16,

If the flow table contains m rows, then this part of the circuit
will contain 2s, relays (two relays ineach delay element), where the
number s, of delay elements is equal to the smallest integer satis-
fying the inequality m > 2%.

The contact networks f; are defined by the same logical functions
of the flow table that define the states of the intermediate relays Y;
during the design of the switching network while ignoring hazards.

Figures 5.16 and 5.17 show block diagrams of relay switching
networks corresponding to the automaton synthesized in the example
of the preceding paragraph, The circuit of Fig., 5.16 ignores the
possibility of hazards whereasthatof Fig. 5.17is a Huffman hazard-
free realization. In these diagrams [, f, and fsare the contact net-
works (same for both tables) defined by Table 5.14. These contact
networks may be synthesized from Table 5.14 by any desired method
(for example, Blech’s method described in Section 2.3).
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The contacts v, and x, of Fig. 5.17 govern the delay elements and
belong to a special relay X, at the output of the synchronous source
(clock). Huffman has presented a generalized circuit for such a
source. It is based on the following considerations.

The flow table is so constructed that after a change of its input
and at the end of one ¢‘fast’’ cycle, the corresponding automaton is
in equilibrium; that is, its state remains stable during subsequent

“fagt’’ cycles. If delay elements are used in the circuit, the state
of equilibrium means the equivalence of inputs and outputs in each
delay element, Thus the beginning of a new cycle may be associated
with the instant at which there is aninequality (nonequivalence) be-~
tween the input and output in some delay element (that is, when for
any delay element Y7V Y, = 1), provided that such a nonequivalence
results from a change at the input and occurs in all those delay ele-
ments where it should occur, This condition, with the additional
restriction that the synchronous source must return to its initial
state only when equivalence between inputs and outputs has been
* —oyjo—of o -
b—o —
—oé?,'o—oy,o—
oy 7o ;o

—

l—oy,"0—0y, o—

—oy/5 0—0fy 0

a—
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Fig. 5.18.
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reestablished in the delay elements, leads to the following logic for
the clock:

X, =[0Tv )V vy)V ...
e V)] & [(7 ~ £1) & (55 ~ £2) & (5 ~ £}V )

A relay switching circuit of such aclockat n =3 (to correspond
with our example), is shown in Fig. 5.18. Since the clock adds one
more relay to the 2so,relays already emplioyedin the delay elements,
this Huffman realization is called the (2s, + |) realization.
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Autonomous Finite Automata and
Sequential Machines

6.1. WHAT AUTONOMOUS FINITE AUTOMATA AND
SEQUENTIAL MACHINES “CAN DO”

This and the following chapter will deal with the capabilities of
finite automata and sequential machines. We shall establish what
they ‘‘can do’’ and shall determine what is in principle beyond the
“‘capabilities’’ of any such machine. Inthe presentchapter we shall
determine the capabilities of the autonomous finite automaton.

Recall that a finite automaton is aufonomous if the variable p
under function F is fixed., Recall also that from this automaton,
whose equation is

WP = F(x*, pP),
one can compile r different autonomous automata (see Section 3.7)

WPl F(«%, p,), (6.1)

because p, can coincide with any of the r symbols of alphabet {p}.
The constant p, may be treated as a symbol-parameter.

If x* is given, then by virtue of (6.1) we can find x'. Then, sub-
stituting %! into (6.1), we can determine %?, and so on, Thus, an au-~
tonomous finite automaton started at some initial symbol x° can
generate an infinite sequence of symbols «:

B\ R 4P

The number of symbols in alphabet {x} is finite and equal to 4.
For this reason, the automaton will generate, after a finite number
of time units ¢ (g9 < k), a symbol that has already appeared in the
sequence, for example, the symbol »s in the sequence

12131615'&4%7%6 .

Thus, from the{g + 1)-th time unit onward, the automaton will simply
periodically repeat this symbol sequence (the sequence of our ex-
ample is xorgXghstaXMeistytXetsty, ... Where the recurring sequence is
underlined).

144
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It follows that an autonomous automaton, startedup at any initial
state will, after at mostk time units, periodically repeat a sequence
of symbols » (whoselength does notexceed k). With any other initial
state, this automaton would also periodically repeat a sequence of
symbols » after some time. However, this sequence may not coin-
cide with that generated before.

A special case occurs when the sequence consists of a simple
symbol. This will occur when, for example,

UogXghets - - -
or
AghothgXo « o

A symbol that appears twice in succession in a sequence shall
be called a stable symbol. We shall say that the automaton becomes
stable during the time unit inwhich the stable symbol first appears.

Symbol x; is stable if

v = F (1}, 9,), (6.2)

that is, at p = p.., symbol ; is translated by Eq. (6.1) into itself.

All these statements are illustrated by the diagram of the au-
tonomous automaton. This diagram contains # circles, correspond~
ing to all the possible symbols »x that can be generated. Several
arrows may converge on each circle, but only one may be drawn
from it. For this reason, if we proceed in the direction of the ar-
rows, we are bound to return after no more than k2 steps to one of
the circles previously crossed (the arrows form a cycle, Fig. 6.1),
or, alternatively, we shall arrive to a circle at which the leaving
arrow forms a loop, that is, indicates equilibrium (see Fig. 6.2).

Figure 6.3 shows various diagrams for k2 = 12.

In the case of Fig. 6.3, the cycle involves all the available
circles. Here the machine generates from the outseta periodically

Fig. 6.1. Fig. 6.2,
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recurring sequence consisting of all £ symbols.* The initial state
determines only the order of the symbols in the sequence.

In Fig. 6.3,b the cycle encompasses only five circles; the arrows
drawn from the remaining circles converge on one of the circles of
the cycle. Here the automaton generates a sequence of length 5;
this sequence will be generated after a maximum of one time unit,
regardless of the initial state of the automaton.

For the case of Fig. 6.3,c the maximum number of time units
preceding the generation of the periodic sequence is four,

Figure 6.3,d shows an autonomous automaton that, depending on
its initial state, generates one of three sequences (of lengths 2, 3,
and 5, respectively).

The automaton of Fig. 6.3,e can, depending on its initial state,
either attain equilibrium after a maximum of three time units, or

50
ok

Fig. 6.3.

*In this and the following case we are assuming that it is immaterial what the initial
symbol of the sequence is.



WHAT AUTONOMOUS FINITE AUTOMATA “CAN DO* 147

can start to generate periodic sequence oflength 4 after a maximum
of one time unit.

Finally, Fig. 6.3,f shows an autonomous automaton with three
equilibrium states: depending on its initial state, some equilibrium
is attained in at most two discrete time units.

If we want to synthesize an autonomous automaton generating a
periodic sequence of some given length g and we impose some addi-
tional conditions as to the time preceding the generation of this
sequence, all we need to do is to draw a diagram satisfying these
conditions. This is because the diagram defines the autonomous
automaton uniquely [the basic table can be directly reconstructed
from it (Chapter 3)].

Suppose that we want to generate periodic sequences of lengths
2, 4, and 6. Which of the sequences shall be generated shall be de-
termined by the initial state of the automaton; in no case can the
generation of the sequence begin later than one time unit after start
up.

The minimum k satisfying these conditions is 12, If 2 = 12 (Fig,
6.4), then the appropriate diagram is drawn by joining into cycles
any of two, four, and six circles, If, however, & > 12, for example, if
k =16 (Fig. 6.5), then, to satisfy the conditions, the arrows emerg-
ing from circles not includedin the cycles are directed to any of the
circles of the three cycles.

Fig. 6.4.

Problems involving variation of the parameter ps; are solved in
a similar manner. For each p = p, thereisan autonomous automa-
ton, that is, a diagram. However, all these automata operaté in the
same alphabet {x}. For this reason, the diagrams of all autonomous
automata obtained by varying p. contain the same number & of
circles (nodes). Thus assume as before that the automaton gener-
ates periodic sequences of lengths 2,4, and 6. But now it will be the

parameter p, (pi, p2 or ps) which will determine which of these se-
quences shall be generated, As before, the generation of the sequence
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at any p. shall begin no later than one discrete time unit after start
up of the automaton.

GP~0

Fig. 6.5, Fig. 6.6.

Obviously, # must be at least equal to the length of the longest
given sequence; otherwise it would be impossible to design an au-
tonomous automaton generating that sequence at any p. Now, as-
suming, for example, that & = 6, we constructadiagram for p, = ps
(Fig. 6.6), connecting all the six nodes intoa cycle, Then the graph
for p. = p2 also contains six nodes, but only four of them (any four)
need to be connected into a cycle, The arrows drawn from the re-
maining two circles are therefore made to converge on the nodes
of the cycle (Fig. 6.7).

Finally, only two nodes are connected into a cycle for p. = p,,
while the arrows from the remaining circles are made to converge
on these nodes (Fig. 6.8).

Fig, 6.7. Fig. 6.8.

These three diagrams define the automaton, and its basic table
can be readily derived from them (Table 6.1).
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Now let us proceed to the sequential machine, where the automa-
ton is supplemented by an output converter.* If the automaton
periodically generates a sequence of Table 6.1
symbols x, then the converter also
must periodically generate a sequence F* !
of symbols A of the same length, The | * ™| ¢ P o
sequence of x cannot contain two iden~
tical symbols, but the output sequence
of A may do so. For example, if the
automaton generates the recurrent
sequence xixrxgxsxs, while the con-
verter embodies table >3 *2 * s

%y %3 %y %3

: ‘
F h Ly ‘ %y \ *3 \ Vg *7 Yy Yy ‘ 7. ‘ Ag :
’ !
NN B
Y5 X3 g kg
the sequence )\ i 2, Will periodically \ T
f
recur at the output of the converter. %5 % ,‘ a ‘ %y
! —

If the desired sequence of A is
given, then one synthesizes an s-machine producing this sequence
by first synthesizing an automaton generating any sequence of »x of
the same length as the given sequenceof %, Then, by writing these two
sequences one below the other, we have produced the converter table,

The above discussion has important practical implications.

If a practical device can be considered described by the abstrac-
tion ‘‘autonomous finite automaton,’’ and if the symbols » charac-
terize the possible states of this device, then the device can either
attain equilibrium in a finite time, or it can periodically repeat a
finite sequence of states. It can donothingelse. It also follows that
given any finite number of sequences of states of any finite length,
we can always synthesize an automaton generating any of these se-
" quences by a judicious choice of its initial state. Alternatively, we
can synthesize this automaton by identifying the parameter which
can remain constant throughout the operation and fixing its value
at the very outset.

To show the practical significance of this technically important
conclusion we shall now discuss the synthesis of a bistable abstract
structure substituting for an autonomous sequential machine, after
which we shall generalize our reasoning to other abstract struc-
tures,

*Since 0, is fixed, in an autonomous automaton, ‘‘sequential machine’’ and ‘‘finite
(autonomous) automaton with an output converter’’ mean the same thing,
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6.2. SYNTHESIS OF THE BISTABLE STRUCTURE OF AN
AUTONOMOUS SEQUENTIAL MACHINE

Consider first the case when parameter p = ps cannotbe varied;
that is, we do not wish to synthesize a one-parameter family of fi-
nite automata or sequential machines, but just one such machine.
We formulate the problem as follows: given the number of initial
states which determines the number of possible variants of the op-
eration of the machine; for each of these states we are given a
sequence of 0 and 1 that the machine must generate, starting the
generation no later than one time unit after the beginning of the op-
eration. It is desired to synthesize the bistable structure of the
finite automaton and the bistable (logical) converter satisfying the
given conditions. We must determine not only the logical functions
in the right-hand sides of the equations for the bistable abstract
structure, but also the number 7 of such equations, whereby it is
required to obtain a solutionwith the minimum n. We shall consider
the problem solved if we can synthesize a bistable abstract struc-
ture with a minimum number of equations, and shall forego further
simplification of these equations by means of propositional calculus
to meet optimization criteria.

This problem may be divided into for subprobiems:

1. Determination of the minimal number #.

2. Synthesis of a finite automaton whose output consists of se-

quences of the given length.

3. Synthesis of a bistable abstract structure which can substitute

for this finite automaton,

4. Synthesis of the required output converter,

Consider first the case when we are given only one sequence of
0 and 1 of length g; it is required to generate it periodically (as-
suming that the first output symbol can be any of these symbols)
from any initial state, the s-machine producing this sequence be-
ginning with the second discrete time unit after the start of its op-
eration.

Let us select the smallest » satisfying the inequality

2">q

and consider an automaton having k£ = 27 states. We shall make the
alphabet of its states {»} to coincide with the series of integers {0, 1,
2, ..., 2» —1}. Assume that the diagram of this automaton shows the
first ¢ nodes connected into a cycle; if 2 > ¢, then each of the re-
maining nodes is directly connected (by an arrow) to some node of
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the cycle. For example, let us connect these ‘‘extra’’ nodes with
the node denoted by 0 (Fig. 6.9 shows an example for n =3, g = 5).

Table 6.2
\ %
*
N T
%o {1 y
%y k2%
Ky Y3
Ly %y
Fig. 6.9,
Yy %o
This diagram immediately gives the basic table xs 1
of the autonomous automaton. Thus, we obtain
Table 6.2 for Fig, 6.9. - -
Now let us synthesize the bistable abstract
structure of this automaton. We do this by the , .
~7
method of Section 4.2, by selecting n logical co- °

ordinates x;, x,, ..., x, (each of which may assume

values only from the alphabet {0, 1}), and completing

Table 6.3. The table contains 2” rows andis divided in two parts by
columns headed x?and xr+!,

Column x? is filled from top to bottom with numbers 0, 1, 2, ...,
2n — 1, that is, the subscripts of x in the first column of the basic
Table 6.2, while column =P *! contains the subscripts x from the
second column of that basic table.

Now we fill out the left-hand part of Table 6.3 (columns x?) with
binary representation of numbers contained in column x?. It is con-
venient to use the rule already describedin Chapter 1. Thus the last
column on the right (for xo) is filled with alternating 0 and 1. Col-
umn x; has alternating pairs of 0 and 1, column x;— alternating
quartets of 0 and 1, and so on, Thus the number of 0 and 1 in the
alternating groups doubles in each succeeding column from the right.

We also fill the right part of the table (column x»+') with binary
representation of numbers contained in column »? 1.

Figure 6.4 shows the completion.of the generalized Table 6.3 for
the particular automaton of Fig. 6.9 and Table 6,2.
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Now we turn to the x;, column on the right of Table 6.3 (or 6.4),
and underline all rows where x, = |. We write out a conjunction of
all x, contained in the first such row, putting a negative sign over
those x which are 0 in the same row of the left part of the table. In
the same way, we write out conjunctions for the remaining under-
lined rows.

Table 6.3
1 x[) x/)+l
(\ - ; ,‘/7 .L/l+l_.
5x,,,.l”,‘ X | X t X, x,l‘,{ 'xz x..xo
|
i !
l 0o ... 0 l 0| 00 1 0 0! 01
Lo ...l 010 11 2 0 0 110
I R N I 0|2 3 0 0 11
o t.ov 0 L b1 i3 4alo0 1 {00
’ 0 ‘} 1 0| 0|4 0 0 0 o0]o0
0 ... } 0 1 15 § 0 0 0 0|0
Lo ... 11 L oLe 0 0 01 0|0
I 0 l 1] 1 {7 0 0 0| o0]o
\ - \:""| » ) SO S T R e
Table 6.4
Value of x7” Value of xP+!
P w1 _—
X l x| [ Xp Xy l Xy l X
0 0 0 0 1 0 0 1
0 0 1 1 2 0 1 0
0 1 0 2 3 0 1 1
0 1 1 3 4 1 0 0
1 0 0 4 0 0 0 0
1 0 1 5 0 0 0 0
1 1 0 6 0 0 0 ]
1 1 1 7 0 0 0 0

The conjunctive groups thus obtained are then joined by disjunction
symbols. The full disjunctive form of the conjunctive groups thus
obtained is the right-hand part of the first of the desired relations
of the binary abstract structure. For example, for Table 6.4 this
relationship is

= [ S & X [ S xp o] = X &g (6.3)

We shall now treat the x, column on the right of Table 6.3 (or 6.4)
in an analogous manner and generate the right-hand part of the
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second required relation. For Table 6.4, this becomes
At = [ox & xf & xp)\/[oxf & p & ) == g ~ xp| & 1. (6.4)
For column x,, we obtain
Xt xp & xf & xf (6.5)

and so on, until all the n rows have been examined and all the re-
quired relations of the desired binary abstract structure have been
generated.

Now we synthesize the output converter

y=L(xg X1 --+» Xp_1) (6.6)

in the following manner. The ¢ nodes of the cycle in the diagram of
our autonomous automaton (see Fig. 6.9)are already numbered con-
secutively from 0 tog — 1. We assign the same numbers (from 0 to
g — 1) to the 0 and 1 symbols comprising our given sequence (whose
length is q). Thus, for example, if our given sequence has a length
of 5 and the form 10010, we create the following one-to-one corre-
spondence:

10010
01234

Let us separate the nodes which correspond to the symbol 1 of
the given sequence. In our example, these nodes are 0 and 3, and
they correspond to states xo and xs.

We now compile a conjunction characterizing the values of all
the coordinates of one of the states we separated, for example, x..
To do this we compile a conjunction of all the x; and place a nega-
tion sign over those which are 0 in the row x%. in the left-hand part
of Table 6.3. We form similar conjunctions for all the states that
we have separated, and we join these conjunctions by means of dis-
junction symbols. In our particular example, we separated states
% and x3. The row for %, in Table 6.4 contains only zeros, and thus
we put a negation sign over all three coordinates x,, x; and x,. To
obtain the conjunction

X, & x, & x,.
State s yields (from the fourth row of Table 6.4) the conjunction

Xo& X, & x,.
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Joining these conjunctions, we get the logical function
L (X0 %1, %) = (g & 2, & 1) V/ (% & 0, & %y). (6.7)

It is immediately seen that this logical function equals 1 if and
only if state x; coincides with any of the above-separated states.
that is, when 1 should be the output of the converter. Therefore,
this expression L (xg X1, ... X, _4) does indeed define the desired
functional converter.

(These disjunctive descriptions of the operation of the automaton
and the converter may, of course, be further simplified by the
methods of propositional calculus to meet any criterion of opti-
mality.)

The above binary abstract structure of the autonomous s-machine
is a solution of our problem, and contains the necessary and suffi-
cient number of statesn. Thisnumberis sufficient because we were
able to synthesize the required automaton with this value of n. Itis
necessary because at a smaller # the number of nodes in the dia-
gram would be smaller than g, and therefore even if all the nodes
were connected into a cycle, the number of time units in the period
would be less than g; in that case, only a sequence smaller than ¢
could be generated.

Now let us solve another problem. Assume we are given m dif-
ferent sequences of length ¢; {({=1, 2, ..., m). Among them there
may also be sequences of length 1. We select the smallest n satis-
fying the inequality

i

2> ¥ g, (6.8)

L

u
43

#

If

i=m

2" = E 9
i=1

then the diagram of the automaton canhave precisely m cycles, each
of length ¢; (! = 1,2, ..., m). If, however,

i=m

the diagram will contain nodes notconnectedintothe cycles, and we
shall draw arrows from each of them toone of the nodes of the cycle.
After this, the bistable abstract structure of the automaton and the
output converter are synthesized in precisely the same manner as
in the case when one sequence was generated. In synthesizing the
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converter we write out consecutively
all the givenm sequences and we num-
ber consecutively all the symbols (that ~ p* x A
is, 0 and 1) contained in these se-
quences,

Now let us consider the case when
the controlling parometers of the se-
quential machine ps, can be varied, Fig, 6.10.
that is, when the binary structure

X = [, [xg, XPyo., XE_5ouP, ug, ..., ug], (6.9)
i=0,1,2 ..., n—1,
contains s binary parameters allowing 25 possibilities.

Assume we are given m sequences. It isrequired to construct a
binary abstract structure of an s-machine in accordance with Fig,
6.10, that is, we require a binary structure of the automaton 4{Eq.
(6.9)] and of the converter

y=Lxg Xy, .., Xpoyt Uy My ., U (6.10)

and we want the machine to generate the given m sequences. The
additional requirement is that 7 and s shouldbe minimum. The se-
quence to be generatedis selected by choosing one of the parameters
Uy, Uz, ..., Use

Let us separate the longest of the m given sequences. Lel its
length be gmax, that is, letitcontain gma« symbols. We find the mini-
mum »n and s satisfying the inequalities

2" > Gmaxs (6.11)
2> m. (6.12)

Let us call these values of n and s respectively rnm, and Spin . We
now draw m diagrams, each of which contains 2"min nodes. Then we
number our given sequences consecutively. Inthefirstdiagram, we
connect into a circle as many nodes as there are symbols in the first
sequence, and draw arrows from the ‘‘extra’’ nodes to some node of
the cycle. We do the same in the second diagram, except that now
the cycle contains as many nodes as there are symbols in the second
sequence, and so on. There will be a diagram for all our m se~
quences because, by virtue of (6.11), the number of nodes in each
diagram is at least as large as the number of symbols in any given
sequence.

Now we use the previously described method to develop a table
such as 6.3 for each diagram; that is, we determine the right-hand
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parts in relations

xpit=L [xB, xf, ..., xh i=0,1,..., Bgin— 1, (6.13)

mln]’

for each diagram of the binary abstract structure.
Assume that for the jth diagram (j =1, 2, ..., m) these relations
are

= Ly [ a0 o AL E=0, L ae— 1, (6.14)

and that m relations are defined in this manner,

Now we introduce s.i, binary variables u, (¢ =1, 2, ..., Smm) and
compile a table of all possible combinations of «,. This table
(Table 6.5) is developed in the same manner as the left-hand part of
Table 6.3. Table 6.5 contains 2'mi» rows. The extreme right-hand

“column contains numbers of the first m rows [this is possible since
by virtue of (6.12) the number of rows is not smaller than m].

Table 6.5
[
“x . Number
Usmin-1 | Usmin-2 i ! u, }’ ty of u
! |
0 “ 0 . Y = 0 {
1
; | i | ’
0 ’ 0 | : 0 { 1 9
o | \ S Y B 3
| ;
_ ’ ; |
| [N I | |
! ‘ : ;
] i
! . i L. m ;
i ! t
. j o |
; i ;
I T A 1
. | ; !
1 1 1 L \ 1 | 1 | g

L | |

Returning to relation (6.14) for the jth diagram, we add to the
right-hand parts of all the nu,, relations involved, conjunctions of
those symbols u, for which we have 1 in the jth row of Table 6.5.
Thus we replace (61.4) with a relation

P PP
xXpl =1L, [x], x

14 3
Oy Xh A &tts &t &L & llsy,

(6.15)
i=0, 1,2 ..., fHg— 1.
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By consecutively assuming j=1,2, ..., m, we can write m sys-
tems of relations such as (6.15).

We now combine by a disjunction the right-hand sides of all the
first relations obtained from these m systems, then proceed likewise
with respect to the right-hand sides of the second relations in these
systems, and so on. As a resultweget a single system of relations

T ={La[x8 X K &Y
VAL [x8, &, o xh ] &ULbY
(6.16)
VALim [x8, &,y b 1] & W)
i=0,1,2, ..., ngn— 1,
where 1, (j=1,2, ..., m) denotes the conjunction of all the terms

ugwhich are equal to 1 in the jth row of Table 6.5.

Let us treat all the u, as parameters and let us select them, for
example, in accordance with the third row of Table 6.5. Thenl; =1,
and all remaining U are zero; this means that only the third con-
junctive term will remain in each of relations (6.16). Equation sys-
tem (6.16) then coincides with system (6.14) for j = 3. The diagram
of this system consists of acycle containing as many nodes as there
are symbols (that is, 0 and 1) in the third of our given sequences.

Relations (6.16) are therefore an abstract structure substituting
for a finite automaton from which, by selecting vector Il in accor-
dance with the first m rows of Table 6.5, one can regenerate m dia-
grams of the same type as above, ensuring the generation of m
sequences of given lengths.

In order for these sequences to coincide with the given ones, it
remains to synthesize the output converter. To do this we first
synthesize (by the methods described above) an output converter
for each system of relations (6.14) separately, so that the jth re-
lation (6.14) can generate the jth of the given m sequences.

Let these output converters be

y= Lj(xl’ tr x”mln'l)' (6'17)

Then the desired converter to be added to (6.16) is specified by the
relation

y=[Ly(Xe Xpp - o0y Xy, )& W]V
V[Li(xp X1 s Xngia—1) & U]V -
\/[Lm(xo, Xis ooy x,,mm_l)&um]_
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It can readily be seen that this synthetic concept and procedure
hold not only for a binary abstract structure, but also for any other
structure,

In every case the abstract structure must yield a diagram in
which there are as many modes in a cycle as there are characters
in the given sequence. The transition from diagrams to the struc-
ture is accomplished by means of a table such as 6.3, but the com-
pletion of such a table and the number of its rows are determined by
the particular properties of the synthesized structure, that is, the
alphabet of its symbols,
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Representation of Events in Finite
Automata and Sequential Machines

7.1. STATEMENT OF THE PROBLEM

Chapter 3 introduced the concept of tapes of a finite automaton
(o, » tape, Table 7.1) and of a sequential machine (p, %, ~tape, Table
7.2). Thus, we know that a tape represents the operation of a finite
automaton (or an s-machine) when the input sequence of p*s and the
initial state »° are given. The sequences of p from 0 time to time p
is finite; but since there is no limitation on the operating time of
the automaton, the length of each sequence, even though finite, may
be as long as desired, and the number of possible sequences of p is

Table 7.1
;D:iége l' 0 ” 1 9 1 3 ! 4 T 5 i ] P
ment i i ' — N
! ]
f IR
- | l R T
%o ' i
i | -
Table 7.2
Dis- ]
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ment
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infinite, The automaton (or s-machine), which starts from an initial
state x°, establishes a correspondence between each sequence of p
and some sequence of » (or %, inthe case of an s-machine); that is,
it transforms a sequence of symbols of one alphabet into a sequence
of symbols from another alphabet.

What then are the general rules governing this transformation?

Let K be the set of all possible sequences of », and £ be the set
of all possible sequences of p. The two sets are equipollent. This
means that each sequence from K can be placed in correspondence
with a sequence from E. Now, if such a correspondence is estab-
lished in some arbitrary way, is it possibie to devise a finite auto-
maton embodying this correspondence? Alternatively, isitpossible
to indicate those correspondences between sequences that can be
embodied in a finite automaton, and those that cannot? If there are
correspondences that cannot be embodied in any finite automaton,
can these be separatedfrom those that can? Identical problems arise
with the sequential machines.

These problems can also be formulated inother terms. Assume
a finite automaton with a fixed initial state »°, and consider some
state »* In examining the p, » tape of the automaton, we mark all
instances where »* appears. Then we write out all the sequences of
p (beginning with discrete time 0) that lead to the generation of »*,
Assume that we could analogously process all the conceivable p, x
tapes of the same automaton. Assume also that in a set £ of all
conceivable input sequences of some automaton, we can distinguish
a subset G* of all input sequences that lead to the generation of »*
in our first automaton. We shall then say that the automaton with
initial state »° vepresents the input sequences of subset G* by pro-
ducing the symbol »*at the output. Similarly, an s-machine vepre-
sents input sequences of a subset G* by generating the symbol %*
at the output. Our problem then is: Can any subset of input se-
quences be represented in an automaton or s-machine ? If not, what
are the conditions for representability of a set of input sequences?
What are the properties of representable sets?

To answer these questions we shall first have to formulate the
problem more precisely. Therefore, we shall introduce the term
‘‘event,”’ and define the classification of events,

7.2. EVENTS. REPRESENTATION OF EVENTS

Let us examine the top strip, that is, the p sequence of the tape
of an automaton (or a sequential machine). Letus call this strip the
input tape of the machine (example: Table 7.3).



EVENTS. REPRESENTATION OF EVENTS 161

Table 7.3
Dis;
cxete 0 1 2 3 [ 4 ) 5 ’ 6 ' 7

ment

4

23 4] Ps Pr ‘ 21 1 P12

Let G be the setofall conceivable input tapes of a given automa-
ton. Further, let us agree that there is some criterion for distin-
guishing subset G* from the set G. Whatever this criterion, we shall
say that event G* occuvs whenever (that is, at all the p’s such that)
the input tape of the automaton from time 0 to time p belongs to sub-
set G*,

With time, that is, as p increases, the tape may cease to belong
to subset G*; that is, an unfolding input tape may belong to G* at
some values of p and not belong to G* at other p’s.

Example 1. The event occurs if ps and ps; are consecutive inputs
at sampling instant p and the preceding instant p — 1. For example,
the event occurs at time p if the input tapes are

P3 Ps 3

0 1 2 3 4 p=3
2

P2 P 134 P4 Ps Ps

0 1 2 3 4 5 6 7 8 p=9
3

P4 1 Ps Ps P7 Ps P3 P2 Ps P

0 1 2 3 4 5 6 7 8 9| p=10
4

P3 s P P8 P Ps Pa Ps Pa | s Pa

and it does not occur with, for example, the input tapes

01| p=2
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0 ! 1 ‘ 2 3 ﬁ 4 p=5
6l |
P2 #1 07 P4 @3 s
L
0 1 2 3 4 5 6 7 8 p=9
7
s ‘ 2 I Ps P3 7 l Ps Pa | P24 P4 21
L — '
0 1 2 3 4 5 6 7 8 9| p=10
8 |
P3 fs 3 f5 3 I 25 73 Ps P3| Pa s
!
if the tape is
i - | IR R
ot )‘0‘7‘8;9; 111 3]1415;1617181920...
I Lo 1 ’ ‘ .
P [ b [ ; 1 ;
(“‘@i P:l(izwh‘Psui 7P, .t|f‘ PslPJ [ Po‘IPz‘i"»EFalPs Ps| Pa)- - -
i C ! _ : i

then the event occurs at p = 6, 11, 13, and 20, and it does not occur at

all other p’s.
Example 2.

The event occurs if prior to the sampling instant p

there is at least one ps, p; input sequence. This condition is met by
all the above tapes except 6; therefore, after some initial time, all
these tapes belong to subject G*. Thus tape 2 belongs to G*at p>.5,
tape 3 at p>>3, tape 4 at p >4, and so on,

In other typical formulations, the event occurs if:

Example 3. The input tape contains the sequence p; po p; between
p-3 and p.
Example 4. At least one of the sequences pip2ds, Pz i Ps, OT P3 P2 P1

appears on the tape between p-2 and p.

Example 5. There is no input p, between p-2 and p.

Example 6. No input p; is encountered between p-4 and p unless it
follows ps.

Example 7. Input ps appears at least once prior to p.

Example 8. Inputp; is followed by p; at least once prior to p.

Example 9. There is no p; prior to p.

Example 10. Priorto p, there is no input sequence of three sym-

bols p with odd subscripts after a p with an even subscript.

Example 11.
Example 12.
Example 13.

At p =2, the input is ps.
At p =4, the input is py, ps, Or p2.
At p =2,6,and8theinputisap with an odd subscript.
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Example 14. The input value is divisible by three(e.g., at p = g).

Example 15. p = k.

Note: In this case, the set G*is equal to the set of all tapes of
length .

Example 16. A symbol p with an even subscript is the input at all
p’s whose value is a square of aninteger (e.g., 1, 4, 9, 16, 25, ...).

Example 17. Either ps or py appears at the input whenever the p is
a prime number (e.g., 2, 3, 5, 7, 11, and so on).

In considering the occurrence of events we assumed that there
is someone examining the input tape and deciding whether the se-
quence of inputspappearing on the tape at time p belongs to the given
set G*or not, Now, couldn’t this very task be performed by an auto-
maton or an s-machine? To formulate this question precisely, we
shall introduce the concept of representation of events by an auto-
maton and an s-machine.

Consider the set K of all possible states %, %, ..., »; of a finite
automaton (which atf =0 is in an initial state »°), and select a non-
empty subset M (in particular, M may contain only one state). We
shall say thatithis automaion vepresents a given event G* by states
Jrom set Mif, andonlyif,at 1+ =p+1 it is in a state of set M solely
because of occuvvence of the input event G*at t =p.

If the automaton is associated with an output converter, the latter
can always be so designed that it generates an output of 1 whenx
belongs to M, and a 0 for other . In this case the automaton repre-
sents an event if, and onlyif, it generates an output or 1 at 1—-p+1
solely as a result of an event occurring at ¢ =p.

Similarly, a sequential machine represents anevent by generating
an output symbol 1 at (=p+1 if, and only if, the event occurs at
the input at ¢t =p.

We shall say thataneventG* isrepresentable in a finite automa-
ton if there exists a finite automaton A that represents the event G*

There is animportant consequence of the general theorem proven
in Section 4.3: from the representability (or nonrepresentability)
of an event by an automaton follows its representability (or non-
representability) by a sequential machine. The converse statement
is also true. For this reason, in discussing representability of
events, we need only to consider the case of finite automata,

7.3. OPERATIONS ON SETS OF INPUT SEQUENCES

Regular Events

So far, when speaking of an input tape we meant the top strip of
the tape of the automaton, that is, the sequence of input. symbols
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associated with a discrete time sequence and starting from ¢ = 0.
However, in the first part of this section we shall deal merely with
sequences of input symbols p without in any way associating the be-
ginning and the end of any such sequence with a specific time, We
shall denote specific, finite input sequences by aq, b, ¢, and so on or
ay, as, as, and so on,

Let A and B be sets (finite or infinite) of input sequences, com-
posed of elements a,a,, ... and by, b,, ...respectively. We shall form
new sets from sets A and B by means of three operations,

First operation: union of sets. The set C, containing all se-
quences of set A4 and of set B, will be called the unior (or sum) of
A and B and will be denoted by C = AV B. Thus, for example, if the
set A consists of the four sequences

ap f1 1 Ps 1 P3 P2 ],
ay: 21 “ ¢ ’ ¢3 . s ! P7 ’ [ y
! i e I
]
as Py ] [ {,
I
. S———
I N R | |
a | e l o b | s IO } b
|

and the set B of the two sequences

P |

by: Pr2 |»

then the set C will consist of all the above six sequences; that is,
C1==Qy, C3==0y, C(3==Qq3, C(,=Qqg C5=0b;, Cceq=b,

Second operation: multiplication. From the sequences contained
in sets A and B, we form a new set of sequences via the following
rule: we add to the right-hand side of any sequence of set A, for ex~
ample, a;, any sequence of set B, for example, b;, thus forming a new
sequence ¢, = a;b;. Let us form all possible sequences of this type,
in turn adding to each sequence of A one of the possible sequences
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of B. The new set of sequences C is
cp=uab,;.
It shall be called the product of the sets A and B, and the operation
yielding C is the multiplication of A by B. It is written as
C=A.8.

If, for example, set A consists of the four and set B of the two
sequences of the preceding example, then set C = A- B consists of
the following eight sequences:

co=aiby=|p) | ps | pa| P2l P2| P3| s

Ca=aiby=1{p [ o5 | 03 | P2 | Pr2]"

Cs=aby=|py | ¢ | Ps|Ps | Pr | 01| P2|Ps] 0!

Co=ayby=|p1 | pr | os |05 |Pr ] P |Pr2]s

cs=ashy = | o, | pr | 2| Ps | Ps |,

Cg=ashy =1 p1 | i || piz |,

C;=aby =) py | o1 | Ps|Ps | P | Ps|Ps | 0o ! Ps) Pa Ps 11

P3

Co==sby = | Po | 01 | P4 | Os | P1 | Ps | Po | P2 | P8 | Paz |-

Third operation: iferation. The first two operations were binary;
that is, a new set C was formed from two sets A and B. The third
operation is unary; thatis, it forms a new set C from some single
set.

Consider, for example, set B, and select a sequence from it. Then
add to its right side any sequence from the same set B (it may also
be the first sequence itself), Then addtothis new sequence another
sequence from set B, and so on, any (finite) number of times.



166 ELEMENTS OF MATHEMATICAL LOGIC

This process of adding sequences from set B one after the other
may be interrupted at any point, in particular after the first step,
that is, after selection of the first sequence from B. At any time
during this process one can select any sequence from B, including
any of those already utilized before.

In forming all possible new sequences from sequences belonging
to B, that is, in running through all the possibilities of attaching one
sequence of B to another sequence from B, and interrupting this
process at every conceivable finite step, we form a new set of se-
quences C. If we now add to set C an ‘‘empty’’* sequence A (con-
taining no symbols), we shall obtain set C’/, which is known as the
ittevation of B, and is written as

C' =58

Even if set B is finite, set C’ = B* is infinite. Thus in our ex-
ample set B consisted of two elements

by &) f3 fs s

byt P12

The elements of the infinite set C’ = B* are, for example, the se-
quences

¢ = A (‘‘empty’’ sequence),
¢y = by P2 P Po §»
¢y = by e s
€ = byby P2 | P | P | P2 | b3 f % |»
L |
¢y =bbby: P2 s 6 P2 P3 ’ 6 ! P2 P3 Pe |,
¢5 = byby: 2 ] 4 Pre §>»

*Multiplication of any sequence a by an ‘“‘empty’” sequence A yields a: ¢ == Aa= qa.
Introduction of ‘‘empty’’ sequences is convenient for writing of regular expressions (see
below, Example 2),
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Cs == byby: Pi2 P2 P3 Ps i.
¢; = byboby: Prz || P12z || P2 |,
Cg == byb,by: P12 P2 P3 Pe Piz |

€y = bobybyby: Piz || Pr2 | P2 P2 Pa Pe

€1p == bybrbyby: Pie P2 P3 Ps P12 P2 P3 Ps

and so on,

We now see the relationship between multiplication and iteration:
iteration is the result of union of all the sets obtained by multiplying
set B by itself some (finite) number of times, Accordingly, iteration
may be represented as an ‘‘infinite series’’*

B*=AVBV(B-B)\((B-B)- B)\V(((B-B)-B)-B)V ...

The new sets generated from A and B can also be treated as ini-
tial sets: they can be operated upon to form new sets, and so on.
Even if the initial sets are finite (andeven if each contains only one
sequence consisting of one symbol), one iteration operation will
produce an infinite new set.

Let us introduce a universal set [E, containing some input se-
quence of some (finite) length.

If the set A is a set of sequences containing only one symbol p,
that is, if it is assumedthata, = py, a2 = pa, ..., @ = p, then the uni-
versal set £ can be obtained from the elements of 4 by adding these
one after another in any desired number and in any desired order,
that is,

*These three operations just discussed were first introduced by Kleene [42]. Our ex-
position differs from that of Kleene in two respects: 1) Instead of the unary operation of
iteration, Kleene uses the binary operation C = A% B, whichmay be expressed by means
of our three operations: 4 ¥ B = Ay A+ B* 2) In contrast to Kleene, we add sequences
during multiplication and iteration on the right- and not the left-hand side,
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In the following we shall call basic* a) any sets consisting of
one input sequence of finite length (a, b, ¢, ...) and b) the universal
set E.

We shall call a regulay sef of input sequences:

1) any basic set;

2) any set of sequences that may be formedfrom the basic ones
by using union of sets, multiplication, or iteration over a finite
number of times.

Regular sets, of which a few examplesfollow,will be denoted by

R.
Example 1.
R=[(aVb)Vc].
In this case the regular set is the union of the three basic se-
quences.

Example 2.

R=1b-(ay].

The regular set is the set of all sequences starting with &, fol-
lowed only by element (sequence) a, whichmay be repeated any num-
ber of times. For example:

b, ba, baa, baaa, ... .

Note that because the definition of (a)* includes empty sequence
A, set R also contains symbol & by itself.
Example 3.

R=={l(aVb)y]c}.

This set contains all sequences consisting of sequences a and &
repeated any desired number of times and in any order, and ter-
minating in sequence ¢. For example:

¢, abc, bac, aabe, baabe, baaaabbe
and so on.

*It should be pointed out that it would be logical to treat as basic sequences not those of
finite length but sequences of length l: a, =yp,, @; = py ..., containing only one symbol,
Indeed, we can obtain finite sequences from these merely by multiplication, However, in
proving Kleene's theorems, we shall find that basic sequences of finite length are more
convenient. Later, in Chapter 8, we shall give another proof of Kleene's theorems, and
there we shall use basic sequences containing only one symbol,
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Example 4.
R=(E-a).

Here R is the set of all sequencesterminating in sequence a.
Example 5.

R=\(E-a)-b].

This set contains all sequences terminating ina sequence of se~
quences a and b.
Example 6.

R=1|a-E)-(c-E)bl.

In this case R contains all sequences startingwith o, terminating
in sequence b, and containing sequence ¢. somewhere in between.

Expressions such as in the examples, that is, formed from the
basic sequences (g, b, ¢, ... and E) connected by the signs for union
of sets, multiplication, and iteration (V, -, and *), shall be called
regular expressions.

In regular expressions, each sign for an operation may be used
only with a pair (in binary operations) or a single basic element (in
iteration), or with parentheses (brackets) containing the result of
such an operation. For this reason, a regular expression may con-
tain ‘‘parentheses within brackets’’ (see examples above).

The highest number of ¢‘parentheses (brackets)within brackets’’
in a regular expression (counting the external brackets)is known as
the depth of the regular expression.* In the above examples the depth
is equal to 1 only in Example 4;it is 2 in Examples 1, 2, and 5, and
3 in Examples 3 and 6.

We shall say that the depth of a regular expression is zero if it
contains no operations, for example, R =a, R=5, R=E, andsoon.

Now, the same regular set of input sequences may be represented
by several different regular expressions. For example, expressions

R=[a-b)-(c-d)] and R={[(a-b)-¢]-d},
certainly describe the same set, but they are of different depth. For

*The operations \/, -, and * could be used as the basis for algebraic operations on
sets of input sequences. Inparticular, we could obtainidentities, for example: (E- B)* = EB
(where B is an arbitrarily given set), which would enable us to simplify regular expres-
sions. However, we shall not need such an algebra in this book,
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this reason depth relates to a specific regular expression rather
than to a regular set.

Let us also point out that a subset of a regular set of input se-
quences may not necessarily be regular, This follows from the
simple fact that a universal set is regular by definition, whereas
irregular sets do exist (for an example of an irregular set, see
Section 7.6).

The reader will recall that the sequences treated so far in this
section did not carry a number identifying the discrete time at which
they appeared at the input.

Let us now consider a set S of such sequences and identify each
element of this set with a number describing ¢, We start with ¢ = 0.
Then we obtain a set of input tapes from a set of input sequences.
Thus, for example, a set consisting of the three input sequences

1:'[)5 Plz!(’aé?ll(h P fo
7

P2 ' Ps 143

P2 P1 P2

Dis
crete 0 1 2 3 4 5 6
mo-
ment
P Pt Ps P12 P3 1 P4 Ps
Disi “
crete
mo | 0 1 2
ment_|
\
? i, 02 75 3
DIS;' |
gg_e 0 1 2 3 4 5 6 7 8
ment
\
? \‘. P2 3 123 ?s ?6 P P2 Ps P
if

A set of input tapes formed by such a method from a regular set
of input sequences will be called a vegulay set of input tapes. We
shall associate with eachregular setofinput tapes the same regular
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expression that describes the corresponding regular set of input
sequences.

We can now proceed to the classification of events at the input
of the automaton.

An input event of the automaton is said to be vegulav if the set
of input tapes (each examined completely fromt =0 tot = p) defining
the occurence of the event is a vegular set,

Among regular events we may distinguish a subclass of events
that are described by a regular expression

R=E-A,

where A is any set of finite input sequences containing not more
than ¢ symbols. Such a regular event is known as a specific event
of length g or simply a specific event. With a specific event, one

need not examine the entire input tape from t-=0 to t = p in order
to specify it: one merely looks over a length g of the ¢‘tail end’’ of
the tape, corresponding to t= p, p—1, p—2, ..., p—¢g. One can

visualize this process as one in which the input tape lies under a
transparent runner (similar to hairline-carrying runner of a slide
rule) through which one can observe only some number g of tape
positions. With each discrete instant the runner is displaced one
position to the right, so that the extreme right position seen through
the runner always corresponds to t=p.

Specific events are distinguished by the fact thatwe can so select
the runner (a specific one for each specific event) that at any time p
the occurrence or nonoccurrence of an event isindicated simply by
those positions on the input tape that canbe seen through that runner.

7.4. REPRESENTABILITY OF REGULAR EVENTS

We can now formulate and prove the following fundamental theor-
ems.

Kleene’s fivst theovem, Assuming a suitable initial state of the
automaton, any vegulav event can be vepresented in a finite auto-
wmaton equipped with an output convevtev by genevation of 1 at the
output of the converter,

We shall prove this theorem by showing one of the possible
methods for synthesizing an automaton representingaregular event
defined by an arbitrarily chosen regular expression,*

*Another proof of this theorem is given in Chapter 8 in connection with the descrip-
tion of Glushkov’s method.
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We shall now introduce auxiliary automaia withoutputconvert-
ers (the converter output may only be 0 or 1) having, in addition to
input p, auxiliary inputs for symbols « from the alphabet {0, 1},*

Assume thataregular set of input sequences R is given. We shall
say that an event R, occurs at the input of the auxiliary automaton
at time p if there exists a time ¢ (0 <{<p) such that:

1) the symbol o = | appears at the auxiliary input at ¢; and

2) the sequence of symbols p that appear between times ¢ and p
belongs to R.

For example, let the given set R include the three sequences

P1PoP3s PaPep and Ps.

Then, given the input tape of our auxiliary automaton (Table 7.4),
the event R, will only occur at times 3, 5, 7, 14, and 18.

We shall say that the generation of symbol 1 at the output of the
converter for the auxiliary automaton represents the event R, if, and
only if, the event R, occurs at the input of this automaton.

Table 7.4

moment

Discrete Oll 2 3‘415‘617 8 9’1011 12l13[14 1516 17[18

4 21 Ps| Pai Pa P3| PsiPa]P2|t

input

g PP TP

Now let us imagine that there is an autonomous automaton with
an output alphabet {0, 1} and that the output of this automaton coin-
cides with the wire « of the auxiliary automaton (Fig. 7.1). The
whole network so obtained constitutes an automaton with a single
input p. Further, let the autonomous automaton generate an output
of @ =1 at time zero, and « = 0 at all subsequent times. Then our
network will represent the event R by generating an output of 1,

Such an autonomous automaton can, indeed, be synthesized: this
may be, for example, a binary delay element whose input is always
zero, while its initial state is 1, Therefore, if we can show that an
auxiliary automaton representing the event R, can be synthesized

*In other words, the input symbols of such an automaton are symbol pairs {p, |} or
{0, 0).
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regardless of the type of regular o —————————— .
event R, then we shall have proven £ | i
the existence of an automaton repre- “r-z' A ? :
senting ‘any r('agular‘ event R. Our L————\—A—u;ﬂ—i;r;————J
proof will be inductive and be based automaton
on the depth of the regular expression

_ . Autonomous
defining the regular event R, being automaton
represented, We shall show first a
way of representing all regular events Fig. 7.1,

R, with a zero depth of the defining
regular expression R. Then we shall prove that if a regular event
R, defined by a regular expression R of arbitrary depth v can be
represented, then any regular event R, defined by a regular expres-
sion R of depth v + | can also be represented.

Fivst inductive step, Recall that regular expressions of depth
zero are simply symbols corresponding to the given input sequences

a, b, ¢, ..., as well as the symbol E, corresponding to the universal
set of input sequences.
Representation of the event R, de-
noted by symbol E means devising an L
automaton with an output of 1 maintained | \V L5
from thefirstinstance whena = lregard- > detay 2
less of what the input sequence may be.
Such an automaton may be synthesized Fig. 7.2.

from, among others, a binary delay unit
that is in its zero state at ¢+ =0. The input to this unit, via a dis-
junction element, is a symbol « and anoutput symbol* (Fig. 7.2.).

Let us now construct an automaton representing the event R,
when the set R contains only one input sequence of finite length ¢.
This machine consists of two delay lines (each with ¢ delay units)
and a symbol converter (Fig., 7.3). Thefirst (main) delay line oper-
ates in alphabet {p}, and the second (auxiliary) in binary alphabet {a}.
The converter output is 1if, and onlyif, the symbols p at the outputs
of all the delay units of the main line form one given sequence of
length g, countingfrom the end of the delay line toward its beginning,
The initial state of the delay units in the main line is immaterial,
but all such units in the auxiliary line must be in state zero. The
output of the automaton is a conjunction of the outputs of the con-
verter and the auxiliary delay line,

The output will be 1if, and onlyif: 1) at ¢ discrete instants prior
to the sampling instant p there is an input of 1 ato (and therefore

*To make this automaton conform to our other automata, we can assume that it also
has an input p, but that its output does not depend on p,
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@
/0
_--__q: Output
S ~ & ——iﬂl
¢ delay units
OO0 O

VT
g delay units

Fig., 7.3.

the auxiliary line has an output of 1 at ¢ =p) and 2) there is an in-
put of the given sequence of symbols during the g discrete instants
preceding p (and therefore there is aconverteroutput of 1 at ¢ =p).
It is seen from Fig. 7.3 that there cannot be an output of 1 until ¢
discrete instants after ¢ = 0 (since at: — 0 all delay units in the aux-
iliary line are in state zero). It follows from this that the states of
the delay units in the mainline donot affect the output of the system
at t = p; that is, ginstantsafter( =0, the states of these delay units
are determined only by the inputs.

This completes the first part of our proof. That is, we showed
that the system of Fig. 7.3 represents an event R, where R is any
regular expression of depth zero. We now proceed to the second
part of the proof.

Induction, We shall now prove that if there exist auxiliary auto-
mata that represent events R, specified by any desired regular ex~
pressions of depth v (v> 0), thenwe can synthesize an automaton that
will represent the event R specified by any desired regular expres-
sion of depth v + 1.

From the definition of the concept ‘‘depth of a regular expres-
sion’’ it follows that any regular expression of depth v + | is obtained
from one or two regular expressions of depth v via a single multi-
plication, iteration, or union of sets.

In this connection, and in order to complete the induction, it
must be proved that if events R,, specified by regular expressions
R, and R,, are representable, then events R,, specified by expres-
sions

(R, Ry,
(Rl - R?)y
(R) or R=(R))

I

R
R
R

I

are also representable.

Let us consider these three operations separately. Forthe sake
of brevity and wherever there is no risk of ambiguity, we shall de-
note the regular expression, the event corresponding to it, and the
automaton representing the event R, by the same letter R,
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Union of sets. An automaton representing a union

R=(RVRy),

is obtained from two automata, respectively representing R, and R,.
This is done by connecting their inputs and feeding their outputs to
a common disjunction element (Fig, 7.4).

Multiplication. An automaton representing a product

R=(R;- Ry,

is obtained from two automata, representing R and R., respectively,
by feeding the output of automaton R, into the auxiliary input of R,
‘via a delay unit (Fig. 7.5). Then the auxiliary input line of R; be-
comes the auxiliary input to the system, while the output of R, is the
output of the system. Indeed, the output of R, will be 1 if R, repre-
sents an event that has begun during the instant following an output
of 1 in R,. But an output of 1 in R; means that the event R; had al~
ready been represented prior to that instant, and that this 2vent had
begun at the instant of occurrence of 1 at the auxiliary input of Ry
(and therefore at the input of ourentire automaton system). Conse-
quently the automaton system as a whole represents the event R,
which is described by: ‘‘the event R, occurred directly after the
event R, that is, the product R - R,.

il /?, —)O——»A;,Z L

R, £ F

Fig. 7.4. Fig. 7.5.

by
<
l

Itevation, If the automaton R, representing the eventR,is given,
then the automaton representing an R, event: R =(Rf) may be ob-
tained by coupling R, toone disjunctionelement (Fig. 7.6). The dis-
junction element output is made to coincide with the auxiliary input
to Ry, while the input of disjunctionelement consists of the auxiliary
input o to R, as well asthe R, output, which is made to pass through
a delay unit. Indeed, the output of this system is 1 whenever the
event R, is represented, starting with the appearance of 1 at the
auxiliary input «, or from the instant directly following the repre-
sentation of the event R;. Therefore, there is a system output of 1
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) whenever the event R, occurs (this can

Ry happen any number of times in succes-

& sion), which is what indeed constitutes
the representation of event R = (R*).

V < This concludes the induction process

based on the depth of the regular ex-
pression, and therefore completes the
Fig. 7.6. proof of the entire theorem.
First note, Our formulation of
Kleene’s first theorem included the statement about the choice of a
suitable initial state. It can be seen from the proof that a suitable
choice of the initial state reduces to: a) ensuring a state of 0 in all
units of the auxiliary delay line during representation of the given
set consisting of one input sequence (Fig. 7.3); b) ensuring a state
of 1 in the delay unit of the automaton representing a universal
event (Fig. 7.2); and c) ensuring a state of 1 in the delay unit of the
autonomous automaton representing the event ¢ = 0 (see above).
Second note, The representation of the event ER differs from
that of the event R only in the method of utilizing the auxiliary input
of the automaton which represents the event R,., To be precise, in
order to represent the eventR, thisinputis connected to the autono-
mous automaton which produces 1 only at : = 0; however, in order to
represent the event ER, this input consists of the output of the auto-
maton representing the event E (Fig. 7.2); that is, this inputis
always 1. This applies, inparticular, tothe representation of a spe-
cific event E-a.

7.5. REGULARITY OF REPRESENTABLE EVENTS

In this section we shall prove a theorem that is the converse of
the one proved above,

Kleene’s second theorem, Only vegular events ave vepresenta-
ble in a finite automaton,

To prove this theorem we shall first introduce the concept of
regular sets of triad chains, thenwe shall prove an auxiliary lemma,
and finally with the help of thislemma, we shall prove the theorem.

The triad labyvinth and labyvinthine paths. The infinite set of
tapes which may be generated in a finite automaton contains only a
finite number krof different triads, Letus denote these by mi, w2 ...
1x-and match each triad p; to a point in a plane,
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Two adjacent triads must have one common symbol. For this
reason, the triad

1

*g N

must be followed by a triad containing x:at lower left, for example,

P2 P1 Pa Ps

%4 g %y %o %4 % %y %4

so that triads with any other symbols in this position, for example,

1 3 Ps P4

*1 %y * %y %o g %5 %y

are not allowed.

Now, we draw arrows from the point corresponding to triad p;
to all points corresponding to triads which can follow p; on the tape
(Fig. 7.7); we do the same for alltriads p; (=1, 2, ..., kr). We ob-
tain (see Fig. 7.8) a plane diagram, which we shall call the #riad
labyvrinth,

Now let some triad p;be the start- oty
ing point from which we proceed along
any desired arrow, writing out the se- Vol >0 fh
quence of triads encountered on the
way. This sequence is called the path
in the triad labyvinth, or simply a

path. The length of a pathis measured 4
by the number of triads contained in

it. Thus, if p: is the starting point, #e o

Fig. 7.8 has paths described by triad

chains. Fig. 7.7.

Po 3 By Ps Mg 1 Bo»
Po g Pa P g s
P By B Py, etC.
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However, path

2 3 tg

is not allowed since there is no arrow from psz to pe.
Now let us proceed to the con~
s “ cept of a vegular set of triad
2 chains. By definition, all sets
containing only one triad are
regular; if A and B are regular

Ay sets of triad chains, then, by in~
1, duction, the following are also
regular:

a) their union (4 V B),thatis,
a set containing both 4 and B;

b) their product (4-B), that
is, a set of chains obtained by
adding some chain from B to the
right of each chain from A;

c) their iteration (A*), that is, a set of chains obtained by adding
to the right-hand sides of all chains from A any and all chains from
A (including itself or any of those already added) and doing that any
desired number of times,

Lemma. The set of all paths leading from triad u to triad uin
the labyrinth of any finite automatonis aregular set of triad chains.

We shall prove this lemma by induction based on g, where ¢ is
the number of different triads on the path from p to .

For g = 1, the lemma is obvious: pcoincideswith p and only two
subcases are possible:

a) if all symbols x in the lower line of this triad @ = pare not
the same, then the set of paths consists of only one path containing
this one triad p;

b) if all x in p are the same, then the set of paths comprises all
triad chains repeating the same triad p, that is, the iteration (p)*.

Consequently the set is regular for ¢ =1.

Now let the lemma hold for any set of paths with ¢ << m. We shall
prove that it also holds for any set of paths with ¢ = m + 1. Thus
let us consider any pathwhere ¢ = m + . Wewrite out all the triads
w as well as the triad [ at the end of the path, and replace the re-
maining triads of this path (including any triads u that may occur
at points other than the end) by groups of dots:

Fig, 7.8,
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Each group of dots stands for a path that does not contain the
triad E For this reason, the number of different triads contained
in each path replaced by a group of dots is smaller than m+ 1 by
at least 1, thatis, ¢ < m. By induction, each path replaced by dots
is aregular set of triad chains. We shall denote these replaced paths
by r r; rg, and so on.

To start with, let u = . Then one can imagine the entire path

from p to p=p as consisting of triads p, with the regular sets r
interspersed among them. We write this as follows:

BFL BTy BTy B BT ... BT, B

In this notation, the entire path consists of pairs of consecutive
paths. Each such pair is the product of two regular sets: a set con-
sisting of a single element p, and the corresponding set r. Conse-
quently, such a pair mustitselfbelongtoa regular set p- R. There-
fore, all paths leading from p topn = p are elements of the iteration
of [ [—3

(o R - s

that is, they constitute a regular set of triad chains,

If p+p then by the same reasoning the set of all paths leading

from p to p is
(- Ry -u;

that is, it is also regular. The lemma is thus proved.

This lemma can be readily ex-
plained on a triad labyrinth.

Consider the triad labyrinth of Fig,
7.9 (where some arrows have been
omitted for clarity), and run through
the possible paths from p to p.

First, there is a choice of the two
paths

8 10

Rt

;i

and
v 8910 p. Fig. 7.9.

Second, the first path may be lengthened by including a loop, for ex-
ample,

12357641234
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The looping paths may be traversed any desired finite number of
times, for example,

£123576412357641235764123p

or the path may be complicated still further by including ‘‘loops
within loops,”’ for example,

R123576412357645764576412345, ete.

This type of routing is not confined to our example. Each set of
paths from p to p contains, firstof all, several variants of simple
paths (a union!), and it may also consist of arrows traversed one
after another (a product!) and of loops traversed any desired finite
number of times along anywhere in the labyrinth (an iteration!). And
each path from p to " may consist of these three components. This
fact, almost obvious from the examination of the labyrinth, is really
what the lemma is stating,

From the lemma immediately follows the proof of Kleene!s sec-
ond theorem.

Proof of Kleene’s second theovem, Consider a finite automaton,
and write out all its triads (afinite number). Let M be a set of sev-
eral symbols » (we shall denote an element of this set by;c), and
let the automaton (which starts with aninitial state x° = x) represent
an input event by the appearance of a state x. Now, let us select a
triad p such that the x in itslower right belongs to M (the other two
symbols of the triad need not be part of M):

21

Let us also select a triad p containing x in its lower left, the
other two symbols being completely arbitrary:

® |

Then, by virtue of the lemma just proved, the set of all paths
leading from p to p is a regular set of triad chains.
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Consider sets A and A of all possible triads p and .. The set of
all paths connecting any triad p of A with any triad u of A is the
union of the sets of paths leading from y to y; that is, it is regular.

To each triad there corresponds a symbol p in the top strip of
the tape, and to a chain of triads there corresponds a sequence of p.
If a set of triad chains is regular then the set of corresponding se-
quences of p is a regular set of sequences, as defined in Section 7.3.
Indeed, in devising new paths (from the given ones) by union, multi-
plication and iteration of chains of triads, we used operations anal-
ogous to those introduced in Section 7.3 for obtaining regular sets
of sequences, and applied those to the ¢ sequences in these chains.

We have not imposed any restrictions on the automaton, that is,
on the number and the nature of its triads, or on the choice of the
initial state. We have therefore provedthatinany automaton, start-
ing from any initial state, the set of input sequences leading from
any initial state »° to a state comprised in M is regular; that is, we
have proved Kleene’s second theorem.

7.6. DO IRREGULAR (UNREPRESENTABLE) EVENTS EXIST?

Irregular events, which cannot be represented in an automaton,
do exist, as we shall prove by examples. Moreover, we shall show
that there exists an entire class of events, a priori known to be ir-
regular.

Suppose we are given an infinite sequence of p, for example,

P5 Po P1 P5 Pg P3 Po Py ---

which we shall call.?, We will say that -2 is ultimately periodic if,
starting with the gth symbol from the left, the sequence contains a
periodically recurring segment of finite length.

Consider an event such that the input sequence of p coincides at
at all times p with the segment of Zbracketed by its Oth and the pth
symbols. If such an event can be represented by an automaton, we
shall say that the aufomaton vepresents sequence £

Theorem, A giveninfinite sequence .& of input symbols p is rep-
resentable in a finite automaton if and only if £ is “‘an ultimately
periodic sequence,”

Proof., First, we shall prove that all ultimately periodic se-
quences are representable. Let such a sequence consistof an “‘ini-
tial segment’’ A of finite length # and then a periodically recurring
“segment’’ B of finite length 7. Consider all the initial sections
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By, By, ..., By _, of segment B (B, contains only the first symbol of
B; B, contains the first two symbols, and so on), as well as the ini-
tial sections A, 4,, ... of segment A. Thus the ultimately periodic
sequence—that is, the input event—really consists of segment 4 fol-
lowed by segment B, which is then repeated a number of times; the
sequence terminates in one of the sections B;, By, ... Br-;, B.
Therefore .# can be written as a regular expression

R={[A(B}] - (B\V B,V ...V By | VB V(A VAV ...),

and, by virtue of Kleene’s first theorem, such an event is represent-
able in a finite automaton.

Now let us prove the converse statement, thatis, that all repre-
sentable sequences are ultimately periodic. Let sequence.Zbe rep-
resented by a finite automaton which has & internal states, With.¥
as the input, letus examine what happens during the first 2 + 1 samp-
ling instants, Since ¢ = k + 1, and the machine canhave only k states,
there must be at least one internal state x that will be repeated at
least twice during this time. Let that occur in instants # and ¢”
(0L <t"<k+1). Now let us compile a sequence.Z,which differs
from .# in that the segment from ¢ to ¢” has been thrown out; we
then make _& the input of the same automaton, Thus, if withk = 8
sequence £ corresponds to a tapeinwhich# =3, ” =6 (Table 7.5),
the tape for .#then would be that of Table 7.6.

Table 7.5

t 0 1 ) 2 |t'=3 4 5 It =6 7 8 9

p 1 P3

Ps P1 44 Ps P12 Pro | Pt Ps

Table 7.6
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After ¢” (that is, from instant 7), the sequence of x on the first
tape coincides with thex sequence appearing on the second tape after
¢’ (that is, from instant 4). This is because from these instants on,
the inputs p are the same in both cases, as are the initial statesi—
of the automaton. And since .Zis represented by the automaton, .#
must also be represented by it. This, however, does not contra-
dict our definition of representability, according to which .# and .&#
can be represented by the same automaton only if they coincide.
For two infinite sequences of symbols, .& and.¥, where .#differs
from .# by the fact that it lacks all symbols between ¢ and ¢, may
coincide only if beginning from #, .Z periodically repeats the seg~
ment occurring between ¢’ and ¢”.

The theorem is thus proved.

This theorem enables us to specify an infinite number of ex-
amples of unrepresentable events, but we shall give only two such
examples.

Example 1. An event occurs if the automaton input at { = a?
(e=1,2 3, ...)is pi1, and if the input isps at all other times.

Example 2, An event occurs if the number of symbols p: between
two nonadjacent symbols p; of the input sequence always doubles.
Thus the event takes place if the sequence has the form

P1 P2 Py Po P2 Py Po P2 Py PaPrPrPopPoPoPoPaPoPaPoPrPrPre-es
and does not take place when the sequence is
Pt P2PL PP PrPrPaPoPePrPLPePopPr-er o

The events of each of the above examples are unrepresentable
since the corresponding sequences are not ultimately periodic.

It must not be assumed, however, that all not representable
events are embraced by this theorem. For example, we may have
an input alphabet p consisting of two symbols{0, 1}, and we may de~
fine an event so that at ¢ = p, the number of symbols 1 in the output
sequence is equal to the number of symbols 0. This event does not
belong to the class considered above (since the occurrence of this
event is determined not by one specific sequence but by an entire
class of such sequences), but at the same time it is not represent-
able. We shall prove this.

Assume we are given some finite automaton A, and that its in-~
put sequence consists of zerosonly. Thenatleast one internal state
% of the automaton must sooner or later recur. Let that happen at
vand ¢ (0 <t < t”). Now consider the following two input sequences:
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1) %, consisting of {” zeros followed by {” symbols 1 and 2).%" con-
sisting of ¢/ zeros followed by t” symbols 1. The corresponding tapes
are shown in Tables 7.7 and 7.8.

Table 7.7
t 011 2 .. —1 ¢ =12 —1
p 0|00 0 0 0 ' 1 l l 1
|
Table 7.8
¢ 0 ! 1 2 ’ v —1 =1
0 0 [ 0| o I 0 1] 1

Beginning at ¢’ and ending at ¢ + t”, the sequence of » in the .Z*
tape coincides with that » sequence of the .Ztape which starts at ¢
and ends at 2¢”, This is because the initial states (at ¢ and ¢”, re-
spectively) and the input sequences (f” symbols 1 in succession)
coincide in the two cases. Therefore, given tape .Z" the automaton
will attain state »x*at ¢’ + ¢”; this state will coincide with the state
occurring at 2¢” with tape .#. However, the event does occur with
input sequence .# (the number of symbols 1 is equal to the number
of zeros), whereas it does not occur with.#"(the number of symbols
1 exceeds that of zeros), even though the automaton 4 achieves the
same state in both cases. This meansthat automaton 4 cannot rep-
resent this event. Q.E.D.

It is easy to perceive why the events of these examples can not
be represented. The reason is that,bydefinition, the finite automa-
ton (with a finite number of states) has a ¢‘finite memory.”” But in
the above examples, the amount of information which the machine
must ‘‘remember?’ to be able to ‘‘decide’’ at any given instant
whether an event does take place, becomesinfinite with time (in the
first example, the machine must ““remember’’ how many instants
have elapsed prior to sampling; inthe second example, the machine
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must ‘‘count’’ the zeros occurringbetween twononconsecutive sym-
bols of 1, and this number also goes to infinity).

Let us point out that a set of sequences specifying an irregular
(nonrepresentable) event may itself be a subset of a regular set of
sequences, Forexample, anevent specified as ¢two symbols 1 never
appear consecutively at the input’’ is representable. However, the
input sequences of Example 1 (see above)whichare a subset of this
regular set, constitute an irregular set.

7.7. WHAT A FINITE AUTOMATON “CAN DO”

In the preceding chapter we found out what an autonomous auto-
maton ‘‘can do.”’ Now we have mastered the representability of
events and we can thus answer that question for nonrautornomous
automata,

Let A be an automaton with an output converter, or an s-machine
representing a regular input event by generating a symbol (say, a 1)
at the output. Further, let 4 stop as soon as 1 is generated at its
output and let it trigger an autonomous automaton B that generates
a predetermined sequence M. The output of B then becomes the in-
put of automaton C which represents the event M, and the generation
of a 1 at the output of C is used to trigger A and stop B (Fig. 7.10).
This is done by the automaton ®, which represents a simple event:
the appearance of a given input symbol. Therefore this entire sys-
tem constitutes a finite automaton, Such a finite automaton responds
to any regular event by generating at the output any predetermined
finite sequence of states (symbols), after which it is again ready to
receive external stimuli, that is, to respond to events.

The automaton of Fig. 7.10, does not respond to those input sym-
bols p that appear during the operationof B. If the (discrete) timing
of B is so fast that its entire periodic output sequence is generated

qQ

Fig. 7.10,
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between two sampling instants of A, then there is no need for auto-
maton @, and the output of A can be used as the input of B. Such an
automaton maintains an output of any given periodic sequence of
symbols throughout the representation of the event, andwill gener-
ate another predetermined periodic sequence of symbols when no
event is represented.

Naturally, other combinations of automata are also possible.
But the above two combinations already show that an automaton can
respond to any regular event by generating any predetermined cycle.

Can an automaton do something more thanthis? And if so, what?
The answers to such questions depend on what language is used to
formulate the laws for the handling of sequences by a finite auto-
maton. Kleene’s theorems formulate these laws in the language of
representation of events. So far, there are noother convenient lan-
guages capable of describing (in terms of necessary and sufficient
conditions) what a finite automaton ‘‘can do’’ and what, in principle,
it “‘cannot do.’’ This raises a number of new problems discussed
in the next chapter.
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Recognition of Realizability

of a Given Specification.
Abstract Synthesis of Finite Automata
and Sequential Machines

8.1. STATEMENT OF THE PROBLEM

The design of any specific automatic device involves several in-
dependent stages. Thus the designer starts by analyzing and then
“*idealizing’’ the operations required of the device. Here, the designer
may obtain an idealization which specifies the problem in terms of
discrete time and afinite number of variables, each assuming only a
finite number of values. Ifthatisthe case, he may be able to employ
a finite automaton or a sequential machine. We say ‘‘may be able’’
because not all problems, even if formulated in terms of discrete
time and a finite number of variables, can be performed in a finite
automaton or an s-machine. For example, these machines cannot
“forecast’’ the state of the input, thatis, they are unable to generate,
at t=p, an output corresponding to an input at i = p + 1. But even if
our specification calls for an output depending only on the preceding
input states, there may notexist a machine embodying the specifica-
tions. We have seen this in our attempt to synthesize an automaton
for representation of irregular events (Chapter 7).

Thus the second design stage involves finding out whether finite
automata or s-machines are suitable for agiventask, a problem we
shall denote as that of vecognition of realizability of a given specifi-
cation (or simply the recognition problem).

Assuming that our specification is realizable in either of these
discrete devices, we enter stage three, where we determine their
basic tables. This is the stage of abstract synithesis,

After abstract synthesis, the most important phase of the design
is ended, Before it, the designer deals only with the specification of
the ultimate automatic device, thatis, withgiveninput and output se-
quences and the specified relationships between them. After the ab-
stract synthesis stage, he has a table of the automaton (and of the
converter, if an s~machine isinvolved), andinall subsequent stages

187
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works only with these tables. He now simplifies them as much as
possible, selects the best overall means of their realization, and
solves the practical problems related to specific technology of the
selected devices. This brings the logic design to an end.

With the exception of Chapter 7, we have always assumed that
the automaton and converter tables were given, and did not bother
with the problem of how these tables were obtained. Now we shall
deal with the techniques for generating these tables starting from
specifications for the device; that is, we shall deal with problems
of recognition and the abstract synthesis,

In speaking of ‘‘specification of the device,’’ we assumed that the
reader has an intuitive understanding of whatisinvolved. Now, how-
ever, we must define just what this sentence means.

In all cases ‘‘specification of the device’’ means the definition of
the correspondences between the given input and output sequences.
The simplest case is that of finite number of given input and output
sequences, where ‘‘specification of the device’’ assumes the very
definite meaning of enumeration of all the given sequences and all the
correspondences between them. This type of specificationis treated
in Section 8.2.

The situationis much more complicatedin the general case, when
the number of given sequences (and, consequently, their lengths) can
be infinite. Here itisimpossible to employ enumeration, and the in-
finite input and output sequences, as well as the correspondences be-
tween them are specified by means of a defining language.

The problems of recognition and abstract synthesis maybe for-
mulzated as follows: we have a defining language and we have described
the sets of input and output sequences and the correspondences be-
tween them in thislanguage, Now we mustfind an algorithm (that is,
a procedure) for determining whether there exists anautomaton (or
s-machine) capable of setting up such correspondences, and whether
there exists an algorithm capable of generating the basic table of the
automaton (and the converter), if such machines do exist.

It turns out, however, that the very ability to find such algorithms
depends on the defining language. If thislanguageis too broad, then
there are no such algorithms; that is, the problems of recognition
and abstract synthesis are algorithmically unsolvable (see Section
8.3). Thus there is the problem of narrowing the language in which
the design specification is stated. One of suchnarrow languages—the
language of regular formulas—isdescribedinSection 8.4, where it is
shown how, starting from a given regular formula, one can synthesize
a relatively economical (insofar as the number of states is con-
cerned) s-machine which realizes the specification. The problem as
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to whether such a machine is at all possible does not arise here,
since the language can only describe events that are realizable.

8.2. THE CASE WHERE THE SPECIFICATION ENUMERATES
THE REQUIRED INPUT-OUTPUT CORRESPONDENCES

Assume we want to synthesize an s-machine specified as follows:
We are given a finite number of tapes (which can be of different, but
finite, lengths), with a blank ¢“¢’* row, for example, the four tapes of
Tables 8.1 - 8.4. The required s-machine must realize these tapes,
starting from a given initial state «°

This specification does not say anything about other possible tapes
(at other input sequences) of this same s-machine. If there are no
specific instructions to this effect, we shall assume that no other in-
put sequences are possible or, which amounts to the same, that all
other tapes may be arbitrarily chosen. The specification may also
include additional conditions, for example, the requirement that any
other tape mustcontain some specific symbol (for example, 2,) at all
sampling instants, starting from the instant in which the prow of such

Table 8.1 Table 8,2
Dis-
Discrete 0 ' 1 ’ 2 I 3 4 5 crete| 1
moment mo-~
S ment’ .|
4 21 P2 Po l o j 3 - P \ %0 | Ps3
: . —
i
V. I; r ’ *
i
X N X ' Iy J % Xy A ol a2
!
Table 8.3 Table 8.4
Discrete 0 ‘ 1 2 Discrete 0 1 2
moment moment
i [ N
4 [ ?1 - 4 P2 20 -
i |
L A by A, A A by X, X
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sampling instants, starting from the instantin which the p row of such
a tape begins to differ from the prows of the tapes enumerated in the
specification, If the main tapes are those of Tables 8.1 - 8.4, then
this additional condition could, for example, lead to an s~machine
having tapes showninTables 8.5 - 8,7 (where the instants of genera-
tion of Ao are marked off with heavy lines).

Table 8.5 Table 8.6
Dis- | ’ Dis-
gg‘eE 0 1 2 3 4 5 f,’;gfe 0 1 2
ment : | _ment
P 21 P2 To P3 £ - ? P3 P2 -
P t kA
O PP W Y s N W A:J [N VR AV A
Table 8.7
Cret 0 1 2 3 4 5
ment
? o ?3 P ] f1 -
ks
A X, A, Ag A, o 1 Ao

Because we stipulated that all the giventapes must start with «f,
our specification may prove to be an impossible one. For example,
consider Tables 8.8 and 8.9. Obviously, thereisno s-machine which
has both these tapes: for this machine would generate, from the same
initial state »° and the same input sequence p;p2p0, two different outputs
(%1 in the case of 8.8, and A;in the case of 8.9). Such an operation can-
not be expected of an s~machine, which by definition is a determinate
device. The specification is thus contradictory.

Now it is clear thatbefore proceedingwith the synthesis, the de-
signer must check the specification for contradictions. He does this
by inspecting sections of the given tapes, as shown below. The speci-
fication is not contradictoryif, and onlyif, no two sections show dif-
fering outputs at identical inputs.
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Table 8.8 Table 8.9
Dis- is-
gfﬁe 0 1 2131 4|5 “‘;fyfe 011{2{3|4]5|6
ment men t|
P Pr | P2 | Po| Paf 1| — P Pr|P2|PoyPajPe| Py
% || O % g %0
PN/ S N VO I VU I W B VA B Aol Ay A [ Ay [Ag Ay [ Rg [ A

Thus, in the example of tapes 8.8 and 8.9, the tapes are split up
as follows:

Dis{ Dis;

grete g | 1 crete 0 | 1

ment ment

P fy— P [0
for p=1

% || %0 % || %x0

IS P L SRR

Dis~ Dis-

:gfe 0 1}2 gfﬁe 0|12

ment ment
forp=2|_° P"pzl_ A

% {0 ’ % || %0 ‘

von Ay | A A x,[xz A,

Dis- D'lS{

ggfe 01123 %’;g_e 01123

ment ment

|4 P1 | P2|Po|— P Pr|fa|fo|—
forp=3

% | %0 % [|=0

A A A LA LA N [ N (VO I S P
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[ Dis- ]\ Dis-
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The contradiction becomes apparent after p = 3.

Assume that we start with a noncontradictory specification so
that we can immediately proceed with the synthesis, that is, develop
the tables of the finite automaton and of the converter of the s-
machine, If we are given all the » rows on the given tapes, than we
can pick out the triads directly from the tapes and write out at least
some of the squares of these tables. The other squares could be filled
out arbitrarily, if no additional conditions are imposed on the ma-
chine, or in some other way,if there are such conditions. Thus the
synthesis of an s-machine reduces to filling out the x rows of the
tapes in a noncontradictory manner,

If the specification can be realized in some s-machine A, then it
can also be realized in any s-machine B which can substitute for A.
If all we requireis some machine realizing the specification, that is,
if we impose no additional requirements on the s~machine, then the
solution is trivial, and mayinvolve one of the following two methods:

a) The » rows may be filled with nonrecurring x;, the number of
the different states «;thus obtained being equal to the sum of lengths
of the (given) tapes.

b) We can construct an automatonwith an output converter which
represents the specific events ‘‘recorded’’ on the (given) tapes, Thus,
we extract from the tapes all those input sets G,, Gy, and so on, which
generate outputs J,, %o, and soon, respectively. Then, using methods
of Chapter 7, we synthesize automata I, II, and so on, respectively
representing the specific events G,, G,, and so on by outputs of 1, We
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now connect the outputs of these automatatoa converter generating
an output of 2, ifthereisal on the first converter input, A, with a 1
on the second input, and so on.

The s-machines synthesized by either of these methods usually
have anextremelylarge number of states, Therefore, quite often one
is faced with a much more difficult problem, where one wants to syn-
thesize an s-machine conforming to a given specification but having
fewer states than any other machine also conforming to this specifi-
cation.

The solution is usually divided into two phases: 1) synthesis of
some (any) machine conforming to specifications; and2)its minimi-
zation, that is, the derivation, from this preliminaryversion, of an-
other s-machine which also conforms to the specificationbut which
has the least possible number of states k.

The minimization problem of phase 2 is discussed in Chapter 9,
However, the methods of that chapter are difficultto apply if the s-
machine of phase 1 has many states, a condition produced by the use
of the above trivial methods in phase 1. For this reason one re-
sorts, if possible, toother phase 1 techniques: these give s-machines
which, even though not minimal, are a pviori known to have a small-
er number of states. We shall describe one such method.

Let us begin with the following example, Suppose we want to syn-
thesize an s-machine which, starting from the same state »0 = %;, will
realize the two tapes of Tables 8.10 and 8,11. The tapes generated at
other input sequences can be arbitrary.

Let us prepare a blank form for the tables of the automaton and
the converter (Table 8.12 for the automaton and Table 8,13 for the
converter). Since the ultimate number of the statesis still unknown,
the number of the rowsin these tablesis still undetermined. For the
time being, we have only one line—for x,,

Table 8.10 Table 8.11
Dis- T Dis.
Icr;rgfe 0|12 3[4]|5]6 gg_e 0y 1(213[4]5]|6
ment ment Y
4 Po| P3| Pa| Ps|PoP2|Ps 4 Pa| P2l Po| Po{P1|Ps]Po
%L % %[ %
M AE A A AR A LA, MU A A AN

In further filling out thex row, we must always check whether the
new entry does not contradict the preceding one; that is, that it does
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Automaton

Table 8.13

Converter

N

Po P1

P2

b3 \ o | P

P2

Pa

e

*g

not produce contradictory triads in the automaton or impose incom-

patible requirements on the converter.

In the first square of row x of Table 8.10 we write x (in accord-
ance with the specification). Thereis alsonoreason why %, cannot be
entered in the second square of this tape. We alsowritexoin the cor-
responding square of the basic table of the automaton (Table 8,12).
We fill the corresponding squares (%o, po)and (%o, p3) of the converter
table with the symbol %; (from columns 0 and 1 of Table 8.10). Again
we observe that nothing prevents us fromentering the same symbol
%o into the column 2 of Table 8.10 and into the corresponding squares

of Tables 8.12 and 8.13. This results in Tables 8.14 - 8,16.

Table 8.14

Tape
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crete 0 1 2 3 4 5 6
mo-
ment
4 Po 3 P2 P3 Po P2 Pa
IBEDREN
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Table 8.15 Table 8.16
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Converter Table
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So far, we enteredx,without producing contradictions. Let us try
to enter it in the next (fourth) square of the tape (Table 8.14). This
produces no contradictions in the automaton table since this symbol
goes intoablank square, but an attemptto write in i, into the square
(ps, %0) of the converter does lead to contradiction since this square
already contains ,. We have no other alternative but to enter a new
symbol %, into the fourth square of the tape (Table 8.14). This, of
course, gives new rows in the tables of the automaton and the con-
verter, where we enter the corresponding symbols.

Now we try toenterxyinto the next (fifth) square of the tape: there
is no contradiction. Had there been one, then we would have had to
try «; and, if this led to a contradiction, we would have to introduce
e and start a new row in the tables. We repeat this procedure all
along the tape of Table 8.14 and we thus complete its x row. Now we
turn to the second tape (Table 8.11) andfill itsxrow in the same man-
ner. Here we must make sure that the symbol being entered not only
does not contradict the previousentries on this tape, but that it does
not contradict those of the first tape. We then have complete tables
for the automaton and the converter (Tables 8.17 ~ 8.20). Now these
tables have blank squares which may be filledin any desired manner,
since we have stiuplated atthe outsetthatthe tapes obtained at input
sequence other than the given ones are arbitrary,

Table 8.17 Table 8.18
First Tape Second Tape
Dis- Dis-
crete 10 [1]2(3/4i5(6 arete |1 0| 12,3456
ment _ment
4 PojP.[P2|P3iPofP2)|Ps p Pa P2 Po|Po|P|Pa]Po
* Yo | %0 | %0 | %1 | %0 | %0 | % % Yot %p | % P %o | Ko [ % ] %y
15 MIA A (A A A A, A Mo Ao M (A P | A
Table 8.19 Table 8.20
Basic Table of the Automaton Converter Table
: S
% fo | P | P2 | Q3 2 N Po i P | P2 | Pa
g o |o%p %o %o I8 Aot

*1 o | — | T ™ % —_ —E — Ay
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The above example has been chosen so as topresent nodifficulties
in completing thexrows. However, consider the tapes of Tables 8.21
and 8.22, We leave the intermediate details tothe reader, and shall
discuss only the final results. Thus, in tape 1, we can enter %, into
the second and the third squares without raising any contradictions,

Table 8.21 Table 8.22
First Tape Second Tape
Dis: ] ’ "DiSE
cre : ete ‘
crete | 0 | | 2‘3456 orete | 0 | 12|34
_Lnren_tm‘r | ment LI
]
A I T M 7ol ealen e pol
i !
—
v \ ] | v
2 H D VI IV O VA I VO S W I S Aol Al Ay [ Ay [0y

but since %, in the fourth square produces a contradiction in the con-
verter table, we mustwrite ; in this square. A x,inthe fifth square
does not, in itself, lead to a contradiction, but we then must have xo
in the sixth square to avoid a contradiction in the automaton table
[since the (%5, po) combinationwas already usedinthe first column of
the tape and required a »,in the following column]. But %,in the sixth
square contradicts the converter table. We must, therefore, go back
to the fifth square and try~,. Thisgives no contradiction, and we can
thus tryx,inthe sixth square. No(ps, »i)combination has yet been en-
countered and, therefore, from the point of view of the table of the
automaton, we can use any symbol in the seventh tape square. How~
ever, x; and »; cannot be used because combinations (p;,%¢) and (p;,»;)
already specify entries other than %, in the converter table. There-
fore, we use a new symbol % in the seventh square.

Now let us examine tape 2 (Table 8.22). The (ps, #p) combination
has already been encountered in the third column of tape 1; there-
fore, to avoid contradictions in the automaton table, we can only use
%, in the second square of tape 2. But this causes a contradiction in
the converter table, so we have no alternative but to go back to the
third square of the tape 1, remove the %o, and fill inx;, Now we can
proceed with the completion of the tape 2 without altering tape 1, re-
solving only contradictions that may arise in the same manner as when
completing tape 1, No states other thanxo, i, x2 andx;need tobe used
in this example, which finally results in Tables 8,23 ~ 8.26.
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Table 8.23 Table 8.24
First Tape Second Tape
Dis;’ Dis-
crete
ho- 0 1 2131456 ggﬁ 01112134
ment L ment |
4 fo | B0 | P2y &1 Po| P2| P 4 Pa | @1 P2 fo(bs
* g |t | Ao | Xo | Ho| Ao | Ko ko [ KKy (XA
gy hy | Ry | Ay g | T | %o [ %9
*2
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Table 8.25 Table 8.26
Basic Table of the Automaton Converter Table

N ‘o 4 P2 N fo
2

0 Ly g %y % I I8 A,

2 7 *y tey 1.y Xy g A,
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Rather than replacing the x, in the third square of tape 1 with a
new symbol »3;, we could have tried to use one of the old ones (x, or
%9), altering, if necessary, the other squares of tape 1. This would
have given other tables for the automaton and converter, and these
might have had a different number of rows (that is, states).

Themethod demonstrated aboveisnota regular, straightforward
procedure, and shows the complexities which may arise in phase 1
of the synthesis, where we are merely trying to obtain any s-machine
satisfying the stipulated conditions.

Let us now develop a regular method for uniform synthesis of
relatively economical s-machines realizing any given noncontradic-
tory finite set of finite tapes. We shall confine ourselves to the case
where the tapes generated atinput sequences other than those stipu-
lated in the specification may be arbitrary, Againwe shall startwith
the blanks for the tables of the automaton and the converter, and we
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shall increase the number of rowsinthese tables as new states »x are
introduced. Assume, however, that the given tapes and the two tables
are already partly filled, We shall say that these already-present
entries are correct if they meet the following conditions:

1. The entries in the tapes and the tables do not conflict; that is,
the tapes contain no triads producing contradictions in the automaton
and the converter and, conversely, the only filled positions in the
automaton and converter tables are those which correspond to triads
already present on the tapes.

2. The last column of each tape contains a (p, %) pair which de-
fines a still empty square in the automaton table,

3. If two or more of these last(p, ») pairs contain identical sym-
bols p, and if the corresponding tapes show identical p’s during one
or more subsequent sampling instants, then these tapes must also
show identical symbols 2. during these instants.

For example, Tables 8.27 - 8.30 are correctly filled.

Table 8.27 Table 8.28
First Tape Second Tape
Dis- Ts;
gf)f90123456 ety 1121314151617
ment _ ment
p Po Pt | P3)Pa|Pa]PilPs 4 Pr P2 {0 (PalPeiP2|PalP2
”. Yo | % | %) | % % %o [ %% %
ISPV VR PR DY DV B PN Ao A (Al fay (A {2 A |0
Table 8.29 Table 8.30
Basic Table of the Automaton Converter Table
\ T A \ 0| e ﬂ
*q *1 Yo ! %o A Ay A
%y % 7 %y % Ag A, A,

However, the tables of the following three examples are incorrectly
filled.
Example 1 (Tables 8.31 - 8.34) violates condition 1:
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Table 8.31 Table 8.32
First Tape Second Tape
Dis; Dis;
f;ge0123‘4567 grele 1011213141516
ment - ment
p Py | P3| P2ifi|Pa|P2|Ps}P: 4 Pa | P2 | P3| Pa|f3]pPe]|Pe
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Table 8.33 Table 8.34
Basic Table of the Automaton Converter Table
N 1 P2 P Pa \1‘\? P1 P2 | Ps Pa
%o Ao? * *o A 2 ky
*y } *o * K4? Ay
Example 2 (Tables 8.35 - 8,38) violates condition 2;:
Table 8.35 Table 8.36
First Tape Second Tape
Dis‘-t Dis-
gete 0| 142134516 7 gg‘e 0112345
ment ment
4 Po [ P1 | P3lP2|PafPr|Pr|P1 4 P3| P3iPe|P1|Ps| Pt
* ‘Xo ‘Xo ‘Xl Xo * '/<0 ‘Xl ‘Xo ‘Xo
Modlde [ fhs| ha| Rl A Myl Ry Aoy )3{"\2 Ahal )y

Example 3 (Tables 8.39 ~ 8.41) violates condition 3:

Provided the specification is not contradictory, theinitial (given)
tapes which containonlyxefort = 0, together with a completely blank
automaton table and a converter table with entries only in the squares
corresponding to ¢t = 0 for all the tapes, are one case of correct filling.
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Table 8.37 Table 8.38
Basic Table of the Automaton Converter Table
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‘,\\P e \ e | 8 N l o Pr | s
G T T B [ R A A
%o h *y l 7 % o \ M Ay A
I i_, U S |
‘ % H ’ %y % il Aq
[ B ]
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Table 8,41 Here conditions 1 and 2 are automatically
Third Tape met, and the noncontradictory nature of
Dis- | TTT 7777 the specification is precisely what condi-
crete o | 1o 314]t- 3 is ab
mo- 1717} tuondisa out.
i ’ | ", f’" ’ We shall now describe the algorithm
5 v Lo om0 @ for entering states » in the blanks of the
! i .
T T T “ 1 tape, assuming that the tape already con-
Tty [ | tains some (not necessarily initial) cor-
T "‘*? ‘ B \ rect entries of »y, x1, ..., n. We start by
! Lo e b e | s l numbering the (given) tapesinany desired
[ S R S order. Then:

1. We turn to the first blank square of row x in tape 1 and try to
enter x, checking whether this does not raise contradictions in the
converter table, If thereisacontradiction,wetry »,, again checking
for contradiction. If none of the symbols xi, x:, ..., %, removes the
contradiction, we introduce a new symbol ».;; and add a new row to
the tables of the automaton and the converter. Let »" be the first sym-
bol which produces no contradictions in the converter. If »" = %4,
then we make corresponding entries in the tape and the tables and
proceed immediately to step 3 of the algorithm. If, however, »' =,
(0 <k < s), we again make the corresponding entries and proceed to
step 2.
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2. Turning to the automaton table (now supplemented with a new
square in accordance with step 1), we ascertain whether we can con-
tinue filling tape 1 (without filling in new squares in the automaton
table). If this is possible, we keep on filling the tape, making sure
that no contradictions arise in the converter table. If no contradic-
tions occur, we keep on filling the tape until we encounter a blank
square inthe automaton table or until tape 1 is completed, whereupon
we proceed to step 3 of the algorithm; If a contradictionwith the con~
verter table does occur, we return tothat square of tape 1 where at
the end of step 1 we wrote »” = x,: we erase x; from all of our tables,
and we also erase the other entries associated with it and made in
step 1. We then continue the search for a suitable » as per step 1,
starting this search with wx.41. After a finite number of trials, we
must be able toproceed with step 3 of the algorithm (because if ' is
not in the sequence %, xi, ... %, thenwe mustintroduce a new sym-
bol Hs + 1 ).

3. Assume that the procedures of steps 1 and 2 finally give a
suitable, noncontradictory symbol x” =%, (wherek <<m < s + ).
We now return to the entries already present on tape 1 at the start
of our procedure, and we take the (p, ») pair in the last correctly
filled column. We then check the last correctly filled columns of the
remaining tapes for the presence of this pair. If no such pairs are
present, we proceed to step 4 of the algorithm. If, however, there
are such pairs, then we try to continue filling, as per step 2, each
tape in which the last ‘‘correct’’ {p, ») pair coincides with the last
“‘correct’’ (p, ») pair of tape 1.* Here, there are two possibilities:
a) we may be able to fill these tapestothe end (thatis, until we reach
a blank square in the automaton table, or until the tape is completed),
whereupon we proceed to step 4 of the algorithm, or b) we may ar-
rive at a contradiction with the converter table. If the latter is the
case, we return to step 1 of the algorithm, drop symbol »,, erase
all the entries associated withit, and continue the search for a suit-
able »' as per step 1, starting with x,,+,. After a finite number of
trials, we must be able to proceed to step 4 of the algorithm be-
cause, if no other »’isfound, we will use x,,; whichdefinitely allows
us to go to step 4.

4. We check the tapesfor conformity with condition 3 for correct
entries. If this condition is met, we have again arrived at correct
entries. We can then return toalgorithm step1, and continue filling
the tapes and tables. However, if the tape does not meet condition 3,
we erase all tape and table entries associated with »” = x,, and

*If a new symbol %.,, had been introduced, then the maximum possible advance is one
square,
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continue the search for a suitable »” as per step 1, starting the search
with x,,.;. However, if »” = %, then the check of step 4 will always
show that condition 3 holds; thus, this check can be omitted.

The reader is advised to use this algorithm to synthesize the auto-
maton realizing the tapes of Tables 8,42 ~ 8,44, In this case the al-
gorithm must be used six times and finally gives thetapes and Tables
8.45 - 8.49.

Table 8.42 Table 8.43 Table 8.44
First Tape Second Tape Third Tape
Dis- Dis; Dis;
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Table 8,45 Table 8.46 Table 8.47
First Tape Second Tape Third Tape
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crete joj1]2 3.45 e o 12 crete 0:1 213
ment L || | ment ment
P ?2I e pafne|, oo es]p o Up2ipalpy] P
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Table 8,48 Table 8.49
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The same algorithm will also solve the less stringently specified
problem where we are given afinite number of tapes of finite length
and it is required to synthesize an s-machine realizing these tapes,
but where the tapes need not all have the same initial state, In this
case there is no need for checking whether the specification is con-
tradictory, and the initial correct entries may be written immedi-
ately by appropriately selecting the initial states for each tape.

The key concept involved in our algorithm is the maximum use
of states already present on the tapes, whereby new states are added
only when absolutely necessary. This design procedure leads to a
relatively economical machine, However, itdoes not,ingeneral, give
a minimal s-machine. Thisisbecauseitmay prove convenient to in-
troduce a new state u.y,, even though an already-existing state is
suitable, if that will reduce the number of states in succeeding stages
of synthesis,

So far, we have assumed that the number of pairs of input and
output sequences is finite, and that all of these are enumerated in
the specification, Now we shall discuss the general synthesis prob-
lem, where we do not assume that the number of the given corre-
spondences between the input and output sequences is finite.

8.3. ALGORITHMIC UNSOLVABILITY OF THE PROBLEM
OF RECOGNITION OF REPRESENTABILITY OF
RECURSIVE EVENTS*

Let us assume that wehave some descriptionof the relations be-~
tween the input and the output sequences which we want to duplicate.
These relations may be completely arbitrary aslongas their speci-
fications can be effectively described. Aneffectively described spec-
ification is one which allows anyone familiar with the description to
find that unique output sequence which corresponds toany input se-
quence of the specification,

To find out whether there exist s-machines capable of providing
the desired input-output relations, we first must formalize the effec-
tive description of such relations. To do this, we turn to recursive
description, which is the only known means of formalizing that which
we intuitively express by the phrase ‘‘all that can be effectively
specified by a human language,’’

*Readers not familiar with the theory of algorithms and recursive functions should
read Chapter 12 prior to this section.
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One method of describing input-output relationsisbasedon rep-
resentability of events, a concept we encountered in Chapter 7. In-
deed, instead of specifying separately the output corresponding to
each input sequence, we canspecify the set G; of all input sequences
causing the operation of a givenoutput ;. If such sets G, Gy, ..., G
are specified for all outputs %g, 2, ..., A, Wwe have aunique input-output
relation, For example, suppose that the input alphabetis lp1.p2.03,p4}
and the output alphabet is fA;,A;, A3, and suppose further that:

a) the output ; is generated at instant p if during the preceding
two instants [(p — 2) and (p — 1)] the input sequence contained p, fol-
lowed by o4

b) the output %, is generated if the conditions of a) are not met
and if there is no input p; during the internal (p-3) to p;

c) the output 4;is generated inall the other instances. If this is
the case, we can readily write out the output generated at any input
sequence,

With this method of specifying input-output relations, the machine
synthesis problem may be formulated as follows: given the events
G, Gy, ... G,;, we require an s-machine representing the event G; by
generating an output X; from alphabet {1, s, ..., A}. Thenthe for-
malization of an effective specification of the velation between
sequences, reduces to the formalization of an event which can be
effectively defined, Thislast conceptagain canonly be formalized in
terms of a recursive description, Thus, whenwe say that an event G
is given, we shall mean thatwhatisgiven is a recursive description
of the input sequence set G;.

Let us agree thatan event G;is vecursive if the set G; of inpul.
Sequences is vecuvsive *

We have already proved (Chapter 7) thatonlyregular events are
representable in an s-machine; we have also proved that irregular
events do exist. Therefore, the problem of recognizing whether there
exists an s-machine realizing some specific and effectively specified
input-output relation becomes one of finding out whether some speci~
fic recursive event isregular; thatis, we mustfind outif there exists
an algorithm which, given any recursive event, canrecognize whether
this event is regular or not.

Theovem 1**, The problem of vecognition of vegulavity of ve-
cuvsive events is algovithmically unsolvable,

*For definition of a recursive set of sequences, see Chapter 12.
**A statement equivalent to this theorem wasfirst advanced (without proof) in Sec, 5 of
apaper by B, A. Trakhtenbrot [101] (see also [133] and [143]). (Footnote continued page 205)
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Pyroof. Our proofwill consistof formulating a problem narrower
than that of recognition of representability of recursive events, and
showing that even this narrow problemis algorithmically unsolvable,
The broader theorem will then also have been proved.

Assume we are given a recursive function ¢(¢) defined on the set
of integers and assuming values from the finite set {0, 1, ..., r — 1},
Then suppose we have an automaton 4 with an input alphabet {ps, ©1,

. pr—1}. Of all its possible inputs, we shall note in particular the
sequences
P:,;.(O)’
Pe0) Po(rys
Po(0) Po(n) Pe2)r
where p, () is a character from {p:}, whose subscript coincides with
the value of the recursive function ¢(f)at ¢ =i.

Now consider an event S¥ consisting of the fact the input of the au-
tomaton contains one of the above sequences at that instant, In other
words, an event S° occurs when, and only when, the subscripts of the
inputs p coincide throughout (thatis,atallinstants 0, 1, 2, ..., p) with
the consecutive values ¢(0), ¢(1), ¢(2), ..., ¢(p) ofthegivenrecur-
sive function ¢.

We shall say thatthe automaton A represents the recursive func-
tion ¢. if that automaton also represents the event S. But we already
defined representation of events in Section 7.2 (p. 160). By analogy
with that section, we shall say that an automaton represents a recur-
sive function ¢(f) only if all of its states x(p) belong to the allowed
set M, and that these states can belong to M if, and only if, the sub-
scripts of all inputsbetween? = 0and ¢ = pare consecutive values of
function ¢ (f).

There exist recursive functions that are a priori known to be
representable (for example, any periodic function is representable,
since here the event Svis regular), aswell as those that are a priori
known to be unrepresentable (for example, the function ¢ (f) that be-
comes 1 at ¢t = n2andiszeroinall the other instances). But in other
cases, we are faced with the problem of recognizing the represent-
ability (or lack of it) of recursive functions. Itcaneasily be seen that

Theorem 1 could be considered a direct result of Rice’s theorem [103], if the class of
recursive events were regarded as a class of events ‘‘generated’’ by all the possible re-
cursive functions, However, one can also haverecursiveevents ‘‘generated’’ by primitive
recursive functions, and this case needs special treatment. Our proof, in addition to being
general, is also completely applicable to events generated exclusively by primitive recur-
sive functions.
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this problem is a special case of our overall problem of recognition
of recursive events.

In accordance with the theorem provedinSection 7.6, a recursive
event S¢ is regular if, and onlyif, the recursive function ¢(f) is ulti-
mately periodic. But since we know * that the problem of recognizing
whether a givenrecursive functionisultimately periodicis algorith-
mically unsolvable, the same is true of the problem of recognition of
regularity of event S¢, and is all the more true of the broader prob-
lem of regularity of recursive events. This proves the Theorem 1.

Thus there is no algorithm capable of deciding whether a given
recursive event is regular or not. The problem must be handled
piecemeal, resorting in each particularinstance toa ‘‘creative’’ (as
opposed to a ‘‘mechanical,’” that is, algorithmic) solution. Assume,
however, that we are always able toseparate out, in one way or an-
other, the recursive events which are regular, Then, on the face of
it, itwould appear thatwe could design an algorithm for synthesizing
automata representing those recursive events which are regular.
However, it turns out thateven this problem does not lend itself to a
generalized solution. This is statedin another theorem of Trakhten-
brot, which we shall cite without proof.

Theovem 2. The problem of synthesis of an automaton repre-
senting an event fromthe set of all vecursive events that ave vegu-
lar is algorithmically unsolvable,

The above two theoremslead toaveryimportant conclusion: un-
less the allowable methods of specifying the desired machine (that
is, the language describing the specification) is restricted in some
way, any attempt to find an algorithmic method for synthesizing this
s~machine will be meaningless. More thanthat,unless the language
is restricted, any attempt tofind a procedure for answering the mere
question whether a machine realizing this specificationexists at all
will be doomed tofailure. Fortunately, however, the language can be
so restricted that any specification expressed in it will be a priori
realizable by an s-machine. In this way, the recognition problem is
completely avoided, and one needs toworry only about the synthesis
problem,

One suchrestrictedlanguage is that of regular expressions, where
the specifications are always written in terms of regular events. It
is a priovi known that there exists analgorithm for the synthesis of
an s-machine specified in this restricted language. This existence
follows from the reasoning employed in the proof of Kleene’s first
theorem (Chapter 7). A similar algorithm, again written in the

*See, for example, [142],
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language of regular expressions but more convenient and yielding
fewer states, is shown in Section 8.4. And B.A. Trakhtenbrot [101,
102] devised apredicate language also suitable for writing specifica-
tions which are a priovi known to be realizable in some s-machine
and for which there exists a synthesis algorithm.

However, the practical use of such languages merely shifts all
the difficulties associated with the synthesis phase to the initial de-
sign phase, where the specifications are written. Indeed, the advan-
tages inherent in these restricted languages are fully realized only
if there are no intermediate translation steps, thatis, if the specifi-
cation is from the outset formulated in the appropriate language.
Therefore, the designer issuing the specification must ‘“think’’ in
that language, that is, have the ability to express himself directly in
it, However,inpractice, the first definition of the required s-machine
is inevitably expressedinwords, Thisverbal definition must then be
translated into the language of regular expressions. Andone cannot
accomplish this translation unless one knows beforehand that the spe-
cification is expressible in the language of regular expression. We
are thus again trapped in a vicious circle.

A language suitable for specification and the subsequent synthesis
must, therefore, satisfy the following three requirements:

1) Those verbal descriptions which are natural and frequently
encountered must be easily translatable into this language.

2) The language mustbe sobroad that those natural and frequently
encountered verbal descriptions which are not realizable by an s-
machine could also be translated into it.

3) Both the recognition and the synthesis problems must be al-
gorithmically solvable for all the specifications written inthis lan-
guage.

So far, there are no languages satisfying all these conditions.

In the next section we shall consider a synthesis algorithm for
the relatively easy case where the specification isgiven in the lan-
guage of regular formulas, and the recognition problem therefore
does not arise.

8.4. SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL
MACHINES IN THE LANGUAGE OF REGULAR EXPRESSIONS

Assume now that we are given one or more regular expressions
{see Section 7.3), and itis requiredtosynthesize an s-machine rep-
resenting the input events specified by these expressions by
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generating the appropriate output symbols.* The problem then re-
duces to the synthesis of a finite automaton representing each of
these events by an appropriate set of states.

Actually, this problem was already solved in Chapter 7, where
Kleene’s first theorem was effectively proved, that is, the proof of
the theorem contained a method for constructing an automaton rep~
resenting any event specified by a regular expression. If more than
one regular expression isgiven, we can construct an automaton rep-
resenting each of them separately, and thenfeed the outputs into the
input of a common converter. However, we are confronted here with
a situation similar to that already encountered in Section 8.2: we
know a solution for the problem, but we are not content with it be-
cause the least number of states k in the resulting machine is too
large for subsequent minimization.

We shall now present a method which does not suffer from this
disadvantage, and which is an adaptation of aprocedure proposed by
V.M. Glushkov [252]. To begin with, assume we have one regular
expression., We shall write itin a form somewhat different from that
of Chapter 7. Thus in forming regular expression of Chapter 7,
we started with finite segments of input tapes (thatis, finite sequences
of inputs p;), which we then denoted bya, b, ¢, .... Now we shall start
the inputs p; themselves, thatis, we shall employ only input sequences
of length 1.

A regular expressionconsisting offinite sequencesa, b, ¢, ... may
be written in the form of a product. For example, the sequence
a==p,pspspy COrresponds to the expression

R == {[(py - ps) - psl - pa}-
A regular expression consisting of a, b, ¢, ... thus immediately
yields the corresponding regular expression consisting of symbols
p;. For example, when a =p,, b =7p, 0, and ¢=y, - p,, the regular ex-
pression of Chapter 7

R={[(b\Ve)lV(a- o),

becomes

R={({(p2 - p) Vo, - 2PV oy - (0 - )]}

It is obvious that the depth of this new regular expression may be
much greater than that of the starting one.

*We are not concerned here with the criteria for the selection of these regular expres~
sions.
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The next step in our synthesis is representation of our regular
expression in the form of a graph. To start with we adopt the fol-
lowing convention for expressions of depth 1:

eTerminal 2
P
e Origin . -i» . l—) . .
Origin Terminal Qrigin
Y7 Terminal
eTerminal
»
(Fiv p) (fi- F) (p)
a) b) 9]
Fig. 8.1,

Thus, a disjunction(p; V p;}is shown (Fig. 8.1,a) by two arrows origi-
nating from apoint and labeledp; and p;, respectively. This graph has
one origin and two terminals. A product(p;-p;)is shown (Fig. 8.1,b)
by two respectively labeled arrows connected in series. This graph
has one origin and one terminal. The iteration (p:)* is shown (Fig.
8.1,c) by an appropriately labeled arrow closing upon itself. The
origin of this graph is also its terminal.

In exactly the same manner, we define the operations of graphs
of regular expressions R, and R, of depth > 1. Each such graph has
one origin and atleastone terminal (the origin and the terminal may
also coincide, asin Fig. 8.1,c). The graph of the expression (R, \V Ry)
is obtained by combining the origins of graphs for R, and R,. The re-
sulting graph has one origin and as many terminals as there are in
the graph of R, plus the graph of R.. The graph of (R, R,) is obtained
by connecting all the terminals of the graph of R, with the origin of
R; (so thatthe arrowsin R, now point to the origin of R;). The origin
of the graph of (R;-R;) then coincides with that of the graph of R,,
while the terminals are all those of the graph of R,. The graph of
(R))* is obtained from the graph of R, by joining all its terminals to
its origin. The origin of this graph (which also is the origin of R;)
is thus also its terminal.

We shall now show a few examples of graphs of regular expres-
sions.

The regular expression

R={p, - {(paVea)'l}

has the graph of Fig. 8.2 (which also shows the intermediate graphs).
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Origin
L]

2
Origin
/VOrigin * fe
Terminal y
*Origin . :
\ Terminal
2
£ o Ps Ps
Terminal

(vr) (v p)] {al(a )Y}

Fig. 8.2,

The regular expression

R={(l(pz - pa)V (1 0] - [01 - (o1 - )]}

has a graph of Fig. 8.3.

/0; . ____/:2——-)-' .
— Terminal
P
Origin '
P °
Ps
P2
Fig. 8.3.

Let us stipulate that a graph depicting aregular expression must
satisfy the following conditions: any path from the origin to a term-
inal must define a sequence whose input to the automaton signals
the event specified by the given regular expression R; and, con-
versely, the graph must contain a path from the origin to one of the
terminals for any input sequence signaling the occurrence of the
regular event.

The graphs of Figs. 8.2 and 8.3 do satisfy these conditions.
There are, however, regular expressions with graphs not conforming
to these requirements. For example, the graph of

R= {( [Px ' (92)*]\/{’2) : Pa}

(see Fig. 8.4) contains ‘‘false paths.’’ Here the path indicating an
input sequence p20:0s (heavy line) also corresponds to the expression

{Ie2 - (p2)"] - 3}



SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 211

that is, it does not signal the occurrence of the required event R.
Again, Fig. 8.5 shows the graph of the regular expression

R={[(p)" - pa] Vu}-

But the heavy-line path does not signal the occurrence of event R.
Finally, consider the regular expression

R = {(py[(p2)" - (p2)"]) - p4)

whose graph is shownin Fig. 8.6. The graph contains a path p; ps p2 ps
which does not correspond to any specified event.

/’2

Terminal

. '_é . 2 F
Terminal O/
P
2
Orxgu\

Or1gm Terminal

Fig. 8.4. Fig. 8.5.

These three examples describe the three ways in which false
paths may be generated. Thus, false path may result from the fol-
lowing operations:

Terminal
.

Fig. 8.6.

1) Multiplication by adisjunctive expressioninwhich atleast one
of the disjunctive terms terminates in an iteration

[(1A-(BrVC) - DJ;

2) Disjunction, in which at least one of the disjunctive terms
starts with an iteration

{[cAay - BIVCE;
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3) Multiplication of two iterations

[(A) - (B)]-

To avoid “‘false paths,’’ the rules for constructionof graphs are
amended in these three cases to include emply arrows not labeled

O 2
Fi
2 # ——e—e
’ O Terminal

- » /93 .
Terminal
M
. ,l

@ et e
Origin Origin Terminal

Fig. 8.7. Fig. 8.8,

with symbols p. An empty arrow merely indicates the direction of
movement along the graph and is ‘‘traversed’’ instantaneously, that
is, it does not correspond to a discrete instant of operation of the

automaton,
2
O Terminal

s =1 .

Or.'igin o O f

£

Fig. 8.9,

We can now correct the graphs of Figs. 8.4 ~ 8.6 by means of
empty arrows, to give Figs. 8.7—8.9. In the first case, the empty
arrow starts at the end of the iteration; in the second case, it is in-
terposed between the common origin of the graph and the start of the
iteration; in the third case, the empty arrow is interposed between
the end of the first and the start of the second iteration. The cor-
rected graphs still represent the respective regular expressions,
but no longer contain false paths.

We shall demonstrate the synthesis of the automaton correspond-
ing to the regular expression

R={{(or - {[()" - 0a] Vo1 - 0)'])) - (03] V

(8.1)
VA ([er - p2)] - {lps Vo2 + )"} - 1) ).

Its correct graph is shown in Fig. 8.10.
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”CD__L»@

Terminal

Fig. 8,10.

Now we number consecutively, from left to right, all the symbols p
in this expression, entering the resulting ordinal numbers as super-
scripts (this will result in different superscripts onidentical p;’s).
We then obtain

R= {{(s - {[e2) - e¥ V[l - (¢P)])) - (5 Vv
V[ - o2 [V (8 - o) - 2.

(8.2)

The same superscripts are then assigned to the corresponding
labels p; on the graph* as shown in Fig. 8.10.

Now we write out at each node of the graph the superscripts of
the p;’s of the arrows converging upon it, assigning the superscript
0 to the starting node. The number of the node which is the origin of
an empty arrow is written at the node upon which that empty arrow
converges. If two or more arrows with identical label superscripts
converge on a single node, the superscript is written at that node
only once. Figure 8.11 shows the graph of our example with all the
numbers in place.

We now construct a table whose column headings correspond to
the variousp;’s of the regular expression. The heading of the first row
is the symbol ¥, whichis alsoenteredin the entire row (Table 8.50).
The heading of the second rowis0, and each column p; contains the
superscripts of all the arrows labeled p; and originating from the
nodes whose description includes 0. We thus obtain Table 8.51.

*With this method, it is usually convenient to number the symbols of the regular ex-
pression first, and only then construct the graph.
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(5}
(rz) 1?2 _
o ”) 38377 e Terminal
1

( )

Fig. 8.11.
Table 8.50 Table 8.51
14 4

Supe 1 P2 p3 Super P1 P2 P3

script script
* * ‘ * * * * * *
0 1,7,12[ 10 9

] —

Now we add as many rows as there are different entries in row 0,
with these entries becoming the headings of the new rows. We then
obtain Table 8.52. The columns p, in each new row are now filled
in a manner similar to that used in filling row 0, For example, the
intersection of row 1, 7, 12, and column p; contains the superscripts
k of the labels pf of all the arrows originating from the nodes whose
descriptionincludes 1, 7,or 12, If there are no such arrows, then we
enter the symbol ¥. As aresultof this procedure, we get Table 8.53.
After this, we add to Table 8.53 asmany rows as there are new en-
tries in the three rows just completed, and fill in the columns in the
manner just demonstrated, The table will be completed in a finite
number of steps, since the number of different combinations of super-
scripts k£ is finite. If Nisthe number of characters in the givenregu-
lar expression, thenwe have a total of NV + | superscripts and nomore
than 2~ +t different superscript combinations, thatis, different table
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Table 8.52 Table 8.53
? ?
1 P2 P3 21 P2 P3
Super- Super-
script senpt I
* * * *x % i3 * *
0 1,7,12{ 10 9 0 1,7,12] 10 9
1,7, 12 1,7, 12 4 2 1 3,8
10 10 * l 11 ‘ *
9 9 12 10 9

entries. The number of the rowsinthe table cannot, therefore, ex-
ceed 2V +1,

Finally, we check off (on the left margin) all those rows whose
headings contain a superscript appearingin the description of aterm-
inal node of the graph, and obtain Table 8.54.

The next step is to code the row headings of the table by means
of consecutive symbols xp, %), ...; we code the table entries accord-
ingly.

Table 8.55 thus constructedis the basic table of a finite automaton
which, startingfrom aninitial state x;, represents the events defined
by the regular expression (8.1) by the set of checked-off states (states
X2, %5, %7, M9, K10, K11, M1z, ®13, ¥14). TOconvince ourselves of this,let our
automaton be in an initial state x; andletthe input sequence bep; ps pi.
The automaton will then go to state x;;. The symbol x;; (compare
Tables 8.54 and 8.55) is the code for the superscript set 7, 12. But
then it follows from the very procedure for construction of Table 8.54
that the graph of Fig. 8.11 contains a path pi: ¢i: pis (starting at the
origin and possibly including some empty arrows) such that gi is
equivalent to p! or p}?, that is, iy =7, or i; = 12. Now, does the se-
quence ppsp; signal the occurrence of the specified event? We can
reformulate this question as follows: is there a graph path pjpsp
from the origin to one of the terminals? Table 8.54 and Fig. 8.11
provide the answer: since path p;psp; canterminatein p}®> and an ar-
row so labeled does lead to a terminal node, this path does exist.
Thus, whenever an input sequence resets the automaton into a
checked-off state, this means that the corresponding graph path leads
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Table 8.54 Table 8.55
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to a terminal node, that is, this input sequence corresponds to a path
from the origin to a terminal node, Butthis, in turn, means that the
specified event has occurred. Therefore, our automaton represents
this specified event. Whenever the input sequence is not the initial
segment of any sequence specifying anevent (and therefore no event
will occur), our automaton is reset into state %o and stays in it. In
Table 8.55, such a situation arises with input sequences pipip:,
01030201, and SO on.

If more than one regular event (R,, R,, ..., R,) isspecified, our
method is modified as follows: The symbols in the regular expres-
sion are numbered consecutively (thatis, the p;’sin R, are assigned
superscripts 1, 2, ..., m, those inR, are assigned superscripts m + 1,
m+2...n, and so on). Aseparate graph is thenconstructed for each
expression. The superscript 0 is assigned to the origins of all the



SYNTHESIS OF FINITE AUTOMATA AND SEQUENTIAL MACHINES 217

graphs. A common table is constructed, sothatan intersection of a
row and a column may contain superscripts from several graphs.
Then the rows containing the superscripts marking terminal nodes of
all graphs are checked off (thatis, the sets of symbols representing
each of theevents Ry, R, ..., R, aredetermined). Thenone designs
an output converter which places anappropriate symbol A with each
of these sets of states.
Example., Given three events

Ry==p, - (2 VeD)s
Ry=py - ()"
Ry={p, - [(p)"Val)-

The corresponding graph is shown in Fig. 8.12, and the above-de-
scribed algorithm produces Tables 8.56 and 8.57. However, now
we do not use check marks, but label the states representing the
events R, Rs, and R;with symbolsi;, A, and ks, respectively. State s
is labeled with two symbols (4, A5 because events R, and R; contain a
common sequence {p; - p2) leading to xs. Therefore, we either identify
M with As (thatis, fail to distinguish between events R, and R;), or we
must label x; with a new symbol 7.

We could have synthesized our automatondirectly from the regu-~
lar expression, without using a graph, Infact, this is the procedure
used by the author of our method, V.M. Glushkov, and it may prove
to be more convenient in those caseswhere the regular expressions
R, yield complicated, cumbersome graphs. Thatprocedureis,how-
ever, not as easy to visualize as that employed in this book.

2
(2) ® Terminal R
It / 1
i £z 3
]

fomtt sl

re) Terminal /p ® Terminal R;

[]c_.&__—ﬁ

(7}
O,

’ Terminal Rz

F3 ° Terminal Rz
Fig. 8.12,
The obvious problem which arisesin connection with the Glushkov

method is that of a priori estimation of the number of states in the
final automaton. We shall present (without proof) anestimate for the
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Table B8.56 Table 8.57
N S I } s KQ o ! 2 Pj
w | x| x| o w | 7 | | o
0o | 16 i 4 | * S ‘ s | %
Wl 161 3 l 2,7 \ 8 b | ag | | s | %
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N1 o3 * i * \ * Mt g { 2
Mohe | 27 | ox I 7 ( % Ao s | oz | I xg ' %,
o8 | = ' £ | Ml | } o | %
L] s | ok | * } 5 S ) 70' o
| 7 % | 7 { % Iy [ S i g ' %

case where the automaton represents specific events* (specific
events are a subclass of regular events).

Let specific events ER,, ER,, ..., ER,, be given. Now consider the
formula

S=RNRN .. VR,

This formula contains no iterations (since the events are specific)
and, therefore, graph S hasnoloops (thatis, no path crosses the same
node twice). Formula S can be transformed toa form §” such that:
a) the graph of S’ will be atree, that is, only one arrow will termi-
nate in each node, and, therefore, different paths will always lead to
different nodes; and b) if two or more arrows originate at a single
node, they all will be labeled with different characters of the input
alphabet. Formula S’ will be equivalentto S, but may differ from it
in the number of charactersit contains. Letus denote the number of
characters in 8’ as N’, Then one cansynthesize an automaton rep-
resenting the system of events ER,, ER,, ..., ERn. The number of
states in this automatonwill notexceed N’ + 1. In practice, however,
this method yields automata with a much smaller number of states
than N’ + 1.

*The upper limit for the number of states in the case of an arbitrary regular event
was estimated by Glushkov in [29].
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Equivalence and Minimization
of Sequential Machines

9.1. THE PROBLEM OF RECOGNITION
OF EQUIVALENT STATES

We have already said in Section 3.7 that the class of possible
input sequences to a machine may be restricted for some reason,
and we have seen such a case in Chapter 5. Now consider other
constraints that may be imposed on the possible input sequences.
They may include the following:

a) Identical symbols shall not appear consecutively.

b) Symbol p; shall not follow symbol p;.

c) An input sequence shall not begin (or, conversely, must be-

gin) with pg,

d) If the sequence contains p, or p; then it cannot contain p,.

In these examples, the infinite set E containing all the possible
input symbol sequences of any desired but finite length is split into
two subsets: a subset L € E (which may be finite or infinite), con-
taining all the input sequences allowable in a given s-machine, and
a complement of this subset L, consisting of the set of forbidden
input sequences. A special case is that of L = E, which means that
any input sequence is allowable in the given machine.

Let us note that constraints a - d are in no way related to the
state in which the machine happens to be. There may, however,
exist other constraints, imposed by the design of the s-machine.
For example, its state diagram may show an ith state such as
that of Fig. 9.1. Here, the machine
cannot accept an input pg, and the cor:-
straint on the input sequence is thus
imposed by the properties of the ma-
chine itself. Such constraints may be
imposed on one, several, or even all
the states of the machine. The con-
straints on different states need not Fig. 9.1

219
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be identical, and different states may thus forbid different input
signals,

If a given input sequence does notviolate the constraints imposed
by state »; and all the states following x;, it is said to be an input
sequence allowed in state x;. The set of all sequences allowed in
state »; is denoted by in.

Constraints imposed by the properties of the machine are known
as Aufenkamp constraints. If Aufenkamp constraints are operative,
then there is no single, all-encompassing set L such that any mem-
ber of L would be an allowed input sequence regardless of the ini-
tial state of the machine. With Aufenkamp constraints, each of the
possible % states of the machine has its own in which, in general,
is different from the other sets Lx]. (j Q).

This case differs from that in which the constraints are inde-
pendent of the states of the s-machine (thatis, where there exists a
single set L) and where the algorithm for recognizing whether a
given sequence belongs to set L can be formulated in terms unre-
lated to the initial state of the machine (or even completely unre-
lated to the machine). When the recognition algorithm exists pev se,
that is, may be expressed in terms unrelated to the machine, the
corresponding constraints are said to be constraints per se, and
the set of the possible input sequencesis said tobe restricted per se.

Considering for the time being only sequences restricted per se,
let us introduce the conceptof equivalence of states of an s-machine
(or a finite automaton). Assume we are giventhe set L of allowable
input sequences, as well as two s-machines S and G (in particular,
S may coincide with G). Thenstate »: of S and state x; of G are equiv-
alent in terms of L if the two machines (in these two respective
states) process the same input sequence from L into identical out-
puts. If the machines S and G are identical, then this definition
merely describes the conditions for equivalence (in terms of L) of
the two states of a single s~-machine (or automaton). If L = E, .that
is, if the set of allowable input sequences contains all possible se-
quences, then states x; and »; are simply equivalent.

Our definition of equivalent statesunderlies the following analyti-
cal problem: Given an s-machine and its set of allowable input se-
quences L, find an algorithm for deciding whether two arbitrarily
chosen states of that s-machine are equivalent in terms of L. If
we had such an algorithm, we could splitthe set of all states E into
groups of those that are equivalent in terms of L. By a group of
states equivalent in tevms of L Wwe mean a set of states of the s~
machine such that: (1) any two states in the group are equivalent in
terms of L; and (2) no state from one group is equivalent (in terms
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of L) to any other state of any other group. This grouping of states
is, as will be seen later, of paramountimportance in the minimiza-
tion of s-machines.

Our generalized analytic problem would be solvable if we had an
algorithm for recognizing the equivalence of states, given any s-
machine and any set L. But we will show in Section 9.2 that this
generalized problem is algorithmically unsolvable, and so we shall
be forced to tackle recognition problems one specific case after an-
other, as in Sections 9.3 and 9.4.

9.2. ALGORITHMIC UNSOLVABILITY OF THE GENERALIZED
RECOGNITION PROBLEM OF RECOGNITION OF
EQUIVALENCE OF STATES

To be useful, the set of allowable input sequences L should be
effectively specified. In other words, for each specified set L there
should exist an algorithm for recognizing whether agiven finite se-
quence of input symbols belongs to L. For example, a finite set L
can be effectively specified by simple enumeration of all sequences
contained in it. But this cannot be done for an infinite set L, which
must be specified in some other way, for instance, by specifying a
recognition algorithm. Set L may, for example, be specified ver-
bally by stating that:

1) it contains all sequences longer than three symbols, wherein
the fourth symbol is p:; or

2) it contains only those sequences ending inp; which do not com-~
prise pq.

These sets, even though infinite, are fully characterized by their
respective verbal descriptions, and thus itis always possible to tell
whether they contain any given sequence. The mere fact that such
an effective verbal description can be formulated shows that there
must exist an algorithm accomplishing the same thing, that is,
recognizing whether a given sequence belongs tothe given set L. In
this sense, the recognition algorithm is the least artificial and the
broadest language for effective definition of infinite sets L.

We shall now try toascertainwhetheritis possible to determine
the equivalence of two stateswith respecttoan arbitrary effectively
specified set L, that is, a set L defined by a recognition algorithm.
To start with, we must formalize the concept of a recognition al-
gorithm. As usual, we turn for help tothe theory of algorithms and
recursive functions,* which asserts that any set of sequences for

*See Chapter 12, and alsc Section 8.3,
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which one can define ‘“recognition rules’’ is recursive; conversely,
one can define such recognition rules for any recursive set (this
assertion is a direct result of Church’s theses — zee Section 12.11).

Let L be an arbitrary recursive
set of input sequences, and let x; and
%; be arbitrary states of s-machines
S and G, respectively. Then the foi-
lowing theorem is true:

Theovem, The problem of recogni-
tion of equivalence of states i and %;
in terms of an arbitrvary, effectively
defined set L is algovithmically un-
solvable,

We shall prove this theorem by
demonstratirig the algorithmic un-
solvability of the narrower problem
of recognition of equivalence of states
in a special machine, whose allowed
set L belongs to a special subclass of recursive sets, If the prob-
lem is algorithmically unsolvable in this special case, then itis
certainly unsolvable in the general case.

Consider a three-state, s-machine N and its state diagram (Fig.
9.2). In this machine r = 2, that is, the input alphabet consists of
only two symbols {0, 1}. The output can be either i, or A;.

Now we shall deal with a special class of recursive sets con-
taining sequences of 0 and I, and defined as follows: Leto({) be an
arbitrary general recursive function, and let the set L, contain only
the following sequences* of 0 and 1:

Fig. 9.2,

sg(¢(0) )
sg(9(0)), sg(e(D));
sg(2(0)), sg(p(1)), sgle(D)

sg(¢(0)), sgle(1)), sg(v(2), sg(¢(d)
and so on.

Then set L is recursive at any recursive functiong(?). Indeed, each
(p + 1) long sequence of 0 and 1 can be placed into correspondence
with a definite value of the integer function

=p

D (p)= ; sg (9 (£) 2 - 27+

=0

*The notation sg(x} denotes & function which is equal to 1 forx > land equal to O for
x = 0.The function is undefined for x <0,
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defined on set A(L,). Function ®(p)isanincreasing function and, by
virtue of the recursivity of ¢(¢), is also recursive,* Consequently,
set A(L,) is consecutively enumerated as the recursive function
(d)® increases, and therefore is a recursive set. Hence the set
L must also be recursive,

It is readily seen that the states x; and »; (where i, j=1, 2, 3;
i+ j) of the machine N (Fig. 9.2) are equivalent to each other in
terms of L, if, and only if, L, contains no sequences comprising po.
Thus the problem of recognition of equivalence of states of N is
algorithmically solvable only if there exists an algorithm capable
of recognizing whether L, contains even one sequence comprising po.
But such an algorithm cannot be written unless there is an algorithm
for recognizing whether a given arbitrary recursive function ¢(f)
becomes zero at some f=1{,. And it has been proved [142] that no
such algorithm exists. For that reason, our narrow recognition
problem is algorithmically unsolvable, and the generalized problem
of ‘recognition equivalence of two states of an arbitrary s-machine
with respect to an arbitrary recursive set L is a fortiori algorith-
mically unsolvable. This proves the theorem.**

9.3. RECOGNITION OF THE EQUIVALENCE OF STATES
IN THE CASE OF AN UNRESTRICTED SET OF
INPUT SEQUENCES

Let no restrictions be imposed on the set of allowable input se-
quences, that is, let L = E. Inthis case the algorithm merely recog-
nizes the simple equivalence of the s-machine states. For this case
we have a straightforward and convenient algorithm, which is due
to Aufenkamp and Hohn,***

To start with, let us pointout an obvious attribute of equivalence
of states: if any two states of an s-machine are equivalent with re-
spect to set L;, then they will alsobe equivalent with resbect to set
L,, provided L, & L,.**** Conversely, two states can be equivalent
with respect to L,, where L, =2 L,, only if they are also equivalent
with respect to L,.

*See Sections 12,6 and 12,13,

**But in no way implies that the problem is unsolvable in special cases.

*#++Aufenkamp and Hohn [6] proved only the sufficiency of this algorithm, We shall give
a somewhat different proof for its sufficiency, and shall also prove its necessity.

****This is read as Ly is a subset of Ly,
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Now assume that we are given some s-machine, for which we
write the interconnection matrix, obtaining, for example, matrix C

% ty g %y [ %g
2 [ (o 1) (o1 by) 0 0 0 (o2 M)
] (ko) @ut) (Goly O 0 0
3 0 (P M) (e M) O (e1, 1)
(o2, 1) 0 (oo M) (1 22)
0 (P 22) (P2 X} (o1, 1)
(i M) (o Ra) (oo, 2o) 0

R
[ I
oo o

We decompose this matrix into groups of rows containing iden~
tical symbol pairs. Thus rows =« %4, and x3 fall into group 1, and
rows ux, s, and #s into group 2. We rewrite matrix C so as to be
able to reflect this grouping with a minimum amount of effort, and
transpose the columns in the same way. We draw a horizontal line
between the groups, and obtain matrix

7 %, %3 %, 5 %g

% [ (Poy 1) 0 0 (s 23) 0 (o2 M)
s 0 (por 1) 0 (P2 M) (o1 1) 0
*3 0 0 (p2: M) (oo M) (01, AY)

0
7y | (22 20) 0 (90, 22)  (p1, 1) 0 0
0
0

Y5 0 (o2 2o} (P 2) 0 (20, 1)
ks 0 (02, M) (900 Ro) (20, 1) 0

which differs from the original matrix C in that rows and columns
»p and x, are transposed.

Note that the states of each group are equivalent in terms of the
set L'comprising all allowable input sequence of unit length, In-
deed, within each group the output is independent of the state of the
s~machine. For example, an input pg will always produce an output
7. regardless of whether the machine is in state %, %3, or . Fur-
thermore, only states belonging to the same group can be equivalent
at arbitrary allowable input sequences. Statesbelonging todifferent
groups are aq priovi nonequivalent in such cases because they are
nonequivalent even in terms of set L' containing sequences of only
unit length.

Our grouping into submatrices is helpful in clarifying some of
the equivalence relations in the matrix, butis not sufficient. It does
not guarantee that two states of a group will not become nonequiva-
lent during later operation of the machine. To elucidate all of the
possible equivalence relationships, we introduce a further decom-
position of our matrix into symmetrical submatrices. Thus if the
previously drawn horizontal line separated the %2th and the (&£ + 1)th
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rows, we now draw a vertical line to separate the kZth and the
(R + 1)th columns. In our example such a symmetrical decomposi=-
tion is obtained by drawing a vertical line to separate columns x;
and xg.

7 %y 3 %y %5 1g
o [ (o M) 0 0 (p1r 22) 0 (pas 1))
%y 0 (¢ M) 0 (e M) (1 )

%3 0 0 (2 M) | (o M) (s 22)

0
0
%y | (P2y do) Y (o M) | (1 M) 0 0
0
0

L5 Y (o2 ho) (00, o) Y (o1 M)
L5 Y (02 20) (o A2) | (o1, Xy) 0

A submatrix in which any pair of symbols present in any row is
also present in all the other rows is called a 1-matrix. In our ex-
ample, the two submatrices below the horizontal line are 1-matrices,
but the other two are not (for example, the top left-hand submatrix
has a pair (ps, M) in the third row not present in the other rows).
We shall try to decompose them symmetrically into 1-matrices.
Such a decomposition is achieved by first drawing the minimum
number of horizontal lines sufficient to convert the entire matrix
into 1-matrices. But this partitioning will notbe symmetrical. For
this reason, one also draws vertical lines between the columns
corresponding to the rows already separated by the horizontal
lines. After this, we check whether all resulting submatrices are
1-matrices. If not, we again draw horizontal lines, and so on, until
we obtain a completely symmetrical decomposition consisting only
of 1-matrices.

In our example we draw a horizontal betweenrows x, and xs. All
the resulting submatrices are 1-matrices, and the vertical, drawn
between columns x4 and %3 to achieve symmetry, does not upset this
property:

% %y %3 %y s g
2 I (Por M) Y 0 (o1, A9) Y (p2s M)
4 0 (por M) Y (2 M) (o1, M)

3 Y 0 (p2r M) | (B0, 21)  (p1s Do)

%y | (Par Po) 0 (0 22) | (o1, M) 0
T 0 (02 2o) | (20, A9) 0 (o1, M)
g 0 (P2 2o) | (po X2) | 01y 21) 0

[T =R = B I = 2 W =)

In the general case, this symmetrical decomposition will produce,
after a finite number of steps, either of the following two situations:

1. The decomposition is #rivial, that is, all the resulting sub-
matrices are of the | X 1 order (there are separating lines between
all the rows and all the columns).
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2. The decomposition is nontrivial, that is, we have at least one
submatrix of the order m X n, where max(m,n) > 1. In conrast to
the trivial case, this partitioning gives groups of states, For ex-
ample, the matrix shown above is split into three groups {xi, x},
{%3}, {%2, 5, %5}.

The Aufenkamp-Hohn Theovem. The states of an s-machine ave
equivalent if, and only if, they ave members of the same gvoup
Jormed by symmetrical decomposition of the given matvix C.

Proof of sufficiency of the conditions of the theovem, Suppose
matrix C can be symmetrically and nontrivially decomposed into
1-matrices, and consider first the simple case when the matrix is

%y *g s | PR | Peva - - “n
% r .. (93‘}\1)) [ (Pt')'q) . A . Ny

" R (2 7‘/7) o (Pz’ }‘q)

AEA P v i

T (;,‘X,/.p) e }.q); . R

Here, we have only one group containing more than one state., This
is the group of & states {x;, %y, ..., %}, that is, the & X & 1-matrix
C;. Let us write out all the input symbols appearing in C;;, and let
these symbols be T where i <{ 7. The symbols with sub-
scripts ¢, , ; toe,donotappearinC,,. Now we shall prove that states
¥, ¥2, ..., ¥, are equivalent.

Assume we have an arbitrary input sequence

1

o ol L. Pj {)j Rl (9.1)
and that pi*! =p, .  is thefirstinput symbol of this sequence which
does not occur inC;;,. With this input sequence, the machine output
is independent of its initial state (which, by our assumption, must

be one of the statesof group{x:;, %z ..., x}). Indeed, until time j the
input symbol p must belong in C;,, and therefore the machine must
assume one of the states {%), %y ..., %}. Butaslong as the machine

assumes one of these states, its outputwill depend only on the input
(since C,, is a 1-matrix inwhich all the member pairs are identical.
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Therefore, until time j the output sequence does not depend on which
of the states {x;, %2, ..., s} isthe initial state of the machine. Then,
at time j + 1, the input signal becomes pi+', This input signal always
shifts the machine into the same state »;, regardless of which of the
states {1, %2, ..., %} the machine happens to be in. This is because
Cy Cua ..., C)(u—py are all l-matrices. Thus, the output is again
independent of the previous state of the machine. The subsequent
output of the machine is governed by the fact that at time j + | it is
in the state x; and, accordingly, it ceases to depend on the initial
conditions,

Since sequence (9.1) was chosen at random, states =i, %o, .
are equivalent.

Now consider the general case. Let C be symmetrically decom-
posed into 1-matrices

v Kp

¥ KgeeaFp ) Xppy gtz eee Ypas f oo | ¥pet | *n
% B T
%y
Ci Cp
“r
TR+
Th+2
- Cy Cyy
Trts
Fn—1
*n L .

We shall prove that the statesoccurringin any one group are equiva-
lent. Indeed, any input signal can produce one of the following ef-
fects: (1) it can shift the machine from a state belonging to some
group into a state belonging to the same group; in this case the out-
put depends only on the input, and not on the state the machine is in;
(2) it can shift the machine from a state of the ith group into a state
of the jth group (i #+ j). However, it is seen from the structure of
matrix C, that in this case this input signal also shifts all the other
states of group / into the statesof group j. And once the machine is
in a state of group j,its output again does not depend on the specific
state in which it happens to be in; (3) it can shift the machine from
a state of group i into a state » not occurring in any group. If that
happens, the input will also shift all the other states of group i into
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state w;, and the subsequent output of the machine will depend only
on #.

The above reasoning holds for any of the groups of the matrix,
Therefore, the output of the s-machine is always independent of the
specific initial state of group i in which the machine happens to be.
This being the case, groups of equivalent states behave as if each
group were a single state. This proves the sufficiency of the condi-
tions of the theorem.

Proof of necessity of the conditions of
the theorvem, Consider first a simple case,
Let the states %1, x2,..., % form agroupof
equivalent states of the s~machine, and let
states #y4+1, % +2 ... %2 be nonequivalent
to each other and to any state of the above
group. Let us draw the state diagram of
this. machine, We shall now show that if
state »; of group {xi, %, ..., %} is con-
nected to any state xx +» outside thatgroup
by a path labeled p, ..., then all the other

Fig. 9.3, states of thatgroup must alsobe connected
to the same state xx +», and their connect-
ing paths must also be labeled ps ... . That is, the first symbols of

the path labels must coincide. For example,if state »x; of Fig. 9.3 is
connected to %, + 3 by apathwhose labelincludes p, as the first sym-
bol, than the other states of the groupof which »; is a member (that
is, %4, %3, #4, ..., %) must also be connected to % +3, and the connect-
ing paths must also carry ps as the first symbol of their labels. To
prove this statement, consider state »; of the same group as x;. On
the face of it, the path labeled ps ..., and originating in =3 could fol-
low one of the following courses:

1) it could lead from =x; to one of the states of group {x, x.,

. MY

2) it could lead from x; to one of the states »; (where i+ 3),
for example, to state »x 4+1;

3) it could lead to state x. i3, that is, to the same state as the
path labeled p;..., originating in xs.

We shall now show that case (3)isthe only one possible. Indeed,
assume for amoment that case (1)ispossible. That would mean that
the same input p, could cause the machine to shift from state x, to
state .43, and from state x3, whichisequivalent to %, to some state
»; of group {«, %, ..., %}, But state %, .3 is by definition nonequiva-
lent to any of the states of group{x,, s, ..., w);consequently, ;3
is also nonequivalent to x;, and thus there would exist a sequence
0, Pa, U, ---» such that its input to the machine would cause the latter
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to generate different output sequences, depending on which of the
states—~x»; or x,.+3;—is the initial state of the machine. However, if
this were the case, then the input sequence o o, o, ¢, ... would also
cause the generation of differing output sequences, depending on
whether the initial state of the machine is x, or ;. But that would
be contrary to the assumed equivalence of states x, and »x;. Thus,
case (1) is impossible.

Now assume that case (2) holds. Then an input p, would shift
the machine from state x»; to state x»+3, and from state »; to state
%k + 1. Butxy . is,bydefinition, notequivalentto x, +3; consequently,
there would exist, just as in case (1), a sequence 9, 73, Pa. -+ +» SUCh
that its input to the machine would cause the latter to generate dif-
ferent outputs, depending on which of the states—w, 1 or %, 4 3—is
the initial one. But then the input of sequence o p, p; pp, --. Would
again prove the nonequivalence of states x2 andx»;, which would con-
tradict the starting assumptions. Consequently, case (2) cannot
hold, and the only possible case is (3), shown in Fig. 9.4. Here all
states of group{x;, % ..., »}are connected to the same state x; ;3
outside the group, and all the connecting paths bear a label whose
first symbol is p.. The second symbol of the label must also coin-
cide, since otherwise it would be possible to prove by means of an
input signal of length 1 that some pair of states from group {1, xs, ...,
%z}. 18 nonequivalent, which would contradict the conditions of the
problem.

It follows that if any state of group {1, %2, ..., ») is connected
with one of the states nu+1, Hpsa, ..., %o by apathlabeled (ps, k), then
all the states of group {w, »a, ..., ) avealsoconnected to that state

by paths labeled (ps, An) [see Fig, 9.4].
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It also follows from the above thatif a path labeled (ps, ) con-—
nects a state of group {x1, s, ..., x} with anothev state of that grvoup,
then all the other similarly labeled paths from all the other states
{1, %3, ..., %} must also terminate in states belonging to that gvoup.
That is, no path labeled (ps, Mn)leads to a state %w+1, ®r42, - ... ., %u
outside the group.

If this is so, then the interconnection matrix of our machine
will be

Ty T Hp e | Fpt2 *n
k2 r ]
7‘2
Cy Ci Cis G (n—k+1)
*k
C = TR0 Cy _
“Ri2 Cs .
tn L C(n—k+l)l P I B .o _
Here all the submatrices Cy;, Cys, ..., Cyn-r+1y are l-matrices
by virtue of the above italicized statements. The other submatrices
C;; (wherei=2,3,..,n—k+land j=1, 2, .., n—%k-+ l)arealso

l-matrices since they all contain only one row (or one member).
Our arguments alsoholdinthe general case where there are sev-
eral groups of pairwise equivalent states. However, some of the

individual states xpy1, %e+2, ..., xn must then be replaced by groups
of states; each of these groups behaves in a manner completely
analogous to the group{x:, s, ..., =z} of our particular case. This

concludes the proof of the theorem.

The Aufenkamp and Hohn theorem results in a simple and very
convenient algorithm for determining which groups of states of a
given s-machine are equivalent. This algorithm merely consists
of symmetrical decomposition of the interconnection matrix of the
given s-machine.

9.4 RECOGNITION OF EQUIVALENCE OF STATES FOR THE
CASE OF INPUT SEQUENCES OF LIMITED LENGTH

We shall now consider the problem of equivalence of states when
the set L of allowable input sequences cannot contain sequences
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comprising more than g symbols (that is, we analyze the operation
of the s-machine during the firstgdiscrete instants after the input).
It is required to find an algorithm recognizing those states which
are equivalent in terms of L, and to group these states together.

Since the total number of differing input symbols p; is finite,
and since no sequence can contain more than ¢ such symbols, the
number of different sequences in set L must be finite. This being
the case, the required algorithm must exist. To ascertain that any
two states x; and »; of 2 machine are equivalent in terms of L, it is
sufficient to prove that given identical inputs from L, the machine
starting from state »; will generate the same output as the same
machine starting from state x; and that this will happen at all pos-
sible inputs from L., One canprove thisby scanning either the state
diagram of the machine, its interconnection matrix, or any other of
its representations, or by an experiment on an existing machine.
The algorithm for recognizing equivalence thus entails scanning of
all the input-output relationships which are possible for a given set
of two states. This obviously is a huge task, One way of organizing
and, possibly, minimizing this unwieldy scanning procedure is to
raise the interconnection matrix of the given s-machine to a power,
a procedure described in Section 3.6. Letus now recall the proper-
ties of matrix C’.

1. The element C¢; of C? enumerates all those input sequences of
length ¢ which shift the machine from state »; to state «;, as well as
the corresponding output sequences.

2. Since the state of the machine at {=p + 1 is uniquely defined by
its state and input at t-=p, a single row of C? cannot contain two
elements whose terms comprise identical input sequences.

3. Each input sequence of length ¢ must appear in each row of
e,

Starting from these properties of C?, one can derive the follow-
ing method for determining the states equivalentinterms of L. Let
us arrange set L in order of.increasing sequence length. We now
take the shortest sequence of L (if there are several such sequences,
all of equal length, we can use any one of these), and find in matrix
C? (where ¢ is the maximum length of a sequence of L) all those in-
put sequences whose initial segments coincide with our shortest
sequence, We mark these coinciding segments in some way, for
instance, by placing dots over each of their constituent symbols. We
repeat this procedure with each successive sequence of L {sequences
of equal length can be taken in an arbitrary order). Each symbol of
C7? is marked only once; that is, if we find a matching sequence in
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C7, we place dots only over those symbols which are still unmarked.
This matching procedure finally gives a matrixwhichhas sequences
carrying dots over all their symbols aswell as sequences that have
only some initial segments marked, or no markings at all.

For example, if ¢ = 3; the set L contains the four sequences

Py P1P2, P201; P201P2y
and the s-machine has the state diagramof Fig. 3.11 (for its matrix
C3 see Section 3.6), then the matrix sequences are marked as follows:

“ Yy Ly

(010200 Makah )V ]
V (920201, MAak)]

[(pipapar Msloha)V

V (paogar L aly) Y

2 | 10100 Ralidg) v
V0a81020 Mikiks)]
\-"’(fjlpl?lv Tah dy) v

\ (f;z{.’lpuy L]

> (320102, 22)105) [Puoasn Mhs?) Vv [(papapis alah)V
V(eigep M)V V(G Mdh)]
¢ = V (32020, hahala) V
V(§i7 100 kihaha)V
VY Gapipns Rehit)]
3 (210102, hohils) [Gapion 222V [(aprer Mahsh)V

V (papapar hahika) v

V(919202 Faloha)V

\ (paP2p1s Aahih)V

V(én;"zPl, hahghp)]

L V(pioron RehAo)] A

After marking, we delete from (7 all those input sequences (to-
gether with the corresponding outputs) which do not carry dots (in
our example of C?, these are the sequences pzp202 ana pep:01). In in-
put sequences where dots appear only over theinitial segments, we
delete the unmarked symbols, that is, the tail ends. We also chop
off the corresponding tail-end sections of the output sequences, and
we obtain a C? maivix abridged by L. For example, our C* matrix is
abridged by L to give

% En %y
% [ (en M) V(pap 102 MM iAg) (21 XDV (pap1s MRV (prgas Ashy)
V(eipz, hahy)
g (p2p 102, 251 1R3) (1o M)V (e M)V (p1s A1)
VA{p2p1s Rahy)
%3 (1 Ay) (92102, hahaky) V (pap1y Rahg)V

V(i Rako) V(1 Ao V (P12, Aghe)

Thus the abridged matrix contains only those input sequences
(and the corresponding outputs) which are presentin L, Now we can
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define a simple scheme for recognition of equivalence of states:
Two states »; and x; of an s—machine ave equivalent in terms of L
if, and only if, the pairs of input and output sequences ofrowiofits
abridged (by L) C? matrix maich exactly those of vow j and theve are
no unmatched paivs in either vow, Thus, in the abridged matrix of
our example there are no tworows withexactly the same pairs, and
therefore this s-machine has no states equivalent to each other in
terms of L.

However, even this algorithm, which is animprovement over the
disorganized scanning of all possible input-output relationships,
is stillunwieldy, especially atlarge values of g. For this reason, one
tries to avoid the necessity of scanning allinput sequences from L.
Instead, one tries to reduce each problem tothose particular cases
where such scanning is not needed. Let us consider one such case.

Let set L contain all the sequences of length smaller or equal
to g. Set L is a subset of set £ containing all input sequences. For
that reason, any two states equivalent interms of E (that is, simply
equivalent) are also equivalent in terms of L. Now we have to ask
ourselves when do groups of states of a given machine, which are
equivalent in terms of E, coincide with the groups equivalent in
terms of L; that is, when are the states which are equivalent in
terms of L also equivalent in terms of E? If these two decomposi-
tions into groups coincide, then we can use the Aufenkamp - Hohn
algorithm; however, if the groupings do not coincide, we may have
to resort to the scanning procedure described above, or to some
new method.

The answer to this question is associated with the relationship
between the number of states of the machine %, and the maximum
length of an allowable input sequence g, We shall show that if g is
sufficiently large then it may be possible to recognize all the non-
equivalent states. Then each pair of states nonequivalent in terms
of E will also be nonequivalent in terms of L.

Assume that we are given a sequential machine S with £ states,
and that we symmetrically decompose its interconnection matrix
by means of the Aufenkamp - Hohn method. Now we have k* groups
of equivalent states (obviously, &* < k).

We shall try toprove thatifg > £* — |, then the grouping of equiv-
alent states, obtained by the Aufenkamp - Hohn procedure, produces
groups which coincide with those equivalent in terms of L; if that
is true, then at ¢ > &* — 1 we can solve the equivalence problem by
means of the Aufenkamp - Hohn algorithm, and the number of result-
ing groups will indeed be equal to k*,

Let us devise a machine S* having k2* states and the following
characteristics: (a) for each state of machine S there is anequivalent
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state of machine S* and, conversely, for each state of machine S*
there is an equivalent state of machine S; (b) no two states of S*
are equivalent, It will be shown in Section 9.7 that such a machine
can always be devised.

We shall now apply Moore’s theorem (Section 11.2) which states
that if a machine N has % states and all the states are nonequivalent
to each other, then for each pair of states x; and »; there always
exists an input sequence not longer than £ — 1 that allows us to dif-
ferentiate between these two states. Since all the states of S* are
pairwise nonequivalent [see characteristic (b) above], sequences not
longer than k* — 1 will differentiate between all the nonequivalent
states of this machine. Therefore, if ¢ > £* — 1, all these ‘“‘differ-
entiating’’ sequences are contained in L, all states nonequivalent in
terms of L canbe distinguished, and the Aufenkamp - Hohn algorithm
can be used.

However, if ¢ < k* — 1, then the grouping in terms of L may not
coincide with the grouping with respect to £, In this case one may
be forced to resort to the scanning procedure in order to obtain a
grouping in terms of /. (one way of accomplishing such scanning is
the above method of raising matrix € to the power of g).

Sometimes one can avoid the scanning in such cases by estimat-
ing the lower bound of the number of states equivalent in terms of L.
Thus let us partition matrix C into 1-matricesusing only horizontal
lines, Then the states of the machine are divided into m groups.
These will be groups of states equivalent with respect to set L} of
all the input sequences of length 1 (set L! coincides with the alpha-
bet {p1, P2 .-, p;}). Obviously, the number of groups of states equiv-
alent with respect to L cannot belessthan m, sinceg >l and '€ L
and, consequently, any two states équivalent with respect to L are’
also equivalent with respect to L!. Thus, m is the desired lower
bound.

For the same reason, k* is the upper bound of the number of
groups of states which are equivalentintermsof L, since L= E, so
that any two simply equivalent states are also equivalent in terms
of L.

Thus, if m turns out to be equal to k* then, despite the fact that
g < k*—1, one can use the Aufenkamp - Hohn algorithm,

In the practical application of the Aufenkamp ~ Hohn algorithm,
m and k* are obtained at different stages of the computation. Thus
m is obtained in the first stage, when horizontal lines are drawn to
partition matrix C into groups. If, however, the vertical lines drawn
subsequently to achieve symmetry ‘“spoil’’ this grouping, then other
horizontal lines must be drawn, and so on, so that ultimately one
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one obtains k* > m. Thus one knows immediately whether the
Aufenkamp - Hohn algorithm is applicable.

Restricting our discussion of the equivalence problem to the
cases described in this and the previous sections, we shall make two
brief observations regarding other definitions of the allowable input
sequences L.

1. One important case (particularly in the theory of relay-con-
tact circuits) is that where L contains all sequences in which no two
identical symbols are repeated consecutively, It can be shown that
for this case there exists an algorithm for recognizing equivalent
states. However, the present authors know of no algorithm which
would be suitable for practical use.

2. If Aufenkamp constraints are operative, then the very state-
ment of the problem mustbe changed: in this case it makes no sense
to talk of two equivalent states x; and x; since states x%; and %; may
allow different sets of input sequences. Here L,, may be forbidden
in %;, and vice versa. However,inthis case one may sometimes use
a concept which is akin to that of equivalence. This is the concept
of compatibility of states, which is defined as follows:

Two states—state x; of machine S and state ¢; of machine G—are
said to be compatible if, and only if both machines—machine S in
initial state x; and machine G in initial state t;—=having acquived any
input sequence from the inlersection* of set L, ; with set L " will
genevate identical output sequences(in partzculm’, S and G whay be
the same machine). In accordance with this definition, states »; and
z; must be compatible if that intersection is an empty set, that is,
if states x; and {; have no allowable input sequences in common, If
LKi and Léj coincide then, of course, compatibility reduces to equiva-
lence in terms of the common set.

Now, the group of states {xi, »2 ..., %} is said to be a group of
pseudoequivalent states if, and only if, any two states x; and x; of
that group are compatible. This concept is frequently very useful;
in particular, it can be applied for minimization of an s-machine
which is subject to Aufenkamp constraints (see Section 9.8).

9.5. EQUIVALENCE, MAPPING AND MINIMIZATION
OF SEQUENTIAL MACHINES

So far, we discussed the equivalence of individual states; now we
shall turn to the equivalence of entire s-machines,

*An intersection of two sets contains all points belonging to both sets,
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Two s-machines,S and G,are said to be equivalent in teyms of L
if, and only if, for each state x; of S theve exists atleastone state
of G equivalent to it in terms of L and, conversely, if for each state
L of G there exists at least one state » of S equivalent to it with ve-
spect to L.

This definition says any input sequence from . must be allowed
both in S and in G. If the set of all sequences allowed in S is Lg, and
the analogous set for G is L;, then L must satisfy the condition

LELSﬂL(;,

where Lgn L, denotes the intersection of sets Ls and Ls. When
[. = FE (that is, L contains all the possible sequences), we shall say
that the machines S and G are simply equivalent. In this case Lg =
Le=L=E.

Machine S maps onto machine G in terms of set L (or G maps
Sin terms of L) if, and onlyif, for each state x; of S there exists at
least one state J; of G equivalent to it in terms of L, If L = E, then
S simply maps onto G.

From our definitions of mapping and equivalence we can deduce
the following: if machine S mapsontomachine G in terms of L, and
G maps onto Sin terms of the same L, then S and G are machines
which are equivalent in terms of L.

The equivalence relationship between S and G is denoted by
S ~ @G, while the mapping of S onto G is written as S < G.

Equivalent machines are identical as far as processing of input
sequences into output sequences is concerned. If machine S maps
(or maps in terms of L) ontomachine G, then this means that G sub-
stitutes for S (however, the converse is not true).

Consider two equivalent s~machines S; and S;, and let their
states be partitioned into groups of equivalent states. Now we take
some such group s} of S, and select any state »; from this group.
Then S, will have a state x; equivalent to x;. Let x; belong to the
group (of equivalent states) si of S,. If thatis so, then any state
belonging to s; of S, is equivalent to any state belonging to s of
S,. However, none of the states of s of S| is equivalent to any of
the states of si of S,, if 1+ g. Therefore, each group of equivalent
states of S| corresponds to one and only one group of equivalent
states of S;. The symmetry of the equivalence relationship (it fol~
lows from S, ~ S; thatS; ~ §S)), implies that the converse statement
is also true, that is, each group of equivalent states of S, corre-
sponds to one, and only one group of equivalent states of S,. Accord-
ingly, the two equivalent machines S; and S, contain the same number
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of groups of equivalent states, and machines S, and S, differ only in
the number of states ineach of the corresponding equivalent groups.

If, however, we are given two machinesS and G such that G maps
S (S < G), there is no one-to-one correspondence between their groups
of equivalent states: all we cansayis that to each group of equiva-~
lent states of S there corresponds one and only one group of equiva-
lent states of G. However, the converse is not true. Accordingly,
G may have more groups of equivalent states than S; thus, machines
S and G may differ not only in the number of states in each (equiv~
alent) group, but also in the number of (equivalent) groups.

All of the above also holds if we consider equivalence and
mapping in relation to a set L restricted per se.

Now let us discuss the minimization of an s-machine S, Minimi-
zation of an s-machine S with respect to a set L (of allowable se-
quences) shall mean finding another s-machine G satisfying these
two conditions:

1) G maps § (G > S) with respect to L.

2) There is noother s-machine mappingSinterms of L and con-
taining fewer states than G.

An s-machine G satisfying these conditionsis said to be minimal
for S in tevms of L.

Let us point out that if there exists an algorithm for recognizing
states equivalent in terms of L then, in principle, there also exists
a trivial minimization algorithm in terms of L. Indeed, if machine
S has %k states, then the number of internal states in G {which is
minimal for S) cannot exceed k. In principle, therefore, we could
scan all the machines whose number of states does not exceed k
(there is a finite number of such machines). And since there must
exist an algorithm for recognizing states equivalent with respect
to L, we can check whether each of these machines maps S, Ob-
viously, such atrivial algorithm has no practical value, and we would
like to find practical algorithms. So far, such an algorithm exists
only for the case where all input sequences are allowed. We shall
describe it in the next section.

9.6. MINIMIZATION OF A SEQUENTIAL MACHINE WITH AN
UNRESTRICTED SET OF ALLOWABLE INPUT SEQUENCES

Let S be a sequential machine with 2 internal states decomposed
into groups of equivalent states asinSection9.3. (Figure 9.5 shows
a section of the state diagram of this machine.) Consider the first
of these groups. Its states are the termini of paths from other states.
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In turn, as we have shown in Section 9.3, any state of Group 1 may
also be the origin of either of the following paths:

a) a path leading to another state of Groupl. If the first symbol
in the label of this pathis pp, then all similarly labeled paths, origi-
nating in any state of Groupl, mustalso terminate at a state of this
group. The second symbols in the labels of all these paths are iden-
tical.

b) a path leading to a state of another group, for example, state
»; of Group M, If the first symbol in the label of this path is ps,
then all similarly labeled paths, originating in any state of Group 1,
must also terminate in x;. The second symbols in the labels of all
these paths are identical.

Because theyexhibit these characteristics, we can replace all the
states of Group 1 by a single state. All the paths to the individual
states now terminate in the circle replacing that group. The paths
originating in the states of this group will, in case (a), be replaced
by a loop labeled (pp, %), and,inthe case (b) by a path labeled (o, A()
originating in the new circle and leading to a circle replacing the
states of Group M. Figure 9.6 shows such a replacement for the
partial state diagram of Fig. 9.5.

g In the same way, we replace all the
other groups of states. Asaresult, the
machine S istransformedintomachine
G. It is evident that G isequivalentto S.

Group 1 Group 2 7 myﬂp)

(o
2, Group 2
O O Group 3
Group 3
Fig. 9.5, Fig. 9.6,

Indeed, by virtue of characteristics (a) and (b), the output of S at any
input sequence and in any initial state »; is identical to that which
would be generated by G atthe same input sequence, provided G was
in the initial state x; which replaces the group of which x; was a
member. At the same time, the number of states of machine G is
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equal to the number of groups of equivalent states of S, and one can-
not further reduce this number by combining these states into
groups.

It has been shown inSection 9.5 that all equivalent machines have
the same number of equivalent groups, and that the number of such
groups in machines mapping such equivalent machines cannot be
lower. Thus a minimal machine cannothave fewer states than there
are groups of equivalent states in the machine being minimized. For
this veason, machine G is, indeed, minimal for S. 1t follows from
this that, iz the absence of bounds on the set of input sequences,
(2) the minimal machine belongs to the class of equivalent machines,
and (b) the minimization problem is mevely one of finding gvoups of
equivalent states, that is, it can be solved by means of the Aufen-
kamp - Hohn algorithm (see Section 9.3).

Since this algorithm is used, it is convenient to work with ma-
trix C rather than the state diagram, and replace groups of states
by a single one directly in the matrix. For example, consider the
matrix C of Section 9.3

* g *3 %y %5 *g
* (o 1) (P1s R9) 0 0 0 (pas 1))
x1 (P Ro) (p1, M) (Poy Ao) 0 0
(o 1) (2 M) 0 (1) Mo)
(P2, M) 0 (P M) (p1s Ap)
0 (o X)) (p2s o) (p1s M)
Gu M) (o Xo) {2 M) 0

[ B R e I
o O o C o

By symmetrical decomposition into 1-matrices we obtain

% 4 %3 %y %5 g
* [ (po M) 0 0 (s, A2) 0 (p2, )
%4 0 (Pos )‘1) 0 G2 M) (1 M) 0

c *3 0 0 G2 M) | Go M) (o1 ) 0
% | (2 k) O (P }2) | (eis M) O 0
%5 0 (P2, M) | (Pos M2) 0 (p1s A1) 0
g 0 (P2, Xo) | (por M) | (1 1) 0 0

Thus we have three groups of equivalent states, {xi, xs}, {xs}, and
{xa, »5, %6}

The replacement of groups of states of a state diagram by a
single state is equivalent to the replacement of each l-matrix of
the symmetrical decomposition by a single element,whichis a dis-
junction (union) of all the elements of the 1-matrix being replaced.
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In our example, this replacement will give the following intercon-
nection matrix for the minimal machine G:

¢ / 1/
* *9 3

Teeh) 0 (oo M)V h)
L0 (e b)) (e RV (o Ry
“ (‘D?’ }‘U) (P(,, }‘2) (Pl’ }‘1)

Its state diagram is shown in Fig. 9.7.

So far we have dealt with the minimization of an s-machine whose
set of input sequencesisinfinite. The problem of minimization of an
s-machine in which per se restrictions are operative is tied to the
still unsatisfactorily solved problem of finding groups of states equiv-
alent in terms of LL for the same case (see Section 1 and Section 9.4).
In addition, minimizationwith respect to
L # E is associated with the following
additional difficulty, which would exist
even if we had an algorithm for finding
groups of states equivalent in terms of
L. Thus, earlier inthis sectionwe were
able to replace a group of states by a
single state by using properties of the
paths in the state diagram (see p. 238).
However, ifl, # E, then, generally speak-
ing, the paths donot possess the proper-
ties specified in (a) and (b), p. 238. Thus
two paths, the labels of which contain
identical first symbols and originating

Fig. 9.7, in states which are equivalent in terms
of I, may terminate in states which are
nonequivalent in terms of L., Consider, for example, the section of
the state diagram (Fig. 9.8) for the case where [ does not contain
any sequence with two consecutive identical symbols. Let states «;
and «, be equivalentinterms of L, that is, belong to one group. Fur-
ther, let states «, and «, be equivalentin terms of I’ which contains
all the sequences of L exceptthose beginningwith the symbol o, and
let x5 and x4 be nonequivalent in terms of L. since they generate dif-
ferent output symbols atthose sequencesfrom L which begin with p_.
Then the paths of Fig. 9.8 donotcontradict the equivalence of «; and
kg in terms of L (for [, does not contain any sequences beginning
with two consecutive symbols p ), but they do contradict condition
(b) of p. 238.
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It follows from the foregoing that at
L # E the states belonging to one group
of equivalent states cannot, generally
speaking, be replaced by a single state.
If this were done, two paths labeled with
an identical first symbol p, would origi-
nate in the same new state andleadto two
different states—a condition which con-~
tradicts the very definition of an s-
machine.

So far we have not imposed any re-
strictions on the processing of sequences
by the s-machine which is being mini-
mized, However, inthe next sectionwe shall consider a special case
where the s-machine operates as a finite automaton.

Fig. 9.8.

9.7. MINIMIZATION OF A SEQUENTIAL MACHINE
WHEN 1T OPERATES AS A FINITE AUTOMATON

Assume that we are given the basic table of a finite automaton
whose states are coded in symbols from the alphabet {x;, %2, ..., w}.
Let us recode the symbols, replacing all x; by A;; we shall assume
that { = 2, where [ is the number of symbols A, Obviously, the basic
table of the finite automaton now contains %’s with the subscripts
of the %’s they replace.

It is required to devise aminimal sequential machine which would
realize this automaton, that is, would process inputsinto outputs in
the same way as the automaton. The set of allowable input sequences
may be restricted or unrestricted.

We shall consider two cases: a case where there are no restric-
tions on the input sequences, and a case where the input sequences
may not contain two consecutive identical symbols,

Case 1. Set L Contains All Possible
Sequences (thatis, L = E)

We shall analyze this case on an automaton A given in the form
of Table 9.1.

We have shown in Section 9.6 that,inthe absence of restrictions
on the input sequences, the minimal s-machine for a given machine
N belongs to the class of machines equivalentto ~, and that none of
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its states has other equivalents. Consequently, our required minimal
s-machine must also be equivalent to automaton A.

Table 9.1

Let us first construct an s-machine
which is not minimal, butwhichis suitable
for further minimization., It will have as
many states as there are rows in the auto-
maton of Table 9.1, and its state diagram
(Fig. 9.9) has as many circles, numbered
consecutively 1 - 4, We draw paths be-~
tween these circles as per the Table 9.1.
Each path has a label whose first symbol
is the subscript of the corresponding p
from the table, while the second symbol
is the number of the circle in which the
path terminates, Since this is a diagram
of some s-machine, we replace the num-

bers in each circle by symbols x; and the numbers (m, n) in the paths

Fig. 9.9.

labeled by symbols (pum, An
interconnection matrix of

Fig. 9.10.

); this gives Fig. 9.10. Now we derive the
this machine:

* *9 *3 *4
%1 0 (P M) (o2 29) (o1 M)
C_"z (71, M) (o2, Ao 0 (p3: M)
ol (o MV A (o1 M) 0 0
% 0 (P %) (2 2a)  (o1s M)

By analogy with the above state diagram, all the nonzero elements
of the interconnection matrix belonging to the same column have
identical subscripts on the A symbol. These subscripts coincide
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with the number of the column. This matrix C can be transformed
into the interconnection matrix ¢’ of an equivalent minimal s-
machine, which therefore is a minimal s-machine operating in the
same way as automaton A.

First we decompose C into 1-matrices by means of horizontals
only., We get a l-matrix from rows 1 and 4. We transpose these
rows and get

Kl 1(4 1(2 1(3
[ 0 (v M) (o3 o) (o, B9)
C="4 0 (b1 M) (pa 2) (P2 o) .

Xg (e1 )‘1) (Ps’ )‘4) (Pos )\2) 0 .
| p WV k) 0 (ut) O

Now we draw horizontals between rows «, and «,, and between rows
Kk, and kg, and obtain three 1-matrices whose columns contain either
zeros or identical pairs [for example, the two-row matrix on top
has only zeros in column 1, only pairs (p;, A4) in column 2, and so
on]. This is the result of the previously mentioned property of C:
the second digits are the same in each column of C. But in 1-
matrices, where the columns contain only identical pairs, the first
digits of each column will also coincide. If this is so, then all we
need to do in order to form groups of equivalent states to partition
C into l-matrices by horizontals only: since the elements in the
columns of each 1-matrix coincide, vertical lines cannot ‘‘spoil’’
this symmetrical grouping.

This property, in turn, means the following: the groups of states
of an s-machine (with matrix C) which are simply equivalent, and
those which are equivalent in terms of set L, comprising all input
sequences of length 1, coincide, Therefore, to find all the groups
of equivalent states, it is sufficient to
partition C into groups of statesequiva-
lent in terms of L,, apartition achieved
simply by decomposing C into l-ma-
trices by means of horizontal lines.

In our example, state x; of matrix C
is equivalent to state x4 ToO constructa
minimal s-machine, we replace these
two states with a single state x;. Then
we draw verticals between columns 2
and 3 and 3 and 4 of C. In this symmet-
rical decomposition we replace each
newly generated l-matrix by the union Fig, 9.11L

=
@
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of all its elements, and obtain the interconnection matrix C’ of the
minimal s-machine:

* %2 3

*y (P M) (P> Ao)  (pgs Xy)
C'=x 1 (p MV &) (pe A) 0
23 Loy, M)V (pa 2)  (p1y &) 0

The corresponding state diagram is shown in Fig. 9.11,

Note also that for each set of identical rows of matrix C (in our
case, rows 1 and 4) there always exists a set of identical rows in
the automaton table (here, rows 1 and 4 of Table 9.1), and vice
versa. Consequently, inspection of the automaton table immediately
shows the number of states of a minimal s-machine realizing this
automaton (one needs only to count the number of differing rows in
the table of the automaton),

A
2 A’ z @

Fig. 9.12,

Having the state diagram, we can compile the table of the auto-
maton A’ and converter @® which comprise the minimal s-machine
operating as automaton A in accordance with Fig. 9.12. Our state
diagram (Fig., 9.10) thus yields Tables 9.2 and 9.3.

Table 9.2 Table 9.3
X\P ' b P2 3 N P (2 s
ol o
% % %3 EN Ly X, Ay Ay
g *y %y * *9 Ay ' hy Ay
%3 %y % % %3 A, I )\,‘J

Again, the table of automaton A’ (Table 9.2) could have been obtained
directly from the table of automaton A (Table 9.1) merely by deleting
one of the identical rows (the fourth; if there are several such rows,
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all but one are deleted), and then replacing throughout the remainder
of the table those symbols which are the same as the heading(s) of
the deleted row(s) [A¢ in our example]by the heading of the retained
row (in our case, we replace As; by ).

The converter table can also be obtaineddirectly from the auto-
maton table. Again we delete superfluous identical rows of Table
9.1 (row 4), and in the remaining table substitute =:’s for A;’s in all
row headings.

Thus we have a simple, straightforward algorithm for direct
derivation of the tables of automaton A’ and converter @ which, in
accordance with the scheme of Fig. 9.12, constitute the minimal
s-machine realizing automaton A. The state diagram and the inter-
connection matrix were only necessary for proving the validity of
this algorithm,

Case 2. Set L Has No Sequences Comprising
Two Consecutive Identical Symbols

If L, is the set of input sequences of length 1, and E is the set
containing all possible input sequences, then obviously we shall have
the following relationship:

LcLcE. (9.2)

If the number of groups of equivalent states is m*, the numbers
of groups of statesequivalentintermsof L and L, are, respectively,
m and m**, then by virtue of (9.2)

*

m*<L<m<m".

In Case 1 we have shown that the groupings of equivalent states
and of states equivalent in terms of L, coincide. Consequently,
m** = m*, and from (9.2) we get

For this reason states equivalentinterms of L; will also be equiva-
lent in terms of E in this case. Therefore one can minimize the
numbers of states by replacing each group by a single state, using
the above method where it was assumed that L = E. Thus minimal
s-machines for sets E and L coincide in Case 2, and the minimiza~
tion proceeds asif there were no restrictions on the input sequences.
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9.8. MINIMIZATION OF MACHINES IN THE CASE OF
AUFENKAMP-TYPE CONSTRAINTS

The obvious approach to the minimization problem in this case
is as follows.

Let N be an s-machine with & states, subject to arbitrary Aufen-
kamp-~type constraints. We shall say that to minimize N means de-
vising a new machine P with a minimal number of states such that
for each state x; of N there is at least one state X; of P. States x;
must satisfy the following conditions:

a) Any input sequence allowed in x; of N is allowed in X of P.

b) If N is in state x; and P is in state x , and if some arbitrary
sequence from the set of input sequences allowed in N when in the
state x; is fed to both machines, then both will convert it into iden-
tical output sequences.

We shall say that a machine P (which need not necessarily be
minimal)satisfying conditions (a) and (b) vealizes a pseudomapping
of machine N, Thus P ‘‘can do’’ whatever N can. That is, it can
take any input sequence allowed in VN and process it into the same
output sequence.

We shall now describe an Aufenkamp algorithm resulting in a
machine P which is a pseudomapping of machine N and has fewer
states than N, but is not necessarily minimal.

On a state diagram, the presence of Aufenkamp-type constraints
manifest itself in that the number of paths originating at some
circles is smaller than that of various inputs p1, p2, ..., pr. This
means that the machine cannot respond to some inputs when it is in
certain states.

The state diagram, inturn,is the starting point for the construc-
tion of the interconnection matrix, Again, the effect of the con-
straints on that matrixis that the latter may contain rows with fewer
symbol pairs than there areinputsp,, p,, .. ., p,. Forexample, con-
sider the matrix

* *3 *3 *4 *5

% 0 (o M) (o3 Ay) 0 0

7o} (P2 M) 0 0 (3> 1) 0
C=m, 0 (03 Ao) 0 0 (e 2o

% 0 0 (uhl) O 0

5 | (poy o) Q (p1s 29) 0 0

The first row lacks a symbol pair incorporating the input p;, the
second lacks the pair associated with p;, and the fourth contains
only a single pair (that associated with p,).
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We shall say that a submatrix of aninterconnection matrix C is
a generalized 1-matrix if it has the following property: if any row
of the genevalized 1-matvix contains a paiv (pm, Arn), then none of
the remaining rvows of that matvix will contain paivs in which this
tnput symbol pn ts associated with a diffevent symbol ).,

We shall cite here, without proof, the following theorem of Aufen-
kamp [5]: Assume the intevconnection matrix C is decomposed by
hovrizontal lines into groups of vows constituting genevalized 1-ma-
trices, and is then fuvther pavtitioned by vevtical lines to achieve a
symmetrical decomposition into genevalized 1-matrices, Provided
no two genevalized 1-matrices of a given group contain the same
input symbol p. 4 the states of this group ave pseudoequivalent, Thus,
machine N can be minimized by replacing each group of pseudo-
equivalent states by a single state. This is done by replacing each
generalized 1-matrix of a symmetrical decomposition by one term
which represents a union (disjunction) of all the elements of the
1-matrix being replaced. ThisgivesamatrixC’ of machine P which
realizes a pseudomapping of ¥ and has fewer states provided, of
course, that the symmetrical decomposition of C isnontrivial.

To illustrate, let N have the state
diagram of Fig. 9.13, with matrix C
shown above (p. 246), First, we draw
horizontals todecompose C into gener-
alized 1-matrices. In contrast to the
case where there were norestrictions
and there was only one way of parti-
tioning C into 1-matrices, now we have
several possibilities. For example, the
rows of C may be divided into three
groups, the first comprising the rows 1
and 4, the second —rows 2 and 3, and
the third—row 5. However,we canalso
divide C intotwogroups, the firstcom-
prising 1, 2 and 3, and the second—rows 4 and 5. It is important to
realize that the mode of partitioning will definitely affect the possi-
bility of minimizing N. For example, let us partition C in the most
economic way, that is, into the two groups discussed above. We thus
draw a horizontal between rows 3 and 4 and obtain two generalized
1-matrices. Then, for symmetry, we draw a vertical between columns
3 and 4. This ‘‘spoils’’ our decomposition because the top group of
rows now contains two generalized 1-matrices, each containing p,
and p; in violation of the above-cited theorem of Aufenkamp. The
states of the group are thus not pseudoequivalent. To remedy this
situation, we draw horizontals between rows 1 and 2, and 2 and 3
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(in the general case, there are several possibilities for achieving
such adjustments), so that we now have four groups, none of which
contains two generalized 1-matrices with the same symbol p, But,
for symmetry, we must also draw verticals between columns 1 and
2, and 2 and 3. This again spoils the decomposition because the
group comprising rows 4 and 5now has two generalized 1-matrices,
each containing a pair with p.. We are therefore forced to draw a
horizontal between rows 4 and 5, and a corresponding vertical be-
tween the columns, Obviously thisdecompositionis trivial, and thus
the machine cannot be minimized in this way.

Assume, however, that we start with a seeminglyless economi-
cal partition of C, thatis, the one comprising three groups discussed
above (group 1 comprises rows 1 and 4,group 2—rows 2 and 3, and
group 3—row 5). We thus rewrite C as follows:

K Ky Ko Kg Kg _1
Kq 0 (pl,/\o) (p3,/\2)
Ky 0 0 (pgs Ag)
C = Ko (p2,/\1) (p3,/\2) 0 0
Kg 0 0 (pg, Ag) 0 {p1, A
Kg _('OQ”\Z) 0 0 (p1,Ag) 0 |

Here we have only one conflict—two matrices of group 2 contain ps.
This is easily fixed by drawing ahorizontal between rows xp and xs,
and a corresponding vertical betweenthe columns. We now have one
group of pseudoequivalent states comprising more than one row, that
is, group 1. This group canbe replacedby a single state, giving the
matrix of a somewhat minimized machine P’ (it has four states vs
the five of N) which realizes the pseudomapping of N,

Finally, we could partition C into the following three groups:
group 1 comprising rows 1 and 2, group2—rows 3 and 4, and group
3—row 5, This immediately yields a symmetrical decomposition
which needs no ‘“‘fixing’’:

[ x K2 K3 Kyq kg ]

K1 0 (pl,/\o) (p3,/\2) 0 0

C = kg | (pg D 0 0 (pg, Ag) 0
Kg 0 (pgs Ag) 0 0 (p1s Ag)

Ky 0 0 (pz,/\z) 0 0
kg | (pgsAg) 0 (p1sAg) 0 0 _J
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As a result, the pseudomapping of N is realized by a machine P”
which has only three states and a matrix C”:

! Ka K3
Ky | (pysAg) (pg, Ay (pg, Ag) 0

C" = K (p3s Ag) (pgs Ag)  (py;2p)
Kg (pgsAg) (p1, Ag) 0

Its state diagram is shown in Fig. 9.14.

Thus to achieve optimum results in applying this algorithm one
must try out all the possibilities for symmetrical decomposition of
C into generalized 1-matrices,* Furthermore, this algorithm does
not necessarily yield aminimal machine P: the matrix C of machine
N may be decomposed into groups of pseudoequivalent states re-
placeable by a single state thereby minimizing it without fulfilling
the conditions of the second Aufenkamp theorem. For example, con-
sider the machine of Fig. 9.15. Here, state %, does not admit an in-
put p;, The corresponding interconnection matrix C is

! 2 *3

n [ (pas R} (235 Ao) 0
C=x| (01 b} (3 M) (2 1)
13 Lpg, o) (Pas Ao)  (p1s M)

Fig. 9.14. Fig. 9.15.

*Note that this algorithm is tantamount to the scanning of all the possibie additional
definitions of this s-machine, that is, to the scanning of all the possibilities for drawing
missing paths on the state diagram, with subsequent minimization of machines so obtained
without any restrictions on the input sequence.
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There are only two ways in which C could be symmetrically parti-
tioned into generalized 1-matrices:

* %9 *3
o[ (o0 d) (e h) | 0 7]
C =" p o) (pss A) | (on R},
73l (ras M) (P2 o) | (o M) |

7.1 '/,3 ‘L?
[ (P20 2o) 0 (p3r Ao) 7]
C:"_s,_ (o2 %) (o1 M) | (00 N)

%9 L(Pl’ ho) (pas ko) | (pas Ay |

k4

-

Obviously, neither decomposition satisfies the second Aufenkamp
theorem: in the first case, the twotopgeneralized 1-matrices con~
tain the same pair(p,, %), while inthe second case the common pairs
are (p2, »o) and (p3, ). Nevertheless this machine canbe minimized,
the corresponding minimal s-machine (two states) being that of
Fig. 9.16. Here state x4 of the pseudomapping corresponds to states
»; and x. of the original machine, while state xzis equivalent to state
k

Now we shall describe a method devised by Gill [149], which
yields a minimal machine for any given s-machine subject to Aufen-
kamp-type constraints. This method requires, as a first step, that
all pairs of compatible states of the given machine be determined.
There are methods for determining the compatibility of states, but
we shall describe only one.

Suppose, for example, that we want to find out
whether the ith and the jth states of a given machine
are compatible. To achieve this, we construct a
“tree”” from the common starting point (i, j). Its
branches correspond to the inputs which are com-
mon to states w»; and »;. If this procedure yields
different outputs even for a single input, then we
immediately know that states x; and xjare not com~
patible, If, however, the states prove compatible,
then we write over the branches the corresponding
input-output pairs, and at their ends the pairs of
states into which »; and »; are shifted by these in-
puts. Each pair of such states then serves as the
starting node for another branch of the tree. During

H3e

*This example also shows that no additional definition of the machine of Fig, 9,15 yields
a minimal machine with two states: for nopath containing p, in the label and originating at
% will generate equivalent states, regardless of what A is in the label,
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this construction we keep on crossing out nodes if:

1, The same node (that is, a node with a label consisting of the
same symbols) has already been encountered anywhere else on the
tree.

2. The node label consists of two identical digits, that is, if an
input shifts both states x; and »; into the same state x,,.

3. No new branches can be drawn from this node, that is, the
states corresponding to that node have no common inputs,

We stop either if states x; and x; are incompatible or if all the
paths of the tree lead to crossed out nodes. In the latter case, we
may conclude that the pairs of states corresponding to all the nodes
(crossed out or otherwise) of the tree are also compatible.

For example, Fig. 9,17 illustrates the tree for states x; and %,
of the machine of Fig. 9.15, while Fig. 9.19 shows the tree for states
%o and %3 of the machine of Fig. 9.18. In either case, the tested states
prove to be compatible; in the firstcase,we also have another pair
of compatible states (x; and xs), in addition to x; and », whereas in
the second case, x4 and %, x3andxs, and »; and », turn out to be com-
patible, in addition to x and xs.

This procedure also yields an estimate of the maximum number
of steps (the worst case) needed to determine the compatibility of
two states of a machine with n states, This estimate is obtained
from*

i w2y
2__
l: n - n . % "\,Q
AW
Novs{ we can determine all thfe pairs of (1) yzys
compatible states for any machine. The p 4
machine of Fig. 9.15 has two such pairs = (v
[{#1, %2} and {1, ®s}], while that of Fig. 9.18 ”(/2)
has nine {x, %}, (%, 5}, {xp %} {%e %},
(%o %adsfogs w5}y (g %s)s {3 %), {%4 %)}, These Fig. 9.17.

pairs can now be divided into groups of
pseudoequivalent states. For example, the preceding list contains
pairs {x:;, %2}, {®1. %3} and {xs, xs}, so that states »;, x; and »; form a
group of pseudoequivalent states {xi, s, xs}. **

Following this line of reasoning, we can divide the states of the
machine into a minimal number of groups of pseudoequivalent states.

*This estimate is accurate, since there are cases where / is attained. It is interesting
to compare this estimate with that for the nummber of steps necessary to recognize the non=-
equivalence of states in a machine without restrictions (see Section 11,2); in this case,
[ = (n—1), thatis, the n? terms do not appear,

**Remember that a group of pseudoequivalent ‘states is one in which all the states are
pairwise compatible,
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Fig. 9.18.

In our example, there will be four such groups:

{1 %90 % %5}, {1 %), {2 w6, (%0 ) -

(527 (35T In the general case (just as in our ex-
ample), these groups intersect.

Let us now return to the minimization of

an s-machine subject to Aufenkamp-type

(46) constraints, Assume an arbitrary s-machine

with n states, and assume that at least one

<> minimal machine Sy, with &2 states can be

& constructed for it. If £ < n, then atleast one

(23)

state of S must pseudomap two or more
states of S, Assume that Z; is the set of all
states of S which correspond to state x; of
Smin, and assume that such sets of states %,, %, ..., Xx of S can be
assembled for all the states xi, %2, ..., %& Of Spin. Such grouping of
states of S has the following properties:

1. The grouping £, £, ..., £, embraces all the states of S, that
is, each state of S belongs to at least one set X.

2. States belonging to any one set Z; are pseudoequivalent.

3. All states of a given group X; which allow a given input ps,
are shifted by it into states of the same new group Z; (in particular,
{ can be equal to j).

While the first two of these properties are obvious, the third re-
quires an explanation. For example, let state »; of S, belong to Z;,
and let state «;, into which »; is shifted by input ps, belong to group
;. Now assume that there exists a state of £; which is shifted by
p. into a state » not belonging to X;, Then observation of the

Fig. 9.19.
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behavior of S and Smm at allinput sequences allowed for states of 2;
leads to the following conclusions: (a) any input allowed in state
of S is also allowed in state »x; of Smy; and (b) if the input is a se-
quence allowed in state wx;, then both machines (that is, S starting
from »;, and Sy startingfrom x;)will generate identical output se-
quences. But this simply means that state»x; corresponds to state x;
under pseudomapping and consequently it must, contrary toour ini-
tial assumption, belong to group 2;, so that the third property must
hold.

The grouping 2, ¥y, ..., X, is known as the specific grouping of
states of machine S.

It follows from the foregoing that the minimization algorithm in-
volves finding a minimal specific grouping of states of S (of which
there may be one or more), and the subsequent replacement of each
group X; by a single state. Since all states of each group are pseudo-
equivalent, any group X; must belong to (or coincide with) some
group of the minimal decomposition of the states of S into groups of
pseudoequivalent states. Thus, this minimization algorithm consists
of scanning of all various possible specific groupings of S in the
search for the minimal one—a very cumbersome procedure. How-
ever, there are algorithms for organizing this scanning to reduce
waste motions (see, for example, [149]). There are also ‘‘inter-
mediate’’ algorithms which, while reducing the amount of scanning
required, give better results than Aufenkamp’s algorithm, even
though they do not assume minimality.

Let us now return to our two examples (Figs. 9.15 and 9.18).

For the machine of Fig. 9.15, the grouping into pseudoequivalent
states {x;, x#2} and {», %3} is also the minimal specific grouping. We
shall prove this.

Let us code group {xi, ®;} by A, and group {x, %3} by B. Now let
us trace the possible results of various inputs:

*; does not allow p,,
P %o Shifts to %y, AorB
%y shifts to %, B
A P2 %y Shifts tox,, }
*1 shifts tox,, A
Ps %, shifts to %y, }
%y does not allow py, B
#1 %y shifts to xg,
%y shifts to %,
By f %, Shifts to %, ] A
%y shifts to %o, } A
Pa %y shifts to ¥;.
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Ry 2
5,1, 2 %0)
o i) Y(0:,4,)
Fig. 9.20. Fig. 9.21.

Now we readily construct two minimal machines for the machine
of Fig, 9.15, replacing states of A by a state x4 and those of B by xs
(Figs. 9.16 and 9.20). For the machine of Fig. 9.18 there also are

Fig, 9,22,

two possible minimal specific groupings: [« %}, {*3, x5}, and |x, %} ,
or {x;, %5}, {%y, %}, and [x;, »}. The state diagram of the minimal ma-
chine corresponding to the first of theseis shown in Fig., 9.21, while
that of the second one is represented in Fig. 9.22.

9.9. ANOTHER DEFINITION OF EQUIVALENCE OF
SEQUENTIAL MACHINES

Sometimes one encountersin the literature a definition of equiva~
lence of sequential machines which differs from that of Section 9.4,



ANOTHER DEFINITION OF EQUIVALENCE OF SEQUENTIAL MACHINES 255

OQOutwardly, that definition appears similar to ours, but in reality
there is a vast difference between them,

That other definition may be formulated as follows: two s-
machines S and G are equivalent if at any (identical) input to both
machines, there is at least one state &; of G for each state x; of S,
and at least one state x; of S for each state &; of G such that S and
G, starting from x; and &;, respectively,will generate identical out-
puts.

In this case, the equivalence between states depends, in general,
on the input sequence. At some inputs some states of S may corre-
spond to some states of G, but at other inputs the same states of S
may correspond to different states of G (and conversely). The only
requirement is that there be a unique relationship between states
at any one input,

From the practical point of view, the disadvantage of this defini-
tion is that in order tofind aninitial state equivalent to a given one,
one must know beforehand the corresponding input sequence. How-
ever, in most problems of practical importance the input sequence
is not known in advance.

The definition of Section 9.4 imposes more stringent require-
ments: the equivalence between the states ofS and G should not de-
pend on any one input, but must hold for all allowable inputs. Thus
if state %; of machine S corresponds to state &; of an equivalent
machine G, thenS and G, starting from states x; and §;, respectively,
must generate identical outputs at all identical inputs (provided, of
course, the inputs are allowed).*

Since the above definition of equivalenceis Table 9.4
less stringent than that of Section 9.4, it should

yield minimal equivalent s-machines with few~ V\
P
A

er states than those possible in terms of the o1 P2
definition of Section 9.4. Let us illustrate this
on an example. A Ay Ay

Example., We are given anautomaton A and
a set L of allowed input sequences; the latter Ay A, A
consists of all sequences which do not have
two consecutive identical symbols. It is re- A A, A,
quired to construct aminimal s-machine map-
ping (in terms of L) the automaton A specified
by the basic Table 9.4.** The state diagram of 4 is shownin Fig. 9.23.

In accordance with Section 9.7, it follows from Table 9.4, that when

*In some papers equivalence in the sense of Section 9.4 is referred to as strong equiva-
lence, while that defined above is called weak.
**In Table 9.4, #; is already replaced by 4; (see Section 9,7).
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the definition of Section 9.4 is used, the
minimal s-machine operating in the same
way as A will have three states (since no
two rows of Table 9.4 coincide).

Let us now use the other definition of
equivalence and modify the state diagram of
Fig. 9.23, replacing it with the diagram of
an equivalent (in the sense of Section 9.4)
machine, which is convenient for further
minimization. The modification procedure
is as follows: we replace each circle x; of
Fig. 9.23 by r circles denoted by «, =,
Fig. 9.23. «’, .... From each of the r new circles we

draw the same paths, with the same labels,
as those which originated in circlex;. However, the paths terminat-
ing in circle »; will now be redirected to the new circles in the fol-
lowing manner: circle »; will be the terminal of only those paths
(previously leading to the circle %;) whose label contains p; as
the first symbol; similarly circle ’1 will be the terminal of paths
whose label has p2, and so on. We thus obtain the diagram of Fig.
9.24. Note that the loop at circle x;of
Fig. 9.23, labeled (p1, 22), is consid-
ered as both originating and terminat-
ing in that circle; in Fig. 9.24 it is
replaced by paths originating in
circles %, and x; and terminating only
in circle . Circle x; is seen to be
associated with a loop path, Let us
also mention that because only paths
labeled *; lead to circle »; of Fig.
9.23 (this is because the s-machine
operates as an automaton), the dia-
gram of Fig.9.24has the correspond-
ing property: a circle of group «,
x;.', z/’, etc., can only be the terminal
of paths labeled A;. In Fig. 9.24,
these groups of circles are encircled
with dotted lines,

The modified state diagram of Fig.
9.24 is that of a machine N’ which
is equivalent (in the sense of Sec-
tion 9.4) to A (in terms of the set £ of all possible input sequences).
To check whether the diagrams of Figs. 9.23 and 9.24 pertain to

Fig. 9.24.
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equivalent machines, itis sufficient to prove that those states in each
group of Fig. 9.24 which are encircled by a dotted line, are equiva-
lent (that is, form a group of equivalent states). We replace each
such group by single state and return to Fig. 9.23.

We now have machine N’ which is equivalent (in the sense of
Section 9.4) to A but has many more states (rn states). However,
N’ allows us an easy transition from per se constraints on the in-
put sequences to Aufenkamp-type constraints.

Our inputs to N’ shall be exclusively from L (since L < E), N’ is
also equivalent to A4, in the sense of Section 9.4, in terms of L. Now
consider some state of N/, for in-
stance, x;. We can reach »} onlyvia
path (ps, A1), that is, upon aninput ps;
we can leave x| onlyviapath (p1, As),.
since fwo inputs p; cannot succeed
each other (condition of problem, see
p. 255). It seems, therefore, thatwe
shall never be able touse path(p, As),
leaving x;, with the exception of the
case in which the machine starts to
work in state »}: in this case, anin-
.put ps shifts it to »;. Butwe can now
use our new definition of equivalence
to avoid this complication, for we
can now substitute % [from which
there is a path (ps As) to 3] for the Fig. 9.25.
initial state %, which solves our
problem. Therefore, we can delete path (s, A3) from %] to x;.

Following this line of reasoning, we can delete from the state
diagram all the paths marked ( = ). The general ‘“algorithm for de-
leting path’’is asfollows: the pathlabeled p; originating at »; (where
s is the number of primes) should be deleted. The diagram of Fig.
9.24, minus the deleted paths, is shownin Fig. 9.25, and represents
machine N”. That machine operates exactly as N’ (and also as A),
provided all the inputs belong to set L. But something has happened
in this transformation, because now N” is equivalent, in terms of
L, to N’ (and consequently, also to A) in a new sense: correspond-
ence between states of N and N’ now depends on the input sequence.
Also, the diagram of N” shows thatagiven circle (state) is no longer
the origin of all paths that started in circles of machine A4; that is,
we have transformed the machine from one subject to constraints
per se to one with Aufenkamp-type constraints.

We shall now minimize N” by means of the algorithm of Section 9.8.
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The interconnection matrix C” of N” is

’ "
x. x,

x

*

-

s
x

ISR

* 3 3
0 0 0 0 0 (M)
v.'; 0 0 0 0 (N 0
C’'=x| O 0 0 0 0 (px M)
*; 0 0 (s 2 O 0
";’3 0 (po A) 0 0 0
x;’ L 0 0 (Pv )‘2) 0 0 0 B

In general, C” has a property which follows from the above-men-
tioned properties of the state diagram: the column with the heading
x§ (where s is the number of primes) can contain only pairs (ps, A).

Our algorithm minimizes the number of states of the machine by
symmetrical decomposition of the starting matrix into generalized
l-matrices. In the case of C”, we need only to draw horizontals to
obtain generalized 1-matrices: verticals cannot ¢¢spoil’’ the group-
ing. These horizontals may be drawn in many ways. One way is to
draw them between rows 2 and 3, and 4 and 5. This partitions the
states of N” into groups {x;,' wl, { % %} and { % xs} If we then re-
place each group with a single state, we get again the starting auto-
maton A of Fig. 9.23, which had three states. However, a better
grouping is obtained by drawing a horizontal between rows 3 and 4
of C”. Thisdivides all the statesinto groups { T Xps x;} and{x;’, %, xa}
(There is no way of obtaining fewer than two groups because rows
1 and 4 can never be part of one generalized 1-matrix.) Now, we
draw a symmetrical vertical line between columns 3 and 4, com-
bine the elements of each generalized 1-matrix, and get the inter-

connection matrix C” of a minimal s-machine N’

* %9
C/// — % [ 0 (pl’ )\3)\/(P2’ )\3) ] y
% | (o M)V M) 0

whose state diagram is shownin Fig. 9.26. Machine N”’ is a pseudo-

mapping of N”. Buthere the sets of inputs allowable in all the states

of N” coincide with each other andwith L. Therefore, N7 also.maps
N” in terms of set L.

(21, As)v (g 25) Note that C” contains two pairs of

@ @ identical rows: 1 and 3, and 4 and 6.

Row 1 corresponds to state » of Fig,

9.25, and the row 4 to state x,. Figure

9.25 shows that these states canonly act

as initial ones, since there are nopathsto them. Therefore, we can

further simplify this state diagram by removing these states: thus,

(p 2 Vg
Fig, 9.26,



ANOTHER DEFINITION OF EQUIVALENCE OF SEQUENTIAL MACHINES 259

%, can act for x»; as an initial state [an identical path (p;, As) leads
from %, to x; ]. Similarly, x; can be replaced by x;.

Making similar preliminary simplifications wherever possible,
we shall arrive at a diagram with fewer states, that is, at an inter-
connection matrix of a lower order. In our example, we could have
started the algorithmic minimization with a matrix simpler than
C”—one with no rows or columns composed exclusively of zeros:

! 7 *3 3

4 0 0 (o1 X)) 0
Ci=%| 0 0 0 (h |,

*;; (pgs 2 0 0 0

x;’ 0 (P> Xo) 0 0

Then, symmetric decomposition of Cy gives the same result as that
obtained with C” as the starting matrix.

Compare now machine N”’ (Fig. 9.26) with the initial automaton
A (Fig. 9.23): we see that indeed it is the input sequence which
governs the equivalence of states of the two machines. Thus, assume
the machine of Fig. 9.23 starts up in state %2, and the input is p;psp;
p20102 ... » Then, to obtain the same output with the machine of Fig.
9,26, the latter must be started from state x,; if, however, the ma-
chine of Fig, 9.23 starts from this state x; with aninput ppipopipep: ...,
then, to obtain the same output from the machine of Fig. 9.26, the
latter must be started from state ;.
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Transformation of Clock Rates
of Sequential Machines

10.1. GENERAL CONSIDERATIONS REGARDING
CLOCK RATE TRANSFORMATION. DEFINITION
OF REPRESENTATION AND REPRODUCTION

In discussing various practical embodiments of finite automata
and sequential machines in Chapter 5, we have singled out a design
method whereby an s-machine with a desired clock rate is created
on the basis of the equilibrium states of another s-machine, operat-
ing at a much faster rate. We shall now return to this problem, and
shall analyze itin more general terms. First,however, we shall re-
call some concepts and definitions of Chapter .

Assume we have an s-machine S, to which we feed (at discrete
moments 0, 1, ... p) a sequence p® p! ... pP, We thus obtain the tape
of Table 10.1:

Table 10,1
prese] o | 12 b s |
P ” p0 p! ] p? ot
e e [

Now we select some sequence of discrete moments, for example,
moments 0, 1, 4,and soon, whichlie on a continuous scale such that

b <t <ty <...<fg. (10.1)

We then extract from the tape of Table 10.1 the columns correspond-
ing to this sequence. We thus get Table 10.2:

260
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Table 10,2

We now introduce another clock rate tomatch our selected sequence
of discrete moments, assuming that moment 0 of that sequence
occurs at time f;, moment 1—at time f,, and so on. We then rewrite
Table 10.2 in terms of this new clock rate, and obtain Table 10.3:

Table 10.3

Discrete
moment 0 1 l

The tape of Table 10.3 may be regarded as produced by some new
machine G. In fact, if the given tape of machine S (Table 10.1) and,
therefore, the tape obtained from it by clock rate transformation
(Table 10.3) are both finite, then there must exist an s~-machine G
producing that last tape (see Section 8.2).

To illustrate this concept, imagine an s-machine whose tape is
flash-illuminated at times f,, fi, ..., , corresponding to the se-
quence of discrete moments of our second clock rate. Machine S
will then appear to us to be processing the sequence glo, o', ..., d's
into the sequence i, 11, ..., ¥s in accordance with Table 10.3,
whereas in reality it is operating in accordance with Table 10.1,
processing the sequence p? pl, ..., pP intothe sequence A%, AL ... AP,

Let us now assume that the sequence of times #,, {;, ..., at which
the flashes illuminate tape S, is so fortuitously chosen that what-
ever the input sequence processed by S and whatever its initial state
%, we shall always perceive a sequence of input-output pairs that
could be attributed to some s-machine G, which starts up from some
state %) (whereby »{, may vary with eachinput sequence). If that is
the case, we have aclockvate transformation—machine S, operating
at a rate which, by convention, we shall call fast, serves as a basis
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for another machine G operating at clock rate which we shall call
slow.* We shall alsosay that the fast machine S represenis the slow
machine G.

These concepts are quite broad, but have adrawback. The point
is that the initial state x4 of G is governed not only by the initial
state =% of S, but also by the input sequence p{{). This means that
at different p(f), there will be different =% for the same =}, Thus
to find the appropriate state »% of G one must not only know before-
hand the state x of S, but alsothe input sequence which will be fed
into S. This is not unlike the situation encountered in Chapter 9 in
connection with the definition of equivalence of s-machines. There
the problem was solved by narrowing the concepts of equivalence in
such a way that the choice of the initial state did not require an
a priovi knowledge of the input sequence. However, the present
authors’ attempt to similarly narrow the definitions of representa-
tion and transformation of clock rate wasunsuccessful. This is be-
cause a rigid adherence to a scheme whereby any state x} of S would
always correspond to the same »% of G, regardless of the input se-
quence, would have prevented us from investigating several im-
portant practical cases of clock rate transformation (we shall return
to this question at a later stage and shall then clarify this statement
by an example). We shall, therefore, resort to other definitions
which are narrower than those above and donot require an a p7rio7i
knowledge of the entire input sequence in order to determine the
initial state of the represented machine.

The algorithm for selecting the appropriate time sequence f,, fi,
t, ... synchronizing S and G, will be called the rule of clock rate
transformation, We shall define it by saying that the fast machine S
represents the slow machine G if for any initial state % of S and
any input sequence p%'p? ... there exists at least one initial state xj
of G such that G, starting fromthis state and processing a sequence
sleptinl: ., will generate a tape coinciding with the image obtained by
viewing the tape of S at times to, t1, Lo, ...

Given this definition of representation, stafe %!, of G is deter-
mined by the state »§ of S and the fivst tevym of the input sequence
to S.

Note now that the fast machine S, which admits any arbitrary
input sequence, usually represents a machine G which can admit
inputs only from a restricted set L;. This means that an image of

*[t is convenient, but not necessary, toimagine that the fast machine does indeed oper-
ate at a faster clock rate than the slow machine. In general, however, S and G are totally
unrelated. Our further discussion shall deal with the general case, in which S and G may
operate at any desired clock rates.
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the tape of S, obtained by viewing it at f#, #, f;, ..., may represent
only one of the several possible variants of operation of G. We shall
encounter a case of this kind inSection 10.2, where set L; will con-
sist of sequences containing only one symbol. Ingeneral, represen-
tation is not aunique relationship, because at any specific clock rate
transformation, a given machine S may represent several different
machines G, Gy, Gs, ..., This conclusion alsoholds for the case where
there is no restriction on the set of input sequences of G, that is,
when LG = £,

By analogy with relative equivalence (see Chapter 9), we can
also define relative representation. The definition of relative rep-
resentation differs from that of representation in general only in
that the fast machine S may not admit arbitvary input sequences but
only those belonging to set Ls of sequences allowed in S, We shall
say that in this case machine S vepresents machine G in tevyms of
set Lg.

When Lg € E, then L; may coincide with Lg, be narrower or broad-
er, intersect with it, etc. In particular, whenlg = E, L, may be re-
stricted, and, conversely, it can happen that Ly < Eand L = E.

It is quite obvious that the mode of representation by S of any
machine G is closely related to the time sequence f,, #, f5, ... at
which the tape of S is viewed. In the general case, this time se-
quence may be such that S does not represent any sequential
machine.

The choice of the (viewing) times ¢, ¢, f, ... maydepend on the
input sequence p(f), the output sequence A(?), the sequence x(f) of the
states of machine S, as well as the time {.

The ¢clock,’? which is a machine that signals the advent of the
“glow?’ discrete (viewing) moments #, fi, f5, ..., must allow thein-
put of time ¢ and the symbolsp (¢}, L(f), and =(f) [or some of these
symbols], all of which are related to the operation of the fast ma-
chine S. The ‘‘clock’’ must be able toperform an algorithm* which
processes a given sequence of symbols of the s-machine into the
sequence fg, fj, 2, ... .

We shall assume that the clock itself is a finite automaton with
an output converter which operates at the same fast clock rate as
the s-machine S. The alphabet of this automatonis obtained by com-
bining all or part of alphabets {p}, {x}, and {A}, depending on the fac-
tors determining the sequence ¢4, ¢, {s, .... The process of producing
a synchronizing signal indicating the advent of a discrete moment
such as fo, t, ..., can then be regarded as a representation of an
event at the input of this clock automaton.

*That is, it is a Turing machine (see Chapter 13).
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Having defined representation (or relative representation), we
are faced with the following problems:

1. Given a machine S, a set Lg, anda clock (that is, an automa-
ton 4 with a converter @), find atleast one machine G which can be
represented by S in terms of Lg, as well as its set of allowed input
sequences Lg.

2. Given a machine S and a machine G, find whether there exists
a clock rate transformation such that S will represent G, and if so,
determine it (construct automaton 4 and converter @ of the clock).

A similar problem alsoariseswithrespecttorelative represen-
tation (here, the set L; must also be determined).

3. Given a machine S, a set Lg, and the clock rate transforma-
tion, construct a minimal machine G, represented by S in terms
of Lg, and find its set of allowed input sequences LGmm'

No general solutions to these problems existasof now, and it is
possible that some of them will prove to be algorithmically un-
solvable.

In conclusion of our discussion of representation and clock rate
transformation, let us note that these concepts could be broadened
by permitting the use of converters p* = @,(p) and r* = @3(n), in
accordance with Fig. 10,1, In this scheme, the input-output pairs
occurring at fo, fy, f,, ... are not(p, 2), but(p*, A*), However, we do
not need this broader definition for our discussion.

2 A
S . I
o . AT
Ll —“*/‘-’ lpg | ——
Fig. 10.1,

Assume now that we are given a specific clock rate transforma-
tion, a slow machine G and a fast machine S, and the set L; of G
(since G and L, are given, we can determine the output of G at any
input from L; and at any initial state ). Now let us define relative
repvoduction, We shall say that S veproduces G in terms of set L.
if for any » of G and at any input sequence p*(t) = p%'0? ..., from
Lo therve exist at least ome initial state ), of S, detevmined by xg
and by lhe first tevm o° of p*(t), as well as at least one sequence
‘o(t) such that the tape of S, which operates under these conditions
and is viewed only duving the discrete moments of the “‘slow” time
sequence ty, t, to, ..., coincides with the tape of G, When L; = E,
relative reproduction and (simple) reproduction become identical.
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To avoid confusion, we must stress that representation and re-
production (both relative and nonrelative) are two entirely different
and even opposing concepts. Thus representation requires coinci-
dence between each tape of the fast machine S, when viewed at
to, L, fo, ..., andone of the tapes of the slow machine G; on the other
hand, reproduction requires that for each tape of G there be a tape
of the fast machine S such that when it is viewed at &, ¢, f, ..., it
will coincide with the given tape of G. Representation does not imply
reproduction, because S may represent G but not reproduce it, and
vice versa. Again, reproductionisnotunique: for any given specific
clock rate transformation there may exist many different fast ma-
chines S,, S,, S;, ..., each of which will reproduce a given slow ma-
chine G.

The set Ls allowed in a fast machine S reproducing a given
machine G in terms of L;,* is also not unique;** and what is more,
in many cases Ls may contain symbols which do not appear in L.

Indeed, according to the definition of reproduction, for each se-
quence p*(f) € L; and state »¢ there will be at least one correspond-
ing sequence S(t) allowed as an input to S. However, in the general
case, for each p* (¢f) and «% there may be not one, but many (possibly
even an infinite number) of different sequences B(z‘). These se-
quences o(t), corresponding to all the p*(#) at all possible x}, may
form many (possibly even aninfinite number) of different setsL}, L3,
L% ..., each of the sets L§ containing at least one sequence E(t)
corresponding to any given p* (/) € L; and «3.

Each of the sets L may be considered as a set of inputs allowed
in the fast machine S which reproduces G in terms of L;. Which of
these sets is selected depends on additional, practical considera-
tions—sometimes it is convenient to use LS:ULé, and on other

occasions set E (which is always usable) is seléacted as the set of
inputs allowed in S.

The concept of reproduction gives rise to the same problems as
representation [(1) given a clock and one of the machines, find the
other machine; (2) given the two machines, find the clock; and (3)
the minimization problem],

In conclusion let us point out that the definition of reproduction
entails the same restriction as that of representation: that is, the
state »} of machine S is determined by the state x) of machine G
and only the first term of input o*(#). If x} were related to =% and
the entire input sequence, we should obtain a broader, but also a

*L; may coincide with E, that is, the reproduction may be nonrelative,

**This nonuniqueness is not encountered in the case of representation where, given
Lg, a specific clock ratetransformation, and machine S, the set L¢ is uniquely determined,
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more inconvenient definition of reproduction [we would have to know,
a priovi, the entire input sequence p* (f)].
We shall now clarify representation and reproduction by two

simple examples.

10.2. EXAMPLES OF REPRESENTATION

AND REPRODUCTION

a. Flip-Flop

Our first example involves the flip-flop of Chapter 5.

Table 10.4 Table 10,5
N‘ pr=0 pa=1 N p=0 py=1
‘!
%y C‘J %3 - % %y %,
|
*z - ‘ %y *g %3 %)
X3 —_ X4 * %g %y
l %y *3 - x, %y %

Consider a P-Pr automaton with a basic Table 10.4. It accepts
inputs from set R, containing all sequencesinwhich no two succes-
sive symbols are identical. The blanks in the table indicate that the
automaton is never in these internal states, sothat the correspond-
ing squares may be filled in any desiredfashion, for instance, as in

Fig. 10.2,

Table 10.5. This automaton is dia~-
grammed in Fig, 10.2. We shall ob-
serve it only at times f, £, ¢ ...,
when the state of the input changes
from p1 = 0 to p2 = 1, and shall find
which machine G is represented by
this automaton in terms of R.

First of all, let us determine the
set Lg of G. Since we observe this
automaton only when p = p; =1, Lg
will contain only unit sequences, In
other words, G will be an autonomous
s-machine,

An analysis of operation of the

automaton of Fig., 10.2 shows that the s~machine G (or, to be precise,
one of the many possible machines G), which the automaton represents
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has the state diagram of Fig. 10.3, that is, (o, 2,)

the slow machine G is a flip~flop (see Sec-

tion 5.2). The relationship between the vari- @ @
ous states automaton S and flip-flop G is

given in Table 10.6,

Now, if the blank squares of Table 10.4
were filled differently, for example, as in
Table 10.7, then the relationship between the states of S and G would
be represented by Table 10.8.

Fig. 10.3.

Table 10.6
S G Type of input
* % independent of input sequence
%y *0 if the input sequence begins with p, =0
%, %9q if the input sequence begins with p, == 1
Xy % if the input sequence begins with g, =0
LN L3 if the input sequence begins with p, = |
*, %o independent of input sequence
Table 10,7 Table 10.8
\I\P o, = Olpy =1 S G Type of input
LR B R %1 | ™o | independent of input sequence
%g g N o "6 independent of input sequence
*3 *10 independent of input sequence
*3 *3 4
X4 20 independent of input sequence
x4 X9 x| t

In this example the clock is a finite automaton which represents
the event ‘‘pzoccurs after p1.’’ Note that S not only represents G with
respect to R, but also veproduces itinterms of set Ly of unit length
input sequences. To achieve reproduction the set Lg of sequences
allowed in the automaton can coincide either with £ (which contains
all sequences of 0 and 1), or with set R, or with any set contain-
ing R.
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b. Delay Line

Our second example involves reproduction of a slow s~-machine
G by a fast machine S built from fast delay elements. Assume we
require an s-machine G in which the interval between discrete mo-
ments (clock rate) is 1 seconds, and where the set L; coincides with
the set £ of all allowed input sequences, The input alphabet of G
contains r differing characters p.

There is noproblem in synthesizing a machine G from z-ary delay
elements operating in given clock rate 1. However, we have only
«“fast’’ n-ary delay elements operating at rate ¢ times faster thanr,
that is, at intervals of %, where ¢ > 2. We shall now use these ele-
ments to synthesize a fast machine S, andwe shall find a clock rate
transformation such that S will reproduce G.

The equation for the fast delay element (Fig. 10.4) is

T
x(t+;) = u(f), (10.2)
while that for the required slow element is

_£_>O__‘_> x(t )= u (8). (10.3)

Fig. 10.4. Now, a chain of ¢ fast delay elements (Fig.

10.5) is described by a system of recurrence relations

x(t+’:;):x1(t)r

x, (H—%): %), (10.4)
xq_l(t + %) =u(f)

Eliminating all x; except x, we get for the entire chain
x (¢ ~y=u(t). (10.5)

Equation (10.5) coincides with Eqg. (10.3)for the slow delay element;
therefore, a chain of ¢ fastelements is equivalent to one slow element.

Bearing this in mind, we construct the s-machine S in the following
manner., Assuming for a moment that we have at our disposal the
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slow delay elements of Eq. (10.3), we construct from these elements
and from instantaneous logical converters a machine G, using one
of the methods of Chapter 5. Now,we replace each slow element of
G by a chain of g fast delays, The resulting s-machine S will oper~
ate at a fast clock rate, that of the fast delay elements. But if S is
observed only at fy, £, f, ..., coinciding with moments 0, <, 21, 31,
then S will reproduce G, since the cycle of a fast delay chain coin-
cides with that of one slow element.

The relationship between the states of S and G is independent of
the input: for each state x;z of G there exists such a state of all the
fast delays of S at which the state of the initial fast delays of each
chain coincides with that of the corresponding slow delays. Calcula-
tions show that for each of the r* states of G there are r*a—-D states
of S reproducing it. The set L; of S may be either set £, or set R
(in which there are no sequences with repeating symbols), or set M
which contains all sequences such as

PaPag =+ Pay PmiPay = Pay PoPy v ve Py v B 00 +en By

2 5 s s

q times q times ¢ times q times

( possible pat :p"t+|)'

or another of the many possible sets (all these sets must have the
following property: if the symbols in positions 0, ¢, 2¢, 3¢, ... are
extracted from each sequence belonging to agiven set and arranged
into a new set, then this new set must be the set £).

The clock suitable for this case is a ring scaler (which is an
autonomous finite automaton) made up of fast delay elements and
emitting a signal indicating the occurrence of a ‘‘slow”’’ discrete
moment every g ‘‘fast’’ moments.

It may be pointed out that in this example (just as in the preced-
ing one) the synthesis was so successful that machine S not only
reproduces, but also represents machine G (both in terms of £ and
in terms of any other set), The relationship between the states of
the two machines in the case of representation remains the same as
in the case of reproduction,

10.3 REPRODUCTION OF A SLOW MACHINE ON A FAST ONE
IN THE CASE WHEN THE CYCLE OF THE SLOW MACHINE IS
GOVERNED BY THE CHANGE OF INPUT STATE

This problem mentioned was already discussed in Chapter 5,
where we arrived at a solution. We shall produce here another
solution which is suitable for any machine,
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Suppose we are given some slow s-machine G whose cycle (that
is, clock rate) is governed by change of input. Let this G be given
as an interconnection matrix or a state diagram. The set L; of G
contains all the possible sequences except those with two identical
symbols in a row. We need a fast s-machine S which reproduces G
in terms of L;, and whose clock rate is related to that of G in the
following manner: G operates at instants #, ¢, #, ..., {; which occur
when S reaches equilibrium after any change ofinput. Assume that
the maximum number of fast cycles necessary for S to go from one
equilibrium state to another upon a change of input is m, We shall
then assume that, at reproduction, the set L; of S contains all the
sequences such as

PooPus =+ * Pay PaPa, » v v Povov PoPy »ov By (Pa, F P, ),
I 2 i i i1

(10.6)

94 times 4, times q; times

where ¢; > m foralli =1, 2 3, .... This means that an input to S can-
not change until the machine is in equilibrium.

Assuming that ¢; > ¢* the set of sequences such as (10.6), will
be denoted by 7,+. The sets T,+ satisfy the relationship

I'1=2T,=>T,>...2Tp> ..., (10.7)

whereby T, = E. Thus, provided ¢* > m, any set T, can serve as
the set Ls of S.

If the condition of replacement of G by S specifies that the two
machines must operate synchronously, then condition g* > m means
that there are at least m cycles of S between two successive cycles
of G.

We shall construct machine S by transforming the state diagram
of the givenmachine G. Assume that state %; of this diagram has the
form of Fig. 10.6. We shall replace »; with as many states as there
are different paths terminating in that state (a loop path is con-
sidered to be both terminating and originating in state %;), This
gives the four states i, %n, %, %4 (Surrounded by a dotted line) of
Fig. 10.7, where each of these new states also carries a loop path
labeled in the same way as the path terminating in that state.

From each of the new states we draw the same paths as those
which originated in state x; of Fig, 10.6; however, we need not draw
those paths carrying the same psymbol as the loop at the state from
which that path would originate (see Fig. 10.7).

We do the same thing for all states of G, and obtain the state
diagram of a machine S which reproduces G in terms of Lg, the
relationships between the states of G and Sheing as follows (Figs. 10.6



REPRODUCTION OF A SLLOW MACHINE 271

and 10.7): atp =ps, state »; of G cor-
responds to state x:i1 of S, where «;, is
the equilibrium state of S at input ps;
obviously, at input ps; the same states;
of S also corresponds to state %; of G;
similarly, at p =p, the state »; of G
corresponds to state x;» of S, x;2 being
the state of equilibrium of S atp =p,,
and soon. The general correspondence
is established in a similar manner.
Now it is readily seen from the state
diagram that S goes from one state of
equilibrium to another atany change of
the input and that this transitionisac-
complished in one ¢fast’’ cycle. That
is, m =1, In addition, the diagram
shows that machine S has no unstable.
states at any input, because each state has a loop path and therefore
is a state of equilibrium for some specific input.

An input sequence of the reproducing machine S, corresponding
to the input sequence p, p,,lp‘zl e Py e (p +p, - ) of the slow machine
G, has the form of Eq. (10.6), where all the g:>1. Using q =1, we
find that one of the (corresponding) input sequencesof S is p p, 0, .
that is, it coincides with the input sequence to G. b

Fig. 10,6,

.oy

Fig. 10.7.

The instants ¢y, t1, fo, ..., atwhich the fast machine S is ‘“viewed’’
(that is, at which information is extracted from the tape of S) occur
one ‘‘fast’’ cycle after the change of the state of input of S. If the
input sequence of S is made to coincide with that of G, then infor-
mation is extracted from S in all fast cycles.

Thus, our transformation of the state diagram of G solves the
problem of synthesis of a fast s-machine S which reproduces, in
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terms of Lg, a given s-machine G responding to the change of the
input state. Here we used the state diagram only for better visuali-
zation of the problem. In practice, it may be more convenient to
transform the interconnection matrix. This is done asfollows:

Assume the interconnection matrix C¢ of G is given, and let it
conform to Fig. 10.6, so that its ith row and column are

) i 75 j6 _
Jl Gs 1)
» Gpr '2)
COlm ] s Gal) e Gp k) e G\
/':3 (pgr A3)
/4 (rgr )
| |

We shall now replace this row and column with as many rows
and columns as there are different pairs in the ith column of C¢.
Since there are four such pairs [(ps, A,), (0p, 2}, (g Ag) and(pe, A,)],
we introduce the rows and columns i, i2, i3 and i4:

o2 i3 7 S - S

I

72 Gps 1)

af ... 05 2) (bp X3) (o M)

i2) cee (?Sr }“() (f’pv )‘2) (Pg: }‘a)
C=i3 ... sl (g 19) (p: 1)

il ... (s }\1) (egr L) Gp A3}

74 (pgr Aa)
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For diagonal elements of the submatrix comprising these four
rows and columns we take (in any desired order) all the different
pairs of the ith column of C¢, Furthermore, the intersection of row
jl and column i of C¢ contains the pair(ps, A,); we retain it in row
jt of the new matrix C, but place it in the column where (ps, ;) is
already present, that is, column i{l. We do the same with the pairs
of rows j2, j3 and j4 of the ith column of Cé, Now the columns il—i4
are complete, and each contain only identical pairs. We then fill in
rows il—i4 of C as follows: allthe pairs of the /th row of C¢ [except
for pair (ps, A,) whichis present on the diagonal of C¢] are transposed
into all four rows ({1—i4), retaining these pairsin the same columns
as in Cé, However, if the p symbol of the pair being transposed into
a given row coincides with the p symbol of a pair already present in
that row, then there is no need for this transposition—the space is
left blank. The pair (ps, A;) is transposedintoall rows il—i4, being
placed in that column in whichit already appears as a result of fill-
ing in the disposal elements. To be specific, the ith row of our ex~
ample of C¢ contains pairs (ps A;), (0p, As), (pg, A;). Row il of C already
contains pair (ps A,); wWe transpose into itpair(pp, A;) and place it in
column j5, and the pair (pg, A) incolumnj6. We add to the row /2 the
pair (ps, A,) in column i1 and the pair (pg, %,) in the column j6 [pair
(pp, Azl is omitted from column j5 since row i2 already contains pair
(pp, A,)]. Rows i3 and i4 are filled in the same manner.

The above procedure must be repeated for all the ith rows and
columns of C¢. As a result, we obtain a matrix C which actually is
the interconnection matrix C® of the fast machine S. Note one prop-
erty of C5: all columns of this matvix contain (only) identical pairs.

It is obvious that the transformation of the interconnection ma-
trix C¢ into CS8 is a procedure identical to that employed in the pre-
viously described transformation of state diagrams.

Let us conclude this section with two notes,

Note 1, In this section, just as in Section 10.2, we devised the
machine S so ‘‘successfully’’ that it not only reproduces but also
represents machine G. In representation, the set of allowed input
sequences may be any set, including set E, since the inputs to S can
change at a rate coinciding with the clock rate of the fast machine S.
This is because m of Sis1, In representation, the correspondences
between the states of G and S are the same as in reproduction.

Note 2, The above technique is only one of the available methods
for synthesizing a fast s-machine S, reproducing agiven s-machine
G in terms of L;. Other techniques are also possible, since S is not
the only machine reproducing G with respecttol;. For this reason
there arises the problem of minimization of S, that is, the problem
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of synthesizing the machine S in such a way that it will contain a
minimal number of states,

10.4. MINIMIZATION OF THE s-MACHINE
OF SECTION 10.3

We shall minimize the machine of Section 10.3, that is, synthesize
a machine Sy, reproducing the given machine G in terms of Lg, but
having the least possible number of internal states. The required
machine Sy,;, will have to satisfy two conditions.

Condition 1. Each state of S, must be an equilibrium state for
at least one input.

Condition 2. Regardless of what changes are made at the input,
Smin must reach anew equilibrium in one fast cycle (that is, ms . =1).

Fig, 10.8,

We shall now prove that these conditions do not restrict the generality of our minimi-
zation, Assume that machine S,;,does not satisfy condition 1. This would mean thatSy,
has at least one statex, whichisnot a state of equilibrium, and is represented in the state
diagram by a circle & not associated with a loop path (Fig. 10.8). If this is so, we can drop
this state x, from the diagram, replacing the path labeled (pg,....)* from x: to »; (and
passing through x5) by a direct path (pg,. . .) from x; to ;. The path (ps,. . .) from %,
to xj;, may be dropped because no path with the same label terminates in ;. We thus
obtain Fig, 10.9, from which all the nonequilibrium states have been removed.

This transformation modifies the operation Syi,only during the interval between two
equilibria of S, when we do not care what the machine does anyway, The order in which
the equilibrium states change remains unaltered and consequently the modified machine
will reproduce the given machine G in the same way as before, However, the very fact
that we are able to reduce the number of states in Sy,;, by this transformation contradicts
our statement that Sy is @ minimal machine, Therefore a minimal machine Sumin must

satisfy condition 1.
= -
X, "
(Bs) o gt

7
2

N

Fig, 10.9.

*Dots in the label indicate that the output symbol can be arbitrary,
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In general, for any given machine G there may exist several different minimal machines
Smin,each reproducing G in terms of L;. However, all these machines must have the same
number of states kmin. Our minization problem will be solved when we shall find at least
one of these machines,

Let us now turn to condition 2, We shall prove the following statement: if there exists
a machineSy,,, withk,ininternal states, reproducing G in terms L and not satisfying con-

dition 2, then there must exist another machine S,.:n with the same number of internal
states kmi,, which also reproduces G in terms of L but which satisfies condition 2, This
will show that condition 2 does not restrict the generality of the solution, To prove this
statement we shall show that the statediagram of Sy,;, can be obtained from that of Sn by
a transformation which does not alter the number of states.

Let Smin go from state x%;, which is an equilibrium forp = p,, to state x; which is an
equilibrium for p = pg. Letthis be accomplished inm fast cycles. Then Sy will go through
(m — 1) intermediate states i1, iz ..., %Rim - 1 {Decause none of these is an equilibrium
state, they cannot contain closed loops), For example, Fig. 10,10 illustrates what happens
in a section of some machine at m = 3.

Fig. 10.10.
If the circles i, i1, i2, ..., i{{m —1)are directly connected to circle j by paths labeled
(pg, Ag), then we obtain the state diagram of Fig. 10.11. Now p, shifts the machine from
state %; and from states %;,, %y, ..., %;(m~)t0 the state x; in one fast cycle. If we transform

Fig. 10.11.

the entire statediagramof Smininthe same manner, then the state diagram of the resulting
machine Spin will have the same number of states, The operation of Smin will differ from
that of Sy only during the intervals between equilibria, when we do not care what these
machines do anyway. However, an allowable input will change the states of equilibrium in
Smininput sequences in the same way as in Smin. This proves our statement,

Having proved that conditions 1 and 2 are not restrictive, let us
look for our minimal machine among the machines S, Sy, S, ...,
which reproduce the given machine G in termsof L; and which sat-
isfy these conditions.
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As we have already pointed out in the preceding section, repro-
duction requires that for any input sequence

PaoPa,Pa, ++* Pag =+ (Pa, 7 Pa,, ) (10.8)
of machine G there be an input sequence

Pasfas ** Pay PaPuy v+ Pay v PaPa v P (P“i +* Pa[+1)

' times 4 times g4 times

of machine S, where ¢g; >m (i=1, 2, ...), Since m =1 for any S;,
the set Lg of input sequences allowedin S; can be any set Tps (¢* =1,
2,3, ...) of sequences such as (10.6), assuming ¢:>q¢* (=1, 2,

..} in particular, Ls can be the set £ =T,

Assume we want S; to reproduce G, and let the set TE* be used as
the set Ls. We shall then prove the following statement (A): if state
%s; Of machine S, and state o, of machine S; are equivalent in terms
of set T, then they are also equivalent with respect to all the sets
Ty, Ty, Ta, ...; thatis,they are simply equivalent, since T, = E (S,
and §; may also refer to the same machine), If ¢ > g*, our state-
ment is obviously true, since in this case 7,77, [see Section 10.3,
Eq. (10.7)]. If g <g*, the truth of our statement follows from the
fact that with any change of input, all machines S; will go to an equi-
librium in one discrete instant, after which repetition of an input
symbol will not change the state of the machine, regardless of the
number of times this symbol is fed to the machine.

Every machine S; reproduces G in terms of set Lg, that is, in
terms of the formula of Eq. (10.8). This means that given any initial
state x and any allowedinputto G, there must exist an initial state
xg[ of §; atwhich that machine, accepting a corresponding input from
set T, [in the form of Eq. (10.6)]and observed only upon attainment
of equilibrium after a change of input, generates the same output as
G. Without sacrificing generality, we may assume that xs will be a
state of equilibrium for S, at p = pa ; were this not so, then S;would
go in one ‘‘fast’’ cycle from vs tox} which would have to be a state
of equilibrium at p=p,. In that case, xg would be the state corre-
sponding to = of G. ’

Now consider any two machines Si and S; from the set S, S,,
Sz, ....Suppose that at p = p, ,state xy; of G corresponds to state “Osi
of S; and to the state "S, of SJ. Then, since states us and "S, cor-
respond to the same state of G for the same g, the outputs of §;
and S;, which start from %S and us , respectively, will coincide for
any input from T which begms with P,,» this coincidence occurring
one ‘‘fast’’ cycle after a change of input. But if there is no change
of input, then the machine is also in equilibriym at all other times,
and the outputs at these times will also coincide. Thus, the states
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xgl and »§ are equivalent at all those input sequences from 7, which
begin with p,. But these states will also be equivalent in terms of
set T;, since they are equilibrium states at p = p, . Indeed, if the
input sequence were to begin with some pg + p,, then it would be
possible to write the sequence

pﬂo pﬂo ’ Pan pﬁo
——————

g* times

(10.9)

which does begin with p, and does belong toT;. With respect to
this sequence, the states "s and x% are equlvalent At the end of g*
cycles, the machines starting from these states, are again in these
states; thus the initial conditions are not changed, and we may take
the (¢* + 1)-th fast cycle as the reference time. If we do that, then
the sequence (10.9), taken as of the (¢* 4+ 1)-th fast cycle, begins
with p;.

Thus we have shown that all the statesof S; (i=1, 2,3, ...) cor-
responding to the same state », of G, are equivalent with respect
to the chosen set T, at p =p,. It then follows from statement (A)
proved above that they are also equivalent with respect to T, = E,
that is, they are simply equivalent,

Let us now assume that set S, S;, S;, ... yields a fast machine
S which not only reproduces G in terms of Lg, but also represents
it in terms of E. This means that for each state of S and for any
p=p, we can find a state of G, such that there is representation.

Let us take any state ;13 of §, and let x_ be an equilibrium state
for p=p,. Then, under representation, the corresponding state of
G is wg. Observing the operation of S and G of various inputs to S
beginning with p, , we come to the conclusion that if % corresponds,
at p=p r to %y under representation, then Ms corresponds, at the
same p , to %, under reproductlonN(that is, machine S reBresents
and reproduces machine G). Since x; may be any state of S, it fol-
lows that for each state x; of S there exist suitable %, and p, of G
such that s reproduces %g at p=p,. But from this it follows di-
rectly that for any state s of S there exists a state » s, equivalent to
it in any machine S;. This means that all machineés S; may be
mapped onto machine S (some of these S; may, of course, also be
equivalent to .§). Therefore, all we have to do is to minimize ma-
chine S, that is constructaminimal sequential machine Sy, equiva-
lent to S. And this can be done by means of the Aufenkamp-Hohn
algorithm (see Section 9.6),* The machine Sp;, so obtained will be
the minimal s-machine reproducing G in terms of Lg.

*For machine S;, the decomposition of all the states into groups equivalent in terms
of set TE* coincides with groupings equivalent in terms of £.
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As already pointed out in Section 10.2, the machine S, derived
by transforming the interconnection matrix of G, both reproduces
G in terms of L; and representsitin terms of £, This machine also
satisfies conditions 1 and 2 of the present section. Consequently,
to obtlain Suin (to be precise, one of the possible minimal machines)
it is sufficient to minimize S by symmetvical decomposition of its
interconnection matvix, The result of the minimization does not de-
pend on which of the sets T&* isused as the set Ls of input sequences
allowed in S under reproduction. In this case, restricting the num-
ber of sets of input sequences does not further reduce the number of
states of the reproducing machine,

We shall now construct a minimal s-machine S, reproducing a
given machine G in terms of L;.

Example, Let the interconnection matrix C¢ of a given ‘‘slow”’
machine G operating in alphabets {p} ={1, 2, 3}, {x}=1{1, 2, 3} and
{;\} = {1, 2} be

1 2 3

CGZI (LY (CAVENGAY
2l 22v1,2) 0 @G|
3LV 32 o

The state diagram of G is shown in Fig, 10.12.

P
<2
<2
A
=
5,

Fig. 10,12,

Transforming C¢ as in Section 10.3, we obtain the matrix C5 of
the ‘‘fast’” machine S reproducing G:

It 1z 13 2 92 3

nray) o 0 @) o (B

2l 1, @2 o0 0 0 @3
Cc*=1| 0 0 (1,2 &) 0 (3D
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210 0 (12 &) 0 @G
210 (22 (19 0 B2 O
3Ly @2 0o 0 0 @B

The state diagram of S is shownin Fig, 10,13. Now let us mini-
mize S. In CS, rows 2 and 6, as well as 3 and 4 form 1-matrices.

Fig, 10,13,

Let us rewrite Cs so that these rows appear one after another, and
then carry out the symmetrical grouping:

13 21 12 3 1! 22
B2 @y o @B o
21012 @ o @Gn| o

cS=12| o 0 {(2,2 @G|,
(1)

31 0 0 |22 @)
1l o0 @nl o @y | 1,1) [
2l a2 o0 ]l@ey ol o |G

oo o o O

After all the intermediate steps, we get the interconnection matrix
Cﬁm of the minimal machine Sy, With four states i, %g, ®a, ®a:
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Kl K2 Ks %4
ol (LAVED (B 0 0
Coin =1 0 @2vEn 1L,y o
X, @,1) G (1) 0

'y 1,2) (2,2) 0 (392

The state diagram of Sy, is given in Fig, 10,14.

Ll
o

Fig, 10,14,

By virtue of the previously noted factthateach column of C$ can
contain only identical pairs, matrix €S, has the following property:
no column of C3,, can contain two pairs with identical first and dif-
ferent second subscripts. This means that the state diagram of S,
may be treated, at will, either as the diagram of an s-machine of
the P - P type, or as the diagram of an s~machine of the P - Pr type
(see the note in Section 3.4). Assume, for example, that the diagram
is that of a P- Pr machine, Now, let us show the construction of a
relay circuit realizing this machine. To start with, the state dia-
gram yields the tables of the automaton and of the converter of Sy,
(Tables 10.9 and 10.10).

Table 10.9 can be regarded as a Huffman flow table; all we have
to do is to draw squares around the equilibrium states :‘E; that is,
those states whose subscripts are the same asthe ordinal numbers
of the matrix rows, After this Table 10,9 assumes the form of Table
10.11. From Tables 10,10 and 10.11 we can design a relay circuit
realizing Smn by means of the method described in Section 5.4. To
do this, we assign binary numbers to the symbols %, p and 2, as
shown in Tables 10.12 - 10.14. Then Tables 10.9 and 10.10 can be
expressed in the form of Tables 10.15and 10,16, from which we de-
rive the combined Table 10.17.
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Table 10.9 Table 10.10
G T T M B > | N P ke | s
% % % %y % Ay A A
%y %3 %y %y Ly IS Ay A,
% - %p % %y by A Xy

Table 10.17 defines three logical functions ¥), ¥, and Z of four
independent variables x;, xo, y;, and y.. We shallnow assume x; and
x2 represent the states of the input contacts, y;, and y. —the states
of contacts of the secondary relays, and ¥, and Y,—the states of the

Table 10.11
N o £ ps

Table 10.12 Table 10,13 Table 10.14
N Vs ¥y N Xq X, Nt z

% 0 0 p'l 0 0 A, ‘ 0

%y 0 1 Ps 0 1 Ay ‘ 1

%3 1 0 P3 1 0 }

%y 1 1




282 ELEMENTS OF MATHEMATICAL LOGIC

coils (energized or deenergized) of these secondary relays; the state
of the coil of the output relaywillbe Z . Now, any network made up
of contacts xj, xz, y;, and y., as well as coils Y,, Y,, and Z and re-
alizing the table of logical functions of Table 10.17 will also realize
machine Spi;. A network of this type may be constructed by any
method of Chapter 2.

Table 10.15 Table 10.16
X X
Noo(m‘lol \00\01‘10
00 00 | 00 | o1 00 1 0] o
01 10 | o | ol 0l 0 1| o
10 10 | 00 | ol 10 0 0] o
1 00 | ol | 11 il 1 11

Now letus compare our minimization method with that of Huffman
(Section 5.4}, The main difference between the two methods is that

Table 10.17
Vi 0 1 0 1 0 1 0 1 0 1 0 1
¥y 0 0 1 1 0 0 1 1 0 0 1 1
X, 0 0 0 0 1 1 1 1 0 0 0 0
Xy 0 0 0 0 0 0 0 0 1 1 1 1
¥ 0 0 0 0 0 1 0 1 1 1 1 1
Y, 0 1 1 0 0 0 0 0 0 0 0 1
Z 1 0 0 1 0 1 0 1 0 0 0 1

there are no restrictions on the applications of our method, while
that of Huffman (as already pointed out in Chapter 5) may only be
used to construct those s-machines in which the next state of the
automaton of this machine is uniquely determined by the present
states of the input and the output of the machine. Where both methods
are applicable, they yield identical results, even after minimization.

In concluding this section, let us point out that the algorithm for
deriving additional states (Section 10.3) is also applicable when the
given slow machine G is subject to Aufenkamp-type constraints.
The machine S (which reproduces G in terms of L;) constructed by
means of this algorithm will alsobe subject to the same constraints.
Therefore it should be minimized by the technique described at the
end of Section 9.8 (or some other method for full minimization of
machines subject to Aufenkamp-type constraints). The factthat this
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minimization of the fast machine S gives aminimal machine repro-
ducing G may be proved by the same reasoning as that given in the
present section, assuming no constraints (the only additional re-
quirement is finding the set of input sequences allowed for each of
the states).



11

Determination of the Properties
of Sequential Machines from
Their Response to Finite

Input Sequences

11.1. DEFINITIONS AND STATEMENT OF PROBLEM

We shall now consider finite automata and s-machines as objects
on which one can experiment but about whose internal structure one
possesses only limited information. It is also assumed that the ex-
periments can only consist of observing the outputs generated by
these machines inresponse tofinite inputs. Our problem is to deter-
mine the specific structure of agiven finite automaton or s-machine,
its present state and, if possible, its state diagram.

We shall say that by feeding a sequence of (finite) length [ to the
s-machine we are performing an expeviment of length |. The input
of sequence p(f) = %' ... p? produces a synchronous output of the
sequence A(f) = A%A' ... AP, which we shall call the vesponse of the
s-machine to the input of p(f).Inthis chapter, we shall call the input
and the corresponding output, that is, the tape of the s~-machine, the
vesult of the expeviment,

One can perform a variety of experiments. Thus when only one
s-machine of a given type is available, and the input is a predeter-
mined sequence, we have a simple nonbvanching expeviment, If,
however, each consecutive input symbol selected by the experimen-
ter depends on the preceding output symbols, then the experiment is
said to be simply branching (or just branching). When several
identical s-machines are available and all are in the same initial
state, one can perform a multiple experiment, whereby different in-
puts are fed to each machine. A variant of the multiple experiment
is one in which there is a single s~machine equipped with a reset
button, that is, a device returning the machine to its initial state
upon completion of an experiment,

The problem of determining the specific structure of a given
s-machine from the results of a finite experiment can be defined
only after all the a priori known facts about this machine have been

284
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exactly stated. As will be shown below, any new data about this
s-machine which can be produced by the experiment depend on this
a priovi known information.

At the outset we canmake the followingintuitively obvious state-
ment: if we donotknow anything abouta given s-machine, then there
is no finite experiment which will tell useven as much as the num-
ber of its states. Obviously, to study agiven machine we must know
beforehand the nature and the number r of the input symbols p,

Let S be an s-machine with kinternal states %, %2, ..., #» (Where
k is unknown!) which we subject to a finite experiment of length /.
Then it is always possible todevise another s-machine S* which has

Fig. 111,

more states than k and which operates exactly as S in experiments
not exceeding length /, and which becomes different from S only in
experiments longer than /.

Assume, for example, that we have
a finite automaton A and anassociated
output converter (see diagram of Fig.
11.1), on which we perform experi-
ments of length < 3, It is easily seen
that if [ <3 and the initial state isx; or
#2, automaton B (diagram of Fig, 11.2)
generates the same output A as A;
thus, at /<3, 4 and B do not differ.
They become dissimilar only when the
input consists of the fourth symbol.

This argument shows that in order
to experimentally determine the spe-
cific internal structure of a given auto-
maton or s-machine one must have,in
addition to the number of input symbols Fig. 11.2.
r, an estimate of the number % of its
states. We shall assume from now on that the k and r are always
known. Then we can consider the following experimental problems:

a) Determination of equivalence of two states ofeither the same,
or of different s-machines.

b) Determination of equivalence of two s-machines.

c) Determination of the state diagram of an s-machine,
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d) Determination of the state in which the machine was at the
beginning of the experiment or, alternatively, its reduction to a spe~
cific state at the end of the experiment.

To solve these problems one mustknow what experiments can be
carried out with the given set of s-machines (for example, whether
one can perform a multiple experiment), aswell as some additional
data on this set (ior example, this information may consist of the
number of statesk, as well as of the fact that all of these states are
nonequivalent).

The next section shows a determination of the equivalence of
states of an s-machine (Moore’s theorem). Subsequent sections deal
with the study of s-machines when multiple experiments are pos-
sible (Section 11.3), as well as with the case where only a simple
experiment (inparticular, a branching one)is possible (Section 11.4).

11.2. DETERMINATION OF EQUIVALENCE OF
STATES OF s-MACHINES FROM THEIR
RESPONSE TO FINITE INPUTS

Consider two equivalent states of some s-machine, By definition,
the outputs in this case will coincide at any input, regardless of
which of these equivalent states is the initial one. Conversely, if
the initial states are nonequivalent, then there exists an input such
that, starting with the gth cycle, the two outputs will differ. Here,
g depends not only on the specific s-machine under consideration
{its internal structure and the number of its states &), but also on
the ¢discriminating’’ input sequence. Our problem consists of find-
ing what is the minimal length of an input sequence capable of
demonstrating the nonequivalence of two states of the given s-
machines, It turns out that we canevaluate this length starting only
with number (k&) of the states of the machine. This length is given by
the following theorem:

Theorem 1 (Moove’s Theovem)*, If all k states of an s-machine
N ave nonequivalent, then for each pair of these states theve exists
an input sequence mot longer than k— 1, capable of discviminating
between them,

Consider the decomposition of the set of states of N into groups
equivalent in terms of set L, of all sequences of length s (s =1,
2, .., n—1). We shall prove the theorem by induction with respect
to s. We shall prove thatif the number of groups of states equivalent

*See [72]; see also [98] where the same theorem has been independently proven,
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in terms of L is m,,thenthe number of groups equivalent in terms
of L,,., is not less than m, + 1 (that is, ms4 > ms + 1).

If s =1, thatis, all input sequences consist of one symbol, then
we can decompose the set of states of N into at least two groups of
states equivalent intermsof L,, Indeed, if all states of Nwere equiv-
alent in terms of L,, they would also be equivalent in terms of set
E of all possible sequences (since in this case the output of the
machine would be governed only by its input). However, this is not
the case here because NV hasno statesequivalent in terms of £. Con-
sequently, m; > 2.

Now select two states x; and »; which are equivalent in terms
of L;. By our specification of N, x; and »; are nonequivalent states;
therefore there must exist some input sequence capable of discrimi-
nating between them, but this sequence does not belong to L.. Let
the minimum length of this sequence be ¢ (where ¢ > 1). Then the
first ¢ — (s + 1) symbols of this sequence will cause the machine to
shift from the states %; and x; to states %, and ., respectively,
which are alsoequivalentinterms of L;. In fact, since ¢ is the mini-
mum length of the discriminatinginput, then,if the initial states are
»; and x; , the respective outputs must coincide from the (¢ —s—1)-th
to the (¢ — 1)~th machine cycle inclusively. For this reason, the out-
puts will coincide from the time ¢ — s — 1 (at which the machine will
be in states %z and »», respectively). However,we also know a priori
that states »; and =, canbe discriminated by an input of length s + 1,
since the (s 4+ 1)-th cycle after theinitial states », and . is the gth
cycle after the initial states »; and x;,and g was a pviori chosen in
such a way that the outputs in the gth cycle will be different. Con-
sequently, states %, and %, are a priori known to belong to different
groups which are equivalent in terms of L , .

Let us note now that if two states »; and x»., which are equiva-
lent in terms of L, are nonequivalentinterms of L, |, then the group
of states equivalent in terms of L; towhich x; and x» belong may be
decomposed into at least two groups equivalent in terms ofL;, ;.
This proves that m; 1> m; + 1.

It follows from this inequality and the inequality m; >>2 proved
above that there always exists a ¢* <{k-— 1 such that the number of
groups of states equivalent in terms of L, is exactly equal to &;
that is, any two states of N are nonequivalent in terms of L. But
this means that for each pair of states of machine N there exists an
input sequence from L, nolonger than ¢®==%— lat which the outputs
do not coincide. This proves Moore’s theorem.

Now, for a few notes in connection with this theorem.

Note 1, If the given automaton is associated with anoutput con-
verter, and if we know not only the number % of nonequivalent states
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but also the number [ of symbols in the table of the output converter,
then, instead of the estimate of (¢ — 1), the estimate of ¢*=F%— /1
will apply. The proof of this statement follows the above proof of
Moore’s theorem word for word, the only change being that in this
case the inequality m,; > [ applies instead of the inequality m, > 2;
that is, the number of groups of states equivalent in terms of L,
cannot be less than [, If, however, [ is not known a priori, then one
uses the ‘“‘worst’’ case in the estimate, that is, the case when! = 2
and R —I{+1=FkF—1.

Note 2, We can easily show that the estimate of the length of the
sequence capable of discriminating between nonequivalent states and
given by Theorem 1 is exact in the sense that this length cannot be
shortened regardless of which s-machine with znonequivalent states
is used. This follows from the fact that for each # we may devise
machines in which two nonequivalent states are a priori known to be
indistinguishable if the ‘‘discriminating’’ input is shorter thank — I.

Example., Consider a finite automaton (Table 11.1) associated
with an output converter (Table 11.2) whose state diagrar» is shown
in Fig. 11.3. It is easily seen that to establish nonequivalence of

)
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Fig, 11.3.
Table 11.1 Table 11.2
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states #x —1 and u;,, the input sequence cannot be shorter than 2 —1;
this is because the machine starting from these states, will generate
only X at any input shorter than k-1, If, however, the output of
machine in state x; were 2, thenthe nonequivalence of %, _, and %
could be established by a sequence only £ — 2 long (that is, £—{+ 1,
where [ = 3).

Note 3., The arguments used in the proof of Theorem 1 may also
be used for proving the equivalence (or nonequivalence) of two states
of a single s-machine of known structure (that is, a machine with
known state diagram, or tables of the automaton and converter). In
that proof the machine states mustfirst be divided into groups equiv-
alent in terms of L,; each of the groups so obtained must then be
subdivided into groups equivalent in
terms of L;, and so on, until the two
states under consideration appear in dif-
ferent groups. If this does not occur by
the (k—1)-th step (that is, after all the
states have been subdivided into groups
equivalent in terms of L, _ ), thenbyvir-
tue of Theorem 1 the two states under
consideration are equivalent. We used an
essentially similar argument in Section
9.4.

Note 4, Although any two nonequiva-
lent states can be distinguished by aninputnot longer than £ — 1, this
discriminating input does, in general, vary in length with different
pairs of (nonequivalent) states. Thus, in general, thereis no single
finite input sequence capable of discriminating any one of the states
from all the others.

Example. Consider a finite automaton (Table 11.3) associated
with an output converter (Table 11.4), shown in Fig. 11.4. Here one

Fig. 11.4.

Table 11.3 Table 11.4
S| e | e r % A
% % % % ky
4y % s ey Ao

%3 %y %y g ko
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can distinguish between statesx; and %, if the input sequence starts
withpo; but discrimination between states x; and xg3requires that the
input starts with p;.

Note 5 (which is the direct consequence of Note 4). There
exists no simple experiment which car tell, even if the state dia-
gram of the s-machine is available, what the state of the machine
was at start of the test., Indeed, it has been shown that there is no
finite experiment capable of distinguishing between a given initial
state and all the others, And if wecarry out some experiment cap-
able of distinguishing a given state »; from some subset S of the
set K of all the states of this s~machine, the very experiment will
automatically shift this s-machine out of the state x;, and thus we
will be unable todetermine in which of the states of the subset K—S
it had been initially.

It can, of course, be easily seen that when the machine has no
equivalent states and we can perform a multiple experiment (that
is, we have several identical s-machines, or a machine with re-
set), we can always find the initial state,

Note 6., Théorem 1 gives anestimate of the length of experiment
capable of determining the nonequivalence of the states of two s-
machines, having k&, and &, internal states, respectively, This can
be done by regarding these states as states of a single s-machine
obtained by simple union* of these two s-machines, After this union,
the nonequivalence of the two states may be established by an ex-
periment not longer than ¢"==#k, +£k,—1,

The nonequivalence of states of two different automata with out-
put converters can be established by anexperiment (see Nofe 1) not
longer than ¢*=/k,+ky,— {4 1.

If £, = k,, then the respective estimates become:

For the two s-machines ¢*=2k—1, and for the two automata with
converters ¢*=2t— /- 1. The next example will show that these
values cannot be improved upon,

Example, Figure 11.5 shows the diagrams of twofinite automata
without output converters, where the number of output symbols [ = 2,
It is readily seen that anexperimentestablishing the nonequivalence
of states %, and »; cannot be shorter than 7 (for example, the input
sequence could be p(f) = popopopopipip1). If, however, states x, and x,
of these automata were associated with a new output Ae,that is, if
[ were 3, thenexperiment of length 6is sufficient. Similar examples
can be devised for %,

*The state diagram of the combined machine is a simple union of the diagrams of the
component machines,
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11.3. MULTIPLE EXPERIMENTS ON
SEQUENTIAL MACHINES

The multiple experiment requires several identical s-machines
or a machine with reset. In these experiments we consider only
those states which the machine may attain in a finite number of
steps, starting from state x°,

A sequential machine is said to be »°—connected if it has a dia-
gram such that for eachstatex; (i =1, 2, ..., k) there exists an input
capable of shifting this machine from itsinitial state »° to state =;.
It is quite obvious that our discussion shouldnot go beyond x°-con-
nected machines: if the machine were not »°-linked, then our mul-
tiple experiment will permit us to study only that section of it which
is »’~-connected. For that reason, we shall discuss only x=°-connected
machines with reset. With such machines there is no problem of
machine states at the beginning or the end of the experiment, and
the only problems which can be considered are those of the equiva~
lence of two s-machines and of determining the diagram of the ma-
chine,

Let us first discuss the equivalence problem. It is obvious that
the determination of equivalence of two »’~connected s-machines
may be reduced to a determination of equivalence of the two states
%% in these two machines. But we have shown in the Section 11.2
that the nonequivalence of states of two such s-machines can be
proven by an experiment not longer than 2t¢— 1 or, in the case of
two automata with converters, by an experiment not longer than
2k — [ + 1. Thus the multiple experiment can discriminate a speci~
fic %°~connected, s-machine from the whole class of »°-connected
machines which are nonequivalent to it and whose diagrams are
known. From this follows a technique for solving the second prob~
lem, that of constructing the diagram of this x’~connected, s-
machine, the algorithm of which is as follows:
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1. We preform all the possible experiments of length 2& — 1 on
the machine (a total of r?* - ! experiments). We record the results in
the form of tables (tapes), leaving blank the table entries corre-
sponding to the states of the s-machine,

2. We assign some number ;i (1 < i< k) totheinitial state of the
machine and substitute this number into the corresponding positions
of the table,

3. After the first step of the experiment, the machine will be in
one of states x!', of which there can be no more than r. We use all
the inputs of length £ — 1to find out whether there are any equivalents
among the states »° and »!. We assignarbitrary and different num-
bers i and ; (1 <C{, j< k) to all the states »! which are nonequiva-
lent to each other and to state x°, Those states that are equivalent
are coded by the same number. Let the number of different states
»! be r.

4. From each of the states so coded no more than r new states
%> may be reached in one step, sothat the total number of states x?
cannot exceed r;r. We use all the possible input sequences of length
k— 1 to ascertain whether there are equivalents among states »°% «!
and x?., We assign numbers to states »? in the same way as we have
coded states x!.

5. We continue this process until we find & states nonequivalent
to each other. It is obvious that this number will be reached in less
than 22— 1 steps (that is, we need not scan all the experimentally
derived tapes).

6. We construct a state diagram, a basic table, or an intercon-
nection matrix in accordance with the experimental results.

Note, Because the output of a finite automaton with an output
converter is governed by its state » and is independent of the input
p supplied at the given time, we need only r** —! experiments of length
2k — 1 + 1 (instead of r?* —!+ 1) to derive the diagram of this automaton.
In addition, the last input symbol in
each experiment may be arbitrary, for
example, the same one for all experi-
ments,

Example, Suppose we know that a
certain automaton associated with an
output converter has k = 3 nonequiva-
lent states, r = 2 inputs, and { = 3 out-
put symbols., Then experiments of
length 2k —{ + 1 = 4, performedin this
automaton as per the above algorithm,
allow us to enter the states into the
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table (see the symbols in parentheses of Table 11.5) and to con-
struct the state diagram of the automaton (Fig, 11.6).

Table 11.5

t 0 1 2 3 H 0 1 2 3
P i £ 41 4 p P2 P2 P 3]
* (%) () | ) | (1) % ) | () | (%3) | (%)
A A, A, A A A A, A, Ay Ay
t 0 1 2 3 t 0 1 2 3
14 3] Py P2 P 4 P2 1 £ 1
* () ] ) | () | (22) * (o) | (o) | o) | ()
A I8 A, A A, A A, A, A, A
t 0 1 2 3 t 0 1 2 3
14 £y 2 P2 133 P P2 P2 P2 P1
* () | G0 | (2) | (xa) x ) | (o) | (%) | (%3)
A A, A, Ay Ag A A A, A, A,
t 0 1 2 3 t 0 1 2 3
4 P2 Py P2 91 4 91 ] P1 Pi
* () | (=2 | ()| (x2) %o G | (o) | (Rg) ] ()
A A Ay A Ay I8 A A A, A,
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11.4. SIMPLE EXPERIMENTS ON
SEQUENTIAL MACHINES

If multiple experiments cannot be performed, we can study
s-machines by means of simple experiments,

The problem of discerning nonequivalence and determining the
internal structure of s-machines by simple experiments has been
solved only for the case of the set of machines in which all the states
are nonequivalent. Such a set is that of differing strongly connected
machines. A sequential machine is said to be strongly connected if
for each pair x»; and x; of its states there exists an input sequence
capable of shifting it from state x; to state x;.

Because the class of strongly connected machines is narrower
than that of x’-connected machines, it follows from Section 11.3
that two stvongly comnected s-machines ave equivalent if at least
two states ofthese machines ave equivalent, Therefore all the states
of all the machines of a set consisting of differing strongly con-
nected machines are nonequivalent.

As stated in Note 5 to Theorem 1 (see Section 11.2), in general
there is no simple experiment capable of distinguishing an initial
%0 of an s-machine from all the other states which are nonequivalent
to it. For this reason we would want to find a simple experiment
which would shift the machine into a state which could be uniquely
specified; in other words, we desire an experiment in which there
exists a unique correspondence between the resuit and the last state
of the experiment »? (the state that corresponds to the last input
symbol being tested). That an experimentexists, and that the entire
class of s-machines may be subjectedtoitis proved by Theorem 2,
which also provides an estimate of its length.

Theovem 2 (the Moove-Kavatsuba Theovem). The last state of a
given s-machine with k nonequivalent intevnal states is obtainable

from an experiment not longev than k (kQ ov, in the case of a fi-
nite automaton, not longev than —(—l)(kﬁz) “+1,
Proof, Assume that the state dlagram of the s-machineis given.
We shall try to find the input sequence discriminating the last state
of this machine in the form of a series of consecutive sequences
(that is, experiments) a, (s = |, ..). These sequences shall be such
that the set T; of the possmle states* occurring after the input of

*In papers [72], [25], [41], [59], and [60], the set T, is called the set of associated
states, Let us emphasize that T, is the set of those states which occur after the input
of sequence a;, and is is not the set of possible states which govern the last observed
output symbol (and thus determine the decompositionofthe set of all the states into groups
equivalent in terms of a,).
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the last symbol of experiment g, (these states are therefore the pos-
sible initial states for the next experiment a,.,) will contain not
more than & — s elements. If the s-machine is an automaton, then
such states would include at least two states which can be distin-
guished by an experiment of length 1, that is, by any input symbol,

This condition is satisfied before the beginning of the experi-
ment, when s = 0, Now we shall prove thatif this condition is satis~
fied for a,, then there exists an a;,; for which it also holds. The
initial machine state for the experiment a;.; mustbelong to the set
of states T.. Using Theorem 1 and the set of arguments used in its
proof, we find that the elements of 7, (there can be no more than
k — s such elements, in accordance with the condition of Theorem 2)
may belong to:

a) at least two groups of states equivalent in terms of set L,
of all experiments not longer thans + 1 (there are at least s +2 such
groups; see Theorem 1); and

b) at least three groups of statesequivalentinterms of set L, ,
of all experiments not longer thans + 2 (there are at least s+ 3 such
groups).

Consequently, for any s-machine there will always be, among the
k— s states of set T,, a pair of states which can be distinguished by
an s + ! long experiment a; ;. For this reasonset 7,,, will contain
at least one element less than 7, that is, it will contain not more
than £ — (s + 1) states.

If, however, our machine is an automaton, then, by virtue of (b),
set 7, will always contain a pair of states that can be distinguished
by an s + 2 long experiment, in which the sequence of the first s + 1
symbols is regarded as the experiment a;,,. The theorem stipulates
that in an automaton there are atleasttwo states of 7, that are dis~
tinguishable by any input symbol. For this reason, the first symbol
of the experiment a,,; will discriminate between these symbols,
Consequently, set 7,., will contain at least one element less than
set T,, that is,itwill containk — (s + 1)states, at least two of which,
by virtue of our choice of experiment g, will be discriminated by
any input symbol.

Since the theorem holds for s and s + 1, it follows by induction
that it will hold for any positive integral s; thus T, _, will contain
not more than two states which, inthe case of an s-machine, can be
distinguished by an experiment a; —; not longer than £ — 1 or, in the
case of an automaton, by an input symbol (that is, by an experiment
of length 1).

Thus, none of the experiments a, is longer than s, and the last
state of the s-machine may be determined by an experiment not
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longer than

k
k(R —1)
:2 S-__.—7*

s=1

(11.1)
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while the length of a similar experiment required in the case of a
finite automaton is

~
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s-1=E=DEZD Ly (11.2)
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Noie 1, The two examples given below show that the above-
calculated required experimental length cannot be shortened,

Example 1, In order to distinguish the last state of an automa-
ton with diagram of Fig. 11.7, we require an experiment p,p:pip,

.7~0W(/72'M)

(p:.2g) (23.70) (s hg) - (P
CX) (%) Gy ROWD)

Fig. 1L.7.
. (k—1) (k—2)
of length 4, that is, of length exactly equal to —a—+ 1L
Example 2, In order to distinguish the last state of an s-machine
with diagram of Fig. 11.8, we require an experiment pspipapsp1ps of
the length ﬂ%_—‘l_l:&

It is readily shown that no shorter experiment will accomplish
this in either example. The technique for devising similar examples
for any % is obvious.

Fig. 11,8,

Note 2, If the output alphabet is taken to contain { symbols then,
by a similar reasoning, we arrive at an estimate of the length of
experiment determining the last state of an automaton with an out-
put converter:

7

k—I+ 1) (k—1
L= Ly (11.3)
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In the case of automaton without a converter(k = /), we obtain
the obvious estimate of 1,

Note 3, The experiment determining the last state is shorter in
cases where the initial states are knowntobe a subset of the entire
set of states k. If the total number of possible initial states is
1<v<k, and among those states there are states which can be
distinguished by any input symbol, then we can prove by reasoning
similar to that used in the proof of Theorem 2 that the length of an
experiment discriminating the last state of an automatonwith a con-~
verter must be

g="72@k—2—v+3+1. (11.4)

When none of the v initial states of an automaton with a converter
is distinguishable by an experiment of length 1, then the length of
the required experiment will be

(v——l)(2k—221—-v+4). (11.5)

g=

Example 3, If the only initial states of the automatonof Fig. 11.7
are x3 and x4, then the last state will be distinguished by an ex-
periment pyp1p. of length 3, that is, of length exactly equal to
v—1DQRE—21—~v+4)

5 .

1f, however, only x; and xs are initial states

then the last state will be distinguished by any input symbol, that is,
by an experiment of length

L= ok — 20—t B+ 1=1.

Note 4, In discussing the shortest possible experiments, we
should note that if T, containsless than & — s elements (for example,
k — s— m elements), then reasoning similar to that used in proving
Theorem 2 will show that the length of the sequence which follows
as is not s + 1, but s + m + 1. However, in this case the total length
of an experiment shifting the machine into a specific last state is
shorter because sequences ranging in length froms + 1tos + m drop
out.

We shall now illustrate a regular technique for finding the short-
est experiment giving the last state of an automaton with a converter.
This procedure follows directly from Theorem 2.

Example 4, Consider a finite automaton associated with an out-
put converter whose diagram is that of Fig. 11.9, the basic table is
Table 11.6, and the converter Table is 11.7. Table 11.8 shows the
procedure for finding the shortest experiment for determining the
last state of this automaton.
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Table 11.6 Table 11.7
% f Po Pe * A
% g %a % A
%y %3 %g %, Ao
%3 %4 *3 *3 ko
%y g iy %y Ao
*5 *g %2 %5 A
~g %, %3 L A,
%7 %y % % Ay
Table 11.8
s ag T Number of elements
in 7'
0 » {%),%g, %3, %y, X5, %, %7} k=T
1 a, == pify {00 {*g %a % %} fos—m =T—-1-2=4
4 a, = popoPof1 £ 1 ) 1% % 21} k—s=T—4=3
5 |as = popoPopofs (FoV #1) {22} {xa %1} k—s=T—5=2
PoV P

Since we are considering an automaton, then, inaccordance with
the proof of Theorem 2 we select for each s those input sequences
of length s + | which can discriminate any two states of set T, and
use their first s symbols (the last, s + | symbols of the Table 11.8
are crossed out). As shown in Note 4 to Theorem 2, in this example
we can go directly froms = 1tos = 4, dispensing withs = 2 and s = 3.
We can distinguish the two penultimate states »; and %, by means
of any single input symbol, For thisreason, the overall experiment
giving the final state of our automatonwill be p;popopopipopPopoPePiPe OT
P1P0PoPoP1P0PoPoPoP1p1  its length being 11.

Note 5, Another consequence of Theorem 2 is that if a set { S}
consisting of machines S; with k; tntevnal states (wheve i=1, 2,
... N) is given (that is, the diagram of each machine of this set is
known), and if none of the states of these machines are equivalent
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to each othev, thenthere exists a simple branching experiment which
permits us to distinguish any element S, of set {S} from all the other
elements of that set,

There are two lines of approach to devisingthis experiment and
to estimating its length. First, we can devise a branching experi-
ment consisting of a series of sequences, each of which will shift
each of the machines of the set into some known final state. These
sequences are then followed by sequences discriminating these final
states from each other. This is the approach proposed by Moore
[72]. Thus, if we deal with an s-machine set { S} consisting of S;
elements with internal states (where i =1, 2, ..., N),thenthe length
of such an experiment will be [from (11.3) and (11.7)]

N
* ;— 1
g = 5D L (N 1) (gt e — D (11.6)

i=1

where £yp.; and kamax are the maximal numbers of states.
If all machines have the same number of internal states, the
length of the experiment will obviously be

gy =NEEZD L (v 1)@k —1). (11.7)

In the case of finite automata with converters we get from
(11.4) and (11.9)

(11.8)

N
q;=2[<k,~—t><fg—t+1> il
i=1
+(N— l)(klma.x_{_'k2max_l_{_l)
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or, when all machines have the same number of states
* k—D(k—14+1
qA:N[_—_.___( =i+ ) | 1]+(N-—1)(2k—.1+1). (11.9)

Finally, if we are dealing with an automaton not associated with
a converter, that is, if £ = [, then any input symboi will determine
the state in which each automaton is (see Note 2) and the length of
the experiment permitting the discrimination of one of the N auto-
mata will be

Ia=1+(N—1)(k+1). (11.10)

If we have one real machine S, of the given set {S} and the state
diagrams of all the machines of the set, then we can devise such an
experiment in the following manner:

1) From their state diagrams we find all the possible experi-
ments determining the final states of all the machines of set {S}.
Assume that for machines Si, Si ..., Sy we have experiments
a,,as, ..., ay (M N). Even though all these machines are nonequiv-
alent, each of these experiments may give identical results (the re-
sults can depend on the initial state of a machine). Thus, each of
these experiments can produce identical results in the machine
whose final state the experiment uniquely determines, aswell as in
the other machines of the set,

2) We perform a mental experiment a; on machine S; consecu-
tively, starting from all of its possible initial states. We also per-
form the same experiment of the real machine S, under investigation.
If at any of the initial states the experimental results for S, coincide
with those for S,, we have determined afinal state of S, which may
also possibly be a final state of S,. If the results of the experiment
a; with S, differ from those of the same experiment with S, at all
possible initial states of S;, we eliminate this machine from further
consideration,

If the same experiment q, determines the final states of several
machines of set {S}, for example, those of machines S_, S, ..., S,,
and if all (or some) of these results, at some initial states? coincide
with the experimental results on S,, we have determined the final
states of these machines, which may alsopossibly be final states of
S.. If there is no such matching of results we eliminate these ma-
chines from further discussion.

3) We perform a mental experiment a; with the corresponding
machine S, (or with machines Sg, Sq. .., S,,) at all of its possible
initial states. We carry out the same experiment with the real
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machine S, as well as with machine §; or with those of machines
S,,S,,..., S, which were not eliminated in (1) and (2). The initial
states’taken for machines S, or S“,’ S%’ .., S, are those determined
by their final states and the last symbol of exqperiment a;. We then
drop those of machines S; and S; (or Sul, Sﬂ,’ Saq or Sal’ Sﬁg’ Sah)

for which the results of experiment a; do not coincide with the re-
sults of the experiment with the real machine S,, and thus establish
the final states of the remaining machines.

We continue in the same manner with other experiments until
we have performed all the experiments a; which determine the final
states of all the machines of set {S}. Our result may then show that
S, can belong to a subset{S}={S) of machines reduced to some defi-
nite states.

If the given set contains automata without converters, then, as
we have already indicated, any input symbol will yield the final
states of all the automata.

4) We find from the state diagrams anexperiment b,, discrimi-
nating between the states of any two machines S, and S, of {S}.
We then perform this experiment on S» and S, and on the real ma-
chine S:. This eliminates either both of these machines, or one of
them. We note the final state of the remaining machine,

5) We select another one or two machines from {S} and perform
on it (or them) the same experiment b,. If the result(s) match that
obtained in (4) on S., we note the final state of the remaining machine
(or machines).

6) We find an experiment discriminating between the state of the
machine remaining in (4) and that of the machine(s) remaining in
(D). We perform experiment b, with this pair of machines and with
the machines S,, as indicated in (4). We then follow the instructions
of the algorithm (1-5) until all the machines set {S} but one are
eliminated, the state diagram of the remaining machine being that
of the real machine S,.

Example 5, Assume we are given the diagrams of three auto-
mata (Fig. 11.10) and we are required to find out which of these
diagrams corresponds to that of some real automaton whose dia-
gram is unknown but which is available for experimentation,

Assume that real automaton happens to be S; in initial state x,s.
Then the input of arny symbol (for example, p:) to this automaton
immediately shows the possible initial states (%21, %2, and %3, in this
case) of this machine. Then a further input of a four-symbol se~
quence pypipi1p2 enables us to distinguish between the states x;; and
%12 (Of the three possible states x;, ®12, and %3 into which the machine
could be shifted by the input of p,). TFinally, the sequence pzpip2ps
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enables us to distinguishbetween states x;; and »;; which the machine
can assume after the input of the first five symbols. Thus the en-
tire branching experiment papspipipzpep1p2p2 €nabling us to distinguish
one automaton from a given set will have a length of 9; that is, will
exactly equal the result of expression (11.10). It is readily seen
that we could have used a shorter experiment, for example, p;pzpip1p2,
to accomplish the same purpose, But in this case we would have to
carefully select all the sequences comprising the entire experiment
(that is, the first step p, aswell as the sequences pyp; and p,py dis=-
criminating between the states), inspecting beforehand all the pos-
sible final states which can be arrived at from all possible initial
states, and this would greatly complicate the algorithm of the ex-
periment,

One can also find out the length of a simple nonbranching ex-
periment which would enable us to distinguish one specific machine
from a given set {S;) in which all states are nonequivalent to one
another. This could be obtained by another method, starting with
the simple union of elements of the given set (see the footnote on
p. 290). An experiment which would determine the final state of
such a combined machine at all possible initial states, would ob-
viously enable us to distinguish any machine of the set.

In accordance with Note 6 to Theorem 1, any two states of such
a combined machine can be distinguished by an experiment not
longer than ky, —+ km,—t (OT By —+ km,— {4 1 in the case of automata
associated with converters), where k., and km, are the largest of
all k;. For this reason, the experiment determining the final state
of a combined machine will consist of sequences whose estimated
length increases from 1 to km, + km, — 1 (OT km, <+ km, — [+ 1 for auto-
mata with converters), and then remains constant.

Using reasoning analogous to that employed in the proof of Theor-
em 2, we obtain the following estimates: for a set of machines,
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each with the same number of states
Gup =k (2k—1)(N—1), (11.11)
for automata associated with converters
qUA=(2k—l+1)(Nk—k—é)+1, (11.12)
for automata without converters, or at 2=/

qUA:k(k+1)(N-§)+1. (11.13)

It can be shown that the estimates (11.11) - (11.13) for the length
of a nonbranching experiment, applicable to the union of all the ma-
chines of the set, are usually not as good as the estimates (11.7),
(11.9), and (11.10) for the length of a nonbranching experiment ob-
tained by shifting each machine of the set into some specified state
and then comparing those states. Moreover, the second method is
much more complicated than the first because in searching for in-
dividual sequences constituting this experiment we do not deal with
the individual machines of the set, but with the set as a whole.



12

Algorithms

12.1. EXAMPLES OF ALGORITHMS

In our previous discussion we have examined many infinite se-
quences without stopping to think what it means ‘“to examine’’ an
infinite sequence. Obviously, we cannot scan it, and the only under-
standing of such a sequence which we can achieve derives from the
analysis of its properties. We shall illustrate this concept by some
examples.

Determination of a tevm in an infinite sequence, Consider the
sequence

There is little that we can forecast aboutits further behavior. How-
ever, if we know that the symbols 0 and 1 always alternate, we can
predict the term appearing in any position, because 0 always appears
in an odd-numbered, and 1 in an even~numbered position.

Now consider the sequence

If we know thatgroup0,7, 5, 3 is recurrent, and if we know the first
term of this sequence, we canagaindetermine any subsequent term.
To find the term appearing in the nth position, we divide n by the
number of terms in the recurrent group. The remainder obtained
in this division indicates the position of the term in the recurrent
group. If the remainder is 0, the nth term coincides with the last
term of that group.
As a final example, consider the sequence

304
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Here 1 appears only in positions whose ‘‘addresses’’ are squares
of integers. If we know that, we know everything about the sequence.
To find the nth term, we merely take the square root of n. If it is
an integer, the nth term is 1. Otherwise, it is 0,

These three examples had one common ‘‘property’’ which en-
abled us to reconstitute the entire infinite sequence starting from a
small segment of it, In all cases wehad a ‘‘prediction procedure,”’
that is, a procedure for determining any term, given its ¢address.”’
To be more exact, in all three cases we dealt with an algorithm for
finding the term, given the ordinal number ofits position in the se-
quence.

An algorithm usually means a set of formal directions for ob-
taining the required solution. This formulation is not exact but
rather expresses an intuitive concept whichdates back to antiquity.*

To clarify the characteristic properties of an algorithm, let us
consider some typical examples,

The Euclidean algovithm, This algorithm determines the great-
est common divisor of two positive integers a and b, and may be
described by the following sequence of directions:

1, Compare a and & (a=5,or a<b,ora>b). Go on to 2,

2, If '@ = b then either is the greatest common divisor. Stop the
computation. If a %« b go on to 3.

3. Subtract the smaller from the larger number and write down
the subtrahend and the remainder. Go to the next instruction,

4, Assign symbol a to the subtrahend, and symbol b to the re-
mainder. Return to direction 1,

The procedure is repeated untila = b. Then the computation is
stopped.

The above set of directions, each consisting of a simple arith-
metical operation (subtraction, comparison) can obviously be made
more detailed, in which case the direction will be still simpler.

Algorithms which reduce the solution to arithmetical operations
are termed numevical algorithms, Our three previous examples be-
longed to this class, as do formulas and procedures for solution of
any class of problems, provided such formulas fully express both
the nature of the operations (multiplication, subtraction, or division)
and the order in which they must be performed.

A logical algovithm, Now consider an algorithm for solving a
logical problem~that of finding a path in a finite labyrinth.

*The term ‘‘algorithm’’ itselfderives from the nameof the ninth century Uzbek mathe-
matician al-Khuwarizmi, who formulated a set of formal directions, that is, rules for
carrying out the four operations of arithmetic in the decimal system.
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Imagine a finite system of rooms, each of which is the origin of
one or more corridors. Each corridor joins two adjacent rooms,
and a room may thus be connected to several other rooms. On the
other hand, it may open only into a single corridor, in which case it
will be a ‘‘dead-end’’ room. Graphically, the resulting labyrinth may
be shown as a system of circles A, B, C, .. ,joined by straight lines
(Fig. 12.1). We shall say that room Y is accessible from room X
if there exists apathleadingfrom X to ¥ via intermediate corridors
and rooms. This means that either X and Y are adjacent rooms or
there exists a sequence of adjacent rooms X, X, X,, X;, ..., X,, V.
If Y is accessible from X, then the path from X to Y must be simple
(loopless); that is, each intermediate room is traversed only once.
Thus, in the labyrinth of Fig., 12.1, one simple path from H to B is
HDCB; but L is inaccessible from A.

Fig. 12,1,

Suppose that we wish to ascertain whether F is accessible from
A and that, if so, wewishtofind a path from A4 to F ;but,if F proves
inaccessible, we wish to return to A at the end of the search. We
have no map of this labyrinth and for that reason shall employ a
general search procedure applicable to any labyrinth containing a
finite number of rooms, with any mutual disposition of rooms A and
F within it. In one such procedure, the searcher, like the mythical
Theseus, holds a ball of thread, one end of which is tied down in the
starting room A. In addition, the searcher can paint the corridors
as he walks along them. He is thus able to distinguish those never
passed before (green), those passed once (yellow), and those passed
twice (red). The searcher can getfrom any room to an adjacent one
by either of two moves:

a) He can unwind the thread. He thus stretches the thread along
a ‘‘green’’ corridor, which then becomes ‘‘yellow,’’

b) He can wind the thread on the ball. He thus returns from a
given room to an adjacent one, walking along a ‘yellow’’ corridor.
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He picks up the thread as he walks along, and the corridor now be-
comes ‘“‘red.”’*

Having arrived into any given room, the searcher may encounter
any one of five possibilities:

1. This is room F, the object of the search.

2. At least two ‘‘yellow?’’ corridors radiate from this room, that
is, a thread is already stretched across it. The searcher now
realizes that he has just traversed a loop.

3. At least one ‘‘green’’ corridor originates in this room.

4, This is the starting room A.

5. None of the above.

Now the search procedure can be specified by the following
table:

Evidence in the voom Next move

1. Room F Stop

2. Loop Wind the thread
3. “Green’’ corridor Unwind the thread
4. Room A Stop

5. Fifth possibility Wind the thread

In each room, the searcher must decide on his next move by
scanning the table in numerical order and ascertaining which of the
possibilities listed matches the evidence in the room. Having found
the first match, he makes the necessary move without checking for
other applicable possibilities. He continues to move in this fashion
until the instructions are to stop.

For this procedure, we can prove the following:

1. After a finite number of moves, the searcher will stop at
either A or F, regardless of the mutual dispositions of A4 and F.

2. If he stops at F, thenhe hasreached his object, and the thread
is now stretched along a simple path from A to F.

3. If he stops at A, then F is inaccessible.

Let us illustrate the procedure on the labyrinth of Fig. 12.1.
We represent the procedure in the form of Table 12.1 and see that
F is accessible from A, We write down those corridors of column
4 which remain ‘‘yellow’’ to the very end. These constitute the
simple path from A to F.

This procedure involves an element of choice which did not exist
in the previously discussed examples, Thus, two different calcula~
tors trying to find the greatest common divisor of two numbers by

*In fact, the searcher needs only two colors—green and red; this is because the
‘*yellow’’ corridors contain the stretched thread,
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Table 12,1
Evidence in room (I(J:g;_h_ Corridor
Move No.| determining Next Move ridor) color after
next move Taken | this move
1 Green corridor { Unwind thread AB Yellow
2 " " BC 1
3 " ” D ”»
4 " " DH ’
S ” ” HI ”
6 Fifth case Wind thread IH Red
7 L [X) HD "
8 Green corridor | Unwind thread | DB Yellow
9 Loop Wind thread BD Red
10 Green corridor | Unwind thread| DF Yellow
11 Room F STOP

Euclid’s algorithm performs operations coinciding in every detail:
there is no room for individual judgment. But in the labyrinth pro-
cedure, two searchers may go from 4 to F via distinctly difterent
paths.

Traditionally, the term <“algorithm?® is restricted to an exactly
defined set of instructions. In this sense, the labyrinth search pro-
cedure is not an algorithm, Tobecome one, it would have to be sup-
plemented by an exact specification on what to do in the case of
“green’’ corridors (for example, this supplemental instruction may
specify that if several ¢<‘green’’ corridors originate from the same
room, the searcher must select the first one to the right of the en-
trance).

12.2. GENERAL PROPERTIES OF ALGORITHMS

The above examples point out some overall properties charac-
teristic of any algorithm:

(a) Determinancy, The procedure is specified so clearly and
precisely that there is no room for arbitraryinterpretation. A pro-
cedure of thiskind canbe communicated toanother person by a finite
number of instructions. The operations described by these instruc-
tions do not depend on the whim of the operator and constitute a
determinate process which is completely independent of the person
carrying it out.

(b) Generality, An algorithm is applicable to more than justone
specific problem: it is used for solving a class of problems, with
the procedural instructions valid for any particular set of initial
data. Thus, Euclid’s algorithm is applicable to any pair of integers
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a>0, b>0; the rules of arithmetic apply to all numbers; and the
search rules hold for any finite labyrinth, however intricate.

In mathematics one considers a series of problems of a specific
kind to be solved when an algorithm has been found (the finding of
such algorithms is really the object of mathematics). But in the
absence of an algorithm applicable to all problems of a given type,
one is forced to devise a special procedure valid in some but not
other cases., However, such a procedure is not an algorithm. For
instance, there is no algorithm for finding out whether the solution
of equation

xn+yn:zn (12.1)

is an integer at any n =1, 2, 3,4, .... This problem may neverthe-
less be solved for particular values of n. Thus, for n = 2, we can
easily find three numbers (x = 3, y = 4, z = 5) satisfying Eq. (12.1).
And it may be proved that Eq. (12.1) has no integer solutions for
n = 3. However, this proof cannot be extended to other values of n.

{¢) Efficacy. This property, sometimes called the divectionality
of an algorithm, means that application of an algorithmic procedure
to any problem of a given kindwill lead to a ‘‘stop’’ instruction in a
finite number of steps, at which point one must be able to find the
required solution, Thus,nomatter now intricate the (finite)labyrinth,
the search algorithm must lead to a ‘‘stop’’ instruction in a finite
number of steps. The stop will occur either at F. or at A, enabling
us to decide whether F is accessible or not. Again, the use of the
Euclidean algorithm with any two numbers a > 1, &> 1 will sooner
or later lead to a ‘‘stop’’ instruction, at which point one can deter-
mine the value of the greatest common divisor, However, nothing
prevents us from using the Euclidean algorithm with >0 and
b> 0, or with any pair of integers (positive or negative). There is
no ambiguity at any step of the algorithm, but the procedure may
not come to a stop. For example, if a = 0, b = 4, our sequence of
instructions (1-4) gives the pairs 0, 4; 0, 4; 0, 4... and so onad
infinitum. The same will happen with the pair a = —2, b = 6.

Thus, the concept of efficacy of an algorithm naturally leads to
the concept of its vange of application, The range of application is
the largest range of initial data for which the algorithm will yield
results; in other words, if the problemis stated within the range of
application, then the algorithm will work up the (given) conditions
into a solution, after which the procedure will come to a stop; if,
however, the problem conditions are outside this range, then either
there will be no stop, or there willbe a stop but we shall not be able
to obtain a result. Thus, the range of application of the Euclidean
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algorithm is the set of natural numbers {I, 2, 3, 4, ...}, and the
range of application of the search algorithm is the set of all finite
labyrinths.

Now, the number of individual operations which must be per-
formed in an algorithmic procedure is not known beforehand and
depends on the choice of the initial data. For this reason, an al-
gorithm should be understood primarily as a potentially feasible
procedure. In some specific problems stated within the range of
application of the algorithm there may be no practical solution: the
procedure may be so long that the calculator will run out of paper,
ink, or time, or the computer executing the algorithm may not have
a large enough memory.

Determinancy, generality, and efficacy are empirical properties.
They are present in all algorithms constructed so far. However,
these empirical properties are too vague andinexactto be useful in
a mathematical theory of algorithms. We shall try to refine them
in subsequent sections.

12.3. THE WORD PROBLEM IN
ASSOCIATIVE CALCULUS

The previously described search procedure was restricted to
finite, though arbitrary, labyrinths. There exists, however, a far
reaching generalization of this problem which, in a sense, consti-
tutes a search in an infinite labyrinth. This is the wovd problem .
It arose first in algebra, in the theory of associative systems, and
in the group theory, but the conclusions derived from it have since
transcended these specialized fields. *

Let any finite system of differing symbols constitute an alpha-
bet, and let the constituent symbolsbe its characters, For instance,
fa, B, ?, 7, *} is an alphabet, whereas a, », ?, 7 and * are its charac-
ters. Any finite sequence of characters from an alphabet is called
a wovrd of that alphabet., Thus, the three~character alphabet {a, b, c}
will yield words ac, a, abbca, bbbbb, bbacab, etc. Anempty word, con-
taining no characters, is denoted by A.

Consider two words L and M in some alphabet A, If L is a part
of M, then we say that L occursin M, For example, the word L = ac
occurs in M = bbacab. In general, [ may occur in M many times;
thus bch occurs twice in abebebab.

Bemad
—

*Important contributions to its solution were made by A.A, Markov, P,S. Novikov and
their students. Familiarity with this problem will help us to understand the theory of re~
cursive functions,
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We shall now describe the process of transformation of words,
whereby new words are obtained from given ones. We start by
setting up a finite system of substitutions allowable in a given al-
phabet:

P—Q; L—M, ..., S—T,

where P, Q, L, M, ..., S, T are wordsinthis alphabet, and the dashes
between them denote substitution, Thus, an L—M substitution in a
word R of this alphabet may be defined as follows: if L occurs one
or more times in R, then any one of these occurrences may be re-
placed with M; conversely, ifMoccursinR ,then it may be replaced
with L. For example, there are four possible substitutions ab — bcb
in abcbcbab. Replacement of each subwordbch with gb yields aabcbab
and abcabab, respectively, whereas the replacement of each ab
yields the words bcbcbebab and abcbebbeb. However, the substitution
ab—bch in bach is not allowed since neither ab nor bch occurs in it.

The words obtained by means of allowable substitutions may be
again replaced, which yields yet new words.

The aggregate of all the words inagiven alphabet, together with
an appropriate set of allowable substitutions, is called an associa-
tive calculus, To define an associative calculus, it is sufficient to
define the alphabet and the set of substitutions.

Two words P, and P, of an associative calculus are said to be
adjacent if one may be transformedinto the other by a single allow-
able substitution. A sequence of words P, Py, P, P, ... Q iscalled
a deductive chainleading from P toQ if every two consecutive words
in this chainare adjacent. Twowords P and Q are said to be equiva-
lent if there exists adeductive chainleading from P to Q. The equiv-
alence relationship is shown as P ~ Q. It is obvious that if P ~ Q,
then Q ~ P, since the allowable substitutions may be used in either
direction,

Example. Assume we have the following associative calculus:

{a, b, ¢, d, e} — alphabet

ac—ca
ad —da
bc—cb
bd — db — allowable
substitutions
abac — abacc
eca— ae
edb— be
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Here, the words abcde and acbde are adjacent, since abcde may
be transformed into acbde by the substitution bc—cb. However, aaabb
has no adjacent words, since none of the given substitutions may be
applied to it. The word abcde is equivalent to cadedb, since there
exists a deductive chain of adjacent words: abcde, acbde, cabde,
cadbe, cadedb , derived by successive use of the third, first, fourth,
and Tifth of the above substitutions.

An associative calculus may be put in correspondence with an
infinite labyrinth by matching a specific room of the labyrinth with
a word from the alphabet. Since the number of words which may be
formed from the characters of agiven alphabetis infinite, it follows
that the labyrinth can have an infinite number of rooms.

Two adjacent rooms of the labyrinth correspond to adjacent
words. Now, if two words P and Q are equivalent, then the labyrinth
room corresponding to word Q is accessible from the room corre-
sponding to P, that is, there exists a path from P to Q.*

In each associative calculus there occurs a specific word
problem, whereby it is required to recognize whether two wovds of
this calculus ave equivalentornot, Thisproblemis identical to our
problem of accessibility in alabyrinth, except thathere the labyrinth
is infinite. But our previous algorithm is now useless because an
infinite labyrinth cannot be searched in a finite time.

Since each associative calculus contains aninfinite set of differ-
ent words, it involves an infinite number of problems of equivalence
between two words. All these problems mustinvolve the same pro-
cedures, and we therefore naturally think of a solution consisting
of an algorithm for recognizing the equivalence (or nonequivalence)
of any pair of words, We shall seein the next section whether such
a solution does exist,

However, we can immediately find the algorithm for the re-
stricted wovd pvoblem, where one wants to know whether a given
word can be transformed into another by using the allowable substi-
tutions a maximum of % times; here kis an arbitrary but fixed num-
ber, In the previous search problem, we imposed a restriction on
the labyrinth, which had to be finite. Here, however, it is the num-
ber of moves which is restricted: we must inspect all those rooms
of an finite labyrinth which are separated from the starting one by

*Sometimes one uses a form of associative calculus defined by an alphabet and a sys~
tem of oriented substitutions P — @. The arrow means that only left-to-right substitution
is allowed; that is, the word P may be replaced with Q, but not the other way around. This
associative calculus may be graphically represented by aninfinite labyrinth in which each
of the corridors is unidirectional. Obviously,the equivalence P ~. @ in no way implies that
@ ~ P in this case.
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not more than k corridors; the remainder of the labyrinth is of no
interest. In terms of associative calculus this means that one de-
termines all words adjacent to one of the given words (by substitu-
tion); then for each of the new words so derived one determines all
words adjacent to it, and so on, £ times in all. We finally obtain a
list of all words which may be derived from the given one by using
the allowable substitutions at most ktimes, If the second given word
appears in that list, then the answer tothe restricted word problem
is yes; if it does not appear, the answer is no, This scanning al-
gorithm may then be further improved by removing from it all su-
perfluous iterations (loops).

However, the solution of the restricted word problem does not
bring us nearer to the solution of our basic ‘‘unlimited’’ problem.
Here, the length of the deductive chain (if it exists) from word P to
word Q may be extremely great (or infinite), For this reason, the
scanning algorithm, restricted as it is to % substitutions, generally
cannot tell whether an equivalence is present or, to put it another
way, when to stop the search for such an equivalence. Thus we must
turn to other, more sophisticated algorithms, aswe shall do in later
sections.

The reader will now recognize that logical deductive processes
other than the search problem may also be treated as associative
calculi. For instance, any logical formula may be interpreted as a
word in some alphabet containing the characters denoting logical
variables, logical functions, and logical connectives V, & ~, - (, ),
etc. The process of inferemce may be treated as a formal word
transformation similar to the substitution in associative calculus,
in which an elementary act of logical inference is made to corre-
spond to a single act of substitution. The substitutions themselves
may be written as logical rules or identities, for example, x—x
(which means ‘‘double negation may be removed’’), or

Wx) [(AVx) &(A,V x)]— A & A, ) the exclusion
@x) [(AV x) & (A x)] — AV A, | rule, and so on.

By making such substitutions in a given premise (that is, in the
wording representing such a premise), we can obtain many further
inferences (conclusions).

Now, in propositional calculus there exist methods for deriving
all the conclusions which follow from a given set of axioms. There
also exists an algorithm for recognizing deducibility, thatis, a pro-
cedure for checking whether a given statement follows from a given
axiom or not. However, propositional calculus cannot encompass
both these procedures, since it isunable toexpress the relationship
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between one object and another within the confines of a single state-
ment; this calls for predicate calculus—which can also be inter-
preted as an associative calculus. Asaresult,we arrive at a variant
of associative calculus—the logical calculus with a given system of
allowable substitutions. The problem of recognition of deducibility
now becomes one of existence of a deductive chain from the word
representing the premise to the word representing the inference, a
problem which the reader will recognize as that of equivalence of
words in associative calculus,

In the same sense, all derivations of formulas, and all mathe~
matical computations and transformations, are processes of con-
structing deductive chains in the corresponding associative calculi,
And we shall prove in the next section that arithmetic itself may
also be treated as an associative calculus.

Given the universal applicability of associative calculus, it would
be natural to postulate it as a general method for defining determi-
nate data processing procedures, that is, algorithms. However, be-
fore we can advance this postulate, we must state precisely what
we mean by an algorithm in a given alphabet.

12.4. ALGORITHMS IN AN ALPHABET 4.
MARKOV’'S NORMAL ALGORITHM

By analogy with the intuitive definition of Section 12.1 ff, we
could intuitively define an ¢‘algorithm in alphabet A’’ as follows:
Definition I, An algorithm in alphabet A is a universally undev-
stood exactinstvuction specifying a potentially realizable operation
on words from A; this operation admits any word from A as the
initial one, and specifies the seqguence in which it is transformed
into new words of this alphabet. Analgorithmis applicable to a word
P if, starting from that word and acting in accordance with this in-
struction, we ultimately derive a new word Q, whereupon the process
comes to a halt. We then say that the algorithm processes P into Q.
For example, the following instruction satisfies our definition:
Copy a given wovd, beginning from the end, The word so obtained
ts the vesult, Stop.
This algorithm is an exact instruction applicable toany word.
Nevertheless, Definition I is too broad, and we shall refine the
concept ‘‘algorithm in alphabet A*’ by means of associative calculus.
Definition II, We shall say that an algovithm in alphabet A is
a set allowable substitutions, supplemented by a wuniversally
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understood exact instruction which specifies the ovder and manner
of using these allowable substitutions and the conditions at which a
stop occurs *

The following is an example of an algorithm in the sense of Defi-
nition If.

Let alphabet 4 contain three characters: 4 = {a, b, c}, andlet the
algorithm be defined by a set of substitutions

cb—cc,
cca — ab,
ab—bca

and the following instructions regarding the use of these substitu-
tions:

Starting from any word P, one scans the above set of substitu-
tions, in the order given, seeking the first formula whose left-hand
part occurs in P. If there is nosuch formula, the procedure comes
to a halt, Otherwise, one substitutes the vight-hand part of the first
such formula for the first occurrence of its left-hand partin P;
this yields a new word P, of alphabet A, After this, the new word P,
is used as starting one (P in the above), and the procedure is re-
peated. It comes to halt upon generation of a word P, which does
not contain any of the left-hand parts of the allowable substitutions.

This set of substitutions and the instructions for its use define
an algorithm in alphabet A which processes the word babaac into the
word bbcaaac by means of the third substitution, at which point the
procedure comes to a halt. Similarly the word cbacach may be suc-
cessively transformed into words ccacach, ccacacc, abeacc ,and beacacc,
at which point the procedure again comes to an end. However, the
word bcacabc generates the recurring sequence bcacabe, beacbeac,
bcacccac, bcacabc , and so on, where no stop canoccur; therefore our
algofﬁhm is not applicable to the word bcacabc.

This algorithm is somewhat reminiscent of the following instruc~
tions for motion in aninfinite labyrinth: having arrived into a room,
go to the first corridor on your right, and so on. Here, a stop will
occur when a dead end is reached and, as in the algorithm, there
are three possibilities: starting from any room, we can either enter
a dead end corridor {(compare the case of word babaac), or move
in a loop ad infinitum (Compare the case of word bcacabc), or keep
going for an infinitely long time without getting trapped in a loop,

*Since analphabet and a system of allowable substitutions define an associative calculus
which, as we know, can be placed into correspondence with an infinite labyrinth, that part
of the definition which relates to instructions for using the substitutions may be treated
as exact instructions for moving in an infinite labyrinth,
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At first glance one may conclude that Definition II is narrower
than Definition I. It turns out, however, thatthis is not so, since for
any known algorithm defined in sense Iwe may construct an equiva-
lent algorithm in sense II, This, of course, does not prove that Defi-
nitions I and Il are equally strong; there can be no such proof, in
view of the vagueness of both definitions (for instance, both contain
the undefined phrase ‘‘universally understood exact instructions?’’).
Still, Definition II is a substantial stepforward, as we shall see be-
low.

Now let us define equivalence of algovithms: two algorithms A,
and A, in some alphabet are equivalentif their ranges of application
coincide and if they process any word from their common range of
application into the same result, In other words, if algorithm A,is
applicable to a word P, then A, must also be applicable to that word,
and conversely; also, both algorithms must transform the word P
into the same word Q. If, however, one of the algorithms is not ap-
plicable to a word B, then the other algorithm must also be in-
applicable.

At this point, Definition II may be transformed into an exact
mathematical definition of an algorithm by a single step first pro-
posed by A.A, Markov. His normal algorithm is identical to that of
Definition II except that the ‘‘universally understood’’ instructions
are replaced by a standard, once and for all fixed, and exactly speci-
fied procedure for the use of substitutions. This normal algorithm
is specified as follows: To start with, the alphabet A is defined and
the set of allowable substitutions is fixed. Then some word P in A
is selected, and the substitution formulas are scanned (in the order
given in the set) to find a formulawhose left~hand part occurs in P.
If there is no such formula, the procedure comes to a halt. Other-
wise the right-hand member of the firstof such formulas is substi-
tuted for the first occurrence of its left-hand member in P. This
yields a new word P, in alphabet A, After this one proceeds to the
second step, which differs from the first one only in that P; now
acts as P. Then one goes to the third analogous step, and so on,
until the process comes to a halt. However, the process can be
terminated in only two ways: (1) when it generates a word P, such
that none of the left-hand parts of the formulas of the substitution
set occurs in it; and (2) when the word P, is generated by the last
formula of the set.

We see that the algorithm of DefinitionIlis an ‘‘almost normal”’
algorithm, the only difference being that it comes to a halt in only
one case (when none of the allowable substitutions is applicable),
whereas in the normal algorithm there are two possible causes for
a ‘““stop”’ instruction.
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Two normal algorithms differ only in their alphabets and their
set of allowable substitutions. Again, to define a normal algorithm
it is sufficient to define its alphabet and its set of substitutions.

Examples of Normal Algovithms,

Let the alphabet 4 and the set of allowable substitutions be

A= {1, +} 14+ —->41
+1 =1

1 —- 1

(the arrows are a convention denoting a Markov normal algorithm,
to differentiate it from the usual associative calculus).

Now let us see how this algorithm transforms the word1 1 1 14
+1 14+111. We obtain successively the words:

1111 +114+111
1 11 +1 11+ 111
1 14+ 111 14+111
1 +1 1 11 14+ 111
-1 11 1 1 1 4111
+1 1111 +1111
+ 1111411111
+~ 11 14111111
+ 11+ 1111111
+ 14111 1 1 111
+~4+<1 1 11 1 1 1 11
+1 11111111
11111 1111
111111111

The procedure comes to a halt ontheuse of the last substitution
1 — 1, which processes the word 111111111 into itself,
Now let the set of substitutions (in the same alphabet) be

+———
11— 1

(A is again an empty word). Then 11 + 111 + 1 + 11 will be trans-
formed as follows:

11 4+111 41411
1111141411
111111+ 11
111111 11
111111 1 1.
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We see that both algorithms produce a sum of symbols 1; that is,
they perform addition, and it not difficult to show that they are equiv-
alent.

A third normal algorithm, equivalent to the above, is defined by
a set

1+ - 4+ 1,
++ -+
+ — A.

The reader is invited to verify that the normal algorithm A=
{1, = V, ?}
#11 — \/*1,
=] > \/,
1v > Vv 1e,
V>V,
?1—1?,
Vi—>V,
V?—>?,
21,
1—1
transform eachword of the form 1111 ... 11 =111 ... 111 intothe word

m times n times

111 ... 111, that is, it performs a multiplication,
—_—

m-n times

Markov also refined the concept of an algorithm in an alphabet
by postulating that each algovithm in an alphabet is equivalent fo
some normal algorithm in the same alphabet, This is a hypothesis
which cannot be rigorously proved, since it contains both the vague
statement ‘‘each algorithm’’ and the exact concept of a ‘‘normal
algorithm,*’ This statement may be regarded as a law which has
not been proved but which has been confirmed by all accumulated
experience. It is supported by the fact that no one has so far suc-
ceeded in formulating an algorithm for which there is no normal
algorithm equivalent to it (in the same alphabet).

Now we can return to the problem of universal definition of al-
gorithms (see end of Section 12.3). In view of what we said above,
the Markov normal algorithm seems a convenient ‘‘standardform?’’
for defining any algorithm, that is, we assume that any algorithm
may be defined as a Markov normal algorithm. This is, of course,
no more than a hypothesis and, at that, much less well-founded than
the Markov hypothesis discussed above, since it cannoteven be ex-
pressed in exact terms. However, its intuitive meaning is obvious.
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As soon as we accept this hypothesis, we have a way of rigor-
ously proving the algorithmicunsolvability of generalized problems,
For example, we can prove the algorithmic unsolvability of the word
problem; that is, we can prove that thereis no algorithm applicable
to all associative calculi and capable of determining whether two
words P and Q are equivalent, All we have to do in order to prove
this is to demonstrate the existence of one associative calculus in
which there is no normal algorithm for recognizing the equivalence
of words. Examples of suchcalculi were firstgiven by A.A., Markov
(1946) and E. Post (1947). After that itbecame clear that a fortiori
there can be no algorithms capable of recognizing the equivalence
of words in all associative calculi,

The examples of Markov and Post were unwieldy and com-
prised hundreds of allowable substitutions. Later, G. S. Tseytin
exhibited an associative calculus containing only seven allowable
substitutions, in which the problem of word equivalence was also
algorithmically unsolvable,

As an illustration we shall show one proof of algorithmic un-
solvability. Let U be a normal algorithm defined in an alphabet
A ={a,, ay ..., a,} with the aid of a set of substitutions. In addition
to the characters of alphabet A, this algorithm also uses the sym-
bols — and ,. By assigning to these symbols new characters a,;,
and any, we can represent U by a wovd in an expanded alphabet
A=la, a, ..., a,.,). Let us now apply U to the word representing
it, If algorithm U transforms this wordinto another one, after which
there is a stop, this meansthatU is applicable to its own represen-
tation—the algorithm is self-applicable., Otherwise, the algorithm
is nonself-applicable, Now there arises the problem of recognition
of self-applicability, that is, finding out from the representation of
a given algorithm whether it is self-applicable or not.

This problem would be solved by a normal algorithm V, which,
upon application to any representation of a self-applicable algorithm
U, would transform that representation into a word M and which
would transform all representations of a nonself-applicable al-
gorithm U into another word L. Thus the application of the recog-
nition algorithm V would show whether U is self-applicable or not.

However, it has beenproved that such anormal algorithm V does
not exist (see [64] ), which also proves that the problem of recogni-
tion of self-applicability is algorithmically unsolvable. The proof,
by veductio ad absuvdum, is as follows. Suppose that we do have a
normal algorithm V and that it transforms each representation of
a self-applicable algorithm into M andeach representation of a non-
self-applicable algorithm into L. Then, by some modification of the
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substitution system of the algorithm V, we may devise another al-
gorithm V which would again transform each representation of a
nonself-applicable algorithm into L but which would be inapplicable
to representations of a self-applicable algorithm (because the al-
gorithm does not come toa stop). Suchan algorithm V leads to con-
tradictions. Indeed,

1. Suppose V is self-applicable (there is a stop), that is, it can
be applied to its ownrepresentation (whichisin the form of a word).
But this simply means that ¥ is nonself-applicable.

2. Suppose V is nonself-applicable. Then it can be applied to
its own representation (since it is applicable to any representation
of a nonself-applicable algorithm). But this simply means that V
is self-applicable.

The resulting contradiction proves the algorithmic unsolvability
of the problem of recognition of self-applicability.

Thus there is noa priori prooffor the existence or nonexistence
of an algorithm for a given problem. Butthe nonexistence of an al-
gorithm for a class of problems merely means that this class is so
broad that there is no single effective method for the solution of all
the problems contained in it, Thus, even though the generalized
problem of recognition of word equivalence is algorithmically un-
solvable in Tseytin’s associative calculus, under normal conditions
we can still find away for proving the equivalence or nonequivalence
of a specific pair of words.

There is an interesting history to the problem of algorithmic
unsolvability, Prior to Markov’s refinement of the concept of an
algorithm, mathematicians held one or the other of the following
points of view:

1. Problems for which there is no algorithm are still, in prin-
ciple, algorithmically solvable; the desired algorithm is unavail-
able simply because the existing mathematical machineryisunequal
to the task of devising this algorithm. In other words, our knowl-
edge is insufficient to solve problems we call algorithmically un-
solvable, but such algorithms will be found in the future.

2, There are classes of problems for which there are no al-
gorithms. In other words, there are problems thatcannot be solved
mechanically by means of reasoning and computations and that re-
quire creative thinking.

This is a very strong statement because it says to all future
mathematicians: Whatever the means at your disposal may be, do
not waste your time searching for nonexistent algorithms!

But how does one prove the nonexistence of an algorithm?
So long as the definition of an algorithm comprised the phrase
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“universally understood instruction’’ such a proof was unthinkable,
because one cannot conceive of all possible ‘‘universally understood
instructions?’’ and prove that none of these is applicable.

Thus the very survival of this second viewpointis related to the
daring hypotheses on the existence of ‘“standard forms’’ for defin-
ing an algorithm (such as the Markov normal algorithm), that is,
hypotheses permitting the formulation of the concepts of ‘‘algorithm”’
and ‘‘algorithmically unsolvable problem’’ in exact terms.

12.5. REDUCTION OF ANY ALGORITHM TO A
NUMERICAL ALGORITHM. GODELIZATION

The advent of computers has prompted much work in the theory
of numerical algorithms with which these machines operate. In the
course of this work it has been shown that any logical algorithm
can be reduced to a numerical algorithm. Asthe methods for doing
this improved, it also became clear that @ll algorithms can be re-
duced tonumerical ones, and thus the theory of numerical algorithms
(which we shall also call the theory of computable functions) became
a generalized mechanism for study of all algorithmicproblems,

We shall now show how any algorithmic problem can be reduced
to a computation of values of an integer-valued function of integer
arguments.

Assume some algorithm is applicable to a range of data. We
shall represent each set of data comprised in this range by means
of a unique nonnegative integer A,; whenwe have done this, we have,
instead of the original data, or collection of numerals (labels)
Ay ALA, ... A, ... representing these data.

Similarly, we assign a unique numeral to each of the possible
solutions derived with our algorithm from the above data and thus
obtain a sequerice of numerals (labels) B,, B,, B,, .... B,,, ...repre-
senting these solutions.

Now this labeling or numbering permits us to dispense with the
data and solutions themselves and to operate instead on rumerals
vepresenting these quantities. For it is fairly obvious that if we
have an algorithm processing a set of data into a solution, we can
also devise an algorithm processing the numeral A, denoting these
data into the numeral B, representing the corresponding solution.

It is also obvious that this algorithm must be a numerical one,
of the type m==9¢(n).

In general, if there exists an algorithm for solving any given
problem (that is, transforming a set of data into a solution), then
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there must also exist an algorithm for computing the values of the
corresponding function m=¢(n). Indeed, to find the value of ¢(n) at
n = n*, one can reconstitute the set of data represented by n* from
a table of values ofz vs. these data; then one can employ the (exist-
ing) algorithm to find a solution for the problem. Having the value
of the solution, one can go to atable of values of solutions vs, m to
find the numeral m* representing 5. Consequently,

o (n*)=m".

Conversely, if there exists an algorithm for conputing the values of
o(n), there must be an algorithm for solving the given problem. In-
deed, one can find from the tabie of the data vs. # the numerical n*
representing #. Then one can compute m* = ¢(n*); having m*, one
can determine the value of the actual solution from another table.

Let us now present a widely used method of numbering (that is,
unique labeling), namely, the method of Godel. Suppose we have a
numberz. Then, by virtue of the fact that any composite integer can
be uniquely decomposed into prime factors, we have

O N £ay S . n?
n==2".37-5"-7 R L

where po=2, py=3, p,=05, and,in general, p, is the mth prime
number. Thus n— the Gddel number —is the product of successive

primes, which are raised to powers from the set a;, ay ..., anm.
Any Gb&del number r is uniquely related to a specific set a;, a, ...,
am, and, conversely, each set ‘a,, a,, ..., a, is uniquely associated

with aspecific numbern. For example, if n = 60, we have: 60 = 223151,
that is, ¢,=2, a,=1, ay=1.

Now, Godel numbering (or gddelization) allows us to uniquely
label any sequence of m members. Consider a few examples:

1. Any pair of numbers a, and ay, for which we seek the great-
est common divisor g, can be assigned a unique G&del number
n=2".3", Now, Euclid’s algorithm reduces to the computation
of g = ¢{(n).

2. We want to find the sumbol in the rth position of a purely
periodic sequence produced by endless repetition of the numerical
sequence dai, as ... am. The statement of the problem can then be
associated with the G8del number

n=9.3%.5%. ... . pm

The algorithm for finding the rth symbol then reduces to computation
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of values of the function
q=¢ (n)’

where g may assume values only from the set {a,, a,, ..., a,}.
3. An nth-degree equation

X0, x* 1 b2 ... +b,=0

(where b; are general symbols, not specific coefficients) can be
assigned a number n; it is obvious that, knowing n, one can easily
reconstruct the original equation.

When n = 2, the equation is

X2+b1x+b2=0.

Its solution may be expressed in terms of coefficients & :

U TRy (%)2.-17. (12.2)

Let us rewrite Eq. (12.2) on one line
2
x=—b:24+—V (b, X b;: 4—by),

where the square root sign applies to the entire expression in paren-
theses. Assume that we intend tofind anexpression for the solution
of the #th-degree equationinterms of the radical signs. It is obvious
that, whatever the form of the solution, it may consist only of the
following symbols:

T

2 3
+’ T ><r :»(r )’ 1: bl: b21"‘1 bn; V; V:---; V

Also, we can use symbol 1 and the addition sign + to express any
number which may be present as the sum!l + 14+ 1+ ... +1, Letus
code the above symbols by means of the following numerals:

![/ is assigned the number  2r ) is assigned the number 13

-+ » » 3 1 » » 15

— » » 5 b » » 17

X » » 7 b » » 19
» » 9

{ » D
b, » » (2n+15).
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Then each expression consisting of these symbols is uniquely
represented by a set of numerals. For example, the set

6,11, 17, 3, 19, 13

corresponds to the expression

3
V (b1+by).

This set of numerals, as we already know, describes a Godel
number equal to

26_ 3\1 . 517 . 73, 1110, 13[3.

Conversely, given a Godel number, we can always reconstitute
the corresponding set of numerals; each numeral can then be re-
placed by the symbol for which it stands., Thus, Gddel numbering
permits us to code in a unique fashion any formula, any expression,
whether it be composed of numbers or letters, signs denoting op-
erations, or any combination of those above.

4, Assume we want to number all possible words which can be
written in some alphabet A, This is easily done by matching a
numeral with each character of the alphabet. Then each word will
become a sequence of numerals, and we can obtain the G6del num-
ber corresponding to each such word. And, if desired, we can also
number all the sequences of such words (for example, all the deduc-
tive chains) to obtain Gddel numbers for the sequence of Gddel num-
bers of the individual words, as well as a Gd&del number for the
entire collection of such sequences.

We have now seen that the gddelization procedure reduces not
only arithmetical algorithms but also any normal Markov algorithm
to a computation of values of some integer-valued function. There-
fore, the algorithm for such a computationis the universal algorith-
mic form we have sought from the beginning,

In concluding, we must point out that all of the above discussion
was based on the assumption that, even though the set of data for a
problem which can be processed by a given algorithm may be in-
finitely large, it is, nevertheless, countable. Our subsequent discus-
sion of algorithms will also assume a countable set of conditions.

12.6. ELEMENTARY AND PRIMITIVE
RECURSIVE FUNCTIONS

Functions such as y = ¢{xy, Xy, ..., x,,) are called avithmetical if
both the arguments and the functions themselves may assume values
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only from the set {0,1,2, ...}. From now on, we shall discuss only
arithmetical functions. Logical functions (Chapter 1) are a special
case of arithmetical functions.
We shall also introduce the following system of notation:
Variables will be denoted by lower~-case Latin letters:

a, b,ec,...,mn,....x, ¥, 2 Or x, x,etc

Functions will be denoted by lower-case Greek letters:

@, 4‘“ L5 E’ sy O 5’ i or ©1 P T3y etc.
Predictions will be denoted by Latin capitals:

A B P, Q, R, S, etc.

Specific numbers or constants will also be denoted by lower~case
Latin letters but will carry an asterisk:

a, b, x*, y', etc,

We shall now define a computable arithmetical function and a
solvable predicate.

A function y = ¢(%,, Xy, ..., X,) is said to be algorithmically com~
putable (or just computable) if theve exists an algovithm for finding
the value of this function at all values of variables x,, x,, ... xy.

A predicate P (x), xo, ..., X,)definedon the set of integers is said
to be algovithmically solvable (or just solvable) if theve exists an
algovithm for finding the value of this predicate at all values of
varviables x,, x,, ..., Xn.

These definitions are intuitive and inexact, since we have not
yet defined a computing algorithm. Inorder torefine them, we shall
have to develop the class of computable functions, starting with the
most elementary computable functions.

We shall call elementary those arithmetical functions whichcan
be obtained from nonnegative integers and variables by means of a
finite number of additions, arithmetical subtractions (by which we
mean obtaining[x — yl), multiplications, arithmetical divisions (by
which we mean deriving the integer part of the quotient % for
b+0), as well as from constructions involving sums and products.
The computability of elementary functions is undisputable since
there are algorithms for all the separate operationsinvolved in such
functions, and thus the aggregate function mustalsobe algorithmic~
ally computable,
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To construct elementary functions we need only one number,
namely, 1, since

=|1—1}, 2=1+41, 3=(01-+1)+1, etc.

Now let us see what functions are elementary,
1. All the simple functions such as

e()=x-+1, o)=12y, $(a, b, )=ab+c, x(O)=b

(since b*=1b - b), etc., are elementary,
2. Many of the frequently employed functions of number theory
are elementary. For example:
a) min(x’y):[[(x—!—y);lx—w[]
b) sg(x):{ 1 when x>1,
0 when x=0.
Function sg(x) may be expressed by means of functionmin{x, y):

sg(x) =min(x, 1).*
From sg(x) one can obtain sg(x):

! when x =0,

sg(x)=11 ~Sg(x)I={ 0 when x> 1.

3. The inequality x <y is equivalent to the min(x, y) =x or
Imin(x, y) — x} = 0. Then the predicate ‘‘x is smaller than or equal
to y?’ may be written as

Px, y)=sg(jmin(x, y)— x|).
Indeed, if x* < y*, then P(x*, y*) =1, that is, it is a true statement;
otherwise P = 0.
4, Later we shall use the function

ly—xl|, if y > x,

y—-x{ 0 Lif y<ux.

This is also an elementary function since it can be expressed as

y——x==|y — x|sg(|min (x, y})— x]|).
5. The residue obtained upon division of a by n

res (a, n):,a-n[%”

is again an elementary function,
Now, is the class of all computable functions broader than that
of elementary functions? In other words, is there a computable

function which is not elementary? To answer, let us follow some

*See Section 9.2f for notation,
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elementary functions to see at what point they cease to be elemen-
tary.

Of the simple elementary functions, the one that increases the
most rapidly is the product. The product an arises from addinga to
itself n times; thus, multiplication is iterated addition.

Raising to a power is, in turn, iterated multiplication:

n

n
a"=a-a-a- ... -a=]]a
1

This function is still elementary since itisexpressed by a product.
It increases very rapidly with a and »n.

A still more rapidly increasing function involves the iteration
of the operation of raising to a power:

40, @)=a, (I, A)=a", $(2, a)=a'""
and, in general,
b(n +1, a)=arna, (12.3)

Here the increase is so rapid that it becomes impossible to ‘‘keep
pace’’ with the increase in §(n, a) by devising elementary functions
(for proof, see [77]); to be more precise, this function, starting
from some a = a*, majorizes all elementary functions; that is, for
any elementary function ¢(a) there is always some m*such that the
inequality

9 () < §(m*, a)

will be satisfied at all a> a*. Butifthis is the case, then it is easy
to show that the function y(n) = ¢(n, n) is not elementary.

Indeed, if ¢(n, n) were an elementary function, thenwe could find
some m* (it may be assumed that m" 2> 2 because the function{(n, a)
is monotonic) such that ¢(n, n) < ¢(m* n) for »n > 2. This inequality
would, in particular, hold when n = m* since m* > 2. We then get
¢ (m*, m*)y < ¢(m*, m*), which is impossible.

Thus, iteration of the operation of raising to a power gives a
nonelementary function. But, at the same time, ¢(n, «a)is a priori
known to be computable. Indeed, suppose we want to compute ¢ (n, a)
for any n = n*, a = a*. For a = a*, Eq. (12.3) becomes

’P(I’l + 1, a*) — (a*)¢ (n,a*)‘

Let us denote (a*)™ = y(m); here y(m) is anelementary single-valued
computable function, whose computation algorithm merely consists
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of multiplication by «a*, repeated m times. The formula
bn+1, a)=y(yn, a’)) (12.4)

relates the value of ¢ atapointwith its value at the preceding point.
Now it is sufficient to specify the initial value ¢(0, a*) = a* in order
to obtain a computing procedure, which successively yields

$(1, @) =340, a’))=1y(a),

(2, aY=x (1, a"))=1y((a").
V3, a)=y(¥(2, a%))=1yx(x(x@))),

This process is continued until the value of ¢(n*, ¢*) is obtained. It
is obvious that this method specifies ¢ at all points and does so
uniquely, since the computation of its values reduces to the compu-
tation of y(m), which is a determinate and unique function at all
points.

Our previous example has shown that computable functions need
not be elementary. To continue our delineation of the class of com-
putable functions, let us examine the method of defining ¢ (n, a). This
function was defined by induction: that is, we were given the initial
value of the function, namely, ¢(0, a), and were told by what allowable
operations the successive values of this function are derived from
their predecessors. Now we shall use this induction method for
specifying all computable functions. But first we must refine and
broaden this method.

Derivation by induction can, generally speaking, be used with
any ordered set in which the concepts of ‘“‘predecessor’’ and ‘‘suc-
cessor’ are meaningful. Let us denote by x’ the successor function
which describes the transition to the next member of the given set.
We shall assume that our given set is always {0, 1, 2, ...}, so that
0'=1;1"=2; 2'=3, or,ingeneral, x'=x + 1.

The generalized procedure for defining a function ¢(x) can now
be precisely defined as follows:

1. Give the value of ¢(0).

2. Specify the manner of expressing ¢(x’) in terms of x and ¢(x)
at any x:

¢ (0)=gq, } (12.5)

¢ (x)=1x(x, ¢(x)).
In amore general case, there may also occur parametersxs, xs, ...

.. Xn, Which remain unaltered in the induction process. Then the
defining equation (12.5) is modified to
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2 (0, X9, X3, . ., X,) =0 (Xp, X3, ..., X,),
DY, Xy Koo o X)) = L0 @Y, Xy Koo ) X)s Xy Koy X)-

} (12.6)

If ¢ and x are known and computable functions, then the scheme
of Eq, (12.6) may beusedtodevelop a computation procedure, which
will give, consecutively, ¢(1, Xy oev, x;) ?(2, X5 x:) and soon.
Consequently, this scheme does indeed specify a computable func~
tion.,

Let us now see which arithmetical functions can be derived by
induction and how broad is the class of such functions. To state the
problem exactly, we must specify which function we consider in-
itially (that is, a priori) known and which operations (in addition to
the above-described induction procedure) are allowable in the deri-
vation of subsequent functions.

We shall consider the following functions as initially known
(fundamental) or primitive:

I. ¢(x) =, the successor functiorn described above, applied to
the set consisting of 0 and all natural numbers. Its abbreviated no-
tation is S.

II. @(x), X2 ..., Xn) =¢q, where g =const, a constant function,
It is denoted by Cj.

III. @(xi, Xo ... X») =x; the identity function,* It is denoted
by Ui,

In addition to the induction procedure [Egs. (12.5) or (12.6)], we
shall include the substitution procedure IV among the allowable
operations.

IV, @(xy, xo0 ovuy Xa) =000 (X1, X2y ooty Xa), X2 (X1, Xou vie Xa)y ooy Ym (X,
Xo, ... Xn)).

Let us now write out all the allowable operations into one column:

L ox)=S(x)=x".

I 9(x,, X5 --., X,)= Cq=gq.
L. ¢(x, Xy ..., x,)=Uil=x,
IV. ¢lxy, Xo ooy X)) =000 (X Xos -+ 0s X,),
Yo (X Xy vvey Xp)y oovs Yu (X1 Xos oo vy X)),

?(0)=gq,
V.a { g (x) =1 (x, ¢(x)).

*Rather than employ an identity function, we could consider the variables themselves
originally known, as we have done in defining elementary functions. The identity function
is introduced here merely for the sake of uniform exposition. Again, instead of the con-
stant function, the null-function¢(x;, x,, .., x,) = 0 could have beenused as a fundamental
function, since repeated applications ofthe successor functionthen gives all the constants:
=0, 2=1etc
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(0, Xgp o vvy X)=0(xo, ..., X,),
v'b ‘P()’/, x?r"" xn):X(y’(‘P(y’xQ""
cor X)Xy X3, iy Xp)e

Operations I~III specify the primitive functions and assume the
role of axioms, whereas IV and V actas rules of inference.

Definition, A function ¢(x1, X2, ..., Xa) is a primitive vecuvsive
function if it can be defined by means of finite number of applica-
tions of operations I-V,

We shall say that afunction ¢ depends divectly on other functions
if, for any given m and n, it satisfies operation IV for some ¢, y1, %o,
...%m (in this case, ¢ isdirectly dependenton ¢, %, %2 ..., xm) OF if,
for any given ¢ it satisfies V,a or V,b for some ¢, y (here, ¢ is
directly dependent on ¢ and y ).

Definition, A sequence of functions ¢, ¢z, ...; o Such that each
Sunction of the sequence eithev is primitive ov depends divectly on

the preceding functions of the sequence while the last function g
is ¢ is called a primitive vecuvsive descviption of the primitive
recuvsive function o(xy, xs, ..., X,). We shall call k the depth of the
primitive vecursive description of the function ¢.

A primitive recursive description is simply the series of func~
tions obtained by successive applications of operations I-V in the
definition of function ¢. Indeed, we start from the initial (starting)
functions (which become the beginning of our trainof functions) and
then proceed step by step toward the function ¢.

We shall now show examples of derivation of some primitive
recursive functions.

1. We define the function ¢(x,y) as:

¢ (0, x)=x,
o(y’, X)=le(y, X"
We thus have
w(lr X):X/:x—*— 1’
(2, X)=le(l, X)) =(x+ 1y =x+14+1=x+2
93, =92 N =(x+2) =x+2+4 1 =x+3,
or, in general,
To get a primitive recursive description of this function, write
out in full the operation V,b as applied to ¢ (4,%X) = x + y:
¢ (0, x}=19(x), }

12.7
oy, x)=2(y, ¢y, x), x). (12.7)
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Here, ¢(x) assumes the form ¢(x) = x, that is, it is the original
identity function ¢ (x)= Ui (x).

The function y(y, 2z, x) = 2’ can be obtained from the initial func-
tion Ul(y, z, x)=2z2 by means of operation IV, where the successor
function S(z) =2z’ is taken as ¢. One can, therefore, write

1y, z, X)=S[U3(y, z, x)].

One primitive recursive description of the function y will be the
sequence U3, S, y. Adding to it the function ¢ (x)== U} (x), on which
o(y,x) depends directly in accordance with Eq. (12.7), we get the
primitive recursive description of ¢(y, x):

Us S, xv, Ul ».

2. In order to define the next primitive recursive function, we
shall use the fact that the sum x + y has already been defined as a
primitive recursive function. We set

(0, x)==0,

ey, X)==9(y, X)+ x.
Then, we obtain in succession

e(l, X)=19(0, X)4+x= 04 x=ux,
¢2, x)=v0(l, )+ x= x4 x=2x,
23, x)=9¢(2, X)+ x=2x-} x=23x

or, in general,
ey, xX)=yx.

Consequently, the product is also a primitive recursive function.
3. Using the result of Example 2, let us define
"P(O; x): 1!
ey, X)=09(y, x)x.
It is easily shown that this function means raising to a power:
oy, x) = xv.
4. ¢(0) = 1. @(x') = ¢(x)x". It can be seen easily that ¢(x) = x!.
5. The function ‘predecessor of x*’
d [ 0 if x=0,
PA=\ 1, _1| if x>0

is a primitive recursive function since itis defined by operation V, a

pd(0)=0
pd(x") = x.
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6. The previously encountered function x—- y is defined as
x——0==x,
x -y =pd(x—=y).

7. The function min(x, y) can now be defined by using operation

min (x, y)=y~(y — x).

8. max(x, y)=(x—+y)--min(x, y),
9. sg(x)=min(x, 1).
10, sg(x)=1-x.

1L jx—y|=(x=y)+(y=x)
12. The remainder obtained upon division of y by x [this function
is denoted by res(y, x) ] is defined as

res (0, x)=0,
res(y’, x)=={(res(y, x)) - sg{x—{res(y, x))'|.
13. [lJ is defined as
X

3]
)= [ e —test o

14. Primitive recursion may be used to define finite sums and
products such as

v ¥
iE:O@(i, x) and lI;[Onp(i, X).

Indeed,
0
2 (i, xy=19(0, x),
i=0

v v
2ol =2 el )+, %)

L=

0
IL+( 0 =20, ), |

y ¥
Mo o=1¢C 0, 2

Among the primitive recursive functions just definedwe find the
sum x + y, the absolute difference |x — y|, the product xy, the quo-
tient % , as well as finite sums and products. Consequently, all the
elementary functions discussed at the beginning of this section are
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primitive recursive functions —which is the same as saying that
elementary functions are a subclass of primitive recursive func-
tions,

12.7. PREDICATES. MINIMALIZATION

In logic, predicates are introduced whenever it is necessary to
represent symbolically a relationship between several objects (see
Chapter 1). In general, a predicate is defined on a set (finite or
infinite) of objects and may assume two values: true or false (1 or
0). However, we shall discuss only arithmetic predicates defined
on the set {0, 1, 2, ...}.

The predicate P(x,, x,, ..., x») depends on n variables (it is an
n-place predicate). The variables appearing under the quantifier
signs in front of the predicate are bound; the other variables are
free. For example, the predicate P(x, y, z, ¢)is dependent on four
variables. In (Vx)(dy)P(x, y, 2z, f),* however, x and y are bound and
the predicate depends on the free variableszand ¢f. For this reason,
the expression (Vx)(dy)P(x, y, z, #) really represents the predicate
Qz, 1).

Vx)@3y)Px, ¥, 2, H=Q(z, {).

Indeed, this notation means the following: depending on the z*
and !* values, there may exist for all x a y such that P(x, y, z¥, t*);
or this may not be the case. In the first case Q is true (orQ = 1),
and in the second, it is false (orQ = 0).

Just as a function, a predicate may be specified by induction.
For example, the operation

£(0) (or E(0)=1),
E(@)= E(a)

defines the predicate I (a) = ‘‘a is even.”” By analogy with the deri-
vation of primitive recursive functions, this points to a procedure
for deriving predicates and to the concept of a ‘‘primitive recur-
sive predicate.’’ However, we shall not follow this path. Instead,
we shall show another definition of a primitive recursive predi-
cate—that proposed by Godel in 1931. To start with, we define a
representative function of a predicate P(x, x,, ..., x»)as a function
@(xy, Xy, ..., xn) which vanishes at those x;, x,,.. x, for which

i)

*It is read as: ‘‘for all x thereexists a y such that P(x, y, 2, {)is true.’”’ The phase *is
true’’ is often omitted.
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P(xy, Xa, ..., x,) is true and only at those. Then the assertion that
P(xy, xs, ..., Xy)1is true may be expressed

P Xy, Xoy ov ey xp) = 0.

Obviously, a single predicate mayhave several representative func-
tions, the zeros of which coincide.

Definition, A predicate is primitive vecuvsive if theve exists a
primitive vecuvsive function vepresenting that predicate,

Let us assume that the predicate Q(x,, x; ... x,)isdefined by a
primitive recursive predicate P(x, X2, ..., ¥n, y), using a bounded
universal quantifier

Qxy, KXo ooy X)=(VY),_, P(xy, Xp ..., X, ¥) (12.8)

or, more explicitly,

Qxpy Xy o5 X)=(VY) |y <2>Px, x5 ..., x,, ]

The predicate Q(x;, xs, ..., x») corresponds to the statement
that, given x,, x.. ..., x,, the predicate P (xy, xo, .., Xn, y) is true for
all y <z. The predicate Q(x, x2, ..., %) so defined is primitive
recursive since its representative function ¢(x;, x,, ..., X«) can be
expressed in terms of the representative function ¢ (x1, ¥z, ..., X5, y) of
predicate P:

2z

P(Xy, KXoy o voy x,,):yg()cp(xl, Koy vuey Xy V)
Let us note there that z may also depend on x,;, X, ..., £,; if all the
inferences are to remain valid, this dependence must also be primi-
tive recursive,
An analogous conclusion may be drawnwith respectto a predicate
Q defined by using a bounded existential quantifier

Q(xp xzy L] xn): (gy)ygz P(xl’ x2) LIS | X,,, y) (12-9)

or, more explicitly,
Q(xp Xz, L ] X,,)= (g)’)[)’ <Z&P(Xl, x?’ ‘s X,,, y)]‘

Here the representative function of the predicate @ is given by
the product

z

(?(xlr x2’ M xn):yIIO(P(xl’ x2’ M ] X,,, y)'
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Now let us introduce the minimalization operator.,
Assume that we are given a primitive recursive predicate
P{xy, x3, ..., Xn, y) and that it is known a priori that the condition

(Yx) (V) ... (Vx,)@y), P xy, Xy ey X, YY), (12.10)

is satisfied; that is, for any set x;, x5, ..., x, there exists at least
one y < z such that P(x, xy, ..., xp, y) Will be true.
Then the predicate P may be used to define a function ¢(x), x,,
.., X») inthe following manner: givenxj, x;, ..., x, the value of func-
tion ¢(xj, X3, ..., x,) is the, smallest number y* at which P(x], x;,
<.y X, y") is true. We shall indicate this by writing

$(Xy Xy s K)=0y, P (X, Xy ooty Xy Y) (12.11)

By virtue of Eq. (12.10), such a y exists for all x, x,, ..., x,; con=
sequently, ¢ (xi, x5, ..., x,) is defined at all points.

If we deal with the representative function¢(xy, %3, ..., X, y)of the

predicate P(x;, xi, ..., Xa, ¥) rather than the predicate itself, then
Eq. (12.11) becomes

(X Xg ooy X)=py, (9K Xy o0y X ¥)=0),

that is, the smallest y at which ¢{x:, xz ..., x,, y)vanishes is taken
as the value of the function ¢ (x;, x2, ..., x»).

Thus, the minimalization operator is a means for deriving new
functions, starting from primitive recursive ones,

We shall now show that the function ¢ (x,, x,, ..., x,), defined by
means of the minimalization operator, is primitive recursive, For
this purpose, we shall explicitly express the ¢(x;, xs, ..., Xn)in terms
of the representative function ¢(xi, xa, ..., xn, y) of the predicate P

z

I3
$(xy, X - o, x,.):Z sg<y=0cp(xl, Koy v ey Xy, y)>. (12.12)

k=4

That Eq. (12.12) does indeed express ¢(xy, X, ..., ¥n)canbe verified
in the following manner; let us expand expression (12.12):

(X Xor o ovy X)=5¢g9 (X, X9 ..., X, O]+
+sgle(xy, X ooy X 0): @ (X1, Koy ooy Xy, D]
+8g [P (X, X9 o vy Xpp O 0(Xy, Xpy .., X, 1) ¢

c Xy, Xgy oy Xp D).

All of the above summands which include terms preceding
o{xy, x2, .o. ... , Xn, y) =0 are equal to 1; all succeeding summands
are 0. Thus, the entire operation amounts to adding 1 to itselfy
times; that is, the addition gives the number y.
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Since ¢ (x1, xs, ..., Xn) is defined in terms of sums, products, and
the functionsg(x), it is a primitive recursive function.

Previously (Section 12,6), we have cited res(a, n) as an example
of a primitive recursive function. Thisfunctionalsogives the num-
ber of divisors of a. Let us divide a successively by I, 2, 3, 4, ..
and count the number of times the division gives no remainder. This
will give the number of divisors of a, which we denote by p(a). The
function p(a) is primitive recursive since

a

p(a) = X sg(res(a, i)).

{=1

If ¢ is a prime number, then p(a) = 2, since a prime number is
divisible only by 1 and by itself. Then

1,if a¢is a prime number,

sg(le (a)~2[)~—_{ 0 in all other cases.

It is now easy to add up the number of prime numbers which do
not exceed y. Let this number be = (y):

= (y) = Z sg (jo (@) —2]).

a=2

The addition starts at ¢« = 2, since we do not consider 0 and 1 as
prime numbers: the zeroth prime number will then be 2, the first
will be 3, and so on:

p()=2, ])[=3, [72:5, p3:7,

Now let us tabulate some values of w(y):

n(2)=1,
= (3) =2,
=(4) =2,
w(H)==3,
= (6) =3,
w(7) =4,
= (8) =4,
©(9) =4,
=(10)=14,
=(11)=35 | ete.

We shall now define p, = ¢(n) as a function which, for given n,
yields the nth prime number, It is known from number theory that
the nth prime number does not exceed 27 We can, therefore,
write

Pa=pyly <2V &r(yy=n 1)
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since the nth prime number is the smallest such that the numbers
not greater than it include exactly n + | primes. For example,

g(=p=pyly < 16&=(y)=2|=3,
©(2)=py=1py [y <256 &= (y)=3]=5.

The function p, = ¢(n)is primitive recursive since it is defined
by means of the minimalization operator {the primitive recursive
function z(n) = 22""' acts as a bound z(n)in this instance], as well
as the primitive recursive relationship of =(y) =n + I,

Let us define still another function—that giving the number of
times a prime p, occurs in the decomposition of n, and let us de-
note the function by p,(n). Obviously, the value of ex p,(n) is the
largest y for which p) is still a divisor of n, or, alternatively, the
smallest y at which p¥*! fails tobe a divisor of n. We can then write

exp,(n)==py [y Ln&p¥+! is not a divisor of n]
or

exp,(ny==py |y <n&res(n, p*')+0]. (12.13)

Inspection of Eq. (12.13) shows that ex p,(n)is a primitive recursive
function. Now, the reader will recall thatgodelizationis associated
with the decomposition of a given number into prime factors and
determination of the exponent with which the prime number p, occurs
in this decomposition. Consequently, godelizationis associated only
with primitive recursive functions,

In conclusion we shall cite, without proof, two additional primi-
tive recursive functions. Let m;, m,, ..., m, be a set of numbers
whose Godel number is a, and let ny, ny, ..., 1, be a set whose GG&del

number is 5. We shall now form a new sequence m;, m,, ..., n,,
ny, ne, ... ns by appending the sequence n;, ng, ... nstothe sequence
my, M, ... M, We wanttodetermine, from the known G&del numbers

a and b, the G6del number y for the composite sequence. The func-
tion thus defined is denoted by writing y = a-b, and is primitive
recursive.

Now let my, mo, ..., mi, M4, ..., Mj, Mju, ..., My, DE a2 sequence
of numbers whose G8del number is a. We shall cut out from this
sequence the segment beginning with m; and ending with m; (this seg-
ment is underlined in the above expression), and insert in its place
another sequence whose G&del number is b, We want to determine
the Godel number y for the new sequence. The function giving this
number in terms of known a, i, j, and b is denoted by

y ==subst, ( l’bj)
and is primitive recursive.
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Now recall the transformation of words in associative calculus.
The operation of substitution following gtdelization of an associa~
tive calculus reduces to the above inclusion operation. Consequently,
transformation of words in associate calculus is also associated
only with primitive recursive functions.

These conclusions will be useful in the discussion of general
recursive functions.

12.8. A COMPUTABLE BUT NOT PRIMITIVE
RECURSIVE FUNCTION

So far, we have dealt with primitive recursive functions. The
very nature of the derivation of such functions shows that all primi-
tive recursive functions are computable. But is the converse true?
Are all computable functions primitive recursive? The answer is
no, We know this from the work Péter and Ackermann who, almost
simultaneously and in entirely different ways, constructed examples
of a computable but not primitive recursive function. Let us follow
Péter’s reasoning.

Péter was the first to notice that the set of primitively recur-
sive functions is countable. Indeed, the class of primitive functions
is countable (since the number of different variables x; and con-
stants ¢ is countable). Consequently, the class of primitive recur-
sive functions, derived by a single application of operations IV or
V of Section 12.6, is also countable, since the set of the sets
$, %1, Y2 --- f4m used in operation IV is countable, as is the set of
pairs ¢, x for operation V; this must be so since these sets are
formed from elements of a countable class.

Further, the set of primitively recursive functions derived by
means of two applications of operations IV or V is countable, and
so on, By the same reasoning, the set of primitive recursive func-
tions is, in general, countable. In particular, the set of primitive
functions of one variable is countable (because it is contained in
this countable set).

Péter succeeded in actually numbeving all the primitive recur-
sive functions of one variable, that is, in arranging them into a se-
quence

P (X), ﬁol ()C), ¢y ()C), “Pfl (X), L (12.14)

so that from the form of a function one can determine its num-
ber, while (conversely) the form of the function is given by the
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corresponding number. Then it became possible to construct an
example of a computable function which is not primitively recur-
sive,

Suppose we have a function ¢ (y, x) = ¢y(x); ¢(yx) is countable [since
from the value ¥ = y* one can find the corresponding function &y (x)
and compute its value for a given x = x*; this would automatically
give the value of ¢(¥*, x*)]. Thisfunctionisnot primitive recursive.
Indeed, if ¢(y, x)were primitive recursive, sowould ¢(x, ¥) be, which
is a function of one variable. Then ¢(x, x} + l,would also be primi-
tive recursive, since the addition of 1 constitutes an allowable opera-
tion of ‘‘succession.’’ But since the series (12.14) contains all the
primitive recursive functions of one variable, there would exist a
number y*, such that ¢(x, x)+1=¢.(x) for all x. In other words,
o{x, x)+ 1=0(y*, x). Since this identity mustholdfor all x, it holds,
in particular, for x = y*. But then

Y Y+ 1=90" ¥,

which is impossible, It means that the enumerating function ¢(y, x)
is not primitive recursive. This function is known, however, to be
computable. Consequently, the class of primitive recursive func-
tions does not encompass all computable functions. It must be
broadened to serve our purposes,

Whereas in the case of elementary functions we were limited
by the fact that we were unable to construct very rapidly increas-
ing functions by means of allowable operations, in the case of primi-
tive recursive functions we are limited by our form of induction.
The trouble is that we have fixed in advance the operation (V), that
is, the form in which the induction must appear.

Extension of the class of primitively recursive functions was
proposed by GGdel in 1934, based on a bold idea of Herbrand.

12.9. GENERAL RECURSIVE FUNCTIONS
The Herbrand-Go6del Definition

So far, we have dealt with recursive functions, where a function
¢ was defined in terms of several functions y and ¢., assumed to be
known a priovi. Now letusexamine twocomputations using only one
auxiliary function y.

Example 1, Assume we are given the system

20, =17, (12.15)
(L, I)=7, (12.16)
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$(0) =4, (12.17)
) =3, 2()) (12.18)

It is required to find the chainof formal inferences which yields
¢(2) =7, starting from Egs. (12.15) to (12.18).
1. In (12.18) we set y = 0:

¢ (1) =x{0, 9(0)). (12.19)

2. In (12.19) we replace ¢(0) by 4, in accordance with (12.17):
?(1)=x(0, 4). (12.20)

3. We then use (12.15):

p(hy=T7.

Continuing in a similar manner, we get successively:
4, 2=y, ¢(1)),

5. ¢(2)y=yx(1, 7).

6. (=7

Example 2, Assume that function ¢{n, @) is given by

¢, a)=a, (12.21)
gn+1, a)=9((n, a)+ 1 (12.22)

and that we want to find the value of ¢(3,5). By a formal analysis,
we shall find the operations needed for computing ¢(3, 5) by means
of Egs. (12.21) and (12.22),

1. In Eq. (12.22), we set n = 2, ¢ = 5. Then

¢(3.5) = ¢ (2.5)+ 1. (12.221)

2. Now we set n =1, a=>5 in (12.22) and determine ¢ (2,5):
¢(2.5)=¢(1.5)+ 1. (12.222)
3. Again
¢(1.5)=¢(0.5)+ 1. (12.223)

4, We set ¢ =5 in Eq. (12.21). Then
¢(0.9)=5. (12.224)

5. We substitute this value of ¢ (0,5) into (12.223) and get
¢(1.5)=5+4+1=6. (12.225)



GENERAL RECURSIVE FUNCTIONS 341

6. Now, substituting this value of ¢(1.5) into (12.223), we get
¢(2.5)=641=7. (12.226)

7. Finally, substituting this value of ¢ (2.5) into (12.221), we get
?(3.5)=7+41=8. (12.227)

We required only two operations to compute the answers for the
above two examples. These operations were (1) replacement of
symbols (variables) by numbers and (2) substitution of equivalents,
whereby we used one side of an equation as a replacement for the
other (see steps 5 and 6 above).

If one can, by means of these two operations, deduce another
equation from a given system of equations E, then this equation is
said to be deductble in the system E. Since deducibility is crucial
to the theory of general recursive functions, we shall consider it in
detail. First, we shall introduce a broad and exact definition of
deducibility. We begin by defining a ¢‘‘term,’’ an‘‘equation,’’ and an
“inference.,”’

The letters used so far to denote functions ¢, y, x, o, ¢, @, 95
¢4, ... shall be called the functional signs (the list of functional signs
is infinite). The variables will again be denoted by x, y, 2, ¢, m, n,
a, b, ¢, x;, Xy, X3 e0. .

We shall define a ‘‘term’’ by induction:

1. 0is a term.

2. Each variable is a term.

3. R’ is a term if R is a term.

4. ¢(Ry, Rz ..., R,) is a term if ¢ is a functional sign and
Ry, Ry, ..., R, are terms.

5. There are no other terms.

The following are examples of forms:

1. The number 3 is a term (because 0 is a term, hence 0’ = 1 is
a term, hence I’ = 2 is a term, so that 2’ = 3 is a term),

2. Any constant is a term. Again, constants shall be denoted as
x4y 28, mt, et ...,

3. ¢ (2)is a term. The following are also terms:

4. ¢(x y).

5. ¢(x, %1 (8,4),%2(3,5), xs(4,2)).

6. % (X, y).

7. (Y X (9(2))), ete.

The following are not terms:

1. e@): 2.5(x); 3.y 4 ¢ )
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and so on. Thus, terms are specific expressions which are com-
posed of symbols denoting variables, constants, and functional signs
by means of brackets and primes.

Now let us define equations. An equation shall be an expression
R =S, wheve R and S are tevms, Newequations shall be deducible
from a given system of equations E by means of the following opera-
tions:

1. Substitution of numbers for symbols of variables.

2. Transformation of expressions R = S and H = P whichdonot
contain variables (where R, S, //,P are terms) into an expression
derived from R =S by one of more simultaneous substitutions of
P for occurrences of H.

The reader will recall that these were the only two operations
used in the two examples considered above.

Now, our scheme for deriving primitive recursive functions in-
volved the following ‘‘properties’’:

a) The values of the functions were derived from equations by a
method which can be formally analyzed.

b) Each definition was arrived at by mathematical induction.

We have already established above that primitive recursive func-
tions are a restricted class because of the mode of induction which
was fixed in advance. The a priovi fixing of the inductive method is
the root of the difficulty. Were we to adopt another, possibly even
a broader induction method, we would still have no guarantee that the
new method would not lead to a quite restricted class of recursive
functions. Herbrand therefore suggested that the induction method
be left open (not fixed) and that property (a) itself be used as a defi-
nition. The Herbrand-Gt&idel definition of the general recursive func-
tion is as follows:

A function ¢ (X1, %, ..., X,) ts geneval recuvsive if there exists a
finite system of equations E such that, for any set of x} x5, .... X,

n
theve is one and only ome y*, such that the equalion ¢(x], x;
..y X)) =y can be deduced from E by a finite numbev of applica-
tions of operations 1 and 2 (that is, replacement of variables by
numbers and substitution of equivalents).

The system E is the defining system of equations; one also says
that £ defines the function ¢ vecursively,

This definition does not require that a function be computable
from its values atprecedingpoints; it does not require that the aux-
iliary functions contained in the system £ be computable at all
points; and no induction method is fixed a priori. The only require-
ment is that the system E define a particular value of ¢ (with the
aid of other values of ¢ and values of auxiliary functions) in such a
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way that ¢ will be uniquely computable from £ at all points, Unique-
ness in this instance means that £ does not simultaneously yield
two contradictory equations,

This definition of a general recursive function is not by itself
a computation procedure. The definition merely saysthatif a given
system of equations £ recursively defines afunction ¢, then for any
X3, Xy, ..., X, there exists a y* such that the equation

P(x] Xps ooy X)=V¥"

can be deduced from £. Buthow does one go about such a deduction?
How does one find y*? One obviouswayis to keep on deducing equa-
tions derivable from E until a suitable equation comes up. But that
may take an infinite time. The reader will recall that a poorly or-
ganized search can lead to infinitely long wandering and no result
even in a finite labyrinth. Thus some organization is a necessity if
equation ¢(xj, x5, ..., x,)=y" is to be deduced inafinite, though not
a priori bounded, number of steps. We shall not dwell on the de-
scription of the techniques employed. Suffice itto say that gddeliza~
tion allows us to reduce the scanning of all the possible deductions
to the application of the operator minimalization., This operator also
permits another method of defining recursive functions.

12.10. EXPLICIT FORM OF GENERAL
RECURSIVE FUNCTIONS

In Section 12.7 we introduced the bounded smallest-number
operator which places a primitive recursive predicate P(x, x, ...,
xn, 4), Oor a primitive recursive function ¢(x;, x,, ..., X,, y) repre-
senting P, into correspondence with a primitive recursive function
¢(X1, Xoy o 0ny xn):

DXy, Ko ooy Xg)=0Yy 2P (X, Xy ouey Xy Y)= (12.23)
=pYy<z|Plxy, X . ovy X, ¥)=0]
provided
(V) (Vo) .. (V) (dy), , Pxy Xg oy X, 9)
or
(V) (Yxg) o (V) (@y), o (xy, Xy ooes X, 9)=0],

where z may, in general, be a primitive recursive function of
Xis Koy v vovs X0

Z==2(Xy, Xgyvo ey Xp)e
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Let us now consider a case where the operator is not bounded.
Let o{x), x3, ..., Xp, y)be a primitive recursive function such that

(V) (V) ... (Vx,) @y) o (X, Xg + ooy X ¥)=0]. (12.24)

Here there is no upper bound for y. The only stipulation is that for

all x;, x,, ... x,there exist a y such that
P (X Xpp +ves X ¥)=0.
In this case the function ¢{xi, x2, ..., x»), defined by means of the

minimalization operator
G(Xy Koy oves Xp)=py[p(X) Xy «-0r X5 ¥)=0], (12.25)

is a priovi computable. Indeed, to compute its values at a point
X X5 e x,, it is sufficient to compute successively ¢(xj, x5, --.,
X 0), @(x], Xy -oos X 1), 9(x], X3, .-, X, 2) and so on, until one ob-
tains a y* such that ¢(x], x;, ..., x;, ¥y) =0. Thevalue of y* is then
the value of ¢ at the point under consideration.

This computation procedure mustendinafinite number of steps,
because Eq. (12.24) indicates the existence of a y* at which ¢ =0.
Now we want to know whether the computable function¢(x,, xg, ..., Xa)
defined by Eq. (12.25) subject to condition (12.24)is general recur-
sive, It turns out thatthereisasystem of equations E which recur-
sively defines ¢, that is, ¢ is a general recursive function. To
simplify the derivation, we shall consider afunction of one variable

$(x)=py|o(x, y)=0] }

(12.26)
(Vx)(d3y)e(x, yy=0|.

and

Here, the system E, which defines ¢(x) recursively, is as follows:

1. o0, x, y}=y,

2. 0(z+ 1, x, yy=clpx, y+ 1 x y+1} (E)

3. por=o0letx, 0), x, Ol

Let us prove that £ doesindeed define ¢ (x) recursively, Suppose
that +* is a number and we want to determine ¢(x*). According to
Eq. 3of E,

Y(x")y=0lp(x" 0), x*, O].

Now there are two possibilities: either ¢(x*, 0), vanishes or it
does not. If ¢(x* 0) = 0, we can only use the first equation of E:

¢ (0, x* 0)=0, that is, (x*)=0.
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But then the value of § mustalsobe zero in accordance with (12.26).
If, however, ¢(x* 0)= 0, its value may be representedas z + 1, and
we can use the second defining equation of E:

sle(x*, 0), x*, Ol=o9fp(x", 1), x* 1].

Here again there are two possibilities: either ¢(x*, 1) vanishes
or it does not. If ¢(x* 1) =9, then we can use only Eq. 1 of E:

o0, x*, 1] =1

and, consequently, ¢(x*) = 1. In this case Eq. 1 of E does in fact
yield the value of ¢ indicated by Eq. (12.26), If, however, ¢(x* 1) =#
0, we may represent it asz + | and again use Eq. 2 of E:

ofe(x’, 1), x* 1]=o0le(x, 2), £, 2|,

We continue this procedure until we find a y* such that ¢(x*, y*) = 0,
That value of y* will be the value of ¢ (x*).

Therefore, the system E does indeed recursively define the
function

p(x)=py|o(x, y)=0|
and consequently ¢(x) is a general recursive function.

In the above proof we did not use the fact that the function
o(x1, Xo ... X, y) of Edq. (12.25) is primitive recursive. For this
reason, the argument holds completely even if function ¢(x;, xs, ...,
Xn, y) is assumed to be general recursive,

Thus, if condition (12.24) is satisfied, the minimalization opera-
tor py permits us toderive general recursive functions from primi-
tive recursive functions (predicates). Further work has alsoshown
that the difference between primitive recursive and general recur-
sive functions resides entirely in the operator my. Thus it has been
proved that any geneval vecuvsive function o(X\, Xa, ... X,) may be
vepresented as

(?(xl’ Xy ooy xn):q’ {l"‘y [T(xl' Xy wves Xpy y)-———()]}, (12-27)
where ¢ and 1 are primitive recursive functions, while the follow-
ing statement holds for the function t:

(V) (Vxy) .- (Yx, )@y [t (X, Xy o0y X, ¥)=0].

Equation (12.27) is the explicit form of general recursive func-
tions., Let us sketch out the proof of the above statement, Assume
E =le e, ..., e} is a system of equations defining a function
@(X;, X, ... X,) recursively. Each equation has a Godel number m;.
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Then the Godel number for the entire system E is

w = pmop™prs . .. pl's,
Now, we shall deduce new equations from the system E. This
means that we shall successively obtain equations

Cov €1 Cop vnis Cpyonnns (12.28)

If n, is the G&del number of equation e;, then each inference [that
is, each string such as (12.28)] can be put into correspondence with
the G&del number of this inference

n
Z=prpn ... pr.

Suppose we want to evaluate ¢ at point xj, x}, ..., x7, that is,
we wish to derive from the system E an equation of the form

B(X Xy ooy X)= YN (12.29)

What are the properties of the G&del number z of this inference ?

1) Equations can be inferredfrom other equations, aswe already
know, by substitution of numbers for variables and replacement of
occurrences. In these procedures, the G&del numbers of the re-
sulting new equations are primitive recursive functions of the Gédel
numbers of the starting equations, since the operations of replace-
ment of occurrences, substitution, and the determination of the Gédel
number are associated only with primitive recursive functions. Some
of these functions were already considered above [exp,;(x), a-b,
subst, kl'bj), Pr=19(n) , etc.].

Therefore, the first requirement which z must satisfy is this:
each of the exponents ny, ny, ns, ... of the decomposition of z into
primes must be either the Gédel number of one of the defining equa-
tions ¢; or the value of some primitive recursive function of these
(GOdel) numbers,

2) The last exponent 5, of the decomposition of z must be the
Godel number of an equation such as (12.29).

It turns out that the predicate

-

z is the Godel number of the
T'(x}, x5 ..., x,, 2)= < inference of the value of
P(X], Ay o X)) S

is a primitive recursive predicate. Consequently, its representing
function < (&, X3 ..., X,, 2) is also primitive recursive, and it is
equal to zero for those z which are the Godel numbers of inferences
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terminating in the equation
';(xj, Xy e x:‘l):y.

and only for those.

For this reason, our problem of finding the desired inference
may be formulated as follows: find at least one number z*, such
that

(XY Xy e X 2T)=0. (12.30)

Since an inference must exist at all points (by definition, £ re-
cursively defines ¢ recursively), the function © has the property

(V) (V) .o (V) (32) [= (0 Xy, ooy X, 2) = 0] (12.31)

Having found a z* which Eq. (12.30) is satisfied, we can decode
this G&8del number and get

yr=10(2"),

whereby ¢ also turns out to be aprimitive recursive function, since
the decoding reduces to the following primitive recursive opera-
tions: determination of the last exponent 7, in the decomposition of
z* followed by decoding of the number n, [which is the Godel number
of our Eq. (12.29)]. Moreover, §(z) turns out to be a universal primi-
tive recursive function, identical for all systems £ (that is, for all
general recursive functions ¢), since the decoding of the Gédel num-
ber of the inference always proceeds in a standard way.
If, we we have established, any z for which

(XD Xy e X 2)==0,
is the Gddel number of the desired inference, then
pz[t(x’l’, KXoy < ves Xps z)=0]
is also the Gddel number of this inference. We shall, therefore,
finally get
V=X, Xy oo X)=0{p2[c(x;, X5 ..., X, 2)=0]},

where ¢ and 1 are primitive recursive functions and the condition
(12.31) is satisfied for 1.

It should be pointed out that from the form of expression (12.30)
immediately indicates that all general recursive functions form a
countable set.* This conclusion arises from the fact that the number

*This conclusion could have been arrived at earlier, by observing that the set of dif-
ferent systems E recursively defining functions ¢ iscountable, since all these systems E
can be tagged by means of Gédel numbers.
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of different recursive functions = defining general recursive func-
tions by means of the scheme (12,30) is also countable (denumer-
able).

However, in contrast with primitive recursive functions, the set
of general recursive functions is not effectively countable (for fur-
ther details, see Section 12,12), and, consequently, Péter’s method
does not allow us to construct an example of an enumerable function
more general than the general recursive.

To conclude this section, let us write out the operations defining
general recursive functions, Here, operations I - V are the already
familiar schemes for defining primitively recursive functions, while
operation VI is the explicit form of a general recursive function:

Loe(x)=x
L2 (X, X o0 X)) =g,
UL w(x,. x,, , X)) =X,
1\7_ L:"(Xl, x'Z’ B x/z):df)(y.l (xl’ x?’ .
ceen XY Za (K Xy e X ey L (X X e X))
Va. 2(0)=gq, ()=, s(¥)),
Vb 900, Xy -y X =0 (X o X),
Y Ky e X)) =AY 2V, Koy s X X e X))
VL 2(xy X oo X)) =1 {py [t (X, X, .., X, ¥)=0]},
whereby
(Ve (Voo) o (Yoo ) 3y e (xys X, - o0s x, ) =01

Now we can define a general recursive function: A function
e{x1, xo, ..., %) is said to be geneval recursive if it can be defined
by using opevations I - IV a finite number of times,

Since operations I -~ V defining the primitive recursive functions
are encompassed by operations I - VI defining general recursive
functions, primitive recursive functions are a special case of gen-
eral recursive functions; every primitive recursive function is a
general recursive function., However, the converse is not true.

12.11. CHURCH’'S THESIS

Let usnow returntoour initial problem, that of defining the class
of computable functions. In solving this problem, we have defined
in succession, the class of elementary functions, then the class of
primitive recursive functions, and finally the broad class of general
recursive functions. Now we must ask: isthisthe final solution? Or
must the class of general recursive functions be further broadened?



CHURCH'S THESIS 349

The many attempts at broadening the class of general recursive
functions have all ended in failure, And in 1936 Church suggested
that every effectively countable function (or effectively solvable
predicate) is general recursive (see [110]). By virtue of this thesis,
the class of computable functions coincides with the class of general
recursive functions.,

Church’s thesis cannot be proved, since it contains, on the one
hand, the vague concept of a computable function and, on the other,
the mathematically exact concept of a general recursive function.
The thesis is a hypothesis supoorted by several valid arguments
which no one has so far succeeded in refuting. One such argument
is that the various refinements of the concept of an algorithm turn
out to be equivalent. Thus, forinstance, Markov’s normal algorithm
proved to be reducible to general recursive functions.

Previously we said that an ¢‘algorithm’’ and a ‘‘computation of
the values of an arithmetical function’’ are identical concepts. In the
light of Church’s thesis a problem is algorithmically solvable only
if the arithmetical function to the computation of which we reduce
our problem is general recursive,

To sum up, an algovithm can exist only if a covvesponding gen-
eval recursive function can be constructed,

Conversely, by virtue of Church’s thesis, the algorithmic un-~
solvability of a problem means that the arithmetical function to the
computation of which the problem is reduced is not general recur-
sive.

The proof of algorithmic unsolvability is often asinvolved, diffi-
cult and time-consuming as the search for an algorithm, However,
algorithmic unsolvability can be proved in some cases, We shall
give, without proof, two examples of this type:

Example 1, If we had an algorithm which, given the Gtdel num-
ber w of an equation system E, would be capable of deciding by in-
spection of w whether £ defines a general recursive function, then
we could define once and for all which systems £ define general re-
cursive functions, and we could effectively number all such functions.
In other words, we need ageneral recursive function ¢(w) such that:

g =0 if w is the Gd&del number of
¥ (w) system FE defining a general
recursive function,
> 0 in all other cases.

It has been proved [42] that such a general recursive function
¢(w) does not exist. Therefore, the problem of recognizing those
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systems £ which define general recursive functionsis algorithmic-
ally unsolvable. The set of general recursive functions turns out
to be countable, but not effectively so.

Example 2, The following problem turns out to be algorithmically
unsolvable: it is required to find an algorithm for recognizing, for
any primitive recursive function t(x, y) [or for any primitive recur-
sive predicate T (x, y)] whether that function has the property

(V) @) [ (x, ¥)=0] (12.32)

or in the case of a predicate, whether (Vx)(dy) 7T (x, v)].

Since primitive recursive functions can be effectively and dis-
tinctively labeled (numbered), the problem reduces to finding a
computable function ¢(r) such that:

\ =0 if r is the number of a primitive
() recursive function having the
property (12.32).
. >0 in all other cases.

This function proved not to be general recursive and, conse-
quently, is noncomputable,

Even if condition (12.32) is somewhat weakened, the problem is
still algorithmically unsolvable. Thus the following simple problem
is algorithmically unsolvable: given a primitive recursive function
9(x, y) it is required to find, for any x*, whether the following con-
dition holds for that x*:

(@) [# (% y)=0].

Yet another algorithmically unsolvable problem is this: for any
primitive recursive predicate P(y), it is required to find whether
it is true that

(dy) P(y).

In all cases, the proof reduces toprovingthat the corresponding
recognition function is not general recursive.

One often proves the algorithmic unsolvability of a given prob-
lem by showing that it reduces to another problem, whose algorith-
mic unsolvability has already been proved. Sometimes it suffices
to show that anarrower problem, whichisa special case of the given
problem, is algorithmically unsolvable. In Chapters 8 and 9, we
used the method inproving algorithmic unsolvability of the two basic
problems of the theory of finite automata and sequential machines.
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12.12. RECURSIVE REAL NUMBERS

Recursive real numbers occur in constructive mathematics, an
approach which has developed from the desire to avoid getting en-
trapped in logical contradictions (antinomies). In this approach, a
proof is considered complete if, inaddition toestablishing a mathe-
matical fact, one is able to demonstrate that the corresponding
mathematical objects can also be computed.

The machinery. of recursive functions plays an important role
in constructive mathematics: it is in terms of these functions that
the algorithms for effective construction of required objects are
usually defined.

Consider a typical constructive formulation of a frequent prac-
tical problem. In analysis one often comes across the statement
‘for every small ¢>0 there exists a number N such that some
quantity (which is afunction ofn) becomes smaller than ¢ forn > N.”’
Now, what is the constructive variant ofthis statement? In order to
arrive at it, we require:

1. A more precise definition of what we understand by ‘‘every
small ¢, To define such ¢, we may assume, for example, e:% ,
where m is a positive integer which may be as large as desired.

2. An effective method for determining N, starting from e (that
is, from m).

Therefore, an effective formulation of the above statement is:
‘‘there exists a general recursive function vy (m) such that some
quantity which is a function of n becomes smaller tham;1 for
n>zy(mj}.”

This kind of formulation can be related to convergence of a se~
quence of rational numbers. Let us say that a sequence of rational
numbers a; a,, 4, ..., a,, ... is recursive if there exist general
recursive functions «(n), B(nj} [where 1 > 1] such that
— s —8(m

d 1(n)

We shall say that the sequence converges recursively (or ef-
fectively) if there exists a-general recursive function v(m) such that
for any arbitrarily large m >0,

1 .
l@n—am| <. if n n">v(m).

The number -, defined by this effectively convergent sequence, is
called a recursive real number,

It can be shown that the recursivity of r (that is, the fact that
there exists a sequence of rational numbers which, in the limit,
recursively approaches 7) does not imply that # can be expanded
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into a recursive decimal fraction. That is, the recursivity does not
imply the existence of a general recursive function ¢(n) <9 such
that

N (B
- }-4 10%
k=0

However, there exists one special sequence whose recursive con-
vergence implies the possibility of recursive expansion of r in any
number systems. This is the factorial expansion

a a a a
e T iy

where a, <n—1 for large n, If there exists a general recursive
function y(n) such that a, = y(n), this series always converges re-
cursively and defines a recursive real number, which can be ex-
panded into a recursive fraction in any number system.

Let us also mention here that the setof recursive real numbers
is not larger than the set of general recursive functions; that is,
this set is not larger than a countable set, whereas the set of all
real numbers is a continuum, Inthis sense,only a very small frac-
tion of all real numbers are recursive.

To summarize, a recursive real number is really a number
which may be computed to any degree of accuracy by means of an
algorithm. All numbers usually employed in mathematical analysis
(e, @, V2, and so0 on) are recursive real numbers.

12.13. RECURSIVELY ENUMERABLE AND
RECURSIVE SETS

There are several equivalent formulations defining recursive
and recursively enumerable sets of integers, For convenience,
we shall assemble these definitions into a table:

Recursively enumerable sets of

numbers

Recursive sets of numbers

1A, A set is said to be recursively enu-
merable if it consists of values of some
general recursive function if, alterna-
tively, if there exists a general recur-
sive function enumerating it, even ifthis
involves repetitions. The empty set is
deemed to be recursively enumerable.
2A. A set C containing at least one ele-
ment is recursively enumerable if and
only if the predicate ‘‘veC’' can be ex=
pressed in the form (dx)P(x,y), where
P (x, y) is general recursive.

1B. A set C is said to be recursive if
there exists an algorithm for determining
whether a given number y belongs to C,
2B. A set C is said tobe recursiveif the
predicate *'yeC'’ can be expressedinthe
form P(y), where P isgeneral recursive,
3B. A set Cis said tobe recursiveif both
the set and its complement C arerecur-
sively enumerable.

4B. An infinite set C is recursive if and
only if it can be enumerated by a general
recursive function without repetitionand
in increasing order of its elements [that
is if 9 (0}, w(l), ©(2), ... give the ele~
ments of C in increasing order].
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Now, a few remarks regarding these definitions:

Note on 1A, It has been proved that, if a set can be enumerated
be a general recursive function with repetition, it can also be
enumerated without repetition (by another general recursive func-
tion).

Note on 2A., We shall show that definition 2A follows from 1A.
Let C be the set of values of a general recursive function ¢(x).
Then, the fact that a number y belongs to C means that there exists
an x such that

y ==¢(X),
or that
Hx) |y =2 (x)}.

Equation y = ¢(x) may be regarded as a general recursive relation-
ship of equality between two general recursive functions

Plx, yy=[x(x y)=1(x i
where

0 Y=y, plx y)=9(x).

Note on 2B, Definition 2B is merely a more exact version of
definition 1B.

Note on 3B, If condition 3B is satisfied, thenit follows that con-
dition 1B is also satisfied. Indeed, let C be enumerated by function
e1(x), and set C by the function ¢:(¥). To ascertain whether a given
number belongs to C, we shall compute the parallel sequences

€0 @ (1), 92, Q) ... (I)
¢ 0 9 (1), #(2), %13), ... 1)

Since y belongs either to C or to C, sooner or later it will appear
either in row I or in row II. If it appears in row I, then y€C, and
if in row II, then y € C. Thus, there exists an algorithm for deter-
mining whether any y belongs to C.

Note on 4B, When condition 4B holds, there also exists an al-
gorithm for recognizing the membership of any y in set C. Indeed,
let us compute the sequence ¢(0), o(l), ¢(2), .... If, at some n, we
arrive at ¢(n) > y, thenthereis noneedto continue the computation,
and we may conclude that y € C; if, however, we find m < n such that
9(m) =y, then y €C.

We shall give a few examples of recursive sets:

1) The two—element set {0, 1} is recursive by virtue of condi-
tion 1B or 2B.
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2) Any finite set is recursive by virtue of condition 1B or 2B.

3) The set of even numbers {0, 2, 4, 6, 8 ...} is recursive. Here
y€C =[res (y,2) = 0], and the set is recursive by virtue of 2B; or
o(x) = 2x, and the set is recursive by virtue of 4B.

Now, let us give examples of sets that are and sets that are not
recursively enumerable.

According to definition 2A, the set of all y for which (3x) P (x, y)
at some general recursive P(x, y) is recursively enumerable. One
can so select P(x, y) that the set{y} will be recursively enumerable,
but not recursive; its complement {y} will be the set of those y for
which

HxX)P(x, y)=(Vx) P(x, y)=(Vx)Q (x, y)
(where Q is a general recursive predicate); this set {y} will be
neither recursive nor recursively enumerable.

The set of G&del numbers z of systems £ which define a general
recursive function is neither recursive nor recursively enumerable.

In conclusion, let us point out that the comparison of 1A and 4B,
as well as the fact that any finite set is both recursive and recur-
sively enumerable imply that any recursive set is recursively
enumerable. The converse, however, is not true.

The concept of recursive real numbers and recursively enu-
merable sets is important in determining whether a machine *‘can
do’”” more than just realize a given algorithm. For we have shown
above that any algorithm reduces tothe computation of the values of
a computable integer function. Thus, if a device genevates an output
of a set of numbevs and that set is not rvecuvsively enumerable, we
immediately know that the opevation of this device cannot be vrepre-
sented by an algovithm; that is, this device ““does move®’ than just
vealize an algovithm,
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Turing Machines

13.1. DESCRIPTION AND EXAMPLES
OF TURING MACHINES

In Chapter 12 we showed that the fundamental, intuitively obvious
requirements to which any algorithm must conform are those of
determinacy, generality, and applicability (efficacy). Inaddition, the
result of an algorithmic procedure must be completely independent
of the person executingit. The executor merely acts like a machine:
there is no ‘‘creative’’ work involved here, because the executor
needs only to follow instructions. If this is so, then why not dele-
gate the execution of the algorithm to amachine? This chapter will
present one class of machines capable of executing such tasks.

The above properties of an algorithm also pertain to a machine
executing this algorithm. To begin with, such a machine must be
fully determinate, operating within the specified rules. Second, it
must allow the input of a variety of ‘‘initial data,’’ thatis, of a
variety of individual problems from a given class of problems.
Third, the specified operational rules for the machine and the class
of problems which can be solved must be matched in such a way that
the result of machine operation will always be ‘‘readable’’ (that is,
the machine will give a useful result).

There are many constants capable of executing algorithms. The
most graphic of these isthe scheme proposedin 1936 by the English
mathematician Turing. We shall now describe one of the possible
variants of this machine.

The basic component of our Turing machine is an infinitely long
tape divided lengthwise into squares. The tape extends in only one
direction (to the right), so that we can meaningfully talk about a
““leftmost’’ square. Each square may contain only one symbol s;
from a finite alphabet {s, ..., s,]. We shall ascribe a special sig-
nificance to the symbol sq: its presence in a square shall denote
that the square isblank. Inany tape, the number of nonblank squares
is always finite (but as large as desired), all the other squares be-
ing blank.

355
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The second component of the Turing machine is a read~erase—-
record head, This special device can move along the tape, either
to the left or to the right, one square at a time. Upon an external
command, the head can erase a symbol present in the tape square
that happens to face the head at a given moment, and it can print
another one in its stead. The external commands causing these ac-
tions are issued by a controller, a device which is itself governed
by the signals generated by the head (these signals indicate the
presence of symbols s; in a given tape square). The controller
operates in discrete time 1 =0, 1, 2, ..., and it mayassume a finite
number m + 10of internal states g, ... ¢w. Itsinputconsists of sym-
bols of s; read and generated by the head, while its output consists
of commands to the head (these commands indicate what symbol, if
any, should be printed in agiven tape square, as well as the direction
of motion of the head). For example, assume that at time ¢ the head
faces the Ith square from the left, that this square contains the sym-
bol s;, angd that the controllerisin state g;. The head reads the sym-
bol s; and generates a signal correspondingtoit. In response to this,
the controller generates a symbol s, which causes the head to erase
the old symbol s; and print s, on the tape. Then the controller pro-
duces one of the symbols R, L, S (‘‘right,”’ ‘‘left,’”’ “‘stop”’), in
compliance with which the head moves one square to the right or
left or stays put. After this, the controller assumes a new state g,
which is uniquely determined by the previous state ¢; and the signal
s;. After the entire operation hasbeencompleted (at time ¢ + 1), the
{th square contains the symbol sz, the controller is in state ¢,, and
the head is situated opposite either the ({ 4 1)st, the ({— I)st, or the
/th square (depending on whether the motion commandwas R, L, or
S). Thus, the controller is a sequential machine with two output
converters. Its inputs are symbols from the alphabet {so, ..., Sa},
received from the read-record head. Its states are symbols from
the alphabet {§y, --., g9,}. Its first outputis a signal commanding the
head to print a symbol from the alphabet {s;, ..., s,}, whereas its
second output is a signal commanding a shift of the head and belong-
ing to the alphabet {R, L, S}. Theoperation of this s-machine can
be specified by means of three tables—those for an automaton and
for two converters. However, it is customary to combine these into
one basic table. Thus the automaton Table 13.1, the first converter
Table 13.2, and the second converter Table 13.3 may all be com-
bined, inthat order, into Table 13.4, which fully describes the opera-
tion of this Turing machine. Again, if the basic table of a Turing
machine is given, then its operation is uniquely specified.
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Table 13.1 Table 13,2 Table 13.3
So | 81| S So | si | S, So | s; | s,
9o Go | 41| 90 g0 Sy | S0y 5 qo R R! L
q || 90} 90 | 9 q: Sy S1 | S 71 S L R
Table 13,4
So s Sy
qo gos:R q,5.R 905, L
7, q05,S qos,L q:5;:R

State of the controller shall denote the rest state of the Turing
machine; that is, row ¢, of the basic table has the following proper-
ties: (1) The first symbol in every square of this row shall always
be go (never ¢; if j # 0); (2) The second symbol of each square will
be s;, the same symbol as in the respective column heading (never
sy if £ -+ {); (3) The third symbol of everysquare shall be the sym-
bol § (never R or L). For anillustration of row g,, see Tables 13.4
and 13.5.

Table 13.5
So S Sy
qo oS0 S q08,S G052 S
q, q:s,L q:5R 0SS

Now, if the controller is at any time ¢ in state ¢,, then whatever
the position of the head, and whatever the symbol in the correspond-
ing tape square, the controlling device will remain in state g,, the
head will not move, and the tape entries will remain the same as be~
fore. To simplify the basic table, we shall therefore omit row g
(see Table 13.6),

For simplicity, we shall also assume that the alphabet {s,} con-~
sists of only two symbols; blank (thatis, 0) and nonblank (that is, 1).
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Table 13.6 Table 13.7
Machine A
So M Sy 0 1
q q,5,L 7,5 R 4051 S q: ||go 15 |gq, IR

Now let us discuss a few simple Turing machines.

1) Machine A (Table 13.7). This machine operates as follows.
Assume that at ¢ =0, the controllerisin state ¢,, and the head faces
a nonblank square, The machine then ‘‘looks’’ for the first blank
square to the right, prints the symbol 1 in it, and stops. If, how-
ever, the head faces a blank square at t =0, then the machine prints
1 in that square, and stops (no motion of the head). Tables 13.8 and
13.9 illustrate two possible modes of operation of this machine.
(A bar above a tape square indicates thatthe head faces that square

Table 13.8
Time Tape printout
q,
0 ... 1T11100 ...
q,
1 ... 111110 0. ..
q1
2 ... 1111100 ...
q.
3 ... 1111100 ...
q
4 ... 1111100 ..
o
5 ... 1111170 ., .,
Table 13.9
Time Tape printout
q,
0 ... 10001
G
1 ... 10101
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at that time, and the symbol gshows Table 13.10
the state of the controller.) The dots
represent those tape squares where
the symbols are known to remainun- 0 1
changed throughout the operating
time considered (the head does not
reach them).

2) Machine B(Table 13.10). This
machine can also assume only one state (aside from state go). If
the head faces, at ¢t =0, a nonblank square, it erases the symbol 1
in it, moves one square to the left, and stops. If the head faces, at
t =0, a blank square, it moves to the first nonblank square on the
left, erases the symbol 1 in it, and moves one additional square to
the left (see Table 13.11).

Machine B

q: 7,0L g.0L

Table 13.11

Time Tape printout
T
0 ...011100 ...
q
1 ...011100 ...
q1
2 ...011T00 . ..
G
3 ...011000 ...

3} Machine C (Table 13.12). At :=0, this machine may face
either a blank or a nonblank square. The head then moves to the
right until it finds the first group of symbols 1 after a group of

Table 13.12

Machine C
0 1
9 4,0R q,1R
q: g:0R g;1R
93 g, 0L ¢, 1R
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zeros, and stops at the last 1 of that group. One version of this
machine is shown in Table 13.13,

Table 13.13

Time Tape printout
0 T
... 011001100
1 .
011001100
2 Al
. 011001100
3 92
... 011001100
4 ki
. 011001100 ...
5 2
... 011001100
6 q3
011001100 . ..
7 %
011001100 ...

In some cases the Turing machine may be incompletely speci-
fied, in that some of the squares of the basic table contain no sym-
bols. This is permissible in those cases where one can predict
that these combinations of machine states and tape symbols will
never occur, Consider an example.

Table 13.14

Machine D
0 1
q. 7,1R
qs g;1R 1R
q3 7;1R q,1L
g 7.0L
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4) Machine D (Table 13.14). This machine searches for the group
of zeros between the first two groups of ones to the right of the
position of the head at ¢t =0. It then replaces all but one of these
zeros with ones, If the combinations ¢;, 0 and g,, 0 are avoided at
t =0, they will not occur in the future because state g, will never
occur, whereas the machine will assume state g, only after the last
symbol 1 has been printed. One variant of this machine is shown in
Table 13.15.

We shall sometimes deal with machines having not one, but sev-
eral rest states (¢,, g,, and so on). Consider a typical example.

5) Machine E (Table 13.16). At t =0, the head of this machine
always faces a nonblank square. Then, depending on whether the
next square to the left contains 0 or 1, the machine assumes either
state g, or g\, and stops facing the initial square. Variants of this
machine are shown in Tables 13.17 and 13.18.

Table 13.15

Time Tape printout
qi
0 ...01110001100 ...
q2
1 ... 01710001100 ...
q2
2 ... 011T0001100 ...
qs
3 ...01110001100 ...
qs
4 ...01111001100 ...
qs
5 ...01111101100 ...
qs
6 ...0111111T7T100 ...
qs
7 ...01111111100 ...
o
8 ...01111T01100

In concluding this section we shall present, without special ex-
planations, a few Turing machines which we shall need at a later
stage.

6) Machine F (Table 13.19). This machine searchesfor the near-
est group of 1’s which follow a group of zeros to the left of the
position of the head at ¢t =0.
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Table 13.16

Machine E
0 1
q, ;1L
7 goOR 751R
Table 13.17 Table 13.18
Time Tape printout Time Tape printout
q, q,
0 ...001T1 ... 0 L..00T1 ...
@ q,
1 ...00T11 ... 1 L..0011 ...
qyp q(/)

2 ...001T1 ... 2 L. 00T ..,
Table 13.19 Table 13.20 Table 13,21
Machine F Machine G Machine H

0 1 0 1 0 1

g, || ¢:0L | ¢,1L q: | 9.0S | ¢,0L 4, || 9015 | g;1R

g, | g:0L | golS g |[4:0R | ;IR

7) Machine G (Table 13.20). This machine erases all the 1’s (if
such symbols are present) to the left of the position of the head at
t =0, and continues doing so until it encounters a 0.

8) Machine H (Table 13.21), It differs from Machine A only in
that it prints the symbol 1 not in the first but in the second blank
square on the right.

9) Machine I (Table 13.22). This machine starts at a nonblank
square, erases the symbol 1 in it, and transfers it to the nearest
blank square on the left (in other words, it shifts a group of ones
one square to the left of the starting position).

10) Machine K (Table 13.23). Iterases the symbol1l in the square
on the right of the initial one (if that square contains a 1).
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Table 13.22 Table 13.23
Machine 1 Machine K
0 1 0 1
q q,0L q; g:0R | ¢,IR
q; || 1L | ¢,1L qs 4,05 | 4,08

11) Machine L (Table 13.24). It starts at a nonblank square,
moves to the left, and stops at the second blank square to the left
of the first group of ones,

Table 13.24 Table 13.25
Machine L Machine M
0 1 0 1
g | 0L | q1L 7 | 908 | 4018

12) Machine M (Table 13.25). It can assume two rest states.
Depending on whether it faces a blank or nonblank square, it as-
sumes state g, or q;.

13.2. THE COMPOSITION OF TURING MACHINES

As we have just seen, what a Turing machine does is uniquely
determined by the controller functioning in accordance with a basic
table. We shall assume that the machine always starts from an ini-
tial state denoted by g;, and that it assumes the rest state g, when
it ceases to work. Now we can define the operations on Turing ma-
chines so that we can derive new basic tables from the given ones.
Thus imagine that we have two machines T, anc T,, and that at { =0
the collection of symbols on the tapeis such that T, starts operating.
At this point,T,isin state 4}, and the head is opposite the /,th square.
Then, at t= ¢} machine T, assumes the rest state g}, and the head
stops opposite the /lth square. Now machine T, shuts off, and ma-
chine T, takes over, starting from state ¢?, the head of T, at ¢t = £
facing the same square /) at which T, ceased operating. Then, at
t=12, T, shuts off and assumes the rest state ¢3, while its head
stops opposite square /2, This consecutive operation of machines
T, and T,, is equivalent to the operation of a single Turing machine
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T, the basic table of which is synthesizedaccording to the following
rule: if the controllers of T, and Tocan assume k; and k; states*, re-
spectively, then the controller of T can have %, + k, states, the ini-
tial and rest states of T being ¢} and ¢2, respectively. The basic
table of T consists of two parts, of which the top describes T}, and
the bottom T, The rest state g of 7, is the initial state ¢ of7,.
For example, if 7, is machine F (Table 13.19) and T, is machine G
(Table 13.20), then machine T (Table 13.26) will have a table with
2 + 1 =3 states, where qo;—qg is the rest state of G. If we recode
the states of T, Table 13.26 will take the form of Table 13.27.

Table 13.26 Table 13.27 Table 13.28

0 1 0 1 0 1

g { ¢:0L | giIL g, || 9:0L | ¢1L ¢ | 408 | 9,0L

g5 | #:0L | q15 @ || 7:0L | g518 g: || 4:0L | g.1L

‘];/ ’IL;/OS ‘](OL‘ 93 7,08 | ¢;0L 43 q;0L | g,15

Machine T so obtained is the product of T, and Ts; thatis, T =
= T,-T,. The operation of deriving a third machine from two given
ones is the multiplication of machines, Thus Tables13.26 and 13.27
are tables of machine F- G. Multiplication of machines is obviously
a noncommutative operation: T,-T,+ T,-T, (Table 13.28 shows the
product G- F, and it obviously differs from Table 13.27). However,
multiplication is associative; that is, with three machines Ty, T,,
and T;, we have (T,-Ty)-T3 =T, - (Ty-T3).** Accordingly, no paren-
theses are used in writing the product of several machines.

The operation of vaising to a power is defined in the usual way:
the nth power of machine T is the product obtained by multiplying
T by itself n times.

So far we have discussed the multiplication of machines with
one rest state. If one of the machines of the product has two or more
rest states (for example, if it is machine £ or M of the preceding
section), the multiplication is the same, but one must indicate which
of the rest states of the first constituent machine shall be the initial
state of the second machine, For example,if T has two rest states,

*Henceforth, the number of states shall notincludethe rest states, of which there may
be several, as in machine M above,
**From now on, we shall omit the dots in the product of machines,
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T,

we shall write the product of 7, and T,as T:Tl{ , Or as

2)

1), (

T=T, { 22; 7. depending on whether the initial state of T;is the
2

first or the second rest state of 7,. Machine T also has two rest
states, the first of which is one of the rest states of T;, while the
second is the rest state of Ts.

Now, the meaning of an expression such as

- T}{ M) 7,7
@ T,
is also clear here, Here, there are two independent multiplica-
tions, involving the first and the second rest states of machine T,
There also exists the operation of iteration of a single machine.
Thus let machine 7, have s rest states., We select its rth rest state
and make it the initial state of machine T, which is then shown as

(1,
T: 7"1 ] (r)s

()
This machine isthe result ofiteration of T, Here, the dots above the
letters indicate that the rthreststate is made the initial state of the
iterating machine T,. If 7, has only one rest state, then iteration
yields a machine with no rest states,

Henceforth, we shall use the following notation. If we perform
iteration on a machine which itself is the result of multiplication
and iteration of other machines, then we place corresponding num-
ber of dots above those machines whose states (rest or initial) are
used in the new machine. For example, the expression

. 2 ( 1 ) 7“3’ Iy
T=TTyy Q) T,T
@ T

means that the rest state of machine T;is made the initial state of
machine 7T, and that the reststate of Tsis made the initial state of T,.

Now let us synthesize a machine by means of multiplication and
iteration. Let our constituent machines be C, G, L, and M, described
in Section 13.1, and let us use them to synthesize a machine N by
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means of the above rules. Our machine

Machine N N
. c
0 ' N=IM .
2 a
4 ¢,0L g1k will have the basic Table 13.29 (obtained
. 205 | a8 from Tables 13,12, 13.20, 13.23, and

13.25). At ¢t=0, machine N is in state
¢, and its head is opposite a nonblank
q, q,0S q,0L tape square. It thenproceeds toerase all
the symbols 1 to the left of its initial
position, and continues doing so until
gs q,0L gs1R it encounters two consecutive blank
squares, At this point, the head returns
to the right and stops opposite the extreme right nonblank square
in that group of 1’s opposite it at start of the operation. Table 13,30
shows one variant of N, showing only those tape conditions at which
the machine assumes a new state (to reduce clutter, state symbols
g; are indicated only by their ordinal numbers i).

Here the use of iteration yielded a machine N repeating the
operation of erasing groups of 1’s until itis given a specified com-
mand to cease.

q3 gs0R q;1R

qs qs0R gs1R

13.3. COMPUTATION ON TURING MACHINES

We shall show that whatever the algorithm, there will always be
a Turing machine capable of executing this algorithm. To formu-
iate this statement in precise terms, we must first formalize the
concept of an algorithm in some manner. Here, we shall use
Church’s thesis according to which every algorithm is merely a
computation of a recursive function. Because of that, we must first
define what we mean by ‘‘computing’® of arithmetical functions on
a Turing machine.

To start with, let us specify the representation of natural num-
bers and zero on the tape of a Turing machine. We shall use a code
in which numbers are written in the natural (‘‘unary’’) system of
notation, so that a number z is represented by # +1 symbols 1 lo-
cated in consecutive squares of the tape. Thus zero is represented
by a single symbol 1, unity—by two symbols 1, etc. *

*We could represent n by n consecutive symbols 1, but then we would have to represent
zero by a blank square. This would interfere with our scheme, in which we need blank
squares both for separating numbers and for carrying out computations,
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Table 13.30

Time

Tape printout

00

0 000 O

1

367

Two numbers are said to be located next to each other if their
coded expressions are separated by a single blank square. Thus
Table 13.31 contains consecutively (from the left) the numbers 3,

0, and 2.

Table 13.31

0011110101110
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Now let us specify the recording and readout of arguments and
values of functions on the tape. Thus assume we want machine T to
compute the value of the function ¢(x,, ..., x,) of n variables x|, ..., x,
if the values of the arguments are x;, =a,, ..., x, = a.. Recall that
the leftmost tape square of our Turing machine is considered the
first one. Let us leave the first two squares blank (as in Table
13.31). Then, beginning with the third square, we record (in our
code) the n consecutive numbers ¢, ..., a,, pertaining to the inde-
pendent variables x,,x;,..., x,. Table 13,32 illustrates this forn = 3,
where x; =2, xo =1, and x3 = 3.

Table 13.32

q
00111011011110

From now onif there is norisk of confusion, we shalluse x, ..., x,
to denote both the independent variables (arguments) and the specific
numerical values assumed by these variables.

We shall also say that the read-record head senses the system
of numbers (x;, ..., x,) in the standard position if these numbers are
consecutively recorded on the tape, and if the head is opposite the
rightmost square involved in the representation of the last number
{x»}. For example, see Table 13.32, where the position of the head
is, as usual, denoted by a bar.

Now we can define what we mean by computation on a Turing
machine. Assume we have machine 7 and that the following holds
at t =0

a) T is in the initial state g,;

b) a system of n numbers (x;, ..., xn)is representedon the tape,
and the head senses it in the standard position;

¢) all squares to the right of the one opposite the head are blank.

Now T starts working. We shall say that T computes the function
X = @(x;, ..., X;) of n variables if, regardless of what kind of num-
bers x,, ... xn are involved, there arrives a time when

d) T assumes the rest state go;

e) the tape represents (n + 1) numbers x,, ..., x,, x[wherex = ¢
(x5, ..., X,)], and the head again senses the entire number system
in the standard position;

f) all squares to the right of that opposite the head are blank,

If however, the machine never stops, or if it does stop but con-
dition (e) or (f) are not fulfilled, then this machine does not compute
function ¢ for this particular set of arguments (x;, ..., x,).



COMPUTATION ON TURING MACHINES 369

For example, to illustrate a Turing machine which does compute,
let n =3 and ¢(xy, %o, x3) = x; + X, + x3. Then, for x; = 2, x, = 1,and
x3 = 3, the starting tape is that of Table 13.32, while the final tape
(after the machine has stopped) is that of Table 13.33.

Table 13.33

90
00111011011110111111700

Now we shall introduce a few specialized Turing machines,
Machine P is synthesized by multiplication and iteration of ma-
chines I, M, C, K, and A of Section 13.1:

p—im| €
(2) KCA.

This machine places numbers next to each other. It does this by
transposing to the left the nonblank squares in the tape representa-
tion of a given number (see Table 13.36). The basic table is shown
in Fig. 13.34. However, analysis shows that the same result can be
obtained with the machine of Table 13.35, which has half the number
of states,

Table 13.34 Table 13.35
Machine P Machine P

0 1 0 1
T q,0L 7 q:0L
9z gs1L 9,1L
3 4,08 9,18 72 g;1L g,1L
qs gs0R 7,1R
s qs0R 9:IR q; q,0R g;1R
9 ‘]18}-{ qs{%
q g8 qs L IR
l]; ngSR 49(1)3 q, 9,0 q,
9y 7100 Gy
910 70R | g,,IR s 9:0R
g gOL g, IR .
2 GolS q,1R qs GolC gs1R

Since we do not care what the actual logic of the machine is as
long as we obtain the desired result, we shall understand that the
machine performing the function of P can be either that of Table
13.34 or of Table 13.35. One variant of P (corresponding to Table
13.35) is shown in Table 13,36.
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Machine R,, is a synthesis by multiplication and iteration of
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machines H, F, E, D, C, B, and A of Section 13.1:

011101117000

where the superscript m indicates the power of a given machine.

For example,

RI:HFE{

] (o Dem

R, = HF'E ) BC'"A,

Table 13.36 Table 13.37
Time Tape printout Time Tape printout

! 1

0 011100011;10 0 [0011To00000
1 lot11o00011T00} |~ ] 0~ R
A 0011107000
2 .........
011100011100 0011701000

3 0,

. 2
011100;11100 0011701000
011100111100 0011001000

4 00110071000
011100111100 0011001700
1
911109}}}190 0010001170
R N P T
011101117000 06010001110
2 0,
ot11o011Too000 0010001110
2 0011701110
011101110000
e N B BRI
011711110000 0
5 00111011710
0611171110000

6

011101110000
6

011101110000
0

() Dc,
(29) BCA.
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Machine R, operates as follows: if the numbers x;, ... x, are
represented on the tape in the standard position at ¢ =0, then R,,
prints the first of these numbers (thatis, x;) to the right of the rep-
resentation of (xi, ..., %») and stops; after this, the tape contains a
system of m + | numbers (x1, ..., xm, x;) in standard position. How~
ever, if at ¢+ = 0 the tape contains, in standard position, the numbers
X1, ..., Xn, Where n>m, then R,, prints the number x,_, ., on the
right-hand side of the representation of this system of numbers and
stops; after this, the tape contains the number system (x;, x;, ...,
Xn, Xn—m+1). An example of the operation of machine R; is shown
in Table 13.37 (the letters on the right indicate which of the com-
ponent machines of R, are responsible for a given step of the op-
eration; the symbols 0, and 0; are the rest states of machine £).

It can be shown that the mth power Ry of the machine R,, operat-
ing on numbers (x, ... %) in standard position, copies the entire
system next to and on the right-hand side of the original representa-
tion, the final result being a system of 2m numbers (x,, ..., xu,
Xy, ..., Xn) in standard position. The starting and the final tapes
of Rim at m=3, x;=1,x,=0, and x; = 2 are shown in Table 13.38.

Table 13.38

Time Tape printout

1
0 001101011T00000000000

001101011101101011T00

Machine S,, does almost the same thing as RJ; itcopies num-~
bers (x, ..., xn) to the right of their original tape representation but
not next to it (that is, there are two blank squares, instead of one,
between x,, and x;). The machine S,, is synthesized as follows:

S, = ARWBF"BC"™.

The starting and final tapes of S, at m =3, x; = |, xo=0,and x3 = 2
are shown in Table 13.39,

Now we can show that for any vecursive function theve exists a
Turing machine capable of computing it, Our first proof will per-
tain to the basic recursive functions. These are successor, the con-
stant and the identity functions.

I. The successor function ¢(x) = ¥’ can be computed by machine
R1A. Indeed, if a number x is in the standard position at ¢ =0, the
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Table 13.39

Time Tape printout
1
0 0011010117T00000000000
0
00110101110011010117T0

machine will print o(x) = x + | to the right of x, after which it will
stop if the tape then contains the number system (x, x + 1) in stand-
ard position, Thus R;A computes ¢(x) = x’ within our definition of
“‘computation’’ (see above, p. 371). The operation of RjA at x =3 is
shown in Table 13.40.

II., The constant function ¢(xi, ... X.) = ¢ can be computed by
machine HA. If n =3, x;, = |, x3 =0, x3 = 0,and ¢ = 2, the tape is that
of Table 13.41.

III. The identity function ¢(x;, ... x,) = x; can be computed by
machine R,_.;.;. Indeed, this machine prints to the right of the
number system (x, ..., x.) the (1 —i + 1)st number from the right,
that iS, XNie

The remainder of the proof on the existence of Turing machines
is by induction on the depth of the recursive description of the
recursive function. The depth of functions I, II, and III is, by def-
finition, zero. The application of superposition, induction, and the

Table 13.40

Time Tape printout
1
0 0011170000000
............. R,
0011110111700
0 A
0011110111110

least number operator increases the maximum depth of any function
subjected to these operations by l. Since all recursive functions can
be derived from the basic functions by finite repetition of these three
operations, we need only to show that there exist Turing machines
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Table 13.41

Time Tape printout
1

0 0011010100000
............. H
0011010107000 p

0011010101100
O a4

0011010101110

capable of realizing the operations of superposition, induction and
the least number operator.

For simplicity, we shall avoid details of synthesis of Turing
machines realizing these operations and shall restrict ourselvesto
the simpler special cases. For example, instead of dealing with
superposition with respect to n variables, we shall consider super-
position with respect to only one suchvariable,* We thus obtain the
following:

IV. Superposition, Let M, and M, be Turing machines computing
the recursive functions ¢(x) and y(x) whose depths are « and g, re~
spectively. We desire a Turing machine M, computing the function
e(x) = x(¢(x)) with a depth max(e, 8) + 1. This will be accomplished
by the machine

M, =S, M, NM,NP.

V. Induction, Let M, be a machine computing arecursive func-
tion y(x) of depth . We shall devise a machine’ M_ computing the
recursive function ¢(x) of depth a + | specified by the induction
scheme

?(0)=¢q, e¢(x)=y(2(x))
This machine is given by
(1) BCP,
(2) BCM,NP.

V1. The smallest number operator, Let M, be a machine com-
puting the function y (x, y) of depth a. We shall devise a machine M,

M, =S,A"" FE {

*For a precise description of generalized Turing machinesrealizing these operations,
see [42].
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computing the function ¢(x) = nyfx(x, y) = 0] of deptha + 1. This ma-

chine is

(1) GFP,

(2) GFA.

Machine M, will stop only if xsatisfies the relation (dy)[y(x, y) = Ol
We shall now illustrate the computation by induction and the use

of the smallest number operator so as to elucidate the operation of
machines V and VI.

M,=S$,GAM,E

Table 13.42

Time Tape printout

1
0 001ITOOOOOOOOOOOOOOOOOOOOS

001110011T000000000500000

AT

0011100111_0110000000000003
00111001T0011000000000000C

001110011000 OllllTOOOOOOP

00111001170111110000000000pR

00111007T00111110000000000
........................ C

00111001001111101111111710
....................... N

001110010000000011111117T0
........................ P

0011100101111111100000000
........................ FE

0011100T0111]1111000000003
0011100001111111100000000
c

ootrtrirorttvyidlg
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Table 13.43

Time Tape printout
1
0 00117T0000000000
..... S ... .. ... 5GA
001110010000000
............... M,E
0, g
001110010111110
............... G
001110010000000 F
001110010000000
0p0111001T000000 4
............... M,E
02
001110011011170
.............. G
001110011000000 F
001110017T000000
0011100111700000 4
............... M,E
0, )
001110011101110
............... G
001110011100000 &
001110011100000
0011100111T0000 *
............... M,E
0,
0011100111101710
............... G
001110011110000 F
00111001117T0000
00111001111T000 4
............. .M,
0011100111110710
0, F
0011100111110T0
001110011111000 @
00111001111 T000 F
9 P
00111011117T0000

Computation by induction, Let

=y+3 g=1,
S0 that
?(0)=1, o(x)=g(x+1)=g¢(x)+3.
Table 13.42 shows how machine M, computes the value of ¢(2).

(Again, 0, and 0, denote states of machine £). The basic concept
underlying this procedure consists in repeated computation of
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function % (y) while keeping a check on how many times this compu-
tation has been repeated.

The result of the computation: ¢(2) = 7.

Selecting the operator of the smallest numbev, Let y(x, y) =
[x?—y|, so that

¢ (X) =py[lx2—y!=10],

We want to compute ¢(2).

The machine operation is shown in Table 13.43: here, we deter-
mine the consecutive values of y(x, 0), x(x, 1), and so on, until
x(x, y) = 0. The result of the computations is ¢(2) = 4.

Let us also point out that all machines synthesized according to
schemes I - VI must be so designed that they will never go beyond
the left-hand edge of the tape.

We have thus shown that any recursive function can be com-
puted on a Turing machine. Itcanalsobe shown that only recursive
functions may be computed on Turing machines. This is proved by
means of godelization of tape representations and verification of the
fact that any change in such representations can be expressed by
means of recursive functions (see the proof of this in [42]).

By virtue of the equivalence of the concepts of ‘‘recursive func-
tion’” and of ‘‘function computable ona Turing machine’’, as well as
by virtue of Church’s thesis, we can now define an algorithm as
follows: An algovithm is any proceduve which veduces to the com-
putation of the values of aninteger~valued function on anappropriate
Tuving machine,



Conclusion

We now return to the two fundamental problems posed in the
Introduction, namely: (1) Finding out what a finite automaton or a
sequential machine can and cannot ‘do,’’ and (2) the development
of techniques for syntheses of devices which are dynamical sys-
tems of this class and perform specific tasks. The answers to these
problems have been gradually accumulating in the course of our
presentation of the theory. We shall now endeavor to combine the
solutions scattered through previous chapters into one coherent
system,

1. WHAT CAN A FINITE AUTOMATON OR A
SEQUENTIAL MACHINE “DO""?

That depends whether the machine in question is autonomous or
not.

If the finite automaton is autonomous, then beginning with some
cycle it will only generate a periodically recurring sequence of
states (the corresponding s-machine can only generate a fixed se-
quence of outputs). If this is a one~symbol sequence, then the ma-~
chine will achieve a state of equilibrium within a finite number of
cycles. If this is a multisymbol sequence, then the automaton will
assume, one after another, all the states corresponding to these
sequence, and will continue doing so ad infinitum . That is all an
autonomous machine can ‘‘do.’’

However, regardless of what this finite periodic sequence of
states is, one can always synthesize an autonomous finite automa-
ton which will start to generate this sequence as early as its second
cycle. Because of that, and because a fixed cycle of successive
operations is characteristic of much of modern technology, dynami-
cal systems which within allowable idealizations may be regarded
as autonomous automata are widely used. A very old example of
such automata are the animated figurines which go through com-
plex sequences of motions, for instance, writing down a text on a
piece of paper, playing predetermined music on an instrument, and
s0 on. Modern examples range from washing machines to auto-
matic lathes, assembly lines and control systems for cyclic opera-
tions.
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If the automaton is nonautonomous, that is, itsinput state varies
from cycle to cycle, then the answer to the question of what it can
or cannot ‘‘do’’ can be formulatedin avariety of terms, for example,
in the language of representation of events. Indeed, a nonautono-
mous finite automaton (or s-machine) merely transforms sequences
of input symbols into sequences of states (or outputs). Therefore,
if we ask what such a machine can or cannot do, we are merely
specifying which sequences can be transformed in a given machine
and which cannot. But since the number of states (or of outputs, in
the case of the s~machine)isfinite, our question is equivalent to the
following: which specific inputs produce each of the possible states
of the automaton (or, each of the possible outputs of the s-machine)?
In the terminology of the theory of finite automata this question is
formulated as follows: Which events can (and which cannot) be rep-
resented by each of the possible states of the automaton (or by each
of the outputs of the s-machine)? Theexactanswer, in terms of the
necessary and sufficient conditions for representability of eventsin
the machine, is given by the theorems of Kleene. Kleene’s theorems
state that only regular events can be represented in a finite auto-
maton, a regular event being the input of sequence belonging to the
class of regular sets. Thus in the language of representation of
events our question receives an unambiguous answer: Afinite auto-
maton can only represent regular events.

Many important input sets encountered in practice are known to
be regular. For instance, the following are regular: (a) the set
consisting of any finite number of input sequences of finite length;
(b) the set of any periodically repeatinginput sequences; (c) the set
of infinitely long sequences which always terminate in specified
finite sequences; and so on. However, in general, if we are faced
with an infinitely long set of input sequences, we do not know a priori
whether this set is regular or not. This is because we only have
techniques for gemerating regular sets (by induction), but lack ef-
fective solution for the inverse problem of finding out whether a
given set is regular or not. Thus, even though the theorems of
Kleene do answer the question as to whata finite automaton can do,
the answer is not an effective one. Present research attempts to
construct other languages in which the answer could be given more
effectively. This language problem is also of cardinal importance
in the initial steps of the synthesis of automata, that is, it also fig~
ures in the second of the two problems formulated above.

Our class of dynamical systems consisting of ‘‘finite automaton?’
and ‘‘sequential machine,’’ can be extended by providing the machines
with an infinite memory (this can be done by letting the machine
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have an infinite number of states, or providing it with an infinite
tape, and so on), This gives a broader class of abstract systems—
the Turing machines., The answer to the question, ‘“what can they
do?’ is much simpler: they can realize any a priovi specified
algorithm. Now in modern mathematics the algorithm itself is de-
fined as a computation of values of some recursive function. And
since we know so precisely and unambiguously what a Turing ma-
chine can do, we can use this machine to define the concept of the
algorithm, We thus close our chain of reasoning with the state-
ment; an algorithm is any process which canbe realized in a finite
automaton supplemented by an infinite memory, that is,in a Turing
machine.

2. THE SYNTHESIS OF A PRACTICAL DEVICE
REALIZING A FINITE AUTOMATON OR
SEQUENTIAL MACHINE

If we wish to sample the input and the output of a system only at
some specified discrete times (where these instants can either be
specified a priori, or may be the resultof the very operation of the
system), then we have every reason to suspect that the device em-
bodying our requirements will be a finite automaton or an s~machine,
Since the object of the design is toensure the generation of desired
outputs in response to specified inputs, we could specify our device
by enumerating all the possible input-output relationships. If this
enumeration results in a finite list of noncontradictory sequences
of a finite length,* then we canbe sure that our specification can be
embodied by a finite automaton or an s~machine. Furthermore
given these input-output relationships, we can derive from them the
basic table of the finite automaton and the table of the output conver-
ter; together, these form one of the possible s~-machines realizing
the specification (the algorithm for the synthesis of such tables is
described in Section 8.2%%*),

It is much more difficult to ensure the generation of specific
outputs in response to infinitely long inputs, Such cases are fre-
quently encountered in practice, when the duration of the operation

*We assume « priori that either there canbe no other inputs, or that if there are such
inputs, then iie output may be arbitrary or, finally, that any other input will be signaled
by the appearance of some symbol indicating that input.

**This type ofdefinitionis frequently encountered inthe design of relay circuits, where
the required input-output relationships may be enumerated, for example, by means of the
so-called switching tables,
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of the device being designed cannot be predetermined, and when the
outputs must indicate some general properties of the input se-
quences, as from the first beat of the operation of the machine, In
such cases a basic questionarises: Inwhatway can the relationship
between the infinite input and output sequences be defined, since a
direct enumeration of the sequences is impracticable in this in-
stance. No matter how this relationship has been defined, it boils
down in the end to the definition of an algorithm enabling it to be
established for each beat what the input and the output symbols are
in that beat.

If definition of the relationship between the infinite sequences is
not restricted in some way, then from the very start we again come
up against the same difficulty as that discussedat the end of the pre-
ceding section, i.e,, there is no effective method of establishing
whether the event which is to be represented by the automaton is
regular. This means that if the language in which the definition is
formulated is not restricted in some way, then there is no way of
even establishing whether some finite automaton or an s-machine
is capable of realizing the definition. Therefore there is no point
in talking of a method for the synthesis of an automaton or an
s-machine realizing the definition. Once more as a central prob-
lem arises that of finding a language sufficiently broad for the
definitions of an automaton or an s~-machine to be expressed in it,
of great importance in technology; this language is to be such that
there exist recognition algorithms as to whether there is an auto-
maton or an s-machine capable of realizing the definition, and, when
the answer is in the affirmative, the algorithms are to enable the
required s-machine to be constructed.

Accordingly, in the formulation of definitions of an automaton
(in the case of infinite sequences) special methods are employed
(or, in other words, special languages) to avoid this difficulty. One
of such methods is to write down the definition directly using the
description of the regular events which the automaton is to repre-
sent, rather than the description of the correspondence between the
input and the output sequences. This method is described in Sec-
tion 8.4, where an effective method isindicated for the construction
of the basic table of the automaton and the table of the converter,
which together form the s-machine representing the given events.

Another, considerably less economical (as regards the number
of the states of the automaton required) method has been described
in Section 7.4, in the course of the proof of Kleene’s theorems.

Other languages are also known, characterized by the fact that
every definition which is expressible in the language is known to be
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realized by an s-machine, and the corresponding s-machine (i,e., its
tables) is effectively constructible from that expression. Anexample
is Trakhtenbrot’s predicate language, which has been briefly men-
tioned in the presentbook. The use of these languages is, in essence,
based on the assumption that man is capable of nonalgorithmically
(creatively) solving the problem indicated above, translating the defi-
nitions from the ordinary general language in which he thinks, into
a special language in which the problem of recognition of repre-
sentability of events does not arise. If one was unsuccessful in ex-
pressing a definition in such a language, the question remains open
as to whether this has been caused by the fact that the definition
cannot be translated into that language, and therefore realized by an
s~-machine, or because one failed to do so ‘‘creatively.”’

It follows from the foregoing that the first stage of the synthesis
is in some cases carried out according to standard rules, and in
some other cases it, in principle, requires creative action; but, in
any case, provided the definitionisrealizable, the result of the first
stage of the synthesisis the table of the automaton and the converter
table, which form one of the s-machines realizing the definition. An
s-machine so constructed isnotunique; generally speaking, there is
a set of other s-machines fulfilling the same definition, i.e., those
equivalent to the one constructed by us, or representing it. Such
s-machines may differ in the number n of the symbols in the state
alphabet {x},i.e., in the number of rowsin the basic table of the auto-
maton. The smaller the number 7, the simpler is subsequent con-
struction or the scheme of the real machine. Accordingly, the next,
the second stage of the synthesisisthe minimization of the machine
obtained, i.e., the construction of an s~machine equivalent to the one
evolved in the first stage of the synthesis and, at the same time,
having the least possible number of states .

The solution of the minimization problem depends essentially on
the set of sequences which may appear at the input of the automaton
during its operation. The set is of course, indicated in the original
definition.

The simplest case is one where the set of the input sequences is
not restricted in any way,i.e.,when any sequence may appear at the
input of the automaton. In this case the problem of the construction
of a minimal s-machine, in the sense indicated, has been fully
solved, i.e., the necessary and sufficient conditions for the minimi-
zation have been found. A method realizing the construction of a
minimal S-machine involves breaking down the connection matrix
into certain submatrices; it has been described in Section 9.6.

Matters are rather more complicated when the set of possible
input sequences is restricted in some way. Assuming that the
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constraints are arbitrary, i.e., that some arbitrary algorithm is
given enabling it to be established whether a sequence satisfies the
given constraints, the minimization problem turns outtobe unsolv-
able (see Section 9.2), Accordingly, thereisnominimization method
suitable for any constraints and one can only attempt to find the
necessary and sufficient conditions of minimization for some given
particular form of constraints. However, excluding a complete sort-
ing, even in the case of the most frequently encountered forms of
constraints (e.g., when the constraint consists in only sequences of
a given length appearing at the input, or sequences of any length but
containing no identical symbols in succession, etc.), such neces-
sary and sufficient conditions have not so far been found. Some ob-
servations on minimization in such caseswere producedin Sections
9.4 and 9.7.

We know of only two problems with constraints imposed on the
input sequences which have a full solution. These are the problem
of construction of a minimal s-machine in the case when it is to
operate as a finite automaton and the input sequences contain no
identical symbols in succession, and the problem of construction
of a minimal s~-machine in the case of Aufenkamp-type constraints
(see Section 9.8).

So, as a result of the second stage of the synthesis, provided it
proved to be realizable, a basic table of an automaton and a con-
verter table are constructed, which together determine an s-machine
fulfilling the given definition and, at the same time have the least
possible number of states. In the general case this completes the
formation of the basic table of the automaton and the converter table
and it ispossible topass ontothe third stage of the synthesis, which
consists of the construction of the abstract structure of the s-
machine being designed. However, there is a particular case, fre~
quently encountered in practice, where the input sequences are
restricted, and some further work is required to construct a mini-
mal s-machine. We are referring to the case where the rhythm of
the operation of the machine being designed is determined by the
change of the states at the input and there are, therefore, no input
sequences containing identical symbols in succession.

In this case further work in constructing the tables of the s-
machine is dependent on the technical procedures usedto construct
the tables. More precisely, it is essential to lay down beforehand
which of two possible ways is to be followed. The first way is that
of applying delay elements to a beat signal fed from outside, with
special devices signaling the occurrence of a beat (i.e., a change
in the input state), The second way doesnot require the application
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of any special delay elements, but utilizes the fact that real ele-
ments have a certaininherentdelayin operationand permit the con-
struction of a machine by making use of steady states,

If the first way is used, the second stage of the synthesis de-
scribed above, as far as it can be carried out to the end bearing in
mind the constraints imposed on the input sequences, completes the
construction of the tables of the s-machine and is immediately fol-
lowed by the third stage of the synthesis: the transition to an ab-
stract structure (see further on).

If the second way is used, further processing of the tables of the
automaton and the converter is necessary. This means construct-
ing the tables of another s-machine, which operates at a faster
rhythm (as determined by the delay time in the elements employed
in the construction of the s-machine), and which reproduces in its
steady state the s-machine being designed, operating at a ‘slow’
rhythm which is determined by the moments when there is a change
of state at the input.

To do this a ‘‘fast’> machine satisfying this condition is first
constructed, and this machine is then minimized, i.e., the second
stage of the synthesis is repeated (for further details see Sections
10.2 and 10.3). In the end, by this second way we also obtain the
tables of a minimal s-machine and can once more pass on to the
third stage of the synthesis.

At the third stage of the synthesis an abstract structure is con-
structed, i.e., from the tables of the s-machine obtained in the pre-
ceding stage, the logical equations of an abstract structure repre-
senting this s-machine are set up,i.e.,logical functions F; and @;in
equations of the form*

XP=F (xp7 x07%, .., xBTS b wgt, L, ub ),
i=1,2,...,n,
2= (xP, XP, ..., XB uf, uf, ..., ul),
=12, ..., L

Depending on the number of states in the elements at our dis-
posal for the construction of the machine, the functions will be those
of two-, three-, and generally of m-valued logic. The method of
coding and the construction of these functions is given in Section 4.2.

In the case of construction of an automaton based on steady
states, the coding and construction of the functions F; and @; are
given in Section 5.4.

As a result of the third stage of the synthesis the problem is
reduced to one which is much more familiar to the project engineer,

*The equations are written out for a machine of the P-P type.
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that of realizing a system of logical relations with the technical
means at his disposal. At this point, broadly speaking, the prob-
lems of abstract synthesis are no longer relevant. Consequently,
there are no problems of the general theory of finite automata and
sequential machines which are applicable. From this moment on,
the problem belongs to the realm of technical realizations of the
abstract structure which has been obtained.

The problems arising in this connection are studiedin the theory
of switching circuits and the theory of logical systems, in the nar-
row sense of these terms. The problems solvable by these theories
have hardly been considered in this book, or a mere mention of
them has been made in passing,

If the subsequent construction of the scheme is based on delay
elements, then the number of such elements is predetermined by
the number of the equationsin the abstract structure, which is known
to be minimal if the second stage of the synthesis has been carried
out to the end. It was justthis obtaining of a scheme with a minimal
number of elements of delay that constituted the second stage of the
synthesis. The problem of technical realization then reduces to the
construction of logical converters realizing the functions F; and @;
contained in the right-hand sides of the equations of the abstract
structure. From one and the same set of logical elements the con-
verters may be constructed in various ways. This too has its own
minimization problems, but these infact concern converters and not
sequential machines, i.e., they relate to statics and not to dynamics,
and, therefore, only a brief mention of them has been made in Sec-
tion 2.6.

If the available set of logical elements does not contain a ready-
made delay element, this does not exclude the possibility of con-
structing schemes, since the delay elementitself, being the simplest
automaton, can be constructed from the elements of the set, for ex-
ample, using the steady states of equilibrium.

If the entire machine is constructed using steady states, i.e.,
without special delay elements for the beat signal fed from without,
this means that a fast machine istobe constructed according to the
abstract structure obtained at the end of the third stage; elements
which have an inherent delay (e.g., repeaters)serve as delayers. In
particular, in the common case when the schemes are assembled
from relays, the delayer for the ‘‘fast’’ s-machine will be the inter-
mediate relays, while the converters F; and @; are formed from
chains of contacts of the input and intermediate relays.

With such a circuit construction (using steady states), there
arise additional technical difficulties, in connection with the fact
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that in a nonsynchronized systems the delay time of the elements
is not strictly the same. This leads to the danger of relay ‘‘com-
petition’’ arising, which may sometimes result in an incorrect
operation of the circuit. In such cases the danger of competition
is obviated by special circuits, called realizations; inthese circuits
either not more than one relay operates in each beat, or the feed-
back circuits are artificially cut off at the switching moments.

There are various methods for the construction of realizations,
only one of which has been briefly described in Section 5.4, since
realization problems do not relate to the general theory of finite
automata and sequential machines. In the construction of circuits
using delayers, with the beat signal to them from outside,.there is
no likelihood of competition arising and, therefore, the realization
problem does not arise.



Problems*

CHAPTER 1

1. Show that the set of points on a semicircle has the cardinality
of the continuum.

2. Show that the union of two countable sets is countable.
3. Show that the set of rational numbers is countable.

4, We know that an infinite subset of a countable set is countable,
Use this fact to show that the set of primes is countable.

5. Use equivalent transformations to convert the following six
functions to a form containing only disjunction, conjunction, and
negation:

flxy, x2) = (x; 7 x2) V(1/x5)

flxy, x3) = x5/(x7 x2)

flxy, x9) = x7 ~(x7 0 %))

fxy, x9) =x7 V{x1/%,)

- floyp, x0, x3) = (x710 %) « (x3/x))

o

- f(xl, X2, X3) = (xl/xz) \Y (73 «»xl)
6. Find the complete disjunctive normal form of the function

f(xl, xz) = X3 \Vi Xy & (xl & .')Cz) .
7. Find the complete conjunctive normal form of the function

flxy, x5, x3) =(x3 Vx5) & (X, V x3) & (%, VX)) & (x,V x3) -

8, For each of the following two functions, find the complete
disjunctive and conjunctive normal forms, constructing as a
preliminary the characteristic table:

f1{xy, x3) =%, » X,
f2(xy, %) = x; ~ %,
*In all problems the symbol x corresponds to the symbol zoriginally used in the

Russian edition and throughout the text, Reader is advised to note the difference in
solving the problem.
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9. For the function f(x;, x;) =x;V %, construct the complete
disjunctive normal form, simplifying this function as a pre-
liminary,

10. Given the predicate P(x,y,2)=[x-(y- 2] find the predicate
Q(y, 2) = (Vx)P(x, y, 2)

11, Given the predicate P(x, y, 2) =[x V{(y ~ 2] find the predicate
Q(y, 2) = (Hx) P(x, y, 2).

CHAPTER 2

1. For the following four contact diagrams, find the simplest
equivalent circuits:

2. Each of the following two tables gives the values of two logical
functions y; and y, (all told, four functions), Construct the
contact diagrams corresponding to these functions

a) by the canonical method,

b) by the block method.
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Table 1 Table 2
x [0OfT{O]I xp |0 T|0O]Tj0| 1|01
x |00 [T )1 x2 |00 T |T|{OJO}I I
y | THT{T]0 x3{0(010 (0TI TIT]|I
¥y, 10110 y{L]0O]T30[I10]0)1
y2|0[T10J0f{0O}1}I|0

3. From a given logical functiony = (x| & x;) V(X; & x;) construct
the diagram at the diodes that realize this function.

4. From a given logical function y =(x; & x3) & X; construct the
scheme on the triodes that realize this function.

5. With the aid of Quine’s algorithm, find the minimum dis-
junctive normal form of the following functions:

yxp, X0, x3) = (X, & X, & 1) V(X & %) & x3) V (0, & %0 & x3) V(X & x5 & X3)
Y, g, %3) = (X1 & 0 & %)V & x5 & x3) V(1 & X & x3)V(x & %, & X3) .

CHAPTER 3

1, Give an example of a dynamic system that can be treated as a
finite automaton.

2. The table below is a combined table of an automaton and a
transformer. Construct the graph and the interconnection
matrix of unions of this sequential machine,

X P1 P2

X1 X4A0 xlAI

x2 | X1Ag | X34

X3 XZAI xlAO

X4 x2)\0 x2)\1
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3. Suppose that you are given the interconnection matrix C shown.
Construct a table of an automaton of the P-P type and the table
of transformations.

X3 X3 X3 X5 oxs
X 0 P1AL p3ho 0 pahy
%2 P3ro Piro 0 phg O

C=x 0 P2y P1rg p3hr 0
X4 0 0 pAoVpshi 0 piyy
X Lpido Vpshg 0 0 Parg 0

4. Suppose that we have an s-machine of the P-Pr type defined
by two tables, namely, the basic table of the automaton and the
table of the output transformer. Constructitsdiagram of states
and interconnection matrix.

Automaton Transformer
NPl e e NG K2R 2
X1 || X2 |xs Xy Ay -
Yo | *3 | %a X A -
x3 I x4 ] %3 x3 I Ag | Ay
Xg | X2 | Xs Xg || Ao ] 2o
Xs | xp [ xs Xs — 1 Ag

5. Do the same thing for the following machine of the P-Pr type:

Automaton Transformer
NG KA NPt e
xp ff xa| X5 Xy | Ao | ~
X; Xy x3 X; ’\l —_
X3 ff Xg | Xg X3 (1 Ao | Ay
Xg | X3 x4 X4 — | Ag
xs | xg| x5 xs | — 1| —
X || X2{ X6 Xg |f Ay | Ag
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6. On the basis of the examples given, state the general properties
of the interconnection matrix of an s-machine of the P-Pr type.

7. Suppose that we are given a finite automaton of the P-Pr type
with output transformer as shown:

Automaton Transformer

Phleufpaips Xff XU Xz X3 x4 |Xs

A Az A3 Al Az A3

X

X1 X4 1 X2 xs

X2 || X3 X3 |X5

X3 1 Xs Xy | X2

X4 X1 | Xy | X2

Xs X3 | X3 [ X2

Is the entire system an automaton, that is, does there exist a
single-valued function F* such that A? = F*(\2 71, p2)

8. Suppose that we are given an s-machine of the P-P type
together with a table of the automaton and the output trans-
former. Let us assign to each pairp:\A; the symbol ¢, from the
alphabet {6,, 6,, 03, ..., 0s}. Is there a single-valued function
F* such that 2 = F*(g? ™!, p?)?

X1 x1A3 X3A2 xZAI X4A1

X9 X3)\1 xl)\4 xs)\3 xZ)\z

x3 || x3hy | XAz | X4hy | X3Mg

X4 X2A3 X4A2 xZAl xIAI

Xs || X Ag [ x3A1 | XsAy | X4A3

Xo B X3Ap | X4hs | XsA3 | XAz
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CHAPTER 4

Construct a block diagram of the automaton described by
table 4.10 in the following cases:

(a) for every i,k; =2 and r; = 3
(b) for every i,k; =3 andr; =2;
(c) for every i,k;=r;=3.

From the neurons of McCulloch and Pitts all logical functions
of two variables.

Construct a trigger from the neurons of McCulloch and Pitts.
CHAPTER 5

From the following four tables, determine the types of

automata or sequential machines,
Table 1 Table 2

AN S P2 | P3 P4 NP P | 2 P3 P4

Xy | XA I XAy [ XA | x50 X1 | X2A1 | x1A1 ] x1Aq | X372

X2 xl)\3 X3)\3 X2)\3 X2)\3 X2 xl)\3 x2)\2 x2)\3 xz)\3

X3 xl)\z x2/\2 x2)\2 x3)\2 X3 x1/\2 x2)\2 xl)\l x3A2
Table 3 Table 4

NG I U I P4 AN I Y T I B

X1 x2)\1 xl)\l xl)\3 X3)\3 X1 X2)\1 xl)\z xl)\z x3)\3

Xy | X1A3 ] X3A5 | XaAn | XA, Xy | XqAy | X33 | XAy | XoA

X3 x1A3 X2A3 X2A2 X3A3 X3 X1A2 X2A1 x2A1 X3A3

From the tables of the preceding exercise, construct the
tables of transitions and minimize them,

From the same tables, construct (25, +1) realizations of
Huffman,
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CHAPTER 6

Synthesize an s-machine with input alphabet ip;, py, p3} and
output {A;A,1 such that, for an initial state x, and fixed p*,
if p* =p;, the periodic sequence X A;AzA; will be generated;
if p* =p,, the periodic sequence A AA; will be generated;
for p* =p3;, the periodic sequence A A A, will be generated.

Do the same thing as in problem 1 but with the alphabet
p =1p1, p2} and the alphabet A = {r;, Ay, A3}

If p*=p,, the sequence AzA;A1hA7 4,4, will be generated
with period AjAzAz;

if p* =p,, the sequence Ah3MA30 40041 will be generated
with period A,.

A periodic input sequence is applied at theinput of an arbitrary
s-machine. Show that the periodic sequence of output symbols
is determined by a finite number of moments at the output
of that machine.

CHAPTER 7

Show that the events mentioned in examples 1-14 of Section
7.2 are regular and, by using the concept of chains of triads,
construct automata representing these events.

Suppose that we are given the alphabet {p,, p,}. The set L
contains all words consisting of letters of that alphabet with
the exception of words in which the same letter occurs twice
in a row. Show that the set L is regular. Write the regular
expression for it.

Do the same thing as in problem 2 for the alphabetip,, p,, psl
Is the assertion of regularity of the set L so constructed
true for an arbitrary finite alphabet?

What event is represented by the automaton shown in Fig. 3
of Chapter 2 by means of the set of eventsix,, x;}if it begins
from the initial state x;? Write the regular expression for
this event.

Show that the intersection of two regular sets is regular.
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An s-machine is said to be strongly connectedif, for every pair
x; and x; of states of that machine there exists an input
sequence that takes the machine from the state x; into the state
Xje

Let S denote the subset of the states of a strongly connected
machine, Let x; denote the initial state. We denote by R, the
event that the subset S is in the initial state x;.

Show that QRK=ER, where E is the universal event and R is

some regular event.
Let f(t) denote an integer-valued function such that 0 < f(3 <t
and

lim f(8) = Lim [ - f())] =
t—©

t— @

Show that the event ‘‘the number of symbols p, from the
zeroth to the tth moment is equal to f(#)” is not regular.

Suppose that we are given a finite automaton A with initial
state x°. Let R denote a set of sequences at the input. Sup-
pose that to each of these sequences is assigned a sequence
in a set K of sequences of states. Show that, if R is regular,
so is K. Does nonregularity of R imply nonregularity of K ?

Suppose that we are given an s-machine with initial state x°,
At the input of this machine, sequences from the universal
set E are applied. Show that the set of output sequences of
the machine is regular.

Under the conditions of exercise 9, suppose thatonly sequences
belonging to some regular set L are applied at the input. Is
the assertion that the output sequences constitute a regular
set valid in this case?

CHAPTER 8

Synthesize a finite automaton that represents by the appearance
of the symbol A; at the output the regular event

*

R =1{lpip)* V p3lps)* - prlp)*] - palp)*}
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2. Do the same thing for
R =[p1 V p3ppal™ .

3. Synthesize a finite automaton representing the following
definite event: the input sequence terminates with the symbols
pip2 0T p3psp1. Write the regular expression for this event.

4. Synthesize the indicator of evenness of a discrete time

moment, The regular expression corresponding to it has
the form

R=1[Up, Vp2Vp3Vpdlp VpaVopsVpdl™
CHAPTER 9

1. By using the algorithm of Aufenkamp and Hohn, show that the
machine of Fig, 1 is minimal, The alphabets; p = {p;, ps}

x = X1, %9, X3, x4} 5 A = 1o, A}

2. Minimize the machine with interconnection matrix ¢ by using
the algorithm of Aufenkamp and Hohn:

X1 X2 X3 X4 Xs X6

xi] 0 pdo 0 pAr 0 pihe
x2lpaho 0 p3rp O piAy O
x3] 0 pivy O psrg O P21
Xgipado O p3rg 0 pA; O
xs| 0 piro paro p3t1 O 0

Xsipsht 0 pidg O pary O
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3. Show whether the following machine does or does not have
equivalent states:

X1 X2 X3 X4 Xs

x; ] 0 0 0 p2ro 191’\1—I

x2{ 0 0 p1A1 0 P2Ao
C=x3| 0  poro piAy, O 0O
xgi 0 0 PaAL Py 0

X5 Lparg 0 0 P1A1 0

4. Minimize the following machine (with respect to strong

equivalence):
Xy X2 X3 X4 X5 X6
x4 0 P1hro 0 p2ho 0 0 -1
X0 0 0 prrg 0 0 P2
c X3 p2hg O 0 pikg 0 0
x| 0 prg 0 0 0 P1Ao
Xsipidg O phg O 0 0
xs| O 0 0 0 P1A1 V paho 0 |

5. From the interconnection matrix C draw a diagram of the
states of the machine. Minimize it by using the algorithm of
Aufenkamp and Hohn (strong equivalence).

X1 Xy X3 X4 x5 Xg
X1 _cho p1r1 0 0 0 0
x1 0 P2Ao  Piho 0 0 0
x31 0 0 Paho  p1ro O 0

€= xg| O 0 0 P2Ae  P1A1 0
xs| 0 0 0 0 P2Ao  piro
XsLpiry O 0 0 0 paro]
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6. Show that the machine of Fig. 2 is minimal (strong equiva-
lence). Find the groups of equivalent states in the case of the

set of admissible input sequences L that contain all sequences
of length 2,

Fig. 2

7. Show whether the machine of Fig. 3 does or does not have
equivalent states. For this machine, construct partitions of

all states into equivalence classes with respect to input se-
quences of length 1, 2, 3, and 4.

poro

Fig. 3

8., Show whether the machine of Fig. 4 has equivalent states
or not. Construct partitions into groups of equivalent states
with respect to input sequences of length 1, 2, and 3.
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Fig. 4

9. The machine of Fig. 5 does not have equivalence states.
However, if we take the definition of weak equivalence, cor-
responding to this machine is a minimal machine with three
states. Construct it.,

Fig. 5

10. Minimize the machine of Fig. 6 with respect to weak equiva-
lence,
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11.

12,

13.

14.
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Denote by E; the set of all input sequences of length /. For
arbitrary fixed /*, construct for a givenmachine A (see Fig. 7)
a machine B equivalent to A in the sense of weak equivalence
with respect to E;. but not equivalent with respect to E;..
for pex > J*,

(B Prty
‘0 Pl’\o v PQ’\Q @

Machine A
Fig. 7

An s-machine is said tobe strongly connected if, for every pair
x; and x; of states of that machine there exists an input sequence
that converts the machine from the state x; to the state xj.
Show that, for strongly connected machines, weak equivalence of
two machines implies their strong equivalence (so that in this
case the concepts of strong and weak equivalence coincide,)

Show that, for completely determined automata (thatis, automata
without restrictions of the Aufenkamp type)for an arbitrary set
of input sequences L and arbitrary x;, x;, x, the equivalences
with respect to L

Xj~ Xj 5 Xj~ X

imply x; ~ x& (transitivity of equivalence). Show that the num-
ber of groups of equivalent states with respect to L is the
same in all machines that are pairwise equivalent with
respect to L.

The set [, contains a single sequence p;p;. Minimize the
machine of Fig. 8 up to the 4th states with respect to L
(strong equivalence)
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(Hint: direct the arrow A; from the state xsxsto the state x;
and remove the arrow p;A; from xs to x3.)

15. The set L contains a single sequence pipzp2. Minimize up to
the 4th states the machine of Fig. 9 with respect to L (strong
equivalence).

16, Suppose that we are given the machine of Fig. 10 and the set
[. containing a single sequence pipzp: . In the machine the
states x, and x5 are equivalent with respect to L. However, it
is imposible to minimize the machine of Fig. 10, Prove
this. (Here, it is a question of minimization with respect to L
in the sense of either strong or weak equivalence.)
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17. The set L contains all sequences of input symbols such that
a single symbol does not appear twice in a row. Minimize
the machine of Fig. 11 with respect to L up to the 3rd states
with respect to strong equivalence and up to the second
states with respect to weak equivalence.

pirg

18. Suppose that we are given the automaton of Fig. 12 with
input alphabet ip;,p2.p3} and restrictions of the Aufenkamp
type. Write the regular expressions of the set of admissible
input sequences for the states x;, xz, x3, x4 and xs

Fig, 12

19. Do the same thing as in exercise 18 for the automaton of
Fig. 13.

()—2
P1VP VP

P3
[ 3]

Fig. 13
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Is the set of admissible input sequences for an arbitrary
state x; of the automaton with restrictions of the Aufenkamp
type always regular?

Suppose that we are given an arbitrary s-machine with
restrictions of the Aufenkamp camp thatis in the initial state
xg. All sequences in the set Ly of sequences admissible for
the state x, are applied at the input. Is the set of output
sequences of this machine regular?

Is the theorem of regularity of representable events for an
automaton with restrictions of the Aufenkamp type valid?

Minimize the s-machine of Fig, 14 with restrictions of
the Aufenkamp type.

Fig. 14

To simplify the work, suppose that the following procedure is
chosen for minimizing an s-machine with restrictions of the
Aufenkamp type: First, we minimize the given machine in
accordance with Aufenkamp’s algorithm (symmetric partition-
ing into generalized f-matrices) and then we minimize the
resulting machine by Hill’s method. Does this approach
guarantee construction of a minimal machine?

Figure 15 shows a diagram of the states of the s-machine,
In that machine there are norestrictions of the Aufenkamp type
(all transfers are determined) but the output transformer is
undetermined: we do not know the value of A for x; and p,;
(the loop in the diagram of the states). One can easily show
that no extension of the definition of the output transformer
will make it possible to minimize the machine of Fig. 15;
that is, equivalence states do not arise.



402 ELEMENTS OF MATHEMATICAL LOGIC

However, it is possible to minimize this machine if we
understand the word minimize in the followingway: for a given
s-machine M, it is required to construct an s-machine N such
that the foliowing two conditions are satisfied: (1) To every
state x; of the machine M there corresponds at least one state
x; of the machine N such that, for an arbitrary input sequence
with the initial states x; and x;, the output sequence of the
machine M coincides, wherever it is designed, with the output
sequence of the machine N.

{2) No s-machine N’ exists satisfying condition (1) with
fewer states than the machine N.

Minimize the machine of Fig, 15 in accordance with this
definition up to the 2nd states.

Fig. 15
CHAPTER 10

1. Suppose that we are given a slow machine G (see Fig. 1).
Construct a minimal fast machine reproducing it under a
clock-rate transformation with the clock rate determined by
a change in the state at the input of the machine G.

Fig. 1

2. Do the same thing as in problem 1 for the slow machine G of
Fig. 2.
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Fig, 2

In the following problems, the law of transformation of the
clock rate is as follows: a slow moment occurs at the instant
p +1if a regular event R occurs at the instant p, that is, the
sequence pop; ---pp belongs to a regular set R.

Show that the machine S the diagram of the states of which is
shown in Fig. 3 does not represent any slow machine if the
law of transformation of clock rate is given by the regular
set R = (ptp)*.

Poro P1ty Polte
ey (™)
Fig. 3

A fast machine S is shown in Fig. 4. The law of trans-
formation of clock rateis determined by a regular set R that can
be represented in the automaton A (see Fig. 5) from the initial
state a, by a set of states {q, a,. a,, a3}. Construct a machine
G that the machine S represents under such a transformation
of clock rate,

Pits
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Fig. 5

Let S denote an arbitrary machine with initial state x, and let
R denote a regular set defining a transformation of clock rate.
Consider the set of all slow tapes obtained from fast ones as a
result of the transformation of clock-rate, In this set, let us
denote by A, some event G; (corresponding to the set of slow
input sequences that lead to the occurence A;). Show that the
set G; is regular,

For the machine S shown in Fig. 4 and the machine G shown
in Fig. 6, construct a regular set R such that the machine
S reproduces the machine G under a transformation of clock
rate determined by the set R.

PIAL VPR Pirg VP PRV PoMy

Fig. 6
(Hint: consider the following correspondence of events:

xls L d le; xzs L d sz; x3s o x3G .)

Let S and G denote machines, Let x¢ denote a state of the
machine G. What conditions must the machine S satisfy for it
to be possible to construct a regular set R such that corre-
sponding to the state x© there will be a state x5 of the machine
S in the sense of reproduction,
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CHAPTER 11

1. Suppose that Fig., 1 is the diagram of states of a strongly

connected s-machine S.
PoM P1%o V Pato
Fig, 1

Construct a diagram of states of the s-machine N for which
the result of an experiment of length ¢ coincides with the
result of the experiment with the givenmachine S for arbitrary
initial states of the s-machine N. (this last condition differs
from the condition of the example given on page 399 of
original Russian, Figs. 11.1 and 11.2).

Suppose that Fig., 2 is the diagram of states of an s-machine.
Find the shortest experiment determining the last state of
this machine under the condition that all the states can be
initial.

Fig, 2

Show that the estimates (11.17) and (11.18) are exact for
arbitrary N, To do this, construct diagrams of the states of
an s-machine and a finite automaton with N states. To de-
termine the last states of these, it is necessary to make
experiments the lengths of which are determined by these
estimates.

Figure 3 shows the diagrams of the states of three finite
automata. Show that it is possible to single out any one of
them by an experiment of length not exceeding 4.
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Fig. 3

Find an experiment with the aid of which we can ascertain
the structure of any one of four finite automata shown in
Fig. 4, that is, we can run through all states and all arrows
of any one of these automata if the state «, is the initial state.

P1 Po Py Po ¥ P1 Pl

Py P1 Po PoV P1 Po
CH o (%)
Fig. 4

Construct the diagram of the states of a strongly connected
s-machine with N states to which it necessary to apply an
input sequence of length N?/4 in order to go through all its
states. Is the quantity N?/4 maximum for the length of the
experiment as a result of which an arbitrary strongly con-
nected machine goes through all states or is it possible to find
a strongly connected machine for which an experiment of
greater length is required if the machine is to go through all
states?

Suppose that we are given the set of all strongly connected
machines with N states. Show that there exists an experiment
making it possible to go through all states of any one of these
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machines independently of its initial state and estimate the
length of the experiment,

8. Figure 5 shows the diagram of the states of a strongly con-
nected s-machine with four nonequivalent states. One can
easily show that it is possible to set up the following one-to-
one correspondence between the results of experiments and
states into which the s-machine goes at the end of these
experiments,

p1AV PR Palo V P3to

The result corresponds to a transfer of the s~machine into the
state

Pr| P1 ]| P2
Ky
Ao | Ar | Ao
Pr| P1
K2
Ag | Ay
Pi| P1]| P2 P2
K3
Aol A Aol Ao
Pi| P1| P2 P3
Ky
Agl A1l Al Ap

Try to show that for a given strongly connected s-machine
with N nonequivalent states, then to each of its states x; it
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is possible to assign an experiment of length not exceeding
N the result of which indicates unambiguously that the
machine has gone into just that state x;. (In this example,
this estimate is attained,)

Suppose that we are given a set of 2" strongly connected
finite automata of the form shown in Fig. 6 (locks).

P

Fig. 6

At the beginning of the experiment, the finite automata are in
the state «;. Show that an upper bound g of the length of the
experiment necessary for attaining the state «, of any one of
these automata is determined by the equation g = 27 Inn.
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