

Software
Configuration
Management

The Complete Project Management Office
Handbook

Gerard M. Hill
0-8493-2173-5

Complex IT Project Management:
16 Steps to Success

Peter Schulte
0-8493-1932-3

Creating Components: Object Oriented,
Concurrent, and Distributed Computing
in Java

Charles W. Kann
0-8493-1499-2

Dynamic Software Development:
Manging Projects in Flux

Timothy Wells
0-8493-129-2

The Hands-On Project Office:
Guaranteeing ROI and On-Time Delivery

Richard M. Kesner
0-8493-1991-9

Interpreting the CMMI®: A Process
Improvement Approach

Margaret Kulpa and Kent Johnson
0-8493-1654-5

Introduction to Software Engineering

Ronald Leach
0-8493-1445-3

ISO 9001:2000 for Software and Systems
Providers: An Engineering Approach

Robert Bamford and William John Deibler II
0-8493-2063-1

The Laws of Software Process:
A New Model for the Production
and Management of Software

Phillip G. Armour
0-8493-1489-5

Real Process Improvement Using
the CMMI®

Michael West
0-8493-2109-3

Six Sigma Software Development

Christine Tanytor
0-8493-1193-4

Software Architecture Design Patterns
in Java

Partha Kuchana
0-8493-2142-5

Software Configuration Management

Jessica Keyes
0-8493-1976-5

Software Engineering for Image
Processing

Phillip A. Laplante
0-8493-1376-7

Software Engineering Handbook

Jessica Keyes
0-8493-1479-8

Software Engineering Measurement

John C. Munson
0-8493-1503-4

Software Engineering Processes:
Principles and Applications

Yinxu Wang, Graham King, and Saba Zamir
0-8493-2366-5

Software Metrics: A Guide to Planning,
Analysis, and Application

C.R. Pandian
0-8493-1661-8

Software Testing: A Craftsman’s
Approach, 2e

Paul C. Jorgensen
0-8493-0809-7

Software Testing and Continuous Quality
Improvement, Second Edition

William E. Lewis
0-8493-2524-2

IS Management Handbook, 8th Edition

Carol V. Brown and Heikki Topi, Editors
0-8493-1595-9

Lightweight Enterprise Architectures

Fenix Theuerkorn
0-9493-2114-X

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401

E-mail: orders@crcpress.com

Other CRC/Auerbach Publications in Software
Development, Software Engineering,

and Project Management

Series_A_master Page 1 Friday, January 23, 2004 8:49 AM

Jessica Keyes

Software
Configuration
Management

AUERBACH PUBLICATIONS

A CRC Press Company

Boca Raton London New York Washington, D.C.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2004 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131031

International Standard Book Number-13: 978-0-203-49611-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

DEDICATION

This book is most appreciatively dedicated to my friends, old and
new, and particularly my family.

vii

CONTENTS

Foreword .. xv
Preface .. xvii

1

Intr oduction to Softwar e Confi guration Management

.............

1
SCM and Process Improvement.. 3
Measurements and Metrics .. 5
Benefits of SCM.. 6
SCM Components... 7
Configuration Identification... 8
Configuration Change Control ... 10
Configuration Status Accounting.. 13
Configuration Auditing ... 14
Implementing SCM in the Organization ... 15
Manage the Risks of SCM .. 16
Summary .. 18

2

Project Management in a CM Envir onment

.............................

23
Who Writes the Project Plan... 26
What Goes Into the Project Plan.. 26
CM-based Project Plan Components .. 28

Identification ... 28
Software Scope ... 30
Project Estimates... 30

Estimation Techniques ... 30
Decomposition Techniques ... 33
Empirical Model.. 33

Risk Management Strategy... 33
Risk table... 34
RMMM plan for each risk .. 34

Schedules .. 34
Resource table .. 38

Project Resources ... 38

Tracking and Control Mechanisms ... 40
Quality Assurance and Control ... 40
Change Management and Control .. 41

Performance Measurement .. 41
Configuration Status Accounting... 42
Summary ... 43

3

The DoD CM Pr ocess Model

..

45

CM Benefits, Risks, and Cost Impact ... 46
CM Life-Cycle Management and Planning ... 48

Management and Planning.. 48
Configuration Identification ... 49
Configuration Control .. 50
Configuration Status Accounting (CSA) .. 50
Configuration Verification and Audit .. 51

Relation to Systems Engineering Process... 51
Implementing the CM Process.. 55
Measuring and Evaluating the CM Process ... 56
CM Benefits and Risks by Program Life-Cycle Activity 58

Management and Planning: Concept and Technology
Development Phase ... 58
Configuration Identification: Concept and Technology
Development Phase ... 58
Configuration Control: Concept and Technology
Development Phase ... 59
Configuration Status Accounting: Concept and Technology
Development Phase ... 60
Management and Planning: System Development and
Demonstration Phase ... 60
Configuration Identification: System Development and
Demonstration Phase ... 61
Configuration Control: System Development and
Demonstration Phase ... 62
Configuration Status Accounting: System Development and
Demonstration Phase ... 63
Configuration Audit: System Development and
Demonstration Phase .. 64
Management and Planning: Production and
Deployment Phase ... 65
Configuration Identification: Production and
Deployment Phase ... 66
Configuration Control: Production and Deployment Phase 66
Configuration Status Accounting: Production and
Deployment Phase ... 67
Configuration Audit: Production and Deployment Phase 69
Management and Planning: Operations and Support Phase............ 69
Configuration Identification: Operations and Support Phase........... 70

Configuration Control: Operations and Support Phase 70
Configuration Status Accounting: Operations and Support Phase... 71

Effect Process Improvement and Document Lessons Learned 72
Summary ... 72

 4

Confi guration Identifi cation

...

75
How Configuration Identification Works ... 75
Configuration Identification General Activity Guides 78
Product Structure.. 78
Configuration Items ... 78
Configuration Item Selection Criteria ... 82

General Guidance .. 82
CI Selection Checklist .. 83

Additional Factors .. 84
Configuration Documentation... 86

Specification Types Categorized by Object 86
System.. 86
Item.. 86
Software... 87
Process... 87

Specification Types Categorized by Purpose..................................... 87
Performance .. 87
Detail ... 87

Design Solution Document Concepts... 88
Software Documentation List .. 89

Process Implementation: Planning .. 89
System Requirements Analysis and Architectural Design 89
Software Requirements Analysis and Design..................................... 89
Software Architectural and Detailed Design 90
Software Integration and Qualification Testing 90
As-Built Software Product Definition.. 90
System Operation ... 90
System/Software Maintenance ... 91

Configuration Baselines ... 91
Configuration Baseline Concepts .. 91

Document and Item Identification ... 94
Part/Item Identification Numbers (PIN) ... 96
Software Identifiers .. 96

Engineering Release... 97
Interface Management ... 97
Summary ... 99

 5

Confi guration Contr ol

... 101
The Process of Configuration Control.. 101
Engineering Change Proposal... 103

Request for Deviation .. 103
RFD Contents.. 113

Summary ... 113

 6

Confi guration Status Accounting

.. 115
Typical CSA Information over the Acquisition Program
Life Cycle .. 116

Concept and Technology Development... 118
System Development and Demonstration.. 118
Production and Deployment ... 119
Operational Support... 120

Configuration Status Accounting Process Evaluation Checklist 120
Summary ... 121

 7

A Practical Appr oach to Documentation and Confi guration
Status Accounting

...

123
Configuration Identification... 123

Product Structure.. 124
Product Identifiers .. 124
Baselines ... 125

Configuration Status Accounting... 125
The Effective Documentation of Systems .. 126
Methods and Standards ... 130

Generating Documentation the Right Way 132
1. All Documentation Produced prior to the Start of
 Code Development.. 132
2. Program Flowcharts ... 132
3. Use or Business Cases... 132
4. Terms of Reference.. 136
5. Data Dictionary ... 137
6. Program/Component/Object Documentation 137
7. All Presentation Material.. 138
8. Test Cases (Appendix E) and Test Plan 138
9. Metrics... 139

10. Operations Instructions.. 139
11. End-User Help Files .. 140
12. User Documentation .. 140

Maintaining Documentation .. 140
Summary ... 143

 8

Confi guration V erifi cation and Audit

.. 145
Configuration Verification and Audit Concepts and Principles 146

Configuration Verification .. 147
Configuration Audit.. 149

Functional Configuration Audit ... 149
Physical Configuration Audit ... 150

Application of Audits during Life Cycle... 150
Summary ... 151

 9

A Practical Appr oach to Confi guration V erifi cation
and Audit

.. 157
Components of a Design and Document Verification Methodology 157
Components of a Configuration Audit Methodology................................ 158
Components of a Testing Methodology... 159

Inspections .. 160
Walk-Throughs.. 160
Unit Testing... 161
Daily Build and Smoke Test ... 161
Integration Testing ... 163
System Testing .. 163
Parallel Testing ... 164

The QA Process ... 164
The Test Plan ... 164
Test Automation ... 166
Summary ... 171

 10

Confi guration Management and Data Management

................. 173
CM-Related Data Management Concepts and Principles.......................... 174

Document Identification .. 175
Data Status Level Management ... 177
Data and Product Configuration Relationships................................ 178
Data Version Control.. 179
Digital Data Transmittal ... 180
Data Access Control... 181

Summary ... 182

 11

Confi guration Change Management

... 183
What Is Configuration Change Management? ... 183
The Maintenance Process.. 184
The Product Baseline .. 186
Types of Maintenance ... 186

Corrective Maintenance ... 186
Adaptive Maintenance.. 187
Perfective Maintenance .. 187
Preventive Maintenance ... 187

Maintenance Costs ... 187
A Model for Maintenance.. 188
Configuration Management Steps ... 189

Change Identification ... 189
Evaluation and Coordination... 191
Change Implementation and Verification... 193
Handling Variances... 194

Managing Maintenance Personnel .. 194
Measuring Effectiveness ... 194
Summary ... 195

 12

Confi guration Management and Softwar e Engineering
Standar ds Refer ence

... 197
The Standards Bodies .. 199
A Summary of the EIA Standard (EIA-649) ... 200

Configuration Management Planning and Management 200
Configuration Identification ... 201
Configuration Change Management ... 202
Configuration Status Accounting... 203
Configuration Verification and Audit .. 203
Management of Digital Data ... 204

ANSI .. 204
IEEE... 205

IEEE Software Engineering Standards Summary 205
ISO ... 205

ISO Software Engineering Standards Summary 205
Summary .. 237

 13

Metrics and Confi guration Management Refer ence

................. 239
What Metrics Are and Why They Are Important...................................... 240
Traditional CM Metrics... 242
IEEE Process for Measurement ... 242

Stage 1: Plan Organizational Strategy... 243
Stage 2: Determine Software Reliability Goals 244
Stage 3: Implement Measurement Process....................................... 244
Stage 4: Select Potential Measures.. 244
Stage 5: Prepare Data Collection and Measurement Plan 244
Stage 6: Monitor the Measurements ... 245
Stage 7: Assess Reliability.. 245
Stage 8: Use Software .. 245
Stage 9: Retain Software Measurement Dat 246

Metrics as a Component of the Process Maturity Framework................. 246
Level 1: Initial Process... 246
Level 2: Repeatable Process .. 246
Level 3: Defined Process ... 247
Level 4: Managed Process ... 247
Level 5: Optimizing Proces ... 248

Steps to Take in Using Metrics... 248
IEEE Defined Metrics... 249

1. Fault Density .. 249
2. Defect Density... 249
3. Cumulative Failure Profile... 250
4. Fault-Days Number ... 250
5. Functional or Modular Test Coverage.. 250
6. Requirements Traceability ... 250
7. Software Maturity Index .. 251
8. Number of Conflicting Requirement .. 251
9. Cyclomatic Complexity.. 252
10. Design Structure... 252

11. Test Coverage... 253
12. Data or Information Flow Complexit... 253
13. Mean-Time-to-Failure... 254
14. Software Documentation and Source Listings 254

IT Developer’s List of Metrics... 255
McCabe’s Complexity Metric ... 255
Halstead’s Effort Metric.. 256

Summary ... 256

 14

CM Automation

... 257
Automating CM ... 257

Phase 1: Preparation and Planning .. 259
Phase 2: Process Definition... 260
Phase 3: Tool Evaluation... 260
Phase 4: Pilot Project Implementation ... 261
Phase 5: Rollout to Other Projects ... 262
Phase 6: Capture and Communicate Improvements....................... 262

A Selection of CM Tool... 262
Summary ... 273

Appendices

Appendix A Project Plan... 275
Appendix B DoD Engineering Change Proposal...................................... 293
Appendix C Sample Data Dictionary ... 311
Appendix D Problem Change Report .. 313
Appendix E Test Plan.. 319
Appendix F Program Code Inspection Form .. 365
Appendix G Sample Inspection Plan ... 367
Appendix H QA Handover Document .. 381
Appendix I System Service Request... 385
Appendix J Document Change Request (DCR) .. 389
Appendix K Problem/Change Report .. 393
Appendix L Software Requirements Changes ... 399
Appendix M Problem Report (PR) ... 401
Appendix N Corrective Action Processing (CAP) 403
Appendix O Specification Change Notice ... 405
Appendix P Project Statement of Work ... 409
Appendix Q Problem Trouble Report (PTR)... 441
Appendix R Library/Baseline Change Form.. 443
Appendix S Sample Maintenance Plan .. 445
Appendix T Software Configuration Management Plan (SCMP) 461
Appendix U Acronyms and Glossary... 537
Appendix V Functional Configuration Audit (FCA) Checklist 551
Appendix W Physical Configuration Audit (PCA) Checklist 553
Appendix X SCM Guidance for Achieving the “Repeatable”
 Level on the Software ... 555
Appendix Y Supplier CM Market Analysis Questionnaire 597

Index

... 599

xv

FOREWORD

I have written more than a few books and articles about software engi-
neering. I have also spent five years teaching this same subject to computer
science graduate students. While it is easy to teach the “process” of systems
development and design, it is far more difficult to implement it in such
a way to produce quality-oriented systems in a productive manner.

What is needed is a framework that serves to organize the life-cycle
activities that make up the software engineering process. This framework
is configuration management.

Those of us in the field for more than a few years tend to think of
configuration management as simple versioning or change control. It is
this, but it is much more. Using configuration management, usually referred
to simply as CM, the

process

 of change can be managed from idea inception
to product deployment, ensuring quality control as well as cost control.

CM is all things to all people. It well serves the developer, producer,
supplier, and customer. Lager [2002] says that it prevents technical anarchy,
avoids the embarrassment of customer dissatisfaction, and maintains the
consistency between the product and the information about the product.

Computer Associates (CA) did a survey of organizations in Australia
and New Zealand in 2002 [Cooper 2003]. The survey found that:

�

88 percent deploy applications on multiple platforms

�

44 percent deploy on more than four platforms

�

61 percent maintain multiple releases of software

�

52 percent require support for concurrent development

�

46 percent maintain multiple life cycles for different kinds of devel-
opment

�

39 percent make frequent changes to packaged applications

Organizations are operating in an ultra-competitive global arena where
change is risky. Not managing that change is even riskier. As demonstrated
by the CA study, today’s computer hardware and software infrastructures
are complex mega-beasts that span multiple devices, platforms, and pro-
gramming languages, not the least of which is Web based. Making a
mistake can lead to lost customer confidence, poor quality control, wasted
resources, and ultimately diminished competitive advantage.

Simply put, all organizations need CM.

Jessica Keyes

References

Cooper, Andy, “Change Management: Quality and Quantity — Does It Have to Be a
Trade-Off?,” White Paper, Computer Associates, May 2003.

Lager, Alan E., “The Evolution of Configuration Management Standards,” Logistics
Spectrum, Huntsville, AL, January–March 2002.

xvii

PREFACE

Configuration management (CM) grew up in the military. Military standard
973 (MIL-STD-973) became the “bible” for CM and to this day remains
the basis for all configuration management standards, including EIA-649.

This handbook discusses CM from a standards perspective, relying on
the original DoD MIL-STD-973 as well as EIA-649 to describe the elements
of configuration management from a software engineering perspective.

This book has two parts. The first section is composed of 14 chapters
that explain, from a practical perspective, every facet of configuration
management as it relates to software engineering. The second section
consists of more than 20 appendices that contain a plethora of valuable,
“real-world” CM templates.

The content of the book is extensive and inclusive. In it you can find
everything from CM planning to configuration identification to verification
and audit. The author would like you to think of this book as a sourcebook
— a compilation of techniques, templates, and best practices in the field.
With it, you will have everything you need to implement and run a sound
configuration management program in your organization.

This book is also vendor-neutral, which should be an important factor
in your selection of a book on CM. All too often, the process of CM within
an organization is wrapped around the tool that is chosen rather than the
other way around, which is more appropriate. The author likes to call
CM implementations based on particular toolsets “vendor-based CM” as
opposed to the more robust implementation of CM, which must be vendor-
neutral. So, in this book, you will not find documentation on any of the
more popular CM tools on the market. What you will find, in Chapter 14,
is a serious discussion of what to look for in a CM tool and then a list
of some toolsets you might want to review.

Who Should Read This Book?

This book is intended for a wide audience. Those in charge of the
configuration management process will find in this book everything they
need to implement and run a successful CM program. However, other
professionals will also benefit from this book. CIOs, project managers,
and systems designers will find that this book provides a wealth of “how-
to’s” that correlate nicely with the software engineering tasks they must
carry out on a daily basis. Quality control personnel and EDP auditors
will find a close correlation between CM audit and verification and
traditional testing. Finally, end-user management will find that this book
provides some very useful guidance that will assist them in managing a
quality and productive systems implementation effort.

Note:

 The author has made every attempt to acknowledge the sources of
information used, including copyrighted material. If for any reason a
reference has been misquoted or a source used inappropriately, please
bring it to the author’s attention for rectification or correction in the next
edition.

1

1

INTRODUCTION TO
SOFTWARE CONFIGURATION

MANAGEMENT

Software configuration management (SCM, or just plain CM) is an orga-
nizational framework — that is, a discipline — for managing the evolution
of computer systems throughout all stages of systems development. That
a rigorous framework for producing quality computer systems is needed
is undeniable according to the following statistics:

More than half (53 percent) of IT projects overrun their schedules and
budgets, 31 percent are cancelled, and only 16 percent are com-
pleted on time.

Source: Standish Group
Publication date: 2000

Of those projects that failed in 2000, 87 percent went more than 50
percent over budget.

Source: KPMG Information Technology
Publication date: 2000

45 percent of failed projects in 2000 did not produce the expected
benefits, and 88 to 92 percent went over schedule.

Source: KPMG Information Technology
Publication date: 2000

Half of new software projects in the United States will go significantly
over budget.

Source: META Group
Publication date: 2000

2

�

Software Configuration Management

The average cost of a development project for a large company is
$2,322,000; for a medium company, it is $1,331,000; and for a small
company, it is $434,000.

Source: Standish Group
Publication date: 2000

$81 billion was the estimated cost for cancelled projects in 1995.
Source: Standish Group
Publication date: 1995

More than half (52.7 percent) of projects were projected to cost over
189 percent of their original estimates.

Source: Standish Group
Publication date: 2000

Projects completed by the largest American companies have only
approximately 42 percent of the originally proposed features and
functions.

88 percent of all U.S. projects are over schedule, over budget, or both.
Source: Standish Group
Publication date: 2000

The average time overrun on projects is 222 percent of original esti-
mates.

Source: Standish Group
Publication date: 2000

During the past decade, the capabilities and sheer innovativeness of
software technology has far outpaced our ability to manage the com-
plexity of problems that software development must address. Unfortu-
nately, the ability to develop and deliver reliable, usable software within
budget and schedule commitments continues to elude many software
organizations.

Software configuration management (SCM) provides the means to
manage software processes in a structured, orderly, and productive man-
ner. SCM spans all areas of the software life cycle and impacts all data
(see Chapter 10) and processes. Hence, maximum benefit is derived when
SCM is viewed as an engineering discipline rather than an art form, which,
unfortunately, many developers have a tendency to do.

As an engineering discipline, SCM provides a level of support, control,
and service to the organization:

Introduction to Software Configuration Management

�

3

�

Support.

SCM is a support function in that it supports program
engineers and developers, the program, the corporation, and, in a
number of situations, the customer.

�

Control.

SCM is a control function in that it controls specifications,
documents, drawings, requirements, tools, software, and other deliv-
erables.

�

Service.

SCM is a service provider in that it supports people and
controls data. The role of the SCM manager is to ensure that (1)
SCM personnel are properly trained and have the necessary
resources (budget and tools) to do an efficient and effective job;
(2) a proper balance of control and support is tailor made to each
program that is being supported; and, (3) the SCM function is
flexible and can accommodate the changing needs and require-
ments of the developers, customers, the program, and the com-
pany.

The process of SCM has not really changed much during the past 20
to 30 years. However, the environment that SCM operates within has
changed significantly and is likely to continue to change. Over the past
few decades, we have migrated from centralized mainframes using just a
few programming languages such as COBOL and FORTRAN to decentral-
ized, networked, Web-based environments with thousands of devices using
hundreds of software packages and dozens of programming languages.

The most significant impacts to SCM have centered on the automated
tools and the library systems they operate upon. Up until the 1990s, the
entire focus of SCM was on version control with very few vendors from
which to choose. Today, there are literally hundreds of small to large SCM
vendors promoting a variety of products from simple version control to
sophisticated tools that purport to establish and monitor the entire software
development and production environment.

Regardless of this amazing diversity, the process of CM is basically
immutable — that is, the process does not change, only what is being
managed changes. What this means is that CM is as applicable to a
mainframe shop as it is to a shop running all Web-based applications in
a networked, secured environment. The key is in the process.

SCM AND PROCESS IMPROVEMENT

Improvement depends upon changing current processes along with the
accompanying environment. SCM, then, provides the underlying structure
for change and process improvement. We refer to this as process-based
configuration management.

4

�

Software Configuration Management

For example, the first step to improve the product is to know how
the product is currently produced. The second step for improvement is
to foster an atmosphere in which change can be readily accommodated.
If change does not appear possible, then improvement is also unlikely.
SCM measurements of current practices and their associated metrics can
help identify where processes are working and where they need to be
improved. Such change efforts should lead to increased productivity,
integrity, conformance, and customer satisfaction.

The Institute of Configuration Management (ICM) defines configuration
management (CM) as “the process of managing the full spectrum of an
organization’s products, facilities, and processes by managing all require-
ments, including changes, and assuring that the results conform to those
requirements” [ICM 1998]. By this definition, CM can also be called

process
configuration management

 because it includes the process of managing
an organization’s processes and procedures.

Many organizations can be characterized as Level 1 organizations as
defined in the Software Engineering Institute’s Software Capability Maturity
Model

®

 (SEI SW-CMM). These Level 1 organizations rely heavily on
“heroes” to accomplish the work. The organization’s processes are not
documented, and few people know how the work is accomplished. “The
software process is characterized as ad hoc, and occasionally even chaotic.
Few processes are defined, and success depends on individual effort and
heroics” [Paulk 1995].

An effective SCM program, when applied to organizational processes,
identifies which processes need to be documented. Any changes to those
processes are also tracked and documented. Adhering to these processes
will reduce an organization’s dependence on heroics for the work to be
accomplished and the project to succeed. It also relieves the frustration
and problems that arise if one of the “heroes” is not available to perform
a task.

SCM is an essential discipline in the everyday activities of defining
requirements, designing, writing, compiling, testing, and documenting the
software. SCM is not simply version control or format control. It is not a
clerical “after-the-fact” function. It is a technical field of expertise with
formal practices.

The benefits derived from SCM are directly proportional to the extent
that SCM is implemented. The primary objective is to deliver a quality
product that meets the stated requirements, on schedule, and within
budget. An effective SCM program supports this objective by tracking
each requirement from concept through implementation to customer
delivery.

Introduction to Software Configuration Management

�

5

MEASUREMENTS AND METRICS

The status accounting aspect of SCM provides management visibility into
the state of software products. Status accounting data includes measure-
ments (see Chapter 13) that can show the location of bottlenecks in the
software development process, and can indicate the maturity of the
software products.

Hermann [1998] describes the use of software changes to measure
product maturity and readiness to deliver the software. He goes on to
mention other metrics that may be useful, including average severity,
severity level distribution, average closure time, charts for each severity
level, and charts for each configuration item or sub-system.

A measure can be defined as “a standard of measurement, the extent,
dimensions, capacity, etc., of anything, especially as determined by a
standard, an act or process of measuring, a result of measurement” [Starrett
1998]. Examples of a measure include the number of defects found in a
release or the number of source lines of code delivered. A metric can be
defined as “a calculated or composite indicator based on two or more
measures, or a quantified measure of the degree to which a system,
component, or process possesses a given attribute. An example of a metric
is defects per thousand source lines of code” [Starrett 1998].

A metric can also be “a composite of measures that yields systematic
insight into the state of processes or products and drives appropriate
actions” [Pitts 1997]. Measures (measurements) and metrics can be used
to identify areas of the process that require attention. These areas are
identified through compiling measurements into metrics. Measurements
are compiled in an electronic spreadsheet, a database, or by hand. There
are also several management tools that allow collection of measurements
and derivation of metrics. The format is not the issue; the data is.

A metrics program should include the following fundamentals [Pitts
1997]:

�

A motive that is compelling, not simply conformism

�

Benchmarks that define nominal operation of the software develop-
ment process

�

Goals that define the purpose of the metrics program

�

Strategy for achieving the goals

�

An appropriate model (COCOMO, SLIM, etc.), whether it is a math-
ematical model or heuristic

�

Collection of data that is unobtrusive

�

Analysis of the data to find patterns: patterns imply consistency and
consistency implies process

6

�

Software Configuration Management

�

Action on the analysis — change in the process to achieve better
results

�

Implementation ethics, including trust, value, communication, and
understanding

Metrics are used to measure the progress of a project, the quality of
its product, the effort necessary to complete the project, etc. One desired
outcome of compiling and using these metrics to improve processes is
the improvement of the product’s value-to-cost ratio. If a change in a
process yields an increase in production during a specific timeframe, or
yields the same production in a decreased timeframe, the value-to-cost
ratio is improved.

Another desired outcome is increased customer satisfaction through
meeting their requirements. For example, if defects in software can be
traced back to incomplete or faulty requirements definition, the require-
ments definition process should be reviewed to increase the clarity and
completeness of the requirements. The metrics may help show that the
customer needs to be more actively involved in defining the requirements
clearly and precisely.

BENEFITS OF SCM

There are many benefits to be gained by an organization that practices
SCM. Software developers, testers, project managers, quality assurance
(QA) personnel, and the customer may benefit from SCM. Benefits include:

1. Organizes tasks and activities that maintain the integrity of the
software

2. Helps manage assets
3. Provides ability to track changes made during sequential or parallel

development
4. Ensures correct configurations of software (i.e., compatible config-

urations)
5. Ensures that engineers are implementing changes into the correct

“baseline” or version of the software
6. Provides the ability to trace the process from requirement to product
7. Limits legal liability by recording all data — whether flattering to

the company or not — including memos, decisions, meeting min-
utes, changes to requirements/code/test procedures, etc., providing
a “paper trail”

8. Helps reduce the life-cycle cost of maintaining software, which can
easily exceed the initial cost of development

Introduction to Software Configuration Management

�

7

9. Allows responsibility to be traced to the source (i.e., a requirement
problem, coding problem, etc.)

10. Provides for consistent conformance to customer requirements
11. Provides a stable environment for the software development process

to be defined, repeated, and improved
12. Enhances compliance with standards being applied
13. Provides an environment in which meaningful measures can be

gathered and used
14. Enhances current status accounting
15. Provides data for reports that can be easily generated
16. Allows quick and easy auditing
17. Provides the ability to reproduce circumstances/conditions under

which the product was produced by retaining information relative
to the production process (tracks changes made to baselines, hard-
ware, compiler versions, etc.)

18. Provides communication channels between groups (system, sub-
system, test, interface, etc.)

19. Fosters an ability to improve without being punitive in nature
20. Provides an understanding of when the product is ready for release

(when all changes have been processed completely)
21. Helps produce higher quality software

SCM provides visibility into the status of the evolving software product.
Software developers, testers, project managers, quality assurance (QA)
personnel, and the customer benefit from SCM information.

SCM COMPONENTS

SCM encompasses the everyday tasks within an organization, whether
software development or maintenance. Software changes are identified,
controlled, and managed throughout project life cycle.

The ten key SCM activities for most common development environ-
ments are [Platinum 1998]:

1. Accessing and retrieving software
2. Retrofitting changes across the development life cycle
3. Migrating changes across the development life cycle
4. Managing the compile and build process
5. Managing the distribution of changes
6. Obtaining approvals and sign-offs
7. Managing software change requests
8. Coordinating communication between groups

8

�

Software Configuration Management

9. Obtaining project status
10. Tracking bugs and fixes

SCM is divided into the following functional areas, as shown in Figure 1.1.

CONFIGURATION IDENTIFICATION

Configuration identification (see Chapter 4) involves identifying the struc-
ture of the software system, uniquely identifying individual components,
and making them accessible in some form. The goal of configuration
identification is to have the ability to identify the components of a system
throughout its life cycle and provide traceability between the software
and related software products. Identification answers

What is the config-
uration of my system? What version of the file is this?

and

What are the
components of the system?

Configuration identification activities include:

�

Selecting items to be placed under SCM control

�

Developing the software hierarchy

�

Creating an identification scheme that reflects the software hierarchy

�

Identifying which version of a component can or cannot be included
in a working release

�

Uniquely identifying the various revisions of the software product

�

Defining relationships and interfaces between the various software
products

�

Releasing configuration documentation

� Establishing configuration baselines

Figure 1.2 presents a typical breakdown of software into its distinct
parts and presents a numbering scheme that uniquely identifies each
component of a baseline release. The number to the left of the dot is the
last baseline or major release. The number to the right of the dot is the
version since the last baseline or minor release. Normally, after a new
baseline, major release, the number to the right of the dot is zero. A
hierarchical scheme is used.

Although key components to be managed are the requirements and
source code, related documentation and data should be identified and
placed under SCM control. It is important to store and track all environment
information and support tools used throughout the software life cycle to
ensure that the software can be reproduced.

Items typically put under SCM control include [Kasse 1997]:

� Source code modules

Introduction to Software Configuration Management � 9

Fi
gu

re
 1

.1
 F

un
ct

io
na

l
El

em
en

ts
 o

f
SC

M

Fi
gu

re
 1

.2
 S

of
tw

ar
e

C
on

fi
gu

ra
ti

on
 I

de
nt

ifi
ca

ti
on

 H
ie

ra
rc

hy

S
of

tw
ar

e
C

on
fig

ur
at

io
n

M
an

ag
em

en
t

Id
en

tif
ic

at
io

n
C

ha
ng

e
C

on
tr

ol
S

ta
tu

s
A

cc
ou

nt
in

g
A

ud
it

1

1.
1

1.
2

1.
1.

3
1.

1.
1

1.
2.

1
1.

2.
2

1.
1.

2

10 � Software Configuration Management

� System data files
� System build files and scripts
� Requirements specifications
� Interface specifications
� Design specifications
� Software architecture specifications
� Test plans
� Test procedures
� Test data sets
� Test results
� User documentation
� Software development plan
� Quality plans
� Configuration management plans
� Compilers
� Linkers and loaders
� Debuggers
� Operating systems
� Shell scripts
� Third-party tools
� Other related support tools
� Procedure language descriptions
� Development procedures and standards

Effective configuration identification is a prerequisite for the other
configuration management activities (configuration control, status account-
ing, and audit), which all use the products of configuration identification.
If configuration items and their associated configuration documentation
are not properly identified, it is impossible to control the changes to the
items’ configuration, to establish accurate records and reports, or to
validate the configuration through audit. Inaccurate or incomplete identi-
fication of configured items and configuration documentation may result
in defective products, schedule delays, and higher maintenance cost after
delivery.

CONFIGURATION CHANGE CONTROL

Configuration change control involves controlling the release and changes
to software products throughout the software life cycle (see Chapters 5
and 11). It is perhaps the most visible element of configuration manage-
ment. It is the process to manage preparation, justification, evaluation,
coordination, disposition, and implementation of proposed engineering

Introduction to Software Configuration Management � 11

changes and deviations to affected configuration items and baselined
configuration documentation.

The goal of configuration change control is to establish mechanisms
that will help ensure the production of quality software as well as ensure
that each version of the software contains all necessary elements, and that
all elements in a version will work correctly together. A generic change
process is identified in Figure 1.3.

Configuration change control answers What is controlled? How are the
changes to the products controlled? Who controls the changes? When are
the changes accepted, received, and verified?

Configuration change control activities include:

� Defining the change process
� Establishing change control policies and procedures
� Maintaining baselines
� Processing changes
� Developing change report forms
� Controlling release of the product

Changes made to the configuration management baselines or baselined
software configuration items should be done according to a documented
change control process. The change control process should specify:

� Who can initiate the change requests
� What the criteria are for placing the software components under

formal change control
� The “change impact” analysis expected for each requested change
� How revision history should be kept
� The check-in/check-out procedures
� The process that the Software Configuration Control Board (SCCB)

follows to approve changes
� How change requests will be linked to the Trouble Reporting System
� How change requests are tracked and resolved
� The reviews and regression tests that must be performed to ensure

that changes have not caused unintended effects on the baseline
� The procedure that will be followed to update all affected software

life-cycle components to reflect the approved changes

To control changes made to configuration items or the system, many
organizations establish a Software Configuration Control Board (SCCB).
This board reviews each proposed change; approves or disapproves it;
and if approved, coordinates the change with the affected groups.

12 � Software Configuration Management

Figure 1.3 Generic Change Process [Berlack 1992]

Software
Change

Software
Enhancements Problems

Analyze and
Assess Impact

Engineering
Change
Proposal

Preparation

Evaluate
Engineering

Change
Proposal

Approve Archive
Change

Incorporate
Change

Verify
Change

Supply
Feedback

to Originator

End

Review Board

Control
Board

Yes No

Introduction to Software Configuration Management � 13

Another key concept of change control is the use of baselines. A
baseline is “a specification or product that has been formally reviewed
and agreed upon, that thereafter serves as the basis for further develop-
ment, and that can be changed only through formal change procedures”
[IEEE 1990]. When an item is baselined, it becomes frozen and can only
be changed by creating a new version.

Historically, three different types of baselines were used: functional,
allocated, and product. The functional baseline is the initially approved
documentation describing the functional characteristics and the verification
required to demonstrate the achievement of those specified functional
characteristics. The allocated baseline is the initially approved documen-
tation describing the interface requirements, additional design constraints,
and the verification required to demonstrate the achievement of those
specified functional and interface characteristics. The product baseline is
the initially approved documentation describing the necessary functional
and physical characteristics and those designated for production accep-
tance testing.

Several additional but informal baselines are usually established during
the software development process. The number and type of baselines
depend on which life-cycle model the project is implementing. Life-cycle
models, such as the spiral, incremental development, and rapid prototyp-
ing, require more flexibility in the establishment of baselines.

CONFIGURATION STATUS ACCOUNTING

Configuration status accounting (see Chapters 6, 7, and 13) involves the
recording and reporting of the change process. The goal of status account-
ing is to maintain “a continuous record of the status and history of all
baselined items and proposed changes to them. It includes reports of the
traceability of all changes to the baseline throughout the software life
cycle” [Kasse 1997].

Configuration status accounting answers What changes have been made
to the system? and How many files were affected by this problem report?

Configuration status accounting activities include:

� Determining type of logs and reports required
� Tracking the status of SCM items
� Tracking the status of changes to the system
� Generating status reports
� Recording and reporting the activities of SCM

Questions that SCM status accounting should be able to answer include
[Kasse 1997]:

14 � Software Configuration Management

1. What is the status of an item? A developer may want to know
whether a specification has been fully approved. A developer may
want to know whether a sub-system has been tested so that the
developer can test the modules that interface with that sub-system.
A project leader may wish to track the progress of a project as
items are developed, reviewed, tested, and integrated.

2. Which version of an item implements an approved change request?
Once a requested enhancement of a library routine is implemented,
the originator and other developers will want to know which version
of the routine contains the enhancement.

3. What is different about a new version of a system? A new version
of a software system should be accompanied by a document listing
the changes from the previous version. The change list should
include both enhancements and fixes to faults. Any faults that have
not been fixed should also be named and described.

4. How many faults are detected each month, and how many are fixed?
Faults are continuously detected during the operational use of the
system. Comparing the number of detected and fixed faults helps
to assess the stability of the latest release of the system. Tracking
the number of faults also helps the program manager decide when
to make a new release of the system.

5. What is the cause of the trouble report? Trouble reports can be
categorized by their causes: violation of programming standards,
inadequate user interface, or invalid, incorrect, or incomplete cus-
tomer requirements. Sometimes, when it is discovered that many
faults have a similar cause, action can be taken to improve the
process and stop such faults from recurring.

Key information about the project and configuration items can be
communicated to project members through status accounting. Software
engineers can see what fixes or files were included in which baseline.
Project managers can track completion of problem reports and various
other maintenance activities. Minimal reports to be completed include
transaction log, change log, and item “delta” report. Other typically com-
mon reports include resource usage, “stock status” (status of all configu-
ration items), changes in process, and deviations agreed upon [Ben-
Menachem 1994].

CONFIGURATION AUDITING

Configuration auditing (see Chapters 8 and 9) verifies that the software
product is built according to the requirements, standards (see Chapter 12),
or contractual agreement. Test reports and documentation are used to

Introduction to Software Configuration Management � 15

verify that the software meets the stated requirements. The goal of con-
figuration audit is to verify that all software products have been produced,
correctly identified and described, and that all change requests have been
resolved according to established SCM processes and procedures. Informal
audits are conducted at key phases of the software life cycle. There are
two types of formal audits that are conducted before the software is
delivered to the customer: functional configuration audit (FCA) and phys-
ical configuration audit (PCA).

FCA verifies that the software satisfies the software requirements stated
in the System Requirements Specification and the Interface Requirements
Specification. That is, the FCA allows one to validate the system against
the requirements. The PCA determines whether the design and reference
documents represent the software that was built. Configuration audit
answers Does the system satisfy the requirements? and Are all changes
incorporated in this version?

Configuration audit activities include:

� Defining audit schedule and procedures
� Identifying who will perform the audits
� Performing audits on the established baselines
� Generating audit reports

IMPLEMENTING SCM IN THE ORGANIZATION

One of the first steps in successfully implementing SCM is to obtain
management sponsorship. This means public endorsement for SCM, and
making sure the resources needed for success are allocated to the project.
Management also needs to establish SCM as a priority and help facilitate
implementation.

An organization can maintain management sponsorship by identifying
and resolving risks, reporting progress, managing SCM implementation
details, and communicating with all members of the organization.

The next step is to assess current SCM processes. Every organization
that produces software is practicing some type of SCM. This may not be
a formal process or even thought of as SCM. To assess current processes,
one might ask the following questions: How are files identified? How are
versions of software releases identified? How are baselines controlled? What
files are included in each release? How are changes to the software iden-
tified and tracked?

After assessing your current processes, the next step is to analyze your
requirements. What is it that your organization wants to accomplish? The
requirement may be a specific level SW-CMM certification, ISO 9000
certification, some other standard or certification, or simply to improve

16 � Software Configuration Management

your software process. Document the requirements for your organization,
how you will implement them, and how you will measure success.

Depending on the requirements of your organization, the various roles
and formality of the SCM team may differ. At a minimum there should
be a point-of-contact for SCM. Other recommended roles and functions
include:

� A control and review board should be in place to analyze and
approve changes.

� Project managers and leaders also play a role in SCM in establishing
or following an SCM plan (see Appendices A and T and Chapter 2)
for their project, ensuring system requirements are properly allocated,
ensuring adequate tools are available to support activities, and con-
ducting regular reviews.

� A librarian is also necessary to track baselines and versions of files
included in each release. An SCM tool can assist in those activities.

� Quality assurance (QA) can be used to verify that documented
SCM processes and procedures are followed. QA is also necessary
for SW-CMM Level 2 certification.

MANAGE THE RISKS OF SCM

With each new software project or process, there is some amount of
associated risk. The same is true when implementing SCM. Whether an
organization is implementing a whole new system or just updating a few
processes, there will be risks that must be addressed. Note that having
risk is not bad — on the contrary, risk is a necessary part of SCM and
the software development process.

Without risk, there is no opportunity for improvement. Risk-free SCM
processes are typically of little use. The very nature of SCM requires risk-
taking. Managing and controlling the risks associated with SCM is essential
to the success of SCM processes in terms of cost, schedule, and quality.

It is always less expensive to be aware of and deal with risks than to
respond to unexpected problems. A risk that has been analyzed and
resolved ahead of time is much easier to deal with than one that surfaces
unexpectedly [Guidelines 1996].

The Software Engineering Institute has developed a risk management
program comprising six different activities, with communication being
central to all of them. This program can be used when implementing SCM
to effectively manage the associated risks. Risk management should be
viewed as an important part of the SCM process. A brief summary of each
activity follows [Paulk 1993]:

Introduction to Software Configuration Management � 17

� Identify. Before risks can be managed, they must be identified.
Identification surfaces risks before they become problems and
adversely affect a project.

� Analyze. Analysis is the conversion of risk data into risk decision-
making information.

� Plan. Planning turns risk information into decisions and actions (both
present and future). Planning involves developing actions to address
individual risk, prioritizing risk actions, and creating an integrated
risk management plan.

� Track. Tracking consists of monitoring the status of risks and actions
taken to ameliorate risks.

� Control. Risk control corrects for deviations from planned risk actions.
� Communicate. Risk communication lies at the center of the model

to emphasize both its pervasiveness and its criticality. Without
effective communication, no risk management approach can be
viable.

As part of an organization’s risk management program, a plan should
be developed that integrates the above outlined activities. An SCM risk
management plan may focus on addressing risks in three areas: business,
people, and technology [Burrows 1996]. The business risks include [Bur-
rows 1996]:

� Cost. The expense to incorporate SCM encompasses far more than
just the licensing fee for a tool. Management must be willing to
make the necessary expenditures for people and resources.

� Culture shock. Each organization has its own culture, to which the
success of the business can be attributed. The procedures and prod-
ucts implemented for SCM must match that culture. The person in
charge of SCM needs a broad understanding of software engineering
principles and the cultural aspects of the organization.

� Commitment. To establish a successful SCM process, there must
first be a strong commitment from management. The benefits of
SCM are not always immediately recognized. “Deploying CM can
be a long, costly, and sometimes painful exercise. Counter this risk
by building up steam in the project. Get momentum going quickly
and keep feeding it.”

The risks associated with people include [Burrows 1996]:

� Cheating. Software developers may try to incorporate their code
into the final product without following procedures and resist any
changes to the established procedures.

18 � Software Configuration Management

� Preferred tools. They may have a tool they want to use that is different
from that of the organization. To mitigate these risks, try to get
offenders to be part of the decision-making process. Let them have
input into the procedures and tools that will be used.

� Resistance. The greatest barrier to overcome when SCM is intro-
duced into an organization is to change how people view SCM.
People generally react negatively toward it. In many organizations,
SCM has a low status, and SCM personnel are not trained or
qualified to perform their duties. Many software developers per-
ceive SCM as intrusive and have little understanding of the long-
term effects of not following SCM procedures. Communication,
training, and developer input to SCM processes will help ensure
SCM principles are adopted by an organization.

The last area is technology. The technology risks include [Burrows 1996]:

� Loss of control. At times, it may seem that the SCM procedures and
tools are at the controls. There may also be reliance on tools where
previously the needed data and information were obtained man-
ually. Again, communication will help mitigate this risk. Manage-
ment will have greater control over and information about their
projects after successfully implementing SCM.

� Access. Controlling who can have access and make changes to various
baselines, data repositories, software files, or documents is also a risk
that must be managed. By thorough analysis and design, the proce-
dures implemented may restrict access to approved individuals and
give up-to-date information on many aspects of the project that is
current and accurate.

� Scalability. A project has the potential to outgrow the implemented
tool. Counter this risk by selecting a tool that will adapt to the
changing size of your organization over time.

The secret to SCM risk management is to identify and resolve potential
risks before they surface unexpectedly or become serious problems.
Develop a program for identifying and managing risks. Incorporate an
SCM risk management plan that addresses risks to business, people, and
technology. Central to everything is communication. Communicate as
much as possible to as many people and organizations as possible.

SUMMARY

Configuration management (CM) is the framework around which software
engineering processes exist. It is interesting how there is almost a one-

Introduction to Software Configuration Management � 19

to-one relationship between the life-cycle activities of software engineering
and those of configuration management.

CM is a carefully orchestrated set of activities that provides the orga-
nization and control required to manage an idea from its inception to its
deployment. This chapter serves as an introduction to the remainder of
the handbook. Now that the principles of CM are a bit more well-
understood, we can delve into each of the component parts in more depth.

Note: This chapter is based on the following governmental report: Software
Technology Support Center, United States Air Force, Ogden Air Logistics
Center, Software Configuration Management Technologies and Applica-
tions, April 1999, www.stsc.hill.af.mil.

REFERENCES

[ANSI/IEEE 1987] ANSI/IEEE Std 1042-1987, American National Standard IEEE, Guide
to Software Configuration Management, Institute of Electrical and Electronics
Engineers, Inc., New York, 1988.

[Ayer 1992] Ayer, Steve J. and Frank S. Patrinostro, Software Configuration Management:
Identification, Accounting, Control, and Management, McGraw-Hill Software
Engineering Series, McGraw-Hill, New York, 1992.

[Babich 1986] Babich, Wayne A., Software Configuration Management: Coordination
for Team Productivity, Addison-Wesley, Reading, MA, 1986.

[Ben-Menachem 1994] Ben-Menachem, Mordechai, Software Configuration Manage-
ment Guidebook, McGraw-Hill, New York, 1994.

[Berlack 1992] Berlack, Ronald H., Software Configuration Management, John Wiley
& Sons, New York, 1992.

[Boehm 1981] Boehm, Barry, “Software Engineering Economics,” Prentice-Hall, Engle-
wood Cliffs, NJ, 1981.

[Bounds 1996] Bounds, Nadine M. and Susan A. Dart, Configuration Management
Plans: The Beginning to Your CM Solution, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, February 1996.

[Bray 1995] Bray, Olin and Michael M. Hess, “Reengineering a Configuration Manage-
ment System,” IEEE Software, January 1995.

[Buckley 1992] Buckley, Fletcher J., Implementing Configuration Management: Hard-
ware, Software, and Firmware, IEEE Computer Society Press, Los Alamitos,
CA, 1993.

[Buckley 1994] Buckley, Fletcher J., “Implementing a Software Configuration Manage-
ment Environment,” IEEE Computer, 1994.

[Butler 1995] Butler, Kelley L., “The Economic Benefits of Software Process Improve-
ment,” CrossTalk, The Defense Journal of Software Engineering, Software Tech-
nology Support Center, July 1995.

[Burrows 96] Burrows, Clive, George W. George, and Susan Dart, Ovum Evaluates
Configuration Management, Ovum Limited, London, U.K., 1996.

[Burrows 1998] Burrows, Clive and Ian Wesley, Ovum Evaluates Configuration Man-
agement, Ovum Limited, London, U.K., 1998.

[Carnegie 1998] Carnegie Mellon University and the Software Engineering Institute,
“The ‘98 Software Engineering Symposium Preliminary Program,” 1998.

20 � Software Configuration Management

[Carr 1993] Carr, M., S. Kondra, I. Monarch, F. Ulrich, and C. Walker, Taxonomy-Based
Risk Identification, Technical Report CMU/SEI-93-TR-6, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

[Conner 1982] Conner, Daryl R. and Robert W. Patterson, “Building Commitment to
Organization Change,” Training and Development Journal, 36(4), 18–30, April
1982.

[Dart 1990a] Dart, Susan A., “Issues in Configuration Management Adoption,” Proceed-
ings of Conference on Caseware, Software Engineering Institute Overview,
Carnegie Mellon University, Pittsburgh, PA, 1990.

[Dart 1990b] Dart, Susan A., Spectrum of Functionality in Configuration Management
Systems, Technical Report CMU/SEI-90-TR-11, ESD-90-TR-212, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

[Dart 1992a] Dart, Susan A., “State-of-the-Art in Environment Support for Configuration
Management,” ICSE 14 Tutorial, Australia, Carnegie Mellon University, Pitts-
burgh, PA, May 1992.

[Dart 1992b] Dart, Susan A., The Past, Present, and Future of Configuration Manage-
ment, Technical Report CMU/SEI-92-TR-8, ESC-TR-92-8, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, July 1992.

[Dart 1994] Dart, Susan A., “Adopting an Automated Configuration Management Solu-
tion,” Proceedings of Software Technology Conference, April 1994.

[Dart 1996] Dart, Susan, A., “Achieving the Best Possible Configuration Management
Solution,” CrossTalk, The Defense Journal of Software Engineering, Software
Technology Support Center, Hill Air Force Base, UT, September 1996.

[DeGrace 1990] DeGrace, Peter and Leslie Hulet Stahl, “Wicked Problems, Righteous
Solutions,” A Catalogue of Modern Software Engineering Paradigms, Yourdon
Press, Englewood Cliffs, NJ, 1990.

[Evans 1997] Evans, Michael W. and Shawn T. O’Rourke, “CenterZone Management:
The Relationship between Risk Management and Configuration Management
in a Software Project,” Proceedings of Software Technology Conference, April
1997.

[Feiler 1991] Feiler, Peter H., Configuration Management Models in Commercial Envi-
ronments, Technical Report CMU/SEI-91-TR-7, ESD-9-TR-7, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA, March 1991.

[Feiler 1990] Feiler, Peter H. and Grace Downey, Transaction-Oriented Configuration
Management: A Case Study, Technical Report CMU/SEI-90-TR-23, ESD-90-TR-
224, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
November 1990.

[Firth 1987] Firth, Robert et al., A Guide to the Classification and Assessment of Software
Engineering Tools, Technical Report CMU/SIE-87-TR-10, ESD-TR-87-111, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, August
1987.

[Forte 1990] Forte, Gene, “Configuration Management Survey,” CASE Outlook, 90(2),
1990.

[Fowler 88] Fowler, Pricilla and Stan Przybylinski, Transferring Software Engineering
Tool Technology, IEEE Computer Society Press, Washington, D.C., 1988.

[Guidelines 1996] Guidelines for Successful Acquisition and Management of Software-
Intensive Systems: Weapon Systems, Command and Control Systems, Manage-
ment Information Systems, Software Technology Support Center, Hill Air Force
Base, UT, June 1996.

Introduction to Software Configuration Management � 21

[Haque 1997] Haque, Tani, “Process-Based Configuration Management: The Way to
Go to Avoid Costly Product Recalls,” CrossTalk, The Defense Journal of Software
Engineering, Software Technology Support Center, Hill Air Force Base, UT,
April 1997.

[Hermann 1998] Hermann, Brian and Jim Marshall, “Are You Ready to Deliver? To
Ship? To Test?,” CrossTalk, The Defense Journal of Software Engineering, Soft-
ware Technology Support Center, Hill Air Force Base, UT, August 1998.

[Humphrey 1990] Humphrey, Watts S., Managing the Software Process, Addison-Wesley,
Reading, MA, August 1990.

[ICM 1998] Institute of Configuration Management, CMII Model, Course I, “CMII-Based
Business Process Infrastructure,” 1998.

[IEEE 1990] IEEE Std 828-1990, IEEE Standard for Software Configuration Management
Plans, 1990.

[Kasse 1997] Kasse, Tim, “Software Configuration Management for Project Leaders,”
Proceedings of Software Technology Conference, April 1997.

[Kingsbury 1996] Kingsbury, Julie, “Adopting SCM Technology,” CrossTalk, The Defense
Journal of Software Engineering, Software Technology Support Center, Hill Air
Force Base, UT, March 1996.

[Marshal 1995] Marshall, A.J., “Demystifying Software Configuration Management,”
CrossTalk, The Defense Journal of Software Engineering, Software Technology
Support Center, Hill Air Force Base, UT, May 1995.

[Marshal 1995] Marshall, Alexa J., “Software Configuration Management: Function or
Discipline?,” CrossTalk, The Defense Journal of Software Engineering, Software
Technology Support Center, Hill Air Force Base, UT, October 1995.

[MIL-HDBK-61 1997] MIL-HDBK-61, Military Handbook: Configuration Management
Guidance, Department of Defense, Washington, D.C., Sept. 30, 1997.

[Mosley 1995] Mosley, Vicky, “Improving Your Process for the Evaluation and Selection
of Tools and Environments,” CrossTalk, The Defense Journal of Software Engi-
neering, Software Technology Support Center, Hill Air Force Base, UT, Sep-
tember 1995.

[Myers 1995] Myers, Robin J., “Configuration Management: A Prerequisite for BPR
Success,” Enterprise Reengineering, August 1995.

[Olson 1993] Olson, Timothy G. et al., A Software Process Framework for the SEI
Capability Maturity Model: Repeatable Level, Technical Report CMU/SEI-93-TR-
7, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
1993.

[Paulk 1993] Paulk, Mark C. et al., Key Practices of the Capability Maturity Model for
Software, Version 1.1, Technical Report CMU/SEI-93-TR-25, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA, 1993.

[Paulk 1995] Paulk, Mark C., Charles V. Weber, Bill Curtis, and Mary Beth Chrissis, The
Capability Maturity Model: Guidelines for Improving the Software Process, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, October
1995.

[Pence 1993] Pence, J.L. Pete and Samuel E. Hon, III, “Building Software Quality into
Telecommunications Network Systems,” Quality Progress, Bellcore, Piscataway,
NJ, 95–97, October 1993.

[Pitts 1997] Pitts, David R., “Metrics: Problem Solved?,” CrossTalk, The Defense Journal
of Software Engineering, Software Technology Support Center, Hill Air Force
Base, UT, Dec. 1997

22 � Software Configuration Management

[Platinum 1998] © 1995, 1998 PLATINUM Technology, Inc. All rights reserved. 1-800-
442-6861, 630-620-5000, Fax: 630-691-0718, www.platinum.com.

[Rader 1993] Rader, Jack, Ed. J. Morris, and Alan W. Brown, An Investigation into the
State-of-the-Practice of CASE Tool Integration, Technical Report CMU/SEI-93,
Software Engineering Institute, Carnegie Mellon University, Pittsburg, PA, 1993.

[Schamp 1995] Schamp, Alan, “CM-Tool Evaluation and Selection,” IEEE Software, 1995.
[Semiatin 1994] Semiatin, William J., “Evolution of Configuration Management,” Pro-

gram Manager: Journal of the Defense Systems Management College, Novem-
ber/December 1994.

[Slomer 1992] Slomer, Howard M. and Alan M. Christie, Analysis of a Software Main-
tenance System: A Case Study, Technical Report CMU/SEI-92-TR-3, ESC-TR-92-
031, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
November 1992.

[Smith 1993] Smith, Dennis et al., Software Engineering Environment Evaluation Issues,
Technical Report CMU/SEI-93, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, March 1993.

[Softool 1992] Softool Corporation, Successful Software Strategies Seminar Series:
Improving Your Configuration Management Implementation Strategy, Washing-
ton, D.C., 1992.

[Starbuck 1997] Starbuck, Ronald A., “Software Configuration Management: Don’t Buy
a Tool First,” CrossTalk, The DefenseJournal of Software Engineering, Software
Technology Support Center, Hill Air Force Base, UT, November 1997.

[Starrett 1998] Starrett, Elizabeth C.L., “Measurement 101,” CrossTalk, The Defense
Journal of Software Engineering, Software Technology Support Center, Hill Air
Force Base, UT, August 1998.

[STSC 1994] Software Technology Support Center, Software Configuration Management
Technology Report, Software Technology Support Center, Hill Air Force Base,
UT, September 1994.

[Ventimiglia 1997] Ventimiglia, Bob, Advanced Effective Software Configuration Man-
agement, Technology Training Corporation, 1997.

[Ventimiglia 1998] Ventimiglia, Bob, “Effective Software Configuration Management,”
CrossTalk, The Defense Journal of Software Engineering, Software Technology
Support Center, Hill Air Force Base, UT, February 1998.

[Wallnau 92] Wallnau, Kurt C., Issues and Techniques of CASE Integration with Config-
uration Management, Technical Report CMU/SEI-92-TR-5, ESD-TR-92-5, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, March
1992.

[Whitgift 1991] Whitgift, David, Methods and Tools for Software or Software Configu-
ration, John Wiley & Sons, New York, 1991.

[Wreden 1994] Wreden, Nick, “Configuration Management: Getting with the Program,”
Beyond Computing, November/December 1994.

23

2

PROJECT MANAGEMENT
IN A CM ENVIRONMENT

Configuration management (CM) must be meticulously planned and care-
fully managed if the organization is to achieve an effective, predictable,
repeatable CM process. This principle is consistent with the concept of a
software engineering project plan and, in effect, one can say that the
project plan provides a subset of the overall CM plan (see Appendix T
for a detailed Software Configuration Plan). Appendix X provides software
configuration management (SCM) guidance for achieving the “Repeatable”
level on the Software Engineering Institute (SEI) Capability Maturity
Model®.

Tasks associated with CM planning and management include:

� Identifying the scope and constraints of the project
� The creation of a written plan
� Implementation procedures
� Training
� Measurements

A typical CM plan will consist of the components shown in Table 2.1
[Bounds, 2001]. Those familiar with traditional systems development
project planning will immediately see a similarity between this checklist
and the contents of a typical project plan.

The remainder of this chapter ties together the principles of traditional
project planning and configuration management planning and manage-
ment.

24 � Software Configuration Management

Table 2.1 Typical CM Plan

1.0. Introduction
1.1. Scope
1.2. Definitions
1.3. References
1.4. Tailoring

2.0. Software Configuration Management
2.1. SCM organization
2.2. SCM responsibilities
2.3. Relationship of CM to the software process life cycle

2.3.1. Interfaces to other organizations on the project
2.3.2. Other project organizations’ CM responsibilities

3.0. Software Configuration Management Activities
3.1. Configuration identification

3.1.1. Specification identification
� Labeling and numbering scheme for documents and files
� How identification between documents and files relate
� Description of identification tracking scheme
� When a document/file identification number enters controlled
 status
� How the identification scheme addresses versions and releases
� How the identification scheme addresses hardware, application
 software system software, COTS products, support software (e.g.,
 test data and files), etc.

3.1.2. Change control form identification
� Numbering scheme for each of the forms used

3.1.3. Project baselines
� Identify various baselines for the project
� For each baseline created, provide the following information:
� How and when it is created
� Who authorizes and who verifies it
� The purpose
� What goes into it (software and documentation)

3.1.4. Library
� Identification and control mechanisms used
� Number of libraries and the types
� Backup and disaster plans and procedures
� Recovery process for any type of loss
� Retention policies and procedures
� What needs to be retained, for whom, and for how long
� How is the information retained (online, offline, media type and
 format)

3.2. Configuration control
3.2.1. Procedures for changing baselines (procedures may vary with

 each baseline)
3.2.2. Procedures for processing change requests and approvals-change

 classification scheme

Project Management in a CM Environment � 25

Table 2.1 Typical CM Plan (continued)

� Change reporting documentation
� Change control flow diagram

3.2.3. Organizations assigned responsibilities for change control
3.2.4. Change Control Boards (CCBs) — describe and provide the

 following information for each:
� Charter
� Members
� Role
� Procedures
� Approval mechanisms

3.2.5. Interfaces, overall hierarchy, and the responsibility for
 communication between multiple CCBs, when applicable
3.2.6. Level of control — identify how it will change throughout the life
 cycle, when applicable
3.2.7. Document revisions — how they will be handled
3.2.8. Automated tools used to perform change control

3.3. Configuration status accounting
3.3.1. Storage, handling, and release of project media
3.3.2. Types of information that need to be reported and the control
 over this information that is needed
3.3.3. Reports to be produced (e.g., management reports, QA reports,
 CCB reports), who the audience is for each, and the information
 needed to produce each report
3.3.4. Release process, to include the following information:

� What is in the release
� Who the release is being provided to and when
� The media the release is on
� Any known problems in the release
� Any known fixes in the release
� Installation instructions

3.3.5. Document status accounting and change management status
 accounting that needs to occur

3.4. Configuration auditing
3.4.1. Number of audits to be done and when they will be done

 (internal audits as well as configuration audits); for each audit,
 provide the following:

� Which baseline it is tied to, if applicable
� Who performs the audit
� What is audited
� What is the CM role in the audit, and what are the roles of other

 organizations in the audit
� How formal is the audit

3.4.2. All reviews that CM supports; for each, provide the following:
� The materials to be reviewed

26 � Software Configuration Management

WHO WRITES THE PROJECT PLAN

The project manager or team leader normally writes the project plan,
although experienced consultants are often called in for this aspect of the
project. When developing a project plan that is CM based, great care is
taken to ensure that the planning process, and ultimately the develop-
mental effort, are integrated and well-coordinated. This might seem obvi-
ous; however, integration and coordination are not things that are done
well by most organizations. It has been proven that the vast majority of
programming errors are due to interface problems. Similarly, the vast
majority of configuration management problems are due to poor commu-
nications (i.e., interfaces) between the various departments and units that
are tasked within the project plan.

In truth, there are as many ways to write a project plan as there are
companies that write them. If the project is large, the proposed system
might be divided into sub-systems — each with its own team. Each team
leader may need to write his or her own part of the project plan. The
project manager then compiles each sub-plan into a plan for the entire
project.

Another alternative is divide the project plan into discrete tasks and
parcel out the effort to team members. Appendix A contains a sample
project plan. As one can see from its table of contents, it is easily divisible.

WHAT GOES INTO THE PROJECT PLAN

Pressman has defined the prototypical project plan [Pressman 2001]. A
student implementation of this guideline can be found in Appendix A and
the reader is directed there for a concrete example of how to architect a
project plan.

Table 2.1 Typical CM Plan (continued)

� CM responsibility in the review and the responsibilities of other
 organizations

4.0.CM Milestones
� Define all CM project milestones (e.g., baselines, reviews, audits)
� Describe how the CM milestones tie into the softw are

 development process
� Identify the criteria for reaching each milestone

5.0.Training
� Identify the kinds and amounts of training (e.g., orientation, tools)

Project Management in a CM Environment � 27

Section 1.0 introduces the system and describes its purpose. In this
section, project scope and objectives need to be defined. In EIA-649
Configuration Management parlance [EIA 1998], this is referred to as the
context and the environment. This sub-section contains a formal statement
of scope, a description of major functions, concerns on performance issues,
and a list of management and technical constraints.

A CM value-added project plan will answer most, if not all, of the
following questions:

� Who are the customers?
� What are the attributes of the customer and end-user environments

that need to be addressed by the CM?
� What role will the customer play in decisions about changes?
� What is the current phase of the life cycle, and what are the antici-

pated future phases?
� What is the technical complexity of the product?
� Are there any product components that require separate management

attention?
� Is the product, or its components, a new design, an existing design,

or a modification of an existing design?
� How complex a documentation package is necessary?
� If this product is already in the operational phase, what documenta-

tion is already available and is it current?
� What level of change activity, if any, is anticipated?
� What is the operational life of the product?
� What information will users require to run and maintain the system?
� How will this system interface to other systems?

The Section 2.0 discusses project estimates and resources. Historical
data used for estimates needs to be specified, as do estimation techniques.
As a result of the estimation process, the estimates of effort, cost, and
duration need to be reported here. Resources are required to be discussed
in terms of people and minimal hardware and software requirements.

The Section 3.0 discusses risk management strategy. A risk table needs
to be created first, followed by more detailed discussions on risks to be
managed. Based on that, a risk mitigation, monitoring, and management
(contingency) plan needs to be created for each risk that has been
addressed.

Section 4.0 is an actual project schedule in terms of deliverables and
milestones. A project work breakdown structure (WBS) needs to be
created, followed by a task network and a timeline chart (Gantt chart).
In addition, a resource table describes the demand for and availability of
resources by time windows. In a WBS, the total task is broken down into

28 � Software Configuration Management

series of smaller tasks. The smaller tasks are chosen based on the size
and the scope to fit in the management structure of the project. Therefore,
efficient planning and execution are possible.

Section 5.0 discusses staff organization. Usually, a project is carried
out by a group of people and therefore a team structure needs to be
defined and a management reporting relationship specified.

Section 6.0 lays out a picture on tracking and control mechanisms. It
can be divided into two sub-sections: (1) Quality Assurance (i.e., verifi-
cation and audit) and Control and (2) Change Management and Control.

Project plans optimized for configuration management will also provide
guidance for:

� Configuration identification
� Configuration status accounting
� Configuration management of digital data
� Subcontractor configuration management

At the end of the project plan, all supporting materials that do not fit
into the body of the document can be attached in the “Appendices” section.

Most project managers have a difficult time when writing a project
plan because it is often required at project inception. This, unfortunately,
is when information is most scarce.

The project manager must choose the process model most appropriate
for the project, and then define a preliminary plan based on the set of
common process framework activities.

Afterward, process decomposition (partitioning) is carried out, gener-
ating a complete plan reflecting the work tasks required to populate the
framework activities.

CM-BASED PROJECT PLAN COMPONENTS

Identification

Configuration management requires that organizations develop a nomen-
clature for identifying all the components of a work product. Configuration
identification incrementally establishes and maintains the definitive current
basis for control and status accounting of a system and its configuration
items (CIs) throughout their life cycle (development, production, deploy-
ment, and operational support, until demilitarization and disposal). The
configuration identification process ensures that all processes have com-
mon sets of documentation as the basis for developing a new system,
modifying an existing component, buying a product for operational use,

Project Management in a CM Environment � 29

and providing support for the system and its components. The configu-
ration identification process also includes identifiers that are shorthand
references to items and their documentation. Good configuration control
procedures assure the continuous integrity of the configuration identifica-
tion. The configuration identification process includes:

� Selecting configuration items at appropriate levels of the product
structure to facilitate the documentation, control, and support of
the items and their documentation

� Determining the types of configuration documentation required for
each CI to define its performance, functional, and physical attributes,
including internal and external interfaces (configuration documenta-
tion provides the basis to develop and procure software, parts, and
material; fabricate and assemble parts; inspect and test items; and
maintain systems)

� Determining the appropriate configuration control authority for each
configuration document consistent with logistics support planning for
the associated CI

� Issuing identifiers for the CIs and the configuration documentation
� Maintaining the configuration identification of CIs to facilitate effective

logistics support of items in service
� Releasing configuration documentation and establishing configura-

tion baselines for the configuration control of CIs

Because the project plan is one of the first documents in the long
chain of systems development products, it must also adhere to the iden-
tification nomenclature developed by the organization.

Every organization has its own naming conventions. In general, the
numbering system should include, at a minimum, the following infor-
mation:

� System name
� Document/product type (e.g., “pp” for project plan, “srs” for systems

requirement specification, etc.)
� Date
� Version number

A project plan is made up of multiple items — for example, main
report, appendices, images, charts, etc. Each of these should be duly
numbered.

30 � Software Configuration Management

Software Scope

Determination of software scope should be ascertained first. One estab-
lishes software scope by answering questions about context, information
objectives, function, performance, and reliability. The context usually
includes hardware, existing software, users, documentation, complexity,
maintenance, and work procedures. Normally, a system specification
developed by a systems analyst supplies the information necessary to
bound the scope.

Techniques such as Question and Answer sessions and FAST (Facili-
tated Application Specification Techniques) can be used to gather require-
ments and establish project scope [Zahniser 1990]. The following
constitutes the minimum that needs to be ascertained:

� Major functions. These are the requirements by the customers for
the software as to what it should be able to do.

� Performance issues. This aspect is about speed, response time, and
other performance-related requirements. They can seriously impact
the requirement of effort and should therefore be clarified here.

� Management and technical constraint. These constraints should
be listed as a foundation for the next section’s estimation.

Project Estimates

Estimation is the one activity that lays a foundation for all other project
planning activities. However, a project manager should not be overly
manic in estimation. If an iterative process model is adopted, it is possible
to revisit and revise the estimates when customer requirements change.

Historical data is key to a good estimation. The availability of reliable
historical software metrics from previous projects assists the project planner
in translating the product size estimation into effort, time, and cost esti-
mations. Baseline productivity metrics (e.g., LOC [lines of code] or FP
[function points]) should be stored by project domain for use in future
estimation efforts.

Estimation Techniques

If similar projects have already been completed, estimates can be easily
based on that available data. Otherwise, either a decomposition technique
or an empirical model can be used. There are also software tools that
automate the process using the two preceding approaches. At least two
estimation methods should be used, with the final estimation being a
triangulation of the two. Even so, common sense and experience should
be the ultimate judge.

Project Management in a CM Environment � 31

In the example provided in Appendix A, two estimation methodologies
are used:

1. Process-based estimation, wherein the system is decomposed into
discrete tasks such as analysis of the user interface and design of
the user interface with an estimated amount of time allocated to
each. For the Online Resource Scheduling System, the process-
based estimate was 7.5 person-months.

2. LOC (or line of code) estimation is much more difficult to estimate
manually. A tool such as COCOMO (an abbreviation for Cost Con-
struction Model) makes the effort much easier. A wealth of informa-
tion as well as a free version of the COCOMO automated tool can
be found on the CSE (Center for Software Engineering) Web site at
(http://sunset.usc.edu/research/COCOMOII/index.html).

COCOMO II is a model that allows one to estimate the cost, effort,
and schedule when planning a software developmental activity. It is based
on the original COCOMO model devised by Dr. Barry Boehm in 1981
[Boehm 1981]. The COCOMO II model is actually derived from the
following original mathematical formula that is described in the second
half of this book:

m = c1 * KLOCa * PROD[fi]

COCOMO II permits the estimator to estimate a project cost in terms
of lines of code (LOC) or function points (FP). FP calculation is quite
complex. A chapter explaining function points can be found in this section.

Figure 2.1 shows the COCOMO II toolset in action. While a bit
cumbersome — the non-free COCOMO tools are much more user friendly
— the free version is quite functional. In this real-world example, the
author used COCOMO to estimate the cost of building an Internet gaming
system using the LOC option (see module size). Looking at the bottom
of the screenshot, notice the three estimates: optimistic, most likely, and
pessimistic. Thus, the planner needs to first estimate the size of the product
to be built, and then translate that size estimate into human effort, calendar
time, and dollars.

A project plan that is CM based should also fully articulate the resources
that are required to be deployed by the various departments involved in
the systems development effort. In addition, the estimate should include
time and materials for both training and verification and audit. In addition,
a reasonable “futures-based” estimate should be attempted for mainte-
nance.

32 � Software Configuration Management

Fi
gu

re
 2

.1
 U

si
ng

 C
O

C
O

M
O

 f
or

 E
st

im
at

io
n

Project Management in a CM Environment � 33

Decomposition Techniques

According to Putnam and Myers [1992], several approaches can be used
to handle the project sizing problem, including “Fuzzy-logic” sizing, which
uses the approximate reasoning technique as in the art of “guestimating;”
function point sizing; standard component sizing (i.e., modules, screens,
reports, etc.); and change sizing, which is used in estimating the size of
an effort to modify an existing system.

Problem-based estimation techniques include FP- and LOC-based
estimation, which was just discussed. They both require the project
planner to decompose the software into problem functions that can each
be estimated individually. Then, the project planner estimates the LOC
or FP (or other estimation variable) for each function and applies the
baseline productivity metrics to derive the cost or effort for the function.
Finally, these function estimates are combined to produce the overall
estimate for the entire project. Alternatively, a process-based estimation
is commonly used. Here, the process is partitioned into a relatively small
set of activities (i.e., the large project is decomposed or segmented into
more manageable tasks) or tasks, and the effort required to accomplish
each is estimated.

Empirical Model

There are a variety of empirical models available to calculate the effort
required based on the size estimation in FP or LOC. Other than COCOMO
[Boehm 1981], the most widely used model is The Software Equation
[Putman and Myers 1992].

Putnam’s cost estimation model is a macro-estimation model. The
model recognizes the relationship between cost and the amount of time
available for the development effort. The Putnam model supports the
mythical man-month idea first put forth by Frederick Brooks, which states
that people and time are not always interchangeable. The Software Equa-
tion is explained in the second half of this book. The results of these
estimation techniques are estimates of effort, cost, and duration. They, in
turn, are used in other sections of the project plan.

Risk Management Strategy

A proactive risk strategy should always be adopted. It is better to plan
for possible risk than have to react to it in a crisis. Software risks include
project risks, technical risks, and business risks. They can also be catego-
rized as known, predictable, or unpredictable risks. First, risks need to
be identified. One method is to create a risk item checklist. The sample
project plan in Appendix A (Table A4) lists the following risks:

34 � Software Configuration Management

� Customer will change or modify requirements
� Lack of sophistication of end users
� Users will not attend training
� Delivery deadline will be tightened
� End users resist system
� Server may not be able to handle larger number of users simulta-

neously
� Technology will not meet expectations
� Larger number of users than planned
� Lack of training of end users
� Inexperienced project team
� System (security and firewall) will be hacked

Then, risks need to be projected in two dimensions: likelihood and
consequences. This section can be a separate RMMM (Risk, Mitigation,
Monitoring, and Management) Plan in itself and used as part of the overall
project plan.

Risk Table

A risk table is a simple tool for risk projection. First, based on the risk
item checklist, list all risks in the first column of the table. Then, in the
following columns, fill in each risk’s category, probability of occurrence,
and assessed impact (see Table A4). Afterward, sort the table by probability
and then by impact, study it, and define a cut-off line.

All risks above the cut-off line must be managed and discussed. Factors
influencing their probability and impact should be specified.

RMMM Plan for Each Risk

A risk mitigation plan is a tool that can help in avoiding risks. Causes of
the risks must be identified and mitigated. Risk monitoring activities take
place as the project proceeds and should be planned early.

Risk management — that is, the contingency plan — consists of a list
of activities that are put into action in the event a risk is realized. A plan
should be created well before that.

Schedules

Before drafting a schedule, several things should be done. The project
manager should first decide the type of the project from four choices:
concept development, new application development, application enhance-

Project Management in a CM Environment � 35

ment, or reengineering project. Then, the project manager should compute
a task set selector value [Pressman 2001] by: (1) grading the project for
a set of adaptation criteria including its size, requirements, and constraints;
(2) then assigning weighting factors to each criterion; (3) multiplying the
grade by weighting factors and by the entry point multiplier for the type
of the project; and (4) computing the average of all results in the previous
step. Based on this average value, the project manager can choose the
degree of rigor required for the project from four options: casual, struc-
tured, strict, or quick reaction. Afterward, the task set can be decided and
distributed on the project timeline based on the process model choice:
linear sequential, iterative, or evolutionary.

A typical schedule created contains the information displayed in
Table 2.2.

Project tasks, also known as the project work breakdown structure
(WBS), are now defined as shown in Figure 2.2. Alternatively, a textual
WBS can be created as shown in Table 2.3.

Interdependencies among tasks are defined using a task network as
shown in Figure 2.3. A task network is also known as an activity network
because it shows all the activities for the project — and each activity’s
dependencies. In Figure 2.3, task 1.1 must be completed prior to task
1.2’s initiation, and so on. A variety of automated tools implementing the
Program Evaluation and Review Technique (PERT) and Critical Path
Method (CPM) [Moder, Phillips, and Davis 1983] can be used for project
scheduling.

DuPont developed the Critical Path Method (CPM) for use in chemical
plants. The objective of CPM is to determine the trade-off between project
duration and total project cost. This is done by identifying the critical path
through activity network. The critical path can help management change
the duration of the project. In CPM, an activity time is assumed to be
known or predictable.

The Project Evaluation and Review Technique (PERT) was developed
by the Navy when designing the Polaris missile. When accurate time
estimates are not available, PERT is an ideal tool for project planning
because it uses probability theory.

Eventually, CPM and PERT merged into a single technique. Events are
shown as nodes and activities are shown as arrows that connect events.

Table 2.2 Typical Schedule

Activities Deliverable From Date To Date Milestone

Meetings Weekly meetings 02/04/04 05/07/04 05/07/04

36 � Software Configuration Management

Fi
gu

re
 2

.2
 A

 W
or

k
B

re
ak

do
w

n
St

ru
ct

ur
e

(W
B

S)

Project Management in a CM Environment � 37

Table 2.3 Textual WBS

Phase I: Proposal

Task Start Finish
Create budget Thu 6/20/04 Fri 6/21/04
Define project team Thu 6/20/04 Fri 6/21/04
Define material resources Mon 6/24/04 Wed 6/26/04
Identify management team Thu 6/27/04 Thu 6/27/04

Phase II: Planning

Task Start Finish
Determine performance goals Thu 6/20/04 Thu 6/20/04
Conduct stakeholder interviews Thu 6/20/04 Thu 6/20/04
Analyze current architecture Thu 6/20/04 Fri 6/21/04
Produce operational metrics Mon 6/24/04 Wed 6/26/04
Problem analysis Thu 6/27/04 Fri 6/28/04
Problem resolution Mon 7/1/04 Fri 7/12/04
Determine future needs Mon 7/15/04 Tue 7/16/04

Phase III: Design

Task Start Finish
Produce topology maps Wed 7/17/04 Tue 7/23/04
Determine capacity allocations Wed 7/24/04 Thu 7/25/04
Determine backup requirements Fri 7/26/04 Mon 7/29/04
Determine specific hardware reqs. Tue 7/30/04 Tue 7/30/04
Determine specific software reqs. Wed 7/31/04 Wed 7/31/04

Phase IV: Implementation

Task Start Finish
Install new SAN hardware Wed 7/31/04 Tue 8/20/04
Install necessary supporting software Thu 8/22/04 Thu 8/22/04
Verify SAN to topology maps Fri 8/23/04 Fri 8/23/04
Perform system testing Wed 8/21/04 Tue 8/27/04
Migrate hardware to SAN Wed 8/28/04 Tue 9/3/04
Testing and verification Wed 9/4/04 Tue 9/10/04
Collect operational metrics Wed 9/11/04 Thu 9/12/04
Compare to existing system Fri 9/13/04 Fri 9/13/04

Phase V: Support

Task Start Finish
Prepare training materials Wed 7/31/04 Tue 8/13/04
Perform testing against materials Wed 8/14/04 Wed 8/14/04
Training Wed 8/14/04 Tue 8/20/04
Establish support needs Mon 9/16/04 Tue 9/17/04
Implement tracking methodology Wed 9/18/04 Thu 9/19/04
Determine additional follow-up needs Wed 9/25/04 Wed 9/25/04

38 � Software Configuration Management

Arrows represents the effort required for achieving the next event. Direc-
tion specifies the order in which events must occur. There are two types
of times for each event. One is the “Earliest Time,” the earliest possible
time at which the event can be achieved. The other is the “Latest Time,”
which is the latest time at which the event can occur without delaying
subsequent events and completion of the project. For an event, the slack
time can be obtained or calculated by the difference between the Latest
and the Earliest Times.

The timeline chart (Gantt chart) is generated using automated tools
after inputting the task network or task outline and each task’s effort,
duration, start date, and resource assignment. This chart is very visual and
usually the most used part of a project plan. However, it is also possible
to create a viable Gantt chart using Microsoft Excel, as shown in Figure 2.4.

Resource Table

This is another output generated by the automated tool, with a focus on
the workload for and utilization of the project resources, particularly
human resources.

Once a proper project schedule is developed, its tasks and milestones
should be tracked and controlled as project proceeds.

Project Resources

An estimation of resources required is an important component of software
planning. For each resource, the planner needs to specify the following
characteristics: description, a statement of availability, and a time window.

Figure 2.3 A Task Network

1.1

1.2

1.3a

1.3b

1.3c

Project Management in a CM Environment � 39

Fi
gu

re
 2

.4
 U

si
ng

 E
xc

el
 t

o
D

ra
w

 a
 G

an
tt

 C
ha

rt

40 � Software Configuration Management

� People. The planner needs to specify the organizational position
and specialty of the human resources required by the project. Only
after estimating the development effort can one define the number
of people required.

� Hardware and software. Hardware and software form the foundation
of the software engineering environment [Naur and Randall 1969].
The project planner must determine its time window and verify its
availability. Reusable software components should also be specified,
alternatives evaluated, and acquisition be made early.

� Training. Special care should be taken to estimate the costs of training
— both initial and ongoing.

� Special resources. Any other resources not covered in the previous
sections should be listed here.

� Staff organization. People are the critical factor in a software devel-
opment effort. In a typical software project, the players fall into five
categories: senior managers, project (technical) managers, practitio-
ners, customers, and end users. A good team leader should be able
to motivate other players, organize the process, and innovate or
encourage people to be creative.

� Team structure (if applicable). A project manager should decide on
the organizational structure for the team. According to Mantei [1981],
these three generic team organizations exist: democratic decentralized
(DD), controlled decentralized (CD), and controlled centralized (CC).
The factors that influence the team structure decision include difficulty
of the problem, size of the resultant program(s), team lifetime, prob-
lem modularity, criticality of the solution, rigidity of timeline, and
communications required. Generally speaking, a DD structure is best
for difficult problems, and a CC or CD structure is best for very large
projects.

� Management reporting. Coordination and communication issues,
including management reporting relationships, should also be
addressed here.

Tracking and Control Mechanisms

Errors and changes are inevitable, and one needs to plan ahead to stay
prepared when they actually happen.

Quality Assurance and Control

Software quality assurance activities (SQAs) happen at each step of the
software process and are carried out by both software engineers and an
SQA group. Software engineers assure quality by applying rigorous tech-

Project Management in a CM Environment � 41

nical methods and measures, and conducting formal technical reviews
and, well-planned testing. The SQA group assists software engineers
through a set of activities that address quality assurance planning, over-
sight, record keeping, analysis, and reporting. These activities must be
planned in this sub-section.

In a CM-based project plan, document verification and continuing
performance audit activities should also be included.

Change Management and Control

The later the changes happen in a project, the higher the cost. Change
control combines human procedures and automated tools to provide a
mechanism for the control of changes that, if uncontrolled, can rapidly
lead a large project to chaos. The change control process begins with a
change request, leads to a decision to make or reject the request, and
culminates with a controlled update of the software configuration item
that is to be changed. This part of such activities should be planned here.

In a CM-based system, it is critically important to provide detailed
instructions for:

� Identifying changes
� Requesting changes
� Classifying changes
� Documenting requests for changes
� Change impact assessment
� Change approval

Performance Measurement

Metrics should be associated with all software development activities. They
should also be associated with configuration management. The purpose
of CM metrics is to measure project or program performance. It should
be kept in mind that metrics should be reviewed periodically and adjusted
for the environment and product life-cycle phase. Typical metrics include:

� Number of configuration documentation releases (sched-
uled/actual)

� Number of engineering changes (by product, phase, time period)
� Average engineering change cycle time (by product, by classification,

by major process step)
� Average revisions per engineering change
� Number of changes

42 � Software Configuration Management

� Number of action items per configuration audit
� Average number of unincorporated changes

Typical software metrics include:

� Lines of code
� Pages of documentation
� Number and size of tests
� Function count
� Variable count
� Number of modules
� Depth of nesting
� Count of changes required
� Count of discovered defects
� Count of changed lines of code
� Time to design, code, test
� Defect discovery rate by phase of development
� Cost to develop
� Number of external interfaces
� Number of tools used and why
� Reusability percentage
� Variance of schedule
� Staff years of experience with team
� Staff years of experience with language
� Software years of experience with software tools
� MIPs per person
� Support-to-development personnel ratio
� Nonproject-to-project time ratio

CONFIGURATION STATUS ACCOUNTING

Configuration management is only as good as the information stored about
the project or product. As a result, CM is closely tied to automated tools
that correlate, store, maintain, and provide readily available views of
configuration data. This includes information about the:

� Configuration documentation (e.g., document identifiers and effec-
tive dates)

� Product’s configuration (e.g., part numbers)
� Product’s operational and maintenance documentation
� CM process (e.g., status of change requests)

Project Management in a CM Environment � 43

SUMMARY

Like any other software engineering task, project planning and writing
a detailed project plan take time and cost money. Therefore, a natural
question arises: is it worth it? The answer is yes. If one wants a system
that is cost effective, does not go over budget, and actually works, then
a project plan is mandatory.

More than a few people in this field use the “roadmap” metaphor to
describe the role of a project plan; however, it is also a “compass.” Its
estimation and scheduling part can be likened to a rough roadmap (it can
never be precise enough at the beginning of a project), but its risk man-
agement, organization plan, tracking, and control parts are definitely a
compass. It guides the project team in handling unpredictable risks or
undesired events.

A good project plan not only benefits the project itself, but also the
domain as whole by its measures and metrics, which can be historical
data for other, later projects.

REFERENCES

[Boehm 1981] Boehm, B., Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ, 1981.

[Bounds] Bounds, Nadine and Susan Dart, CM Plans: The Beginning to Your CM Solution.
Ret r ieved f rom ht tp : //www.se i .cmu.edu/ legacy/scm/papers/
CM_Plans/CMPlans.Chapter3.html#RTFToC1, 2001.

[EIA 1998] Electronic Industries Alliance, EIA Standard: National Consensus Standard
for Configuration Management. EIA-649, Arlington, VA, August 1998.

[Kerr and Hunter 1994] Kerr, J. and R. Hunter, Inside RAD, McGraw-Hill, New York,
1994.

[Mantei 1981] Mantei, M., “The Effect of Programming Team Structures on Programming
Tasks,” Communications of the ACM, 24(3), 106–113, March 1981.

[McDermid and Rook 1993] McDermid, J. and P. Rook, “Software Development Process
Models,” in Software Engineer’s Reference Book, CRC Press, Boca Raton, FL,
1993, 15/66–15/28.

[Moder, Phillips, and Davis 1983] Moder, J.J., C.R. Phillips, and E.W. Davis, Project
Management with CPM, PERT and Precedence Diagramming, 3rd edition, Van
Nostrand Reinhold, New York, 1983.

[Naur and Randall 1969] Naur, P. and B. Randall, Eds., “Software Engineering: A Report
on a Conference Sponsored by the NATO Science Committee,” NATO, 1969.

[Pressman 2001] Pressman, R., Software Engineering, A Practitioner’s Approach, 5th
edition, McGraw-Hill, New York, 2001.

[Putman and Myers 1992] Putman, L. and W. Myers, Measures for Excellence, Yourdon
Press, 1992.

[Zahniser 1990] Zahniser, R.A., “Building Software in Groups,” American Programmer,
3(7/8), July/August 1990.

45

3

THE DoD CM
PROCESS MODEL

The CM process, as shown in Figure 3.1, encompasses:

� Configuration items (CIs)
� Documents that define the performance, functional, and physical

attributes of an item; these documents are referred to as configuration
documentation

� Other documents used for training, operation, and maintenance of
an item

� Associated and interfacing items used for training, operation, or
maintenance of the configuration item

The CM process is embodied in rules, procedures, techniques, meth-
odology, and resources to ensure that:

� The configuration of the system or item (its attributes) is docu-
mented.

� Changes made to the item in the course of development, production,
and operation are beneficial and are effected without adverse con-
sequences.

� Changes are managed until incorporated in all items affected.

A configuration item (CI) can be an individual item, or it can be a
significant part of a system or of a higher-level CI. It is designated at an
appropriate level for documenting performance attributes and managing
changes to those attributes.

The CI concept has confused some people into thinking that the level
at which CIs are designated is the point where configuration management

46 � Software Configuration Management

stops. In reality, the CI level is where configuration management really
begins; the process encompasses, to some degree, every item of hardware
and software down to the lowest bolt, nut, and screw, or lowest software
unit.

The attributes of CIs are defined in configuration documentation.
Configuration baselines are established to identify the current approved
documents. CIs are uniquely identified. They are verified to make sure
they conform to, and perform as defined in, the configuration documen-
tation.

Whenever a change to an item is contemplated, the effect of that
change on other items and associated documents is evaluated. Changes
are systematically processed and are approved by the appropriate change
control authority.

Change implementation involves update and verification of all affected
items and documentation. Information about item configuration, document
identification and status, and change status is collected as activities asso-
ciated with the CM process. This configuration status accounting informa-
tion is correlated, maintained, and provided in usable form, as required.

CM BENEFITS, RISKS, AND COST IMPACT

Configuration management (CM) provides knowledge of the correct cur-
rent configuration of assets and the relationship of those assets to asso-

Figure 3.1 DoD Configuration Management Process Model Overview

Configuration
Management

Process

1. Mission Need
2. Program Initiation
3. System Engineering
 Requirements, Functional
 Analysis, Allocation
 and Synthesis
4. Logistics and Maintenance
 Plans
5. Performance
 Measurements
6. Communication

Inputs

1. Timing
2. Resources
3. Inadequate planning
 and preparation

Constraints

1. Documented CM process consistent
 with planning
2. Consistent and appropriate:
 -RFP and Contract CM
 -Acquisition of Data
 -Items identified
 -Performance attributes identified and
 achieved
 -Supported items documented
 -Identification and marking sufficient for
 support
3. Proposed changes dispositioned
 expeditiously
4. Verified changes incorporated in all
 affected items
5. Status accounting database
 appropriate to each phase
6. CM process performance measured &
 continuously improved
7. Lessons learned

Outputs,
Results

1. Management support
2. Effective working
 relationships
3. Facilities
4. Resources
5. Training
6. Guidance Handbooks and
 Standards

Mechanisms, Facilitators

The DoD CM Process Model � 47

ciated documents. The CM process efficiently manages necessary changes,
ensuring that all impacts to operation and support are addressed.

The benefits of the process should be obvious but are often overlooked.
ANSI/EIA-649 summarizes the benefits of CM from an industry view, as
follows:

� Product attributes are defined. Provides measurable performance
parameters. Both buyer and seller have a common basis for acqui-
sition and use of the product.

� Product configuration is documented and a known basis for making
changes is established. Decisions are based on correct, current infor-
mation. Production repeatability is enhanced.

� Products are labeled and correlated with their associated require-
ments, design, and product information. The applicable data (such
as for procurement, design, or servicing the product) is accessible,
thereby avoiding guesswork and trial and error.

� Proposed changes are identified and evaluated for impact prior to
making change decisions. Downstream surprises are avoided. Cost
and schedule savings are realized.

� Change activity is managed using a defined process. Costly errors of
ad hoc, erratic change management are avoided.

� Configuration information, captured during the product definition,
change management, product build, distribution, operation, and dis-
posal processes is organized for retrieval of key information and
relationships, as needed. Timely, accurate information avoids costly
delays and product downtime, ensures proper replacement and
repair, and decreases maintenance costs.

� Actual product configuration is verified against the required
attributes. Incorporation of changes to the product is verified and
recorded throughout the product life. A high level of confidence
in the product information is established.

In the absence of CM, or where it is ineffectual, there may be:

� Equipment failures due to incorrect part installation or replacement
� Schedule delays and increased cost due to unanticipated changes
� Operational delays due to mismatches with support assets
� Maintenance problems, downtime, and increased maintenance cost

due to inconsistencies between equipment and its maintenance
instructions

� Numerous other circumstances that decrease operational effective-
ness and add cost

48 � Software Configuration Management

The severest consequence is catastrophic loss of expensive equipment
and human life. Of course, these failures can be attributed to causes other
than poor CM. The point is that the intent of CM is to avoid cost increases
and minimize risk.

Those who consider the small investment in the CM process a cost-
driver may not be considering the compensating benefits of CM and may
be ignoring or underestimating the cost, schedule, and technical risk of
an inadequate or delayed CM process.

CM LIFE-CYCLE MANAGEMENT AND PLANNING

Figure 3.2 is a top-level CM activity model to be used as a reference point
to plan and implement the major CM activities (functions) over the program
life cycle. It provides an overview of the entire CM process and illustrates
the relationships within the process. It shows the inputs (left), outputs
(right), constraints (top), and implementing tools or methods (bottom) for
each functional CM activity (represented by rectangular boxes).

Management and Planning

This block represents the core CM activity and its relationships to the
other activities. Inputs to Management and Planning consist of the autho-
rization to initiate the CM program, communications with all the other
CM activities, and selected information and performance measurements
received from the status accounting activity. The activity is facilitated by
the degree of management support provided, the working relationships
established with such other interfacing activities as Program Management,
Engineering, and Logistics.

It is further facilitated by the resources and facilities assigned to the
function, including such resources as automated tools, connectivity to a
shared data environment, and other infrastructure elements. Integrated
product and process development (IPPD) and the use of integrated product
teams (IPTs) facilitate the interaction and communication between all
parties involved in a common CM process. The training and experience
of the personnel and the guidance and resources they have at their disposal
are also facilitators.

The Management and Planning process may be constrained by a
compressed time schedule for program execution, by a lack of needed
people and tools, or by a lack of effective planning. It may also be
constrained by contractual provisions that limit the CM manager’s sphere
of control.

The outputs from this activity consist of CM planning information and
the resultant documented CM process that determine the extent of allocation

The DoD CM Process Model � 49

of the CM functional activities. The need to perform the CM activities,
described below, is independent of any specific organizational structure.
The outputs from this activity also include statement of work language and
other information to be inserted in Requests for Proposals (RFPs) and
contracts.

Configuration Identification

This activity provides the foundation for all the other CM functional
activities. Facilitated by the documented CM process and by open com-
munications, this activity interacts with system engineering. It provides
approved configuration documentation to document the physical and
functional characteristics of the system or item, establishes baselines for

Figure 3.2 Top-Level Configuration Management Activity Model

Management
and

Planning

Configuration
Identification

Configuration
Control

Configuration
Status

Accounting

Configuration
Verification

& Audit

1. Planning
2. Resources
3. Time

1. Management Support
2. Working Relationships
3. Training & Guidance
4. Resources & facilities

1. Logistics Maintenance Plan
2. Systems Engineering

requirements, functional
analysis, allocation and
synthesis

1. Contractual provisions
2. Approved changes
3. Need for change
4. ECPs
5. RFDs
6. Change Identification

Documentation and
Disposition

1. Approved Configuration
Documentation

2. Performance
Measurements

1. Verification, Validation,
Action items

2. Physical CI/CSCI,
Test results

3. Status and Configuration
Item Information

4. CM Planning Documents

50 � Software Configuration Management

configuration control, creates records in the status accounting database,
and provides documentation for configuration verification and audit. In
addition, product and document identifiers (nomenclature and numbering)
are an important output from this activity.

Configuration Control

The Configuration Control process receives input from Configuration Iden-
tification defining the current configuration baseline. It receives and pro-
cesses requests for engineering changes from technical, operational, and
contracts functions, and it receives Engineering Change Proposals (ECPs)
and Requests for Deviations (RFDs).

The Configuration Control activity is facilitated by communications, the
documented CM process, and by information obtained from the status
accounting database as needed. This information includes the current
implementation status of approved changes and other pertinent informa-
tion concerning the configuration of items in design, in production, and
in the operational inventory.

This activity may communicate requests for documentation of engi-
neering changes to developers. It subsequently provides for the review
and approval/disapproval of proposed changes, and for the necessary
authorization and direction for change implementation.

It provides input to status accounting about change identifiers, the
progress of the change documentation through the steps in the configuration
control decision/authorization process, and the implementation status of
authorized changes.

Configuration Status Accounting (CSA)

All the other CM activities provide information to the status accounting
database as a by-product of transactions that take place as the functions
are performed. Limited or constrained only by contractual provisions and
aided or facilitated by the documented CM process and open communi-
cations, this activity provides the visibility into status and configuration
information concerning the product and its documentation.

The CSA information is maintained in a CM database. This information
may include such information as the as-designed, as-built, as-delivered,
or as-modified configuration of any serial-numbered unit of the product,
as well as of any replaceable component within the product. Other
information, such as the current status of any change, the history of any
change, and the schedules for and status of configuration audits (includ-
ing the status of resultant action items) can also be accessed in the
database.

The DoD CM Process Model � 51

Metrics (performance measurements) on CM activities are generated
from the information in the CSA database and provided to the Management
and Planning function for use in monitoring the process and in developing
continuous improvements.

Configuration Verification and Audit

Inputs to Configuration Verification and Audit (Functional and Physical
Configuration Audit) include schedule information (from status account-
ing), configuration documentation (from configuration identification),
product test results, and the physical hardware or software product or its
representation, manufacturing instructions, and the software engineering
environment.

Outputs include verification that the product’s performance require-
ments have been achieved by the product design and that the product
design has been accurately documented in the configuration documenta-
tion. This process is also applied to verify the incorporation of approved
engineering changes. Configuration verification should be an embedded
function of the process for creating and modifying the product. Process
validation in lieu of physical inspection may be appropriate.

Successful completion of verification and audit activities results in a
verified product and documentation set that may be confidently considered
a product baseline, as well as a validated process that will maintain the
continuing consistency of product to documentation.

RELATION TO SYSTEMS ENGINEERING PROCESS

Configuration management is a key element in the systems engineering
process, as illustrated in Figure 3.3 because the Systems Engineering
Process governs the product development and addresses all aspects of
total system performance.

In general, the Systems Engineering Process is associated with opera-
tional analysis, requirements definition, and design determination. It includes
defining the interfaces internal and external to the system, including hard-
ware-to-hardware, hardware-to-software, and software-to-software inter-
faces. The tools of system engineering typically exercised in an integrated
product team environment include:

� Requirements Analysis: used to determine system technical require-
ments, and to provide verifiable performance-based requirements
in the system utilization environments, and the top-level functional
requirements that the system must meet.

52 � Software Configuration Management

� Functional Analysis and Allocation: integrates the functional system
architecture to the depth needed to support synthesis of solutions
for people, products, processes, and management of risk. It is con-
ducted iteratively to define successively lower-level functions; the
lowest level yields a set of requirements that must be performed by
components of the system to meet the top-level requirements.

� Synthesis: commonly understood as preliminary and detailed
design, this translates the functional and performance requirements
into a description of the complete system that satisfies the require-
ments.

As shown in Figure 3.3, the Systems Engineering Process uses the
“requirements loop” and the “design loop” in an iterative analytic approach
to make operational, requirements, and design decisions at successively
lower levels. As this process iterates, requirements are defined, docu-
mented, and approved within the CM process in the form of performance
specifications for the functional baseline, and for the allocated baselines
for specific components of the system identified as configuration items
(CIs).

Outputs of the Systems Engineering Process also include the basis for
drawings and data sets that are released to produce the item and, after

Figure 3.3 How CM relates to Systems Engineering

Requirements
Analysis

Synthesis

Outputs are
Configuration

Documentation

CM is
Control

Mechanism
- Customer Needs
- Requirements

Systems
Engineering

Process

Requirements
Loop

Verification

Design Loop

Systems Analysis
and Control

Functional
Analysis/
Allocation

The DoD CM Process Model � 53

verification/audit, form the product baseline. Thus, systems engineering
is the process that produces the technical information for which the CM
process provides technical control. As the CM process generates require-
ments for changes, the Systems Engineering Process is exercised to define
the technical basis for the change.

Management and planning activities are common to all phases of the
program life cycle, although the details upon which that management
activity focuses vary from phase to phase. The global activities utilized
by the federal government are illustrated in Table 3.1.

During each phase of the program life cycle, preparation for the
following phase takes place. For concept exploration phases, this work

Table 3.1 Implementation of “Global” Government CM Management
Activity

CM Management Activities

1. Prepare for next phase:
� Perform CM planning
� Develop/revise concept of operation
� Determine/update CM acquisition strategy
� Develop RFP CM requirements and goals
� Prepare CM proposal evaluation criteria
� Establish CM infrastructure needs/changes
� Resources and facilities

2. Implement CM process:
� Assign roles and responsibilities
� Select/acquire/customize automated CM tools
� Prepare, gain acceptance of, and implement procedures
� Conduct training
� Manage process

3. Measure/evaluate CM process and performance:
� Develop/select metrics
� Coordinate and communicate metrics
� Establish data collection process
� Obtain measurement data
� Assess trends
� Establish levels of confidence
� Provide feedback
� Implement appropriate corrective action

4. Effect process improvements/document lessons learned:
� Revise process, procedures, training
� Implement and continue measures/improvement cycle
� Document changes, reasons, and results

54 � Software Configuration Management

takes place prior to the initiation of the conception phase, when the
requirements for funded study efforts are being formulated.

CM planning is a vital part of the preparation for each phase (see
Figure 3.4). CM planning consists of determining what the CM concept
of operation and acquisition strategy for the forthcoming phase will be
and preparing or revising the configuration management plan accordingly.
Configuration managers must envision future phases and determine what
information in the current phase and the immediately following phase
must be captured to meet the needs of those future phases.

The CM concept of operation answers questions such as:

� What are the CM objectives for the coming phase?
� What is the rationale for these CM objectives?
� How is each CM objective related to program objectives and risks?
� What is the risk associated with not meeting the objectives?
� How can achievement of the objectives be measured?
� What information is required to support the CM goals for the next

phase? Future phases?
� How can that information best be obtained?
� What are the deliverables from the next program phase?
� Which deliverables are configuration items?
� How will the final listing of CIs be officially designated?

Figure 3.4 Implementation of “Global” Government CM Management Activity

Concept and
Technology

Development

System Development
and Demonstration

Production
and Deployment

Operations
and Support

Pre-Systems Acquisition Systems Acquisition Sustainment

OBJECTIVES

Identify Mission, Need,
Threat, Business Need
Authorize Studies Only

Milestone A
Approval to Initiate
Concept Studies

OBJECTIVES

Authorize entry
into system

Development and
Demonstration

Milestone B
Approval to Begin a

New Acquisition
Program

OBJECTIVES

Ensure Manufacturing
Capability, Operational/

Support Adequacy,
Production Base,

Orderly Increase to
Production Rate

Milestone C
Production
Deployment

The DoD CM Process Model � 55

� What is the end use of each CI?
� How are they to be supported?
� To what level are performance specifications required? CIs? Repairable

components? Replaceable components?
� What level of configuration documentation (e.g., performance spec-

ifications, detail specifications, complete technical data package) will
be required by the end of the next phase?

� What kinds of configuration identifiers (e.g., part numbers, serial
numbers, etc.) will be required by the end of the next phase?

� Which baselines (and documents) will already be subject to config-
uration control at the start of the next phase?

� What baselines will be established during the next phase? Functional?
Allocated? Product?

� What documents need to be included in those baselines?
� What status accounting will be needed in the next phase?

Obviously, these questions cannot and should not be answered in
isolation. They require close coordination, preferably in a teaming atmo-
sphere. Where feasible, it is desirable to work out planning for future
phases within a teaming arrangement with everyone participating in the
current phase. This provides an opportunity to examine all perspectives
on the critical issues and goals in an open atmosphere, and to arrive at
an optimum approach.

In addition to enabling the CM manager to complete his or her CM
plan, the answers to these questions also provide a rational basis for
developing and coordinating configuration management and data man-
agement requirements to appear in Requests for Proposal, and in formu-
lating the criteria to be used to evaluate proposals.

IMPLEMENTING THE CM PROCESS

During each program life-cycle phase, the CM manager implements the
planned CM process. Preparing procedures and coordinating them with
all participants in the process completes the process definition that was
initiated in the CM planning activity preceding this phase.

CM cannot be accomplished effectively without the participation and
cooperation of many different functional activities. There is no single CM
function that does not involve at least two or more interfaces. To accom-
plish the CM goals requires “team play.” One of the best ways to achieve
team play is to provide the vision and then solicit cooperative constructive
input on the details of the implementing procedures. Each functional area
must understand the particular roles and responsibilities that they have in
the CM process. The tasks that they are to perform must be integrated

56 � Software Configuration Management

into their workflow and given high priority. Coordinating the procedures
is the initial step.

Any changes in the infrastructure necessary for the performance of CM
during the phase are accomplished and tested, including the installation of
appropriate automated tools and their integration with the data environment.
Personnel from all disciplines and/or integrated product teams are then
trained in the overall process and in the specific procedures and tools that
they will use. Training pays dividends in a smooth, seamless process in
which personnel, who understand their roles and the roles of others with
whom they interface, work cooperatively and treat each interfacing player
as a “customer.”

Once a well-thought-out plan and a documented and agr eed-to
process are in place, the CM manager must employ modern management
techniques to assess process effectiveness, ensure anticipated results,
and fine-tune the process as necessary. It is also necessary to maintain
the process documentation by updating plans, procedures, and training,
as required.

It all starts and ends with communication:

� Articulating clear goals and objectives
� Making sure that the various players understand and cooperate
� Providing frequent feedback
� Ensuring that current status information, needed to complete process

steps, is accessible
� Paying attention to the inevitable minor problems that surface

MEASURING AND EVALUATING THE CM PROCESS

The CM process is measured and evaluated using metrics and program
reviews.

CM, by its very nature, is cross-functional. No important CM function
is performed without interaction with other functional or team members.
Therefore, CM objectives and measurements cannot and should not be
divorced from the interacting systems engineering, design engineering,
logistics, contracting, and other program objectives and processes. More-
over, it is not the efficiency of CM activities, per se, that add value, but
their result in contributing to overall program objectives.

Improving the CM process is a venture that typically requires interaction
across a broad spectrum of program activities, including technical, finan-
cial, and contractual. The process must be documented to a level of detail
that is:

� Easily understood by all participants in the process

The DoD CM Process Model � 57

� Focused on the key process interfaces
� Less detailed than the procedures used to perform the process but

sufficient to determine what must be measured to obtain factual
information on the process

A metric involves more than a measurement; it consists of:

� An operational definition of the metric that defines what is to be
measured; why the metric is employed; and when, where, and
how it is used. It can also help to determine when a metric has
outlived its usefulness and should be discontinued.

� The collection and recording of actual measurement data. In the case
of the CM process, this step can often be accomplished by querying
the status accounting database, which normally can provide a great
deal of process flow information.

� The reduction of the measurement data into a presentation format
(e.g., run chart, control chart, cause and effect diagram, Pareto
chart, histogram) to best illuminate problems or bottlenecks and
lead to the determination of root cause or largest constraint.

An effective metric has the following attributes:

� It is meaningful in terms of customer relationships (where the
“customer” can be any user of information that is provided).

� It relates to an organization’s goals and objectives, and tells how well
they are being met by the process, or part of the process, being
measured.

� It is timely, simple, logical, and repeatable; unambiguously defined;
and economical to collect.

� It shows a trend over time that will drive the appropriate forward-
focused action and thus benefit the entire organization.

Metrics can include:

� Average time variance from scheduled time
� Rate of first-pass approvals
� Volume of deviation requests by cause
� The number of scheduled, performed, and completed configuration

management audits during each phase of the life cycle
� The rate of new changes being released and the rate that changes

are being verified as completed; history compiled from successive
deliveries is used to refine the slope of the expected rate

58 � Software Configuration Management

� The number of completed versus scheduled (stratified by type and
priority) actions

CM BENEFITS AND RISKS BY PROGRAM LIFE-CYCLE
ACTIVITY (SEE FIGURE 3.5)

Management and Planning: Concept and Technology Development
Phase

This phase consists of the following steps:

1. Develop concept of operation and acquisition strategy for CM in
Systems Acquisition.

2. Prepare, coordinate, and release procedures implementing the CM
process; conduct training.

3. Measure and evaluate CM process.
4. Prepare and coordinate configuration management plans.
5. Define data interface and requirements.
6. Document lessons learned.
7. Develop CM requirements, information/data, and metrics.

Benefits include:

� The appropriate level of resources and the right information to
efficiently and effectively conduct CM

Risks, if not done, include:

� Incompatible government and contractor CM systems
� Inadequate or excessive resources
� Inability to perform effectively due to lack of timely information

Configuration Identification: Concept and Technology Development
Phase

This phase consists of the following steps:

1. Implement identification method and review process to review
concept exploration studies and draft RFP material.

2. Maintain a defined document identification and release process for
systems engineering products such as concept study and associated
reference documentation.

3. Establish an audit trail of decisions and document iterations.

The DoD CM Process Model � 59

Benefits include:

� Efficient management of information
� Access to correct, current data
� Effective information sharing

Risks, if not done, include:

� Lack of an audit trail of decisions
� Incorrect revisions used

Configuration Control: Concept and Technology Development Phase

1. Establish process for version control of concept study data files and
document representations.

Figure 3.5 CM Objectives for Each Phase

- C
om

pe
titi

ve
, P

ar
all

el,
 S

tu
die

s

- D
ef

ine
/E

va
lua

te
 A

lte
rn

at
e

Con
ce

pt
 F

ea
sib

ilit
y

- S
et

 In
itia

l B
ro

ad
 O

bje
cti

ve
s f

or
 C

os
t,

Sch
ed

ule
,

 P
er

for
m

an
ce

, S
of

tw
ar

e
Req

uir
em

en
ts,

 O
pp

or
tu

nit
y f

or
 Tr

ad
es

, I
nt

er
op

er
ab

ilit
y,

Acq

uis
itio

n,
 a

nd
 T

&E S
tra

te
gy

- D
ev

elo
p

Sys
te

m
: D

es
ign

, I
nt

eg
ra

te
, a

nd
 Te

st

- R
ed

uc
e

Pro
gr

am
 R

isk

- E
ns

ur
e

Sup
po

rta
bil

ity
, P

ro
du

cib
ilit

y,

 A
ffo

rd
ab

ilit
y

- D
em

on
str

at
e

Sys
te

m
 In

te
gr

at
ion

,

 I
nt

er
op

er
ab

ilit
y,

an
d

Utili
ty

- L
ow

 R
at

e
In

itia
l P

ro
du

cti
on

- V
ali

da
te

 M
an

ufa
ctu

rin
g/

Pro
du

cti
on

 P
ro

ce
ss

- S
ys

te
m

 Te
sti

ng

- O
pe

ra
tio

na
l T

es
t a

nd
 E

va
lua

tio
n

- F
ull

 R
at

e
Pro

du
cti

on
 a

nd
 D

ep
loy

m
en

t

- O
pe

ra
tio

na
l S

up
po

rt

- M
ain

ta
in

Rea
din

es
s a

nd
 O

pe
ra

tio
na

l

 C
ap

ab
ilit

y o
f D

ep
loy

ed
 S

ys
te

m
s

- M
od

ific
at

ion
 a

nd
 E

nh
an

ce
m

en
t

- D
em

ilit
ar

iza
tio

n
an

d
Disp

os
al

Pre-Systems
Acquisition Systems Acquisition Sustainment

Concept and
Technology

Development

System
Development and

Demonstration

Production and
Deployment

Operations
and Support

Activities

Phases

Concept and
Technology

Development

CM Template

System
Development

and Demo

CM Template

Production
and

Deployment

CM Template

Operations
and

Support

CM Template

- CM Objectives
- Metrics
- Activities
- Decisions/Criteria
- Benefit/Risk

Work
Efforts

Milestone A:
Approval to
Initiate
Concept
Studies

Milestone B:
Approval to
Begin a New
Acquisition
Program

Milestone C:
Authorize Entry
into LRIP,
Production,
Procurement

Objectives:
- Identify Mission

Need, Threat,
Business Need

- Authorize
Studies Only

Objectives:
- Authorize entry

into System
Development
and
Demonstration

Objectives:
- Ensure Manufacturing

Capability, Operational/
Support Adequacy,
Production Base, Orderly
Increase to Production Rate

Based on DoD 5000.2

60 � Software Configuration Management

2. Implement common process to review and coordinate iterations of
concept evaluation data.

Benefits include:

� Efficient review
� Ensures that all functional groups or integrated product teams are

working to a common reference

Risks, if not done, include:

� Inconsistent, unreliable analyses, reports, and conclusions

Configuration Status Accounting: Concept and Technology
Development Phase

This phase consists of the following steps:

1. Record and report status of management and technical decisions.
2. Provide traceability of all decisions to revisions in study documents

and requirements documentation.
3. Record unique identifiers for the digital data files and document

representations of each document and each hardware model or
software package released for use on the computer.

Benefits include:

� Single information source
� Always current reference
� Common basis for decision
� Access for all with a need-to-know

Risks, if not done, include:

� Lack of decision audit trail
� Redundant document storage
� Decisions based on obsolete data

Management and Planning: System Development and Demonstration
Phase

This phase consists of the following steps:

The DoD CM Process Model � 61

1. Develop concept of operation and acquisition strategy.
2. Prepare, coordinate, and release procedures implementing CM pro-

cess; conduct training.
3. Measure and evaluate CM process.
4. Effect process improvements and document lessons learned during

Engineering and Manufacturing Development and System Demon-
strations.

Benefits include:

� The appropriate level of resources and the right information to
efficiently and effectively conduct CM

Risks, if not done, include:

� Incompatible government and contractor CM systems
� Inadequate or excessive resources
� Inability to perform effectively due to lack of timely information
� Loss of configuration control
� Poor supportability
� Excessive configuration documentation ordered that is not neces-

sary for program management

Configuration Identification: System Development and Demonstration
Phase

This phase consistes of the following steps:

1. Establish interface memoranda.
2. Implement identification method and release process for require-

ments and directive documentation.
3. Approve system specification establishing functional baseline.
4. Assign nomenclature, where appropriate.

Benefits include:

� Known structure (hierarchy) of system/CI to which configuration
documentation and other information is related

� Performance, interface, and other attributes are clearly documented
items and are identified and marked appropriately

� Effective information-sharing among various groups
� Identification of product and documentation are modified as signif-

icant changes are incorporated

62 � Software Configuration Management

� Release of configuration documents is control led, and configuration
baselines are established and maintained

� Configuration documentation, and user and maintenance information
correlate to product versions

� Internal control requirements for alternative solutions through a
defined document release and control process

� Establish requirements traceability from top level to allocated require-
ments definitions

� Capture configuration definition of simulation software, prototypes,
and engineering models through release and control of configuration
documents

� Establish interface agreements

Risks, if not done, include:

� Poor correlation between requirements documents and test results
� Incorrect revisions used
� Not working to a common reference
� Inaccurate, incomplete interface data
� Inability to assess requirements iterations on interfaces
� Incomplete documentation

Configuration Control: System Development and Demonstration Phase

This phase consists of the following steps:

1. Establish configuration control process and procedures for devel-
opment and demonstration, including change initiation, evaluation,
and disposition.

2. Determine desired change effectivity.

Benefits include:

� Efficient change processing and orderly communication of change
information

� Change decisions based on knowledge of change impact
� Changes limited to those necessary or beneficial
� Evaluation of cost, savings, and trade-offs facilitated
� Consistency between product and documentation
� Configuration control preserved at system interfaces
� Current baselines enable supportability
� Deviations are documented and limited

The DoD CM Process Model � 63

Risks, if not done, include:

� Chaotic, ad hoc change management
� Changes approved without knowledge of significant impacts
� Changes that are not necessary or offer no benefit
� Lack of confidence in cost and schedule estimates
� No assurance of product to document consistency
� Uncertainty at system interfaces
� Inconsistent basis for supportability
� No control of deviations
� Ineffective program management
� Essentially, technical anarchy

Configuration Status Accounting: System Development and
Demonstration Phase

This phase consists of the following steps:

1. Select and tailor information to be provided.
2. Establish procedures and screens for interaction.
3. Test and assure the integrity of the configuration information; verify

that CM business rules have been correctly applied.
4. Record and report the current performance requirements documen-

tation.
5. Correlate definition of simulation software, prototype, and engi-

neering model configurations to applicable test results, analyses,
and trade studies.

6. Record all authorized changes to requirements documentation.
7. Provide traceability of requirements from the top-level documenta-

tion through all subordinate levels.
8. Provide controlled access to the digital data files and document

representations of each document and software item released for
use on the program.

9. Identify the current approved configuration documentation and
configuration identifiers associated with each system.

10. Identify the digital data file(s) and document representations of all
revisions and versions of each document and software delivered,
or made accessible electronically.

11. Record and report the results of configuration audits, to include the
status and final disposition of identified discrepancies and action
items.

12. Record and report the status of proposed engineering changes from
initiation to final approval to implementation.

64 � Software Configuration Management

13. Capture and report information about:
� Product configuration status
� Configuration documentation
� Current baselines
� Historic baselines
� Change requests
� Change proposals
� Change notices
� Variances
� Warranty data and history
� Replacements by maintenance action

Benefits include:

� Single information source providing consistency
� Always current reference
� Common basis for change decision
� Access for all with a need-to-know
� Correct, timely configuration information when needed to facili-

tate decision making on changes, deployment of assets, deter-
mining applicable replacements, and performing updates and
upgrades

Risks, if not done, include:

� Redundant document storage and retrieval
� Costly searches for information and status
� Improper decisions made based on obsolete data
� The risk of inadequate status accounting may result in improper

decisions about change effectivity, retrofit requirements, deploy-
ment of items requiring support assets that are not in place — all
of which contribute to avoidable cost

Configuration Audit: System Development and Demonstration Phase

This phase consists of the following steps:

1. Assign audit co-chair for each audit.
2. Approve audit agenda(s).
3. Approve minutes.
4. Perform audit planning and pre-audit preparation.
5. Conduct formal audit when required.

The DoD CM Process Model � 65

6. Review performance requirements, test plans, results, and other
evidence to determine that the product performs as specified,
warranteed, and advertised.

7. Perform physical inspection of product and design information;
ensure accuracy, consistency with, and conformance to acceptable
practice.

8. Record discrepancies; review to close out or determine action;
record action items.

9. Track action items to closure via status accounting.

Benefits include:

� Verified configuration and documentation consistent with opera-
tional and support requirements

� Reliable and dependable baselines

Risks, if not done, include:

� Unnecessary and avoidable support costs
� Inaccurate technical manuals
� Replacement parts that do not fit
� Loss of confidence in supplier

Management and Planning: Production and Deployment Phase

This phase consists of the following steps:

1. Prepare, coordinate, and release procedures implementing CM pro-
cess; conduct training.

2. Measure and evaluate CM process.
3. Update CM planning, as required, to reflect process improvements,

new deployment information, changes in support/maintenance
planning, major modifications, etc.

Benefits include:

� The appropriate level of resources and the right information to
efficiently and effectively conduct CM

Risks, if not done, include:

� Inadequate resources to accomplish essential tasks late in program
� Poor supportability at a time of aging assets

66 � Software Configuration Management

Configuration Identification: Production and Deployment Phase

This phase consists of the following steps:

1. Perform basic configuration identification actions for documenta-
tion, hardware, and software created or revised as a result of
approved engineering changes.

2. Maintain a product baseline.
3. Assign nomenclature, where appropriate.
4. If maintenance plan is affected by a change, make sure that the

level of performance specification for the new configuration remains
consistent with revised maintenance planning.

5. Release engineering design data (engineering drawings, computer
models, software design documents).

6. Maintain design release (release record).

Benefits include:

� Performance, interface, and other attributes are clearly documented
and used as basis for configuration control

� Items are appropriately identified and marked
� Re-identification occurs as significant changes are incorporated
� Release controls and configuration baselines are maintained
� Users and maintenance personnel can locate information correlated

to correct product versions

Risks, if not done, include:

� Inability to provide efficient product support after production and
deployment

� Inadequate or incorrect product identification
� Inability to distinguish between product versions, resulting in deploy-

ment of assets requiring excessive supportability and assets without
the functional capability needed for assigned missions

� Inadequate basis for defining changes and corrective actions
� Uncertain, wasteful, and costly configuration control decisions

Configuration Control: Production and Deployment Phase

This phase consists of the following steps:

The DoD CM Process Model � 67

1. Establish configuration control procedures, including change initi-
ation and operating procedures for change evaluation and dispo-
sition.

2. Identify need for changes.
3. Document local engineering changes and ensure that they do not

impact current baselines, prior to approving their implementation.
4. Communicate on status and content of changes and deviation

requests contemplated and in-process.

Benefits include:

� Efficient change processing and orderly communication of change
information

� Change decisions based on knowledge of change impact
� Changes limited to those necessary or beneficial
� Evaluation of cost, savings, and trade-offs facilitated
� Consistency between product and documentation
� Configuration control preserved at system interfaces
� Current baselines enable supportability
� Deviations are documented and limited

Risks, if not done, include:

� Chaotic, ad hoc change management
� Changes approved without knowledge of significant impacts
� Changes that are not necessary or offer no benefit
� Lack of confidence in accurate cost and schedule estimates
� No assurance of product to document consistency
� Uncertainty at system interfaces
� Inconsistent basis for supportability
� No control of deviations
� Ineffective program management

Configuration Status Accounting: Production and Deployment Phase

This phase consists of the following steps:

1. Establish procedures interacting with the database(s).
2. Test the integrity of the configuration information in the database(s);

verify that CM business rules have been correctly applied.

68 � Software Configuration Management

3. Identify the current approved configuration documentation and
configuration identifiers associated with each system or CI.

4. Identify data file(s) and document representations of revisions and
versions of each document or software delivered, or made acces-
sible electronically.

5. Record and report the results of configuration audits, to include the
status and final disposition of identified discrepancies and action
items.

6. Record and report the status of proposed engineering changes, from
initiation to final approval to implementation.

7. Record and report the status of all critical and major requests for
deviation that affect the configuration of a system or CI.

8. Report the effectivity and installation status of configuration changes
to all systems or CI(s).

9. Provide the traceability of all changes from the original released
configuration documentation of each system or CI.

10. Record and report configuration changes resulting from retrofit and
by replacements through maintenance action.

11. Retain information about:

� Product configuration status
� Configuration documentation
� Current baselines
� Historic baselines
� Change requests
� Change proposals
� Change notices
� Deviations
� Warranty data and history
� Configuration verification and audit status/action item close-out

Benefits include:

� Correct, timely configuration information, when needed, to facil-
itate decision making on changes, deployment of assets, deter-
mining applicable replacements, and performing updates and
upgrades

 Risks, if not done, include:

� Inadequate status accounting may result in improper decisions
about change effectivity, retrofit requirements, deployment of items

The DoD CM Process Model � 69

requiring support assets that are not in place — all of which
contribute to avoidable cost

Configuration Audit: Production and Deployment Phase

This phase consists of the following steps:

1. Assign audit co-chair for each audit.
2. Approve audit agenda(s).
3. Approve minutes.
4. Certify processes for engineering.
5. Release, configuration control, and status accounting as adequate

to maintain baseline control.
6. Review performance requirements, test plans, results, and other

evidence to determine that the product performs as specified,
warranteed, and advertised.

7. Perform physical inspection of product and design information;
ensure accuracy, consistency, and conformance with acceptable
practices.

8. Record discrepancies; review to close out or determine action; and
record action items.

9. Track action items to closure via status accounting.

Benefits include:

� Verified configuration and documentation consistent with opera-
tional and support requirements

� Reliable and dependable baselines

Risks, if not done, include:

� Unnecessary and avoidable support costs
� Inaccurate technical manuals
� Replacement parts that do not fit
� Loss of confidence in supplier

Management and Planning: Operations and Support Phase

This phase consists of the following step:

1. Update CM planning, as required, to reflect new deployment infor-
mation, changes in support and maintenance planning, major mod-
ifications, etc.

70 � Software Configuration Management

Benefits include:

� The appropriate level of resources and the right information to
efficiently and effectively conduct CM

Risks, if not done, include:

� Inadequate resources to accomplish essential tasks late in the
program

� Poor supportability at a time of aging assets

Configuration Identification: Operations and Support Phase

This phase consists of the following steps:

1. Perform basic configuration identification actions for documenta-
tion, hardware, and software created or revised as a result of
approved engineering changes.

2. If maintenance plan is affected by a change, make sure that the
level of performance specification for the new configuration remains
consistent with revised maintenance planning.

3. Track traceable items via serial number or lot number.

Benefits include:

� Re-identification occurs as significant changes are incorporated
� Users and maintenance personnel can locate correct information

for product versions

Risks, if not done, include:

� Inability to distinguish between product versions resulting in
deployment of assets with incorrect or excessive support assets,
or without the functional capability needed for assigned missions

Configuration Control: Operations and Support Phase

This phase consists of the following steps:

1. Continue configuration control procedures, including change initi-
ation and CCB operating procedures for change evaluation and
disposition.

The DoD CM Process Model � 71

2. Document local engineering changes and ensure they do not impact
current baselines, prior to approving their implementation. Request
review when necessary.

3. Communicate on status and content of changes and deviation
requests contemplated and in process.

4. Process proposed changes to approved baseline configuration doc-
umentation.

5. Implement change and verify re-established consistency of product,
documentation, operation, and maintenance resources.

Benefits include:

� Consistency between product and documentation
� Current baselines enable supportability

Risks, if not done, include:

� No assurance of product to document consistency
� Inconsistent basis for supportability

Configuration Status Accounting: Operations and Support Phase

This phase consists of the following steps:

1. Establish procedures for interacting with the database(s).
2. Test the integrity of the configuration information in the database(s);

verify that CM business rules have been correctly applied.
3. Record and report configuration changes resulting from retrofit and

by replacements through maintenance action.

Benefits include:

� Correct, timely information for decision making on changes,
deployment of assets, applicable replacements, and performing
updates and upgrades

Risks, if not done, include:

� Improper decisions about change effectivity, retrofit requirements,
deployment of items requiring support assets that are not in place
— all of which contribute to avoidable cost

72 � Software Configuration Management

EFFECT PROCESS IMPROVEMENT AND DOCUMENT
LESSONS LEARNED

We learn from effective measurements and metrics if the process is or is
not meeting objectives. We also learn which part of the process is currently
the biggest contributor to detected backlogs, bottlenecks, repeat effort, or
failures and errors. By focusing on that weakest link, one can isolate the
problem and trace it to its root cause. Often, the cause can be corrected
by streamlining the process (eliminating redundancy or non-value-adding
steps, modifying sequence, performing tasks in parallel rather than in
series) or improving communications. Measurements should continue as
is or be altered to fit the new solution for a period of time sufficient to
assess if the revised process is resulting in improved performance. This
measurement/improvement cycle is an iterative process. Once a weak link
is improved, the process metrics are again reviewed to determine and
improve other parts of the process that stand out as contributors to
deficiencies or lengthy cycle time.

The key personnel involved in the process must be participants in
defining the improvements. Their “buy-in” is essential if the improvements
are to be implemented effectively. Detailed procedures and effected
automated systems must be modified and personnel must be retrained,
as required. These “total quality management aspects” of the job are best
performed as an integral part of the process of managing, rather than as
isolated exercises. It is also foolish to expend effort in improving processes
without clearly documenting the lessons learned to leverage the efficiency
of future applications. Changes made in the process, over time, should
be recorded, along with the reasons the changes were made and the
measured results. A suggested place to record process changes is in the
configuration management plan. Initially, the CM plan was a projection
of the expected implementation of configuration management over the
program life cycle. As a minimum, it is updated during each phase for
application during the next. Including process change and lessons learned
information makes the plan a working document that reflects the transition
from anticipated action (planning) to completed action (reality). It can
then serve as a better reference to use in planning for the next program
phase and in the initial planning for future programs.

SUMMARY

This chapter introduces the concept of configuration management using
MIL-STD-973, which has since been superseded by the EIA-649 industry
standard. Where EIA-649 provides the concepts for implementing a con-

The DoD CM Process Model � 73

figuration management program, the military standard (and supporting
documentation) provide detailed procedural instructions for CM imple-
mentation. Because MIL-STD-973 has always been referred to as the “bible”
of CM, it is worth taking the time to review the concepts and constructs
of “the military way.”

REFERENCES

This chapter is based on the following report: MIL-HDBK-61A(SE), Feb-
ruary 7, 2001, Military Handbook: Configuration Management Guidance.

RESOURCES

The following selected specifications, standards, and handbooks form part
of the DoD CM process. Many of them can be found on the Internet by
typing the document name into a search engine.

MIL-PRF-28000, Digital Representation for Communication of Product
Data: IGES Application Subsets and IGES Application Protocols

MIL-PRF-28001, Markup Requirements and Generic Style Specification
for Exchange of Text and Its Presentation

MIL-PRF-28002, Raster Graphics Representation in Binary Format,
Requirements for MIL-DTL-31000, Technical Data Packages

MIL-STD-129, Military Marking
MIL-STD-196, Joint Electronics Type Designation System
MIL-STD-787, Joint Optical Range Instrumentation Type Designation

System
MIL-STD-1812, Type Designation, Assignment, and Method for Obtain-

ing
MIL-STD-1840, Automated Interchange of Technical Information

American Society of Mechanical Engineers

ASME Y14-100M, Engineering Drawing Practices
ASME Y14.24, Types and Applications of Engineering Drawings
ASME Y14.34M, Associated Lists

(Application for copies should be addressed to the American Society of
Mechanical Engineers, 345 East 47th Street, New York, NY 10017-2392.)

74 � Software Configuration Management

Electronics Industries Alliance

ANSI/EIA-649-1998, National Consensus Standard for Configuration
Management (DoD adopted)

ANSI/EIA-632-1998, Processes for Engineering a System
EIA-836, Consensus Standard for CM Data Exchange and Interopera-

bility

(Application for copies should be addressed to Global Engineering Doc-
uments, 15 Inverness Way East, Englewood, CO 80112.)

Institute of Electrical and Electronic Engineers

IEEE STD 828-1990, Software Configuration Management Plans

(Application for copies should be addressed to the IEEE Service Center,
P.O. Box 1331, 445 Hoes Lane, Piscataway, NJ 08855-1331.)

International Organization for Standardization

IS0 10007, Quality Management — Guidelines for Configuration Man-
agement

ISO/IEC 12207, Information Technology — Software Life Cycle Pro-
cesses

(Application for copies should be addressed to the American National
Standards Institute, 11 West 42nd St., New York, NY 10036.)

75

4

CONFIGURATION
IDENTIFICATION

Configuration identification incrementally establishes and maintains the
definitive current basis for control and status accounting of a system and
its configuration items (CIs) throughout their life cycle (development,
production, deployment, and operational support, until demilitarization
and disposal). The configuration identification process ensures that all
processes have common sets of documentation as the basis for developing
a new system, modifying an existing component, buying a product for
operational use, and providing support for the system and its components.
The configuration identification process also includes identifiers that are
shorthand references to items and their documentation.

HOW CONFIGURATION IDENTIFICATION WORKS

Good configuration control procedures ensure the continuous integrity of
the configuration identification. The configuration identification process
includes:

� Selecting configuration items at appropriate levels of the product
structure to facilitate the documentation, control, and support of
the items and their documentation

� Determining the types of configuration documentation required for
each CI to define its performance, functional, and physical attributes,
including internal and external interfaces; configuration documenta-
tion provides the basis to develop and procure software/parts/mate-
rial, fabricate and assemble parts, inspect and test items, and maintain
systems

76 � Software Configuration Management

� Determining the appropriate configuration control authority for each
configuration document consistent with logistics support planning for
the associated CI

� Issuing identifiers for the CIs and the configuration documentation
� Maintaining the configuration identification of CIs to facilitate effective

logistics support of items in service
� Releasing configuration documentation
� Establishing configuration baselines for the configuration control

of CIs

Effective configuration identification is a prerequisite for the other
configuration management activities (i.e., configuration control, status
accounting, audit), which all use the products of configuration identifica-
tion. If CIs and their associated configuration documentation are not
properly identified, it is impossible to control the changes to the items’
configuration, to establish accurate records and reports, or to validate the
configuration through audit.

Figure 4.1 is an activity model of the configuration identification
process. The boxes represent activities. The arrows entering at the left of
each box are inputs; those entering the top are constraints; those entering
the bottom are facilitators or mechanisms; and those leaving each box
from the right are outputs.

Inaccurate or incomplete configuration documentation can result in
defective products, schedule delays, and higher maintenance costs after
delivery.

The basic principles of configuration identification are articulated in
EIA Standard 649. It cites the following purposes and benefits of config-
uration identification:

� Determines the structure (hierarchy) of a product and the organi-
zation and relationships of its configuration documentation and
other product information

� Documents the performance, interface, and other attributes of a
product

� Determines the appropriate level of identification marking of product
and documentation

� Provides unique identity to a product or to a component part of a
product

� Provides unique identity to the technical documents describing a
product

� Modifies identification of product and documents to reflect incorpo-
ration of major changes

� Maintains release control of documents for baseline management

Configuration Identification � 77

� Enables a user or a service person to distinguish between product
versions

� Enables a user or a service person to correlate a product to related
user or maintenance instructions

� Facilitates management of information, including that in digital format
� Correlates individual product units to warranties and service life

obligations
� Enables correlation of document revision level to product version or

configuration
� Provides a reference point for defining changes and corrective

actions

Figure 4.1 Configuration Identification Process Activity Model

1. Systems Engineering
Requirements

2. Functional Analysis
3. Allocation and Synthesis

1. Contract Provisions

Configuration Items Selected
and Requirements Allocated

Appropriate Configuration
Document Types and
Baselines Selected

Document and Item
Identifiers Assigned

Product
Structure

1. Contract Provisions

Determine
CIs 1. Contract Provisions

2. Logistics
3. Maintenance Plan

Select Config.
Documentation

Types/
Baselines

1. Contract Provisions
2. Approved Engineering

Changes

Identify/
Re-identify
Documents
and Items 1. Contract Provisions

2. Configuration
Documentation

3. CM Planning
4. Documented CM

Process

1. Contract Provisions
2. Configuration

Documentation
3. CM Planning
4. Documented CM

Process

Approve,
Release,

and Baseline
Documentation

78 � Software Configuration Management

CONFIGURATION IDENTIFICATION GENERAL
ACTIVITY GUIDES

A configuration identification process evaluation checklist is provided to
assist in this process (see Table 4.1).

PRODUCT STRUCTURE

Product structure, also referred to as system architecture, refers to the
identifiers, internal structure, and relationship of system components and
associated configuration documentation. Product structure, derived from
the functional analysis and allocation process of systems engineering, can
be depicted graphically as a tree structure or as an indentured listing.

As a program matures through its early phases, the systems engineering
process produces the optimized functional and physical composition of
the system architecture to the level that it is necessary to specify and
control item performance. This is the lowest level at which CIs are
designated during the Engineering and Manufacturing Development phase
of the life cycle. Management tools such as specification and drawing
trees, and work breakdown structures are all views of the product structure
that are directly relatable at the CI level.

Program and contract work breakdown structures (WBSs) are views
of the product family tree structure showing the hardware, software,
services (see Figure 4.2), data, and facilities against which costs are
collected. The WBS relates the elements of work to be accomplished to
each other and to the end product. CIs are identified as work breakdown
structure elements.

CONFIGURATION ITEMS

Selected items of system hardware or software (or combinations of hard-
ware and software) are designated as configuration items (CIs).

CIs are the basic units of configuration management. They may vary
widely in complexity, size, and type, from an aircraft, ship, tank, electronic
system, or software program to a test meter or a round of ammunition.
Regardless of form, size, or complexity, the configuration of a CI is
documented and controlled. CI selection separates system components
into identifiable subsets for the purpose of managing further development.

For each CI:

� There will be associated configuration documentation (which may
range from a performance specification to a detailed drawing to a
commercial item description).

Configuration Identification � 79

Table 4.1 Configuration Identification Process Evaluation Checklist

1. Documented process:
a. Is there a documented configuration identification process?
b. Is the documented process followed?
c. Are personnel from all disciplines and teams involved in the process

informed and knowledgeable about the procedures they are supposed
to follow?

2. Product structure:
a. Is the product (system/CIs) structured into a rational hierarchy?
b. Are subordinate CIs identified at a reasonable level for:

i. Specification of and measurement of performance?
ii. Management of the effectivity of changes?
iii. Obtaining spare parts using performance or design documents?

c. Can the composition of each system/CI be determined from the con-
figuration documentation?

3. Configuration documentation:
a. Does the configuration documentation define the performance, func-

tional, interface, and physical attributes of each system/CI ?
b. Do the performance requirements of the system and/or top-level

configuration item specifications meet or exceed threshold perfor-
mance of the acquisition program baseline?

c. Are all configuration documents uniquely identified?
i. Does the identification reflect the source of the preparing original

design activity and current design activity, the type of document,
and an alphanumeric identifier?

ii. Can each document be easily associated with the CI configuration
to which it relates and, where applicable, the range of CI serial
numbers to which it applies?

4. Product identification:
a. Are all CIs and subordinate parts down to the level of nonreparability

assigned individual unique part/item identifiers?
b. Do the assigned identifiers enable:

i. Each part/item to be distinguished from all other parts/items?
ii. Each configuration of an item to be distinguished from earlier and

later configurations?
c. Can the next higher assembly application of each part be determined

from the design documentation (including associated lists/records)?
d. Does the documentation indicate whether CIs are serialized (or lot

controlled)?
e. Is the common base identifier for serialization/lot numbering always

a non-changing identifier?
f. Is part/item effectivity to be defined in a manner appropriate for the

product type?
g. When an item is changed to a new configuration, is its identifier

altered in both the configuration documentation and on the item itself
to reflect the new configuration?

80 � Software Configuration Management

� Configuration changes will be controlled.
� Configuration status accounting records will be maintained.
� Configuration audits will be conducted to verify performance and

product configuration (unless the CI has an already established
product baseline).

To define and control the performance of a system or CI does not
mean that all of its hardware and software components must be designated
as CIs.

Computer software items, because they typically control the function-
ality of a system, are almost always designated as CIs. The term “CI”
encompasses both hardware and software; when a statement applies only
to hardware, or only to software, the terms “HWCI” and “CSCI,” respec-
tively, are used.

Table 4.1 Configuration Identification Process Evaluation Checklist
(continued)

5. Configuration baselines:
a. Are appropriate configuration baselines established and maintained

as a basis for configuration control?
b. Is the current configuration baseline for the system and for each CI

easily determinable?
c. Is an adequate system of release control in place and used for the

release of all configuration documents?
i. Can the as-released configuration of each CI be determined?
ii. Can past configurations be determined? (applies to both the engi-

neering design configuration and the product configuration)
iii. Do release records reflect the authority for changing from one

configuration to the next? Do they reference the ECP identifier and
contract modification (where applicable)?

iv. Does the release system prevent unauthorized changes to released
documents?

6. Interface control:
a. For external interfaces, are interface agreements established where

necessary to document and agree to performance, functional, and
physical interfaces?

b. Do CIs being developed by different contractors for the program have
well-defined interfaces?

7. Metrics:
a. Are statistical records of document release and other measurable

configuration identification actions maintained?
b. Is the data reduced to meaningful measurement useful in maintaining

and improving the process?

Configuration Identification � 81

Fi
gu

re
 4

.2
 A

 W
B

S
fo

r
So

ft
w

ar
e

En
gi

ne
er

in
g

Se
rv

ic
es

82 � Software Configuration Management

The determination of the need to designate items as CIs is normally
simple and straightforward. However, there are many cases in which other
lower-level items should also be selected based on the management needs
of the program. Some of the primary reasons for designating separate CIs
are:

� Critical, new, or modified design
� Independent end-use functions
� Sub-assembly factors, such as the need for separate configuration

control or a separate address for the effectivity of changes
� Components common to several systems
� Interface with other systems, equipment, or software
� Level at which interchangeability must be maintained
� Separate delivery or installation requirement
� Separate definition of performance and test requirements
� High risk and critical components

Although the initial CI selection generally occurs early in the acquisition
process, its consequences are lasting and affect many aspects of program
management, systems engineering, acquisition logistics, and configuration
management. CI selection establishes the level of configuration control
throughout the system life cycle. Selecting CIs separates a system into
individually identified components for the purpose of managing their
development and support.

Many engineering requirements or considerations can influence the
selection of CIs. Throughout development and support, the allocation of
engineering effort and organization are rooted in the selection of CIs.

CONFIGURATION ITEM SELECTION CRITERIA

The process of selecting configuration items requires the exercise of good
systems engineering judgment based on experience, and supported by
cost trade-off considerations. No fixed rules govern CI selection or dictate
the optimum number of CIs for a particular system. Rather, guidelines for
making the appropriate judgments are provided in the “General Guidance,”
“CI Selection Checklist,” and “Additional Factors” sub-sections of this
section.

General Guidance

1. Designating a system component as a CI increases visibility and
management control throughout the development and support

Configuration Identification � 83

phases. For system-critical or high technical risk components, added
visibility can help in meeting specified requirements and maintain-
ing schedules.

2. For each development contract, there should be at least one CI
designated.

3. For complex systems, major functional design components are
usually designated as CIs. The initial selection is normally limited
to the major component level of the work breakdown structure.

4. As system design evolves during development and complex items
are further subdivided into their components, additional CIs may
be identified.

5. Each CI should represent a separable entity that implements at least
one end-use function.

6. The selection of CIs should reflect a high degree of independence
among the CIs at the same level. Subordinate components of a CI,
which are recommended as CIs during the detail design process,
should all be functionally interrelated.

7. Operational software should always be differentiated from support
software by designating each as a separate CI.

8. The complexity of CI interfaces in a system should be minimized.
Complexity often results in increased risk and cost.

9. All subassemblies of a CI should have common mission, installation,
and deployment requirements.

10. For systems with common components, sub-systems, or support
equipment, each common item should be separately designated as
a CI at an assembly level common to both systems.

11. A unique component that is peculiar to only one of multiple similar
systems should be identified as a separate CI of that system.

12. Off-the-shelf, privately developed items generally should not be
designated as CIs. However, commercially available items that have
been modified should not necessarily be excluded from CI selection.
(Factors to consider include the extent of the modification; the
criticality of the modified CI to the mission of the system; and the
extent of ownership, data rights, and configuration documentation
required and available.)

CI Selection Checklist

If most of the answers to the following questions are “yes,” the item
should be considered for designation as a separate CI. If most answers
are “no,” it probably should not be designated as a CI. However, a single
overriding “yes” may be sufficient to require an item to be separately
identified as a CI.

84 � Software Configuration Management

1. Is the item’s schedule critical or high risk? Would failure of the item
have a significant financial impact?

2. Does the item implement critical capabilities (e.g., security protec-
tion, human safety, etc.)? Would CI designation enhance the
required level of control and verification of these capabilities?

3. Will the item require development of a new design or a significant
modification to an existing design?

4. Is the item computer hardware or software?
5. Does the item incorporate unproven technologies?
6. Does the item have an interface with a CI developed under another

contract?
7. Can the item be readily marked to identify it as a separate, controlled

item?
8. Does the item interface with a CI controlled by another design

activity?
9. Will it be necessary to have an accurate record of the item’s exact

configuration and the status of changes to it during its life cycle?
10. Can (or must) the item be independently tested?
11. Is the item required for logistic support?
12. Is it, or does it have the potential to be, designated for separate

procurement?
13. Have different activities have been identified to logistically support

various parts of the system?
14. Does the item have separate mission, training, test, maintenance,

and support functions, or require separately designated versions for
such purposes?

15. Do all sub-assemblies of the item have common mission, installa-
tion, and deployment requirements, common testing and accep-
tance?

ADDITIONAL FACTORS

Many development and support planning milestones are related to CIs.
Activities such as performance or design verification demonstration, system
integration and testing, technical reviews and audits, and budget alloca-
tions are usually accomplished for each of the CIs selected. The number
of CIs selected will determine the number of separate meetings related
to the overall activity. A large number of CIs may lead to delays in
completing critical milestones.

Existing CIs can be modified and designated as a separate and different
configuration of that CI, thus saving time and money. Factors to be traded
off include complexity, the use of new materials, processes, and the
insertion of new technology.

Configuration Identification � 85

There are no rules to dictate the optimum number of CIs for a given
system. In general, however, the fewer CIs, the better. Selecting too many
CIs increases development and support costs.

Each CI to be developed, especially CSCIs, comes with an associated
set of technical reviews, audits, performance or design verification dem-
onstrations, formal unit and integration tests, and documentation require-
ments. Each of these activities adds an increment of development cost
and also adds costs for storage and upkeep of information related to the
activities and the documentation.

The consequences of designating too many CIs include:

� Numerous inter-CI interfaces to be defined, and documented,
which, if they are all baselined early in the EMD phase, will inhibit
the freedom to evolve the design solution, solve problems expe-
ditiously, and implement advantageous changes without contrac-
tual consequence

� CI functionality defined at too low a level or including unnecessary
design constraints requiring formal test, and technical reviews,
beyond what is required to achieve reasonable assurance of system
performance (this is also a concern if performance specifications for
the lower-level CIs are baselined too early in the EMD phase)

� Increased overall number of requirements in the documentation
disproportionate to the unique technical content of the requirements

� Excessive fragmentation, which may actually decrease understanding
of system performance; fragmented description of functionality
increases the overall volume of requirements, is more difficult to
understand, and complicates the document review, approval, and
control process

� Increased cost

The consequences of having too few CIs include:

� Increased complexity of each CI, resulting in decreasing manage-
ment insight and ability to assess progress

� Where the lowest-level designated CI is a complex item (implement-
ing unrelated functions, containing both hardware and software com-
ponents, etc.):
� The potential for reuse of the CI, or portions of the CI, is

diminished
� Re-procurement of the CI and components is complicated
� Potential re-procurement sources are limited
� Formal testing of critical capabilities may be delayed or made

more difficult

86 � Software Configuration Management

� The inability to account for the deployment of a CI, whose
component parts are disbursed to different locations

� Difficulty in addressing the effectivity of changes and retrofit
actions, particularly when there are different quantities or sepa-
rately deliverable components

� Increased complexity in managing and accounting for common
assemblies and components

CONFIGURATION DOCUMENTATION

The term “configuration documentation” characterizes the information that
defines the performance and functional and physical attributes of a prod-
uct. As described in EIA Standard 649, all other product documentation
(such as operation and maintenance manuals, illustrated parts breakdowns,
test plans and procedures) are based on and relate to information in the
configuration documentation. The configuration documentation associated
with each CI provides the basis for configuration control, logistics support,
post-deployment, and software support.

Specification Types Categorized by Object

This section describes the type of CI “objects” that a specification is
intended to define. This category is part of a string of categories that
comprise the specification type.

System

A system specification defines the overall performance and mission
requirements for a system, allocates requirements to lower-level compo-
nents of the system, and identifies system interface and interoperability
constraints. It is the top-level functional requirements specification for the
system. A system specification is used to establish a functional baseline
for the system.

Large systems are usually decomposed; Level 2 system components
are often complex enough to be called “systems” themselves (although,
for configuration management purposes, they are designated as sub-
systems or CIs).

Item

The item specification for a CI defines the performance and interface
requirements and design and interoperability constraints that have been
allocated to the CI from a system or higher-level CI.

Configuration Identification � 87

Item specifications provide the contractual basis for the development
and verification of CI performance. The item performance (development)
specification(s) will normally be used to establish the allocated baseline
for the CI.

Software

Computer software configuration items (CSCIs) are documented with
software specifications. A software detailed specification is similar to the
software requirements specification plus the set of design documents
describing the software, interface, and database design.

Process

Process specifications are used where a process (or service) has been
developed specifically for use with a particular system/item and is critical
to its performance or design. The process specification forms part of the
product baseline of the CI(s).

Specification Types Categorized by Purpose

Performance

A performance specification provides requirements for a system, item,
software, process, or material in terms of the required results and the
criteria for verifying compliance. It defines the functional requirements,
the operational environment, and interface and interchangeability require-
ments, but does not state how the requirements are to be achieved, require
the use of specific materials or parts, or give design or construction
requirements beyond those design constraints necessary to unambiguously
define interface and interchangeability requirements.

The intent of a performance specification is to allow more than one
design solution for the requirements specified so that interchangeable
competitive products can be evaluated, and new technology can be
inserted.

Detail

A detail specification may consist of all detail requirements or a blend of
performance and detail requirements. The preference is for one specifi-
cation to convey all the performance and detail requirements for an item.

One intent of the detail specification, as a revision of the performance
specification, is to provide sufficient detail to distinguish the features of
one design solution for an item from other competing design solutions.

88 � Software Configuration Management

Another intent is to specify details of the design solution, such as the use
of specific parts and materials, that are essential for critical safety or
economic reasons, but to state as many requirements in performance
terms as possible.

What makes a stated requirement a design requirement and not a
performance requirement is that it prescribes design, construction, mate-
rial, or quality control solutions, rather than allow for development flex-
ibility.

Design Solution Document Concepts

The requirements of the functional and allocated baselines are basically
design constraints. The design solution evolves from the design and
development process during the engineering and manufacturing develop-
ment (EMD) phase of the life cycle. This process essentially converts the
performance requirements of the baseline specification into a specific
product definition that can be manufactured to produce a hardware item
or compiled to produce a software item.

It is documented in design documentation for the hardware and the
software comprising each CI. For hardware, the design documentation
may be in the form of engineering drawings and associated lists, as well
as the material and process documents that are referenced by the drawings.
In the current information environment, the primary design documentation
source may be in the form of two- or three-dimensional engineering
models. In that case, a drawing is simply a two-dimensional view of a
model that exists in a database file. Various models and product modeling
tools can be employed. Engineering drawings may or may not exist as a
central part of the product manufacturing process, depending on the
product and the degree of automation technology employed.

In an automated development and production environment, an item
is designed on the engineer’s workstation, manufacturing instructions are
added at the manufacturing planner’s workstation, and the results are fed
directly to automated machinery that produces the item. Commonly, items
are designed using computer-aided design tools (CADAM, CATIA,
AUTOCAD, etc.) and engineering drawings are plotted for human checking
and review. Where engineering drawings are required as a contract
deliverable, they should be delivered in place, in a CALS-compliant format.

For software, the design evolves through a software engineering pro-
cess, using a variety of integrated tools, often called the software engi-
neering environment (e.g., computer-aided software engineering [CASE]).
The process results in computer-based versions of documentation, source,
and executable code for every CSCI. The process employed to manage
the automated software documentation (e.g., software library management
and archiving) is similar to the process used to manage automated hard-

Configuration Identification � 89

ware documentation, although different tools can be employed. Upon
close examination, it is fundamentally the same process used to manage
the files, which contain software code. The same business rules apply to
both software and documents in terms of their identification and relation-
ships to other entities.

The developmental configuration management process consists of a
formal process to control the documentation and repositories containing
the elements of the developmental configuration. The engineering release
system and engineering release records are an important part of this
management process.

Each and every version of all elements of the developmental config-
uration released, for whatever purpose, should be maintained, along with
the reasons the version was released and the rationale for superseding
the previous version.

Software Documentation List

Process Implementation: Planning

� Operational Concept Document: proposed system; user needs
� Software Development Plan: development effort; process, methods,

schedules, organization, resources (includes or refers to SCM and
SQA plans)

� Software Test Plan: qualification testing; SW item; SW system; envi-
ronment, tests, schedules

� Software Installation Plan: installing SW; user sites; preparations;
training; conversion

� Software Transition Plan: transitioning to maintenance organiza-
tion; HW; SW; resources; life-cycle support

System Requirements Analysis and Architectural Design

� System/Sub-system Specification: specifies system or sub-system
requirements; requirement verification methods (may be supple-
mented with system-level IRS)

� System/Sub-system Design Description: system/sub-system-wide
design; architectural design; basis for system development (may
be supplemented with IDD, DBDD)

Software Requirements Analysis and Design

� Software Requirements Specification: specifies SW requirements;
verification methods (may be supplemented with IRS)

90 � Software Configuration Management

� Interface Requirements Specification: specifies interface require-
ments for one or more systems, sub-systems, HW items, SW items,
operations or other system components; any number of interfaces
(can supplement SSS, SSDD, SRS)

Software Architectural and Detailed Design

� Software Design Description: SW item-wide design decisions; SW
item architectural design; detailed design, basis for implementing;
information for maintenance (may be supplemented by IDD,
DBDD)

� Interface Design Description: interface characteristics; one or more
systems, sub-systems, HW items, SW items, operations or other system
components; any number of interfaces; detail companion to IRS;
communicate and control interface design decisions

� Database Design Description: database design; related data, files,
SW/database management system for access, basis for implemen-
tation and maintenance

Software Integration and Qualification Testing

� Software Test Description: test preparations; test cases; test proce-
dures; qualification testing SW item, SW system or sub-system

� Software Test Report: record of test performed; assess results

As-Built Software Product Definition

� Software Product Specification: contains or references executable
SW, source files; SW maintenance information; “as-built” design
information, compilation, build, modification procedures; primary
SW maintenance document

� Software Version Description: identifies and describes an SW ver-
sion; used to release, track, and control each version

System Operation

� Software User Manual: hands-on software user; how to install and
use SW, SW item group, SW system or sub-system

� Software Input/Output Manual: computer center; centralized or net-
worked installation; how to access, input, and interpret output; batch
or interactive (with SCOM as alternative to SUM)

Configuration Identification � 91

� Software Center Operator Manual: computer center; centralized or
networked installation; how to install and operate an SW system (with
SIOM as alternative to SUM)

� Computer Operator Manual: information needed to operate a given
computer and its peripherals

System/Software Maintenance

� Computer Programming Manual: information needed by program-
mer to program for a given computer; newly developed; special
purpose; focus on computer, not on specific SW

� Firmware Support Manual: information to program and re-program
firmware devices in a system; ROMs, PROMs, EPROMs, etc.

CONFIGURATION BASELINES

The concept of baselines is central to an effective configuration manage-
ment program; it is, however, not a unique configuration management
concept. The idea of using a known and defined point of reference is
commonplace and is central to an effective management process. The
essential idea of baselines is that in order to reach a destination, it is
necessary to know one’s starting point. To plan for, approve, or implement
a configuration change, it is necessary to have a definition of the current
configuration that is to be changed. To manage a program effectively, it
is necessary to baseline the objectives for cost, schedule, and performance.

In configuration management, a configuration baseline is a fixed ref-
erence configuration established by defining and recording the approved
configuration documentation for a system or CI at a milestone event or
at a specified time.

Configuration baselines represent:

� Snapshots that capture the configuration or partial configuration
of a CI at specific points in time

� Commitment points representing approval of a CI at a particular
milestone in its development

� Control points that serve to focus management attention

Configuration Baseline Concepts

Major configuration baselines, known as the functional, allocated, and
product baselines as well as the developmental configuration, are associ-
ated with milestones in the CI life cycle. Each of these major configuration
baselines is designated when the given level of the CI’s configuration

92 � Software Configuration Management

documentation is deemed complete and correct, and needs to be formally
protected from unwarranted and uncontrolled change from that point
forward in its life cycle.

� Functional baseline: the approved configuration documentation
describing a system’s or top-level configuration item’s performance
(functional, interoperability, and interface characteristics) and the
verification required to demonstrate the achievement of those
specified characteristics

� Allocated baseline: the current approved performance-oriented doc-
umentation for a CI to be developed, which describes the functional
and interface characteristics that are allocated from those of the
higher-level CI and the verification required to demonstrate achieve-
ment of those specified characteristics

� Development configuration: the design and associated technical doc-
umentation that defines the evolving design solution during devel-
opment of a CI; the developmental configuration for a CI consists of
internally released technical documentation for hardware and soft-
ware design

� Product baseline: the approved technical documentation that describes
the configuration of a CI during the production, fielding/deployment,
and operational support phases of its life cycle; the product baseline
prescribes:
� All necessary physical or form, fit, and function characteristics

of a CI
� The selected functional characteristics designated for production

acceptance testing
� The production acceptance test requirements

When used for reprocurement of a CI, the product baseline documentation
also includes the allocated configuration documentation to ensure that
performance requirements are not compromised.

Each configuration baseline serves as a point of departure for future
CI changes. The current approved configuration documentation constitutes
the current configuration baseline. Incremental configuration baselines
occur sequentially over the life cycle of a CI as each new change is
approved. Each change from the previous baseline to the current baseline
occurs through a configuration control process.

The audit trail of the configuration control activity from the CI’s original
requirements documentation to the current baseline is maintained as part
of configuration status accounting.

The functional baseline is established when its associated functional
configuration documentation is approved. This baseline is always subject

Configuration Identification � 93

to configuration control. The functional baseline consists of the functional
configuration documentation (FCD), which is the initial approved technical
documentation for a system or top-level CI as set forth in a system
specification prescribing:

� All necessary functional characteristics
� The verification required to demonstrate achievement of the specified

functional characteristics
� The necessary interface and interoperability characteristics with asso-

ciated CIs, other system elements, and other systems
� Identification of lower-level CIs, if any, and the configuration docu-

mentation for items (such as items separately developed or currently
in the inventory) that are to be integrated or interfaced with the CI

� Design constraints, such as envelope dimensions, component stan-
dardization, use of inventory items, and integrated logistics support
policies

The functional baseline is usually defined as a result of the Concept
and Technology Development phase, when that phase is included in the
acquisition strategy. In the absence of a concept phase, the functional
baseline is established during System Development and Demonstration.
A functional baseline, whether formally established or not, is always in
place at the inception of each phase. It is represented by whatever
documentation is included or referenced by the contract to define the
technical/performance requirements that the product must meet.

The allocated baseline is, in reality, a composite of a series of allocated
baselines. Each allocated baseline consists of the allocated configuration
documentation (ACD), which is the current approved performance-ori-
ented documentation governing the development of a CI, in which each
specification:

� Defines the functional and interface characteristics allocated from
those of the system or higher-level CI

� Establishes the verification required to demonstrate achievement of
its functional characteristics

� Delineates necessary interface requirements with other associated CIs
� Establishes design constraints, if any, such as component standard-

ization, use of inventory items, and integrated logistics support
requirements

The requirements in the specification are the basis for the design of
the CI; the quality assurance provisions in the specification form the
framework for the qualification testing program for the CI. The initial

94 � Software Configuration Management

allocated baseline is established during System Development and Dem-
onstration. The allocated baseline for each CI is documented in an item
performance (or detail) specification, generally referred to as a develop-
ment specification.

The product baseline is the approved documentation that completely
describes the functional and physical characteristics of the CI, any required
joint and combined operations interoperability characteristics of a CI
(including a comprehensive summary of the other environment(s) and
allied interfacing CIs or systems and equipment). It consists of the Product
Configuration Documentation (PCD), which is the current approved tech-
nical documentation describing the configuration of a CI during the
Production and Deployment, and Operational Support phases of its life
cycle. The product baseline prescribes:

� All necessary physical or form, fit, and function characteristics of
a CI

� The selected functional characteristics designated for production
acceptance testing

� The production acceptance test requirements
� All allocated configuration documentation pertaining to the item,

so that if the item were to be reprocured, the performance require-
ments for the item would also be included

The product baseline documentation includes the complete set of
released and approved engineering design documents, such as the engi-
neering models, engineering drawings, and associated lists for hardware,
as well as the software, interface, and database design documents for
software.

The functional, allocated, and product configuration documentation
must be mutually consistent and compatible. Each succeeding level of
configuration identification is a logical and detailed extension of its pre-
decessor(s).

When viewed on a system basis, care must be exercised to ensure that
all of the top-level requirements are accounted for in individual lower-
level documents. This is a key function of such reviews as system,
preliminary, and critical design reviews, but is greatly facilitated by the
use of automated requirements allocation and traceability tools.

DOCUMENT AND ITEM IDENTIFICATION

This section describes the concepts for the assignment of identifiers to
CIs, component parts, and their associated configuration documentation.
Clearly identified items and documentation are essential to effective con-

Configuration Identification � 95

figuration management throughout the life cycle, particularly during the
deployment and operational support period when the marking on a part
is the key to installing a correct replacement part and finding the proper
installation, operation, and maintenance instructions.

Each configuration document (as well as other documents) must have
a unique identifier so that it can be associated correctly with the config-
uration of the item to which it relates. The DoD and all military compo-
nents use the following three elements to ensure the unique identity of
any document: CAGE code, document type, and document identifier. In
addition, a revision identifier or date clearly specifies a specific issue of
a document.

A document can have many representations, as, for example, a word
processor file and a paper copy, or a CAD file and a representation of that
CAD file inserted in a document. In addition to the identification assigned
to each document, the digital files for each version of each representation
of the document, and its component files, must be identified and managed.

It is the responsibility of each individual assigned to manage an item
of configuration documentation to employ the appropriate procedures of
his or her organization so as to ensure:

� The assignment of identifiers to the configuration documentation,
including revision and version identifiers, when appropriate, and
procedures to control the engineering release of new/revised data

� The application of applicable restrictive markings

The following principles in EIA-649 apply to the identification of con-
figuration items:

� All products (configuration items) are assigned unique identifiers
so that one product can be distinguished from other products; one
configuration of a product can be distinguished from another; the
source of a product can be determined; and the correct product
information can be retrieved.

� Individual units of a product are assigned a unique product unit
identifier (e.g., serial number) when there is a need to distinguish
one unit of the product from another unit of the product.

� When a product is modified, it retains its original product unit
identifier (e.g., serial number) although its part identifying number
is altered to reflect a new configuration.

� A series of like units of a product is assigned a unique product
group identifier (e.g., lot number or date code) when it is unnec-
essary or impracticable to identify individual units but, nonetheless,
necessary to correlate units to a process, date, event, or test.

96 � Software Configuration Management

Items are marked or labeled with their applicable identifiers to enable
correlation between the item, its configuration documentation, and other
associated data, and to track maintenance and modification actions per-
formed. Thus, serial and lot numbers are also known as tracking identifiers.
For software, applicable identifiers are embedded in source code and,
when required, in object code and in alterable read-only memory devices
(firmware).

Part/Item Identification Numbers (PIN)

The developer assigns a discrete part/item identification number (PIN),
generally referred to as a part number, to each CI and its subordinate
parts and assemblies. The part number of a given part is changed whenever
a noninterchangeable condition is created.

Part number format is at the developer’s option and a wide variety of
formats are employed. The standard constraint within the defense industry
had been a limitation to no more than 15 characters including dash
numbers. However, with the increasing use of commercial items that are
not so limited, many current systems accommodate 52 characters. Some
developers employ a mono-detail system in which one part is detailed
on one drawing, and the drawing and the part number is the same. For
practical reasons, some employ a multi-detailing system in which the
drawing number may detail several parts and assemblies. Others use
tabulated mono-detail drawings in which a drawing includes several
iterations of a part. In the latter two cases, the drawing number is a base
to which dash numbers are assigned for discrete parts controlled by that
drawing.

The significant criteria are as expressed in the principles above: the
part number must uniquely identify the specific part and unless otherwise
specified, all CIs including parts, assemblies, units, sets, and other pieces
of military property are marked with their identifiers.

Software Identifiers

Each CSCI shall have an identifier consisting of a name or number. It
uniquely identifies the software. Each version of the software CSCI shall
have a version identifier supplementing the software identifier.

� The software identifier and version identifier are embedded in the
source code for the CSCI.

� Means are provided to display identifiers for installed software to
user upon software initiation or upon specific command.

Configuration Identification � 97

� In mission-critical situations, identification of the correct software
version may be verified as part of system self-check, as well as during
system test following equipment repair or maintenance.

� Each software medium (e.g., magnetic tape, disk) containing copies
of tested and verified software entities is marked with a label
containing, or providing cross-reference to, a listing of the appli-
cable software identifiers of the entities it contains.

ENGINEERING RELEASE

Engineering release is an action that makes configuration documentation
available for its intended use and subject to the developer’s configuration
control procedures.

All software engineering activities should follow engineering release
procedures, which record the release and retain records of approved
configuration documentation (engineering release records). These records
provide:

� An audit trail of CI documentation status and history
� Verification that engineering documentation has been changed to

reflect the incorporation of approved changes and to satisfy the
requirements for traceability of deviations and engineering changes

� A means to reconcile engineering and manufacturing data to ensure
that engineering changes have been accomplished and incorpo-
rated into deliverable units of the CIs

INTERFACE MANAGEMENT

Another aspect of configuration identification to be considered during
development is interface management, also referred to as interface control.
Systems may have interfaces with other systems.

These interfaces constitute design constraints imposed on the programs.
As the system is defined, other interfaces between system components
become apparent. All of the interfaces between co-functioning items
should be identified and documented so that their integrity can be main-
tained through a disciplined configuration control process. In some cases,
a formal interface management process must be employed to define and
document the interface.

Interfaces are the functional and physical characteristics that exist at a
common boundary with co-functioning items and allow systems, equip-
ment, software, and data to be compatible. The purpose of all interface
management activity is that:

98 � Software Configuration Management

� The detailed design of each of the co-functioning items contains
the necessary information to ensure that the items, when individ-
ually designed and produced, will work together (as the 115-volt
plug to the 115-volt electrical outlet).

� If either item needs to be changed for any reason, its performance,
functional, or physical attributes that are involved in the interface
act as constraints on the design change.

During development, part of the design effort is to arrive at and
document external interface agreements, as well as to identify, define,
control, and integrate all lower-level (i.e., detailed design) interfaces.

Interfaces include external interfaces with other systems, internal inter-
faces between CIs that comprise the system, and internal interfaces
between CIs and other components of the system.

To understand how a particular interface should be defined and
managed, it is necessary to categorize the interface in a number of ways:

� Contractual relationship. Are the items supplied by the same
contractor or by different contractors? If different contractors, is
there, or will there be, a contractual relationship (such as a sub-
contract or purchase order) between the parties to the interface?

� Customer relationship (acquisition activity(ies)). Is the same acquisi-
tion activity responsible for both interfacing entities, or are different
activities or even services involved?

� Hierarchical relationship. Is the interface at the system, CI, assembly,
or part level?

� Type(s) and complexity of technical interface attribute(s) involved. Is
the interface mechanical, electrical, electronic, installation, data, lan-
guage, power, hydraulic, pneumatic, space, operating range, fre-
quency, transmission rate, capacity, etc. (to name a few)?

� Developmental status. Is (are) one, both, or none of the interfacing
items a nondevelopmental item (NDI)? Do the interfacing items
require parallel design and development?

Categorizing the interface in this manner defines the context and
environment of the interface, and enables the appropriate measures to be
taken to define and control it. Each interface must be defined and
documented; the documentation varies from performance or detailed
specifications to item, assembly, or installation drawings, to inter face
control documents/drawings. Some interfaces are completely managed
within the design process; others require specific types of formal interface
management activity. The simplest and most straightforward approach that
will satisfy the above objective should always be chosen. Extravagant and

Configuration Identification � 99

complex interface management activity should only be undertaken when
other methods are inappropriate.

Whether formal or informal interface management is employed, it is
necessary that there be a legal responsibility on the part of the interfacing
parties because even the best-intentioned technical agreements can break
down in the face of fiscal pressure. If there is a contractual relationship,
including a teaming arrangement, between two or more parties to an
interface, there is already a vehicle for definition and control. However,
where there is no contractual relationship, a separate interface agreement
may be necessary to define the interface process and provide for the
protection of proprietary information.

Within an organization, integrated product teams can be used to
establish interfaces. Some interfaces must be defined through a formal
interface management process involving interface control working groups
(ICWGs). An ICWG is a specialized integrated product team comprised
of appropriate technical representatives from the interfacing activities. Its
sole purpose is to solve interface issues that surface and cannot be resolved
through simple engineer-to-engineer interaction.

Once interfaces have been agreed-to by the parties concerned, they
must be detailed at the appropriate level to constrain the design of each
item and baseline the configuration documentation so that the normal
configuration control process will maintain the integrity of the interface.

SUMMARY

If CM is the framework around which software engineering lives, then
configuration identification is its foundation. One cannot control what one
cannot name. By providing detailed identification information for each
and every component of a system (i.e., programs, databases, forms,
manuals), an infinite level of control is achievable.

REFERENCES

This chapter is based on the following report: MIL-HDBK-61A(SE), Feb-
ruary 7, 2001, Military Handbook: Configuration Management Guidance.

101

5

CONFIGURATION CONTROL

Configuration control is perhaps the most visible element of configuration
management. It is the process used to manage preparation, justification,
evaluation, coordination, disposition, and implementation of proposed
engineering changes and deviations to effected configuration items (CIs)
and baselined configuration documentation.

The primary objective of configuration control is to establish and
maintain a systematic change management process that regulates life-cycle
costs, and:

� Allows optimum design and development latitude with the appro-
priate degree and depth of configuration change control procedures
during the life cycle of a system/CI

� Provides efficient processing and implementation of configuration
changes that maintain or enhance operational readiness, supportabil-
ity, interchangeability, and interoperability

� Ensures complete, accurate, and timely changes to configuration
documentation maintained under appropriate configuration control
authority

� Eliminates unnecessary change proliferation

THE PROCESS OF CONFIGURATION CONTROL

The span of configuration control begins once the first configuration
document is approved and baselined. This normally occurs when the
functional configuration baseline (referred to as the requirements baseline
in EIA/IS-649) is established for a system or configuration item. At that
point, change management procedures are employed to systematically
evaluate each proposed engineering change or requested deviation to
baselined documentation; to assess the total change impact (including

102 � Software Configuration Management

costs) through coordination with affected functional activities; to disposi-
tion the change or deviation and provide timely approval or disapproval;
and to ensure timely implementation of approved changes by both parties.
Configuration control is an essential discipline throughout the program
life cycle.

Through the configuration control process, the full impact of proposed
engineering changes and deviations is identified and accounted for in
their implementation. The configuration control process evolves from a
less formal process in the early phases of a program to a very disciplined
and formal process during the System Development and Demonstration,
Production and Deployment, and Operation and Support phases. In the
Concept Exploration phase, the configuration control process is employed
in support of systems engineering to make sure that the correct version
of documents, which communicate technical decisions or definition of
pertinent study parameters, is disseminated and used by all personnel. In
addition, the process makes affected parties aware that a change is being
developed and enables them to provide pertinent input.

In the Concept and Technology Development phase (if applicable),
when the program definition documents are being developed, the con-
figuration control process is also less formal. As part of the systems
engineering control process in this phase, there may be several require-
ments definition baselines established for convenience to ensure that all
program participants are “on the same page.” A configuration control
procedure is helpful in this phase for the review and coordination of
changes to the evolving system-level specifications. It provides:

� The identification, documentation, dissemination, and review of
changes

� Appropriate versioning of files and revision of documents
� A release process to ensure that each revision or version reflects

the applicable changes

During the System Development and Demonstration, Production and
Deployment, and Operation and Support phases, a formal configuration
control process is essential. The informal document change control that
was practiced during concept explorations is insufficient for systems
acquisition and sustainment. As the product is being developed and
produced, configuration control focuses on the documentation defining
performance, physical and functional characteristics, and the configuration
of the product.

Configuration control is a management process that uses configuration
baselines as references for managing change. Within this context, however,
there are several configuration control complexity levels. When viewed
at the macro level, the process:

Configuration Control � 103

� Addresses the baseline documentation
� Determines which documents are impacted
� Proposes a change covering the impacts to all affected elements
� States when, where, and by whom the documentation will be

updated and the change will be incorporated in the product and
in all supporting elements

While this top-level macro view appears simple and straightforward,
a micro-level view of the configuration control process can be considerably
more complex. The micro view reveals the process layer dealing with
what must be done to change each affected element, and thus with a
wide variety of considerations such as data rights; approval authority,
document custodians; design, release, production, installation, and testing
organizations; and contractual and interface relationships.

ENGINEERING CHANGE PROPOSAL

An Engineering Change Proposal (ECP) is the management tool used to
propose a configuration change to a CI and its baselined performance
requirements and configuration documentation. See Appendix B for a
sample ECP. Please note that the following discussion describes the
procedure for filling out this form. The ECP consists of the items listed
in Table 5.1.

Request for Deviation

A deviation is a specific written authorization to depart from a particular
requirement(s) of an item’s current approved configuration documentation
for a specific number of units or a specified period of time. It differs from
an engineering change in that a deviation does not effect a change to a
configuration document.

Requests for Deviation (RFDs) are submitted if during design and
development, it is determined that for a valid reason (such as long lead-
time) a required performance attribute will not be met or verified before
scheduled delivery of a limited number of production units.

RFDs are classified by their originators as either minor, major, or critical:

� Critical. The deviation consists of a departure involving safety
or when the configuration documentation defining the require-
ments for the item classifies defects in requirements and the
deviations consist of a departure from a requirement classified
as critical.

� Major. The deviation consists of a departure involving:
� Performance

104 � Software Configuration Management

Table 5.1 ECP Components

ECP Justification Codes:
� B Interface: proposed to eliminate a deficiency consisting of an incompat-

ibility between CIs
� C Compatibility: to correct a deficiency discovered during system or item

functional checks or during installation and checkout, and the proposed
change a necessary to make the system/item work

� D Correction of Deficiency: to eliminate a deficiency; code D is used if a
more descriptive code (such as S, B, or C) does not apply

� O Operational or Logistic Support: to make a significant effectiveness or
performance change in operational capability or logistic support; commonly
known as an improvement change

� P Production Stoppage: to prevent slippage in an approved production
schedule, where delivery to current configuration documentation is imprac-
tical or cannot be accomplished without delay

� R Cost Reduction: to provide net total life-cycle cost savings
� S Safety Correction: correction of a deficiency that is a hazardous condition
� V Value Engineering: to effect a net life-cycle cost reduction

ECP Types and Their Function:
� Message. Although not formally considered a type of ECP, engineering

changes with an emergency priority are often submitted in a message that
provides less detail than a preliminary ECP; urgent priority ECPs sometimes
are also initially documented in messages, as are notifications of compati-
bility changes. They should be followed up by a complete ECP package
within 30 days because they normally do not include sufficient detail to
determine the full impact on program requirements.

� Preliminary (Type P). Preliminary ECPs are used to address the impact of
proposed changes in general terms sufficient enough to determine if final
ECPs are warranted. They are used by program managers when:
1. The complexity of a proposed change may require extensive funding,

development, or engineering.
2. A choice of alternative proposals is appropriate, especially if a

solicitation or contracting requirement is being competed between two
or more contractors.

3. Authority is required to expend resources to fully develop a change
proposal.

4. The organization wishes to restrict configuration change activity.
5. Approval is required to proceed with software engineering

development.
6. As follow-up to a message ECP when it is impractical to submit a

complete formal ECP within 30 days. This preliminary ECP would
provide additional detail information supplementing the message ECP
to provide a more considered analysis of the impacts and scope of the
proposed change.

Configuration Control � 105

Table 5.1 ECP Components (continued)

� Formal (Type F). A formal ECP is the type that provides engineering infor-
mation and other data sufficient to support formal CCB approval and con-
tractual implementation.

ECP Priorities:
� Emergency. An emergency priority is assigned to an ECP for any of the

following reasons:
1. To effect a change in operational characteristics which, if not

accomplished without delay, may seriously compromise national
security

2. To correct a hazardous condition that may result in fatal or serious injury
to personnel or in extensive damage or destruction of equipment (a
hazardous condition usually will require withdrawing the item from
service temporarily, or suspension of the item operation, or
discontinuance of further testing or development pending resolution of
the condition)

3. To correct a system halt (abnormal termination) in the production
environment

� Urgent. An urgent priority is assigned to an ECP for any of the following
reasons:
1. To effect a change that, if not accomplished expeditiously, may seriously

compromise the mission effectiveness of deployed equipment, software,
or forces

2. To correct a potentially hazardous condition, the uncorrected existence
of which could result in injury to personnel or damage to equipment (a
potentially hazardous condition compromises safety and embodies risk,
but within reasonable limits, permits continued use of the affected item
provided the operator has been informed of the hazard and appropriate
precautions have been defined and distributed to the user)

3. To meet significant contractual requirements (e.g., when lead-time will
necessitate slipping approved production or deployment schedules if
the change was not incorporated)

4. To effect an interface change that, if delayed, would cause a schedule
slippage or increased cost

5. To effect a significant net life-cycle cost savings to the tasking activity, as
defined in the contract, where expedited processing of the change will
be a major factor in realizing lower costs

6. To correct a condition causing unusable output information that is
critical to mission accomplishment

7. To correct critical CI files that are being degraded
8. To effect a change in operational characteristics to implement a new or

changed regulatory requirement with stringent completion date
requirements issued by an authority higher than that of the functional
proponent

106 � Software Configuration Management

Table 5.1 ECP Components (continued)

� Routine. A routine priority is assigned to an ECP when emergency or urgent
implementation is not applicable, required, or justifiable.

ECP Content:
� ECP identification and administrative attributes:

1. Date: submittal date of the ECP or ECP Revision
2. Originator name and address: name and address of the activity

submitting
3. Model/type: model or type designation, or identifier of the CI or CSCI

for which proposal is being submitted
4. System designation: the system or top-level CI designation or

nomenclature
5. ECP number: ECP identifier assigned by the originator (Once assigned,

the ECP number is retained for subsequent submissions. The same ECP
number can be used for a related ECP by adding a dash number to the
basic identifier.)

6. Revision: identifier for an ECP Revision
7. Title of change: brief descriptive title for the engineering change

proposal
8. ECP classification:

— Name and part number of item affected
— Name and part number of next higher assembly
— Description of the engineering change
— Need (reason) for making the engineering change

9. ECP justification code
10. ECP type
11. ECP priority

� Description of proposed change:
1. Configuration item nomenclature name and type designation, CSCI

name and number, or other authorized name and number of all CI(s)
affected by the ECP.

2. Is the CI in production? If "yes,” provide information as to whether
deliveries have been completed on the contract(s). (This data is not
always applicable to software.)

3. Description of change: description of the proposed change phrased in
definitive language such that, if it is repeated in the contractual
document authorizing the change, it will provide the authorization
desired. Include the purpose and sufficient detail to describe what is to
be accomplished. If the proposed change is an interim solution, it
should be so stated.

4. Need for change: explanation of the need, identifying the benefit of the
change, and as applicable:

Configuration Control � 107

Table 5.1 ECP Components (continued)

— Correspondence such as a request for ECP management direction
— Quantitative improvements in performance characteristics (range,

speed, performance, endurance, striking power, and defensive or
offensive capabilities)

— Nature of a defect, failure, incident, malfunction; available failure
data

— Maintenance/logistics problems corrected
— Identification and summary of testing accomplished
— Supporting data as necessary
— Consequences of disapproval

5. Baseline affected: indicate whether functional, allocated, or product
baseline(s) is affected.

6. Developmental requirements and status: if proposed engineering
change requires a major revision of the development program, status
of current program and details of the revision. When applicable,
recommendations for additional tests, trials, installations, prototypes,
fit checks, etc. Include the test objective and test vehicle(s) to be used.
Indicate the development status of major items to be used in and
availability in terms of the estimated production incorporation point.

7. Trade-offs and alternative solutions: summary of the various solutions
considered and reasons for adopting the solution proposed by the ECP.
When analysis addresses new concepts or new technology, supporting
data may be presented with the proposal to authenticate the trade-off
analysis.

8. Proposed delivery schedule: estimated delivery schedule of items
incorporating the change, either in terms of days after contractual
approval, or by specific dates contingent upon contractual approval by
a specified date. (Indicate if there will be no effect on the delivery
schedule.)

9. Recommendations for retrofit: when applicable, description of
recommendations for retrofit of the engineering change into accepted
items (including applicable substantiating data or discussion of
implications). If retrofit is not recommended, give explanation/reason
for the recommendation.

10. Estimated retrofit kit delivery schedule.
� Effects of the proposed change:

1. Specifications affected: identity specifications cited in the contract that
are affected by the ECP

2. Effect on performance allocations and interfaces: the changes in
performance and in functional/physical interfaces

3. Effects on employment, logistic support, training, operational
effectiveness, or software:

108 � Software Configuration Management

Table 5.1 ECP Components (continued)

— Effects of the proposed change on operational employment,
deployment, logistics, and/or personnel and training requirements
specified in the approved system and/or CI specifications
(Quantitative values shall be used whenever practicable and are
required when reliability and service life are impacted.)

— Effect on interoperability
— Effect on operational software. For CSCIs, as applicable:

a. Required changes to database parameters, values, or management
procedures

b. Anticipated effects on acceptable computer operating time and
cycle-time utilization; estimate of the net effect on computer
software storage

c. Other relevant impact of the proposed change on utilization of the
system

4. Effect on acquisition logistic support elements: the following shall be
covered, as applicable:
— Effects on schedule and content of the ALS plan
— Effect on maintenance concept and plans for the levels of

maintenance and procedures
— System and/or CI logistics support analysis (LSA) tasks to be

accomplished and LSA data requiring update
— Extension/revision of the interim support plan
— Spares and repair parts that are changed, modified, obsolete, or

added, including detailed supply data for interim support spares
— Revised or new technical manuals
— Revised or new facilities requirements and site activation plan
— New, revised, obsolete, or additional support equipment (SE), test

procedures, and software
— Description of the proposed change(s) to SE and trainers and

reference to related ECPs
— Effect on maintenance or training software
— Qualitative and quantitative personnel requirements data identifying

additions or deletions to operator or maintenance manpower
requirements in terms of personnel skill levels, knowledge, and
numbers required to support the modified CI

— New operator and maintenance training requirements in terms of
training equipment, trainers, and training software for operator and
maintenance courses. This information should include identification
of specific courses, equipment, technical manuals, personnel, etc.

— Effect on contract maintenance that increases the scope or dollar
limitation established in the contract

Configuration Control � 109

Table 5.1 ECP Components (continued)

— Effects on packaging, handling, storage, and transportability resulting
from changes in materials, dimensions, fragility, inherent
environmental, or operating conditions

5. Other considerations: the effects of the proposed engineering change on
the following shall be identified:

— Interfaces having an effect on adjacent or related items (output, input,
size, mating connections, etc.)

— Physical constraints: removal or repositioning of items, structural
rework, increase or decrease in overall dimensions

— Software (other than operational, maintenance, and training software)
requiring a change to existing code and/or resources, or addition of
new software

— Rework required on other equipment not included previously that
will affect the existing operational configuration

— Additional or modified system test procedures required
— Any new or additional changes having an effect on existing

warranties or guarantees
— Changes or updates to the parts control program
— Effects on life-cycle cost projections for the configuration item or

program, including projections of operation and support costs/savings
for the item(s) affected over the contractually defined life and
projections of the costs/savings to be realized in planned future
production and spares buys of the item(s) affected

6. Lower-level items affected: identifier of lower-level CI, CSCI, or parts
affected, and the quantity and NSN of each part, where applicable

7. Other systems/configuration items affected: identify other systems
affected by the proposed change that are outside the purview of the
originator

8. Other activities affected: Identify other contractors or activities that will
be affected by this engineering change

9. Effect on product configuration documentation
� Estimated net total cost impact:

1. Production costs/(savings): estimated costs/savings applicable to
production of the item resulting from the change; includes the costs of
redesign of the CIs or components thereof, of factory test equipment, of
special factory tooling, of scrap, of engineering design, of engineering
data revision, of revision of test procedures, and of testing and
verification of performance of new items

2. Retrofit costs: estimated costs applicable to retrofit of the item, including
installation and testing costs

110 � Software Configuration Management

Table 5.1 ECP Components (continued)

3. Logistics support costs/(savings): estimated costs/savings of the various
elements of logistics support applicable to the item; includes
spares/repair parts rework, new spares and repair parts,
supply/provisioning data, support equipment, retrofit kit for spares,
operator training courses, maintenance training courses, revision of
technical manuals, new technical manuals, training/trainers, interim
support, maintenance manpower, and computer
rograms/documentation

4. Other costs/savings: includes estimated costs of interface changes
accomplished by other activities

5. Estimated net total costs (savings): total of all the costs (savings) under
contract and from other costs (savings)

• Implementation milestones:
1. Milestones: ECP implementation milestones that show the time phasing

of the various deliveries of items, support equipment, training
equipment, and documentation incorporating the basic and related
ECPs. Enter symbols and notations to show the initiation or termination
of significant actions. Base all dates upon months after contractual
approval of the basic ECPs.

• ECP implementation actions:
1. CCB preparing activity: prepares the change implementing directive/order

designating specific responsibilities to associated activities in support of
the change. These specific responsibilities may include:
— Obtaining, issuing, and distributing retrofit kits, including

redistribution
— Obtaining, issuing, and distributing engineering and installation data

packages
— Logistics, test, and evaluation activity requirements

2. Logistics manager:
a. Distributes the preliminary directive/order for review, validation,

check out, and comment; revises the implementing directive/order in
accordance with accepted comments; and provides the final change
implementing directive/order to the ICP

b. If the change affects hardware or firmware, prepare, or have
provisioning documentation prepared, and forward to the applicable
Inventory Control Point (ICP)

c. Ensure that all training requirements are addressed
d. Manage ECP implementation when retrofit is involved

3. ICP:
a. Distribute the directive/order and associated documentation to the

installing activities, supply storage points, repositories, training
activities, and OPR, as appropriate

b. Provision the change (i.e., make sure the necessary spares are
ordered)

Configuration Control � 111

Table 5.1 ECP Components (continued)

4.Technical data manager:
a. Review the proposed data revision requirements, recommend or

prepare necessary revisions, and forward them as directed by the
preparing activity

5. Technical manual manager: prepare or have appropriate technical
manual revisions prepared

6. Manufacturing and development activity:
a. Prepare/revise the specifications, drawings, lists, material, process,

and computer program specifications; computer programs, testing
procedures, quality assurance procedures, classification of defects
requirements, etc., needed for hardware or firmware manufacture or
computer software change

b. Manufacture the changed hardware and firmware, assemble the
technical documentation (retrofit instructions), hardware, firmware,
and computer program change into a retrofit kit to meet the delivery
schedule established by the CCBD

c. Manufacture or have the spare/support parts manufactured or
modified, unless they are to be accomplished by the ICP

7. ICP:
— Conduct initial check out/validation of the retrofit kit/retrofit

instructions
— Provide each change installing activity with a work package planning

document for each approved change or block of changes; includes
but is not limited to:
a. Change implementing directive/order identification number(s)
b. Item identification
c. Serial numbers affected
d. Man-hours and skill areas required to accomplish the change(s)
e. Any prerequisite or conjunctive changes required
f. Any special instructions (e.g., additional material, tools, equipment)
g. Funding authority
h. Schedule for installation
i. Training schedules and sources required to effect the change, and

operate and maintain the reconfigured item
8. Change installing activity:

a. Based on the work package planning document, adjust work
schedule to accommodate scheduled implementation, accomplish
prerequisite changes, accumulate the materials, tools, equipment,
etc., to implement and support the change, and implement the
change as directed/ordered.

b. Install change in accordance with the priority assigned and the
dependency criteria documented in the implementing directive/order.

112 � Software Configuration Management

� Interchangeability, reliability, survivability, maintainability, or
durability of the item or its repair parts

� Health
� Effective use or operation
� Weight and size
� Appearance (when a factor)
� When the configuration documentation defining the require-

ments for the item classifies defects in requirements and the
deviations consist of a departure from a requirement classified
as major

� Minor. The deviation consists of a departure that does not involve
any of the factors listed as critical or major, or when the configu-
ration documentation defining the requirements for the item clas-
sifies defects in requirements and the deviations consist of a
departure from a requirement classified as minor.

Table 5.1 ECP Components (continued)

c. The change shall be installed in training and test items at the earliest
opportunity.

d. Changes in priority of accomplishment, addition or deletion of
changes, and change substitutions shall be avoided after the actual
change work has been started. However, when installation schedules
cannot be met, the installing activity shall advise the appropriate
OPR and CCB so that the schedules can be revised or consideration
may be given to possible cancellation of the change.

e. The installing activity shall report change implementation in
accordance with the requirements of the implementing
directive/order.

9. Reporting activity:
— All change accomplishment reports shall be initiated by the installing

activity and, if different, provided to the custodian of the changed
item for processing to the data repository and OPR.

— Change accomplishment reporting shall be consistent with the
applicable configuration status accounting (CSA) system, reporting
the accomplishment and effectiveness of changes in the format
prescribed. Accomplishment reporting shall be done promptly so that
CSA and ILS can be updated. Effectiveness reporting, when required,
shall be done promptly so that continued change implementation can
be reevaluated.

10. Data repository:
— Provide for the maintenance of CSA records during the Operating and

Support phase of the CI's life cycle.

Configuration Control � 113

RFD Contents

The data content of an RFD consists of:

� Submittal date of the RFD or RFD Revision
� Originator name and address
� Identifier of the CI or CSCI for which RFD is being submitted
� The system or top-level CI designation
� RFD identifier assigned by the originator
� Brief descriptive title for the RFD
� CI(s) affected by the RFD
� Description of deviation
� Need for deviation
� Effect on integrated logistics
� Other system or configuration items affected
� Corrective action taken to prevent future recurrence of the noncon-

formance
� Effect on delivery schedule
� Cost/price consideration

SUMMARY

This chapter provides a close look at the elements of information required
to manage the process of change using a configuration management
methodology. By now it should be quite clear that anything carrying the
CM “flag” must be fully documented and tracked throughout its life cycle.

REFERENCES

This chapter is based on the following report: MIL-HDBK-61A(SE), Feb-
ruary 7, 2001, Military Handbook: Configuration Management Guidance.

115

6

CONFIGURATION STATUS
ACCOUNTING

Configuration status accounting (CSA) is the process of creating and
organizing the knowledge base necessary for the performance of config-
uration management (CM). In addition to facilitating CM, the purpose of
CSA is to provide a highly reliable source of configuration information to
support all program/project activities, including program management,
systems engineering, manufacturing, software development and mainte-
nance, logistic support, modification, and maintenance.

Figure 6.1 is the activity model for CSA. The inputs, outputs, facilitators,
and constraints in this model are simply extracted from the overall CM
activity model. CSA receives information from the other CM and related
activities as the functions are performed.

In addition to the use of automated configuration management tools,
the process is aided or facilitated by the documented CM process and
open communications. The outputs from this activity provide visibility into
CM document, activity status, and configuration information concerning
the product and its documentation. They also include “metrics” developed
from the information collected in the CSA system and management
“prompts” resulting from analysis of the CM database.

Because the complexion of the objects about which status accounting
information is collected changes during the item life cycle, as shown in
Figure 6.2, the specific outputs will vary. The inputs and outputs in Figure
6.1 may be thought of as generic categories for which there are different
specifics in each phase. The high-level summary of CSA tasks shown in
the center of Figure 6.1 reflects the functional performance capabilities of
a complete CSA process.

116 � Software Configuration Management

Some of these tasks also may not span the entire life cycle. The
allocation of responsibilities within these functions (tailoring) must be
accomplished during the CM planning activity and should take into account
the degree to which the information technology infrastructure has been
upgraded.

All of the information required to accomplish the complete CSA func-
tion can be captured and supplied using commercial configuration man-
agement and product data management tools.

TYPICAL CSA INFORMATION OVER THE ACQUISITION
PROGRAM LIFE CYCLE

New and innovative methods of capturing the configuration of installed
and spare items and software versions are becoming commonplace. These
methods include bar coding and the interrogation of embedded identifi-
cation via on-equipment data buses and on-board support equipment.
The technology for this process is now commonplace in the commercial
personal computer industry and the automotive industry.

Figure 6.1 Configuration Status Accounting Activity Model

Contractual Provisions

Approved Configuration
Documentation

Change Identification
Document Disposition

Configuration Verification

Change Verification
and Validation

Action

Communication

Documented CD

CM

Automated CM System
CM Data Model

Status

Configuration
Information

Performance
Measurement

Configuration Status Accounting Tasks

1. Record the current approved configuration
 documentation configuration identifiers
2. Record and report the status of proposed
 engineering from initiation to final approval
3. Record and report the status of all critical
 and major deviations
4. Record and report the results of configuration
 audits, including the status and final disposition
 of identified discrepancies
5. Record and report implementation status of
 authorized changes
6. Provide traceability of all changes
7. Report the status of all changes
8. Record the digital data file identifiers of all
 revisions/versions of each document

Configuration Status Accounting � 117

The information that is loaded into CSA is considered “metadata,” that
is, information about the data. It provides status and cross-references
actual Technical Data Package (TDP) information that is stored digitally
in data repositories.

Each design activity establishes a document repository for the CIs
developed, produced, or maintained by an Office of Project Responsi-
bility (OPR) under their authority. The data repositories are normally
maintained by the inventory control point responsible for the provision-
ing/supply support of the CI.

CSA records should be maintained in such range and depth as to be
responsive to the requirements of the various support activities for access
to configuration information. The data repository is the central point for
the collection, storage, processing, and promulgation of this data. Config-
uration information should be available on a request basis, either by hard
copy or online computer access. The CSA records are used as “best source”
input data for purchasing data packages, design studies, and management
analyses requested by the supporting/design activities. In particular, the
CSA metadata records must accurately reflect the status of the configuration
documents (specifications, drawings, lists, test reports, etc.) maintained in
the document repositories.

Figure 6.2 Configuration Status Accounting Evolution over the System/CI Life
Cycle

Mission
Need

Concept and Technology
Development

C
on

ce
pt

s

Operations and Support
Productio

n and Deploym
ent

System
 D

evelopm
ent and

D
em

onstration
Sup

po
rtin

g

Elem
en

t

Con
fig

ura
tio

n

Des
ign

Solu
tio

n

Physical

Configuration

Performance

Definition

118 � Software Configuration Management

Concept and Technology Development

Typical information sources include:

� Mission need statements
� Baseline performance, cost, and schedule goals
� System requirements documents for alternative configurations
� Preliminary system performance
� Specifications for selected configuration
� Engineering change proposals or contract change proposals, as

applicable

Typical outputs include:

� Current revision of each document
� Current Document Change Authority (CDCA) and approval status

for each document

System Development and Demonstration

Typical information sources include:

� System performance specification
� CI performance specifications
� CI detailed specifications
� Engineering drawings and associated lists
� CAD files
� Test plans and procedures, and results
� Audit plans
� Audit reports
� Audit certifications
� Engineering change proposals
� Request for deviation
� Notice of Revision (NORS)
� Engineering orders, change notices, etc.
� Installation and as-built verification
� Removal and reinstallation

Typical outputs include:

� CDCA release and approval status of each document
� Functional, allocated, and product baselines
� Baselines as of any prior date

Configuration Status Accounting � 119

� As-designed configuration, current, and as of any prior date
� As-built configuration, current up to time of delivery, and any prior

date
� As-delivered configuration
� Status of ECPs and RFDs in process
� Effectivity and incorporation status of approved
� ECPs and RFDs, including retrofit effectivity
� Test and certification requirements to be completed prior to mile-

stones, such as reviews, demonstrations, tests, trials, and delivery
� Verification and audit status and action items

Production and Deployment

Typical information sources include:

� All development phase items
� System CI location by serial number (S/N)
� Support equipment and software
� Spares
� Trainers
� Training material
� Operating and maintenance manuals
� CI delivery dates and warranty data
� Shelf life or operating limits on components with limited life or limited

activations, etc.
� Operational history (e.g., for aircraft — takeoffs and landings)
� Verification/validation of retrofit instructions, retrofit kits
� Incorporation of retrofit kits
� Installation of spares, replacements by maintenance action

Typical outputs include:

� All development phase items
� Current configuration of all systems/CIs in all locations (as-modi-

fied/as-maintained)
� Required and on-board configuration of all support equipment,

spares, trainers, training, manuals, software, facilities needed to oper-
ate and maintain all systems/CIs at all sites

� Status of all requested, in-process, and approved changes and devi-
ation requests

� Authorization and ordering actions required to implement approved
changes, including recurring retrofit

� Warranty status of all CIs

120 � Software Configuration Management

� Predicted replacement date for critical components
� Retrofit actions necessary to bring any serial-numbered CI to the

current or any prior configuration

Operational Support

Typical information sources include:

� All production and deployment phase items

Typical outputs include:

� All production and deployment phase items

CONFIGURATION STATUS ACCOUNTING PROCESS
EVALUATION CHECKLIST

Documented process:

� Is there a documented configuration status accounting (CSA) pro-
cess?

� Is the documented process followed?
� Are personnel from all disciplines involved in the process informed

and knowledgeable about the procedures they are supposed to
follow?

CSA information:

� Has an accurate, timely information base concerning the product
and its associated product information, appropriate to the applica-
ble phase(s) of the life cycle, been established?

� Is configuration information appropriate to the product systematically
recorded and disseminated?

� Is applicable CSA information captured as CM tasks are performed,
and is it available for display or retrieval in a timely fashion?

CSA system:

� Is the data collection and information processing system based on,
and consistent with, the configuration status accounting information
needs of the organization?

� Are the data relationships in the system based on a sound set of
business rules?

Configuration Status Accounting � 121

Metrics:

� Does the status accounting data being collected and the information
system enable meaningful metrics to be developed and used to
maintain and improve the CM process?

SUMMARY

Configuration management is based on rules. These rules must be codified
and deployed to the various members of the development, support, and
administrative staffs. This is done through configuration status accounting
(CSA) via a knowledge base that is generally automated through the use
of a CM toolset.

REFERENCES

This chapter is based on the following report: MIL-HDBK-61A(SE), Feb-
ruary 7, 2001, Military Handbook: Configuration Management Guidance.

123

7

A PRACTICAL APPROACH
TO DOCUMENTATION
AND CONFIGURATION
STATUS ACCOUNTING

Without adequate documentation, the system can neither be utilized
efficiently nor maintained properly. IT departments have been notoriously
lax about developing and then maintaining documentation.

Documentation within the context of configuration management has
the following attributes:

� All documents are defined, verified, managed, and controlled
through use of the configuration identification of each document.

� An information base is maintained that contains information about
the product and its associated documentation. Configuration status
accounting (CSA) provides the ability to review this collection of
information, usually through automated means.

This chapter discusses the relationship between proper documentation
techniques and related configuration status accounting procedures.

CONFIGURATION IDENTIFICATION

Configuration identification provides a unique identity to a product and
its associated documentation. This uniqueness enables users and systems
people to:

124 � Software Configuration Management

� Distinguish between product versions
� Match product to documentation
� Easily ascertain a reference point for maintenance
� Maintain release control of the product and associated documents

Configuration documentation consists of, but is not limited to:

� Feasibility study
� Project plan
� Requirements specification
� Design specification
� Test plan
� End-user manuals
� Help-desk manuals
� Administrative manuals (e.g., operating procedures)
� Interface manuals
� Reports
� Letters
� Forms

As one can see, configuration documentation is consistent with the doc-
umentation produced throughout the life cycle of a typical systems devel-
opment effort.

Configuration identification requires an organization to develop a
nomenclature for naming or numbering systems. The nomenclature should
adhere to the following rules:

Product Structure

The structure is the hierarchy of a product from the highest level to the
lowest. Often represented using a tree structure, each level references
associated configuration documentation.

Product Identifiers

There are two levels of product and, thus, two levels of product identifier.
End users require a product identifier to possess the ability to order or
discuss a particular product or part of that product. The developer, on
the other hand, will be privy to internal documentation such as test plans
and system specifications. These will not be seen by the end user.

Every industry and many companies develop their own nomenclature.
The scheme might consist of:

A Practical Approach to Documentation � 125

� Company identifier. This is only necessary if the company is one
of a group of companies using a common configuration manage-
ment system (i.e., subsidiaries).

� System identifier. For example, PAY for payroll.
� Program identifier. This is the root number for the program; for

example, PAY00001.
� Version identifier: The version number is typically added to the root

program identifier. It is attached using a dot or a dash. For example,
PAY00001.01 or PAY00001.Y0312, where .01 indicates version one
and .Y0312 suggests the version for December 2003.

� Part identifier. Software has corresponding documentation such as
requirements specifications and design specifications. The part
number identifies the specific documentation and associates it with
the software. For example, the program specification for the
PAY00001.Y0312 program might be PAY00001.Y0312.PSPEC.

An effective configuration identification methodology will enable:

� Someone to figure out the product composition from its configu-
ration documentation

� One product to be distinguished from another
� Systems people to easily track the source for the product
� Operations staff to run the system as per the correct administrative

manual
� End users to use the most up-to-date version of the manuals
� Systems people to locate the documentation that corresponds to

the product to be maintained

Baselines

Configuration management enforces the stability of product releases. All
maintenance and modifications are usually variations of an agreed-upon
baseline. Therefore, it is important to establish and then document the
baseline of a system prior to any system modification. A baseline is
established by agreeing to the stated definition of a product’s attributes.
Any deviation from this baseline is managed through the configuration
management change process.

CONFIGURATION STATUS ACCOUNTING

It is obvious that enforcing configuration management within a company
requires the use of automated systems to keep track of the various
configuration information about the product.

126 � Software Configuration Management

Configuration status accounting (CSA) enables appropriate users to
review this information quickly and effectively to:

� Get information on change decisions
� Assist future planning efforts
� Review the complete configuration of a product or any of its com-

ponent parts
� Review maintenance information
� Review documentation
� Review source code

Table 7.1 shows typical status accounting information across a product
life cycle as per EIA-649.

THE EFFECTIVE DOCUMENTATION OF SYSTEMS

Documentation promotes software quality. There are numerous, well-
documented reasons for this. David Tufflye, a consultant who specializes
in producing high-quality documentation to a predefined standard, says
that consistent, accurate project documentation is known to be a major
factor contributing to information systems quality. He goes on to say that
document production, version control, and filing are often not performed,
thus contributing to a higher number of software defects that impact the
real and perceived quality of the software, as well as leading to time and
expense being spent on rework and higher maintenance costs [Tufflye
2002].

Marcello Alfredo Visconti [1993], in an article that proposes a Software
System Documentation Process Maturity Model, argues that one of the
major goals of software engineering is to produce the best possible
working software along with the best possible supporting documentation.

Decades worth of empirical data shows that software documentation
process and products are key components of software quality. These
studies show that poor-quality, out-of-date, or missing documentation is
a major cause of errors in future software development and maintenance.
For example, the majority of defects discovered during integration testing
are design and requirements defects (e.g., defects in documentation that
were introduced before any code was written).

Visconti’s four-level documentation maturity model provides the basis
for an assessment of an organization’s current documentation process and
identifies key practices and challenges to improve the process. The four-
level enhanced model appears in Table 7.2. Key practices, as defined by
Cook and Visconti [2000], are listed in Table 7.3.

A Practical Approach to Documentation � 127

Table 7.1 Typical Status Accounting Information across Product Life Cycle

Typical CSA Information
(select, where applicable and appropriate)

Life-Cycle Phases
C
o
n
c
e
p
t
i
o
n

D
e
f
i
n
i
t
i
o
n

B
u
i
l
d

D
i
s
t
r
i
b
u
t
i
o
n

O
p
e
r
a
t
i
o
n

D
i
s
p
o
s
a
l

Requirements documentation • • • • • •
Product structure information • • • • •
Configuration documentation • • • • •
Configuration documentation change notice • • • •
Change request and proposal • • • • •
Engineering change effectivity • • • •
Variance documentation • • • • •
Verification and audit action item status • • • • •
Event date entries • • • • •
Product as-built record • • •
Product as-delivered record • •
Product warranty information • • •
Product as maintained, modified • •
Limited use, shelf-life restrictions, etc. • • • •
Product operation and maintenance
information revision status

• •

Product information change requests and
change notices

• •

Online information access directory or
index

• •

Restrictions due to facility/product
performance degradation

• •

Product replacement information •
Environmental impact information (when
applicable)

• • • • • •

Product or parts salvage information •

128 � Software Configuration Management
Ta

bl
e

7.
2

 V
is

co
nt

i’s
 F

ou
r-

Le
ve

l
D

oc
um

en
ta

ti
on

 M
at

ur
it

y
M

od
el

Le
ve

l 1
A

d
ho

c
Le

ve
l 2

In
co

ns
is

te
nt

Le
ve

l 3
D

efi
ne

d
Le

ve
l 4

C
on

tr
ol

le
d

K
ey

w
o

rd
s

C
h

ao
s,

 v
ar

ia
b

ili
ty

St
an

d
ar

d
s

C
h

ec
k-

o
ff

 l
is

t
In

co
n

si
st

en
cy

Pr
o

d
u

ct
 a

ss
es

sm
en

t
Pr

o
ce

ss
 d

efi
n

it
io

n
Pr

o
ce

ss
 a

ss
es

sm
en

t
M

ea
su

re
m

en
t

C
o

n
tr

o
l

fe
ed

b
ac

k
Im

p
ro

ve
m

en
t

Su
cc

in
ct

 d
es

cr
ip

ti
o

n
D

o
cu

m
en

ta
ti

o
n

 n
o

t
a

h
ig

h
 p

ri
o

ri
ty

D
o

cu
m

en
ta

ti
o

n

re
co

gn
iz

ed
 a

s
im

p
o

rt
an

t
an

d
 m

u
st

b

e
d

o
n

e

D
o

cu
m

en
ta

ti
o

n

re
co

gn
iz

ed
 a

s
im

p
o

rt
an

t
an

d
 m

u
st

b

e
d

o
n

e
w

el
l

D
o

cu
m

en
ta

ti
o

n

re
co

gn
iz

ed
 a

s
im

p
o

rt
an

t
an

d
 m

u
st

b

e
d

o
n

e
w

el
l

co
n

si
st

en
tl

y
K

ey
 p

ra
ct

ic
es

A
d

 h
o

c
p

ro
ce

ss
D

o
cu

m
en

ta
ti

o
n

 n
o

t
im

p
o

rt
an

t

In
co

n
si

st
en

t
ap

p
lic

at
io

n
 o

f
st

an
d

ar
d

s

D
o

cu
m

en
ta

ti
o

n

q
u

al
it

y
as

se
ss

m
en

t
D

o
cu

m
en

ta
ti

o
n

u

se
fu

ln
es

s
as

su
ra

n
ce

Pr
o

ce
ss

 d
efi

n
it

io
n

Pr
o

ce
ss

 q
u

al
it

y
as

se
ss

m
en

t
an

d

m
ea

su
re

s

K
ey

 i
n

d
ic

at
o

rs
D

o
cu

m
en

ta
ti

o
n

m

is
si

n
g

o
r

o
u

t-
o

f-
d

at
e

St
an

d
ar

d
s

es
ta

b
lis

h
ed

an

d
 u

se
 o

f
ch

ec
k-

o
ff

lis

t

SQ
A

-l
ik

e
p

ra
ct

ic
es

D
at

a
an

al
ys

is
 a

n
d

im

p
ro

ve
m

en
t

m
ec

h
an

is
m

s
K

ey
 c

h
al

le
n

ge
s

Es
ta

b
lis

h

d
o

cu
m

en
ta

ti
o

n

st
an

d
ar

d
s

Ex
er

ci
se

 q
u

al
it

y
co

n
tr

o
l

o
ve

r
co

n
te

n
t

A
ss

es
s d

o
cu

m
en

ta
ti

o
n

u

se
fu

ln
es

s
Sp

ec
if

y
p

ro
ce

ss

Es
ta

b
lis

h
 p

ro
ce

ss

m
ea

su
re

m
en

t
In

co
rp

o
ra

te
 c

o
n

tr
o

l
o

ve
r

p
ro

ce
ss

A
u

to
m

at
e

d
at

a
co

lle
ct

io
n

 a
n

d

an
al

ys
is

C
o

n
ti

n
u

al
ly

 s
tr

iv
in

g
fo

r
o

p
ti

m
iz

at
io

n

A Practical Approach to Documentation � 129

Table 7.3 Key Practices and Sub-practices

1. Creation of basic software documents:
� Consistent creation of basic software development documents
� Consistent creation of basic software quality documents

2. Management recognition of importance of documentation:
� Documentation generally recognized as important

3. Existence of documentation policy or standards:
� Written statement or policy about importance of documentation
� Written statement or policy indicating what documents must be

created for each development phase
� Written statement or policy describing the contents of documents

that must be created for each development phase
4. Monitor implementation of policy or standards:

� Use of a mechanism, such as a check-off list, to verify that required
documentation is done

� Monitor adherence to documentation policy or standards
5. Existence of a defined process for creation of documents:

� Written statement to prescribe process for creation of documents
� Mechanism to monitor adherence to prescribed process
� Adequate time to carry out the prescribed process
� Training material or classes about the prescribed process

6. Methods to assure quality of documentation:
� Mechanism to monitor quality of documentation
� Mechanism to update documentation
� Documentation is traceable to previous documents

7. Assessments of usability of documentation:
� Person/group perception of usability of documents created
� Mechanism to obtain user feedback about usability of created doc-

umentation
8. Definition of software documentation quality and usability measures:

� Definition of measures of documentation quality
� Definition of measures of documentation usability

9. Collection and analysis of documentation quality measures:
� Collection of measures about quality of documentation
� Analysis of documentation quality measures
� Recording of documentation error data
� Tracking of documentation errors and problem reports to solutions
� Analysis of documentation error data and root causes
� Generation of recommendations based on analysis of quality mea-

surements and error data
10. Collection and analysis of documentation usability measures:

� Collection of measures about usability of documentation
� Analysis of documentation usability measurement
� Generation of recommendations based on analysis of usability mea-

surements
� Generation of documentation usage profile

130 � Software Configuration Management

An assessment procedure was developed to determine where an orga-
nization’s documentation process stands relative to the model. This enables
a mapping from an organization’s past performance to a documentation
maturity level and ultimately generates a documentation process profile.
The profile indicates key practices for that level and identifies areas of
improvement and challenges to move to the next-higher level.

Application of the model has a definite financial benefit. The software
documentation maturity model and assessment procedure have been used
to assess a number of software organizations and projects, and a cost/ben-
efit analysis of achieving documentation maturity levels has been per-
formed using COCOMO, yielding an estimated return on investment of
about 6:1 when moving from the least mature level to the next. According
to Visconti [1993], these results support the main claim of this research:
software organizations that are at a higher documentation process maturity
level also produce higher-quality software, resulting in reduced software
testing and maintenance effort.

METHODS AND STANDARDS

Although the majority of software documentation is produced manually
— that is, done with word processing programs or with tools such as
Microsoft Visio — there are also some systems designed to ease the
process, that will produce “automatic” documentation. Some of the auto-
matic documentation capabilities are subset systems of a wider range of
capabilities; such is the case with many computer-aided software engi-
neering (CASE) tools. These products are designed to support development
efforts throughout the software development life cycle (SDLC), with doc-
umentation being just one small part.

An example of one such tool is Hamilton T echnologies 001
(http://world.std.com/~hti/), a CASE tool (now usually called an applica-
tion development tool in lieu of the term CASE) that surrounds itself with
an intriguing methodology called “Development before the Fact” (DBTF).
The premise behind 001 and DBTF is that developing systems in a quality
manner begets quality and error-reduced systems. One of the intriguing
features of the 001 toolset is that not only does 001 generate programming
source code from maps (i.e., models) of a business problem, but it also
actually generates the documentation for said system.

Table 7.3 Key Practices and Sub-practices (continued)

11. Process improvement feedback loop:
� Mechanism to feedback improvements to documentation process
� Mechanism to incorporate feedback on quality of documentation
� Mechanism to incorporate feedback on usability of documentation

A Practical Approach to Documentation � 131

On one end of the documentation spectrum, one will find that many
companies utilize no tools other than a word processor and some drawing
tool to extract documentation out of their reluctant programmers. On the
other end of the documentation spectrum, forward-thinking companies
make significant investments in their software development departments
by outfitting them with tool suites such as 001. The vast majority of
organizations lie somewhere in between these two extremes.

The world of client/server has afforded the developer new opportu-
nities and decisions to make in terms of which toolset to use. When
Microsoft Office was first introduced, it was primarily utilized for word
processing. Today, Microsoft Access, the database component of the MS
Office product set, has become a significant player in corporations with
a requirement for a robust but less-complex database than the powerhouse
computers that run their back offices (e.g., Sybase, Oracle, and Microsoft
SQL Server).

Microsoft Access enables the automated production of several kinds
of documents related to the datasets that are implemented with the
program. The documents describe schemas, queries, and entity relation-
ship diagrams (ERDs) as shown in Figure 7.1.

Some products are dedicated to producing documentation. One such
product is Doc-o-Matic by toolsfactory.com. It is designed to work with
the Borland Delphi software development environment. The product
works with Delphi’s internal structures, which may consist of Author,
Bugs, Conditions, Examples, Exceptions, History, Ignore, Internal, Notes,
Parameters, Remarks, Return Value, See Also, Todo, and Version [Leahy
2002]. Doc-o-Matic has been compared to a gigantic parsing routine.

As software systems grow in size and sophistication, it becomes increas-
ingly difficult for humans to understand them and anticipate their behavior,
says Charles Robert Wallace [2000] in his dissertation, “Formal Specification
of Software Using Abstract State Machines.” This method essentially
enables walk-through before code is written. Wallace argues that normal
specification techniques aim to foster understanding and increase reliability

Figure 7.1 An Access Entity Relationship Diagram (ERD)

132 � Software Configuration Management

by providing a mathematical foundation to software documentation. His
technique calls for layering information onto a model through a series of
refinements.

Generating Documentation the Right Way

At present, many organizations are practicing a “hit-or-miss” form of
software documentation. These are usually the companies that follow no
or few policies and procedures, and loosely follow standards.

Good software development is standards based and, thus, documen-
tation must also be standards based.

At a minimum, software documentation should consist of the following
items.

1. All Documentation Produced prior to the Start of Code
Development

Most projects go through a systems development life cycle. The life cycle
often starts with a feasibility study, goes on to create a project plan, and
then enters into the requirements analysis and system design phases. Each
of these phases produces one or more deliverables, schedules, and arti-
facts. In sum, the beginnings of a systems documentation effort should
include the feasibility study, project plan, requirements specification, and
design specification, where available.

2. Program Flowcharts

Programmers usually, although not always, initiate their programming
assignment by drawing one or more flowcharts that diagram the “nuts
and bolts” of the actual program. Where systems analysts utilize diagram-
matic tools such as dataflow diagrams (DFDs) or UML-based (Unified
Modeling Language) class diagrams (Figures 7.2 and 7.3, respectively) to
depict the entire system from a physical design level, the programmer is
often required to utilize flowcharts (Figure 7.4) to depict the flow of a
particular component of the DFD or UML class diagram.

3. Use or Business Cases

Item 1 above (all documentation produced prior to the start of code
development) recommends including in your documentation all documen-
tation created during the analysis and design component of the systems
development effort. Use cases may or may not be a part of these docu-
ments — although they should be. Use cases, an example of which is

A Practical Approach to Documentation � 133

shown in Figure 7.5, provide a series of end-user procedures that make
use of the system in question. For example, in a system that handles
student registration, typical use cases might include student log-in, student
registering for the first time, and a student request for financial aid. Use
cases are valuable in all phases of systems development: (1) during systems

Figure 7.2 A Dataflow Diagram (DFD)

Customer

Customer

Store Manager

1

Get Customer
Membership
Information

2

Create New
Customer Account

Not a Member
Account

Information

3

Verify Customer
Account Status

Pastdue
Customer Won't Pay

Account
Not Valid

4

Scan Products

5

Process Payment

Payment Okay

Rental or
Purchase
Request

Customer DataD1

InventoryD2

Product History
Data

D3

Customer DataD1

6

Check In-stock
Status

Product
Check

Request

InventoryD2

Store Manager

OrdersD4

Vendor

7

Order New
Releases and

Other Products

Product History
Data

D3

8

Move Old / Low
Usage Rentals

To Purchase Area

InventoryD2

Products
Ordered

InventoryD2

OrdersD4

9

Process Received
Products

OrdersD4

10

Process Payment
to Vendor

Invoice

134 � Software Configuration Management

Fi
gu

re
 7

.3
 A

 U
M

L
C

la
ss

 D
ia

gr
am

+
R

es
ou

rc
eU

sa
ge

()

-I
D

 :
Lo

ng
-p

er
ce

nt
U

se
d

: P
er

ce
nt

-a
pp

oi
nt

m
en

tID
 :

Lo
ng

-r
es

ou
rc

eI
D

 :
Lo

ng

R
es

ou
rc

e:
:

R
es

o
u

rc
eU

sa
g

e

+
ge

tID
()

+
R

es
ou

rc
e(

)
+

se
tU

ni
tC

os
t(

)
+

ge
tU

ni
tC

os
t(

)
: M

on
ey

+
se

tC
os

tU
ni

t(
)

+
ge

tC
os

tU
ni

t(
)

: S
tr

in
g

+
ge

tR
es

ou
rc

eT
yp

e(
)

: S
tr

in
g

+
se

tR
es

ou
rc

eT
yp

e(
)

+
ge

tD
es

cr
ip

tio
n(

)
: S

tr
in

g
+

se
tD

es
cr

ip
tio

n(
)

+
ge

tN
am

e(
)

: S
tr

in
g

+
se

tN
am

e(
)

+
ge

tS
er

vi
ce

P
ro

vi
de

r(
)

: S
er

vi
ce

P
ro

vi
de

r

-I
D

 :
Lo

ng
-n

am
e

: S
tr

in
g

-d
es

cr
ip

tio
n

: S
tr

in
g

-u
ni

tC
os

t :
 M

on
ey

-c
os

tU
ni

t :
 S

tr
in

g
-r

es
ou

rc
eT

yp
eI

D
 :

Lo
ng

-s
er

vi
ce

P
ro

vi
de

rI
D

 :
Lo

ng

R
es

ou
rc

e:
:

R
es

o
u

rc
e

0.
.*

1

S
er

vi
ce

::
A

p
p

o
in

tm
en

t
1

0.
.*

+
sh

ow
C

re
at

e(
in

 tO
pt

io
n

: S
tr

in
g)

+
sh

ow
E

di
t(

in
 tO

pt
io

n
: S

tr
in

g)
+

sh
ow

S
ea

rc
h(

in
 tO

pt
io

n
: S

tr
in

g)
+

sh
ow

Li
st

(in
 tO

pt
io

n
: S

tr
in

g,
 in

 o
C

ol
le

ct
io

n
: C

ol
le

ct
io

n)

-I
D

 :
Lo

ng
-s

w
in

gA
ttr

ib
ut

es
 :

C
ol

le
ct

io
n

R
es

ou
rc

eM
an

ag
em

en
tU

I::
R

es
o

u
rc

eU
I

A
pp

lic
at

io
nC

on
tr

ol
le

rU
I::

IU
se

rI
n

te
rf

ac
e

1

1

S
er

vi
ce

P
ro

vi
de

r:
:

S
er

vi
ce

P
ro

vi
d

er

1
*

«s
ub

sy
st

em
»

A
p

p
lic

at
io

n
 C

o
n

tr
o

lle
r

1
1

A Practical Approach to Documentation � 135

analysis, use cases enable analysts to understand what the end user wants
out of the new system; (2) during programming, use cases assist the
programmer in understanding the logic flow of the system; and (3) during
testing, use cases can form the basis of the preliminary test scripts.

Figure 7.4 A Flowchart

Apply next season

Download Web
application form

 2nd week only

Complete
application

2-week camp

Send payment by
(date)

Review soccer
camp Web site

List previous
camps attended

Submit coach
reference

Accepted?

Preview
Championzone

attendee?

Determine
skill level

Beginner

Advanced

Yes

No

Yes No

136 � Software Configuration Management

4. Terms of Reference

Every organization is unique, in that it has its own vocabulary. Systems
people are also unique, in that they often use a lingo incoherent to most
end users. A “dictionary” of terms used is beneficial in clearing up any
misunderstandings.

Figure 7.5 A Sample Use Case

JCE2 PROCUREMENT SYSTEM - USE CASES

Requester

Purchasing
Agent

Submits
new

request

Displays
P.O. order

form

Assigns
P.O.

number

Stores
new

P.O. data

Changes
existing
request

Displays
existing

P.O. data

Stores
changed
P.O. data

Cancels
existing
request

Displays
existing

P.O. data

Stores
canceled
P.O. data

Validates
password

Displays
menu

options

Sends
confirmation

email

Submits
new

request

Displays
P.O. order

form

Assigns
P.O.

number

Stores
new

P.O. data

Changes
existing
request

Displays
existing

P.O. data

Stores
changed
P.O. data

Cancels
existing
request

Displays
existing

P.O. data

Stores
canceled
P.O. data

Updates
negotiated

prices

Displays
list of raw
materials

Stores upd’d
raw material

data

Validates
password

Displays
menu

options

Sends
confirmation

email

Uses

Uses

Uses

Uses

A Practical Approach to Documentation � 137

5. Data Dictionary

While a data dictionary (DD) is usually included in a System Design
Specification (SDS), if it is not included, it should be included here. An
excerpt of a DD is provided in Table 7.5 and in Appendix C. A data
dictionary consits of the “terms of reference” for the data that is used in
the system. It describes database, tables, records, fields, and all attributes
such as length and type (i.e., alphabetic, numeric). The DD should also
describe all edit criteria, such as the fact that a social security number
must be numeric and must contain nine characters.

6. Program/Component/Object Documentation

Aside from flowcharts, unless the programmer is using an automated
CASE tool that generates documentation, the programmer should provide
the following documentation: (1) control sheet (see Appendix D); (2)
comments within the program (Figure 7.6); (3) textual description of
what the program is doing, including pseudocode, as shown in Table 7.6.

Table 7.4 A Sample Use Case

Requester Logs into the System to Submit a New Request

1. Requester keys in log-on ID and a six- to eight-digit password. The log-
on ID and password are verified against the valid IDs and valid passwords
in the procurement database. If the ID and/or password do not match,
an error message is displayed on the screen. The requester is prompted
to re-key his ID and/or password. The requester is allowed three log-in
attempts. If unsuccessful, his password is flagged and a message is
displayed for him to call Data Security for resolution. If successful, the
procurement menu is displayed.

2. The requester selects the menu option ENTER PURCHASE REQUEST by
pressing the radio button next to that option.

3. The system displays the Purchase Request Order Form on the screen.
The requester keys his Department Name, Number, and Cost Center in
the appropriate fields. The requester also keys the product number(s),
product selections, and quantities. The requester presses the radio button
for SUBMIT ORDER.

4. A purchase order number is automatically assigned by the system and
is displayed on the screen as confirmation of the order taken.

5. An e-mail is also sent to the requester confirming the order.

138 � Software Configuration Management

7. All Presentation Material

It is likely that, at some point, the system team will be asked to make a
presentation about the system. All presentation paraphernalia, such as
slides, notes, etc., should be included in the system documentation.

8. Test Cases (Appendix E) and Test Plan

While use cases form the basis of the initial set of test cases, they are but
a small subset of test cases. An entire chapter has been dedicated to

Table 7.5 Data Dictionary Excerpt

Name: CI: Membership Database/mem001

Aliases: None
Where

Used/How
Used

Used by the database management system to process
requests and return results to the Inquiry and
Administration sub-systems

Content
Description:

Attributes associated with each asset, including:
Membership Number = 10 numeric digits
Member Since Date = Date
Last Name = 16 alphanumeric characters
First Name = 16 alphanumeric characters
Address = 64 alphanumeric characters
Phone Number = 11 numeric digits (1, area code, phone

number)
Assets on Loan = array containing 10 strings, each containing

64 alphanumeric characters
Assets Overdue = array containing 10 strings, each

containing 64 alphanumeric characters
Late Fees Due = 10 numeric digits
Maximum Allowed Loans = 2 numeric digits

Name: Member Data

Aliases: None
Where

Used/How
Used

A file used to validate username and passwords for
members, librarians, and administrator when attempting to
access the system. The username and password entered
are compared with the username and password in this file.
Access is granted only if a match is found.

Content
Description:

Attributes associated with each asset, including:
Member Username = 16 alphanumeric digits
Member Password = 16 alphanumeric digits

A Practical Approach to Documentation � 139

software testing, so we will not prolong the discussion here. Suffice it to
say that any and all test cases used in conjunction with the system —
along with the results of those test cases — should be included in the
system documentation.

9. Metrics

It is sad to say that most organizations do not measure the effectiveness
of their programmers. Those that do should add this information to the
system documentation. This includes a listing of all metrics (formulae)
used and the results of those measurements. At a minimum, the weekly
status reports and management reports generated from toolsets such as
Microsoft Project should be included in the system documentation.

10. Operations Instructions

Once the system is implemented, aside from the end users that the system
was developed for, there might be some computer support operations
personnel who are required to support this system in some way. Precise
instructions for these support personnel are mandatory and must be
included in the documentation for the system.

Figure 7.6 Sample Program Comments

140 � Software Configuration Management

11. End-User Help Files

Most systems are built using a client/server metaphor that is quite inter-
active. Most systems, therefore, provide end users with online help. A
copy of each help file should be saved as documentation. Most corporate
systems are Windows based. Hence, a Windows-style format in creating
help files (Figure 7.7) has become the de facto standard. Microsoft Help
Workshop is often used to assist in developing these help files, which are
compiled from RTF (rich-text format) files.

12. User Documentation

Aside from the built-in help file, there must be a user manual included
in what is provided to the end user. Increasingly, this user manual is
being supplied right on the CD rather than on paper. There are two
different types of end-user manuals. One is more of an encyclopedia that
explains the terms and workings of the system when the end user has a
specific question. The second type of end-user documentation is more of
a tutorial.

User tutorials are easy to develop; it is important to approach the task
in a step-by-step manner, going through all the motions of using the
software exactly like a user would. Simply record every button you push
and every key you press. A table format works well, as seen in Table 7.7,
documenting the use of the SecureCRT program, which is a product of
New Mexico-based Van Dyke Software.

Another advantage is that the user documentation development process
serves double duty as a functional test. As the analyst or tech writer is
developing the tutorial, he or she might just uncover some bugs.

MAINTAINING DOCUMENTATION

In his discussion of system documentation for the article “Tools and
Evidence,” Ambler [2002] suggests that modeling and documentation are

Table 7.6 Sample Program Comments

//Get cost of equipment
rsEquipment = Select * from Equipment Utilized Where Pothole ID =
NewPotholeID
Loop through rsEquipment and keep running total of cost by equipment *
rsRepairCrew(“Repair Time”)
Total Cost = Total Employee Cost + Total Equipment Cost + Material Cost
Update Employee Set Total Cost Where Pothole ID = NewPotholeID

A Practical Approach to Documentation � 141

effective when employed with sense and restraint, thus enhancing system
functionality. He makes a case that there is a need for restraint, that models
should be discarded once they have fulfilled their purpose. As a project
progresses, models are superseded by other artifacts such as other models,
source code, or test cases that represent the information more effectively.
Ambler takes a fresh approach: while it is important to know what to
keep, it is also important to know what to throw away.

Documentation is particularly critical for maintenance work. Code can
be mysterious to maintenance programmers who must maintain the system
for years after the original system was written and the original programmers
have moved on to other jobs [Graham et al. 2000].

Documentation is critically important. Kalakota [1996] wrote about
organizing practices in his dissertation entitled “Organizing for Electronic
Commerce.” Echoing the concept of configuration management, Kalakota
stressed that organizing has three distinct dimensions:

1. Organizing large amounts of data and digital documents

Figure 7.7 A Typical Help File

142 � Software Configuration Management

Table 7.7 User Tutorial in Table Format

Steps Screen

1. When you first start the
program, you will see a
screen similar to the screen
at the right. The default
Protocol selected is telnet.

2. Pick the down arrow on
the drop-down box, and
select the ssh1 option.

3. With the ssh1 option
selected, notice that the
fields change, now
different from those
available on the telnet
screen. Enter the
appropriate Hostname and
Username. Leave the Port,
Cipher, and Authentication
options populated with the
default settings.

A Practical Approach to Documentation � 143

2. Organizing business processes and workflows
3. Organizing computing and processing

Distributed documents must be organized such that users and programs
are able to locate, track, and use online documents. The growth of net-
working brings with it a corresponding increase in the number of documents
to be organized. Current document organization techniques are derived
from techniques used in file systems and are not sufficient for organizing
the large number of heterogeneous documents that are becoming available
for various purposes.

Kalakota suggests that:

� New computing forms must be developed to process, filter, and
customize online documents.

� The traditional notion of client/server computing is not sufficient to
deal with the complexity and needs of electronic commerce.

� Workflows must be structured to take advantage of the online
documents. Workflows often dictate organization structure but are
difficult to study because they are essentially complex patterns of
interaction between agents. One can easily characterize the variable
properties of sequential actions, but not real-time patterns for tasks
occurring in parallel.

SUMMARY

Documentation is an often-neglected but very necessary component of
the software development life cycle (SDLC). There are numerous
approaches and methods available to software development teams to assist
with the task. Most important are a commitment to documenting software,
setting standards for the organization, and making them stick — that is,
adhering to the standards.

Configuration management (CM) enhances documentation by provid-
ing a framework of standardization through configuration identification
and configuration status accounting.

REFERENCES

[AISI 1996] Applied Information Science International, “Entity Relationship Diagram,”
1996; available online at http://www.aisintl.com/case/olais/pb96/er_model.htm

[Cook and Visconti 2000] Cook, Curtis R. and Marcello Visconti, “Software System
Documentat ion Process Matur i ty Model , ” ava i lable onl ine a t
http://www.cs.orst.edu/~cook/doc/Model.htm

[Graham et al. 2000] Graham, C., J.A. Hoffer, J.F. George, and J.S. Valacich, Introduction
to Business Systems Analysis, Pearson Custom Publishing, Boston, MA, 2000.

144 � Software Configuration Management

[Kalakota 1996] Kalakota, Ravi Shankar, “Organizing for Electronic Commerce,” DAI-
A, 57/02, 1996, from University of Phoenix Online Collection [ProQuest Digital
Dissertations], publication number AAT 9617262, Available online at
http://www.apollolibrary.com:2118/dissertations/fullcit/9617262

[Leahey 2002] Leahey, Robert, Doc-O-Matic 1.0: Generates Docs in WinHelp, RTF, HTML
or HTML Help, Delphi Informant, http://www.delphizine.com/productre-
views/2001/07/di200107rl_p/di200107rl_p.asp

[Liebhaber 2002] Liebhaber, Karen Powers, “Documentation for a Technical Audience,”
Intercom, 49(2), February 2002.

[Scott 2002] Ambler, Scott W., “Tools and Evidence,” Software Development, available
online at http://www.sdmagazine.com/documents/s=7134/sdm0205i/0205i.htm

[Tufflye 2002] Tufflye, David, “How to Write, Version & File Software Development
Documenta t ion , ” 2002 , ava i lab le onl ine a t h t tp : // tu ffley .h i s -
peed.com/tcs20006.htm

[Visconti 1993] Visconti, Marcello Alfredo, Software System Documentation Process
Maturity Model, DAI-B, 55/03, 1993, from University of Phoenix Online Collection
[ProQuest Digital Dissertations], publication number AAT 9422184, available
online at http://www.apollolibrary.com:2118/dissertations/fullcit/9422184

[Wallace 2000] Wallace, Charles Robert, Formal Specification of Software Using Abstract
State Machines, DAI-B, 61/02, 2000, from University of Phoenix Online Col-
lection [ProQuest Digital Dissertations], IBSN: 0-599-63514-2, Available online
at http://www.apollolibrary.com:2118/dissertations/fullcit/9959880

145

8

CONFIGURATION
VERIFICATION AND AUDIT

A variety of things can go wrong with the CM (configuration management)
process. Brown et al. [1999] list a set of “antipatterns” — commonly repeated
flawed practices:

� Reliance on a software configuration tool to implement an SCM
program.

� The CM manager becomes a controlling force beyond his or her
planned role. This leads to the CM manager dictating the delivery
sequence and dominating all other processes.

� Delegating CM functions to whoever happens to be available. Project
managers, often strapped for resources, frequently parcel out the CM
function to developers. CM really needs to be process that stands
apart from development. Brown says that their role as a developer
compromises their role as software configuration manager, because
their primary responsibility is for the development of software. Devel-
opers use this as the “product.” From a CM perspective, the product
is not just the software, but also the documentation.

� Use of decentralized repositories. The key behind CM is shared
information. This requires a shared repository. Many organizations
utilize a decentralized mode of operation. Decentralization negates
shared information.

� Object-oriented development poses granularity problems. CM
must happen at a detailed level of the interaction of a few
objects and at a higher level where component interfaces are
deployed.

146 � Software Configuration Management

The configuration verification and audit process includes:

� Configuration verification of the initial configuration of a CI, and
the incorporation of approved engineering changes, to assure that
the CI meets its required performance and documented configu-
ration requirements

� Configuration audit of configuration verification records and phys-
ical product to validate that a development program has achieved
its performance requirements and configuration documentation or
the system/CI being audited is consistent with the product meeting
the requirements

The common objective is to establish a high level of confidence in the
configuration documentation used as the basis for configuration control
and support of the product throughout its life cycle. Configuration verifi-
cation should be an imbedded function of the process for creating and
modifying the CI or CSCI.

As shown in Figure 8.1, inputs to the configuration verification and
audit activity include:

� Configuration, status, and schedule information from status account-
ing

� Approved configuration documentation (which is a product of the
configuration identification process)

� The results of testing and verification
� The physical hardware CI or software CSCI and its representation
� Manufacturing
� Manufacturing/build instructions and engineering tools, including

the software engineering environment, used to develop, produce,
test, and verify the product

Successful completion of verification and audit activities results in a
verified system/CI(s) and a documentation set that can be confidently
considered a product baseline. It also results in a validated process to
maintain the continuing consistency of product to documentation. Appen-
dices V and W provide sample checklists for performing both a functional
configuration and physical configuration audit.

CONFIGURATION VERIFICATION AND AUDIT CONCEPTS
AND PRINCIPLES

There is a functional and a physical attribute to both configuration verifi-
cation and configuration audit. Configuration verification is an ongoing

Configuration Verification and Audit � 147

process. The reward for effective release, baselining, and configura-
tion/change verification is delivery of a known configuration that is consis-
tent with its documentation and meets its performance requirements. These
are precisely the attributes needed to satisfy the ISO 9000 series requirements
for design verification and design validation as well as the ISO 10007
requirement for configuration audit.

Configuration Verification

Configuration verification is a process that is common to configuration
management, systems engineering, design engineering, manufacturing,
and quality assurance. It is the means by which a developer verifies his
or her design solution.

Figure 8.1 Configuration Verification and Audit Activity Model

1. Contractual Provisions
2. Status and Configuration

Info
3. Documented CM Process

To Configuration Status
Accounting (CSA)

Confidence; Verified Product
& Validated ProcessVerification

and Audit
Planning 1. Verification Requirements

2. Audit Schedule
3. Documented CM Process

Configuration
Verification

Process 1. Approved Configuration
Documentation

2. Documented CM Process

Pre-Audit 1. Verified Configuration
2. Verified Changes
3. Open Action Items
4. Agenda

Audit
1. Audit Report - Verification

and Validation Action Items
2. Documented CM Process

To CSA
Verification and
Validation Action

Items

1. Facilities
2. Tools and

Documentation
3. Personnel
4. Documentation
5. Certifications
6. Documented CM

Process
7. Status and Config

Info
8. Physical CI/CSCI

Test Results

Post Audit

148 � Software Configuration Management

The functional aspect of configuration verification encompasses all of
the test and demonstrations performed to meet the quality assurance
sections of the applicable performance specifications. The tests include
verification/qualification tests performed on a selected unit or units of the
CI, and repetitive acceptance testing performed on each deliverable CI,
or on a sampling from each lot of CIs, as applicable. The physical aspect
of configuration verification establishes that the as-built configuration
conforms to the as-designed configuration. The developer accomplishes
this verification by physical inspection, process control, or a combination
of the two.

Once the initial configuration has been verified, approved changes to
the configuration must also be verified. Figure 8.2 illustrates the elements
in the process of implementing an approved change.

Change verification may involve a detailed audit, a series of tests, a
validation of operation, maintenance, installation, or modification instruc-
tions, or a simple inspection. The choice of the appropriate method
depends on the nature of the CI, the complexity of the change, and the
support commodities that the change impacts.

Figure 8.2 Change Implementation and Verification

Product Mfg
and Retrofit

Other
Affected Support

Elements

Operating and
Maintenance
Instructions

Accomplish and
Verify Change

Authorization
to implement

approved change

Update
Configuration

Documentation

Revise
Mfg/Prod/Test
Instructions

Update
Ordering

Data

Configuration Verification and Audit � 149

Configuration Audit

The dictionary definition of the word “audit” as a final accounting gives
some insight into the value of conducting configuration audits. Configu-
ration management is used to define and control the configuration base-
lines for the CIs and the system. In general, a performance specification
is used to define the essential performance requirements and constraints
that the CI must meet.

For complex systems and CIs, a “performance” audit is necessary to
make this determination. Also, because development of an item involves
the generation of product documentation, it is prudent to ascertain that
the documentation is an accurate representation of the design being
delivered.

Configuration audits provide the framework, and the detailed require-
ments, for verifying that the development effort has successfully achieved
all the requirements specified in the configuration baselines. If there are
any problems, it is the auditing activity’s responsibility to ensure that all
action items are identified, addressed, and closed out before the design
activity can be deemed to have successfully fulfilled the requirements.

There are three phases to the audit process, and each is very important.
The pre-audit part of the process sets the schedule, agenda, facilities, and
rules of conduct and identifies the participants for the audit. The actual
audit itself is the second phase; and the third phase is the post-audit
phase, in which diligent follow-up of the audit action items must take
place. For complex products, the configuration audit process may be a
series of sequential/parallel audits of various CIs conducted over a period
of time to verify all relevant elements in the system product structure.
Audit of a CI can include incremental audits of lower-level items to assess
the degree of achievement of requirements defined in specifications/doc-
umentation.

Functional Configuration Audit

The functional configuration audit (FCA) is used to verify that the actual
performance of the CI meets the requirements stated in its performance
specification and to certify that the CI has met those requirements. For
systems, the FCA is used to verify that the actual performance of the
system meets the requirements stated in the system performance specifi-
cation. In some cases, especially for very large, complex CIs and systems,
the audits can be accomplished in increments. Each increment can address
a specific functional area of the system/CI and will document any dis-
crepancies found in the performance capabilities of that increment. After
all the increments have been completed, a final (summary) FCA can be

150 � Software Configuration Management

held to address the status of all the action items that have been identified
by the incremental meetings and to document the status of the FCA for
the system or CI in the minutes and certifications. In this way, the audit
is effectively accomplished with minimal complications.

Physical Configuration Audit

The physical configuration audit (PCA) is used to examine the actual
configuration of the CI that is representative of the product configuration
in order to verify that the related design documentation matches the design
of the deliverable CI. It is also used to validate many of the supporting
processes that were used in the production of the CI. The PCA is also
used to verify that any elements of the CI that were redesigned after the
completion of the FCA also meet the requirements of the CI’s performance
specification.

Application of Audits during Life Cycle

It is extremely unlikely that FCAs or PCAs will be accomplished during
the Concept Exploration and Definition phase or the Program Definition
and Risk Reduction phase of the life cycle. Audits are intended to address
the acceptability of a final, production-ready design and that is hardly the
case for any design developed this early in the life cycle.

It is during the Engineering and Manufacturing Development (EMD)
phase that the final, production, operationally ready design is developed.
Thus, this phase is normally the focus for the auditing activity. A PCA
will be preformed for each HW CI that has completed the FCA process
to “lock down” the detail design by establishing a product baseline.
Hardware CIs built during this phase are sometimes “pre-production
prototypes” and are not necessarily representative of the production
hardware. Therefore, it is very common for the PCAs to be delayed until
early in the Production phase of the program.

Requirements to accomplish FCAs for systems and CIs are included in
the Statement of Work (SOW) tasking. The FCA is accomplished to verify
that the requirements in the system and CI performance specifications
have been achieved in the design. It does not focus on the results of the
operational testing that is often accomplished by operational testing orga-
nizations in the services, although some of the findings from the opera-
tional testing may highlight performance requirements in the baselined
specification that have not been achieved. Deficiencies in performance
capability, as defined in the baselined specification, result in FCA action
items requiring correction without a change to the contract. Deficiencies

Configuration Verification and Audit � 151

in the operational capability, as defined in user-prepared need documents,
usually result in Engineering Change Proposals (ECPs) to incorporate
revised requirements into the baselined specifications or to fund the
development of new or revised designs to achieve the operational capa-
bility.

Because the final tested software design verified at the FCA normally
becomes the production design, the PCAs for CSCIs are normally included
as a part of the SOW tasking for the EMD phase. CSCI FCAs and PCAs
can be conducted simultaneously to conserve resources and to shorten
schedules.

During a PCA, the deliverable item (hardware or software) is compared
to the product configuration documentation to ensure that the documen-
tation matches the design. This ensures that the exact design that will
require support is documented. The intent is that an exact record of the
configuration will be maintained as various repair and modification actions
are completed. The basic goal is sometimes compromised in the actual
operation and maintenance environment. Expediency, unauthorized
changes, cannibalization, overwork, failure to complete paperwork, and
carelessness can cause the record of the configuration of operational
software or hardware to become inaccurate. In some situations, a unit
cannot be maintained or modified until its configuration is determined.
In these kinds of circumstances, it is often necessary to inspect the unit
against approved product configuration documentation, as in a PCA, to
determine where differences exist. Then the unit can be brought back
into conformance with the documentation, or the records corrected to
reflect the actual unit configuration.

As discussed, configuration audits address two major concerns:

1. The ability of the developed design to meet the specified perfor-
mance requirements (the FCA addresses this concern)

2. The accuracy of the documentation reflecting the production design
(the PCA addresses this concern)

Audit checklists are provided in Table 8.1.

SUMMARY

Testing is a critical component of software engineering. It is the final step
taken prior to deploying the system. Configuration Verification and Audit
organizes this process to ensure that the deployed system is as expected
by the end users.

152 � Software Configuration Management

Table 8.1 Audit Checklists

Audit Planning Checklist:
1. Global plan and schedule for all FCAs/PCAs expanding on CM PLAN
2. CIs/CSCIs to be audited; specific units to be audited
3. Scope: contract requirements, SOW, specification, approved plans
4. Location and dates for each audit
5. Composition of audit team and their functions in the audit
6. Documentation to be audited and reference material
7. Administrative requirements; security requirements

Audit Agenda Checklist:
1. Covering a specific audit, targeted 60 days before audit
2. Date, time, location, duration — unless otherwise specified, configuration

audits will be conducted at the contractor or a designated sub-contractor
facility

3. Chairpersons
4. Specific CIs or CSCIs
5. Documentation to be available for review
6. Chronological schedule for conduct of the audit
7. Detailed information pertinent to the audit (e.g., team requirements,

facility requirements, administrative information, security requirements)

Audit Teams Checklist:
1. Assign a co-chair for each audit in audit plan
2. For FCA: base specific personnel needs on the type and complexity of

the CIs to be audited, their technical documentation, and the logistics,
training, human factors, safety, producibility, deployability, and other
requirements of the governing specification

3. For PCA: experts in engineering design, computer-aided design,
engineering release, computer-aided manufacturing, manufacturing,
assembly, and acceptance test processes are needed

4. Task DCMC plant representatives to review and certify engineering
release, configuration control, and verification processes

5. Prior to each audit, provide organization and security clearance of each
participating individual on the audit team

Conducting Configuration Audits
Introductory Briefings Checklist:
1. All participants
2. Purpose of the audit
3. Specific items to be audited; pertinent information/characteristics of the

system/CIs
4. Basic criteria for problem identification and documentation
5. Schedule and location of audit events
6. Teams, team leaders, and location of teams

Configuration Verification and Audit � 153

Table 8.1 Audit Checklists (continued)

7. Administrative procedures for the audit (e.g., problem input format,
processing flow, audit logistics)

8. Location of necessary facilities

Conduct Reviews. Prepare Audit Findings (problem write-ups) Checklist:
Sub-teams facilitate the conduct of the audit by enabling parallel effort; auditors

assigned to work in area of expertise.
1. Review specification, verification processes, and results:

a. Test plans/procedures comply with specification requirements
b. Test results, analyses, simulations, etc.; verify CI requirements as required

by specification
c. ECPs are incorporated and verified
d. Interface requirements verified
e. Configuration documentation reflects configuration of item for which test

data is verified
f. Data for items to be provisioned are sampled to ensure that they reference

applicable performance and test requirements
g. For CSCIs:

i. Database, storage allocation, timing, and sequencing are in compliance
 with specified requirements

ii. Software system operation and maintenance documentation is complete
iii. Test results and documentation reflect correct software version
iv. Internal QA audits are satisfied

2. Temporary departures documented by approved Deviation Request
3. Product baseline:

a. Formal examination of the as-built configuration of a CI or CSCI against the
specifications and design documentation constituting its product baseline

b. Ensure proper parts as reflected in the engineering drawings (see below)
are actually installed and correctly marked

c. Determine that the configuration being produced accurately reflects
released engineering data

4. Engineering drawing or CAD representations (design detail) review:
a. Representative number of drawings (or CAD representations) and

associated manufacturing instructions reviewed for accuracy and to ensure
that the manufacturing instructions (from which the hardware is built)
reflect all design details and include authorized engineering changes

i. Drawing number and revision on manufacturing instructions matches
 correct released drawing or

ii. CAD representation
iii. Drawing and revisions are correctly represented in release records;

 drawings do not have more than five unincorporated changes

154 � Software Configuration Management

Table 8.1 Audit Checklists (continued)

iv. List of materials on manufacturing instructions matches drawing
 parts list
v. Nomenclature, part number, and serial number markings are correct

vi. All approved changes have been incorporated
vii. There is a continuity of part references and other characteristics for a

 major assembly from the top drawing down to the piece part
viii. Required approvals are present

b. Sampling of parts reflected on drawing reviewed to ensure compatibility
with program parts selection list (or criteria)

5. Acceptance test procedures and results:
a. CI acceptance test data and procedures comply with item specification
b. Acceptance test requirements prescribed by the documentation are

adequate for acceptance of production units of a CI
c. CIs being audited pass acceptance tests as reflected in test results

6. Engineering release and configuration control:
a. System is adequate to properly control the processing and release of

engineering changes on a continuing basis
b. Software changes are accurately identified, controlled, and tracked to the

software and documentation affected
7. Logistics support plan for pre-operational support:

a. Spares and repair parts provisioned prior to PCA are the correct
configuration

8. For CSCIs:
a. Documentation is complete and meets applicable conventions, protocols,

coding standards, etc.
b. Software listings reflect design descriptions
c. Delivery media is appropriately marked and in agreement with

specification requirements for packaging and delivery
d. Documentation of the correct relationship to the components to which the

software is to be loaded; for firmware, it contains complete installation
and verification requirements

e. Demonstrate that each CSCI can be compiled from library-based source
code

f. Review operational and support manuals for completeness, correctness,
and incorporation of comments made at prior reviews (FCA, test readiness,
QA audits, etc.)

Problem Write-up Checklist:
1. Originator:

a. Identify contract or configuration document
b. Item being audited
c. Requirement

Configuration Verification and Audit � 155

Table 8.1 Audit Checklists (continued)

d. Narrative description of the problem/discrepancy
e. Recommendation

2. Sub-team leader preliminary review:
a. Preliminary control number assigned
b. Approved and signed
c. Disapproved
d. Returned to originator for revision or further analysis

3. If approved, forwarded to Executive Panel

Disposition Audit Findings Checklist:
1. Executive panel:

a. Final review of problem write-ups
b. Assign control numbers and enter selected problems into official record of

the audit
c. Submit to developer with suspense time (typically a period of hours) for

responding to the problem
2. Developer response:

a. Concur with problem and recommend action
b. Offer additional information that resolves or clarifies the problem
c. Disagree with problem finding or obligation

3. Review response:
a. Determine if it appears to provide satisfactory resolution
b. Provide to Executive Panel

4. Disposition all problem write-ups that were submitted
5. Make final decision as to further action:

a. Close item
b. Agree on further actions to close out problem

6. Officially record all dispositions, action assignments, and suspense dates
in audit minutes

7. Co-chairs sign all problem write-ups

Documenting Audit Results Checklist:
1. Prepare official audit minutes, to include:

a. Typical meeting minutes: time, place, purpose, participants, etc.
b. Action item lists reflecting all actions and suspense dates agreed to
c. Applicable audit certifications documenting key audit review activities
d. Specific items, systems, documents, or processes reviewed
e. Summary of discrepancies/deficiencies in each area referenced to control

number of applicable audit problem write-ups (action items)
f. Definitive statements about acceptability or non-acceptability
g. Final status of the developer’s effort in the area being certified

156 � Software Configuration Management

REFERENCES

This chapter is based on the following report: MIL-HDBK-61A(SE), Feb-
ruary 7, 2001, Military Handbook: Configuration Management Guidance.

[Brown 1999] Brown, William, Hays McCormick, and Scott Thomas, AntiPatterns and
Patterns in Software Configuration Management, John Wiley & Sons, New
York, 1999.

157

9

A PRACTICAL APPROACH
TO CONFIGURATION

VERIFICATION AND AUDIT

EIA-649, the standard for configuration management, requires the organi-
zation to verify that a product’s stated requirements have been met.
Verification can be accomplished by a systematic comparison of require-
ments with the results of test, analyses, and inspections.

There are three components to establishing a rigorous configuration
verification and audit methodology:

1. Establishing and implementing a standard design and document
verification methodology

2. Establishing and implementing a standard configuration audit meth-
odology

3. Establishing and implementing a standard testing methodology

This chapter correlates the CM process of verification and audit with
traditional software engineering testing methodology.

COMPONENTS OF A DESIGN AND DOCUMENT
VERIFICATION METHODOLOGY

The basis of configuration management is the rigorous control and veri-
fication of all system artifacts. These artifacts include:

� The feasibility study
� The project plan

158 � Software Configuration Management

� The requirements specification
� The design specification
� The database schemas
� The test plan

EIA-649 states that the documentation must be accurate and sufficiently
complete to permit the reproduction of the product without further design
effort. What this means is that if the set of documents described in the
list above was given to a different set of programmers, the same exact
system would be produced.

Activities that can accomplish this end include:

� Rigorous review of all documentation by inspection teams.
� Continuous maintenance of documentation through using an auto-

mated library of documentation with check-in and check-out facilities.
� Maintenance of the product’s baseline.
� Implementation of requirements traceability review. All requirements

were originally stated needs by a person or persons. Traceability back
to this person or persons is critical if the product is to be accurately
verified.

� Implementation of data dictionary and/or repository functionality
to manage digital data.

COMPONENTS OF A CONFIGURATION AUDIT
METHODOLOGY

Configuration audit requires the following resources:

� Appropriately assigned staff, to include a team leader as well as
representatives of the systems and end-user groups

� A detailed audit plan
� Availability of all documentation discussed in the prior section (it

is presumed that this documentation is readily available in a
controlled, digitized format)

Audits can be performed upon implementation of a new system or
the maintenance of an existing one. Prior to conducting the audit, the
audit plan, which details the scope of the effort, is created and approved
by all appropriate personnel.

The audit process itself is not unlike the testing process described in
the first part of this chapter. An audit plan, therefore, is very similar to a
test plan. During the audit, auditors:

A Practical Approach to Configuration Verification and Audit � 159

� Compare the specification to the product and record discrepancies
and anomalies.

� Review the output of the testing cycle and record discrepancies and
anomalies.

� Review all documentation and record discrepancies and anomalies.
In a CM (configuration management) environment, the following
should be verified for each document:
� A documentation library control system is being utilized.
� The product identifier is unique.
� All interfaces are valid.
� Internal audit records of CM processes are maintained.

� Record questions, if any, about what was observed. Obtain answers
to these questions.

� Make recommendations as to action items to correct any discovered
discrepancies and anomalies.

� Present formal findings.

Audit minutes provide a detailed record of the findings, recommenda-
tions, and conclusions of the audit committee. The committee follows up
until all required action items are complete.

COMPONENTS OF A TESTING METHODOLOGY

The goal of testing is to uncover and correct errors. Because software is
so complex, it is reasonable to assume that software testing is a labor-
and resource-intensive process. Automated software testing helps to
improve testers’ productivity and reduce the resources that may be
required. By its very nature, automated software testing increases test
coverage levels, speeds up test turn-around time, and cuts costs of testing.

The classic software development life-cycle model suggests a system-
atic, sequential approach to software development that progresses through
software requirements analysis, design, code generation, and testing. That
is, once the source code has been generated, program testing begins with
the goal of finding differences between the expected behavior specified
by system models and the observed behavior of the system.

The process of creating software applications that are error-free requires
technical sophistication in the analysis, design, and implementation of that
software, proper test planning, as well as robust automated testing tools.
When planning and executing tests, software testers must consider the
software and the function it performs, the inputs and how they can be
combined, and the environment in which the software will eventually
operate.

160 � Software Configuration Management

There are a variety of software testing activities that can be imple-
mented, as discusses below.

Inspections

Software development is, for the most part, a team effort, although the
programs themselves are coded individually. Periodically throughout the
coding of a program, the project leader or project manager will schedule
inspections of a program (see Appendices F and G). An inspection is the
process of manually examining the code in search of common errors.

Each programming language has it own set of common errors. It is
therefore worthwhile to spend a bit of time in search of these errors.

An example of what an inspection team would look for follows:

int i;

for (i = 0; i < 10; i++)

{

 cout << "Enter velocity for "

 << i << "numbered data point: "

 cin >> data_point[i].velocity;

 cout << "Enter direction for that data point"

 << " (N, S, E or W): ";

 cin >> data_point[i].direction;

}

The C++ code displayed above looks correct. However, the semicolon
was missing from the fifth line of code:

int i;

for (i = 0; i < 10; i++)

{

 cout << "Enter velocity for "

 << i << "numbered data point: ";//the ; was missing

 cin >> data_point[i].velocity;

 cout << "Enter direction for that data point"

 << " (N, S, E or W): ";

 cin >> data_point[i].direction;

}

Walk-Throughs

A walk-through is a manual testing procedure that examines the logic of
the code. This is somewhat different from an inspection, where the goal

A Practical Approach to Configuration Verification and Audit � 161

is to find syntax errors. The walk-through procedure attempts to answer
the following questions:

� Does the program conform to the specification for that program?
� Is the input being handled properly?
� Is the output being handled properly?
� Is the logic correct?

The best way to handle a walk-through is:

� Appoint a chairperson who schedules the meeting, invites appro-
priate staff, and sets the agenda.

� The programmer presents his or her code.
� The code is discussed.
� Test cases can be used to “walk through” the logic of the program

for specific circumstances.
� Disagreements are resolved by the chairperson.
� The programmer goes back and fixes any problems.
� A follow-up walk-through is scheduled.

Unit Testing

During the early stages of the testing process, the programmer usually
performs all tests. This stage of testing is referred to as unit testing. Here,
the programmer usually works with the debugger that accompanies the
compiler. For example, Visual Basic, as shown in Figure 9.1, enables the
programmer to “step through” a program’s (or object’s) logic one line of
code at a time, viewing the value of any and all variables as the program
proceeds.

Daily Build and Smoke Test

McConnell [1996] describes a testing methodology commonly used at
companies such as Microsoft that sell shrink-wrapped software. The “daily
build and smoke” test is a process whereby every file is compiled, linked,
and combined into an executable program on a daily basis. The executable
is then put through a “smoke” test, a relatively simple check, to see if the
product “smokes” when it runs.
According to McConnell [1996], this simple process has some significant
benefits, including:

� It minimizes integration risk by ensuring that disparate code, usually
developed by different programmers, is well integrated.

162 � Software Configuration Management

� It reduces the risk of low quality by forcing the system to a minimally
acceptable standard of quality.

� It supports easier defect diagnosis by requiring the programmers
to solve problems as they occur rather than waiting until the
problem is too large to solve.

For this to be a successful effort, the build part of this task should:

� Compile all files, libraries, and other components successfully
� Link successfully all files, libraries, and components
� Not contain any “show-stopper bugs” that prevent the program

from operating properly

The “smoke” part of this task should:

� Exercise the entire system from end to end with a goal of exposing
major problems

� Evolve as the system evolves: as the system becomes more com-
plex, the smoke test should become more complex

Figure 9.1 Visual Basic, along with Other Programming Toolsets, Provides Unit
Testing Capabilities to Programmers

A Practical Approach to Configuration Verification and Audit � 163

Integration Testing

A particular program is usually made up of many modules. An OO (object-
oriented) system is composed of many objects. Programmers usually
architect their programs in a top-down, modular fashion. Integration testing
proves that the module interfaces are working properly. For example, in
Figure 9.2, a programmer doing integration testing would ensure that the
Module2 (the Process module) correctly interfaces with its subordinate,
Module2.1 (the Calculate process).

If Module2.1 had not yet been written, it would have been referred
to as a stub. It would still be possible to perform integration testing if the
programmer inserts two or three lines of code in the stub, which would
act to prove that it is well integrated to Module2.

On occasion, a programmer will code all the subordinate modules first
and leave the higher-order modules for last. This is known as bottom-up
programming. In this case, Module2 would be empty, save for a few lines
of code to prove that it is integrating correctly with Module2.1, etc. In
this case, Module2 would be referred to as a driver.

System Testing

Where integration testing is performed on the discrete programs or objects
with a master program, system testing refers to testing the interfaces
between programs within a system. Because a system can be composed
of hundreds of programs, this is a vast undertaking.

Figure 9.2 Integration Testing Proves that Module Interfaces Are Working Properly

Program

Module1
Read

Module2
Process

Module3
Close

Module2.1
Calculate

Module2.2
Print

164 � Software Configuration Management

Parallel Testing

It is quite possible that the system being developed is a replacement for
an existing system. In this case, parallel testing is performed. The goal
here is to compare outputs generated by each of the systems (old versus
new) and determine why there are differences, if any.

Parallel testing requires that the end user(s) be part of the testing team.
If the end user determines that the system is working correctly, one can
see that the customer “has accepted” the system. This, then, is a form of
customer acceptance testing.

THE QA PROCESS

As the testing progresses, testing specialists may become involved (see
Appendix H for a sample QA Handover Document). Within the vernacular
of IT, staff members who are dedicated to performing testing are referred
to as quality assurance (QA) engineers and reside within the quality
assurance department. QA testers must have a good understanding of the
program being tested, as well as the programming language in which the
program was coded. In addition, the QA engineer must be methodical
and able to grasp complex logic. Generally speaking, technical people
with these attributes are hard to come by and even harder to keep as
most of them aspire to become programmers themselves.

Even simple software can present testers with obstacles. Couple this
complexity with the difficulty of attracting and keeping QA staff and one
has the main reason why many organizations now automate parts of the
testing process.

THE TEST PLAN

Software testing is one critical element of software quality assurance (SQA)
that aims to determine the quality of the system and its related models.
In such a process, a software system will be executed to determine whether
it matches its specification and executes in its intended environment. To
be more precise, the testing process focuses on both the logical internals
of the software, ensuring that all statements have been tested, and on the
functional externals by conducting tests to uncover errors and ensure that
defined input will produce actual results that agree with required results.

To ensure that the testing process is complete and thorough, it is
necessary to create a test plan (Appendix E).

A thorough test plan consists of the items listed in Table 9.1. A sample
test plan, done by this author’s students for an OO dog grooming system,

A Practical Approach to Configuration Verification and Audit � 165

can be found in Appendix E. While all components of this test plan are
important, one notes that the test plan really focuses on three things:

1. The test cases
2. Metrics that will determine whether there has been testing success

or failure
3. The schedule

Table 9.1 Thorough Test Plan

1. Revision History
2. System Introduction

2.1 Goals and Objectives
2.2 Statement of Scope
2.3 Major Constraints

3. Test Plan
3.1 System Description
3.2 Testing Strategy
3.3 Testing Resources
3.4 Testing Metrics
3.5 Testing Artifacts
3.6 Testing Schedule

4. Test Procedures
4.1 Class Testing
4.2 Integration Testing

5. Appendix 1: Class Testing Test Cases
5.1 Application Controller Sub-system
5.2 User Management Sub-system
5.3 Resource Management Sub-system
5.4 Order Sub-system
5.5 Accounting Sub-system
5.6 Customer Relationship Management Sub-system
5.7 Persistence Sub-system

6. Appendix 2: Integration Testing Test Cases
6.1 Customer Registration
6.2 Reallocate Resources
6.3 Search for Service Provider and Initiate Order
6.4 Place Order
6.5 Pay for Service

7. Appendix: Project Schedule

166 � Software Configuration Management

The test cases are the heart of the test plan. A test case specifies the
exact steps the tester must take to test a particular function of the system.
A sample test case appears in Table 9.2.

Test plans must be carefully created. A good test plan contains a test
case for every facet of the system to be tested.

Some organizations purchase automated testing tools that assist the
developer in testing the system. These are particularly useful for:

� Automatically creating test cases. Testing tools can “watch” what
a person does at the keyboard and then translate what it records
into a testing script. For example, a loan application transaction
consists of logging into a system, calling up a particular screen,
and then entering some data. Automatic testing tools can “watch”
someone keyboard this transaction and create a script that details
the steps that person took to complete the transaction.

� Simulating large numbers of end users. If a system will ultimately
have dozens, hundreds, or even thousands of end users, then testing
the system with a handful of testers will be insufficient. An automatic
testing tool has the capability to simulate any number of end users.
This is referred to as testing the “load” of a system.

Success must be measured. The test plan should contain metrics that
assess the success or failure of the system’s components. Examples of
viable metrics include:

� For each class, indicators of test failure (as identified in the test
cases)

� Number of failure indicators per class
� Number of failure indicators per sub-system
� A categorization of failure indicators by severity
� Number of repeat failures (not resolved in the previous iteration)
� Hours spent by test team in test process
� Hours spent by development team in correcting failures

TEST AUTOMATION

The usual practice in software development is that the software is written
as quickly as possible, and once the application is done, it is tested and
debugged. However, this is a costly and ineffective way because the
software testing process is difficult, time consuming, and resource inten-
sive. With manual test strategies, this can be even more complicated and
cumbersome. A better alternative is to perform unit testing that is inde-

A Practical Approach to Configuration Verification and Audit � 167

Table 9.2 Sample Test Case

C1. Log-in Page (based on case A1)
Description/Purpose:
Test the proper display of the login, user verification, and that the user is

redirected to the correct screen.

Stubs Required:
� Data Interface — The data interface stub/driver is required to verify log-in

data as the user enters it through the Web page.
� Database Interface — The database interface stub/driver is required to check

the database for log-in data.

Steps:
1. Go to the main log-in screen.
2. Enter the username and password, both including special characters. This

should be the login of a customer.
3. Execute Data Interface stub within the test framework to confirm that ID

and password are a valid pair.
4. Select Veterinary Services link.
5. Confirm that the list of dogs that appear are dogs that only belong to that

customer.
6. Go to the main log-in screen.
7. Enter the username and password, both including special characters. This

should be the login of an employee/administrator.
8. Execute Data Interface stub within the test framework to confirm that ID

and password are a valid pair.
9. Select Veterinary Services link.

10. Confirm that the list of dogs is a list of all dogs in the database.
11. Go to the main log-in screen.
12. Enter a bad user name and password.
13. Execute Data Interface stub within the test framework to confirm that ID

and password are not a valid pair.
14. Confirm that the log-in screen presented an error message and stayed at

the log-in screen.

Expected Results:
� Successful login with username and matching password.
� Able to log in with passwords with special characters.
� Veterinary display screen presents the correct list of dogs in the database,

from zero to many. This list of dogs is a list of dogs for a customer if the
user is a customer; otherwise, the user is a staff member and has access to
all the dogs in the database.

168 � Software Configuration Management

pendent of the rest of the code. During unit testing, developers compare
the object design model with each object and sub-system. Errors detected
at the unit level are much easier to fix; one only has to debug the code
in that small unit. Unit testing is widely recognized as one of the most
effective ways to ensure application quality. It is a laborious and tedious
task, however. The workload for unit testing is tremendous, so that to
manually perform unit testing is practically impossible — and hence the
need for automatic unit testing. Another good reason to automate unit
testing is that when performing manual unit testing, one runs the risk of
making mistakes [Aivazis 2000].

In addition to saving time and preventing human errors, automatic unit
testing helps facilitate integration testing. After unit testing has removed
errors in each sub-system, combinations of sub-systems are integrated into
larger sub-systems and tested. When tests do not reveal new errors,
additional sub-systems are added to the group, and another iteration of
integration testing is performed. The re-execution of some subset of tests
that have already been conducted is regression testing. This ensures that
no errors are introduced as a result of adding new modules or modification
in the software [Kolawa 2001].

As integration testing proceeds, the number of regression tests can
grow very large. Therefore, it is inefficient and impractical to re-execute
every test manually once a change has occurred. The use of automated
capture/playback tools may prove useful in this case. Such tools enable
the software engineer to capture test cases and results for subsequent
playback and comparison.

Test automation can improve testers’ productivity. Testers can apply
one of several types of testing tools and techniques at various points of
code integration. Some examples of automatic testing tools in the mar-
ketplace include:

� C++Test for automatic C/C++ unit testing by ParaSoft
� Cantata++ for dynamic testing of C++ by IPL
� WinRunner for unit and system tests by Mercury Interactive

WinRunner is probably one of the more popular tools in use today
because it automates much of the painful process of testing. Used in
conjunction with a series of test cases (see Appendix E, Section 5), a big
chunk of the manual processes that constitute the bulk of testing can be
automated. The WinRunner product actually records a particular business
process by recording the keystrokes a user makes (e.g., emulates the user
actions of placing an order). The QA person can then directly edit the
test script that WinRunner generates and add checkpoints and other
validation criteria.

A Practical Approach to Configuration Verification and Audit � 169

When done correctly, and with appropriate testing tools and strategies,
automated software testing provides worthwhile benefits such as repeat-
ability and significant time savings. This is true especially when the system
moves into system test. Higher quality is also a result because less time
is spent in tracking down test environmental variables and rewriting poorly
written test cases [Raynor 1999].

Pettichord [2001] describes several principles that testers should adhere
to in order to succeed with test automation. These principles include:

� Taking testing seriously
� Being careful who you choose to perform these tests
� Choosing what parts of the testing process to automate
� Being able to build maintainable and reliable test scripts
� Using error recovery

Testers must realize that test automation itself is a software development
activity and thus it needs to adhere to standard software development
practices. That is, test automation systems themselves must be tested and
subjected to frequent review and improvement to make sure that they are
indeed addressing the testing needs of the organization.

Because automating test scripts is part of the testing effort, good judgment
is required in selecting appropriate tests to automate. Not everything can
or should be automated. For example, overly complex tests are not worth
automating. Manual testing is still necessary for this situation. Zambelich
[2002] provides a guideline to make automated testing cost-effective. He
says that automated testing is expensive and does not replace the need for
manual testing or enable one to “down-size” a testing department. Auto-
mated testing is an addition to the testing process. Some pundits claim that
it can take between three and ten times as long (or longer) to develop,
verify, and document an automated test case than to create and execute a
manual test case. Zambelich indicates that this is especially true if one elects
to use the “record/playback” feature (contained in most test tools) as the
primary automated testing methodology. In fact, Zambelich says that
record/playback is the least cost-effective method of automating test cases.

Automated testing can be made cost-effective, according to Zambelich,
if some common sense is applied to the process:

� Choose a test tool that best fits the testing requirements of your
organization or company. An “Automated Testing Handbook” is
available from the Software Testing Institute (http://www.soft
waretestinginstitute.com).

170 � Software Configuration Management

� Understand that it does not make sense to automate everything.
Overly complex tests are often more trouble than they are worth to
automate. Concentrate on automating the majority of tests, which are
probably fairly straightforward. Leave the overly complex tests for
manual testing.

� Only automate tests that are going to be repeated; one-time tests
are not worth automating.

Isenberg [1994] explains the requirements for success in automated
software testing. To succeed, the following four interrelated components
must work together and support one another:

1. Automated testing system. It must be flexible and easy to update.
2. Testing infrastructure. This includes a good bug tracking system,

standard test case format, baseline test data, and comprehensive
test plans.

3. Software testing life cycle. This defines a set of phases outlining
what test activities to do and when to do them. These phases are
planning, analysis, design, construction, testing (initial test cycles,
bug fixes, and retesting), final testing and implementation, and post
implementation.

4. Corporate support. Automation cannot succeed without the corpo-
ration’s commitment to adopting and supporting repeatable pro-
cesses.

Automated testing systems should have the ability to adjust and respond
to unexpected changes to the software under test, which means that the
testing systems will stay useful over time. Some of the practical features
of automated software testing systems suggested by Isenberg [1994]
include:

� Run all day and night in unattended mode
� Continue running even if a test case fails
� Write out meaningful logs
� Keep test environment up-to-date
� Track tests that pass, as well as tests that fail

When automated testing tools are introduced, there may be some
difficulties that test engineers must face. Project management should be
used to plan the implementation of testing tools. Without proper man-
agement and selection of the right tool for the job, automated test
implementation will fail [Hendrickson 1998]. Dustin [1999] has accumulated

A Practical Approach to Configuration Verification and Audit � 171

a list of “Automated Testing Lessons Learned” from his experiences with
real projects and test engineer feedback. Some include:

� The various tools used throughout the development life cycle do
not integrate easily if they are from different vendors.

� An automated testing tool can speed up the testing effort; however,
it should be introduced early in the testing life cycle to gain benefits.

� Duplicate information may be kept in multiple repositories and
difficult to maintain. As a matter of fact, in many instances, the
implementation of more tools can result in decreased productivity.

� The automated testing tool drives the testing effort. When a new tool
is used for the first time, more time is often spent on installation,
training, initial test case development, and automating test scripts
than on actual testing.

� It is not necessary for everyone on the testing staff to spend his or
her time automating scripts.

� Sometimes, elaborate test scripts are developed through overuse of
the testing tool’s programming language, which duplicates the devel-
opment effort. That is, too much time is spent on automating scripts
without much additional value gained. Therefore, it is important to
conduct an automation analysis and to determine the best approach
to automation by estimating the highest return.

� Automated test script creation is cumbersome. It does not happen
automatically.

� Tool training needs to be initiated early in the project so that test
engineers have the knowledge to use the tool.

� Testers often resist new tools. When first introducing a new tool to
the testing program, mentors and advocates of the tool are very
important.

� There are expectations of early payback. When a new tool is
introduced to a project, project members anticipate that the tool
will narrow down the testing scope right away. In reality, it is the
opposite — that is, initially the tool will increase the testing scope.

SUMMARY

Test engineers can enjoy productivity increases as the testing task becomes
automated and a thorough test plan is implemented. Creating a good and
comprehensive automated test system requires an additional investment
of time and consideration, but it is cost-effective in the long run. More
tests can be executed while the amount of tedious work on construction
and validation of test cases is reduced.

172 � Software Configuration Management

Automated software testing is by no means a complete substitute for
manual testing. That is, manual testing cannot be totally eliminated; it
should always precede automated testing. In this way, the time and effort
that will be saved from the use of automated testing can now be focused
on more important testing areas.

Configuration management insists that we create and follow procedures
for verification of a product’s adherence to the specification from which
it was derived. A combination of rigorously defined testing, documenta-
tion, and audit methodologies fulfills this requirement.

REFERENCES

Aivazis, M., “Automatic Unit Testing,” Computer, 33(5), back cover, May 2000.
Bruegge, B. and A.H. Dutoit, Object-Oriented Software Engineering: Conquering Com-

plex and Changing Systems, Prentice Hall, Upper Saddle River, NJ, 2000.
Dustin, E., “Lessons in Test Automation,” STQE Magazine, September/October 1999, and

from the World Wide Web: http://www.stickyminds.com/pop_print.asp?Objec-
tId=1802&ObjectType=ARTCO

Hendrickson, E., The Difference between Test Automation Failure and Success, Quality
Tree Software, August, 1998, retrieved from http://www.qualitytree.com/fea-
ture/dbtasaf.pdf

Isenberg, H.M., “The Practical Organization of Automated Software Testing,” Multi
Level Verification Conference 95, December 1994, retrieved from
http://www.automated-testing.com/PATfinal.htm

Kolawa, A., “Regression Testing at the Unit Level?,” Computer, 34(2), back cover,
February 2001.

McConnell, Steve, “Daily Build and Smoke Test,” IEEE Software, 13(4), July 1996.
Pettichord, B., “Success with Test Automation,” June 2001, retrieved from

http://www.io.com/~wazmo/succpap.htm
Pressman, R.S., Software Engineering: A Practitioner’s Approach, 5th ed., McGraw-Hill,

Boston, MA, 2001.
Raynor, D.A., “Automated Software Testing,” retrieved from http://www.trainers-

direct.com/resources/articles/ProjectManagement/AutomatedSoftwareTest-
ingRaynor.html

Whittaker, J.A., “What Is Software Testing? And Why Is It So Hard?,” IEEE Software,
January/February 2000, 70–79.

Zallar, K., “Automated Software Testing – A Perspective,” retrieved from
http://www.testingstuff.com/autotest.html

Zambelich, K., “Totally Data-Driven Automated Testing,” 2002, retrieved from
http://www.sqa-test.com/w_paper1.html

173

10

CONFIGURATION
MANAGEMENT AND
DATA MANAGEMENT

In this age of rapidly developing information technology, data management
and particularly the management of digital data constitute an essential
prerequisite to the performance of configuration management. Digital data
is information prepared by electronic means and made available to users
by electronic data access, interchange, transfer, or on electronic/magnetic
media. There is virtually no data today, short of handwritten notes, that
does not fall into this category. Configuration management (CM) of data is
therefore part of data management activity; and management of the con-
figuration of a product configuration cannot be accomplished without it.

Figure 10.1 is an activity model for configuration management of data.
All the activities shown apply to configuration documentation. Most of
the activities apply to all data. The model illustrates that the process is
driven by business rules established based on the concept of operations
for the processing of digital data, and specific data requirements.

When the data process is initiated to create or revise an item of data,
or to perform any of the actions necessary to bring it from one status
level to the next, the various rule sets illustrated in Figure 10.1 are triggered
to facilitate the workflow. The result is a data product with:

� Appropriate document, document representation, and data file
identification

� Version control
� Clear and unambiguous relationships to the product configuration

with which it is associated, and to the changes that delineate each
configuration of the product

174 � Software Configuration Management

In addition, the data is available for access in accordance with contractually
agreed-to rules for submittal, transmission, or online access (as appropri-
ate), in the prescribed format (document representation) that can be used
by the application software available to the authorized user.

CM-RELATED DATA MANAGEMENT CONCEPTS AND
PRINCIPLES

Configuration management principles ensure the integrity of digital rep-
resentations of product information and other data, and enhance good
data management practice. The concepts are described, as follows, based
on elements and principles expressed in EIA Standard 649 (EIA-649):

Figure 10.1 CM-Related Data Management Activity Model

Data
Identification
(Document,

Files)

Document
Rep/File
Version
Control

Data/Product
Configuration
Relationships

Data
Access
Control

1. Doc Name
2. Rep Name
3. File(s) Name

ArchivedApprovedSubmittedReleasedWorking

Data Status Levels

Data
Product

1. Submittal/Transmittal/Access
2. Access Privileges
3. Data Rights
4. Application SW/Formats
5. Archival Rules

Current Data
Status Level

Initiation

Create
Revise
Data

1. Data Requirement
2. Data/Related

Product Configuration
3. Relationship to

Approved Changes

1. Document
Revision

2. Doc. Rep.
Version

3. File(s) Version

Establish
CM/DM

Business
Rules

1. Change Management
2. Version Numbering
3. Version Retention

Configuration Management and Data Management � 175

� Document identification
� Data status level management
� Data and product configuration relationships
� Data version control and management of review, comment, annota-

tion, and disposition
� Digital data transmittal
� Data access control

Document Identification

Each document reflecting performance, functional, or physical require-
ments or other product-related information must be given a unique iden-
tifier so that it can be:

� Correctly associated with the applicable configuration (product
identifier and revision) of the associated item

� Referred to precisely
� Retrieved when necessary

Document identifier formats include all or most of the following param-
eters:

� Date
� Assigned numeric or alphanumeric identifier unique to the document
� Revision indicator
� Type of document
� Title or subject
� Originator/organization

A document is digitally represented by one or more electronic data
files. Each document representation is the complete set of all the individual
digital data files (e.g., word processor, CAD/CAM, graphics, database,
spreadsheet, software) constituting one document.

As shown in Figure 10.2, the same document can have several different,
equally valid representations, such as different word processing or stan-
dard neutral formats (IGES, ASCII, SGML-tagged ASCII). Any individual
file (such as a raster graphics file, an ASCII file, or a spreadsheet file)
may be part of several document representations of the same docu-
ment/same revision; same document/different revision; or different doc-
ument. The business rules r elating documents, documentation
representations, and files are as follows:

176 � Software Configuration Management

1. Each document iteration exists as one or more document represen-
tations, identified by:
a. Document identifier
b. Document representation identifier
c. Document representation revision identifier

2. Each document representation is comprised of zero or more files.
To facilitate the proper relationships, apply the following digital
data identification rules to maintain document, document represen-
tation, and file version relationships:
a. Assign a unique identifier to each file
b. Assign a unique identifier to each document representation
c. Assign a version identifier to each file
d. Maintain, in a database, the relationship between:

� Document identifier and its revision level
� Associated document representation(s)
� File identifiers and versions

Figure 10.2 Illustration of Document Representation Concepts

Document A
Rev. B

Document A
Rev. A

Document X
Rev. A

DOCREP
A1

REV B

DOCREP
A2

REV A

DOCREP
A3

REV -

DOCREP
X1

REV D

New Revision
to Same

Document

Same Text, Different
Application Program

Revised
Text

Text and Graphic files
used in two different
documents

Text File
A1

Version 2

Graphics
File 1

Version 4

Graphics
File 2

Version 6

Text File
A2

Version 1

Text File
A3

Version 8

Graphics
File 3

Version 5

Text File
X1

Version 4

Configuration Management and Data Management � 177

� Retain multiple versions of files as necessary to recreate prior
document revisions and provide a traceable history of each
document

3. Identify the tool and version of the tool (e.g., MSWord 2000) used
to generate the document when the document is not in neutral
format

Data Status Level Management

Document status level is important as a foundation for the business rules
defining access, change management, and archiving of digital data docu-
ments. It is the basis for establishing data workflow management and
enhances data integrity. The standard data life-cycle model shows the data
status levels (also referred to as states) that a specific document or
document revision is processed through in its life cycle.

� Working is the status used to identify data (document representa-
tions or document revisions) that is in preparation — a work in
progress that is subject to unilateral change by the originator. Each
design activity can define any number of subordinate states within
the working category, to define the unique processes that different
document types go through before release in their organization.

� Released is the status of document representations, and revisions
thereto, that have been reviewed and authorized for use (such as for
manufacture, or for submittal to, or access by a customer or supplier).
Released data is under originating organization (for example, a con-
tractor) change management rules, which prohibit a new revision of
the document representation from replacing a released revision of a
document representation until it has also been reviewed and autho-
rized by the appropriate authority. The content of a document rep-
resentation revision is fixed once it is in the released state. It is only
changed by release of a superseding document representation revi-
sion. Once a document (or document revision) is in the approved
state, changes are made only by release of a new document repre-
sentation related to the next document revision.

� Submitted data is a proposed or approved document revision in the
form of a released document representation that has been made
available for customer review. This status applies only to data that
requires submittal to or access by a customer (usually the govern-
ment). If a submitted document revision that has not been approved
is commented to or disapproved, a new working revision of the
related document representation can be started and eventually sub-
mitted to replace the original document representation without affect-

178 � Software Configuration Management

ing the identifier proposed for the new document revision. If a
submitted document revision that has been approved is commented
to, or disapproved by the customer, a new working representation
of the next document revision can be started and eventually replace
the original document revision.

� Approved is the status of documents and document revisions signi-
fying that the data (document revision) has been approved by the
Current Document Change Authority (CDCA) of the document. The
content of a document revision is fixed once it is in the approved
state. It is only changed by approval of a superseding document
revision.

� Some tools include Archived as a data status for document repre-
sentations and documents. This status is independent of the
approval status (released, submitted, and approved) and merely
means that the data has been removed from an active access storage
mode.

No changes are allowed in the document representations that progress
to the released state, or in document revisions that progress to the
approved state. If there are changes to be made, they are accomplished
by the generation and release or approval of a new revision. Documents
must have at least one released document representation in order to be
approved by the CDCA or submitted to a non-CDCA customer for review
and adoption. Some data will exist only at the working level.

Business rules related to document or data status apply to each
document type by defining requirements such as the following:

� Is submittal to (or access by) customer(s) required?
� In which application software and data format is submittal or access

required?
� Who will be granted access privileges to the data in each of the

applicable states?
� What are the approval requirements (reviewers/approvers) and

method of approval (e.g., electronic signature) to promote a docu-
ment to the released state?; the approved state?

� What are the archiving rules for this document type (e.g., all released
versions upon release of a superseding version, all released versions,
90 days after release of a superseding version, etc.)?

Data and Product Configuration Relationships

A product data management system must provide an effective system to
maintain the key relationships between digital data, data requirements,

Configuration Management and Data Management � 179

and the related product configuration so that the correct revision of an
item of data can be accessed or retrieved when needed. Data files are
related to documents via document representations.

Each product document, with a specific source, document type, doc-
ument identifier (title, name, and number), and document revision iden-
tifier, may have the following relationships:

� Program/project or contractual agreement
� Contract data item identifiers
� Document revision/change authorization
� Associated product (hardware or software) name
� Associated product (end item), part, or software identifying number

and revision/version identifier, where applicable
� The effectivity in terms of end item serial numbers for the associated

product, part, or software item
� Status (working, released, submitted, approved, archived) of the data
� Associated data (document name, document title, document revision

number, and date)
� Associated correspondence: document number, subject, date, ref-

erences

The business rules for document retrieval should use these key rela-
tionships within a database to assure the integrity of the data that users
can extract. Thus, information concerning a given product or part is
associated with the configuration and effectivity (serial number) of the
end item that uses the part.

This capability is particularly significant during the operation and
support phase, when data is needed to support maintenance activity and
to determine the appropriate replacement parts for a specific end item.

Data Version Control

Disciplined version control of data files is the prerequisite to effective
electronic management of digital documentation and must be encompassed
within the product data management software. Version occurs whenever a
file is changed. The simplest form of version management is the file save
feature incorporated in application software, which advances the file date
and time identification each time a file is saved.

However, to retain the superseded version, it must be renamed. True
version control business rules require automatic version identifier advance
whenever a file is revised and not when the file is saved without change.
Furthermore, they require all versions to be retained, subject to archiving
guidelines and special rules pertinent to specific document types.

180 � Software Configuration Management

Because a single document representation can consist of many files,
a very disciplined process is necessary to manage a document review
process electronically. Version control rules facilitate the establishment of
an audit trail of comments and annotations by reviewers, and the dispo-
sition of each comment. Each version of each document representation
provided to, or received from, each reviewer is uniquely identified and
associated with the source of the comment. Essentially, this means that a
reviewer’s version of a set of files (document representation) constituting
a document being reviewed is renamed to enable the annotated comment
copy to be distinguished from the official current version of the document.

Digital Data Transmittal

Part of the obligation of the sender of any document, regardless of
transmission method, is to make sure that the document is in a format
(document representation) that can be read by the receiver and converted
to human-readable form. Appropriate identification is affixed to physical
media such as floppy disks or tapes to clearly identify its contents. If all
the file identifications cannot be included on the label, a directory, a
reference to an accompanying listing or to a read-me file is used.

EIA-STD-649 lists the following common-sense guidelines for informa-
tion to be provided to the user (via such means as “read-me” files,
reference to standard protocols, online help), where applicable:

� Identification of the files included in the transfer by file name,
description, version, data status level, application/file type, and
application version

� Applicable references to associate the data with the basis (require-
ment) for its transmittal, approval, and payment, where applicable

� If there are multiple files, such as separate text and graphics, how
to assemble each included data item for reading, review, or annota-
tion, as applicable

� The naming convention for file versions and data status level distin-
guishes altered (for example, annotated or red-line/strike-out) file
versions from unaltered files

� If and how changes from previous versions are indicated
� How to acknowledge receipt of the data, provide comments, and/or

indicate disposition of the data digitally
� Time constraints, if any, relating to review and disposition

Configuration Management and Data Management � 181

Data Access Control

Access to digital data involves retrieving the appropriate files necessary
to compile the correct version of each digital data document, view it, and
perform the prescribed processing. Seeking digital data access should be
as user-friendly as possible. Users should be provided with data/docu-
ments they are entitled to in the correct revision/version. Before this can
be accomplished, there are a number of pertinent parameters concerning
access privileges, security, and protection of data rights that must be set up.

Access privileges limit access to applicable users. Access privileges
vary according to the individual’s credentials (security clearance, need-to-
know, organizational affiliation, etc.), data status level, the document type,
program milestones, and user need. Users of accessed data must respect
all contractual and legal requirements for data rights, security, licenses,
copyrights, and other distribution restrictions that apply to the data. The
applicable distribution code, which represents the type of distribution
statement, must be affixed to a document or viewable file to indicate the
authorized circulation or dissemination of the information contained in
the item.

Typically, working data should be made available only to the origi-
nating individual, group, or team (such as an integrated product devel-
opment team); or to other designated reviewers of the data.

EIA-STD-649 provides us with the following checklist of ground rules
to be preestablished prior to initiating interactive access (i.e., predefined
query and extraction of data):

� How data is to be accessed
� Request for access and logging of access for read-only or annotation
� Naming of temporary working version of the file(s) for purpose of

annotation/mark-up
� Means of indicating whether a comment/annotation is essential/sug-

gested
� Re-identification of marked-up versions, as required
� Method of indicating acceptance, approval, or rejection, as applicable
� Time constraints, if any, on data acceptance
� Tracking of disposition of required actions
� Re-identification of changed files

182 � Software Configuration Management

SUMMARY

Software engineering methodology requires developers to carefully plan
data requirements for all systems. This usually entails the development of
a data dictionary for the databases and file structures required by the
system. In companies where formal data dictionaries and repositories are
in use, data management migrates easily to configuration data manage-
ment. In companies where no formal data management processes are in
place, the control of the flow of data through the organization must be
rigorously addressed. This chapter serves that purpose by providing a
very detailed structural framework for managing organizational data.

REFERENCES

This chapter is based on the following report: MIL-HDBK-61A(SE), Feb-
ruary 7, 2001, Military Handbook: Configuration Management Guidance.

183

11

CONFIGURATION CHANGE
MANAGEMENT

Maintenance is the most expensive component of the software life cycle.
IT departments often spend from 75 to 80 percent of their budgets
[Guimaraes 1983] and time on the maintenance process of system devel-
opment. In addition, the cost of fixing an error rises dramatically as the
software progresses through the life cycle. Maintaining systems in a
nonsystematic, measurable way is counterproductive. Changes made but
not properly documented can be detrimental to the system and to the
people using that system. This chapter discusses the concept of configu-
ration change management.

WHAT IS CONFIGURATION CHANGE MANAGEMENT?

Configuration change management is an organized process that provides
a standardized framework for managing change. The EIA-649 standard
defines the purpose and benefits of the change management process as
follows:

� Change decisions should be based on detailed knowledge of the
impact of that change.

� Changes should be limited to those that are necessary or that offer
significant benefit.

� Ensure that customer perspectives and interests are considered.
� Enable orderly communication of change information.
� Preserve configuration control at product interfaces.
� Maintain consistency between the product and its documentation.
� Maintain the configuration baseline for the product.

184 � Software Configuration Management

THE MAINTENANCE PROCESS

Once a new system is implemented, the real work begins for most IT
departments. As users utilize the system, errors are discovered and changes
are requested. As systems have become more widely used within critical
departments of the organization, the maintenance process has taken on
a more important role. The management of systems maintenance has
perhaps become the most critical phase of systems development because
change is now considered an opportunity for improvement. Change can
be initiated for a wide variety of reasons, including:

� Add new capabilities
� Enhance product support
� Replace worn technology with more modern technology
� Fix bugs
� Implement preplanned product improvement
� Reduce costs

Just as in the development of a new system, maintenance requires that
steps be carefully taken in making changes or fixing errors. In the event
of an error, this can be even more critical. Each step of the maintenance
process is similar to steps in the systems development life cycle [Curtis
et al. 2000], as seen in Figure 11.1. This is a logical extension of the
development process as changes being made to the system can affect the
whole system and therefore need to be carefully controlled.

Configuration management depends on orderly record keeping. From
the moment a system is proposed, a paper trail — that is, configuration
status accounting — needs to be initiated and maintained (see Appendix
T for a sample Software Configuration Management Plan and Appendix
S for a sample Maintenance Plan). All systems eventually wind up in
maintenance mode. It is critically important to capture proper documen-

Figure 11.1 The Maintenance Life Cycle Compared to the Development Life
Cycle

Project Initiation
and Planning Analysis Logical Design Physical Design

Project
Identification
and Selection

Implementation

Obtain
Maintenance

Requests
Requests into Changes Design Changes Implementing

Changes

SDLC

Maintenance Process

Configuration Change Management � 185

tation for all requests for changes as well as for the change itself. Main-
tenance can come in many forms — for example, the software requires
change for new functionality, end users notice problems, and even the
documentation might require modification. The first step in the process
is to obtain a maintenance request from a user. Appendices B, and I
through R are examples of a wide variety of change request forms, trouble
reports, library baseline change requests, and specification change
requests. Once the request has been received, the requests can be trans-
formed into changes that can then be used to make design changes. Once
the changes are designed and tested, they can be implemented.

Figure 11.2 is an overview of system maintenance. Both the customer
and maintainer are interacting with their own documentation (i.e., user
manual and maintainer manual). The customer poses questions, problems,
and suggestions to the maintainer, and the maintainer, in turn, gives the
answers and they are filtered through a change control process and back
into the system.

The maintenance process should provide for documenting:

� The need for the change
� Documentation of the impact of the proposed change
� Evaluation of the proposed change
� Coordinating the change process, including whether it has been

approved or not approved

Figure 11.2 An Overview of System Maintenance

Analysis Design Code System

Customer

Maintenance
Manual

Change
Control

User
Manual

Maintainer

186 � Software Configuration Management

� Making the change to the product
� Making the change to appropriate documentation, including user

manuals
� Maintaining the product’s configuration baseline; any change that

modifies the baseline from that which the customer expects needs
to be approved by the customer

� Verifying the change

THE PRODUCT BASELINE

To accomplish the change systematically, the configuration baseline of
the product must be known. The baseline usually consists, at a minimum,
of the approved detail design specification. As the product is modified
by approved changes, the configuration baseline must also be changed.
Configuration management cannot be accomplished if the product baseline
is not continually kept up-to-date.

TYPES OF MAINTENANCE

Categorizing the types of maintenance required is helpful in organizing
and prioritizing user requests. Software maintenance is more than fixing
mistakes. Maintenance activities can be broken down into four sub-
activities.

1. Corrective maintenance
2. Adaptive maintenance
3. Perfective maintenance or enhancement
4. Preventive maintenance or reengineering

Corrective Maintenance

Corrective maintenance involves fixing bugs or errors in the system as
they are discovered. Corrective maintenance is the type most users are
familiar with because they are the most aggravating to users. These usually
receive top priority as they can be paralyzing to the organization if not
identified and fixed. Corrective maintenance consumes approximately 17
percent of the maintainer’s time [Lientz and Swanson 1978].

The major skills required for corrective maintenance include:

� Good diagnostic skills
� Good testing skills
� Good documentation skills

Configuration Change Management � 187

Adaptive Maintenance

Adaptive software maintenance is performed to make a computer program
usable in a changed environment. For example, the computer on which
the software runs is going to use a new operating system; thus, the system
requires some adaptive tweaking. Adaptive maintenance is typically part
of a new release of the code or part of a larger development effort.
Approximately 18 percent of software maintenance is adaptive [Lientz and
Swanson 1978].

Perfective Maintenance

Perfective maintenance is the act of improving the software’s functionality
as a result of end-user requests to improve product effectiveness. It
includes:

� Adding additional functionality
� Making the product run faster
� Improving maintainability

This is the biggest maintenance time consumer. Approximately 60
percent of software maintenance time is spent on perfective maintenance
[Lientz and Swanson 1978].

Preventive Maintenance

Preventive maintenance refers to performing “pre-maintenance” in order
to prevent system problems. This is different from corrective maintenance,
which is performed to correct an existing problem. This is similar to
maintaining a car in which you change the oil and air filter not in response
to some problem, but to prevent a problem from occurring in the first
place.

MAINTENANCE COSTS

As computers and their systems become more widely used, the need for
maintenance grows. As these same systems age, maintenance becomes
more critical and time consuming. Since the early 1980s it is estimated
that maintenance costs have skyrocketed from 40 percent of the IT budget
to 75 to 80 percent (see Figure 11.1). The reason for these increases stems
from the once newly designed systems aging. This shift from development
to maintenance is a natural occurrence as organizations avoid the high
cost of new systems and struggle to maintain their current systems.

188 � Software Configuration Management

Many factors affect the cost in time and money expended on system
maintenance. One of the most costly is design defects. The more defects
in a system, the more time is spent identifying them and fixing them. If
a system is designed and tested properly, most defects should have been
eliminated; but in the case of poor design or limited testing, defects can
cause system downtimes, and downtimes cost the organization in terms
of lost efficiency and perhaps lost sales.

The number of users can also affect the cost of system maintenance.
The more users, the more time will be spent on changes to the system.
More importantly, the greater the number of platforms the system is installed
on, the higher the cost of maintenance. If a single system needs a change,
then the time it takes to change the system is limited; but if that system
resides on platforms across the country, such as is the case in many branch
offices of corporations, then the cost increases significantly.

The quality of the documentation can also affect the overall cost of
maintenance. Poor documentation can result in many lost hours searching
for an answer that should have been explained in the documentation.
Managing change using a configuration change management approach
ensures that the documentation will be consistent with the current version
of the product.

The quality of the people and their skill level can also cost an IT
department many wasted hours. Inexperienced or overloaded program-
mers can increase the cost of maintenance in two ways. First, they can
waste hours learning on the job at the IT department’s expense. Second,
if the programmers are overwhelmed with projects, they may skip steps
in the maintenance process and, in turn, make mistakes that cost time
and money to fix.

The tools available to maintenance personnel can save many hours of
work. Using automation tools, such as CASE tools, debuggers, and other
automation tools, can help programmers pinpoint problems faster or make
changes more easily.

The structure of the software can also contribute to maintenance costs
[Gibson and Senn 1989]. If software is built in a rational and easy-to-
follow manner, making changes will be much easier and thus much faster,
thereby saving time and resources. Software maintenance costs can be
reduced significantly if the software architecture is well-defined, clearly
documented, and creates an environment that promotes design consistency
through the use of guidelines and design patterns [Hulse et al. 1999].

A MODEL FOR MAINTENANCE

Harrison and Cook [not dated] have developed a software maintenance
model based on an objective decision rule that determines whether a

Configuration Change Management � 189

given software module can be effectively modified, or if it should instead
be rewritten. Their take is that completely rewriting a module can be
expensive. However, it can be even more expensive if the module’s
structure has been severely degraded over successive maintenance activ-
ities. A module that is likely to experience significant maintenance activity
is called change-prone. Their paper suggests that early identification of
change-prone modules through the use of change measures across release
cycles can be an effective technique in efficiently allocating maintenance
resources.

In maintenance requests for non-change-prone modules, the process
flow is as follows:

Analyze code and identify change → Implement change and
update documentation → Apply metric analysis → Compare
with baseline → Check to see if it exceeds the threshold → If
yes, then declare module to be “change-prone”; otherwise,
declare module to be “non-change-prone”

The process for maintenance requests for a change-prone module is
as follows:

Identify the highest-level artifact affected by the request →
Regenerate artifact → Identify artifacts that can be reused →
Iterate through “development” → Declare module to be “non-
change-prone”

CONFIGURATION MANAGEMENT STEPS

The generic change management model consists of the following steps:

1. Change identification process. The change is visualized, described,
assessed, classified, and approved.

2. Evaluation and coordination process. The cost, scope, and effects
are evaluated.

3. Incorporation and verification process. Change is planned, sched-
uled, implemented, documented, and verified.

Change Identification

Each and every change needs to be uniquely identified. The premise
behind configuration management is that every component of every system
carries with it a unique identification number.

190 � Software Configuration Management

Rather than using a random numbering scheme, it is best to create a
nomenclature system that is meaningful. An important component of the
identification number is its classification. Most configuration management
systems classify changes as “major” or “minor.” A change is considered
major if it has one or more of the following attributes:

� Affects baseline
� Affects one or more of the following: how the product behaves,

safety, interface with other products, instructions, user skills, training
� Requires a retrofit or recall of products out in the field
� Affects cost, guarantees, or warranties

Minor changes do not impact customer requirements but usually affect
configuration documentation or system processes not considered major,
as itemized above.

Documentation of proposed major changes should include the follow-
ing information so that an informed decision can be made as to whether
or not to make the change:

� Change identifier
� Change effectivity (e.g., this is commonly done using a serial number

and date of manufacture)
� Individual requesting change
� Class of change
� Products affected
� Interfaces affected
� Documents affected
� Description of change
� Effects of change (i.e., performance, training, etc.)
� Justification for change
� What would happen if change were not done
� Requested approval date
� Schedule
� Costs and savings
� Alternatives

Minor changes require, at minimum, the following information:

� Change identifier
� Change effectivity (e.g., this is commonly done using a serial number

and date of manufacture)
� Individual requesting change

Configuration Change Management � 191

� Class of change
� Products affected
� Documents affected
� Description of change
� Justification for change

Evaluation and Coordination

The vast majority of organizations launch into their maintenance efforts
without first ascertaining the effect of the desired change on the system
as well as on the organization.

The proper methodology is to consider the cost, schedules, and impacts
of all requested changes, garner approval, and then implement the change.
But how can this be done effectively?

Traditional change requests filter up through the company via many
sources. In general, however, changes are requested by end users who
work on discrete systems. Change requests are then sent to the IT
department for prioritization and implementation.

As problems arise or the need for change is discovered, the flow of
these requests must be handled in a methodical way. Because each request
is not equal to any other and they arrive at the project manager’s desk
at various times, a system has been developed by most IT departments.
This system provides a logical path for the approval of requests, and
prioritizes and organizes those that are approved. The project manager
has the job of categorizing the requests and passing them on to the
“priority board,” which decides if the request is within the business model
and what, if any, priority should be given to the change request. As
decisions are made by the board, they are passed back to the project
manager for action. It is the project manager who then reports back to
the user regarding the decision and acts on the change based on the
priority given.

The type of change and severity help decide what priority to give the
change. If the change is important enough, it can be placed at the top
of the queue for immediate action. If several changes occur in a single
module, a batch change can be requested. A batch change involves making
changes to an entire module at once to avoid working on the same module
several times. This also allows users to view the changes as a single update
that may change the use of a module through screen changes or func-
tionality.

The queue of changes (see Figure 11.3) is a valuable tool in controlling
the work that needs to be done. Items high in the queue receive the
immediate attention they deserve, and those of lesser importance may

192 � Software Configuration Management

never be acted on due to a change in needs or a new system that solves
the problem.

Configuration management “change evaluation and coordination” adds
a level of standardization to this process. The priority board should:

Figure 11.3 Change Request Flow

User requests
change

Project Manager
prioritizes and

categorizes

Decision made
by Priority Board

Programmers

Project Manager submits
request to Priority Board

Change Order if Approved

Decision to User

Start

End

Configuration Change Management � 193

� Have as its chairperson someone with signatory authority (i.e., this
person should be able to sign off on the requested change)

� Have a diversity of board members representing the major functional
areas of the organization

� Be provided with an agenda of what will be discussed prior to each
board meeting

� Be provided with all documentation (e.g., costs, schedules, alterna-
tives, etc.) prior to each board meeting. The board needs to be fully
informed as to all cost factors involved in the decision-making pro-
cess. This should include cost of development, cost of implementa-
tion, and expected future costs.

� Document all decisions and then disseminate them to all affected
departmental units

The change priority board should be provided with full documentation
that includes a discussion of the lead-times associated with changing the
product as well as whatever changes need to be made to affected asso-
ciated areas. One of the problems with maintenance is that it often fails
to assess the impact of change on peripheral but associated departments
(e.g., is the sales department ready to sell the product; is the training
department ready to train on the new product; are the required interfaces
ready?) Effectivity is used to provide a clear and precise designation of
what is going to be changed. Effectivity can be designated by serial
number, date code, product group, version number, lot number, batch
number, etc. Effectivity is a critical component of configuration manage-
ment because it clearly distinguishes one product from another. For
example, if a piece of software has both version 2 and version 3 imple-
mentations being used by end users, then a change to version 2 needs
to be clearly distinguished from version 3.

A variation of the priority board discussed above is a series of tiered
boards or committees. In this variation, priority boards are appointed at
the unit level. Once changes have been approved at this level, they are
passed to a priority board at the departmental level, and then finally to
the organization-wide priority board.

Change Implementation and Verification

Change must be carefully planned. Planning should be done prior to
making any changes. Implementation of a change requires the release of
the following documentation:

� Requirements information
� Design information

194 � Software Configuration Management

� Operation instructions
� Build and test information
� Sales and marketing change information

The usual method of disseminating document changes is through a doc-
ument change request (DCR) (see Appendix J).

Once the change has been proposed, approved, implemented, and
documented, it is important that it be verified. Appendix E contains a
sample test plan. Test plans should be created prior to the development
of the original product. When the product is maintained, the test plan
must be updated to reflect any changes to system functionality.

Handling Variances

There are always exceptions. In the case of change management, it is
important that a product, whose change varies from the system require-
ments, not be delivered to the end user unless the variance has been fully
documented and fully authorized.

MANAGING MAINTENANCE PERSONNEL

As systems age and demand increases for maintenance personnel, there
has been loud debate over just who should be doing the maintaining.
Should it be the original developers? Or should it be a separate mainte-
nance department? Many have argued that the people who developed the
system should maintain it. The logic here is that they will best understand
the system and be better able to change the system [Swanson 1990]. This
logic is correct but difficult to fulfill because developers want to keep
building new stuff and consider maintenance a less desirable function. IT
professionals view maintenance as fixing someone else’s mistakes. One
solution to this problem has been tried recently; it involves rotating IT
personnel from development to maintenance and back to allow everyone
to share in the desirable as well as undesirable functions of the department.

MEASURING EFFECTIVENESS

An important part of configuration management is to understand and
measure the effectiveness of the maintenance process. As a system is
implemented, service requests may be quite high as bugs are still being
worked out and needs for change are discovered. If the maintenance
process is operating properly, an immediate decrease in failures should
be seen (Figure 11.4). Good management of maintenance should include

Configuration Change Management � 195

the recording of failures over time and analyzing these for effectiveness.
If a decrease is not noticed, the problem should be identified and resolved.

Another measure of the success of the maintenance process is the time
between failures. The longer the time between failures, the more time
can be spent on improving the system and not just fixing the existing
system [Lientz 1983]. Failures will happen, but more costly is the time
taken to fix even the simplest failure.

Recording the type of failure is important in understanding how the
failure happened and can assist in avoiding failures in the future. As this
information is recorded and maintained as a permanent record of the
system, solutions can be developed that fix the root cause of a variety of
failures.

SUMMARY

Managing system maintenance requires that steps be taken similar to the
development of new systems. System maintenance is, in many ways, an
extension of the system development life cycle and involves similar steps
to ensure that the system is properly maintained. As a new system is
implemented, system maintenance is required to fix the inevitable errors
and track them for future use. As a system ages and changes are requested,
system maintenance has the job of categorizing, prioritizing, and imple-
menting changes to the system. A configuration management approach
ensures systematic, organized changes.

The proper management of system maintenance is vital to the contin-
ued success of the system. A well-managed systems maintenance depart-
ment can save time and money by providing an error-free system that
meets the needs of the users it serves.

Figure 11.4 Normal Distribution of Failures Following Implementation

Failures

Implementation

196 � Software Configuration Management

REFERENCES

Curtis, G., J. Hoffer, J. George, and S. Valacich, Introduction to Business Systems
Analysis, Pearson Custom Publishing, Boston, MA, 2000.

Electronic Industries Alliance, EIA-649, National Consensus Standard for Configuration
Management, 1998.

Gibson, V. and J. Senn, “System Structure and Software Maintenance Performance,”
ACM Press, New York, 1989.

Guimaraes, T., “Managing Application Program Maintenance Expenditures,” ACM Press,
New York, 1983.

Harrison, W. and C. Cook, “Insights on Improving the Maintenance Process through
Software Measurement ,” no data ht tp://www.cs.pdx.edu/~war
ren/Papers/CSM.htm

Hulse, C., S. Edgerton, M. Ubnoske, and L. Vazquez, “Reducing Maintenance Costs
through the Application of Modern Software Architecture Principles,” ACM
Press, New York, 1999.

Lientz, B., “Issues in Software Maintenance,” ACM Press, New York, 1983.
Lientz, B.P. and E.B. Swanson, “Characteristics of Application Software Maintenance,”

Communications of the ACM, 21(6), 466–481, June 1978.
Lientz, B.P. and E.B. Swanson, “Problems in Application Software Maintenance,” ACM

Press, New York, 1981.
Swanson, E.B., “Departmentalization in Software Development and Maintenance,” ACM

Press, New York, 1990.
Unknown, “How to Increase Uptime,” Cognizant Applications Maintenance Solution

Series, Cognizant Technology Solutions Corporation, 2000.
Unknown, “16 Critical Software Practices for Performance-Based Management,” QSM,

Inc., 1999, http://www.techrepublic.com

197

12

CONFIGURATION
MANAGEMENT AND

SOFTWARE ENGINEERING
STANDARDS REFERENCE

Software engineering (i.e., development) consists of many components:
definitions, documentation, testing, quality assurance, metrics, and con-
figuration management (CM). Standards bodies have crafted standards for
many of these.

Standards enable software developers to develop quality-oriented, cost-
effective, and maintainable software in an efficient, cost-productive man-
ner. The goal of each standard is to provide the software developer with
a set of benchmarks, enabling him or her to complete the task and be
assured that it meets at least a minimum level of quality. Indeed, the
dictionary definition of standard is “an acknowledged measure of compar-
ison for quantitative or qualitative value; a criterion.” Thus, standards
provide the developer with the criteria necessary to build a system.

The Software Engineering Institute’s (http://www.sei.cmu.edu/
cmm/cmms/cmms.html) Capability Maturity Model (CMM), although not
usually considered a standard in the strict definition of the word, is still
a valid benchmark that organizations use to ensure that they are adhering
to a robust quality software engineering set of processes. Configuration
management (CM) is very much a factor in the CMM.

Paulk et al. [1995] have correlated CM and CMM. From a CMM per-
spective, software configuration management (SCM) should consist of the
following goals, commitments, abilities, activities, measurements, and ver-
ifications:

198 � Software Configuration Management

1. SCM activities are planned.
2. Selected software work products are identified, controlled, and

available.
3. Changes to identified software work products are controlled.
4. Affected groups and individuals are informed of the status and

content of software baselines.

The commitment is that the project follows a written organizational
policy for implementing SCM. The abilities consist of:

1. A board having the authority for managing the project’s software
baselines exists or is established.

2. A group that is responsible for coordinating and implementing SCM
for the project exists.

3. Adequate resources and funding are provided for performing the
SCM activities.

4. Members of the SCM group are trained in the objectives, procedures,
and methods for performing their SCM activities.

The activities include:

1. An SCM plan is prepared for each software project according to a
documented procedure.

2. A documented and approved SCM plan is used as the basis for
performing the SCM activities.

3. A configuration management library system is established as a
repository for the software baselines.

4. The software work products to be placed under configuration
management are identified.

5. Change requests and problem reports for all configuration
items/units are initiated, recorded, reviewed, approved, and tracked
according to a documented procedure.

6. Changes to baselines are controlled according to a documented
procedure.

7. Products from the software baseline library are created, and their
release is controlled according to a documented procedure.

8. The status of configuration items/units is recorded according to a
documented procedure.

9. Standard reports documenting the SCM activities and the contents
of the software baseline are developed and made available to
affected groups and individuals.

10. Software baseline audits are conducted according to a documented
procedure.

Configuration Management and Software Engineering Standards � 199

Measurements are made and used to determine the status of the SCM
activities. The verifications include:

1. SCM activities are reviewed with senior management on a periodic
basis.

2. SCM activities are reviewed with the project manager on both a
periodic and event-driven basis.

3. The SCM group periodically audits software baselines to verify that
they conform to the documentation that defines them.

4. The software quality assurance group reviews and/or audits the
activities and work products for SCM and reports the results.

THE STANDARDS BODIES

The three most significant industry standards bodies are ANSI, IEEE, and
ISO. The EIA (Electronic Industries Alliance) has also played a significant
role by creating EIA-649, the National Consensus Standard for Configura-
tion Management. Most recently, EIA-836 has come to the forefront of CM
standards. Essentially, EIA-836 is an extension of EIA-649. It provides a
fundamental reference vocabulary for the access, sharing, and exchange
of CM data (including product configuration information), and for devel-
oping, mapping, and using CM-enabled tools, systems, and databases
using XML (eXtensible Markup Language). Figure 12.1 shows the relation-
ship between these two standards.

As one can see, the primary focus of EIA-836 is on data element
definitions, relationships, and business objects for information exchange.
The body of EIA-836 essentially consists of CM Business Objects, the CM
Data Dictionary, and CM Reference Schemas. The Business Objects and
Reference Schemas are annotated with data element definitions. Annexes
to the standard contain user guidance and several informative cross-
reference tables.

The EIA-836 standard (version 1.0) is comprised of six parts, each
contained in a Zip file:

1. EIA836-1.0 Standard Body Zip file
2. EIA836-1.0 Data Dictionary Zip file
3. EIA836-1.0 Reference Schema Zip file
4. EIA836-1.0 Live DTD Zip file
5. EIA836-1.0 Schema Diagrams Zip file
6. EIA836-1.0 User Views Zip file

and can be downloaded from http://www.dcnicn.com/cm/index.cfm.

200 � Software Configuration Management

MIL-STD-2549, Configuration Management Data Interface (http://
wwwedms.redstone.army.mil/edrd/ms2549.pdf), might also be of interest to
the reader.

A SUMMARY OF THE EIA STANDARD (EIA-649)

EIA-649 [EIA 1998] was developed in 1994 and rapidly became the pivotal
standard around which most other standards bodies rallied. EAI-649 is
addressed more comprehensively in other sections of this book; however,
its principles are summarized here:

Configuration Management Planning and Management

1. Plan CM processes for the context and environment in which they
are to be preformed and manage in accordance with the planning:
assign responsibilities, train personnel, measure performance, and
assess measurements/trends to effect process improvements.

Figure 12.1 XML

Business Process

Data Elements

Business Objects

Transport
Mechanism

EIA-836 supports the
business process defined
in ANSI/EIA-649

EIA-836 provides CM data
element definitions and
relationships

EIA-836 defines templates
for CM business objects to
be exchanged

EIA-836 is data transport
technology and database
neutral

EIA-836
Focus

Configuration Management and Software Engineering Standards � 201

2. To determine the specific CM value-adding functions and levels of
emphasis for a particular product, identify the context and environ-
ment in which to implement CM.

3. A configuration management plan describes how CM is accom-
plished and how consistency between the product definition, the
product’s configuration, and the configuration management records
is achieved and maintained throughout the applicable phases of
the product’s life cycle.

4. Prepare procedures to define how each configuration management
process will be accomplished.

5. Conduct training so that all responsible individuals understand their
roles and responsibilities as well as the procedures for implementing
configuration management processes.

6. Assess the effectiveness of CM plan implementation and perfor-
mance of the configuration management discipline with defined
metrics (performance indicators).

7. Performing configuration management includes responsibility for
the configuration management subordinate activities (e.g., subcon-
tractors, suppliers).

Configuration Identification

1. Configuration identification is the basis on which the configuration
of products are defined and verified; products and documents are
labeled; changes are managed; and accountability is maintained.

2. Configuration documentation defines the functional, performance,
and physical attributes of a product. Other product information is
derived from configuration documentation.

3. The product composition (i.e., relationship and quantity of parts
that comprise the product) is determined from its configuration
documentation.

4. All products are assigned unique identifiers so that one product
can be distinguished from other products; one configuration of a
product can be distinguished from other; the source of a product
can be determined; and the correct product information can be
retrieved.

5. Individual units of a product are assigned unique product identifiers
when there is a need to distinguish one unit of a product from
another unit of the product.

6. When a product is modified, it retains its original product unit
identifier although its part identifying number is altered to reflect
a new configuration.

202 � Software Configuration Management

7. A series of like units of a product is assigned a unique product
group identifier when it is unnecessary or impractical to identify
individual units but nonetheless necessary to correlate units to a
process, date, event, or test.

8. All documents reflecting product performance, functional, or phys-
ical requirements and other product information are uniquely iden-
tified so that they can be correctly associated with the applicable
configuration of the product.

9. A baseline identifies an agreed-to description of the attributes of a
product at a point in time and provides a known configuration to
which changes are addressed.

10. Baselines are established by agreeing to the stated definition of a
product’s attributes.

11. The configuration of any product, or any document, plus the
approved changes to be incorporated constitute the current base-
line.

12. Maintaining product information is important because time-consum-
ing and expensive recovery may be necessary if records of opera-
tional units of a product do not match the actual units (as reported
by maintenance activities) or such records do not exist.

13. For product interfaces external to the enterprise, establish an inter-
face agreement and mutually agreed-to documentation of common
attributes.

14. Changes to a product are accomplished using a systematic, mea-
surable change process.

Configuration Change Management

1. Each change is uniquely identified.
2. Changes represent opportunities for improvement.
3. Classify requested changes to aid in determining the appropriate

levels of review and approval.
4. Change requests must be clearly documented.
5. Consider the technical, support, schedule, and cost impacts of a

requested change before making a judgment as to whether the
change should be approved for implementation and incorporation
in the product and its documentation.

6. Determine all potential effects of a change and coordinate potential
impacts with the impacted areas of responsibility.

7. Change documentation delineates which unit(s) of the product are
to be changed. Change effectivity includes both production break-
in and retrofit/recall, as applicable.

Configuration Management and Software Engineering Standards � 203

8. A changed product should not be distributed until support and
service areas are able to support it.

9. The decision maker is aware of all cost factors in making the
decision.

10. Change approval decisions are made by an appropriate authority
who can commit resources to implement the change.

11. Implement an approved change in accordance with documented
direction approved by the appropriate level of authority.

12. Verify implementation of a change to ensure consistency between
the product, its documentation, and its support elements.

13. If it is considered necessary to temporarily depart from specified
baseline requirements, a variance is documented and authorized
by the appropriate level of authority.

Configuration Status Accounting

1. An accurate, timely information base concerning a product and its
associated product information is important throughout the product
life cycle.

2. Configuration information, appropriate to the product, is systemat-
ically recorded, safeguarded, validated, and disseminated.

3. Configuration information content evolves and is captured over the
product life cycle as tasks occur.

4. Data collection and information processing system requirements are
determined by the need for configuration information.

Configuration Verification and Audit

1. Verification that a product’s requirement attributes have been met
and that the product design meeting those attributes has been
accurately documented are required to baseline the product con-
figuration.

2. Verification that a design achieves its goals is accomplished by a
systematic comparison of requirements with the results of tests,
analyses, or inspections.

3. Documentation of a product’s definition must be complete and
accurate enough to permit reproduction of the product without
further design effort.

4. Where necessary, verification is accomplished by configuration
audit.

204 � Software Configuration Management

5. Periodic reviews verify continued achievement of requirements,
identify and document changes in performance, and ensure con-
sistency with documentation.

Management of Digital Data

1. Apply configuration management principles to ensure the integrity
of digital representations of product information and other data.

2. Apply digital data identification rules to maintain document, docu-
ment representation, and file version relationships.

3. Apply business rules using data status levels for access, change
management, and archiving of digital data documents.

4. Maintain relationships between digital data, data requirements, and
the related product configuration to ensure accurate data access.

5. Apply disciplined version control to manage document review
electronically.

6. Ensure that a transmitted digital data product is usable.
7. Effective digital data access fulfills requirements, preserves rights,

and provides users with data they are entitled to in the correct
version

ANSI

The American National Standards Institute (ANSI; http://www.ansi.org),
founded in 1918, is one of the oldest and most prestigious of standards
bodies. ANSI is the final arbiter of national standards within the United
States and is also a key member of international standards bodies such
as the ISO. For the most part, ANSI focuses on standards used by the
software and hardware vendors that make the products that the software
engineer uses. These standards pertain to programming languages, tele-
communications, and even the physical properties of devices such as
diskettes, cartridges, and magnetic tapes. ANSI will often work in con-
junction with cooperating standards bodies such as the IEEE. In effect,
ANSI will “join forces” with another standards body to endorse a particular
standard.

The acronym “ANSI” is quite familiar to most software developers,
even if they know nothing about standards. The ANSI character set is
used by programmers everywhere. It consists of 256 characters, the first
128 of which are ASCII (American Standard Code for Information Inter-

Configuration Management and Software Engineering Standards � 205

change). The remaining 128 characters are math and foreign language
symbols.

IEEE

The IEEE (Institute of Electrical and Electr onics Engineers; http://
www.ieee.org) is a professional trade organization with close to 400,000
members in over 150 countries. More than a few computer science students
join this organization for its publications, meetings, and networking oppor-
tunities. One branch of the IEEE is its standards governing body (http://stan-
dards.ieee.org/index.html).

Currently, the IEEE has more than 900 active standards, with hundreds
more in development. Many of these are related to software development.

IEEE Software Engineering Standards Summary

The standards listed in Table 12.1, which include configuration standards,
are outlined. Boldfaced titles indicate applicability to configuration man-
agement.

ISO

In 1946, the International Organization for Standardization (ISO;
www.iso.ch) was founded in Geneva, Switzerland. More than 75 countries,
including the United States through ANSI, have member organizations.
The ISO has over 160 technical committees and 2300 sub-committees
working on a variety of standards. Indeed, the ISO has developed more
than 13,000 standards in such esoteric disciplines as clothing, road vehicles,
railway engineering, and information technology.

ISO 9000 is the most recognizable of ISO standards. It defines the
criteria for quality in the manufacturing and service industries. It was first
popularized in Europe but its popularity has spread worldwide as more
and more companies deem “ISO certification” to be a competitive advan-
tage.

ISO 9000 is actually a “family” of standards (see Table 12.2).

ISO Software Engineering Standards Summary

The ISO standards listed in Table 12.3, including configuration manage-
ment standards, are summarized. Boldfaced titles indicate applicability to
configuration management.

206 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary

ANSI/IEEE STD 1002-1987 IEEE Standard Taxonomy for Software Engineering
Standards

ANSI/IEEE STD 1008-1987 IEEE Standard for Software Unit Testing
IEEE STD 1012-1986 IEEE Standard for Software Verification and

Validation Plans
IEEE STD 1016-1987 IEEE Recommended Practice for Software Design

Descriptions
IEEE STD 1016.1-1993 IEEE Guide to Software Design Descriptions
IEEE STD 1028-1988 IEEE Standard for Software Reviews and Audits
ANSI/IEEE STD 1042-1987 IEEE Guide to Software Configuration Management
IEEE STD 1044-1993 IEEE Standard Classification for Software

Anomalies
IEEE STD 1045-1992 IEEE Standard for Software Productivity Metrics
IEEE STD 1058.1-1987 IEEE Standard for Software Project Management

Plans
IEEE STD 1059-1993 IEEE Guide for Software Verification and Validation

Plans
IEEE STD 1061-1992 IEEE Standard for a Software Quality Metrics

Methodology
IEEE STD 1062-1993 IEEE Recommended Practice for Software

Acquisition
IEEE STD 1063-1987 IEEE Standard for Software User Documentation
IEEE STD 1074-1991 IEEE Standard for Developing Software Life-Cycle

Processes
IEEE STD 1074.1-1995 IEEE Guide for Developing Software Life-Cycle

Processes
IEEE STD 1175-1992 IEEE Trial-Use Standard Reference Model for

Computing System Tool Interconnections
IEEE STD 1220-1994 IEEE Trial-Use Standard for Application and

Management of the Systems Engineering Process
IEEE/EIA 12207.0-1996 Industry Implementation of International Standard

ISO/IEC: ISO/IEC12207 Standard for Information
Technology Software Life-Cycle Processes

IEEE STD 1228-1994 IEEE Standard for Software Safety Plans
IEEE STD 1298-1992 Software Quality Management System Part 1:

Requirements
IEEE STD 1362-1998 IEEE Guide for Information Technology — System

Definition — Concept of Operations (ConOps)
Document

IEEE STD 610.12-1990 IEEE Standard Glossary of Software Engineering
Terminology

IEEE STD 730-1989 IEEE Standard for Software Quality Assurance Plans
IEEE STD 828-1990 IEEE Standard for Software Configuration

Management Plans
ANSI/IEEE STD 829-1983 IEEE Standard for Software Test Documentation
IEEE STD 830-1993 IEEE Recommended Practice for Software

Requirements Specifications
IEEE STD 982.1-1988 IEEE Standard Dictionary of Measures to Produce

Reliable Software

Configuration Management and Software Engineering Standards � 207

Table 12.1 IEEE Software Engineering Standards Summary (continued)

IEEE STD 982.2-1988 IEEE Guide for the Use of IEEE Standard Dictionary
of Measures to Produce Reliable Software

IEEE STD 990-1987 IEEE Recommended Practice for Ada as a Program
Design Language

J-STD-016-1995 30 September
1995

Trial Use Standard Standard for Information
Technology Software Life-Cycle Processes
Software Development Acquirer–Supplier
Agreement

ANSI/IEEE STD 1002-1987 IEEE Standard Taxonomy for Software Engineering
Standards

Contents
1. Introduction

1.1 Scope
1.2 Terminology
1.3 References

2. Definitions
3. Taxonomy of Software Engineering Standards

3.1 Standards Partition
3.2 Software Engineering Partition
3.3 Taxonomy Framework

ANSI/IEEE STD 1008-1987 IEEE Standard for Software Unit Testing
Contents
1. Scope and References

1.1 Inside the Scope
1.2 Outside the Scope
1.3 References

2. Definitions
3. Unit Testing Activities

3.1 Plan the General Approach, Resources, and Schedule
3.2 Determine Features to Be Tested
3.3 Refine the General Plan
3.4 Design the Set of Tests
3.5 Implement the Refined Plan and Design
3.6 Execute the Test Procedures
3.7 Check for Termination
3.8 Evaluate the Test Effort and Unit

IEEE STD 1012-1986 IEEE Standard for Software Verification and Validation Plans
Contents
1. Scope and References

1.1 Scope
1.2 References

2. Conventions, Definitions, and Acronyms
2.1 Conventions
2.2 Definitions

3. Software Verification and Validation Plan
3.1 Purpose.
3.2 Referenced Documents
3.3 Definitions

208 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

3.4 Verification and Validation Overview
3.5 Life-Cycle Verification and Validation
3.6 Software Verification and Validation Reporting
3.7 Verification and Validation Administrative Procedures

IEEE STD 1016-1987 IEEE Recommended Practice for Software Design
Descriptions

Contents
1. Scope
2. References
3. Definitions
4. Considerations for Producing a Software Design Description (SDD)

4.1 Software Life Cycle
4.2 Software Design Description (SDD) within the Life Cycle
4.3 Purpose of a Software Design Description (SDD)

5. Design Description Information Content
5.1 Introduction
5.2 Design Entities
5.3 Design Entity Attributes

6. Design Description Organization
6.1 Introduction
6.2 Design Views

IEEE STD 1016.1-1993 IEEE Guide to Software Design Descriptions
Abstract: The application of design methods and design documentation

recommended in IEEE STD 1016-1987 is described. Several common design
methods are used to illustrate the application of IEEE STD 1016-1987, thus
making the concepts of that standard more concrete. The information in this
guide may be applied to commercial, scientific, or military software that runs
on any computer. Applicability is not restricted by the size, complexity, or
criticality of the software.

Keywords: design entity, design method, design view, software design process
Contents
1. Overview

1.1 Purpose
1.2 Scope

2. References
3. Definitions
4. Description of IEEE STD 1016-1987
5. Design Description Organization

5.1 Design Views
5.2 Recommended Design Views
5.3 Design Description Media

6. Considerations
6.1 Selecting Representative Design Methods
6.2 Representative Design Method Descriptions
6.3 Design Document Sections
6.4 Method-Oriented Design Documents

7. Design Methods
7.1 Function-Oriented Design Methods
7.2 Data-Oriented Design Methods
7.3 Real-Time Control-Oriented Design Methods
7.4 Object-Oriented Design Methods

Configuration Management and Software Engineering Standards � 209

Table 12.1 IEEE Software Engineering Standards Summary (continued)

7.5 Formal Language-Oriented Design Methods
8. Bibliography

IEEE STD 1028-1988 — Revision of Corrected Edition June 30, 1989, IEEE Standard
for Software Reviews and Audits

Contents
1. Scope and References

1.1 Scope
1.2 References

2. Definitions
3. Introduction

3.1 Review Process Prerequisites
3.2 Audit Process Prerequisites
3.3 Procedural Description Template

4. The Management Review Process
4.1 Objective
4.2 Abstract
4.3 Special Responsibilities
4.4 Input
4.5 Entry Criteria
4.6 Procedures
4.7 Exit Criteria
4.8 Output
4.9 Auditability

5. The Technical Review Process
5.1 Objective
5.2 Abstract
5.3 Special Responsibilities
5.4 Input
5.5 Entry Criteria
5.6 Procedures
5.7 Exit Criteria
5.8 Output
5.9 Auditability

6. The Software Inspection Process
6.1 Objective
6.2 Abstract
6.3 Special Responsibilities
6.4 Input
6.5 Entry Criteria
6.6 Procedures
6.7 Exit Criteria
6.8 Output
6.9 Auditability

6.10 Data Collection Requirements
7. The Walk-Through Process

7.1 Objective
7.2 Abstract
7.3 Special Responsibilities
7.4 Input
7.5 Entry Criteria
7.6 Procedures
7.7 Exit Criteria

210 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

7.8 Output
7.9 Auditability

8. The Audit Process
8.1 Objective
8.2 Abstract
8.3 Special Responsibilities
8.4 Input
8.5 Entry Criteria
8.6 Procedures
8.7 Exit Criteria
8.8 Output
8.9 Auditability

ANSI/IEEE STD 1042-1987 IEEE Guide to Software Configuration Management
Contents
1. Introduction

1.1 Scope
1.2 References
1.3 Mnemonics
1.4 Terms

2. SCM Disciplines in Software Management
2.1 The Context of SCM
2.2 The Process of SCM
2.3 The Implementation of SCM
2.4 The Tools of SCM
2.5 The Planning of SCM

3. Software Configuration Management Plans
3.1 Introduction
3.2 Management
3.3 SCM Activities
3.4 Tools, Techniques, and Methodologies
3.5 Supplier Control
3.6 Records Collection and Retention

IEEE STD 1044-1993 IEEE Standard Classification for Software Anomalies
Abstract: A uniform approach to the classification of anomalies found in software

and its documentation is provided. The processing of anomalies discovered
during any software life-cycle phase are described, and comprehensive lists of
software anomaly classifications and related data items that are helpful to
identify and track anomalies are provided. This standard is not intended to
define procedural or format requirements for using the classification scheme.
It does identify some classification measures but does not attempt to define
all the data supporting the analysis of an anomaly.

Keywords: anomaly, category, classification, classification process, supporting
data item

Contents
1. Overview

1.1 Background
1.2 Scope

2. References
3. Definitions

Configuration Management and Software Engineering Standards � 211

Table 12.1 IEEE Software Engineering Standards Summary (continued)

4. Classification Standard
4.1 Classification Process
4.2 Standard Classification Scheme

IEEE STD 1045-1992 IEEE Standard for Software Productivity Metrics
Abstract: A consistent way to measure the elements that go into computing

software productivity is defined. Software productivity metrics and terminology
are given to ensure an understanding of measurement data for both source
code and document production. Although this standard prescribes
measurements to characterize the software process, it neither establishes
software productivity norms, nor does it recommend productivity
measurements as a method to evaluate software projects or software
developers. This standard does not measure the quality of software. This
standard does not claim to improve productivity, only to measure it. The goal
of this standard is to provide a better understanding of the software process,
which may lend insight to improving it.

Keywords: attribute, primitive, productivity ratio, source statement, staff-hour
Contents
1. Overview

1.1 Scope
1.2 Terminology
1.3 Audience

2. References
3. Definitions
4. Software Productivity Metrics
5. Output Primitives

5.1 Source Statement Output Primitives
5.2 Function Point Output Primitive
5.3 Document Output Primitives

6. Input Primitive
6.1 Staff-Hour Input Primitive
6.2 Staff-Hour Attribute
6.3 Activities

7. Relationships
7.1 Productivity Ratios
7.2 Output-to-Output Ratios
7.3 Input-to-Input Ratios

8. Characteristics
8.1 Project Characteristics
8.2 Management Characteristics
8.3 Product Characteristics

IEEE STD 1058.1-1987 IEEE Standard for Software Project Management Plans
Contents
1. Scope and References

1.1 Scope
1.2 References

2. Definitions
3. Software Project Management Plans

3.1 Introduction (Section 1 of the SPMP)

212 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

3.2 Project Organization (Section 2 of the SPMP)
3.3 Managerial Process (Section 3 of the SPMP)
3.4 Technical Process (Section 4 of the SPMP)
3.5 Work Packages, Schedule, and Budget (Section 5 of the SPMP)
3.6 Additional Components

IEEE STD 1059-1993 IEEE Guide for Software Verification and Validation Plans
Abstract: Guidance in preparing Software Verification and Validation Plans

(SVVPs) that comply with IEEE STD 1012-1986 are provided. IEEE STD 1012-1986
specifies the required content for an SVVP. This guide recommends approaches
to Verification and Validation (V&V) planning. This guide does not present
requirements beyond those stated in IEEE STD 1012-1986.

Keywords: baseline change assessment, life-cycle phases, master schedule, V&V
tasks

Contents
1. Overview

1.1 Scope
2 References
3. Conventions, Definitions, and Acronyms and Abbreviations

3.1 Conventions
3.2 Definitions
3.3 Acronyms and Abbreviations

4. Software Verification and Validation
4.1 Software V&V Planning Guidance
4.2 Integrating and Continuing V&V Tasks

5. SVVP Guidance
5.1 Purpose
5.2 Referenced Documents
5.3 Definitions
5.4 Verification and Validation Overview
5.5 Life-Cycle Verification and Validation
5.6 Reporting
5.7 Verification and Validation Administrative Procedures

IEEE STD 1061-1992 IEEE Standard for a Software Quality Metrics Methodology
Abstract: A methodology for establishing quality requirements and identifying,

implementing, analyzing, and validating the process and product of software
quality metrics is defined. The methodology spans the entire software life cycle.
Although this standard includes examples of metrics, it does not prescribe
specific metrics.

Keywords: direct metric, factor, metrics framework, software quality metric,
subfactor

Contents
1. Overview

1.1 Scope
1.2 Audience

2. Definitions
3. Purpose of Software Quality Metrics
4. Software Quality Metrics Framework
5. The Software Quality Metrics Methodology

5.1 Establish Software Quality Requirements
5.2 Identify Software Quality Metrics

Configuration Management and Software Engineering Standards � 213

Table 12.1 IEEE Software Engineering Standards Summary (continued)

5.3 Implement the Software Quality Metrics
5.4 Analyze the Software Metrics Results
5.5 Validate the Software Quality Metrics

IEEE STD 1062-1993 IEEE Recommended Practice for Software Acquisition
Abstract: A set of useful quality practices that can be selected and applied during

one or more steps in a software acquisition process is described. This
recommended practice can be applied to software that runs on any computer
system, regardless of the size, complexity, or criticality of the software, but is
more suited for use on modified-off-the-shelf software and fully developed
software.

Keywords: acquirer, modified-off-the-shelf software, software acquisition life
cycle, software acquisition process, supplier

Contents
1. Overview

1.1 Scope
1.2 Terminology

2. References
3. Definitions
4. Introducing the Software Acquisition Process

4.1 Software Acquisition Life Cycle
4.2 Nine Steps in Acquiring Quality Software

5. Software Acquisition Process
5.1 Planning Organizational Strategy
5.2 Implementing Organization’s Process
5.3 Defining the Software Requirements
5.4 Identifying Potential Suppliers
5.5 Preparing Contract Requirements
5.6 Evaluating Proposals and Selecting Supplier
5.7 Managing for Supplier Performance
5.8 Accepting the Software
5.9 Using the Software

6. Summary

IEEE STD 1063-1987 IEEE Standard for Software User Documentation
Contents
1. Scope

1.1 Applicability
1.2 Organization

2. Definitions
3. Identifying Required User Documents

3.1 Identifying the Software
3.2 Determining the Document Audience
3.3 Determining the Document Set
3.4 Determining Document Usage Modes

4. User Document Inclusion Requirements
5. User Document Content Requirements

5.1 Title Page
5.2 Restrictions
5.3 Warranties and Contractual Obligations
5.4 Table of Contents
5.5 List of Illustrations

214 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

5.6 Introduction
5.7 Body of Document
5.8 Error Messages, Known Problems, and Error Recovery
5.9 Appendices

5.10 Bibliography
5.11 Glossary
5.12 Index

6. User Document Presentation Requirements
6.1 Highlighting
6.2 Consistency
6.3 Terminology
6.4 Referencing Related Material

7. Bibliography

IEEE STD 1074-1991 IEEE Standard for Developing Software Life-Cycle Processes
Abstract: The set of activities that constitute the processes that are mandatory

for the development and maintenance of software, whether stand-alone or part
of a system, is set forth. The management and support processes that continue
throughout the entire life cycle, as well as all aspects of the software life cycle
from concept exploration through retirement, are covered. Associated input
and output information is also provided. Utilization of the processes and their
component activities maximizes the benefits to the user when the use of this
standard is initiated early in the software life cycle. This standard requires
definition of a user’s software life cycle and shows its mapping into typical
software life cycles; it is not intended to define or imply a software life cycle
of its own.

Keywords: project management processed, project monitoring and control
process, software development process, software implementation process,
software installation process, software life cycle, software life-cycle model
process, software life-cycle process, software maintenance process, software
operation and support process, software post-development process, software
pre-development process, software quality management process, software
requirements process, software retirement process, software system allocation
process

Contents
1. Introduction

1.1 Scope
1.2 References
1.3 Definitions and Acronyms
1.4 Organization of This Document
1.5 Use of This Standard

2. Software Life-Cycle Model Process
2.1 Overview
2.2 Activities List
2.3 Identify Candidate Software Life-Cycle Models
2.4 Select Project Model

3. Project Management Processes
3.1 Project Initiation Process
3.2 Project Monitoring and Control Process
3.3 Software Quality Management Process

Configuration Management and Software Engineering Standards � 215

Table 12.1 IEEE Software Engineering Standards Summary (continued)

4. Pre-Development Process
4.1 Concept Exploration Process
4.2 System Allocation Process

5. Development Processes
5.1 Requirements Process
5.2 Design Process
5.3 Implementation Process

6. Post-Development Processes
6.1 Installation Process
6.2 Operation and Support Process
6.3 Maintenance Process
6.4 Retirement Process

7. Integral Processes
7.1 Verification and Validation Process
7.2 Software Configuration Management Process
7.3 Documentation Development Process
7.4 Training Process

8. Bibliography

IEEE STD 1074.1-1995 IEEE Guide for Developing Software Life-Cycle Processes
Abstract: Selected topics covered in IEEE STD 1074-1995, IEEE Standard for

Developing Software Life-Cycle Processes, are addressed in this guide. The
guide provides assistance with Software Life-Cycle Model (SLCM) selection,
activity mapping, and management of a software life cycle (SLC).

Keywords: software life cycle, processes, software life-cycle model, software life-
cycle process, activities, mapping

Contents
1. Overview

1.1 Scope
1.2 Purpose
1.3 Prerequisites
1.4 References
1.5 Definitions and Acronyms

2. General Concepts of the Standard
2.1 Process Standard
2.2 Compliance

2.2.1 Upward Adaptation
2.2.2 Downward Adaptation

2.3 Applicability
2.4 Intended Audience
2.5 How to Start Using the Standard

2.5.1 SLCM
2.5.2 Project Type

2.6 SLC, SLCM, and Methodology
2.7 Organizational Concerns

3. Mapping Guidelines
3.1 An Approach to Mapping
3.2 SLCM + Activities = SLC
3.3 Information Tracing
3.4 Hidden Information and Tasks
3.5 Information Mapping
3.6 Mapping Constraints

216 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

4. Concepts of the Standard Used in Mapping
4.1 Time Ordering
4.2 Iterations and Instances
4.3 Ownership
4.4 Integral Processes
4.5 Management Processes
4.6 Risk Management
4.7 Maintenance
4.8 Retirement
4.9 Reuse and the SLC

IEEE STD 1175-1992 IEEE Trial-Use Standard Reference Model for Computing
System Tool Interconnections

Abstract: Reference models for tool-to-organization interconnections, tool-to-
platform interconnections, and information transfer among tools are provided.
The purpose is to establish agreements for information transfer among tools
in the contexts of human organization, a computer system platform, and a
software development application. To make the transfer of semantic
information among tools easier, a semantic transfer language (STL) is also
provided. Interconnections that must be considered when buying, building,
testing, or using computing system tools for specifying behavioral descriptions
or requirements of system and software products are described.

Keywords: information transfer, reference model, semantic transfer language
(STL), tool-to-organization interconnections, tool-to-platform interconnections

Contents
� Part 1 Description of this Standard
1. Introduction

1.1 Purpose
1.2 Scope
1.3 Audience
1.4 Organization of this Document
1.5 Definitions
1.6 Conformance

� Part 2 Context for Tool Interconnections
2. Reference Model for Tool-to-Organization Interconnections

2.1 Organizational Context for Tools
2.2 Role or Job Function View of a Tool
2.3 Life-Cycle View of a Tool
2.4 Support View of a Tool
2.5 Tool-to-Organization Interconnection Standard Profile

3. Reference Model for Tool-to-Platform Interconnections
3.1 Hardware-Software Platform Context for Tools
3.2 Platforms
3.3 Hardware Platforms
3.4 Software Platforms
3.5 Tool-to-Platform Interconnection Standard Profile

4. Reference Model for Information Transfer among Tools
4.1 Information Transfer Context
4.2 Mechanisms for Information Transfer among Tools
4.3 Processes of Information Transfer: Services for Information Transfer
4.4 Descriptions of Information Being Transferred

Configuration Management and Software Engineering Standards � 217

Table 12.1 IEEE Software Engineering Standards Summary (continued)

4.5 Information Transferred
4.6 Tool Interconnection Standard Profile

� Part 3 Interconnection Language
5. Semantic Transfer Language (STL) Overview and Syntax

5.1 STL Goals
5.2 STL Sentence Form
5.3 STL Notation
5.4 STL Information Packet
5.5 STL Sentences
5.6 STL Language Elements
5.7 Language Integrity
5.8 STL Syntax Summary

6. STL Concepts and Meanings
6.1 STL Concept Organization
6.2 Concept Definition Conventions
6.3 Concept Definition Sentence Templates
6.4 STL Summary

7. STL Conformance and Extensibility
7.1 STL Interconnection Profile
7.2 STL Extensibility

8. Bibliography

IEEE STD 1220-1994 IEEE Trial-Use Standard for Application and Management of
the Systems Engineering Process

Abstract: The interdisciplinary tasks that are required throughout a system’s life
cycle to transform customer needs, requirements, and constraints into a system
solution are defined. This standard applies to a performing activity within an
enterprise that is responsible for developing a product design and establishing
the life-cycle infrastructure needed to provide for life-cycle sustainment. It
specifies the requirements for the systems engineering process and its
application throughout the product life cycle. The requirements of this
standard are applicable to new products as well as incremental enhancements
to existing products.

Keywords: enterprise, Systems Engineering Detailed Schedule (SEDS), Systems
Engineering Management Plan (SEMP), Systems Engineering Master Schedule
(SEMS), systems engineering process

Contents
1. Overview

1.1 Scope
1.2 Purpose
1.3 Understanding This Standard
1.4 Organization of This Standard

2. References
3. Definitions and Acronyms

3.1 Definitions
4. General Requirements

4.1 Systems Engineering Process
4.2 Policies and Procedures for Systems Engineering
4.3 Planning the Technical Effort
4.4 Evolutionary Development Strategies
4.5 Modeling and Prototyping

218 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

4.6 Integrated Database
4.7 Product and Process Data Package
4.8 Specification Tree
4.9 Drawing Tree

4.10 System Breakdown Structure (SBS)
4.11 Integration of the Systems Engineering Effort
4.12 Technical Reviews
4.13 Quality Management
4.14 Continuing Product and Process Improvement

5. Application of Systems Engineering throughout the System Life Cycle
5.1 System Definition Stage
5.2 Preliminary Design Stage
5.3 Detailed Design Stage
5.4 Fabrication, Assembly, Integration, and Test (FAIT) Stage
5.5 Production and Customer Support Stages
5.6 Simultaneous Engineering of Products and Services of Life Cycle Processes

6. The Systems Engineering Process
6.1 Requirements Analysis
6.2 Requirements Validation
6.3 Functional Analysis
6.4 Functional Verification
6.5 Synthesis
6.6 Physical Verification
6.7 Systems Analysis
6.8 Control

IEEE/EIA 12207.0-1996 Industry Implementation of International Standard
ISO/IEC: ISO/IEC12207 Standard for Information Technology Software Life-
Cycle Processes

Abstract: ISO/IEC 12207 provides a common framework for developing and
managing software. IEEE/EIA 12207.0 consists of the clarifications, additions, and
changes accepted by the Institute of Electrical and Electronics Engineers (IEEE)
and the Electronic Industries Association (EIA) formulated by a joint project of
the two organizations. IEEE/EIA 12207.0 contains concepts and guidelines to
foster a better understanding and application of the standard. Thus, this
standard provides industry with a basis for software practices that would be
usable for both national and international business.

IEEE STD 1228-1994 IEEE Standard for Software Safety Plans
Abstract: The minimum acceptable requirements for the content of a software

safety plan are established. This standard applies to the software safety plan
used for the development, procurement, maintenance, and retirement of
safety-critical software. This standard requires that the plan be prepared within
the context of the system safety program. Only the safety aspects of the
software are included. This standard does not contain special provisions
required for software used in distributed systems or in parallel processors.

Keywords: safety-critical software, software safety plan, software safety program,
safety requirements

Contents
1. Overview

1.1 Purpose
1.2 Scope

Configuration Management and Software Engineering Standards � 219

Table 12.1 IEEE Software Engineering Standards Summary (continued)

1.3 Application
1.4 Disclaimer

2. References
3. Definitions and Abbreviations

3.1 Definitions
3.2 Abbreviations

4. Contents of a Software Safety Plan
4.1 Purpose (Section 1 of the Plan)

4.2 Definitions, Acronyms and Abbreviations, and References (Section 2 of the
Plan)

4.3 Software Safety Management (Section 3 of the Plan)
4.4 Software Safety Analyses (Section 4 of the Plan)
4.5 Post Development (Section 5 of the Plan)
4.6 Plan Approval (Section 6 of the Plan)

IEEE STD 1298-1992 Software Quality Management System Part 1: Requirements
Abstract: Requirements for a software developer’s quality management system

are established. Each of the elements of a quality management system to be
designed, developed, and maintained by the developer are identified, with the
objective of ensuring that the software will meet the requirements of a contract,
purchase order, or other agreement (collectively referred to as a “contract”).

Keywords: software development, software quality, software quality management
Contents
1. Scope and Field of Application

1.1 Scope
1.2 Application

2. Referenced Documents
3. Definitions
4. Quality System Requirements

4.1 Management Responsibility
4.2 Quality System
4.3 Contract Review, Planning, and Requirements Control
4.4 Design, Programming, and User Documentation Control
4.5 Quality System Document Control
4.6 Purchasing
4.7 Customer-Supplied Information and Material
4.8 Configuration Management (including product identification and traceability)
4.9 Process Control

4.10 Inspection and Testing
4.11 Inspection, Measuring, and Test Equipment
4.12 Inspection and Test Status
4.13 Control of Non-Conforming Product
4.14 Corrective Action
4.15 Handling, Storage, Packaging, and Delivery
4.16 Quality Records
4.17 Internal Quality Audits
4.18 Training
4.19 Software Maintenance
4.20 Statistical techniques
4.21 Control of Development Environment

IEEE STD 1362-1998 (Incorporates IEEE STD 1362a-1998) IEEE Guide for
Information Technology — System Definition — Concept of Operations
(ConOps) Document

220 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

Abstract: The format and contents of a concept of operations (ConOps)
document are described. A ConOps is a user-oriented document that describes
system characteristics for a proposed system from the users’ viewpoint. The
ConOps document is used to communicate overall quantitative and qualitative
system characteristics to the user, buyer, developer, and other organizational
elements (for example, training, facilities, staffing, and maintenance). It is used
to describe the user organization(s), mission(s), and organizational objectives
from an integrated systems point of view.

Keywords: buyer, characteristics, concept of operation, concepts of operations
document, ConOps, developer, operational requirements, scenario, software-
intensive system, software system, system, user, user requirements, viewpoint

Contents
1. Scope
2. References
3. Definitions
4. Elements of a ConOps Document

4.1 Scope (Clause 1 of the ConOps document)
4.2 Referenced Documents (Clause 2 of the ConOps document)
4.3 Current System or Situation (Clause 3 of the ConOps document)
4.4 Justification for and Nature of Changes (Clause 4 of the ConOps document)
4.5 Concepts for the Proposed System (Clause 5 of the ConOps document)
4.6 Operational Scenarios (Clause 6 of the ConOps document)
4.7 Summary of Impacts (Clause 7 of the ConOps document)
4.8 Analysis of the Proposed System (Clause 8 of the ConOps document)
4.9 Notes (Clause 9 of the ConOps document)

4.10 Appendices (Appendices of the ConOps document)
4.11 Glossary (Glossary of the ConOps document)
� Annex A IEEE: EIA 12207.1-1997 Compliance Statement

IEEE STD 610.12-1990 IEEE Standard Glossary of Software Engineering
Terminology

Abstract: IEEE STD 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, identifies terms currently in use in the field of software
engineering. Standard definitions for those terms are established.

Keywords: software engineering, glossary, terminology, definitions, dictionary
Contents
1. Scope
2. Glossary Structure
3. Definitions for Software Engineering Terms
4. Bibliography

IEEE STD 730-1989 IEEE Standard for Software Quality Assurance Plans
Contents
1. Scope and References

1.1 Scope
1.2 References

2. Definitions and Acronyms
2.1 Definitions

3. Software Quality Assurance Plan
3.1 Purpose (Section 1 of the SQAP)
3.2 Reference Documents (Section 2 of the SQAP)
3.3 Management (Section 3 of the SQAP)
3.4 Documentation (Section 4 of the SQAP)
3.5 Standards, Practices, Conventions, and Metrics (Section 5 of the SQAP)

Configuration Management and Software Engineering Standards � 221

Table 12.1 IEEE Software Engineering Standards Summary (continued)

3.6 Reviews and Audits (Section 6 of the SQAP)
3.7 Test (Section 7 of the SQAP)
3.8 Problem Reporting and Corrective Action (Section 8 of the SQAP)
3.9 Tools, Techniques, and Methodologies (Section 9 of the SQAP)

3.10 Code Control (Section 10 of the SQAP)
3.11 Media Control (Section 11 of the SQAP)
3.12 Supplier Control (Section 12 of the SQAP)
3.13 Records Collection, Maintenance, and Retention (Section 13 of the SQAP)
3.14 Training (Section 14 of the SQAP)
3.15 Risk Management (Section 15 of the SQAP)

IEEE STD 828-1990 IEEE Standard for Software Configuration Management Plans
Abstract: IEEE STD 828-1990, IEEE Standard for Software Configuration

Management Plans, establishes the minimum required contents of a Software
Configuration Management Plan and defines the specific activities to be
addressed and their requirements for any portion of a software product’s life
cycle.

Keywords: configuration control board, configuration items, software
configuration management, software configuration management activities

Contents
1. Introduction to the Standard

1.1 Scope
1.2 References
1.3 Definitions and Acronyms

2. The Software Configuration Management Plan
2.1 Introduction
2.2 SCM Management
2.3 SCM Activities
2.4 SCM Schedules
2.5 SCM Resources
2.6 SCM Plan Maintenance

3. Tailoring of the Plan
3.1 Upward Tailoring
3.2 Downward Tailoring
3.3 Format

4. Conformance to the Standard
4.1 Minimum Information
4.2 Presentation Format
4.3 Consistency Criteria
4.4 Conformance Declaration

ANSI/IEEE STD 829-1983 IEEE Standard for Software Test Documentation
Contents
1. Scope
2. Definitions
3. Test Plan

3.1 Purpose
3.2 Outline

4. Test-Design Specification
4.1 Purpose
4.2 Outline

5. Test-Case Specification
5.1 Purpose
5.2 Outline

6. Test-Procedure Specification

222 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

 6.1 Purpose
 6.2 Outline

 7. Test-Item Transmittal Report
 7.1 Purpose
 7.2 Outline

 8. Test Log
 8.1 Purpose
 8.2 Outline

 9. Test-Incident Report
 9.1 Purpose
 9.2 Outline

10. Test-Summary Report
10.1 Purpose
10.2 Outline

IEEE STD 830-1993 IEEE Recommended Practice for Software Requirements
Specifications

Abstract: The content and qualities of a good software requirements
specification (SRS) are described and several sample SRS outlines are
presented. This recommended practice is aimed at specifying requirements of
software to be developed but also can be applied to assist in the selection of
in-house and commercial software products.

Keywords: contract, customer, prototyping, software requirements specification,
supplier, system requirements specifications

Contents
1. Overview

1.1 Scope
2. References
3. Definitions
4. Considerations for Producing a Good SRS

4.1 Nature of the SRS
4.2 Environment of the SRS
4.3 Characteristics of a Good SRS
4.4 Joint Preparation of the SRS
4.5 SRS Evolution
4.6 Prototyping
4.7 Embedding Design in the SRS
4.8 Embedding Project Requirements in the SRS

5. The Parts of an SRS
5.1 Introduction (Section 1 of the SRS)
5.2 Overall Description (Section 2 of the SRS)
5.3 Specific Requirements (Section 3 of the SRS)
5.4 Supporting Information

IEEE STD 982.1-1988 IEEE Standard Dictionary of Measures to Produce Reliable
Software

Contents
1. Introduction

1.1 Scope
1.2 References

2. Definitions
3. Functional Classification of Measures

3.1 Product Measures

Configuration Management and Software Engineering Standards � 223

Table 12.1 IEEE Software Engineering Standards Summary (continued)

3.2 Process Measures
4. Measures for Reliable Software

4.1 Fault Density
4.2 Defect Density
4.3 Cumulative Failure Profile
4.4 Fault-Days Number
4.5 Functional or Modular Test Coverage
4.6 Cause and Effect Graphing
4.7 Requirements Traceability
4.8 Defect Indices
4.9 Error Distribution(s)

4.10 Software Maturity Index
4.11 Man-Hhours per Major Defect Detected
4.12 Number of Conflicting Requirements
4.13 Number of Entries and Exits per Module
4.14 Software Science Measures
4.15 Graph-Theoretic Complexity for Architecture
4.16 Cyclomatic Complexity
4.17 Minimal Unit Test Case Determination
4.18 Run Reliability
4.19 Design Structure
4.20 Mean Time to Discover the Next K Faults
4.21 Software Purity Level
4.22 Estimated Number of Faults Remaining (by Seeding)
4.23 Requirements Compliance
4.24 Test Coverage
4.25 Data or Information Flow Complexity
4.26 Reliability Growth Function
4.27 Residual Fault Count
4.28 Failure Analysis Using Elapsed Time
4.29 Testing Sufficiency
4.30 Mean-Time-to-Failure
4.31 Failure Rate
4.32 Software Documentation and Source Listings
4.33 RELY (Required Software Reliability)
4.34 Software Release Readiness
4.35 Completeness
4.36 Test Accuracy
4.37 System Performance Reliability
4.38 Independent Process Reliability
4.39 Combined Hardware and Software (System) Operational Availability

IEEE STD 982.2-1988 IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software

Contents
1. Scope and References

1.1 Scope
1.2 References

2. Definitions
3. Measures to Produce Reliable Software

3.1 Constructive Approach to Reliable Software
3.2 Measurement Environment
3.3 Measurement Selection Criteria

4. Measure Organization and Classification

224 � Software Configuration Management

Table 12.1 IEEE Software Engineering Standards Summary (continued)

4.1 Functional Classification
4.2 Life-Cycle Classification
4.3 Indicators and Predictors

5. Framework for Measures
5.1 Measurement Process
5.2 Stages of a Measurement Process

6. Errors, Faults, and Failure Analysis for Reliability Improvement
6.1 Dynamics of Errors, Faults, and Failures
6.2 Analysis of Error, Fault, Failure Events
6.3 Minimizing Failure Events
6.4 Summary

IEEE STD 990-1987 IEEE Recommended Practice for Ada as a Program Design
Language

Contents
1. Introduction

1.1 Scope
1.2 Scope Restrictions
1.3 Terminology
1.4 Cautions
1.5 Examples

2. Definitions and References
2.1 Definitions
2.2 References

3. Characteristics
3.1 General Methodology Support
3.2 Specific Design Support
3.3 Other Support
3.4 Ada Relationships

J-STD-016-1995 30 September 1995 Trial Use Standard for Information
Technology Software Life-Cycle Processes Software Development
Acquirer–Supplier Agreement

Keywords: builds/incremental development, database, joint
technical/management reviews, operational concept, reusable software, risk
management, security/privacy protection, software, software configuration
management, software development, software documentation, software
implementation, software management indicators, software product
evaluation, software quality assurance, software requirements definition,
software safety, software maintenance, software testing, software unit, tailoring

Contents
1. Scope

1.1 Purpose
1.2 Application

2. Referenced Documents
3. Definitions

3.1 Terms
3.2 Abbreviations and Acronyms

4. General Requirements
4.1 Software Development Process
4.2 General Requirements for Software Development

5. Detailed Requirements
5.1 Project Planning and Oversight

Configuration Management and Software Engineering Standards � 225

Table 12.1 IEEE Software Engineering Standards Summary (continued)

5.2 Establishing a Software Development Environment
5.3 System Requirements Definition
5.4 System Design
5.5 Software Requirements Definition
5.6 Software Design
5.7 Software Implementation and Unit Testing
5.8 Unit Integration and Testing
5.9 Software Item Qualification Testing

5.10 Software/Hardware Item Integration and Testing
5.11 System Qualification Testing
5.12 Preparing for Software Use
5.13 Preparing for Software Transition
5.14 Software Configuration Management
5.15 Software Product Evaluation
5.16 Software Quality Assurance
5.17 Corrective Action
5.18 Joint Technical and Management Reviews
5.19 Risk Management
5.20 Software Management Indicators
5.21 Administrative Security and Privacy Protection
5.22 Managing Subcontractors
5.23 Interfacing with Software IV&V Agents
5.24 Coordinating with Associate Developers
5.25 Project Process Improvement

6. Notes
6.1 Cross Reference of Standard Subclauses to Annex Subclauses
6.2 Delivery of Tool Contents

226 � Software Configuration Management

Table 12.2 ISO 9000 Family of Standards

1. ISO 9000 — is the actual standard. ISO 9001, ISO 9002, and ISO 9003 are the
three quality assurance models against which organizations can be certified.

2. ISO 9001 — is the standard of interest for companies that perform the entire
range of activities, from design and development to testing. ISO 9001 is of
most interest to the software developer. It is this standard that provides the
all-important checklist of quality initiatives such as:

a. Develop your quality management system:
 i. Identify the processes that make up your quality system.
ii. Describe your quality management processes.

b. Implement your quality management system:
 i. Use quality system processes.
ii. Manage process performance

c. Improve your quality management system:
 i. Monitor process performance.
ii. Improve process performance

ISO 9001 is directly applicable to configuration management as it specifies that
change requests be maintained and tracked.

3. ISO 9002 — is the standard for companies that do not engage in design and
development. This standard focuses on production, installation, and service.

4. ISO 9003 — is the appropriate standard for companies whose business
processes do not include design control, process control, purchasing, or
servicing. This standard focuses on testing and inspection.

Configuration Management and Software Engineering Standards � 227

Table 12.3 ISO Software Engineering Standards Summary

ISO/IEC 2382-20:1990 Information technology — vocabulary —
Part 20: System development

ISO 3535:1977 Forms DESIGN SHEET and LAYOUT
CHART

ISO 5806:1984 Information processing — specification of
single-hit decision tables

ISO 5807:1985 Information processing —
documentation symbols and
conventions for data, program, and
system flowcharts, program network
charts, and system resources charts

ISO/IEC 6592:2000 Information technology — guidelines for
the documentation of computer-based
application systems. No abstract.

ISO 6593:1985 Information processing — program flow
for processing sequential files in terms
of record groups

ISO/IEC 8211:1994 Information technology — specification
for a data descriptive file for information
interchange

ISO/IEC 8631:1989 Information technology — program
constructs and conventions for their
representation

ISO 8790:1987 Information processing systems —
computer system configuration diagram
symbols and conventions

ISO 9000-3:1997 Quality management and quality
assurance standards — Part 3: Guidelines
for the application of ISO 9001:1994 to
the development, supply, installation,
and maintenance of computer software.
No abstract.

ISO/IEC 9126-1:2001 Software engineering — product quality
— Part 1: Quality model. No abstract.

ISO 9127:1988 Information processing systems — user
documentation and cover information
for consumer software packages

ISO/IEC TR 9294:1990 Information technology — guidelines for
the management of software
documentation

ISO 10007:2003 Quality management systems —
guidelines for configuration
management

228 � Software Configuration Management

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO/IEC 10746-1:1998 Information technology — Open
Distributed Processing — Reference
Model: Overview. No abstract.

ISO/IEC 10746-2:1996 Information technology — Open
Distributed Processing — Reference
Model: Foundations

ISO/IEC 10746-3:1996 Information technology — Open
Distributed Processing — Reference
Model: Architecture

ISO/IEC 10746-4:1998 Information technology — Open
Distributed Processing — Reference
Model: Architectural semantics. No
abstract.

ISO/IEC 10746-4:1998/Amd 1:2001 Computational formalization. No abstract.
ISO/IEC 11411:1995 Information technology — representation

for human communication of state
transition of software

ISO/IEC 12119:1994 Information technology — Software
packages — quality requirements and
testing

ISO/IEC TR 12182:1998 Information technology — Categorization
of software. No abstract.

ISO/IEC 12207:1995 Information technology — Software life-
cycle processes

ISO/IEC 12207:1995/Amd 1:2002
ISO/IEC 13235-1:1998 Information technology — Open

Distributed Processing — Trading
function: Specification. No abstract.

ISO/IEC 13235-3:1998 Information technology — Open
Distributed Processing — Trading
Function — Part 3: Provision of Trading
Function using OSI Directory Service.
No abstract.

ISO/IEC 13244:1998 Information technology — Open
Distributed Management Architecture.
No abstract.

ISO/IEC 13244:1998/Amd 1:1999 Support using Common Object Request
Broker Architecture (CORBA). No
abstract.

ISO/IEC 13800:1996 Information technology — procedure for
the registration of identifiers and
attributes for volume and file structure.
No abstract.

Configuration Management and Software Engineering Standards � 229

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO/IEC 14102:1995 Information technology — guideline for
the evaluation and selection of CASE
tools. No abstract.

ISO/IEC 14143-1:1998 Information technology — Software
measurement — functional size
measurement — Part 1: Definition of
concepts

ISO/IEC 14143-2:2002 Information technology — Software
measurement — functional size
measurement — Part 2: Conformity
evaluation of software size measurement
methods to ISO/IEC 14143-1:1998. No
abstract.

ISO/IEC TR 14143-3:2003 Information technology — Software
measurement — functional size
measurement — Part 3: Verification of
functional size measurement methods

ISO/IEC TR 14143-4:2002 Information technology — Software
measurement — functional size
measurement — Part 4: Reference
model. No abstract.

ISO/IEC TR 14471:1999 Information technology — Software
engineering — guidelines for the
adoption of CASE tools. No abstract.

ISO/IEC 14598-1:1999 Information technology — Software
product evaluation — Part 1: General
overview. No abstract.

ISO/IEC 14598-2:2000 Software engineering — Product
evaluation — Part 2: Planning and
management. No abstract.

ISO/IEC 14598-3:2000 Software engineering — Product
evaluation — Part 3: Process for
developers. No abstract.

ISO/IEC 14598-4:1999 Software engineering — Product
evaluation — Part 4: Process for
acquirers. No abstract.

ISO/IEC 14598-5:1998 Information technology — Software
product evaluation — Part 5: Process for
evaluators. No abstract.

ISO/IEC 14598-6:2001 Software engineering — Product
evaluation — Part 6: Documentation of
evaluation modules. No abstract.

230 � Software Configuration Management

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO/IEC 14750:1999 Information technology — Open
Distributed Processing — Interface
Definition Language. No abstract.

ISO/IEC 14752:2000 Information technology — Open
Distributed Processing — protocol
support for computational interactions.
No abstract.

ISO/IEC 14753:1999 Information technology — Open
Distributed Processing — interface
references and binding. No abstract.

ISO/IEC 14756:1999 Information technology — measurement
and rating of performance of computer-
based software systems. No abstract.

ISO/IEC TR 14759:1999 Software engineering — Mock-up and
prototype — a categorization of software
mock-up and prototype models and
their use. No abstract.

ISO/IEC 14764:1999 Information technology — Software
maintenance. No abstract.

ISO/IEC 14769:2001 Information technology — Open
Distributed Processing — Type
Repository Function. No abstract.

ISO/IEC 14771:1999 Information technology — Open
Distributed Processing — naming
framework. No abstract.

ISO/IEC 14834:1996 Information technology — Distributed
Transaction Processing — the XA
Specification

ISO/IEC 14863:1996 Information technology — System-
Independent Data Format (SIDF). No
abstract.

ISO/IEC 15026:1998 Information technology — System and
software integrity levels. No abstract.

ISO/IEC TR 15271:1998 Information technology — Guide for
ISO/IEC 12207 (Software Life-Cycle
Processes). No abstract.

ISO/IEC 15288:2002 Systems engineering — System life-cycle
processes. No abstract.

ISO/IEC 15414:2002 Information technology — Open
distributed processing — Reference
model — Enterprise language. No
abstract.

ISO/IEC 15437:2001 Information technology — Enhancements
to LOTOS (E-LOTOS). No abstract.

Configuration Management and Software Engineering Standards � 231

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO/IEC 15474-1:2002 Information technology — CDIF
framework — Part 1: Overview. No
abstract.

ISO/IEC 15474-2:2002 Information technology — CDIF
framework — Part 2: Modeling and
extensibility. No abstract.

ISO/IEC 15475-1:2002 Information technology — CDIF transfer
format — Part 1: General rules for
syntaxes and encodings. No abstract.

ISO/IEC 15475-2:2002 Information technology — CDIF transfer
format — Part 2: Syntax SYNTAX.1. No
abstract.

ISO/IEC 15475-3:2002 Information technology — CDIF transfer
format — Part 3: Encoding ENCODING.1.
No abstract.

ISO/IEC 15476-1:2002 Information technology — CDIF semantic
metamodel — Part 1: Foundation. No
abstract.

ISO/IEC 15476-2:2002 Information technology — CDIF semantic
metamodel — Part 2: Common. No
abstract.

ISO/IEC TR 15504-1:1998 Information technology — Software
process assessment — Part 1: Concepts
and introductory guide. No abstract.

ISO/IEC TR 15504-2:1998 Information technology — Software
process assessment — Part 2: A reference
model for processes and process
capability. No abstract.

ISO/IEC TR 15504-3:1998 Information technology — Software
process assessment — Part 3: Performing
an assessment. No abstract.

ISO/IEC TR 15504-4:1998 Information technology — Software
process assessment — Part 4: Guide to
performing assessments. No abstract.

ISO/IEC TR 15504-5:1999 Information technology — Software
process assessment — Part 5: An
assessment model and indicator
guidance. No abstract.

ISO/IEC TR 15504-6:1998 Information technology — Software
process assessment — Part 6: Guide to
competency of assessors. No abstract.

ISO/IEC TR 15504-7:1998 Information technology — Software
process assessment — Part 7: Guide for
use in process improvement. No
abstract.

232 � Software Configuration Management

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO/IEC TR 15504-8:1998 Information technology — Software
process assessment — Part 8: Guide for
use in determining supplier process
capability. No abstract.

ISO/IEC TR 15504-9:1998 Information technology — Software
process assessment — Part 9: Vocabulary.
No abstract.

ISO/IEC TR 15846:1998 Information technology — Software life-
cycle processes — Configuration
Management. No abstract.

ISO/IEC 15910:1999 Information technology — Software user
documentation process. No abstract.

ISO/IEC 15939:2002 Software engineering — Software
measurement process. No abstract.

ISO/IEC TR 16326:1999 Software engineering — Guide for the
application of ISO/IEC 12207 to project
management. No abstract.

ISO/IEC 19500-2:2003 Information technology — Open
Distributed Processing — Part 2: General
Inter-ORB Protocol (GIOP)/Internet
Inter-ORB Protocol (IIOP)

ISO/IEC 19761:2003 Software engineering — COSMIC-FFP —
a functional size measurement method

ISO/IEC 20968:2002 Software engineering — Mk II Function
Point Analysis — counting practices
manual

ISO/IEC 2382-20:1990 Information technology — Vocabulary — Part 20:
System development

Serves to facilitate international communication in information processing.
Presents English and French terms and definitions of selected concepts as
regards the field of information processing and defines relationships
between the entries. The provided concepts concern a system life cycle
ranging from the requirements analysis to the implementation, including
system design and quality assurance.

ISO 3535:1977 Forms design sheet and layout chart
Abstract: Lays down the basic principles for the design of forms, whether

discrete forms or continuous forms, and establishes a forms design sheet
and a layout chart based on these principles. Applies to the design of forms
for administrative, commercial, and technical use, whether for completion
in handwriting or by mechanical means such as typewriters and automatic
printers.

Configuration Management and Software Engineering Standards � 233

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO 5806:1984 Information processing — Specification of single-hit decision
tables

Abstract: The basic format of single-hit decision tables and relevant
definitions are described, together with recommended conventions for
preparation and use. Is concerned with the use of decision tables in the
context of documentation of computer-based information systems.

ISO 5807:1985 Information processing — Documentation symbols and
conventions for data, program, and system flowcharts; program network
charts; and system resources charts

Abstract: Defines symbols to be used in information processing
documentation and gives guidance on conventions for their use in data
flowcharts, program flowcharts, system flowcharts, program network charts,
and system resources charts. Applicable in conjunction with ISO 2382/1.

ISO 6593:1985 Information processing — Program flow for processing
sequential files in terms of record groups

Abstract: Describes two alternative general procedures for any program for
processing sequential files logically organized in groups of records: Method
A — checking of control head conditions after termination of appropriate
level; Method B — checking of control head conditions before initiation of
appropriate level.

ISO/IEC 8211:1994 Information technology — Specification for a data
descriptive file for information interchange

Abstract: Cancels and replaces the first edition (1985). Specifies an
interchange format to facilitate the moving of files or parts of files containing
data records between computer systems. Specifies: media-independent file
and data record descriptions for information interchange; the description
of data elements, vectors, arrays, and hierarchies containing character
strings, bit strings, and numeric forms; a data descriptive file; a data
descriptive record; three levels of complexity of file and record structure;
FTAM unstructured and structured document types.

ISO/IEC 8631:1989 Information technology — Program constructs and
conventions for their representation

Abstract: Is concerned with the expression of procedure-oriented algorithms.
Defines: (1) the nature of program constructs; (2) the manner in which
constructs can be combined; (3) specifications for a set of constructs; a
variety of subsets of the defined constructs.

ISO 8790:1987 Information processing systems — Computer system
configuration diagram symbols and conventions

Abstract: Defines graphical symbols and their conventions for use in
configuration diagrams for computer systems, including automatic data
processing systems.

234 � Software Configuration Management

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO 9127:1988 Information processing systems — User documentation and
cover information for consumer software packages

Abstract: Describes user documentation and cover information supplied with
software packages. Is applicable to software packages sold off-the-shelf to
consumers for business, scientific, educational, and home use. References:
ISO 6592; ISO 7185.

ISO/IEC TR 9294:1990 Information technology — Guidelines for the
management of software documentation

Abstract: Addresses the policies, standards, procedures, resources, and plans
to produce effective software. Applicable to all types of software, from the
simplest program to the most complex software system and to all stages of
the software life cycle. Detailed advice on the content and layout of software
documentation is not provided. Annex A contains checklists of the policies,
standards, procedures, and project planning on the software production.

ISO 10007:2003 Quality management systems — Guidelines for configuration
management

Abstract: ISO 10007:2003 gives guidance on the use of configuration
management within an organization. It is applicable to the support of
products from concept to disposal.

It first outlines the responsibilities and authorities before describing the
configuration management process that includes configuration management
planning, configuration identification, change control, configuration status
accounting, and configuration audit.
Since ISO 10007:2003 is a guidance document, it is not intended to be used
for certification/registration purposes.

ISO/IEC 10746-2:1996 Information technology — Open Distributed
Processing — Reference Model: Foundations

Abstract: Contains the concepts needed to perform the modeling of ODP
systems, and the principles of conformance to ODP systems.

ISO/IEC 10746-3:1996 Information technology — Open Distributed
Processing — Reference Model: Architecture

Abstract: Defines how ODP systems are specified, making use of concepts in
ITU-T Recommendation X.902 (ISO/IEC 10746-2); identifies the characteristics
that qualify systems as ODP systems.

ISO/IEC 11411:1995 Information technology — Representation for human
communication of state transition of software

Abstract: Defines diagrams and symbols for representing software functions
and transitions, and in improving human communication. Covers
development, communication, and review of software requirement analysis
and design. Effective in interactive software, data communication software,
and language/command.

Configuration Management and Software Engineering Standards � 235

Table 12.3 ISO Software Engineering Standards Summary (continued)

ISO/IEC 12119:1994 Information technology — Software packages — quality
requirements and testing

Abstract: Applicable to software packages. Establishes requirements for
software packages and instructions on how to test a software package
against these requirements. Deals only with software packages as offered
and delivered; does not deal with their production process. The quality
system of a supplier is outside the scope of this standard.

ISO/IEC 12207:1995 Information technology — Software life-cycle processes
Abstract: Establishes a system for software life-cycle processes with well-

defined terminology. Contains processes, activities, and tasks that are to be
applied during the acquisition of a system that contains software, a stand-
alone software product, and software services.

ISO/IEC TR 14143-3:2003 Information technology — Software measurement
— functional size measurement — Part 3: Verification of functional size
measurement methods

Abstract: ISO/IEC TR 14143-3:2003 establishes a framework for verifying the
statements of an FSM method and/or for conducting tests requested by the
verification sponsor, relative to the following performance properties:

1. Repeatability and reproducibility
2. Accuracy
3. Convertibility
4. Discrimination threshold
5. Applicability to functional domains

Note: Statements and test requests relative to other performance properties
are outside the scope of ISO/IEC TR 14143-3:2003.

ISO/IEC TR 14143-3:2003 aims to ensure that the output from the verification
is objective, impartial, consistent, and repeatable.

The verification report, produced as a result of applying ISO/IEC TR 14143-
3:2003, will enable prospective users to select the FSM method that best
meets their needs.

ISO/IEC 14834:1996 Information technology — Distributed Transaction
Processing — the XA specification

Abstract: Specifies the bi-directional interface between a transaction manager
and a resource manager (the XA interface) in an X/Open Distributed
Transaction Processing (DTP) environment. Technically identical to X/Open
CAE specification. Also contains the text of the X/Open DTP Reference
Model Version 3.

ISO/IEC 19500-2:2003 Information technology — Open Distributed
Processing — Part 2: General Inter-ORB Protocol (GIOP)/Internet Inter-ORB
Protocol (IIOP)

236 � Software Configuration Management

Table 12.3 ISO Software Engineering Standards Summary (continued)

Abstract: ISO/IEC 19500-2:2003 specifies the General Inter-ORB Protocol
(GIOP) for Object Request Broker (ORB) interoperability. GIOP can be
mapped onto any connection-oriented transport protocol that meets a
minimal set of assumptions defined by this standard.

ISO/IEC 19500-2:2003 also defines the Internet Inter-ORB Protocol (IIOP), a
specific mapping of the GIOP that runs directly over connections that use the
Internet Protocol and the Transmission Control Protocol (TCP/IP connections).

ISO/IEC 19500-2:2003 provides a widely implemented and used
particularization of ITU-T Rec. X.931 | ISO/IEC 14752. It supports
interoperability and location transparency in ODP systems.

ISO/IEC 19761:2003 Software engineering — COSMIC-FFP — a functional
size measurement method

Abstract: ISO/IEC 19761:2003 specifies the set of definitions, conventions, and
activities of the COSMIC-FFP Functional Size Measurement Method. It is
applicable to software from the following functional domains:

1. Application software that is needed to support business administration
2. Real-time software, the task of which is to keep up with or control events

happening in the real world
3. Hybrids of the above

ISO/IEC 19761:2003 has not been designed to measure the functional size of
a piece of software, or its parts, which:

1. Are characterized by complex mathematical algorithms or other specialized
and complex rules, such as may be found in expert systems, simulation
software, self-learning software, and weather forecasting systems, or

2. Process continuous variables such as audio sounds or video images, such as
may be found, for example, in computer game software, musical instruments,
and the like.

However, within the local environment of an organization using the COSMIC-
FFP Functional Size Measurement Method, it might be possible to measure
these FUR (Functional User Requirement) in a way that is meaningful as a
local standard. ISO/IEC 19761:2003 contains provision for the local
customization of the method for this purpose.

ISO/IEC 20968:2002 Software engineering — Mk II Function Point Analysis
— Counting Practices Manual

Abstract: ISO/IEC 20968:2002 specifies the set of definitions, conventions, and
activities of the MkII FPA Functional Size Measurement Method.

Configuration Management and Software Engineering Standards � 237

SUMMARY

This chapter provides a reference listing of the pertinent industry CM
standards.

REFERENCES

[EIA 1998] Electronic Industries Alliance, EIA Standard: National Consensus Standard
for Configuration Management, EIA-649, Arlington, VA, August 1998.

[Paulk et al. 1995] Paulk, Mark C., Charles V. Weber, Bill Curtis, and Mary Beth Chrissis,
The Capability Maturity Model: Guidelines for Improving the Software Process,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
October 1995.

Table 12.3 ISO Software Engineering Standards Summary (continued)

The method can be used to measure the functional size of any software
application that can be described in terms of logical transactions, each
comprising an input, process, and output component. The sizing rules were
designed to apply to application software from the domain of business
information systems, where the processing component of each transaction
tends to be dominated by considerations of the storage or retrieval of data.

The method may be applicable to software from other domains, but the user
should note that the sizing rules do not take into account contributions to
size such as from complex algorithms as typically found in scientific and
engineering software, nor do the rules specifically take into account real-
time requirements.

Mk II FPA is independent of the project management method to be used and
of the development method employed. It is a measure of the logical business
requirements, but is independent of how they are implemented.

239

13

METRICS AND
CONFIGURATION

MANAGEMENT REFERENCE

If configuration management (CM) provides the framework for the man-
agement of all systems engineering activities, then metrics provide the
framework for measuring whether or not configuration management has
been effective.

That metrics are an absolute requirement is proven by the following
dismal statistics:

� Over half (53 percent) of IT projects overrun their schedules and
budgets, 31 percent are cancelled, and only 16 percent are com-
pleted on time. Source: Standish Group, publication date: 2000.

� Of those projects that failed in 2000, 87 percent went more than 50
percent over budget. Source: KPMG Information Technology, publi-
cation date: 2000.

� In 2000, 45 percent of failed projects did not produce the expected
benefits, and 88 to 92 percent went over schedule. Source: KPMG
Information Technology, publication date: 2000.

� Half of new software projects in the United States will go significantly
over budget. Source: META Group, publication date: 2000.

� The average cost of a development project for a large company is
$2,322,000; for a medium-sized company, it is $1,331,000; and for a
small company, it is $434,000. Source: Standish Group, publication
date: 2000.

� In 1995, $81 billion was the estimated cost for cancelled projects.
Source: Standish Group, publication date: 1995.

240 � Software Configuration Management

� Over half (52.7 percent) of projects were projected to cost more than
189 percent of their original estimates. Source: Standish Group, pub-
lication date: 2000.

� Some 88 percent of all U.S. projects are over schedule, over budget,
or both. Source: Standish Group, publication date: 2000.

� The average time overrun on projects is 222 percent of original
estimates. Source: Standish Group, publication date: 2000.

While configuration management is not a panacea for all problems,
practicing sound CM methodologies can assist in effectively controlling
the systems engineering effort. This chapter surveys a wide variety of
metrics that can be deployed to measure the developmental process. Not
all metrics are applicable to all situations. The organization must carefully
consider which of the following metrics are a best fit.

WHAT METRICS ARE AND WHY THEY ARE IMPORTANT

Why should anyone care about productivity and quality? There are several
reasons for this. The first and foremost reason is that our customers and
end users require a working, quality product. Measuring the process as
well as the product tells us whether we have achieved our goal. However,
there are other, more subtle reasons why one needs to measure produc-
tivity and quality, including:

� The development of systems is becoming increasing complex.
Unless one measures, one will never know whether or not one’s
efforts have been successful.

� On occasion, technology is used just for the sake of using a new
technology. This is not an effective use of a technology. Measuring
the effectiveness of an implementation ensures that one’s decision
has been cost-effective.

One measures productivity and quality to quantify the project’s progress
as well as to quantify the attributes of the product. A metric enables one
to understand and manage the process as well as to measure the impact
of change to the process — that is, new methods, training, etc. The use
of metrics also enables one to know when one has met his goals — that
is, usability, performance, test coverage, etc.

In measuring software systems, one can create metrics based on the
different parts of a system — for example, requirements, specifications,
code, documentation, tests, and training. For each of these components,
one can measure its attributes, which include usability, maintainability,
extendibility, size, defect level, performance, and completeness.

Metrics and Configuration Management Reference � 241

While the majority of organizations will use metrics found in books
such as this one, it is possible to generate metrics specific to a particular
task. Characteristics of metrics dictate that they should be:

� Collectable
� Reproducible
� Pertinent
� System independent

Sample product metrics include:

� Size: lines of code, pages of documentation, number and size of
test, token count, function count

� Complexity: decision count, variable count, number of modules,
size/volume, depth of nesting

� Reliability: count of changes required by phase, count of discovered
defects, defect density = number of defects/size, count of changed
lines of code

Sample process metrics include:

� Complexity: time to design, code, and test, defect discovery rate
by phase, cost to develop, number of external interfaces, defect
fix rate

� Methods and tool use: number of tools used and why, project infra-
structure tools, tools not used and why

� Resource metrics: years of experience with team, years of experience
with language, years of experience with type of software, MIPS per
person, support personnel to engineering personnel ratio, non-project
time to project time ratio

� Productivity: percent time to redesign, percent time to redo, vari-
ance of schedule, variance of effort

Once the organization determines the slate of metrics to be imple-
mented, it must develop a methodology for reviewing the results of the
metrics program. Metrics are useless if they do not result in improved
quality or productivity. At a minimum, the organization should:

1. Determine the metric and measuring technique.
2. Measure to understand where you are.
3. Establish worst, best, planned cases.
4. Modify the process or product, depending on results of measure-

ment.

242 � Software Configuration Management

5. Remeasure to see what has changed.
6. Reiterate.

TRADITIONAL CM METRICS

The following metrics are typically used by those measuring the CM
process:

� Average rate of variance from scheduled time
� Rate of first-pass approvals
� Volume of deviation requests by cause
� The number of scheduled, performed, and completed configuration

management audits by each phase of the life cycle
� The rate of new changes being released and the rate that changes

are being verified as completed; the history compiled from successive
deliveries is used to refine the scope of the expected rate

� The number of completed versus scheduled (stratified by type and
priority) actions

� Man-hours per project
� Schedule variances
� Tests per requirement
� Change category count
� Changes by source
� Cost variances
� Errors per thousand source lines of code (KSLOC)
� Requirements volatility

IEEE PROCESS FOR MEASUREMENT

Using the IEEE methodology [IEEE 1989], the measurement process can
be described in nine stages. These stages may overlap or occur in different
sequences, depending on organization needs. Each of these stages in the
measurement process influences the production of a delivered product
with the potential for high reliability. Other factors influencing the mea-
surement process include:

� A firm management commitment to continually assess product and
process maturity, or stability, or both during the project

� The use of trained personnel in applying measures to the project in
a useful way

� Software support tools

Metrics and Configuration Management Reference � 243

� A clear understanding of the distinctions among errors, faults, and
failures

Product measures include:

� Errors, faults, and failures: the count of defects with respect to
human cause, program bugs, and observed system malfunctions

� Mean-time-to-failure, failure rate: a derivative measure of defect
occurrence and time

� Reliability growth and projection: the assessment of change in failure-
freeness of the product under testing or operation

� Remaining product faults: the assessment of fault-freeness of the
product in development, test, or maintenance

� Completeness and consistency: the assessment of the presence and
agreement of all necessary software system parts

� Complexity: the assessment of complicating factors in a system

Process measures include:

� Management control measures address the quantity and distribu-
tion of error and faults and the trend of cost necessary for defect
removal.

� Coverage measures allow one to monitor the ability of developers
and managers to guarantee the required completeness in all the
activities of the life cycle and support the definition of correction
actions.

� Risk, benefit, and cost evaluation measures support delivery deci-
sions based both on technical and cost criteria. Risk can be assessed
based on residual faults present in the product at delivery and the
cost with the resulting support activity.

The nine stages consist of the following.

Stage 1: Plan Organizational Strategy

Initiate a planning process. Form a planning group and review reliability
constraints and objectives, giving consideration to user needs and require-
ments. Identify the reliability characteristics of a software product neces-
sary to achieve these objectives. Establish a strategy for measuring and
managing software reliability. Document practices for conducting mea-
surements.

244 � Software Configuration Management

Stage 2: Determine Software Reliability Goals

Define the reliability goals for the software being developed to optimize
reliability in light of realistic assessments of project constraints, including
size scope, cost, and schedule.

Review the requirements for the specific development effort to deter-
mine the desired characteristics of the delivered software. For each char-
acteristic, identify specific reliability goals that can be demonstrated by
the software or measured against a particular value or condition. Establish
an acceptable range of values. Consideration should be given to user
needs and requirements.

Establish intermediate reliability goals at various points in the devel-
opment effort.

Stage 3: Implement Measurement Process

Establish a software reliability measurement process that best fits the
organization’s needs. Review the rest of the process and select those stages
that best lead to optimum reliability.

Add to or enhance these stages as needed. Consider the following
suggestions:

� Select appropriate data collection and measurement practices
designed to optimize software reliability.

� Document the measures required, the intermediate and final mile-
stones when measurements are taken, the data collection require-
ments, and the acceptable values for each measure.

� Assign responsibilities for performing and monitoring measurements,
and provide the necessary support for these activities from across
the internal organization.

� Initiate a measure selection and evaluation process.
� Prepare educational material for training personnel in concepts,

principles, and practices of software reliability and reliability mea-
sures.

Stage 4: Select Potential Measures

Identify potential measures that would be helpful in achieving the reli-
ability goals established in Stage 2.

Stage 5: Prepare Data Collection and Measurement Plan

Prepare a data collection and measurement plan for the development and
support effort. For each potential measure, determine the primitives

Metrics and Configuration Management Reference � 245

needed to perform the measurement. Data should be organized so that
information related to events during the development effort can be prop-
erly recorded in a database and retained for historical purposes.

For each intermediate reliability goal identified in Stage 2, identify the
measures needed to achieve this goal. Identify the points during devel-
opment when the measurements are to be taken. Establish acceptable
values or a range of values to assess whether the intermediate reliability
goals are achieved.

Include in the plan an approach for monitoring the measurement effort
itself. The responsibility for collecting and reporting data, verifying its
accuracy, computing measures, and interpreting the results should be
described.

Stage 6: Monitor the Measurements

Monitor measurements. Once the data collection and reporting begin,
monitor the measurements and the progress made during development,
so as to manage the reliability and thereby achieve the goals for the
delivered product. The measurements assist in determining whether the
intermediate reliability goals are achieved and whether the final goal is
achievable. Analyze the measure and determine if the results are sufficient
to satisfy the reliability goals. Decide whether a measure’s results assist
in affirming the reliability of the product or process being measured. Take
corrective action.

Stage 7: Assess Reliability

Analyze measurements to ensure that reliability of the delivered software
satisfies the reliability objectives and that the reliability, as measured, is
acceptable.

Identify assessment steps that are consistent with the reliability objec-
tives documented in the data collection and measurement plan. Check
the consistency of acceptance criteria and the sufficiency of tests to
satisfactorily demonstrate that the reliability objectives have been achieved.
Identify the organization responsible for determining final acceptance of
the reliability of the software. Document the steps in assessing the reli-
ability of the software.

Stage 8: Use Software

Assess the effectiveness of the measurement effort and perform the nec-
essary corrective action. Conduct a follow-up analysis of the measurement
effort to evaluate the reliability assessment and development practices,

246 � Software Configuration Management

record lessons learned, and evaluate user satisfaction with the software’s
reliability.

Stage 9: Retain Software Measurement Data

Retain measurement data on the software throughout the development
and operation phases for use in future projects. This data provides a
baseline for reliability improvement and an opportunity to compare the
same measures across completed projects. This information can assist in
developing future guidelines and standards.

METRICS AS A COMPONENT OF THE PROCESS
MATURITY FRAMEWORK

The Contel Technology Center’s Software Engineering lab has as one of
its prime goals the improvement of software engineering productivity. As
a result of work in this area, Pfleeger and McGowan [1990] have suggested
a set of metrics for which data is to be collected and analyzed. This set
of metrics is based on a process maturity framework developed at the
Software Engineering Institute (SEI) at Carnegie Mellon University. The
SEI framework divides organizations into five levels based on how mature
(i.e., organized, professional, aligned to software tenets) the organization
is. The five levels range from initial, or ad hoc, to an optimizing environ-
ment. Contel recommends that metrics be divided into five levels as well.
Each level is based on the amount of information made available to the
development process. As the development process matures and improves,
additional metrics can be collected and analyzed.

Level 1: Initial Process

This level is characterized by an ad hoc approach to software development.
Inputs to the process are not well-defined but the outputs are as expected.
Preliminary baseline project metrics should be gathered at this level to
form a basis for comparison as improvements are made and maturity
increases. This can be accomplished by comparing new project measure-
ments with the baseline ones.

Level 2: Repeatable Process

At this level, the process is repeatable in much the same way that a sub-
routine is repeatable. The requirements act as input, the code as output,
and constraints are such things as budget and schedule. Although proper
inputs produce proper outputs, there is no means to easily discern how

Metrics and Configuration Management Reference � 247

the outputs are actually produced. Only project-related metrics make sense
at this level because the activities within the actual transitions from input
to output are not available to be measured. Measures are this level can
include:

� Amount of effort needed to develop the system
� Overall project cost
� Software size: non-commented lines of code, function points, object,

and method count
� Personnel effort: actual person-months of effort, report person-

months of effort
� Requirements volatility: requirements changes

Level 3: Defined Process

At this level, the activities of the process are clearly defined. This means
that the input to and output from each well-defined functional activity
can be examined, which permits a measurement of the intermediate
products. Measures include:

� Requirements complexity: number of distinct objects and actions
addressed in requirements

� Design complexity: number of design modules, Cyclomatic complex-
ity, McCabe design complexity

� Code complexity: number of code modules, Cyclomatic complexity
� Test complexity: number of paths to test, of object-oriented develop-

ment, and then number of object interfaces to test
� Quality metrics: defects discovered, defects discovered per unit size

(defect density), requirements faults discovered, design faults discov-
ered, fault density for each product

� Pages of documentation

Level 4: Managed Process

At this level, feedback from early project activities is used to set priorities
for later project activities. At this level, activities are readily compared and
contrasted; the effects of changes in one activity can be tracked in the
others. At this level, measurements can be made across activities and are
used to control and stabilize the process so that productivity and quality
can match expectation. The following types of data are recommended to
be collected. Metrics at this stage, although derived from the following
data, are tailored to the individual organization.

248 � Software Configuration Management

� Process type. What process model is used, and how is it correlating
to positive or negative consequences?

� Amount of producer reuse. How much of the system is designed for
reuse? This includes reuse of requirements, design modules, test
plans, and code.

� Amount of consumer reuse. How much does the project reuse com-
ponents from other projects? This includes reuse of requirements,
design modules, test plans, and code. (By reusing tested, proven
components effort can be minimized and quality can be improved.)

� Defect identification. How and when are defects discovered? Know-
ing this will indicate whether those process activities are effective.

� Use of defect density model for testing. To what extent does the number
of defects determine when testing is complete? This controls and
focuses testing as well as increases the quality of the final product.

� Use of configuration management. Is a configuration management
scheme imposed on the development process? This permits trace-
ability, which can be used to assess the impact of alterations.

� Module completion over time. At what rates are modules being
completed? This reflects the degree to which the process and
development environment facilitate implementation and testing.

Level 5: Optimizing Process

At this level, measures from activities are used to change and improve
the process. This process change can affect the organization as well as
the project. Studies by the SEI report that 85 percent of organizations are
at level 1, 14 percent at level 2, and 1 percent at level 3. None of the
firms surveyed had reached Levels 4 or 5. Therefore, the authors have
not recommended a set of metrics for Level 5.

STEPS TO TAKE IN USING METRICS

1. Assess the process: determine the level of process maturity.
2. Determine the appropriate metrics to collect.
3. Recommend metrics, tools, and techniques.
4. Estimate project cost and schedule.
5. Collect appropriate level of metrics.
6. Construct project database of metrics data, which can be used for

analysis and to track the value of metrics over time.
7. Cost and schedule evaluation: when the project is complete, eval-

uate the initial estimates of cost and schedule for accuracy. Deter-
mine which of the factors might account for discrepancies between
predicted and actual values.

8. Form a basis for future estimates.

Metrics and Configuration Management Reference � 249

IEEE Defined Metrics

The IEEE standards [1988] were written with the objective of providing
the software community with defined measures currently used as indicators
of reliability. By emphasizing early reliability assessment, this standard
supports methods through measurement to improve product reliability.

This section presents a sub-set of the IEEE standard that is easily
adaptable by the general IT community.

1. Fault Density

This measure can be used to predict remaining faults by comparison with
expected fault density, determine if sufficient testing has been completed,
and establish standard fault densities for comparison and prediction.

Fd = F/KSLOC

Where:
F = total number of unique faults found in a given interval and resulting

in failures of a specified severity level
KSLOC = number of source lines of executable code and nonexecutable

data declarations, in thousands

2. Defect Density

This measure can be used after design and code inspections of new
development or large block modifications. If the defect density is outside
the norm after several inspections, it is an indication of a problem.

I
Σ Di
i=1

DD = ________
KSLOD

Where:
Di = total number of unique defects detected during the ith design or

code inspection process
I = total number of inspections
KSLOD = in the design phase, this is the number of source lines of

executable code and nonexecutable data declarations, in
thousands

250 � Software Configuration Management

3. Cumulative Failure Profile

This is a graphical method used to predict reliability, estimate additional
testing time to reach an acceptable reliable system, and identify modules
and sub-systems that require additional testing. A plot is drawn of cumu-
lative failures versus a suitable time base.

4. Fault-Days Number

This measure represents the number of days that faults spend in the
system, from their creation to their removal. For each fault detected and
removed, during any phase, the number of days from its creation to its
removal is determined (fault-days). The fault-days are then summed for
all faults detected and removed, to get the fault-days number at system
level, including all faults detected and removed up to the delivery date.
In those cases where the creation date of the fault is not known, the fault
is assumed to have been created at the middle of the phase in which it
was introduced.

5. Functional or Modular Test Coverage

This measure is used to quantify a software test coverage index for a
software delivery. From the system’s functional requirements, a cross-
reference listing of associated modules must first be created.

Functional (Modular) Test Coverage Index =

Where:
FE = number of the software functional (modular) requirements for

which all test cases have been satisfactorily completed
FT = total number of software functional (modular) requirements

6. Requirements Traceability

This measure aids in identifying requirements that are either missing from,
or in addition to, the original requirements.

FE
FT

TM
R
R

= ×
1
2

100%

Metrics and Configuration Management Reference � 251

Where:
R1 = number of requirements met by the architecture
R2 = number of original requirements

7. Software Maturity Index

This measure is used to quantify the readiness of a software product.
Changes from previous baselines to the current baselines are an indication
of the current product stability.

Where:
SMI = software maturity index
MT = number of software functions (modules) in the current delivery

Fa = number of software functions (modules) in the current delivery

that are additions to the previous delivery
Fc = number of software functions (modules) in the current delivery

that include internal changes from a previous delivery
Fdel = number of software functions (modules) in the previous delivery

that are deleted in the current delivery
SMI can be estimated as:

8. Number of Conflicting Requirements

This measure is used to determine the reliability of a software system
resulting from the software architecture under consideration, as repre-
sented by a specification based on the entity-relationship-attributed model.
What is required is a list of the system’s inputs, its outputs, and a list of
the functions performed by each program. The mappings from the soft-
ware architecture to the requirements are identified. Mappings from the
same specification item to more than one differing requirement are exam-
ined for requirements inconsistency. Additionally, mappings from more
than one specification item to a single requirement are examined for
specification inconsistency.

SMI
M – F F F

M
T a c del

T

=
+ +()

SMI
M F

M
T c

T

=
–

252 � Software Configuration Management

9. Cyclomatic Complexity

This measure is used to determine the structured complexity of a coded
module. The use of this measure is designed to limit the complexity of
the module, thereby promoting understandability of the module.

C = E − N + 1

Where:
C = complexity
N = number of nodes (sequential groups of program statements)
E = number of edges (program flows between nodes)

10. Design Structure

This measure is used to determine the simplicity of the detailed design
of a software program. The values determined can be used to identify
problem areas within the software design.

Where:
DSM = design structure measure
P1 = total number of modules in program
P2 = number of modules dependent on input or output
P3 = number of modules dependent on prior processing (state)
P4 = number of database elements
P5 = number of nonunique database elements
P6 = number of database segments
P7 = number of modules not single entrance/single exit

The design structure is the weighted sum of six derivatives determined
using the primitives given above.

D1 = designed organized top-down
D2 = module dependence (P2/P1)
D3 = module dependent on prior processing (P3/P1)
D4 = database size (P5/P4)
D5 = database compartmentalization (P6/P4)
D6 = module single entrance/exit (P7/P1)

The weights (Wi) are assigned by the user based on the priority of each
associated derivative. Each Wi has a value between 0 and 1.

DSM W Di i
i

=
=
∑

1

6

Metrics and Configuration Management Reference � 253

11. Test Coverage

This is a measure of the completeness of the testing process, from both
a developer’s and user’s perspective. The measure relates directly to the
development, integration, and operational test stages of product develop-
ment.

Where:
Program functional primitives are either modules, segments, statements,

branches, or paths
Data functional primitives are classes of data
Requirement primitives are test cases or functional capabilities

12. Data or Information Flow Complexity

This is a structural complexity or procedural complexity measure that can
be used to evaluate the information flow structure of large-scale systems,
the procedure and module information flow structure, the complexity of
the interconnections between modules, and the degree of simplicity of
relationships between sub-systems, and to correlate total observed failures
and software reliability with data complexity.

Weighted IFC = Length × (Fan-in × Fan-out)2

Where:
IFC = information flow complexity
Fan-in = local flows into a procedure + number of data structures from

which the procedures retrieves data
Fan-out = local flows from a procedure + number of data structures

that the procedure updates
Length = number of source statements in a procedure (excluding

comments)
The flow of information between modules or sub-systems needs to be

determined either through the use of automated techniques or charting
mechanisms. A local flow from module A to B exists if one of the following
occurs:

TC(%)
(Implemented capabilities)

(Required capabilities)

(Program primitives tested)
(Total program primitives)

 100%

=

× ×

254 � Software Configuration Management

1. A calls B.
2. B calls A, and A returns a value to B that is passed by B.
3. Both A and B are called by another module that passes a value

from A to B.

13. Mean-Time-to-Failure

This measure is the basic parameter required by most software reliability
models. Detailed record keeping of failure occurrences that accurately
track time (calendar or execution) at which the faults manifest themselves
is essential.

14. Software Documentation and Source Listings

The objective of this measure is to collect information to identify the parts
of the software maintenance products that may be inadequate for use in
a software maintenance environment. Questionnaires are used to examine
the format and content of the documentation and source code attributes
from a maintainability perspective.

The questionnaires examine the following product characteristics:

1. Modularity
2. Descriptiveness
3. Consistency
4. Simplicity
5. Expandability
6. Testability

Two questionnaires — the Software Documentation Questionnaire and
the Software Source Listing Questionnaire — are used to evaluate the
software products in a desk audit.

For the software documentation evaluation, the resource documents
should include those that contain the program design specifications,
program testing information and procedures, program maintenance infor-
mation, and guidelines used in the preparation of the documentation.
Typical questions from the questionnaire include:

1. The documentation indicates that data storage locations are not
used for more than one type of data structure.

2. Parameter inputs and outputs for each module are explained in the
documentation.

3. Programming conventions for I/O processing have been established
and followed.

Metrics and Configuration Management Reference � 255

4. The documentation indicates the resource (storage, timing, tape
drives, disks, etc.) allocation is fixed throughout program execution.

5. The documentation indicates that there is a reasonable time margin
for each major time-critical program function.

6. The documentation indicates that the program has been designed
to accommodate software test probes to aid in identifying processing
performance.

The software source listing evaluation reviews either high-order lan-
guage or assembler source code. Multiple evaluations using the question-
naire are conducted for the unit level of the program (module). The
modules selected should represent a sample size of at least 10 percent of
the total source code. Typical questions include:

1. Each function of this module is an easily recognizable block of code.
2. The quantity of comments does not detract from the legibility of

the source listings.
3. Mathematical models as described and derived in the documentation

correspond to the mathematical equations used in the source listing.
4. Esoteric (clever) programming is avoided in this module.
5. The size of any data structure that affects the processing logic of

this module is parameterized.
6. Intermediate results within this module can be selectively collected

for display without code modification.

IT DEVELOPER’S LIST OF METRICS

McCabe’s Complexity Metric

McCabe’s [1976] proposal for a cyclomatic complexity number was the
first attempt to objectively quantify the “flow of control” complexity of
software.

The metric is computed by decomposing the program into a directed
graph that represents its flow of control. The cyclomatic complexity
number is then calculated using the following:

V(g) = Edges − Nodes + 2

In its shortened form, the cyclomatic complexity number is a count of
decision points within a program with a single entry and a single exit
plus one.

256 � Software Configuration Management

Halstead’s Effort Metric

In the 1970s, Halstead [1976] developed a theory regarding the behavior
of software. Some of his findings evolved into software metrics. One of
these is referred to as “Effort” or just “E,” and is a well-known complexity
metric.

The Effort measure is calculated as:

E = Volume/Level

where Volume is a measure of the size of a piece of code and Level is
a measure of how “abstract” the program is. The level of abstracting varies
from almost zero (0) for programs with low abstraction, to almost one
(1) for programs that are highly abstract.

SUMMARY

This chapter provides a detailed reference listing for pertinent CM and
software engineering metrics.

REFERENCES

[Halstead 1977] Halstead, M., Elements of Software Science, Elsevier, New York, 1977.
[IEEE 1989] IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce

Reliable Software, Standard 982.2-1988, June 12, 1989, IEEE Standards Depart-
ment, Piscatawy, NJ.

[IEEE 1988] IEEE Standard of Measures to Produce Reliable Software, Standard 982.1-
1988, IEEE Standards Department, Piscataway, NJ.

[McCabe 1976] McCabe, T., “A Complexity Measure,” IEEE Transactions on Software
Engineering, 308–320, December 1976.

[Pfleeger and McGowan 1990] Pfleeger, S.L. and C. McGowan, “Software Metrics in
the Process Maturity Framework,” Journal of Systems Software, 12, 255–261,
1990.

Note: The information contained within the IEEE standards metrics section
is copyrighted information of the IEEE, extracted from IEEE Std. 982.1-
1988, IEEE Standard Dictionary of Measures to Produce Reliable Software.
This information was written within the context of IEEE Std 982.1-1988
and the IEEE takes no responsibility for or liability for damages resulting
from the reader’s misinterpretation of said information resulting from the
placement and context of this publication. Information is reproduced with
the permission of the IEEE.

257

14

CM AUTOMATION

Automating software configuration management (CM) consists of all the
steps involved in introducing a CM tool into an organization and ensuring
that it is routinely used on all projects. Implementing an automated CM
system is a complex process. It affects all levels of the organization;
therefore, an in-depth evaluation of the organization is required to deter-
mine how the processes and people will be affected.

Failure to understand the issues involved in the automation of CM
technology is the main reason why organizations do not successfully
deploy the CM tool. A defined strategy that addresses these complex issues
becomes a necessity. Before beginning the automation effort, organizations
must consider complex technical issues that may affect the effort. These
issues include:

� The size and intricacy of the software system
� Client/server and Web-based systems support
� Heterogeneous hardware and software platforms
� Tool integration
� Legacy systems
� Interfaces to external systems

AUTOMATING CM

Many organizations thought that purchasing an CM tool would solve their
problems, but soon discovered that there was no “silver-bullet” CM tool.
To attempt to automate an immature CM process will not raise an orga-
nization’s level of maturity as defined by the SW-CMM. In all likelihood,
such attempts would only further amplify any process shortcomings and
inadequacies. “Automating a money-losing process allows you to lose
more money faster and with greater accuracy” [Ventimiglia 1997]. A tool

258 � Software Configuration Management

alone will not solve an organization’s CM problems and, in fact, Brown
et al. [1999] have referred to the impractical reliance on a software
configuration management tool as the “silver-bullet antipattern.” Choosing
the right tool to satisfy an organization’s CM requirements will in itself
fail if other issues are not addressed. To ensure an effective CM solution,
an organization must address the complexities that it faces when imple-
menting a change. These complexities include:

� Technical. These issues relate to how the tool operates, how it
will be installed to maximize performance, and how it will be
customized. For example, how will the tool be installed over the
company’s network in the client/server architecture given the dif-
ferent platforms, and how can it be used to suit the parallel
development activities of the various teams?

� Managerial. These issues relate to the necessary planning, monitor-
ing, setting of priorities, making of schedules, and resource manage-
ment. For example, who will be allocated to fulfill the automation
activities, how will the product schedules be affected, and who will
implement the tool first?

� Process related. These issues relate to the way the company does its
business. For example, what is the current flow throughout the
company, and how do the developers, testers, QA personnel, build
managers, document writers, etc. work together to ensure this flow?

� Organizational. These issues relate to the infrastructure in the com-
pany. For example, how will the tool affect the responsibilities of
each department and their intercommunication?

� Cultural. These issues relate to the way people operate and achieve
their goals. For example, what kind of culture exists at the company,
and what is the best way to invoke change in that culture?

� Political. These issues relate to “who is stepping on whose toes.” For
example, how will the organizational boundaries change, who will
be responsible for what, and how will people be rewarded based
on making the change?

� People related. These issues relate to people’s comfort level. For
example, how will resistance be managed, and will people lose their
jobs because of this tool? This complexity is closely tied to the cultural
issue.

� Risk related. These issues relate to unknown information and tricky
problems. For example, how will the effect of making concurrent
changes, such as a new operating system and new hardware, as
well as reengineering the legacy code, impact the new CM system
[Dart 1994]?

CM Automation � 259

The CM automation effort must be treated as a project with realistic
goals and a defined schedule. CM automation can be successfully carried
out using the phases listed below developed by Susan Dart, a former
member of the environment team at the Software Engineering Institute (SEI).
The phases provide structured guidance, identify tasks, and address the
complexities involved with automating CM. Key activities are carried out
during each phase of the implementation. At all phases, it is important to
reinforce management’s commitment to the automation effort and to provide
training.

The phases are as follows:

Phase 1: Preparation and Planning
Phase 2: Process Definition
Phase 3: Tool Evaluation
Phase 4: Pilot Project Implementation
Phase 5: Roll-out to Other Projects
Phase 6: Capture and Communicate Improvements

Phase 1: Preparation and Planning

This is the stage most organizations fail to perform, thereby resulting in
the unsuccessful automation of CM. The purpose of this phase is to plan
for the automation activities, to establish management support, and to
assess the status of current CM activities.

First, a CM automation team is created. The automation team is respon-
sible for implementing the automation strategy and plays an important
role in the implementation effort. The team monitors and participates in
all phases of the automation effort. Members of the automation team
typically include:

� A leader who is responsible for the automation effort
� A sponsor who has the authority to empower the team and provide

the support required to tackle difficult CM problems
� A champion or technical expert who understands the technology
� Representatives from the user community

The automation team begins by developing the CM automation plan.
The plan details the benefits of CM, outlines the automation schedule and
resources required, defines the policies and procedures involved in the
automation effort, establishes success criteria, and establishes the roles of
the automation team.

Next, the requirements are defined and prioritized. Developing a clear
understanding of the organization’s strategic goals is required to evaluate

260 � Software Configuration Management

the CM requirements. The evaluation of CM requirements should not be
conducted in a vacuum. All members of the organization who will be
affected by CM must be surveyed to identify their CM requirements and
to determine their roles in the CM process. Careful attention must be paid
to the training requirements of all people affected by the CM tool, process,
and procedures.

In addition, all levels of management must be aware of the benefits
of CM. Many times, this involves showing financial and scheduling benefits,
that is, increase in programmer productivity by automating CM tasks.

Next, an inventory of present hardware and software platforms is
conducted and future hardware and software platforms are identified.
And, finally, a risk management plan is developed. This plan identifies
risks that could affect the outcome of the automation effort. The automa-
tion team is responsible for identifying and addressing risks throughout
the project.

Phase 2: Process Definition

The goals of this phase are to define the current CM process, evaluate
the process, and define a new, improved process if required. The process
is then analyzed to identify which areas would benefit from automation.
A defined software change process is pertinent to the successful imple-
mentation of CM. Without a defined process, the organization will make
little progress in the adoption. A variety of methods exist to define the
process. Additional information on process definition can be obtained
from the SEI, IEEE, or the Software Technology Support Center. During
this phase, process-related requirements will be identified. These should
be added to the requirements developed in phase 1, as appropriate.

Phase 3: Tool Evaluation

This phase consists of matching the organization’s requirement to CM
tools. Before the evaluation begins, tool requirements identified in phase
1 are refined and prioritized. The evaluation method is chosen, and test
scenarios required to test the capabilities of the tools are developed. It is
important to include representatives from all users’ groups in the evalu-
ation to gain a better understanding of how different groups will use the
tool. Results of a study conducted by the Gartner Group determined that
the cost of the software tool represents only 10 percent of the total cost
of implementing a solution. Lost productivity accounts for 50 percent, and
the remaining 40 percent of the solution is derived from the cost of
manpower [Softool 1992].

CM Automation � 261

Many tool vendors are expanding the functionality of their tools to
meet the requirements of today’s software development organizations.
Several companies sell their products as a series of components. For
example, the case product handles version control and process control,
whereas the problem reporting function may be purchased separately.
State-of-the-art CM tools may contain the following features:

� Version control
� Configuration support
� Process support
� Change control
� Team support
� Library and repository support
� Security and protection
� Reporting and query
� Tool integration
� Build support
� Release management
� Customization support
� Graphical user interfaces
� Distributed development
� Client-server development support
� Web support

The CM process should first be defined before tool selection. The tool
should implement or automate the defined processes. The tool alone
should not be used to define a project’s CM process or procedures. It
may take as long as six months to completely understand the functionality
of a CM tool.

When evaluating CM tools, it is important to assess not just the
functionality and robustness of the tool, but the CM-readiness of the tool
vendor as well. Appendix Y provides a “Supplier SM Market Analysis
Questionnaire” that should be filled out by each potential CM vendor.
The key question is: Does the CM tool vendor practice configuration
management, or do we have a typical case of the “shoemaker’s children?”

Phase 4: Pilot Project Implementation

The purpose of this phase is to determine how well the CM tool, processes,
and procedures satisfy the organization’s requirements. A pilot project
allows testing of the tool’s functionality on a real project with real data.
In addition, the pilot allows for the prototyping of processes and proce-
dures and provides feedback on how users respond to the tool.

262 � Software Configuration Management

It is important to select a pilot that will address all areas of CM but
not affect the project’s critical path. The automation team develops stan-
dards, policies, and procedures, as well as ensures users are trained to
perform their CM duties. Successes and failures are documented and
compared to the success criteria identified in the automation plan.

Phase 5: Rollout to Other Projects

This phase involves incremental migration of the tool into other projects.
Training and dealing with resistance to change are key activities of this
phase. The CM tool, process, procedures, and training needs are examined
and adapted for each project. The automation team implements, evaluates,
and monitors roll-out activities. This stage is complete when CM is rou-
tinely used on all projects.

Phase 6: Capture and Communicate Improvements

This phase involves evaluation of automation activities, capturing strategies
that worked, and making recommendations for process improvements.
The use of measurements and metrics can be very beneficial during this
phase. More details on CM automation can be found in “Adopting an
Automated Configuration Management Solution,” by Susan Dart in Pro-
ceedings of the Software Technology Conference, April 1994.

A SELECTION OF CM TOOLS

A variety of Web sites are dedicated to listing CM tools, including:

� Free or public domain tools: http://www.cmtoday.com/yp/
free.html

� Tools FAQ from the comp.software.config-mgmt newsgroup:
http://www.daveeaton.com/scm/CMTools.html

� Open directory project CM tools list: http://dmoz.org/Computers/Soft-
ware/Configuration_Management/Tools

� CM Today Yellow Pages: http://www.cmtoday.com/yp/commer-
cial.html

� Omniseek CM tools: http://www.omniseek.com/srch/{23049}

Table 14.1 contains a listing of CM tools compiled by the author’s
students.

CM Automation � 263

Table 14.1 CM Tools Compiled by Students

1. Teamcenter solution for Pro/ENGINEER
Company: EDS, Electronic Data Systems Corporation
Company address: EDS Headquarters

5400 Legacy Drive
Plano, Texas 75024-3199

Company phone: 1-800-566-9337
Company Web site: http://www.eds.com/
Company e-mail: info@eds.com
Product description: The Teamcenter Engineering’s Pro/ENGINEER solution

authorizes the user to create, modify, browse, search, and access
Pro/ENGINEER’s parts, assemblies, and attributes.

2. Teamcenter Aerospace and Defense
Company: EDS, Electronic Data Systems Corporation
Company address: EDS Headquarters

5400 Legacy Drive
Plano, Texas 75024-3199

Company phone: 1-800-566-9337
Company Web site: http://www.eds.com/
Company e-mail: info@eds.com
Product description: It provides product management life-cycle capabilities,

which are obtained from the best services, practices, and experience that
deliver a fast solution to the customers, which are basically contractors and
suppliers.

3. Teamcenter Engineering Management solution for AutoCAD
Company: EDS, Electronic Data Systems Corporation
Company address: EDS Headquarters

5400 Legacy Drive
Plano, Texas 75024-3199

Company phone: 1-800-566-9337
Company Web site: http://www.eds.com/
Company e-mail: info@eds.com
Product description: The Teamcenter Engineering’s AutoCAD solution

authorizes the user to create, modify, browse, search, and access AutoCAD
parts, assemblies, and attributes.

4. Teamcenter Engineering Management solution for CATIA
Company: EDS, Electronic Data Systems Corporation
Company address: EDS Headquarters

5400 Legacy Drive
Plano, Texas 75024-3199

Company phone: 1-800-566-9337
Company Web site: http://www.eds.com/
Company e-mail: info@eds.com
Product description: The Teamcenter Engineering’s CATIA solution authorizes

the user to create, modify, browse, search, and access CATIA parts,
assemblies, and attributes.

5. Unigraphics NX-Data Exchange
Company: EDS, Electronic Data Systems Corporation

264 � Software Configuration Management

Company address: EDS Headquarters
5400 Legacy Drive
Plano, Texas 75024-3199

Company phone: 1-800-566-9337
Company Web site: http://www.eds.com/
Company e-mail: info@eds.com
Product description: They enable Virtual Product Development across internal

and extended customer and supplier programs. While maintaining simplicity,
they ensure totality and quality.

6. Femap
Company: EDS, Electronic Data Systems Corporation
Company address: EDS Headquarters

5400 Legacy Drive
Plano, Texas 75024-3199

Company phone: 1-800-566-9337
Company Web site: http://www.eds.com/
Company e-mail: info@eds.com
Product description: It has the ability to import, create, and edit CAD geometry,

provides support for physical material and structural properties, and has the
ability to apply loads and boundary conditions.

7. E-factory
Company: EDS, Electronic Data Systems Corporation
Company address: EDS Headquarters

5400 Legacy Drive
Plano, Texas 75024-3199

Company phone: 1-800-566-9337
Company Web site: http://www.eds.com/
Company e-mail: info@eds.com
Product description: E-factory is an open system designed to manage data

from a variety of manufacturing applications.

8. AXALANT2000 SERVICE PACK 3
Company: EIGNER
Company address: EIGNER Corporate Headquarters

200 Fifth Avenue
Waltham, Massachusetts 02451

Company phone: 781-472-6300
Company Web site: http://www.eigner.com/
Company e-mail: info@eigner.com
Product description: It provides solutions for the entire management of a

product, from initial to final post-manufacturing support.

9. Requirements Management and MRO Capabilities
Company: EIGNER
Company address: EIGNER Corporate Headquarters

200 Fifth Avenue
Waltham, Massachusetts 02451

Company phone: 781-472-6300
Company Web site: http://www.eigner.com/

Table 14.1 CM Tools Compiled by Students (continued)

AU: “they
ensure” or “it
ensures”?

CM Automation � 265

Company e-mail: info@eigner.com
Product description: These solutions enable the company to manage even the

most complex product projects.

10. Program Central
Company: MatrixOne
Company address: MatrixOne, Inc.

210 Littleton Road
Westford, Massachusetts 01886

Company phone: 978-589-4000
Company Web site: www.matrixone.com
Company e-mail: IR@matrixone.com
Product description: MatrixOne Program Central is a unified environment for

coordinating multiple, large-scale programs to provide globally distributed
collaborative participants with real-time visibility into all project information
and status, from both MatrixOne solutions and other systems.

11. Engineering Central
Company: MatrixOne
Company address: MatrixOne, Inc.

210 Littleton Road
Westford, Massachusetts 01886

Company phone: 978-589-4000
Company Web site: www.matrixone.com
Company e-mail: IR@matrixone.com
Product description: It provides a safe environment for its complex projects

and ensures quality.

12. MCad Integrations
Company: MatrixOne
Company address: MatrixOne, Inc.

210 Littleton Road
Westford, Massachusetts 01886

Company phone: 978-589-4000
Company Web site: www.matrixone.com
Company e-mail: IR@matrixone.com
Product description: It brings product developments and integrations right to

the developer’s disposal.

13. Collaborative Product Development solution
Company: MatrixOne
Company address: MatrixOne, Inc.

210 Littleton Road
Westford, Massachusetts 01886

Company phone: 978-589-4000
Company Web site: www.matrixone.com
Company e-mail: IR@matrixone.com
Product description: It coordinates and manages the complex outsourcing of

organizational information, responsibilities, schedules, deliverables, product
information, and business processes.

Table 14.1 CM Tools Compiled by Students (continued)

266 � Software Configuration Management

14. PVCS Version Manager
Company: Merant
Company address: Corporate Headquarters

3445 NW 211th Terrace
Hillsboro, Oregon 97124

Company phone: 503-645-1150
Company Web site: www.merant.com
Company e-mail: info@merant.com
Product description: It is used for source code control, software configuration

management (CM), and protection of digital assets during any kind of change
process.

15. PVCS Tracker
Company: Merant
Company address: Corporate Headquarters

3445 NW 211th Terrace
Hillsboro, Oregon 97124

Company phone: 503-645-1150
Company Web site: www.merant.com
Company e-mail: info@merant.com
Product description: It helps establish priorities, assign ownerships, manage

hand-offs, and track issues from emergence to resolution.

16. PVCS Professional
Company: Merant
Company address: Corporate Headquarters

3445 NW 211th Terrace
Hillsboro, Oregon 97124

Company phone: 503-645-1150
Company Web site: www.merant.com
Company e-Mail: info@merant.com
Product description: It is used for version control, bug tracking, change

management, and build capability in a single integrated suite.

17. KONFIG CM
Company: Auto-trol Technology
Company address: Auto-trol Technology Corporation

12500 North Washington Street
Denver, Colorado 80241-2400

Company phone: 303-452-4919
Company Web site: www.auto-trol.com
Company e-mail: info@auto-trol.com
Product description: With this tool, one can access the company database

through a GUI, and maintain the security and integrity of product
information.

18. Tech Illustrator
Company: Auto-trol Technology
Company address: Auto-trol Technology Corporation

12500 North Washington Street
Denver, Colorado 80241-2400

Table 14.1 CM Tools Compiled by Students (continued)

CM Automation � 267

Company phone: 303-452-4919
Company Web site: www.auto-trol.com
Company e-mail: info@auto-trol.com
Product description: It captures the power of graphical knowledge for

communication. It facilitates the creation of complex, composite artwork.

19. KONFIG NM
Company: Auto-trol Technology
Company address: Auto-trol Technology Corporation

12500 North Washington Street
Denver, Colorado 80241-2400

Company phone: 303-452-4919
Company Web site: www.auto-trol.com
Company e-mail: info@auto-trol.com
Product description: It provides a graphical application for data input, network

design, and drawing output.

20. Asset Management System
Company: Auto-trol Technology
Company address: Auto-trol Technology Corporation

12500 North Washington Street
Denver, Colorado 80241-2400

Company phone: 303-452-4919
Company Web site: www.auto-trol.com
Company e-mail: info@auto-trol.com
Product description: It is an Oracle-form based application for managing asset

information.

21. Graphic Report Builder
Company: Auto-trol Technology
Company address: Auto-trol Technology Corporation

12500 North Washington Street
Denver, Colorado 80241-2400

Company phone: 303-452-4919
Company Web site: www.auto-trol.com
Company e-Mail: info@auto-trol.com
Product description: It creates drawings that are directly related to the data

in the KONFIG database.

22. Pathfinder
Company: Auto-trol Technology
Company address: Auto-trol Technology Corporation

12500 North Washington Street
Denver, Colorado 80241-2400

Company phone: 303-452-4919
Company Web site: www.auto-trol.com
Company e-mail: info@auto-trol.com
Product description: It has full update capability.

23. eB Doc Controller
Company: Spescom Software

Table 14.1 CM Tools Compiled by Students (continued)

268 � Software Configuration Management

Company address: Spescom Software
9339 Carroll Park Drive
San Diego, California 92121

Company phone: 858-625-3000, 800-992-6784
Company Web site: http://www.spescomsoftware.com/
Company e-mail: info-us@spescom.com
Product description: It enables users to categorize and question documents

and related document data and performs document change management
and allocation.

24. eB Item Controller
Company: Spescom Software
Company address: Spescom Software

9339 Carroll Park Drive
San Diego, California 92121

Company phone: 858-625-3000, 800-992-6784
Company Web site: http://www.spescomsoftware.com/
Company e-mail: info-us@spescom.com
Product description: It has the competence of separately identifying objective

and efficient items and allows the connecting of documents, objective and
efficient items in multidimensional structures.

25. eB Action Explorer
Company: Spescom Software
Company address: Spescom Software

9339 Carroll Park Drive
San Diego, California 92121

Company phone: 858-625-3000, 800-992-6784
Company Web site: http://www.spescomsoftware.com/
Company e-mail: info-us@spescom.com
Product description: eB Action Controller enables the contemporaneous

administration and control of work involved in the design, release, and
modifying/updating of data, documents, processes, and assets within an
enterprise.

26. eB Explorer
Company: Spescom Software
Company address: Spescom Software

9339 Carroll Park Drive
San Diego, California 92121

Company phone: 858-625-3000, 800-992-6784
Company Web site: http://www.spescomsoftware.com/
Company e-mail: info-us@spescom.com
Product description: It provides a convenient and speedy search/view/print

tool, which is implanted into Microsoft Windows Explorer and Internet
Explorer (version 5 or above). Utilizing this perceptive and recognizable
environment, users can generate and save various document or objective
item queries as well as view and interpret associated electronic file(s) for the
preferred document record in the search result list.

Table 14.1 CM Tools Compiled by Students (continued)

CM Automation � 269

27. Windchill
Company: PTC
Company address: PTC

140 Kendrick Street
Needham, Massachusetts 02494

Company phone: 781-370-5000
Company Web site: www.ptc.com
Company e-mail: cs_ptc@ptc.com
Product description: It supports key product development processes,

including configuration, release, and change management.

28. Pro/ENGINEER Wildfire
Company: PTC
Company address: PTC

140 Kendrick Street
Needham, Massachusetts 02494

Company Phone: 781-370-5000
Company Web site: www.ptc.com
Company e-mail: cs_ptc@ptc.com
Product description: It provides an enhanced user interface in addition to a

perceptive workflow.

29. Agile Program Execution
Company: Agile
Company address: Agile Software Corporation

One Almaden Blvd.
San Jose, California 95113-2253

Company phone: 408-975-3900
Company Web site: www.agile.com
Company e-mail: info@agilesoft.com
Product description: Agile Program Execution is the foremost program

management solution, enabling companies to convey and advance products,
generate additional revenue, and continue spirited advantage.

30. Agile Configurator
Company: Agile
Company address: Agile Software Corporation

One Almaden Blvd.
San Jose, California 95113-2253

Company phone: 408-975-3900
Company Web site: www.agile.com
Company e-mail: info@agilesoft.com
Product description: Agile Configurator automates ISO 9000 compliance,

saving time and money.

31. TeamTrack
Company: Teamshare, Inc.

Table 14.1 CM Tools Compiled by Students (continued)

270 � Software Configuration Management

Company address: TeamShare, Inc.
1975 Research Parkway, Suite 200
Colorado Springs, Colorado 80920

Company phone: 1-888-TEAMSHARE (888-832-6742)
Company Web site: www.teamshare.com
Company e-mail: inquiries@teamshare.com
Product description: TeamTrack helps you speedily mechanize your business

processes, handle issues throughout the complete life cycle of your projects,
and aid collaboration with all stakeholders across the venture and beyond
— apart from those of your industry. TeamTrack integrates to your other
enterprise applications, allowing you to force your investment and boost
work efficiency between teams.

32. Bk/Pro
Company: BitMover
Company address: BitMover, Inc.

550 Valley St.
San Francisco, California 94131

Company phone: 415-401-8808
Company Web site: www.bitkeeper.com
Company e-mail: support@bitmover.com
Product description: BK/Pro is a scalable configuration management system,

sustaining globally distributed expansion, detached operation, condensed
repositories, adjust sets, and repositories as branches.

33. Breeze
Company: Chicago Interface Group
Company address: Chicago Interface Group, Inc.

368 W. Huron, Ste. 2N
Chicago, Illinois 60610

Company phone: 312-337-3709
Company Web site: www.cigi.net
Company e-mail: cigi_sales@cigi.net
Product description: Breeze allows remote approvers to vote on packages of

changed source from any Web-ready workstation.

34. Cloud 9
Company: Chicago Interface Group
Company Address: Chicago Interface Group, Inc.

368 W. Huron, Ste. 2N
Chicago, Illinois 60610

Company phone: 312-337-3709
Company Web site: www.cigi.net
Company e-mail: cigi_sales@cigi.net
Product description: With Cloud 9, organizations can accomplish real

enterprise change management, considering legacy systems as well as strewn
elements. Cloud 9 allows organizations to leverage their savings in either
CA-Endeavor or IBM’s SCLM to work for enterprise change control.

Table 14.1 CM Tools Compiled by Students (continued)

CM Automation � 271

35. Source Integrity
Company: Mortice Kern Systems (MKS)
Company address: Mortice Kern Systems

185 Columbia Street West
Waterloo, Ontario, Canada N2L 5Z5

Company phone: 519-884-2251
Company Web site: www.mks.com
Company e-mail: info@mks.com
Product description: Available for use on small to medium-sized projects

operating over a LAN, where it offers good, all-around capability.

36. TRUEchange
Company: TRUE Software
Company address: TRUE Software

300 Fifth Avenue
Waltham, Massachusetts 02451

Company phone: 781-890-4450
Company Web site: www.truesoft.com
Company e-mail: info@truesoft.com
Product description: TRUEchange is ideally suited for managing the ongoing

flow of changes to production applications, particularly in large IT
organizations moving mission-critical systems to the distributed world.

37. TeamConnection
Company: IBM Direct Sales
Company address: IBM

7100 Highlands Parkway
Smyrna, Georgia 30081

Company phone: 800-426-2255 x 31825
Company Web site: www.software.ibm.com/ad/teamcom
Company e-mail: n/a
Product description: A good CM tool with good all-around capability for most

development team requirements, but not suited to remote development with
closed repositories.

38. Endevor for MVS
Company: Computer Associates
Company address: Computer Associates

One Computer Associates Plaza
Islandia, New York 11788

Company phone: 1-800-225-5224
Company Wesite: www.cai.com
Company e-mail: info@cai.com
Product description: This is a good CM product for those already using

Endevor for MVS.

39. Razor
Company: Tower Concepts, Inc.

Table 14.1 CM Tools Compiled by Students (continued)

272 � Software Configuration Management

Company address: Tower Concepts, Inc.
248 Main Street
Oneida, New York 13421

Company phone: 315-363-8000
Company Web site: www.tower.com
Company e-mail: info@tower.com
Product description: Razor is a tool best suited for projects using a single

repository with well defined development and maintenance processes, or
where problem tracking and change management are important
requirements.

40. CCC/Harvest
Company: Chicago Interface Group
Company address: Chicago Interface Group, Inc.

368 W. Huron, Ste. 2N
Chicago, Illinois 60610

Company phone: 312-337-3709
Company Web site: www.cigi.net
Company e-mail: cigi_sales@cigi.net
Product description: With Cloud 9, organizations can accomplish real

enterprise change management, considering legacy systems as well as strewn
elements. Cloud 9 allows organizations to leverage their savings in either
CA-Endeavor or IBM’s SCLM to work for enterprise change control.

41. ChangeMan
Company: Serena Software
Company address: Serena Software

500 Airport Blvd.
Burlingame, California 94010

Company phone: 650-696-1800
Company Web site: www.serena.com
Company e-mail: info@serena.com
Product description: A strong contender for many mainframe sites, particularly

those with distributed mainframe operations, or those requiring a high
degree of integrity for software changes to the production environment.

42. ClearCase
Company: Rational Software/IBM
Company address: Rational Software

18880 Homestead Road
Cupertino, California 95014

Company phone: 408-863-9900
Company Web site: www.rational.com
Company e-mail: info@rational.com
Product description: ClearCase is suited to medium-to-large-scale Windows

or UNIX development projects, or for organizations migrating from UNIX to
NT development environments.

Table 14.1 CM Tools Compiled by Students (continued)

CM Automation � 273

SUMMARY

Configuration management, given the level of detail required, is not
possible without the use of an automated tool. This chapter discusses an
approach to automation as well as provides a list of CM tools.
Note:The introduction to this chapter was adapted from the following
report: Software Technology Support Center, United States Air Force,
Ogden Air Logistics Center, Software Configuration Management Technol-
ogies and Applications, April 1999, www.stsc.hill.af.mil.

REFERENCES

[Brown et al. 1999] Brown, William, Hays McCormick, and Scott Thomas, AntiPatterns
and Patterns in Software Configuration Management, John Wiley & Sons, New
York, April 1999.

[Dart 1994] Dart, Susan A., “Adopting an Automated Configuration Management Solu-
tion,” Proceedings of Software Technology Conference, April 1994.

[Softool 1992] Softool Corporation, Successful Software Strategies Seminar Series:
Improving Your Configuration Management Implementation Strategy, Washing-
ton, D.C., 1992.

[Ventimiglia 1997] Ventimiglia, Bob, Advanced Effective Software Configuration Man-
agement, Technology Training Corporation, 1997.

275

Appendix A

PROJECT PLAN

ORSS SOFTWARE PROJECT PLAN

I. TABLE OF CONTENTS

1.0. Goals and Objectives. 276
1.1 System Statement of Scope . 276
1.2 System Context . 277
1.3 Major Constraints . 277

2.0. Project Estimates . 277
2.1 Historical Data Used for Estimates . 277
2.2 Estimation Techniques Applied and Results 278

2.2.1 Process-Based Estimation . 279
2.2.2 LOC-Based Estimation . 279

2.3 Project Resources . 279
2.3.1 People. 279
2.3.2 Minimal Hardware Requirements 281
2.3.3 Minimal Software Requirements . 282

3.0. Risk Management . 282
3.1 Scope and Intent of RMMM Activities 282
3.2 Risk Management Organizational Role 283
3.3 Risk Description . 283

3.3.1 Description of Risks. 283
3.4 Risk Table . 284

4.0. Project Schedule . 284
4.1 Deliverables and Milestones . 284
4.2 Work Breakdown Structure. 284

5.0. Project Team Organization. 285
5.1 Team Structure . 290

6.0. Tracking and Control Mechanisms . 290
6.1 Quality Assurance Mechanisms . 290
6.2 Change Management and Control. 291

276 � Software Configuration Management

1.0 GOALS AND OBJECTIVES

The Online Resource Scheduling System is a Web-based scheduling system.
It is designed for colleges, universities, and schools. The purpose of this
system is to provide an online service for the faculty to reserve any type
of resource such as computer systems, VCRs, projectors, and videotapes.
This scheduling system can accept the requestors’ orders, make a schedule
for the orders, and do some critical checks. It will enable faculty members
to make their orders at anytime and from anyplace. The system will be
able to create new orders and update old orders.

Configuration Identification: ORSS-01.

1.1 System Statement of Scope

General Requirements

The following general requirements were specified for our project titled
ORSS:

� A Web-based application allowing users easy access and use
� The ability to originate or update resource reservations
� The ability to link to the faculty database to verify “authorized users”
� A method to maintain and update a resource database
� The ability to limit simultaneous reservations against total resources

available
� A way to search for resources available
� A method to disallow duplication of “special” classrooms
� The ability to disallow duplicate orders from the same user
� A method to print a confirmation from the Web site
� The ability to send e-mail confirmations to the user
� The ability to print a daily list
� Database administration interface. There will be a need for the

Resource Center office to maintain the database of the resources.
There will also be a need to link to the faculty database to verify
“authorized users.” If neither of these databases exists, Global Asso-
ciates will need to create them and train personnel in the maintenance
and administration of both.

� Online help. We will need to develop an online help program for
this system, which will include a detailed help menu and “online”
telephone assistance.

� Training. We will need to conduct training for the Resource Center
staff as well as all full-time faculty members. We may consider a
training manual for the adjunct faculty, or conduct training sessions
at times when they are available.

Project Plan � 277

1.2 System Context

Multiple users will be using the product simultaneously and from many
different locations. The only requirement is access to the Internet.

1.3 Major Constraints

Security

This project will be uploaded to a server and this server will be exposed
to the outside world, so we need to research and develop security
protection. We will need to know how to configure a firewall and how
to restrict access to only “authorized users.” We will need to know how
to deal with load balance if the number of visits to the site is very large
at one time.

Database

We will need to know how to maintain the database in order to make it
more efficient, and what type of database we should use. We will also
have a link to the faculty database to verify the users.

2.0 PROJECT ESTIMATES

This portion of the document provides cost, effort, and time estimates for
the project using two estimation techniques: Process-Based and Lines of
Code (COCOMO II model).

2.1 Historical Data Used for Estimates

We obtained the following data according to “2001 Computer Industry
Salary Survey” from EDP Staffing Service Inc. for Northeast area.

Job Function : Web Developer (Java/ASP)
Low $U.S.79,500
Median $U.S.92,500
High $U.S.105,500

Job Function : Sr. Database Analyst/Admin.
Low $U.S.78,100
Median $U.S.87,200
High $U.S.105,900

Low is the salary paid at the 25th percentile of all respondents in this
data set; median is the 50th percentile; high is the 75th percentile.

Data: 2001 Computer Industry Salary Survey (EDP Staffing Service Inc.)
http://www.edpstaffing.com/salary.html

278 � Software Configuration Management

We estimate labor cost per month for two Web programmers and one
database analyst using the low salary level. (The low salary level is used
due to the slowdown in the U.S. economy.) Note that 15 percent overhead
is added in the average labor cost per month.

$(((79,500/12)*2 + (78,100/12)*1)/3) * 1.15 ≈ $7,500

Note: Members’ roles will be discussed in Section 5.0: Project Team
Organization.

2.2 Estimation Techniques Applied and Results

Two estimation techniques have been used to generate two independent
results for higher accuracy.

� Process based
� Lines of code (LOC) (COCOMO II Model) (Figure A1)

Figure A1 COCOMO II Model

Project Plan � 279

2.2.1 Process-Based Estimation

The process is divided into smaller tasks, for process-based estimation
purposes (see Table A1). We estimated, in person-months, the effort
required to perform each task. We defined the following software func-
tions:

� User interface (UI)
� Database management (DB)
� Report generation (RG)
� Bug fixing (BF)
� Program integration (PI)

Based on the historical data we obtained, the estimated ef fort is
approximately 7.5 person-months, and the estimated project cost is
$7500 × 7.5 ≈ $56,250 .

2.2.2 LOC-Based Estimation

The estimates in Table A2 are based on “best-effort” estimation from
previous programming experiences and existing software size.

The estimates for LOC are plugged into the COCOMO II formula for
effort and duration estimation. The basic COCOMO II model is used in
Table A3.

Results in Table A3 indicate that the total effort is 8.8 person-months
to finish the project. Because we have three team members, we will finish
the project in approximately thr ee months . Based on that calculation,
the estimated project cost will be $7500 × 3 × 3 ≈ $67,500 .

2.3 Project Resources

2.3.1 People

This project requires two Web developers and one database analyst in
order to be finished in time. The developers must have adequate expe-
rience in Web design and have knowledge of HTML, JavaScript, Photo-
shop, ASP (VB Script), and Access. Experience in how to set up a Web
server is preferred. The database analyst should be able to analyze, design,
and maintain an efficient and secure database. The candidates must also
have good personal communication skills.

280 � Software Configuration Management

Ta
bl

e
A

1
 P

ro
ce

ss
-B

as
ed

 E
st

im
at

io
n

Ta
bl

e

Fu
nc

tio
n

A
ct

iv
ity

/T
as

k

C
us

t.
C

om
m

.
Pl

an
ni

ng
R

is
k

A
na

ly
si

s
En

gi
ne

er
in

g
C

on
st

ru
ct

io
n

R
el

ea
se

C
us

t.
Ev

al
.

To
ta

ls
A

na
ly

si
s

D
es

ig
n

C
od

e
Te

st

U
I

0.
50

0.
20

0.
05

0.
10

0.
30

0.
50

0.
80

0.
10

2.
55

D
B

—
0.

30
0.

10
0.

20
0.

30
0.

20
0.

20
—

1.
30

R
G

0.
20

0.
20

0.
02

0.
05

0.
40

0.
40

0.
10

0.
05

1.
42

B
F

0.
20

0.
10

0.
02

0.
10

0.
10

0.
30

0.
10

0.
05

0.
97

PI
0.

02
0.

10
0.

05
0.

20
0.

10
0.

30
0.

50
—

1.
27

To
ta

l
0.

92
0.

90
0.

24
0.

65
1.

20
1.

70
1.

70
0.

20
7.

51
%

 E
ff

o
rt

12
.2

5
11

.9
8

3.
20

8.
66

15
.9

8
22

.6
4

22
.6

4
2.

66
10

0.
0

Project Plan � 281

2.3.2 Minimal Hardware Requirements

Development

Three IBM PC or compatibles with the following configurations:

� Intel Pentium III 700 MHz processor
� 512 MB SDRAM
� 40G hard disk space
� Internet connection

User Server-Side

IBM PC or compatible with the following configurations:

� Intel Pentium IV 1.7 GHz processor
� 512 MB SDRAM
� 80G hard disk space
� Internet connection

Table A2 LOC-Based Estimation

Functions Estimated LOC
User interface UI 1000
Database management DB 500
Report generation RG 500
Bug fixing BF 500
Program integration PI 200
Total estimated lines of codes 2700

Table A3 COCOMO II Formula

Project Name ORSS
Total Size 2700
Total Effort 8.764317

Overall
Schedule

(%)
Schedule
(Months)

Effort
(%) Effort Staff

Plans and
requirements

16.23 1.187959 7.00 0.6135 0.516434

Product design 24.12 1.764864 17.00 1.4899 0.84422
Programming 55.53 4.063943 63.65 5.5785 1.372679
Integration and test 20.35 1.489218 19.35 1.6959 1.138782

282 � Software Configuration Management

User Client-Side

IBM PC or compatible with the following configurations:

� Intel Pentium III 450 MHz processor
� 128 MB SDRAM
� 20 GMB hard disk space
� Internet connection

2.3.3 Minimal Software Requirements

Development

� Windows 2000 Professional Version
� FrontPage 2000 or DreamWeaver 4.0
� Microsoft Access 2000

User Server-Side

� Windows 2000 Server Version with Internet Information Server (IIS)
� Microsoft Access 2000

User Client-Side

� Windows 98 or higher operating system
� Internet Explorer browser 4.0 or Netscape Navigator 4.0

3.0 RISK MANAGEMENT

3.1 Scope and Intent of RMMM Activities

This project will be uploaded to a server and this server will be exposed
to the outside world, so we need to develop security protection. We will
need to configure a firewall and restrict access to only “authorized users”
through the linked faculty database. We will have to know how to deal
with load balance if the number of visits to the site is very large at one time.

We will need to know how to maintain the database in order to make
it more efficient, what type of database we should use, who should have
the responsibility to maintain it, and who should be the administrator.
Proper training of the aforementioned personnel is very important so that
the database and the system contain accurate information.

Project Plan � 283

3.2 Risk Management Organizational Role

The software project manager must maintain a track record of the efforts
and schedules of the team. They must anticipate any “unwelcome” events
that might occur during the development or maintenance stages and
establish plans to avoid these events or minimize their consequences.

It is the responsibility of everyone on the project team with the regular
input of the customer to assess potential risks throughout the project.
Communication among everyone involved is very important to the success
of the project. In this way, it is possible to mitigate and eliminate possible
risks before they occur. This is known as a proactive approach or strategy
for risk management.

3.3 Risk Description

This section describes the risks that may occur during this project.

3.3.1 Description of Risks

� Business impact risk. This risk would entail that the software
produced does not meet the needs of the client who requested
the product. It would also have a business impact if the product
no longer fits into the overall business strategy for the company.

� Customer characteristics risk. This risk is the customer’s lack of
involvement in the project and their non-availability to meet with the
developers in a timely manner. Also, the customer’s sophistication as
to the product being developed and ability to use it are part of this
risk.

� Development risk. Pressman describes this as “risks associated with
the availability and quality of the tools to be used to build the
product.” The equipment and software provided by the client on
which to run the product must be compatible with the software
project being developed.

� Process definition risk. Does the software being developed meet the
requirements as originally defined by the developer and client? Did
the development team follow the correct design throughout the
project? The above are examples of process risks.

� Product size risk. The product size risk involves the overall size of
the software being built or modified. Risks involved would include
the customer not providing the proper size of the product to be
developed, and if the software development team misjudges the size
or scope of the project. The latter problem could create a product
that is too small (rarely) or too large for the client, and could result

284 � Software Configuration Management

in a loss of money to the development team because the cost of
developing a larger product cannot be recouped from the client.

� Staff size and experience risk. This would include appropriate and
knowledgeable programmers to code the product as well as the
cooperation of the entire software project team. It would also mean
that the team has enough team members who are competent and
able to complete the project.

� Technology risk. Technology risk could occur if the product being
developed is obsolete by the time it is ready to be sold. The
opposite effect could also be a factor: if the product is so “new”
that the end users would have problems using the system and
resisting the changes made. A “new” technological product could
also be so new that there may be problems using it. It would also
include the complexity of the design of the system being devel-
oped.

3.4 Risk Table

The risk table provides a simple technique to view and analyze the risks
associated with the project. The risks were listed and then categorized
using the description of risks listed in section 3.3.1. The probability of
each risk was then estimated and its impact on the development process
was then assessed. A key to the impact values and categories appears at
the end of the table.

Probability and Impact for Risk

Table A4 is the sorted version of Table A3 by probability and impact.

4.0 PROJECT SCHEDULE

Following is the master schedule and deliverables planned for each stage
of the project development life cycle, and their respective planned com-
pletion dates.

4.1 Deliverables and Milestones

Table A5 lists deliverables and milestones.

4.2 Work Breakdown Structure

Figure A2 shows a work breakdown structure.

Project Plan � 285

5.0 PROJECT TEAM ORGANIZATION

The structure of the team and the roles of the team members are defined
in this section. The project team organization is divided into four parts.
First is the conceptual planning phase. Second is the software design and
development part. The third section is editing/master testing and mainte-
nance. The final phase of the project is training and user documentation.

Table A4 Risks Table (sorted)

Risks Category
Probability

(%) Impact

Customer will change or modify
requirements

PS 70 2

Lack of sophistication of end users CU 60 3
Users will not attend training CU 50 2
Delivery deadline will be tightened BU 50 2
End users resist system BU 40 3
Server may not be able to handle larger

number of users simultaneously
PS 30 1

Technology will not meet expectations TE 30 1
Larger number of users than planned PS 30 3
Lack of training of end users CU 30 3
Inexperienced project team ST 20 2
System (security and firewall) will be

hacked
BU 15 2

Impact values:

1 – catastrophic
2 – critical
3 – marginal
4 – negligible

Category abbreviations:

BU – business impact risk
CU – customer characteristics risk
PS – process definition risk
ST – staff size and experience risk
TE – technology risk

The above table was sorted first by probability and then by impact value.

286 � Software Configuration Management

Ta
bl

e
A

5
 D

el
iv

er
ab

le
s

an
d

M
ile

st
on

es

A
ct

iv
iti

es
D

el
iv

er
ab

le
Fr

om
 D

at
e

To
 D

at
e

M
ile

st
on

e

M
ee

ti
n

gs
W

ee
kl

y
m

ee
ti

n
gs

02
/0

4/
02

05
/0

7/
02

05
/0

7/
02

R
eq

u
ir

em
en

ts
A

ss
es

s
fu

n
ct

io
n

al

re
q

u
ir

em
en

ts
02

/1
8/

02
02

/2
2/

02
03

/0
1/

02

D
em

o
n

st
ra

te
 s

ys
te

m
02

/1
9/

02
02

/2
7/

02
Ev

al
u

at
io

n
 o

f
te

st
in

g
n

ee
d

s
02

/2
5/

02
02

/2
7/

02
A

ss
es

s
n

o
n

fu
n

ct
io

n
al

re

q
u

ir
em

en
ts

02
/1

8/
02

02
/2

7/
02

Fi
n

al
 r

eq
u

ir
em

en
ts

sp

ec
ifi

ca
ti

o
n

02
/2

7/
02

03
/0

1/
02

D
o

cu
m

en
ta

ti
o

n
Q

u
al

it
y

as
su

ra
n

ce
 p

la
n

02
/0

4/
02

02
/0

6/
02

05
/0

3/
02

Pr
o

je
ct

 p
la

n
02

/0
7/

02
02

/1
5/

02
R

eq
u

ir
em

en
ts

 d
o

cu
m

en
t

02
/1

8/
02

03
/0

1/
02

D
es

ig
n

 d
o

cu
m

en
t

03
/0

4/
02

03
/1

5/
02

U
se

r
gu

id
e

04
/3

0/
02

05
/0

2/
02

Fi
n

al
 p

ro
je

ct
 n

o
te

b
o

o
k

04
/2

9/
02

05
/0

3/
02

M
ai

n
te

n
an

ce
 p

la
n

04
/2

9/
02

05
/0

3/
02

Pr
o

gr
am

m
er

tr

ai
n

in
g

W
eb

 d
es

ig
n

 t
ra

in
in

g
03

/0
1/

02
03

/0
7/

02
03

/1
2/

02

D
at

ab
as

e
d

es
ig

n
 t

ra
in

in
g

03
/0

8/
02

03
/1

2/
02

Appendix A � 287
Pr

el
im

in
ar

y
d

es
ig

n
B

ra
in

st
o

rm
in

g
03

/1
3/

02
03

/1
4/

02
03

/2
0/

02

A
rc

h
it

ec
tu

ra
l

la
yo

u
t

03
/1

5/
02

03
/2

0/
02

D
et

ai
le

d
 d

es
ig

n
D

es
ig

n
 u

se
r

in
te

rf
ac

e
03

/2
1/

02
04

/0
1/

02
04

/0
1/

02
D

at
ab

as
e

d
es

ig
n

03
/2

1/
02

04
/0

1/
02

C
o

d
in

g
B

u
ild

 d
at

ab
as

e
04

/0
2/

02
04

/0
4/

02
04

/1
9/

02
U

se
r

in
te

rf
ac

e
o

f
ca

m
p

u
s

ve
rs

io
n

04
/0

5/
02

04
/1

9/
02

U
se

r
in

te
rf

ac
e

o
f

in
-h

o
u

se

ve
rs

io
n

04
/0

5/
02

04
/1

9/
02

In
te

gr
at

io
n

te

st
in

g
In

-h
o

u
se

 t
es

ti
n

g
04

/2
2/

02
04

/2
6/

02
04

/2
6/

02

N
ec

es
sa

ry
 m

o
d

ifi
ca

ti
o

n
s

04
/2

3/
02

04
/2

6/
02

Po
st

-t
es

t
O

n
-c

am
p

u
s

te
st

in
g

04
/2

9/
02

05
/0

3/
02

05
/0

3/
02

N
ec

es
sa

ry
 m

o
d

ifi
ca

ti
o

n
s

04
/3

0/
02

05
/0

3/
02

M
o

d
ifi

ca
ti

o
n

“C
le

an
-u

p
”

an
d

 fi
n

al
iz

ed
 f

o
r

d
el

iv
er

y,
 a

d
d

it
io

n
al

 “
p

er
ks

”
05

/0
6/

02
05

/0
7/

02
05

/0
7/

02

Fa
cu

lt
y

tr
ai

n
in

g
In

-h
o

u
se

 t
ra

in
in

g
05

/0
8/

02
05

/0
8/

02
05

/1
0/

02
C

am
p

u
s

tr
ai

n
in

g
05

/0
9/

02
05

/1
0/

02

288 � Software Configuration Management

Fi
gu

re
 A

2a
 W

or
k

B
re

ak
do

w
n

St
ru

ct
ur

e

Appendix A � 289

Fi
gu

re
 A

2b
 W

or
k

B
re

ak
do

w
n

St
ru

ct
ur

e
(c

on
t’d

)

290 � Software Configuration Management

5.1 Team Structure

We separate part of the team project by following the responsibilities of
the team members and dividing the functions of the system.

Conceptual Planning

� Interview and specify software scope
� Database reengineering
� Overall process specifications
� Draft documentation

Software Design and Development

� Database design and development
� User interface and control facilities
� Function development
� Report generation
� Draft documentation

Editing/Master Testing and Maintenance

� Maintenance system
� Integration testing
� Report software errors
� System documentation

Training and User Documentation

� Training sessions
� User documentation

This organization of the project team allows the project planner to know
the area of responsibility for each team member and all of the functions
of the team project.

6.0 TRACKING AND CONTROL MECHANISMS

6.1 Quality Assurance Mechanisms

� Careful monitoring of the project

Project Plan � 291

� Maintaining close contact with the client using weekly meetings and
regular e-mail contacts to communicate

� Having periodic status meetings in which each team member reports
on his or her progress and problems

� Careful monitoring of each phase as it relates to the milestone dates
listed in Chapter 4

� Paying careful attention to all of the testing results, and making
changes as needed as quickly as reasonably possible and then
retesting the changes

6.2 Change Management and Control

� A change request is submitted and evaluated to assess technical
merit, potential side effects, overall impact on other configuration
objects and system functions, and the projected cost of the change.

� An engineering change order is generated for each approved change.
� Access control and synchronization control are implemented.
� The change is made, and appropriate software quality assurance

(SQA) activities are applied.
� Appropriate version control mechanisms are used to create the

next version of the software.

293

Appendix B

DOD ENGINEERING CHANGE
PROPOSAL

294 � Software Configuration Management
EN

G
IN

EE
R

IN
G

 C
H

A
N

G
E

PR
O

PO
SA

L,
 P

A
G

E
1

1.
 D

A
TE

(Y
Y

M
M

D
D

)
2.

 P
R

O
C

U
R

IN
G

A

C
TI

V
IT

Y
 N

O
.

3.
 O

R
IG

IN
A

TO
R

 N
A

M
E

A
N

D
 A

D
D

R
ES

S
4.

 D
O

D
A

A
C

5.
 C

LA
SS

 O
F

EC
P

6.
 J

U
ST

. C
O

D
E

7.
 P

R
IO

R
IT

Y

8.
 E

C
P

D
ES

IG
N

A
TI

O
N

9.
 B

A
SE

LI
N

E
A

FF
EC

TE
D

a.
 M

O
D

EL
/T

Y
PE

b
. C

A
G

E
C

O
D

E
c.

 S
Y

ST
EM

 D
ES

IG
N

A
TI

O
N

�

 F
U

N
C

TI
O

N
A

L

�
 A

LL
O

C
A

TE
D

 �

 P
R

O
D

U
C

T

d
. E

C
P

N
o

.
e.

 T
Y

PE
f.

R
EV

.
10

. O
TH

ER
 S

Y
S/

C
O

N
FI

G
 I

TE
M

 A
FF

EC
TE

D

�
 Y

ES

 �

 N
O

11
. S

PE
C

IF
IC

A
TI

O
N

S
A

FF
EC

TE
D

 -
 T

ES
T

PL
A

N
12

. D
R

A
W

IN
G

S
A

FF
EC

TE
D

C
A

G
E

C
O

D
E

SP
EC

/D
O

C
 N

O
R

EV
.

SC
N

/N
O

R
C

A
G

E
C

O
D

E
N

U
M

B
ER

R
EV

.
N

O
R

a.
 S

Y
ST

EM

b
. D

EV
EL

O
PM

EN
T

c.
 P

R
O

D
U

C
T

13
. T

IT
LE

 O
F

C
H

A
N

G
E

14
. C

O
N

TR
A

C
T

N
O

 &
 L

IN
E

IT
EM

15
. P

R
O

C
U

R
IN

G
 C

O
N

TR
A

C
TI

N
G

 O
FF

IC
ER

16
. C

O
N

FI
G

U
R

A
TI

O
N

 I
TE

M
 N

O
M

EN
C

LA
TU

R
E

17
. I

N
 P

R
O

D
U

C
TI

O
N

 Y
ES

 N
O

18
. L

O
W

ES
T

A
SS

EM
B

LY
 A

FF
EC

TE
D

a.
 N

O
M

EN
C

LA
TU

R
E

b
. P

A
R

T
N

O
.

c.
 N

SN

19
. D

ES
C

R
IP

TI
O

N
 O

F
C

H
A

N
G

E

Appendix B � 295

 D
D

 F
or

m
 1

69
2-

5

20
. N

EE
D

 F
O

R
 C

H
A

N
G

E

21
. P

R
O

D
U

C
TI

O
N

 E
FF

EC
TI

V
IT

Y
 B

Y
 S

ER
IA

L
N

U
M

B
ER

22
. E

FF
EC

T
O

N
 P

R
O

D
U

C
TI

O
N

 D
EL

IV
ER

Y
 S

C
H

ED
U

LE

23
. R

ET
R

O
FI

T

a.
 R

EC
O

M
M

EN
D

ED
 I

TE
M

 E
FF

EC
TI

V
IT

Y
c.

 P
LA

TF
O

R
M

S
A

FF
EC

TE
D

b
. E

ST
IM

A
TE

D
 K

IT
 D

EL
IV

ER
Y

 S
C

H
ED

U
LE

d
. L

O
C

A
TI

O
N

S
O

F
SH

IP
S/

V
EH

IC
LE

 N
U

M
B

ER
S

A
FF

EC
TE

D

24
. E

ST
IM

A
TE

D
 C

O
ST

S/
SA

V
IN

G
S

U
N

D
ER

 C
O

N
TR

A
C

T
25

. E
ST

IM
A

TE
D

 N
ET

 T
O

TA
L

C
O

ST
/S

A
V

IN
G

S

26
. S

U
B

M
IT

TI
N

G
 A

C
TI

V
IT

Y
 A

U
TH

O
R

IZ
IN

G
 S

IG
N

A
TU

R
E

26
a.

 T
IT

LE

27
. A

PP
R

O
V

A
L/

D
IS

A
PP

R
O

V
A

L

 a
. C

LA
SS

 I

�
 A

PP
R

O
V

A
L

�

 D
IS

A
PP

R
O

V
A

L

 R

EC
O

M
M

EN
D

ED

 R

EC
O

M
M

EN
D

ED

b
. C

LA
SS

 I
I

�
 A

PP
R

O
V

ED

 �
 D

IS
A

PP
R

O
V

ED

c.
 C

LA
SS

 I
I

�
 C

O
N

C
U

R
 W

IT
H

 �

 D
O

 N
O

T
C

O
N

C
U

R
 I

N
C

LA
SS

IF
IC

A
TI

O
N

 O
F

C
H

A
N

G
E

C

LA
SS

IF
IC

A
TI

O
N

 O
F

C
H

A
N

G
E

d
. G

O
V

ER
N

M
EN

T
A

C
TI

V
IT

Y
e.

 S
IG

N
A

TU
R

E
f.

D
A

TE
 S

IG
N

ED
 (

Y
Y

M
M

D
D

)

g.
 A

PP
R

O
V

A
L

�
 A

PP
R

O
V

ED
 �

 D
IS

A
PP

R
O

V
ED

h
. G

O
V

ER
N

M
EN

T
A

C
TI

V
IT

Y
I.

SI
G

N
A

TU
R

E
j.

D
A

TE
 S

IG
N

ED
 (

Y
Y

M
M

D
D

)

296 � Software Configuration Management

EN
G

IN
EE

R
IN

G
 C

H
A

N
G

E
PR

O
PO

SA
L,

 P
A

G
E

2

O
R

IG
IN

AT
O

R
 N

A
M

E
A

N
D

 A
D

D
R

ES
S

EC
P

N
U

M
B

ER

EF
FE

C
T

O
N

 F
U

N
C

TI
O

N
A

L/
A

LL
O

C
AT

ED
 C

O
N

FI
G

U
R

AT
IO

N
 ID

EN
TI

FI
C

AT
IO

N

28
. O

TH
ER

 S
Y

ST
EM

S
A

FF
EC

TE
D

29
. O

TH
ER

 C
O

N
TR

A
C

TO
R

S/
A

C
TI

V
IT

IE
S

A
FF

EC
TE

D

30
. C

O
N

FI
G

U
R

AT
IO

N
 IT

EM
S

A
FF

EC
TE

D

31
. E

FF
EC

TS
 O

N
 P

ER
FO

R
M

A
N

C
E

A
LL

O
C

AT
IO

N
S

A
N

D
 IN

TE
R

FA
C

ES
 IN

 S
Y

ST
EM

 S
PE

C
IF

IC
AT

IO
N

32
. E

FF
EC

TS
 O

N
 E

M
PL

O
Y

M
EN

T,
 IN

TE
G

R
AT

ED
 L

O
G

IS
TI

C
S

SU
PP

O
RT

, T
R

A
IN

IN
G

, O
PE

R
AT

IO
N

A
L,

 E
FF

EC
TI

V
EN

ES
S,

 O
R

 S
O

FT
W

A
R

E

Appendix B � 297

D
D

 F
or

m
 1

69
2-

5

33
. E

FF
EC

TS
 O

N
 C

O
N

FI
G

U
R

AT
IO

N
 IT

EM
 S

PE
C

IF
IC

AT
IO

N
S

34
. D

EV
EL

O
PM

EN
TA

L
R

EQ
U

IR
EM

EN
TS

 A
N

D
 S

TA
TU

S

35
. T

R
A

D
E-

O
FF

S
A

N
D

 A
LT

ER
N

AT
IV

E
SO

LU
TI

O
N

S

36
. D

AT
E

B
Y

 W
H

IC
H

 C
O

N
TR

A
C

TU
A

L
A

U
TH

O
R

IT
Y

 IS
 N

EE
D

ED

298 � Software Configuration Management

EN
G

IN
EE

R
IN

G
 C

H
A

N
G

E
PR

O
PO

SA
L,

 P
A

G
E

3

O
R

IG
IN

AT
O

R
 N

A
M

E
A

N
D

 A
D

D
R

ES
S

EC
P

N
U

M
B

ER

EF
FE

C
TS

 O
N

 P
R

O
D

U
C

T
C

O
N

FI
G

U
R

A
TI

O
N

 ID
EN

TI
FI

C
A

TI
O

N
, L

O
G

IS
TI

C
S,

 A
N

D
 O

PE
R

A
TI

O
N

S

(X
)

FA
C

TO
R

EN
C

L.
PA

R
.

(X
)

FA
C

TO
R

EN
C

L.
PA

R
.

37
. E

FF
EC

T
O

N
 P

R
O

D
U

C
T

C
O

N
FI

G
U

R
AT

IO
N

ID

EN
TI

FI
C

AT
IO

N
 O

R
 C

O
N

TR
A

C
T

39
. E

FF
EC

T
O

N
 O

PE
R

AT
IO

N
A

L
EM

PL
O

Y
M

EN
T

_
a.

 P
ER

FO
R

M
A

N
C

E
__

__
_

__
__

_
_

a.
 S

A
FE

TY
__

__
_

__
__

_

_
b.

 W
EI

G
H

T-
BA

LA
N

C
E

ST
A

B
IL

IT
Y

 (A
irc

ra
ft)

__
__

_
__

__
_

_
b.

 S
U

RV
IV

A
B

IL
IT

Y
__

__
_

__
__

_

_
c.

 W
EI

G
H

T-
M

O
M

EN
T

(O
th

er
 e

qu
ip

m
en

t)
__

__
_

__
__

_
_

c.
 R

EL
IA

B
IL

IT
Y

__
__

_
__

__
_

_
d.

 C
D

R
L,

 T
EC

H
N

IC
A

L
D

AT
A

__
__

_
__

__
_

_
d.

 M
A

IN
TA

IN
A

B
IL

IT
Y

__
__

_
__

__
_

_
e.

 N
O

M
EN

C
LA

TU
R

E
__

__
_

__
__

_
_

e.
 S

ER
V

IC
E

LI
FE

__
__

_
__

__
_

__
__

_
__

__
_

_
f.

O
PE

R
AT

IN
G

 P
R

O
C

ED
U

R
ES

__
__

_
__

__
_

38
. E

FF
EC

T
O

N
 IN

TE
G

R
AT

ED
 L

O
G

IS
TI

C
S

_
g.

 E
LE

C
TR

O
M

A
G

N
ET

IC
 IN

TE
R

FE
R

EN
C

E
__

__
_

__
__

_

SU
PP

O
RT

 (I
LS

) E
LE

M
EN

TS
_

h.
 A

C
TI

V
AT

IO
N

 S
C

H
ED

U
LE

__
__

_
__

__
_

_
a.

 IL
S

PL
A

N
S

__
__

_
__

__
_

_
I.

C
R

IT
IC

A
L

SI
N

G
LE

 P
O

IN
T

FA
IL

U
R

E
IT

EM
S

__
__

_
__

__
_

_
b.

 M
A

IN
TE

N
A

N
C

E
C

O
N

C
EP

T,
 P

LA
N

S,
 P

R
O

C
ED

U
R

ES
__

__
_

__
__

_
_

j.
IN

TE
R

O
PE

R
A

B
IL

IT
Y

__
__

_
__

__
_

_
c.

 L
O

G
IS

TI
C

S
SU

PP
O

RT
 A

N
A

LY
SI

S
__

__
_

__
__

_
_

_
d.

 IN
TE

R
IM

 S
U

PP
O

RT
 P

R
O

G
R

A
M

S
__

__
_

__
__

_
_

_
e.

 S
PA

R
ES

 A
N

D
 R

EP
A

IR
 P

A
RT

S
__

__
_

__
__

_
_

40
. O

TH
ER

 C
O

N
SI

D
ER

AT
IO

N
S

_
f.

TE
C

H
 M

A
N

U
A

LS
/P

R
O

G
R

A
M

M
IN

G
 T

A
PE

S
__

__
_

__
__

_
_

a.
 IN

TE
R

FA
C

E
__

__
_

__
__

_

_
g.

 F
A

C
IL

IT
IE

S
__

__
_

__
__

_
_

b.
 O

TH
ER

 A
FF

EC
TE

D
 E

Q
U

IP
M

EN
T/

G
FE

/G
FP

__
__

_
__

__
_

_
h.

 S
U

PP
O

RT
 E

Q
U

IP
M

EN
T

__
__

_
__

__
_

_
c.

 P
H

Y
SI

C
A

L
C

O
N

ST
R

A
IN

TS
__

__
_

__
__

_

_
I.

O
PE

R
AT

O
R

 T
R

A
IN

IN
G

__
__

_
__

__
_

_
d.

 C
O

M
PU

TE
R

 P
R

O
G

R
A

M
S

A
N

D
 R

ES
O

U
R

C
ES

__
__

_
__

__
_

Appendix B � 299

D
D

 F
or

m
 1

69
2-

5

_
J.

O
PE

R
AT

IN
G

 T
R

A
IN

IN
G

 E
Q

U
IP

M
EN

T
__

__
_

__
__

_
_

e.
 R

EW
O

R
K

 O
F

O
TH

ER
 E

Q
U

IP
M

EN
T

__
__

_
__

__
_

_
k.

 M
A

IN
TE

N
A

N
C

E
TR

A
IN

IN
G

__
__

_
__

__
_

_
f.

SY
ST

EM
 T

ES
T

PR
O

C
ED

U
R

ES
__

__
_

__
__

_

_
l.

M
A

IN
TE

N
A

N
C

E
TR

A
IN

IN
G

 E
Q

U
IP

M
EN

T
__

__
_

__
__

_
_

g.
 W

A
R

R
A

N
TY

/G
U

A
R

A
N

TE
E

__
__

_
__

__
_

_
m

. C
O

N
TR

A
C

T
M

A
IN

TE
N

A
N

C
E

__
__

_
__

__
_

_
h.

 P
A

RT
S

C
O

N
TR

O
L

__
__

_
__

__
_

_
n.

 P
A

C
K

A
G

IN
G

, H
A

N
D

LI
N

G
, S

TO
R

A
G

E,

__
__

_
__

__
_

_
i.

LI
FE

 C
Y

C
LE

 C
O

ST
S

__
__

_
__

__
_

A
N

D
 T

R
A

N
SP

O
RT

A
B

IL
IT

Y
_

__
__

_
__

__
_

41
. A

LT
ER

N
AT

E
SO

LU
TI

O
N

S

42
. D

EV
EL

O
PM

EN
TA

L
ST

AT
U

S

43
. R

EC
O

M
M

EN
D

AT
IO

N
S

FO
R

 R
ET

R
O

FI
T

44
. W

O
R

K
-H

O
U

R
S

PE
R

 U
N

IT
 T

O
 IN

ST
A

LL
 R

ET
R

O
FI

T
K

IT
S

45
. W

O
R

K
-H

O
U

R
S

TO
 C

O
N

D
U

C
T

SY
ST

EM
 T

ES
TS

 A
FT

ER
 R

ET
R

O
FI

T

a.
 O

R
G

A
N

IZ
AT

IO
N

b.
 IN

TE
R

M
ED

IA
TE

c.
 D

EP
O

T
d.

 O
TH

ER

46
. T

H
IS

 C
H

A
N

G
E

M
U

ST
 B

E
A

C
C

O
M

PL
IS

H
ED

 �

 B

EF
O

R
E

 �

 W

IT
H

 �

 A

FT
ER

 T
H

E
FO

LL
O

W
IN

G
 C

H
A

N
G

ES
:

47
. I

S
C

O
N

TR
A

C
TO

R
 F

IE
LD

 S
ER

V
IC

E
EN

G
IN

EE
R

IN
G

 R
EQ

U
IR

ED
?

 �

 Y
ES

 �

 N
O

48
. O

U
T-

O
F-

SE
RV

IC
E

TI
M

E

49
. E

FF
EC

T
O

F
TH

IS
 E

C
P

A
N

D
 P

R
EV

IO
U

SL
Y

 A
PP

R
O

V
ED

 E
C

Ps
 O

N
 IT

EM
50

. D
AT

E
C

O
N

TR
A

C
TU

A
L

A
U

TH
O

R
IT

Y
 N

EE
D

ED
FO

R
 P

R
O

D
U

C
TI

O
N

:
FO

R
 R

ET
R

O
FI

T:

300 � Software Configuration Management
EN

G
IN

EE
R

IN
G

 C
H

A
N

G
E

PR
O

PO
SA

L,
 P

A
G

E
4

O
R

IG
IN

AT
O

R
 N

A
M

E
A

N
D

 A
D

D
R

ES
S

EC
P

N
U

M
B

ER

51
. E

ST
IM

A
TE

D
 T

O
TA

L
C

O
ST

 I
M

PA
C

T
(U

se
 p

ar
en

th
es

es
 f

or
 s

av
in

gs
)

O
TH

ER
 C

O
ST

S/

FA
C

TO
R

N
O

N
-

R
EC

U
R

R
IN

G
TO

TA
L

SA
V

IN
G

S
TO

 T
H

E

R
EC

U
R

R
IN

G
U

N
IT

Q
U

A
N

TI
TY

TO
TA

L
(R

ec
ur

rin
g)

U
N

D
ER

 C
O

N
TR

A
C

T
G

O
V

ER
N

M
EN

T

(a
)

(b
)

(c
)

(d
)

(e
)

(f)

a.
 P

R
O

D
U

C
TI

O
N

 C
O

ST
/S

A
V

IN
G

(1
) C

O
N

FI
G

U
R

AT
IO

N
 IT

EM
/C

SC
I

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(2
) F

A
C

TO
RY

 T
ES

T
EQ

U
IP

M
EN

T
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(3
) S

PE
C

IA
L

FA
C

TO
RY

 T
O

O
LI

N
G

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(4
) S

C
R

A
P

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(5
) E

N
G

IN
EE

R
IN

G
, E

N
G

IN
EE

R
IN

G
 D

AT
A

 R
EV

IS
IO

N
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(6
) R

EV
IS

IO
N

 O
F

TE
ST

 P
R

O
C

ED
U

R
ES

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(7
) Q

U
A

LI
FI

C
AT

IO
N

 O
F

N
EW

 IT
EM

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(8
) S

U
B

TO
TA

L
O

F
PR

O
D

. C
O

ST
S/

SA
V

IN
G

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

b.
 R

ET
R

O
FI

T
C

O
ST

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
) E

N
G

IN
EE

R
IN

G
 D

AT
A

 R
EV

IS
IO

N
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(2
) P

R
O

TO
TY

PE
 T

ES
TI

N
G

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(3
) K

IT
 P

R
O

O
F

TE
ST

IN
G

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(4
) R

ET
R

O
FI

T
K

IT
S

FO
R

 O
PE

R
AT

IO
N

A
L

SY
ST

EM
S

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(5
) P

R
EP

. O
F

M
W

O
/T

C
TO

/S
C

/A
LT

/T
D

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(6
) S

PE
C

IA
L

TO
O

LI
N

G
 F

O
R

 R
ET

R
O

FI
T

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(7
) C

O
N

TR
A

C
TO

R
 F

IE
LD

 S
ER

V
IC

E
EN

G
IN

EE
R

IN
G

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

Appendix B � 301

D
D

 F
or

m
 1

69
2-

5

(8
) G

O
V

’T
 P

ER
SO

N
N

EL
 IN

ST
A

LL
AT

IO
N

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(9
) T

ES
TI

N
G

 A
FT

ER
 R

ET
R

O
FI

T
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
0)

 M
O

D
IF

IC
AT

IO
N

 O
F

G
FE

/G
FP

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(1
1)

 Q
U

A
LI

FI
C

AT
IO

N
 O

F
G

FE
/G

FP
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
2)

 S
U

B
TO

TA
L

O
F

R
ET

R
O

FI
T

C
O

ST
S.

 S
A

V
IN

G
S

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

c.
 IN

TE
G

R
AT

ED
 L

O
G

IS
TI

C
S

SU
PP

O
RT

 C
O

ST
S/

SA
V

IN
G

S

(1
) S

PA
R

ES
/R

EP
A

IR
 P

A
RT

S
R

EW
O

R
K

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(2
) N

EW
 S

PA
R

ES
 A

N
D

 R
EP

A
IR

 P
A

RT
S

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(3
) S

U
PP

LY
/P

R
O

V
IS

IO
N

IN
G

 D
AT

A
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(4
) S

U
PP

O
RT

/T
ES

T
EQ

U
IP

M
EN

T
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(5
) R

ET
R

O
FI

T
K

IT
S

FO
R

 S
PA

R
ES

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(6
) O

PE
R

AT
O

R
 T

R
A

IN
IN

G
 C

O
U

R
SE

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(7
) M

A
IN

TE
N

A
N

C
E

TR
A

IN
IN

G
 C

O
U

R
SE

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(8
) R

EV
. O

F
TE

C
H

. M
A

N
./P

R
O

G
R

A
M

M
IN

G
 T

A
PE

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(9
) N

EW
 T

EC
H

. M
A

N
./P

R
O

G
R

A
M

M
IN

G
 T

A
PE

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
0)

 T
R

A
IN

IN
G

/T
R

A
IN

ER
S

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(1
1)

 IN
TE

R
IM

 S
U

PP
O

RT
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
2)

 M
A

IN
TE

N
A

N
C

E
M

A
N

PO
W

ER
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
3)

 C
O

M
PU

TE
R

 P
R

O
G

R
A

M
S/

D
O

C
U

M
EN

TA
TI

O
N

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

(1
4)

 S
U

B
TO

TA
L

O
F

IL
S

C
O

ST
S/

SA
V

IN
G

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

d.
 O

TH
ER

 C
O

ST
S/

SA
V

IN
G

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

e.
 S

U
B

TO
TA

L
C

O
ST

S/
SA

V
IN

G
S

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

SU
B

TO
TA

L
U

N
D

ER
 C

O
N

TR
A

C
T

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

f.
C

O
O

R
D

IN
AT

IO
N

 O
F

C
H

A
N

G
ES

 W
IT

H
 O

TH
ER

 C
O

N
TR

A
C

TO
R

S
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

g.
 C

O
O

R
D

IN
AT

IO
N

 C
H

A
N

G
ES

 B
Y

 G
O

V
ER

N
M

EN
T

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

ES
TI

M
AT

ED
 N

ET
 T

O
TA

L
C

O
ST

S/
SA

V
IN

G
S

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

302 � Software Configuration Management
EN

G
IN

EE
R

IN
G

 C
H

A
N

G
E

PR
O

PO
SA

L,
 P

A
G

E
5

O
R

IG
IN

AT
O

R
 N

A
M

E
A

N
D

 A
D

D
R

ES
S

EC
P

N
U

M
B

ER

52
. E

ST
IM

AT
ED

 C
O

ST
S

SA
V

IN
G

S/
SU

M
M

A
RY

, R
EL

AT
ED

 E
C

Ps
 (

U
se

 p
ar

en
th

es
es

 fo
r

sa
vi

ng
s)

N
/A

C
A

G
E

C
O

D
E

(a
)

EC
P

N
U

M
B

ER
(b

)
C

O
ST

S/
SA

V
IN

G
S

U
N

D
ER

C

O
N

TR
A

C
T

(c
)

O
TH

ER
 C

O
ST

S/
SA

V
IN

G
S

TO
 T

H
E

G
O

V
ER

N
M

EN
T

(d
)

PR
O

D
U

C
TI

O
N

 C
O

ST
/S

A
V

IN
G

 (
Su

bt
ot

al
 o

f C
os

ts
/S

av
in

g
El

em
en

ts
 fr

om
 b

lo
ck

51

a
ap

pl
ic

ab
le

 to
 a

irc
ra

ft,
 s

hi
p,

 ta
nk

, v
eh

ic
le

, m
is

si
le

, o
r

its
 s

ub
-s

ys
te

m
)

__
__

_
__

__
_

__
__

_
__

__
_

SU
B

TO
TA

L
PR

O
D

U
C

TI
O

N
 C

O
ST

S/
SA

V
IN

G
S

__
__

_
__

__
_

__
__

_
__

__
_

R
ET

R
O

FI
T

C
O

ST
S

(A
pp

lic
ab

le
 t

o
ai

rc
ra

ft,
 s

hi
p,

 t
an

k,
 v

eh
ic

le
, m

is
si

le
, o

r
its

su

b-
sy

st
em

)
__

__
_

__
__

_
__

__
_

__
__

_

SU
B

TO
TA

L
R

ET
R

O
FI

T
C

O
ST

S
__

__
_

__
__

_
__

__
_

__
__

_

IN
TE

G
R

AT
ED

 L
O

G
IS

TI
C

S
SU

PP
O

RT
 C

O
ST

S/
SA

V
IN

G

R
EV

IS
ED

 R
EQ

U
IR

EM
EN

TS
__

__
_

__
__

_
__

__
_

__
__

_

(1
) I

TE
M

 R
ET

R
O

FI
T

(I
f n

ot
 c

ov
er

ed
 u

nd
er

 “
b”

)
(A

pp
lic

ab
le

 to
 a

irc
ra

ft,
 s

hi
p

ta
nk

,
ve

hi
cl

e,
 m

is
si

le
, o

r
its

 s
ub

-s
ys

te
m

)
__

__
_

__
__

_
__

__
_

__
__

_

(2
) I

LS
 S

U
B

TO
TA

L
(A

pp
lic

ab
le

 to
 a

irc
ra

ft,
 s

hi
p,

 t
an

k,
 v

eh
ic

le
, m

is
si

le
 o

r
its

su

b-
sy

st
em

)
__

__
_

__
__

_
__

__
_

__
__

_

(3
) O

PE
R

AT
O

R
 T

R
A

IN
ER

 (
N

et
 to

ta
l c

os
t/

sa
vi

ng
 fr

om
 e

ac
h

EC
P

co
ve

rin
g

op
er

at
or

 tr
ai

ne
r)

__
__

_
__

__
_

__
__

_
__

__
_

(4
) M

A
IN

TE
N

A
N

C
E

TR
A

IN
ER

 (
N

et
 to

ta
l c

os
t/

sa
vi

ng
 fr

om
 e

ac
h

EC
P

co
ve

rin
g

m
ai

nt
en

an
ce

 tr
ai

ne
r)

__
__

_
__

__
_

__
__

_
__

__
_

(5
) O

TH
ER

 T
R

A
IN

IN
G

 E
Q

U
IP

M
EN

T
__

__
_

__
__

_
__

__
_

__
__

_

(6
) S

U
PP

O
RT

 E
Q

U
IP

M
EN

T
(N

et
 to

ta
l c

os
t/

sa
vi

ng
 fr

om
 e

ac
h

EC
P

on
 s

up
po

rt

eq
ui

pm
en

t)
__

__
_

__
__

_
__

__
_

__
__

_

(7
) I

LS
 P

LA
N

S
__

__
_

__
__

_
__

__
_

__
__

_

(8
) M

A
IN

TE
N

A
N

C
E

C
O

N
C

EP
T,

 P
LA

N
S,

 S
Y

ST
EM

 D
O

C
U

M
EN

TS
__

__
_

__
__

_
__

__
_

__
__

_

(9
) I

N
TE

R
IM

 S
U

PP
O

RT
 P

LA
N

__
__

_
__

__
_

__
__

_
__

__
_

PR
O

C
U

R
IN

G
N

O
N

-
R

EC
U

R
R

IN
G

 C
O

ST
S

Appendix B � 303

N
EW

 R
EQ

U
IR

EM
EN

TS
A

C
TI

V
IT

Y

C
O

D
E

R
EC

U
R

R
IN

G
C

O
ST

S
U

N
IT

Q
TY

TO
TA

L

(1
0)

 P
R

O
V

IS
IO

N
IN

G
 D

O
C

U
M

EN
TA

TI
O

N
__

__
_

__
__

_
_

_
__

__
__

_
__

__
_

(1
1)

 O
PE

R
 T

R
N

R
/T

R
N

G
 D

EV
IC

ES
/E

Q
U

IP
__

__
_

__
__

_
_

_
__

__
__

_
__

__
_

(1
2)

 M
A

N
U

A
LS

/P
R

O
G

R
A

M
M

IN
G

 T
A

PE
S,

 S
PA

R
ES

,
R

EP
A

IR
 P

A
RT

S
(F

or
 1

1)
__

__
_

__
__

_
_

_
__

__
__

_
__

__
_

(1
3)

 M
A

IN
TE

N
A

N
C

E
TR

N
R

/T
R

N
G

D

EV
IC

ES
/E

Q
U

IP
M

EN
T

__
__

_
__

__
_

_
_

__
__

__
_

__
__

_

(1
4)

 M
A

N
U

A
LS

/P
R

O
G

R
A

M
M

IN
G

 T
A

PE
S,

 S
PA

R
ES

,
R

EP
A

IR
 P

A
RT

S
(F

or
 1

3)
__

__
_

__
__

_
_

_
__

__
__

_
__

__
_

(1
5)

 S
U

PP
O

RT
 E

Q
U

IP
M

EN
T

__
__

_
__

__
_

_
_

__
__

__
_

__
__

_

(1
6)

 M
A

N
U

A
LS

/P
R

O
G

R
A

M
M

IN
G

 T
A

PE
S

(F
or

 1
5)

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
7)

 P
R

O
V

IS
IO

N
IN

G
 D

O
C

U
M

EN
TA

TI
O

N
 (

Fo
r

15
)

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
8)

 R
EP

A
IR

 P
A

RT
S

(F
or

 1
5)

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_
__

__
_

__
__

_

(1
9)

 S
U

B
TO

TA
L

IL
S

C
O

ST
S/

SA
V

IN
G

S
(S

um
 o

f c
. 1

 th
ro

ug
h

c.
 1

8)

C
A

G
E

C
O

D
E

EC
P

N
U

M
B

ER

d.
 O

TH
ER

 C
O

ST
S/

SA
V

IN
G

S
(T

ot
al

 fr
om

 b
lo

ck
 4

8d
 o

f r
el

at
ed

 E
C

Ps
)

__
__

_
__

__
_

__
__

_
__

__
_

TO
TA

L
O

TH
ER

 C
O

ST
S/

SA
V

IN
G

S
__

__
_

__
__

_
__

__
_

__
__

_

SU
B

TO
TA

LS
 O

F
C

O
LU

M
N

S
__

__
_

__
__

_
__

__
_

__
__

_

SU
B

TO
TA

L
U

N
D

ER
 C

O
N

TR
A

C
T

__
__

_
__

__
_

__
__

_
__

__
_

e.
 E

ST
IM

AT
ED

 N
ET

 T
O

TA
L

C
O

ST
S/

SA
V

IN
G

(a
 +

 b
 +

 c
 +

 d
)

__
__

_
__

__
_

__
__

_
__

__
_

304 � Software Configuration Management
EN

G
IN

EE
R

IN
G

 C
H

A
N

G
E

PR
O

PO
SA

L
N

O
TI

C
E

O
F

R
EV

IS
IO

N
 (

N
O

R
) A

N
D

 N
EW

 D
O

C
U

M
EN

T
SU

M
M

A
RY

 P
A

G
E

EC
P

N
U

M
B

ER

D
O

C
U

M
EN

T
A

FF
EC

TE
D

C
U

R
R

EN
T

R
EV

.
LT

R
.

N
O

TI
C

E
O

F
R

EV
IS

IO
N

 N
O

.
SP

EC
IF

IC
AT

IO
N

 C
H

A
N

G
E

N
O

TI
C

E
N

O
.

D
O

C
U

M
EN

T
TI

TL
E

C

A
G

E
C

O
D

E

 D
O

C
U

M
EN

T
N

U
M

B
ER

1. 2. 3. 4. 5. 6. 7. 8. 9.

Appendix B � 305

SH
EE

T
1

O
F

1

10
.

11
.

12
.

13
.

14
.

15
.

16
.

17
.

18
.

19
.

20
.

306 � Software Configuration Management

EN
G

IN
EE

R
IN

G
 C

H
A

N
G

E
PR

O
PO

SA
L

(E
C

P)
 (H

A
R

D
W

A
R

E)
, P

A
G

E
6

D
AT

E
(Y

Y
M

M
D

D
)

Fo
rm

 A
pp

ro
ve

d
O

M
B

 N
o.

 0
70

4-
01

88

EC
P

N
U

M
B

ER

53
. C

A
G

E
C

O
D

E

54
. C

O
N

FI
G

U
R

AT
IO

N
 N

O
M

EN
C

LA
TU

R
E

55
. T

IT
LE

 O
F

C
H

A
N

G
E

56
. D

AT
E

A
U

TH
O

R
IZ

AT
IO

N
 T

O
 P

R
O

C
EE

D
R

EC
EI

V
ED

 B
Y

 C
O

N
TR

A
C

TO
R

 (Y
Y

M
M

D
D

) →
�

S

ST
A

RT
 D

EL
IV

ER
Y

 C

C
O

M
PL

ET
E

D
EL

IV
ER

Y

 �

 P

R
O

G
R

ES
S

PO
IN

T

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

a. C O N F I G U R A T I O N

(1
) P

ro
du

ct
io

n

(2
) T

ec
h

M
an

ua
ls

/P
ro

g.

Ta
pe

s

(3
) R

et
ro

fit

(4
)

M
W

O
/T

C
TO

/S
C

/A
LT

/T
D

(5
) S

pa
re

s/
R

ep
ai

r
Pa

rt
s

Appendix B � 307

D
D

 F
or

m
 1

69
2-

5

b. S U P P O R T E Q U I P M E N T

(1
) P

ro
du

ct
io

n

(2
) T

ec
h

M
an

ua
ls

/P
ro

g.
 T

ap
es

(3
) R

et
ro

fit

(4
) M

W
O

/T
C

TO
/S

C
/A

LT
/T

D

(5
) S

pa
re

s/
R

ep
ai

r
Pa

rt
s

c. T R A I N E R

(1
) O

pe
ra

to
r

(2
) M

ai
nt

en
an

ce

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

308 � Software Configuration Management

EN
G

IN
EE

R
IN

G
 C

H
A

N
G

E
PR

O
PO

SA
L

(E
C

P)
 (S

O
FT

W
A

R
E)

, P
A

G
E

7
D

AT
E

(Y
Y

M
M

D
D

)
__

__
_

Fo
rm

 A
pp

ro
ve

d
O

M
B

 N
o.

 0
70

4-
01

88

EC
P

N
U

M
B

ER
__

__
_

57
. C

A
G

E
C

O
D

E
__

__
_

58
. C

O
M

PU
TE

R
 S

O
FT

W
A

R
E

IT
EM

 N
O

M
EN

C
LA

TU
R

E
__

__
_

59
. T

IT
LE

 O
F

C
H

A
N

G
E

__
__

_

60
. D

AT
E

A
U

TH
O

R
IZ

AT
IO

N
 T

O
 P

R
O

C
EE

D
R

EC
EI

V
ED

 B
Y

 C
O

N
TR

A
C

TO
R

 (Y
Y

M
M

D
D

) →
�

 S

ST
A

RT
 D

EL
IV

ER
Y

 C

 C

O
M

PL
ET

E
D

EL
IV

ER
Y

 �

 P

R
O

G
R

ES
S

PO
IN

T

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

a. C O N F I G U R A T I O N

(1
) S

of
tw

ar
e

En
gi

ne
er

in
g

(2
) S

of
tw

ar
e

D
oc

um
en

ta
tio

n

(3
) S

of
tw

ar
e

R
ep

lic
at

io
n

4)
 S

of
tw

ar
e

D
is

tr
ib

ut
io

n

Appendix B � 309

D
D

 F
or

m
 1

69
2-

5

b. S U P P O R T E Q U I P M E N T

(1
) S

of
tw

ar
e

En
gi

ne
er

in
g

En
vi

ro
nm

en
t U

pg
ra

de

(2
) S

of
tw

ar
e

Te
st

 E
nv

ir
on

m
en

t
U

pg
ra

de

c. T R A I N E R

(1
) O

pe
ra

to
r

(2
) M

ai
nt

en
an

ce

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

311

Appendix C

SAMPLE DATA DICTIONARY

Data Dictionary Entries for the ACME Library Management System

Configuration Identification: ACME.001.DD001

Name: Asset Database
Aliases: None
Where
Used/How
Used:

Used by the Database Management System to process
requests and return results to the Inquiry and
Administration Sub-systems

Content
Description:

Attributes associated with each asset including:
� Asset Number = 16 numeric digits
� ISBN Number = 16 alphanumeric characters
� Library of Congress Classification Number = 16 alphanu-

meric digits
� Asset Title = 64 alphanumeric characters
� Author = 32 alphanumeric characters
� Dewey Decimal Classification Number = 16 numeric digits
� Media Type = Enumeration {BOOK | MAGAZINE | CDROM

| REFERENCE}
� Status = Enumeration {IN | OUT | LOST | MISSING |

DUE_DATE}
� Category = Enumeration {FICTION | NONFICTION}
� Published = 32 alphanumeric characters
� Keywords = 64 alphanumeric characters
� Date Acquired = Date
� Location = 16 alphanumeric characters

Name: Membership Database
Aliases: None

312 � Software Configuration Management

Where
Used/How
Used:

Used by the Database Management System to process
requests and return results to the Inquiry and
Administration Sub-systems

Content
Description:

� Attributes associated with each asset including:
� Membership Number = 10 numeric digits
� Member Since Date = Date
� Last Name = 16 alphanumeric characters
� First Name = 16 alphanumeric characters
� Address = 64 alphanumeric characters
� Phone Number = 11 numeric digits (1, area code, phone

number)
� Assets on Loan = Array containing 10 strings, each contain-

ing 64 alphanumeric characters
� Assets Overdue = Array containing 10 string,s each contain-

ing 64 alphanumeric characters
� Late Fees Due = 10 numeric digits
� Maximum Allowed Loans = 2 numeric digits

Name: Member Data
Aliases: None
Where
Used/How
Used:

A file used to validate username and passwords for
members, librarians, and administrator when attempting to
access the system. The username and password entered is
compared with the username and password in this file.
Access is granted only if a match is found.

Content
Description:

Attributes associated with each asset including:
� Member Username = 16 alphanumeric digits
� Member Password = 16 alphanumeric digits

Name: Library Data
Aliases: None
Where
Used/How
Used:

Files maintained by the Administrator and used to provide
general information about the library.

Content
Description:

HTML files for:
� General Library Information (Policy, etc.)
� Coming Events
� Library Floor Map
� Library Directions Screen

Name: Database Catalog
Aliases: None
Where
Used/How
Used:

Used by the DDL Compiler process.

Content
Description:

Contains detailed information about the various objects in
the databases, including tables, indices, integrity
constraints, security constraints, etc.

313

Appendix D

PROBLEM CHANGE REPORT

314 � Software Configuration Management
(T

yp
e

o
r

Pr
in

t)

1.
 D

at
e

2.
 P

/C
R

 N
o

3.
 O

ri
gi

n
at

o
r

4.
 A

ct
iv

it
y

C
o

d
e

5.
 T

el
ep

h
o

n
e/

Ex
t.

6.
 T

it
le

7.
 C

at
eg

o
ry

: (
C

ir
cl

e)

 P

la
n

s

 C

o
n

ce
p

t

 R

eq
u

ir
em

en
ts

 D
es

ig
n

C
o

d
e

D

B
/d

at
a

fi
le

 T
es

t
In

fo

M
an

u
al

s

 O

th
er

 _
__

__
__

__
__

__
__

__
__

__
__

__

8.
 P

ri
o

ri
ty

: (
C

ir
cl

e)

 1

2

 3

4

 5

9.
 P

ro
b

le
m

/C
h

an
ge

 D
es

cr
ip

ti
o

n
:

Appendix D � 315
10

. C
o

rr
ec

ti
ve

 A
ct

io
n

:

11
. A

ct
io

n
s

Ta
ke

n
:

St
at

u
s

D
at

e

12
. Q

A
 S

ig
n

-O
ff

316 � Software Configuration Management

P/
C

R
 P

R
EP

A
R

AT
IO

N
 IN

ST
R

U
C

TI
O

N
S

1.
 T

IT
LE Pr
ob

le
m

/C
ha

ng
e

R
ep

or
t

2.
 D

ES
C

R
IP

TI
O

N
/P

U
R

PO
SE

2.
1

Th
e

Pr
ob

le
m

/C
ha

ng
e

R
ep

or
t (

P/
C

R
) s

ho
w

s
es

se
nt

ia
l d

at
a

on
 e

ac
h

so
ftw

ar
e

pr
ob

le
m

/c
ha

ng
e

de
te

ct
ed

. I
t a

ls
o

sh
ow

s
er

ro
rs

 o
n

om
is

si
on

s
in

 d
oc

um
en

ta
tio

n.
 S

uf
fic

ie
nt

 d
et

ai
l o

f t
he

pr
ob

le
m

 s
ha

ll
be

 r
ep

or
te

d
to

 e
na

bl
e

an
al

ys
is

 a
nd

 is
ol

at
io

n
or

 r
ep

lic
at

io
n

if
ne

ce
ss

ar
y.

3.
 A

PP
LI

C
AT

IO
N

 IN
TE

R
R

EL
AT

IO
N

SH
IP

3.
1

P/
C

R
s

ar
e

us
ed

 to
 r

ec
or

d
an

d
re

po
rt

 p
ro

bl
em

s
fo

un
d

th
ro

ug
ho

ut
 d

ev
el

op
m

en
t.

Th
ey

 a
re

 a
ls

o
us

ed
 to

 r
ep

or
t e

rr
or

s
or

 o
m

is
si

on
s

fo
un

d
in

 d
oc

um
en

ta
tio

n.
 T

he
 P

/C
R

 is
 th

e
ba

si
c

in
pu

t

to
 th

e
qu

al
ity

 a
ss

ur
an

ce
 p

ro
gr

am
 d

ur
in

g
th

e
te

st
 a

nd
 a

cc
ep

ta
nc

e
ph

as
e

of
 th

e
de

ve
lo

pm
en

t e
ffo

rt
. P

/C
R

s
on

 in
te

rf
ac

es
 w

ith
 o

th
er

 s
ys

te
m

s
re

qu
ir

e
jo

in
t r

es
ol

ut
io

n
ac

tio
n.

4.
 P

R
EP

A
R

AT
IO

N
 IN

ST
R

U
C

TI
O

N
S

1.
 D

at
e.

 T
he

 d
at

e
fo

rm
 is

 p
re

pa
re

d.

2.
 P

/C
R

 N
um

be
r.

P/
C

R
 N

um
be

r
as

si
gn

ed
 fo

r
co

nt
ro

l p
ur

po
se

s.

3.
 O

ri
gi

na
to

r.
Pr

in
te

d
na

m
e

of
 p

er
so

n
or

ig
in

at
in

g
th

e
P/

C
R

 fo
rm

.

4.
 A

ct
iv

ity
 C

od
e.

 T
he

 a
ct

iv
ity

 a
nd

 c
od

e
na

m
e

or
 n

um
be

r
of

 in
di

vi
du

al
 o

ri
gi

na
tin

g
th

e
P/

C
R

 fo
rm

.

5.
 T

el
ep

ho
ne

/E
xt

. O
ri

gi
na

to
r’s

 o
ffi

ce
 te

le
ph

on
e

nu
m

be
r,

an
d

ex
te

ns
io

n
(if

 a
pp

lic
ab

le
).

6.
 T

itl
e.

 N
am

e
us

ed
 to

 id
en

tif
y

pr
ob

le
m

/c
ha

ng
e.

7.
 C

at
eg

or
y.

 C
ir

cl
e

ap
pr

op
ri

at
e

ca
te

go
ry

 a
ss

oc
ia

te
d

w
ith

 p
ro

bl
em

/c
ha

ng
e

be
in

g
re

po
rt

ed
.

Appendix D � 317
C

at
eg

or
ie

s:

a.
 P

la
ns

 –
 O

ne
 o

f t
he

 p
la

ns
 d

ev
el

op
ed

 fo
r

th
e

pr
oj

ec
t

b.
 C

on
ce

pt
 –

 T
he

 o
pe

ra
tio

na
l c

on
ce

pt

c.
 R

eq
ui

re
m

en
ts

 –
 T

he
 s

ys
te

m
 o

r
so

ftw
ar

e
re

qu
ir

em
en

ts

d.
 D

es
ig

n
–

Th
e

de
si

gn
 o

f t
he

 s
ys

te
m

 o
r

so
ftw

ar
e

e.
 C

od
e

–
Th

e
so

ftw
ar

e
co

de

f.
D

at
ab

as
e/

da
ta

 fi
le

 –
 A

 d
at

ab
as

e
or

 d
at

a
fil

e

g.
 T

es
t i

nf
or

m
at

io
n

–
Te

st
 p

la
ns

, t
es

t d
es

cr
ip

tio
ns

, o
r

te
st

 r
ep

or
ts

h.
 M

an
ua

ls
 –

 T
he

 u
se

r,
op

er
at

or
, o

r
su

pp
or

t m
an

ua
ls

i.
O

th
er

 –
 O

th
er

 s
of

tw
ar

e
pr

od
uc

ts

8.
 P

ri
or

ity
. C

ir
cl

e
ap

pr
op

ri
at

e
pr

io
ri

ty
 c

od
e,

 1
 –

 5
.

Pr
io

ri
ty

 C
od

es
:

1
a.

 P
re

ve
nt

 th
e

ac
co

m
pl

is
hm

en
t o

f a
n

op
er

at
io

na
l o

r
m

is
si

on
 e

ss
en

tia
l c

ap
ab

ili
ty

b.

 Je
op

ar
di

ze
 s

af
et

y,
 s

ec
ur

ity
, o

r
ot

he
r

re
qu

ir
em

en
t d

es
ig

na
te

d
“c

ri
tic

al
”

2
a.

 A
dv

er
se

ly
 a

ffe
ct

 th
e

ac
co

m
pl

is
hm

en
t o

f a
n

op
er

at
io

na
l o

r
m

is
si

on
-e

ss
en

tia
l c

ap
ab

ili
ty

 a
nd

 n
o

w
or

k-
ar

ou
nd

 s
ol

ut
io

n
is

 k
no

w
n

b.

 A
dv

er
se

ly
 a

ffe
ct

 te
ch

ni
ca

l,
co

st
, o

r
sc

he
du

le
 r

is
ks

 to
 th

e
pr

oj
ec

t o
r

to
 li

fe
-c

yc
le

 s
up

po
rt

 o
f t

he
 s

ys
te

m
, a

nd
 n

o
w

or
k-

ar
ou

nd
 s

ol
ut

io
n

is
 k

no
w

n

3
a.

 A
dv

er
se

ly
 a

ffe
ct

 th
e

ac
co

m
pl

is
hm

en
t o

f a
n

op
er

at
io

na
l o

r
m

is
si

on
-e

ss
en

tia
l c

ap
ab

ili
ty

 b
ut

 a
 w

or
k-

ar
ou

nd
 s

ol
ut

io
n

is
 k

no
w

n

b.

 A
dv

er
se

ly
 a

ffe
ct

 te
ch

ni
ca

l,
co

st
, o

r
sc

he
du

le
 r

is
ks

 to
 th

e
pr

oj
ec

t o
r

to
 li

fe
-c

yc
le

 s
up

po
rt

 o
f t

he
 s

ys
te

m
, b

ut
 a

 w
or

k-
ar

ou
nd

 s
ol

ut
io

n
is

 k
no

w
n

4
a.

 R
es

ul
t i

n
us

er
/o

pe
ra

to
r

in
co

nv
en

ie
nc

e
or

 a
nn

oy
an

ce
 b

ut
 d

oe
s

no
t a

ffe
ct

 a
 r

eq
ui

re
d

op
er

at
io

na
l o

r
m

is
si

on
-e

ss
en

tia
l c

ap
ab

ili
ty

b.

 R
es

ul
t i

n
in

co
nv

en
ie

nc
e

or
 a

nn
oy

an
ce

 fo
r

de
ve

lo
pm

en
t o

r
su

pp
or

t p
er

so
nn

el
, b

ut
 d

oe
s

no
t p

re
ve

nt
 th

e
ac

co
m

pl
is

hm
en

t o
f t

ho
se

 r
es

po
ns

ib
ili

tie
s

5
A

ny
 o

th
er

 e
ffe

ct

9.
 P

ro
bl

em
/C

ha
ng

e
D

es
cr

ip
tio

n.
 W

ri
te

 a
 d

es
cr

ip
tio

n
of

 th
e

pr
ob

le
m

/c
ha

ng
e.

 D
ev

el
op

 a
 w

or
d

pi
ct

ur
e

of
 e

ve
nt

s
le

ad
in

g
up

 to
 th

e
pr

ob
le

m
. S

tr
uc

tu
re

 s
ta

te
m

en
ts

 s
o

th
at

 th
e

pr
og

ra
m

m
er

/te
st

 a
na

ly
st

 c
an

 d
up

lic
at

e
th

e
si

tu
at

io
n.

 C
ite

 e
qu

ip
m

en
t b

ei
ng

 u
se

d,
 u

nu
su

al
 c

on
fig

ur
at

io
n,

 e
tc

. I
nd

ic
at

e
co

ns
ol

es
 o

nl
in

e,
 m

od
es

, e
tc

.,
if

ap
pl

ic
ab

le
. I

f c
on

tin
ua

tio
n

sh
ee

ts
 a

re
 r

eq
ui

re
d,

 fi
ll

in
 p

ag
e

__
__

_o
f _

__
__

__
 a

t t
he

 to
p

of
 th

e
P/

C
R

 fo
rm

.

10
. C

or
re

ct
iv

e
A

ct
io

n:
 A

 d
es

cr
ip

tio
n,

 b
y

th
e

pr
og

ra
m

m
er

/te
st

er
, o

f a
ct

io
ns

 ta
ke

n
to

 r
es

ol
ve

 th
e

re
po

rt
ed

 p
ro

bl
em

 o
r

to
 c

om
pl

et
e

th
e

re
qu

es
te

d
ch

an
ge

.

11
. A

ct
io

ns
 T

ak
en

: E
nt

er
 th

e
st

at
us

/d
is

po
si

tio
n

an
d

da
te

 to
 in

di
ca

te
 th

e
cu

rr
en

t s
ta

tu
s.

 W
he

n
th

e
st

at
us

 c
ha

ng
es

, l
in

e
ou

t t
he

 o
ld

 s
ta

tu
s

an
d

da
te

 a
nd

 e
nt

er
 th

e
ap

pr
op

ri
at

e
ne

w
 s

ta
tu

s
an

d

da
te

.

12
. Q

A
 S

ig
n-

of
f.

Si
gn

at
ur

e
by

 d
es

ig
na

te
d

qu
al

ity
 a

ss
ur

an
ce

 (Q
A

) o
rg

an
iz

at
io

n
m

em
be

r
au

th
or

iz
in

g
im

pl
em

en
ta

tio
n

of
 th

e
co

rr
ec

tiv
e

ch
an

ge
(s

) a
nd

 c
er

tif
yi

ng
 th

e
co

rr
ec

tn
es

s
an

d

co
m

pl
et

en
es

s
of

 th
e

ch
an

ge
(s

).

319

Appendix E

TEST PLAN

Table of Contents

1 Revision History . 320
2 Introduction . 320

2.1 Goals and Objectives . 320
2.2 Statement of Scope. 321
2.3 Major Constraints . 321

3 Test Plan . 321
3.1 System Description . 322
3.2 Testing Strategy . 324
3.3 Testing Resources. 324
3.4 Testing Metrics . 325
3.5 Testing Artifacts . 325
3.6 Testing Schedule . 326

4 Test Procedures . 326
4.1 Class Testing . 326
4.2 Integration Testing . 326

5 Appendix E1: Class Testing Test Cases . 327
5.1 Application Controller Sub-system . 327
5.2 User Management Sub-system. 331
5.3 Resource Management Sub-system . 338
5.4 Order Sub-system. 341
5.5 Accounting Sub-system. 350
5.6 Customer Relationship Management Sub-system 353
5.7 Persistence Sub-system . 353

6 Appendix E2: Integration Testing Tests . 356
6.1 Test Case: Customer Registration CI: DD.0001.TEST029. 356
6.2 Test Case: Reallocate Resources CI: DD.0001.TEST030 358

320 � Software Configuration Management

6.3 Test Case: Search for Service Provider and Initiate Order CI:
 DD.0001.TEST031 . 359
6.4 Test Case: Place Order CI: DD.0001.TEST032 360
6.5 Test Case: Pay for Service CI: DD.0001.TEST033 361

7 Appendix E3: Project Schedule . 362

1 REVISION HISTORY

The following is a revision history table for the Dog E-DayCare™ system’s
Software Test Cases document.

2 INTRODUCTION

Software testing is a critical quality assurance step in the software devel-
opment process. Testing of the Dog E-DayCare™ system is undertaken to
identify errors in the product before delivery to the client. Thorough testing
ensures the product will meet user requirements, minimizing costs in the
long run, bolstering client satisfaction, and promoting repeat business.

The purpose of this document is to provide the Test Plan for the Dog
E-DayCare™ system. The Test Plan details the testing strategy, metrics,
artifacts, schedule, procedures, and test cases. Two sets of sample test
cases have been developed: class test cases and integration test cases.
Class test cases focus on classes and their operations within a specific
sub-system. Integration test cases take a larger view of the product,
uncovering errors that could occur as sub-systems interact.

2.1 Goals and Objectives

Dog E-DayCare™ connects dog owners to dog-care service providers,
providing a Web-based national forum to locate, purchase, and monitor
pet-care services. The mission of the Dog E-DayCare™ project team is to
fill a gap in the current market for online pet-care resources. For dog
owners, finding a service that meets their immediate needs can be chal-
lenging and for dog-care service providers, there is a vibrant market to
be reached. Dog E-DayCare™ envisions bringing together dog owners
and service providers nationally to support this challenge.

Date Configuration ID Version Description Author(s)

Test Plan � 321

2.2 Statement of Scope

While there are several online directories of pet-care services, there are
few E-businesses offering a service locator as well as the ability to purchase
and monitor pet-care services online.

The Dog E-DayCare™ system will be released in two phases. In the
first phase, it will allow dog owners to search for services within a radius
of their choice, and based on their specific needs, whether they are looking
for ongoing in-home daycare, daycare outside the home, or an afternoon
walk and grooming. Once a dog owner selects a service, the Dog E-
DayCare™ system will allow them to submit all required information,
schedule, and pay for service.

Dog-care service providers who have registered with Dog E-DayCare™
will have access to the system through two different forums: client software
on their workstations and/or the Web. The system will notify service
providers of potential clients, allowing them to communicate with dog
owners, and access submitted information. Service providers will be able
to coordinate scheduling of multiple clients, e-mail clients, and bill clients.

Phase II of the Dog E-DayCare™ system will introduce a range of
additional tools to facilitate communication between the Customer and
Service Provider. Discussion forums, chat rooms, and instant messaging
will greatly enhance Customer-Service Provider relations. In addition, with
selected Service Providers, Customers will be able to view their dogs
online and receive an update of their dog’s status. Dog E-DayCare™ users
will also be able to access dog-care “tips of the day.”

Dog E-DayCare™ also envisions partnering with community service
organizations. For example, matching puppy raisers to puppies for Guiding
Eyes for the Blind, or potential dog owners to rescued dogs on behalf of
Lab Rescue. Community service is the foundation on which Dog E-
DayCare™ is built.

2.3 Major Constraints

As identified in the Software Requirements Specification, the most obvious
limitation in this project is the experience of the project team. This is our
first attempt at going through the entire software development life cycle
and presenting a product that satisfies requirements in a timely and
efficient manner.

Thorough testing is particularly imperative in this context.

3 TEST PLAN

The Test Plan provides an incremental and iterative process of testing
from small to large. The Dog E-DayCare™ system has been designed using

322 � Software Configuration Management

an object-oriented approach. Its smallest components are the classes that
encapsulate the responsibilities and attributes associated with the system’s
various functions. Sets of related classes have been organized into sub-
systems. The testing process first examines the classes within sub-systems
through class testing, and then examines the interactions among sub-
systems through integration testing. Integration testing is followed by
validation testing and system testing, which are not addressed in this plan.

The overall system description, the test strategy, testing resources and
output, and the test schedule are detailed below.

3.1 System Description

The Dog E-DayCare™ system is composed of seven sub-systems. Each
sub-system has an associated interface and represents a set of related
responsibilities. The sub-systems comprise the following:

� Application Controller
� User Management
� Resource Management
� Order
� Accounting
� Customer Relationship Management1

� Persistence

The Application Controller sub-system provides a “core” for the entire
application. The controller acts as a “grand central station” for each and
every process that takes place within the scope of the application. The
User Management sub-system provides a central location for handling
each and every piece of user data. The Resource Management sub-system
provides the application with its overall scheduling capabilities. The Order
sub-system has responsibility for supporting the ordering of products and
services from Service Providers by Dog E-DayCare™ clients. The Account-
ing sub-system is responsible for processing the financial transactions. The
Customer Relationship Management sub-system provides the application
with the ability to provide an opportunity for interaction between the
customers and service care providers.2 Finally, the Persistence Sub-system
is responsible for the storage, retrieval, and update of data.

The following System Collaboration Diagram (see Figure E1) demon-
strates the collaboration or “hand-shaking” that takes place throughout
the major sub-systems within the application. The Application Controller
is the core of the system — each sub-system generates a request and a
corresponding response. The Application Controller must handle both the
request and the response. It receives the request, processes a response,

Test Plan � 323

and returns the response to the calling function. This can also cross over
into other layers of the system. For example, if the Accounting sub-system

Figure E1 Collaborations between Major Sub-Systems

«sub-system»
Order

«sub-system»
Resource

Management

«sub-system»
Application
Controller

«sub-system»
Accounting

«sub-system»
User

Management

«sub-system»
Persistence

«sub-system»
Customer

Relationship
Management

User Response

User Request

In
fo

rm
at

io
n

S
to

re
d

In
fo

rm
at

io
n

R
et

rie
ve

d

Accounting Request

Accounting Response

R
et

rie
va

l R
es

po
ns

e

R
et

rie
va

l R
eq

ue
st

R
es

ou
rc

e
R

eq
ue

st

R
es

ou
rc

e
R

es
po

ns
eO

rder R
esponse

O
rder Input

C
ustom

er R
equest

C
ustom

er R
esponse

RDB

Phase II

324 � Software Configuration Management

request requires information from the Ordering sub-system to accomplish
its tasks, the Application Controller mediates between these sub-systems
to formulate a response and provide it to the requester.

3.1.1 System Collaboration Diagram

Figure E1 depicts the collaborations that exist between the major Dog E-
DayCare™ sub-systems.

3.2 Testing Strategy

In the object-oriented context, no operation can be tested in isolation.
This poses a challenge to testers. The overall objective of testing is to
uncover errors. The strategy for testing the Dog E-DayCare™ system entails
first thoroughly testing the classes within sub-systems through Class Test-
ing, and then testing interactions among sub-systems through scenario-
based Integration Testing.

A set of test cases is developed for each testing method. Test cases
for both Class and Integration Testing must exercise the requirements of
the system. For the purpose of this Test Plan, a sample of tests has been
developed and provided in Appendices E1 and E2.

Further details on Class Testing and Integration Testing in general are
provided in Section 4: Testing Procedures, below.

3.3 Testing Resources

3.3.1 Staffing

The project team developing the Dog E-DayCare™ system consists of four
members as detailed in the table below. Testing is a joint activity in which
all team members participate. This activity is led by the Documentation
Specialist.

Team Members:

� Web Software Developer, Sr.
� Web Designer, Sr.
� Documentation Specialist, Sr.
� Project Lead — Software Engineer

3.3.2 Tools

The hardware used for testing the Dog E-DayCare™ system will include:

Test Plan � 325

� SQL Server 2000 to host the system
� Desktop (Pentium III processor) with a standard 56K modem to

access the system
� Laptop to record test results

The software required for testing will include the stubs and drivers
developed to support class testing.

3.4 Testing Metrics

It is envisioned that both Class Testing and Integration Testing will be
carried out through several iterations, until all errors are corrected. For
each iteration, Class Testing will involve recording the following metrics:

� For each class, indicators of test failure (as identified in the test
cases)

� Number of failure indicators per class
� Number of failure indicators per sub-system
� A categorization of failure indicators by severity
� Number of repeat failures (not resolved in the previous iteration)
� Hours spent by test team in test process
� Hours spent by development team in correcting failures

Integration Testing will involve recording a similar set of metrics for
each iteration; however, the level of analysis will be the scenario. In other
words:

� For each scenario, indicators of test failure (as identified in the test
cases)

� Number of failure indicators per scenario
� A categorization of failure indicators by severity
� Number of repeat failures (not resolved in the previous iteration)
� Hours spent by test team in test process
� Hours spent by development team in correcting failures

3.5 Testing Artifacts

The artifacts of testing that will be provided to the client include:

� Test Plan
� Test Cases
� Test Results
� Test Report

326 � Software Configuration Management

3.6 Testing Schedule

Class Testing will be undertaken as each set of sub-systems is completed.
The following provides general information on how testing will be sched-
uled:

� PS+35 days: Class testing of Application Controller and Persistence
sub-systems

� PS+49 days: Class testing of User Management and Order sub-systems
� PS+64 days: Class testing of Resource Management and Accounting

sub-systems
� PS+86 days: Scenario-based Integration Testing

A detailed project schedule is provided in Appendix E3.

4 TEST PROCEDURES

4.1 Class Testing

Per the Project Schedule, class testing will take place as pairs of sub-
systems have been completed. Test cases for class testing must be explicitly
associated with the class to be tested. Effective class testing depends on
well-articulated test cases. The test cases detail the:

� Description. The description includes the test’s purpose (i.e., which
class will be tested) and the particular responsibilities that will be
tested.

� Required stubs and/or drivers. As stated previously, components of
an object-oriented system cannot be tested in isolation. Because of
the collaborations that must take place within and across sub-systems,
class testing will likely require the use of stubs and drivers. In object-
oriented testing, a stub is a stand-in for a subclass, and a driver is a
sort of tester class that accepts test case data, passes data back to
the class, and prints relevant results.

� Test steps. The test steps detail the events and states the system will
move through from the beginning through to the end of the test.

� Expected results. The expected results provide the indicators of test
success and test failure.

4.2 Integration Testing

Per the Project Schedule, Integration Testing will take place once all sub-
systems have been developed and tested. Test cases are scenario based,

Test Plan � 327

reflecting what users need to do with the Dog E-DayCare™ system. Similar
to the test cases above, the integration test cases detail the:

� Description. The description includes the test’s purpose (i.e., which
scenario or use case will be tested) and the particular sub-systems
that must interact in order for the scenario to be completed.

� Required stubs and/or drivers. In object-oriented testing, stubs and
drivers are critical for Class Testing. However, if Class Testing is
thorough, stubs and drivers would not be necessary for completion
of Integration Testing.

� Test steps. The test steps detail the events and states the system will
move through from the beginning through to the end of the test.

� Expected results. The expected results provide the indicators of test
success and test failure.

Sample Class and Integration Test Cases are provided in Appendices E1
and E2, respectively.

5 APPENDIX E1: CLASS TESTING TEST CASES

Class tests are developed for each sub-system of the Dog E-DayCareTM

system. A sample of class test cases follows.

5.1 Application Controller Sub-system

The Application Controller sub-system provides a “core” for the entire
application. The controller acts as a “grand central station” for each and
every process that takes place within the scope of the application.

5.1.1 Test Case: ApplicationController:ApplicationController
CI: DD.0001.TEST001

5.1.1.1 Description

This test case tests to see if the user functions invoked by the Application
user interface are handled correctly. This interface is invoked by the other
sub-systems when actions are performed and requests are made from
their respective user interfaces. This particular test focuses on the user
who is attempting to search for a service care provider within their area.

5.1.1.2 Required Stubs/Drivers

The SearchUI will be invoked, which is part of the presentation layer.

328 � Software Configuration Management

5.1.1.3 Test Steps

1. The user will press the Search button within the Order sub-system,
which is part of the presentation layer.

2. The user will be presented with a form to fill in his search criteria.
3. The search criteria will be concatenated to form a full select query

against the database. (“Select * from ServiceSchedule where location
= inputlocation and date/time = inputdatetime, and servicetype =
inputservicetype order by location”)

4. The user’s search criteria will be evaluated and the results will be
displayed.

5. The user may then select the desired result and schedule the service.

5.1.1.4 Expected Results

Test Success

The application controller sub-system successfully handles the routing
of the information so that the query data goes from the presentation
layer to the application controller layer, to the persistence layer, and
ultimately is used to query the database. Success will be measured by
the accuracy of the information (results) that is returned as a result of
the query string.

Test Failure

1. The concatenation that must take place to form the query could
be invalid, which would result in an error message when the query
is executed against the database.

2. The route that the Application Controller must take may not be
followed because of a flaw in the logic.

3. The query string concatenation may not be sufficient and the wrong
data could be returned.

5.1.2 Test Case: ApplicationController:ApplicationController
CI: DD.0001.TEST002

5.1.2.1 Description

This test case tests to see if the user functions invoked by the Application
user interface are handled correctly. This interface is invoked by the other
sub-systems when actions are performed and requests are made from
their respective user interfaces. This particular test will verify that the user

Test Plan � 329

is able to view the Tip of the Day when the Tip of the Day button is
pressed.

5.1.2.2 Required Stubs/Drivers

The CommunicationUI from the Customer Relationship Management mod-
ule will be used heavily in conjunction with the communication class
within that same sub-system.

5.1.2.3 Test Steps

1. The user will successfully log on to the system.
2. The user will press the Tip of The Day button.
3. The Tip of the Day will be displayed within the user interface.

5.1.2.4 Expected Results

Test Success

The success of the test must be measured based on the Application
Controller sub-system’s ability to use the system data to determine the
date and use that as the query string to invoke the persistence sub-system
that will use the query string against the database. The test passes if the
Tip of the Day is returned with the correct Tip of the Day for today’s date.

Test Failure

1. An exception may occur if the incorrect date is retrieved from the
system time, and therefore the wrong Tip of the Day is returned.

2. An exception may also occur if the correct tip is displayed, but in
an incorrect format.

5.1.3 Test Case: ApplicationController:ApplicationController
CI: DD.0001.TEST003

5.1.3.1 Description

This test case tests to see if the user functions invoked by the Application
user interface are handled correctly. This interface is invoked by the other
sub-systems when actions are performed and requests are made from
their respective user interfaces. This specific test will determine if the
user’s account balance is updated after a payment is made.

330 � Software Configuration Management

5.1.3.2 Required Stubs/Drivers

1. The PaymentUI, which is part of the presentation layer, must have
been invoked and a payment must be attempted.

2. The Accounting sub-system and its interfaces will be invoked.

5.1.3.3 Test Steps

1. The user will successfully log on to the system.
2. The user will navigate to his account information.
3. The user will select the option to make a payment on his balance.
4. The user will be presented a form with which to indicate the amount

of the payment and provide/change his credit card information.
5. The user will enter an amount and use his preregistered credit card

information.
6. The user will press the Pay button.

5.1.3.4 Expected Results

Test Success

The success of this test can be measured by the user’s new balance
reflecting the recent payment on his account balance. Performing a query
against the database to determine if the account balance is correct will
test this. The ApplicationController is tested because it is its responsibility
to ensure that the correct route is followed to ultimately commit the
transaction and return a successful message.

Test Failure

1. An exception may occur if the query string is malformed. This could
be caused by invalid data entry or faulty logic.

2. An exception may also occur if the update is unsuccessful and the
query returns an invalid balance.

Test Case: ApplicationController:ApplicationController
CI: DD.0001.TEST004

5.1.4.1 Description

This test case tests to see if the user functions invoked by the Application
user interface are handled correctly. This interface is invoked by the other

Test Plan � 331

sub-systems when actions are performed and requests are made from
their respective user interfaces. This particular test will ensure that the
service care provider can successfully update their scheduling information.

5.1.4.2 Required Stubs/Drivers

The Resource Management sub-system will be invoked, with particular
attention to the resource class, which is used for scheduling.

5.1.4.3 Test Steps

1. The service care provider will successfully log on to the system.
2. The service care provider will press the Resource button.
3. A form will be presented, which will allow the service care provider

to specify that it wants to edit its resource schedule.
4. The service care provider will modify its employee’s schedule to

exclude the dog shearer on a particular day.

5.1.4.4 Expected Results

Test Success

The success of this test can be determined by a query performed against
the database, which is invoked when the user attempts to search for that
particular service. The application controller will be tested because it is
its responsibility to accept the query string and commit the transaction to
the database via the Persistence sub-system.

Test Failure

1. An exception may occur if the concatenation of the query string is
faulty, which will result in a database SQL error.

2. An exception may also occur if the user cannot see the changes
updated via the user interface, which indicates that the test was
unsuccessful.

5.2 User Management Sub-system

The User Management sub-system provides a central location for handling
each and every piece of user data. This is very important in the parsing
of the system.

332 � Software Configuration Management

5.2.1 Test Case: Security Manager :: addUser(in user : User)
CI: DD.0001.TEST005

5.2.1.1 Description

The purpose of the test is to determine whether the Security Manager
class is carrying out its responsibilities as expected. Security Manager is
a critical class of the User Management sub-system, adding and removing
users and their roles and authenticating users. This test will focus specif-
ically on adding a user to the system.

5.2.1.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
RegisterUIDriver (smaller version of RegisterUI class)

Stubs: UserStub (smaller version of User class)
NextStub (captures next button clicks)

5.2.1.3 Test Steps

1. Open Register User Interface.
2. Input information “about you.”
3. Click Next.
4. Input information “about your dog.”
5. Click Next.
6. Input username and password.
7. Click Finish.
8. View results.

5.2.1.4 Expected Results

Test Success

1. Driver displays information entered for user.

Test Failure

1. Driver does not display information entered for user.

Test Plan � 333

5.2.2 Test Case: Security Manager :: removeUser(in user : User)
CI: DD.0001.TEST006

5.2.2.1 Description

The purpose of the test is to determine whether the Security Manager
class is carrying out its responsibilities as expected. Security Manager is
a critical class of the User Management sub-system, adding and removing
users and their roles and authenticating users. This test will focus specif-
ically on removing a user.

5.2.2.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
RegisterUIDriver (smaller version of RegisterUI class)

Stubs: UserStub (smaller version of User class)
NextStub (captures next button clicks)

5.2.2.3 Test Steps

1. Open Register User Interface.
2. Select option to “cancel registration.”
3. Input user id in appropriate field.
4. Click Remove.
5. View results.

5.2.2.4 Expected Results Description

Test Success

1. User id removed no longer appears in user id table.

Test Failure

1. User id removed persists in user id table.

5.2.3 Test Case: Security Manager :: authenticateUser(in user : User)
: Boolean
CI: DD.0001.TEST007

5.2.3.1 Description

The purpose of the test is to determine whether the Security Manager
class is carrying out its responsibilities as expected. Security Manager is

334 � Software Configuration Management

a critical class of the User Management sub-system, adding and removing
users and their roles and authenticating users. This test will focus specif-
ically on user authentication.

5.2.3.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
LoginUIDriver (smaller version of LoginUI class)

Stubs: UserStub (smaller version of User class)
NextStub (captures next button clicks)
RoleStub (captures role assigned to user)

5.2.3.3 Test Steps

1. Open Login User Interface.
2. Input username and password.
3. Click Login.
4. View results.

5.2.3.4 Expected Results

Test Success

1. User enters a correct username and password, the welcome page
appears, and the name of the user is displayed in the upper-right
corner.

2. User enters an incorrect name and password. A login failure mes-
sage is displayed asking the user to try again.

Test Failure

1. User enters a correct username and password. A login failure
message is displayed.

2. User enters an incorrect username and password, the welcome page
appears, and the name of the user is displayed in the upper-right
corner.

5.2.4 Test Case: Customer :: getDogs() : Collection
CI: DD.0001.TEST008

5.2.4.1 Description

The purpose of the test is to determine whether the Customer class is
carrying out its responsibilities as expected. Customer’s role in the User

Test Plan � 335

Management sub-system is to receive, store, and return a range of infor-
mation associated with a particular Customer. This test will focus specif-
ically on retrieving a list of all dogs belonging to a particular Customer.

5.2.4.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
SearchUIDriver (smaller version of SearchUI class)

Stubs: UserStub (smaller version of User class)
NextStub (captures next button clicks)
DogStub (small version of Animal Owner, Animal, and Dog classes)

5.2.4.3 Test Steps

1. Open Search User Interface (for Service Providers).
2. Input Customer ID.
3. Click Search.
4. View results.

5.2.4.4 Expected Results

Test Success

1. The names of all dogs owned by the customer are listed in the
results page.

Test Failure

1. The names of dogs owned by other customers are listed in the
results.

2. No dog names are listed in the results.

5.2.5 Test Case: Customer :: getInvoices() : Collection
CI: DD.0001.TEST009

5.2.5.1 Description

The purpose of the test is to determine whether the Customer class is
carrying out its responsibilities as expected. Customer’s role in the User
Management sub-system is to receive, store, and return a range of infor-
mation associated with a particular Customer. This test will focus specif-
ically on retrieving a correct list of all invoices associated with a Customer.

336 � Software Configuration Management

5.2.5.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
SearchUIDriver (smaller version of SearchUI class)

Stubs: UserStub (smaller version of User class)
NextStub (captures next button clicks)
InvoiceStub (smaller version of Invoice class)

5.2.5.3 Test Steps

1. Open Dog E-DayCareTM search interface (for Service Providers).
2. Enter Customer ID.
3. Click on Search.
4. View results.

5.2.5.4 Expected Results

Test Success

1. All invoices associated with the customer are listed.

Test Failure

1. Invoices associated with another customer are listed.
2. None of the invoices associated with the customer are listed.

5.2.6 Test Case: Service Provider :: addServiceOffering()
CI: DD.0001.TEST010

5.2.6.1 Description

The purpose of the test is to determine whether the Service Provider class
is carrying out its responsibilities as expected. Service Provider’s role in
the User Management sub-system is to receive, store, and return a range
of information associated with a particular Service Provider. This test will
focus specifically on adding a service offering for a specific Service
Provider.

5.2.6.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
RegisterUIDriver (smaller version of RegisterUI class)

Test Plan � 337

Stubs: ServiceProviderStub (smaller version of Service Provider class)
ServiceStub(smaller version of Service class)
NextStub (captures next button clicks)

5.2.6.3 Test Steps

1. Open Service Details page of Company Registration.
2. Input service information requested.
3. Click “add another service.”
4. Input service information requested.
5. Click Next.
6. View results.

5.2.6.4 Expected Results

Test Success

1. Services information for particular company is present in Service
Table.

Test Failure

1. Service information for particular company is not present in Service
Table.

5.2.7 Test Case: Service Provider:: getAddress()
CI: DD.0001.TEST011

5.2.7.1 Description

The purpose of the test is to determine whether the Service Provider class
is carrying out its responsibilities as expected. Service Provider’s role in
the User Management sub-system is to receive, store, and return a range
of information associated with a particular Service Provider. This test will
focus specifically on retrieving address information for a service provider.

5.2.7.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)
SearchUIDriver (smaller version of SearchUI class)

Stubs: ServiceProviderStub (smaller version of ServiceProvider class)
NextStub (captures Next button clicks)

338 � Software Configuration Management

5.2.7.3 Test Steps

1. Open Dog E-DayCareTM search interface (for Customers).
2. Enter name of Service Provider.
3. Click on Search.
4. View results.

5.2.7.4 Expected Results

Test Success

1. If address information is available, correct address information is
displayed in search results.

2. If address information is not available, no address information is
displayed in search results.

Test Failure

1. If address information is available, incorrect address information is
displayed in search results.

2. If address information is not available, someone’s address informa-
tion is displayed in search results.

5.3 Resource Management Sub-System

This Resource Management sub-system provides the application with its
overall scheduling capabilities. It uses various respective classes and sub-
systems to ensure that the user has up-to-date information regarding the
services of interest.

5.3.1 Test Case: ResourceUI :: showCreate()
CI: DD.0001.TEST012

5.3.1.1 Description

The purpose of this test case is to test the Resource Management User
Interface class’ (ResourceUI) showCreate() method to determine if it can
display the “Register Company – resource details” screen (see SDS section
11.22) as an add screen.

5.3.1.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)

Test Plan � 339

Stubs: ResourceStub (smaller version of Resource class)
NextStub (captures next button clicks)
OtherButtonsStub (captures other buttons clicked)

5.3.1.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Select “Staff” from the Resource Type drop-down list.
3. Enter a Staff Member’s First Name (if resource type = Staff).
4. Enter a Staff Member’s Last Name (if resource type = Staff).
5. Select an item in the Position drop-down list.
6. Determine that the Height, Width, and Length fields are protected.
7. Press the Next button.

5.3.1.4 Expected Results

Test Success

1. The IUserInterfaceDriver should display the “Register Company –
resource details” screen in the Web browser.

2. The Resource Type drop-down list should contain an entry for Staff
and permit its selection.

3. The Staff Member First Name should be enterable.
4. The Staff Member Last Name should be enterable.
5. The Position drop-down list should be enterable and permit the

selection of one of its items.
6. The Height, Width, and Length fields should be protected.
7. The Next stub should return a basic Web page.

Test Failure

1. Report all failures.

5.3.2 Test Case: ResourceUI :: showEdit()
CI: DD.0001.TEST013

5.3.2.1 Description

The purpose of this test case is to test the Resource Management User
Interface class’ (ResourceUI) showEdit() method to determine if it can
display the “Register Company – resource details” screen (see SDS section
11.22) as an edit screen.

340 � Software Configuration Management

5.3.2.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)

Stubs: ResourceStub (smaller version of Resource class)
NextStub (captures Next button clicks)
OtherButtonsStub (captures other buttons clicked)

5.3.2.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine that “Staff” is displayed from the Resource Type drop-

down list.
3. Update the Staff Member’s First Name (if resource type = Staff).
4. Update the Staff Member’s Last Name (if resource type = Staff).
5. Select another item in the Position drop-down list.
6. Determine that the Height, Width, and Length fields are protected.
7. Press the Next button.

5.3.2.4 Expected Results

Test Success

1. The IUserInterfaceDriver should display the “Register Company –
resource details” screen in the Web browser.

2. The Resource Type drop-down list should display an entry for Staff.
3. The Staff Member First Name should be updated.
4. The Staff Member Last Name should be updated.
5. The Position drop-down list should be enterable and permit the

selection of one of its items.
6. The Height, Width, and Length fields should be protected.
7. The Next stub should return a basic Web page.

Test Failure

1. Report all failures.

5.3.3 Test Case: ResourceUI :: showSearch()
CI: DD.0001.TEST014

5.3.3.1 Description

The purpose of this test case is to test the Resource Management User
Interface class’s (ResourceUI) showSearch() method to determine if it can
display the Resource Search screen (example not present in SDS).

Test Plan � 341

5.3.3.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)

Stubs: ServiceProviderStub (smaller version of ServiceProvider class)
ResourceStub (smaller version of Resource class)
SearchStub (captures Search button clicks)
OtherButtonsStub (captures other buttons clicked)

5.3.3.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine that the Service Provider drop-down list displayed.
3. Determine that the Resource Type drop-down list displayed.
4. Select a service provider from the Service Provider drop-down list.
5. Select a resource type from the Resource Type drop-down list.
6. Press the Search button.

5.3.3.4 Expected Results

Test Success

1. The IUserInterfaceDriver should display the “Register Company –
resource details” screen in the Web browser.

2. The Service Provider drop-down list should display service provid-
ers.

3. The Resource Type drop-down list should display the resource
types that the selected service provider supports.

4. The service provider selected should be visible in the drop-down
list.

5. The resource type selected should be visible in the drop-down list.
6. The Search stub should return a basic Web page.

Test Failure

1. Report all failures.

5.4 Order Sub-system

The Order sub-system has responsibility for supporting the ordering
of products and services from Service Providers by Dog E-DayCare™
clients.

342 � Software Configuration Management

5.4.1 Test Case: OrderUI :: showCreate()
CI: DD.0001.TEST015

5.4.1.1 Description

The purpose of this test case is to test the Order User Interface class’
(OrderUI) showCreate() method to determine if it can display the “Order
– initiate order” screen (see SDS section 11.10) and if the drop-down lists
are populated.

5.4.1.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)

Stubs: OrderStub (smaller version of Order class)
ServiceProviderStub (smaller version of ServiceProvider class)
ServiceStub (smaller version of Service class)
AppointmentStub (smaller version of Appointment class)
OtherButtonsStub (captures other buttons clicked)

5.4.1.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Select an item in the Service Provider drop-down list.
3. Select an item in the Service drop-down list.
4. Select an item in the Service Duration drop-down list.
5. Select an item in the Time Frame drop-down list.

5.4.1.4 Expected Results

Test Success

1. The IUserInterfaceDriver should display the “Order – initiate order”
screen in the Web browser.

2. The Service Provider drop-down list should contain a list of service
providers.

3. The Service drop-down list should contain a list of services offered
by the selected service provider.

4. The Service Duration drop-down list should contain a list of service
durations available for the selected service.

5. The Time Frame drop-down list should contain a list of all openings
for the selected service.

Test Plan � 343

Test Failure

1. Report all failures.

5.4.2 Test Case: OrderUI :: showEdit()
CI: DD.0001.TEST016

5.4.2.1 Description

The purpose of this test case is to test the Order User Interface class’
(OrderUI) showEdit() method to determine if it can display the “Order –
order details” screen (see SDS section 11.12).

5.4.2.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)

Stubs: OrderStub (smaller version of Order class)
OtherButtonsStub (captures other buttons clicked)

5.4.2.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine if the correct Service Provider is displayed.
3. Determine if the correct Service is displayed.
4. Determine if the correct Location is displayed.
5. Determine if the correct Phone Number is displayed.
6. Determine if the correct Email Address is displayed.
7. Determine if the correct Appointment is displayed.

5.4.2.4 Expected Results

Test Success

1. The IUserInterfaceDriver should display the “Order – order details”
screen in the Web browser.

2. The Service Provider name should display.
3. The Service name should display.
4. The Location should display.
5. The Phone Number should display.
6. The Email Address should display.
7. The Appointment should display.

344 � Software Configuration Management

Test Failure

1. Report all failures.

5.4.3 Test Case: OrderUI :: showSearch()
CI: DD.0001.TEST017

5.4.3.1 Description

The purpose of this test case is to test the Order User Interface class’
(OrderUI) showSearch() method to determine if it can display the “Search”
screen (see SDS section 11.26) and conduct a search using a stub to
display the “results.”

5.4.3.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)

Stubs: SearchStub (captures Search button clicks)
OtherButtonsStub (captures other buttons clicked)

5.4.3.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Enter a value in the Customer ID field.
3. Press the Search button.
4. Enter a value in the Customer Name field.
5. Press the Search button.
6. Enter a value in the Order ID field.
7. Press the Search button.
8. Enter a value in the Invoice ID field.
9. Press the Search button.

5.4.3.4 Expected Results

Test Success

1. The IUserInterfaceDriver should display the “Search” screen in the
Web browser.

2. The screen should permit entry of a Customer ID.
3. The Search stub should return a basic Web page.
4. The screen should permit entry of a Customer Name.
5. The Search stub should return a basic Web page.
6. The screen should permit entry of an Order ID.

Test Plan � 345

7. The Search stub should return a basic Web page.
8. The screen should permit entry of an Invoice ID.
9. The Search stub should return a basic Web page.

Test Failure

1. Report all failures.

5.4.4 Test Case: OrderUI :: showList()
CI: DD.0001.TEST018

5.4.4.1 Description

The purpose of this test case is to test the Order User Interface class’
(OrderUI) showList() method to determine if it can display the “Search
Results – Customer Search Results” screen (see SDS section 11.27).

5.4.4.2 Required Stubs/Drivers

Driver: IUserInterfaceDriver (smaller version of IUserInterface class)

Stubs: OrderStub (smaller version of Order class)
InvoiceStub (smaller version of the Invoice class)
AddressStub(smaller version of the Address class)
OtherButtonsStub (captures other buttons clicked)

5.4.4.3 Test Steps

1. Execute the IUserInterfaceDriver in a Web browser.
2. Determine if the correct Customer Name is displayed.
3. Determine if the correct Address is displayed.
4. Determine if the correct Email Address is displayed.
5. Determine if the correct Phone Number is displayed.
6. Determine if the correct Order Numbers are displayed.
7. Determine if the correct Invoice Numbers are displayed.

5.4.4.4 Expected Results

Test Success

1. The IUserInterfaceDriver should display the “Search Results – Cus-
tomer Search Results” screen in the Web browser.

2. The Customer Name should display.

346 � Software Configuration Management

3. The Address should display.
4. The Email Address should display
5. The Phone Number should display.
6. The Order Numbers should display.
7. The Invoice Numbers should display.

Test Failure

1. Report all failures.

5.4.5 Test Case: OrderLineItem
CI: DD.0001.TEST019

5.4.5.1 Description

The purpose of this test case is to test the OrderLineItem class to determine
if it correctly handles order-line-item related data.

5.4.5.2 Required Stubs/Drivers

Driver: OrderLineItem Test Driver: a small console application that assigns
a value to the OrderLineItem and prints out the result in a console window.

Stub: N/A

5.4.5.3 Test Steps

1. Execute the OrderLineItem Test Driver in a console window. The
test driver application should execute the following methods of
OrderLineItem class:
� SetServiceName()
� SetUnitPrice()
� SetQuantity()
� GetServiceName()
� GetUnitPrice()
� GetQuantity()
� GetTotalPrice()
� GetTax()
� GetTotalPriceWithTax()

2. Review the console printout to see if all property values are correctly
assigned and returned.

Test Plan � 347

3. Review the console printout to see if the getTotalPrice method
return value is the result of Quantity multiply UnitPrice and then
add Tax.

5.4.5.4 Expected Results

Test Success

1. All property values assigned match property value returned.
2. The total price matches the calculation from quantity, unit price,

and tax values.

Test Failure

1. Property value assigned does not match property value returned.
2. Total price does not match the calculation from quantity, unit price,

and tax values.

5.4.6 Test Case: ServiceResourceRequirement
CI: DD.0001.TEST020

5.4.6.1 Description

The purpose of this test case is to test the ServiceResourceRequirement
class to determine if it correctly handles the service resource requirement
related data.

5.4.6.2 Required Stubs/Drivers

Driver: ServiceResourceRequirement Test Driver: a small console applica-
tion that assigns a value to ServiceResourceRequirement and prints out
the result in a console window.

Stubs: N/A

5.4.6.3 Test Steps

1. Execute the ServiceResourceRequirement Test Driver in a console
window. The test driver application should execute the following
methods of Order class:
� SetQuantity()
� SetPercentage()
� SetResourceType()

348 � Software Configuration Management

� GetQuantity()
� GetPercentage()
� GetResourceType()

2. Review the console printout to see if all property values are correctly
assigned and returned.

5.4.6.4 Expected Results

Test Success

1. All property values assigned match property values returned.
2. If quantity value is less than 1, an exception is raised.
3. If percentage value is greater than 1, an exception is raised.

Test Failure

1. Property values assigned do not match property values returned.
2. If quantity value is less than 1, no exception is raised.
3. If percentage value is greater than 1, no exception is raised.

5.4.7 Test Case: Service
CI: DD.0001.TEST021

5.4.7.1 Description

The purpose of this test case is to test the Service class to determine if it
correctly handles the service-related data.

5.4.7.2 Required Stubs/Drivers

Driver: Service Test Driver: a small console application that assigns a value
to the order and prints out the result in a console window.

Stubs: ServiceResourceRequirement class or stub

5.4.7.3 Test Steps

1. Execute the Service Test Driver in a console window. The test driver
application should execute the following methods of Order class:
� SetName()
� SetDescription()
� SetUnitCost()
� GetResourceRequirement()

Test Plan � 349

� GetName()
� GetDescription()
� GetUnitCost()

2. Review the console printout to see if all property values are correctly
assigned and returned.

5.4.7.4 Expected Results

Test Success

1. All property values assigned match property value returned.

Test Failure

1. Property values assigned do not match property value returned.

5.4.8 Test Case: Order
CI: DD.0001.TEST022

5.4.8.1 Description

The purpose of this test case is to test the Order class to determine if it
correctly handles the order-related data.

5.4.8.2 Required Stubs/Drivers

Driver: Order Test Driver: a small console application that assigns a value
to the order and prints out the result in a console window.

Stubs: OrderLineItem class or stub
Invoice class or stub
Payment class or stub
Customer class or stub

5.4.8.3 Test Steps

1. Execute the Order Test Driver in a console window. The test driver
application should execute the following methods of Order class:
� SetOrderDateTime
� SetCompletionDateTime
� SetOrderStatus
� GetOrderLineItems
� GetTotalPrice

350 � Software Configuration Management

� GetCustomer
� GetPayment
� GetInvoice

2. Review the console printout to see if all property values are correctly
assigned and returned.

3. Review the console printout to see if the getTotalPrice method
return value is the total of all OrderLineItem prices.

5.4.8.4 Expected Results

Test Success

1. All property values assigned match property value returned.
2. The total price matches the calculation from order line items.

Test Failure

1. Property values assigned do not match property value returned.
2. Total price does not match the calculation from order line items.

5.5 Accounting Sub-system

The Accounting sub-system is responsible for processing the financial
transactions.

5.5.1 Test Case: Accounting:InvoicePrint
CI: DD.0001.TEST023

5.5.1.1 Description

The purpose of this test is to determine if the service care provider is
able to print the invoices for billing.

5.5.1.2 Required Stubs/Drivers

1. There must be orders placed against the service care provider in
question via the order sub-system and the OrderService class.

2. The Accounting sub-system will be invoked, with the invoice class
in particular.

Test Plan � 351

5.5.1.3 Test Steps

1. A test customer order must be placed against a predetermined
service care provider.

2. The service care provider must log on to the system successfully.
3. The service care provider must select the invoices that need to be

printed.

5.5.1.4 Expected Results

Test Success

1. The invoices printing out successfully with the correct data will
determine the success of the test.

Test Failure

1. The test can be deemed unsuccessful if the invoice does not print.
2. The test will also be unsuccessful if the format is incorrect.
3. The test will be unsuccessful if the wrong line items are printed.

5.5.2 Test Case: Accounting:Payment
CI: DD.0001.TEST024

5.5.2.1 Description

The purpose of this test is to determine if a representative of the service
care provider can enter a payment receipt within the Accounting sub-
system.

5.5.2.2 Required Stubs/Drivers

The Accounting sub-system will be invoked, with particular attention to
the Payment class.

5.5.2.3 Test Steps

1. The service care provider must successfully log on to the system.
2. The service care provider must invoke the Accounting user interface

to enter the payment receipt.
3. The service care provider must enter a payment receipt and press

the button to commit the transaction.

352 � Software Configuration Management

5.5.2.4 Expected Results

Test Success

1. A subsequent query indicates the customer’s balance reflecting the
recent payment.

2. A successful message is displayed.

Test Failure

1. The customer’s balance does not reflect the payment receipt.
2. The customer’s balance reflects an incorrect amount that is a result

of faulty logic within the program.

5.5.3 Test Case: Accounting:InvoiceList
CI: DD.0001.TEST025

5.5.3.1 Description

The purpose of this test is to ensure that every time a service care
provider requests to view invoices, the correct invoices will be dis-
played.

5.5.3.2 Required Stubs/Drivers

The Application sub-system is required, with particular interest paid to
the Invoice class.

5.5.3.3 Test Steps

1. The service care provider will successfully log on to the system.
2. The service care provider will select the button to view their

invoices.
3. The system will determine who is logged on and display the

appropriate invoices for that user.

5.5.3.4 Expected Results

Test Success

1. All invoices for that service care provider are displayed with the
correct information.

Test Plan � 353

Test Failure

1. The invoice(s) that are displayed are for the wrong service care
provider.

2. The invoice(s) indicate an incorrect balance or other incorrect infor-
mation.

5.6 Customer Relationship Management Sub-system

The Customer Relationship Management sub-system provides the appli-
cation with the ability to provide an opportunity for interaction between
the customers and service care providers. It also provides the system
administrator with the ability to gain feedback from the customer in an
effort to continually revamp the application.3

5.6.1 Test Case (This Feature Set Will Be Available in Phase II)

5.7 Persistence Sub-system

The Persistence sub-system has responsibility for supporting persistent data.
The purpose of this group of test cases is to determine whether the
PersistenceManager class is carrying out its responsibilities as expected.
PersistenceManager is a critical part of the system that handles the persis-
tence activities of all objects. Based on the system architecture design, the
Persistence Layer Java code library from http://artyomr.narod.ru has been
selected to execute the majority of the persistence functionality. The Per-
sistence Layer code library uses an XML file to store the database map and
class map information. So, the correctness of the XML file in terms of
correctly mapping the class structure design with the database design will
essentially determine whether the objects can be correctly persisted to the
database. This will be a major area of potential fault of the implementation
and hence one of the major focus areas of the testing of the Persistence
sub-system.

Due to limited space, the document specifies in detail the example of
Customer object persistence. Please be reminded that tests in similar patterns
will need to be executed for EVERY object that needs to be persisted.

5.7.1 Test Case: PersistenceManager :: loadXMLConfig()
CI: DD.0001.TEST026

5.7.1.1 Description/Purpose

This test case tests the persistence manager’s functionality to load the class
map and the database map from the XML file. Potential errors are usually

354 � Software Configuration Management

related to bad XML file entries: either file is a not valid XML file or it does
not load correctly into the class map and database map.

5.7.1.2 Required Stubs/Drivers

DatabaseMap and ClassMap configuration XML file in format specified by
http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

5.7.1.3 Test Steps

1. Edit Config.xml with all database map and class map information
according to http://artyomr .narod.ru/docs/pl/XMLConfig-
Loader.html

2. Start PersistenceManager application by running java Persistence-
Manager.class from command prompt, loading Config.xml as the
configuration.

3. Exit PersistenceManager application.

5.7.1.4 Expected Results

Test Success

1. The PersistenceManager application successfully starts without error
messages.

Test Failure

1. XML parser error when loading Config.xml
2. Error parsing class map and database map information

5.7.2 Test Case: PersistenceManager :: saveObject()
CI: DD.0001.TEST027

5.7.2.1 Description/Purpose

This test case tests the persistence manager’s functionality to save an object
to the database.

5.7.2.2 Required Stubs/Drivers

1. DatabaseMap and ClassMap configuration XML file in format spec-
ified by http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

2. Customer registration screens

Test Plan � 355

5.7.2.3 Test Steps

1. Edit Config.xml with all database map and class map information
according to http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

2. Start PersistenceManager application by running java Persistence-
Manager.class from command prompt, loading Config.xml as the
configuration.

3. Browse to DogEDayCare home page from the Web site.
4. Click Register button.
5. Input customer information.
6. Click Register to create a new Customer.
7. Use SQL Tool to open the database.
8. Execute “SELECT * FROM CUSTOMER” SQL statement and review

the result.
9. Execute “SELECT * FROM DOG” SQL statement and review result.

5.7.2.4 Expected Results

Test Success

1. The customer and dog information should exist in the database.

Test Failure

1. RMI error when one clicks the Register button.
2. There is an error in executing SQL statement.
3. Customer and Dog did not get added to the database.

5.7.3 Test Case: PersistenceManager :: retrieveObject()
CI: DD.0001.TEST028

5.7.3.1 Description/Purpose

This test case tests the persistence manager’s functionality to retrieve an
object from the database.

5.7.3.2 Required Stubs/Drivers

1. DatabaseMap and ClassMap configuration XML file in format spec-
ified by http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

2. Customer information screens

356 � Software Configuration Management

5.7.3.3 Test Steps

1. Edit Config.xml with all database map and class map information
according to http://artyomr.narod.ru/docs/pl/XMLConfigLoader.html

2. Start PersistenceManager application by running java Persistence-
Manager.class from command prompt, loading Config.xml as the
configuration.

3. Browse to DogEDayCare home page from the Web site.
4. Log on to DogEDayCare system.
5. Click Edit Customer Profile button.
6. Review the information retrieved from the persistence manager.

5.7.3.4 Expected Results

Test Success

1. The Customer and Dog information should be retrieved and match
what was input.

Test Failure

1. RMI error when one clicks Edit Customer Profile button
2. Cannot retrieve Customer and Dog information
3. There is an error in executing SQL statement
4. Customer and Dog information retrieved but does not match the

data that was input.

6 APPENDIX E2: INTEGRATION TESTING TESTS

Integration Tests are scenario based, capturing key activities that the Dog
E-DayCare SystemTM allows the User to perform.

6.1 Test Case: Customer Registration
CI: DD.0001.TEST029

6.1.1 Description

Registering with the Dog E-DayCare™ System is the key task that allows
users to take advantage of the services Dog E-DayCare™ has to offer.
Registration requires collaboration among three sub-systems: User Man-
agement, Application Controller, and Persistence. The purpose of this test

Test Plan � 357

is to find errors in the interactions that must take place across these sub-
systems.

6.1.2 Required Stubs/Drivers

No stubs or drivers required.

6.1.3 Test Steps

1. User opens Dog E-DayCare™ welcome page.
2. User selects “Register.”
3. The Register Customer/About You page displays.
4. User fills in fields and clicks Next.
5. The Register Customer/About Your Dog page displays.
6. User fills in fields and clicks Next.
7. Register Customer/User ID, Password page displays.
8. User fills in fields and clicks Next.
9. Register Customer/Verify Information page displays with appropri-

ate information.
10. User reviews information and clicks Finish.
11. Register Customer/Thank You page displays.
12. User receives confirmation e-mail.

6.1.4 Expected Results

Test Success

1. User is able to successfully move through each step of the regis-
tration process.

2. The User information displayed in the Verify Information page is
correct.

3. The Thank You page appears and User receives e-mail confirmation.

Test Failure

1. User cannot click from one step in the registration process to the
next.

2. User information displayed in the Verify Information page is incor-
rect.

3. User does not receive a confirmation e-mail.

358 � Software Configuration Management

6.2 Test Case: Reallocate Resources
CI: DD.0001.TEST030

6.2.1 Description

One of the key services Dog E-DayCare™ provides to dog-care companies
is the ability to manage their resources (e.g., staff, kennels, and play
areas), allocating and reallocating resources in response to, for example,
staff illness, rainy weather, etc.

Reallocating resources requires collaboration among several sub-sys-
tems: User Management, Order, Resource Management, Application Con-
troller, and Persistence. The purpose of this test is to find errors in the
interactions that must take place across these sub-systems.

6.2.2 Required Stubs/Drivers

No stubs or drivers required.

6.2.3 Test Steps

1. User opens Schedule/This Week page.
2. User selects appointment whose resources need to be reallo-

cated.
3. Schedule/Appointment Details page displays.
4. User selects option to “reallocate” resources.
5. Schedule/Resource Details page displays.
6. User revises resource details as necessary and clicks Next.
7. Schedule/Confirm Changes page displays.
8. User clicks Finish.
9. Revised Schedule/Appointment Details page displays.

6.2.4 Expected Results

Test Success

1. User is able to successfully move through each step of the reallo-
cation process.

2. Reallocation information displayed in the Confirm Changes page is
correct.

3. Appointment Details have been updated.

Test Plan � 359

Test Failure

1. User cannot click from one step in the reallocation process to the
next.

2. User information displayed in the Confirm Changes page is incor-
rect.

3. Appointment Details have not been updated.

6.3 Test Case: Search for Service Provider and Initiate Order
CI: DD.0001.TEST031

6.3.1 Description

The Dog E-DayCare™ System allows Customers to search for Service
Providers based on geographic location and service desired. From the
Search Results, a user can initiate an order.

Searching for a service provider and initiating an order requires col-
laboration among several sub-systems: User Management, Order, Appli-
cation Controller, and Persistence. The purpose of this test is to find errors
in the interactions that must take place across these sub-systems.

6.3.2 Required Stubs/Drivers

No stubs or drivers required.

6.3.3 Test Steps

1. User opens Search for Service Provider page.
2. User enters required information and clicks “search.”
3. Search Results page displays all Service Providers that match criteria.
4. User selects “initiate order” button associated with the Service

Provider of their choice.
5. Order/Initiate Order page displays.

6.3.4 Expected Results

Test Success

1. The Search Results page displays Service Providers matching the
User’s criteria.

2. The Order/Initiate Order page displays the name of the Service
Provider selected and the services available from the selected Ser-
vice Provider in the appropriate fields.

360 � Software Configuration Management

Test Failure

1. Search Results page does not display.
2. Search Results do not match criteria.
3. Order/Initiate Order page does not display correct Service Provider

information.

6.4 Test Case: Place Order
CI: DD.0001.TEST032

6.4.1 Description

The Dog E-DayCare™ System allows Customers to place an order for the
service they need, from a Service Provider of their choice, and within a
desired timeframe.

Placing an order requires collaboration among several sub-systems:
Order, User Management, Resource Management, Application Controller,
and Persistence. The purpose of this test is to find errors in the interactions
that must take place across these sub-systems.

6.4.2 Required Stubs/Drivers

No stubs or drivers required.

6.4.3 Test Steps

1. Order/Initiate Order page is displayed.
2. User fills in all fields.
3. User selects “view openings.”
4. Order/Openings page displays.
5. User selects an available appointment time.
6. Order/Order Details page displays.
7. User selects “place order.”
8. Order/Order Confirmation page displays.
9. An e-mail is sent to the User.

6.4.4 Expected Results

Test Success

1. The User is able to move successfully through each step in the
process of placing an order.

Test Plan � 361

2. The Order/Openings page displays the correct information on avail-
able appointment times.

3. The Order/Order Details page displays the correct information.
4. An e-mail is sent to the User.

Test Failure

1. The Order/Openings page displays incorrect information.
2. The Order/Order Details Page displays incorrect information.
3. An e-mail is not sent to the User.

6.5 Test Case: Pay for Service
CI: DD.0001.TEST033

6.5.1 Description

The Dog E-DayCare™ System allows Customers to pay online for the dog-
care services they have received.

Paying for service requires collaboration among several sub-systems:
Accounting, Order, User Management, Application Controller, and Persis-
tence. The purpose of this test is to find errors in the interactions that
must take place across these sub-systems.

6.5.2 Required Stubs/Drivers

No stubs or drivers required.

6.5.3 Test Steps

1. User opens the Payment/Initiate Payment page.
2. User enters the Order Id number and clicks “next.”
3. The Payment/Payment Details page displays.
4. User reviews Payment Details and selects “next.”
5. The Payment/Billing Address page displays.
6. User reviews information and clicks “next.”
7. The Payment/Credit Card Details page displays.
8. User enters information and clicks “next.”
9. The Payment/Make Payment page displays.

10. User reviews information and clicks “pay now.”
11. The Payment/Payment Confirmation page displays.
12. An e-mail is sent to the User.

362 � Software Configuration Management

6.5.4 Expected Results

Test Success

1. The User is able to move successfully through each step in the
process of making a payment for service.

2. The Payment/Payment Details page displays the correct information.
3. The Payment/Billing Address page displays the correct information.
4. The Payment/Make Payment page displays the correct information.
5. An e-mail is sent to the User.

Test Failure

1. The Payment/Payment Details page displays incorrect information.
2. The Payment/Billing Address page displays incorrect information.
3. The Payment/Make Payment page displays incorrect information.
4. An e-mail is not sent to the User.

7 APPENDIX E3: PROJECT SCHEDULE

Figure E2 is an example of a project schedule.

Notes

1. This feature set will be available in Phase II.
2. This feature set will be available in Phase II.
3. This feature set will be available in Phase II.

Appendix E � 363

Fi
gu

re
 E

2
 P

ro
je

ct
 S

ch
ed

ul
e

365

Appendix F

PROGRAM CODE
INSPECTION FORM

Code For Inspection: Project:
Author: Project Manager:
Date Of Inspection:
CI:
1 Criteria: Inspected By Pass □

Fail □

Notes:

Resolution & Date Approved By & Date

367

Appendix G

SAMPLE INSPECTION PLAN

CONTENTS

1. Introduction .
2. Scope of the Software Inspection .
3. Software Inspection Team .
4. Inspection process .
5. Continuing processes .
6. Summary .

PRODUCED FOR SAMPLE EXECUTIVE CONSULTANT GROUP

1 INTRODUCTION

This software inspection plan has been produced in conjunction with the
current work we are carrying out for the Sample Executive Consultant
Group to produce a Web-based interactive system to replace the existing
computer system still in use. The purpose of the plan is to ensure SAMPLE

CI: Project:

Project Manager:

Date Of Inspection:

368 � Software Configuration Management

are confident with the nature, scope, and level of the work being under-
taken, that it adheres to the objectives of SAMPLE as per the original
specification details, that the system produced will stand up by itself as
a product that will work well in the marketplace for the client and
candidate community, and that it will demonstrate to the SAMPLE com-
petition that the organization is a worthy challenge to the marketplace.
Further, it is the purpose of this work to demonstrate to SAMPLE that the
output can stand the test of time by being rigorously produced to an
industry standard, is maintainable, scalable, and a cost-effective business
component.

A software inspection document needs to demonstrate that the product
being worked on is relevant to the criteria as specified by the client. In
this respect, this document needs to show that a methodology is being
proposed that will ensure that the following criteria as specified by the
SAMPLE senior management group have been met. In our original project
plan, we detailed the provisions required to deliver the requirements of
SAMPLE. These were, in brief:

� To provide the SAMPLE Group with an interactive, secure, Web-
enabled database application for the placement of candidates with
client organizations.

� To review current hardware, software, and security facilities at client
premises and propose changes required to accommodate the secure
Web application just mentioned.

� To redesign the client’s database to provide facilities in keeping
with the secure Web application just mentioned.

Therefore, to ensure that this work is being productively actioned, the
software inspection plan detailed here is proposed to give SAMPLE the
confidence to monitor and review work completed to date, and work to
be completed for the duration of this project. The software inspection is
not a static process; rather, it is to continue for the life of the project, and
as such SAMPLE are strongly urged to play a key role in the establishment
of the inspection team — see below.

2 SCOPE OF THE SOFTWARE INSPECTION

As covered in the above introduction, the aim of this document is to
demonstrate that the product being worked on is relevant to the criteria
as specified by the client. It is also the aim to ensure that the software
being built matches the design and development standards as outlined
by the development project. To this end, the code needs to be inspected
against a checklist of the project development standards.

Sample Inspection Plan � 369

The scope of this inspection is basically the overall development project
and all that it encompasses. To facilitate this we will need the following
documents as input into the inspection process:

� Complete and definitive user requirements document
� Complete and definitive list of development standards

To ensure that the inspection is comprehensive, a representative sample
of code will be taken at regular intervals and delivered to the inspection
team. To make this more acceptable and understandable, the section code
will represent a specific part of the product (e.g., candidate entry).

The inspection of the code itself will ensure that the representative
section of code:

� Meets the documentation standards for the project
� Meets the variable naming standards for the project
� Meets the general development standards for the project
� Meets maintainability standards for the project
� Is logically sound compared to the user requirements for the section

of the product that it represents
� Is in line with the ethics and working practices of the customer
� Is compatible with the hardware requirements laid down on/by

the customer

There will also be an inspection of the database structure to ensure
that it meets the customer requirements. The database will be expected to:

� Meet the database normalization standards for the project
� Meet the database naming conventions for the project
� Be sized according to the expected growth of the product
� Contain the necessary elements to meet all the customer needs as

defined in the user specification
� Have field sizes that meet the needs of the user specification doc-

ument

3 SOFTWARE INSPECTION TEAM

It is important that the team that constitutes the inspection process is
made up from a vertical slice of the organizations involved in the project.
As already mentioned, the software inspection process is to involve more
than just the validation and verification of the computer code being
produced. To date, a number of significant findings have been encapsu-
lated and recorded in a number of key documents, and all of this

370 � Software Configuration Management

information is appropriate for inspection if we are to do full justice to the
project being undertaken. To this end then, the inspection process needs
to address:

The Team profiles for the above inspection work are recommended
thus:

Area to Address Items to Examine Appropriate Team
Computer code: Database interfaces

Web front-end code
Database language code
Application code

Technical

Risk data: Risk documents Risk
Environmental data: Working locations (for

computer storage)
Risk

Planning information: Project plan Management
User requirements: Requirements

documents
Management

Technical requirements: Technical requirements
documents

Modeling specifications

Technical

Quality requirements: Quality Plans Risk

Team Membership Team ID
Executive panel Mary Sample – SAMPLE representative

Steve Hyman – Consultant representative
A. N. Other – independent

EP

Technicala Sam Wilson – chair and chief moderator
Martin Long – author and project

consultant
A. N. Other – reader/inspector

T

Riskb John Small – chair and chief moderator
Martyn Davies – author and project

consultant
A. N. Other – reader/inspector

R

Managementb Mary Sample – chair and chief moderator
Mike Kennedy – project consultant and

scribe
A. N. Other – reader/inspector

M

aNote that we have already identified both a database team and a Web team in
our project plan. These teams will be linking into this inspection process as
it progresses.

bNote that we have already identified a security and reports team in our project
plan. This team will be linking into this inspection process as it progresses.

Sample Inspection Plan � 371

The role of the Executive group is to oversee the work of the three other
groups and report back to the project executive — as identified in the
Quality documentation reported on in a previous stage of this project.

4 INSPECTION PROCESS

The inspection process is to last for the duration of the project. We have
already provided a breakdown of the key project deliverables in terms of
activity. Reproduced below is an appraisal of that work with the relevant
inspection work added:

Based on the detailed plan (Above), the following analysis of the
software inspection is given:

4.1 Inspection procedure

The approach to documentation inspection will be the same as program
inspection. This is a generic process designed to aid continuity to the
inspection process.

Figure G1 presents the overall approach we will be adopting for both
documentation inspection and program inspection.

Each of the key steps in the inspection procedure are broken down
thus:

� Work products: These can be anything to be considered under the
remit of software inspection. This is not just computer code. A
document used to define a computer system such as a requirements
document or a technical specification could be submitted for
inspection.

� Planning: The definition or roles and responsibilities for the inspec-
tion process.

� Overview: To be given by the author(s) of the work product to be
inspected.

� Preparation: All involved in the inspection need to have a copy of
what is to be inspected and some time to Sampleome familiar with
t. This preparation stage is useful for independent evaluation prior
to consensus of the group. An inspector will bring to this stage any
checklists he or she may have.

� Meeting: A meeting for all the inspectors to get together to consider
their findings and continue any detection of defect work. The defect
list will be produced.

372 � Software Configuration Management
ID

A
ct

iv
it

y
M

ile
st

on
e

D
el

iv
er

ab
le

H
ig

h-
Le

ve
l

D
es

ig
n

A
1

R
eq

u
ir

em
en

ts
 s

p
ec

ifi
ca

ti
o

n
R

eq
u

ir
em

en
ts

 d
efi

n
ed

U
R

D
SR

D
A

2
A

rc
h

it
ec

tu
ra

l
d

es
ig

n
A

rc
h

it
ec

tu
re

 d
es

ig
n

 c
o

m
p

le
te

d
Sy

st
em

 a
rc

h
it

ec
tu

re

A
3

U
se

r
re

q
u

ir
em

en
ts

 a
n

al
ys

is
U

se
r

re
q

u
ir

em
en

ts
 f

u
lly

u

n
d

er
st

o
o

d
B

as
e

re
q

u
ir

em
en

ts
 f

o
r

si
zi

n
g

A
4

H
ar

d
w

ar
e

si
zi

n
g

ex
er

ci
se

H
ar

d
w

ar
e

an
d

 d
at

ab
as

e
re

q
u

ir
em

en
ts

 a
n

al
ys

is
H

/w
 s

iz
in

g
d

o
c

D
B

 s
iz

in
g

d
o

c

SI
 1

Fu
ll

In
sp

ec
ti

on
 –

 B
en

ch
m

ar
ki

ng
 F

un
ct

io
n

Te
ch

no
lo

gy

A
5

Fo
rm

al
 h

ar
d

w
ar

e
sp

ec
ifi

ca
ti

o
n

R
eq

u
ir

ed
 h

ar
d

w
ar

e
Pr

o
cu

re
m

en
t

fo
rm

A
6

Pu
rc

h
as

e
h

ar
d

w
ar

e
H

ar
d

w
ar

e
d

el
iv

er
ed

H
ar

d
w

ar
e

A
7

Pu
rc

h
as

e
so

ft
w

ar
e

So
ft

w
ar

e
d

el
iv

er
ed

So
ft

w
ar

e

SI
 2

Pa
rt

ia
l

In
sp

ec
ti

on

Se
cu

ri
ty

 d
es

ig
n

A
8

In
te

rf
ac

e
d

es
ig

n
In

te
rf

ac
e

d
es

ig
n

 c
o

m
p

le
te

In
te

rf
ac

e
sp

ec
ifi

ca
ti

o
n

A
9

C
o

m
p

o
n

en
t

d
es

ig
n

C
o

m
p

o
n

en
t

d
es

ig
n

 c
o

m
p

le
te

C
o

m
p

o
n

en
t

sp
ec

ifi
ca

ti
o

n
A

10
D

at
a

st
ru

ct
u

re
 d

es
ig

n
D

at
a

st
ru

ct
u

re
 d

es
ig

n
 c

o
m

p
le

te
D

at
ab

as
e

m
ap

En
ti

ty
 r

el
at

io
n

sh
ip

 d
ia

gr
am

A
11

A
lg

o
ri

th
m

 d
es

ig
n

A
lg

o
ri

th
m

 d
es

ig
n

 c
o

m
p

le
te

A
lg

o
ri

th
m

 s
p

ec
ifi

ca
ti

o
n

Appendix G � 373

SI
 3

Pa
rt

ia
l

In
sp

ec
ti

on

D
at

ab
as

e
D

es
ig

n

A
12

C
o

m
p

o
n

en
t

d
es

ig
n

C
o

m
p

o
n

en
t

d
es

ig
n

 c
o

m
p

le
te

C
o

m
p

o
n

en
t

sp
ec

ifi
ca

ti
o

n
A

13
D

at
a

st
ru

ct
u

re
 d

es
ig

n
D

at
a

st
ru

ct
u

re
 d

es
ig

n
 c

o
m

p
le

te
D

at
a

st
ru

ct
u

re
 s

p
ec

ifi
ca

ti
o

n
A

14
A

lg
o

ri
th

m
 d

es
ig

n
A

lg
o

ri
th

m
 d

es
ig

n
 c

o
m

p
le

te
A

lg
o

ri
th

m
 s

p
ec

ifi
ca

ti
o

n

SI
 4

Pa
rt

ia
l

In
sp

ec
ti

on

W
eb

 D
es

ig
n

A
15

A
b

st
ra

ct
 s

p
ec

ifi
ca

ti
o

n
A

b
st

ra
ct

 s
p

ec
 c

o
m

p
le

te
So

ft
w

ar
e

sp
ec

ifi
ca

ti
o

n
A

16
In

te
rf

ac
e

d
es

ig
n

In
te

rf
ac

e
d

es
ig

n
 c

o
m

p
le

te
In

te
rf

ac
e

sp
ec

ifi
ca

ti
o

n
A

17
C

o
m

p
o

n
en

t
d

es
ig

n
C

o
m

p
o

n
en

t
d

es
ig

n
 c

o
m

p
le

te
C

o
m

p
o

n
en

t
sp

ec
ifi

ca
ti

o
n

A
18

A
lg

o
ri

th
m

 d
es

ig
n

A
lg

o
ri

th
m

 d
es

ig
n

 c
o

m
p

le
te

A
lg

o
ri

th
m

 s
p

ec
ifi

ca
ti

o
n

SI
 5

Pa
rt

ia
l

In
sp

ec
ti

on

R
ep

or
ts

 D
es

ig
n

A
19

R
eq

u
ir

em
en

ts
 g

at
h

er
in

g
R

eq
u

ir
em

en
ts

 a
n

al
ys

is
 c

o
m

p
le

te
R

ep
o

rt
 r

eq
u

ir
em

en
ts

A
20

In
te

rf
ac

e
d

es
ig

n
In

te
rf

ac
e

d
es

ig
n

 c
o

m
p

le
te

In
te

rf
ac

e
sp

ec
ifi

ca
ti

o
n

A
21

C
o

m
p

o
n

en
t

d
es

ig
n

C
o

m
p

o
n

en
t

d
es

ig
n

 c
o

m
p

le
te

C
o

m
p

o
n

en
t

sp
ec

ifi
ca

ti
o

n
A

22
D

at
a

st
ru

ct
u

re
 d

es
ig

n
D

at
a

st
ru

ct
u

re
 d

es
ig

n
 c

o
m

p
le

te
D

at
a

st
ru

ct
u

re
 s

p
ec

ifi
ca

ti
o

n
A

23
A

lg
o

ri
th

m
 d

es
ig

n
A

lg
o

ri
th

m
 d

es
ig

n
 c

o
m

p
le

te
A

lg
o

ri
th

m
 s

p
ec

ifi
ca

ti
o

n

374 � Software Configuration Management

SI
 6

Pa
rt

ia
l

In
sp

ec
ti

on

D
at

ab
as

e
co

di
ng

A
24

C
re

at
e

ta
b

le
s

an
d

 q
u

er
ie

s
D

at
ab

as
e

cr
ea

te
d

D
at

ab
as

e
re

p
o

rt
A

25
M

ig
ra

te
 t

es
t

d
at

a
M

ig
ra

ti
o

n
 c

o
m

p
le

te
M

ig
ra

ti
o

n
 r

ep
o

rt
A

26
D

ev
el

o
p

 s
ta

n
d

-a
lo

n
e

p
ro

to
ty

p
e

Pr
o

to
ty

p
e

co
m

p
le

te
D

em
o

n
st

ra
te

 p
ro

to
ty

p
e

SI
 7

Pa
rt

ia
l

In
sp

ec
ti

on

W
eb

 C
od

in
g

A
27

Si
te

 d
es

ig
n

Si
te

 d
es

ig
n

 c
o

m
p

le
te

Si
te

 d
es

ig
n

 r
ep

o
rt

A
28

Lo
o

k
an

d
 f

ee
l

Lo
o

k
an

d
 f

ee
l

co
m

p
le

te
Lo

o
k

an
d

 f
ee

l
re

p
o

rt
A

29
U

se
r

in
te

rf
ac

e
–

fo
rm

s
U

se
r

in
te

rf
ac

e
co

m
p

le
te

U
I

re
p

o
rt

A
30

D
at

ab
as

e
co

n
n

ec
ti

vi
ty

D
at

ab
as

e
co

n
n

ec
ti

vi
ty

 c
o

m
p

le
te

D
at

ab
as

e
co

n
n

ec
ti

vi
ty

 r
ep

o
rt

A
31

D
ev

el
o

p
 W

eb
-e

n
ab

le
d

 p
ro

to
ty

p
e

Pr
o

to
ty

p
e

co
m

p
le

te
D

em
o

n
st

ra
te

 p
ro

to
ty

p
e

SI
 8

Fu
ll

In
sp

ec
ti

on

R
ep

or
ts

 C
od

in
g

A
32

R
ep

o
rt

s
d

es
ig

n
R

ep
o

rt
s

d
es

ig
n

 c
o

m
p

le
te

R
ep

o
rt

s
d

es
ig

n
 r

ep
o

rt
A

33
U

se
r

in
te

rf
ac

e
R

ep
o

rt
s

U
I

co
m

p
le

te
R

ep
o

rt
s

U
I

re
p

o
rt

A
34

D
ev

el
o

p
 r

ep
o

rt
s

p
ro

to
ty

p
e

Pr
o

to
ty

p
e

co
m

p
le

te
D

em
o

n
st

ra
te

 p
ro

to
ty

p
e

SI
 9

Pa
rt

ia
l

In
sp

ec
ti

on

Appendix G � 375

Te
st

in
g

an
d

In
te

gr
at

io
n

A
35

U
n

it
 t

es
ti

n
g

U
n

it
 t

es
ti

n
g

co
m

p
le

te
U

n
it

 t
es

t
re

p
o

rt
A

36
C

o
m

p
o

n
en

t
te

st
in

g
C

o
m

p
o

n
en

t
te

st
in

g
co

m
p

le
te

C
o

m
p

o
n

en
t

te
st

 r
ep

o
rt

A
37

In
te

gr
at

io
n

 t
es

ti
n

g
In

te
gr

at
io

n
 t

es
ti

n
g

co
m

p
le

te
In

te
gr

at
io

n
 t

es
t

re
p

o
rt

A
38

En
d

-t
o

-e
n

d
 t

es
ti

n
g

En
d

-t
o

-e
n

d
 t

es
ti

n
g

co
m

p
le

te
En

d
-t

o
-e

n
d

 t
es

t
re

p
o

rt
A

39
Lo

ad
 t

es
ti

n
g

Lo
ad

 t
es

ti
n

g
co

m
p

le
te

Lo
ad

 t
es

t
re

p
o

rt
A

40
U

se
r

te
st

in
g

U
se

r
te

st
in

g
co

m
p

le
te

U
se

r
te

st
 r

ep
o

rt
a

A
41

A
cc

ep
ta

n
ce

 t
es

ti
n

g
A

cc
ep

ta
n

ce
 t

es
ti

n
g

co
m

p
le

te
A

cc
ep

ta
n

ce
 t

es
t

re
p

o
rt

SI
 1

0
Pa

rt
ia

l
In

sp
ec

ti
on

U
se

r
D

oc
um

en
ta

ti
on

A
42

Pr
o

d
u

ce
 u

se
r

d
o

cu
m

en
ta

ti
o

n
D

o
cu

m
en

ta
ti

o
n

 c
o

m
p

le
te

U
se

r
d

o
cu

m
en

ta
ti

o
n

SI
 1

1
Pa

rt
ia

l
In

sp
ec

ti
on

U
se

r
Tr

ai
ni

ng

A
43

Tr
ai

n
 u

se
rs

U
se

r
tr

ai
n

in
g

co
m

p
le

te
Tr

ai
n

in
g

re
p

o
rt

U
se

r
Si

gn
-O

ff

A
44

Pr
o

d
u

ce
 s

ig
n

-o
ff

 d
o

cu
m

en
t

Si
gn

-o
ff

 d
o

c
co

m
p

le
te

Si
gn

-o
ff

 d
o

cu
m

en
t

A
45

A
cq

u
ir

e
si

gn
at

u
re

s
D

o
cu

m
en

t
si

gn
ed

Si
gn

ed
 d

o
cu

m
en

t
a

A
 u

se
r

te
st

 r
ep

o
rt

 h
as

 b
ee

n
 p

ro
d

u
ce

d
 a

n
d

 i
s

as
so

ci
at

ed
 w

it
h

 t
h

is
 p

ap
er

 u
n

d
er

 A
p

p
en

d
ix

 G
1.

 T
h

e
re

p
o

rt
 h

ig
h

lig
h

ts
th

e
fi

n
d

in
gs

 o
f

th
e

fi
rs

t
p

as
s

o
f

u
se

r
ac

ce
p

ta
n

ce
 a

n
d

 t
h

e
co

rr
ec

ti
ve

 a
ct

io
n

s
co

m
in

g
o

u
t

o
f

th
at

 fi
rs

t
p

as
s.

 A
n

 e
xt

en
si

ve
h

u
m

an
 c

o
m

p
u

te
r

in
te

rf
ac

e
(H

C
I)

 e
xe

rc
is

e
h

as
 b

ee
n

 c
ar

ri
ed

 o
u

t a
s

p
ar

t o
f t

h
is

 p
ro

ce
ss

, a
n

d
 th

is
 in

fo
rm

at
io

n
 is

 p
ro

vi
d

ed
in

 t
h

e
re

p
o

rt
 i

n
 A

p
p

en
d

ix
 G

1.

376 � Software Configuration Management
ID

A
ct

io
n

A
ct

iv
it

y
Te

am
(s

)
SI

 1
Fu

ll
In

sp
ec

ti
o

n
 –

B

en
ch

m
ar

ki
n

g
fu

n
ct

io
n

To
 a

p
p

ly
 a

 f
u

ll
so

ft
w

ar
e

in
sp

ec
ti

o
n

 t
o

 a
ll

co
m

p
le

te
d

co

m
p

o
n

en
ts

 t
o

 d
at

e
co

n
st

it
u

ti
n

g
th

e
p

ro
je

ct
. A

ll
ar

ch
it

ec
tu

ra
l p

la
n

s,
 s

p
ec

ifi
ca

ti
o

n
s,

 a
n

d
 o

b
je

ct
iv

es
 w

ill

h
av

e
b

ee
n

 d
el

iv
er

ed
 b

y
th

is
 s

ta
ge

, a
n

d
 it

 is
 im

p
o

rt
an

t
th

at
 a

n
 in

sp
ec

ti
o

n
 f

o
r

b
en

ch
m

ar
ki

n
g

p
u

rp
o

se
d

 t
ak

es

p
la

ce
. T

h
is

 i
s

b
en

ch
m

ar
ki

n
g

fo
r

th
e

p
u

rp
o

se
s

o
f

so
ft

w
ar

e
in

sp
ec

ti
o

n
; t

h
at

 i
s,

 e
n

su
ri

n
g

th
e

p
ro

ce
ss

 i
s

so
u

n
d

 a
n

d
 c

o
n

si
gn

ed
, a

n
d

 t
h

at
 a

ll
fo

u
r

gr
o

u
p

s
in

 t
h

e
in

sp
ec

ti
o

n
 p

ro
ce

ss
 a

re
 c

al
ib

ra
te

d
 a

n
d

 u
n

d
er

st
an

d

th
ei

r
te

rm
s

o
f

re
fe

re
n

ce
.

A
n

y
co

m
p

u
te

r c
o

d
e

p
ro

d
u

ce
d

 b
y

th
is

 s
ta

ge
 in

 w
h

at
ev

er

fo
rm

at
 w

ill
 a

ls
o

 b
e

in
sp

ec
te

d
.

T,
 R

, M

SI
 2

Pa
rt

ia
l

In
sp

ec
ti

o
n

To
 t

es
t

th
e

d
et

ai
ls

 o
f

th
e

h
ar

d
w

ar
e

d
el

iv
er

y
–

d
el

iv
er

y
d

o
cu

m
en

ta
ti

o
n

, c
o

n
fi

gu
ra

ti
o

n
 d

et
ai

ls
, a

n
d

 s
o

ft
w

ar
e

sp
ec

ifi
ca

ti
o

n
 —

 a
ga

in
st

 d
el

iv
er

y
d

et
ai

ls
.

T,
 R

SI
 3

Pa
rt

ia
l

In
sp

ec
ti

o
n

To
 t

es
t

th
e

d
at

ab
as

e
sp

ec
ifi

ca
ti

o
n

 a
ga

in
st

 b
et

a
p

ro
d

u
ct

io
n

, t
h

e
in

te
rf

ac
e

p
ro

d
u

ct
io

n
 a

ga
in

st
 u

se
r

re
q

u
ir

em
en

ts
, a

n
d

 g
en

er
al

 m
at

h
 b

et
w

ee
n

 a
lg

o
ri

th
m

ic

fu
n

ct
io

n
s.

 A
ls

o
 t

o
 e

n
su

re
 t

h
at

 c
o

m
p

o
n

en
t

ap
p

ro
ac

h

is
 s

o
u

n
d

 a
n

d
 i

n
te

gr
at

ed
.

T

SI
 4

Pa
rt

ia
l

In
sp

ec
ti

o
n

En
su

re
 c

o
n

ti
n

u
it

y
b

et
w

ee
n

 fi
n

d
in

gs
 fr

o
m

 S
I 3

 a
n

d
 w

o
rk

in

 S
I

4.
T

SI
 5

Pa
rt

ia
l

In
sp

ec
ti

o
n

To
 t

es
t

th
e

sp
ec

ifi
ca

ti
o

n
 d

o
cu

m
en

ta
ti

o
n

 f
o

r
th

e
W

eb

in
te

rf
ac

e
as

p
ec

t
o

f
th

e
p

ro
je

ct
 a

n
d

 m
ea

su
re

 a
ga

in
st

st

at
ed

 d
el

iv
er

ab
le

s
as

 s
p

ec
ifi

ed
 i

n
 t

h
e

o
ri

gi
n

al
 u

se
r

re
q

u
ir

em
en

ts
 a

n
d

 t
ec

h
n

ic
al

 r
eq

u
ir

em
en

ts
.

T,
 R

, M

Appendix G � 377
SI

 6
Pa

rt
ia

l
In

sp
ec

ti
o

n
To

 e
n

su
re

 th
at

 th
e

re
p

o
rt

in
g

m
ea

su
re

s
ad

h
er

e
to

 th
o

se

in
 k

ee
p

in
g

w
it

h
 t

h
e

SA
M

PL
E

ex
is

ti
n

g
cr

it
er

ia
 a

n
d

co

n
ti

n
u

it
y

b
et

w
ee

n
 r

ep
o

rt
s,

 r
ep

o
rt

in
g

m
ec

h
an

is
m

s,

ti
m

e
sc

al
es

, a
n

d
 s

co
p

es
 a

re
 a

ll
in

 t
an

d
em

 w
it

h
 e

ac
h

o

th
er

.

M
, R

SI
 7

Pa
rt

ia
l

In
sp

ec
ti

o
n

D
at

ab
as

e
in

te
gr

it
y

ch
ec

ki
n

g,
 i

n
te

gr
at

io
n

 w
it

h
 W

eb

as
p

ec
t

o
f

p
ro

je
ct

 a
n

d
 a

d
h

er
en

ce
 t

o
 e

xi
st

in
g

SA
M

PL
E

st
an

d
ar

d
s.

 A
ls

o
 a

d
h

er
en

ce
 t

o
 r

u
le

s
id

en
ti

fi
ed

 a
s

p
ar

t
o

f
SI

 6
.

T,
 D

SI
 8

Fu
ll

In
sp

ec
ti

o
n

M
ea

su
re

 a
sp

ec
t

o
f

p
ro

to
ty

p
e

in
 r

el
at

io
n

 t
o

 l
o

o
k

an
d

fe

el
, d

at
ab

as
e

co
n

n
ec

ti
vi

ty
, s

it
e

n
av

ig
at

io
n

, h
u

m
an

co

m
p

u
te

r
in

te
rf

ac
e,

 q
u

al
it

y,
 a

n
d

 o
ve

ra
ll

ad
h

er
en

ce
 t

o

SA
M

PL
E

st
an

d
ar

d
s.

T,
 R

, M

SI
 9

Pa
rt

ia
l

In
sp

ec
ti

o
n

H
ig

h
-l

ev
el

 i
n

sp
ec

ti
o

n
 f

o
r

o
ve

ra
ll

co
n

te
xt

, i
n

te
gr

at
io

n

w
it

h
 S

A
M

PL
E

b
u

si
n

es
s

ap
p

ro
ac

h
. A

ls
o

 a
p

p
ra

is
e

re
su

lt
s

o
f

w
o

rk
 a

ga
in

st
 o

u
tc

o
m

es
 o

f
SI

 6

T,
 M

SI
 1

0
Pa

rt
ia

l
In

sp
ec

ti
o

n
H

ig
h

-l
ev

el
 in

sp
ec

ti
o

n
 in

 r
el

at
io

n
 t

o
 r

is
k

as
se

ss
m

en
t

o
f

w
o

rk
 c

o
m

p
le

te
d

 to
 d

at
e,

 a
n

d
 a

p
p

ra
is

al
 o

f t
h

at
 w

o
rk

 in

re
la

ti
o

n
 t

o
 S

I
6

an
d

 S
I

9.

R
, M

SI
 1

1
Fi

n
al

 I
n

sp
ec

ti
o

n
In

sp
ec

ti
o

n
 p

ri
o

r t
o

 s
ig

n
-o

ff
. E

xe
cu

ti
ve

 B
o

ar
d

 in
sp

ec
ti

o
n

o

f S
I 1

0
o

u
tp

u
ts

, e
xc

ep
ti

o
n

 a
n

al
ys

is
, a

n
d

 id
en

ti
fi

ca
ti

o
n

o

f
p

o
st

-i
m

p
le

m
en

ta
ti

o
n

 r
ev

ie
w

 w
o

rk
.

M
, E

B

378 � Software Configuration Management

� Further “value-added” work: A chance for any improvements to be
discussed.

� Rework: The author(s) start any reworking based on the defect list(s).
� Re-inspection: If necessary, the whole process or part of it will be

repeated until all the defects have been eradicated, or a number
suitable to pass the criteria set by the organization.

� Causal analysis: As an option, the inspection process may identify
some underlying causes of some of the defects.

� Follow-up: Anything identified by the inspection team as requiring
necessary follow-up work.

Figure G1 Software Inspection Steps

Further
"Value Added"

Work

Planning

Overview

Preparation

MeetingRe-Inspection

Rework

Causal
Analysis

Followup

Checklist

Defect
List

Work Products

Seen as optional
software inspection

activities

Seen as essential
software inspection

activities

Sample Inspection Plan � 379

5 CONTINUING PROCESSES

As a result of this inspection, it is likely that some follow-up work will be
required. This work needs to be monitored by the inspection team to ensure
that all standards and needs are addressed throughout the life cycle of the
project. Also, as change requests or other impacts on the product are
encountered throughout the life cycle of the project, it will be necessary to
ensure that no regression to the previous pre-inspection state of the code
takes place as part of the resultant changes. As such, it is recommended
that the following continuing processes are put into place:

� Regular random inspections of suspect code
� Monitoring revisits to code requiring follow-up work
� Regression inspections of code affected by change requests or

other similar project impacts

It is also recommended that a chosen representative of the inspection
team report back regularly to the project manager as to the state of the
project code with regard to standards and user requirements to ensure
that control of the process is maintained.

6 SUMMARY

As a summary, the author would like to point out the following:

1. This document was produced in conjunction with Sample Executive
Consultant Group and must be signed by their representative to
indicate acceptance of the aims of the document and the process
it represents.

2. The inspection team will be made up of a cross-functional team to
ensure that all aspects of the development are represented.

3. The process will originally focus on a first inspection of the require-
ments to ensure that they are complete and in a format that the
inspection team can work with when inspecting the code.

4. A continuing process will remain in force for the life cycle of the
project.

5. The continuing process will encompass follow-on actions from
inspected code as well as regression inspections for highly modified
code as a result of change requests or other such project impacts.

6. The inspection team is responsible to the project manager and
should ensure that he or she is aware of the status of the inspections
at all times.

380 � Software Configuration Management

7. Regular reporting will be in place between the inspection team and
the project manager.

In short, this inspection is in place to protect the needs of the devel-
opers, the overall project team, and the customer. Its main aim is to ensure
that the product delivered to the customer is what he requires, how he
requires it, and written to a maintainable standard to ease the path of
future upgrade, modification, and problem resolution.

381

Appendix H

QA HANDOVER DOCUMENT

382 � Software Configuration Management
Q

A
 H

an
do

ve
r

D
oc

um
en

t

Su
bm

itt
ed

:
D

ep
t.

Ph
on

e
#

Su
bm

is
si

on
 D

at
e

A
pp

lic
at

io
n/

M
od

ul
e

(C
I #

)
Pr

od
uc

t/F
or

m
 to

 te
st

: (
re

qu
ir

ed
)

Im
pl

em
en

ta
tio

n
D

at
e

H
an

do
ve

r
Ite

m
 N

am
e/

D
es

cr
ip

tio
n

V
er

si
on

/B
ui

lt:
N

ew
/M

od
ifi

ed
:

B
ri

ef
 b

ut
 th

or
ou

gh
 d

es
cr

ip
tio

n
of

 th
e

M
od

ifi
ca

tio
n,

 a
lo

ng
 w

ith
 a

ny
 s

pe
ci

al
 te

st
in

g
re

qu
ir

em
en

ts

Te
st

in
g

do
ne

 a
t t

he
 d

ev
el

op
m

en
t s

ta
ge

. A
tta

ch
 d

oc
um

en
ta

tio
n

(r
eq

ui
re

d)
.

Appendix H � 383

K
no

w
n

is
su

es
. D

oc
um

en
ta

tio
n

at
ta

ch
ed

 (r
eq

ui
re

d)
.

TE
A

M
 M

EM
B

ER
/D

EV
EL

O
PE

R

PR
O

JE
C

T
M

A
N

A
G

ER

Q
A

 A
N

A
LY

ST

Q
A

 M
A

N
A

G
ER

SY
ST

EM
S

M
A

N
A

G
ER

Q
A

00
1

385

Appendix I

SYSTEM SERVICE REQUEST

386 � Software Configuration Management

Sy
st

em
 S

er
vi

ce
 R

eq
ue

st
C

I:
 _

__
__

__
__

__
__

__
__

__
_

R
eq

ue
st

or
R

eq
ue

st
 D

at
e

N
ee

de
d

D
at

e

U
rg

en
cy

:

□
 L

ow

 □
 M

ed
iu

m

 □

 H
ig

h
R

eq
ue

st
or

 D
ep

ar
tm

en
t

R
eq

ue
st

 T
yp

e:

 □

 M
ai

nt
en

an
ce

 (F
ix

 o
r

M
od

ify
 S

ys
te

m
)

Se
co

nd
ar

y
C

on
ta

ct

 □

 N
ew

 D
ev

el
op

m
en

t (
N

ew
 C

ap
ab

ili
ty

)

D
es

cr
ip

tio
n:

Appendix I � 387
□

 P
le

as
e

at
ta

ch
 d

oc
um

en
ta

tio
n:

 S
cr

ee
n

sh
ot

s
w

ith
 a

nn
ot

at
io

ns
 fo

r
re

qu
ir

ed
 c

ha
ng

es
 a

re
 r

eq
ui

re
d

fo
r

an
y

m
ai

nt
en

an
ce

 to

sc
re

en
s.

 T
hi

s
ca

n
be

 d
on

e
by

 h
itt

in
g

th
e

Pr
in

t S
cr

ee
n

ke
y,

 a
nd

 p
as

tin
g

in
to

 a
 W

or
d

do
cu

m
en

t.
Pr

ov
id

e
pr

og
ra

m
 o

r
fu

nc
tio

n
na

m
e

if
kn

ow
n.

□
 A

dd
iti

on
al

 In
fo

rm
at

io
n

or
 in

te
ra

ct
io

n
w

ith
 o

th
er

 s
ys

te
m

s
if

pe
rt

in
en

t.

□
 C

an
 y

ou
 p

ro
vi

de
 te

st
 d

at
a?

Q
ue

st
io

ns
?

N
ee

d
A

ss
is

ta
nc

e?
 C

al
l E

xt
. x

xx
 o

r
e-

m
ai

l x
xx

@
xx

xx
.c

om

SS
R

389

Appendix J

DOCUMENT CHANGE
REQUEST (DCR)

390 � Software Configuration Management
D

O
C

U
M

EN
T

C
H

A
N

G
E

R
EQ

U
ES

T
(D

C
R

)

D
o

cu
m

en
t

Ti
tl

e:
Tr

ac
ki

n
g

N
u

m
b

er
:

N
am

e
o

f
Su

b
m

it
ti

n
g

O
rg

an
iz

at
io

n
:

O
rg

an
iz

at
io

n
 C

o
n

ta
ct

:
Ph

o
n

e:

M
ai

lin
g

A
d

d
re

ss
:

Sh
o

rt
 T

it
le

:
D

at
e:

C
h

an
ge

 L
o

ca
ti

o
n

:
(u

se
 s

ec
ti

o
n

 #
, fi

gu
re

 #
, t

ab
le

 #
, e

tc
.)

Pr
o

p
o

se
d

 C
h

an
ge

:

Appendix J � 391
R

at
io

n
al

e
fo

r
C

h
an

ge
:

N
o

te
: F

o
r

th
e

So
ft

w
ar

e
En

gi
n

ee
ri

n
g

Pr
o

ce
ss

 O
ffi

ce
 (

SE
PO

)
to

 t
ak

e
ap

p
ro

p
ri

at
e

ac
ti

o
n

 o
n

 a
 c

h
an

ge

re
q

u
es

t,
p

le
as

e
p

ro
vi

d
e

a
cl

ea
r

d
es

cr
ip

ti
o

n
 o

f
th

e
re

co
m

m
en

d
ed

 c
h

an
ge

 a
lo

n
g

w
it

h
 s

u
p

p
o

rt
in

g
ra

ti
o

n
al

e.

Se
n

d
 t

o
:

393

Appendix K

PROBLEM/CHANGE REPORT

394 � Software Configuration Management
PR

O
B

LE
M

/C
H

A
N

G
E

R
EP

O
RT

(T
yp

e
or

 P
ri

nt
)

1.
 D

at
e

2.
 P

/C
R

 N
o

3.
 O

ri
gi

n
at

o
r

4.
 A

ct
iv

it
y

C
o

d
e

5.
 T

el
ep

h
o

n
e/

Ex
t.

6.
 T

it
le

7.
 C

at
eg

o
ry

: (
C

ir
cl

e)

Pl
an

s

C

o
n

ce
p

t

 R
eq

u
ir

em
en

ts

 D
es

ig
n

 C

o
d

e

D
B

/d
at

a
fi

le

 T
es

t
In

fo
 M

an
u

al
s

 O

th
er

 _
__

__
__

__
__

__
__

__
__

__
__

__

8.
 P

ri
o

ri
ty

: (
C

ir
cl

e)

 1

 2

 3

 4

 5

9.
 P

ro
b

le
m

/C
h

an
ge

 D
es

cr
ip

ti
o

n
:

Appendix K � 395
10

. C
o

rr
ec

ti
ve

 A
ct

io
n

:

11
. A

ct
io

n
s

Ta
ke

n
:

St
at

u
s

D
at

e

12
. Q

A
 S

ig
n

-O
ff

396 � Software Configuration Management

P/
C

R
 P

R
EP

A
R

A
TI

O
N

 I
N

ST
R

U
C

TI
O

N
S

1.
 T

IT
LE

Pr
ob

le
m

/C
ha

ng
e

R
ep

or
t

2.
 D

ES
C

R
IP

TI
O

N
/P

U
R

PO
SE

2.
1

Th
e

Pr
ob

le
m

/C
ha

ng
e

R
ep

or
t (

P/
C

R
) s

ho
w

s
es

se
nt

ia
l d

at
a

on
 e

ac
h

so
ftw

ar
e

pr
ob

le
m

/c
ha

ng
e

de
te

ct
ed

. I
t a

ls
o

sh
ow

s
er

ro
rs

on

 o
m

is
si

on
s

in
 d

oc
um

en
ta

tio
n.

 S
uf

fic
ie

nt
 d

et
ai

l o
f t

he
 p

ro
bl

em
 s

ha
ll

be
 r

ep
or

te
d

to
 e

na
bl

e
an

al
ys

is
 a

nd
 is

ol
at

io
n

or

re
pl

ic
at

io
n

if
ne

ce
ss

ar
y.

3.
 A

PP
LI

C
AT

IO
N

 IN
TE

R
R

EL
AT

IO
N

SH
IP

3.
1

P/
C

R
s

ar
e

us
ed

 to
 r

ec
or

d
an

d
re

po
rt

 p
ro

bl
em

s
fo

un
d

th
ro

ug
ho

ut
 d

ev
el

op
m

en
t.

Th
ey

 a
re

 a
ls

o
us

ed
 to

 r
ep

or
t e

rr
or

s
or

om

is
si

on
s

fo
un

d
in

 d
oc

um
en

ta
tio

n.
 T

he
 P

/C
R

 is
 th

e
ba

si
c

in
pu

t t
o

th
e

qu
al

ity
 a

ss
ur

an
ce

 p
ro

gr
am

 d
ur

in
g

th
e

te
st

 a
nd

ac

ce
pt

an
ce

 p
ha

se
 o

f t
he

 d
ev

el
op

m
en

t e
ffo

rt
. P

/C
R

s
on

 in
te

rf
ac

es
 w

ith
 o

th
er

 s
ys

te
m

s
re

qu
ir

e
jo

in
t r

es
ol

ut
io

n
ac

tio
n.

4.
 P

R
EP

A
R

AT
IO

N
 IN

ST
R

U
C

TI
O

N
S

1.
 D

at
e.

 T
he

 d
at

e
fo

rm
 is

 p
re

pa
re

d.
2.

 P
/C

R
 N

um
be

r .
P/

C
R

 N
um

be
r

as
si

gn
ed

 fo
r

co
nt

ro
l p

ur
po

se
s.

3.
 O

ri
gi

na
to

r .
Pr

in
te

d
na

m
e

of
 p

er
so

n
or

ig
in

at
in

g
th

e
P/

C
R

 fo
rm

.
4.

 A
ct

i v
ity

 C
od

e.
 T

he
 a

ct
iv

ity
 a

nd
 c

od
e

na
m

e
or

 n
um

be
r

of
 in

di
vi

du
al

 o
ri

gi
na

tin
g

th
e

P/
C

R
 fo

rm
.

5.
 T

el
ep

ho
ne

/E
xt

. O
ri

gi
na

to
r’s

 o
ffi

ce
 te

le
ph

on
e

nu
m

be
r,

an
d

ex
te

ns
io

n
(if

 a
pp

lic
ab

le
).

6.
 T

itl
e.

 N
am

e
us

ed
 to

 id
en

tif
y

pr
ob

le
m

/c
ha

ng
e.

Appendix K � 397

7.
 C

at
eg

or
y.

 C
ir

cl
e

ap
pr

op
ri

at
e

ca
te

go
ry

 a
ss

oc
ia

te
d

w
ith

 p
ro

bl
em

/c
ha

ng
e

be
in

g
re

po
rt

ed
.

C
at

eg
o

ri
es

:
a.

 P
la

ns
 –

 o
ne

 o
f

th
e

pl
an

s
de

ve
lo

pe
d

fo
r

th
e

pr
oj

ec
t

b.
 C

on
ce

pt
 –

 th
e

op
er

at
io

na
l c

on
ce

pt
c.

 R
eq

ui
re

m
en

ts
 –

 th
e

sy
st

em
 o

r
so

ft
w

ar
e

re
qu

ir
em

en
ts

d.
 D

es
ig

n
–

th
e

de
si

gn
 o

f
th

e
sy

st
em

 o
r

so
ft

w
ar

e
e.

 C
od

e
–

th
e

so
ft

w
ar

e
co

de
f.

 D
at

ab
as

e/
da

ta
 fi

le
 –

 a
 d

at
ab

as
e

or
 d

at
a
fil

e
g.

 T
es

t i
nf

or
m

at
io

n
–

te
st

 p
la

ns
, t

es
t d

es
cr

ip
tio

ns
, o

r
te

st
 r

ep
or

ts
h.

 M
an

ua
ls

 –
 th

e
us

er
, o

pe
ra

to
r,

or
 s

up
po

rt
 m

an
ua

ls
i.

 O
th

er
 –

 o
th

er
 s

of
tw

ar
e

pr
od

uc
ts

8.
 P

ri
or

ity
. C

ir
cl

e
ap

pr
op

ri
at

e
pr

io
ri

ty
 c

od
e,

 1
 –

 5
.

Pr
io

ri
ty

 C
o

d
es

:
1

a.
 P

re
ve

nt
 th

e
ac

co
m

pl
is

hm
en

t o
f

an
 o

pe
ra

tio
na

l o
r

m
is

si
on

-e
ss

en
tia

l c
ap

ab
ili

ty

b.
 J

eo
pa

rd
iz

e
sa

fe
ty

, s
ec

ur
ity

, o
r

ot
he

r
re

qu
ir

em
en

t d
es

ig
na

te
d

“c
ri

tic
al

”
2

a.
 A

dv
er

se
ly

 a
ff

ec
t t

he
 a

cc
om

pl
is

hm
en

t o
f

an
 o

pe
ra

tio
na

l o
r

m
is

si
on

-e
ss

en
tia

l c
ap

ab
ili

ty
 a

nd
 n

o
w

or
k-

ar
ou

nd
 s

ol
ut

io
n

is
 k

no
w

n

b.
 A

dv
er

se
ly

 a
ff

ec
t t

ec
hn

ic
al

, c
os

t,
or

 s
ch

ed
ul

e
ri

sk
s

to
 th

e
pr

oj
ec

t o
r

to
 li

fe
-c

yc
le

 s
up

po
rt

 o
f

th
e

sy
st

em
, a

nd
 n

o
w

or
k-

ar
ou

nd

so

lu
tio

n
is

 k
no

w
n

3
a.

 A
dv

er
se

ly
 a

ff
ec

t t
he

 a
cc

om
pl

is
hm

en
t o

f
an

 o
pe

ra
tio

na
l o

r
m

is
si

on
-e

ss
en

tia
l c

ap
ab

ili
ty

 b
ut

 a
 w

or
k-

ar
ou

nd
 s

ol
ut

io
n

is
 k

no
w

n

b.
 A

dv
er

se
ly

 a
ff

ec
t t

ec
hn

ic
al

, c
os

t,
or

 s
ch

ed
ul

e
ri

sk
s

to
 th

e
pr

oj
ec

t o
r

to
 li

fe
-c

yc
le

 s
up

po
rt

 o
f

th
e

sy
st

em
, b

ut
 a

 w
or

k-
ar

ou
nd

so
lu

tio
n

is
 k

no
w

n
4

a.
 R

es
ul

ts
 in

 u
se

r/
op

er
at

or
 in

co
nv

en
ie

nc
e

or
 a

nn
oy

an
ce

 b
ut

 d
oe

s
no

t a
ff

ec
t a

 r
eq

ui
re

d
op

er
at

io
na

l o
r

m
is

si
on

-e
ss

en
tia

l

 c
ap

ab
ili

ty

b.
 R

es
ul

ts
 in

 in
co

nv
en

ie
nc

e
or

 a
nn

oy
an

ce
 f

or
 d

ev
el

op
m

en
t o

r
su

pp
or

t p
er

so
nn

el
, b

ut
 d

oe
s

no
t p

re
ve

nt
 th

e
ac

co
m

pl
is

hm
en

t o
f

 th

os
e

re
sp

on
si

bi
lit

ie
s

5
A

ny
 o

th
er

 e
ff

ec
t

398 � Software Configuration Management

9.
 P

ro
bl

em
/C

ha
ng

e
D

es
cr

ip
tio

n.
 W

ri
te

 a
 d

es
cr

ip
tio

n
of

 th
e

pr
ob

le
m

/c
ha

ng
e.

 D
ev

el
op

 a
 w

or
d

pi
ct

ur
e

of
 e

ve
nt

s
le

ad
in

g
up

 to
 th

e
pr

ob
le

m
. S

tr
uc

tu
re

 s
ta

te
m

en
ts

 s
o

th
at

 th
e

pr
og

ra
m

m
er

/te
st

 a
na

ly
st

 c
an

 d
up

lic
at

e
th

e
si

tu
at

io
n.

 C
ite

 e
qu

ip
m

en
t b

ei
ng

 u
se

d,

un
us

ua
l c

on
fig

ur
at

io
n,

 e
tc

. I
nd

ic
at

e
co

ns
ol

es
 o

nl
in

e,
 m

od
es

, e
tc

.,
if

ap
pl

ic
ab

le
. I

f c
on

tin
ua

tio
n

sh
ee

ts
 a

re
 r

eq
ui

re
d,

 fi
ll

in
 p

ag
e

__
__

_o
f _

__
__

__
 a

t t
he

 to
p

of
 th

e
P/

C
R

 fo
rm

.
10

. C
or

re
ct

i v
e

A
ct

io
n:

 A
 d

es
cr

ip
tio

n,
 b

y
th

e
pr

og
ra

m
m

er
/te

st
er

, o
f a

ct
io

ns
 ta

ke
n

to
 re

so
lv

e
th

e
re

po
rt

ed
 p

ro
bl

em
 o

r t
o

co
m

pl
et

e
th

e
re

qu
es

te
d

ch
an

ge
.

11
. A

ct
io

ns
 T

ak
en

: E
nt

er
 th

e
st

at
us

/d
is

po
si

tio
n

an
d

da
te

 to
 in

di
ca

te
 th

e
cu

rr
en

t s
ta

tu
s.

 W
he

n
th

e
st

at
us

 c
ha

ng
es

, l
in

e
ou

t t
he

 o
ld

st

at
us

 a
nd

 d
at

e
an

d
en

te
r

th
e

ap
pr

op
ri

at
e

ne
w

 s
ta

tu
s

an
d

da
te

.
12

. Q
A

 S
ig

n-
of

f.
Si

gn
at

ur
e

by
 d

es
ig

na
te

d
qu

al
ity

 a
ss

ur
an

ce
 (Q

A
) o

rg
an

iz
at

io
n

m
em

be
r

au
th

or
iz

in
g

im
pl

em
en

ta
tio

n
of

 th
e

co
rr

ec
tiv

e
ch

an
ge

(s
) a

nd
 c

er
tif

yi
ng

 th
e

co
rr

ec
tn

es
s

an
d

co
m

pl
et

en
es

s
of

 th
e

ch
an

ge
(s

).

399

Appendix L

SOFTWARE REQUIREMENTS
CHANGES

Software Requirements
Changes (SRC)

CI:

Date raised:

Source of SRC
Description of SRC

Consequence(s) of SRC

Impact on project if SRC
not actioned

Responsibility for
Actions

Impact of each action on:
� Risks
� Project milestones
� Project tolerance

Recommendations
Executive Board

notification
Date Action Required

401

Appendix M

PROBLEM REPORT (PR)

Problem Report (PR) CI:

Date raised:

Source of Problem
(reported by and owner)

Description of Problem

Actual or potential
consequence(s) of
problem

Action(s) taken to
mitigate problem so far

Responsibility for
Action(s)

Impact of each action on:
� Risks
� Project milestones
� Project tolerance

Recommendations

Executive Board
notification

Date Action Required

403

Appendix N

CORRECTIVE ACTION
PROCESSING (CAP)

404 � Software Configuration Management

Corrective Action Processing (CAP) CI:

Date raised:

Source of CAP (name, position
in organization – project
group)

Area CAP relates to:
� Software development
� Quality
� Training
� Design of product
� Management of project
� Other

Description of CAP

Other areas this CAP could
relate to

Impact on organization if CAP
not addressed

Responsibility for actions
relating to this CAP

Impact of each action on :
� Risks
� Project milestones
� Project tolerance
� Future of BEC

Recommendations
Which forum should CAP be

raised at?
� Monthly meeting
� Prototype demonstration
� Training event
� Software review
� Ad hoc

Executive Board notification Date Action Required

405

Appendix O

SPECIFICATION CHANGE
NOTICE

Appendix O � 406
SP

EC
IF

IC
AT

IO
N

 C
H

A
N

G
E

N
O

TI
C

E
(S

C
N

)
1.

 D
A

TE

(Y
Y

M
M

D
D

)
FO

R
M

 A
PP

R
O

V
ED

O
M

B
 N

o
. 0

70
4-

01
88

2.
 P

R
O

C
U

R
IN

G
A

C
TI

V
IT

Y
 N

O
.

3.
 D

O
D

A
A

C

4.
 O

R
IG

IN
A

TO
R

5.
 S

C
N

 T
Y

PE
□

 P
R

O
PO

SE
D

 □
 A

PP
R

O
V

ED

a.
 T

Y
PE

D
 N

A
M

E
(F

ir
st

, M
id

d
le

 In
it

ia
l,

La
st

)
6.

 C
A

G
E

C
O

D
E

7.
 S

PE
C

. N
O

.

b
. A

D
D

R
ES

S
(S

tr
ee

t,
C

it
y,

 S
ta

te
, Z

ip
 C

o
d

e)
8.

 C
A

G
E

C
O

D
E

9.
 S

C
N

 N
O

.

10
. S

Y
ST

EM
 D

ES
IG

N
A

TI
O

N
11

. R
EL

A
TE

D
 E

C
P

N
O

.
12

. C
O

N
TR

A
C

T
N

O
.

13
. C

O
N

TR
A

C
TU

A
L

A
U

TH
O

R
IZ

A
TI

O
N

14
. C

O
N

FI
G

U
R

A
TI

O
N

 IT
EM

 N
O

M
EN

C
LA

TU
R

E
15

. E
FF

EC
TI

V
IT

Y

16
. P

A
G

ES
 A

FF
EC

TE
D

 B
Y

 T
H

IS
 S

C
N

PA
G

E(
S)

a.

TY
PE

 O
F

C
H

A
N

G
E*

b
.

A
PP

R
O

V
A

L
D

A
TE

(Y
Y

M
M

D
D

)
c.

Appendix O � 407

Pr
ev

io
us

 e
di

tio
ns

 a
re

 o
bs

ol
et

e

D
D

 F
or

m
 1

69
6,

 A
PR

 9
2

17
. S

U
M

M
A

RY
 O

F
PR

EV
IO

U
SL

Y
 C

H
A

N
G

ED
 P

A
G

ES
D

A
TE

 S
U

B
M

IT
TE

D
(Y

Y
M

M
D

D
)

d
.

TY
PE

 O
F

C
H

A
N

G
E*

e.

A
PP

R
O

V
A

L
D

A
TE

(Y
Y

M
M

D
D

)
f.

SC
N

 N
O

.
a.

R
EL

A
TE

D
 E

C
P

N
O

.
b

.
PA

G
E(

S)
c.

*
“S

”
in

d
ic

at
es

 e
ar

lie
r

p
ag

e.
 “

A
”

in
d

ic
at

es
 a

d
d

ed
 p

ag
e.

 “
D

”
in

d
ic

at
es

 d
el

et
io

n
.

18
.a

. G
O

V
ER

N
M

EN
T

A
C

TI
V

IT
Y

c.
 S

IG
N

A
TU

R
E

d
. D

A
TE

 S
IG

N
ED

(Y
Y

M
M

D
D

)

b
. T

Y
PE

D
 N

A
M

E
(F

ir
st

, M
id

d
le

 In
it

ia
l,

La
st

)

408 � Software Configuration Management

 D

D
 F

or
m

 1
69

6,
 A

PR
 9

2

SP
EC

IF
IC

AT
IO

N
 C

H
A

N
G

E
N

O
TI

C
E,

 C
O

N
TI

N
U

AT
IO

N
 P

A
G

E
2

SP
EC

. N
O

SC
N

. N
O

R
EL

AT
ED

 E
C

P
N

O
.

17
. S

U
M

M
A

RY
 O

F
PR

EV
IO

U
SL

Y
 C

H
A

N
G

ED
 P

A
G

ES
 (C

O
N

T.
)

D
AT

E
SU

B
M

IT
TE

D
(Y

Y
M

M
D

D
)

d.

TY
PE

 O
F

C
H

A
N

G
E*

e.

A
PP

R
O

V
A

L
D

AT
E

(Y
Y

M
M

D
D

)
f.

SC
N

 N
O

.
a.

R
EL

AT
ED

 E
C

P
N

O
.

b.
PA

G
E(

S)
c.

*
“S

”
in

di
ca

te
s

ea
rl

ie
r

pa
ge

. “
A”

 in
di

ca
te

s
ad

de
d

pa
ge

. “
D

”
in

di
ca

te
s

de
le

tio
n.

409

Appendix P

PROJECT STATEMENT
OF WORK

System Release # Project # CI #

VERSION: Draft

Project Statement of Work
Project Manager: <name>

Created: <date>

Last Updated: <date>

Created By: <name>

TABLE OF CONTENTS

Project Information . 411
Project Request . 411
Project Number and Title . 411
Executive Sponsor or Delegate. 411

Project Definition . 411
Background . 411

Project Objectives . 411
Business Units Involved . 411

Internal . 411
External . 412

Business Impacts . 412
Business Benefits . 412

410 � Software Configuration Management

Risks . 413
Risk Rating. 413
Identified Risks . 413
Risk Mitigation . 413

Proposed Solution . 414
Current . 414
Proposed Solution . 414

Project Scope . 414
Inclusions . 414
Exclusions . 415
Security Statement . 415

Project Approach . 415
Project Management . 415
Methodology . 416
Deliverables . 416

Key Project Deliverables. 416
Approvals . 417

Acceptance Criteria . 417
Assumptions . 417
Key Facts. 418
Issue Management . 419
Change Management . 419
Communication Plan . 419
Project Status . 420

Project Schedule and Major Milestones . 420
Project Team . 421

Project Organization (Shaded Boxes in Figure P1 Are the
Core Management Project Team) . 421

Project Team Roles/Responsibilities . 422
Project Estimates/Costs . 425

Project Estimates and Costs . 425
Research and Experimentation Tax Credit Eligibility 425

Appendices: . 426
Appendix P1: Statement of Work Approval. 426
Appendix P2: Support Documentation Risk Assessment Form. . . . 427
Appendix P3: Potential Tax Credit Tests . 434
Appendix P4: Change Management Form and Instructions 435

Procedure . 435
Project Change Request Form. 436

Appendix P5: Issues Log . 438
Appendix P6: List of Requirements Scheduled for Release ??. 439

Appendix P � 411

PROJECT INFORMATION

Project Request

This project has been requested to provide various Business Lines
new and/or improved functionality within the <application name>
System. Some of the requested changes will be beneficial for the
customer also.

Project Number and Title

This project will be referred to as the “?? Project.” The project number is ??.

Executive Sponsor or Delegate

The Business Group Head for this project is <group head name> of
<company name> and the executive sponsor is <executive sponsor name>,
Group Technology Executive.

PROJECT DEFINITION

Background

There are several requirements requested for Release ??. These require-
ments will be funded by various Business Lines and will benefit several
different areas as well as the customer in many cases.

Release ?? is one of two remaining releases scheduled for <year> by
the enterprise. The planned implementation date for Release ?? is <date>.
This release will be coordinated with the <project name> scheduled
between <month> and <month> <year>.

Project Objectives

To provide more functionality and data accessibility in the ?? System to
the Business Lines and the customer in the least amount of time for the
most reasonable cost.

Business Units Involved

Internal

Impacts to the following applications were determined in the initial data
gathering phase of this project. Certain applications have been defaulted

412 � Software Configuration Management

to testing only as no response was obtained during the data gathering
phase. Formal sizing has been gathered from all impacted applications as
a part of the requirements phase of this project. This list represents the
internal interfaces.
Internal Applications/Areas: Impacts:

1. Application name: No development — set-up and testing needed
2. Application name: Application name — Development, testing

needed
Application name — Development
Application name — Testing needed

3. Application name: Development, testing needed
Sub-system name — Testing needed
Sub-system name — No development; set-up, and testing needed
Sub-system name — Testing needed

External

The external organizations impacted by this project include:

1. Third-Party Package name: New process and procedures; develop-
ment, testing needed

Business Impacts

This project will have the following business impacts:

1. Changes for all <application name> customers
2. Changes for Wholesale Sales and Relationship Managers
3. Changes for Regional Managers
4. Changes for Operations
5. Changes for Central Implementation and Regional Implementation

Centers

Business Benefits

This project will have the following business benefits:

1. Improved presentation of customer statements and reports
2. Productivity gains on automating various processes

Appendix P � 413

3. Productivity gains on making specific data more readily available
to analysts for problem resolution

4. Compliance with Corporate branding standards

Risks

Risk Rating

The risk score for this project is 82. As a result of the risk rating, this
project has been rated as a medium-risk project. There is additional risk
due to some of the requested changes to be implemented in conjunction
with the release implementation date. There is a conflict between the
release date and the upgrade date.

See Appendix P2: Risk Assessment form.

Identified Risks

The risks identified for this project include the following:

1. Late deliverables if resource constraints
2. Resource constraints if work needed on other higher priorities such

as production issues
3. Retaining key project team resources
4. Conflicting project priorities
5. Communication, coordination, and task management of all

impacted/affected applications are necessary for successful imple-
mentation

6. Risk of impacted customers due to the complexity of some changes

Risk Mitigation

The following actions will be taken to address the identified risks:

1. Hire contractors as necessary to assist the team in completing the
assigned tasks.

2. Work with the Business Lines early in the requirements gathering
phase to document detailed requirements.

3. More accurate estimates due to detailed business requirements.
4. Regularly scheduled meetings will be held to keep all

impacted/affected applications up-to-date on tasks.
5. Include adequate checkpoint reviews in the project process to

ensure accurate and complete information.

414 � Software Configuration Management

6. Testing will be coordinated with all impacted applications to ensure
the changes are correct.

PROPOSED SOLUTION

Current

Not all functionality was built into the new <application name> System
from the old <application name> System. This lack of functionality is
causing many manual work-arounds and in some cases loss of revenue.
Some of the requested changes also position <application name> in
compliance with <company name> strategic standards.

Proposed Solution

The <application name> management team is working with the Project
Manager to ensure that detailed Business Requirements are fully docu-
mented and to prioritize those requirements based on business need.
Those requirements have been sized and presented to the various Business
Lines. A resource plan will be updated to reflect the number of resources
available during the Release ?? timeframe. The Business Lines will then
obtain funding for the requirements that can be completed in that Release
?? timeframe.

The project plan will be updated and an issues log and task plan will
be maintained throughout the term of the project.

PROJECT SCOPE

Inclusions

The scope of this project includes the following:

1. Defining and communicating the business requirements to all
affected applications that are included in the Release ?? requirements

2. Assessing and managing the impacts to the various Operational/Sup-
port Groups/Business Lines

3. Participation in development of customer, department, and vendor
communications

4. Participation in development of customer or internal training
5. Participation in development of user documentation and procedures
6. Participation in regression testing

Appendix P � 415

7. Validation of requirements, design, development, and unit and
system testing of application changes necessary to the applications
listed in the Business Units Involved

8. Changes needed for other applications requirements

A list of the requirements scheduled for Release ?? is attached as
Appendix P6.

Exclusions

The scope of this project does not include the following:

1. Any non-<APPLICATION NAME> accounts
2. <APPLICATION NAME> (??) application conversion (although it is

a dependency)

Security Statement

1. The Security Plan is prepared to ensure that appropriate controls
are being designed that meet security policy and standards. The
plan should identify risks and exposures to information, systems,
and networks that may result from any exceptions to the standards.
The System Managers are responsible for ensuring that the security
plans are updated or created for all systems.

PROJECT APPROACH

Project Management

<Project Manager name> has been assigned to manage the project. The
responsibilities of the project manager will be:

1. Establish and execute a project plan
2. Ensure completion of project estimates, as required
3. Track actual costs against budget/planned costs
4. To assist in maintaining the overall project direction
5. First point of escalation of project issues
6. Obtain project resource commitments
7. Define project milestones
8. Create and maintain a project issues log

416 � Software Configuration Management

9. Schedule and conduct project status meetings
10. Complete project status meeting minutes
11. Complete project status reports
12. Contact lists for all project participants with defined roles and

responsibilities
13. Ensure detailed test plans are complete
14. Participate in the post-event review
15. Communicate with the other End-to-End Project Managers
16. Close the project

Methodology

This project will follow the <methodology name> methodology.
One overall project manager will be assigned as the end-to-end project

manager as well as the Technical Lead. This project manager will manage
the details of the <APPLICATION NAME> System development efforts.
The project manager will maintain a common format for issues, project
plans, and technical requirements. The project manager will provide day-
to-day management for the technical team and provide a roll-up of all
issues, plans, and requirements.

Deliverables

Key Project Deliverables

Key deliverables from this project include:

1. Statement of Work
2. Risk Assessment
3. Project Change Requests
4. Project Requirements Document
5. Design Documents
6. Communication Plan
7. Data Security Plan
8. Resource Plan
9. Critical Success Factors Document

10. Master Test Plan
11. Training Plan
12. Implementation Plan
13. Post-Implementation Review

Appendix P � 417

Approvals

Approval of key project deliverables must be received from the following
individuals:

A = Approval Required; R = Review Only

Acceptance Criteria

This project will be considered completed when the following acceptance
criteria have been met:

1. Each system change has passed all levels of test successfully and
is implemented into production successfully.

2. Delivered system functionality meets agreed-upon functionality
3. There is no undue fallout up to two weeks after implementation.

Assumptions

The following assumptions are being made for this project:

Area Deliverables
1 2 3 4 5 6 7 8 9 10 11 12 13

<manager name>
Operations

Manager

A A A A A A R A A A A A A

<manager name>
Technical Manager

A A A A A A R A A R R A A

<manager name>
TM Product

Manager

A A A A A A A A A A A R A

<manager name>
Operations

Manager

A A A A A A R A A A A A A

<manager name>
Project Manager

A A A A A A R A A A R A A

<manager name>
Wholesale

Services

A A A A A A R A A R A R A

<manager name>
Wholesale

Integration

A A A A A A R A A A A R A

Audit
Representative

R R R R R R R R R R R R R

418 � Software Configuration Management

1. Resources assumption. The key resource assumptions for labor,
space, and equipment are:
� Technical Lead will be identified and assigned
� A test coordination leader is identified and assigned for <APPLI-

CATION NAME>.
� Testing Assumptions in general:

� Test coordination with all affected applications will be man-
aged by an assigned resource from testing. Other testing
resources will be drawn from each of the applications.

� Testing by all affected applications will be conducted at the
specified time established by Release Management for this
release.

� All Business Line resources are available to the overall project.
� Project support resources are available to the overall project.

2. Production support has the highest priority for resources. Other
resource issues will be addressed and prioritized at the Steering
Committee Meeting level.

3. The Release ?? key dates will not be changed and the various phases
of the project will start and end on time.

Key Facts

Key facts identified for this project include the following:

� If the ?? requirement is not implemented with this release, we will
continue to lose revenue at the rate of approximately $?? a month.

� If the new statement paper and logo requirement is not implemented
with this release, <APPLICATION NAME> will continue to be out of
compliance with enterprise standards.

� If <requirement> is not implemented with this release, there will be
staffing impacts to the Operations group.

� All <APPLICATION NAME> and <application name> related changes
must be implemented concurrently.

� If <requirement> is not implemented, there will be customer and
Operational impacts.

� If the file format changes are not made, there will be customer
impacts.

� If the <requirement> changes are not made, there will be customer
impact.

Appendix P � 419

Issue Management

Project-related issues will be tracked, prioritized, assigned, resolved, and
communicated as follows:

1. The project manager and participants will report issues that are
identified throughout the life of the project.

2. The project manager will maintain a log of all issues and report on
the status of issues.

3. The project manager will assign the priority and ownership to the
issue. If necessary, the Executive Sponsors will assist the project
manager in assigning appropriate ownership for resolution.

4. Individual team members assigned to resolve the issue will be
responsible for communicating the issue status to the project man-
ager.

See Appendix P5 for the Issue Log template.

Change Management

A change management procedure will be used by this project to help
ensure that changes impacting the project are assessed, understood, and
agreed upon by stakeholders before the change is made or before initiating
specific actions to accommodate the change. The purpose of this proce-
dure is to control change and impacts to the project and not to discourage
change.

A Project Change Request form (PCR) must be submitted to the Project
Manager for any changes that impact the project’s cost, schedule, or scope.
The Project Manager will review the proposed change request with the
project team members impacted by the change to assess the impact of
the change. The Project Manager will present the change request to the
Steering Committee to approve or reject the request. The decision will be
communicated to the requester and project team.

See Appendix P4 for the Project Change Request form and instructions.

Communication Plan

A project communication plan will be completed. This plan identifies the
approach that will be used to share information with key internal and
external parties throughout the project. The key elements of the commu-
nication plan include:

420 � Software Configuration Management

� Who must receive the information
� What intervals the information will be shared
� Who will provide the information
� What medium will be used

Project Status

The status of this project will be communicated in multiple ways. These
include:

� Weekly project team status meeting
� Weekly project management status meeting
� Monthly project status reporting to the business lines
� Monthly online project status reporting to the PMO
� Project Plan Updates

A meeting agenda will be published prior to the meetings so partici-
pants can be prepared for the meeting. Meeting minutes will be distributed
after the meeting has occurred so the team is aware of the discussion at
the meeting.

PROJECT SCHEDULE AND MAJOR MILESTONES

Milestone Start Date Completion Date

Requirements <date> <date>

Analysis <date> <date>

Design <date> <date>

Development <date> <date>

Testing <date> <date>

Implementation <date> <date>

Post-Implementation Support <date> <date>

Project Closure <date> <date>

Appendix P � 421

Project Team

Project Organization (Shaded Boxes in Figure P1 Are the Core
Management Project Team)

Figure P1 Project Organizational Chart

<application name> Release ?? Project

<name>
President & CEO

<name>
EVP, Chief of

Technology and
Operations

<name>
GEVP, Wholesale

Banking

<name>
Chief Operating

Officer and
Vice Chairman

<name>
EVP, Head of

Comm and Corp
Banking

<name>
Chief Information

Officer

<name>
Operations Area

Manager
<name>

Group Operations
Executive

<name>
Commercial Rel
Mgmt Manager

<name>
Group Technology

Executive

<name>
Operations
Manager

<name>
Operations
Manager

<name>
Product Mgmt

Manager

<name>
Project Mgmt

Manager

<name>
Project Mgmt

Manager

<name>
Group Technology

Manager

<name>
Technology
Manager

<name>
Project Manager

Technical
Staff

Documentation/
Training/

Communication

System
Development

Audit

Test
Coordinator

422 � Software Configuration Management

Project Team Roles/Responsibilities

Area Individual(s) Role/Responsibilities
Project

Manager
<name> First point of escalation of project issues

Obtain project resource commitments
Complete project estimates, as required
Establish and execute a project plan
Define project milestones
Create and maintain a project issues log
Schedule and conduct project status

meetings
Complete project status meeting minutes
Compete project status reports
Monitor and manage financial status of

project
Participate in the post-implementation

review meeting
Communicate with the other End-to-End

Project Managers
Close the project

Technical Lead <name> Review and approve Change Requests
Create Systems project plan
Participate in weekly project status meetings
Conduct system training, as needed
Conduct system status meetings
Assist in User Acceptance Testing
Ensure System Testing is completed
Complete the Technical Design and Review
Review and approve the project plan
Develop the systems support plan
Develop system conversion programs, as

needed
Complete system development and unit

testing
Update system documentation
Complete production support plan
Ensure technical activities are included in the

project timeline
Ensure technical resources are available to

complete technical activities
Technical

Systems
Manager

<name> Review and approve business requirements
Approve project plan
Review and approve Change Requests
Review and approve project plan
Review and approve User Design

Appendix P � 423

Area Individual(s) Role/Responsibilities
Review test plans
Review and approve the project

implementation plan
Review and approve the support plan

Product
Management
Project Lead

<name> Complete Product research and analysis
Review product implementation workflow
Define business requirements
Approve project plan
Review and approve Change Requests
Review and approve project plan
Communicate product changes and delivery

plan to project team and line staff
Review and approve User Design
Perform gap analysis of old product versus

new product
Review and approve customer transition

workflow
Complete Product risk assessment
Define product pricing structure
Review test plans
Resolve Product issues
Assist with development of customer

communications
Review the project implementation plan
Review and approve the support plan

Operations
Project Leader

<name> Review and approve Change Requests
Create Operations project plan
Participate in weekly project status meetings
Conduct operations team status meetings, as

necessary
Participate in User Acceptance Testing
Train Operations staff, as needed
Provide Operations requirements
Review and approve the Technical Design
Review and approve User Design
Review and approve the project plan
Update Operations documentation
Develop the operations support plan
Review the project implementation plan
Review and approve the support plan
Ensure Operations resources are available to

complete operation activities

424 � Software Configuration Management

Area Individual(s) Role/Responsibilities
Customer

Services
Project Leader

<name> Review and approve Change Requests
Participate in weekly project status meetings
Participate in User Acceptance Testing
Train Customer Services staff, as needed
Provide Customer Service requirements
Review and approve the Technical Design
Review and approve User Design
Review and approve the project plan
Update Customer Service documentation
Review the project implementation plan
Review and approve the support plan
Ensure Customer Services resources are

available to complete customer service
activities

Integration
Project Leader

<name> Review and approve Change Requests
Participate in weekly project status meetings
Participate in User Acceptance Testing
Train Implementation staff, as needed
Provide implementation requirements
Review and approve the Technical Design
Review and approve User Design
Review and approve the project plan
Update implementation documentation
Review the project implementation plan
Review and approve the support plan
Ensure implementation resources are

available to complete implementation
activities

Documentation
and Training

<name> Coordinate with various bank training
groups to ensure the proper updates are
made to documentation, and to assess the
need for training

Test
Coordination

<name> Identification of testing participants,
organization of test team, and definition of
responsibilities

Coordinate cross-project testing
dependencies with other testing project
leads

Identification of business/operation end
users that may need to validate

Confirm testing environment provided will
meet needs

Schedule testing with dependencies based
on design, training, and conversion
schedule

Appendix P � 425

PROJECT ESTIMATES/COSTS

Project Estimates and Costs

Research and Experimentation Tax Credit Eligibility

An evaluation was completed for this project to determine if the project
qualifies as an eligible R & E activity. The result of the evaluation indicates
that this project does not qualify as an eligible R & E activity.

Area Individual(s) Role/Responsibilities
Completion of test plan and approval
Completion of test scripts and approval
Establish and communicate testing schedule
Communicate testing status with project

team
Monitoring of test cycles
Ensure validation complete
Track testing issues for fixes to be made and

ensure appropriate resolution
Obtain testing sign-offs
Types of testing to manage for CTG:

IAT (Integrated Application Testing)
UAT (User Acceptance Testing)

Description Dollars
Capital
(hardware/software)

(if applicable) N/A

Labor costs
Employee # hours $
Contract labor # hours $
Total labor hours $

Test CPU (if applicable) N/A
Test DASD (if applicable) N/A

* Other (list all) Travel/training $
Depreciation N/A
Software N/A
Teleconference $ not budgeted
Training N/A

Total dollars Total *$
*Ball Park Estimate

426 � Software Configuration Management

See Appendix P3 for the completed R & E Tax Credit evaluation.

APPENDICES:

Appendix P1: Statement of Work Approval

AUTHORIZATION

Project Number ??
Project Name <APPLICATION NAME> Release ?? Project
Phase Name Design

Name Signature Approval Date
<name>

Operations Manager

<name>

Technology Manager

<name>

Project Manager

<name>

Treasury Management
Product Management

<name>

Operations Manager

<name>

Client Services

<name>

Wholesale Integration

Appendix P � 427
A

pp
en

di
x

P2
:

Su
pp

or
t

D
oc

um
en

ta
ti

on
 R

is
k

A
ss

es
sm

en
t

Fo
rm

Pr
oj

ec
t N

um
be

r
F1

25
0

A
pp

lic
at

io
n

<
A

PP
LI

C
AT

IO
N

 N
A

M
E>

Pr
oj

ec
t T

itl
e

<
ap

pl
ic

at
io

n
na

m
e>

 R
el

ea
se

 ?
?

Pr
oj

ec
t

M
an

ag
er

<
na

m
e>

D
at

e
<

da
te

>

1.
Ty

pe
 o

f
Pr

oj
ec

t:
2

11
.

N
um

be
r

of
 P

ro
je

ct
 T

ea
m

 M
em

be
rs

:
8

M
ai

n
te

n
an

ce
 (

co
rr

ec
t

p
ro

b
le

m
s)

1
1–

5
2

En
h

an
ce

m
en

t
(a

d
d

 n
ew

 f
ea

tu
re

s)
2

6–
10

4
N

ew
 d

ev
el

o
p

m
en

t
—

 r
ep

la
ce

 e
xi

st
in

g
au

to
m

at
ed

 s
ys

te
m

3
11

–1
5

8

N
ew

 d
ev

el
o

p
m

en
t

—
 r

ep
la

ce
 m

an
u

al

sy
st

em
5

16
 o

r
m

o
re

12

N
ew

 d
ev

el
o

p
m

en
t —

 d
ev

el
o

p
 s

ys
te

m
 to

su

p
p

o
rt

 n
ew

 b
u

si
n

es
s

6

Im
p

le
m

en
ta

ti
o

n
 o

f
so

ft
w

ar
e

p
ac

ka
ge

 i
n

-
h

o
u

se
6

O
u

ts
o

u
rc

in
g

to
 e

xt
er

n
al

 v
en

d
o

r
6

R
ee

n
gi

n
ee

ri
n

g
o

f
sy

st
em

’s
 a

rc
h

it
ec

tu
re

6

2.
Im

pa
ct

 t
o

B
us

in
es

s
O

pe
ra

ti
on

s:
 (

in
cl

ud
es

da

ta
/s

ta
ffi

ng
/m

on
et

ar
y)

10
12

.
A

pp
ro

xi
m

at
e

Le
ng

th
 o

f T
im

e
to

C

om
pl

et
e

Pr
oj

ec
t:

10

Li
m

it
ed

 c
h

an
ge

 t
o

 b
u

si
n

es
s

o
p

er
at

io
n

5
<

4
m

o
n

th
s

5
M

ed
iu

m
 c

h
an

ge
 t

o
 b

u
si

n
es

s
o

p
er

at
io

n
10

4–
7

m
o

n
th

s
10

M
aj

o
r

ch
an

ge
 t

o
 b

u
si

n
es

s
o

p
er

at
io

n
20

7–
12

 m
o

n
th

s
15

>
12

 m
o

n
th

s
25

428 � Software Configuration Management

3.
N

um
be

r
of

 Y
ea

rs
 B

us
in

es
s

O
rg

an
iz

at
io

n
H

as
 B

ee
n

in
 B

us
in

es
s:

0
13

.
Im

pa
ct

 t
o

C
us

to
m

er
:

20

>
3

0
Li

m
it

ed
 p

ro
d

u
ct

/p
o

rt
fo

lio
 c

u
st

o
m

er

b
as

e
af

fe
ct

ed
5

1–
3

2
Pa

rt
ia

l
p

ro
d

u
ct

/p
o

rt
fo

lio
 c

u
st

o
m

er

b
as

e
af

fe
ct

ed
10

<
1

4
En

ti
re

 p
ro

d
u

ct
/p

o
rt

fo
lio

 c
u

st
o

m
er

b

as
e

af
fe

ct
ed

20

4.
N

um
be

r
of

 Y
ea

rs
 t

he
 B

us
in

es
s

G
ro

up
 a

nd

Te
ch

no
lo

gy
 G

ro
up

 H
av

e
W

or
ke

d
To

ge
th

er
:

0
14

.
N

um
be

r
of

 Y
ea

rs
 t

he
 P

ro
je

ct

Te
ch

no
lo

gy
 H

as
 B

ee
n

U
se

d
in

 t
he

O

rg
an

iz
at

io
n:

4

>
3

0
>

3
0

1–
3

2
1–

3
4

<
1

4
<

1
8

5.
N

um
be

r
of

 Y
ea

rs
 th

e
Pr

oj
ec

t M
an

ag
er

 H
as

B

ee
n

a
Pr

oj
ec

t
M

an
ag

er
:

0
15

.
A

m
ou

nt
 a

nd
 L

ev
el

 o
f D

oc
um

en
ta

ti
on

C

ur
re

nt
ly

 A
va

ila
bl

e:
5

>
3

0
Ex

te
n

si
ve

, d
et

ai
le

d
 d

o
cu

m
en

ta
ti

o
n

1
1–

3
5

Ex
te

n
si

ve
 d

o
cu

m
en

ta
ti

o
n

, b
u

t
n

o
t

d
et

ai
le

d
2

<
1

10
Li

m
it

ed
 d

o
cu

m
en

ta
ti

o
n

, b
u

t
d

et
ai

le
d

4

Li
m

it
ed

 o
r

n
o

 d
o

cu
m

en
ta

ti
o

n
, n

o
t

d
et

ai
le

d
5

Appendix P � 429

6.
N

um
be

r
of

 Y
ea

rs
 (

on
 a

ve
ra

ge
)

B
us

in
es

s
G

ro
up

 A
re

a
H

as
 W

or
ke

d
w

it
h

Sp
ec

ifi
c

A
pp

lic
at

io
n

to
 B

e
D

ev
el

op
ed

:

0
16

.
N

um
be

r
of

 O
rg

an
iz

at
io

na
l

En
ti

ti
es

(b

es
id

es
 s

ys
te

m
s)

 t
ha

t
N

ee
d

to
 B

e
In

vo
lv

ed
:

18

>
3

0
0–

2
3

1–
3

5
3–

5
9

<
1

10
>

5
18

7.
N

um
be

r
of

 Y
ea

rs
 (

on
 a

ve
ra

ge
) T

ec
hn

ol
og

y
Pr

oj
ec

t T
ea

m
 H

as
 W

or
ke

d
w

it
h

Sp
ec

ifi
c

A
pp

lic
at

io
n

to
 B

e
D

ev
el

op
ed

:

2
17

.
A

va
ila

bi
lit

y
of

 B
us

in
es

s
Pa

rt
ne

r
to

Te

ch
no

lo
gy

 G
ro

up
:

4

>
3

0
A

ss
ig

n
ed

 t
o

 d
es

ir
ed

 l
ev

el
 o

f
in

vo
lv

em
en

t
an

d
 a

va
ila

b
le

 t
o

 d
p

im

m
ed

ia
te

ly
 w

h
en

 n
ee

d
ed

0

1–
3

2
A

ss
ig

n
ed

 t
o

 d
es

ir
ed

 l
ev

el
 o

f
in

vo
lv

em
en

t,
b

u
t

lik
el

y
n

o
t

av
ai

la
b

le
 i

m
m

ed
ia

te
ly

 w
h

en

n
ee

d
ed

4

<
1

4
N

o
t a

ss
ig

n
ed

 to
 th

e
d

es
ir

ed
 le

ve
l o

f
in

vo
lv

em
en

t
16

8.
N

um
be

r
of

 Y
ea

rs
 T

ec
hn

ol
og

y
Te

am
 H

as

Pe
rf

or
m

ed
 t

he
 D

ut
ie

s
Th

ey
 W

ill
 B

e
A

sk
ed

to

 P
er

fo
rm

 o
n

th
e

Pr
oj

ec
t

(i
.e

.,
an

al
ys

is
,

de
si

gn
,

co
di

ng
,

te
st

in
g)

:

0
18

.
Le

ga
l/

R
eg

ul
at

or
y

Im
pa

ct
:

0

430 � Software Configuration Management
>

3
0

Li
m

it
ed

 l
eg

al
/r

eg
u

la
to

ry

ra
m

ifi
ca

ti
o

n
s

0

1–
3

4
M

o
d

er
at

e
le

ga
l/r

eg
u

la
to

ry

ra
m

ifi
ca

ti
o

n
s

5

<
1

8
Si

gn
ifi

ca
n

t
le

ga
l/r

eg
u

la
to

ry

ra
m

ifi
ca

ti
o

n
s

10

9.
N

um
be

r
of

 Y
ea

rs
 (

av
er

ag
e)

 T
ec

hn
ol

og
y

Te
am

 H
as

 W
or

ke
d

w
it

h
th

e
Te

ch
no

lo
gy

 t
o

B
e

U
se

d
on

 t
he

 P
ro

je
ct

 (
e.

g.
,

C
IC

S,

PA
C

BA
SE

,
IM

S)
:

0
19

.
Es

ti
m

at
ed

 C
os

ts
 f

or

H
ar

dw
ar

e/
So

ft
w

ar
e/

C
on

ve
rs

io
n:

0

>
3

0
<

$6
00

,0
00

0
1–

3
3

$6
00

,0
00

 t
o

 $
3,

00
0,

00
0

5
<

1
6

>
$3

,0
00

,0
00

10

10
.

N
um

be
r

of
 V

en
do

rs
 I

nv
ol

ve
d:

4
20

.
N

um
be

r
of

 I
nt

er
fa

ce
s:

5

1
2

<
4

0
2

4
4–

12
5

≥3
8

≥1
2

10
Sc

o
re

 R
an

ge
0

to
 7

0
71

 t
o

 1
20

12
1+

R
is

k
Lo

w
M

ed
iu

m
H

ig
h

TO
TA

L
SC

O
R

E
R

IS
K

 L
EV

EL
82 M

ed
iu

m

Appendix P � 431

21
.

Te
ch

no
lo

gy
 O

pt
io

ns
 E

xp
lo

re
d/

R
es

ea
rc

he
d:

0
30

.
In

co
rp

or
at

io
n

of
 th

e
C

or
po

ra
te

 B
us

in
es

s C
on

ti
nu

it
y

Pl
an

ni
ng

 P
ro

ce
ss

 i
nt

o
th

e
D

es
ig

n
of

 t
he

 P
ro

je
ct

.
4

≥
0

Ex
te

n
si

ve
 i

n
vo

lv
em

en
t

in
 t

h
e

sy
st

em
s

d
es

ig
n

0

2
2

M
in

im
al

 i
n

vo
lv

em
en

t
in

 t
h

e
sy

st
em

s
d

es
ig

n
4

1
5

N
o

 i
n

vo
lv

em
en

t
in

 t
h

e
sy

st
em

s
d

es
ig

n
8

N
o

n
e

10
N

o
 c

o
n

ti
n

ge
n

cy
 p

la
n

 e
xi

st
s

12

22
.

W
as

 T
hi

s
Te

ch
no

lo
gy

 O
pt

io
n

Se
le

ct
ed

 a
s

a
Se

co
nd

C

ho
ic

e
B

as
ed

 u
po

n
C

os
t

or
 S

ch
ed

ul
e?

0
31

.
Im

pa
ct

 to
 th

e
C

us
to

m
er

 a
nd

/o
r

En
vi

ro
nm

en
t i

f t
he

Te

ch
no

lo
gy

 F
ai

ls
:

5

N
o

0
N

o
 i

m
p

ac
t

0

Ye
s

4
Li

m
it

ed
 i

m
p

ac
t

5

M
o

d
er

at
e

im
p

ac
t

10

Si
gn

ifi
ca

n
t

im
p

ac
t

20

23
.

Te
ch

no
lo

gy
 U

se
d

in
 t

he
 P

ro
je

ct
:

0
32

.
Im

pa
ct

 to
 th

e
C

us
to

m
er

 a
nd

/o
r

En
vi

ro
nm

en
t i

f t
he

Ex

it
 P

la
n

H
as

 t
o

B
e

Ex
ec

ut
ed

:
4

N
o

n
e

o
f

th
e

te
ch

n
o

lo
gy

 u
se

d
 i

s
n

ew
0

Li
m

it
ed

 i
m

p
ac

t
2

N
ew

 t
o

 t
h

e
b

u
si

n
es

s
lin

e
5

M
o

d
er

at
e

im
p

ac
t

4

N
ew

 t
o

 W
el

ls
 F

ar
go

10
Si

gn
ifi

ca
n

t
im

p
ac

t
8

N
ew

 t
o

 t
h

e
in

d
u

st
ry

20

432 � Software Configuration Management

24
.

Pr
oj

ec
t

R
eq

ui
re

m
en

ts
0

33
.

Ty
pe

 o
f T

hi
rd

-P
ar

ty
 C

on
ne

ct
iv

it
y

(n
on

-W
el

ls
 F

ar
go

co

nn
ec

ti
vi

ty
)

U
se

d
in

 P
ro

je
ct

 O
r

Te
ch

no
lo

gy
:

5

R
eq

u
ir

em
en

ts
 a

re
 c

le
ar

, c
o

m
p

le
te

, a
n

d
 s

ta
b

le
0

N
o

 t
h

ir
d

-p
ar

ty
 c

o
n

n
ec

ti
vi

ty
0

R
eq

u
ir

em
en

ts
 a

re
 d

o
cu

m
en

te
d

, b
u

t
so

m
e

u
n

cl
ea

r,
in

co
m

p
le

te
, o

r
u

n
st

ab
le

 i
n

fo
rm

at
io

n
5

Ex
is

ti
n

g
th

ir
d

-p
ar

ty
 c

o
n

n
ec

ti
vi

ty
 i

n
vo

lv
ed

5

M
in

im
al

 o
r

n
o

 r
eq

u
ir

em
en

ts
 d

o
cu

m
en

te
d

10
N

ew
 t

h
ir

d
-p

ar
ty

 c
o

n
n

ec
ti

vi
ty

 i
n

vo
lv

ed
10

25
.

Se
rv

ic
e

or
 F

un
ct

io
na

lit
y

Pr
ov

id
ed

 to
 C

us
to

m
er

s
or

 E
nd

U

se
rs

 b
y

th
e

Te
ch

no
lo

gy
:

18
34

.
O

ut
ag

e
du

ri
ng

 t
he

 I
m

pl
em

en
ta

ti
on

 o
f

th
e

Te
ch

no
lo

gy
:

0

M
ai

n
te

n
an

ce
3

N
o

 o
u

ta
ge

 r
eq

u
ir

ed
0

St
an

d
ar

d
 e

n
h

an
ce

m
en

t
6

O
u

ta
ge

 a
ft

er
 b

u
si

n
es

s
h

o
u

rs
4

Ex
te

n
d

ed
 f

u
n

ct
io

n
al

it
y

9
O

u
ta

ge
 d

u
ri

n
g

b
u

si
n

es
s

h
o

u
rs

8

N
ew

 f
u

n
ct

io
n

al
it

y/
se

rv
ic

e/
p

ro
d

u
ct

/a
rc

h
it

ec
tu

re
18

26
.

C
an

 S
iz

in
g

an
d

C
ap

ac
it

y
fo

r T
ec

hn
ol

og
y

B
e

Ev
al

ua
te

d
an

d
In

co
rp

or
at

ed
 i

nt
o

D
es

ig
n?

10
35

.
Le

ve
l o

f T
ra

in
in

g
N

ec
es

sa
ry

 fo
r

C
us

to
m

er
s

an
d

En
d

U
se

rs
:

5

C
u

rr
en

t
an

d
 f

u
tu

re
 s

iz
in

g
an

d
 c

ap
ac

it
y

an
al

ys
is

 i
s

id
en

ti
fi

ed
2

N
o

n
e

0

O
n

ly
 c

u
rr

en
t

si
zi

n
g

an
d

 c
ap

ac
it

y
an

al
ys

is
 i

s
id

en
ti

fi
ed

5
Li

m
it

ed
 t

ra
in

in
g

n
ec

es
sa

ry
5

N
o

 s
iz

in
g

an
d

 c
ap

ac
it

y
an

al
ys

is
 c

an
 b

e
id

en
ti

fi
ed

10
Ex

te
n

si
ve

 t
ra

in
in

g
n

ec
es

sa
ry

10

Appendix P � 433
27

.
C

ha
ng

es
 to

 E
xi

st
in

g
Sy

st
em

s,
 In

cl
ud

in
g

In
fr

as
tr

uc
tu

re
,

N
ec

es
sa

ry
 t

o
Im

pl
em

en
t

th
e

Te
ch

no
lo

gy
:

2
36

.
A

m
ou

nt
 o

f T
ra

in
in

g
M

at
er

ia
ls

 a
nd

 D
oc

um
en

ta
ti

on

B
ud

ge
te

d
an

d
N

ec
es

sa
ry

 f
or

 C
us

to
m

er
s

an
d

En
d

U
se

rs
 t

o
U

se
 t

he
 N

ew
 T

ec
hn

ol
og

y:

4

Li
m

it
ed

2
Li

m
it

ed
 o

r
n

o
 d

o
cu

m
en

ta
ti

o
n

 n
ee

d
ed

2

M
o

d
er

at
e

5
Li

m
it

ed
 d

o
cu

m
en

ta
ti

o
n

, b
u

t
d

et
ai

le
d

4

Si
gn

ifi
ca

n
t

10
Ex

te
n

si
ve

 d
o

cu
m

en
ta

ti
o

n
, b

u
t

n
o

t
d

et
ai

le
d

6

Ex
te

n
si

ve
 a

n
d

 d
et

ai
le

d
 d

o
cu

m
en

ta
ti

o
n

8

28
.

N
um

be
r

of
 D

ep
en

de
nc

ie
s

on
 O

th
er

 P
ro

je
ct

s,
 C

ha
ng

es
,

Se
rv

ic
es

, V
en

do
rs

,
Su

pp
lie

rs
,

or
 C

on
tr

ac
to

rs
:

15
37

.
Fo

rm
al

 R
FP

 P
ro

ce
ss

 U
se

d
du

ri
ng

 T
ec

hn
ol

og
y

Se
le

ct
io

n:
0

N
o

n
e

0
R

FP
 p

ro
ce

ss
 f

o
llo

w
ed

0

1
5

R
FP

 p
ro

ce
ss

 f
o

llo
w

ed
, b

u
t

o
n

ly
 o

n
e

re
sp

o
n

se
3

≥2
15

R
FP

 p
ro

ce
ss

 N
O

T
fo

llo
w

ed
6

29
.

N
um

be
r

of
 A

pp
lic

at
io

ns
 o

r
Sy

st
em

s
Im

pa
ct

ed
:

10
38

.
Le

ve
l

of
 V

en
do

r
Su

pp
or

t
N

ec
es

sa
ry

 f
or

 t
he

Te

ch
no

lo
gy

 a
ft

er
 I

m
pl

em
en

ta
ti

on
:

5

≤1
5

N
o

 s
u

p
p

o
rt

 n
ec

es
sa

ry
0

2–
3

10
M

in
o

r
su

p
p

o
rt

 n
ec

es
sa

ry
 (

i.e
.,

m
ai

n
te

n
an

ce
)

5

4–
12

15
M

aj
o

r
su

p
p

o
rt

 n
ec

es
sa

ry
 (

i.e
.,

p
ro

gr
am

m
in

g,

u
p

gr
ad

es
, e

tc
.)

10

>
12

25

Sc
o

re
 R

an
ge

R
is

k
0

to
 6

0
Lo

w
61

 t
o

 1
10

M
ed

iu
m

11
1+

H
ig

h

TO
TA

L
SC

O
R

E
87

R
IS

K
 L

EV
EL

M
ed

iu
m

434 � Software Configuration Management

Appendix P3: Potential Tax Credit Tests

The following analysis evaluates if this project qualifies as an eligible
R & E activity.

Yes No Qualification Tests

□ � First Test
Do the activities qualify as research in the laboratory or experimental

sense by:
Relating to, or supporting, the development or improvement of a

product; and
Intending to discover information that would eliminate uncertainty

concerning the development or improvement of a product or
process?

� □ Second Test
Is the research undertaken for the purpose of discovering information

that is technological in nature?

� □ Third Test
Do the activities undertaken include the elements of the process of

experimentation (i.e., were alternative designs evaluated using the
scientific method or did the development of the final design require
experimentation)?

� □ Fourth Test
Is the activity being conducted for a permitted purpose: new or

improved function, performance, reliability, quality, or significant cost
reduction?

If software is developed for internal management function and
technique it generally does not qualify for tax credit unless it meets
the following three-part test:

Yes No

□ � First Test
Is the software innovative in that it results in a reduction

of costs or improvement in speed that is substantial and
economically significant?

□ � Second Test
Does the development involve significant economic risk

in that the company commits substantial resources to
the development and there is substantial uncertainty,
because of technical risk, that such resources would not
be recovered in a reasonable period?

□ � Third Test
Is the software being developed not commercially

available (i.e., can the software be obtained elsewhere
and used for the intended purpose without
modifications that would satisfy the first and second
tests above)?

Appendix P � 435

Appendix P4: Change Management Form and Instructions

Procedure

At the conclusion of the requirement phase of the project, the requirements
will be considered static and unchangeable because they will form the
basis for subsequent project activities. In the event that a change is
necessary, the following process must be followed to ensure that the
change is implemented into the project plan and impacts are adequately
assessed.

1. A change is identified as a result of an issue or of some change to
the project environment (for example, regulatory and/or competitive
changes).

2. The person who is requesting the change completes a Project
Change Request Form and sends it to the Project Manager. This
form will require the following information from the requester(s):
� Date of the Request — this is the date the request form is filled out.
� Requester — the name of the individual requesting the change.
� Description of Change — a detailed description of the requested

change.
� Business Reason for Change — a detailed description of the

business reason why the change must be implemented as part
of this project.

3. The Project Manager will review the change request with all
impacted team members to determine the project tasks that will
either be added or impacted by the change request and estimate
the impacts of the change.

4. After assessing the impact of the requested change on the project
and completing estimated cost and schedule impacts, the request
will be presented to the Executive Sponsors and either approved
or denied.

5. The Project Manager will contact the requester by sending a com-
pleted change request form to the requester with the final decision
and inform the impacted areas of the decision. If the change request
is denied, the Project Manager will include a reason for denial in
the Reason for Denial section.

6. A copy of the Project Change Request Form will be included in
the project file for permanent record and the project task plan will
be updated accordingly.

436 � Software Configuration Management

Project Change Request Form

<APPLICATION NAME> Release ??
Change Contr ol Request For m

Instructions Requester must complete this side of form.
Name of Change
Date Requested
Release Requested
(cannot request change control on

any release scheduled to move to
ET in 60 days or less)

Funding Source
Estimate of Hours to Complete
Estimated Dollars to Complete
(number of hours multiplied by the

current development rate of
$100.00)

Cost Savings Realized by
Implementing this Request

(describe in dollars the savings
realized on a monthly or yearly
basis)

State the Requirements

Current Work-around Being
Employed

Background or Other Important
Facts

Operations Approval
Must have Operations Mgmt

approval before being submitted
to Systems for estimating

Insert approval e-mail in this section and copy
Operations Mgmt on the e-mail when sent to
Systems

Product Approval
Must have Product Mgmt approval

before being submitted to Systems
for estimating

Insert approval e-mail in this section and copy
Product Mgmt on the e-mail when sent to
Systems

Systems Approval
Approval will be granted after the

estimate is completed

Insert approval e-mail in this section and copy
Systems Mgmt on the e-mail when the response
is e-mailed to Operations and Product within 10
business days of the request

Appendix P � 437

Procedure:

1. Complete the Change Control Form.
2. Submit to <APPLICATION NAME> Application Systems Manager or

Team Lead.
3. Systems will estimate the effort.
4. Systems will respond within 10 business days indicating if the

change can be absorbed in the release requested:
� If the request can be absorbed, work will be queued as appro-

priate.
� If the request cannot be absorbed, the Systems group will call

a meeting to discuss reprioritizing requirements or moving the
request to another release.

5. See bottom of form for Approval Instructions.

438 � Software Configuration Management
A

pp
en

di
x

P5
:

Is
su

es
 L

og

<
A
P
P
LI

C
A
T
IO

N
 N

A
M

E
>
 R

el
ea

se
 ?

?
Is

su
es

 L
o
g

Is
su

e
#

O
pe

n
D

at
e

O
pe

ne
d

B
y

Is
su

e
D

es
cr

ip
tio

n
A

ss
ig

ne
d

To
D

ue

D
at

e
C

lo
se

d
D

at
e

St
at

us
Pr

io
rit

y
C

om
m

en
ts

/R
es

ol
ut

io
n

O
PE

N
 I

SS
U

ES

Is
su

e
#

O
pe

n
D

at
e

O
pe

ne
d

B
y

Is
su

e
D

es
cr

ip
tio

n
A

ss
ig

ne
d

To
D

ue

D
at

e
C

lo
se

d
D

at
e

St
at

us
Pr

io
rit

y
C

om
m

en
ts

/R
es

ol
ut

io
n

C
LO

SE
D

 I
SS

U
ES

Pr
io

ri
ty

 C
o

d
es

:
H

ig
h

 =
 S

h
o

w
 S

to
p

p
er

 —
 c

an
n

o
t

co
n

ti
n

u
e

w
it

h
o

u
t

is
su

e
re

so
lu

ti
o

n
.

M
ed

iu
m

 =
 C

au
ti

o
n

 —
 m

ay
 c

o
n

ti
n

u
e

w
it

h
o

u
t

im
m

ed
ia

te
 r

es
o

lu
ti

o
n

.
Lo

w
 =

 N
o

t
C

ri
ti

ca
l

—
 c

an
 c

o
n

ti
n

u
e

w
it

h
o

u
t

is
su

e
re

so
lu

ti
o

n
.

St
at

us
 C

o
d

es
:

(A
)c

ti
ve

(R
)e

so
lv

ed
(D

)e
fe

rr
ed

(P
)e

n
d

in
g

Appendix P � 439

Appendix P6: List of Requirements Scheduled for Release ??

� <APPLICATION NAME> New File Format
� New File Format
� New <APPLICATION NAME> Stmt Paper and Logo

441

Appendix Q

PROBLEM TROUBLE
REPORT (PTR)

442 � Software Configuration Management

PROBLEM TROUBLE REPORT (PTR)
PROBLEM NO.: ________________________________

CI: __

DATE ISSUED: __________________________________

TEST CYCLE/JOB: ______________________________
PROGRAM/PROJECT/SCR: _______________________________

TYPE: __ ONLINE/SCREEN

CONDITION NO.: _______________________________

__ BATCH/REPORT

__ DOCUMENTATION

__ DATABASE

CATEGORIES: __ A-CRITICAL/FIX IMMEDIATELY

__ B-MAJOR/FIX BEFORE TEST COMPLETION

__ C-FIX BEFORE DEPLOYMENT

__ D-NEW OR REVISED REQUIREMENT

__ E-PROBLEM EXISTS IN REAL WORLD

__ F-USER DEFINED

SUBJECT: __

PROBLEM DETAILS: (Attach examples) __

ISSUED BY: ___

ISSUING ORG: ___

REQ. DEV. REPRESENTATIVE/LEAD RECOMMENDATIONS: __
__

SIGNATURE: __ DATE: __________________________________

PROGRAMMER EVALUATION: ___

SOFTWARE PROGRAM/VERSION CHANGED: ___

FIXED: __________________ RECOMMENDED CANCEL: __________________________ DATE: ___________________________

PROGRAMMER SIGNATURE: ___

REQ. DEV. REPRESENTATIVE/ACQUIRER/USER EVALUATION:

RETEST DATE: ______________________________

NOT RESOLVED: _____________________ CANCELED: _____________________ CLOSED: ____________________

 SIGNATURE: ___

Problem Trouble Report 10.2

443

Appendix R

LIBRARY/BASELINE
CHANGE FORM

444 � Software Configuration Management
L

ib
ra

ry
/B

as
el

in
e

C
ha

ng
e

F
or

m
Pr

o
je

ct
/P

ro
d

u
ct

 L
in

e:
R

eq
ue

st
ed

 b
y:

D
R

C
M

 U
se

W
h

at
 K

in
d

 o
f

C
h

an
ge

?
□

 P
ro

m
o

ti
o

n
□

 D
em

o
ti

o
n

□
 A

d
d

it
io

n
R

eq
u

es
t

#:

 R
eq

u
es

t
D

at
e:

R
ea

so
n

 W
h

y?
□

 T
es

t
p

as
se

d
□

 C
h

an
ge

 A
p

p
ro

ve
d

□
 M

ile
st

o
n

e
Pa

ss
ed

□
 T

es
t

fa
ile

d
□

 R
et

re
at

 t
o

 p
re

vi
o

u
s

 V

er
si

o
n

□
 C

u
st

o
m

er
 r

ej
ec

te
d

□
 E

st
ab

lis
h

 B
as

el
in

e
□

 A
d

d
 n

ew
 p

ro
d

u
ct

to
 B

as
el

in
e

□
 R

ec
ei

ve
d

 n
ew

p
ro

d
u

ct
 t

o
 a

d
d

 t
o

th
e

B
as

el
in

e
Pr

o
d

u
ct

s
C

u
rr

en
t

Lo
ca

ti
o

n
A

ff
ec

te
d

 L
ib

ra
ry

/B
as

el
in

e
C

h
an

ge
d

C
I/

Fi
le

N

am
e

C
I

#
V

er
/R

ev
Ty

p
e

So
ft

/D
o

c
R

em
o

te
/L

o
ca

l
Fi

le
 P

at
h

Pr
o

vi
d

ed

M
ed

ia
Li

b
ra

ry
 o

r
B

as
el

in
e

Li
b

ra
ry

 o
r

B
as

el
in

e
D

at
e

A
u

th
o

ri
ti

es

N
am

e/
Si

gn
at

u
re

445

Appendix S

SAMPLE MAINTENANCE PLAN

SAMPLE MAINTENANCE PLAN

Change Control Page

The following information is being used to control and track modifications
made to this document.

1. Revision Date:

CI:

Author:

Section(s):

Page Number(s):

Summary of Change(s):

446 � Software Configuration Management

TITLE PAGE

Document Name: Project Name

Maintenance Plan

Publication Date: Month Year

Contract Number: XX-XXXX-XXXXXXXXX

Project Number: Task: XXXXXXXXXXXXXX

Prepared by: XXXX XXXXXX

Approval:

Name and Organization

Concurrence:

Name and Organization

COMPANY

Organizational Title 1

Organizational Title 2

Sample Maintenance Plan � 447

TABLE OF CONTENTS

Preface . 448
1 Overview . 449

1.1 Background . 449
1.2 Scope of Maintenance . 449
1.3 References . 449

2 Product Status. 449
3 Project Team. 449

3.1 Roles and Responsibilities. 450
4 Management Approach . 451

4.1 Management Priorities . 451
4.2 Task Estimates . 451
4.3 Assumptions, Constraints, and Dependencies 451

5 Technical Approach . 451
5.1 Types of Maintenance Activities . 451
5.2 Configuration Management . 452
5.3 Risk Assessment . 452
5.4 Testing . 452
5.5 System Protection. 452
5.6 Special Processes . 452
5.7 Maintenance Records and Reports . 452
5.8 Training . 453
5.9 Documentation. 453
5.10 Quality Assurance Activities . 453

448 � Software Configuration Management

PREFACE

Document V ersion Contr ol : It is the readers’ responsibility to ensure
they have the latest version of this document. Questions should be directed
to the owner of this document, or the project manager.

Life-cycle Stage : Project Name is in the maintenance stage of the project
life cycle.

Appr oval : An approval signature constitutes approval of this document
when accepting a developed project(s) into the maintenance stage or for
an existing project(s) that has been in the maintenance stage but did not
have a documented plan.

Document Owner : The primary contact for questions regarding this
document is:

Author’s Name, Author’s Function, e.g., Project Planner

Project Name Team

Phone: (XXX) XXX-XXXX

E-mail: XXX.XXX@hq.doe.gov

Privacy Information

This document may contain information of a sensitive nature. This infor-
mation should not be given to persons other than those who are involved
in the Project Name project or who will become involved during the
life cycle.

Sample Maintenance Plan � 449

1 OVERVIEW

1.1 Background

Provide a high-level description of the project and its background. Clearly
indicate if processes are already in place from the development of the
system or whether the system has been in maintenance for some time
and did not have documented processes. If the processes carried over
from development, reference the documents that describe the process. If
the processes were not documented before, describe each process in this
maintenance plan.

1.2 Scope of Maintenance

Describe the software, hardware, documentation, and services that are
included in the maintenance task assignment/contract.

State the parameters that are being set for the project(s). This may
include areas such as work assignments; type and frequency of cus-
tomer/client meetings; requirements analysis; project(s) characteristics, etc.
Also, list any areas specifically excluded from the project(s) (i.e., acqui-
sition of hardware/software, etc.).

Describe the nature of the maintenance to be performed. Is it ongoing
(e.g., several resources are assigned and funded for a given period of
time and they maintain the system) or is it for a specific project (e.g., a
specific enhancement to be performed, or additional functionality to be
added)?

1.3 References

Identify sources of information used to develop this document, such as
IEEE or project documentation.

2 PRODUCT STATUS

Identify the status of the products included in the scope at the time the
maintenance task assignment/contract is initiated. This would include
version numbers, release numbers, and any known defects.

3 PROJECT TEAM

Identify all team members by functional job description (e.g., all mainte-
nance team members, functional area members, and approvers). State
approximate percentage of each team member’s time that will be required
to be devoted to the project(s).

450 � Software Configuration Management

3.1 Roles and Responsibilities

The person(s) responsible for ensuring that the maintenance activities are
performed are identified in the in the chart below or the project(s) work
breakdown structure that these persons are normally identified is refer-
enced.

Role Name Org Responsibility

System
 Owner/User
Point of Contact
 (POC)

Has overall responsibility and
accountability for systems and data.

Assigns and approves all project
activities.

Project Leader Responsible for daily planning and
control of project. Manages and
coordinates technical effort.

Evaluates all requests and
assignments from system owner
and assigns to the appropriate staff
member.

Provides consistent and timely
communications with system
owner. Responsible for final sign-
off of all project assignments prior
to forwarding to system owner for
approval. Responsible for
producing the Maintenance Plan
and for obtaining the customer’s
agreement to the plan.

Project Leader’s
Manager

Provides support and guidance to
the project leader and team.
Ensures project staffing. Resolves
and facilitates communications
between client and support group.

Systems
Programmer/
Analyst Support
Staff

Analyzes assignments and performs
the technical requirements of the
task including coding, testing,
documenting, and implementing.

Quality Analyst Reviews deliverables from a QA
perspective. Provides guidance and
assistance on process matters.

Sample Maintenance Plan � 451

4 MANAGEMENT APPROACH

Describe the priorities for managing the project; tracking and controlling
the project; assumptions, constraints, or dependencies associated with the
project; risk management issues; project estimates (sizing and time); staff-
ing requirements (skills and resource load); and information on overall
schedule and project deliverables. Provide an overview of how activities
will be tracked to completion and how the project schedule/cost will be
kept under control.

4.1 Management Priorities

Describe in general the approach for determining priorities.

4.2 Task Estimates

Describe the process for determining estimates for tasks received.
Estimate the task’s size and the time required for completion. Estimates

may be based on information such as the project’s objectives, and infor-
mation gathered during interviews, known requirements, and skill/expe-
rience levels. Estimating approaches may include a defined timeframe for
each type of task based on tracking of actual times versus planned, over
a period of time. Target response time and clearance time for prob-
lems/change requests.

4.3 Assumptions, Constraints, and Dependencies

List all known assumptions, constraints, and dependencies that could
potentially affect maintenance of the project. An example of an assumption
would be that the tasks for the project do not change significantly after
they have been approved. A constraint is normally a situation that limits
the resources that can be used to accomplish project maintenance. For
example, the budget is restricted, requiring extra coordination to insure
agreement on what tasks can be accomplished with the resources avail-
able. A dependency is an event or chain of events, outside the manager’s
control, that must happen for the project to be successful. For example,
testing of project(s) will depend on installation, by 10-1-02, of a LAN
backbone and connections by the Telecommunications area.

5 TECHNICAL APPROACH

5.1 Types of Maintenance Activities

The activities for maintenance changes are a shortened version of the
development stages. The types of changes that are included in the main-

452 � Software Configuration Management

tenance task assignment/contract are: problem resolution (corrective),
enhancements, interface modifications (adaptive).

5.2 Configuration Management

Describe the configuration management process. Describe the change
control activities. This includes how the change is initiated by the customer
or the maintenance team and the process for analysis, risk assessment,
design, coding, testing, and installation of a new release of the software,
including changes to project documents.

Include the process for corrective changes that are made on an emer-
gency basis to keep the project operational. A sample change request
form is in Attachment 1.

5.3 Risk Assessment

State all potential risks associated with the change being implemented.
Describe the elements of the risk, and state how the risk will be handled
during task implementation.

5.4 Testing

Describe the process for testing the changes.

5.5 System Protection

Describe the process for protecting unauthorized access to the project(s).

5.6 Special Processes

Identify special-purpose programs that are planned/regularly scheduled
maintenance activities such as mass changes, database modifications, backup
and recovery, etc.

5.7 Maintenance Records and Reports

Describe the format of records of maintenance activities performed and
frequency of issue to customer.

List reports that will be produced and frequency of issue. These should
include:

Sample Maintenance Plan � 453

� List of requests for assistance or customer problems and the status
of each

� List of corrective actions, including their priorities and results, if
available

� Failure rates and maintenance activity metrics

Reference Attachment 2 for a sample Maintenance Log, instructions,
and Maintenance Log — Detail Status Information.

5.8 Training

Describe the periodic or established training required for customers and
maintenance team.

5.9 Documentation

Describe the documents that are maintained as part of the maintenance
effort.

5.10 Quality Assurance Activities

Describe the activities and the process for reviewing the maintenance
process to determine that activities are occurring as planned.

454 � Software Configuration Management

 S

of
tw

ar
e

C
ha

ng
e

R
eq

ue
st

 F
or

m

A
tt

ac
h

m
en

t
1

So
ft

w
ar

e
C

h
an

ge
 R

eq
u

es
t

(S
C

R
)

R
eq

u
ir

em
en

t

:_
__

__
__

__
__

__
__

__
__

__
__

_
SC

R
 #

:
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__

O
ri

gi
n

at
o

r:

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
_

D
at

e:

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
R

el
ea

se
 #

:
__

__
__

__
__

__
__

__
__

__
__

__
__

__

Ty
p

e:
(

)
N

ew
 R

eq
u

ir
em

en
t

(
)

Sy
st

em
 P

ro
b

le
m

(
)

Su
gg

es
ti

o
n

 f
o

r
Im

p
ro

ve
m

en
t

(
)

R
eq

u
ir

em
en

t
C

h
an

ge
(

)
U

se
r

In
te

rf
ac

e
Pr

o
b

le
m

(

)
(

)
D

es
ig

n
 C

h
an

ge
(

)
D

o
cu

m
en

ta
ti

o
n

 C
o

rr
ec

ti
o

n
O

th
er

:
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

_
Pr

io
ri

ty
:

(
)

H
ig

h
(

)
N

o
rm

al
(

)
Lo

w

D
es

cr
ip

ti
o

n
:

Pl
ea

se
 a

tt
ac

h
 s

u
p

p
o

rt
in

g
d

o
cu

m
en

ta
ti

o
n

 f
o

r
th

e
re

q
u

es
te

d
 c

h
an

ge
(s

cr
ee

n
/r

ep
o

rt
 p

ri
n

to
u

ts
, d

o
cu

m
en

t
p

ag
es

 a
ff

ec
te

d
, e

tc
.)

St
at

us
D

at
e

In
it

ia
ls

/C
o

m
m

en
ts

R
ev

ie
w

ed
 &

 E
st

im
at

ed

Appendix S � 455

SM
R

 #
 _

__
__

__
__

__
__

__
__

__
_

N
ew

 R
el

ea
se

 #
 _

__
__

__
__

__
__

_
Pl

ea
se

 a
tta

ch
 s

up
po

rt
in

g
do

cu
m

en
ta

tio
n

fo
r

re
vi

ew
 &

 e
st

im
at

es
 (a

na
ly

si
s,

 r
es

ou
rc

e
es

tim
at

es
, l

ay
ou

ts
, d

oc
um

en
t p

ag
es

 a
ffe

ct
ed

, e
tc

.)

O
n

 H
o

ld

C
an

ce
le

d

A
p

p
ro

ve
d

 f
o

r
C

h
an

ge

C
o

d
e

U
p

d
at

ed

D
o

cu
m

en
ta

ti
o

n
 U

p
d

at
ed

C
o

m
p

le
te

d

456 � Software Configuration Management
M

ai
nt

en
an

ce
 L

o
g

Pa
ge

 #
: _

__
__

__
__

__
_

 L
og

 D
at

e:
 _

__
__

_/
__

__
__

/_
__

__
_

M
ai

n
te

n
an

ce
 L

o
g

V
1.

0
(6

/2
2/

98
)

*
E

=
 E

m
er

ge
n

cy
, U

 =
 U

rg
en

t,
R

 =
 R

o
u

ti
n

e
(a

s
d

efi
n

ed
 b

y
th

e
re

q
u

es
t

fo
rm

).

Sy
st

em
 N

am
e:

R
eq

ue
st

 #
R

eq
m

nt
 #

D
at

e
Su

bm
itt

ed
Pr

io
rit

y
(E

,U
,R

)
*

A
pp

ro
va

l
St

at
us

C
ha

ng
e

A
pp

ro
ve

d
C

ha
ng

e
N

ot

A
pp

ro
ve

d
H

ol
d

(F
ut

ur
e

En
ha

nc
em

en
t)

Te
ch

ni
ca

l
Ev

al
ua

tio
n

Ph
as

e

C
ha

ng
e

In
-

Pr
og

re
ss

C
an

ce
le

d
Ta

rg
et

D

at
e

D
at

e
C

om
pl

et
e

Sample Maintenance Plan � 457

INSTRUCTIONS FOR COMPLETING THE MAINTENANCE LOG

This change control log form is included as a suggested format for
recording and maintaining software change request data, including
changes to documentation. A Detailed Status Information form is available
to record supplementary details. The log and software change requests
should be maintained in the Systems Project Notebook.

Field Definition
Page #: Enter the appropriate page number of the log sheet.
Log Date: Enter the date control log was started.
System Name: Enter the name and acronym of the system to be managed.
Request #: Enter the unique sequential number assigned to each request on the

request form (i.e., software change request form, etc.)
Reqmnt #: Enter the unique number of the requirement to be changed (if

known) on the request form.
Date Submitted: Enter the date the request was submitted to the maintenance team.
Priority: Enter the priority from the request form using the first character of

the priority; e.g., E = Emergency, U = Urgent, and R = Routine.
Approval: This area is for recording request approval information obtained

from the request form.
Change Approved: Enter the date the request was approved.
Change Not Approved: Enter the date the request was disapproved.
Hold (Future Enhancement): Enter the date the request was placed

on “Hold.”
Status: This area is for recording basic information about the status of a

request.
. Technical Evaluation Phase: Enter the date the technical evaluation

of the request commenced.
Change In-Progress: Enter the date work began on the request.

Usually, the areas “Technical Evaluation Phase” (if applicable) and
“Change Approved” should be entered prior to posting the
“Change In-Progress” date. Work on most requests should not be
initiated without a technical evaluation and formal approval in the
request form.

Canceled: Enter the date the request was canceled.
Target Date: Enter the estimated date that the request will be

completed and ready for release/implementation.
Date Complete: Enter the actual date the request was implemented.

458 � Software Configuration Management
M

A
IN

TE
N

A
N

C
E

LO
G

 —
 D

ET
A

IL
 S

TA
TU

S
IN

FO
R

M
A

TI
O

N

SC
C

-D
S

Lo
g

V
1.

0
(8

/8
/9

9)

N
ot

e:
 U

se
 t

h
is

 fo
rm

 in
 c

o
n

ju
n

ct
io

n
 w

it
h

 t
h

e
M

ai
n

te
n

an
ce

 L
o

g
fo

rm
 t

o
 r

ec
o

rd
 s

u
p

p
le

m
en

ta
ry

 d
et

ai
ls

 a
b

o
u

t
a

gi
ve

n
 s

o
ft

w
ar

e
ch

an
ge

 r
eq

u
es

t.
In

cl
u

d
e

th
e

ap
p

ro
p

ri
at

e
Pa

ge

an

d
 t

as
k

fr

o
m

 t
h

e
M

ai
n

te
n

an
ce

 L
o

g
fo

rm
 t

o
 m

ai
n

ta
in

 a
 c

ro
ss

-r
ef

er
en

ce
 b

et
w

ee
n

 l
o

gs
. K

ee
p

 a
ll

lo
gs

 w
it

h
 t

h
e

ta
sk

 r
eq

u
es

t
in

 t
h

e
Sy

st
em

 P
ro

je
ct

 N
o

te
b

o
o

k.

Pa
ge

 #
:

Lo
g

D
at

e:
 _

__
 /_

__
 /_

__
_

R
eq

ue
st

 #
:

Sy
st

em
 N

am
e:

Sample Maintenance Plan � 459

REFERENCE

This document is an adaptation of a Maintenance Plan document template
from the U.S. Department of Energy.

461

Appendix T

SOFTWARE CONFIGURATION
MANAGEMENT PLAN (SCMP)

Software Configuration Management Plan (SCMP)
for

[System Title]

ORIGINATOR:

Author Name, Title Date

Code

REVIEWERS:

SCM Manager Name, Title Date

Code

SQA Manager Name, Title Date

Code

APPROVAL:

Project Manager, Title Date

Code

SCM_PLANTEMPLATE:457F:1.00:30APR1998

462 � Software Configuration Management

TABLE OF CONTENTS

1.1 Purpose . 463
1.2 Scope. 463
1.3 Approach . 465
1.4 System Overview . 465
1.5 Project-Defined CSCIs. 465
1.6 Document Overview . 465
1.7 SCM Terms and Definitions . 467
1.8 SCMP Updates . 471

Section 2: Organization . 471
2.1 Organizational Structure . 471
2.2 Boards . 476

Section 3: CM Phasing and Milestones . 477
3.1 Concept Exploration and Definition . 477
3.2 Demonstration and Validation. 479
3.3 Engineering and Manufacturing Development 480
3.4 Production and Deployment. 491
3.5 Operations and Support . 491

Section 4: Data Management . 492
4.1 Data Distribution and Access . 492
4.2 Automated Processing and Submittal of Data 493
4.3 Interactive Access to Digital Data . 493
4.4 Status Reporting . 494
4.5 Data Security and Classification Management 494

Section 5: Configuration Identification . 494
5.1 Selection of CSCIs . 494
5.2 Formal Baseline Establishment . 494
5.3 Identification Methods . 495
5.5 Configuration Management Libraries . 498

Section 6: Interface Management . 500
6.1 Interface Requirements . 501
6.2 Interface Control Working Group (ICWG). 501

Section 7: Configuration Control. 501
7.1 Boards . 502
7.2 Baseline Change Process . 507

Section 8: Configuration Status Accounting . 509
8.1 Records . 515
8.2 Reports . 517
8.3 Requests for CSA Reports . 517

Section 9: Configuration Audits . 517
9.1 Functional Configuration Audit (FCA) 518
9.2 Physical Configuration Audit (PCA). 518
9.3 Audits and Reviews of SCM . 518

Software Configuration Management Plan (SCMP) � 463

Section 10: Subcontractor/Vendor Control. 520
Appendix T1: Acronyms and Abbreviations 521
Appendix T2: Forms . 524
Appendix T3: Software Configuration Management
 Phasing and Milestones . 530

T3.1 System Requirements Analysis Phase 530
T3.2 System Design Phase . 530
T3.3 Software Requirements Analysis Phase 531
T3.4 Preliminary Design Phase . 531
T3.5 Detailed Design Phase . 532
T3.6 Coding and CSU Testing Phase. 532
T3.7 CSC Integration and Testing Phase . 533
T3.8 CSCI Testing Phase. 533
T3.9 System Integration and Testing phase 534

Appendix T4: Configuration Management Phasing and Milestones . . 535

This Software Configuration Management (SCM) Plan (SCMP) describes
the SCM organization and practices applied consistently and uniformly
throughout the life cycle for Computer Software Configuration Items
(CSCIs) that are developed or maintained by [originating organization].

SCM is the process used during software development and maintenance
to identify, control, and report functional and physical configurations of
software products (e.g., source code, executable code, databases, test
scenarios and data, and documentation).

1.1 Purpose

The purpose of this document is to define SCM responsibilities (require-
ments), resources, and processes used during the development and
maintenance of the [system title] system. Figure T1 provides an overview
of the SCM functions. In the figure, Data Management (DM) is shown
connected to SCM with a broken line. DM is a sub-function of SCM with
SCM having overall cognizant responsibility. Section 5 describes the DM
responsibilities. Software Quality Assurance (SQA) is a separate function
that works closely with SCM to ensure the integrity of the product (i.e.,
SCM controls the product; SQA certifies the integrity of the product).

1.2 Scope

This plan establishes the SCM methods used during the development and
maintenance of the [system title] system.

464 � Software Configuration Management

Figure T1 Overview of SCM Functions

Identification Refer to Section 6

1. Assign a unique designator to project
identified CSCIs and technical data
that includes identification of the
associated baselines

2. Verify project identification for CSCIs
and technical data

3. Assign tracking number to change
requests.

4. Establish libraries for software,
documents and drawings

1. Identification
2. Control
3. Status Accounting
4. Reviews/Audits

1. Receipt
2. Control
3. Compliance
4. Tracking
5. Distribution

1.V&V
2. Monitor
3. Audit
4. Evaluate
5. Certify

SCM
Refer to Sections 6,8,9,10

DM
Refer to Section 5

SQA

Control Refer to Section 8

1. Receive and place CSCI and technical
data in the libraries, thereby providing
physical control.

2. Process CSCI/technical data requests
3. Deliver software releases from from

controlled CSCIs and technical data,
including associated changes to
authorized baselines thus ensuring
data integrity

Status Accounting Refer to Section 9

1. Receive CSCI and technical data for
entry into the CSA system (i.e.

2. Generate CSA reports including
metrics and schedule data.

Reviews/Audits Refer to Section 10

1. Support SQA audit requests for
technical data and CSCI and
associated data.

2. Perform informal reviews of SCM
tasks, Desktop Procedure, and CSA
Reports

Software Configuration Management Plan (SCMP) � 465

1.3 Approach

The SCM discipline is applied to those Configuration Items (CIs) for which
the project organization has development and/or maintenance responsi-
bilities. The SCM organization implements the processes described within
this plan to ensure that products developed are correct, consistent, com-
plete, and compliant with governing policies.

1.4 System Overview

 <Provide a brief description of the system that this plan applies to.>

1.5 Project-Defined CSCIs

Table T1 shows the CSCIs that this plan applies to.
Listed below is a brief description of each of the CSCIs developed and

maintained by [originating organization].

CSCI #1 — Include a brief description of the CSCI and its purpose.
CSCI #2 — Include a brief description of the CSCI and its purpose.
CSCI #3 — Include a brief description of the CSCI and its purpose.

The system includes entering the number of sub-systems within the
system. Figure T2 identifies the CSCIs within each sub-system and high-
lights those that this SCMP applies. The current [system title] Software
Development Plan (SDP) contains a detailed description of the software.

1.6 Document Overview

This SCMP establishes the plan for the configuration management of
software and related documents produced by the [software development]
organization. The processes developed in this SCMP are applicable to all
personnel responsible for the analysis, design, development, maintenance,
and testing of software embedded in or impacting on the operational
capabilities of [system title].

Table T1 CSCI Nomenclature/Identification

Nomenclature Acronym CSCI Number

CSCI Name Acronym CSCI ID number
CSCI Name Acronym CSCI ID number
CSCI Name Acronym CSCI ID number

466 � Software Configuration Management

This plan follows the process defined in the SCM Process Definition.

a. Section 1 — provides the scope, the purpose, and a summary of
the contents of the SCMP and a list of common configuration
management terms and definitions.

b. Section 2 — lists the standards and other publications referenced
in this document and used in its preparation.

c. Section 3 — outlines the project organization and responsibilities.
d. Section 4 — describes the CM phasing and milestones.
e. Section 5 — describes the activities associated with DM.
f. Section 6 — describes the process of configuration identification

of CSCIs, associated technical documentation, code, and media.
g. Section 7 — describes the approach for identification and main-

tenance of system interfaces.
h. Section 8 — describes the process for maintaining configuration

control of CSCIs and their associated technical data.
i. Section 9 — describes the Configuration Status Accounting (CSA)

process used to record and report CSCI information.
j. Section 10 — describes the approach used for performing physical

and functional configuration audits and reviews of SCM activities
and products.

k. Section 11 — describes the methods used to ensure subcontractor
and vendor compliance with SCM requirements.

Figure T2 [system title] Software

System Title

Segment 1 Segment 2 Segment 3 Segment n

CSCI 1 CSCI 2 CSCI 3 CSCI n

Software Configuration Management Plan (SCMP) � 467

l. Appendix T1 — contains a list of all acronyms and abbreviations
and their definitions used in this document.

m. Appendix T2 — contains the format and preparation instructions
for forms used by the SCM organization.

n. Appendix T3 — describes the CM phasing and milestones.

1.7 SCM Terms and Definitions.

The terms and definitions listed below are provided as an aid to under-
standing and applying the SCM principles and processes used to manage
software development and testing efforts.

Allocated Baseline (ABL) — The initially approved documentation
that describes an item’s functional, interoperability, and interface
characteristics that are allocated from those of a system or a higher
level configuration item, interface requirements with interfacing con-
figuration items, additional design constraints, and the verification
required to demonstrate the achievement of those specified charac-
teristics.

Allocated Confi guration Documentation (ACD) — The approved
Allocated Baseline plus approved changes.

As-Built — Defines the initial software, hardware, or system configu-
ration as it actually has been built.

Audit — An independent examination of a work product or set of
work products to assess compliance with specifications, standards,
contractual agreements, or criteria.

Baseline — A configuration identification document or set of such
documents formally designated and fixed at a specific time during
the configuration item’s life cycle. Baselines, plus approved changes
from those baselines, constitute the current configuration identifica-
tion.

Change Request (CR) For m — A vehicle used to report deficiencies
or enhancements generated against CIs or technical data; a document
that requests a correction or change to the baselined documentation
and software.

Computer Softwar e (or Softwar e) — A combination of associated
computer instructions and computer data definitions required to
enable the computer hardware to perform computational or control
functions.

Computer Softwar e Confi guration Item (CSCI) — A configuration
item that is software.

Confi guration — The functional and physical characteristics of exist-
ing or planned hardware, firmware, or software or a combination

468 � Software Configuration Management

thereof as set forth in technical documentation and achieved in a
product.

Confi guration Audit — A formal examination of a CSCI. Two types
of configuration audits exist: the Functional Configuration Audit
(FCA) and the Physical Configuration Audit (PCA).

Confi guration Contr ol — The systematic proposal, justification, eval-
uation, coordination, and approval or disapproval of proposed
changes, and the implementation of all approved changes in the
configuration of a Configuration Item (CI) after establishment of the
baseline(s) for the CI.

Confi guration Identifi cation — The selection of CIs; the determina-
tion of the types of configuration documentation required for each
CI; the issuance of numbers and other identifiers affixed to the CIs
and to the technical documentation that defines the CI’s configura-
tion, including internal and external interfaces; the release of CI’s
and their associated configuration documentation; and the establish-
ment of configuration baselines for CIs.

Confi guration Item (CI) — An aggregation of hardware or software
that satisfies an end-use function and is designated for separate
configuration management.

Confi guration Status Accounting (CSA) — The recording and report-
ing of information needed to manage configuration items (CI) effec-
tively, including:
A record of the approved configuration documentation and identifi-

cation numbers
The status of proposed changes, deviations, and waivers to the con-

figuration
The implementation status of approved changes
The configuration of all units of the CI in the operational inventory

Deliverable — A system or component that is obligated contractually
to a customer or intended user.

Developmental Confi guration — The software and associated tech-
nical documentation that define the evolving configuration of a CSCI
during development. The Developmental Configuration may be
stored on electronic media.

Deviation — A specific written authorization to depart from a particular
requirement(s) of an item’s current approved configuration docu-
mentation for a specific number of units or a specified period of time.

Engineering Change Pr oposal (ECP) — A proposed engineering
change and the documentation by which the change is described,
justified, and submitted to the government for approval or disap-
proval.

Software Configuration Management Plan (SCMP) � 469

Firmwar e — The combination of a hardware device and computer
instructions or computer data that reside as read-only software on
the hardware device. The software cannot be readily modified under
program control.

Functional Baseline (FBL) — The initially approved documentation
describing a system’s or item’s functional, interoperability, and inter-
face characteristics and the verification required to demonstrate the
achievement of those specified characteristics.

Functional Confi guration Audit (FCA) — The formal examination
of functional characteristics of a CI, prior to acceptance, to verify
that the CI has achieved the requirements specified in its functional
and allocated configuration documentation.

Functional Confi guration Documentation (FCD) — The approved
FBL plus approved changes.

Nondevelopmental Softwar e (NDS) — Deliverable software that is
not developed under the contract but is provided by the contractor,
the government, or a third party. NDS may be referred to as reusable
software, government-furnished software, or commercially available
software, depending on its source.

Notice Of Revision (NOR) — A document used to define revisions
to drawings, associated lists, or other referenced documents that
require revision after ECP approval.

Physical Confi guration Audit (PCA) — The formal examination of
the “as-built” configuration of a CI against its technical documenta-
tion to establish or verify the CI’s product baseline.

Product Baseline (PBL) — The initially approved documentation
describing all of the necessary functional and physical characteristics
of the CI and the selected functional and physical characteristics
designated for production acceptance testing and tests necessary for
support of the CI.

Product Confi guration DocumentatioN (PCD) — The approved
product baseline plus approved changes.

Program Management — The organization sponsoring the field activ-
ity project office.

Project Management — The designated government organization
from the field activity project office responsible for the overall
management of specific projects.

Release — A configuration management action whereby a particular
version of software is made available for a specific purpose (e.g.,
released to test).

Reusable Softwar e — Software developed in response to the require-
ments for one application that can be used, in whole or in part, to
satisfy the requirements for another application.

470 � Software Configuration Management

Resour ces — The totality of computer hardware, software, personnel,
documentation, supplies, and services applied to a given effort.

Softwar e — See Computer Software.
Softwar e Confi guration Management (SCM) — A discipline that

applies technical and administrative direction and surveillance to
perform the functions listed below:
Identify and document the functional and physical characteristics of

CSCIs.
Control the changes to CSCIs and their related documentation.
Record and report information needed to manage CSCIs effectively,

including the status of proposed changes and the implementation
status of approved changes.

Audit the CSCIs to verify conformance to specifications, interface
control documents, and other contract requirements.

Softwar e Development Library (SDL) — A controlled collection of
software, documentation, and other intermediate and final software
development products, and associated tools and procedures used
to facilitate the orderly development and subsequent support of
software.

Softwar e-Related Gr oup — Project members responsible for gener-
ating requirements, design, development, validation, verification,
documentation, maintenance, and logistics of software.

Softwar e Support — The sum of all activities that take place to ensure
that implemented and fielded software continues to fully support
the operational mission of the software.

Softwar e Unit — An element in the design of a software item; for
example, a major subdivision of a software item, a component of
that subdivision, a class, object, module, function, routine, or data-
base. Software units may occur at different levels of a hierarchy and
may consist of other software units. Software units in the design
may or may not have a one-to-one relationship with the code and
data entities (routines, procedures, databases, data files, etc.) that
implement them or with the computer files containing those entities.

Softwar e Test Envir onment — A set of automated tools, firmware
devices, and hardware necessary to test software. The automated
tools may include but are not limited to test tools such as simulation
software, code analyzers, test case generators, path analyzers, etc.
and may also include the tools used in the software engineering
environment.

Specifi cation Change Notice (SCN) — A document used to propose,
transmit, and record changes to a specification.

Technical Review — An activity by which the technical progress of
a project is assessed relative to its technical or contractual require-

Software Configuration Management Plan (SCMP) � 471

ments. The review is conducted at logical transition points in the
development effort to identify and correct problems resulting from
the work completed thus far before the problems can disrupt or
delay the technical progress. The review provides a method for the
contractor and government to determine that the development of a
CSCI and its documentation have met contract requirements.

Version — An identified and documented body of software. Modifi-
cations to a version of software (resulting in a new version) require
configuration management actions, by either the contractor, the
government, or both.

Waiver — A written authorization to accept an item, which during
manufacture, or after having been submitted for government inspec-
tion or acceptance, is found to depart from specified requirements,
but nevertheless is considered suitable for use “as is” or after repair
by an approved method.

1.8 SCMP Updates

This document will be periodically reviewed to ensure that all SCM
functions are accurately described. Audit and review reports or changes
to available resources may require this document to be updated. All
changes will be incorporated in either change pages or a document
revision. Updates to this document are recorded on the Record of Changes
and List of Effective Pages sheets located at the front of this document.

SECTION 2: ORGANIZATION

This section describes the SCM organization in relation to the program
and project organization structure.

2.1 Organizational Structure

Figure T3 is a graphic representation of the program and project organi-
zational structure with respect to the SCM organization. Although SCM
takes direction from the Project Manager, it operates within the policies
and procedures established by [name of the organization establishing
policies]. Listed below are the responsibilities of each of the organizations
as related to [system title] development.

SCM interfaces with the functions listed below to control software
configuration and release activities.

<Depending on the size of the organization, the functional
groups defined below may be combined (e.g., the Software

472 � Software Configuration Management

Fi
gu

re
 T

3
O

rg
an

iz
at

io
n

St
ru

ct
ur

e

P
ro

gr
am

M
an

ag
em

en
t

(S
po

ns
or

)
C

od
e

X
X

P
ro

je
ct

M
an

ag
em

en
t

C
od

e
X

X
X

S
Q

A
C

od
e

X
X

S
C

M
C

od
e

X
X

X
X

D
M

C
od

e
X

X
X

X

S
of

tw
ar

e
Te

st
C

od
e

X
X

X
X

S
of

tw
ar

e
S

ys
te

m
s

E
ng

in
ee

rin
g

C
od

e
X

X
X

X

S
of

tw
ar

e
D

es
ig

n/
D

ev
el

op
m

en
t

C
od

e
X

X
X

X

S
ys

te
m

 T
es

t
C

od
e

X
X

X
X

Lo
gi

st
ic

s
C

od
e

X
X

X
X

Software Configuration Management Plan (SCMP) � 473

Systems Engineering Group and the Software Design and Devel-
opment Group may be one group known as software devel-
opment). You will need to define the group interfacing with
the SCM organization.>

Program Management (Code Number) — Responsible for and has
the authority to ensure complete fulfillment of all program require-
ments. The Program Manager has the overall responsibility for
acquisition, funding, and transitioning of the project.

Project Management (Code Number) — Responsible for the tech-
nical aspects of the project. The Project Manager has the responsi-
bility for local funding, allocations, scheduling, tasking, and reporting
to program management.

Softwar e Systems Engineering (Code Number) — Responsible for
systems design (and associated documentation) overview and guid-
ance; detailed design and coding; test plans, procedures, and reports;
software unit testing; and preliminary CSCI testing.

Softwar e Design and Development (Code Number) — Responsible
for software design (and associated documentation) overview and
guidance; detailed design and coding; test plans, procedures, and
reports; software unit testing; and preliminary CSCI testing.

Softwar e Test (Code Number) — Responsible for the conduct of
software testing, including preparation of test plan, description,
procedures, and reports. The Software Test Group ensures that the
correct configuration is undergoing test and incorporates approved
changes into released test documentation based on change request
baselining data from SCM. The Software Test Group confirms veri-
fication of change request corrective measures prior to change
request closure. SCM identifies all change requests included in an
Engineering Master (EM) that is to be tested. Test personnel then
provide SCM a copy of the test report.

Softwar e Quality Assurance (SQA) (Code Number) — Responsible
for auditing the software development activities and products (FCA
and PCA) and certifying of SCM compliance with this plan and DTPs.

System T est (Code Number) — Responsible for administering the
verification and validation (V&V) testing prior to release of the
software. The System Test Group is a separate organization from
the Software Development Group (i.e., the Software Systems Engi-
neering Group and the Software Design and Development Group).

474 � Software Configuration Management

Logistics (Code Number) — Responsible for ensuring that changes
made to a system are supportable. SCM provides CSCI and associated
technical data for logistics evaluation.

Data Management (DM) (Code Number) — Responsible for the
receipt, distribution, and tracking of technical data associated with
the project. DM also ensures compliance with contract requirements
as defined in the Contract Data Requirements List (CDRL).

<If the list of organizations exceeds the list above, it may be
appropriate to create numbered paragraph headings for each
organization.>

2.1.1 SCM Responsibilities

SCM is responsible for maintaining configuration control over software
Developmental Configurations and Baselines and for processing changes
to the software configuration. SCM functions include Software Develop-
ment Library (SDL) operation, software product release coordination, and
change request processing and tracking.

The responsibilities of each SCM function are listed in the paragraphs
below.

<Tailor these responsibilities to be project specific.>

2.1.1.1 Configuration Identification

1. Establish methods and procedures for unique identification of CSCIs.
2. Establish and maintain Functional, Allocated, and Product Baselines

and the Developmental Configuration (identify, document, archive,
and track changes to system releases).

3. Establish and follow release procedures to obtain Product Baselines
for new version releases.

4. Coordinate assignment of identifying numbers for CSCIs and doc-
uments.

5. Provide documentation that reflects the release software package.
6. Coordinate release of software and associated documentation to

release organizations.
7. Maintain records and prepare reports on release coordination activ-

ities.

Software Configuration Management Plan (SCMP) � 475

2.1.1.2 Configuration Control

1. Serve as a member of the Software Configuration Control Board
(SCCB). SCM is responsible for preparing and distributing the meet-
ing agenda and minutes and for recording action items and their
resolution.

2. Establish and document configuration change control procedures.
3. Establish and follow configuration controls for software and docu-

mentation.
4. Place contents of baseline and Developmental Configurations under

configuration control in the SDL.
5. Generate executable load modules from controlled source code.
6. Ensure that the contents of the SDL are changed by SCM personnel

and only upon receipt of the appropriate paperwork signed by the
SCM Manager.

7. Prepare and maintain master(s) of the currently active version of
each CI until superseded by a new version. Retain superseded
versions of the master(s) in the SDL archive files.

8. Maintain records and prepare reports on SDL activities and software
products.

9. Perform nontechnical check of software documentation.
10. Interface with the Software Change Review Board (SCRB) Chair-

person to schedule SCRB meetings, prepare SCRB agendas, and
record SCRB meeting minutes.

2.1.1.3 Configuration Status Accounting (CSA)

1. Provide CSA recording and reporting.
2. Maintain accounting of software changes by tracking change

requests, ensuring traceability to a formal change proposal (i.e.,
ECP) from initiation through resolution and disposition.

3. Prepare status reports on change requests, formal change proposals
(i.e., ECPs), and changes.

2.1.1.4 Configuration Audits

1. Support requests for audit and certification of software systems by
SQA or the independent auditor.

2. Perform reviews of SCM activities and products.
3. Review and update SCM documentation as required to ensure that

current applicability is maintained.

476 � Software Configuration Management

2.1.1.5 Training

<Tailor this section to list specifics of project organization
training.>

The SCM Manager is responsible for identifying, establishing, coordinating,
and revising training as required to ensure effective performance of SCM
activity by the SCM organization and software-related groups.

2.2 Boards

<Identify the configuration control boards (CCBs) established
for the project and program organization (e.g., CCB, SCCB,
SCRB). Reference any charters, Memorandum of Understanding,
or any program directives that establish CCBs.>

The paragraphs below provide an overview of the functions, responsibil-
ities, and authority of the CCBs.

2.2.1 Software Change Review Board (SCRB)

The SCRB functions in a technical advisory capacity to the Program Manager.
The SCRB considers the recommendations of the project’s SCCB for final
approval or disapproval of proposed engineering changes to a CSCI’s current
approved configuration and its documentation. The board also approves or
disapproves proposed waivers and deviations.

SCM provides status accounting reports to the program’s SCRB and
updates the status accounting database to reflect SCRB decisions. [SCM or
designate] serves as secretariat to the board.

2.2.2 Software Configuration Control Board (SCCB)

The SCCB supports the Project Manager and is composed of technical and
administrative representatives who recommend approval or disapproval of
proposed engineering changes to a CSCI’s current approved configuration
and its documentation. The board also recommends approval or disapproval
of proposed waivers and deviations from a CSCI’s current approved con-
figuration and its documentation.

Issues that the project’s SCCB is unable to resolve or that involve a
change in scheduling or fiscal costs are initially addressed by the SCCB
and forwarded to the program’s SCRB for final approval or disapproval
and recommendations.

Software Configuration Management Plan (SCMP) � 477

SCM provides status accounting reports to the project’s SCCB and
updates the status accounting database to reflect SCCB decisions. SCM or
designate serves as secretariat to the board.

SECTION 3: CM PHASING AND MILESTONES

This section describes the software development activity for software-
related groups and the SCM responsibilities in relation to this activity and
program events. These activities occur within the Engineering and Man-
ufacturing Development phase of the software life cycle. The software life
cycle includes five phases: Concept Exploration and Definition, Demon-
stration and Validation, Engineering and Manufacturing Development,
Production and Deployment, and Operations and Support. Some of the
Engineering and Manufacturing Development activities may be applicable
to and overlap with other life-cycle phases. For this reason, the objectives
of each life-cycle phase are presented. Table T2 defines the SCM milestones
in relation to software-related group activity for [project name].

3.1 Concept Exploration and Definition

<Individual projects must tailor this section to describe software
development activities derived from applicable software devel-
opment standards and phasing consistent with the project’s
software development plan.>

Objectives of the Concept Exploration and Definition phase are to:

1. Explore various material alternatives to satisfying the documented
mission need.

2. Define the most promising system concept(s).
3. Develop supporting analyses and information to include identifying

high-risk areas and risk management approaches to support project
decisions.

4. Develop a proposed acquisition strategy and initial program objec-
tives for cost, schedule, and performance for the most promising
system concept(s).

SCM responsibilities are to:

1. Develop a CM Plan for the Acquirer, if tasked.
2. Charter the SCCB.
3. Document the Functional and Physical Characteristics (FPC).

478 � Software Configuration Management

Table T2 SCM Milestones

Software-Related
Group Activity SCM Milestone

Concept and
Exploration

Plan how project will affect program products and their
CM

Baseline product identification
Project Planning

and Oversight
Draft SCMP (new system) or SCMP update (existing

system)
SCM organization established, staffed
Management and technical review participation
Configuration identification
Planning documents under configuration control
Establish SCRB and SCCB

Software
Development
Environment

SCM staff training
SDL and SDFs established

System
Requirements
Analysis

System requirements documents under configuration
control

SCCB and SCRB support
System Design Approved SCMP implemented

SCM tasks identified
DTPs created and/or maintained
System design documents baselined and maintained
Functional Baseline established and maintained
CSA system established and maintained
CM Document Library established and maintained

Software
Requirements
Analysis

Software requirements documents baselined
Allocated Baseline established
CM Drawing Library established and maintained

Software Design Development Configuration products maintained
Development Configuration corrective action process

established
Software

Implementation
and Unit Testing

Unit Integration
and Testing

CSCI
Qualification
Testing

Test documents baselined

CSCI/HWCI
Integration and
Testing

FCA and PCA support

Software Configuration Management Plan (SCMP) � 479

4. Ensure contractor control and accounting of the FPC.
5. Participate in System Requirements Review.

3.2 Demonstration and Validation

<Individual projects must tailor this section to describe software
development activities derived from applicable software devel-
opment standards and phasing consistent with the project’s
software development plan.>

Objectives of the Demonstration and Validation phase are to:

1. Define critical design characteristics and expected capabilities of
system concept(s).

2. Demonstrate that the technologies critical to the most promising
concept(s) can be incorporated into system design(s) with confi-
dence.

3. Prove that the processes critical to the most promising system
concept(s) are understood and attainable.

4. Develop the analysis/information needed to support project deci-
sions.

5. Establish a proposed Development Baseline containing refined pro-
gram cost, schedule, and performance objectives for the most
promising design approach.

SCM responsibilities are to:

1. Update the CCB charter and CM Plan.
2. Continue documentation of the FPC.
3. Ensure contractor control and accounting of the FPC.

System
Qualification
Testing

Software Use
Preparation

Product Baseline established and maintained
Software user documents and manuals baselined

Software
Transition
Preparation

Product Baseline archived
Product Baseline transferred to SSA

480 � Software Configuration Management

4. Ensure government control and accounting of the FPC.
5. Participate in System Design Review.

3.3 Engineering and Manufacturing Development

<Individual projects must tailor this section to describe software
development activities derived from applicable software devel-
opment standards and phasing consistent with the project’s
software development plan.>

Table T2 shows SCM milestones for the Engineering and Manufacturing
Development phase of a software life cycle.

3.3.1 Concept and Exploration

During concept and exploration, software-related groups are concerned
with the following activities:

1. Provide sponsors with estimates of cost, schedule, risk items, etc.
2. Assist with generation of an action plan to include initial estimates

for cost, schedule, risk, and system size.
3. Involve Software Quality Assurance in planning.

SCM responsibilities are to:

1. Plan how this project will affect other program products and the
configuration management of them.

2. Baseline the product identification.

3.3.2 Project Planning and Oversight

During project planning and oversight, software-related groups are con-
cerned with the following activities:

1. Software development planning: development and documentation
of plans to conduct software development process activities iden-
tified in the following sections; development of program and project
plans including a Software Development Plan (SDP) and develop-
ment and implementation of a CM policy.

2. CSCI test planning: development and documentation of plans for
conducting CSCI qualification testing and the generation of a Soft-
ware Test Plan (STP).

Software Configuration Management Plan (SCMP) � 481

3. System test planning: participation in developing and documenting
plans to conduct system qualification testing.

4. Software installation planning: development and documentation of
plans to perform software installation and training at user sites and
generation of a Software Installation Plan (SIP).

5. Software transition planning: identification of all software develop-
ment resources needed by the support agency to fulfill support
concept, and development and documentation of a Software Tran-
sition Plan (STrP).

6. Following and updating plans: conduct of relevant activities in
accordance with approved plans, supporting management reviews
of the software development process, and updating plans as needed.

7. Establishment of the SCRB and SCCB.

SCM responsibilities are to:

1. Create a draft SCMP or update an SCMP for existing system.
2. Establish and staff the project SCM functional organization.
3. Apply and maintain the identification scheme for project products.
4. Place planning documents (SDP, STP, SIP, STrP, SCMP) under con-

figuration control.
5. Participate in joint management and technical reviews.

3.3.3 Establishment of Software Development Environment

During establishment of a software development environment, software-
related groups are concerned with the following activities:

1. Software engineering environment: establishment, control, and
maintenance of the environment.

2. Software test environment: establishment, control, and maintenance
of the environment.

3. Software Development Library (SDL): establish, control, and maintain
an SDL to facilitate the orderly development and subsequent support
of software.

4. Software Development Files (SDFs): establishment, control, and
maintenance of an SDF for each software unit or logically related
group of software units.

5. Nondeliverable software: verification that the nondeliverable soft-
ware performs the intended functions.

SCM responsibilities are to:

482 � Software Configuration Management

1. Train staff on the SCM processes.
2. Establish and maintain the SDL and SDFs.
3. Participate in joint management and technical reviews.

3.3.4 System Requirements Analysis

During system requirements analysis, software-related groups are con-
cerned with the following activities:

1. Analysis of user input: analysis provided by acquirer and generation
of need surveys, problem/change reports, feedback on prototypes,
interviews, or other user input.

2. Operational concept: participation in the definition and documen-
tation of the operational concept for the system and generation of
an Operational Concept Description (OCD).

3. System requirements: participation in the definition and documen-
tation of system requirements and methods used to ensure that
each requirement has been met; and, depending on CDRL provi-
sions, generation of a System/Sub-system Specification (SSS) or an
Interface Requirements Specifications (IRSs).

4. Participation in joint management and technical reviews.

SCM responsibilities are to:

1. Participate in joint management and technical reviews to provide
status on SCM activities.

2. Place system requirements documents (OCD, SSS, IRSs) under con-
figuration control.

3. Support the SCCB and SCRB.

3.3.5 System Design

During system design, software-related groups are concerned with the
following activities:

1. System-wide design decisions: participation in definition and docu-
mentation of system-wide design decisions, and generation of a
System/Sub-system Design Description (SSDD), Interface Design
Descriptions (IDDs), or Database Design Descriptions (DBDDs),
depending upon CDRL requirements.

2. Architectural design:. participation in definition and documentation
of architectural design and traceability between system components
and system requirements.

Software Configuration Management Plan (SCMP) � 483

3. Convene the SCCB to establish the Functional Baseline.
4. Convene the SCRB, when required, to exercise software configura-

tion control upon establishment of the Functional Baseline.
5. Participation in joint management and technical reviews.
6. Approve project plans: Program and Project Plans, Software Devel-

opment Plan, and SCMP.

SCM responsibilities are to:

1. Implement the approved SCMP.
2. Identify tasks stated in SCMP.
3. Create or update DTPs.
4. Participate in joint management and technical reviews.
5. Place system design documents (SSDD, IDDs, DBDDs) under con-

figuration control.
6. Maintain configuration control of the Functional Baseline.
7. Support the SCCB and SCRB.
8. Establish and maintain the CSA system.
9. Provide access procedures to project personnel on use of CSA

system.
10. Generate and distribute CSA reports.
11. Establish and maintain the CM Document Library.

3.3.6 Software Requirements Analysis

During software requirements analysis, software-related groups are con-
cerned with the following activities:

1. Software requirements. Participate in the definition and documen-
tation of CSCI software requirements in Software Requirements
Specifications (SRSs) or the IRSs, methods used to ensure require-
ments have been met, and traceability between CSCI requirements
and system requirements.

2. Convene the SCCB to establish the Allocated Baseline.
3. Convene the SCRB, when required, to exercise software configura-

tion control upon establishment of the Allocated Baseline.
4. Participation in joint management and technical reviews.

SCM responsibilities are to:

1. Place software requirements documents (SRSs, IRSs) under config-
uration control.

484 � Software Configuration Management

2. Maintain configuration control of the Functional and Allocated
Baselines.

3. Participate in joint management and technical reviews.
4. Support the SCCB and SCRB.
5. Maintain the CSA system.
6. Generate and distribute CSA reports.
7. Maintain the CM Document Library.
8. Establish and maintain the CM Drawing Library.

3.3.7 Software Design

During software design, software-related groups are concerned with the
following activities:

1. CSCI-wide design decisions: participation in definition and docu-
mentation of CSCI-wide design decisions in design documentation.

2. CSCI architectural design: participation in definition and documen-
tation of CSCI architectural design in SDDs or IDDs and traceability
between software units and CSCI requirements.

3. CSCI detailed design: participation in development and documen-
tation of descriptions for each software unit in design documenta-
tion.

4. Convene the SCCB to establish Developmental Configuration.
5. Participation in joint management and technical reviews.

SCM responsibilities are to:

1. Establish and maintain corrective action process for Developmental
Configuration.

2. Place software design documents (SDDs, IDDs, DBDDs) under
developmental configuration control.

3. Maintain configuration control of developmental configuration prod-
ucts.

4. Maintain configuration control of Functional and Allocated Base-
lines.

5. Participate in joint management and technical reviews.
6. Support the SCCB and SCRB.
7. Maintain the CSA system and distribute CSA reports.
8. Maintain the CM Document and Drawing Libraries.

Software Configuration Management Plan (SCMP) � 485

3.3.8 Software Implementation and Unit Testing

During software implementation and unit testing, software-related groups
are concerned with the following activities:

1. Software implementation:. development and documentation of soft-
ware corresponding to each software unit in the CSCI design.

2. Preparation for unit testing: establishment of test cases, test proce-
dures, and test data for testing the software corresponding to each
software unit, and documentation of test case information in SDFs.

3. Performance of unit testing: testing the software corresponding to
each software unit in accordance with unit test cases and proce-
dures.

4. Revision and retesting: software revision, retesting, and SDF update
based on unit testing results.

5. Analyzing and recording unit testing results: analyzing unit testing
results and documentation of test and analysis results in appropriate
SDFs.

6. Participation in joint management and technical reviews.

SCM responsibilities are to:

1. Maintain corrective action process and provide status reports.
2. Maintain configuration control of developmental configuration prod-

ucts (including source code and source code listings).
3. Maintain configuration control of the Functional and Allocated

Baselines.
4. Participate in joint management and technical reviews.
5. Support the SCCB and SCRB.
6. Maintain the CSA system and distribute CSA reports.
7. Maintain the CM Document and Drawing Libraries.
8. Maintain the SDL and SDFs.

3.3.9 Unit Integration and Testing

During unit integration and testing, software-related groups are concerned
with the following activities:

1. Preparation for unit integration and testing: establishment of test
cases, test procedures, and test data to conduct unit integration and
testing, and documentation of information in appropriate SDFs.

486 � Software Configuration Management

2. Performance of unit integration and testing: performance of unit
integration and test in accordance with unit integration test cases
and procedures.

3. Revision and retesting: revision of software, retesting, and updating
of SDFs and other software products based on results of unit
integration and testing.

4. Analysis and recording unit integration and test results: analysis of
unit integration and testing results and documentation of these
results in appropriate SDFs.

5. Participation in joint management and technical reviews.

SCM responsibilities are to:

1. Maintain corrective action process and provide status reports.
2. Maintain configuration control of developmental configuration prod-

ucts.
3. Maintain configuration control of the Functional and Allocated

Baselines.
4. Participate in joint management and technical reviews.
5. Support the SCCB and SCRB.
6. Maintain the CSA system and distribute CSA reports.
7. Maintain the CM Document and Drawing Libraries.
8. Maintain the SDL and SDFs.

3.3.10 CSCI Qualification Testing

During CSCI qualification testing, software-related groups are concerned
with the following activities:

1. Independence in CSCI qualification testing: assurance that qualifi-
cation testing is performed by nonparticipant in the CSCI detailed
design and implementation.

2. Testing on target computer system: inclusion of CSCI qualification
testing on target computer system or approved alternative system.

3. Preparation for CSCI qualification testing: definition and documen-
tation of test preparations, cases, and procedures for CSCI qualifi-
cation testing, traceability between test cases and the CSCI
requirements, and generation of a Software Test Description (STD).

4. Dry run of CSCI qualification testing: testing in preparation for
witnessing by the acquirer, documentation of results in SDFs, and
update of CSCI test cases and procedures.

5. CSCI qualification testing: performance of CSCI qualification testing
in accordance with the CSCI test cases and procedures.

Software Configuration Management Plan (SCMP) � 487

6. Revision and retesting: revision of software, perform all necessary
retesting, and update of SDFs and other software products, based
on results of CSCI qualification testing.

7. Analysis and recording of CSCI qualification test results: analysis
and documentation of test results in a Software Test Report (STR).

8. Participation in joint management and technical reviews.

SCM responsibilities are to:

1. Maintain corrective action process and provide status reports.
2. Place testing documents (STD, STR) under developmental configu-

ration control.
3. Maintain configuration control of developmental configuration prod-

ucts.
4. Maintain configuration control of the Functional and Allocated

Baselines.
5. Participate in joint management and technical reviews.
6. Support the SCCB and SCRB.
7. Maintain the CSA system and distribute CSA reports.
8. Maintain the CM Document and Drawing Libraries.
9. Maintain the SDL and SDFs.

3.3.11 CSCI/Hardware Configuration Item (HWCI) Integration and
Testing

During CSCI/HWCI integration and testing, software-related groups are
concerned with the following activities:

1. Preparation for CSCI/HWCI integration and testing: participation in
development and documentation of test cases, test procedures, and
test data for conduct of CSCI/HWCI integration and testing, and
documentation of software-related information in the appropriate
SDFs.

2. Performance of CSCI/HWCI integration and testing: participation in
CSCI/HWCI integration and testing in accordance with the
CSCI/HWCI integration test cases and procedures.

3. Revision and retesting: revisions to software, participation in all
necessary retesting, and update of appropriate SDFs and other
software products, based on CSCI/HWCI integration and testing
results.

4. Analysis and recording CSCI/HWCI integration and test results: par-
ticipation in analysis of CSCI/HWCI integration and testing results,
and documentation in appropriate SDFs.

488 � Software Configuration Management

5. Participation in joint management and technical reviews.
6. Conduct of FCA and PCA.

SCM responsibilities are to:

1. Maintain corrective action process and provide status reports.
2. Maintain configuration control of developmental configuration prod-

ucts.
3. Maintain configuration control of the Functional and Allocated

Baselines.
4. Participate in joint management and technical reviews.
5. Support the FCA and PCA.
6. Support the SCCB and SCRB.
7. Maintain the CSA system and distribute CSA reports.
8. Maintain the CM Document and Drawing Libraries.
9. Maintain the SDL and SDFs.

3.3.12 System Qualification Testing

During system qualification testing, software-related groups are concerned
with the following activities:

1. Independence in system qualification testing: assurance that system
qualification testing is performed by nonparticipant in the detailed
design and implementation of system software.

2. Testing on target computer system: qualification testing on target
computer system or approved alternative system.

3. Preparation for system qualification testing: participation in devel-
opment and documentation of test preparations, test cases, and test
procedures to be used for system qualification testing, traceability
between test cases and system requirements, and documentation
of all applicable items in the Software Test Description (STD).

4. Dry run of system qualification testing: testing in preparation for
witnessing by the acquirer, documentation of results in SDFs, and
update of system test cases and procedures.

5. Performance of system qualification testing: participation in system
qualification testing in accordance with the system test cases and
procedures.

6. Revision and retesting: participation in all software revision, retest-
ing, and update of appropriate SDFs and other software products,
based on results of system qualification testing.

Software Configuration Management Plan (SCMP) � 489

7. Analysis and recording of system qualification test results: partici-
pation in analysis and documentation of system qualification test
results.

8. Participation in joint management and technical reviews.

SCM responsibilities are to:

1. Maintain corrective action process and provide status reports.
2. Maintain configuration control of Functional and Allocated Base-

lines.
3. Participate in joint management and technical reviews.
4. Support the SCCB and SCRB.
5. Maintain the CSA system and distribute CSA reports.
6. Maintain the CM Document and Drawing Libraries.
7. Maintain the SDL and SDFs.

3.3.13 Software Use Preparation

During software use preparation, software-related groups are concerned
with the following activities:

1. Preparation of executable software: preparation of executable soft-
ware for each user site and documentation of all applicable items
in the Software Product Specification (SPS).

2. Preparation of version descriptions for user sites: identify and doc-
ument the exact version of software prepared for each user site in
a Software Version Description (SVD).

3. Preparation of user manuals: user manuals may include System
User Manual (SUM), Software Input/Output Manual (SIOM), Soft-
ware Center Operator Manual (SCOM), and Computer Operation
Manual (COM).

4. Installation at user sites: installation, check-out of executable soft-
ware at specified user sites, training, and other specified assistance.

5. Convene the SCCB to establish the Product Baseline.
6. Convene the SCRB to exercise software configuration control upon

establishment of the Product Baseline.

SCM responsibilities are to:

1. Place software user documents (SPS, SVD) and user manuals (SUM,
SIOM, SCOM, COM) under configuration control.

2. Maintain corrective action process and provide status reports.

490 � Software Configuration Management

3. Maintain configuration control of Functional, Allocated, and Product
Baselines.

4. Participate in joint management and technical reviews.
5. Support the SCCB and SCRB.
6. Maintain the CSA system and distribute CSA reports.
7. Maintain the CM Document and Drawing Libraries.
8. Maintain the SDL and SDFs.

3.3.14 Software Transition Preparation

During software transition preparation, software-related groups are con-
cerned with the following activities:

1. Preparation of executable software: preparation of executable soft-
ware for transition to support site and documentation of applicable
items in the SPS.

2. Preparation of source files: preparation of source files for transition
to the support site and documentation of applicable items in the SPS.

3. Preparation of version descriptions for support site: identification and
documentation of the exact version of software prepared for the
support site in the SVD.

4. Preparation of the “as-built” CSCI design and related information:
update of each CSCI design description to match the “as-built”
software. Definition and documentation of all information (in the
SPS) needed to support the software, and traceability between the
CSCI’s source files and software units and between the computer
hardware resource utilization measurements and the CSCI require-
ments concerning them.

5. Update of system design description: participation in updating system
design description to match the “as-built” system in the SSDD.

6. Preparation of support manuals: support manuals may include
Computer Programming Manuals (CPMs) and Firmware Support
Manuals (FSMs).

7. Transition to designated support site: installation and check-out of
deliverable software in the support environment, training, and mis-
cellaneous assistance to support agency.

SCM responsibilities are to:

1. Archive Product Baseline.
2. Transfer Product Baseline to support site.

Software Configuration Management Plan (SCMP) � 491

3.4 Production and Deployment

<Individual projects must tailor this section to describe software
development activities derived from applicable software devel-
opment standards and phasing consistent with the project’s
software development plan.>

Objectives of the Production and Deployment phase of the software life
cycle are to:

1. Establish a stable, efficient production and support base.
2. Achieve an operational capability that satisfies the mission need.
3. Conduct follow-on operational and production verification testing

to confirm and monitor performance and quality and verify the
correction of deficiencies.

SCM responsibilities are to:

1. Update CCB charter, CM Plan(s), Functional, Allocated, and Product
Baselines.

2. Ensure contractor and government control of FPC, Functional, Allo-
cated, and Product Baselines.

3. Provide training in the CM process to the operating forces.

3.5 Operations and Support

<Individual projects must tailor this section to describe software
development activities derived from applicable software devel-
opment standards and phasing consistent with the project’s
software development plan.>

Objectives of the Operations and Support phase of the software life cycle
are to:

1. Ensure that the fielded system continues to provide the capabilities
required to meet the identified mission need.

2. Identify shortcomings or deficiencies that must be corrected to
improve performance.

SCM responsibilities are to:

492 � Software Configuration Management

1. Update CCB charter, CM Plan(s), Functional, Allocated, and Product
Baselines.

2. Continue control and accounting of FPC, Functional, Allocated, and
Product Baselines.

3. Participate in conduct of audits as required.
4. Provide training in the CM process to the operating forces.

SECTION 4: DATA MANAGEMENT

The section describes the data handling, processing, storage, integrity,
transfer, security, and maintenance of configuration management technical
data.

Data management responsibilities are to:

1. Receive/obtain CDRL documents, software, or project technical data.
2. Implement and apply the configuration identification scheme in

accordance with Section 6 of this plan.
3. Catalog the CDRL documents, software, or project technical data.
4. Maintain status records or database of CDRL documents, software,

or project technical data.
5. Perform security access and control.
6. Provide change control.
7. Provide distribution copies for project personnel or for outside

distribution.
8. Maintain review comments or files, and forward comments to

document originators.
9. Prepare and distribute status and inventory reports.

10. Archive CDRL documents, software, or project technical data.
11. Track CDRL documents, software, or project technical data requiring

response or action.

4.1 Data Distribution and Access

Access to project technical data is limited in accordance with the applicable
distribution statements defined by the contract or Project Manager and by
data rights, CDRL distribution security requirements, and data status level
(released or submitted for approval unless otherwise specified). Distribu-
tion lists of projects technical data are maintained as part of the data status
reporting function. Requests for project technical data by activities outside
this project require approval by the Project Manager or designated author-
ity.

Software Configuration Management Plan (SCMP) � 493

4.2 Automated Processing and Submittal of Data

The following requirements are used to identify and control data during
the review and update cycle:

1. Data files are uniquely identified and include file version and
“submitted” status (e.g., “working,” “released,” etc.). File-naming
conventions are used to indicate changes from previous versions
or to distinguish an altered (annotated, redlined) file version from
the originally submitted file version (e.g., filename.srs;2, or
filename_srs.ann;6).

2. Data and changes are transmitted in accordance with the submittal
date specified in the contract.

3. An acknowledgment of receipt from the receiving party is required
when electronic data is being sent. The required time to respond
is 24 hours. A follow-up is made after the 24-hour period.

4. Data that is electronically transferred is identified and defined as
follows:
� “Working”: work in progress, not formally submitted or made

accessible; provided for information or communication; subject
to internal CM (version control).

� “Released”: CM controlled version released or made accessible
after internal interview and approval.

� “Submitted”: CM controlled master version formally submitted or
made accessible.

� “Approved”: CM controlled master version approved.
5. Records are kept for each data transaction.

4.3 Interactive Access to Digital Data

Define the following processes:

1. How data is to be accessed
2. Request for access and logging of access for read-only or annota-

tions
3. Naming of temporary working version of files for the purpose of

annotation or mark-up
4. Means of indicating whether a comment or annotation is essential

or suggested
5. Reidentification of marked-up versions, as required
6. Method of indicating acceptance, provisional acceptance, approval,

or rejection
7. Automated status accounting, including tracking the disposition of

required changes

494 � Software Configuration Management

8. Reidentification of changed files

4.4 Status Reporting

Data requirements defined by the CDRL are incorporated into the [name
of the database used to track CDRLs] database. The database is used to
identify all CDRL data, to prepare status reports, and to track approval
history. The database contains each contractually required data item and
information on data submission. In addition to the CDRL item, the title
of the data item and source references (e.g., Data Item Description [DID]
number, paragraph number of applicable addendum) are included. Listed
below are the main areas addressed in the status reports.

1. Data deliveries completed in the previous period
2. Data scheduled for submission
3. Data due but not yet delivered
4. Status of delinquent data

4.5 Data Security and Classification Management

Data security and classification management are an integral part of data
management. Security requirements are considered during all areas of data
management control.

SECTION 5: CONFIGURATION IDENTIFICATION

This section describes the process for configuration identification.

5.1 Selection of CSCIs

The selection of CSCIs is the responsibility of project management or the
developer. CSCIs are placed under configuration management in accor-
dance with this plan. Once the CSCI has been identified and provided to
the SCM organization, the SCMP will be updated.

5.2 Formal Baseline Establishment

For each CSCI, configuration identification is established for software
technical documentation, code, and media. The initially approved config-
uration identifications establish baselines from which subsequent changes
are controlled. The configuration identifications and baselines to be estab-
lished for [system title] CSCIs are defined as shown below.

Software Configuration Management Plan (SCMP) � 495

1. Functional Baseline. Listed below are the documents that comprise
the Functional Baseline for [system title].
� Document 1
� Document 2
� Document 3

2. Allocated Baseline. Listed below are the documents that comprise
the Allocated Baseline for [system title].
� Document 1
� Document 2
� Document 3

3. Product Baseline. Listed below are the documents that comprise
the Product Baseline for [system title].
� Document 1
� Document 2
� Document 3

5.3 Identification Methods

The paragraphs below describe the methods used in identifying the CSCI
and associated technical data and project-developed support software
required for development, test, and maintenance.

5.3.1 Document Identification

SCM assigns unique numbers to CSCI documents. Each page of the
document contains the identification number with the applicable revision
letter.

5.3.1.1 Document Revision

SCM assigns identifiers to document revisions.

5.3.1.2 Document Change Pages

SCM assigns numbers to document change pages.

5.3.2 Drawing Identification

SCM assigns unique numbers to drawings.

5.3.3 Software Identification

SCM assigns unique numbers to drawings.

496 � Software Configuration Management

5.3.3.1 Copy Number

Each accountable copy of a software product (e.g., source code tape),
with the exception of the EM and listings, is assigned a unique copy
number, both externally and embedded within the software.

5.3.3.2 Volume Number

For software products that require more than one unit of physical storage
per copy, a volume number is assigned to each unit of storage, both
externally and embedded on the software.

5.3.3.3 Labels

[system title] software is labeled for ease in identification. Describe the
specific labeling practices being used.

<The types of information needed for this paragraph include
the color of labels being used, the meaning associated with
each color, etc. This information may be presented in a
table.>

Listed below is the minimum information necessary to adequately identify
software media.

1. Identify each of the elements required on a label.

5.3.4 Firmware Identification

The components of firmware, the hardware device, and the computer
instructions or computer data that reside as read-only software on the
hardware device are each uniquely identified. Firmware identification
includes the top-level document/drawing that defines how these compo-
nents fit together for the firmware assembly. Firmware is assigned a unique
identifier.

5.3.5 Change Request Form Identification

Each change request form received by SCM is assigned a unique identifier.

5.3.6 Engineering Release

The software release process begins at the start of system integration and
testing. At the initiation of this phase, the software Product Baseline is

Software Configuration Management Plan (SCMP) � 497

established by the project’s SCCB. The software release identified as part
of the Product Baseline is provided for integration with the operational
hardware. Final testing is accomplished by Operational Test and Evaluation
(OT&E). Issues found by OT&E are resolved using the baseline change
process. Upon satisfactory completion of OT&E, the software release is
approved as the Product Baseline Configuration. Approval for service use
initiates distribution to Fleet users. CM/DM is responsible for making and
distributing copies of software products. The copies are made from the
EM. SCM is responsible for ensuring that the correct software product and
release documentation are distributed through DM.

5.4 Developmental Configuration — Corrective Action Process

Anomalies or discrepancies against the Developmental Configuration are
resolved through a corrective action process. The corrective action process
is a closed-loop process, ensuring that all detected problems are promptly
reported and entered into the process, action is initiated on them, reso-
lution is achieved, status is tracked and reported, and records of the
problems are maintained for the life of the product.

The corrective action process is the development team’s internal control
over software that is evolving from requirements and being developed
through design, code and unit test, integration test, and software system
test.

The Development Group is responsible for the Developmental Con-
figuration and therefore provides status of implementing change proposals
and closing out the change request form. The paragraphs below describe
the steps in processing a change request form.

1. The initiator reports a problem using a change request form and
submits it to the SCM organization.

2. SCM assigns a change request form tracking number, updates the
change request form tracking database, and provides a copy to the
development team for problem analysis and proposed solution. A
master copy of the change request form is maintained by the library.

3. The approval authority determines the corrective action to be taken
and the priority of the action. Corrective actions may be returned
to the Development Group for implementation or sent to another
group for review or action.

4. The Development Group implements the approved solution and
provides status of the implementation and completion to the SCM
organization. Implementation includes updating the software and
configuration documents. Implementation is considered complete

498 � Software Configuration Management

when the integration and testing of the change request “passes”
test criteria.

5.5 Configuration Management Libraries

The Developmental Configuration management process includes the
responsibility to control documentation and repositories containing ele-
ments of the Developmental Configuration. The [project organization], in
response to this requirement, has established the following libraries:
Software Development Library, Documentation Library, and Drawing
Library. The following paragraphs describe the functions of each of the
libraries.

 Project management authorizes access to each of the [project organi-
zation] libraries. Access includes types of user privileges granted (e.g., for
software: read, write, execute; for documentation: loan copy, distribution
copy).

5.5.1 Software Development Library

The SDL is the controlled collection of documentation, intermediate soft-
ware development products, associated tools, and procedures that com-
prise a Developmental Configuration CSCI. The SDL provides storage of
and controlled access to software development products in human-read-
able form, machine-readable form, or both. SDL components are initially
documented in an identification list for the Allocated Baseline.

<The following description outlines the typical SDL control for
software produced under the “waterfall” software development
methodology. A graphic showing the product development
evolution would be helpful as can be seen in Figure T4.>

The [project organization] SDL consists of a series of phases through
which the software is developed. Before software is released from one
development phase to the next, it must be validated by a Quality Assurance
function and verified by SCM. SCM uses the [name the tool or briefly
explain the process] to perform this verification. SCM verifies that approved
software changes have been incorporated into the proper phase of the
SDL, reports status to the SCCB, and performs the release function upon
SCCB authorization.

<The release function for software should be detailed in the
DTPs for Configuration Identification, both for engineering

Software Configuration Management Plan (SCMP) � 499

release to a user and for internal release from one development
phase to the next.>

Figure T4 Sample Product Development Evolution

PRODUCT

Tactical Mission
Software

Master S/W
Development

Baseline Library

Copy Development
Baseline Library

Development Test
Base Library

Development
Release Baseline

Library

Core Software

Master S/W
Development

Baseline Library

Copy Development
Baseline Library

Development Test
Base Library

Development
Release Baseline

Library

System Test
Software

Master S/W
Development

Baseline Library

Copy Development
Baseline Library

Development Test
Base Library

Development
Release Baseline

Library

Support
Software

Master S/W
Development

Baseline Library

Copy Development
Baseline Library

Development Test
Base Library

Development
Release Baseline

Library

Software Manager, Software Design and Development

Approved
Technical

Data

CM Validation
of Approved

Data

Updated
Development

Baseline

New
Software

Builds

New Technical
Requirements

Approved
Technical

Data

CM Validation
of Approved

Data

Updated
Development

Baseline

Approved
Technical

Data

CM Validation
of Approved

Data

Updated
Development

Baseline

Approved
Technical

Data

CM Validation
of Approved

Data

Updated
Development

Baseline

500 � Software Configuration Management

5.5.2 Documentation Library

The [project organization] Documentation Library contains the controlled
collection of all the project’s document inventory, in any media, for both
released and development versions; it houses both deliverable and non-
deliverable products (e.g., preliminary versions of baseline documents,
specifications on commercial off-the-shelf [COTS] tools). The Documenta-
tion Library for a newly designated baseline is established at the same
time as its Developmental Configuration, and its components are initially
documented in an identification list for the Allocated Baseline. SCM verifies
that new documents that are entered into the library as CSCIs have been
approved by the SCCB and that only approved document changes have
been incorporated into all controlled documents. SCM activates the release
process upon SCCB authorization.

<The DTPs for Configuration Identification should include a
procedure for Documentation Library control that includes the
document release function.>

5.5.3 Drawing Library

The [project organization] Drawing Library contains the controlled collection
of all of the project’s drawings, Computer-Aided Design (CAD), and Com-
puter-Aided Manufacturing (CAM) instructions. The Drawing Library for a
newly designated baseline is established at the same time as its Develop-
mental Configuration, and its components are initially documented in an
identification list for the Allocated Baseline. SCM verifies that approved
changes have been incorporated into drawings originated by and under
control of the [project organization].

<The DTPs for Configuration Identification should include a
procedure for Drawing Library control that includes the drawing
release function. If Hardware Drawing Library is discussed in
another CM Plan, reference that plan. If drawings are not
applicable to the project, then this paragraph should be
omitted.>

SECTION 6: INTERFACE MANAGEMENT

<This section may not apply to all systems. If it does not apply,
insert a statement to the effect that currently no interface
requirements have been established for the system.>

Software Configuration Management Plan (SCMP) � 501

This section identifies the interface requirements and establishes the
Interface Control Working Group. Interface management is performed to
ensure compatibility and interoperability among various hardware and
software components in a system as specified in the baselined configu-
ration documentation.

6.1 Interface Requirements

Listed below are the interface requirements for [system title].

<List your inter face requirement specification and/or
document.>

1. Interface Requirement number 1
2. Interface Requirement number 2
3. Interface Requirement number 3

6.2 Interface Control Working Group (ICWG)

The ICWG is chartered to ensure the compatibility of the software and
hardware components. The ICWG is composed of members of the systems
outlined above and representatives from the system design group. The
ICWG meetings will include discussions of the interface control documen-
tation.

SCM may be required to generate and distribute CSA reports and
technical data.

<SCM may provide administrative support.>

SECTION 7: CONFIGURATION CONTROL

This section describes the process for maintaining configuration control
of all identified CSCIs developed or maintained by [originating organiza-
tion].

The purpose of configuration control is to maintain the integrity of
baselined CSCIs and their associated documentation by ensuring that only
authorized changes are incorporated. This requires the systematic evalu-
ation, processing, and approval or disapproval of all proposed changes.
Configuration control begins when a CSCI is baselined and continues as
further baselines are established.

SCM is responsible for maintaining software configuration control over
software products in the Functional, Allocated, Developmental Configu-
ration, and Product Baselines. In addition, SCM is responsible for admin-

502 � Software Configuration Management

istering the process by which a request for change to products under
control is submitted, reviewed, and approved or disapproved.

7.1 Boards

The [originating organization] is subject to a hierarchy of control boards
for baseline integrity. A description of each of these boards, along with
their functions and responsibilities, is presented in the paragraphs below.

<It is understood that each organization will have a unique
hierarchy and linkage among boards. A separate numbered
paragraph should be dedicated to each of these boards. It may
also be helpful to include a figure that illustrates the linkage
among the boards.>

7.1.1 SCCB

A Software Configuration Control Board (SCCB) has been established to
authorize changes to baselined documentation and software for delivered
products and for in-development products. The specific procedures for
conducting an SCCB meeting are detailed in [document name].

7.1.1.1 SCCB Responsibilities

The SCCB has authority for managing the project’s software through the
performance of the functions listed below.

1. Authorize establishment of software baselines and identification of
CSCIs.

2. Represent interests of project management and all groups who may
be affected by software changes to the baselines.

3. Assign, review, and provide for disposition of action items.
4. Provide required staff coordination on all proposed or reviewed

changes or modifications.
5. Serve as a source for the coordination of software technical expertise

for the project.
6. Determine or review the availability of resources required to com-

plete the proposed change or modification, assess the impact of
the proposed change upon the system, examine cost considerations,
and determine the impact of the change on development and test
schedules.

7. Monitor the design, production, and validation process for approved
modifications, and initiate, when required, the corrective actions

Software Configuration Management Plan (SCMP) � 503

necessary to ensure design compatibility and integrity, cost-effec-
tiveness, and conformance to scheduled milestones.

8. Direct software change implementation on changes approved by
the SCCB.

9. Exercise interface management support and control for project
software.

7.1.1.2 SCCB Composition

The SCCB is chaired by an SCCB Chairperson or a designated represen-
tative. Board members include representatives of the functions designated
below:

1. SCM
2. Software Requirements
3. Software Design/Development
4. Software Test
5. SQA
6. Software Systems Engineering
7. Logistics
8. System Test
9. Technical personnel directly associated with problems or proposed

changes to be reviewed

SCM schedules and coordinates SCCB meetings, including the creation
and distribution of meeting agenda and minutes. For time-critical software
problems, an emergency SCCB meeting may be convened. The required
attendees are listed below.

1. SCCB Chairperson
2. SCM Manager
3. Software Requirements Manager
4. Software Design Manager
5. If applicable, the manager of the group that documented the

problem

7.1.1.3 Roles of SCCB Members

The paragraphs below describe the roles of SCCB members.

7.1.1.3.1 SCCB Chairperson Ultimate authority for the SCCB rests with
project management. An SCCB Chairperson is appointed by the Project
Manager to serve as Project Manager agent for SCCB functions. The SCCB

504 � Software Configuration Management

Chairperson reports all SCCB functions to the Project Manager. The respon-
sibilities of the SCCB Chairperson are listed below.

1. Schedule and conduct SCCB meetings.
2. Ensure that notice of each SCCB meeting is furnished sufficiently

in advance so that representatives may attend completely prepared.
3. Evaluate and act on proposed changes.
4. Present recommended changes to the Project Manager to assist in

determining which change requests will be processed for imple-
mentation.

5. Coordinate implementation of software changes approved by the
Project Manager.

6. Sign the written synopsis of matters considered and recommenda-
tions made by the SCCB. (The synopsis is made a permanent part
of the proceedings of the SCCB, and copies of the synopsis are
distributed to all SCCB members.)

7.1.1.3.2 SCCB Secretariat The [originating organization] provides a
secretariat (i.e., the SCM Manager) to perform the administrative functions
listed below.

1. Prepare, coordinate, and distribute the SCCB meeting agenda.
2. Act as recording secretary during SCCB meetings.
3. Prepare and distribute the SCCB meeting minutes.
4. Perform additional staffing functions as directed by the SCCB Chair-

person.
5. Prepare the written synopsis of matters considered and recommen-

dations made by the SCCB.
6. Distribute copies of signed synopsis to all SCCB members.

7.1.1.3.3 Other SCCB Members All SCCB members represent their
respective activities regarding all proposed software changes brought
before the SCCB. Their duties include those listed below.

1. Receive copies of all proposed changes submitted for SCCB con-
sideration.

2. Review, evaluate, and coordinate with other offices as required to
determine impact of all proposed changes.

3. Attend meetings of the SCCB to present position statement on
proposed changes.

4. Assist in the preparation of composite ECP or local form.

Software Configuration Management Plan (SCMP) � 505

5. Assist the [originating organization] in the analysis of the impact of
proposed changes in their area of expertise.

6. Perform other tasks as assigned by the SCCB Chairperson.

7.1.2 Other Local Boards

<Add an additional paragraph heading and subheadings for
responsibilities and composition for each local board (e.g.,
Developmental Configuration Review Board, Technical Review
Board, Developmental Change Review Board).>

7.1.3 Other Boards

<Add an additional paragraph heading and subheadings for
responsibilities and composition for each external board (e.g.,
Operational Advisory Group/Maintenance Advisory Group
[OAG/MAG]).>

7.1.4 SCRB

The management team required to establish and maintain configuration
control of software consists of the sponsor and an established SCRB.

7.1.4.1 SCRB Responsibilities

The SCRB is responsible for evaluating and approving or disapproving
proposed software changes. The evaluation of proposed changes must
consider, as a minimum, such factors as documentation, equipment inter-
faces, training equipment, implementation costs, and performance require-
ments.

Proposed changes submitted for SCRB action must be complete with
respect to technical requirements, justification, cost information, logistic
requirements, interface requirements, retrofit requirements, and other
applicable information. When a proposed change affects any system or
item under the cognizance of another SCRB, joint SCRB meetings will be
held as required.

7.1.4.2 SCRB Composition

The organization of the SCRB consists of the members listed below.

1. Program Manager (PM) or Acquisition Manager (AM)

506 � Software Configuration Management

2. SCRB Chairperson (designated by the PM or AM)
3. Sponsor Representative
4. Representatives of participating Navy field activities
5. Representatives of the [originating organization]

In addition, advisory personnel from each of the areas listed below
are included in the SCRB as required.

1. Fleet users
2. Test and evaluation personnel
3. Contractor and Navy developer
4. Interfacing systems SCRB representatives

In specific cases, representatives of other divisions and offices of
NAVAIR TEAM may be required to serve as advisors to the board. Partic-
ipation of these divisions is coordinated by the SCRB Chairperson.

7.1.4.3 Roles of SCRB Members

The following paragraphs describe the roles of SCRB members.

7.1.4.3.1 SCRB Chairperson Ultimate authority for the SCRB rests with
the [SCRB program management]. An SCRB Chairperson is appointed by
the Program Manager to serve as the program management agent for
SCRB functions. The SCRB Chairperson reports all SCRB functions to the
Program Manager. The responsibilities of the SCRB Chairperson include:

1. Schedule and conduct SCRB meetings.
2. Ensure that notice of each SCRB meeting is furnished sufficiently

in advance so that representatives may attend completely prepared.
3. Ensure that task statements, work unit assignments, and contract

changes are issued to fund SCRB members for direct SCRB partic-
ipation.

4. Evaluate budgetary estimates of SCRB members for proposed soft-
ware changes.

5. Evaluate and act on proposed changes (i.e., approve/disapprove).
6. Present recommended changes to the PM and AM to assist them

in determining which change requests will be processed for imple-
mentation.

7. Coordinate implementation of software changes approved by the
PM and AM.

8. Present composite ECPs for new baseline to the appropriate SCCB.

Software Configuration Management Plan (SCMP) � 507

9. Sign the written synopsis of matters considered and recommenda-
tions made by the SCRB. (The synopsis is made a permanent part
of the proceedings of the SCRB, and copies of the synopsis are
distributed to all SCRB members.)

7.1.4.3.2 SCRB Secretariat The [originating organization] provides a
secretariat (i.e., the SCM Manager) to perform the administrative functions
listed below.

1. Prepare, coordinate, and distribute the SCRB meeting agenda.
2. Act as recording secretary during SCRB meetings.
3. Prepare and distribute SCRB meeting minutes.
4. Prepare the composite ECP or local form.
5. Perform additional staffing functions as directed by the SCRB Chair-

person.
6. Prepare written synopsis of matters considered and recommenda-

tions made by the SCRB.
7. Distribute copies of signed synopsis to all SCRB members.

7.1.4.3.3 Other SCRB Members All SCRB members represent their
respective activities regarding all proposed software changes brought
before the SCRB. Their duties include:

1. Receive copies of all proposed changes submitted for SCRB con-
sideration.

2. Review, evaluate, and coordinate with other offices as required to
determine impact of all proposed changes.

3. Attend SCRB meetings to present position statement on proposed
changes.

4. Assist with the analysis of the impact of proposed changes.
5. Perform other tasks as assigned by the SCRB Chairperson.

7.2 Baseline Change Process

The [project organization] baseline change process is a continuous function
that involves the preparation, implementation, and distribution of CSCI
and associated documentation changes. It has been approved by the
[sponsor organization] and involves activity at both the project and program
levels.

<These statements and the following paragraphs assume that
the project organization is both the developmental activity and

508 � Software Configuration Management

SSA for the software product. If this is not the case, tailor your
document accordingly.>

The assigned responsibilities and approval authority for accomplishing
changes to baselines are detailed in a project-originated SCCB charter
documented in [list the document name]. This charter interfaces with the
[sponsor organization] charter. The charter establishes the processing of
change requests and their resolution by local and [sponsor organization]
boards.

Changes to a [project organization] baseline configuration are initiated
through a change request process that involves the preparation of a
defined series of documents (change forms) whose status is determined
by a hierarchy of control boards. Change requests are used to report
problems and propose changes or enhancements to software or docu-
mentation. A change request must be documented, submitted, reviewed,
and approved prior to implementation. Change requests against develop-
mental baselines are resolved by the [project organization] SCCB <if not
the SCCB, identify the board>. Change requests against established base-
lines require approval of the [sponsor organization] SCRB.

7.2.1 Change Request Forms

The [project organization] uses the following change forms for control of
its software baselines:

1. Engineering Change Proposals (ECPs)
2. Specification Change Notices (SCNs)
3. Notices of Revisions (NORs)
4. Deviation and Waiver
5. Local change requests — insert title of local change request

7.2.1.1 Engineering Change Proposal

The ECP is used to document all proposed changes to established base-
lines. The completed ECP must include detailed descriptions, justifications,
and costs for the proposed change.

7.2.1.2 Specification Change Notice

The SCN is used to correct or update specifications. The SCN identifies
the document to be changed, the SCN number, its status (proposed or
approved), the related ECP, and other [project organization] identifying
data.

Software Configuration Management Plan (SCMP) � 509

7.2.1.3 Notice of Revision

The NOR is primarily intended for use when the master drawing list and
other documents comprising the configuration identification are not held
by the originator of the ECP. NORs permit the ECP previewing or approving
activity to direct the custodian of an applicable document to make specific
revisions in affected documents. A separate NOR is prepared for each
drawing, associated list, or other referenced document that requires revi-
sion when the related ECP is approved. The description of the revision
consists of a detailed statement covering each required correction, addi-
tion, or deletion.

7.2.1.4 Deviation and Waiver

A request for deviation or waiver is designated as minor, major, or critical.

7.2.1.5 Local Change Request

<Use this paragraph to describe your local change request form
and a high-level description of its processing. An accompanying
table with instructions for its completion is recommended.>

Table T3 describes the baseline change process used by the [project
organization]. Table T4 displays problem priorities.

<Each standard has its own unique problem priority definitions
and should be referenced as applicable.>

Table T5 shows categories to be used for classifying problems in software
products.

<Table T5 presents a typical baseline change process used by
a software development activity. Modify the description to
reflect the process used by your project organization for con-
trolling changes to baselines. If your project’s responsibility is
for product development only, then your baseline change pro-
cess will not include the starred (*) activities.>

SECTION 8: CONFIGURATION STATUS ACCOUNTING

This section describes the process used to provide configuration status
accounting (CSA). CSA is the recording and reporting of information
needed to manage CSCIs effectively, including the items listed below.

510 � Software Configuration Management
Ta

bl
e

T
3

B
as

el
in

e
C

ha
ng

e
Pr

oc
es

s

A
ct

iv
ity

R
es

po
ns

ib
ili

ty
SC

M
 I

nt
er

fa
ce

C
om

m
en

ts

C
h

an
ge

 R
eq

u
es

t
In

it
ia

to
r

U
se

 (
lo

ca
l)

 c
h

an
ge

 r
eq

u
es

t
to

re

p
o

rt
 p

ro
b

le
m

, e
rr

o
r,

d
efi

ci
en

cy
; r

eq
u

es
t

en
h

an
ce

m
en

t,
ch

an
ge

, n
ew

re

q
u

ir
em

en
t.

Su
b

m
it

 c
h

an
ge

 r
eq

u
es

t
to

SC

M
.

A
ss

ig
n

 t
ra

ck
in

g
id

en
ti

fi
ca

ti
o

n
.

In
p

u
t

ap
p

ro
p

ri
at

e
d

at
a

to
 C

SA

d
at

ab
as

e.
Pr

o
vi

d
e

co
p

ie
s

o
f c

h
an

ge
 r

eq
u

es
t

fo
r

re
vi

ew
.

Pl
ac

e
m

as
te

r
ch

an
ge

 r
eq

u
es

t
in

lib

ra
ry

.

SC
M

 s
h

o
u

ld

au
to

m
at

e
th

is

p
ro

ce
ss

 t
o

 t
h

e
fu

lle
st

 e
xt

en
t

o
f

it
s

ca
p

ab
ili

ti
es

.
El

im
in

at
e

p
ap

er

w
h

en
ev

er
 p

o
ss

ib
le

.
Pr

o
je

ct
 T

ec
h

n
ic

al

Ev
al

u
at

io
n

 T
ea

m
Ev

al
u

at
e

ch
an

ge
 r

eq
u

es
t

fo
r

te
ch

n
ic

al
 f

ea
si

b
ili

ty
.

Pr
o

vi
d

e
an

al
ys

is
 o

f
ch

an
ge

re

q
u

es
t.

G
at

h
er

 a
n

d
 d

is
tr

ib
u

te
 a

d
d

it
io

n
al

d

o
cu

m
en

ta
ti

o
n

 i
n

 s
u

p
p

o
rt

 o
f

ch
an

ge
 r

eq
u

es
t

w
h

en
 n

ee
d

ed
.

Pe
rf

o
rm

 s
ec

re
ta

ri
at

 d
u

ti
es

 f
o

r
Pr

o
je

ct
 T

ec
h

n
ic

al
 E

va
lu

at
io

n

Te
am

 w
h

en
 r

eq
u

es
te

d
.

U
p

d
at

e
C

SA
 d

at
ab

as
es

.

C
o

m
p

o
si

ti
o

n
 o

f
th

e
Pr

o
je

ct
 T

ec
h

n
ic

al

Ev
al

u
at

io
n

 T
ea

m
 i

s
d

et
er

m
in

ed
 b

y
p

ro
je

ct

m
an

ag
em

en
t.

Th
is

m

ay
 b

e
a

C
C

B

ac
ti

vi
ty

.
SC

C
B

C
o

n
ve

n
e

m
ee

ti
n

g.
D

is
p

o
si

ti
o

n
, p

ri
o

ri
ti

ze
, a

n
d

ca

te
go

ri
ze

D
ir

ec
t

im
p

le
m

en
ta

ti
o

n
 o

f
ch

an
ge

 r
eq

u
es

ts
 t

o

d
ev

el
o

p
m

en
ta

l
b

as
el

in
es

.
D

ir
ec

t
p

re
p

ar
at

io
n

 o
f

p
re

lim
in

ar
y

ch
an

ge

p
ro

p
o

sa
ls

 t
o

 d
el

iv
er

ed

b
as

el
in

es
 f

o
r

SC
R

B
 w

o
rk

in
g

gr
o

u
p

 c
o

n
si

d
er

at
io

n
.

D
is

tr
ib

u
te

 r
el

ev
an

t
C

SA
 r

ep
o

rt
s.

U
p

d
at

e
C

SA
 d

at
ab

as
es

.
Pe

rf
o

rm
 s

ec
re

ta
ri

at
 d

u
ti

es
 w

h
en

re

q
u

es
te

d
.

Appendix T � 511
SC

R
B

 W
o

rk
in

g
G

ro
u

p
C

o
n

ve
n

e
m

ee
ti

n
g.

D
is

p
o

si
ti

o
n

 a
n

d
 p

ri
o

ri
ti

ze

ch
an

ge
 p

ro
p

o
sa

ls
.

Id
en

ti
fy

 a
p

p
ro

ve
d

 c
h

an
ge

p

ro
p

o
sa

ls
 f

o
r

n
ew

 b
as

el
in

e
co

n
fi

gu
ra

ti
o

n
.

Pr
ep

ar
at

io
n

 o
f

EC
P.

D
is

tr
ib

u
te

 c
h

an
ge

 p
ro

p
o

sa
ls

 a
n

d

as
so

ci
at

ed
 d

o
cu

m
en

ta
ti

o
n

.
Pe

rf
o

rm
 s

ec
re

ta
ri

at
 d

u
ti

es
 w

h
en

re

q
u

ir
ed

.

SC
M

 w
ill

 p
ro

vi
d

e
an

d
 p

re
p

ar
e,

 a
s

re
q

u
es

te
d

, t
h

e
ap

p
ro

p
ri

at
e

d
o

cu
m

en
ta

ti
o

n
.

So
ft

w
ar

e
R

eq
u

ir
em

en
ts

G

ro
u

p

Pr
ep

ar
e

EC
P

fo
r

SC
R

B
 r

ev
ie

w
.

D
et

er
m

in
e

w
h

et
h

er
 d

ev
ia

ti
o

n
s

o
r

w
ai

ve
rs

 a
re

 r
eq

u
ir

ed
;

p
re

p
ar

e
if

 n
ec

es
sa

ry
.

Pr
o

vi
d

e
C

SC
I

an
d

 a
ss

o
ci

at
ed

te

ch
n

ic
al

 d
at

a
re

q
u

ir
ed

 f
o

r
EC

P
d

ev
el

o
p

m
en

t.
A

ss
ig

n
 i

d
en

ti
fi

ca
ti

o
n

 o
r

tr
ac

ki
n

g
n

u
m

b
er

 t
o

 E
C

P.
Pr

ep
ar

e
SC

N
s

an
d

 N
O

R
s

fo
r

su
b

m
it

ta
l

w
it

h
 c

o
m

p
le

te
d

 E
C

P.
Pr

ep
ar

e
EC

P
re

le
as

e
p

ac
ka

ge
 t

o

SC
R

B
.

U
p

d
at

e
C

SA
 d

at
ab

as
e.

SC
R

B
C

o
n

ve
n

e
m

ee
ti

n
g.

R
ev

ie
w

 E
C

P.
D

ir
ec

t
im

p
le

m
en

ta
ti

o
n

 o
f

ac
ce

p
ta

b
le

 E
C

P.
R

et
u

rn
 u

n
ac

ce
p

ta
b

le
 E

C
P

fo
r

re
w

o
rk

 b
y

p
ro

je
ct

o

rg
an

iz
at

io
n

.

Pr
o

vi
d

e
ap

p
ro

p
ri

at
e

tr
ac

ki
n

g
fo

r
EC

P.
U

p
d

at
e

C
SA

 d
at

ab
as

e.

So
ft

w
ar

e
D

es
ig

n

G
ro

u
p

Im
p

le
m

en
t

ap
p

ro
ve

d
 E

C
P.

Pr
o

vi
d

e
d

es
ig

n
 s

ta
tu

s
an

d

in
fo

rm
at

io
n

 t
o

 S
C

C
B

.

512 � Software Configuration Management
Ta

bl
e

T
3

B
as

el
in

e
C

ha
ng

e
Pr

oc
es

s

A
ct

iv
ity

R
es

po
ns

ib
ili

ty
SC

M
 I

nt
er

fa
ce

C
om

m
en

ts

SC
C

B
B

eg
in

 S
C

C
B

 o
ve

rs
ig

h
t

o
f

n
ew

D

ev
el

o
p

m
en

ta
l

C
o

n
fi

gu
ra

ti
o

n
.

In
it

ia
te

 c
o

rr
ec

ti
ve

 a
ct

io
n

p

ro
ce

ss
.

D
et

er
m

in
e

d
ev

el
o

p
m

en
t

m
ile

st
o

n
es

.

Id
en

ti
fy

, p
ro

ce
ss

, a
n

d
 t

ra
ck

ch

an
ge

 r
eq

u
es

ts
.

Pr
o

vi
d

e
SC

C
B

 s
ec

re
ta

ri
at

fu

n
ct

io
n

.
A

ss
is

t
w

it
h

 r
ev

ie
w

s
an

d
 a

u
d

it
s

as

re
q

u
ir

ed
.

So
ft

w
ar

e
R

eq
u

ir
em

en
ts

G

ro
u

p

U
p

d
at

e
so

ft
w

ar
e

an
d

co

n
fi

gu
ra

ti
o

n
 d

o
cu

m
en

ts
.

R
ec

ei
ve

 a
n

d
 p

ro
ce

ss
 s

o
ft

w
ar

e
an

d

d
o

cu
m

en
ta

ti
o

n
 c

h
an

ge
s.

So
ft

w
ar

e
Te

st

G
ro

u
p

Pe
rf

o
rm

 V
&

V
 o

f
p

ro
je

ct

d
ev

el
o

p
ed

 s
o

ft
w

ar
e

b
as

ed
 o

n

te
st

 p
la

n
s

an
d

 p
ro

ce
d

u
re

s.
G

en
er

at
e

ch
an

ge
 r

eq
u

es
ts

 fo
r

p
ro

b
le

m
s

d
et

ec
te

d
 d

u
ri

n
g

te
st

.

R
ec

ei
ve

 t
es

t
d

o
cu

m
en

ts
 f

o
r

co
n

fi
gu

ra
ti

o
n

 c
o

n
tr

o
l.

Id
en

ti
fy

, p
ro

ce
ss

, a
n

d
 t

ra
ck

ch

an
ge

 r
eq

u
es

ts
 r

ep
o

rt
ed

d

u
ri

n
g

te
st

in
g.

Q
u

al
it

y
A

ss
u

ra
n

ce

G
ro

u
p

Pe
rf

o
rm

 r
ev

ie
w

 a
n

d
 a

u
d

it
s

o
f

b
as

el
in

e
so

ft
w

ar
e.

A
ss

is
t S

Q
A

 in
 c

o
n

d
u

ct
 o

f r
ev

ie
w

s
an

d
 a

u
d

it
s

as
 r

eq
u

ir
ed

.

SC
C

B
R

el
ea

se
 D

ev
el

o
p

m
en

ta
l

co
n

fi
gu

ra
ti

o
n

 a
s

Pr
o

d
u

ct

B
as

el
in

e.

Pe
rf

o
rm

 r
el

ea
se

 f
u

n
ct

io
n

 f
o

r
ac

ce
p

te
d

 P
ro

d
u

ct
 B

as
el

in
e.

Appendix T � 513

Ta
bl

e
T4

 E
xp

la
na

ti
on

 o
f

Pr
io

ri
ti

es

Pr
io

rit
y

A
pp

lie
s

if
a

Pr
ob

le
m

 C
ou

ld
:

1
a.

 P
re

ve
n

t
th

e
ac

co
m

p
lis

h
m

en
t

o
f

an
 o

p
er

at
io

n
al

 o
r

m
is

si
o

n
-e

ss
en

ti
al

 c
ap

ab
ili

ty
.

b
.

Je
o

p
ar

d
iz

e
sa

fe
ty

, s
ec

u
ri

ty
, o

r
o

th
er

 r
eq

u
ir

em
en

t
d

es
ig

n
at

ed
 “

cr
it

ic
al

.”
2

a.
 A

d
ve

rs
el

y
af

fe
ct

 t
h

e
ac

co
m

p
lis

h
m

en
t

o
f

an
 o

p
er

at
io

n
al

 o
r

m
is

si
o

n
-e

ss
en

ti
al

 c
ap

ab
ili

ty
 a

n
d

n

o
 w

o
rk

-a
ro

u
n

d
 s

o
lu

ti
o

n
 i

s
kn

o
w

n
.

b
.

A
d

ve
rs

el
y

af
fe

ct
 t

ec
h

n
ic

al
, c

o
st

, o
r

sc
h

ed
u

le
 r

is
ks

 t
o

 t
h

e
p

ro
je

ct
 o

r
to

 t
h

e
lif

e-
cy

cl
e

su
p

p
o

rt

o
f

th
e

sy
st

em
, a

n
d

 n
o

 w
o

rk
-a

ro
u

n
d

 s
o

lu
ti

o
n

 i
s

kn
o

w
n

.
3

a.
 A

d
ve

rs
el

y
af

fe
ct

 t
h

e
ac

co
m

p
lis

h
m

en
t

o
f

an
 o

p
er

at
io

n
al

 o
r

m
is

si
o

n
-e

ss
en

ti
al

 c
ap

ab
ili

ty
 b

u
t

a
w

o
rk

-a
ro

u
n

d
 s

o
lu

ti
o

n
 i

s
kn

o
w

n
.

b
.

A
d

ve
rs

el
y

af
fe

ct
 t

ec
h

n
ic

al
, c

o
st

, o
r

sc
h

ed
u

le
 r

is
ks

 t
o

 t
h

e
p

ro
je

ct
 o

r
to

 t
h

e
lif

e-
cy

cl
e

su
p

p
o

rt

o
f

th
e

sy
st

em
 b

u
t

a
w

o
rk

-a
ro

u
n

d
 s

o
lu

ti
o

n
 i

s
kn

o
w

n
.

4
a.

 R
es

u
lt

 i
n

 u
se

r/
o

p
er

at
o

r
in

co
n

ve
n

ie
n

ce
 o

r
an

n
o

ya
n

ce
 b

u
t

d
o

es
 n

o
t

af
fe

ct
 a

 r
eq

u
ir

ed

o
p

er
at

io
n

al
 o

r
m

is
si

o
n

-e
ss

en
ti

al
 c

ap
ab

ili
ty

.
b

.
R

es
u

lt
 in

 in
co

n
ve

n
ie

n
ce

 o
r

an
n

o
ya

n
ce

 f
o

r
d

ev
el

o
p

m
en

t
o

r
su

p
p

o
rt

 p
er

so
n

n
el

 b
u

t
d

o
es

 n
o

t
p

re
ve

n
t

th
e

ac
co

m
p

lis
h

m
en

t
o

f
th

o
se

 r
es

p
o

n
si

b
ili

ti
es

.
5

R
es

u
lt

 i
n

 a
n

y
o

th
er

 e
ff

ec
t.

514 � Software Configuration Management

1. A record of the approved configuration documentation and identi-
fication numbers

2. The status of proposed changes, deviations, and waivers to the
configuration

3. The implementation status of approved changes
4. The configuration of all units of the CSCI in the operational inven-

tory
5. Results of audits

CSA documentation is the means through which actions affecting CSCIs
are recorded and reported to the Software Systems Engineering Manager
of the [system title] system. It principally records the “approved configu-
ration” (baseline) and the implementation status of changes to the baseline.
It is the bookkeeping part of SCM that provides managers with feedback
information to determine whether decisions of the SCCB are being imple-
mented as directed.

To automate CSA, SCM uses [identify the software tool], a relational
database management system, to define the data content and format.
[Identify the software tool] is an approved, baselined CSCI, so any pro-
posed change to it requires a change request and SCCB approval for
implementation.

<If the above paragraph does not reflect current practices,
modify the paragraph as required.>

Input data includes SCCB decisions, such as approving or disapproving
change requests, establishing configuration baselines, and approving the

Table T5 Categories Used for Classifying Problems in Software Products

Category Applies to Problems in:

Plans One of the plans developed for the project
Concept The operational concept
Requirements The system or software requirements
Design The design of the system or software
Code The software code
Database/data file A database or data file
Test information Test plans, test descriptions, or test reports
Manuals The use, operator, or support manuals
Other Other software products

Software Configuration Management Plan (SCMP) � 515

release of software for distribution. Input data also includes status infor-
mation of CSCIs and change requests. Output data is formatted as CSA
reports.

8.1 Records

The records maintained by SCM contain detailed data that documents that
the as-built software conforms to its technical description and specified
configuration. They include the information listed below.

1. Approved technical documentation for each CSCI
2. Status of proposed changes
3. Implementation status of approved changes
4. Status of software problems
5. A record of change request status

8.1.1 Change Request Table

The change request table contains a record of all change requests and
related information. It includes, but is not limited to, the data listed below.

<It may be beneficial to include a description or figure showing
the format of this form.>

1. Change request number
2. Title
3. Date
4. Software product name or acronym
5. Part number or revision in error
6. Originator
7. Change source (e.g., ECP), if applicable
8. Current change request status
9. Change request disposition

8.1.2 Library(ies) Inventory Table

The library inventory table contains a record of each software product
stored in the library(ies). It includes, but is not limited to, the data listed
below.

516 � Software Configuration Management

<It may be beneficial to include a description or figure showing
the format of this form.>

1. Product name
2. Part or document number and revision
3. Date of creation, last modification, and last access
4. “Master” or “Copy” designation
5. Authorizing paperwork type and number
6. Type of media
7. Location
8. Classification

8.1.3 Data Distribution Table

The data distribution table contains a record of all data (e.g., documents
and drawings, including CDRL items) distributed by the software organi-
zation through DM. The table includes, but is not limited to, the informa-
tion listed below.

1. Type and identification number of distribution request
2. Date of submittal
3. Media identification
4. Reason for distribution
5. Classification

8.1.4 Release Table

The release table contains a record of all releases made by the software
organization (e.g., drawings, documents, software documents, tape). It
includes, but is not limited to, the information listed below.

1. Date of release
2. Type of release
3. Software product released
4. Changes incorporated into the release
5. Approval signatures
6. Location of masters

8.1.5 Archive Records Table

SCM maintains a record of all archived material. Archived material includes
obsolete material and data not required for current use and off-site stored
backup data in case of loss of online data.

Software Configuration Management Plan (SCMP) � 517

8.2 Reports

SCM has the prime responsibility for managing, compiling, maintaining,
and publishing the [system title] detailed software CSA reports. These
reports provide the status to management that all changes between the
software technical description and the software itself are being accounted
for on a one-to-one relationship. This status information, together with
the CSA reports maintained by the SCM organization, is an input for the
final review for product acceptance.

Project management determines the frequency of distribution and
recipients of the CSA reports. These reports include the information listed
below.

1. Identification of currently approved configuration documentation
and configuration identifiers associated with each CSCI

2. Status of proposed change requests from initiation to implementa-
tion

3. Results of configuration audits; status and disposition of discrepan-
cies

4. Traceability of changes from baselined documentation of each CSCI
5. Effectivity and installation status of configuration changes to all

CSCIs at all locations

The above reports answer basic questions regarding the approved
configuration (baseline) and the implementation status of changes to the
baseline.

8.3 Requests for CSA Reports

Requests for CSA reports originating outside the project are directed for
approval to Project Management, which authorizes need-to-know access.

SECTION 9: CONFIGURATION AUDITS

This section describes the approach used in performing configuration
audits.

Configuration audits validate that the design and the final product
conform to approved functional requirements defined in specifications
and drawings and that the changes to the initially approved specifications
and drawings have been incorporated.

The SCM assists in the conduct of two audits for developed baselines
prior to their release: the FCA and PCA. These audits ensure that baseline
changes are validated and the new baseline meets new requirements and
specifications.

518 � Software Configuration Management

SCM personnel provide assistance through the specific activities listed
below, as required by the project.

1. Assist in the audit.
2. Review audit checklists.
3. Prepare SCM reports, logs, or records required to support the audit.
4. Establish and maintain baseline specification and product files.
5. Follow up on audit reports to assess possible SCM impact.
6. Provide storage for audit documentation, records, and products.
7. Ensure audit report action items are resolved.

9.1 Functional Configuration Audit (FCA)

SCM ensures that the released version of the software products is available
for the audit so that the inspectors can verify that the software performs
as required by its allocated configuration.

FCAs are usually conducted after a major change or a significant
number of minor changes have occurred or before the establishment of
the Product Baseline. The SCM Manager is responsible for assisting SQA
in the preparation of the FCA plan. The FCA plan identifies specific tasks
and procedures to accomplish those tasks. The FCA plan identifies doc-
uments, hardware, software, test sets, etc. required for performing the
audit. The SCM Manager records differences between the SRS and the
CSCI under audit for incorporation into the minutes of the FCA for post-
audit action.

9.2 Physical Configuration Audit (PCA)

This audit ensures that the as-built configuration is accurately reflected by
the released documentation to establish the Product Baseline. SCM audits
the released engineering documentation and quality control records to
make sure the as-built or as-coded configuration is reflected by this
documentation.

PCAs are usually conducted concurrently with FCAs or immediately
following an FCA. The SCM Manager is responsible for assisting SQA in
the preparation of the PCA plan. The PCA plan identifies specific tasks
and procedures to accomplish those tasks. The PCA plan also identifies
the software and technical documentation to be examined.

9.3 Audits and Reviews of SCM

To ensure that SCM efforts are adequate and completed as detailed in this
document, audits and reviews of SCM processes and products are per-
formed as described in the following paragraphs.

Software Configuration Management Plan (SCMP) � 519

9.3.1 SCM Audits

To ensure that the SCM program complies with the requirements specified
in this plan, an independent audit of SCM processes, procedures, and
products is required. Normally, this type of audit is performed by a QA
representative. Products generated or tracked by SCM are listed below.

1. CSA reports
2. Identified CSCIs
3. Change requests
4. Software version releases
5. Libraries
6. Documented SCM processes and procedures
7. SCM review reports

The audit findings are documented in an audit report and provided
to the SCM Manager. The audit report is used by the SCM Manager to
correct deficiencies or identify changes in the SCM requirements. Correct-
ing deficiencies would include updating SCM processes and procedures,
records, configuration documents, software, or tools. Identifying changes
in the SCM requirements would result in adding, modifying, or deleting
a requirement in this SCMP.

9.3.2 SCM Reviews

The SCM Manager periodically performs internal reviews of SCM processes,
procedures, and products. An SCM review serves as a method to determine
how effectively and efficiently the SCM processes and procedures fulfill
the SCM requirements as defined in this plan. SCM reviews also include
verification of the products generated by SCM. Verification is the process
of evaluating the products to ensure correctness and consistency with
respect to the SCMP, tasks, processes, and procedures. The review findings
are documented in a report that is used by the SCM Manager to correct
deficiencies or identify changes in SCM requirements.

It is the SCM Manager’s responsibility to perform or assign SCM
personnel to perform the SCM reviews and to specify the SCM processes
or procedures to be reviewed. The review report includes what actions
were taken to resolve the deficiency or requirements change. The review
report is filed with the appropriate DTP and serves as a record to show
that an internal SCM review was performed and corrective action was
taken as required. Review reports may be audited.

520 � Software Configuration Management

SECTION 10: SUBCONTRACTOR/VENDOR CONTROL

This section describes the methods used to ensure subcontractor/vendor
compliance with configuration management requirements.

Each contractor working on this system is required to develop a
configuration management plan that is in conformance to this document.
The development contractor ensures that nondeliverable software will
functionally meet the requirements of the system.

Vendors’ products are inspected at delivery to ensure that their products
meet the requirements as specified. The vendors’ quality control proce-
dures may be obtained to aid in the evaluation of the COTS software by
the system developer.

Configuration management personnel are acquired as a team through
competitive contract negotiation. The SCM staff has responsibility for
conducting the SCM function under the management of [name of the
supervising organization or function assigned by the program]. The staff
is required to be fully knowledgeable in all aspects of the program’s
configuration management function and to maintain and upgrade the SCM
program whenever they can.

Software Configuration Management Plan (SCMP) � 521

APPENDIX T1: ACRONYMS AND ABBREVIATIONS

This appendix includes an alphabetical listing of all acronyms, abbrevia-
tions, and their meanings as used in this document.

ABL — Allocated Baseline
ACD — Allocated Configuration Documentation
AM — Acquisition Manager
CAD — Computer-Aided Design
CALS — Continuous Acquisition and Life-Cycle Support
CAM — Computer-Aided Manufacturing
CCB — Configuration Control Board
CDR — Critical Design Review
CDRL — Contract Data Requirements List
CI — Configuration Item
CITIS — Contractor Integrated Technical Information Service
CM — Configuration Management
CMU — Carnegie Mellon University
COM — Computer Operation Manual
COTS — Commercial Off-The-Shelf
CPM — Computer Programming Manual
CSA — Configuration Status Accounting
CSC — Computer Software Component
CSCI — Computer Software Configuration Item
CSU — Computer Software Unit
DBDD — Database Design Description
DID — Data Item Description
DM — Data Management
DoD — Department of Defense
DTP — Desktop Procedure
ECP — Engineering Change Proposal
EM — Engineering Master
FBL — Functional Baseline
FCA — Functional Configuration Audit
FCD — Functional Configuration Documentation
FPC — Functional and Physical Characteristics
FQT — Functional Qualification Testing
FSM — Firmware Support Manual
HWCI — Hardware Configuration Item
ICWG — Interface Control Working Group
ID — Identification
IDD — Interface Design Document
IRS — Interface Requirements Specification

522 � Software Configuration Management

MAG — Maintenance Advisory Group
MCCR — Mission Critical Computer Resources
NAVAIR — Naval Air Systems
NDS — Non-Developmental Software
NOR — Notice of Revision
OAG — Operational Advisory Group
OCD — Operational Concept Description
OT&E — Operational Testing and Evaluation
PBL — Product Baseline
PCA — Physical Configuration Audit
PCD — Product Configuration Documentation
PDR — Preliminary Design Review
PM — Program Manager
QA — Quality Assurance
SCCB — Software Configuration Control Board
SCM — Software Configuration Management
SCMP — Software Configuration Management Plan
SCN — Specification Change Notice
SCOM — Software Center Operator Manual
SCP — Software Change Proposal
SCR — Software Change Request
SCRB — Software Change Review Board
SDD — Software Design Document
SDF — Software Development File
SDL — Software Development Library
SDP — Software Development Plan
SDR — System Design Review
SEI — Software Engineering Institute
SEP — Software Enhancement Proposal
SIOM — Software Input/Output Manual
SIP — Software Installation Plan
SPS — Software Product Specification
SQA — Software Quality Assurance
SRR — Software Requirements Review
SRS — Software Requirements Specification
SSA — Software Support Activity
SSDD — System/Segment Design Document
SSR — Software Specification Review
SSS — System/Sub-system Specification
STD — Standard
STP — Software Test Plan
STR — Software Test Report
STR Form — System Trouble Report Form

Software Configuration Management Plan (SCMP) � 523

STrP — Software Transition Plan
SUM — Software User’s Manual
SVD — Software Version Description
TRR — Test Readiness Review
V&V — Verification and Validation
VDD — Version Description Document

524 � Software Configuration Management
A

PP
EN

D
IX

 T
2:

 F
O

R
M

S

So
ft

w
ar

e
C

ha
ng

e/
So

ft
w

ar
e

En
ha

nc
em

en
t

Pr
o

p
o

sa
l

1.
 S

Y
ST

EM
/P

R
O

JE
C

T
N

A
M

E
2.

 D
A

TE
 P

R
EP

A
R

ED
3.

 S
C

P
N

U
M

B
ER

4.
 T

IT
LE

 O
F

SC
P

5.
 O

R
IG

IN
A

TO
R

6.
 C

O
M

PO
N

EN
T

A
FF

EC
TE

D

7.
 D

ES
C

R
IP

TI
O

N
 O

F
PR

O
B

LE
M

/N
EE

D
 F

O
R

 S
C

P

8.
 D

ES
C

R
IP

TI
O

N
 O

F
R

EC
O

M
M

EN
D

ED
 S

C
P

9.
 A

LT
ER

N
A

TI
V

ES
/I

M
PA

C
T

IF
 N

O
T

A
PP

R
O

V
ED

10
. B

A
SE

LI
N

E
A

FF
EC

TE
D

11
. D

O
C

U
M

EN
TA

TI
O

N
/S

PE
C

IF
IC

A
TI

O
N

S
A

FF
EC

TE
D

12
. O

TH
ER

 S
Y

ST
EM

S,
 C

O
N

FI
G

U
R

A
TI

O
N

 I
TE

M
S,

 C
O

N
TR

A
C

TO
R

S
A

FF
EC

TE
D

, E
TC

.

13
. E

FF
EC

T
O

F
SC

P
O

N
 S

Y
ST

EM
 E

M
PL

O
Y

M
EN

T,
 I

LS
, T

R
A

IN
IN

G
, E

FF
EC

TI
V

EN
ES

S,
 E

TC
.

14
. N

ET
 E

FF
EC

T
O

N
 S

Y
ST

EM
 R

ES
O

U
R

C
ES

 (
E.

G
.,

PR
O

C
ES

SI
N

G
 T

IM
E,

 M
EM

O
RY

, D
IS

K
 S

PA
C

E)

Appendix T � 525
15

. D
EV

EL
O

PM
EN

TA
L

R
EQ

U
IR

EM
EN

TS

16
. S

C
P

EF
FE

C
TI

V
IT

Y
 P

O
IN

T
17

. D
A

TE
 A

PP
R

O
V

A
L

N
EE

D
ED

 B
Y

18
. T

H
IS

 S
C

P
M

U
ST

 B
E

A
C

C
O

M
PL

IS
H

ED
 B

EF
O

R
E/

W
IT

H
/A

FT
ER

 T
H

E
FO

LL
O

W
IN

G
 E

C
P/

SC
P/

SE
P/

ST
R

(S
)

19
. S

U
PE

R
SE

D
ES

 O
R

 R
EP

LA
C

ES
 E

C
P/

SC
P/

SE
P/

ST
R

20
. C

O
ST

, S
C

H
ED

U
LE

 O
R

 I
N

TE
R

FA
C

E
IM

PA
C

T

□

 N
O

 □

 Y
ES

 (
Se

e
at

ta
ch

ed
 D

D
 F

o
rm

 1
69

2
EC

P)

 □

 N
O

21
. C

O
N

TR
A

C
TO

R
 S

C
C

B
 A

C
TI

O
N

□
 A

p
p

ro
ve

 □
 D

is
ap

p
ro

ve

 □
 E

C
P

A
U

TH
O

R
IZ

ED
 S

IG
N

A
TU

R
E

TI
TL

E
D

A
TE

22
. G

O
V

ER
N

M
EN

T
SC

C
B

 A
C

TI
O

N
□

 N
o

 A
ct

io
n

 R
eq

u
ir

ed

□

 A
p

p
ro

ve

 □
 D

is
ap

p
ro

ve

 □

 W
it

h
d

ra
w

n

R
ET

U
R

N
ED

 T
O

 C
O

N
TR

A
C

TO
R

 F
O

R

G
O

V
ER

N
M

EN
T

A
G

EN
C

Y
/T

IT
LE

SI
G

N
A

TU
R

E
D

A
TE

526 � Software Configuration Management
So

ft
w

ar
e

Tr
o

ub
le

/C
ha

ng
e

R
eq

ue
st

 (
ST

R
/S

C
R

)

1.
 N

A
M

E
2.

 D
A

TE

3.
 O

R
G

A
N

IZ
A

TI
O

N

4.
 P

H
O

N
E

C
O

M
D

A

5.
 R

EP
O

R
T

TY
PE

□
 S

O
FT

W
A

R
E

TR
O

U
B

LE

R
EP

O
R

T

□
 S

O
FT

W
A

R
E

C
H

A
N

G
E

R
EQ

U
ES

T

6.
 S

Y
ST

EM
 A

FF
EC

TE
D

7.
 C

O
M

PU
TE

R
 P

R
O

G
R

A
M

 I
D

s

8.
 B

R
IE

F
TI

TL
E

Appendix T � 527
9.

 D
ET

A
IL

ED
 N

A
R

R
A

TI
V

E
D

ES
C

R
IP

TI
O

N
 O

F
SO

FT
W

A
R

E
TR

O
U

B
LE

 E
X

IS
TI

N
G

 (A
N

D
 S

TA
TU

S
O

F
D

IS
PL

AY
S

A
N

D

C
O

N
TR

O
LS

)
O

R
 E

N
H

A
N

C
EM

EN
T

D
ES

IR
ED

. I
N

C
LU

D
E

A
 S

TA
TE

M
EN

T
R

EG
A

R
D

IN
G

 I
M

PA
C

T.

528 � Software Configuration Management

D
O

C
U

M
EN

T
C

H
A

N
G

E
R

EQ
U

ES
T

Su
b

m
it

ti
n

g
O

rg
an

iz
at

io
n

:
Tr

ac
ki

n
g

N
o

.:

C
o

n
ta

ct
 P

er
so

n
:

Te
le

p
h

o
n

e:

M
ai

lin
g

A
d

d
re

ss
:

D
at

e:
Sh

o
rt

 T
it

le
:

C
h

an
ge

 L
o

ca
ti

o
n

 T
ag

:

(S
ec

tio
n

N
o.

,
Fi

gu
re

 N
o.

, T
ab

le
 N

o.
,

Pa
ge

 N
o.

,
et

c.
)

Appendix T � 529
Pr

o
p

o
se

d
 C

h
an

ge
:

R
ea

so
n

 f
o

r
C

h
an

ge
:

530 � Software Configuration Management

APPENDIX T3: SOFTWARE CONFIGURATION MANAGEMENT
PHASING AND MILESTONES

This section describes the sequence of events and milestones for imple-
mentation of SCM in phase with major software and development mile-
stones and events. SCM milestones are achieved upon completion of
individual SCM activities.

<The deliverable products given below can be modified or
deleted as stated in the governing SDP or software tailoring
plan.>

T3.1 System Requirements Analysis Phase

This is the first phase of system-level planning. During the system require-
ments analysis phase, the top-level (system) requirements are established,
analyzed, and approved. The requirements describe the major functions
that the system must fulfill.

The outputs of this phase consist of one preliminary product (Prelim-
inary System Specification) and a program review (System Requirements
Review [SRR]). No baselines are established at this point. The SCRB and
SCCB are established.

SCM activities during this phase are listed below.

1. Establish project SCM.
2. Train staff.
3. Create draft SCMP or update SCMP for existing system.
4. Attend SRR as required.

T3.2 System Design Phase

This is the second phase of the system-level planning. During the system
design phase, a top-level (system) design is formulated and documented.
The outputs of this phase consist of four final deliverable products (System
Specification, System/Segment Design Document, Software Development
Plan, and Software Configuration Management Plan); two preliminary deliv-
erable products (Preliminary Software Requirements Specification and Pre-
liminary Interface Requirements Specification); one program review (System
Design Review); and the establishment of the first of three baselines (Func-
tional Baseline).

<Hereinafter, the acronym FBL may be used in place of Func-
tional Baseline.>

Software Configuration Management Plan (SCMP) � 531

The SCCB meets to establish the Functional Baseline. The SCRB meets
to exercise software configuration control upon establishment of the
Functional Baseline.

SCM activities during this phase are listed below.

1. Implement approved SCMP:
� Identify the tasks stated in SCMP.
� Identify processes from the tasks in the SCMP.
� Create or update DTPs from the processes.

2. Establish complete number scheme for project-defined version iden-
tification (ID).

3. Exercise configuration control of the functional configuration doc-
umentation.

4. Attend System Design Review.
5. Establish and maintain CSA system.
6. Establish and maintain CM library(ies).
7. Support SCCB throughout the software life cycle.

T3.3 Software Requirements Analysis Phase

During the software requirements analysis phase, the software perfor-
mance and interface requirements that must be met are formulated and
analyzed. This phase is similar to the system requirements analysis phase
except that it focuses on the software requirements derived from the
system requirements.

The outputs from this phase consist of two final deliverable products
(Software Requirements Specification and Interface Requirements Specifi-
cation), one program review (Software Specification Review), and the
establishment of the second of three baselines (Allocated Baseline).

<Hereinafter, the acronym ABL may be used in place of Allo-
cated Baseline.>

SCM activities during this phase are listed below.

1. Attend Software Specification Review (SSR).
2. Exercise control of allocated configuration documentation.

T3.4 Preliminary Design Phase

During the preliminary design phase, the system-level architecture, inter-
faces, and design are developed. A Preliminary Design Review (PDR) is

532 � Software Configuration Management

held, and approval is obtained before proceeding with the detailed (low-
level) design phase.

The outputs from this phase consist of one final deliverable product
(Software Test Plan [Test Ids]), two preliminary deliverable products (Pre-
liminary Software Design Documents and Preliminary Interface Design
Document), one program review (Preliminary Design Review), and the
establishment of the Developmental Configuration.

SCM activities during this phase are listed below.

1. Establish and maintain SDL.
2. Establish corrective action process for Developmental Configuration.
3. Attend PDR.
4. Exercise configuration control of Developmental Configuration

Products.

T3.5 Detailed Design Phase

During the detailed design phase, the design team develops the detailed
design, and a Critical Design Review (CDR) is held for review and approval
of the total design. The design is completed and approved at the CDR.
By the time the CDR occurs, the software constituting the system has been
decomposed into a hierarchical structure of CSCIs, Computer Software
Components (CSCs), and CSUs.

The preceding phases ensure that design requirements have been
identified, validated, and allocated to the approved design and to their
respective baselines.

The outputs from this phase consist of three final deliverable products
(detailed Software Design Documents, Software Test Descriptions [Cases[,
and Interface Design Document); one program review (Critical Design
Review); and the continuance of the Developmental Configuration.

SCM activities during this phase are listed below.

1. Attend CDR.
2. Exercise configuration control of Developmental Configuration

Products.

T3.6 Coding and CSU Testing Phase

During the coding and CSU testing phase, coding and unit (CSU) testing
is accomplished. All design data, programmer notes, and CSU test results
are kept in the Software Development Files (SDFs). This is for programmer
and peer review only. SQA can perform audits of the SDFs.

Software Configuration Management Plan (SCMP) � 533

The outputs from this phase result in completed CSU development
and testing evidenced by source code and source code listings. The
Developmental Configuration continues.

SCM activities during this phase are listed below.

1. Exercise configuration control of Developmental Configuration
Products.

T3.7 CSC Integration and Testing Phase

During the CSC integration and testing phase, coding and testing of CSCs
is accomplished. CSUs are integrated into their next-higher structures and
tested to ensure proper processing. Test drivers and stubs are written to
perform these tests. All design data, programming notes, and test results
are added to the SDFs. This is for programmer and peer review only.
SQA can perform audits of the SDFs.

The outputs from this phase consist of one final deliverable product
(Software Test Description (Procedures)), one program review (Test Readi-
ness Review [TRR]), plus updated source code, source code listings, and
command files. Successful completion of these activities indicates the
conclusion of the Developmental Configuration.

SCM activities during this phase are listed below.

1. Support TRR by providing the items listed below:
� CSCI and associated technical data
� Status of reported software and documentation anomalies

2. Exercise configuration control of Developmental Configuration
products.

T3.8 CSCI Testing Phase

During the CSCI testing phase, testing of CSCIs is accomplished to dem-
onstrate that the software system is reliable and maintainable. All lower-
level (CSU and CSC) coding and testing have been completed. This final
software testing ensures that each CSCI functions as designed.

<If the System Test Group has been established, the following
statement applies.>

The V&V process is a software quality check to ensure that the design
is complete and that the software fulfills all approved requirements and
may be performed by the Systems Test Group.

534 � Software Configuration Management

Formal Qualification Testing (FQT) is performed in this phase. The
CSCI testing is basically the FQT, whereby the customer accepts the tested
integrity of the developed system. The completed Software Test Plan
includes tests of user identification and access to the system, as well as
test plans for any identified safety issues.

The outputs from this phase consist of the following final deliverable
products (Software Test Reports, Operation and Support Documents,
Version Description Documents, Software Product Specifications, and
updated source code and listings); two audits (PCA and FCA); and estab-
lishment of the last of the three baselines (Product Baseline).

<Hereinafter, the acronym PBL may be used in place of Product
Baseline>

When the FCA/PCA is approved, the customer accepts the Product Base-
line.

SCM activities during this phase are listed below.

1. Support FCA and PCA. These audits may be deferred until after
system integration and testing.

2. Release product configuration documentation.
3. Exercise configuration control of product configuration documen-

tation.

T3.9 System Integration and Testing phase

During the system integration and testing phase, the software is integrated
into the operational hardware and tested. DOD-STD-2167A development
activities end with CSCI testing and the establishment of the software
Product Baseline. After software Product Baseline, the software must be
integrated into the operational hardware and final testing (Operational
Testing and Evaluation [OT&E]) accomplished by the customer before
placing the system into operation.

REFERENCES

This document is an adaptation of a document developed at the request of Naval Air
Systems Command (NAVAIR) TEAM. The original document can be found at
http://sepo.nosc.mil/sepo/GenSCMP/GenSCMP.html.

SPAWAR Systems Center San Diego, Systems Engineering Process Office,
http://sepo.spawar.navy.mil/sepo/index2.htm.

535 � Software Configuration Management
A

PP
EN

D
IX

 T
4:

 C
O

N
FI

G
U

RA
TI

O
N

 M
A

N
A

G
EM

EN
T

PH
A

SI
N

G
 A

N
D

 M
IL

ES
TO

N
ES

D
ev

el
op

m
en

t
Ph

as
e

SC
M

 A
ct

iv
ity

SC
M

 C
on

tr
ol

M
ile

st
on

es
Pr

od
uc

t

Sy
st

em

R
eq

u
ir

em
en

ts

A
n

al
ys

is

Es
ta

b
lis

h
 p

ro
je

ct
 S

C
M

Tr
ai

n
 s

ta
ff

C
re

at
e

d
ra

ft
 o

r
u

p
d

at
e

SC
M

P
fo

r
ex

is
ti

n
g

sy
st

em
A

tt
en

d
 S

R
R

 a
s

re
q

u
ir

ed

SR
R

SC
M

 e
st

ab
lis

h
ed

Pr
o

gr
am

 S
C

R
B

es

ta
b

lis
h

ed
Pr

o
je

ct
 S

C
C

B

es
ta

b
lis

h
ed

Pr
el

im
in

ar
y

Sy
st

em

Sp
ec

ifi
ca

ti
o

n
Pr

el
im

in
ar

y
SC

M
P

Sy
st

em
 D

es
ig

n
Im

p
le

m
en

t
ap

p
ro

ve
d

 S
C

M
P

Id
en

ti
fy

 t
as

ks
 s

ta
te

d
 i

n
 S

C
M

P
Id

en
ti

fy
 p

ro
ce

ss
es

 f
ro

m
 t

as
ks

C
re

at
e/

u
p

d
at

e
D

TP
s

Es
ta

b
lis

h
 c

o
m

p
le

te
 n

u
m

b
er

 s
ch

em
e

fo
r

p
ro

je
ct

-d
efi

n
ed

 v
er

si
o

n
 I

D
A

tt
en

d
 S

D
R

Es
ta

b
lis

h
 a

n
d

 m
ai

n
ta

in
 C

SA
 s

ys
te

m
Es

ta
b

lis
h

 a
n

d
 m

ai
n

ta
in

 C
M

 l
ib

ra
ry

(i
es

)
Su

p
p

o
rt

 S
C

C
B

 t
h

ro
u

gh
o

u
t

so
ft

w
ar

e
lif

e
cy

cl
e

Sy
st

em

Sp
ec

ifi
ca

ti
o

n
SS

D
D

SD
P

SC
M

P

SD
R

Fu
n

ct
io

n
al

 B
as

el
in

e
Sy

st
em

Sp

ec
ifi

ca
ti

o
n

SS
D

D
SD

P
SC

M
P

Pr
el

im
in

ar
y

SR
S

Pr
el

im
in

ar
y

IR
S

So
ft

w
ar

e
R

eq
u

ir
em

en
ts

A

n
al

ys
is

A
tt

en
d

 S
SR

SR
S

IR
S

SS
R

A
llo

ca
te

d
 B

as
el

in
e

SR
S

IR
S

Pr
el

im
in

ar
y

D
es

ig
n

Es
ta

b
lis

h
 a

n
d

 m
ai

n
ta

in
 S

o
ft

w
ar

e
D

ev
el

o
p

m
en

t
Li

b
ra

ry
Es

ta
b

lis
h

 c
o

rr
ec

ti
ve

 a
ct

io
n

 p
ro

ce
ss

A
tt

en
d

 P
D

R
Ex

er
ci

se
 c

o
n

fi
gu

ra
ti

o
n

 c
o

n
tr

o
l

o
f

D
ev

el
o

p
m

en
ta

l
C

o
n

fi
gu

ra
ti

o
n

 p
ro

d
u

ct
s

ST
P

(T
es

t
ID

s)
PD

R
D

ev
el

o
p

m
en

ta
l

C
o

n
fi

gu
ra

ti
o

n

Pr
el

im
in

ar
y

SD
D

Pr
el

im
in

ar
y

ID
D

ST
P

536 � Software Configuration Management
D

et
ai

le
d

 D
es

ig
n

A
tt

en
d

 C
D

R
Ex

er
ci

se
 c

o
n

fi
gu

ra
ti

o
n

 c
o

n
tr

o
l

o
f

D
ev

el
o

p
m

en
ta

l
C

o
n

fi
gu

ra
ti

o
n

 P
ro

d
u

ct
s

SD
D

ID
D

ST
D

 (
Te

st
 C

as
es

)

C
D

R
D

et
ai

le
d

 S
D

D
ID

D
ST

D
 (T

es
t C

as
es

)
C

o
d

in
g

an
d

 C
SU

Te

st
in

g
Ex

er
ci

se
 c

o
n

fi
gu

ra
ti

o
n

 c
o

n
tr

o
l

o
f

D
ev

el
o

p
m

en
ta

l
C

o
n

fi
gu

ra
ti

o
n

 P
ro

d
u

ct
s

Te
st

ed
 S

o
u

rc
e

C
o

d
e

(C
SU

s)
So

u
rc

e
C

o
d

e
So

u
rc

e
C

o
d

e
Li

st
in

gs

So
u

rc
e

C
o

d
e

So
u

rc
e

C
o

d
e

Li
st

in
gs

C
SC

 I
n

te
gr

at
io

n

an
d

 T
es

ti
n

g
Ex

er
ci

se
 c

o
n

fi
gu

ra
ti

o
n

 c
o

n
tr

o
l

o
f

D
ev

el
o

p
m

en
ta

l
C

o
n

fi
gu

ra
ti

o
n

 P
ro

d
u

ct
s

Su
p

p
o

rt
 T

R
R

 b
y

p
ro

vi
d

in
g

C
SC

I
an

d

as
so

ci
at

ed
 t

ec
h

n
ic

al
 d

at
a

an
d

 s
ta

tu
s

o
f

re
p

o
rt

ed
 s

o
ft

w
ar

e
an

d
 d

o
cu

m
en

ta
ti

o
n

an

o
m

al
ie

s
Ex

er
ci

se
 c

o
n

fi
gu

ra
ti

o
n

 c
o

n
tr

o
l

o
f

d
ev

el
o

p
m

en
ta

l
co

n
fi

gu
ra

ti
o

n
 p

ro
d

u
ct

s

ST
D

 (
Te

st

Pr
o

ce
d

u
re

s)
U

p
d

at
ed

 S
o

u
rc

e
C

o
d

e
U

p
d

at
ed

 S
o

u
rc

e
C

o
d

e
Li

st
in

gs
C

o
m

m
an

d
 F

ile
s

TR
R

ST
D

(P

ro
ce

d
u

re
s)

U
p

d
at

ed
 S

o
u

rc
e

C
o

d
e

So
u

rc
e

C
o

d
e

Li
st

in
gs

C
o

m
m

an
d

 F
ile

s

C
SC

I
Te

st
in

g
Ex

er
ci

se
 c

o
n

fi
gu

ra
ti

o
n

 c
o

n
tr

o
l o

f
p

ro
d

u
ct

co

n
fi

gu
ra

ti
o

n
 d

o
cu

m
en

ta
ti

o
n

Su
p

p
o

rt
 F

C
A

 a
n

d
 P

C
A

R
el

ea
se

 p
ro

d
u

ct
 c

o
n

fi
gu

ra
ti

o
n

d

o
cu

m
en

ta
ti

o
n

U
p

d
at

ed
 S

o
u

rc
e

C
o

d
e

U
p

d
at

ed
 S

o
u

rc
e

C
o

d
e

Li
st

in
gs

C
o

m
m

an
d

 F
ile

s
ST

R
O

p
er

at
io

n
 a

n
d

Su

p
p

o
rt

D

o
cu

m
en

ts
V

D
D

SP
S

FC
A

PC
A

Pr
o

d
u

ct
 B

as
el

in
e

U
p

d
at

ed
 S

o
u

rc
e

C
o

d
e

C
o

m
m

an
d

 F
ile

s
So

ft
w

ar
e

Te
st

R

ep
o

rt
O

p
er

at
io

n
 a

n
d

Su

p
p

o
rt

D

o
cu

m
en

ts
V

D
D

SP
S

537

Appendix U

ACRONYMS AND GLOSSARY

ACRONYMS

AA — Application Activity
ABL — Allocated Baseline
ACD — Allocated Configuration Documentation
ACO — Administrative Contracting Officer
AECMA — Association Europeenne des Construceurs de Materiel Aero-

space
AFB — [U.S.] Air Force Base
AFM — [U.S.] Air Force Manual
AFR — [U.S.] Air Force Regulation
AGE — Aerospace Ground Equipment
AIA — Aeronautical Industry Association
AIS — Automated Information System
ALT — Alteration Instruction
AMSDL — Acquisition Management Systems and Data Requirements

Control List
ANSI — American National Standards Institute
AR — [U.S.] Army Regulation
ARDEC — [U.S. Army] Armament Research, Development and Engi-

neering Center
ASCII — American Standard Code for Information Interchange
ASTM — American Society for the Testing of Materials
BOM — Bill of Materials
CAGE — Commercial and Government Entity
CALS — Continuous Acquisition and Life-Cycle Support
CCB — Configuration Control Board, Configuration Change Board
CDCA — Current Document Change Authority
CDR — Critical Design Review

538 � Software Configuration Management

CDRL — Contract Data Requirements List
CFR — Code of Federal Regulations
CI — Configuration Item
CITIS — Contractor Integrated Technical Information Service
CLIN — Contract Line Item Number
CM — Configuration Management
CMP — Configuration Management Plan
CNWDI — Critical Nuclear Weapons Design Information
CPIN — Computer Program Identification Number
CRYPTO — Cryptographic information
CSA — Configuration Status Accounting
CSCI — Computer Software Configuration Item
DCMC — [U.S.] Defense Contract Management Command
DDRS — [U.S.] Department of Defense Data Repository System
DED — Data Element Definition
DFARS — [U.S.] Defense Department Supplement to the Federal Acqui-

sition Regulation
DID — Data Item Description
DIN — Deutsches Institute fur Normung
DLA — [U.S.] Defense Logistics Agency
DoD — [U.S.] Department of Defense
DODISS — [U.S.] Department of Defense Index of Specifications and

Standards
DOE — [U.S.] Department of Energy
DOT — [U.S.] Department of Transportation
DTIC — [U.S.] Defense Technical Information Center
ECN — Engineering Change Notice
ECO — Engineering Change Order
ECP — Engineering Change Proposal
ECS — Embedded Computer Software
EDM — Enterprise Data Model
EEPROM — Electronically Erasable Programmable Read-Only Memory
EIA — Electronic Industries Association
ELIN — Exhibit Line Item Number
E-mail — Electronic mail
FBL — Functional Baseline
FCA — Functional Configuration Audit
FCD — Functional Configuration Documentation
FFT — First Flight Test
FSC — [U.S.] Federal Supply Class
FSCM — [U.S.] Federal Supply Code for Manufacturers
GFD — Government-Furnished Documents
GFE — Government-Furnished Equipment

Acronyms and Glossary � 539

GFP — Government-Furnished Property
GLAA — Government Lead Application Activity
GPLR — Government Purpose License Rights
GPO — Government Printing Office
GSN — Government Serial Number
HEI — High Explosive Incendiary
HTML — Hypertext Mark-up Language
HWCI — Hardware Configuration Item
ICD — Interface Control Drawing, Interface Control Documentation
ICWG — Interface Control Working Group
IEEE — Institute of Electrical and Electronics Engineering
IFF — Identify Friend or Foe
IGES — Initial Graphics Exchange Specification
IPT — Integrated Product Team
IRPOD — Individual Repair Part Ordering Data
ISO — International Standardization Organization
MACHALT — Machinery Alteration
MACHALTINST — Machinery Alteration Instruction
MICOM — [U.S. Army] Missile Command
MIL-STD — Military Standard
MIP — Modification Improvement Program
MRB — Material Review Board
MS — Military Standard
MSN — Manufacturer’s Serial Number
MWO — Modification Work Order
NAS — [U.S.] National Aerospace Standard
NASA — [U.S.] National Aeronautics & Space Administration
NATO — North Atlantic Treaty Organization
NAVAIR — [U.S.] Naval Air Systems Command
NAVMATINST — [U.S.] Naval Materiel Systems Command Instruction
NAVSEA — [U.S.] Naval Sea Systems Command
NIIN — [U.S.] National Item Identification Number
NIST — [U.S.] National Institute of Standards and Technology
NOR — Notice of Revision
NSA — [U.S.] National Security Agency
NSCM — NATO Supply Code for Manufacturers
NSN — National Stock Number
NTIS — National Technical Information Service
NUCALTINST — Nuclear Alteration Instruction
NWS — [U.S.] Naval Weapons Station
ORDALTINST — Ordnance Alteration Instruction
OSD — [U.S.] Office of the Secretary of Defense
OSHA — [U.S.] Occupational Safety & Health Agency

540 � Software Configuration Management

PAN — Procuring Activity Number
PBL — Product Baseline
PCA — Physical Configuration Audit
PCD — Product Configuration Documentation
PCO — Procurement Contracting Officer
PCTSS — Provisioning & Cataloging Technical Support System
PDM — Product Data Management [System]
PDF — Page Description File
PDR — Preliminary Design Review
PHST — Packaging, Handling, Storage, and Transportation
PIN — Part or Identification Number
POC — Point of Contact
PROM — Programmable Read-Only Memory
RAC — Rapid Action Change [order]
RFD — Request for Deviation
SAE — Society of Automotive Engineers
SBIR — Small Business Innovative Research
SCN — Specification Change Notice
SDR — System Design Review
SFR — System Functional Review
SGML — Standard Generalized Markup Language
SHIPALT — Ship Alteration
SHIPALTINST — Ship Alteration Instruction
SIE — Special Inspection Equipment
SOW — Statement of Work
SRR — System Requirements Review
SSAN — Social Security Account Number
SSR — Software Specification Review
STANAG — Standard NATO Agreement
STEP — Standard for the Exchange of Product model data
TA — Tasking Activity
TCTO — Time-Compliance Technical Order
TD — Technical Directive
TDP — Technical Data Package
TM — Technical Manual
TOPS — Technical Order Page Supplement
TPS — Test Program Set
U.S. — United States [of America]
USAF — United States Air Force
VDD — [Software] Version Description Document
VECP — Value Engineering Change Proposal
VHSIC — Very High Speed Integrated Circuit
WINTEL — Warning: Intelligence methods and sources disclosed

Acronyms and Glossary � 541

DEFINITIONS

Definitions for configuration management terms used in this standard are
consistent with ANSI/EIA 649.

Allocated Baseline (ABL) — The approved allocated configuration
documentation.

Allocated Confi guration Documentation (ACD) — The documen-
tation describing a CI’s functional, performance, interoperability, and
interface requirements that are allocated from those of a system or
higher-level configuration item; interface requirements with interfac-
ing configuration items; and the verifications required to confirm
the achievement of those specified requirements.

Application Activity (AA) — An activity that has selected an item or
a document for use on programs under its control. However, it is
not the current document change authority for the document(s).

Appr oval — The agreement that an item is complete and suitable for
its intended use.

Appr oved Document (or Data) — Document that has been approved
by an appropriate authority and is the official (identified) version
of the document until replaced by another approved version.

Ar chived Document (or Data) — Released or approved document
that is to be retained for historical purposes.

Assembly — A number of basic parts or subassemblies, or any
combination thereof, joined together to perform a specific function.
Typical examples are electric generator, audio-frequency amplifier,
and power supply.

Computer database — See Database.
Computer softwar e — See Software.
Computer Softwar e Confi guration Item (CSCI) — A configuration

item that is computer software.
Computer softwar e documentation — Technical data or informa-

tion, including computer listings, regardless of media, that document
the requirements, design, or details of computer software; explain
the capabilities and limitations of the software; or provide operating
instructions for using or supporting computer software.

Confi guration — The performance, functional, and physical attributes
of an existing or planned product, or a combination of products.

Confi guration audit — See Functional Configuration Audit (FCA), and
Physical Configuration Audit (PCA).

Confi guration baseline (baseline) — (1) An agreed-to description
of the attributes of a product, at a point in time, which serves as a
basis for defining change. (2) An approved and released document,
or a set of documents, each of a specific revision, the purpose of
which is to provide a defined basis for managing change. (3) The

542 � Software Configuration Management

currently approved and released configuration documentation. (4)
A released set of files comprising a software version and associated
configuration documentation. See Allocated Baseline (ABL), Func-
tional Baseline (FBL), and Product Baseline (PBL).

Confi guration contr ol — (1) A systematic process that ensures that
changes to released configuration documentation are properly iden-
tified, documented, evaluated for impact, approved by an appropri-
ate level of authority, incorporated, and verified. (2) The configu-
ration management activity concerning: the systematic proposal,
justification, evaluation, coordination, and disposition of proposed
changes; and the implementation of all approved and released
changes into (a) the applicable configurations of a product, (b)
associated product information, and (c) supporting and interfacing
products and their associated product information.

Confi guration Contr ol Boar d (CCB) — A board composed of tech-
nical and administrative representatives who recommend approval
or disapproval of proposed engineering changes to, and proposed
deviations from, a CI’s current approved configuration documenta-
tion.

Confi guration Contr ol Boar d Dir ective (CCBD) — The document
that records the Engineering Change Proposal (ECP) approval (or
disapproval) decision of the CCB and that provides the direction to
the contracting activity either to incorporate the ECP into the contract
for performing activity implementation or to communicate the dis-
approval to the performing activity.

Confi guration documentation — Technical documentation, the pri-
mary purpose of which is to identify and define a product’s perfor-
mance, functional, and physical attributes (e.g., specifications, draw-
ings). (See also Allocated Configuration Documentation [ACD],
Functional Configuration Documentation [FCD], and Product Con-
figuration Documentation [PCD].)

Confi guration identifi cation — (1) The systematic process of select-
ing the product attributes, organizing associated information about
the attributes, and stating the attributes. (2) Unique identifiers for a
product and its configuration documents. (3) The configuration
management activity that encompasses the selection of CIs; the
determination of the types of configuration documentation required
for each CI; the issuance of numbers and other identifiers affixed
to the CIs and to the technical documentation that defines the CI’s
configuration; the release of CIs and their associated configuration
documentation; and the establishment of configuration baselines for
CIs.

Acronyms and Glossary � 543

Confi guration Item (CI) — A Configuration Item is any hardware,
software, or combination of both that satisfies an end use function
and is designated for separate configuration management. Configu-
ration items are typically referred to by an alphanumeric identifier,
which also serves as the unchanging base for the assignment of
serial numbers to uniquely identify individual units of the CI. (See
also Product-Tracking Base-Identifier.)

Confi guration Management (CM) — A management process for
establishing and maintaining consistency of a product’s performance,
functional, and physical attributes with its requirements, design and
operational information throughout its life.

Confi guration Management Plan (CMP) — The document defining
how configuration management will be implemented (including
policies and procedures) for a particular acquisition or program.

Confi guration Status Accounting (CSA) — The configuration man-
agement activity concerning capture and storage of, and access to,
configuration information needed to manage products and product
information effectively.

Contract — As used herein, denotes the document (for example,
contract, memorandum of agreement/understanding, purchase
order) used to implement an agreement between a tasking activity
(e.g., buyer) and a performing activity (e.g., seller).

Contractual acceptance of data — The action taken by the tasking
activity signifying that an item submitted or delivered by the per-
forming activity complies with the requirements of the contract.

Curr ent Document Change Authority (CDCA) — The authority
currently responsible for the content of a drawing, specification, or
other document and which is the sole authority for approval of
changes to that document. (See also Application Activity [AA],
Approval, Document Custodian Activity.)

Customer Repair (CR) Item — Any part or assembly that, upon
failure or malfunction, is intended to be repaired or reworked.

Data — Recorded information of any nature (including administrative,
managerial, financial, and technical) regardless of medium or char-
acteristics. (See also Data item, Document.)

Database — A collection of related data stored in one or more
computerized files in a manner that can be accessed by users or
computer programs via a database management system.

Data item — A document or collection of documents that must be
submitted by the performing activity to the procuring or tasking
activity to fulfill a contract or tasking directive requirement for the
delivery of information.

544 � Software Configuration Management

Defect — Any nonconformance of a characteristic with specified
requirements.

Defi ciencies — Deficiencies consist of two types:
a. Conditions or characteristics in any item which are not in accor-

dance with the item’s current approved configuration documen-
tation; or

b. Inadequate (or erroneous) configuration documentation which
has resulted, or may result, in units of the item that do not meet
the requirements for the item.

Design change — See Engineering change.
Deviation — A specific written authorization to depart from a partic-

ular requirement(s) of an item’s current approved configuration
documentation for a specific number of units or a specified period
of time, and to accept an item that is found to depart from specified
requirements, but nevertheless is considered suitable for use “as is”
or after repair by an approved method. (A deviation differs from an
engineering change in that an approved engineering change requires
corresponding revision of the item’s current approved configuration
documentation, whereas a deviation does not.)

Distribution Statement — A statement used in marking a technical
document to denote the extent of its availability for distribution,
release, and disclosure without need for additional approvals and
authorizations from the controlling DoD office.

Document — A self-contained body of information or data that can
be packaged for delivery on a single medium. Some examples of
documents are: drawings, reports, standards, databases, application
software, engineering designs, virtual part-models, etc.

Document custodian activity — The custodian of a document is the
activity that is charged with the physical and electronic safekeeping
and maintenance of the “original” document.

Document r epr esentation — (1) A set of digital files that, when
viewed or printed together, collectively represent the entire docu-
ment. (For example, a set of raster files or a set of IGES files.) A
document may have more than one document representation. (2)
A document in a nondigital form. (For example, paper, punched
card set, or stable-base drawing.)

Engineering change — (1) A change to the current approved con-
figuration documentation of a configuration item. (2) Any alteration
to a product or its released configuration documentation. Effecting
an engineering change may involve modification of the product,
product information, and associated interfacing products.

Acronyms and Glossary � 545

Engineering Change Dir ective (ECD) — An internal performing
activity document that indicates the approval of and direction to
incorporate or implement engineering change.

Engineering Change Pr oposal (ECP) — The documentation by
which a proposed engineering change is described, justified, and
submitted to (a) the current document change authority for approval
or disapproval of the design change in the documentation and (b)
to the procuring activity for approval or disapproval of implementing
the design change in units to be delivered or retrofit into assets
already delivered.

Exchangeability of items — See Interchangeable item, Replacement
item, and Substitute item.

Firmwar e — The combination of a hardware device and computer
instructions or computer data that reside as read-only software on
the hardware device.

Fit — The ability of an item to physically interface or interconnect
with or become an integral part of another item.

For m — The shape, size, dimensions, mass, weight, and other physical
parameters that uniquely characterize an item. For software, form
denotes the language and media.

Function — The action or actions that an item is designed to perform.
Functional Baseline (FBL) — The approved functional configuration

documentation.
Functional characteristics — Quantitative performance parameters

and design constraints, including operational and logistic parameters
and their respective tolerances. Functional characteristics include all
performance parameters, such as range, speed, lethality, reliability,
maintainability, and safety.

Functional Confi guration Audit (FCA) — The formal examination
of functional characteristics of a configuration item, or system, to
verify that the item has achieved the requirements specified in its
functional and/or allocated configuration documentation.

Functional Confi guration Documentation (FCD) — The documen-
tation describing the system’s functional, performance, interopera-
bility, and interface requirements and the verifications required to
demonstrate the achievement of those specified requirements.

Hardwar e — Products made of material and their components
(mechanical, electrical, electronic, hydraulic, pneumatic). Computer
software and technical documentation are excluded.

Hardwar e Confi guration Item (HWCI) — See Configuration Item
(CI).

Inter changeable item — A product that possesses such functional
and physical attributes as to be equivalent in performance to another

546 � Software Configuration Management

product of similar or identical purposes, and is capable of being
exchanged for the other product without selection for fit or perfor-
mance, and without alteration of the products themselves or of
adjoining products, except for adjustment.

Inter face — The performance, functional, and physical characteristics
required to exist at a common boundary.

Inter face contr ol — The process of identifying, documenting, and
controlling all performance, functional and physical attributes rele-
vant to the interfacing of two or more products provided by one
or more organizations.

Inter face Contr ol Documentation (ICD) — Interface control draw-
ing or other documentation that depicts physical, functional, perfor-
mance, and test interfaces of related or co-functioning products.

Inter face Contr ol W orking Gr oup (ICWG) — For programs that
encompass a system, configuration item, or a computer software
configuration item design cycle, an ICWG is established to control
interface activity among the tasking activity, performing activities,
or other agencies, including resolution of interface problems and
documentation of interface agreements.

Inter operability — The ability to exchange information and operate
effectively together.

Item — A nonspecific term used to denote any product, including
systems, materiel, parts, subassemblies, sets, accessories, etc.

Life-cycle cost — The total cost to the tasking activity of acquisition
and ownership of an item over its life cycle. As applicable, it includes
the cost of development, acquisition, support, and disposal.

Lot number — An identifying number consisting of alpha and numeric
characters which, in conjunction with a manufacturer’s identifying
code and a Product-Tracking Base-Identifier, uniquely identifies a
group of units of the same item which are manufactured or assem-
bled by one producer under uniform conditions and which are
expected to function in a uniform manner.

Manufactur er Repair (MR) Item — Any part or assembly for which
user-maintenance is limited to replacement of consumables and that,
upon failure or malfunction, is returned to the original manufacturer
for repair.

Materiel — A generic term covering systems, equipment, stores, sup-
plies, and spares, including related documentation, manuals, com-
puter hardware, and software.

Modifi cation Dir ective — The documentation that indicates the
approval of, and direction to implement, a modification request.

Modifi cation Request — The documentation by which a proposed
modification of an asset is described, justified, and submitted to the

Acronyms and Glossary � 547

asset owner (who is not the Current Document Change Authority
for the asset design documentation) for approval or disapproval of
implementing the modification in one or more units. A modification
request may result in modification or installation drawings being
created to describe the new configuration, but does not result in a
revision of the existing design documentation for which an Engi-
neering Change Proposal would be required.

Nomenclatur e — (1) The combination of an assigned designation
and an approved item name. In certain cases, the designation root
serves as the basis for assignment of serial and/or lot numbers. (2)
Names assigned to kinds and groups of products. (3) Formal des-
ignations assigned to products by customer or supplier (such as
model number, model type, design differentiation, specific design
series, or configuration).

Nonconfor mance — The failure of a unit or product to meet a
specified requirement.

Nonr ecurring costs — As applied to an ECP, one-time costs that will
be incurred if an engineering change is approved and which are
independent of the quantity of items changed, such as cost of
redesign or development testing.

Nonr epairable Item — Any part or assembly for which user-mainte-
nance is limited to replenishment of consumables and replacement
of the part or assembly upon failure or malfunction.

Notice of Revision (NOR) — A document used to define revisions
to configuration documentation which require revision after Engi-
neering Change Proposal approval. (See also Engineering Change
Proposal [ECP].)

Original — The current design activity’s documents or digital docu-
ment representation and associated source data file(s) of record.

Per for ming Activity — Denotes an activity performing any of the
requirements contained in a contract or tasking directive. A “Per-
forming Activity” can be either a contractor or government activity.

Physical characteristics (attributes) — Quantitative and qualitative
expressions of material features, such as composition, dimensions,
finishes, form, fit, and their respective tolerances.

Physical Confi guration Audit (PCA) — The formal examination of
the “as-built” configuration of a configuration item against its tech-
nical documentation to establish or verify the configuration item’s
product baseline.

Product Baseline (PBL) — The approved product configuration doc-
umentation.

Product Confi guration Documentation (PCD) — A CI’s detail
design documentation, including those verifications necessary for

548 � Software Configuration Management

accepting product deliveries (first article and acceptance inspec-
tions). Based on program production/procurement strategies, the
design information contained in the PCD can be as simple as
identifying a specific part number or as complex as full design
disclosure.

Product-Tracking Base-Identifi er — An unchanging identifier used
as a base for the assignment of serial numbers to uniquely identify
individual units of an item or lot numbers to uniquely identify groups
of units of an item. The product-tracking identifier is used rather
than the Part or Identifying Number (PIN) because the PIN is altered
to reflect a new configuration when the item it identifies is modified.
The same product-tracking base-identifier may be used for several
similar items (usually defined by a common document) and requires
that each such item is assigned serial or lot numbers distinct from
each other such item.

Product T racking Identifi er — A generic term that refers to the
sequentially assigned alphanumeric identifier applied to a product
to differentiate units of the product or groups of the product. This
may be a government serial (or hull) number, manufacturer’s serial
number, lot number, or date code.

Recurring costs — Costs that are incurred on a per-unit basis for
each item changed or for each service or document ordered.

Release — The designation by the originating activity that a document
representation or software version is approved by the appropriate
authority and is subject to configuration change management pro-
cedures.

Released Document (Data) — (1) Document that has been released
after review and internal approvals. (2) Document that has been
provided to others outside the originating group or team for use
(as opposed to for comment).

Repair — A procedure that reduces, but does not completely eliminate,
a nonconformance. Repair is distinguished from rework in that the
characteristic after repair still does not completely conform to the
applicable drawings, specifications, or contract requirements.

Repairable Item — Any part or assembly that, upon failure or mal-
function, is intended to be repaired or reworked.

Replacement item — One that is interchangeable with another item,
but differs physically from the original item in that the installation
of the replacement item requires operations such as drilling, reaming,
cutting, filing, shimming, etc., in addition to the normal application
and methods of attachment.

Retr ofi t — The incorporation of new design parts or software code,
resulting from an approved engineering change, to a product’s

Acronyms and Glossary � 549

current approved product configuration documentation and into
products already delivered to and accepted by customers.

Retr ofi t Instruction — The document that provides specific, step-by-
step instructions about the installation of the replacement parts to
be installed in delivered units to bring their configuration up to that
approved by an ECP. (Sometimes referred to Alteration Instruction,
Modification Work Order, Technical Directive, or Time Compliance
Technical Order.)

Rework — A procedure applied to a product to eliminate a noncon-
formance to the drawings, specifications, or contract requirements
that will completely eliminate the nonconformance and result in a
characteristic that conforms completely.

Serial number — An identifying number consisting of alpha and
numeric characters which is assigned sequentially in the order of
manufacture or final test and which, in conjunction with a manu-
facturer’s identifying CAGE code, uniquely identifies a single item
within a group of similar items identified by a common product-
tracking base-identifier.

Softwar e — Computer programs and computer databases.
Specifi cation — A document that explicitly states essential technical

attributes/requirements for a product and procedures to determine
that the product’s performance meets its requirements/attributes.

Specifi cation Change Notice (SCN) — See Engineering Change Pro-
posal (ECP).

Submitted Document (Data) — Released document that has been
made available to customers.

Substitute item — An item that possesses such functional and physical
characteristics as to be capable of being exchanged for another item
only under specified conditions or in particular applications and
without alteration of the items themselves or of adjoining items.

Support equipment — Equipment and computer software required
to maintain, test, or operate a product or facility in its intended
environment.

Survivability — The capability of a system to avoid or withstand a
hostile environment without suffering an abortive impairment of its
ability to accomplish its designated mission.

System — A self-sufficient unit in its intended operational environment,
which includes all equipment, related facilities, material, software,
services, and personnel required for its operation and support.

Tasking activity — An organization that imposes the requirements
contained in a contract or tasking directive on a performing activity.
(For example, a Government Contracting Activity that awards a
contract to a contractor, a Government Program Management Office

550 � Software Configuration Management

that tasks another Government activity, or a contractor that tasks a
subcontractor.)

Technical data — Technical data is recorded information (regardless
of the form or method of recording) of a scientific or technical
nature (including computer software documentation).

Technical data package — A technical description of an item ade-
quate for supporting an acquisition strategy, production, engineer-
ing, and logistics support. The description defines the required
design configuration and procedures required to ensure adequacy
of item performance. It consists of all applicable technical data such
as drawings and associated lists, specifications, standards, perfor-
mance requirements, quality assurance provisions, and packaging
details.

Technical documentation — See Technical data.
Technical r eviews — A series of system engineering activities by

which the technical progress on a project is assessed relative to its
technical or contractual requirements. The reviews are conducted
at logical transition points in the development effort to identify and
correct problems resulting from the work completed thus far before
the problems can disrupt or delay the technical progress. The
reviews provide a method for the performing activity and tasking
activity to determine that the development of a configuration item
and its documentation have a high probability of meeting contract
requirements.

Training equipment — All types of maintenance and operator training
hardware, devices, audio-visual training aids, and related software
that:
Are used to train maintenance and operator personnel by depicting,

simulating, or portraying the operational or maintenance charac-
teristics of an item or facility.

Are kept consistent in design, construction, and configuration with
such items in order to provide required training capability.

Version — (1) One of several sequentially created configurations of
a data product. (2) A supplementary identifier used to distinguish
a changed body or set of computer-based data (software) from the
previous configuration with the same primary identifier. Version
identifiers are usually associated with data (such as files, databases,
and software) used by, or maintained in, computers.

Waiver — See Deviation.
Working Document (Data) — Document that has not been released;

any document that is currently controlled solely by the originator
including new versions of the document that were previously
released, submitted, or approved.

551

Appendix V

FUNCTIONAL
CONFIGURATION AUDIT

(FCA) CHECKLIST

552 � Software Configuration Management

Functional Configuration Audit (FCA) Checklist

CI Nomenclature: ___ Date: ________________
CI/CSCI Identifier: ___ Release # ____________

Requirements Yes No NA

1. Facilities for conducting FCA available

2. Audit Team members have been identified and informed of audit

3. Audit Team members are aware of their responsibilities

4 General Requirements Specification (GRS) or all of the following two
documents: Software Requirements Specification (SRS), System
Specification (SS)

5. Waiver or Deviation list prepared

6. Verification Test Procedures submitted (test transactions)

7. Verification Test Procedures reviewed and approved (test transactions)

8. Verification Testing completed and results available (System Qualification
Test)

9. Verification Test data and results reviewed and approved

10. Test Results submitted (if available or applicable)

11. Verification Testing witnessed

12. Test Readiness Review I and II (TRR I and TRR II) completed

13.Test Readiness Review I and II (TRR I and TRR II) minutes and open action
items from past reviews available

14. Copy of baseline and database change requests with their associated
status accounting records along with all design (Problem Reports and
Deficiency Reports [PRs and DRs], etc.) provided

15. Other inputs as specified by the functional requirements and planning
documents (i.e., ORD, RTM)

Signature of FCA Team Members:

__
__
__
__
__
__
__
__
__
__
__
__
__

Date:

Check one:
□ Results reviewed satisfy the requirements and are accepted (see attached comments).
□ Results reviewed do not satisfy requirements (see attached comments and list of deficiencies).
Approved by: __ Date: ____________________

553

Appendix W

PHYSICAL CONFIGURATION
AUDIT (PCA) CHECKLIST

554 � Software Configuration Management

Source: Adapted from Military Standard Configuration Management, MIL-STD-973.

Physical Configuration Audit (PCA) Checklist

The following requirements and tasks shall be available and accomplished at the PCA.

Requirements Yes No NA

1. Approved final draft of the configuration item product specification.

2. A list delineating both approved and outstanding changes against the configuration item.

3. Complete list of shortages in CSCI production.

4. Acceptance test procedures and associated test data.

5. Findings/status of quality assurance programs.

6. Manuscript copy of all software CI manuals (i.e., SSS, SRS, STP, STD, SCOM, SUM, etc.).

7. Computer Software Version Description Document.

8. Current set of listings and updated design descriptions or other means of design portrayal
for each software CI.

9. FCA minutes for each configuration item.

Tasks

1. Define Product Baseline.

2. Specification Review and Validation.

3. Record in the minutes of the PCA the differences between the CSCI being audited and its
CM records.

4. Ensure the discrepancies noted during the FCA on each CSCI have been corrected.

5. Ensure CSCI design descriptions properly reflect labels, references, and data
descriptions.

6. Ensure each CSCI design description is consistent.

7. Review acceptance test plan, procedures, records, and results, as well as specification
records to ensure the product complies with its design requirements.

8. Review shortages and design changes.

9. Review deviations/waivers.

10. Ensure each CSCI’s system evaluation documents are completed and properly
formatted.

11. Ensure all system documentation is complete and conforms to its data item description.

12. Review system allocation document.

13. Review Software User’s Manuals and Software Programmer’s Manuals.

14. Review software CIs for the following:
 a. Preliminary and detail Software Component design descriptions
 b. Preliminary and detail Software Interface requirements
 c. Database characteristics, storage allocation charts, and timing and sequencing
 characteristics

15. Review packaging plan and requirements.

16. Review release records and procedures.

17. Ensure that approved software coding standards have been used and documented.

18. Certify that each CSCI accepted has been built in accordance with the specifications.

Signature of PCA Team Members:
__
__
__
__
__
__
__
__

Date:

Check one:
□ Results reviewed satisfy the requirements and are accepted (see attached comments).
□ Results reviewed do not satisfy requirements (see attached comments and list of
deficiencies).

Approved by: ___ Date: ___________________

555

Appendix X

SCM GUIDANCE FOR
ACHIEVING THE

“REPEATABLE” LEVEL ON THE
SOFTWARE

Table of Contents

1. Introduction . 556
1.1 Scope. 556
1.2 Purpose . 556
1.3 Document Overview . 556

2. Terms and Definitions . 560
3. Provide SCM Support (A0) . 566

3.1 Manage SCM (A1) . 568
3.1.1 Create and Maintain Project SCMP (A11) 570
3.1.2 Manage Implementation of SCMP (A12) 572
3.1.3 Provide SCM Training (A13). 578

3.2 Perform SCM (A2) . 579
3.2.1 Perform Configuration Identification (A21 581
3.2.2 Perform Configuration Control (A22) 583
3.2.3 Perform Configuration Status Accounting (A23) 584
3.2.4 Perform Configuration Audits and Reviews (A24) 586

Appendix X1 Acronyms and Abbreviations. 589
Appendix X2 Software Configuration Management 590

556 � Software Configuration Management

1 INTRODUCTION

1.1 Scope

This document provides information and guidance to personnel involved
in SCM of computer software. This document assumes that each project
performs the tasks listed below.

1. Implements SCM for the full life cycle of the product
2. Assigns a manager with specific SCM responsibilities.
3. Requires contractors who produce software products to implement

SCM to at least the same degree as the approved project SCMP and
procedures and comply with other instructions of the SCMP

The activities in the SCM process outlined in this document are not
sequential. More than one activity may be accomplished at the same time;
an activity begins when the entry criteria are met, controls are imposed
on the activity, inputs are provided so that action(s) can be taken, and
an identified individual(s) or groups clearly understand their roles and
responsibilities for accomplishing the process activity and/or generating
an output.

1.2 Purpose

The purpose of this document is to describe the process activities common
to all organizations required to Provide SCM Support. The title of each
process appears in boldface throughout this document to aid in identifi-
cation of the process activity. This document identifies and describes an
SCM process to achieve a repeatable level of SCM maturity. Repeatability
requires that: “Basic project management processes are established to track
cost, schedule, and functionality. The necessary process discipline is in
place to repeat earlier successes on projects with similar applications.”1

To further assist in a repeatable SCM process, two additional documents
have been developed based on the information contained within this
document: (1) a Generic SCMP used to generate an SCMP that is project
specific and (2) a Sample DTP describing a configuration control task.
The sample DTP includes information to guide an author through the
development of task-specific DTP.

1.3 Document Overview

This document is intended to provide an overview of a repeatable pro-
cess(es) that SCM personnel can use in providing SCM support to a project.
It describes the SCM process down to project-specific activities. This

SCM Guidance for Achieving the “Repeatable” Level on the Software � 557

document describes the responsibilities of SCM personnel and the tasks
associated with each SCM activity.

Figure X1 is a sample control activity diagram. Control to an activity
is indicated by an arrow entering the top of the box. Input to an
activity is indicated by an arrow entering the left-side of the box.
Output from an activity is indicated by an arrow exiting from the right
side of the box.

Figure X2 identifies SCM interfaces. It shows (1) identified external
sources that interface with SCM, (2) inputs provided to the process activity
that Provide SCM Support , and (3) outputs generated by SCM as a result
of Provide SCM Support . The external sources shown in Figure X2 will
be updated as other interfaces are identified.

Figure X3 is a diagram of the SCM Process Definition. Each box in the
diagram represents a process activity and is identified by a title of the
activity and a label identifier (the letter A followed by a numeric identifier).
The first-level activity is titled Provide SCM Support and labeled A0
(Figure X3a). The second level of Provide SCM Support is comprised
of two activities: Manage SCM (labeled A1; Figure X3b) and Per for m
SCM (labeled A2; Figure X3b). Third-level activities, derived from A1, are
Create and Maintain Pr oject SCMP (labeled A11; Figure X3c), Manage
Implementation of SCMP (labeled A12; Figure X3c), and Provide SCM
Training (labeled A13; Figure X3c). Third-level activities, derived from
A2, are Per for m Confi guration Identifi cation (labeled A21; Figure
X3d), Per for m Confi guration Contr ol (labeled A22; Figure X3d), Per-
for m Confi guration Status Accounting (labeled A23; Figure X3d), and
Per for m Confi guration Audits and Reviews (labeled A24; Figure X3d).
Fourth-level activities, derived from A12, are Manage SCM Tasks (labeled
A121; Figure X3e), Create and Maintain DTP (labeled A122; Figure X3e),
and Manage Resour ces and Personnel to Per for m SCM (labeled A123;
Figure X3e).

Figure X1 Sample Control Activity Diagram

Process
Activity

Control

OutputInput

558 � Software Configuration Management

This document is organized into the sections listed below.

Section 1 provides the scope and purpose of this document.
Section 2 lists the government standards and other publications ref-

erenced in this document and used in its preparation.

Figure X2 Identified SCM Interfaces

External Sources

Software
Subcontractor
Management

Project Planning

Requirements
Management

Software Project
Tracking and

Oversight

Software Quality
Assurance

Sr. Management
and Project

Management

Configuration
Control/Review

Board

Platform CM

Software
Engineers

End User

SCM Process
Definition

Provide SCM
Support

Technical Data

Technical
Data Requests

Change Requests

Resources

Personnel

Decisions

Requests

CSCI

Project SCMP

Controlled
Change Requests

Controlled
Technical Data

Controlled CSCI

CSA Reports

Audit Reports

Review Reports

SCM Deficiency
Reports

Desktop Procedures

Software Release

Senior
Management
Requirements
Generic SCMP
Sample Desktop
Procedure

SCM Guidance for Achieving the “Repeatable” Level on the Software � 559

Section 3 lists the configuration management (CM) terms and definitions
as they are used in this document. To effectively use this document,
the reader should first become familiar with the definitions.

Section 4 describes the process activities. The following provides the
format definitions for describing a process activity of the SCM Process
Definition and the diagram in Figure X3.
� Purpose: the objective of the process activity. If a subprocess

activity exists, the details are described in that specific paragraph
description.

� Role and responsibility: the responsibilities of individuals or
groups for accomplishing a process activity.

� Entry criteria: the elements and conditions necessary to be in
place to begin a process activity. Reading lower-level activities
assumes that the entry criteria for all higher-level activities have
been satisfied.

� Control: data that constrains or regulates a process activity. Con-
trols regulate the transformation of inputs into outputs.

� Input: data or material with which a process activity is performed.
� Process activity: actions to transform an input, as influenced by

controls, into a predetermined output.
� Output: data or material produced by or resulting from a process

activity. It must include the input data in some form. The output
title differs from the input title in order to indicate that an activity
has been performed.

� Exit criteria: elements and/or conditions necessary to be in place
to complete a process activity.

Figure X3a SCM Process Definition Diagram: Level 0 — SCM Process

A0

Provide SCM Support
CSCI

Technical Data

Resources

RequirementsGeneric
SCMP

Sample
Desktop

Procedure

Software Release

CSA Reports

Audit Reports

Review ReportsChange Requests

CSCI Requests

Technical Data Requests

SCCB Decisions

Personnel

CSA Request

560 � Software Configuration Management

Appendix A contains a list of all acronyms and abbreviations and
their definitions used in this document.

Appendix B contains a traceability matrix between the process activ-
ities defined in this document and the SCM Briefing Evaluation
Check Sheet for Level 2, Repeatability.

2 TERMS AND DEFINITIONS

The terms and definitions listed below are provided as an aid to under-
standing and applying the SCM principles and processes used to manage
software development and testing efforts.

Figure X3b SCM Process Definition Diagram: Level 1 — Provide SCM Support

Technical
Data

Project SCMP

Desktop Procedures

Defined Resources

Trained Personnel
Manage

SCM

A1

Perform
SCM

A2

I1

Resources
I3

Personnel

I5
CSCI Requests

I4
CSCI

I9
SCCB Decisions

I2
Technical Data Requests

I6
Change Requests

I8
CSA Request

O1
CSA Reports

O2
Software Release

O3
Review Reports

O4
Audit Reports

I7

Generic
SCMP

Requirements
Sample

Desktop
Procedure

C3 C1 C2

SCM Deficiency Report

SCM Guidance for Achieving the “Repeatable” Level on the Software � 561

Audit — An independent examination of a work product or set of
work products to assess compliance with specifications, standards,
contractual agreements, or criteria.

Audit r eports — Independent group findings that are the results of
reviewing compliance with specifications, standards, contractual
agreements, or other specified criteria.

Baseline — A configuration identification document or set of such
documents formally designated and fixed at a specific time during
the configuration item’s (CI’s) life cycle. Baselines, plus approved
changes from those baselines, constitute the current configuration
identification.

Capability Maturity Model (CMM) — A Software Engineering Insti-
tute document that describes the stages that software organizations
evolve as they define, implement, measure, control, and improve
their software processes. The model is a guide for selecting the
process improvement strategies by facilitating the determination of
current process capabilities and identification of the issues most
critical to software quality and process improvement.

Figure X3c SCM Process Definition Diagram: Level 2 — Manage SCM

Create and
Maintain
SCMP

A11

Manage
Implementation

of SCMP

A12

Provide
SCM

Training

A13

I4
Personnel

I5

I1

I2

I3

Review

Audit

Technical

Resource

I6

SCM
Report

O3
Trained

O4
Defined

O1
Desktop

O2
Project

Sample Desktop

C3

Generic

C2

Requirement

C1

Define
Personnel

Identify
Tasks

562 � Software Configuration Management

Fi
gu

re
 X

3d
 S

C
M

 P
ro

ce
ss

 D
efi

ni
ti

on
 D

ia
gr

am
:

Le
ve

l
2

—
 P

er
fo

rm
 S

C
M

 (
C

on
t’d

)

I6
C

S
C

I

I9

C
ha

ng
e

R
eq

ue
st

s

I4

Te
ch

ni
ca

l
D

at
a

Id
en

tif
ie

d
C

S
C

I
Id

en
tif

ie
d

Te
ch

ni
ca

l
D

at
a

Id
en

tif
ie

d
C

ha
ng

e
R

eq
ue

st

S
C

M
 D

ef
ic

ie
nc

y
R

ep
or

t

C
on

tro
lle

d
C

ha
ng

e
R

eq
ue

st
C

on
tro

lle
d

Te
ch

ni
ca

l
D

at
a

S
of

tw
ar

e
R

el
ea

se

I5
C

S
C

I R
eq

ue
st

s

I8
Te

ch
ni

ca
l D

at
a

R
eq

ue
st

s

I7 I1
0

S
C

C
B

 D
ec

is
io

ns

C
S

A
 R

eq
ue

st

I3
D

ef
fin

ed
 R

es
ou

rc
es

I2
Tr

ai
ne

d
P

er
so

nn
el

I1
P

ro
je

ct
 S

C
M

P

D
es

kt
op

 P
ro

ce
du

re
s

C
1

P
er

fo
rm

C
on

fig
ur

at
io

n
Id

en
tif

ic
at

io
n

A
21

P
er

fo
rm

C
on

fig
ur

at
io

n
C

on
tr

ol

A
22

P
er

fo
rm

C
on

fig
ur

at
io

n
S

ta
tu

s
A

cc
ou

nt
in

g A
23

P
er

fo
rm

C
on

fig
ur

at
io

n
A

ud
its

 a
nd

R
ev

ie
w

s A
24

C
S

A
R

ep
or

ts

C
on

tro
lle

d
C

S
C

I
R

ev
ie

w
R

ep
or

ts

Au
di

t
R

ep
or

ts

SCM Guidance for Achieving the “Repeatable” Level on the Software � 563

Change Request (CR) — Reports of deficiencies or enhancements
generated against product Computer Software Configuration Items
(CSCIs) or technical data; a document that requests a correction or
change to the baselined documentation or software. Examples are
Software Change Proposals, Software Trouble Reports, Software
Problem Reports, Engineering Change Proposals, and other local
forms that communicate problems in a product. A CR becomes
“controlled” when the master copy of the CR is received, processed,
and maintained by the SCM organization (e.g., SCM assigns a tracking
number or identifier, enters the information into the configuration
status accounting [CSA] system, distributes copies, files, ensures
updates to master copy by authorized personnel, etc.).

Confi guration Audit — A formal examination of a CSCI. Two types
of configuration audits exist: the Functional Configuration Audit
(FCA) and the Physical Configuration Audit (PCA). (See Appendices
V and W.)

Confi guration Contr ol — The systematic proposal, justification, eval-
uation, coordination, and approval or disapproval of proposed

Figure X3e SCM Process Definition Diagram: Level 3 — Manage Implementation
of SCMP

Manage
SCM
Tasks

A121

Create and
Maintain
Desktop

Procedures

A122

Manage
Resources and

Personnel to
Perform SCM

A123

I5

C1C2

Review Reports

I2
Resources

Identified
Tasks

I4
I1

I3

I7

I6

Audit Reports

Identified Tasks

SCM Deficiency Report

Trained Personnel

Personnel

O1

Desktop
Procedures

O2

Defined
Resources

O3

Defined
Personnel

Sample
Desktop

Procedure

Project SCMP

564 � Software Configuration Management

changes, and the implementation of all approved changes in the
configuration of a CI after establishment of the baseline(s) for the CI.

Confi guration Identifi cation — The selection of CIs; the determina-
tion of the types of configuration documentation required for each
CI; the issuance of numbers and other identifiers affixed to the CIs
and to the technical documentation that defines the CI’s configura-
tion, including internal and external interfaces; the release of CIs
and associated configuration documentation; and the establishment
of configuration baselines for CIs.

Contr olled CR — Maintenance of the master copy of the CR.
Computer Softwar e Confi guration Item (CSCI) — A CI that is

software.
Confi guration Status Accounting (CSA) — The recording and report-

ing of information needed to manage CIs effectively, including:
� A record of the approved configuration documentation and iden-

tification numbers
� The status of proposed changes, deviations, and waivers to the

configuration
� The implementation status of approved changes
� The configuration of all units of the CI in the operational inventory

CSA Reports — Formatted output of the CSA system database.
Desktop Pr ocedur e (DTP) — Step-by-step instructions describing a

course of action to be taken to perform a given process.
End Pr oduct — The authorized and approved complete set, or any

of the authorized and approved individual items of the set, of
computer programs, procedures, and associated documentation and
data designated for delivery to a customer or end user.

Field Activity — A designated government agency that performs a
task in accordance with a contractual agreement with a sponsoring
government organization.

Identifi ed CR — A CR to which a tracking number has been assigned.
Life Cycle — A generic term covering all phases of acquisition,

operation, and logistics support of an item beginning with concept
definition and continuing through disposal of an item.

Nondevelopmental Softwar e (NDS) — Deliverable software that is
not delivered under the contract but is provided by the contractor,
the government, or a third party. NDS may be referred to as reusable
software, government-furnished software, or commercially available
software, depending on its source.

Personnel — A pool of potential workers available to perform SCM
tasks. “Defined personnel” are individuals who have been selected
to staff or support SCM tasks. “Trained personnel” are individuals
having the knowledge, skills, and abilities required to perform SCM
tasks.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 565

Program Management — The government organization sponsoring
the field activity project office.

Project Management — The designated government organization
from the field activity project office responsible for the overall
management of specific projects.

Repeatable — Basic project management processes are established to
track cost, schedule, and functionality. The necessary process dis-
cipline is in place to repeat earlier successes on projects with similar
applications.

Requir ements — Direction provided by standards, specifications,
instructions, etc.; by data item descriptions; and by program man-
agement or field activity.

Resour ces — Funding, facilities, tools, and nondevelopmental soft-
ware as determined on a project-by-project basis. Personnel have
been separated from resources to highlight the training aspects
related to personnel. “Defined resources” are identified resources
such as funding, facilities, tools, and nondevelopmental software
allocated to perform any given SCM task.

Review Reports — Findings of an internal SCM or independent group
that result from informal checks of SCM procedures or of formal
reviews by Software Quality Assurance (SQA).

Retir ed — The removal of support from an operational system or
component.

Softwar e Confi guration Contr ol Boar d (SCCB) — A group of indi-
viduals responsible for and empowered by project management to
evaluate and make decisions that affect software baselines.

Softwar e Confi guration Management (SCM) — A discipline that
applies technical and administrative direction and surveillance to
perform the functions listed below:
� Identify and document the functional and physical characteristics

of CSCIs.
� Control the changes to CSCIs and their related documentation.
� Record and report information needed to manage CSCIs effec-

tively, including the status of proposed changes and the imple-
mentation status of approved changes.

� Audit the CSCIs to verify conformance to specifications, interface
control documents, and other contract requirements.

SCM Deficiency Reports — Problems or enhancements that are written
against SCM tools, processes, procedures, and CSA reports. The SCM
manager remains cognizant of these reports until resolution.

SCM Plan (SCMP) — The document defining how SCM will be imple-
mented (including policies and procedures) for a particular acqui-
sition or program.

566 � Software Configuration Management

Softwar e Pr oduct — The complete set, or any of the individual items
of the set, of computer programs, procedures, and associated doc-
umentation and data designated for delivery to a customer or end
user.

Softwar e-Related Gr oup — Project members responsible for gener-
ating requirements, design, development, validation, verification,
documentation, maintenance, and logistics of software.

Softwar e Release — An end product delivered to a customer, includ-
ing end-user documentation.

Softwar e Unit — An element in the design of a software item; for
example, a major subdivision of a software item, a component of
that subdivision, a class, object, module, function, routine, or
database. Software units may occur at different levels of a hierarchy
and may consist of other software units. Software units in the
design may or may not have a one-to-one relationship with the
code and data entities (routines, procedures, databases, data files,
etc.) that implement them or with the computer files containing
those entities.

Tasks — Well-defined units of work that provides configuration man-
agement guidelines to accomplish given requirements.

Technical Data — Recorded information (regardless of the form or
method of recording) of a scientific or technical nature (including
computer software documentation) relating to supplies procured
by an agency. Technical data does not include computer software,
financial data, administrative data, cost data, pricing data, manage-
ment data, or other information incidental to contract administra-
tion.

3 PROVIDE SCM SUPPORT

3a Purpose

The purpose of this process activity (A0) is to establish and maintain a
product’s integrity throughout its life cycle. SCM support will be provided
through implementation of the process included in the tasks listed below.

1. Manage SCM.
2. Perform SCM.

3b Roles and Responsibilities

The following are responsible for Provide SCM Support :

SCM Guidance for Achieving the “Repeatable” Level on the Software � 567

3c Entry Criteria

SCM support is initiated upon project authorization.

3d Control

Controls for this activity are listed below.

1. Requirements determine the scope and depth of SCM responsibilities.
2. The Generic SCMP provides a basis for a project SCMP.
3. The Sample DTP provides the basis for developing detailed instruc-

tions required to complete SCM tasks.

3e Input

Inputs to this activity are listed below.

1. CSCI
2. Technical Data
3. CSCI Requests
4. Technical Data Requests
5. CRs
6. Resources
7. Personnel
8. SCCB Decisions
9. CSA Requests

Role Responsibility
Program Management Provide technical data and requirements to SCM.

Provide resources for SCM.
Project Management Provide technical data and requirements to SCM.

Provide resources for SCM.
Establish (project level) SCCB, appoint chairperson.
Review SCM activity status and aid in problem

resolution for audit findings.
Assign SCM manager with specific SCM

responsibilities.
SCM Manager Manage SCM

Establish SCM organization to perform SCM.
SCM Organization Implement and perform SCM throughout the life

cycle of the software product.

568 � Software Configuration Management

3f Process Activities

The process activities for Provide SCM Support are as follows:

1. Technical data, resources, personnel, and SCCB decisions are used
to create and implement the project SCMP and DTP.

2. Technical data, resources, personnel, SCCB decisions, and CRs that
affect SCM requirements may require changes to maintain a current
SCMP and DTP.

3. SCCB decisions and CRs are used to identify and track the creation
and modification of products.

4. CSCI and technical data requests are processed by SCM to supply
the requested CSCI and technical data.

5. CSA requests are processed to produce reports.
6. Technical data, SCMP, tasks, and DTP are audited and reviewed

with results documented in audit and review reports.

3g Output

Outputs of this activity are listed below.

1. Project SCMP
2. Controlled CSCI
3. Controlled CRs
4. Controlled Technical Data
5. CSA Reports
6. Audit Reports
7. Review Reports
8. SCM Deficiency Reports
9. Software Release

10. DTP

3h Exit Criteria

Retiring a software product satisfies the exit criteria.

3.1 Manage SCM (A1)

3.1a Purpose

The purpose of this process activity (A1) is to manage SCM support. SCM
is managed through the functions listed below.

1. Create and Maintain the Project SCMP.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 569

2. Manage Implementation of the SCMP.
3. Provide SCM Training.

3.1b Role and Responsibility

The following is responsible for Manage SCM :

3.1c Entry Criteria

An individual is assigned the responsibilities of SCM Manager to provide
SCM support to the project.

3.1d Control

Controls for this activity are listed below.

1. Requirements determine the SCM responsibilities.
2. The Generic SCMP provides a basis for a project-specific SCMP.
3. The Sample DTP provides the basis for developing detailed instruc-

tions required to complete SCM tasks.

3.1e Input

Inputs to this activity are listed below.

1. Technical data.
2. Resources
3. Audit Reports
4. Review Reports
5. Trained Personnel
6. Defined Personnel

Role Responsibility
SCM Manager Create and maintain the project SCMP.

Identify tasks to be accomplished.
Oversee generation, implementation, and maintenance of DTP

in accordance with the project SCMP.
Provide SCM training.
Evaluate and use measurements gathered against the SCM

procedures to improve the processes.
Periodically review and provide status on SCM activities with

field activity management.
Respond to audit and review findings on SCM activities.
Interface with appropriate internal and external agencies.

570 � Software Configuration Management

7. SCM Deficiency Reports
8. Identified Tasks
9. Defined Resources

10. Personnel

3.1f Process Activities

The process activities for Manage SCM are as follows:

1. Oversee the creation, implementation, and maintenance of the
project SCMP and DTP. Identify the tasks to be accomplished.

2. Provide for the training of personnel as required for the project to
perform the SCM activities.

3.1g Output

Outputs from this activity are listed below.

1. Project SCMP
2. Identified Tasks
3. DTP
4. Defined Resources
5. Defined Personnel
6. Trained Personnel

3.1h Exit Criteria

Retiring a software product satisfies the exit criteria.

3.1.1 Create and Maintain Project SCMP (A11)

3.1.1a Purpose

The purpose of this process activity (A11) is to document the plan that
defines how configuration management will be implemented for a
project, submit the plan for program management and SCCB approval,
and update the plan to reflect current project requirements, processes,
and practices.

3.1.1b Roles and Responsibilities

The following are responsible for Create and Maintain Pr oject SCMP :

SCM Guidance for Achieving the “Repeatable” Level on the Software � 571

3.1.1c Entry Criteria

The SCM Manager has the following sources available:

1. Identified SCM interfaces within the project organization and within
external organizations.

2. The Generic SCMP is used as a template in the development of a
project SCMP.

3. Technical data outlining project requirements.

3.1.1d Control

Controls of this activity are listed below.

1. Requirements determine the scope and depth of SCM responsibilities.
2. The Generic SCMP provides a basis for the creation and mainte-

nance of a project SCMP.

3.1.1e Input

Inputs to this activity are listed below.

1. Technical Data
2. Resources
3. Audit Reports
4. Review Reports
5. Trained Personnel

3.1.1f Process Activities

The process activities for Create and Maintain Pr oject SCMP are as
follows:

Role Responsibility
Program Management Provide overall approval to the project SCMP as

approved by the SCCB.
SCCB Approve the project SCMP and changes to the

baselined project SCMP.
SCM Manager Oversee creation, implementation, and

maintenance of the project SCMP throughout
the product’s life cycle.

Place the approved project SCMP under
configuration control.

Software-Related Groups Review project SCMP and updates.

572 � Software Configuration Management

1. Use the inputs of technical data, resources, and personnel as stated
by the requirements and the Generic SCMP to manage the creation
of a project SCMP.

2. Review and respond to audit and review reports to maintain the
project SCMP. Technical data, resources, and personnel as stated in
the requirements and the Generic SCMP are also used to maintain
the project SCMP.

3. Submit the project SCMP to program management and SCCB for
approval. Place the approved project SCMP under configuration
control.

3.1.1g Output

1. A project SCMP
2. Identified Tasks

3.1.1h Exit Criteria

Approval of the SCMP and subsequent updates throughout the product’s
life cycle satisfy the exit criteria.

3.1.2 Manage Implementation of SCMP (A12)

3. 1. 2a Purpose

The purpose of this process activity (A12) is to ensure implementation of
SCM tasks and DTP in accordance with the project SCMP and to use
resources and personnel in accomplishing SCM activities.

3. 1. 2 b Role and Responsibility

The following is responsible for Manage Implementation of SCMP :

3. 1. 2 c Entry Criteria

An approved SCMP exists.

3. 1. 2 d Control

The controls for Manage Implementation of SCMP are listed below.

Role Responsibility
SCM Manager Identify, delegate, and monitor the SCM tasks.

Create, implement, and maintain DTP.
Manage SCM resources and personnel.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 573

1. The project SCMP states the required tasks to be performed by the
SCM organization.

2. The DTP identifies the areas that require documented step-by-step
procedures.

3.1.2e Input

Inputs to this activity are listed below.

1. Resources
2. Defined Personnel
3. Audit Reports
4. Review Reports
5. SCM Deficiency Reports
6. Identified Tasks
7. Defined Resources
8. Personnel
9. Trained Personnel

3. 1. 2 f Process Activities

The process activities for Manage Implementation of Pr oject SCMP are
as follows:

1. Identify the tasks stated in the project SCMP.
2. Determine the DTP required to follow the processes stated in the

project SCMP.
3. Define the resources and positions required to implement the

project SCMP.
4. Provide resolution of SCM deficiency reports.

3.1.2g Output

Outputs from this activity are listed below.

1. Identified Tasks
2. DTP
3. Defined Resources
4. Defined Personnel

3. 1. 2 h Exit Criteria

Retiring a software product satisfies the exit criteria.

574 � Software Configuration Management

3.1.2.1Manage SCM Tasks (A121)

3.1.2.1a Purpose The purpose of this process activity (A121) is to ensure
that the tasks stated in the project SCMP are implemented in a consistent,
correct, complete, and compliant manner.

3.1.2.1b Role and Responsibility The following is responsible for Man-
age SCM Tasks:

3.1.2.1c Entry Criteria An approved project SCMP exists.

3.1.2.1d Control The approved project SCMP provides control.

3.1.2.1e Input Inputs to this activity are listed below.

1. Resources
2. Defined Personnel
3. Audit Reports
4. Review Reports
5. SCM Deficiency Reports

3.1.2.1f Process Activities The process activities for Manage SCM
Tasks are as follows:

1. Clarify the tasks stated in the project SCMP using resources and
defined personnel.

2. Maintain the tasks so that all tasks are current and applicable to
the product. Updates to the project SCMP, resources, SCM deficiency
reports, and audit and review reports may require tasks to be added,
modified, or deleted.

3. Ensure that the tasks are accomplished and fulfill the requirements
stated in the project SCMP.

Role Responsibility
SCM Manager Decompose the tasks stated in the project SCMP into

manageable components (e.g., work breakdown
structure).

Monitor the accomplishment of the identified task.
Review the identified tasks for compliance with the
approved project SCMP.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 575

3.1.2.1g Output Output from this activity is composed of identified
tasks.

3.1.2.1h Exit Criteria Identified tasks that reflect the current project
SCMP satisfy the exit criteria.

3.1.2.2 Create and Maintain DTP (A122)

3.1.2.2a Purpose The purpose of this process activity (A122) is to
document the procedures that describe how SCM is performed for a project
and update the DTP to reflect the current project SCMP.

3.1.2.2b Role and Responsibility The following are responsible for
Create and Maintain DTP:

3.1.2.2c Entry Criteria This project SCMP and the Sample DTP satisfy
the entry criteria.

3.1.2.2d Control The controls for Create and Maintain DTP are listed
below.

1. The project SCMP identifies all the tasks and the high-level processes
that require DTP.

2. The Sample DTP is used as a guideline in generating specific DTP.

3.1.2.2e Input Inputs to this activity are listed below.

1. Identified Tasks
2. Defined Personnel.

Role Responsibility
SCM Manager Direct the development of DTP, and oversee the

implementation and maintenance of DTP.
Identify the functions within the software-related groups,

e.g., system engineering, software development, system
testing, etc., that the SCM organization must interface with
to accomplish a task.

Software-Related
Groups

Review DTP.

SCM Organization Create, implement, and maintain DTP.

576 � Software Configuration Management

3. Defined Resources
4. Audit Reports
5. Review Reports
6. SCM Deficiency Reports

3.1.2.2f Process Activities The process activities for Create and Main-
tain DTP are as follows:

1. Create DTP for processes identified in the project SCMP using
resources, personnel, and guidelines found in the sample DTP.

2. Maintain the procedures so that the process is repeatable. Written
procedures provide the instructions for performing SCM (configura-
tion identification, configuration control, CSA, and configuration
audits and reviews). A change in a process may require the written
procedures to change. Inputs to this activity include defined
resources, SCM deficiency reports, and audit and review reports.
Defined resources are resources that are necessary to perform the
procedures. SCM deficiency reports and audit and review reports
may cause the procedures to be modified or deleted. The process
of managing procedures includes monitoring these procedures to
ensure that the process as described in the DTP is being followed.
Monitoring of the processes is accomplished through audits of SCM
processes and internal SCM reviews.

3.1.2.2g Output Output of this activity is the accomplishment of written
DTP.

3.1.2.2h Exit Criteria Written DTP and subsequent updates throughout
the product’s life cycle satisfy the exit criteria.

3.1.2.3 Manage Resources and Personnel to Perform SCM (A123)

3.1.2.3a Purpose The purpose of this process activity (A123) is to use
appropriate resources and personnel to accomplish the SCM task(s) in
accordance with the project SCMP and DTP.

3.1.2.3b Role and Responsibility The following is responsible for Man-
age Resources and Personnel to Perform SCM.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 577

3.1.2.3c Entry Criteria DTP satisfy the entry criteria.

3.1.2.3d Control The controls for Manage Resources and Personnel to
Perform SCM are listed below.

1. The project SCMP states the required tasks to be performed by the
SCM organization.

2. The DTP provide step-by-step guidance for personnel required to
complete tasks using given resources.

3. Resources define the budget and schedule constraints placed upon
SCM.

3.1.2.3e Input Inputs to this activity are listed below.

1. Resources
2. Personnel
3. Audit Reports
4. Review Reports
5. Trained Personnel
6. SCM Deficiency Reports

3.1.2.3f Process Activities The process activities for Manage Resources
and Personnel to Perform SCM are as follows:

1. Identify, define, and direct the resources (i.e., SCM tools, allocated
funds, tasking priorities to meet schedules) and personnel (both
prior to and after training) needed to follow processes described
in the project SCMP. SCM deficiency reports and audit and review
reports are inputs that may require the SCM Manager to re-identify
resources, personnel, and training needed to support the processes
and/or DTP.

3.1.2.3g Output Outputs of this activity are listed below.

1. Defined Resources
2. Defined Personnel

Role Responsibility
SCM Manager Identify and manage the resources and personnel needed

to accomplish tasks identified in the project SCMP.

578 � Software Configuration Management

3.1.2.3h Exit Criteria The exit criteria for this process activity are defined
resources and defined personnel necessary to support the SCMP and DTP.

3.1.3 Provide SCM Training (A13)

3.1.3a Purpose

The purpose of this process activity (A13) is to train the SCM organization
and software-related groups on processes as described in the project SCMP,
DTP, and SCM tools to accomplish tasks stated in the project SCMP.

3.1.3b Role and Responsibility

The following is responsible for Provide SCM T raining :

3.1.3c Entry Criteria

DTP satisfy the entry criteria.

3.1.3d Control

The control for Provide SCM T raining is listed below.

1. DTP provide detailed information on the activities, personnel, SCM
tools, skills, and knowledge required to complete a given task. This
information can be used to determine training requirements.

3.1.3e Input

Inputs to this activity are listed below.

1. Defined Resources
2. Defined Personnel

3.1.3f Process Activities

The process activity for Provide SCM T raining is to use defined personnel
and resources to produce personnel trained in SCM processes as described
in the project SCMP, DTP, and SCM tools. Defined personnel include both
those providing training and those receiving the training.

Role Responsibility
SCM Manager Identify, establish, coordinate, and maintain training as

required to ensure effective performance of SCM activity
by the SCM organization and software-related groups.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 579

3.1.3g Output

The output of this activity is trained personnel.

3.1.3h Exit Criteria

Trained personnel satisfy the exit criteria.

3.2 Perform SCM (A2)

3.2a Purpose

The purpose of this process activity (A2) is to apply configuration iden-
tification, control, status accounting, and audits and reviews throughout
the life cycle of a product in order to ensure the integrity of the software
release and associated documentation.

3.2b Role and Responsibility

The following is responsible for Per for m SCM:

3.2c Entry Criteria

The SCM Manager has identified and trained personnel and current DTP
exist.

3.2d Control

The current DTP provide control of this activity.

3.2e Input

Inputs to this activity are listed below.

1. CSCI
2. Technical Data
3. CRs
4. Defined Resources
5. Trained Personnel

Role Responsibility
SCM Organization Perform configuration identification, control, status

accounting, and internal SCM reviews.
Assist in performing the configuration audit(s).
Assist in the independent audit of SCM activities.

580 � Software Configuration Management

6. Audit Reports
7. Review Reports
8. CSCI Requests
9. Technical Data Requests

10. Identified Technical Data
11. SCCB Decisions
12. Identified CR
13. Identified CSCI
14. CSA Request
15. Controlled CR
16. Controlled Technical Data
17. Controlled CSCI
18. CSA Reports
19. Project SCMP
20. DTP

3.2f Process Activities

The process activities for Per for m SCM are as follows:

1. Take receipt of and assign tracking identifiers to the CSCI and its
related technical data.

2. Control changes to the CSCI and its technical data through the
use of CRs and board decisions (e.g., CCB, SCCB, Software Con-
figuration Review Board [SCRB], and Operational Advisory Group
[OAG]).

3. Provide status information and technical data to management and
related organizations.

4. Participate in the auditing of software products to ensure correct,
complete, consistent, and compliant products.

5. Perform internal review of SCM activities.

3.2g Output

Outputs from this activity are listed below.

1. Identified CR
2. Identified CSCI
3. Identified Technical Data
4. SCM Deficiency Report
5. Controlled CR
6. Controlled Technical Data
7. Controlled CSCI

SCM Guidance for Achieving the “Repeatable” Level on the Software � 581

8. CSA Reports
9. Audit Reports

10. Review Reports
11. Software Release

3.2h Exit Criteria

Retiring a software product satisfies the exit criteria.

3.2.1 Perform Configuration Identification (A21)

3.2.1a Purpose

The purpose of this process activity (A21) is to issue unique identifiers
to each CSCI and related technical data and assign tracking numbers
to CRs so that they may be tracked through each baseline release.
Throughout the following sections, any reference to CSCI includes
Software Units.

3.2.1b Role and Responsibility

The following are responsible for Per for m Confi guration Identifi cation :

3.2.1c Entry Criteria

CSCI, technical data, or CRs have been submitted to the SCM organization.

3.2.1d Control

Control is provided by the DTP for configuration identification.

Role Responsibility
SCM Manager Oversee the establishment of the configuration

management libraries.
SCM Organization Issue the configuration identifier to the CSCI and

related technical data. Verify that the correct project
identifier has been used. Identify and assign a tracking
number to the CR.

Establish the CM libraries.
SCCB Support the project manager recommending approval

or disapproval of proposed engineering changes to a
CSCI’s current approved configuration and its
documentation.

582 � Software Configuration Management

3.2.1e Input

Inputs to this activity are listed below.

1. CSCI
2. Technical Data
3. CRs
4. Defined Resources
5. Trained Personnel
6. Audit Reports
7. Review Reports

3.2.1f Process Activities

The process activities for Per for m Confi guration Identifi cation are as
follows:

1. Assign a unique identifier to project CSCIs and technical data that
includes identification of the associated baseline.

2. Verify project identification for CSCIs and technical data.
3. Establish and oversee the establishment of CM libraries.
4. Assign tracking numbers to CRs.
5. Report any deficiency against this activity using the SCM deficiency

report.

3.2.1g Output

Outputs from this activity are listed below.

1. Identified CR(s)
2. Identified CSCI
3. Identified Technical Data
4. SCM Deficiency Reports

3.2.1h Exit Criteria

Each CSCI and associated documentation have been formally identified.
All required data has been collected, recorded, processed, and main-
tained for producing CSA reports. The CM libraries have been estab-
lished.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 583

3.2.2 Perform Configuration Control (A22)

3.2.2a Purpose

The purpose of this process activity (A22) is to maintain the integrity of
the product’s technical data and CSCI throughout its life cycle.

3.2.2b Role and Responsibility

The following are responsible for providing Per for m Confi guration
Contr ol :

3.2.2c Entry Criteria

One of the following criteria must be met to initiate this activity.

1. Receive the approved functional baseline and any further configu-
ration baselines for the CSCIs.

2. Receive the CSCI and technical data to be placed under library
control.

3. Receive the CRs.

3.2.2d Control

The DTP provide control of this activity.

Role Responsibility
SCM Manager Manage expeditious processing of proposed changes

against approved baselines.
Manage processing of authorized changes into

approved baselines.
SCM Organization Prevent incorporation of unauthorized changes into the

baselines.
Ensure integrity of baseline releases (e.g., of executable

software, source code).
Perform library functions of CSCI and technical data.
Perform the administrative functions to support the

software boards (e.g., SCCB, SCRB, OAG).
SCCB Represent the interests of the project management and

all project groups who may be affected by changes to
the software baselines.

Authorize the establishment of software baselines,
review and approve the changes, and authorize the
creation of software baseline products.

584 � Software Configuration Management

3.2.2e Input

Inputs to this activity are listed below.

1. CSCI Requests
2. Technical Data Requests
3. Identified Technical Data
4. SCCB Decisions
5. Identified CR
6. Defined Resources
7. Identified CSCI
8. Trained Personnel

3.2.2f Process Activities

The process activities for Per for m Confi guration Contr ol are as follows:

1. Receive CSCI and technical data.
2. Place CSCI and technical data in the libraries.
3. Process CSCI and technical data requests.
4. Provide CRs to board members.
5. Provide administrative support to the boards.
6. Deliver software releases from controlled CSCIs and technical data,

including associated changes to authorized baselines.
7. Report any deficiencies against this activity using the SCM deficiency

report.

3.2.2g Output

Outputs from this activity are listed below.

1. Controlled CR
2. Controlled Technical Data
3. Controlled CSCI
4. SCM Deficiency Report
5. Software Release

3.2.2h Exit Criteria

Retiring a software product satisfies the exit criteria.

3.2.3 Perform Configuration Status Accounting (A23)

3.2.3a Purpose

The purpose of this process activity (A23) is to ensure reporting of accurate
identification of each CSCI and associated technical data so that the

SCM Guidance for Achieving the “Repeatable” Level on the Software � 585

necessary logistics support elements can be correctly programmed and
made available in time to support the CSCI and its technical data. A well-
designed and proven CSA will enhance management’s capability to iden-
tify, produce, inspect, deliver, operate, and maintain CSCIs and associated
technical data in a timely, efficient, economical manner.

3.2.3b Role and Responsibility

The following is responsible for Per for m CSA :

3.2.3c Entry Criteria

Entry criteria for this activity is the receipt of information on CSCIs,
technical data, board decisions (e.g., CCB, SCCB, SCRB, or OAG), and
CRs.

3.2.3d Control

Control of this activity is provided by the DTP.

3.2.3e Input

Inputs to this activity are listed below.

1. CSA Request
2. SCCB Decisions
3. Controlled CR
4. Controlled Technical Data
5. Defined Resources
6. Trained Personnel

3.2.3f Process Activities

The process activities for Per for m CSA are as follows:

1. Receive CSCI and technical data for entry into the CSA system.
2. Generate CSA reports.
3. Report any deficiencies against this activity using the SCM deficiency

report.

Role Responsibility
SCM Organization Maintain and verify the data entered into the CSA

system.

586 � Software Configuration Management

3.2.3g Output

Outputs from this activity are listed below.

1. CSA Reports
2. SCM Deficiency Report

3.2.3h Exit Criteria

Retiring a software product satisfies the exit criteria.

3.2.4 Perform Configuration Audits and Reviews (A24)

3.2.4a Purpose

The purposes of this process activity (A24) are to:

1. Report deficiencies in the CSCI and associated technical data found
in a configuration audit.

2. Track resolution of those reported deficiencies found in a config-
uration audit.

3. Report deficiencies in SCM activities or products.
4. Track and provide resolution to deficiencies against SCM activities

and products as a part of process improvement efforts.

3.2.4b Role and Responsibility

The following are responsible for Perform Configuration Audits and
Reviews:

Role Responsibility
SCM Manager Provide resolution to reported deficiencies

against SCM activities or products as part of
process improvement efforts.

SCM Organization Support the configuration audits (FCA and PCA)
of CSCIs and their technical data, including
tracking resolution of reported deficiencies.

Provide the auditing activity or independent
auditor (e.g., SQA) with the requested data to
perform an audit of SCM activities.

Perform informal review of SCM tasks and
products to ensure conformance of SCM
procedures.

SQA or Independent
Auditor

Perform configuration audits (FCA and PCA) of
CSCI and associated technical data.

Perform audit of SCM activities.
Report audit findings.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 587

3.2.4c Entry Criteria

Configuration audits and independent audits of CSCI and associated tech-
nical data and SCM activities are scheduled. Informal reviews of SCM
activities and products are planned.

3.2.4d Control

The DTP provides control for this activity.

3.2.4e Input

Inputs to this activity are listed below.

1. Controlled CSCI
2. Controlled Technical Data
3. Defined Resources
4. Trained Personnel
5. CSA Reports
6. Project SCMP
7. DTP

3.2.4f Process Activities

The process activities for Per for m Confi guration Audits and Reviews
are as follows:

1. Support SQA or independent auditor requests for technical data
and for CSCI and associated data.

2. Perform informal reviews of SCM tasks, DTP, and CSA reports.
3. Use DTP to generate or assist in the preparation of audit and review

reports.
4. Report deficiencies against this activity using the SCM deficiency

report.

3.2.4g Output

Outputs from this activity are listed below.

1. Audit Reports
2. Review Reports
3. SCM Deficiency Report

588 � Software Configuration Management

3.2.4h Exit Criteria

The configuration audit and review is completed, results are documented,
and deficiencies have been resolved.

The audit and review of SCM activities and products is completed,
results are documented, and deficiencies have been resolved.

Notes

1. Key Practices of the Capability Maturity Model, Version 1.1, February 1993.

REFERENCE

This document is adapted from the Navy’s Software Process Definition,
http://sepo.spawar.navy.mil/sepo/SCMProc.doc. April 1998.

SCM Guidance for Achieving the “Repeatable” Level on the Software � 589

APPENDIX X1 ACRONYMS AND ABBREVIATIONS

CCB Configuration Control Board
CM Configuration Management
CMM Capability Maturity Model
CRG Computer Resources Group
CSA Configuration Status Accounting
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSU Computer Software Unit
DCR Document Change Request
DoD Department of Defense
DTP Desktop Procedure
FCA Functional Configuration Audit
FCD Functional Configuration Documentation
NAVAIRSYSCOM Naval Air Systems Command
NDS Nondevelopmental Software
OAG Operational Advisory Group
PCA Physical Configuration Audit
SCCB Software Configuration Control Board
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCRB Software Change Review Board
SEI Software Engineering Institute
SQA Software Quality Assurance
SRR Software Requirements Review
STD Standard

590 � Software Configuration Management
A

PP
EN

D
IX

 X
2

SO
FT

W
A

R
E

C
O

N
FI

G
U

RA
TI

O
N

 M
A

N
A

G
EM

EN
T

B
ri

efi
ng

 E
va

lu
at

io
n

C
he

ck
 S

he
et

K
ey

 P
ra

ct
ic

e
an

d
Su

b-
pr

ac
tic

es
Ye

s
N

o
Ex

I.
C

o
m

m
it

m
en

t
to

 P
er

fo
rm

1.
 T

h
e

p
ro

je
ct

 f
o

llo
w

s
a

w
ri

tt
en

 o
rg

an
iz

at
io

n
al

 p
o

lic
y

fo
r

im
p

le
m

en
ti

n
g

so
ft

w
ar

e
co

n
fi

gu
ra

ti
o

n
 m

an
ag

em
en

t
(S

C
M

).

a.
 R

es
po

ns
ib

ili
ty

 fo
r

SC
M

 fo
r

ea
ch

 p
ro

je
ct

 is
 e

xp
lic

itl
y

as
si

gn
ed

.

b.
 S

C
M

 is
 im

pl
em

en
te

d
th

ro
ug

ho
ut

 th
e

pr
oj

ec
t’s

 li
fe

 c
yc

le
.

c.
 S

C
M

 is
 im

pl
em

en
te

d
fo

r e
xt

er
na

lly
 d

el
iv

er
ab

le
 s

of
tw

ar
e

pr
od

uc
ts

, d
es

ig
na

te
d

in
te

rn
al

 s
of

tw
ar

e
w

or
k

pr
od

uc
ts

,
an

d
de

si
gn

at
ed

 s
up

po
rt

 to
ol

s
us

ed
 in

si
de

 th
e

pr
oj

ec
t (

e.
g.

, c
om

pi
le

rs
).

d.
 T

he
 p

ro
je

ct
s

es
ta

bl
is

h
or

 h
av

e
ac

ce
ss

 to
 a

 r
ep

os
ito

ry
 fo

r
st

or
in

g
co

nfi
gu

ra
tio

n
ite

m
s/

un
its

 a
nd

 th
e

as
so

ci
at

ed

SC
M

 r
ec

or
ds

.

e.
 T

he
 s

of
tw

ar
e

ba
se

lin
es

 a
nd

 S
C

M
 a

ct
iv

iti
es

 a
re

 a
ud

ite
d

on
 a

 p
er

io
di

c
ba

si
s.

II
. A

b
ili

ty
 t

o
 P

er
fo

rm

1.
 A

 b
o

ar
d

 h
av

in
g

th
e

au
th

o
ri

ty
 f

o
r

m
an

ag
in

g
th

e
p

ro
je

ct
’s

 s
o

ft
w

ar
e

b
as

el
in

es
 (

i.e
.,

a
so

ft
w

ar
e

co
n

fi
gu

ra
ti

o
n

co

n
tr

o
l

b
o

ar
d

 —
 S

C
C

B
)

ex
is

ts
 o

r
is

 e
st

ab
lis

h
ed

. T
h

e
SC

C
B

:

a.
 A

ut
ho

ri
ze

s
th

e
es

ta
bl

is
hm

en
t o

f s
of

tw
ar

e
ba

se
lin

es
 a

nd
 th

e
id

en
tifi

ca
tio

n
of

 c
on

fig
ur

at
io

n
ite

m
s/

un
its

.

b.
 R

ep
re

se
nt

s
th

e
in

te
re

st
s

of
 th

e
pr

oj
ec

t m
an

ag
er

 a
nd

 a
ll

gr
ou

ps
 w

ho
 m

ay
 b

e
af

fe
ct

ed
 b

y
ch

an
ge

s
to

 th
e

so
ftw

ar
e

ba
se

lin
es

.

c.
 R

ev
ie

w
s

an
d

au
th

or
iz

es
 c

ha
ng

es
 to

 th
e

so
ftw

ar
e

ba
se

lin
es

.

d.
 A

ut
ho

ri
ze

s
cr

ea
tio

n
of

 p
ro

du
ct

s
fr

om
 th

e
so

ftw
ar

e
ba

se
lin

e
lib

ra
ry

.

2.
 A

 g
ro

u
p

 t
h

at
 is

 r
es

p
o

n
si

b
le

 f
o

r
co

o
rd

in
at

in
g

an
d

 im
p

le
m

en
ti

n
g

SC
M

 f
o

r
th

e
p

ro
je

ct
 (

i.e
.,

th
e

SC
M

 g
ro

u
p

)
ex

is
ts

. T
h

e
SC

M
 G

ro
u

p
 c

o
o

rd
in

at
es

 o
r

im
p

le
m

en
ts

:

a.
 C

re
at

io
n

an
d

m
an

ag
em

en
t o

f t
he

 p
ro

je
ct

’s
so

ftw
ar

e
ba

se
lin

e
lib

ra
ry

.

b.
 D

ev
el

op
m

en
t,

m
ai

nt
en

an
ce

, a
nd

 d
is

tr
ib

ut
io

n
of

 th
e

SC
M

 p
la

ns
, s

ta
nd

ar
ds

, a
nd

 p
ro

ce
du

re
s.

Appendix X � 591
c.

 T
he

 id
en

tifi
ca

tio
n

of
 th

e
se

t o
f w

or
k

pr
od

uc
ts

 to
 b

e
pl

ac
ed

 u
nd

er
 S

C
M

.

d.
 M

an
ag

em
en

t o
f t

he
 a

cc
es

s
to

 th
e

so
ftw

ar
e

ba
se

lin
e

lib
ra

ry
.

e.
 U

pd
at

es
 o

f t
he

 s
of

tw
ar

e
ba

se
lin

es
.

f.
 C

re
at

io
n

of
 p

ro
du

ct
s

fr
om

 th
e

so
ftw

ar
e

ba
se

lin
e

lib
ra

ry
.

g.
 R

ec
or

di
ng

 o
f S

C
M

 a
ct

io
ns

.

h.
 P

ro
du

ct
io

n
an

d
di

st
ri

bu
tio

n
of

 S
C

M
 r

ep
or

ts
.

3.
 A

d
eq

u
at

e
re

so
u

rc
es

 a
n

d
 f

u
n

d
in

g
ar

e
p

ro
vi

d
ed

 f
o

r
p

er
fo

rm
in

g
th

e
SC

M
 a

ct
iv

it
ie

s.

a.
 A

 m
an

ag
er

 is
 a

ss
ig

ne
d

sp
ec

ifi
c

re
sp

on
si

bi
lit

ie
s

fo
r

SC
M

.

b.
 T

oo
ls

 to
 s

up
po

rt
 th

e
SC

M
 a

ct
iv

iti
es

 a
re

 m
ad

e
av

ai
la

bl
e.

4.
 M

em
b

er
s

o
f

th
e

SC
M

 g
ro

u
p

 a
re

 t
ra

in
ed

 in
 t

h
e

o
b

je
ct

iv
es

, p
ro

ce
d

u
re

s,
 a

n
d

 m
et

h
o

d
s

fo
r

p
er

fo
rm

in
g

th
ei

r
SC

M
 a

ct
iv

it
ie

s.

5.
 M

em
b

er
s

o
f

th
e

so
ft

w
ar

e
en

gi
n

ee
ri

n
g

gr
o

u
p

 a
n

d
 o

th
er

 s
o

ft
w

ar
e-

re
la

te
d

 g
ro

u
p

s
ar

e
tr

ai
n

ed
 t

o
 p

er
fo

rm

th
ei

r
SC

M
 a

ct
iv

it
ie

s.

II
I.

A
ct

iv
it

ie
s

Pe
rf

o
rm

ed

1.
 A

 S
C

M
 p

la
n

 i
s

p
re

p
ar

ed
 f

o
r

ea
ch

 s
o

ft
w

ar
e

p
ro

je
ct

 a
cc

o
rd

in
g

to
 a

 d
o

cu
m

en
te

d
 p

ro
ce

d
u

re
.

a.
 T

he
 S

C
M

 p
la

n
is

 d
ev

el
op

ed
 in

 th
e

ea
rl

y
st

ag
es

 o
f,

an
d

in
 p

ar
al

le
l w

ith
, t

he
 o

ve
ra

ll
pr

oj
ec

t p
la

nn
in

g.

b.
 T

he
 S

C
M

 p
la

n
is

 r
ev

ie
w

ed
 b

y
th

e
af

fe
ct

ed
 g

ro
up

s.

c.
 T

he
 S

C
M

 p
la

n
is

 m
an

ag
ed

 a
nd

 c
on

tr
ol

le
d.

Ye
s

 E
vi

d
en

ce
 e

xi
st

s
th

at
 t

h
is

 s
u

b
-p

ra
ct

ic
e

is
 i

n
 p

la
ce

 a
n

d
 f

o
llo

w
ed

 i
n

 a
 fo

rm
al

 m
an

n
er

.

N
o

 T

h
er

e
w

as
 w

ea
k

o
r

n
o

 e
vi

d
en

ce
 t

h
at

 t
h

is
 s

u
b

-p
ra

ct
ic

e
is

 d
o

cu
m

en
te

d
, i

n
 p

la
ce

 o
r

fo
llo

w
ed

 i
n

 a
n

y
m

an
n

er
.

Ex

 I
n

d
ic

at
io

n
s

o
f

ex
ce

p
ti

o
n

al
ly

 s
tr

o
n

g
im

p
le

m
en

ta
ti

o
n

 o
f

th
is

 s
u

b
-p

ra
ct

ic
e

w
h

ic
h

 c
o

u
ld

 s
er

ve
 a

s
a

te
m

p
la

te
 f

o
r

ot
he

r
SS

A
.

So
ur

ce
:

C
M

U
/S

EI
-9

3-
TR

-2
5

(L
2-

72
-L

2-
83

)

592 � Software Configuration Management

SO
FT

W
A

R
E

C
O

N
FI

G
U

RA
TI

O
N

 M
A

N
A

G
EM

EN
T

B
ri

efi
ng

 E
va

lu
at

io
n

C
he

ck
 S

he
et

K
ey

 P
ra

ct
ic

e
an

d
Su

b-
pr

ac
tic

es
Ye

s
N

o
Ex

2.
 A

 d
oc

um
en

te
d

an
d

ap
pr

ov
ed

 S
C

M
 p

la
n

is
 u

se
d

as
 th

e
ba

si
s

fo
r

pe
rf

or
m

in
g

th
e

SC
M

 a
ct

iv
iti

es
. T

he
 p

la
n

co
ve

rs
:

a.
 T

he
 S

C
M

 a
ct

iv
iti

es
 to

 b
e

pe
rf

or
m

ed
, t

he
 s

ch
ed

ul
e

of
 a

ct
iv

iti
es

, t
he

 a
ss

ig
ne

d
re

sp
on

si
bi

lit
ie

s,
 a

nd
 th

e
re

so
ur

ce
s

re
qu

ir
ed

 (i
nc

lu
di

ng
 s

ta
ff,

 to
ol

s,
 a

nd
 c

om
pu

te
r

fa
ci

lit
ie

s)
.

b.
 T

he
 S

C
M

 re
qu

ir
em

en
ts

 a
nd

 a
ct

iv
iti

es
 to

 b
e

pe
rf

or
m

ed
 b

y
th

e
so

ftw
ar

e
en

gi
ne

er
in

g
gr

ou
p

an
d

ot
he

r s
of

tw
ar

e
so

ftw
ar

e-
re

la
te

d
gr

ou
ps

.

3.
 A

 c
on

fig
ur

at
io

n
m

an
ag

em
en

t l
ib

ra
ry

 s
ys

te
m

 is
 e

st
ab

lis
he

d
as

 a
 re

po
si

to
ry

 fo
r t

he
 s

of
tw

ar
e

ba
se

lin
es

. T
he

 li
br

ar
y

sy
st

em
:

a.
 S

up
po

rt
s

m
ul

tip
le

 c
on

tr
ol

 le
ve

ls
 o

f S
C

M
.

b.
 P

ro
vi

de
s

fo
r

th
e

st
or

ag
e

an
d

re
tr

ie
va

l o
f c

on
fig

ur
at

io
n

ite
m

s/
un

its
.

c.
 P

ro
vi

de
s

fo
r

th
e

sh
ar

in
g

an
d

tr
an

sf
er

 o
f c

on
fig

ur
at

io
n

ite
m

s/
un

its
 b

et
w

ee
n

th
e

af
fe

ct
ed

 g
ro

up
s

an
d

be
tw

ee
n

co
nt

ro
l l

ev
el

s
w

ith
in

 th
e

lib
ra

ry
.

d.
 H

el
ps

 in
 th

e
us

e
of

 p
ro

du
ct

 s
ta

nd
ar

ds
 fo

r
co

nfi
gu

ra
tio

n
ite

m
s/

un
its

.

e.
 P

ro
vi

de
s

fo
r

th
e

st
or

ag
e

an
d

re
tr

ie
va

l o
f a

rc
hi

ve
 v

er
si

on
s

of
 c

on
fig

ur
at

io
n

ite
m

s/
un

its
.

f.
 H

el
ps

 to
 e

ns
ur

e
co

rr
ec

t c
re

at
io

n
of

 p
ro

du
ct

s
fr

om
 th

e
ba

se
lin

e
lib

ra
ry

.

g.
 P

ro
vi

de
s

fo
r

th
e

st
or

ag
e,

 u
pd

at
e,

 a
nd

 r
et

ri
ev

al
 o

f S
C

M
 r

ec
or

ds
.

h.
 S

up
po

rt
s

pr
od

uc
tio

n
of

 S
C

M
 r

ep
or

ts
.

i.
 P

ro
vi

de
s

fo
r

th
e

m
ai

nt
en

an
ce

 o
f t

he
 li

br
ar

y
st

ru
ct

ur
e

an
d

co
nt

en
ts

.

4.
 T

he
 s

of
tw

ar
e

w
or

k
pr

od
uc

ts
 to

 b
e

pl
ac

ed
 u

nd
er

 c
on

fig
ur

at
io

n
m

an
ag

em
en

t a
re

 id
en

tifi
ed

.

a.
 T

he
 c

on
fig

ur
at

io
n

ite
m

s/
un

its
 a

re
 s

el
ec

te
d

ba
se

d
on

 d
oc

um
en

te
d

cr
ite

ri
a.

b.
 T

he
 c

on
fig

ur
at

io
n

ite
m

s/
un

its
 a

re
 a

ss
ig

ne
d

un
iq

ue
 id

en
tifi

er
s.

Appendix X � 593
c.

 T
he

 c
ha

ra
ct

er
is

tic
s

of
 e

ac
h

co
nfi

gu
ra

tio
n

ite
m

/u
ni

t a
re

 s
pe

ci
fie

d.

d.
 T

he
 s

of
tw

ar
e

ba
se

lin
es

 to
 w

hi
ch

 e
ac

h
co

nfi
gu

ra
tio

n
ite

m
/u

ni
t b

el
on

gs
 a

re
 s

pe
ci

fie
d.

e.
 T

he
 p

oi
nt

 in
 it

s
de

ve
lo

pm
en

t t
ha

t e
ac

h
co

nfi
gu

ra
tio

n
ite

m
/u

ni
t i

s
pl

ac
ed

 u
nd

er
 c

on
fig

ur
at

io
n

m
an

ag
em

en
t

is
 s

pe
ci

fie
d.

f.
 T

he
 p

er
so

n
re

sp
on

si
bl

e
fo

r
ea

ch
 c

on
fig

ur
at

io
n

ite
m

/u
ni

t (
i.e

.,
th

e
ow

ne
r,

fr
om

 a
 c

on
fig

ur
at

io
n

m
an

ag
em

en
t

po
in

t o
f v

ie
w

) i
s

id
en

tifi
ed

.

5.
 C

ha
ng

e
re

qu
es

ts
 a

nd
 p

ro
bl

em
 r

ep
or

ts
 fo

r
al

l c
on

fig
ur

at
io

n
ite

m
s/

un
its

 a
re

 in
iti

at
ed

, r
ec

or
de

d,
 r

ev
ie

w
ed

,
ap

pr
ov

ed
, a

nd
 tr

ac
ke

d
ac

co
rd

in
g

to
 a

 d
oc

um
en

te
d

pr
oc

ed
ur

e.

6.
 C

ha
ng

es
 to

 b
as

el
in

es
 a

re
 c

on
tr

ol
le

d
ac

co
rd

in
g

to
 a

 d
oc

um
en

te
d

pr
oc

ed
ur

e.
 T

hi
s

pr
oc

ed
ur

e
ty

pi
ca

lly
 s

pe
ci

fie
s

th
at

:

a.
 R

ev
ie

w
s

an
d/

or
 r

eg
re

ss
io

n
te

st
s

ar
e

pe
rf

or
m

ed
 to

 e
ns

ur
e

th
at

 c
ha

ng
es

 h
av

e
no

t c
au

se
d

un
in

te
nd

ed
 e

ffe
ct

s
on

 th
e

ba
se

lin
e.

b.
 O

nl
y

co
nfi

gu
ra

tio
n

ite
m

s/
un

its
 th

at
 a

re
 a

pp
ro

ve
d

by
 th

e
SC

C
B

 a
re

 e
nt

er
ed

 in
to

 th
e

so
ftw

ar
e

ba
se

lin
e

lib
ra

ry
.

c.
 C

on
fig

ur
at

io
n

ite
m

s/
un

its
 a

re
 c

he
ck

ed
 in

 a
nd

 o
ut

 in
 a

 m
an

ne
r t

ha
t m

ai
nt

ai
ns

 th
e

co
rr

ec
tn

es
s

an
d

in
te

gr
ity

 o
f

th
e

so
ftw

ar
e

ba
se

lin
e

lib
ra

ry
.

7.
 P

ro
du

ct
s

fr
om

 th
e

so
ftw

ar
e

ba
se

lin
e

lib
ra

ry
 a

re
 c

re
at

ed
 a

nd
 th

ei
r

re
le

as
e

is
 c

on
tr

ol
le

d
ac

co
rd

in
g

to
 a

do

cu
m

en
te

d
pr

oc
ed

ur
e.

 T
hi

s
pr

oc
ed

ur
e

ty
pi

ca
lly

 s
pe

ci
fie

s
th

at
:

a.
 T

he
 S

C
C

B
 a

ut
ho

ri
ze

s
th

e
cr

ea
tio

n
of

 p
ro

du
ct

s
fr

om
 th

e
so

ftw
ar

e
ba

se
lin

e
lib

ra
ry

.

b.
 P

ro
du

ct
s

fr
om

 th
e

so
ftw

ar
e

ba
se

lin
e

lib
ra

ry
, f

or
 b

ot
h

in
te

rn
al

 a
nd

 e
xt

er
na

l u
se

, a
re

 b
ui

lt
on

ly
 fr

om

co
nfi

gu
ra

tio
n

ite
m

s/
un

its
 in

 th
e

so
ftw

ar
e

ba
se

lin
e

lib
ra

ry
.

Ye
s

 E
vi

d
en

ce
 e

xi
st

s
th

at
 t

h
is

 s
u

b
-p

ra
ct

ic
e

is
 i

n
 p

la
ce

 a
n

d
 f

o
llo

w
ed

 i
n

 a
 fo

rm
al

 m
an

n
er

.
N

o

 T
h

er
e

w
as

 w
ea

k
o

r
n

o
 e

vi
d

en
ce

 t
h

at
 t

h
is

 s
u

b
-p

ra
ct

ic
e

is
 d

o
cu

m
en

te
d

, i
n

 p
la

ce
 o

r
fo

llo
w

ed
 i

n
 a

n
y

m
an

n
er

.
Ex

In
d

ic
at

io
n

s
o

f
ex

ce
p

ti
o

n
al

ly
 s

tr
o

n
g

im
p

le
m

en
ta

ti
o

n
 o

f
th

is
 s

u
b

-p
ra

ct
ic

e
w

h
ic

h
 c

o
u

ld
 s

er
ve

 a
s

a
te

m
p

la
te

 f
o

r
o

th
er

 S
SA

.
So

ur
ce

:
C

M
U

/S
EI

-9
3-

TR
-2

5
(L

2-
72

-L
2-

83
)

594 � Software Configuration Management

SO
FT

W
A

R
E

C
O

N
FI

G
U

RA
TI

O
N

 M
A

N
A

G
EM

EN
T

B
ri

efi
ng

 E
va

lu
at

io
n

C
he

ck
 S

he
et

Ke
y

Pr
ac

ti
ce

 a
nd

 S
ub

-p
ra

ct
ic

es
Ye

s
N

o
Ex

8.
 T

he
 s

ta
tu

s
of

 c
on

fig
ur

at
io

n
ite

m
s/

un
its

 is
 r

ec
or

de
d

ac
co

rd
in

g
to

 a
 d

oc
um

en
te

d
pr

oc
ed

ur
e.

 T
hi

s
pr

oc
ed

ur
e

ty
pi

ca
lly

 s
pe

ci
fie

s
th

at
:

a.
 T

he
 c

on
fig

ur
at

io
n

m
an

ag
em

en
t a

ct
io

ns
 a

re
 re

co
rd

ed
 in

 s
uf

fic
ie

nt
 d

et
ai

l s
o

th
at

 th
e

co
nt

en
t a

nd
 s

ta
tu

s
of

ea

ch
 c

on
fig

ur
at

io
n

ite
m

/u
ni

t a
re

 k
no

w
n

an
d

pr
ev

io
us

 v
er

si
on

s
ca

n
be

 r
ec

ov
er

ed
.

b.
 T

he
 c

ur
re

nt
 s

ta
tu

s
an

d
hi

st
or

y
(i.

e.
, c

ha
ng

es
 a

nd
 o

th
er

 a
ct

io
ns

) o
f e

ac
h

co
nfi

gu
ra

tio
n

ite
m

/u
ni

t a
re

m

ai
nt

ai
ne

d.

9.
 S

ta
nd

ar
d

re
po

rt
s

do
cu

m
en

tin
g

th
e

SC
M

 a
ct

iv
iti

es
 a

nd
 th

e
co

nt
en

ts
 o

f t
he

 s
of

tw
ar

e
ba

se
lin

e
ar

e
de

ve
lo

pe
d

an
d

m
ad

e
av

ai
la

bl
e

to
 a

ffe
ct

ed
 g

ro
up

s
an

d
in

di
vi

du
al

s.

10
. S

of
tw

ar
e

ba
se

lin
e

au
di

ts
 a

re
 c

on
du

ct
ed

 a
cc

or
di

ng
 to

 a
 d

oc
um

en
te

d
pr

oc
ed

ur
e.

 T
hi

s
pr

oc
ed

ur
e

ty
pi

ca
lly

sp

ec
ifi

es
 th

at
:

a.
 T

he
re

 is
 a

de
qu

at
e

pr
ep

ar
at

io
n

fo
r

th
e

au
di

t.

b.
 T

he
 in

te
gr

ity
 o

f s
of

tw
ar

e
ba

se
lin

es
 is

 a
ss

es
se

d.

c.
 T

he
 s

tr
uc

tu
re

 a
nd

 fa
ci

lit
ie

s
of

 th
e

co
nfi

gu
ra

tio
n

m
an

ag
em

en
t l

ib
ra

ry
.

d.
 T

he
 c

om
pl

et
en

es
s

an
d

co
rr

ec
tn

es
s

of
 th

e
so

ftw
ar

e
ba

se
lin

e
lib

ra
ry

 c
on

te
nt

s
ar

e
re

vi
ew

ed
.

e.
 C

om
pl

ia
nc

e
w

ith
 a

pp
lic

ab
le

 S
C

M
 s

ta
nd

ar
ds

 a
nd

 p
ro

ce
du

re
s

is
 v

er
ifi

ed
.

f.
 T

he
 r

es
ul

ts
 o

f t
he

 a
ud

it
ar

e
re

po
rt

ed
 to

 th
e

pr
oj

ec
t s

of
tw

ar
e

m
an

ag
er

.

g.
 A

ct
io

n
ite

m
s

fr
om

 th
e

au
di

t a
re

 tr
ac

ke
d

to
 c

lo
su

re
.

IV
. M

ea
su

re
m

en
t a

nd
 A

na
ly

si
s

1.
 M

ea
su

re
m

en
ts

 a
re

 m
ad

e
an

d
us

ed
 to

 d
et

er
m

in
e

th
e

st
at

us
 o

f t
he

 S
C

M
 a

ct
iv

iti
es

.

V.
 V

er
ify

in
g

Im
pl

em
en

ta
tio

n

1.
 T

he
 S

C
M

 a
ct

iv
iti

es
 a

re
 r

ev
ie

w
ed

 w
ith

 s
en

io
r

m
an

ag
em

en
t o

n
a

pe
ri

od
ic

 b
as

is
.

Appendix X � 595
2.

 T
he

 S
C

M
 a

ct
iv

iti
es

 a
re

 r
ev

ie
w

ed
 w

ith
 th

e
pr

oj
ec

t m
an

ag
er

 o
n

bo
th

 a
 p

er
io

di
c

an
d

ev
en

t-
dr

iv
en

 b
as

is
.

3.
 T

he
 S

C
M

 g
ro

up
 p

er
io

di
ca

lly
 a

ud
its

 s
of

tw
ar

e
ba

se
lin

es
 to

 v
er

ify
 th

at
 th

ey
 c

on
fo

rm
 to

 th
e

do
cu

m
en

ta
tio

n
th

at
 d

efi
ne

s
th

em
.

4.
 T

he
 s

of
tw

ar
e

qu
al

ity
 a

ss
ur

an
ce

 g
ro

up
 r

ev
ie

w
s

an
d/

or
 a

ud
its

 th
e

ac
tiv

iti
es

 a
nd

 w
or

k
pr

od
uc

ts
 fo

r
SC

M
 a

nd

re
po

rt
s

th
e

re
su

lts
. A

t a
 m

in
im

um
, t

he
 r

ev
ie

w
s

an
d/

or
 a

ud
its

 v
er

ify
:

a.
 C

om
pl

ia
nc

e
w

ith
 th

e
SC

M
 s

ta
nd

ar
ds

 a
nd

 p
ro

ce
du

re
s

by
:

h
 th

e
SC

M
 g

ro
up

, h
 th

e
SC

C
B,

 h
 th

e
so

ftw
ar

e
en

gi
ne

er
in

g
gr

ou
p,

 a
nd

 h
 o

th
er

 s
of

tw
ar

e-
re

la
te

d
gr

ou
ps

.

b.
 O

cc
ur

re
nc

e
of

 p
er

io
di

c
so

ftw
ar

e
ba

se
lin

e
au

di
ts

.

N
ot

es
:

Ye
s

Ev

id
en

ce
 e

xi
st

s
th

at
 t

h
is

 s
u

b
-p

ra
ct

ic
e

is
 i

n
 p

la
ce

 a
n

d
 f

o
llo

w
ed

 i
n

 a
 fo

rm
al

 m
an

n
er

.
N

o

 T
h

er
e

w
as

 w
ea

k
o

r
n

o
 e

vi
d

en
ce

 t
h

at
 t

h
is

 s
u

b
-p

ra
ct

ic
e

is
 d

o
cu

m
en

te
d

, i
n

 p
la

ce
 o

r
fo

llo
w

ed
 i

n
 a

n
y

m
an

n
er

.
Ex

 I

n
d

ic
at

io
n

s
o

f
ex

ce
p

ti
o

n
al

ly
 s

tr
o

n
g

im
p

le
m

en
ta

ti
o

n
 o

f
th

is
 s

u
b

-p
ra

ct
ic

e
w

h
ic

h
 c

o
u

ld
 s

er
ve

 a
s

a
te

m
p

la
te

 f
o

r
o

th
er

 S
SA

.
So

ur
ce

:
C

M
U

/S
EI

-9
3-

TR
-2

5
(L

2-
72

-L
2-

83
)

597

Appendix Y

SUPPLIER CM MARKET
ANALYSIS QUESTIONNAIRE

1. Do you have a viable engineering drawing and part numbering system?
Explain.

2. What is your method of re-identifying parts when changes are made?
How do you relate part number changes to the serial numbers of
the deliverable item?

3. How do you manage item modifications?
4. How do you inform your own personnel and customers of changes

to your product?
5. Do you currently operate using all or any portions of any recognized

CM standard?
6. Do you employ a formal change review process? Do you operate a

change control board? A Material Review Board?
7. How do you assure the currency, integrity, and consistency of:

— Specifications
— Software
— Documentation
— Service Manuals
— Operating Manuals

8. Do you have a release procedure for documentation? Explain.
9. Do you apply serial numbers and or lot numbers to your products?

How are they assigned and marked?
10. By what method do you assure that products delivered to your

customers comply with the customers order and specification?
11. What type of communication relative to change activity do you have

with your suppliers?
12. Do you ever install refurbished components in your products?

598 � Software Configuration Management

13. If a product line is dropped, when is a customer notified? What
options are offered the customer?

14. If a component that is supplied to the customer as a spare part is
being changed, how and when is the customer notified?

15. How do you support your products? What options are typically
available to the customer?

599

Index

Note: Italicized pages refer to illustrations and tables

A

Abstract specification, 373
Acceptance criteria, 417
Acceptance testing, 376
Acceptance test procedures, 154
Access

control of, 181
privileges, 181
risks in, 18

Accounting subsystem, 322, 350–353
Acquisition managers, 505
Ada programming language, 224
Adaptive maintenance, 186
Administrative manuals, 124
Agile Configurator (configuration

management tool), 269
Agile Program Execution (configuration

management tool), 269
Agile Software Corp., 269
Algorithm design, 372–373
Allocated baseline, 92–94; see also

Baselines
definition of, 467, 541
in software configuration

management plan (SCMP),
495

Allocated configuration documentation
(ACD), 93, 467, 541

Alteration instructions, 549
American National Standards Institute

(ANSI), 204–205
American Standard Code for Information

Interchange (ASCII), 204–205
Anomalies, 210–211
ANSI/IEEE standards

1002–1987 (Taxonomy for Software
Engineering), 207

1008-1987 (Software Unit Testing),
207

1042-1987 (Software Configuration
Management), 210

829-1983 (Software Test
Documentation),
221–222

Antipatterns, 145
Application activity, 541
Application Control subsystem, 322,

327–331
Approvals, 417, 541
Approved data, 178, 493, 541
Architectural design, in software

inspection, 372
Archive records table, 516
Archived document, 541
As-built, 467
Assemblies, 541
Asset Management System (configuration

management tool), 267
Attributes, 547
Audit, 467

agenda checklist, 152
definition of, 561
planning checklist, 152
reports, 561
results checklist, 155
teams checklist, 152

Automated testing, 166–168; see also
Software testing; Test plans

components of, 170
lessons learned in, 171
principles in, 169
techniques in, 169–170
tools, 166–170

Auto-Trol Technology Corp.,
266–267

600 � Software Configuration Management

AXALANT2000 Service Pack 3
(configuration management
tool), 264

B

Baselines, 13
in configuration change management,

186
in configuration control, 507–508
in configuration identification, 80, 125
in configuration management (CM)

plans, 24, 494–495
definition of, 467, 541–542, 561
types of, 92–94

Batch change, 191
Benchmarking, 372
BitMover Inc., 270
Bk/Pro (configuration management tool),

270
Boards, 476, 502–507
Borland Delphi (software), 131
Breeze (configuration management tool),

270
Budget, 1–2, 239–240
Business cases, 132–136
Business impact risk, 283
Business risks, 17

C

C++ Test, 168
Cancelled projects, 239
Cantata++, 168
Capability Maturity Model (CMM), 197,

561
Carnegie Mellon University, 246
Causal analysis, 378
CCC/Harvest (configuration management

tool), 272
Center for Software Engineering (CSE),

31
Change Control Boards (CCBs), 25, 110
Change control form identification, 24
Change control process, 11, 41, 291
Change identification, 189–191
Change management, 189–194, 419,

435–436

Change process, 13–14
Change request (CR), 563

controlled, 564
flow, 192
forms, 467, 496, 508–509
identified, 564
table, 515

Change sizing, 33
ChangeMan (configuration management

tool), 272
Change-prone modules, 189
Cheating, 17
Check-in/check-out procedures, 11
Chicago Interface Group, Inc., 270, 272
Class testing, 326
ClearCase (configuration management

tool), 272
Cloud 9 (configuration management

tool), 270
COCOMO II (Cost Construction Model),

31, 32
Codes and code development, 532–533;

see also Software design and
development

deliverables in, 287
documentation in, 132
errors in, 160
inspection of, 369
measures in, 247

Collaborative Product Development
solution (configuration
management tool), 265

Comments, 140
Commitment, 17, 198
Communication plans, 416, 419–420
Company identifier, 125
Compilers, 10
Complexity metrics, 241, 243, 255
Component design, 372–373
Component testing, 376
Computer Associates, 271
Computer operator manual, 91, 489
Computer programming manual, 91, 490
Computer software, see Software
Computer software components (CSCs),

532
Computer software configuration items

(CSCIs), 87; see also
Configuration items (CIs)

Index � 601

configuration audits, 154
definition of, 564
designs, 484
identifiers, 96–97
project-oriented, 465
qualification testing, 486–487
selecting, 494
test planning, 480
testing, 533–534

Computer-aided design (CAD), 88
Computer-aided design software

engineering (CASE), 88, 130
Concept and technology development

phase (software life cycle), 59
configuration control in, 59–60, 102
configuration identification in, 58–59
configuration status accounting in, 60,

118
management and planning, 58

Concept exploration and definition phase
(software life cycle), 477–479

Concept of operations (ConOps),
219–220

Configuration, 468, 541
Configuration auditing, 14–15

checklists, 152–155
components of, 158–159
concerns addressed by, 151
conducting, 152–155
in configuration management (CM)

plans, 25
definition of, 468, 563
functional, 149–150, 518, 545
during life cycle, 150–151
physical, 150, 518
in production and deployment phase,

69
roles and responsibilities, 587
in software configuration

management (SCM), 475,
517–519

in system development and
demonstration phase, 64–65

testing methodology, 159–171
Configuration baselines, see Baselines
Configuration change control, 10–13,

24–25
Configuration change management, 183

change identification in, 189–191

change implementation and
verification in, 193–194

evaluation and coordination in,
191–193

maintenance process in, 184–186
product baselines in, 186
standards, 202–203

Configuration control, 101
baselines in, 507–508
boards in, 502
change request forms, 508–509
in concept and technology

development phase, 59–60,
102

definition of, 468, 542, 563–564
in DoD configuration management

(CM) process model, 50
in operations and support phase,

70–71, 102
process of, 101–103
in production and deployment phase,

66–67, 102
roles and responsibilities, 583
in software configuration

management (SCM), 475,
583–584

in system development and
demonstration phase, 62–63,
102

Configuration Control Board, 542
Configuration Control Board Directive

(CCBD), 542
Configuration documentation, 86; see also

Documentation
as-built software product definition,

90
in configuration identification process,

79
definition of, 542
design solution documents, 88–89
engineering release, 97
scope of, 124
software architectural and detailed

design, 90
software documentation list, 89
software integration and qualification

testing, 90
software requirements analysis and

design, 89–90

602 � Software Configuration Management

specification types by objects, 86–87
specification types by purpose, 87–88
system operation, 90–91
system requirements analysis and

architectural design, 89
system/software maintenance, 91

Configuration identification, 8–10
baselines in, 125, 494–495
in concept and technology

development phase, 58–59
configuration items (CIs), 78–82
in configuration management (CM)

plans, 24, 494–500
configuration management libraries,

498–500
definition of, 468, 542, 564
developmental configuration, 497–498
in DoD configuration management

(CM) process model, 49–50
evaluation checklist, 79–80
hierarchy, 9
identification methods, 495–497
interface management in, 97–99
in operations and support phase, 70
overview of, 75
product identifiers, 124–125
product structure, 77, 124
in production and deployment phase,

66
in project plans, 28–29
purposes and benefits of, 76–77
roles and responsibilities, 581
scope of, 75–76
selecting computer software

configuration items (CSCIs) in,
494

in software configuration
management (SCM), 474,
581–582

standards, 201–202
in system development and

demonstration phase, 61–62
uses of, 123–125

Configuration items (CIs), 78–82; see also
Documents

baselines, 91–94
in configuration identification, 28–29
in configuration management (CM)

process, 45–46

definition of, 468, 543
detail specifications, 87–88
general guidance, 82–83
identification of, 95–96
item specifications, 86–87
optimum number of, 85–86
performance specifications, 87
process specifications, 87
selection checklist for, 83–84
software specifications, 87
system specifications, 86

Configuration management (CM), 4
activity model, 49
antipatterns, 145
automation of, 257–262
benefits and risks, 58–71
benefits of, 47
change identification in, 189–191
change implementation and

verification in, 193–194
concept and technology development

phase, 58–60
configuration audit in, 64–65, 69
configuration control in, 50, 59–60,

62–63, 66–67, 70–71
configuration identification in, 49–50,

58–59, 66, 70
configuration status accounting in,

50–51, 60, 63–64, 67–69, 71
configuration verification and audit in,

51
of data, see Data management
definition of, 543
evaluation and coordination in,

191–193
implementing, 55–56
improvements and lessons learned in,

72
libraries, 498–500
in maintenance plan, 452
management activities in, 53, 54
management and planning, 48–49,

58–61, 65, 69–70
metrics, 56–58, 242
model overview, 46
operations and support phase,

69–71
phasing and milestones, 535
physical, 547

Index � 603

production and deployment phase,
65–69

risks in, 47–48
scope of, 45
standards, 234
steps in, 189–194
system development and

demonstration phase, 60–65
and systems engineering process,

51–55
tools, 262–272

Configuration management (CM) plans,
10, 24–26

definition of, 543
standards, 200–201

Configuration status accounting (CSA),
13–14

activity model, 116
in concept and technology

development phase, 60, 118
in configuration identification, 126
in configuration management (CM)

plans, 25
definition of, 468, 543, 564
in DoD configuration management

(CM) process model, 50–51
in engineering change proposals

(ECPs), 112
evolution over system CI life cycle,

117
information across product life cycle,

127
information over acquisition program

life cycle, 116–117
in operations and support phase, 71,

120
overview, 115–116
process evaluation checklist,

120–121
processes used in, 509–517
in production and deployment phase,

67–69, 119–120
in project plans, 42–43
records, 515–516
reports, 517, 564
roles and responsibilities, 585
in software configuration

management (SCM), 475
standards, 203

in system development and
demonstration phase, 63–64,
118–119

Configuration verification and audit, 51
activity model, 147
components of verification

methodology, 157–158
concepts and principles, 146–151
configuration audit in, 149–150
configuration verification in, 147–148
inputs to, 146
scope of, 146

Constructs, 233
Contractors, 506
Contracts, 543
Contractual acceptance of data, 543
Control function, 3
Control sheets, 137
Controlled centralized (CC) team

structure, 40
Controlled change request (CR), 564
Controlled decentralized (CD) team

structure, 40
Copy number, 496
Correction of deficiency, in engineering

change proposals (ECPs), 104
Corrective Action Processing (CAP), 404,

497–498
Corrective maintenance, 186
COSMIC-FFP functional size

measurement method, 236
Costs, 2

evaluation measures, 243
life-cycle, 546
nonrecurring, 547
recurring, 548
reduction of, 104
risks, 17
of system maintenance, 187–188

Coverage measures, 243
Critical design review (CDR), 532
Critical path method (CPM), 35
Critical success factor documents, 416
CSU testing, 532–533
Culture shock, 17
Cumulative failure profile, 250
Current document change authority

(CDCA), 543
Customer acceptance testing, 164

604 � Software Configuration Management

Customer characteristics risk, 283
Customer registration, 356–357
Customer Relationship Management

subsystem, 322, 353
Customer repair (CR) items, 543
Customer services project leaders, 424
Cyclomatic complexity, 252, 255

D

Daily build and smoke test, 161–162
Data, 173–174

access control, 181
approved, 178
collection and measurement plan,

244–245
contractual acceptance of, 543
definition of, 543
descriptive files, 233
distribution and access, 492
distribution table, 516
items, 543
released, 177
repository, 112
security plans, 416, 494
submitted, 177–178, 493, 549
transmission of, 180
version control, 179–180
working, 177

Data dictionary (DD), 137, 138,
311–312

Data flow complexity, 253–254
Data management, 173–174

activity model, 174
automated data processing and

submittal in, 493
data access control, 181
data distribution and access in, 492
data security and classification

management in, 494
data status level management in,

177–178
data version control in, 179–180
digital data transmittal in, 180
document identification in, 175–177
interactive access to digital data,

493
product configuration in, 178–179
responsibilities, 492–494

in software configuration
management (SCM), 474,
492–494

status reporting, 494
Data status level management, 177–178
Data structure design, 372–373
Database, 543

coding, 374
design description, 90, 373, 482
inspection of, 369
schema verification, 158

Database administration interface, 276
Dataflow diagrams (DFD), 133
Debuggers, 10, 188
Decentralized repositories, 145
Defect density, 249
Defects, 544
Deficiencies, 544
Defined personnel, 564
Defined process, 247
Deliverables, 151

definition of, 468
in project development lifecycle,

286–287
in project statement of work (SOW),

416
Democratic decentralized (DD) team

structure, 40
Demonstration and validation phase

(software life cycle), 479–480
Design change, 544
Design complexity, 247
Design loop, 52
Design solution documents, 88–89
Design specifications, 10

verification of, 158
Design structure, 252
Desktop procedure (DTP), 564, 575–576
Detail specifications, 87–88
Detailed design, 287, 532
Development before the fact (DBTF), 130
Development configuration baseline, 92
Development procedures and standards,

10
Development risk, 283
Developmental configuration, 468,

497–498
Deviations, 103, 468, 509
Diagrams, 233, 234

Index � 605

Digital data management, 204
Digital data transmittal, 180
Distributed Transaction Processing

(DTP), 235
Distribution statement, 544
Doc-o-Matic (documentation software),

131
Document change request (DCR),

390–391, 528–529
Documentation, 126–130

of audit results checklist, 155
in configuration management (CM),

190–191
and cost of systems maintenance, 188
definition of, 541
deliverables, 286
key practices and subpractices,

129–130
library, 500
maintaining, 140–143
in maintenance plans, 453
of maintenance process, 185–186
maturity model, 128
methods in, 130–131
organizing in, 141–143
standards, 132–140, 158, 233, 234
tools, 130–131

Documented process, 120
Documents, 544; see also Configuration

items (CIs)
custodian activity, 544
identification, 94–97, 175–177, 495
identifiers, 96–97
part/item identification number, 96
representation, 176, 544

DoD engineering change proposal,
294–309

Dog E-DayCareTM system, 320
accounting subsystem, 350–353
application control subsystem,

327–331
class testing, 326
customer registration, 356–357
customer relationship management

subsystem, 353
goals and objectives, 320
initiating orders in, 359–360
integration testing tests, 356–362
major constraints, 321

order subsystem, 341–350
paying for services in, 361–362
persistence subsystem, 353–356
placing orders in, 360–361
project schedule, 362–363
resource allocation, 358–359
resource management subsystem,

338–341
service providers, 359–360
statement of scope, 321
system description, 322–324
test plan, 321–326
test procedures, 326–327
testing artifacts, 325
testing metrics, 325
testing resources, 324–325
testing schedule, 326
testing strategy, 324
user management subsystem, 331–338

Drawing library, 500
Drivers, 163

E

eB Action Explorer (configuration
management tool), 268

eB Doc Controller (configuration
management tool), 267–268

eB Explorer (configuration management
tool), 268

eB Item Controller (configuration
management tool), 268

E-factory (configuration management
tool), 264

Effort metric, 256
EIA-649 standard, 47

change management, 183
configuration change management,

202–203
configuration identification, 95,

201–202
configuration management planning,

200–201
configuration status accounting, 203
configuration verification and audit,

203–204
data access, 181
data transmittal, 180
digital data management, 204

606 � Software Configuration Management

documentation, 158
verification, 157

EIA836 standard, 199
EIGNER, 264–265
Electronic Data Systems Corp., 264
Electronic Industries Alliance (EIA),

199
Electronic signatures, 178
Emergency priority, 105
End products, 564
Endevor for MVS (configuration

management tool), 271
End-to-end testing, 376
End-user help files, 140
End-user manuals, 124
Engineering and manufacturing

development phase (software
life cycle), 150

concept and exploration, 480
CSCI qualification testing, 486–487
establishment of software

development environment,
481–482

hardware configuration item (HWCI)
integration and testing,
487–488

project planning and oversight,
480–481

software design, 484
software implementation and unit

testing, 485
software requirements analysis,

483–484
software transition preparation, 490
software use preparation, 489–490
system design, 482–483
system qualification testing, 488–489
system requirements analysis, 482
unit integration and testing, 485–486

Engineering Central (configuration
management tool), 265

Engineering change, 544
Engineering change directive (ECD), 545
Engineering change proposals (ECPs),

103, 104
content of, 106–112
definition of, 468, 545
description of proposed changes in,

106–107

effect of proposed changes in,
107–109

estimated net total cost impact in,
109–110

identification and administrative
attributes, 106

implementation actions, 110
implementation milestones, 110
justification codes for, 104
preliminary, 104
priorities, 105
request for deviation (RFD), 103
sample of, 294–309
types and functions, 104
use of, 508–509

Engineering drawings, 88, 153
Engineering release, 97

and configuration control, 154
in software configuration

management (SCM), 497
Entity relationship diagrams (ERDs), 131
Entry criteria (software configuration

management), 559; see also
Software configuration
management (SCM)

in configuration audits and reviews,
586

in configuration control, 583
in configuration status accounting,

585
management resources and personnel

activity, 577
SCM management, 569
SCM support, 567
SCM tasks management, 574–575
SCMP creation and maintenance, 571

Errors, 243
Estimation, 30

decomposition techniques in, 33
empirical models in, 33
line of code, 31
process-based, 31
in project plans, 278–279

Exchangeability of items, 545
Executable software, 490
Exit criteria (software configuration

management), 559; see also
Software configuration
management (SCM)

Index � 607

in configuration audits and reviews,
588

in configuration control, 584
in configuration identification, 582
desktop procedure (DTP), 576
management resources and personnel

activity, 578
SCM management, 570
SCM support, 568
SCM tasks management, 575
SCM training, 579
SCMP creation and maintenance, 572
SCMP implementation, 573

F

Facilitated Application Specification
Techniques (FAST), 30

Faculty training, 287
Failures, 243

statistics, 239–240
time between, 194–195

Fault density, 249
Fault-days number, 250
Faults, 14, 243
Feasibility studies, 124, 157
Femap (configuration management tool),

264
Field activities, 564
File naming, 493
Firmware, 469; see also Software

definition of, 545
identification, 496
support manual, 91, 490

Fit, 545
Fleet users, 506
Flowcharts, 132, 135
Form, 545
Formal engineering change proposal

(ECP), 105
Formal qualification testing (FQT), 534
Forms, 124
Four-level documentation maturity

model, 128
Function configuration documentation

(FCD), 93
Function point analysis, 236–237
Function point sizing, 33
Functional analysis and allocations, 52

Functional baseline, 92–93; see also
Baselines

definition of, 13, 469, 545
in software configuration

management plan (SCMP),
495

Functional characteristics, 545
Functional configuration audit (FCA), 15,

518; see also Configuration
auditing

checklist, 552
definition of, 469, 545
uses of, 149–150

Functional configuration documentation
(FCD), 469, 545

Functional test coverage, 250
Functions, 545
Fuzzy-logic sizing, 33

G

Gantt chart, 38, 39
General Inter-ORB Protocol (GIRB),

235–236
Generic change process, 12
Graphic Report Builder (configuration

management tool), 267

H

Halstead's effort metric, 256
Hamilton Technologies 001 (CASE tool),

130
Hardware, 545

in project plans, 40
sizing, 372
specifications, 372

Hardware configuration item (HWCI),
487–488

Help files, 140, 141
Help-desk manuals, 124
High-level design, 372–373

I

IBM Direct Sales, 271
Identification numbers, 190–191
Identified change request (CR), 564

608 � Software Configuration Management

Identifiers, 96–97, 124–125
IEEE (Institute of Electrical and

Electronics Engineer)
standard, 207–224

1012-1986 (Software Verification and
Validation Plans), 207–208

1016-1986 (Software Design
Descriptions), 208

1028-1988 (Software Reviews and
Audits), 209–210

1044-1993 (Software Anomalies),
210–211

1045-1992 (Software Productivity
Metrics), 211

1058.1-1987 (Software Project
Management Plans), 211–212

1059-1993 (Software Verification and
Validation Plans), 212

1061-1992 (Software Quality Metrics),
212–213

1062-1993 (Software Acquisition), 213
1063-1987 (Software User

Documentation), 213–214
1074-1991 (Software Life Cycle),

214–215
1075.1-1995 (Software Life Cycle),

215–216
1175-1992 (Computing System Tool

Interconnections), 216–217
1220-1994 (Systems Engineering

Process), 217–218
1228-1994 (Software Safety Plans),

218–219
1298-1992 (Software Reviews and

Audits), 219
1362-1988 (Concept of Operations),

219–220
610.12-1990 (Software Engineering

Terminology), 220
730-1986 (Software Quality Assurance

Plans), 220–221
828-1990 (Software Configuration

Management Plans), 221
830-1993 (Software Requirements

Specifications), 222
982.1-1988 (Dictionary of Measures),

222–223
982.2-1988 (Dictionary of Measures),

223–224

990-1987 (Ada as Program Design
Language), 224

IEEE/EIA 12207.0-1996 (Industry
Implementation of
International Standard), 218

Implementation plans, 416, 485
Information flow complexity, 253–254
Information transfer, 216–217
Inputs (software configuration

management), 559; see also
Software configuration
management (SCM)

in configuration control, 584
in configuration identification, 582
in configuration status accounting,

585
desktop procedure (DTP), 575–576
management resources and personnel

activity, 577
SCM management, 569–570
SCM support, 567
SCM tasks management, 574
SCM training, 578
SCMP creation and maintenance, 571
SCMP implementation, 573

Inspections, 160, 371–378
Institute of Configuration Management

(ICM), 4
Institute of Electrical and Electronics

Engineer (IEEE), 205
Integrated product and process

development (IPPD), 48
Integrated product teams (IPTs), 48
Integration project leaders, 424
Integration testing, 163; see also Software

testing; Test plans
deliverables in, 287
in inspection procedure, 375
in software configuration

management (SCM), 532–533
in test plans, 326–327

Interactive access to data, 493
Interchangeable items, 545–546
Interface control, 546
Interface control documentation (ICD),

546
Interface Control Working Group

(ICWG), 501, 546
Interfaces, 546

Index � 609

in configuration identification process,
80

design description, 90, 372–373, 482
in engineering change proposals

(ECPs), 104
management, 97–99, 500–501
requirements specifications, 90, 501
specifications, 10

International Organization for
Standardization (ISO), 205

Internet Inter-ORB Protocol (IIOP),
235–236

Internet Protocol (IP), 236
Interoperability, 546
Inventory control points (ICPs),

110–111
ISO 10007:2003 (Configuration

management), 234
ISO 5806:1984 (Single-hit decision

tables), 233
ISO 5807:1985 (Documentation symbols),

233
ISO 6593:1985m (Sequential files), 233
ISO 8631:1989 (Program constructs and

conventions), 233
ISO 8790:1987 (Symbols and

conventions), 233
ISO 9000 standard, 226
ISO 9001 standard, 226
ISO 9002 standard, 226
ISO 9003 standard, 226
ISO 9127:1988 (User documentation and

cover information), 234
ISO/IEC standards

10746-2:1996 (Open Distributed
Processing-Foundations), 234

10746-3:1996 (Open Distributed
Processing-Architecture), 234

11411:1995 (Software transitions), 234
12119:1994 (Software packages), 235
12207:1995 (Software life-cycle

processes), 235
14834:1996 (XA specification), 235
19500-2:2003 (General Inter-ORB

Protocol/Internet-ORB
Protocol), 235

19761:2003 (COSMIC-FFP), 236
20968:2002 (MkII Function Point

Analysis), 236–237

2382-20:1990 (System development),
232

8211:1994 (Data descriptive files), 233
TR 14143-3:2003 (Software

measurement), 235
TR 9294:1990 (Software

documentation), 234
Issue management, 419, 437–439
Item specifications, 86–87
Items, 546

J

J-STD-016-1995 (Acquirer-Supplier
Agreement), 224–225

Justification codes, for engineering
change proposals (ECPs), 104

K

KONFIG CM (configuration management
tool), 266

KONFIG NM (configuration management
tool), 267

L

Labels, 495–496
Letters, 124
Level 1 organizations, 4
Library, 24

change form, 444
inventory table, 515–516

Life cycle, 564
configuration audit in, 150–151
costs, 546
maintenance vs. development

Line of code (LOC) estimation, 31, 279
Linkers, 10
Load testing, 376
Loaders, 10
Local change request, 509
Logistics, 474

in engineering change proposals
(ECPs), 104

managers, 110
support plan, 154

Lot numbers, 95–96, 546

610 � Software Configuration Management

M

Maintenance, 184–186
costs of, 187–188
documentation of, 185–186
life cycle, 184
measuring effectiveness of,

194–195
model for, 188–189
overview of, 185
personnel, 194
records and reports, 452–453
scope of, 449
types of, 186–187

Maintenance plan, 445–449
log form, 457–458
management approach, 451
product status, 449
project team, 449–450
software change request plan,

454–456
technical approach, 451–453

Managed process, 247–248
Management control measures, 243
Manual testing, 169
Manufacturer repair (MR) item, 546
Master test plans, 416
Materiel, 546
MatrixOne Inc., 265
MCad Integrations (configuration

management tool), 265
McCabe's complexity metric, 255
Mean-to-time failure, 254
Measures and measurements, 5

IEEE process for, 242–246
standards, 223–224, 235

Meetings requirements, 286
Merant, 266
Message engineering change proposal

(ECP), 104
Methods and tool use metrics, 241
Metrics, 5–6

attributes of, 57–58
characteristics of, 241
complexity metrics, 255
in configuration identification process,

80
in configuration management (CM)

process, 56–58, 242

in configuration status accounting
(CSA), 121

cumulative failure profile, 250
cyclomatic complexity, 252
defect density, 249
design structure, 252
in documentation, 139
effort measure, 256
and failed projects, 239–240
fault density, 249
fault-days number, 250
functional/modular test coverage, 250
information flow complexity, 253–254
mean-to-time failure, 254
need for, 240
number of conflicting requirements,

251
in process maturity framework,

246–248
in project plans, 41–42
requirements traceability, 250–251
scope of, 57
software documentation list, 254–255
software maturity index, 251
software source listing, 254–255
test coverage, 253
in test plans, 166, 325
using, 248

Microsoft Access, 131
Microsoft Visio, 130
Milestones, 26, 110, 286–287
MIL-STD-973, 72–73
MkII Function Point Analysis (FPA),

236–237
Modification directives, 546
Modification requests, 546–547
Modification work order, 549
Modular test coverage, 250
Mortice Kern Systems, 271

N

National Consensus Standard for
Configuration Management,
see EIA-649

Nomenclature, 547
Nonconformance, 547
Nondeliverable software, 481

Index � 611

Nondevelopmental software (NDS), 469,
564

Nonrecurring costs, 547
Nonrepairable items, 547
Notice of revision (NOR), 469, 508–509,

547

O

Object Request Broker (ORB), 236
Object-oriented development, 145

testing in, 163
Online help, 276
Online Resource Scheduling System

(ORSS), 276–291
goals and objectives, 276–277
project estimates, 277–282
project schedule, 284–285
project team organization, 285–290
risk management, 282–284
tracking and control mechanisms,

290–291
Open distributed processing, 234
Operating systems, 10
Operational concept development, 89,

482
Operations and support phase (software

life cycle), 491–492
configuration control in, 70–71, 102
configuration identification in, 70
configuration status accounting in, 71,

120
management and planning, 69–70
objectives in, 59

Operations instructions, 139
Operations project leader, 423
Order subsystem, 322, 341–350
Organizations

and configuration management (CM)
automation, 258

culture in, 17
software configuration management

(SCM), 471–477
use of metrics in, 241–242

Original records, 547
Outputs (software configuration

management), 559; see also
Software configuration
management (SCM)

configuration audits and reviews, 588
configuration control, 584
configuration identification, 582
desktop procedure (DTP), 576
management resources and personnel

activity, 577
SCM support, 568
SCM tasks management, 575
SCM training, 579
SCMP creation and maintenance, 572
SCMP implementation, 573
SCMP management, 570

Overrun, 1–2, 239

P

Parallel testing, 164
Part identifier, 125
Part/item identification numbers (PIN),

96, 548
Pathfinder (configuration management

tool), 267
People, 564

and configuration management (CM)
automation, 258

and cost of systems maintenance, 188
in project plans, 40, 279
risks associated with, 17–18

Perfective maintenance, 187
Performance specifications, 87
Performing activities, 547
Persistence subsystem, 353–356
Personnel, 564
Physical characteristics (attributes), 547
Physical configuration audit (PCA), 15,

518; see also Configuration
auditing

checklist, 554
definition of, 469, 547
uses of, 150

Post-implementation review, 416
Post-test, 287
Preferred tools, 18
Preliminary design, 287, 531–532, 535
Preliminary engineering change proposal

(ECP), 104
Preventive maintenance, 187
Problem change report, 314–317,

394–398

612 � Software Configuration Management

Problem report (PR), 401
Problem trouble report (PTR), 442
Problem write-up checklist, 154–155
Procedure language descriptions, 10
Procedure-oriented algorithms, 233
Process activities, 559

configuration audits and reviews,
586–588

configuration control, 583–584
configuration identification,

581–582
configuration status accounting,

585–586
desktop procedure (DTP), 575–576
management resources and personnel

activity, 576–578
SCM management, 568–570
SCM support, 566–568
SCM tasks management, 574–575
SCM training, 578–579

Process configuration management, 4
Process definition risk, 283
Process maturity framework, 246–248
Process measures, 243
Process metrics, 241
Process specifications, 87
Process-based estimation, 31, 279
Producer reuse, 248
Product baseline, 13; see also Baselines

components of, 94
configuration audits, 153
definition of, 92, 469, 547
in software configuration

management plan (SCMP),
495

Product configuration, 47
in data management, 178–179
in system development and

demonstration phase, 64
Product configuration documentation

(PCD), 94, 469, 547–548
Product life cycle

configuration audits in, 150–151
documentation of, 132
maintenance in, 183
standards, 214–215, 215–216
status accounting information, 127

Product management project lead, 423
Product size risk, 283–284

Production and deployment phase
(software life cycle), 491

configuration audit in, 69
configuration control in, 66–67
configuration identification in, 66
configuration status accounting in,

67–69, 119–120
management and planning, 65
objectives in, 59

Production stoppage, 104
Productivity metrics, 241
Products, 145

attributes, 47
data management system, 178–179
faults, 243
identifiers, 79, 124–125
measures, 243
metrics, 241
structure, 78, 79, 124

Product-tracking base-identifier, 548
Pro/ENGINEER Wildfire (configuration

management tool), 269
Program Central (configuration

management tool), 265
Program code inspection form, 365
Program comments, 140
Program evaluation and review

technique (PERT), 35
Program identifier, 125
Program management

definition of, 469, 473, 565
in software configuration

management (SCM), 567, 571
Program managers, 505
Programmer training, 286
Programming errors, 160
Programming manual, 91
Project change requests, 416
Project leaders, 450
Project management, 469, 473

definition of, 565
roles and responsibilities in, 415–416
in software configuration

management (SCM), 567
Project managers, 422
Project plans, 26–28

authorship of, 26
in configuration documentation, 124
configuration status accounting in, 42

Index � 613

estimation in, 30–33
goals and objectives, 276–277
identification in, 28–29
performance measurement in, 41–42
project estimates, 277–282
project schedule, 284–285
project team organization, 285–290
resources, 38–40
risk management, 282–284
risk management in, 33–34
schedules, 34–38
software scope in, 30
tracking and control mechanisms in,

40–41
verification of, 157

Project requirements documents, 416
Project teams, 285–290

in maintenance process, 449–450
organizational chart, 421

Projects, 1–2
acceptance criteria, 417
budget, 1–2
costs of, 2, 425
deliverables, 416
failure of, 239–240
issue management, 419
organizational chart, 421
overrun in, 1–2
resources, 38–40
risks, 413
schedules, 420–425
scope of, 414–415
statement of work (SOW), see

Statement of work (SOW)
status of, 420
tax credit eligibility, 425

Pseudocodes, 137
Putnam's cost estimation model, 33
PVCS Professional (configuration

management tool), 266
PVCS Tracker (configuration

management tool), 266
PVCS Version Manager (configuration

management tool), 266

Q

Quality analysts, 450
Quality assurance (QA), 16

and control, 40–41
handover document, 382–383
in maintenance plans, 453
in project plans, 290–291
in software testing, 164

Quality metrics, 247
Quality plans, 10
Question and Answer sessions, 30

R

Rational Software, 272
Razor (configuration management tool),

271–272
Recurring costs, 548
Re-inspection, 378
Release, 469, 548, 566
Release table, 516
Released data, 177, 493, 548
Reliability metrics, 241, 244
Repair, 548
Repairable items, 548
Repeatable process, 246–247
Replacement items, 548
Reports, 124

coding, 374
design, 373

Requests for deviations (RFDs), 50
classification by originators, 103, 112
content of, 113

Requests for proposals (RFPs), 49
Requirements

analysis, 51
complexity, 247
loop, 52
traceability, 250–251

Requirements Management and MRO
Capabilities (configuration
management tool), 264–265

Requirements specifications, 124
conflicting, 251
in software configuration

management (SCM) control,
10

in software inspection, 372
verification of, 158

Resource allocation, 358–359
Resource Management subsystem, 322,

338–341

614 � Software Configuration Management

Resources, 469
definition of, 565
metrics, 241
plans, 416
table, 38

Retrofit, 548–549
Retrofit instruction, 549
Reusable software, 469
Review reports, 565
Rework, 549

in software inspection, 378
Risk management, 16–18

organizational role, 283
in project plans, 33–34, 282–284
scope of, 282

Risks, 16
assessment, 416, 427–433, 452
and configuration management (CM)

automation, 258
description, 283–284
measures, 243
mitigation plans, 34, 413
in projects, 413
table, 34, 284, 285

RMMM (risk, mitigation, monitoring and
management) plan, 34

Routine priority, 106

S

Safety correction, in engineering change
proposals (ECPs), 104

Scalability, 18
Schedules, 34–38, 239–240, 284
Scripts, 10
Security plan, 415
Semantic transfer language (STL),

216–217
Sequential files, 233
Serial numbers, 95–96, 549
Service providers, 3
Shared repositories, 145
Shell scripts, 10
Single-hit decision tables, 233
Size metrics, 241
Software, 467

acquisition, 213
anomalies, 210–211
architecture specifications, 10

change request plan, 454–456,
526–527

change/enhancement proposal,
524–525

configuration items (CIs). See
Computer software
configuration items (CSCIs)

definition of, 549
documentation, 541
executable, 490
identifiers, 96–97, 495–496
implementation, 485
input/output manual, 90, 489
installation plans, 89, 481
maintenance, see Maintenance
maturity index, 251
measurement, 235
metrics, 42
in project plans, 40
release, 566
reliability of, 244
reviews and audits, 209–210
risks, 33
safety plans, 218–219
scope, 30
source listing, 254–255
specifications, 87
support, 470
transition plans, 89, 490
unit testing, 207
units, 470, 566
use preparation, 489–490
user documentation, 213–214
user manual, 90
user satisfaction, 245–246
verification and validation plans,

207–208, 212
version description, 90, 489

Software Capability Maturity Model (SW-
CMM), 4

Software center operator manual, 91, 489
Software Change Review Board (SCRB),

476
chairperson, 506–507
composition of, 505–506
responsibilities, 505
secretariat, 507

Software Configuration Control Board
(SCCB), 11, 475, 476–477

Index � 615

chairperson, 503–504
composition of, 503
definition of, 542, 565
members of, 504–505
responsibilities of, 502–503
roles of members, 503
secretariat, 504

Software configuration management plan
(SCMP), 463

CM phasing and milestones, 477–492
configuration audits, 517–519
configuration control, 501–509
configuration identification, 494–500
configuration status accounting,

509–517
creating and maintaining, 570
data management, 492–494
definition of, 565
document change request, 528–529
implementing, 572–573
interface management, 500–501
organization, 471–477
roles and responsibilities, 571
software change/software

enhancement proposal,
524–525, 526–527

subcontractor/vendor control, 520
Software configuration management

(SCM), 1–3; see also
Configuration management
(CM)

activities in, 198
audits and reviews, 519
benefits of, 6–7
briefing evaluation check sheet,

590–595
commitments, 198
configuration auditing in, 14–15
configuration audits and reviews in,

586–588
configuration change control in,

10–13
configuration control in, 583–584
configuration identification in, 8–10,

581–582
configuration status accounting in,

13–14, 585–586
deficiency reports, 565
definition of, 463, 470, 565

desktop procedure (DTP) in, 575–576
functional elements of, 9
functions, 2–3
goals, 198
implementing, 15–16
interfaces, 558
key activities in, 7–8
managing, 568–570
measurement and metrics in, 5–6, 199
overview of functions in, 464
phasing and milestones, 530–534
process definition diagrams, 559, 560,

561, 562, 563
and process improvement, 3–4
quality assurance (QA) in, 164
resource and personnel management

in, 576–578
responsibilities, 474–476
risk management in, 16–18
roles and responsibilities, 566–567,

569
standards, 210, 221
supporting, 566–568
task management in, 574–575
training in, 578–579
verification in, 199

Software design and development, 290
description, 90
environment, 481–482
measurement process in, 246–248
plans, 10, 89, 480–481
in software configuration

management (SCM), 474, 484
standards, 208
supplier-acquirer agreements in,

224–225
Software development files (SDFs), 481,

532
Software development library, 470, 481,

498
Software documentation, 126–130; see

also Documentation
data dictionary in, 137
end-user help files in, 140
list, 89, 254–255
methods and standards in, 130–132
metrics in, 139
operations instructions in, 139
presentation materials in, 138

616 � Software Configuration Management

program flowcharts in, 132
program/component/object

documentation in, 137–138
terms of references in, 136–137
test cases and plans in, 138–139
use or business cases in, 132–136
user documentation in, 140

Software engineering, 473
components of, 197
environment, 88, 481
goals of, 126
release procedures in, 97
work breakdown structure (WBS), 81

Software Engineering Institute (SEI),
16–18, 246

Software Equation model, 33
Software inspection, 367–368

continuing process in, 379
inspection procedure, 371–378
scope of, 368–369
team, 369–371

Software life cycle
concept exploration and definition

phase, 477–479
demonstration and validation phase,

479–480
operations and support phase,

491–492
production and deployment phase,

491
standards, 214–216, 235

Software packages, 235
Software productivity metrics, 211
Software products, 566
Software product specifications, 90, 489
Software project management plans,

211–212
Software quality assurance (SQA), 40–41,

220–221
in software configuration

management (SCM), 474
software testing in, 164

Software quality management systems,
219

Software quality metrics, 212–213
Software requirements analysis, 483–484,

531, 535
Software requirements changes (SCR),

399

Software requirements specifications, 89,
222

Software specification review (SSR), 531
Software systems engineering, 473
Software testing, 159

daily build and smoke test, 161–162
description, 90, 488
documentation of, 221–222
environment, 470, 481
inspections, 160
integration testing, 163
life cycle, 170
manual testing, 169
parallel testing, 164
plans, 89
reports, 90
sample case, 167
in software configuration

management (SCM), 474
system testing, 163
test automation, 166–171
test plan in, 164–166
unit testing, 161
walk-throughs, 160–161

Software trouble/change request
(STR/SCR), 526–527

Software-related groups, 470
definition of, 566
roles and responsibilities, 571

Source code modules, 8
Source files, 490
Source Integrity (configuration

management tool), 271
Specification change notice (SCN), 470

sample document, 406–408
use of, 508

Specification identification, 24
Specifications, 549
Spescom Software, 267–268
SQL Server 2000, 325
Staff organization, 40
Staff size and experience risk, 284
Standard component sizing, 33
Standards, 197
Statement of work (SOW), 150

approval, 426
change management form and

instructions, 435–436
issues logs, 437–439

Index � 617

potential tax credit tests, 434
project approach, 415–420
project definition, 411
project estimates/costs, 425
project information, 411
project schedule and milestones,

420–425
project scope, 414–415
proposed solution, 414
support documentation risk

assessment form, 427–433
States, 177
Stock status, 14
Stubs, 163
Subcontractors, 520
Submitted data, 177–178, 493, 549
Substitute item, 549
Sub-system design description, 89
Sub-system specifications, 89
Supplier CM market analysis

questionnaire, 597–598
Support equipment, 549
Support function, 3
Support manuals, 490
Support sites, 490
Support tools, 10
Survivality, 549
Symbols and conventions, 233, 234
Synthesis, 52
System, 549

architecture, 78
build files, 10
data files, 10
identifier, 125
integration and testing, 534
maintenance, see Maintenance
operation, 90–91
owners, 450
qualification testing, 488–489
service request, 385–387
specifications, 86, 89
testing, 163, 474, 481

System design and development
in configuration management (CM),

535
description, 89
in software configuration

management (SCM), 482–483,
530–531

specification (SDS), 137
standards, 232

System development and demonstration
phase (software life cycle), 59

configuration audit in, 64–65
configuration control in, 62–63, 102
configuration identification in, 61–62
configuration status accounting in,

63–64, 118–119
management and planning, 60–61

System maintenance, see Maintenance
System programmers, 450
System requirements analysis, 89, 482,

530, 535
System user manual (SUM), 489
Systems engineering process, 51–55,

217–218, 382–383
System/subsystem design description

(SSDD), 482

T

Tasks, 566
activities, 549–550
network, 38

Tax credit eligibility, 425, 434
Team structure, in project plans, 40
Teamcenter Aerospace and Defense

(configuration management
tool), 263

Teamcenter Engineering Management
solution for AutoCAD
(configuration management
tool), 263

Teamcenter Engineering Management
solution for CATIA
(configuration management
tool), 263

Teamcenter solution for Pro/ENGINEER
(configuration management
tool), 263

TeamConnection (configuration
management tool), 271

Teamshare Inc., 269–270
TeamTrack (configuration management

tool), 269–270
Tech Illustrator (configuration

management tool), 266–267
Technical data, 550, 566

618 � Software Configuration Management

Technical data managers, 111
Technical data package, 550
Technical directives, 549
Technical lead, 422
Technical manual managers, 111
Technical review, 470–471, 550
Technical systems managers, 422–423
Technology risks, 18, 284
Terms of reference, 136
Test plans, 164–166

artifacts in, 325
components of, 165
in configuration documentation, 124
metrics in, 166, 325
resources, 324–325
in software documentation, 138–139
staffing, 324
success factors, 166
testing strategy, 324
tools, 324–325
verification of, 158

Test readiness review (TRR), 533
Tests, 159

automation, see Automated testing
cases, 138–139
complexity, 247
coordination, 424–425
coverage, 253
daily build and smoke test, 161–162
data sets, 10
inspections, 160
integration testing, 163
parallel testing, 164
personnel, 506
plans, see Test plans
procedures, 10
quality assurance (QA), 164
results, 10
system testing, 163
unit testing, 161
walk-throughs, 160–161

Textual work breakdown structure, 37
Third-party tools, 10
Time between failures, 194–195
Time compliance technical order, 549
Timeline chart, 38
Tool-to-organization interconnections,

216–217

Tool-to-platform interconnections,
216–217

Tower Concepts Inc., 271–272
Trained personnel, 564
Training, 290

in configuration management (CM)
plans, 26

equipment, 550
in maintenance plans, 453
in project plans, 40, 276
in software configuration

management (SCM), 476
in software inspection, 376

Training plans, 416
Transmission Control Protocol (TCP),

236
Trouble reports, 14
TRUE Software (configuration

management tool), 271
TRUEchange (configuration management

tool), 271
Tutorials, 142

U

Unified Modeling Language (UML) class
diagram, 134

Unigraphics NX-Date Exchange
(configuration management
tool), 263–264

Unit testing, 161
automating, 168
in inspection procedure, 375
in software configuration

management (SCM), 485
Urgent priority, 105
Use cases, 132–136, 137
User documentation, 140; see also

Documentation
roles and responsibilities, 290
in software configuration

management (SCM) control,
10

in software inspection, 375–376
standards, 234

User input analysis, 482
User Management subsystem, 331–338
User manuals, 90, 489

Index � 619

User requirements analysis, 372
User satisfaction, 245–246
User sign-off, 376
User testing, 376
User training, 376
User tutorials, 142

V

Value engineering, 104
Value-added work, in software

inspection, 378
Vendors, 520
Versions, 471

in configuration status accounting, 14
definition of, 550
identifier, 125

Visconti, Marcello Alfredo, 126
Visual Basic, 162
Volume number, 496

W

Waivers, 509
Walk-throughs, 160–161
Web coding, 374
Windchil (configuration management

tool), 269
WinRunner, 168
Work breakdown structure (WBS),

35–36
in product structure, 78
in project plans, 288–289
for software engineering services,

81
textual, 37

Working data, 177, 181, 493, 550

X

XA specification, 235

CAT#AU1976_cover 1/23/04 2:13 PM Page 1

Composite

C M Y CM MY CY CMY K

An effective systems development and design process is far easier to explain
than it is to implement. A framework is needed that organizes the life cycle
activities that form the process. This framework is Configuration Management
(CM).

Software Configuration Management discusses the framework from a standards
viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to
describe the elements of configuration management within a software engineering
perspective.

Divided into two parts, the first section is composed of 14 chapters that explain
every facet of configuration management related to software engineering. The
second section consists of 25 appendices that contain many valuable “real
world” CM templates.

The content is extensive and inclusive, covering everything from CM planning
to configuration identification, verification and auditing. Although it is vendor-
neutral, it offers a serious discussion of what to look for in a CM tool and lists
toolsets for review. This volume is a sourcebook of techniques, templates, and
best practices in the field, providing software engineers and systems developers
with what they need to run a successful CM program.

Software Configuration Management:

• Delivers a nuts-and-bolts tutorial on how to implement configuration
management within your organization

• Provides 25 appendices filled with guides, templates, forms and completed
examples of every facet of configuration management

• Includes more than 200 tables that allow you quick access to precise data

• Offers more than 50 images to illustrate complex concepts

AUERBACH PUBLICATIONS

www.auerbach-publications.com

AU1976

SOFTWARE ENGINEERING

S
oftw

are C
on

figu
ration

 M
an

agem
en

t

Keyes

Software Configuration
Management Software

Configuration
Management

Software
Configuration
Management

Jessica KeyesJessica Keyes

	Front cover
	Dedication
	Contents
	Foreword
	References

	Preface
	Who Should Read This Book?

	1
	Introduction to Software Configuration Management
	SCM and Process Improvement
	Measurements and Metrics
	Benefits of SCM
	SCM Components
	Configuration Identification
	Configuration Change Control
	Configuration Status Accounting
	Configuration Auditing
	Implementing SCM in the Organization
	Manage the Risks of SCM
	Summary
	References

	2
	Project Management in a CM Environment
	Who Writes the Project Plan
	What Goes into the Project Plan
	CM-Based Project Plan Components
	Identification
	Software Scope
	Project Estimates
	Estimation Techniques
	Decomposition Techniques
	Empirical Model

	Risk Management Strategy
	Risk Table
	RMMM Plan for Each Risk

	Schedules
	Resource Table

	Project Resources
	Tracking and Control Mechanisms
	Quality Assurance and Control
	Change Management and Control

	Performance Measurement

	Configuration Status Accounting
	Summary
	References

	3
	The DoD CM Process Model
	CM Benefits, Risks, and Cost Impact
	CM Life-Cycle Management and Planning
	Management and Planning
	Configuration Identification
	Configuration Control
	Configuration Status Accounting (CSA)
	Configuration Verification and Audit

	Relation to Systems Engineering Process
	Implementing the CM Process
	Measuring and Evaluating the CM Process
	CM Benefits and Risks by Program Life-Cycle Activity (See Figure 3.5)
	Management and Planning: Concept and Technology Development Phase
	Configuration Identification: Concept and Technology Development Phase
	Configuration Control: Concept and Technology Development Phase
	Configuration Status Accounting: Concept and Technology Development Phase
	Management and Planning: System Development and Demonstration Phase
	Configuration Identification: System Development and Demonstration Phase
	Configuration Control: System Development and Demonstration Phase
	Configuration Status Accounting: System Development and Demonstration Phase
	Configuration Audit: System Development and Demonstration Phase
	Management and Planning: Production and Deployment Phase
	Configuration Identification: Production and Deployment Phase
	Configuration Control: Production and Deployment Phase
	Configuration Status Accounting: Production and Deployment Phase
	Configuration Audit: Production and Deployment Phase
	Management and Planning: Operations and Support Phase
	Configuration Identification: Operations and Support Phase
	Configuration Control: Operations and Support Phase
	Configuration Status Accounting: Operations and Support Phase

	Effect Process Improvement and Document Lessons Learned
	Summary
	References
	Resources

	4
	Configuration Identification
	How Configuration Identification Works
	Configuration Identification General Activity Guides
	Product Structure
	Configuration Items
	Configuration Item Selection Criteria
	General Guidance
	CI Selection Checklist

	Additional Factors
	Configuration Documentation
	Specification Types Categorized by Object
	System
	Item
	Software
	Process

	Specification Types Categorized by Purpose
	Performance
	Detail

	Design Solution Document Concepts
	Software Documentation List
	Process Implementation: Planning

	System Requirements Analysis and Architectural Design
	Software Requirements Analysis and Design
	Software Architectural and Detailed Design
	Software Integration and Qualification Testing
	As-Built Software Product Definition
	System Operation
	System/Software Maintenance

	Configuration Baselines
	Configuration Baseline Concepts

	Document and Item Identification
	Part/Item Identification Numbers (PIN)
	Software Identifiers

	Engineering Release
	Interface Management
	Summary
	References

	5
	Configuration Control
	The Process of Configuration Control
	Engineering Change Proposal
	Request for Deviation
	RFD Contents

	Summary
	References

	6
	Configuration Status Accounting
	Typical CSA Information over the Acquisition Program Life Cycle
	Concept and Technology Development
	System Development and Demonstration
	Production and Deployment
	Operational Support

	Configuration Status Accounting Process Evaluation Checklist
	Summary
	References

	7
	A Practical Approach to Documentation and Configuration Status Accounting
	Configuration Identification
	Product Structure
	Product Identifiers
	Baselines

	Configuration Status Accounting
	The Effective Documentation of Systems
	Methods and Standards
	Generating Documentation the Right Way
	1. All Documentation Produced prior to the Start of Code Development
	2. Program Flowcharts
	3. Use or Business Cases
	4. Terms of Reference
	5. Data Dictionary
	6. Program/Component/Object Documentation
	7. All Presentation Material
	8. Test Cases (Appendix E) and Test Plan
	9. Metrics
	10. Operations Instructions
	11. End-User Help Files
	12. User Documentation

	Maintaining Documentation
	Summary
	References

	8
	Configuration Verification and Audit
	Configuration Verification and Audit Concepts and Principles
	Configuration Verification
	Configuration Audit
	Functional Configuration Audit
	Physical Configuration Audit

	Application of Audits during Life Cycle

	Summary
	References

	9
	A Practical Approach to Configuration Verification and Audit
	Components of a Design and Document Verification Methodology
	Components of a Configuration Audit Methodology
	Components of a Testing Methodology
	Inspections
	Walk-Throughs
	Unit Testing
	Daily Build and Smoke Test
	Integration Testing
	System Testing
	Parallel Testing

	The QA Process
	The Test Plan
	Test Automation
	Summary
	References

	10
	Configuration Management and Data Management
	CM-Related Data Management Concepts and Principles
	Document Identification
	Data Status Level Management
	Data and Product Configuration Relationships
	Data Version Control
	Digital Data Transmittal
	Data Access Control

	Summary
	References

	11
	Configuration Change Management
	What Is Configuration Change Management?
	The Maintenance Process
	The Product Baseline
	Types of Maintenance
	Corrective Maintenance
	Adaptive Maintenance
	Perfective Maintenance
	Preventive Maintenance

	Maintenance Costs
	A Model for Maintenance
	Configuration Management Steps
	Change Identification
	Evaluation and Coordination
	Change Implementation and Verification
	Handling Variances

	Managing Maintenance Personnel
	Measuring Effectiveness
	Summary
	References

	12
	Configuration Management and Software Engineering Standards Reference
	The Standards Bodies
	A Summary of the EIA Standard (EIA-649)
	Configuration Management Planning and Management
	Configuration Identification
	Configuration Change Management
	Configuration Status Accounting
	Configuration Verification and Audit
	Management of Digital Data

	ANSI
	IEEE
	IEEE Software Engineering Standards Summary

	ISO
	ISO Software Engineering Standards Summary

	Summary
	References

	13
	Metrics and Configuration Management Reference
	What Metrics Are and Why They Are Important
	Traditional CM Metrics
	IEEE Process for Measurement
	Stage 1: Plan Organizational Strategy
	Stage 2: Determine Software Reliability Goals
	Stage 3: Implement Measurement Process
	Stage 4: Select Potential Measures
	Stage 5: Prepare Data Collection and Measurement Plan
	Stage 6: Monitor the Measurements
	Stage 7: Assess Reliability
	Stage 8: Use Software
	Stage 9: Retain Software Measurement Data

	Metrics as a Component of the Process Maturity Framework
	Level 1: Initial Process
	Level 2: Repeatable Process
	Level 3: Defined Process

	Level 4: Managed Process
	Level 5: Optimizing Process

	Steps to Take in Using Metrics
	1. Fault Density
	2. Defect Density
	3. Cumulative Failure Profile
	4. Fault-Days Number
	5. Functional or Modular Test Coverage
	6. Requirements Traceability
	7. Software Maturity Index
	8. Number of Conflicting Requirements
	9. Cyclomatic Complexity
	10. Design Structure
	11. Test Coverage
	12. Data or Information Flow Complexity
	13. Mean-Time-to-Failure
	14. Software Documentation and Source Listings

	IT Developer’s List of Metrics
	McCabe’s Complexity Metric
	Halstead’s Effort Metric

	Summary
	References

	14
	CM Automation
	Automating CM
	Phase 1: Preparation and Planning
	Phase 2: Process Definition
	Phase 3: Tool Evaluation
	Phase 4: Pilot Project Implementation
	Phase 5: Rollout to Other Projects
	Phase 6: Capture and Communicate Improvements

	A Selection of CM Tools
	Summary
	References

	Appendix A
	Project Plan
	ORSS Software Project Plan
	I. Table of Contents
	1.0 Goals and Objectives
	1.1 System Statement of Scope
	1.2 System Context
	1.3 Major Constraints

	2.0 Project Estimates
	2.1 Historical Data Used for Estimates
	2.2 Estimation Techniques Applied and Results
	2.2.1 Process-Based Estimation
	2.2.2 LOC-Based Estimation

	2.3 Project Resources
	2.3.1 People
	2.3.2 Minimal Hardware Requirements
	2.3.3 Minimal Software Requirements

	3.0 Risk Management
	3.1 Scope and Intent of RMMM Activities
	3.2 Risk Management Organizational Role
	3.3 Risk Description
	3.3.1 Description of Risks

	3.4 Risk Table

	4.0 Project Schedule
	4.1 Deliverables and Milestones
	4.2 Work Breakdown Structure

	5.0 Project Team Organization
	5.1 Team Structure

	6.0 Tracking and Control Mechanisms
	6.1 Quality Assurance Mechanisms
	6.2 Change Management and Control

	Appendix B
	DoD Engineering Change Proposal

	Appendix C
	Sample Data Dictionary

	Appendix D
	Problem Change Report

	Appendix E
	Test Plan
	1 Revision History
	2 Introduction
	2.1 Goals and Objectives
	2.2 Statement of Scope
	2.3 Major Constraints

	3 Test Plan
	3.1 System Description
	3.1.1 System Collaboration Diagram

	3.2 Testing Strategy
	3.3 Testing Resources
	3.3.1 Staffing
	3.3.2 Tools

	3.4 Testing Metrics
	3.5 Testing Artifacts
	3.6 Testing Schedule

	4 Test Procedures
	4.1 Class Testing
	4.2 Integration Testing

	5 Appendix E1: Class Testing Test Cases
	5.1 Application Controller Sub-system
	5.1.1 Test Case: ApplicationController:ApplicationController CI: DD.0001.TEST001
	5.1.2 Test Case: ApplicationController:ApplicationController CI: DD.0001.TEST002
	5.1.3 Test Case: ApplicationController:ApplicationController CI: DD.0001.TEST003
	Test Case: ApplicationController:ApplicationController CI: DD.0001.TEST004

	5.2 User Management Sub-system
	5.2.1 Test Case: Security Manager :: addUser(in user : User) CI: DD.0001.TEST005
	5.2.2 Test Case: Security Manager :: removeUser(in user : User) CI: DD.0001.TEST006
	5.2.3 Test Case: Security Manager :: authenticateUser(in user : User) : Boolean CI: DD.0001.TEST007
	5.2.4 Test Case: Customer :: getDogs() : Collection CI: DD.0001.TEST008
	5.2.5 Test Case: Customer :: getInvoices() : Collection CI: DD.0001.TEST009
	5.2.6 Test Case: Service Provider :: addServiceOffering() CI: DD.0001.TEST010
	5.2.7 Test Case: Service Provider:: getAddress() CI: DD.0001.TEST011

	5.3 Resource Management Sub-System
	5.3.1 Test Case: ResourceUI :: showCreate() CI: DD.0001.TEST012
	5.3.2 Test Case: ResourceUI :: showEdit() CI: DD.0001.TEST013
	5.3.3 Test Case: ResourceUI :: showSearch() CI: DD.0001.TEST014

	5.4 Order Sub-system
	5.4.1 Test Case: OrderUI :: showCreate() CI: DD.0001.TEST015
	5.4.2 Test Case: OrderUI :: showEdit() CI: DD.0001.TEST016
	5.4.3 Test Case: OrderUI :: showSearch() CI: DD.0001.TEST017
	5.4.4 Test Case: OrderUI :: showList() CI: DD.0001.TEST018
	5.4.5 Test Case: OrderLineItem CI: DD.0001.TEST019
	5.4.6 Test Case: ServiceResourceRequirement CI: DD.0001.TEST020
	5.4.7 Test Case: Service CI: DD.0001.TEST021
	5.4.8 Test Case: Order CI: DD.0001.TEST022

	5.5 Accounting Sub-system
	5.5.1 Test Case: Accounting:InvoicePrint CI: DD.0001.TEST023
	5.5.2 Test Case: Accounting:Payment CI: DD.0001.TEST024
	5.5.3 Test Case: Accounting:InvoiceList CI: DD.0001.TEST025

	5.6 Customer Relationship Management Sub-system
	5.6.1 Test Case (This Feature Set Will Be Available in Phase II)

	5.7 Persistence Sub-system
	5.7.1 Test Case: PersistenceManager :: loadXMLConfig() CI: DD.0001.TEST026
	5.7.2 Test Case: PersistenceManager :: saveObject() CI: DD.0001.TEST027
	5.7.3 Test Case: PersistenceManager :: retrieveObject() CI: DD.0001.TEST028

	6 Appendix E2: Integration Testing Tests
	6.1 Test Case: Customer Registration CI: DD.0001.TEST029
	6.1.1 Description
	6.1.2 Required Stubs/Drivers
	6.1.3 Test Steps
	6.1.4 Expected Results

	6.2 Test Case: Reallocate Resources CI: DD.0001.TEST030
	6.2.1 Description
	6.2.2 Required Stubs/Drivers
	6.2.3 Test Steps
	6.2.4 Expected Results

	6.3 Test Case: Search for Service Provider and Initiate Order CI: DD.0001.TEST031
	6.3.1 Description
	6.3.2 Required Stubs/Drivers
	6.3.3 Test Steps
	6.3.4 Expected Results

	6.4 Test Case: Place Order CI: DD.0001.TEST032
	6.4.1 Description
	6.4.2 Required Stubs/Drivers
	6.4.3 Test Steps
	6.4.4 Expected Results

	6.5 Test Case: Pay for Service CI: DD.0001.TEST033
	6.5.1 Description
	6.5.2 Required Stubs/Drivers
	6.5.3 Test Steps
	6.5.4 Expected Results

	7 Appendix E3: Project Schedule
	Notes

	Appendix F
	Program Code Inspection Form

	Appendix G
	Sample Inspection Plan
	Contents
	Produced for Sample Executive Consultant Group
	1 Introduction
	2 Scope of the Software Inspection
	3 Software Inspection Team
	4 Inspection Process
	4.1 Inspection procedure

	5 Continuing Processes
	6 Summary

	Appendix H
	QA Handover Document

	Appendix I
	System Service Request

	Appendix J
	Document Change Request (DCR)

	Appendix K
	Problem/Change Report

	Appendix L
	Software Requirements Changes

	Appendix M
	Problem Report (PR)

	Appendix N
	Corrective Action Processing (CAP)

	Appendix O
	Specification Change Notice

	Appendix P
	Project Statement of Work
	System Release # Project # CI #
	VERSION: Draft
	Project Statement of Work
	Table of Contents
	Project Information
	Project Request
	Project Number and Title
	Executive Sponsor or Delegate

	Project Definition
	Background
	Project Objectives
	Business Units Involved
	Internal
	External

	Business Impacts
	Business Benefits
	Risks
	Risk Rating
	Identified Risks
	Risk Mitigation

	Proposed Solution
	Current
	Proposed Solution

	Project Scope
	Inclusions
	Exclusions
	Security Statement

	Project Approach
	Project Management
	Methodology
	Deliverables
	Key Project Deliverables
	Approvals

	Acceptance Criteria
	Assumptions
	Key Facts
	Issue Management
	Change Management
	Communication Plan
	Project Status

	Project Schedule and Major Milestones
	Project Team
	Project Organization (Shaded Boxes in Figure P1 Are the Core Management Project Team)

	Project Team Roles/Responsibilities

	Project Estimates/Costs
	Project Estimates and Costs
	Research and Experimentation Tax Credit Eligibility

	Appendices:
	Appendix P1: Statement of Work Approval

	AUTHORIZATION
	Appendix P2: Support Documentation Risk Assessment Form
	Appendix P3: Potential Tax Credit Tests
	Appendix P4: Change Management Form and Instructions
	Procedure

	Project Change Request Form
	Appendix P5: Issues Log
	Appendix P6: List of Requirements Scheduled for Release ??

	Appendix Q
	Problem Trouble Report (PTR)

	Appendix R
	Appendix S
	Sample Maintenance Plan
	Sample Maintenance Plan
	Change Control Page

	Title Page
	Table of Contents
	Preface
	1 Overview
	1.1 Background
	1.2 Scope of Maintenance
	1.3 References

	2 Product Status
	3 Project Team
	3.1 Roles and Responsibilities

	4 Management Approach
	4.1 Management Priorities
	4.2 Task Estimates
	4.3 Assumptions, Constraints, and Dependencies

	5 Technical Approach
	5.1 Types of Maintenance Activities
	5.2 Configuration Management
	5.3 Risk Assessment
	5.4 Testing
	5.5 System Protection
	5.6 Special Processes
	5.7 Maintenance Records and Reports
	5.8 Training
	5.9 Documentation
	5.10 Quality Assurance Activities

	INSTRUCTIONS FOR COMPLETING THE MAINTENANCE LOG
	Maintenance Log - Detail Status Information
	Reference

	Appendix T
	Software Configuration Management Plan (SCMP)
	Table of Contents
	1.1 Purpose
	1.2 Scope
	1.3 Approach
	1.4 System Overview
	1.5 Project-Defined CSCIs
	1.6 Document Overview
	1.7 SCM Terms and Definitions.
	1.8 SCMP Updates

	Section 2: Organization
	2.1 Organizational Structure
	2.1.1 SCM Responsibilities

	2.2 Boards
	2.2.1 Software Change Review Board (SCRB)
	2.2.2 Software Configuration Control Board (SCCB)

	Section 3: CM Phasing and Milestones
	3.1 Concept Exploration and Definition
	3.2 Demonstration and Validation
	3.3 Engineering and Manufacturing Development
	3.3.1 Concept and Exploration
	3.3.2 Project Planning and Oversight
	3.3.3 Establishment of Software Development Environment
	3.3.4 System Requirements Analysis
	3.3.5 System Design
	3.3.6 Software Requirements Analysis
	3.3.7 Software Design
	3.3.8 Software Implementation and Unit Testing
	3.3.9 Unit Integration and Testing
	3.3.10 CSCI Qualification Testing
	3.3.11 CSCI/Hardware Configuration Item (HWCI) Integration and Testing
	3.3.12 System Qualification Testing
	3.3.13 Software Use Preparation
	3.3.14 Software Transition Preparation

	3.4 Production and Deployment
	3.5 Operations and Support

	Section 4: Data Management
	4.1 Data Distribution and Access
	4.2 Automated Processing and Submittal of Data
	4.3 Interactive Access to Digital Data
	4.4 Status Reporting
	4.5 Data Security and Classification Management

	Section 5: Configuration Identification
	5.1 Selection of CSCIs
	5.2 Formal Baseline Establishment
	5.3 Identification Methods
	5.3.1 Document Identification
	5.3.2 Drawing Identification
	5.3.3 Software Identification
	5.3.4 Firmware Identification
	5.3.5 Change Request Form Identification
	5.3.6 Engineering Release
	5.4 Developmental Configuration - Corrective Action Process

	5.5 Configuration Management Libraries
	5.5.1 Software Development Library
	5.5.2 Documentation Library
	5.5.3 Drawing Library

	Section 6: Interface Management
	6.1 Interface Requirements
	6.2 Interface Control Working Group (ICWG)

	Section 7: Configuration Control
	7.1 Boards
	7.1.1 SCCB
	7.1.2 Other Local Boards
	7.1.3 Other Boards
	7.1.4 SCRB

	7.2 Baseline Change Process
	7.2.1 Change Request Forms

	Section 8: Configuration Status Accounting
	8.1 Records
	8.1.1 Change Request Table
	8.1.2 Library(ies) Inventory Table
	8.1.3 Data Distribution Table
	8.1.4 Release Table
	8.1.5 Archive Records Table

	8.2 Reports
	8.3 Requests for CSA Reports

	Section 9 : Configuration Audits
	9.1 Functional Configuration Audit (FCA)
	9.2 Physical Configuration Audit (PCA)
	9.3 Audits and Reviews of SCM
	9.3.1 SCM Audits
	9.3.2 SCM Reviews

	Section 10: Subcontractor/Vendor Control
	Appendix T1: Acronyms and Abbreviations
	Appendix T2: Forms
	Appendix T3: Software Configuration Management Phasing and Milestones
	T3.1 System Requirements Analysis Phase
	T3.2 System Design Phase
	T3.3 Software Requirements Analysis Phase
	T3.4 Preliminary Design Phase
	T3.5 Detailed Design Phase
	T3.6 Coding and CSU Testing Phase
	T3.7 CSC Integration and Testing Phase
	T3.8 CSCI Testing Phase
	T3.9 System Integration and Testing phase

	Appendix T4: Configuration Management Phasing and Milestones
	References

	Appendix U
	Acronyms and Glossary
	Acronyms
	Definitions

	Appendix V
	Functional Configuration Audit (FCA) Checklist

	Appendix W
	Appendix X
	SCM Guidance for Achieving the “Repeatable” Level on the Software
	Table of Contents
	1 Introduction
	1.1 Scope
	1.2 Purpose
	1.3 Document Overview

	2 Terms and Definitions
	3 Provide SCM Support
	3a Purpose
	3b Roles and Responsibilities
	3c Entry Criteria
	3d Control
	3e Input
	3f Process Activities
	3g Output
	3h Exit Criteria
	3.1 Manage SCM (A1)
	3.1a Purpose
	3.1b Role and Responsibility
	3.1c Entry Criteria
	3.1d Control
	3.1e Input
	3.1f Process Activities
	3.1g Output
	3.1h Exit Criteria
	3.1.1 Create and Maintain Project SCMP (A11)
	3.1.2 Manage Implementation of SCMP (A12)
	3.1.3 Provide SCM Training (A13)

	3.2 Perform SCM (A2)
	3.2a Purpose
	3.2b Role and Responsibility
	3.2c Entry Criteria
	3.2d Control
	3.2e Input
	3.2f Process Activities
	3.2g Output
	3.2h Exit Criteria
	3.2.1 Perform Configuration Identification (A21)
	3.2.2 Perform Configuration Control (A22)
	3.2.3 Perform Configuration Status Accounting (A23)
	3.2.4 Perform Configuration Audits and Reviews (A24)

	Notes
	Reference
	Appendix X1 Acronyms and Abbreviations
	Appendix X2 Software Configuration Management
	Briefing Evaluation Check Sheet

	Software Configuration Management
	Briefing Evaluation Check Sheet
	Software Configuration Management
	Briefing Evaluation Check Sheet

	Appendix Y
	Supplier CM Market Analysis Questionnaire

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

