

Managing

RAID
on

LINUX

Related titles from O’Reilly

Learning Red Hat Linux

Linux Device Drivers

Linux in a Nutshell

Linux Network Administrator’s Guide

Building Secure Servers with Linux

LPI Linux Certification in a Nutshell

Running Linux

Understanding the Linux Kernel

Unix Power Tools

Also available

The Linux Web Server CD Bookshelf

Managing

RAID
on

LINUX
Derek Vadala

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Managing RAID on Linux
by Derek Vadala

Copyright © 2003 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Claire Cloutier

Cover Designer: Emma Colby

Interior Designer: David Futato

Printing History:

December 2002: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. The association between the image of a logjam and the
topic of RAID on Linux is a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-730-3

[M]

v

Table of Contents

Preface . vii

1. Introduction . 1
RAID Terminology 3
The RAID Levels: An Overview 6
RAID on Linux 8
Hardware Versus Software 10

2. Planning and Architecture . 11
Hardware or Software? 11
The RAID Levels: In Depth 17
RAID Case Studies: What Should I Choose? 28
Disk Failures 31
Hardware Considerations 32
Making Sense of It All 56

3. Getting Started: Building a Software RAID . 59
Kernel Configuration 60
Working with Software RAID 70
Creating an Array 81
The Next Step 105

4. Software RAID Reference . 106
Kernel Options 106
md Block Special Files 109
/proc and Software RAID 109
raidtools 114
mdadm 129

vi | Table of Contents

5. Hardware RAID . 145
Choosing a RAID Controller 145
Preparing Controllers and Disks 148
General Configuration Issues 150
Mylex 155
Adaptec 167
Promise Technology 174
3ware Escalade ATA RAID Controller 181
LSI Logic (MegaRAID) 184

6. Filesystems . 187
Basic Filesystem Concepts 188
The Linux Virtual Filesystem (VFS) 191
ext2 192
ext3 Extensions for the ext2 Filesystem 197
ReiserFS 201
IBM JFS 207
SGI XFS 210

7. Performance, Tuning, and Maintenance . 214
Monitoring RAID Devices 214
Managing Disk Failures 216
Configuring Hard Disk Parameters 221
Performance Testing 227
Booting with Software RAID 227

A. Additional Resources . 233

B. Hardware RAID Controller Vendors . 236

Index . 237

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

vii

Preface

Linux has come a long way in the last decade. No longer relegated to the world of
hobbyists and developers, Linux is ubiquitous and is quickly taking hold of enter-
prise and high-performance computing. Established corporations such as IBM,
Hewlett-Packard, and Sun Microsystems have embraced Linux. Linux is now used to
produce blockbuster motion pictures, create real-time models of worldwide weather
patterns, and aid in scientific and medical research. Linux is even used on the Inter-
national Space Station.

Linux has accomplished this because of a vast, and seemingly tireless, network of
developers, documenters, and evangelists who share the common mantra that soft-
ware should be reliable, efficient, and secure as well as free. The hard work of these
individuals has propelled Linux into the mainstream. Their focus on technologies
that allow Linux to compete with traditional operating systems certainly accounts for
a large part of the success of Linux.

This book focuses on using one of those technologies: RAID, also known as a
Redundant Array of Inexpensive Disks. As you will find out, RAID allows individu-
als and organizations to get more out of their hardware by increasing the perfor-
mance and reliability of their data. RAID is but one component of what makes Linux
a competitive platform.

Overview of the Book
Here is a brief overview of the contents of this book.

Chapter 1, Introduction, provides a quick overview of RAID on Linux, including its
evolution and future direction. The chapter briefly outlines the RAID levels and iden-
tifies which are available under Linux through hardware or software.

Chapter 2, Planning and Architecture, helps you determine what type of RAID is best
suited for your needs. The chapter focuses on the differences between hardware and
software RAIDs and discusses which is the best choice, depending on your budget

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

viii | Preface

and long- and short-term goals. Also included is a discussion of PC hardware rele-
vant to building a RAID system: disk protocols, buses, hard drives, I/O channels,
cable types and lengths, and cases.

If you decide on a software RAID, then Chapter 3, Getting Started: Building a Soft-
ware RAID, outlines the necessary steps in getting your first array online.

Chapter 4, Software RAID Reference, contains all the command-line references for
the RAID utilities available under Linux. It also covers the RAID kernel parameters
and commands related to array and disk management.

Chapter 5, Hardware RAID, covers RAID controllers for Linux. Chapter 5 also cov-
ers some widely available disk controllers and discusses driver availability, support,
and online array management.

Chapter 6, Filesystems, offers a roundup of the journaling filesystems available for
Linux, including ext3, IBM’s JFS, ReiserFS, and Silicon Graphics’s XFS. The chapter
covers installation and also offers some performance tuning tips.

Chapter 7, Performance, Tuning, and Maintenance, covers a range of topics that
include monitoring RAID devices, tuning hard disks, and booting from software
RAID.

Appendix A, Additional Resources, lists online resources, mailing lists, and addi-
tional reading.

Appendix B, Hardware RAID Controller Vendors, offers information about RAID
vendors.

A Note About Architecture
In the interest of appealing to the widest audience, this book covers i386-based sys-
tems. Software RAID does work under other architectures, such as SPARC, and I
encourage you to use them. Support for hardware RAID controllers varies between
architectures, so it’s best to contact vendors and confirm hardware compatibility
before making any purchases.

Kernels
Using RAID on Linux involves reconfiguring and modifying the Linux kernel. In gen-
eral, I prefer to use monolithic kernels instead of modules, whenever possible. While
kernel modules are quite useful for home desktop systems and notebooks, they
aren’t the best choice for servers and production systems. The choice between the
two types of kernel is ultimately up to the user. Many users prefer modules to stati-
cally compiled kernel subsystems.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | ix

In order to maintain consistency, I had to settle on specific kernels that are used in
the examples found throughout this book. It’s inevitable that between the time of
this writing and the release of the book, newer kernels will become available. This
should not pose any problem for users working with newer kernels. This book uses
kernels 2.4.18, 2.2.20, and 2.0.39, and focuses specifically on the 2.4 kernel.

LILO
Throughout this book, I focus on LILO when discussing boot loaders. I know that
there are many other options available (GRUB, for example), but LILO has worked
reliably with Linux’s RAID capabilities, and some of the newer choices are not quite
compatible yet.

Prompts
There are a number of command output listings throughout this book. The com-
mands in these sections start with a prompt (either $ or #) that indicates whether the
command should be executed by a normal user or whether it should be run as root.

$ less /etc/raidtab
vi /etc/raidtab

For example, in the preceding code, the $ prompt indicates that the first command
can be run as a normal user. By default, any user can view, but not modify, the file
/etc/raidtab. To edit that file, however, you need root access (as the # prompt
denotes).

Conventions Used in This Book
The following typographical conventions are used in this book.

Italic
Used for file and directory names, programs, commands, command-line options,
hostnames, usernames, machine names, email addresses, pathnames, URLs, and
new terms.

Constant width
Used for variables, keywords, values, options, and IDs. Also used in examples to
show the contents of files or the output from commands.

Constant width italic
Used for text that the user is to replace with an actual value.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

x | Preface

These icons signify a tip, suggestion, or general note.

These icons indicate a warning or caution.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

O’Reilly has a web site for this book, where they’ll list examples, errata, and any
plans for future editions. The site also includes a link to a forum where you can dis-
cuss the book with the author and other readers. You can access this site at:

http://www.oreilly.com/catalog/mraidlinux/

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments
Many people helped with the writing of this book, but the greatest credit is owed to
Andy Oram, my editor. It was his early interest in my original proposal that started
this project, and his suggestions, criticism, and raw editorial work turned this text
from a draft into an O’Reilly book. I’m also indebted to many people at O’Reilly, for
all their hard work on the numerous tasks involved in producing a book.

Neil Brown, Nick Moffitt, Jakob Oestergaard, and Levy Vargas reviewed the final
draft for technical errors and provided me with essential feedback. Their insight and
expertise helped make this book stronger. Many others helped review various bits of

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preface | xi

material along the way, including Joel Becker, Martin Bene, Danny Cox, Jim Ford,
Corin Hartland-Swann, Dan Jones, Eyal Lebedinsky, Greg Lehey, Ingo Molnar, and
Benjamin Turner.

Thanks to all the filesystem developers who offered me feedback on Chapter 6:
Stephen C. Tweedie, Seth Mos, Steve Lord, Steve Best, Theodore Ts’o, Vladimir V.
Saveliev, and Hans Reiser. My appreciation also goes out to all the vendors who pro-
vided me with software, equipment, and comments: Thomas Bayens, Chin-Tien
Chu, and Thomas Hall at IBM; Angelina Lu and Deanna Bonds at Adaptec; Craig
Lyons and Daron Keith at Promise; James Evans at LSI Logic; Pete Kisich, Kathleen
Paulus, and Adam Radford at 3ware; Joey Lai at Highpoint Technologies; Mathilde
Kraskovetz at Mandrake; and Harshit Mehta at SuSE.

Thanks to my family and friends, who provided support and countless favors while I
was writing this book, especially Dallas Wisehaupt, Philippe Stephan, Stephen
Fisher, Trevor Noonan, Carolyn Keddy, Erynne Simpson, David Perry, Benjamin
Richards, Matthew Williams, Peter Pacheco, Eric Bronnimann, Al Lenderink, Ben
Feltz, and Erich Bechtel.

I owe special thanks to Craig Newmark, Jim Buckmaster, Jeff Green, and the entire
staff of Craigslist.org for graciously providing me with office space and Internet
access during my many excursions to San Francisco. Their hospitality directly
resulted in the writing of Chapter 2. And finally, thanks especially to Eric Scheide,
who encouraged me to write the original proposal for this book, gave me my first job
as a Unix system administrator, and didn’t argue as I slowly retired Ultrix and Solaris
machines in favor of Linux.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introduction

Every system administrator sooner or later realizes that the most elusive foe in sus-
taining reliable system performance is bandwidth. On one hand, network connectiv-
ity provides a crucial connection to the outside world through which your servers
deliver data to users. This type of bandwidth, and its associated issues, is well docu-
mented and well studied by virtually all system and network administrators. It is at
the forefront of modern computing, and the topic most often addressed by both non-
technical managers and the mainstream media. A multitude of software and docu-
mentation has been written to address network and bandwidth issues. Most adminis-
trators, however, don’t realize that similar bandwidth problems exist at the bus level
in each system you manage. Unfortunately, this internal data transfer bottleneck is
more sparsely documented than its network counterpart. Because of its second stage
coverage, many administrators, users, and managers are left with often perplexing
performance issues.

Although we tend to think of computers as entirely electronic, they still rely on mov-
ing parts. Hard drives, for example, contain plates and mechanical arms that are sub-
ject to the constraints of the physical world we inhabit. Introducing moving parts
into a digital computer creates an inherent bottleneck. So even though disk transfer
speeds have risen steadily in the past two decades, disks are still an inherently slow
component in modern computer systems. A high-performance hard disk might be
able to achieve a throughput of around 30 MB per second. But that rate is still more
than a dozen times slower than the speed of a typical motherboard—and the mother-
board isn’t even the fastest part of the computer.

There is a solution to this I/O gap that does not include redefining the laws of phys-
ics. Systems can alleviate it by distributing the controllers’ and buses’ loads across
multiple, identical parts. The trick is doing it in a way that can let the computer deal
seamlessly with the complex arrangement of data as if it were one straightforward
disk. In essence, by increasing the number of moving parts, we can decrease the bot-
tleneck. RAID (Redundant Array of Independent Disks) technology attempts to recon-
cile this gap by implementing this practical, yet simple, method for swift, invisible
data access.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introduction

Simply put, RAID is a method by which many independent disks attached to a com-
puter can be made, from the perspective of users and applications, to appear as a sin-
gle disk. This arrangement has several implications.

• Performance can be dramatically improved because the bottleneck of using a sin-
gle disk for all I/O is spread across more than one disk.

• Larger storage capacities can be achieved, since you are using multiple disks
instead of a single disk.

• Specific disks can be used to transparently store data that can then be used to
survive a disk failure.

RAID allows systems to perform traditionally slow tasks in parallel, increasing per-
formance. It also hides the complexities of mapping data across multiple hard disks
by adding a layer of indirection between users and hardware.

RAID can be achieved in one of two ways. Software RAID uses the computer’s CPU
to carry out RAID operations. Hardware RAID uses specialized processors, on disk
controllers, to manage the disks. The resulting disk set, colloquially called an array,
can provide various improvements in performance and reliability, depending on its
implementation.

The term RAID was coined at Berkeley in 1988 by David A. Patterson, Garth A. Gib-
son, and Randy H. Katz in their paper, “A Case for Redundant Arrays of Inexpen-
sive Disks (RAID).” This and subsequent articles on RAID have come to be called
the “Berkeley Papers.” People started to change the “I” in RAID from “inexpensive”
to “independent” when they realized, first, that disks were getting so cheap that any-
one could afford whatever they needed, and second, that RAID was solving impor-
tant problems faced by many computing sites, whether or not cost was an issue.
Today, the disk storage playing field has leveled. Large disks have become affordable
for both small companies and consumers. Giant magnetic spindles have been all but
eliminated, making even the largest-drives (in terms of capacity) usable on the desk-
top. Therefore the evolution of the acronym reflects the definition of RAID today:
several independent drives operating in unison. However, the two meanings of the
acronym are often used interchangeably.

RAID began as a response to the gap between I/O and processing power. Patterson,
Gibson, and Katz saw that while there would continue to be exponential growth in
CPU speed and memory capacity, disk performance was achieving only linear
increases and would continue to take this growth curve for the foreseeable future.
The Berkeley Papers sought to attack the I/O problem by implementing systems that
no longer relied on a Single Large Expensive Disk (SLED), but rather, concatenated
many smaller disks that could be accessed by operating systems and applications as a
single disk.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

RAID Terminology | 3

This approach helps to solve many different problems facing many different organi-
zations. For example, some organizations might need to deal with data such as news-
group postings, which are of relatively low importance, but require an extremely
large amount of storage. These organizations will realize that a single hard drive is
grossly inadequate for their storage needs and that manually organizing data is a
futile effort. Other companies might work with small amounts of vitally important
data, in a situation in which downtime or data loss would be catastrophic to their
business. RAID, because of its robust and varying implementations, can scale to
meet the needs of both these types of organizations, and many others.

RAID Terminology
One of the most confusing parts of system administration is its terminology. Misno-
mers often obscure simple topics, making it hard to search for documentation and
even harder to locate relevant software. This has unfortunately been the case with
RAID on Linux, but Linux isn’t specifically to blame. Since RAID began as an open
specification that was quickly adopted and made proprietary by a multitude of value-
added resellers and storage manufacturers, it fell victim to mismarketing. For exam-
ple, arrays are often referred to as metadevices, logical volumes, or volume groups.
All of these terms mean the same thing: a group of drives that behave as one—that
is, a RAID or an array. In the following section, we will introduce various terms used
to describe RAID.

RAID has the ability to survive disk failures and increase overall disk performance.
The RAID levels described in the following section each provide a different combina-
tion of performance and reliability. The levels that yield the most impressive perfor-
mance often sacrifice the ability to survive disk failures and vice versa.

Redundancy
Redundancy is a feature that allows an array to survive a disk failure. Not all RAID
levels support this feature. In fact, although the term RAID is used to describe cer-
tain types of non-redundant arrays, these arrays are not, in fact, RAID because they
do not support any data redundancy.

Despite its redundant capabilities, RAID should never be used as a
replacement for reliable backups. RAID does not protect your data in
the event of a fire, natural disaster, or user error.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction

Mirroring

Two basic forms of redundancy appear throughout the RAID specification. The first
is accomplished with a process called disk mirroring, shown in Figure 1-1. Mirroring
replicates data onto every disk in the array. Each member disk contains the same
data and has an equal role in the array. In the event of a disk failure, data can be read
from the remaining disks.

Improved read performance is a by-product of disk mirroring. When the array is
operating normally, meaning that no disks have failed, data can be read in parallel
from each disk in the mirror. The result is that reads can yield a linear performance
based on the number of disks in the array. A two-disk mirror could yield read speeds
up to two times that of a single disk. However, in practice, you probably won’t see a
read performance increase that’s quite this dramatic. That’s because many other fac-
tors, including filesystem performance and data distribution, also affect throughput.
But you can still expect read performance that’s better than that of a single disk.

Unfortunately, mirroring also means that data must be written twice—once to each
disk in the array. The result is slightly slower write performance, compared to that of
a single disk or nonmirroring array.

Parity

Parity algorithms are the other method of redundancy. When data is written to an
array, recovery information is written onto a separate disk, as shown in Figure 1-2. If
a drive fails, the original data can be reconstructed from the parity information and
the remaining data. You can find more information on how parity redundancy works
in Chapter 2.

Figure 1-1. Disk mirroring writes a copy of all data to each disk.

Figure 1-2. Parity redundancy is accomplished by storing recovery data on specified drives.

Data

Data
(Copy)

Disk array

Data
(Copy)

Data

Data
(B)

Disk array

Data
(C)

Data
(A)

Recovery
data

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

RAID Terminology | 5

Degraded

Degraded describes an array that supports redundancy, but has one or more failed
disks. The array is still operational, but its reliability and, in some cases, its perfor-
mance, is diminished. When an array is in degraded mode, an additional disk failure
usually indicates data loss, although certain types of arrays can withstand multiple
disk failures.

Reconstruction, resynchronization, and recovery

When a failed disk from a degraded array is replaced, a recovery process begins. The
terms reconstruction, resynchronization, recovery, and rebuild are often used inter-
changeably to describe this recovery process. During recovery, data is either copied
verbatim to the new disk (if mirroring was used) or reconstructed using the parity
information provided by the remaining disks (if parity was used). The recovery pro-
cess usually puts an additional strain on system resources. Recovery can be auto-
mated by both hardware and software, provided that enough hardware (disks) is
available to repair an array without user intervention.

Whenever a new redundant array is created, an initial recovery process is performed.
This process ensures that all disks are synchronized. It is part of normal RAID opera-
tions and does not indicate any hardware or software errors.

Striping
Striping is a method by which data is spread across multiple disks (see Figure 1-3). A
fixed amount of data is written to each disk. The first disk in the array is not reused
until an equal amount of data is written to each of the other disks in the array. This
results in improved read and write performance, because data is written to more than
one drive at a time. Some arrays that store data in stripes also support redundancy
through disk parity. RAID-0 defines a striped array without redundancy, resulting in
extremely fast read and write performance, but no method for surviving a disk fail-
ure. Not all types of arrays support striping.

Figure 1-3. Striping improves performance by spreading data across all available disks.

Disk array

Data
1

Disk 1

Data
5

Data
2

Data
6

Disk 2

Data
3

Disk 3

Data
7

Data
4

Data
8

Disk 4

Data

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction

Stripe-size versus chunk-size

The stripe-size of an array defines the amount of data written to a group of parallel
disk blocks. Assume you have an array of four disks with a stripe size of 64 KB (a
common default). In this case, 16 KB worth of data is written to each disk (see
Figure 1-4), for a total of 64 KB per stripe. An array’s chunk-size defines the smallest
amount of data per write operation that should be written to each individual disk.
That means a striping array made up of four disks, with a chunk-size of 64 KB, has a
stripe-size of 256 KB, because a minimum of 64 KB is written to each component
disk. Depending on the specific RAID implementation, users may be asked to set a
stripe-size or a chunk-size. For example, most hardware RAID controllers use a
stripe-size, while the Linux kernel uses a chunk-size.

The RAID Levels: An Overview
Patterson, Gibson, and Katz realized that different types of systems would inevitably
have different performance and redundancy requirements. The Berkeley Papers pro-
vided specifications for five levels of RAID, offering various compromises between
performance and data redundancy. After the publication of the Berkeley Papers,
however, the computer industry quickly realized that some of the original levels
failed to provide a good balance between cost and performance, and therefore
weren’t really worth using.

RAID-2 and RAID-3, for example, quickly became useless. RAID-2 implemented a
read/write level error correction code (ECC) that later became a standard firmware
feature on hard drives. This development left RAID-2 without any advantage in
redundancy over other RAID levels. The ECC implementation now required unnec-
essary overhead that hurt performance. RAID-3 required that all disks operate in
lockstep (all disk spindles are synchronized). This added additional design consider-
ations and did not provide any significant advantage over other RAID levels.

RAID has changed a great deal since the Berkeley Papers were written. While some
of the original levels are no longer used, the storage industry quickly made additions

Figure 1-4. Stripe-size defines the size of write operations.

64KB Write

Disk array

16KB 16KB 16KB 16KB

Stripe size

Chunk size

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The RAID Levels: An Overview | 7

to the original specification. This book will cover all of the RAID levels available to
Linux users, but will not cover obsolete implementations like RAID-2 and RAID-3.
Below you will find a concise overview of each RAID level. Chapter 2 covers each of
the RAID levels in more detail, including hybrid arrays that are built by combining
multiple RAID levels.

RAID-0: Striping
RAID-0 is also known as striping because data is interleaved across all drives in the
array. Each block of data is written in round-robin fashion to array disks until the
write operation is complete. Data is read in the same fashion. Since data transfer is
constantly shifted to a new disk, bottlenecks associated with reading and writing
data to a single disk are alleviated and performance dramatically improves. Striping
was not part of the original RAID specification and, technically speaking, is not a
RAID because it provides no mechanism for data redundancy. Nonetheless, the con-
cept of striping is also found in other RAID levels. For example, RAID-4 and RAID-5
(described below) use a combination of striping and recovery algorithms to achieve
improvements in performance while still offering redundancy.

RAID-1: Mirroring
RAID-1 (mirroring) stores an exact replica of all data on a separate disk or disks. This
practice provides complete data redundancy in the event of a disk failure. However,
because data must be written to disk more than once, there is a write performance
hit, which increases as you add disks. On the other hand, read operations can be
done in parallel so that read performance improves (compared to that of a single
disk), depending on the number of disks in the mirror.

RAID-4: Dedicated Parity
RAID-4 works similarly to striping. However, a dedicated drive is used to store par-
ity information. Every time data is written to an array disk, an algorithm generates
recovery information that is written to a specially flagged parity drive. In the event of
single disk failure, the algorithm can be reversed and missing data can be automati-
cally generated, based on the remaining data and the parity information.

RAID-5: Distributed Parity
RAID-5 is similar to RAID-4, except that the parity information is spread across all
drives in the array. This helps reduce the bottleneck inherent in writing parity infor-
mation to a single drive during each write operation.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction

Linear Mode
Linear mode, also called append mode, writes data to a single array disk until it is
full. Once the disk is full, data is written to the next disk in the array until all disks
are full. This provides an easy way to use disks of different sizes in an array, so that
no space is ever wasted. Like striping, linear mode is not technically a RAID, because
no redundancy is provided. It was also not present in the original RAID specifica-
tion. For clarity, I will use the term linear mode, rather than append mode, through-
out the rest of the book.

Disk spanning

The term linear mode is unique to the Linux kernel’s implementation of RAID. Most
hardware RAID vendors use the term disk spanning, or simply spanning, to refer to
this type of end-to-end disk arrangement. The terms disk concatenation or concate-
nated disks are also used.

JBOD (Just a Bunch Of Disks)
JBOD refers to the single-disk operating mode that many hardware RAID controllers
support. With JBOD mode, the controller is able to circumvent RAID firmware and
treat a single hard disk as a normal disk controller would. This is useful when you
have disks that you want to configure without RAID support, but that you want to
connect to a RAID controller. If your controller does not support JBOD, then you
would need to use a standard disk controller to connect non-RAID disks, resulting in
additional hardware spending and the use of another expansion slot.

I have seen some instances where the term JBOD is used interchangeably with terms
like linear mode, disk spanning, and concatenation. When I use it throughout this
book, I mean it in the context described here: a standalone disk connected to a RAID
controller.

RAID on Linux
It’s important to understand that when I refer to a RAID array, I’m talking about a
block device and not a filesystem. You could think of the relationship between the
two much in the same way you might think of the relationship between a house and
its foundation. If the foundation is weak, the house will eventually collapse. The file-
system, which represents the house in my analogy, is built on top of a block device.
Normally, a block device is a single hard disk, but RAID introduces another layer
(see Figure 1-5). RAID groups many block devices into a single virtual device.

This means that Linux interacts with an array through a single block device having a
single major and minor number. Physically, the array device points to many different
physical disks, each with their own major and minor numbers. Programmers might

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

RAID on Linux | 9

think of this model the same way they think of an array data type, hence the use of
the word “array” in the RAID acronym.

Each piece of hardware connected to a Linux system is assigned a major and minor
number. The major number refers to a specific group of hardware (such as small
computer systems interface, or SCSI, disks), while the minor uniquely identifies each
installed piece of hardware within the group (for example, each individual SCSI
disk). Since RAID is merely an intermediary layer, and because it works just like any
other block device, you can build any type of filesystem on top of it. When working
with Linux’s RAID implementation, you can even build arrays on top of other arrays,
or use other types of storage management like Logical Volume Management (LVM).

The Linux device names for accessing software RAID devices are designated md.
While you might assume that md stands for metadevice, that’s incorrect (although
the abbreviation is used that way by many people). The md in Linux software RAID
actually refers to the kernel subsystem that handles arrays: the multiple devices driver.
/dev/md[0-255] represents the default block devices used for accessing software
RAID on Linux, allowing a total of 256 software RAID devices on a single Linux sys-
tem.

RAID under Linux is available as part of the kernel. The kernel supports five differ-
ent RAID levels: linear mode, striping (RAID-0), mirroring (RAID-1), RAID-4, and
RAID-5. The RAID subsystem can be compiled statically into the kernel or used as a
loadable module. Chapter 3 covers software RAID implementation under Linux. If
you are already familiar with RAID from an architectural standpoint, you can skip
ahead to Chapter 3 and start rebuilding your kernel.

With the popularity of Linux increasing daily, many manufacturers have begun to
release Linux drivers for hardware RAID cards and offer full-scale technical support
for such RAID cards. Many of these companies have gone one step further and
released drivers that are open source (http://opensource.org). Some companies that

Figure 1-5. Filesystems are built on block devices; RAID introduces an intermediary layer.

ReiserFS ext2 IBMs and
JFS XFS ext3

Filesystems

I/O

Software RAID devices (md driver)
/dev/mdo, /dev/md1, etc.

I/O

Block devices
/dev/sda1, /dev/sdb1, /dev/hda1, etc.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Introduction

have not been kind enough to release drivers have still released technical informa-
tion about their hardware that has allowed open source developers to write drivers.
This growing industry support allows Linux, and open source, to more effectively
compete with commercial systems and legacy operating systems.

Linux professionals have done considerable work to bring high-performance, open
source filesystems to Linux. These filesystems include IBM’s Journaled File System
(JFS), ext3, SGI’s XFS, and ReiserFS. However, improving the performance and reli-
ability of a filesystem can be a wasted effort if equal consideration is not given to the
block devices on which these filesystems are built. Likewise, you’d be foolish to
spend your time building a reliable, high-performance RAID system without consid-
ering the filesystem that you are going to use. In fact, in many cases, limitations of
filesystems like ext2 will prevent you from fully realizing the potential of a RAID
device. Chapter 6 provides a brief overview of some high-performance filesystems.

Hardware Versus Software
Although RAID is built directly into the Linux kernel, some users might find it
advantageous to buy custom drive controllers that have built-in RAID capabilities.
Some users might even find it worthwhile to purchase custom RAID systems that
have been preconfigured. The choice between using software (kernel-based) or hard-
ware (controller-based) RAID or buying a turnkey RAID solution can be difficult, but
this book will help you determine which option is best suited for your needs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

11

Chapter 2 CHAPTER 2

Planning and
Architecture

Choosing the right RAID solution can be a daunting task. Buzzwords and marketing
often cloud administrators’ understanding of RAID technology. Conflicting informa-
tion can cause inexperienced administrators to make mistakes. It is not unnatural to
make mistakes when architecting a complicated system. But unfortunately, dead-
lines and financial considerations can make any mistakes catastrophic. I hope that
this book, and this chapter in particular, will leave you informed enough to make as
few mistakes as possible, so you can maximize both your time and the resources you
have at your disposal. This chapter will help you pick the best RAID solution by first
selecting which RAID level to use and then focusing on the following areas:

• Hardware costs

• Scalability

• Performance and redundancy

Hardware or Software?
RAID, like many other computer technologies, is divided into two camps: hardware
and software. Software RAID uses the computer’s CPU to perform RAID operations
and is implemented in the kernel. Hardware RAID uses specialized processors, usu-
ally found on disk controllers, to perform array management functions. The choice
between software and hardware is the first decision you need to make.

Software (Kernel-Managed) RAID
Software RAID means that an array is managed by the kernel, rather than by special-
ized hardware (see Figure 2-1). The kernel keeps track of how to organize data on
many disks while presenting only a single virtual device to applications. This virtual
device works just like any normal fixed disk.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 2: Planning and Architecture

Software RAID has unfortunately fallen victim to a FUD (fear, uncertainty, doubt)
campaign in the system administrator community. I can’t count the number of sys-
tem administrators whom I’ve heard completely disparage all forms of software
RAID, irrespective of platform. Many of these same people have admittedly not used
software RAID in several years, if at all.

Why the stigma? Well, there are a couple of reasons. For one, when software RAID
first saw the light of day, computers were still slow and expensive (at least by today’s
standards). Offloading a high-performance task like RAID I/O onto a CPU that was
likely already heavily overused meant that performing fundamental tasks such as file
operations required a tremendous amount of CPU overhead. So, on heavily satu-
rated systems, the simple task of calling the stat* function could be extremely slow
when compared to systems that didn’t have the additional overhead of managing
RAID arrays. But today, even multiprocessor systems are both inexpensive and com-
mon. Previously, multiprocessor systems were very expensive and unavailable to typ-
ical PC consumers. Today, anyone can build a multiprocessor system using
affordable PC hardware. This shift in hardware cost and availability makes software
RAID attractive because Linux runs well on common PC hardware. Thus, in cases
when a single-processor system isn’t enough, you can cost-effectively add a second
processor to augment system performance.

Another big problem was that software RAID implementations were part of propri-
etary operating systems. The vendors promoted software RAID as a value-added

Figure 2-1. Software RAID uses the kernel to manage arrays.

* The stat(2) system call reports information about files and is required for many commonplace activities like
the ls command.

Software RAID

Users and applications

Data

CPU

Raw disk blocks

Read Write

Disk controller
(No RAID capability)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware or Software? | 13

incentive for customers who couldn’t afford hardware RAID, but who needed a way
to increase disk performance and add redundancy. The problem here was that
closed-source implementations, coupled with the fact that software RAID wasn’t a
priority in OS development, often left users with buggy and confusing packages.

Linux, on the other hand, has a really good chance to change the negative percep-
tions of software RAID. Not only is Linux’s software RAID open source, the inex-
pensive hardware that runs Linux finally makes it easy and affordable to build
reliable software RAID systems. Administrators can now build systems that have suf-
ficient processing power to deal with day-to-day user tasks and high-performance
system functions, like RAID, at the same time. Direct access to developers and a
helpful user base doesn’t hurt, either.

If you’re still not convinced that software RAID is worth your time, then don’t fret.
There are also plenty of hardware solutions available for Linux.

Hardware
Hardware RAID means that arrays are managed by specialized disk controllers that
contain RAID firmware (embedded software). Hardware solutions can appear in sev-
eral forms. RAID controller cards that are directly attached to drives work like any
normal PCI disk controller, with the exception that they are able to internally admin-
ister arrays. Also available are external storage cabinets that are connected to high-
end SCSI controllers or network connections to form a Storage Area Network (SAN).
There is one common factor in all these solutions: the operating system accesses only
a single block device because the array itself is hidden and managed by the control-
ler.

Large-scale and expensive hardware RAID solutions are typically faster than soft-
ware solutions and don’t require additional CPU overhead to manage arrays. But
Linux’s software RAID can generally outperform low-end hardware controllers.
That’s partly because, when working with Linux’s software RAID, the CPU is much
faster than a RAID controller’s onboard processor, and also because Linux’s RAID
code has had the benefit of optimization through peer review.

The major trade-off you have to make for improved performance is lack of support,
although costs will also increase. While hardware RAID cards for Linux have become
more ubiquitous and affordable, you may not have some things you traditionally get
with Linux. Direct access to developers is one example. Mailing lists for the Linux
kernel and for the RAID subsystem are easily accessible and carefully read by the
developers who spend their days working on the code. With some exceptions, you
probably won’t get that level of support from any disk controller vendor—at least
not without paying extra.

Another trade-off in choosing a hardware-based RAID solution is that it probably
won’t be open source. While many vendors have released cards that are supported

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 2: Planning and Architecture

under Linux, a lot of them require you to use closed-source components. This means
that you won’t be able to fix bugs yourself, add new features, or customize the code
to meet your needs. Some manufacturers provide open source drivers while provid-
ing only closed-source, binary-only management tools, and vice versa. No vendors
provide open source firmware. So if there is a problem with the software embedded
on the controller, you are forced to wait for a fix from the vendor—and that could
impact a data recovery effort! With software RAID, you could write your own patch
or pay someone to write one for you straightaway.

RAID controllers

Some disk controllers internally support RAID and can manage disks without the
help of the CPU (see Figure 2-2). These RAID cards handle all array functions and
present the array as a standard block device to Linux. Hardware RAID cards usually
contain an onboard BIOS that provides the management tools for configuring and
maintaining arrays. Software packages that run at the OS level are usually provided
as a means of post-installation array management. This allows administrators to
maintain RAID devices without rebooting the system.

While a lot of card manufacturers have recently begun to support Linux, it’s impor-
tant to make sure that the card you’re planning to purchase is supported under
Linux. Be sure that your manufacturer provides at least a loadable kernel module, or,
ideally, open source drivers that can be statically compiled into the kernel. Open
source drivers are always preferred over binary-only kernel modules. If you are stuck
using a binary-only module, you won’t get much support from the Linux commu-
nity because without access to source code, it’s quite impossible for them to diag-
nose interoperability problems between proprietary drivers and the Linux kernel.
Luckily, several vendors either provide open source drivers or have allowed kernel

Figure 2-2. Disk controllers shift the array functions off the CPU, yielding an increase in
performance.

Users and applications

CPU

Data

Hardware RAID

Read Write

RAID controller

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware or Software? | 15

hackers to develop their own. One shining example is Mylex, which sells RAID con-
trollers. Their open source drivers are written by Leonard Zubkoff* of Dandelion
Digital and can be managed through a convenient interface under the /proc filesys-
tem. Chapter 5 discusses some of the cards that are currently supported by Linux.

Outboard solutions

The second hardware alternative is a turnkey solution, usually found in outboard
drive enclosures. These enclosures are typically connected to the system through a
standard or high-performance SCSI controller. It’s not uncommon for these special-
ized systems to support multiple SCSI connections to a single system, and many of
them even provide directly accessible network storage, using NFS and other proto-
cols.

These outboard solutions generally appear to an operating system as a standard SCSI
block device or network mount point (see Figure 2-3) and therefore don’t usually
require any special kernel modules or device drivers to function. These solutions are
often extremely expensive and operate as black box devices, in that they are almost
always proprietary solutions. Outboard RAID boxes are nonetheless highly popular
among organizations that can afford them. They are highly configurable and their
modular construction provides quick and seamless, although costly, replacement
options. Companies like EMC and Network Appliance specialize in this arena.

* Leonard Zubkoff was very sadly killed in a helicopter crash on August 29, 2002. I learned of his death about
a week later, as did many in the open source community. I didn’t know Leonard personally. We’d had only
one email exchange, earlier in the summer of 2002, in which he had graciously agreed to review material I
had written about the Mylex driver. His site remains operational, but I have created a mirror at http://
dandelion.cynicism.com/, which I will maintain indefinitely.

Figure 2-3. Outboard RAID systems are internally managed and connected to a system to which
they appear as a single hard disk.

Storage cabinet populated with
hot-swap drives

DataOn-board RAID controllers

Raw disk blocks Ethernet or direct connection
using SCSI or Fiber channel

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 2: Planning and Architecture

If you can afford an outboard RAID system and you think it’s the best solution for
your project, you will find them reliable performers. Do not forget to factor support
costs into your budget. Outboard systems not only have a high entry cost, but they
are also costly to maintain. You might also consider factoring spare parts into your
budget, since a system failure could otherwise result in downtime while you are wait-
ing for new parts to arrive. In most cases, you will not be able to find replacement
parts for an outboard system at local computer stores, and even if they are available,
using them will more than likely void your warranty and support contracts.

I hope you will find the architectural discussions later in this chapter helpful when
choosing a vendor. I’ve compiled a list of organizations that provide hardware RAID
systems in the Appendix. But I urge you to consider the software solutions discussed
throughout this book. Administrators often spend enormous amounts of money on
solutions that are well in excess of their needs. After reading this book, you may find
that you can accomplish what you set out to do with a lot less money and a little
more hard work.

Storage Area Network (SAN)

SAN is a relatively new method of storage management, in which various storage
platforms are interconnected on a separate, usually high-speed, network (see
Figure 2-4). The SAN is then connected to local area networks (LANs) throughout
an organization. It is not uncommon for a SAN to be connected to several different
parts of a LAN so that users do not share a single path to the SAN. This prevents a
network bottleneck and allows better throughput between users and storage sys-
tems. Typically, a SAN might also be exposed to satellite offices using wide area net-
work (WAN) connections.

Many companies that produce turnkey RAID solutions also offer services for plan-
ning and implementing a SAN. In fact, even drive manufacturers such as IBM and
Western Digital, as well as large network and telecommunications companies such
as Lucent and Nortel Networks, now provide SAN solutions.

SAN is very expensive, but is quickly becoming a necessity for large, distributed
organizations. It has become vital in backup strategies for large businesses and will
likely grow significantly over the next decade. SAN is not a replacement for RAID;
rather, RAID is at the heart of SAN. A SAN could be comprised of a robotic tape
backup solution and many RAID systems. SAN uses data and storage management
in a world where enormous amounts of data need to be stored, organized, and
recalled at a moment’s notice. A SAN is usually designed and implemented by ven-
dors as a top-down solution that is customized for each organization. It is therefore
not discussed further in this book.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The RAID Levels: In Depth | 17

The RAID Levels: In Depth
It is important to realize that different implementations of RAID are suited to differ-
ent applications and the wallets of different organizations. All implementations
revolve around the basic levels first outlined in the Berkeley Papers. These core lev-
els have been further expanded by software developers and hardware manufactur-
ers. The RAID levels are not organized hierarchically, although vendors sometimes
market their products to imply that there is a hierarchical advantage. As discussed in
Chapter 1, the RAID levels offer varying compromises between performance and
redundancy. For example, the fastest level offers no additional reliability when com-
pared with a standalone hard disk. Choosing an appropriate level assumes that you
have a good understanding of the needs of your applications and users. It may turn
out that you have to sacrifice some performance to build an array that is more redun-
dant. You can’t have the best of both worlds.

The first decision you need to make when building or buying an array is how large it
needs to be. This means talking to users and examining usage to determine how big
your data is and how much you expect it to grow during the life of the array.

Figure 2-4. A simple SAN arrangement.

Development network

Fiber ring

100 Megabit connection

Storage systems

100 Megabit connection

Marketing network

Development workstations

Marketing workstations

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Planning and Architecture

Table 2-1 briefly outlines the storage yield of the various RAID levels. It should give
you a basic idea of how many drives you will need to purchase to build the initial
array. Remember that RAID-2 and RAID-3 are now obsolete and therefore are not
covered in this book.

Remember that you will eventually need to build a filesystem on your
RAID device. Don’t forget to take the size of the filesystem into
account when figuring out how many disks you need to purchase. ext2
reserves five percent of the filesystem, for example. Chapter 6 covers
filesystem tuning and high-performance filesystems, such as JFS, ext3,
ReiserFS, XFS, and ext2.

The “RAID Case Studies: What Should I Choose?” section, later in this chapter,
focuses on various environments in which different RAID levels make the most
sense. Table 2-2 offers a quick comparison of the standard RAID levels.

Table 2-1. Realized RAID storage capacities

RAID level Realized capacity

Linear mode DiskSize0+DiskSize1+...DiskSizen

RAID-0 (striping) TotalDisks * DiskSize

RAID-1 (mirroring) DiskSize

RAID-4 (TotalDisks-1) * DiskSize

RAID-5 (TotalDisks-1) * DiskSize

RAID-10 (striped mirror) NumberOfMirrors * DiskSize

RAID-50 (striped parity) (TotalDisks-ParityDisks) * DiskSize

Table 2-2. RAID level comparison

RAID-1 Linear mode RAID-0 RAID-4 RAID-5

Write
performance

Slow writes,
worse than a
standalone disk;
as disks are
added, write per-
formance
declines

Same as a
standalone disk

Best write per-
formance; much
better than a sin-
gle disk

Comparable to
RAID-0, with one
less disk

Comparable to
RAID-0, with one
less disk for large
write opera-
tions; potentially
slower than a
single disk for
write operations
that are smaller
than the stripe
size

Read
performance

Fast read perfor-
mance; as disks
are added, read
performance
improves

Same as a
standalone disk

Best read perfor-
mance

Comparable to
RAID-0, with one
less disk

Comparable to
RAID-0, with one
less disk

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The RAID Levels: In Depth | 19

RAID-0 (Striping)
RAID-0 is sometimes referred to simply as striping; it was not included in the origi-
nal Berkeley specification and is not, strictly speaking, a form of RAID because there
is no redundancy. Under RAID-0, the host system or a separate controller breaks
data into blocks and writes it to different disks in round-robin fashion (as shown in
Figure 2-5).

This level yields the greatest performance and utilizes the maximum amount of avail-
able disk storage, as long as member disks are of identical sizes. Typically, if mem-
ber disks are not of identical sizes, then each member of a striped array will be able
to utilize only an amount of space equal to the size of the smallest member disk.
Likewise, using member disks of differing speeds might introduce a bottleneck dur-
ing periods of demanding I/O. See the “I/O Channels” and “Matched Drives” sec-
tions, later in this chaper, for more information on the importance of using identical
disks and controllers in an array.

Number of disk
failures

N-1 0 0 1 1

Applications Image servers;
application serv-
ers; systems with
little dynamic
content/updates

Recycling old
disks; no applica-
tion-specific
advantages

Same as RAID-5,
which is a better
alternative

File servers;
databases

Figure 2-5. RAID-0 (striping) writes data consecutively across multiple drives.

Table 2-2. RAID level comparison (continued)

RAID-1 Linear mode RAID-0 RAID-4 RAID-5

/dev/md0

B

D

F

H

A

C

E

G

Data

/dev/sda1 /dev/sdb1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 2: Planning and Architecture

In some implementations, stripes are organized so that all available
storage space is usable. To facilitate this, data is striped across all disks
until the smallest disk is full. The process repeats until no space is left
on the array. The Linux kernel implements stripes in this way, but if
you are working with a hardware RAID controller, this behavior might
vary. Check the available technical documentation or contact your
vendor for clarification.

Because there is no redundancy in RAID-0, a single disk failure can wipe out all files.
Striped arrays are best suited to applications that require intensive disk access, but
where the potential for disk failure and data loss is also acceptable. RAID-O might
therefore be appropriate for a situation where backups are easily accessible or where
data is available elsewhere in the event of a system failure—on a load-balanced net-
work, for example.

Disk striping is also well suited for video production applications because the high
data transfer rates allow tremendous source files to be postprocessed easily. But users
would be wise to keep copies of finished clips on another volume that is protected
either by traditional backups or a more redundant RAID architecture. Usenet news
sites have historically chosen RAID-0 because, while data is not critical, I/O through-
put is essential for maintaining a large-volume news feed. Local groups and back-
bone sites can keep newsgroups for which they are responsible on separate fault-
tolerant drives to additionally protect against data loss.

Linear Mode
Linux supports another non-RAID capability called linear (or sometimes append)
mode. Linear mode sequentially concatenates disks, creating one large disk without
data redundancy or increased performance (as shown in Figure 2-6).

Figure 2-6. Linear (append) mode allows users to concatenate several smaller disks.

/dev/md0

E

F

A

B

C

D

Data

/dev/sda1

/dev/sdb1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The RAID Levels: In Depth | 21

Linear arrays are most useful when working with disks and controllers of varying
sizes, types, and speeds. Disks belonging to linear arrays are written to until they are
full. Since data is not interleaved across the member disks, parallel operations that
could be affected by a single disk bottleneck do not occur, as they can in RAID-0. No
space is ever wasted when working with linear arrays, regardless of differing disk
sizes. Over time, however, as data becomes more spread out over a linear array, you
will see performance differences when accessing files that are on different disks of
differing speeds and sizes, and when you access a file that spans more than one disk.

Like RAID-0, linear mode arrays offer no redundancy. A disk failure means com-
plete data loss, although recovering data from a damaged array might be a bit easier
than with RAID-0, because data is not interleaved across all disks. Because it offers
no redundancy or performance improvement, linear mode is best left for desktop and
hobbyist use.

Linear mode, and to a lesser degree, RAID-0, are also ideal for recycling old drives
that might not have practical application when used individually. A spare disk con-
troller can easily turn a stack of 2- or 3-gigabyte drives into a receptacle for storing
movies and music to annoy the RIAA and MPAA.

RAID-1 (Mirroring)
RAID-1 provides the most complete form of redundancy because it can survive mul-
tiple disk failures without the need for special data recovery algorithms. Data is mir-
rored block-by-block onto each member disk (see Figure 2-7). So for every N disks in
a RAID-1, the array can withstand a failure of N-1 disks without data loss. In a four-
disk RAID-1, up to three disks could be lost without loss of data.

As the number of member disks in a mirror increases, the write performance of the
array decreases. Each write incurs a performance hit because each block must be

Figure 2-7. Fully redundant RAID-1.

/dev/md0

A

B

C

D

A

B

C

D

Data

/dev/sda1 /dev/sdb1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 2: Planning and Architecture

written to each participating disk. However, a substantial advantage in read perfor-
mance is achieved through parallel access. Duplicate copies of data on different hard
drives allow the system to make concurrent read requests.

For example, let’s examine the read and write operations of a two-disk RAID-1. Let’s
say that I’m going to perform a database query to display a list of all the customers
that have ordered from my company this year. Fifty such customers exist, and each
of their customer data records is 1 KB. My RAID-1 array receives a request to retrieve
these fifty customer records and output them to my company’s sales engineer. The
drives in my array store data in 1 KB chunks and support a data throughput of 1 KB
at a time. However, my controller card and system bus support a data throughput of
2 KB at a time. Because my data exists on more than one disk drive, I can utilize the
full potential of my system bus and disk controller despite the limitation of my hard
drives.

Suppose one of my sales engineers needs to change information about each of the
same fifty customers. Now we need to write fifty records, each consisting of 1 KB.
Unfortunately, we need to write each chunk of information to both drives in our
array. So in this case, we need to write 100 KB of data to our disks, rather than 50
KB. The number of write operations increases with each disk added to a mirror
array. In this case, if the array had four member disks, a total of 4 KB would be writ-
ten to disk for each 1 KB of data passed to the array.

This example reveals an important distinction between hardware and software
RAID-1. With software RAID, each write operation (one per disk) travels over the
PCI bus to corresponding controllers and disks (see the sections “Motherboards and
the PCI Bus” and “I/O Channels,” later in this chapter). With hardware RAID, only
a single write operation travels over the PCI bus. The RAID controller sends the
proper number of write operations out to each disk. Thus, with hardware RAID-1,
the PCI bus is less saturated with I/O requests.

Although RAID-1 provides complete fault tolerance, it is cost-prohibitive for some
users because it at least doubles storage costs. However, for sites that require zero
downtime, but are willing to take a slight hit on write performance, mirroring is
ideal. Such sites might include online magazines and newspapers, which serve a large
number of customers but have relatively static content. Online advertising aggrega-
tors that facilitate the distribution of banner ads to customers would also benefit
from disk mirroring. If your content is nearly static, you won’t suffer much from the
write performance penalty, while you will benefit from the parallel read-as-you-serve
image files. Full fault tolerance ensures that the revenue stream is never interrupted
and that users can always access data.

RAID-1 works extremely well when servers are already load-balanced at the network
level. This means usage can be distributed across multiple machines, each of which
supports full redundancy. Typically, RAID-1 is deployed using two-disk mirrors.
Although you could create mirrors with more disks, allowing the system to survive a

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The RAID Levels: In Depth | 23

multiple disk failure, there are other arrangements that allow comparable redun-
dancy and read performance and much better write performance. See the “Hybrid
Arrays” section, later in this chapter. RAID-1 is also well suited for system disks.

RAID-4
RAID-4 stripes block-sized chunks of data across each drive in the array marked as a
data drive. In addition, one drive is designated as a dedicated parity drive (see
Figure 2-8).

RAID-4 uses an exclusive OR (XOR) operation to generate checksum information
that can be used for disaster recovery. Checksum information is generated during
each write operation at the block level. The XOR operation uses the dedicated parity
drive to store a block containing checksum information derived from the blocks on
the other disks.

In the event of a disk failure, an XOR operation can be performed on the checksum
information and the parallel data blocks on the remaining member disks. Users and
applications can continue to access data in the array, but performance is degraded
because the XOR operation must be called during each read to reconstruct the miss-
ing data. When the failed disk is replaced, administrators can rebuild the data from
the failed drive using the parity information on the remaining disks. By sequentially
performing an XOR on all parallel blocks and writing the result to the new drive,
data is restored.

Although the original RAID specification called for only a single dedicated parity
drive in RAID-4, some modern implementations allow the use of multiple dedicated
parity drives. Since each write generates parity information, a bottleneck is inherent
in RAID-4.

Figure 2-8. RAID-4 stripes data to all disks except a dedicated parity drive.

/dev/md0

Data

C

G

K

O

S

/dev/sdc1

P0

P1

P2

P3

P4

/dev/sde1

B

F

J

N

R

/dev/sdb1

A

E

I

M

Q

/dev/sda1

D

H

L

P

T

/dev/sdd1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 2: Planning and Architecture

Placing the parity drive at the beginning of an I/O channel and giving it the lowest
SCSI ID in that chain will help improve performance. Using a dedicated channel for
the parity drive is also recommended.

It is very unlikely that RAID-4 makes sense for any modern setup. With the excep-
tion of some specialized, turnkey RAID hardware, RAID-4 is not often used. RAID-5
provides better performance and is likely a better choice for anyone who is consider-
ing RAID-4. It’s prudent to mention here, however, that many NAS vendors still use
RAID-4 simply because online array expansion is easier to implement and expansion
is faster than with RAID-5. That’s because you don’t need to reposition all the parity
blocks when you expand a RAID-4.

Dedicating a drive for parity information means that you lose one drive’s worth of
potential data storage when using RAID-4. When using N disk drives, each with
space S, and dedicating one drive for parity storage, you are left with (N-1) * S space
under RAID-4. When using more than one parity drive, you are left with (N-P) * S
space, where P represents the total number of dedicated parity drives in the array.

RAID-5
RAID-5 eliminates the use of a dedicated parity drive and stripes parity information
across each disk in the array, using the same XOR algorithm found in RAID-4 (see

XOR
The exclusive OR (XOR) is a logical operation that returns a TRUE value if and only if
one of the operands is TRUE. If both operands are TRUE, then a value of FALSE is returned.

p q p XOR q

T T F
T F T
F T T
F F T

When a parity RAID generates its checksum information, it performs the XOR on each
data byte. For example, a RAID-5 with three member disks writes the byte 11011011
binary to the first disk and the byte 01101100 to the second disk. The first two bytes
are user data. Next, a parity byte of 10110111 is written to the third disk. If a byte is
lost because of the failure of either the first or the second disk, the array can perform
the XOR operation on the other data byte and the parity information in order to
retrieve the missing data byte. This holds true for any number of data bytes or, in our
case, disks.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The RAID Levels: In Depth | 25

Figure 2-9). During each write operation, one chunk worth of data in each stripe is
used to store parity. The disk that stores parity alternates with each stripe, until each
disk has one chunk worth of parity information. The process then repeats, begin-
ning with the first disk.

Take the example of a RAID-5 with five member disks. In this case, every fifth
chunk-sized block on each member disk will contain parity information for the other
four disks. This means that, as in RAID-1 and RAID-4, a portion of your total stor-
age space will be unusable. In an array with five disks, a single disk’s worth of space
is occupied by parity information, although the parity information is spread across
every disk in the array. In general, if you have N disk drives in a RAID-5, each of size
S, you will be left with (N-1) * S space available. So, RAID-4 and RAID-5 yield the
same usable storage. Unfortunately, also like RAID-4, a RAID-5 can withstand only a
single disk failure. If more than one drive fails, all data on the array is lost.

RAID-5 performs almost as well as a striped array for reads. Write performance on
full stripe operations is also comparable, but when writes smaller than a single stripe
occur, performance can be much slower. The slow performance results from preread-
ing that must be performed so that corrected parity can be written for the stripe.
During a disk failure, RAID-5 read performance slows down because each time data
from the failed drive is needed, the parity algorithm must reconstruct the lost data.
Writes during a disk failure do not take a performance hit and will actually be
slightly faster. Once a failed disk is replaced, data reconstruction begins either auto-
matically or after a system administrator intervenes, depending on the hardware.

RAID-5 has become extremely popular among Internet and e-commerce companies
because it allows administrators to achieve a safe level of fault-tolerance without sac-
rificing the tremendous amount of disk space necessary in a RAID-1 configuration or
suffering the bottleneck inherent in RAID-4. RAID-5 is especially useful in produc-
tion environments where data is replicated across multiple servers, shifting the inter-
nal need for disk redundancy partially away from a single machine.

Figure 2-9. RAID-5 eliminates the dedicated parity disk by distributing parity across all drives.

/dev/md0

Data

C

G

P2

N

R

/dev/sdc1

P0

H

L

P

T

/dev/sde1

B

F

J

P3

Q

/dev/sdb1

A

E

I

M

P4

/dev/sda1

D

P1

K

O

S

/dev/sdd1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 2: Planning and Architecture

Hybrid Arrays
After the Berkeley Papers were published, many vendors began combining different
RAID levels in an attempt to increase both performance and reliability. These hybrid
arrays are supported by most hardware RAID controllers and external systems. The
Linux kernel will also allow the combination of two or more RAID levels to form a
hybrid array. In fact, it allows any combination of arrays, although some of them
might not offer any benefit. The most common types of hybrid arrays, summarized
in the following sections, are covered in this book.

RAID-10 (striping mirror)

The most widely used, and effective, hybrid array results from the combination of
RAID-0 and RAID-1. The fast performance of striping, coupled with the redundant
properties of mirroring, create a quick and reliable solution—although it is the most
expensive solution.

A striped-mirror, or RAID-10, is simple. Two separate mirrors are created, each with
a unique set of member disks. Then the two mirror arrays are added to a new striped
array (see Figure 2-10). When data is written to the logical RAID device, it is striped
across the two mirrors.

Figure 2-10. A hybrid array formed by combining two mirrors, which are then combined into a
stripe.

/dev/md0
(RAID 0)

Data

/dev/md1

A

C

E

G

A

C

E

G

/dev/md2

B

D

F

H

B

D

F

H

RAID 1 RAID 1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The RAID Levels: In Depth | 27

Although this arrangement requires a lot of surplus disk hardware, it provides a fast
and reliable solution. I/O approaches a throughput close to that of a standalone
striped array. When any single disk in a RAID-10 fails, both sides of the hybrid (each
mirror) may still operate, although the one with the failed disk will be operating in
degraded mode. A RAID-10 arrangement could even withstand multiple disk fail-
ures on different sides of the stripe.

When creating a RAID-10, it’s a good idea to distribute the mirroring arrays across
multiple I/O channels. This will help the array withstand controller failures. For
example, take the case of a RAID-10 consisting of two mirror sets, each containing
two member disks. If each mirror is placed on its own I/O channel, then a failure of
that channel will render the entire hybrid array useless. However, if each member
disk of a single mirror is placed on a separate channel, then the array can withstand
the failure of an entire I/O channel (see Figure 2-11).

While you could combine two stripes into a mirror, this arrangement offers no
increase in performance over RAID-10 and does not increase redundancy. In fact,
RAID-10 can withstand more disk failures than what many manufacturers call RAID-
0+1 (two stripes combined into a mirror). While it’s true that a RAID-0+1 could sur-
vive two disk failures within the same stripe, that second disk failure is trivial
because it’s already part of a nonfunctioning stripe.

I’ve mentioned earlier that vendors often deviate from naming conventions when
describing RAID. This is especially true with hybrid arrays. Make sure that your con-
troller combines mirrors into a stripe (RAID-10) and not stripes into a mirror (RAID-
0+1).

Figure 2-11. Spreading the mirrors across multiple I/O channels increases redundancy.

Disk controller
B

Disk controller
A

Mirror 1
Disk 1

Mirror 2
Disk 1

Mirror 1
Disk 2

Mirror 2
Disk 2

One disk from each side could also fail.

RAID 0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 2: Planning and Architecture

RAID-50 (striping parity)

Users who simply cannot afford to build a RAID-0+1 array because of the enormous
disk overhead can combine two RAID-5 arrays into a striped array (see Figure 2-12).
While read performance is slightly lower than a RAID-0+1, users will see increased
write performance because each side of the stripe is made up of RAID-5 arrays,
which also utilize disk striping. Each side of the RAID-50 array can survive a single
disk failure. A failure of more than one disk in either RAID-5, though, would result
in failure of the entire RAID-50.

RAID Case Studies: What Should I Choose?
Choosing an architecture can be extremely difficult. Trying to connect a specific
technology to a specific application is one of the hardest tasks that system adminis-
trators face. Below are some examples of where RAID is useful in the real world.

Case 1: HTTP Image Server
Because RAID-1 supports parallel reads, it makes a great HTTP image server. Com-
panies that sell products online and provide product photos to web surfers could use
RAID-1 to serve images. Images are static content, and in this scenario, they will
likely be read quite a bit more than they will be written. Although new product pho-
tos are frequently added, they are written to disk only once by a web developer,
whereas they are viewed thousands of times by potential customers. Parallel read
performance on RAID-1 helps facilitate the large number of hits, and the write per-
formance loss with RAID-1 is largely irrelevant because writes are infrequent in this

Figure 2-12. A hybrid array formed by combining RAID-5 arrays into a striped array.

/dev/md0
(RAID 0)

/dev/md1

E

M

P2

AA

II

P0

O

W

EE

MM

C

K

S

P3

GG

A

I

Q

Y

P4

G

P1

U

CC

KK

/dev/md2

F

N

P2

BB

JJ

P0

P

X

FF

D

L

T

P3

HH

B

J

R

Z

P4

H

P1

V

DD

LL

Data

RAID 5RAID 5

NN

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

RAID Case Studies: What Should I Choose? | 29

case. The redundancy aspect of RAID-1 also ensures that downtime is minimal in the
event of a disk failure, although parallel read performance will be temporarily lost
until the drive can be replaced. Using a hot-spare, of course, ensures that perfor-
mance is affected for only a brief time.

Case 2: Usenet News
Striped arrays are clearly the best candidate for Internet news servers. Extremely fast
read and write times are required to keep up with the enormous streams of data that
a typical full-feed news server experiences. In many cases, the data on a news parti-
tion is inconsequential. Lost articles are frequent, even in normally operating feeds,
and complete data loss usually means that only a few days’ articles are lost.

Administrators could configure a single news server with both a striped array and
mirrored array, as shown in Figure 2-13. The striped array could house newsgroups
that are of no consequence and could easily withstand a day’s worth of article loss
without users complaining. Newsgroups that are read frequently, as well as local
groups and system partitions, could be housed on the RAID-1 array. This would
make the machine redundant in case of a disk failure.

Case 3: Home Use (Digital Audio, Video, and Images)
With the increasing capacity and availability of digital media, users will find it diffi-
cult to contain their files on a single hard disk. Linear mode and RAID-0 arrays pro-
vide a good storage architecture for storing MP3 audio, video, and image files. Often,
these files are burned to CD or are easily replaceable, so the lack of redundancy in

Figure 2-13. A Usenet news server with both a striped and mirror array.

/
/home
/usr
/var
/swap
/var/spool/news/local

/dev/sda

/
/home
/usr
/var
/swap
/var/spool/news/local

/dev/sdb

RAID 1: System drives and local groups

RAID 0: Internet news groups

/var/spool/news/

Data-A
Data-C
Data-E
. . .

/dev/sdc /dev/sdd

/var/spool/news/

Data-B
Data-D
Data-F
. . .

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 2: Planning and Architecture

linear mode and RAID-0 can be overlooked. Users can opt to make backups of files
that are either important or hard to replace.

A quick trip to a surplus warehouse or .COM auction might get you a supply of
older, cheap hard disks that can be combined into a linear array. If you can find
matched disks, then RAID-0 will work well in this case. A mix of different drives can
be turned into a linear mode array. Both of these methods are perfect for home use
because they maximize what might have become old and useless storage space and
turn it into usable disk space.

Case 4: The Acme Motion Picture Company
People who produce motion pictures are faced with many storage problems. Accom-
modating giant source files, providing instant access to unedited footage, and stor-
ing a finished product that could easily exceed hundreds of gigabytes are just a few of
the major storage issues that the film and television industries face.

Film production workstations would benefit greatly from RAID-5. While RAID-0
might seem like a good choice because of its fast performance, losing a work-in-
progress might set work back by days, or even weeks. By using RAID-5, editors are
able to achieve redundancy and see an improvement in performance. Likewise,
RAID-1 might seem like a good choice because it offers redundancy without much of
a performance hit during disk failures. But RAID-1, as discussed earlier, leads to an
increase only in read performance, and editors will likely be writing postproduced
clips often until the desired cut is achieved.

Source files and finished scenes would benefit most from RAID-1 setups. Worksta-
tions could read source files from these RAID-1 servers. Parallel reads would allow
editors and production assistants to quickly pull in source video that could then be
edited locally on the RAID-5 array, where write performance is better than on RAID-
1. When a particular scene is completed, it could then be sent back to the RAID-1
array for safekeeping. Although write performance on RAID-1 isn’t as fast as on
RAID-5, the redundancy of RAID-1 is essential for ensuring that no data is ever lost.
Reshooting a scene could be extremely costly and, in some cases, impossible.

Figure 2-14 shows how different RAID arrays could be used in film production.

Striping might also be a good candidate for film production workstations. If cost is a
consideration, using RAID-0 will save slightly on drive costs and will outperform
RAID-5. But a drive failure in a RAID-0 workstation would mean complete data loss.

Case 5: Video on Demand
This scenario offers the same considerations as Case 1, the site serving images.
RAID-1, with multiple member disks, offers great read performance. Since writes
aren’t very frequent when working with video on demand, the write performance hit
is okay.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Disk Failures | 31

Disk Failures
Another benefit of RAID is its ability to handle disk failures without user interven-
tion. Redundant arrays can not only remain running during a disk failure, but can
also repair themselves if sufficient replacement hardware is available and was precon-
figured when the array was created.

Degraded Mode
When an array member fails for any reason, the array is said to have gone into
degraded mode. This means that the array is not performing optimally and redun-
dancy has been compromised. Degraded mode therefore applies only to arrays that
have redundant capabilities. A RAID-0, for example, has only two states: opera-
tional and failed. This interim state, available to redundant arrays, allows the array to
continue operating until an administrator can resolve the problem—usually by
replacing a failed disk.

Hot-Spares
As I mentioned earlier, some RAID levels can replace a failed drive with a new drive
without user intervention. This functionality, known as hot-spares, is built into every
hardware RAID controller and standalone array. It is also part of the Linux kernel. If
you have hardware that supports hot-spares, then you can identify some extra disks
to act as spares when a drive failure occurs. Once an array experiences a disk failure,
and consequently enters into degraded mode, a hot-spare can automatically be intro-
duced into the array. This makes the job of the administrator much easier, because
the array immediately resumes normal operation, allowing the administrator to
replace failed drives when convenient. In addition, having hot-spares decreases the
chance that a second drive will fail and cause data loss.

Figure 2-14. Workstations with RAID-5 arrays edit films while retrieving source films from a
RAID-1 array. Finished products are sent to another RAID-1 array.

RAID 1
Source media Backup

server

RAID 1
Finished projects

Video production workstations
(RAID 5)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 2: Planning and Architecture

Hot-spares can be used only with arrays that support redundancy:
mirrors, RAID-4, and RAID-5. Striped and linear mode arrays do not
support this feature.

Hot-Swap
All of the RAID levels that support redundancy are also capable of hot-swap. Hot-
swap is the ability to removed a failed drive from a running system so that it can be
replaced with a new working drive. This means drive replacement can occur without
a reboot. Hot-swap is useful in two situations. First, you might not have enough
space in your cases to support extra disks for the hot-spare feature. So when a disk
failure occurs, you may want to immediately replace the failed drive in order to bring
the array out of degraded mode and begin reconstruction. Second, although you
might have hot-spares in a system, it is useful to replace the failed disk with a new
hot-spare in anticipation of future failures.

Replacing a drive in a running system should not be attempted on a conventional
system. While hot-swap is inherently supported by RAID, you need special hard-
ware that supports it. This technology was originally available only to SCSI users
through specially made hard drives and cases. However, some companies now make
hot-swap ATA enclosures, as well as modules that allow you to safely hot-swap nor-
mal SCSI drives. For more information about hot-swap, see the “Cases, Cables, and
Connectors” section, later in this chapter, and the “Managing Disk Failures” section
in Chapter 7.

Although many people have successfully disconnected traditional
drives from running systems, it is not a recommended practice. Do this
at your own risk. You could wipe your array or electrocute yourself.

Hardware Considerations
Whether you choose to use kernel-based software RAID or buy a specialized RAID
controller, there are some important decisions to make when buying components.
Even if you plan to use software RAID, you will still need to purchase hard drives
and disk controllers. The first step is to determine the ultimate size of your array and
figure out how many drives are necessary to accommodate all the space you need,
taking into account the extra space required by the level of RAID you choose. Don’t
forget to factor the eventual need for hot-spares into your plan.

Choosing the right components can be the hardest decision to make when building a
RAID system. If you’re building a production server, you should naturally buy the
best hardware you can afford. If you’re just experimenting, then use whatever you
have at your disposal, but realize that you may have to shell out a few dollars to
make things work properly.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 33

Several factors will ultimately affect the performance and expandability of your
arrays:

• Bus throughput

• I/O channels

• Disk protocol throughput

• Drive speed

• CPU speed and memory

Computer architecture is a vast and complicated topic, and although this book cov-
ers the factors that will most drastically impact array performance, I advise anyone
who is planning to build large-scale production systems, or build RAID systems for
resale, to familiarize themselves thoroughly with all of the issues at hand. A com-
plete primer on computer architecture is well beyond the scope of this book. The
“Bibliography” section of the Appendix contains a list of excellent books and web
sites for readers who wish to expand their knowledge of computer hardware.

One essential concept that I do want to introduce is the bottleneck. Imagine the fil-
tered water pitchers that have become so omnipresent over the last ten years. When
you fill the chamber at the top of the pitcher with ordinary tap water, it slowly drips
through the filter into another cache, from which you can pour a glass of water. The
filtering process distributes water at a rate much slower than the pressure of an ordi-
nary faucet. The filter has therefore introduced a bottleneck in your ability to fill
your water glass, although it does provide some benefits. A more expensive filtration
system might be able to yield better output and cleaner water. A cheaper system
could offer quicker filtration with some sacrifices in quality, or better quality at a
slower pace.

In computing, a bottleneck occurs when the inadequacies of a single component
cause a slowdown of the entire system. The slowdown might be the result of poor
system design, overuse, or both. Each component of your system has the potential to
become a bottleneck if it’s not chosen carefully. As you will learn throughout this
chapter, some bottlenecks are simply beyond your control, while others begin to
offer diminishing returns as you upgrade them.

An Organizational Overview
All systems are built around a motherboard. The motherboard integrates all the com-
ponents of a computer by providing a means through which processors, memory,
peripherals, and user devices (monitors, keyboards, and mice) can communicate.
Specialized system controllers facilitate communication between these devices. This
group of controllers is often referred to as the motherboard’s chipset. In addition to
facilitating communication, the chipset also determines factors that affect system
expandability, such as maximum memory capacity and processor speed.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Planning and Architecture

When an application needs data, the CPU first checks to see if the data is stored in
memory. If the data is no longer in memory, the CPU asks the chipset to request the
information from disk. The chipset sends a request to the data bus, where it is picked
up by the appropriate disk controller and sent across the disk bus to the drive con-
taining the data. The drive sends the information back to the controller card, which
in turn passes it back to the CPU and main memory. Figure 2-15 illustrates the con-
nections between various components of a modern PCI motherboard.

The speeds of the data and disk buses have a direct impact on system performance,
and each bus can become a bottleneck. While it’s easy to add new disk controllers to
a system, thereby increasing the overall number of disk buses, and consequently
increasing the overall disk bus throughput, you only have one motherboard to work
with. So choosing the right one for your application is essential.

Figure 2-15. When disk I/O occurs, data travels over both the data bus and the disk bus, each a
potential bottleneck.

The BIOS
Another important component of every computer system is the BIOS (basic input/out-
put software). The BIOS is a chip on the motherboard that contains a simple set of driv-
ers and instructions. When a machine is turned on, the software stored in the BIOS
chip is loaded and executed. The BIOS has basic control over system components:
hard disks, CD-ROMs, monitors, keyboards, etc. The BIOS looks for a particular disk
sector and executes the program it finds there, usually an operating system. This is
sometimes referred to as the bootstrap process.

Disk
controller

Graphics
adaptor

Disk
controller

Disk bus Disk bus

Network
adaptor

Data bus

Memory bus

System
control
chipset

Memory

CPU

Parallel,
serial,

and ATA
connections

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 35

Motherboards and the PCI Bus
Motherboards provide a way to interconnect the various components that make up a
computer (memory, processors, and peripherals). Every motherboard has separate
buses for communicating between these varied components. Disk controllers and, in
turn, hard disks, communicate with the CPU and memory using the I/O bus, also
called the data bus. The I/O bus is a standard interface through which peripheral
cards (disk controllers, graphics adapters, network cards, etc.) can interface between
peripherals (hard disks, monitors, Ethernet networks, etc.) and the CPU and mem-
ory.

The Peripheral Component Interconnect (PCI) bus is the most common data bus
available today. In recent years, it has usurped the ubiquity of the now outdated
Industry Standard Architecture (ISA) bus. Although ISA motherboards are still com-
mon, new motherboard purchases typically use the PCI bus. For backward compati-
bility, the PCI bus can handle ISA peripheral cards through the use of bridging, and
many PCI motherboards provide an ISA slot for use with legacy cards.

Bus-width and bus-speed

The speed of the I/O bus is determined by two factors: bus-width and bus-speed. Bus-
width describes how many bytes of data can be sent down the bus at a time. Bus-
speed specifies how many times per second data can be transferred through the bus.
Bus-width is measured in bits, and all motherboards support bus-widths in multi-
ples of bytes. ISA motherboards support bus-widths of 8 and 16 bits (1 or 2 bytes),
and modern PCI motherboards support bus-widths of up to 64 bits, or 8 bytes.

Bus-speed is measured by the number of clock cycles that can occur each second.
Manufacturers now use the term Front Side Bus when referring to bus-speed. ISA
boards run at 8.33 MHz, or 8.33 million clock cycles per second. The first PCI
boards ran at 33.33 MHz, or 33.33 million clock cycles per second. A PCI mother-
board with a 32-bit bus-width (4 bytes), operating at 33 MHz, has a maximum I/O
throughput of 133.33 MB/s (4 bytes per cycle * 33.33 million cycles per second =
133.33 megabytes per second). Newer and faster PCI boards can operate at speeds of
up to 533 MHz. Table 2-3 shows the various I/O throughputs of typical mother-
boards as a factor of bus-width and bus-speed.

Table 2-3. I/O bus throughput

Bus type Width (bits) Clock cycles (MHz) Data throughput (MB/s)

ISA (XT) 8 8.33 8.33

ISA (AT) 16 8.33 16.66

PCI 32 33.33 133.33

PCI 64 66.66 533.33

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Planning and Architecture

The data throughput of your motherboard is the first bottleneck to consider when
building a RAID system. If you are planning to use three SCSI cards, each with an
advertised speed of 80 MB/s, you should quickly realize that a standard 32-bit PCI
motherboard running at 33 MHz will become a bottleneck. The aggregate speed of
your SCSI controllers (80 MB/s * 3 = 240 MB/s) is more than the overall speed of
your I/O bus (133.33 MB/s).

Not all motherboards are created equal. Be certain to check the manufacturer’s spec-
ification when deciding which one to purchase, making careful note of the bus-width
and bus-speed. Remember that all the expansion cards, including the graphics card,
share the overall speed of the I/O bus. If you have a board that supports an overall
bus throughput of 533 MB/s, then installing several high-end SCSI cards, a graphics
adapter, and a network card might cause a bottleneck on the data bus. So for pro-
duction file servers, it might make sense to configure a system without video (you
could use the console on serial port features of Linux). Like most other aspects of
technology, you should expect to see faster motherboards in the near future.
Although 128-bit boards might be a year or two off, manufacturers are constantly
working to increase the bus-speed.

In the same way that disks constantly fall behind the curve of storage needs, the I/O
bus is always behind the curve when compared to the speed at which the CPU and
main memory can interact. So the I/O bus will almost always become the most sig-
nificant bottleneck on any motherboard. In response to this problem, it is common
for high-end server boards to offer dedicated buses for one or more PCI slots. Some
even offer a separate bus for each PCI slot, which allows you to place a RAID or SCSI
card on its own I/O bus, separating other peripherals such as network and graphics
cards. Using one of these dual-bus motherboards can effectively double the com-
bined overall speed of your I/O bus.

I/O Channels
An I/O channel represents a single chain of devices attached to your machine, either
internally or externally. Internal I/O channels are typically connected to a controller
card (or to the motherboard) by ribbon cable. (Ribbon cables are flat cables, usually

64-Bit Motherboards
While some motherboards are advertised as having 64-bit PCI slots, usually only one
or two of the PCI slots are usable by 64-bit PCI cards. Fortunately, many 64-bit cards
can fit into 32-bit slots and operate in 32-bit mode. However, using 64-bit cards in 32-
bit mode wastes their capability—they can operate at only half of their potential speed.
So when choosing a 64-bit motherboard, be certain that it has enough 64-bit slots to
meet your needs.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 37

gray or blue, that interconnect hard drives and disk controllers inside a computer
case.) Externally, you might connect drives or peripheral devices to a controller card
using SCSI cables. The more identical, parallel I/O channels you have available for
your array, the better performance you can expect out of it, as long as you are care-
ful to identify and eliminate other bottlenecks.

The most common instance of parallel and identical I/O channels is the typical PC
motherboard. Almost all i386-based motherboards include two onboard ATA/IDE
disk controllers (see Figure 2-16).

When I say identical, I mean that each channel you select for use in your array sup-
ports the same architecture and protocols. Parallel means that each channel in the
array can accept requests simultaneously. While you could theoretically use two dif-
ferent types of I/O channels in the same RAID array, you’d be wasting the perfor-
mance of the faster channel because the faster chain needs to operate at slower rate
in order to stay at the same pace as the other channels in the array. It’s generally not
a good idea to mix different iterations of the same disk protocol because their speeds
vary.

It’s also a bad idea to mix different disk protocols, such as SCSI and ATA, even
though software RAID, in particular, allows both of these arrangements. The same is
true for mixing hard drives of differing speeds, but I’ll cover that issue in more detail
in the “Choosing Hard Drives” section, later in this chapter.

In general, it is good practice to keep only one incarnation of any disk protocol on a
single I/O channel. That might mean connecting devices such as CD-ROM drives
and scanners, which operate at much slower speeds than current hard disks, on sepa-
rate controllers. It is advisable to purchase a cheaper, slower controller to connect
these devices, keeping them out of any I/O channel that contains faster devices that
belong to an array.

For example, many SCSI controllers contain two separate, parallel channels that are
not identical: a compact, high-density, 68-pin connector used to connect hard drives
(wide SCSI) and a larger, low-density 50-pin connector often intended to connect

Figure 2-16. Major components on a motherboard.

CPUAGP/PCI slots

Primary/secondary
ATA ports

Memory

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Planning and Architecture

CD-ROM drives (see Figure 2-17). While both of these channels can be used in par-
allel, pairing them is a bad choice for RAID, because by combining the use of two
channels in a single RAID array, we lose the performance associated with wide SCSI.
Many cards, for example, provide two internal connectors: one that supports a 50-
pin fast SCSI chain and another that supports a high-density 68-pin wide SCSI chain.
If you are using the AT attachment (ATA), it’s wise to connect your CD-ROM drive
to a separate ATA controller when possible. ATA is discussed in the “Disk Access
Protocols” section, later in this chapter.

It’s also important to realize that while most SCSI cards provide external connectors,
they are merely an extension of an internal channel. Therefore, the internal and
external chains on a SCSI card do not operate in parallel. Space on your mother-
board can quickly become scarce, and you might find that a single controller card
with multiple I/O channels works better for you. Several manufacturers of SCSI
cards make high-end versions of their consumer-grade cards that provide multiple
distinct I/O channels. You might be able to get two or three I/O channels on a single
PCI card.

You can also increase I/O bandwidth through a combination of two types of
upgrades: buying high-density cards and adding several of them to your system to
take advantage of the extra channels (see Figure 2-18).

Most hardware RAID cards are also available in models with multiple channels (see
Figure 2-19). Some support as many as six separate channels on a single card, and
most allow you to manage cards as a whole, so you can include devices connected to
separate cards in the same array and manage them through a single interface. The
number of cards that you can put in a single system is limited only by the number of
slots available on your motherboard, but remember to consider the throughput of
the motherboard when purchasing controller cards. Typical motherboards have a
data bus throughput limit of 133 MB/s (32-bit) or 533 MB/s (64-bit). Adding three
multichannel SCSI controllers that support speeds of 160 MB/s each would saturate
the data bus on a heavily used system. Remember that network and graphics cards
also use bandwidth on the I/O bus. Also recall that some high-end motherboards
support dedicated PCI slots that can help avoid these problems.

Figure 2-17. An SCSI controller with one external connector and two internal connectors (one 50-
pin and one 68-pin).

68-pin high density SCSI connectors

50-pin SCSI-2 connector

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 39

When using more than one I/O channel, it’s advisable to alternate between channels
when adding disks to an array. That will help you to avoid overloading a single I/O

Figure 2-18. Using multiple disk controllers increases both throughput and the total number of
usable drives.

Figure 2-19. Some controllers have multiple channels on a single card.

/dev/md0
(RAID 0)

Data

Data bus

Disk controller
A

Disk controller
B

C

G

K

O

A

E

I

M

D

H

L

P

B

F

J

N

/dev/sda1 /dev/sdc1 /dev/sdb1 /dev/sdd1

/dev/md0
(RAID 0)

Data

Data bus

Disk controller
channel A

Disk controller
channel B

C

G

K

O

A

E

I

M

D

H

L

P

B

F

J

N

/dev/sda1 /dev/sdc1 /dev/sdb1 /dev/sdd1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Planning and Architecture

channel. You typically don’t need to worry about how you physically arrange your
disks or how your hardware (or Linux) detects them. Just make certain that you bal-
ance them as equally as possible between each available channel. When you create
the array, disks can be added in an arbitrary order so that their physical location can
be taken into account. This process might be facilitated through a configuration file,
command-line utility, GUI management package, or BIOS utility. I’ll cover this pro-
cess in more detail when I explain how to create new arrays in Chapters 3 and 4 (for
software RAID) and in Chapter 5 (for hardware RAID).

There may also be some situations when it is necessary to use drives with slightly dif-
ferent performance. Let’s say, for example, that you have a few ultra-wide SCSI
drives from an assortment of different manufacturers. Since not all drives, regardless
of protocol, are exactly the same, you will see slightly different speeds from each. In
this case, it’s best to arrange the drives so that the slowest has the smallest SCSI ID
number and is closest to the controller. Likewise, the fastest should be placed far-
thest from the controller and should be set to the highest SCSI ID number. This will
help to alleviate the performance differences. Users who are planning to create a lin-
ear mode array using several different drive sizes should arrange drives with this
methodology in mind. This methodology may also be helpful for users who simply
cannot afford to purchase new, matched drives.

Disk Access Protocols
The disk protocol of the hardware you choose has a tremendous impact on the per-
formance and scalability of your array. Each protocol has its own hard limits on the
maximum throughput of each I/O channel and the maximum number of devices you
can attach to a single channel. So the disk protocol you select will have a direct
impact on the maximum size of your array.

Although we traditionally think of RAID in terms of high-end SCSI systems, today
it’s not uncommon for consumer-marketed systems to come equipped with support
for RAID on non-SCSI disks. In fact, Linux software RAID can support either SCSI
or ATA devices as part of an array (see the following section). The kernel will even let
you mix these protocols within a single RAID device, although that arrangement
isn’t recommended. (See the “Matched drives” section, later in this chapter, as well
as the previous section, “I/O Channels.”) Software RAID under Linux does not rely
on the underlying disk architecture to work, so there is no reason why an array could
not be built using a Firewire (IEEE 1394), Fiber-channel, or other disk architecture
developed in the future, as long as you can find hardware and device drivers to sup-
port the architecture as a standalone device.

ATA (used interchangeably with the acronym IDE) and SCSI are discussed in detail
throughout this book because they are the most common disk protocols in use
today. ATA is a part of every modern motherboard, and SCSI is the most common
choice for large servers.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 41

The AT Attachment (ATA) and Integrated Disk
Electronics (IDE)
Integrated disk electronics, or IDE, has had many incarnations and many names since
its introduction in 1986. Originally, hard drives were small enough, in both size and
capacity, to fit directly onto disk controllers. As storage requirements grew, manufac-
turers realized that housing drives on controller cards was an inefficient use of space.
Soon drives and controllers became separate entities, connected by ribbon cable.
This meant that drives could grow in size without interfering with the expandability
of the motherboard. It was common for these integrated controller cards to make
adjacent slots on the motherboard inaccessible. Manufacturers eventually decided
that portions of the controller could be housed directly on the drives and that creat-
ing a standard drive interface would allow for both expandability and portability.
Originally called IDE in several proprietary implementations, a standardized version
called the AT Attachment, or ATA, was eventually ratified (although many people
still use the terms IDE and ATA interchangeably). This new disk interface was called
the AT Attachment because it was introduced with the ISA (AT) motherboard. It
quickly grew in popularity, and today the ATA interface is the most widely deployed
consumer disk interface. Figure 2-20 shows the ATA interface.

ATA has evolved a great deal since its introduction. Its performance and scalability
have improved over time. Table 2-4 outlines the various iterations of ATA.

Figure 2-20. The ATA interface separated the drive and the controller.

Table 2-4. Overview of IDE/ATA types

ATA type Maximum throughput (MB/s) Common names

ATA-1 8.3 ATA, IDE, Fast ATA

ATA-2 16.66 EIDE, Fast ATA-2

ATA-3 16.66 Ultra DMA, Ultra ATA

ATA-4 33.33 Ultra ATA/33

ATA-5 66.66 Ultra ATA/66

ATA-6 100 Ultra ATA/100

ATA-7 133.33 Ultra ATA/133

ATA hard disk

Power40-pin connector

ATA connector

Motherboard

ATA ribbon
cable

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Planning and Architecture

Many of the names associated with various iterations of ATA represent departures
from the ATA specification by a single manufacturer. Enhanced IDE (EIDE), for
example, was an attempt by Western Digital to increase its market share by offering
enhancements to the original ATA (ATA-1) specification before ATA-2 was ratified.
This created a rash of vendor-enhanced ATA-compatible interfaces, resulting in
many puzzling names. In general, ATA devices are compatible between iterations,
but mixing old and new drives, like mixing different disk protocols, usually results in
performance problems.

Master and slave

ATA devices have only two configuration settings: master and slave. Despite the
unfortunate nomenclature, both drives can operate independently once the system
initializes, although drives operating in slave mode won’t perform as well. A single
ATA disk operating as master on a dedicated channel will yield the best perfor-
mance. So it’s always recommended that you use only one disk per channel when
working with ATA and RAID.

Only the master device can be used as a boot device, but you can use the master
device from any ATA channel for booting. So on a standard system with two on-
board ATA controllers, you have a maximum of two boot devices and a total of four
ATA devices. Most users place their primary hard disk on the first interface and a
CD-ROM drive on the second, so that either can be used as a boot device.

A simple jumper on the back of the drive determines whether an ATA device is oper-
ating in master or slave mode. Some devices also have a third setting called cable
select. This jumper allows the system to determine which device is master or slave by
its position on the cable. The first ATA device found on the cable is flagged as the
master device and the second becomes the slave device. Unfortunately, many users
report strange behavior when using this feature, such as disappearing drives or
devices that won’t boot properly. Because it’s easy to manually set the devices, I rec-
ommend always setting up devices as master and slave and never using cable select.

Direct memory access (DMA)

Modern ATA devices support an I/O method called direct memory access (DMA) that
allows two devices on the same channel to transfer data without direct CPU interven-
tion. Using DMA relieves a lot of pressure on your CPU during array reconstruction,
when large amounts of data need to be transferred between two drives. Sometimes
DMA is not enabled by default. Chapter 7 discusses how to enable this feature and
fine-tune ATA disks.

The drawbacks of ATA

By far the biggest drawback of ATA is its real limit of two devices per channel and its
usable limit of one device per channel when performance is an issue. This limit hin-
ders the scalability of any RAID built with ATA, in terms of performance and maximum

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 43

storage. In fact, this limitation might be the determining factor in choosing SCSI over
ATA. While most motherboards come with two onboard ATA controllers, the four-
disk maximum (which really translates into two RAID disks) associated with a two-
channel ATA system will likely warrant adding a low-end SCSI card or additional
ATA controller.

Unlike SCSI, ATA does not support detached operations—a process that allows a
disk controller to detach from the bus in between I/O requests so that the CPU can
access another controller. In addition, drives connected to an ATA interface cannot,
generally, interact with each other without CPU intervention. ATA does, however,
have a simpler command set than SCSI, which helps decrease latency.

Using an ATA RAID controller should improve your performance a bit by offloading
some of the load from the CPU and onto the controller. While ATA supports only
two devices per channel, many of the ATA RAID cards available also provide built-in
ATA controllers, so that you can add additional drives. For example, Promise Tech-
nologies and 3ware both sell controllers with more than two channels. The problem
is fitting them all in a single case.

ATA, because of its ubiquity, might be the best solution for users who are unsure
about building a RAID and want to test its effectiveness. It’s also ideal for users who
are on a budget or who simply do not need the best performance and reliability.
Administrators who are considering software RAID might find it useful to experi-
ment with some spare ATA drives; they’re easy to come by.

SCSI
The Small Computer Systems Interface, or SCSI, has been around much longer than
ATA, but has traditionally been priced out of consumer reach. This changed in 1986
with the introduction of the Apple Macintosh II, which came standard with an SCSI
controller, but no hard disk. The following year, Apple introduced the Mac SE and
the Mac II, both available with optional internal hard disks.*

Bus-width and signaling rates

SCSI, like the data bus of a motherboard, is defined by both a bus-width and a
signaling rate (sometimes called the clock rate). Increasing either of these parameters
increases the overall throughput of the SCSI bus. Bus-width is either narrow (8-bit)
or wide (16-bit). As with motherboards, the bus-width determines how many bytes
of data can be transmitted during each clock cycle. Bus-width also determines the
number of devices that can be connected to a single SCSI bus. Narrow buses can
handle eight devices and wide buses can handle sixteen. This gives each bus type 7
and 15 usable devices respectively (one device number is reserved for the controller).

* Thanks to http://www.apple-history.com for the time line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Planning and Architecture

The signaling rate measures how many times a second data can be pushed through
the SCSI bus. Signaling rates are measured in megahertz. The first implementation of
SCSI, also called SCSI-1, had a bus-width of 8 bits and a signaling rate of 5 MHz.
One byte of data, transmitted five million times per second across the SCSI bus, gave
SCSI-1 a data throughput of 5 MB/s. Since SCSI-1, more signaling rates have been
added to the SCSI specification. Fast SCSI defined a 10 MHz signaling rate (yielding
a 10 MB/s transfer rate) and from there, Ultra SCSI (20 MHz), Ultra2 SCSI (40
MHz), and Ultra3 SCSI (80 MHz) were eventually defined and implemented.

Although SCSI is governed by the American National Standards Institute (ANSI),
some manufacturers, throughout SCSI’s evolution, did not want to wait for newer
and faster SCSI protocols to be standardized. In an attempt to gain market share,
many SCSI manufacturers have prematurely released their own prestandardized
implementations. The result, as with ATA, was a deviation in naming among manu-
facturers, although incompatibility was rare and today is generally a nonissue.
Table 2-5 shows the various implementations of SCSI and their maximum data
throughput rates.

There is already talk of yet higher signaling rates for SCSI. A wide bus with a signal-
ing rate of 160 MHz, yielding a throughput of 320 MB/s, is currently under develop-
ment. It is likely to be commonplace within the next year.

Transmission types

The final difference between SCSI implementations is found in the type of cabling
used to interconnect devices. Single-ended (SE) devices transmit information over sin-
gle wires. Using single wires for transmission on the disk bus limits the maximum
cable length of the disk bus. It also limits the maximum data throughput because
error correction requires a pair of wires for each signal.

Differential SCSI transmits information over a pair of wires, which requires more
expensive cables, but solves the performance and cable length limitations imposed

Table 2-5. Overview of SCSI data throughput

Names Bus width Signaling rate (MHz) Maximum data throughput (MB/s)

SCSI-1, SCSI, Narrow SCSI 8 5 5

Fast SCSI, Fast-Narrow SCSI 8 10 10

Fast Wide SCSI 16 10 20

Ultra SCSI 8 20 20

Ultra Wide SCSI 16 20 40

Ultra2 SCSI, Ultra2 Narrow SCSI 8 40 40

Ultra2 Wide SCSI 16 40 80

Ultra3 SCSI, Ultra 160 SCSI 16 80 160

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 45

by single-ended SCSI. The first standard, high-voltage differential (HVD), provided a
faster disk bus and used an extremely high voltage. HVD also allowed a maximum
cable length of 25 meters, compared with the 6-meter maximum of SE devices. How-
ever, manufacturing controllers and devices that supported HVD dramatically
increased hardware costs. The drastic increase in voltage means that a separate chip
was required to regulate the voltage of the SCSI bus. It also made HVD and SE
incompatible, requiring older devices to be replaced or connected to a separate con-
troller. Because of these limitations, HVD is extremely uncommon today, especially
in the consumer market, although it is used in some specialized RAID systems.

Shortly afterward, low-voltage differential (LVD) devices were introduced. LVD
devices provided an increased maximum throughput like HVD, but limited the over-
all cable length to 12 meters. However, LVD also dramatically decreased hardware
costs when compared to HVD. By lowering the voltage of the SCSI bus, LVD allowed
a single chip to control both the SCSI devices and the voltage. This decrease in volt-
age also allowed LVD and SE to coexist on the same bus. LVD is now the standard
and is supported by all recent SCSI devices.

SCSI Versus ATA
Overall, SCSI is a much better choice than ATA, both as a standalone and as part of
an array. It allows more devices per channel and provides higher throughput. It also
has a much larger command set, compared to ATA, which translates into better per-
formance and increased reliability. The only major drawback of SCSI is price. SCSI
drives and controllers are generally more expensive, with SCSI drives typically cost-
ing two or three times as much per megabyte as their ATA equivalents. (Although
today, some mid-range motherboards are available with built-in SCSI controllers at
little extra cost.) If you plan to use external SCSI devices, you will need to spend
extra money on cabling and external disk enclosures. On the other hand, ATA does
not support external devices at all, so its expandability is limited.

Speed

In the past, SCSI outperformed ATA by leaps and bounds, but ATA has caught up
substantially in recent years. Today, ATA disks perform as well as SCSI disks, so
speed isn’t as much of a factor as it was just three or four years ago. But, with SCSI,
you can populate an I/O channel with enough devices to fully utilize the entire pipe.
With ATA, you are really limited to one device per channel if you want decent per-
formance from that device, and that’s not enough to utilize the full pipe when work-
ing with the most recent ATA specifications.

High-end SCSI drives have data throughputs of about 40 MB/s. When using Ultra
160 SCSI, you would need three or four drives on a single chain to take full advan-
tage of your bandwidth. ATA drives operate at much slower speeds, so if you were

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Planning and Architecture

using Ultra ATA/100, you could not possibly populate a single channel with enough
drives to take full advantage of your I/O pipe, even if you put two devices on the
same channel. The “Choosing Hard Drives” section, later in this chapter, discusses
hard disk bottlenecks in more detail.

Configuration

Many people complain about the complexities and pitfalls of SCSI termination. But
it’s really quite simple. The beginning and end of every SCSI chain must be termi-
nated. Figure 2-21 illustrates termination on a controller to which only internal
devices are connected. The controller card is usually the last device on a channel and
comes with built-in termination enabled.

If you plan to use both internal and external devices on the same chain, then you will
need to terminate the external portion of the chain. Figure 2-22 shows how to termi-
nate a controller with both internal and external devices. Depending on your control-
ler, you might also need to disable the controller’s termination in the SCSI BIOS,
although many cards automatically do this once devices are connected to the exter-
nal connector.

As shown in Figure 2-23, the same methodology applies if you are using only exter-
nal devices.

Finally, specifications dictate that any unused connections on an internal cable
appear after the last SCSI device on that chain. In practice, this recommendation is
often ignored, and many users report no errors when breaking this rule. I have never
had problems using cables with more connectors than drives internally. Caveat emp-
tor.

Likewise, there are quite a number of reports about using autotermination of SCSI
chains. Autotermination is built into controllers and disks. If you experience prob-
lems, you may wish to manually disable autotermination (which is a controller BIOS

Figure 2-21. Modern controller cards provide onboard termination.

SCSI controller

T

T

Disks

T Terminated

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 47

setting or a jumper on your hard disk) and actively terminate the chain at both ends.
You can purchase terminators from the vendor who provides your SCSI cables, or
even from a local computer store.

Growth

SCSI certainly has a much better upgrade path than ATA. Device-per-channel limits
make SCSI much easier to deal with when you need to increase the size of an array. If
you’re on a budget, you might find it worthwhile to purchase an expensive SCSI con-
troller, along with drives that are one or two technologies behind the current trends.
Buying the latest and greatest SCSI card will increase the final price of a system by
only a few hundred dollars. Buying the most cutting-edge disks, on the other hand,
will affect system price by a few hundred dollars per drive. So while you can save
costs by purchasing older drives initially, you won’t have to discard your SCSI con-
troller if you decide to upgrade to faster drives a few months later. Scaling back the
original drive purchase initially might even place a hardware RAID controller within
your budget.

;

Figure 2-22. The last device on an external SCSI chain must be terminated.

Figure 2-23. When using only external devices, the last disk on the chain and the SCSI card are
terminated.

SCSI controller

T

Disks

External drive case

T

T Terminated

SCSI controller

Disks

External drive case

T

T Terminated

T

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Planning and Architecture

Summary of SCSI versus ATA

SCSI supports more devices than ATA (although configuring many devices can be a
challenge for many users and administrators). ATA is in more widespread use than
SCSI, and that might make it easier to get hold of enough hardware to build a decent
array. Some naysayers argue that SCSI is more confusing than ATA because SCSI
users are faced with termination and drive placement considerations. Others are
quick to point out the autodetection and block addressing problems with which
ATA users must contend.

ATA can access only one device at a time, meaning that the benefits of parallel I/O
under RAID are wasted. SCSI can address multiple devices concurrently and does
not require the CPU to manage I/O, leaving more processing power for users and
applications.

Table 2-6 summarizes the differences between ATA and SCSI. I think you will find
that ATA is a cheap and usable way to quickly build arrays for both desktops and
low-usage production systems, but that SCSI is the best choice for large systems and
applications that require extremely intense I/O.

I have excluded data throughput differences between SCSI and ATA from Table 2-6
because throughput with each protocol is typically limited by disk rather than by
channel. Both SCSI and ATA will perform roughly equally in single-disk operations
(assuming that similar specifications are compared). That being the case, SCSI sup-
ports many drives per channel, whereas ATA supports only one, from a usability
standpoint. Thus, with SCSI, it’s a lot easier to use the bandwidth you have avail-
able, while with ATA, it’s really not possible.

Other Disk Access Protocols
Because RAID is oblivious to the hardware and disk architecture on which it is built,
you can use any disk protocol that the Linux kernel supports to build an array.
Indeed, if a newer, faster, and more reliable disk protocol (such as Serial ATA) were

Table 2-6. The differences between SCSI and ATA

Feature SCSI ATA

Device limit 7 or 15 per channel 2 per channel

Maximum cable length 12 meters ~.5 meters

External devices Yes Not without special hardware

Termination required Yes No

Device ID Yes No (master/slave only)

Extra CPU load No Yes

Concurrent device access Yes No

Cost/availability Expensive; need to add on Cheap; built into most motherboards

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 49

released this year or the next, it would only increase the usefulness of RAID. Further-
more, if a breakthrough in solid-state media happened in the next few years, these
devices could also be grouped into arrays. While disk capacities and throughputs
continue to increase, they nonetheless continue to fall behind the curve of increasing
user needs.

Choosing Hard Drives
Hard drives represent the most challenging bottleneck in data storage. Unlike disk
controllers, motherboards, and other components that make up a system, hard
drives are unique because they contain mechanical components. This presents a
complicated problem for engineers because the moving parts of hard drives limit the
speed at which data can be stored and retrieved. Whereas memory and controllers,
for example, are completely electronic and can operate at close to light speed, hard
drives are much slower.

In general, it’s a good idea to use the same disks in an array whenever possible. But
using identical disks might not be an option all the time. Disks are made of several
parts that affect their overall performance. If a situation arises in which you are
forced to mix different disks, then you will want to know how to best evaluate a new
disk to ensure that it will function appropriately when added to an array.

Platters, tracks, sectors, and cylinders

Two mechanical parts that affect performance are found on every hard drive. Inside
each drive are magnetic platters, or disks, that store information. The platters, of
which most common hard disks have several, sit on top of each other, with a mini-
mum of space between each platter. They are bound by a spindle that turns them in
unison. The surface of each platter (they are double-sided) has circular etchings
called tracks, similar to a phonograph record, with the important difference being
that tracks on a hard disk are concentric circles, while a record has a single spiral
track.

Each track is made up of sectors that can store data (see Figure 2-24). The number of
sectors on each track increases as you get closer to the edge of a platter. Sectors are
generally 512 bytes in size, with some minor deviation that depends on the manufac-
turer.

Figure 2-24. The surface of a hard disk platter.

Spindle Sector

Platters Cylinder

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Planning and Architecture

The speed at which these disks spin affects how fast information can be read. The
rotation rate, or spin rate, of a hard disk is measured in revolutions per minute (RPM).
Modern drives operate at speeds equal to or greater than 5400 RPM, with 7200 RPM
being the most common consumer rotation rate. Drives operating at 7200 RPM are
able to rotate through an entire track of data 120 times per second (7200 revolutions
per minute / 60 seconds = 120 rotations per second). Most ATA drives spin at one of
these rates, depending on the price of the drive. Older drives have slower spin rates.
Faster SCSI drives, like those found in high-end servers or workstations, typically
spin at rates of 10,000 RPM or higher.

Actuator arm

The second analog bottleneck is the actuator arm. The actuator arm sits on top of, or
below, a platter and extends and retracts over its surface. At the end of the arm is a
read-write head that sits a microscopic distance from the surface of the platter. The
actuator arm extends across the radius of a platter so that different tracks can be
accessed (see Figure 2-25). As the disk spins, the read-write head can access informa-
tion on the current track without moving. When the end of the track is reached, it
might seem logical for the actuator arm to move to the next track and continue writ-
ing. However, this would greatly increase the time needed to read or write data
because the actuator arm moves much more slowly than the disk spins. Instead, data
is written to the same track on the platter sitting directly above or below the current
platter. A group of tracks, on different platters, that are the same distance from the
spindle are called cylinders. Since the actuator arm moves every read-write head in
unison, the read-write is already positioned to continue I/O. During a write, if there
is no free space left on the current cylinder, the actuator arm moves the read-write
heads to another track, and I/O resumes.

When data is read or written along a single cylinder, and then along adjacent tracks,
I/O is extremely fast. This is called sequential access because data is read from the
drives in a linear fashion. When data is spread out among various tracks, sectors, and
cylinders, the actuator arm must move frequently over the platters to perform I/O.
This process is called random access and is much slower than sequential access.

Figure 2-25. Actuator arms move heads across the surface of the disk.

Spindle
Read/write

heads Actuator arm

Cylinder Platters

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 51

Think again about the single spiral track of a phonographic record. That design
makes records well suited for sequential data access, or audio playback. But it also
makes random access impossible, hence the concentric circle design of hard disk
platters, which are well suited for both types of data access.

RAID helps eliminate the analog bottlenecks present in hard disks. By
striping data across multiple disks, RAID can circumvent the slow
analog parts of hard disks.

Maximum data throughput

Unfortunately, hard disk throughput is difficult to measure consistently. The way
data is arranged on the drive can affect performance. Data that is spread across many
different parts of the disk takes more time to access than data that is grouped
together, because the actuator arm has to move more frequently. The average seek
time of a hard disk is a measurement of the time it takes for the actuator arm to posi-
tion itself on a new cylinder or track. Once the actuator arm arrives at a new track, it
must wait until the proper sector spins into place. The time it takes for the sector and
the actuator arm to line up is called latency.

In addition to the rotation rate, average seek time and latency, hard disks also come
equipped with a data buffer. Similar to cache memory on a processor, the data buffer
allows a disk to anticipate and cache I/O, increasing the overall throughput of the
drive. When selecting hard disks, the rotation rate, average seek time, and data
buffer size are all important factors. Smaller seek times mean faster throughput,
while higher rotation rates and larger data buffers also increase data throughput.

Doing the math to determine the maximum data throughput of a hard drive you’re
considering can be tedious. Therefore, manufacturers usually advertise the overall
throughput of a drive in easy-to-understand terms. The throughput of a hard disk
over time is measured in megabytes per second and is found in the technical docu-
mentation for each hard disk model. Unfortunately, there is no standard for measur-
ing this value. Therefore, the name that references it can vary from vendor to vendor.
IBM calls this measure the sustained data rate, whereas Seagate calls it the average
formatted transfer rate. I’ll use the term transfer rate throughout the rest of this book.

Hard disks are also capable of occasionally reaching speeds well beyond their sus-
tained data rates. These increased speeds generally last only for a fraction of a sec-
ond. This additional benchmark is known as the burst rate. Burst rate speeds are
usually achieved only when the data bus is idle. If a system is idle most of the time
and large chunks of data are written intermittently, you will see throughputs at the
burst rate more often than on a busy system. It is also unlikely that these user-
friendly measurements will be printed anywhere on the product packaging, so if you
plan to buy drives off the shelf, be sure to check the manufacturers’ web sites first.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Planning and Architecture

Matched drives

Because different hard disks have different seek times, rotation rates, data buffers,
and latency, they also have different data rates. Like mixing disk protocols, using
hard drives of varying speeds can hinder array performance. The high performance of
fast drives might be wasted while waiting for data from slower disks. Although the
performance bottleneck is not as drastic when compared to mixing different SCSI
implementations, you should still try to use matched drives (drives that are all the
same model) whenever possible.

Hard disks also vary slightly in size. Although two disks from different vendors
might both be advertised as 18 GB (gigabytes), the formatted capacity may vary
slightly. If this occurs, you will need to take extra care when configuring disks to
ensure that partitions for any arrays other than linear mode or RAID-0 are exactly
the same size. Also note that some disk partitioning tools provide an option to cre-
ate a partition using the rest of any available disk space. Be careful when choosing
this option, as using it on different disks could result in partitions that vary in size.

During the life of your array, it’s possible that even if you have taken great pains to
make sure that all your disks are matched, you may be forced to introduce a disk that
is slightly different. For example, what happens if a disk fails and your vendor no
longer makes the drives with which you built the array? In that case, you might have
no choice but to use a different drive because the cost of upgrading all the disks
might be too high. Keeping spare disks on hand in anticipation of a failure is advis-
able whenever financially possible.

Cases, Cables, and Connectors
Just because you decide to build a software RAID or use an internal disk controller
does not mean you need to fit all your drives into a single server or desktop case. In
fact, you can chain as many devices as you want to your Linux system, keeping in
mind the limits on devices per channel. Remember that ATA is limited to 2 devices
per channel, whereas SCSI is limited to 7 or 15 devices per channel.

By housing drives in external cases and connecting them to the external port’s disk
controller, you can create a formidable storage device. Putting disks in different cases
will not cause a noticeable performance hit. However, don’t forget that there are
maximum cable lengths between devices on individual channels. ATA has a cable
length limit of about .5 meters. The cable length limits of an SCSI channel depend on
the specific SCSI protocol and transmission type (see Table 2-7).

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 53

The cable length limit applies to the total number of devices on a single channel,
including external devices. Remember to take into account not only the cable con-
necting your controller to the external casing, but also the internal ribbon cable
found inside the external case. In the rare situation that you are working with HVD
SCSI, remember that it has a maximum cable length of 25 meters, regardless of the
SCSI implementation it uses.

Cables come in two types: cheap and expensive. I strongly recommend that you
spare no expense when purchasing cables. I’ve seen countless system administrators
drive themselves insane diagnosing an SCSI performance problem only to later real-
ize that they’ve bought poor quality cables that could not handle the data load. This
mantra applies when using both internal and external cabling. Controller card manu-
facturers often bundle an internal ribbon cable with new controller cards (unless you
buy an OEM version). Use these cables at your own risk; their quality varies greatly
between manufacturers. It’s probably best to find a good source of reliable cables
and use them in all your systems, even when cables come bundled with cases or con-
trollers.

Finding the correct external drive cases can be difficult, especially when working
with the latest SCSI protocols. Make sure that the connectors match your card, or
you will have to buy an expensive converter cable that can hinder performance. It’s
also important to make sure that the case is rated for the protocol you are using.
Some cases may come equipped with the proper external connectors, but the inter-
nal cable might be rated for an older SCSI implementation.

Table 2-7. SCSI cable length limits

SCSI type Maximum data throughput (MB/s) Maximum cable length (meters)

SCSI-1, SCSI, Narrow SCSI 5 6a

a Single-ended

Fast SCSI, Fast Narrow SCSI 10 3a

Fast Wide SCSI 20 3a

Ultra SCSI 20 3a

Ultra Wide SCSI 40 3a

Ultra2 SCSI, Ultra2 Narrow SCSI 40 12b

b Low voltage differential

Ultra2 Wide SCSI 80 12b

Ultra3 SCSI, Ultra 160 SCSI 160 12b

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Planning and Architecture

Drives come in two sizes: 3.5” and 5.25”. The 5.25” drives can only be placed in
5.25” bays. These drive bays are usually external, meaning that a plastic piece on
the front of the case can be removed to expose the drive. 5.25” bays are full-height
(3.25”). Full-height (5.25”) drives are uncommon in today’s PC market. You
might find very large-capacity drives that have this form factor, but most disks are
half-height (1.625”) and have a width of 3.25”. These smaller drives can be
housed in 5.25” drive bays by using extension brackets that are usually bundled
with cases. They can also be housed in 3.25” bays, which might be external or
internal. When buying cases, external bays refer to spots that can be accessed
without opening the case. Internal bays refer to drive mounts that can be accessed
only when the case is opened.

Connectors

ATA cables use a standard 40-wire, 40-pin ribbon cable, while Ultra ATA (speeds of
33 MB/s and above) uses a 40-pin, 80-wire cable (as shown in Figure 2-26). The con-
nectors and cables might look identical, but you must use the 80-wire with Ultra
ATA disks. Be sure to check the specifications when purchasing cables.

SCSI cables are much more confusing because SCSI cables have undergone more
transformations than ATA cables. In most cases, you will be using a 68-pin ribbon
cable for internal devices. Just make sure it’s rated for the bandwidth you’re using.
Older external connectors have some variation (see Figure 2-27), but in most cases,
68-pin high-density (HD) connectors are used. However, newer 68-pin very high-den-
sity (VHD) connectors are making their way into the market. Decreasing the size of
external connectors has made it easier for SCSI controller manufacturers to house
multiple channels on a single card.

If you have different connectors on your controller card and your case, it’s easy to
find cables that can accommodate you. Check out http://www.scsipro.com for cus-
tom SCSI cables.

Figure 2-26. ATA cables all have the same 40-pin connectors, but Ultra AT (speeds greater than 33
MB/s) require newer 80-wire cables.

1

40-wire cable
(IDE, EIDE, ATA)

4020 1 8040

80-wire cable
(Ultra ATA 33, 66, 100)

40-pin connector

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Hardware Considerations | 55

Single connector attachment (SCA)

To facilitate hot-swap disks, IBM introduced the single connector attachment (SCA)
for SCSI hard disks. SCA integrates data transfer, power, and configurable options
(such as SCSI ID) on a single 80-pin connector, as shown in Figure 2-28. Drives are
plugged into an SCA backplane that is then connected to the SCSI bus (usually via
SCSI ribbon cable) and the power supply. SCA drives are mounted in trays that slide
into the backplane and lock into place, leaving the other side of the disk tray accessi-
ble from the outside of the case. These features make it easy to swap disks by elimi-
nating the need to power down the system and dismantle the case.

Since its inception, SCA has been adopted by several manufacturers, and SCA-2 is
the current implementation standard. SCA drives tend to be slightly more expensive
than standard drives. Cases with SCA backplanes also run on the expensive side, but
SCA is a necessity for any system that needs hot-swap capability because SCA is
designed to allow power-on disk swapping. Recently, SCA chassis that fit into standard

Figure 2-27. Most SCSI controllers use 68-pin high-density connectors for external connections.
You may encounter some older connectors as well.

Figure 2-28. SCA disks use an 80-pin connector that facilitates data transfer, power, and
configuration parameters.

50-pin Centronics
(8 bit, SCSI-1, 5MB/s)

25-pin DB25
(8 bit, 5MB/s, Apple)

50-pin HD50
(8 bit, SCSI-2, 10MB/s)

68-pin high-density (HD)
(16 bit, Wide/Wide Ultra, 40MB/s)

68-pin very high-density (VHD)
(16 bit, Ultra2, Ultra 160/320, 320MB/s)

Cable/Backplane side

Device side

Advanced grounding contacts

Actual drive

Connector that's usually part of a
disk enclosure or case

Connectors are 80 pins
-and supply power

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Planning and Architecture

desktop cases have surfaced. Enlight Corporation (http://www.enlightcorp.com) man-
ufactures a module that fits into three 5.25” drive bays. It supports up to five SCA
disks and connects to an internal SCSI controller. Rackmount case makers also tend
to sell custom drive cases that come equipped with an SCA backplane.

Individual adapter modules that allow the use of a single SCA disk with standard 68-
pin SCSI cabling and power supply connection are also readily available. I’ve had
mixed results using them, ranging from problem-free performance to SCSI channels
running at less than optimal speeds. You will probably also have mixed results, but
they do offer a pretty cheap way to get SCA functionality, especially on systems with
only a couple of disks. Most cases support a minimum of five or six disks and are
very pricey.

Power

Finally, make sure you have an adequate power supply in all your cases, whether
they are dedicated drive cases or contain a system and disks. Most cases provide just
enough internal power connectors so that the power supply cannot be overloaded.
You can purchase power splitters if you run out of connectors, but remember that
overloading a power supply can lead to fried hardware. If you find that you have
more peripherals than power, you should considering upgrading your power supply.
Most cases can be custom ordered with power supplies of up to 450 watts for a mini-
mum of extra cash.

Making Sense of It All
In the final section of this chapter, I’d like to present an example RAID system that I
built using parts available at most decent computer stores and online retailers.

The system in question was designed to replace a medium-volume web server that
hosts content for video game enthusiasts. The original server was homegrown and
quickly became inadequate as the site grew in popularity and moved out of its
owner’s workplace into a collocation facility. Connecting the system to a larger net-
work pipe solved many of its initial problems, but eventually, the hardware itself
became overworked.

The site is mostly static, except for a few moderators who post new articles and
reviews each day. It’s essential that the site have a 24 × 7 uptime, so RAID-0 is out of
the question. And with my budget, RAID-1 wouldn’t work either, because the site
frequently distributes large video clips and demos of upcoming games. I simply
couldn’t afford the extra disks RAID-1 would require. That left RAID-5 as the best
option.

In building the new RAID system, I needed to select a motherboard first because the
old 32-bit PCI board was causing most of the performance problems on the original
server. Because I was interested in high performance, I chose a motherboard that had

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Making Sense of It All | 57

two 64-bit PCI slots. Each of these 64-bit slots had a dedicated data bus with a
throughput of 533 MB/s. (Remember that 64-bit PCI boards run at 66 MHz [66.6
million cycles per second * 8 bytes per cycle = 533 MB/s]). The remaining expansion
slots are 32-bit and share a data bus with a throughput of 133 MB/s. The 32-bit bus
wouldn’t be used for anything except a low-end video card (for local administra-
tion), although in the future, a network card might be installed so that the system
could be connected to a private administrative network.

In the first 64-bit PCI slot, I installed a high-speed networking card, which should
alleviate any networking bottlenecks that the site was experiencing when it was using
a 100-megabit Ethernet card. In the second slot, I installed a quad-channel Ultra
SCSI 160 controller, giving me to a total disk bus throughput of 480 MB/s (3 * 160
MB/s). The unused bandwidth would help ensure that I didn’t saturate the 533 MB/s
data bus, while allowing for occasional burst rates that exceed the specifications of
my disks and controller.

I found some reasonably priced hard disks that supported a sustained data rate of 40
MB/s and purchased a few external cases. Therefore, I didn’t need to worry about
cramming everything into a single desktop case. I knew that even the biggest desk-
top cases house only 7 or 8 disks, and that wouldn’t allow me to take full advantage
of my controller (480 MB/s ÷ 40 MB/s = 12 disks). After doing some thinking, I
decided to purchase twelve drives, and I connected three of them to each controller
channel. The drives are housed in the external cases I bought, externally connected
to individual channels.

Although the average disk throughput was 40 MB/s, the manufacturer’s specifica-
tions indicate that burst rates higher than that are common. Because I was using
RAID-5, I could configure the array so that the system alternated between SCSI
channels during I/O operations. That would help offset the potential for bottlenecks
on an individual channel when the disks burst higher than 40 MB/s.

Once all the equipment (see Figure 2-29) was connected, I was left with three drives
on each channel, with an aggregate disk bus throughput of 480 MB/s. That left some
overhead on my data (PCI) bus to be safe, but didn’t waste much of its potential,
since I expected the disks would often outperform the 40 MB/s data rate by a small
amount. I didn’t need to worry about the graphics adapter or network cards interfer-
ing with disk throughput, either, because they were installed on separate data buses.

Hardware is always changing and the equipment you buy doesn’t always meet your
expectations, so it’s always a good idea to do research before building or purchasing
any system.

As an example of what can go wrong, a former collegue recently told me that he had
to argue with his vendor in order to get a system with multiple SCSI backplanes. He
had ordered a dual-channel RAID controller in a rackmount case with eight hard
disks. But the vendor had designed the system so that there was only a single SCA

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Planning and Architecture

backplane. This meant that all of his data would be travelling over a single SCSI
channel and that the second channel would be wasted. The vendor offered the
option of adding an external disk-only case for the second channel, but my colleague
found that unfeasible due to the the high price of server colocation it added. In the
end, my collegaue had to swap his components into a new case with two back-
planes. The vendor ate the cost, but it took an extra week to get the system online.

Also, remember compatibility issues. I recommend checking relevant mailing lists
and web sites to make certain that your disk controllers will work properly with your
motherboard and network controller.

Figure 2-29. My web server contains a quad-channel SCSI controller. Three disks are connected to
each channel.

Motherboard

PCI (32 bit)
PCI

(64 bit)

Controller

C DA B

Shared data
bus

A B C D

External disk cases

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

59

Chapter 3 CHAPTER 3

Getting Started:
Building a Software

RAID

Before plunging into this chapter, you should be familiar with the process of build-
ing and installing a new kernel. If you have never done this before, I strongly suggest
that you read Brian Ward’s “The Linux Kernel HOWTO” (http://www.tldp.org/
HOWTO/Kernel-HOWTO.html), which is available at any Linux Documentation
Project mirror and is likely included with your distribution. If you prefer books to
online documentation, then I’d recommend you pick up a copy of Running Linux
(O’Reilly). Chapter 7 of that book offers an excellent tutorial on managing the ker-
nel. To become comfortable installing a new kernel, I suggest you make some simple
changes first.

A good start would be to eliminate some loadable modules from your kernel and
include those subsystems statically. Most distributions set up major system peripher-
als as loadable modules, rather than compiling them statically into the kernel. Net-
work drivers are a good example of kernel subsystems that are often installed, by
default, as loadable modules. The sheer number of available network hardware con-
figurations makes this the only efficient way to circulate network-enabled Linux dis-
tributions. So, in order to maintain compatibility with as many systems as possible,
distributors such as Red Hat, Mandrake, and SuSE automatically load modules
appropriate to your system at boot time, while installing a stock kernel with support
for loadable modules. Using modules also helps conserve system memory by reduc-
ing the size of the running kernel. Modules can be unloaded when they are no longer
needed, freeing up additional system resources.

While this is a completely viable way to set up a Linux machine, I tend to feel that a
monolithic kernel, a kernel without modules, is more appropriate for system stabil-
ity and is essential for servers. Loadable modules leave room for uncertainty during
system initialization and are therefore best left to desktop machines and novices.
Since servers typically perform specific and dedicated services, a monolithic kernel
suits them best. Once you are comfortable recompiling the kernel and reconfiguring
your boot manager, you can begin adding support for RAID.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 3: Getting Started: Building a Software RAID

This chapter will guide you through implementing a software RAID by explaining
how to:

• Enable kernel RAID features

• Download and install software RAID utilities

• Partition hard disks

• Create an array

Kernel Configuration
Software RAID support must be enabled in the kernel before you can create any
arrays. This generally means recompiling your kernel, configuring your boot loader
(such as LILO or GRUB) to load the new kernel, and, finally, restarting the system
with the new kernel.

A Brief History Lesson
Although kernels prior to 2.0.35 shipped with some RAID support, it wasn’t until the
release of 2.0.35 that support for RAID-1, RAID-4, and RAID-5 became available.
The multiple devices (md) driver that provides kernel RAID support is currently at
version 0.90. The latest stable kernels in the 2.0 and 2.2 series ship with an outdated
version (0.36) of the software RAID driver. Patches for the 0.90 code are available for
these older kernels (see the sections below on “Kernel 2.2” and “Kernel 2.0”). Ker-
nels prior to 2.0.35 ship with version 0.35 of the md driver and should not be used,
except if you absolutely have to keep them in operation for legacy reasons.

The 0.90 code was finally merged with the kernel source tree during the 2.3 develop-
ment phase, so 2.4 ships with the latest RAID code. So will all subsequent stable and
development kernels. In general, it’s best to run at least a 2.4 series kernel when
using software RAID, or a 2.2 kernel with the proper RAID patches applied. Using
the old 0.36 driver is not recommended.

Along with drivers to provide software RAID for Linux, a set of utilities for manag-
ing, configuring, and tuning software arrays has emerged. These utilities, collectively
called the RAID Tools (raidtools is the package name), are maintained by Ingo Mol-
nar and Erik Troan of Red Hat and are now included with many major distribu-
tions. Molnar also served as the primary developer and maintainer of the software
RAID subsystem from version 0.36 through 0.90’s integration into the stable kernel
tree. Today, he shares that responsibility with Neil Brown, a software engineer at the
University of New South Wales. Brown also contributed many performance and reli-
ability-related patches before becoming an official maintainer. In August 2001,
Brown began work on his own software RAID utilities for Linux. His multiple devices
administration (mdadm) program is a great alternative to the slightly aging raidtools.
Both packages are covered in this book. I recommend using mdadm when possible.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 61

Many other programmers have contributed to the md driver since its original devel-
opment. Marc Zyngier wrote the original implementations of linear mode and RAID-
0, along with the predecessor to raidtools. Miguel de Icaza helped develop the first
implementation of RAID-1 and wrote the first version of raidtools. Gadi Oxman
wrote the first 0.90 implementation of RAID-5.

Kernel 2.4
As of version 2.4, software RAID has its own subsection in the kernel configuration
(in previous versions, options were found under the Block Devices submenu). The
Multi-device Support (RAID and LVM) submenu contains all the configuration
options for software RAID. The first option, CONFIG_MD, is a configuration switch that
reveals options for RAID and Logical Volume Management (LVM). After selecting
CONFIG_MD, choose CONFIG_BLK_DEV_MD, which allows the kernel to address multiple
physical devices through a single logical device (see Figure 3-1). CONFIG_BLK_DEV_MD
provides the foundation for the md driver and needs to be enabled on every system
that uses software RAID, regardless of which RAID level is implemented.

In order to successfully build a software RAID device, one of the available RAID lev-
els must also be enabled. The following kernel directives enable support for specific
RAID levels:

CONFIG_MD_LINEAR
CONFIG_MD_RAID0
CONFIG_MD_RAID1
CONFIG_MD_RAID5

CONFIG_MD_LINEAR and CONFIG_MD_RAID0 enable support for the non-RAID methods of
disk grouping supported by the Linux kernel. CONFIG_MD_RAID1 provides support for

Figure 3-1. Enabling kernel RAID support.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 3: Getting Started: Building a Software RAID

data redundancy through disk mirroring. Finally, CONFIG_MD_RAID5 enables support
for both RAID-4 and RAID-5 layouts. The choice between using RAID-4 or RAID-5
is made later, when creating an array. If you plan to experiment with more than one
of the available RAID levels, or if you are still unsure which RAID level you plan to
implement, you can enable all four levels, rather than compiling a separate kernel for
each (Figure 3-2) or recompiling your kernel each time you wish to experiment with
another level. This is extremely useful during testing. When you’re ready to go into
production, simply rebuild the kernel with only the RAID levels you need. RAID
support is also available as loadable kernel modules.

You will also notice an option for Multipath I/O support (CONFIG_MD_MULTIPATH).
This newer feature of the md driver allows the addressing of a single physical disk
using multiple I/O paths (controllers or channels). So if one I/O path becomes
unavailable, the disk is still accessible. Multipath I/O support is not covered in this
book.

Once you have added the desired options to your kernel configuration, compile the
new kernel with support for software RAID.

make dep
make bzImage

The new kernel should be located at .../arch/i386/boot/bzImage (for i386-based sys-
tems), under the kernel source directory. If you are using a non-Intel machine, look
for the compiled kernel image in the directory that is appropriate for your architec-
ture (.../arch/sparc/boot/ on SPARC systems, for example).

Figure 3-2. Enable support for specific RAID levels.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 63

Installing the new kernel

Linux kernels are traditionally stored in the /boot directory (usually a dedicated parti-
tion) or occasionally in the root directory. Copy the new kernel to the /boot direc-
tory, or to the directory where you normally keep your kernels, if you have a
nonstandard situation. The following example works on i386-based systems.

cp arch/i386/boot/bzImage /boot/bzImage.raid
cp System.map /boot/

You can name the kernel anything you like, but I find it helpful to name it some-
thing descriptive. Others prefer to include the version number in the filename. Next,
add an entry for the RAID-enabled kernel to the boot loader configuration.

On systems using the Linux Loader (LILO), /etc/lilo.conf contains information about
which kernel image is loaded during the system initialization. LILO users might add
the following entry to /etc/lilo.conf:

image=/boot/bzImage.raid
 label=linux-raid
 read-only
 root=/dev/sda1

Make sure that you enter the correct root device, if it is not /dev/sda1. Either place
this stanza before all the others listed in /etc/lilo.conf, or use the default global key-
word to specify which kernel to boot (see the lilo.conf manual page for further
details). You can also simply select the Linux-raid kernel from the LILO prompt dur-
ing startup and avoid changing the default.

lilo
Added linux-raid *
Added linux-orig
shutdown -r now

You can also use lilo -R to specify which kernel to load when the system restarts
(after you run lilo to rebuild the boot sector). In the following example, the Linux-
raid kernel will be loaded the next time the system restarts, even though it is not the
default kernel listed in /etc/lilo.conf.

lilo
Added linux-raid
Added linux-orig *
lilo -R linux-raid
shutdown -r now

lilo -R works for only one subsequent reboot. So, once you are satisfied with the new
kernel, remember to change the default in /etc/lilo.conf or rearrange the stanzas.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 3: Getting Started: Building a Software RAID

Some distributions are beginning to use the Grand Unified Bootloader (GRUB)
instead of LILO. GRUB users can add lines like the following to their /boot/grub/
grub.conf file:

title Linux RAID (2.4.18)
 root (hd0,0)
 kernel /bz.2418 ro root=/dev/sda2

This entry will load the kernel found at /boot/bz.2418 on the first hard disk (hd0,0)
using a root device of /dev/sda2, mounted initially as read-only. By default, GRUB
will boot the first entry it finds in grub.conf, so you could either place the lines above
as the first entry or change the default parameter to reflect the correct kernel.

System initialization

When the system restarts, a message indicates that the md driver has initialized. Each
RAID level compiled into the kernel is listed, along with information about the
driver. On a system with support for all available RAID levels, the following message
should appear:

md driver 0.90.0 MAX_MD_DEVS=256, MD_SB_DISKS=27
linear personality registered
raid0 personality registered
raid1 personality registered
raid5 personality registered

If your system boots faster than you can read the messages, use the dmesg command
to examine boot messages after the system has initialized. dmesg displays the kernel
ring buffer, allowing users to examine important kernel messages that they might
have missed during kernel initialization. The kernel ring buffer stores, in memory,
messages about the current state of the running kernel. Some distributions are
already preconfigured to dump these messages to a file after the system boots, but
you can simply redirect the output to a file (dmesg > boot.messages) or pipe it into a
pager (dmesg | less) at your whim. Messages returned by dmesg might look a little
bit different from their appearance while the system is booting, but the same infor-
mation is there:

dmesg | grep md
md: linear personality registered as nr 1
md: raid0 personality registered as nr 2
md: raid1 personality registered as nr 3
md: raid5 personality registered as nr 4
md: multipath personality registered as nr 7
md: md driver 0.90.0 MAX_MD_DEVS=256, MD_SB_DISKS=27

When the md driver initializes, its version is displayed (0.90.0, in this case). MAX_MD_
DEVS indicates that the number of RAID devices is limited to 256 (with devices files
named /dev/md[0-255]), and MD_SB_DISKS indicates that each software array is lim-
ited to 27 member disks. However, by building hybrid arrays, users can move well
beyond this limit. Hardware limitations will become an issue long before you reach
the limits of the md driver.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 65

The kernel also registers each RAID level, or personality. In this case, the kernel con-
tains support for linear mode, RAID-0, RAID-1, and RAID-4/5. If RAID support was
compiled as loadable kernel modules, these initialization messages will not appear,
but you should see them later in your system logs when those modules are inserted.
These messages will be reported (like all md driver messages), using the kern facility,
starting at the info level.

Please note that as the system remains running, the kernel ring buffer will begin to
expunge old messages. So be certain to examine it soon after booting if you need to
view information generated by the boot process. Most distributions are also precon-
figured to place this information in /var/log/messages after the system boots. Please
be aware that some distributions also come configured with an /etc/syslogd.conf that
generates a misnamed file called /var/log/boot.log, using the log facility local7. This
file (and any files generated using local7) contains messages from system initializa-
tion scripts (rc), not kernel initialization messages. Kernel messages are captured by
klogd and dumped to syslogd once klogd has executed. In most default configura-
tions, you will find messages about the md driver in /var/log/messages, including
those dumped from the kernel ring buffer by klogd. Chapter 7 covers system logging
and the md driver in further detail.

If RAID-5 is supported, the kernel will also optimize the XOR routines used for par-
ity checksum in a RAID-5. A message indicating that the test was performed is dis-
played, along with its results:

raid5: measuring checksumming speed
 8regs : 1835.600 MB/sec
 32regs : 871.600 MB/sec
 pIII_sse : 2021.200 MB/sec
 pII_mmx : 2277.200 MB/sec
 p5_mmx : 2386.000 MB/sec
raid5: using function: pIII_sse (2021.200 MB/sec)

Since different i386-based processor architectures implement different ways to per-
form the necessary XOR operations, Linux needs to determine which one is the most
efficient for a particular system in advance. Notice that in this example, the fastest
checksum operation was not chosen. On systems that support Streaming SIMD
Extensions (SSE), that choice is selected because of its ability to circumvent the L2
cache and perform operations in parallel (see /usr/src/linux/include/asm-i386/xor.h).
This functionality improves the performance of checksum operations. Information
about checksum algorithms is also recorded in the kernel ring buffer.

After the system restarts, examining /proc/mdstat will also show that the RAID sub-
system was successfully initialized with support for linear mode, RAID-0, RAID-1,
and RAID-4/5.

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead not set
unused devices: <none>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 3: Getting Started: Building a Software RAID

See the section “Examining Arrays Using /proc/mdstat,” later in this chapter, for
more information.

Patching Older Kernels
Working with 2.0.X and 2.2.X kernels can be extremely confusing because of the lay-
out and documentation for the available patches. Most people have a lot of trouble
sifting through all the old and erroneous information relating to these kernel ver-
sions and their RAID implementations. While RAID support is included with 2.0.X
and 2.2.X series kernels, the most recent drivers are not distributed with the kernel
source code, and patches should be applied when possible. There are also known
problems with RAID-5 on 2.2 and 2.0 kernels, so if you want to use RAID-5, you
should upgrade to at least a 2.4 kernel.

Kernel 2.2

When working with 2.2 series kernels, I strongly recommend that you upgrade to the
latest RAID code (0.90). The 0.90 code is available as a patch to the kernel and
should be applied before any attempt to build new arrays. As a general principle, you
should always be working with version 0.90 (or later) of the RAID code. You can
examine the file .../linux/include/linux/md.h to determine which version of the RAID
code is present on 2.0 and 2.2 series kernels. Version information is located near the
beginning of the file:

[...]
#define MD_MAJOR_VERSION 0
#define MD_MINOR_VERSION 36
#define MD_PATCHLEVEL_VERSION 6
[...]

This 2.2 kernel has version 0.36.6 of the RAID subsystem; therefore, a patch should
be applied. If .../linux/include/linux/md.h is either empty or missing, your kernel is
probably already patched to version 0.90. Instead, check the file .../linux/include/
linux/raid/md.h for the version information. Note the extra subdirectory named raid
in the path. As the size of RAID code grew, a subdirectory was created to better orga-
nize its components.

Patches for the 2.2 kernel are available at http://people.redhat.com/mingo/raid-
patches/. A patch for the most recent sublevel release of 2.2, as well as patches for a
few prior 2.2 sublevel releases, should be available at this site. Grab the one for the
specific sublevel release with which you are working. If a patch for that particular
sublevel release is unavailable, I recommend upgrading to the most recent 2.2 release
and using the matching RAID patch.

For example, if you are working with kernel 2.2.20, download the patch http://
people.redhat.com/mingo/raid-patches/raid-2.2.20-A0. Apply the raid-2.2.20-A0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 67

patch to your 2.2.20 kernel, using the -p1 flag to indicate that you are in the root
directory of the source tree:

cd /usr/src/linux-2.2.20
patch -s -p1 < /usr/src/patches/raid-2.2.20-A0

Passing the -s flag to patch invokes quiet mode. If patch is successful, no output it
returned. If an error was encountered, then patch will output a list of reject files that
contain more detailed information about the errors. If you encounter errors, it’s pos-
sible that a faulty, or untested, patch was released. Try throttling your kernel back-
ward one revision (to 2.2.19, in this case), download a new patch, and reapply it.
When the problem is eventually corrected, you can safely upgrade and repatch. You
can, alternatively, examine the reject files and attempt to manually fix problems that
patch encounters. If you choose not to use quiet mode, then patch will return a list of
files that have been successfully patched, in addition to the names of any reject files
generated.

Remember that new patch files and kernels are released often, so the filenames used
throughout this book may differ slightly from the ones you encounter when down-
loading patches. The locations of important kernel patches will also inevitably change
as kernel maintainers change employers and as subsystems change maintainers.

When working with kernel patches, it’s a good idea to apply them to a clean,
unpatched kernel. Moshe Bar has written an excellent article for BYTE magazine that
explains the implications of kernel source trees and applying patches to clean ker-
nels (http://www.byte.com/documents/s=2470/byt1012259408690/0204_bar.html).

As in 2.4 kernels, RAID support must be enabled during kernel configuration of 2.2
kernels. During this earlier phase of RAID development, the RAID subsystem did not
have its own submenu. Instead, RAID configuration options were put in the Block
Devices submenu. Simply enable Multiple Devices Driver Support (CONFIG_BLK_DEV_
MD) and at least one RAID level (see Figure 3-3).

Figure 3-3. Enable support for Multiple Devices and at least one RAID level.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 3: Getting Started: Building a Software RAID

If you plan to experiment with different RAID levels, simply enable all of them.
Under 2.2, the various RAID levels can also be built as loadable kernel modules. You
might also notice some other options that provide additional features. The first,
Autodetect RAID Partitions (CONFIG_AUTODETECT_RAID), allows the kernel to automati-
cally activate arrays when the system boots. Originally, RAID devices were started
either manually at the command line or by system initialization (rc) scripts.

Autodetection examines the RAID superblock (see “The RAID Superblock” section,
later in this chapter) on hard disks to determine which disks are members of arrays
and then to activate them. It is safe to leave RAID autodetection enabled. On newer
kernels, autodetection is standard and therefore no longer appears as an option.

Translucent Mode (CONFIG_MD_TRANSLUCENT) and Hierarchical Storage Management
Support (CONFIG_MD_HSM) were experimental options that appeared in the 2.2 kernel,
but were never developed. They no longer appear in later kernels and should be dis-
abled when working with any kernel that advertises them as features.

Kernel 2.0

As I’ve mentioned several times earlier in this chapter, kernels earlier than 2.2 are
best not used for software RAID. Software RAID under 2.0 kernels is especially con-
fusing. Patch files are no longer maintained, older utilities are needed to manage
devices, and both patches and tools are kept in an area of kernel.org that is not main-
tained. So it’s best to avoid using software RAID with 2.0 kernels, unless there are
extenuating circumstances. If you must work with a 2.0 kernel, I strongly recom-
mend upgrading to the latest kernel prior to using software RAID. Usable patches are
available only for kernels newer than 2.0.35. It’s a bad idea to even attempt using a
kernel older than this.

Download the most recent 2.0 kernel patch from ftp://ftp.kernel.org/pub/linux/
daemons/raid/alpha/. Notice that this directory contains files for both 2.0 and 2.2
kernels. Use only 2.0 kernel patches from this directory. (Patches for 2.2 should be
obtained as described in the previous section, “Kernel 2.2.”)

Note, though, that if you were using kernel 2.0.39, you would need to download
raid0145-19990824-2.0.37.gz. As of this writing, no patches specific to kernels later
than 2.0.37 were available. The 2.0.37 patch should apply without severe problems.
But if you find yourself in a situation in which a patch doesn’t match your kernel
sublevel version, or if you encounter problems while patching or compiling a 2.0 ker-
nel, you should work with the kernel that matches the most recent patch. At worst,
you will be forced to use a kernel that is one or two sublevel revisions behind, and
eventually a newer patch will be released and you can upgrade.

To be on the safe side, I’m going to unroll a 2.0.37 kernel and apply this patch,
rather than risk using a 2.0.39 kernel that might present problems during compila-
tion or at runtime.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Configuration | 69

cd /usr/src/linux-2.0.37
patch -s -p1 < /usr/src/patches/raid0145-19990824-2.0.37

With 2.0.37, the patch returns no errors. A 2.0 kernel using the 0.90 RAID sub-
system is now ready for compilation. Enable RAID features under the Floppy, IDE,
and other block devices submenu during configuration (see Figure 3-4). First, enable
Multiple Devices Support (CONFIG_BLK_DEV_MD) and then any RAID you need. It is
safe to leave Autodetect RAID Partitions (CONFIG_AUTODETECT_RAID) activated, but
leave Translucent Mode (CONFIG_MD_TRANSLUCENT) and Hierarchical Storage Manage-
ment Support (CONFIG_MD_HSM) disabled (see the previous section, “Kernel 2.2”).

Summary of Kernel Upgrades
In summary, the latest version of the software RAID (multiple devices) driver for
Linux is 0.90. However, kernels 2.0 and 2.2 were distributed with an older version
(0.36) of the driver. If you are using kernel 2.4 or later, then you already have the lat-
est driver, but you might wish to check the web pages of both Ingo Molnar (http://
people.redhat.com/mingo/raid-patches/) and Neil Brown (http://www.cse.unsw.edu.au/
~neilb/patches/linux-stable/) for performance and reliability patches that are waiting
to make it into the next kernel revision.

When working with 2.0 and 2.2 kernels, it’s essential to upgrade to the 0.90 driver
whenever possible. Follow the steps described in this section to download the appro-
priate patch and apply it to your kernel. If you encounter problems during this pro-
cess, you might need to try patching different kernel sublevel releases until you find
one that patches without errors. Use kernels that do not patch properly at your own
risk.

Figure 3-4. Under 2.0 kernels, RAID functions are configured under the Floppy, IDE, and other
block devices submenu.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 3: Getting Started: Building a Software RAID

If, for one reason or another, you are working with a 2.0 or 2.2 kernel and cannot
upgrade to the 0.90 RAID, than you are in the unfortunate circumstance of having to
use the very outdated 0.36 driver. The 0.36 driver is not compatible with the newer
0.90 driver, and you will need to use an older version of the raidtools package to
manage arrays created for the 0.36 driver. Only four software arrays are supported
under version 0.36.

Working with Software RAID
The raidtools package, also maintained by Ingo Molnar, provides a set of utilities for
creating and managing software arrays. raidtools has been the standard software
RAID management package for Linux since the inception of the software RAID
driver. Over the years, raidtools has proven cumbersome to use, mostly because it
relies on a configuration file (/etc/raidtab) that is difficult to maintain, and partly
because its features are limited. In August 2001, Neil Brown released an alternative.
His mdadm package provides a simple, yet robust way to manage software arrays.
mdadm is now at version 1.0.1 and has proven quite stable after its first year of devel-
opment. It has received a positive response on the Linux-raid mailing list and will
likely become widespread in the future. The rest of this chapter will provide you with
examples of building and managing arrays, using the raidtools package, as well as
mdadm.

raidtools
raidtools provides a small, simple command set that allows administrators to create,
activate, and stop software arrays. Each array managed by the system is defined in a
global configuration file (/etc/raidtab) that describes which physical disks are mem-
bers of each array. /etc/raidtab also contains metadata about every array, such as its
RAID level and failover capabilities. The commands included with the raidtools
package use the information in /etc/raidtab to interface with arrays.

There are two notable versions of raidtools. Version 0.90 is the most recent imple-
mentation, and the only one being maintained. It should be used only in conjunc-
tion with the 0.90 driver. An older version (0.42) of raidtools is also still available.
This version should only be used when working with older systems that still use the
0.36 software RAID driver. Never use raidtools with the wrong driver!

Also included with raidtools are sample configuration files and documentation (man-
ual pages and cookbooks). Unfortunately, much of the documentation is seriously
outdated, sometimes by a factor of years. Adhering to the open source philosophy
that “old documentation is better than no documentation,” a lot of outdated infor-
mation is included with the raidtools package. It’s probably best to double-check a
Linux Documentation Project mirror for the most recent information and consult
additional reference material and mailing lists in lieu of relying on the documenta-
tion in the package.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Software RAID | 71

As of this writing, raidtools-1.0 has been released in a limited capacity. It can be
found in Red Hat 8.0 and will likely become pervasive during the next few months. It
fixes several minor bugs and can be used as a replacement for raidtools-0.90.
Chapter 4 presents more information about raidtools-1.0 and some new utilities
included with it.

raidtools-0.90

Most modern Linux distributions ship with the raidtools package. You can install
them from your installation media or download them from your vendor. In a Red
Hat CD directory, for example, issue the following command:

rpm -ihv ./raidtools-0.90-20.i386.rpm

Debian users can use apt-get to install the raidtools:

apt-get install raidtools2

Note that under Debian, raidtools2, NOT raidtools, provides the 0.90 raidtools pack-
age. Please be certain you have the proper package installed.

You can also download the source code and compile the package yourself. The most
recent version is available at ftp://ftp.kernel.org/pub/daemons/raid/alpha. As of this
writing, the most recent version is ftp://ftp.kernel.org/pub/linux/daemons/raid/alpha/
raidtools-19990824-0.90.tar.gz. You might be aware that a seemingly newer version
is available from http://people.redhat.com/mingo/raidtools/. There are several known
problems with this version (raidtools-20010914), including its lack of a key manage-
ment utility (raidsetfaulty). Use this version at your own risk. The raidtools package
should compile without problems on any recent system, though it does require the
popt libraries. There are currently no notable configuration options. Download and
unpack the archive.

cd /usr/src/raidtools-YYYYMMDD
./configure
make install

Compilation will leave you with several executables. Of particular note are mkraid,
used to create new arrays, and raidstart, used to activate arrays that have already
been initialized with mkraid. Installation will copy binaries to /sbin and create sym-
bolic links that invoke specific functions for each utility. raidstop, for example, is
simply a symbolic link that causes raidstart to invoke a case switch based on the
command line. Manual pages are also installed. Chapter 4 covers each command
included with the raidtools package in detail.

At the time of this writing, version 1.0 of raidtools has just appeared in Red Hat
Linux 8.0. Version 1.0 of raidtools corrects the issues associated with raidtools-
20010914 and includes some major improvements, such as bug fixes and a couple of
new utilities. lsraid will allow you to query arrays and member disks. It will even let
you generate an /etc/raidtab file by querying a running array. raidreconf allows users

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Getting Started: Building a Software RAID

to add (or remove) disks to a RAID-0 or RAID-5, usually without data loss. Although
these utilities are somewhat new, I’ll discuss them throughout this book, since they
are particularly useful and will more than likely become widespread.

/etc/raidtab

/etc/raidtab is raidtools’ primary configuration file. /etc/raidtab provides a function
similar to /etc/fstab. It provides the kernel with a description of each software RAID,
including its RAID level and a list of member disks. All RAID devices must have an
entry in /etc/raidtab to be created or activated using raidtools.

Users create /etc/raidtab by hand, using any text editor. Once /etc/raidtab is created
and contains configuration information about arrays, the mkraid command can be
used to construct an array based on the parameters defined in /etc/raidtab. mkraid
will complain if it cannot find a valid file at /etc/raidtab. This process is similar to cre-
ating the boot configuration file /etc/lilo.conf and consequently running /sbin/lilo to
rebuild the boot block.

Here is a typical /etc/raidtab that describes a RAID-0 with two ATA component
disks:

raiddev /dev/md0
raid-level 0
persistent-superblock 1
chunk-size 64

nr-raid-disks 2
nr-spare-disks 0

device /dev/hda1
raid-disk 0

device /dev/hdb1
raid-disk 1

Each array begins with a raiddev entry, followed by a list of array properties and an
entry for each array member. A valid entry in /etc/raidtab must contain at least a
defined raid-level, a chunk-size, the total number of raid disks (nr-raid-disks) and
two device/raid-disk pairs. chunk-size is a bit counterintuitive because it applies
only to arrays that support disk striping (RAID-0, RAID-4, and RAID-5), yet it is
required for any array you define in /etc/raidtab. That’s because the utilities in the
raidtools package (mkraid, most notably) check for a chunk-size even if the defined
RAID level doesn’t support one. So when you work with linear mode or RAID-1, for
example, you must provide a chunk-size, even though it’s technically only a place-
holder.

There are no global options in /etc/raidtab. Each section, or stanza, applies to the last
parsed raiddev entry. Once an array is defined, it may be included as a member disk

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Software RAID | 73

in a subsequent array section. This allows you to combine multiple arrays into a
hybrid array (as in RAID-10, for example).

Chapter 4 provides details about each /etc/raidtab parameter.

raidtools-0.42

It’s unlikely that you will be able to locate a package file for this outdated version of
raidtools. So, in most cases, you will be stuck compiling the tools yourself. Down-
load version 0.42 of the raidtools (ftp://ftp.kernel.org/pub/linux/daemons/raid/
raidtools-pre3-0.42.tar.gz) and unpack it.

One important caveat when working with this version is that it requires a patched
kernel to compile. By default, the configure command assumes that your kernel is in
/usr/src/linux, but you can change that by using the --with-linux parameter.

cd /usr/src/raidtools-0.42
./configure --with-linux=/usr/src/linux-2.0.37
make
make install

Installation will leave you with an older version of mkraid, as well as several depre-
cated utilities that are used to start (mdrun), stop (mdstop), and manage (mdcreate,
ckraid) arrays. Manual pages are also installed by default.

Debian users can install version 0.42 of raidtools using apt-get:

apt-get install raidtools

The rest of this chapter covers the current version of raidtools and the md driver.
However, if you are working with legacy arrays, then you will have to use the 0.42
version of raidtools or mdadm to manage them. I strongly recommend that you
upgrade old arrays whenever possible.

mdadm
Over the years, many users have become quite frustrated by the problems involved in
using raidtools and /etc/raidtab to manage software RAID. On small systems, the
problems presented by raidtools are tolerable. But on large systems with multiple
arrays, each with the potential for dozens of member disks, managing /etc/raidtab
can become daunting. mdadm provides a slightly different approach from raidtools.
The idea behind mdadm is that the kernel, as well as administrators, should be able
to manage arrays without resorting to a complicated, structured configuration file.

mdadm uses a Universally Unique ID (UUID) to identify each array and member
disk. A UUID is a 128-bit number that is guaranteed to be reasonably unique on
both the local system and across other systems. It is randomly generated, using sys-
tem hardware and timestamps as part of its seed. mdadm uses the UUIDs found in

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Getting Started: Building a Software RAID

the array superblock to scan member disks, determining which array they belong to
and what the array properties are. Many programs use UUIDs to tag devices uniqely.
In fact, kernel RAID autodetection uses these UUIDs, too. See the uuidgen and lib-
uuid manual pages for more information.

mdadm provides all the same functions that raidtools provides, in addition to some
new features. The only disadvantage of mdadm is that it’s new. Neil Brown began
working on mdadm in June of 2001, and it has undergone only a few revisions.
mdadm can also manage legacy arrays created under the 0.36 md driver, which are
normally managed with raidtools-0.42. In this book. I’ll describe how to manage
arrays using both raidtools and mdadm. The final decision is yours to make, but I
urge you to at least try mdadm.

You can download the most recent mdadm tarball from http://www.cse.unsw.edu.au/
~neilb/source/mdadm/ and issue make install to compile and install mdadm and its
documentation. In addition to the binary, some manual pages and example files are
included.

tar xvf ./mdadm-1.0.0.tgz
cd mdadm-1.0.0.tgz
make install

Or, you can download and install the package file found in the rpm directory under
the above URL.

rpm -ihv mdadm-1.0.0.i386.rpm

mdadm has five major modes of operation. The first three modes—Create, Assem-
ble, and Build—are used to configure and activate arrays. Manage mode is used to
manipulate devices in an active array. Follow or Monitor mode allows administra-
tors to configure event notification and actions for arrays. The remaining options are
used for various housekeeping tasks and are not attached to a specific mode of oper-
ation, although the mdadm documentation calls these options Misc mode. The fol-
lowing list describes the major modes of operation in mdadm.

Create mode
Used to create a new array. With Create mode, you have the option to define a
new array at the command line or create an array defined in /etc/mdadm.conf.

Assemble mode
Used to start an array that already exists.

Build mode
Used only for creating or starting legacy arrays (kernel version 0.36). It should
never be used with the 0.90 md driver.

Manage mode
Used to add and remove disks to a running array. This mode is useful for remov-
ing failed disks and adding spare or replacement disks. Manage mode can also
be used to mark a member disk as failed. Manage mode replicates the functions
of raidtools programs such as raidsetfaulty, raidhotremove, and raidhotadd.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Software RAID | 75

Follow (or Monitor) mode
Used to implement some of mdadm’s best and unique features. With Follow/
Monitor mode, you can daemonize mdadm and configure it to send email alerts
to system administrators when arrays encounter errors or fail. You can also use
Follow mode to arbitrarily execute commands when a disk fails. For example,
you might want to try removing and reinserting a failed disk in an attempt to
correct a nonfatal failure without user intervention.

Follow/Monitor mode also allows arrays to share spare disks, a feature that has
been lacking in Linux software RAID since its inception. That means you need
to provide only one spare disk for a group of arrays or for all arrays. It also
means that system administrators don’t have to manually intervene to shuffle
around spare disks when arrays fail. Previously, this functionality was available
only with hardware RAID. When Follow/Monitor mode is invoked, it polls
arrays at regular intervals. When a disk failure is detected on an array without a
spare disk, mdadm will remove an available spare disk from another array and
insert it into the array with the failed disk.

The remaining options, which fall under the Misc mode, are used for tasks that
include stopping arrays, marking arrays as read-only or read/write, and clearing the
RAID superblock from a disk.

/etc/mdadm.conf

/etc/mdadm.conf is the primary configuration file in mdadm. Unlike /etc/raidtab,
mdadm does not rely on /etc/mdadm.conf to create or manage arrays. Rather, mdadm.
conf is simply an extra way of keeping track of software RAIDs. Using a configura-
tion file with mdadm is useful, but not required. Having a configuration file means
that you can quickly manage arrays without spending extra time figuring out what
the array properties are and where disks belong. Unlike the configuration file for
raidtools, mdadm.conf is concise and simply lists disks and arrays. The configuration
file usually contains two types of lines, each starting with either the DEVICE or ARRAY
keyword. Whitespace separates the keyword from the configuration information.
DEVICE lines specify a list of devices that are potential member disks. ARRAY lines spec-
ify device entries for arrays, as well as identifier information. This information can
include lists of one or more UUIDs, md device minor numbers, or member devices.

A simple mdadm.conf file might look like this:

DEVICE /dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1
ARRAY /dev/md0 devices=/dev/sda1,/dev/sdb1
ARRAY /dev/md1 devices=/dev/sdc1,/dev/sdd1

In general, it’s best to set up an /etc/mdadm.conf file after you have created an array.
You should update the file when new arrays are created. Without an mdadm.conf
file, you’d need to specify more detailed information about an array on the com-
mand line in order to activate it. That means you’d have to remember which devices
belonged to which arrays. That could be a hassle on systems with a lot of disks.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Getting Started: Building a Software RAID

mdadm even provides an easy way to generate ARRAY lines. The output is a single long
line, but I have broken it here to fit the page:

mdadm --detail --scan
ARRAY /dev/md0 level=raid0 num-devices=2 \
 UUID=410a299e:4cdd535e:169d3df4:48b7144a

If there were multiple arrays running on the system, mdadm would generate an array
line for each one. Thus, after you’re done building arrays, you could redirect the out-
put of mdadm --detail --scan to /etc/mdadm.conf. Just make sure you manually create
a DEVICE entry as well. Chapter 4 contains a complete reference for mdadm.conf.

The RAID Superblock
Starting with version 0.36 of the md driver (kernel version 2.0.35), each disk in an
array includes a superblock that describes array properties and stores them on each
member disk. The superblock consists of a 4K block of data written to member disks
when the array is initialized for the first time. The RAID superblock contains meta-
data about the array, including its RAID level and member disks. The superblock
also contains the UUID I mentioned earlier. It might be helpful to think of the super-
block as an on-disk representation of an array’s entry in /etc/raidtab. However, keep
in mind that the superblock is part of the md driver and is not dependent on user-
space utilities. The superblock also allows the kernel to automatically start arrays
when the system boots.

The superblock is written near the end of each member disk or partition, at the start
of the last 64K block. That means that although the superblock is only 4K long, the
overhead for an md member disk is at least 64K. In cases in which there isn’t a round
number of 64K blocks, you can lose up to 128K worth of disk space for the super-
block. So, if there isn’t an even number of 64K blocks on the disk, the superblock is
at an offset that is 64K less than the last odd-sized block. On member disks that are
the same size, the superblock will reside at the same location for each disk. If mem-
ber disks have varying sizes (in linear mode, for example) then the superblock won’t
be at a uniform location.

New arrays should always be created with an md superblock. That means setting the
persistent-superblock parameter to 1 when working with /etc/raidtab and raidtools.
mdadm automatically enables the md superblock by default. Both mdadm and
raidtools also provide a way to disable the superblock. This is necessary for back-
ward compatibility with md driver versions prior to 0.36.

Examining Arrays Using /proc/mdstat
The best way to find out if there are already software arrays connected to your sys-
tem is to use the /proc filesystem. /proc is an interface to important kernel data struc-
tures. You can get valuable information about the state of a running Linux system by
looking at special files in /proc. These special files act as a window into the running

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Software RAID | 77

kernel. The /proc filesystem is essential for monitoring the health of any software
array.

Once the RAID patches are applied to a kernel and the system is booted using the
new kernel, the pseudofile /proc/mdstat will provide information about the current
state of RAID devices and the md driver. Once arrays are configured and activated,
information about their status will also be displayed. Initially, /proc/mdstat merely
reports the available RAID levels:

$ cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead not set
unused devices: <none>

This /proc/mdstat indicates that support for linear mode RAID devices, as well as
RAID-0, RAID-1, and RAID-4/5, is compiled into the running kernel. There are cur-
rently no active arrays. When there are active arrays, information about each one is
reported by /proc/mdstat. In this example, there is an active RAID-1 with two mem-
ber disks (/dev/sdb1 and /dev/sdc1) and one spare disk (/dev/sdd1):

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active raid1 sdd1[2] sdc1[1] sdb1[0]
 17920384 blocks [2/2] [UU]

unused devices: <none>

/proc/mdstat is a read-only file that is used only to examine arrays and the RAID sub-
system. Chapter 4 contains a detailed discussion of /proc/mdstat and other related
parts of the /proc filesystem. The rest of this chapter provides more examples of how
to use /proc/mdstat to make sure you are creating arrays properly.

Existing Arrays
If you have inherited a system that already uses software RAID, you need to decide
whether you’re going to continue maintaining that array or retire it and migrate the
data to a new array (hardware or software). The rest of this chapter focuses on con-
structing new software arrays. If you plan to keep maintaining an array that already
exists, read Chapters 4 and 7.

If you want to scrap an existing RAID, this section offers some advice that will help
you dismantle the array. It’s vital to keep in mind that reconfiguring an array or reus-
ing its member disks in new arrays means that existing data will be lost. So it’s very
important to back up any data before proceeding.

In certain cases, it’s possible to remove a member disk without losing
data on an array. For example, removing an unused spare disk from a
RAID-1 or RAID-5 will not cause data loss, although it might reduce
fault tolerance.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Getting Started: Building a Software RAID

If you plan to scrap all your existing arrays and use hardware RAID, skip straight to
Chapter 5; the preparatory steps in this section do not apply to that situation.

Finally, if you are experimenting with various RAID levels and plan to reuse parti-
tions that you have already included in another array, you might need to take some
additional steps before building the new array. Remember that reusing these parti-
tions means that the data on them will be destroyed, along with your array. Further-
more, you will not be able create a new array using partitions that are members of an
array that is already running. So to reuse disks, you’ll first have to stop any active
arrays of which they are members.

Stopping an array

The raidstop command can be used to deactivate a running array created or started
using raidtools:

raidstop /dev/md0

Here’s how to stop an array using mdadm:

mdadm -S /dev/md0

If an array contains a mounted filesystem, both raidstop and mdadm will return an
error. Filesystems should be unmounted using the umount command before they are
stopped.

Once an array is stopped, its resources (member disks and md device special files)
can be reclaimed and used in new arrays. If you attempt to use a member disk that is
already part of a running array, mkraid and mdadm will generate errors on the com-
mand line, warning that the device is already part of an array. The md driver will also
generate errors using syslog. Likewise, if you attempt to create an array using a device
special file that is already in use, mkraid and mdadm will generate device busy errors,
and the md driver will record them using syslog.

Reusing member disks

Some of the techniques used in this section can result in data loss or
corruption if they are used improperly, or even if you make a simple
typo at the command line. Please be extremely cautious when attempt-
ing them.

Whenever you attempt to create new array using mdadm or mkraid, you will be
warned about using member disks that already have a RAID superblock on them,
even if they’re not part of an array that’s currently in use. So if you have a dormant
disk in your system and it used to be part of an array, but hasn’t been used for some
time, there will still be a RAID superblock on it.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Working with Software RAID | 79

mdadm will warn you if potential member disks already contain RAID superblocks,
and you will have to assert that you want to create the array:

mdadm -C -n2 -l0 /dev/md3 /dev/sd{d,e}1
mdadm: /dev/sde1 appear to be part of a raid array:
 level=1 disks=2 ctime=Wed Mar 20 23:17:38 2002
Continue creating array? y
mdadm: array /dev/md3 started.

mkraid also generates a warning when you try to include disks that already have a
RAID superblock in a new array, but its safeguards are slightly more obtuse. In the
following example, I’ve created a simple /etc/raidtab that defines an array including
member disks that I know were part of an array that’s no longer active:

mkraid /dev/md1
handling MD device /dev/md1
analyzing super-block
disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
/dev/sdb1 appears to be already part of a raid array -- use -f to force the
destruction of the old superblock
mkraid: aborted.
(In addition to the above messages, see the syslog and /proc/mdstat as well for
potential clues.)

Because the loss of data is such a drastic error, even using mkraid --force will return a
warning. Using mkraid --really-force is the only way to successfully reuse partitions
that already contain data and array superblocks. Even after the second warning, a
countdown allowing five additional seconds to cancel the order is displayed.

mkraid --really-force /dev/md1
DESTROYING the contents of /dev/md0 in 5 seconds, Ctrl-C if unsure!
handling MD device /dev/md0
analyzing super-block
disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
disk 1: /dev/sdc1, 17920476kB, raid superblock at 17920384kB
disk 2: /dev/sdd1, 17920476kB, raid superblock at 17920384kB

Unfortunately, the extra checks that mdadm and, to a greater degree, mkraid, per-
form can become tedious when you’re experimenting with various array configura-
tions—especially when you’re forced to wait five seconds each time you reuse disks.

The dd command is useful for erasing the RAID superblock from previously used
partitions. To erase the RAID superblock, you will need to know where it’s located.

disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
disk 1: /dev/sdc1, 17920476kB, raid superblock at 17920384kB
disk 2: /dev/sdd1, 17920476kB, raid superblock at 17920384kB

The previous output is generated by mkraid when a new array is constructed. In this
case, the superblock was written to each disk at block 17920384. The md driver uses
a 4 KB block size. Don’t worry about recording the location of the RAID superblock,

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Getting Started: Building a Software RAID

because each time an array changes status, this information is reported via syslogd.
That means the superblock location is recorded each time an array is started,
stopped, or encounters an error. Look for a syslog entry similar to this one (kern.
info):

Apr 25 11:54:59 jaded kernel: md: sdd1 [events: 00000001]<6>(write) sdd1's sb /
 offset: 17920384
Apr 25 11:54:59 jaded kernel: md: sdc1 [events: 00000001]<6>(write) sdc1's sb /
 offset: 17920384
Apr 25 11:54:59 jaded kernel: md: sdb1 [events: 00000001]<6>(write) sdb1's sb /
 offset: 17920384

Use dd to zero the superblock of each member disk you wish to reuse:

dd if=/dev/zero of=/dev/sdb1 bs=1k seek=17920384 count=4

Be extremely careful when using dd to erase RAID superblocks or to
modify any information on hard disks. If you accidentally specify the
wrong device or make a mistake on the command line, you could
destroy all data on the disk. When working with dd, if= specifies the
input file to use. Data from the input file is written to the output file,
specified by of=. In this example, we take input from /dev/zero (a char-
acter special file that generates zeros) and write it to /dev/sdb1, which
means zeros are written to the output file. bs=1k specifies a block size
of 1 KB. That means 1 KB worth of zeros is read from /dev/zero and
then written to /dev/sdb1 at a time. seek= specifies how many blocks to
advance (also using the 1 KB block size) in the output file. Finally,
count=4 tells dd to write only 4 blocks’ worth of data to the output
file.

dd performs a seek to block 17920384 of /dev/sdb1 (using a 1 KB block size) and then
writes null bytes (/dev/zero) into each location for the next four blocks.

Repeat this process for each old member disk that you wish to reuse. If you’re experi-
menting, it might be useful to create a shell script to help automate this process.

mdadm also provides a mechanism, --zero-superblock, that allows you to removethe
RAID superblock from disks that were part of an array. mdadm allows you to remove
the superblock from more than one disk at a time:

mdadm --zero-superblock /dev/sd{b,c}1

Now when you create a new array, you will not be prompted for additional confir-
mation before the new array is created. It might seem that going through these steps
is more complicated and time-consuming than simply confirming the additional
warning messages produced by mkraid and mdadm. This is undeniably true for
mdadm, but remember that mkraid forces you to wait an additional five seconds
before creating the array. Also, there are other times when it is desirable to remove
unwanted RAID superblocks. For example, it’s a good idea to remove the RAID
superblock from any disk that’s no longer part of an array. After all, you don’t want

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 81

the kernel to inadvertently start an array you are no longer using or consider a disk
that should no longer be part of any array, especially when that might mean vital
arrays cannot be built because their disks are already in use.

Creating an Array
Now that the kernel supports RAID and you have the required utilities, it’s time to
partition disks and create arrays. At this point, all disks that you plan to include in
an array should be connected to the system. Remember that each array can contain a
maximum of MD_SB_DISK, as defined by the kernel. By default, that maximum is 27,
but since arrays can also act as member disks, this limit is avoidable. In addition, a
maximum of 256 software RAID devices are available for use.

Partitioning with fdisk
You don’t need to partition disks before using them in an array, but partitioning
does provide a couple of advantages. First, partitioning is necessary if you want the
kernel to automatically start arrays, because the md driver uses the partition type to
identify member disks. Second, md devices don’t support partitioning directly, but in
some cases, having a filesystem that spans an entire array is undesirable. Using soft-
ware RAID for system partitions means that smaller partitions are necessary. After
all, you don’t want /var or /boot to span a whole array.

If you have a lot of disks, then you might not want to go through the
trouble of partitioning each disk—a process that can take a lot of time
if you have more than a few drives. In that case, you can simply use a
whole, unpartitioned disk as an array member (/dev/sda, for example).
This means that you won’t be able to autostart arrays, however, so
you’ll have to include commands to start md devices in your system
initialization scripts.

The rest of this chapter assumes that disk-sized partitions are used, but unless you
want to subpartition or need to automatically start arrays, you can skip the rest of
this section. Replace the use of partitioned disks found in the examples throughout
the rest of this chapter with unpartitioned devices. Where I use /dev/sdb1 to denote a
single disk-sized partition as an array member disk, you could simply use /dev/sdb.

The site http://cgi.cse.unsw.edu.au/~neilb/patches/linux/ contains patches that enable
you to subpartition software arrays. The web page is indexed by kernel revision and
patch name.

Use any standard partitioning utility to partition disks connected to your system.
Since fdisk is generally available on all Linux systems, I’ll discuss it here, but you can
use whichever utility you prefer. The partitioning utility you choose doesn’t need any

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Getting Started: Building a Software RAID

special features, but to take advantage of automatic RAID activation at boot time,
you need a partitioning utility that allows you to set a partition to the type Linux
Raid Auto (or hexadecimal code 0xFD). Download the latest version of your partition-
ing software to ensure that you can take advantage of this feature. This process
marks a drive for autodetection and allows the kernel to automatically start arrays at
boot time, which means that administrators don’t need to modify startup scripts
each time they add an array.

Some GUI partitioning utilities might not allow you to set a drive to this nonstand-
ard type. If, for some reason, you are unable to make these changes using GUI parti-
tioning software, I recommend downloading the current version of fdisk and
following the examples below. The latest version of fdisk will support the Linux Raid
Auto partition type. (Older versions may not have this option.) You must create par-
titions on each drive that you plan to use in your array. If you don’t want the kernel
to automatically start arrays, you can use an unpartitioned block device instead, such
as /dev/sda or /dev/hda, instead of /dev/sda1 or /dev/hda1.

Partitioning for autodetection

The example that follows creates a single partition (/dev/sdb1) on the second SCSI
drive (/dev/sdb) and marks it as an automatically detectable RAID partition:

fdisk /dev/sdb
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1116, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1-1116, default 1116): 1116

Change the drive type of /dev/sdb1 to Linux Raid Auto (0xFD) so it can be detected
automatically at boot time:

Command (m for help): t
Partition number (1-4): 1
Hex code (type L to list codes): fd
Changed system type of partition 1 to fd (Linux raid autodetect)

When the partitions that are part of an array are all set to Linux Raid Auto, the ker-
nel will automatically start that array when the system boots. Autodetection works
only with MS-DOS style partition tables. So if you’re using Sun, Amiga, or another
architecture that has its own partition type, you will have to start arrays manually or
use system initialization scripts. The kernel starts arrays before rc scripts run. So if
you need to defer array startup until after you have performed other functions, then
it’s important to not set the type to Linux Raid Auto.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 83

Partitioning without autodetection

If you don’t want to use autodetection, but still plan to partition your disks, set parti-
tions to type Linux (0x83). This is the default partition type, but to be certain the
proper type is assigned, set the type manually:

fdisk /dev/sdb
Command (m for help): t
Partition number (1-4): 1
Hex code (type L to list codes): 83
Changed system type of partition 1 to 83 (Linux)

Write the new partition table to the disk and exit fdisk.

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

You should follow the process shown here to create partitions on each disk you plan
to use in an array. If you create a new partition on a disk that is in use (that is, a disk
that contains a mounted partition), fdisk will complain. You must then restart your
system before using the new partition. In the following example, /dev/sda contains
mounted partitions, but /dev/sda13 is currently set to type Linux (0x83) instead of
Linux Raid Auto (0xFD):

fdisk /dev/sda13
Command (m for help): t
Partition number (1-13): 13
Hex code (type L to list codes): fd
Changed system type of partition 13 to fd (Linux raid autodetect)

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Re-read table failed with error 16: Device or resource busy.
Reboot your system to ensure the partition table is updated.

Once partitions are created, you can use fdisk to compare each of the new partitions.
Make certain that they meet your specifications and that partitions for arrays are the
same size when necessary:

fdisk -l

Disk /dev/sda: 255 heads, 63 sectors, 553 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/sda1 * 1 16 128488+ 83 Linux
/dev/sda2 17 33 136552+ 82 Linux swap
/dev/sda3 34 84 409657+ 83 Linux
/dev/sda4 85 553 3767242+ 5 Extended
/dev/sda5 85 276 1542208+ 83 Linux

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 3: Getting Started: Building a Software RAID

/dev/sda6 277 407 1052226 83 Linux
/dev/sda7 408 553 1172713+ 83 Linux

Disk /dev/sdb: 255 heads, 63 sectors, 1116 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/sdb1 1 1116 8964238+ fd Linux raid autodetect

Disk /dev/sdc: 255 heads, 63 sectors, 1116 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System
/dev/sdc1 1 1116 8964238+ fd Linux raid autodetect

Disk /dev/sdd: 255 heads, 63 sectors, 1116 cylinders
Units = cylinders of 16065 * 512 bytes
 Device Boot Start End Blocks Id System

In addition to the system drive, two partitions are defined in the preceding listing.
There is a partition on each of the second and third SCSI drives: /dev/sdb1 and /dev/
sdc1. A fourth drive with no partitions defined resides at /dev/sdd.

Linear (Append) Mode
Linear mode requires a minimum of two disks, but does not require that member
disks be the same size or type. Since the system writes to each disk until it is full, the
speed and size of individual disks is largely irrelevant, in terms of aggregate RAID
performance.

Important Rules for Partitioning
Here are some points to remember when you are partitioning.

• If you don’t require autodetection and plan to use whole disks as array mem-
bers, you don’t need to partition member disks individually.

• Set partitions to type Linux Raid Auto (0xFD) if you want the kernel to automati-
cally start arrays at boot time. Otherwise, leave them as Linux (0x83).

• RAID-1 and RAID-4/5 arrays should contain member disks that have partitions
of the same size. If these arrays contain partitions of differing sizes, the larger
partitions will be truncated to reflect the size of the smallest partition.

• RAID-0 and linear mode arrays can contain partitions that have varying sizes
without losing any disk space. Remember that when the smaller disks that
belong to a RAID-0 become full, only the remaining disks are striped. So you
might see variable performance on a RAID-0 with member disks of differing
sizes as the array fills up.

• Using matched drives is strongly recommended when working with any nonlin-
ear mode array. Please see the “Matched Drives” section in Chapter 2 for fur-
ther details.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 85

The following is a very simple linear array using /etc/raidtab:

A linear array with two member disks

raiddev /dev/md0
 raid-level linear
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 2

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

raiddev begins the definition of a new array, /dev/md0 in this case. All entries that
follow apply to the previously defined array, until another raiddev entry is parsed.
raid-level, as the name implies, sets the array type for the current array.

As I mentioned earlier, chunk-size would normally define the number of kilobytes to
write to each member disk for arrays that support disk striping. However, when
working with linear mode arrays, the chunk-size defines the rounding factor. Each
component disk is sized so that it is a multiple of the rounding factor. Because of the
way the RAID superblock is placed on each array member, rounding factors of less
than 64 KB are effectively equal to 64 KB.

The chunk-size, regardless of what type of array is used, must be defined as any
power of two. In fact, for the rest of this chapter, we’ll create arrays with a 64 KB
chunk-size. You might notice some errors in the system boot messages and your log
files, which warn about using a chunk-size with linear mode (or RAID-1). These
warnings arise from the inconsistencies between the kernel RAID driver and the
requirements of raidtools for parsing /etc/raidtab. These warnings can be safely
ignored.

persistent-superblock takes a Boolean value and controls whether a RAID super-
block is written to member disks. The persistent-superblock should always be
enabled when creating new arrays, but can be disabled for backward compatibility.

nr-raid-disks indicates that there are two disks in the array /dev/md0. Later in the
file, each disk is defined by identifying its device name and its order in the array,
using the device/raid-disk pair. To use more than two disks, you need only add
additional device and raid-disk entries and increment the nr-raid-disks value.

Once /etc/raidtab is created, the mkraid program is used to build and activate the
array:

mkraid /dev/md0
handling MD device /dev/md0
analyzing super-block
disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
disk 1: /dev/sdc1, 17920476kB, raid superblock at 17920384kB

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 3: Getting Started: Building a Software RAID

The array was created successfully.

If you use mdadm, you don’t need a configuration file. The array we showed previ-
ously can be created with the following command:

mdadm -Cv -llinear -n2 /dev/md0 /dev/sd{b,c}1
mdadm: array /dev/md0 started.

The options are simple.

-C, --create
Create a new array.

-v, --verbose
Be more verbose.

-l, --raid-level
Select the RAID level: linear, 0, 1, 4, or 5.

-n, --raid-disks
Set the number of member disks in the array.

In addition to the options, mdadm takes a RAID device and a list of member parti-
tions as its parameters. Note that the member disks are specified using standard shell
expansions. The disk letters encapsulated in braces are expanded into /dev/sdb1 and
/dev/sdc1 when mdadm is run. Consult the manual pages for your shell as needed; I
use bash.

Increasing the number of member disks using -n or --raid-devices allows you to spec-
ify additional disks to be included in the array. List more disks on the command line
individually, or as part of the glob (/dev/sd{b,c,d}1, for example). You could also use
the long form of the command to accomplish the same task.

mdadm --create --verbose --level=linear --raid-devices=2 \
/dev/md0 /dev/sdb1 /dev/sdc1

I’ll use the short form of the command through the rest of this chapter. Chapter 4
contains a complete reference to all of the options in mdadm.

Both mkraid and mdadm automatically activate newly created arrays. Information
about the array and its member disks is now available via the /proc/mdstat pseudo-
file.

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active linear sdc1[1] sdb1[0]
 35840768 blocks 64k rounding

unused devices: <none>

Next, create a filesystem on the new array. In this example, and throughout the rest
of this chapter, I’ll use the ext2 filesystem. If you want to use another filesystem, then

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 87

simply substitute that command in place of mke2fs. Chapter 6 covers some newer
filesystems available for Linux.

mke2fs /dev/md0
mke2fs 1.27 (8-Mar-2002)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
4480448 inodes, 8960192 blocks
448009 blocks (5.00%) reserved for the super user
First data block=0
274 block groups
32768 blocks per group, 32768 fragments per group
16352 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208, /
 4096000, 7962624

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

The preceding commands (mkraid or mdadm, and mke2fs) need to be executed only
once. Each time the system boots, mount the array like any normal hard disk parti-
tion:

mount /dev/md0 /mnt/raid/linear
df -h /mnt/raid/linear
Filesystem Size Used Avail Use% Mounted on
/dev/md0 34G 20k 31G 1% /mnt/raid/linear

You can modify your rc scripts to mount the array after it has been activated by using
raidstart or mdadm. If you are using RAID autodetection, then an entry for the array
can also be added to /etc/fstab so it will be mounted automatically when the system
restarts.

/dev/md0 /mnt/raid/linear ext2 defaults 1 2

Now, when the system restarts, the array (containing an ext2 filesystem) is mounted
at /mnt/raid/linear and is usable like any normal filesystem. You can install software,
store music, video, and image files, or create a database.

Be warned that some distributions (Red Hat, for one) halt system ini-
tialization if an /etc/fstab entry could not be properly checked and
mounted. So if the kernel doesn’t automatically start your array, an
entry in /etc/fstab might be preventing the system from booting suc-
cessfully. It’s a good idea to place commands that will manually start
arrays in your initialization scripts before filesystems are checked and
mounted, even if you’re already successfully using autodetection. This
will provide additional stability and, at worst, display some innocu-
ous warnings on the console.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 3: Getting Started: Building a Software RAID

Linear mode is also good for reusing old ATA disks that vary in speed and size
because the variations between these disks will have minimal impact on the overall
performance of the array. The following example shows four ATA drives as mem-
bers of a linear array:

A linear array with four ATA member disks

raiddev /dev/md0
 raid-level linear
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 4

 device /dev/hda1
 raid-disk 0

 device /dev/hdb1
 raid-disk 1

 device /dev/hdc1
 raid-disk 2

 device /dev/hdd1
 raid-disk 3

Use mdadm to create an identical array:

mdadm -Cv -llinear -n4 /dev/md0 /dev/hd{a,b,c,d}1

RAID-0 (Striping)
You can create a stripe with raidtools by making a few simple changes to the /etc/
raidtab file used earlier for the linear mode array:

A striped array with two member disks

raiddev /dev/md0
raid-level 0
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 2

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

Since you’ve changed the array type to striped (0), the chunk-size now has an impact
on array performance. Since the chunk-size defines the amount of data that gets writ-
ten to the member disk during each write, choosing a chunk-size that approximates
the average write size (average file size) is desirable. Remember that unless you first

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 89

erase the RAID superblocks from previously used disks, mdadm will prompt you for
confirmation.

Run mkraid to create and activate the RAID-0:

mkraid /dev/md0
handling MD device /dev/md0
analyzing super-block
disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
disk 1: /dev/sdc1, 17920476kB, raid superblock at 17920384kB

Alternatively, use mdadm to create a two-disk stripe with a 64 KB chunk-size on /dev/
md0, using disk partitions /dev/sdb1 and /dev/sdc1:

mdadm -Cv -l0 -c64 -n2 /dev/md0 /dev/sd{b,c}1
mdadm: array /dev/md0 started.

/proc/mdstat now reports that the new RAID-0 array has been created and is online:

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active raid0 sdc1[1] sdb1[0]
 35840768 blocks 64k chunks

 You can now use mke2fs to create a filesystem:

unused devices: <none>

Separating disks in a RAID-0 onto different controllers will help improve your over-
all array performance. You can arrange device/raid-disk entries in your /etc/raidtab
file contrary to the physical layout of disks and controllers. In this example, I have
four disks connected to a two-channel SCSI controller. /dev/sda and /dev/sdb are on
channel A, and /dev/sdc and /dev/sdd are on channel B. Notice how I alternate the
device entries in this example /etc/raidtab file:

raiddev /dev/md0
 raid-level 0
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 4

 device /dev/sda1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

 device /dev/sdb1
 raid-disk 2

 device /dev/sdd1
 raid-disk 3

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 3: Getting Started: Building a Software RAID

When using mdadm, simply alternate devices on the command line to achieve the
same effect:

mdadm -Cv -l0 -n4 -c64 /dev/md0 /dev/sd{a,c,b,d}1

You can follow this methodology for any number of controllers. Remember that
Linux will logically arrange disks in detection order, beginning with /dev/sda.

RAID-1 (Mirroring)
Setting up a mirror is slightly different from using linear mode or RAID-0. We
already know that mirroring replicates data across all member disks. This allows a
RAID-1 to continue functioning even if a disk fails. The simplest RAID-1 configura-
tion must contain at least two member disks. In this example, /dev/sdb1 and /dev/
sdc1 are member disks of the RAID-1 at /dev/md0:

A RAID-1 with two member disks

raiddev /dev/md0
 raid-level 1
 nr-raid-disks 2
 chunk-size 64

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

chunk-size has no effect on RAID-1 because no disk striping is involved. But chunk-
size is still required as a placeholder. Note also that the persistent-superblock isn’t
needed for RAID-1. Use mkraid to create this array:

mkraid /dev/md0

handling MD device /dev/md0
analyzing super-block
disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
disk 1: /dev/sdc1, 17920476kB, raid superblock at 17920384kB

Or, using mdadm:

mdadm -Cv -l1 -n2 /dev/md0 /dev/sd{b,c}1
mdadm: array /dev/md0 started.

Whenever a new mirror is created, resynchronization occurs:

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active raid1 sdc1[1] sdb1[0]
 17920384 blocks [2/2] [UU]
 [= = = = = = = =>............] resync = 40.2% (7212864/17920384)
finish=6.4min speed=27652K/sec
unused devices: <none>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 91

Now /proc/mdstat reports information about the array and also includes information
about the resynchronization process. Resynchronization takes place whenever a new
array that supports data redundancy is initialized for the first time. The resynchroni-
zation process ensures that all disks in a mirror contain exactly the same data.

The resynchronization is about 40 percent done and should be completed in less
than six and a half minutes. You can begin creating a filesystem on the array even
before resynchronization completes, but you probably shouldn’t put the array into
production until it finishes.

Once the initial synchronization is complete, the progress bar no longer appears in
/proc/mdstat:

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active raid1 sdc1[1] sdb1[0]
 17920384 blocks [2/2] [UU]

unused devices: <none>

When a disk does fail, it’s useful to be able to automatically promote another disk
into the array to replace the failed disk. When using raidtools, the nr-spare-disks
and spare-disk parameters are used to define additional fault tolerance features. nr-
spare-disks defines the number of extra, unused disks that the array can use to
replace failed disks. It’s also important to note that the sequence of spare disks
begins with zero and is not an offset of the nr-raid-disks variable. The spare-disk
parameter is combined with the device parameter to define disks that will be inserted
into the array when a member disk fails. In this example, we still have a two-disk
mirror consisting of /dev/sdb1 and /dev/sdc1. But this time, a spare disk (/dev/sdd1) is
also specified.

A RAID-1 with 2 member disks and 1 spare disk

raiddev /dev/md0
 raid-level 1
 chunk-size 64
 nr-raid-disks 2
 nr-spare-disks 1

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

 device /dev/sdd1
 spare-disk 0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 3: Getting Started: Building a Software RAID

Create an array using this /etc/raidtab file with mkraid:

mkraid /dev/md0
handling MD device /dev/md0
analyzing super-block
disk 0: /dev/sdb1, 1614501kB, raid superblock at 1614400kB
disk 1: /dev/sdc1, 1614501kB, raid superblock at 1614400kB
disk 2: /dev/sdd1, 1614501kB, raid superblock at 1614400kB

If you are using mdadm, the -x flag defines the number of spare disks. Member disks
are parsed from left to right on the command line. Thus, the first two disks listed in
this example (/dev/sdb1 and /dev/sdc1) become the active RAID members, and the
last disk (/dev/sdd1) becomes the spare disk.

mdadm -Cv -l1 -n2 -x1 /dev/md0 /dev/sd{b,c,d}1
mdadm: array /dev/md0 started.

If a disk in this array failed, the kernel would remove the failed drive (either /dev/
sdb1 or /dev/sdc1) from /dev/md0, insert /dev/sdd1 into the array and start reconstruc-
tion. In this case /dev/sdc1 has failed, as indicated by (F) in the following listing. The
md driver has automatically inserted spare disk /dev/sdd1 and begun recovery.

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active raid1 sdd1[2] sdb1[1](F) sdb1[0]
 17920384 blocks [2/1] [U_]
 [= = = =>................] recovery = 20.1% (3606592/17920384)
finish=7.7min speed=30656K/sec
unused devices: <none>

RAID-1 is certainly not limited to arrays with only two member disks and one spare
disk. The following example describes a four-disk mirror with two dedicated spare
disks.

raiddev /dev/md0
 raid-level 1
 nr-raid-disks 4
 nr-spare-disks 2
 chunk-size 64

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

 device /dev/sdd1
 raid-disk 2

 device /dev/sde1
 raid-disk 3

 device /dev/sdf1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 93

 spare-disk 0

 device /dev/sdg1
 spare-disk 1

In this example, data is mirrored onto each raid-disk, so there are four copies of the
data, while the remaining two disks (/dev/sdf1 and /dev/sdg1) are spares that will be
inserted automatically as members in the event of a disk failure.

mdadm users can replicate this setup with the following command:

mdadm -Cv -l1 -n4 -x2 /dev/md0 /dev/sd{b,c,d,e,f,g}1

Failed disks and spare disks can also be manually removed from and inserted into
arrays as well. See the “Managing Disk Failures” section in Chapter 7 for more infor-
mation on how to manage disk failures.

While this array can withstand multiple disk failures, it has a write overhead equal to
its number of member disks. So each block of data is written to disk four times, mak-
ing this arrangement very reliable, but extremely slow for write operations. Distribut-
ing member disks across multiple controllers or I/O channels will help alleviate the
write performance bottleneck. In contrast to the write performance hit, read perfor-
mance is potentially fast because data can be read in parallel from all four members.
A solution like this might be ideal for applications that are mission-critical and read-
intensive, but that are generally read-only. Video-on-demand is a good example of
such a situation.

RAID-4 (Dedicated Parity)
Since RAID-4 requires that a single drive be dedicated for storing parity information,
a minimum of three drives are needed to make RAID-4 useful. Using less than three
drives would offer no increase in storage capacity over RAID-1.

A two-drive RAID-4 system would not offer better performance or fault tolerance
when compared with RAID-1 or RAID-0. Therefore, in situations in which only two
drives are available, RAID-0 or RAID-1 should be used. Furthermore, RAID-5 offers
much better performance when compared with RAID-4; almost everyone should
choose the former.

The following is a sample RAID-4 configuration using /etc/raidtab:

RAID-4 with three member disks

raiddev /dev/md0
 raid-level 4
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 3

 device /dev/sdb1
 raid-disk 0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 3: Getting Started: Building a Software RAID

 device /dev/sdc1
 raid-disk 1

 device /dev/sdd2
 raid-disk 2

Use mkraid to construct this array:

mkraid /dev/md0
handling MD device /dev/md0
analyzing super-block
disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
disk 1: /dev/sdc1, 17920476kB, raid superblock at 17920384kB
disk 2: /dev/sdd1, 17920476kB, raid superblock at 17920384kB

Or mdadm:

mdadm -Cv -l4 -c64 -n3 /dev/md0 /dev/sd{b,c,d}1
mdadm: array /dev/md0 started.

When this array is initialized, the last member disk listed in /etc/raidtab, or on the
command line using mdadm, becomes the parity disk—/dev/sdd1, in this case. RAID-
4 also supports spare disks.

Like other arrays with redundancy, /proc/mdstat will indicate that the initial resyn-
chronization phase is underway. Parity RAID resynchronization ensures that all
stripes contain the correct parity block.

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active raid5 sdd1[2] sdc1[1] sdb1[0]
 35840768 blocks level 4, 64k chunk, algorithm 0 [3/3] [UUU]
 [= = = = = = = =>............] resync = 40.2% (7206268/17920384) finish=8.1min
speed=21892K/sec
unused devices: <none>

As with RAID-1, you don’t have to wait until the initial resynchronization is com-
plete before you create a filesystem. But remember that until the process is finished,
you won’t have data redundancy. Notice that this time, the resynchronization is
slower than with the RAID-1 we created earlier. That’s because parity information
must be generated for each stripe. Also, RAID-4 has a write bottleneck caused by its
dedicated parity disk. You will also notice that resynchronization for a RAID-4
requires a lot more CPU overhead. Examine the processes raid5d and raid5syncd,
which handle the resynchronization, using top or another processes-monitoring pro-
gram. On my test system, these processes use about 60 percent of the CPU during
the resynchronization. That compares to about 2 percent for a RAID-1 initial syn-
chronization.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 95

RAID-5 (Distributed Parity)
RAID-5, for the same reasons as RAID-4, requires a minimum of three disks to be
more useful than a RAID-0 or RAID-1 array. Configuration is nearly identical to
other levels, except for the addition of the parity-algorithm variable. parity-
algorithm is used to select the algorithm that generates and checks the checksum
information used to provide fault tolerance. A simple /etc/raidtab for RAID-5 is
shown here:

RAID-5 with three member disks

raiddev /dev/md0
 raid-level 5
 chunk-size 64
 persistent-superblock 1
 parity-algorithm left-symmetric
 nr-raid-disks 3

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

 device /dev/sdd1
 raid-disk 2

The left-symmetric algorithm will yield the best disk performance for a RAID-5,
although this value can be changed to one of the other algorithms (right-symmetric,
left-asymmetric, or right-asymmetric). While left-symmetric is the best choice, it is
not the default for raidtools, so be certain to explicitly specify it in /etc/raidtab. If you
forget to include a parity-algorithm, then the array will default to left-asymmetric.

Execute mkraid to create this array:

mkraid /dev/md0
handling MD device /dev/md0
analyzing super-block
disk 0: /dev/sdb1, 17920476kB, raid superblock at 17920384kB
disk 1: /dev/sdc1, 17920476kB, raid superblock at 17920384kB
disk 2: /dev/sdd1, 17920476kB, raid superblock at 17920384kB

Create the same RAID-5 using mdadm:

mdadm -Cv -l5 -c64 -n3 -pls /dev/md0 /dev/sd{b,c,d}1
mdadm: array /dev/md0 started.

mdadm defaults to the left-symmetric algorithm, so you can safely omit the -p
option from the command line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 3: Getting Started: Building a Software RAID

After you issue mkraid or mdadm to create the array, /proc/mdstat will report infor-
mation about the array, which, as in RAID-1 and RAID-4, must also undergo an ini-
tial resynchronization:

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md0 : active raid5 sdd1[2] sdc1[1] sdb1[0]
 35840768 blocks level 5, 64k chunk, algorithm 2 [3/3] [UUU]
 [= = = = = = = =>............] resync = 40.2% (7219776/17920384)
finish=6.0min speed=29329K/sec
unused devices: <none>

RAID-5 provides a cost-effective balance of performance and redundancy. You can
add more disks, using device/raid-disk, or spare disks, using device/spare-disk, to
create large, fault-tolerant storage. The following example is for a five-disk RAID-5,
with one spare disk. Notice once again how I’ve ordered the disks so they alternate
between I/O channels.

A 5-disk RAID-5 with one spare disk.

raiddev /dev/md0
raid-level 5
chunk-size 64
persistent-superblock 1
nr-raid-disks 5
nr-spare-disks 1

 device /dev/sdb1
 raid-disk 0

 device /dev/sdf1
 raid-disk 1

 device /dev/sdc1
 raid-disk 2

 device /dev/sdg1
 raid-disk 3

 device /dev/sdd1
 raid-disk 4

The spare disk.
 device /dev/sdh1
 spare-disk 0

Or, create the same array using mdadm:

mdadm -C -l5 -c64 -n5 -x1 /dev/md0 /dev/sd{b,f,c,g,d,h}1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 97

Hybrid Arrays
One of the most important features of software RAID is its ability to use existing
arrays as member disks. This property allows you to not only create extremely large
arrays, but to combine different RAID levels to achieve different degrees of perfor-
mance and redundancy. The major benefit of using hybrid arrays is their ability to
withstand multiple disk failures.

As I mentioned in Chapter 2, it’s advisable to spread member disks across multiple
I/O channels whenever possible. This not only increases array performance but, in
the case of a mirror, also helps prevent array failure if an I/O channel becomes
unavailable because of a disk controller failure or faulty cabling. For example, imag-
ine that /dev/sda and /dev/sdb are member disks of /dev/md0, a RAID-1, and that they
are connected to the same controller A. If controller A fails, then all of /dev/md0
becomes unavailable.

Now imagine that each disk is connected to its own controller. For instance, sup-
pose /dev/sda is connected to controller A and /dev/sdb is connected to controller B.
In this case, either controller A or B can fail without crashing /dev/md0 (see
Figure 3-5), because the other controller’s disk is still operational.

Figure 3-5. Using multiple controllers help prevent downtime.

Controller has failed, but Disk 1 on
Controller A is still accessible.

RAID 1

Data

System bus

Disk controller
A

Disk controller
B

Disk 2
/dev/sdb

Data0
Data1

. . .
DataN
Disk 1

/dev/sda

Data0
Data1

. . .
DataN

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 3: Getting Started: Building a Software RAID

Dispersing disks among multiple controllers is equally important when working with
hybrid arrays. For example, take the case of a RAID-10 (mirrors combined into a
stripe). Assume that we have two mirrors that each contain two member disks. /dev/
md0 contains /dev/sda and /dev/sdb, and /dev/md1 contains /dev/sdc and /dev/sdd. If
we placed both /dev/sda and /dev/sdb on controller A and the remaining disks on con-
troller B, a failure of either controller would crash /dev/md2, our RAID-0
(Figure 3-6). Since a RAID-0 cannot withstand any disk failures, the entire RAID-10
would also become unavailable.

But what if we arranged our mirrors so that /dev/sda and /dev/sdc were on controller
A and /dev/sdb and /dev/sdd were on controller B? (See Figure 3-7.) In this case, the
failure of a single controller would only place our mirrors into degraded mode, leav-
ing /dev/md2 operational.

Remember, you don’t have to rearrange hardware to facilitate this arrangement. Just
create an /etc/raidtab or mdadm command that reflects the physical layout of your
hardware.

Figure 3-6. If disks are not arranged intelligently, a controller failure will crash a RAID-10.

When a disk controller fails, the entire
RAID 10 (/dev/md2) becomes inoperative.

Disk controller
A

Disk controller
B

RAID 0
/dev/md2

RAID 1
/dev/md0

RAID 1
/dev/md1

Data0
Data2

. . .
DataN
Disk 1

/dev/sda

Data0
Data2

. . .
DataN
Disk 2

/dev/sdb
Disk 1

/dev/sdc

Data1
Data3

. . .
DataN+1

Disk 2
/dev/sdd

Data1
Data3

. . .
DataN+1

Mirror 1 Mirror 2

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 99

RAID-10 (striped mirror)

Since /etc/raidtab is parsed in order, it is essential to define arrays from the bottom
up. That is, arrays that are also component disks should appear before the array that
contains them. For example, a simple /etc/raidtab that defines a RAID-10 (two mir-
rors combined into a stripe) might look like this:

A RAID-10: Two 2-disk mirrors are combined into a RAID-0

The first mirror

raiddev /dev/md0
 raid-level 1
 chunk-size 64
 nr-raid-disks 2

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

The second mirror

raiddev /dev/md1

Figure 3-7. Distributing disks means you can survive controller loss.

When a disk controller fails, the entire
RAID 10 (/dev/md2) is still operational.

Disk controller
A

Disk controller
B

RAID 0
/dev/md2

Data0
Data2

. . .
DataN

Mirror1
/dev/sda

Data1
Data3

. . .
DataN+1
Mirror2

/dev/sdc
Mirror1

/dev/sdb

Data0
Data2

. . .
DataN

Mirror2
/dev/sdd

Data1
Data3

. . .
DataN+1

Disk1 Disk2

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 3: Getting Started: Building a Software RAID

 raid-level 1
 chunk-size 64
 nr-raid-disks 2

 device /dev/sdd1
 raid-disk 0

 device /dev/sde1
 raid-disk 1

The mirrors (/dev/md0 and /dev/md1 are
combined into a RAID-0.

raiddev /dev/md2
 raid-level 0
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 2

 device /dev/md0
 raid-disk 0

 device /dev/md1
 raid-disk 1

Given the preceding file, run mkraid on both of the mirrors (/dev/md0 and /dev/md1)
and finally on the stripe (/dev/md2). The same feat can be accomplished with the fol-
lowing mdadm commands:

mdadm -C -n2 -l1 /dev/md0 /dev/sd{b,c}1
mdadm -C -n2 -l1 /dev/md1 /dev/sd{d,e}1
mdadm -C -n2 -l0 -c64 /dev/md2 /dev/md{0,1}

After each RAID-1 is initialized using mkraid or mdadm, it will commence resynchro-
nization. /proc/mdstat should report two-disk mirrors at /dev/md0 and /dev/md1 and
a RAID-0 at /dev/md2, which consists of /dev/md0 and /dev/md1.

cat /proc/mdstat
Personalities : [raid0] [raid1]
read_ahead 1024 sectors
md2 : active raid0 md1[1] md0[0]
 35840640 blocks 64k chunks

md1 : active raid1 sde1[1] sdd1[0]
 17920384 blocks [2/2] [UU]

md0 : active raid1 sdc1[1] sdb1[0]
 17920384 blocks [2/2] [UU]

unused devices: <none>

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 101

Once all three arrays are activated, simply build a filesystem on the stripe—/dev/md2,
in this case—and then mount /dev/md2.

mke2fs /dev/md2
mount /dev/md2 /mnt/array

You could also add a spare disk to each of the mirroring arrays to make the solution
more robust. And you can combine more than two mirrors into a RAID-0:

A RAID-10: Three 2-disk mirrors are combined into a RAID-0

Each mirror has its own spare disk

raiddev /dev/md0
 raid-level 1
 chunk-size 64
 nr-raid-disks 2
 nr-spare-disks 1

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

 device /dev/sdd1
 spare-disk 0

Mirror #2

raiddev /dev/md1
 raid-level 1
 chunk-size 64
 nr-raid-disks 2
 nr-spare-disks 1

 device /dev/sde1
 raid-disk 0

 device /dev/sdf1
 raid-disk 1

 device /dev/sdg1
 raid-disk 0

Mirror #3

raiddev /dev/md2
 raid-level 1
 chunk-size 64
 nr-raid-disks 2
 nr-spare-disks 1

 device /dev/sdh1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 3: Getting Started: Building a Software RAID

 raid-disk 0

 device /dev/sdi1
 raid-disk 1

 device /dev/sdj1
 raid-disk 0

Mirrors /dev/md0, /dev/md1 and /dev/md2 are
combined into a RAID-0, /dev/md3.

raiddev /dev/md3
 raid-level 0
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 3

 device /dev/md0
 raid-disk 0

 device /dev/md1
 raid-disk 1

 device /dev/md2
 raid-disk 2

Given the preceding file, run mkraid on each component RAID-1 and finally on /dev/
md3, the RAID-0. Or, with mdadm:

mdadm -C -n2 -l1 -x1 /dev/md0 /dev/sd{b,c,d}1
mdadm -C -n2 -l1 -x1 /dev/md1 /dev/sd{e,f,g}1
mdadm -C -n2 -l1 -x1 /dev/md1 /dev/sd{h,i,j}1
mdadm -C -n3 -l0 -c64 /dev/md2 /dev/md{0,1,2}

Clearly, it’s a waste of resources to provide a separate spare disk to each component
array. Unfortunately, the md driver does not directly support the sharing of spare
disks. However, mdadm does let you share spare disks virtually. (See Chapters 4 and
7.)

While RAID-10 is both fast and reliable, the wasted disk space can make it undesir-
able. Half of all disk space on a RAID-10 is unusable.

RAID-50 (striped parity)

Since the disk requirements for RAID-10 are so high, you might find it more eco-
nomical to combine RAID-5 into a RAID-0, a hybrid configuration called RAID-50.
This hybrid array offers good read and write performance and can survive multiple
disk failures, in the same manner that RAID-10 can. RAID-50 uses only one disk’s
worth of space for each RAID-5 component array, making it more cost-effective. The
following /etc/raidtab file defines two RAID-5 arrays, each consisting of three disks at
/dev/md0 and /dev/md1. Those arrays are combined in a RAID-0 at /dev/md2.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Creating an Array | 103

First RAID-5

raiddev /dev/md0
 raid-level 5
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 3
 parity-algorithm left-symmetric

 device /dev/sdb1
 raid-disk 0

 device /dev/sdc1
 raid-disk 1

 device /dev/sdd1
 raid-disk 2

Second RAID-5

raiddev /dev/md1
 raid-level 5
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 3
 parity-algorithm left-symmetric

 device /dev/sde1
 raid-disk 0

 device /dev/sdf1
 raid-disk 1

 device /dev/sdg1
 raid-disk 3

The two RAID-5's are combined into a single
RAID-0.

raiddev /dev/md2
 raid-level 0
 chunk-size 64
 persistent-superblock 1
 nr-raid-disks 2

 device /dev/md0
 raid-disk 0

 device /dev/md1
 raid-disk 1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 3: Getting Started: Building a Software RAID

Use the following commands to create the same RAID-50 using mdadm:

mdadm -C -n3 -l5 -c64 -pls /dev/md0 /dev/sd{b,c,d}1
mdadm -C -n3 -l5 -c64 -pls /dev/md1 /dev/sd{e,f,g}1
mdadm -C -n3 -l0 -c64 /dev/md2 /dev/md{0,1}

Since each RAID-5 must undergo its initial synchronization, the CPU will be heavily
utilized when you create a RAID-50. If the system is performing other tasks, then you
might want to wait until each initial synchronization has completed before creating a
filesystem on /dev/md2 and carrying out any other administrative tasks. It might also
be worthwhile to initialize each RAID-5 individually, waiting for its initial synchroni-
zation to complete before creating the second one.

Finishing Touches
If you use mdadm to create arrays, then you should probably take a minute to create
an /etc/mdadm.conf file before you move on. First, create the file /etc/mdadm.conf,
using any editor and a DEVICE line that lists all RAID member disks. On my system,
for example, I create the file with the following line:

DEVICE /dev/sd*

This means that mdadm will examine all the sd device files on my system (/dev/sdb1
through /dev/sdh1) when looking for member disks. Next, you should execute
mdadm with the --detail and --scan options to generate array lines and redirect the
output so that it is appended to /etc/mdadm.conf.

mdadm --detail --scan >> /etc/mdadm.conf

You should be left with an mdadm.conf file that contains the DEVICE line you created,
plus an ARRAY line for each active RAID.

cat /etc/mdadm.conf
DEVICE /dev/sd{b,c,d,e,f,g,h}1
ARRAY /dev/md1 level=raid0 num-devices=5 \
 UUID=66b78871:dc09da58:60f57124:978e5dbf
ARRAY /dev/md0 level=raid1 num-devices=2 \
 UUID=b047f5a4:b6f459e0:fb04a323:46a1a012

Arrays that are not active will not be scanned by mdadm. Remember that you aren’t
obligated to create an mdadm.conf file, but it will make managing arrays using
mdadm much easier. Now you can start both arrays with a simple command:

mdadm -As
mdadm: /dev/md1 has been started with 5 drives.
mdadm: /dev/md0 has been started with 2 drives.

Without the configuration file, you would need to know at least which disks were
members. And you would need to execute a command such as the following for each
array, every time you wanted to activate it:

mdadm -A /dev/md1 /dev/sdc1 /dev/sdg1 /dev/sdd1 \
 /dev/sdh1 /dev/sde1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Next Step | 105

If you’re using raidtools, start arrays with the raidstart command:

raidstart /dev/md1

Or, start all arrays listed in /etc/raidtab:

raidstart -a

As I mentioned earlier in this chapter, you can stop an active array by using either
raidstop or mdadm -S. Don’t forget to unmount filesystems first.

raidstop /dev/md0
mdadm -S /dev/md1

Irrespective of which management tools you decided to use, you can now add entries
for your arrays to /etc/fstab, provided that you are using kernel RAID autodetection.
Otherwise, you will need to add entries to your system startup scripts to activate
arrays using mdadm or raidstart.

The Next Step
Even if you spend large amounts of time planning and architecting your array, mak-
ing a mistake is nearly inevitable. I think the best advice I can give for building these
systems is: don’t worry if it doesn’t work perfectly the first time around. Trying out
multiple solutions and then deciding which one best suits your needs is much more
worthwhile than sitting at a whiteboard for three weeks, trying to plan in advance.
Hopefully, this chapter has given you the information you need to get started in
building a software RAID solution.

Choosing an appropriate RAID level is only the first step. You might need to trade
some of the dollars you had planned to spend on storage capacity for a hardware
controller. Chapter 5 offers advice on how to make that decision. But software RAID
might help you to prototype the right system without spending much money. The
next chapter offers reference material on the md driver, raidtools, and mdadm, which
will help supplement the material in this chapter. Chapter 4 also contains more /etc/
raidtab and mdadm examples that can help make your configurations more robust by
using spare disks and hybrid arrays.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

106

Chapter 4tldp.orCHAPTER 4

Software RAID
Reference

This chapter contains reference information about kernel RAID parameters and
management tools, including the raidtools package and the newer mdadm. It also
contains many example configurations and an in-depth guide to software RAID and
the /proc filesystem.

Much of the material in this chapter is an amalgamation of my own experimentation
with software RAID, combined with material from manual pages, the Linux kernel
source code, and the various versions of the Software-RAID HOWTO and support-
ing documents. Linas Vepstas wrote the original version of “The Software-RAID
HOWTO,” which was extremely useful to me when I built my first software RAID.
A replacement document, written from the ground up, was released by Jakob Oester-
gaard in January 2000.

The HOWTO documents, quick-starts, and examples that are distributed with the
raidtools package and with many versions of Linux often contain erroneous or miss-
ing information simply because they are out of date. While I am quick to complain
about some existing documentation, I am grateful to all the unpaid volunteers who
have, over the years, contributed to various parts of the RAID documentation, the
kernel driver documentation, and the Linux-raid mailing list, especially Jakob
Oestergard, Linas Vepstas, Neil Brown, and Ingo Molnar.

Kernel Options
When you are configuring the kernel, the software RAID kernel features are all found
under the Multiple devices driver support (RAID and LVM) subsection, regardless of
the configuration method you use. Feel free to compile each level into the kernel stat-
ically or as a module.

[*] Multiple devices driver support (RAID and LVM)
<*> RAID support
<M> Linear (append) mode
<*> RAID-0 (striping) mode

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Kernel Options | 107

<M> RAID-1 (mirroring) mode
<*> RAID-4/RAID-5 mode
<M> Multipath I/O support

With older versions of the kernel, it was necessary to enable support for Develop-
ment and/or Incomplete Code/Drivers. But with version 2.4, you no longer need to
enable that option because the RAID code is stable and included as part of the stan-
dard kernel.

Here is a list of kernel options for software RAID.

Multiple devices driver support (CONFIG_MD)
CONFIG_MD enables support for representing multiple physical block devices as a
single logical device. CONFIG_MD must be enabled before RAID options will appear
during kernel configuration. CONFIG_MD is also needed for LVM support.

RAID support (CONFIG_BLK_DEV_MD)
CONFIG_BLK_DEV_MD activates the base RAID driver, which contains code that is
shared among all software RAID levels. Individual RAID levels must be selected
after CONFIG_BLK_DEV_MD is enabled. RAID levels will not appear during kernel
configuration unless this option is selected first.

Linear (append) mode (CONFIG_MD_LINEAR)
CONFIG_MD_LINEAR allows multiple drives to be concatenated end-to-end so that
when a single member disk becomes full, data will be written to the next disk
until all disks are full.

RAID-0 (striping) mode (CONFIG_MD_RAID0)
CONFIG_MD_RAID0 enables support for RAID-0 (striping), which allows multiple
disks to be arranged so they are evenly filled, one chunk at a time. If disks of dif-
fering sizes are used, data is evenly distributed across all disks until one disk
becomes full. The data then continues to be evenly distributed across remaining
disks, although you won’t experience the same level of performance. Thus, if
three 4 GB drives and a single 6 GB drive are used, data is evenly distributed
across all disks until the 4 GB drives (16 GB of data) are full. At that point, data
is written only to the remaining 6 GB disk.

RAID-1 (mirroring) mode (CONFIG_MD_RAID1)
CONFIG_MD_RAID1 activates support for disk mirroring. Each disk in a RAID-1 con-
tains exactly the same data. There is an additional write operation for each disk,
making write performance with RAID-1 slower than with other RAID levels.
(Note that write performance is a function of the number of member disks.)
However, read performance is improved because requests are distributed across
each disk in the mirror. If disks used in a RAID-1 are not the same size, each disk
is truncated to the size of the smallest disk.

RAID-4/RAID-5 mode (CONFIG_MD_RAID5)
CONFIG_MD_RAID5 enables RAID-4/RAID-5 mode and activates support for either
of these parity RAID levels. The choice between the two is made in an /etc/

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 4: Software RAID Reference

raidtab configuration file or on the command line with mdadm, and not in the
kernel configuration itself. While RAID-4 stores parity information on a single
disk, RAID-5 provides redundancy by spreading parity information across each
member disk. That means RAID-5 performs better than RAID-4 because opera-
tions are distributed across all disks, instead of all but one disk. Like RAID-1,
devices used in a RAID-4 or RAID-5 are truncated to the size of the smallest
disk.

Multipath I/O support (CONFIG_MD_MULTIPATH)
CONFIG_MD_MULTIPATH enables support for multipath, which allows Linux to
address a single disk using multiple controller paths. Disks that support multi-
path operation are connected to more than one I/O channel. If one controller or
channel becomes unavailable, the operating system is still able to communicate
with the disk. Multipath is very new feature and is not covered in this book.

Deprecated Kernel Options
The following options are no longer shown in the configuration options for current
kernel revisions. These features were originally experimental, but are now a stan-
dard part of the RAID subsystem. If you are using a kernel newer than 2.2.X, the
options are enabled transparently as part of multiple devices support (CONFIG_BLK_
DEV_MD). When using older kernels, you must explicitly enable these features if you
require them.

Autodetect support (CONFIG_AUTODETECT_RAID)
CONFIG_AUTODETECT_RAID enables support for RAID autodetection during boot
time. Traditionally, users have to execute commands from their init scripts in
order to manually activate RAID devices. Autodetection allows the kernel to
scan block devices for information about the arrays they belong to, and conse-
quently to activate the devices while the system boots. This saves administrators
from having to run the raidstart command in the system’s startup files or at the
command line. For RAID devices to be successfully autodetected, you must use
fdisk or an equivalent partitioning program to set them to partition type Linux
Raid Auto (0xFD). Some programs might simply list Linux RAID as the partition
type. Please refer to the “Partitioning with fdisk” section of Chapter 3 for more
information on this.

Boot support (CONFIG_MD_BOOT)
CONFIG_MD_BOOT is available with the RAID patches for older kernels and is stan-
dard in 2.4 and higher. Boot support allows arrays to be used at boot time,
meaning that Linux can boot from a software RAID-1. That means a disk failure
won’t result in an unavailable system after a reboot. In addition to enabling this
kernel parameter, you need to pass special flags to the boot loader. You can find
details on using LILO to boot an array in Chapter 7.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

/proc and Software RAID | 109

md Block Special Files
The block special files /dev/md[0-255] provide access to software RAID devices. The
md driver uses a major number of 9. On most systems, all of these files are created
when the system is installed. If an md block special file is missing, you will get an
error like: error opening /dev/md31: No such file or directory from mdadm or
raidtools. You can create the file yourself using the mknod command. The following
example creates the block special file used to access /dev/md31 with a umask of 0660:

mknod -m 0660 /dev/md31 b 9 31
chown root.disk /dev/md31

I specified b for block special file, 9 for the md major number, and 31 for the minor
number. In general, the minor number and the number for the device name are the
same. I also made certain that user and group ownership was set to root and disk,
respectively. Repeat these commands for any device file you need to create manually.

Some distributions also come with the MAKEDEV program, usually found in /dev,
although sometimes it is found as a symbolic link to /sbin/MAKEDEV. MAKEDEV
can be used to create all the special files for any character or block device. It’s more
user-friendly than mknod, but MAKEDEV might not be available on all systems.

The following example uses MAKEDEV to create all the block special md files:

/dev/MAKEDEV -v md
create md0 b 9 0 root:disk 660
create md1 b 9 1 root:disk 660
[...]
create md30 b 9 30 root:disk 660
create md31 b 9 31 root:disk 660

MAKEDEV will overwrite old device nodes. If you are working on a system on which
the major or minor device numbers for your md devices have been altered, please be
careful.

/proc and Software RAID
The /proc filesystem is a virtual filesystem that provides information about the sys-
tem and the running kernel. Files located in /proc provide vital information about
memory, devices, and processes. Here is also where you look for current informa-
tion on active RAID devices. Virtual files under /proc provide information in real
time. By default, the kernel is configured to support the /proc filesystem. However, to
be certain that your kernel supports /proc, look for its entry in the File systems sub-
section of the kernel configuration:

File systems --->
 ...
 [*] /proc file system support
 ...

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 4: Software RAID Reference

Files located in /proc are usually displayed using the cat command, but you can use
any program in which you can view a text file. Most of the files in /proc merely pro-
vide information (they are read-only), but some actually offer the means to manipu-
late the way a running kernel operates. In that case, administrators usually write new
values to a file using the echo command.

/proc/mdstat
/proc/mdstat provides a way to examine the state of the md driver, including informa-
tion about active software arrays. When no arrays are running, displaying /proc/
mdstat simply shows which RAID levels the kernel supports.

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead not set
unused devices: <none>

In this example, there are no active arrays, but this kernel supports linear, RAID-0,
RAID-1, and RAID-4/5. The read_ahead value is not currently set, because no arrays
are active. read_ahead defines the number of sectors the kernel should cache during
sequential reads. Finally, unused devices is also empty, because there are no devices
in the md subsystem that are not currently in use by an array.

If arrays are defined, /proc/mdstat provides detailed information about them, as
shown in the following code:

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5]
read_ahead 1024 sectors
md2 : active raid1 sde1[1] sdd1[0]
 17920384 blocks [2/2] [UU]

md1 : active raid0 sdc1[1] sdb1[0]
 35840768 blocks 64k chunks

First, note that read_ahead is now set to 1024 sectors. That means that during
sequential reads, the kernel will attempt to cache a maximum of 1024 sectors worth
of data, or about 512 K (1024 sectors, with approximately 512 bytes per sector). The
default value of 1024 sectors is a hard limit set by the md driver. Next, each array is
listed, with the most recently activated array first. In this case, /dev/md2, a RAID-1, is
listed first because it was activated most recently. Let’s examine /dev/md2 one line at
a time to get a better understanding of the information reported:

md2 : active raid1 sde1[1] sdd1[0]

The first line is fairly straightforward. The array /dev/md2 is an active RAID-1 con-
taining two member disks: /dev/sde1 and /dev/sdd1. The numbers in square brackets
([]) following each member disk indicate the index number of that member disk.
The information corresponds to either a raid-disk entry in /etc/raidtab or to the order

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

/proc and Software RAID | 111

in which member disks were listed on the command line using mdadm. Here, /dev/
sdd1 is the first raid-disk and /dev/sde1 is the second.

 17920384 blocks [2/2] [UU]

This line shows information about the state of the array and its size. This array con-
tains 17920384 blocks. Blocks reported in /proc/mdstat are always 1 KB in size. The
next data element [2/2] shows that there are two disks in the array and that both are
active. The final field [UU] shows that both disks are error-free and operating nor-
mally. If a disk had failed, these fields would indicate that disks were missing from
the array and which disks had failed. For example:

 17920384 blocks [2/1] [_U]

Notice that there are two member disks, but only one disk is currently operational
([2/1]). The next field ([_U]) uses the underscore to indicate that the first disk has
failed.

Depending on what type of array is defined, slightly different information is avail-
able through /proc/mdstat.

md1 : active raid0 sdc1[1] sdb1[0]
 35840768 blocks 64k chunks

This example describes a RAID-0 at /dev/md1. The first line provides the same infor-
mation that the RAID-1 example provides, but the second line omits information
about the status of member disks and instead includes information about the chunk-
size. Since RAID-0 does not support redundancy, there’s no need to provide infor-
mation about how many member disks are online versus how many have failed. The
failure of a single disk in a RAID-0 means that the entire array is failed. chunk-size,
which isn’t a factor when working with RAID-1, is a requirement for RAID-0. So
chunk-size information, instead of failure information, is provided for RAID-0
arrays.

RAID-4 and RAID-5 arrays show a combination of the information provided for
RAID-0 or RAID-1 arrays:

md1 : active raid5 sde1[3] sdd1[2] sdc1[1] sdb1[0]
 53761152 blocks level 5, 64k chunk, algorithm 2 [4/4] [UUUU]

Here, a RAID-5 array defined at /dev/md1 contains four member disks. The second
line provides information about the chunk size and health of the array (four out of
four disks are operational). In addition, the output shows the parity algorithm used,
which is algorithm 2 in this case, corresponding to the left-symmetric algorithm. The
numeric value reported here comes from a case switch found in the kernel RAID-5
code in the file /usr/src/linux/drivers/block/raid5.c. Each of the usable algorithms is
defined there by name.

You might be wondering why the second line contains redundant information about
which RAID level is in use. Let’s look at a RAID-4 example to clarify.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 4: Software RAID Reference

md1 : active raid5 sde1[3] sdd1[2] sdc1[1] sdb1[0]
 53761152 blocks level 4, 64k chunk, algorithm 0 [4/4] [UUUU]

Notice that raid5 is listed as the array type on the first line, but level 4 is listed on
the second line. That’s because RAID-4 uses the RAID-5 driver. So when working
with these RAID levels, be certain to examine the second line of md device output to
make certain that the proper RAID level is reported. Finally, while parity algorithm 0
(left asymmetric) is listed, the parity algorithm has no effect on RAID-4. The entry is
simply a placeholder and can be safely ignored.

Failed disks

When a disk fails, its status is reflected in /proc/mdstat.

md1 : active raid1 sdc1[1] sdb1[0](F)
 17920384 blocks [2/1] [_U]

The first line lists disks in backward order, from most recently added
to first added. In this example, the (F) marker indicates that /dev/sdb1
has failed. Note on the following line that there are two disks in the
array, but only one of them is active. The next element shows that the
first disk (/dev/sdb1) is inactive and the second (/dev/sdc1) is in use. So
a U denotes a working disk, and an _ denotes a failed disk. The output
is a bit counterintuitive because the order of disks shown in the first
line is the opposite of the order of U or _ elements in the second line.
Furthermore, the order in both lines can change as disks are added or
removed.

Resynchronization and reconstruction

/proc/mdstat also provides real-time information about array reconstruction and
resynchronization. The following mirroring array is nearly halfway done with its ini-
tial synchronization.

md1 : active raid1 sdc1[1] sdb1[0]
 17920384 blocks [2/2] [UU]
 [= = = = = = = = =>...........] resync = 46.7% (8383640/17920384)
finish=5.4min speed=29003K/sec

In this example, the process is 46.7 percent complete (also indicated by the progress
bar). The first number in parentheses indicates how many blocks are ready, out of
the total number of blocks (the second number). The resynchronization is expected
to take another 5.4 minutes, at the rate of roughly 29 MB (29003K) per second.

Recovery looks nearly identical, except that the failed disk and the newly inserted
disk are both displayed.

md1 : active raid1 sdd1[2] sdc1[1] sdb1[0](F)
 17920384 blocks [2/1] [_U]
 [=>...................] recovery = 6.1% (1096408/17920384)
finish=8.6min speed=32318K/sec

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

/proc and Software RAID | 113

Note that on the third line, the process is called recovery. Remember from Chapter 3
that recovery occurs when a new disk is inserted into an array after a disk fails.
Resynchronization, on the other hand, happens when a new array is created or when
disks aren’t synchronized.

Although three disks are listed on the first output line, only two disks appear as array
members on the second line. That’s because, when this array was built, only two
member disks were defined. So the number of member disks will always remain con-
stant. Each failed disk, like active member disks and spare disks, has its own disk
index. When a disk in the array fails, it is removed from the raid-disk index and
added to the failed-disk index, and that’s why the array disk count remains at two.

Once the recovery is complete, remove the old failed disk using raidhotremove or
mdadm -r, and the /proc/mdstat entry will return to normal.

md1 : active raid1 sdd1[0] sdc1[1]
 17920384 blocks [2/2] [UU]

If the spare disk also fails during recovery, the md driver will halt the reconstruction
process and report both failures in /proc/mdstat, unless additional spare disks are
available. In that case, the md driver will insert the next available spare disk and
restart the recovery process.

md0 : active raid5 sdh1[4](F) sdg1[3] sdd1[2] sdf1[1](F) sdb1[0]
 53761152 blocks level 5, 64k chunk, algorithm 2 [4/3] [U_UU]
 resync=DELAYED
unused devices: <none>

/proc/sys/dev/raid
The /proc/sys directory provides interfaces for manipulating tunable kernel parame-
ters. These parameters, which affect various aspects of the kernel, can be fine-tuned
while the system is running. For more general information about /proc/sys, consult
the file in the /usr/src/linux/Documentation/sysctl directory of your kernel source
code, as well as /usr/src/linux/Documenation/filesystems/proc.txt.

Two files in the /proc/sys/dev/raid subdirectory provide a way to tune the speed at
which array resynchronization (and reconstruction) takes place. speed_limit_min and
speed_limit_max define the minimum and maximum speeds at which resynchroniza-
tion occur. The latter is especially useful on slower, or heavily utilized, systems,
where you might find that the resynchronization process slows down the system too
much. In that case, you could change the maximum speed—in effect, throttling the
resynchronization process to a more suitable level. The md driver does provide its
own I/O thottling and will attempt to perform recovery nonintrusively, but using
speed_limit_min and speed_limit_max can provide a quick fix if something goes hay-
wire.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 4: Software RAID Reference

You’ll need to experiment with your system to see the maximum speed it can han-
dle. Adjusting the minimum speed affects the low-end limit for resynchronization. It
might be a good idea to simulate a drive failure and play with these values so that
you aren’t surprised when a real disk failure happens.

You can simulate a disk failure by using the raidsetfaulty or mdadm --fail
commands, which are described later in this chapter. You can also simu-
late a disk failure by disconnecting the cable connected to a drive or by
removing a drive from a hot-swap enclosure. Remember, as I warned
in the section “Hot-swap” in Chapter 2, that you should not discon-
nect hardware while the system is powered on, unless you have equip-
ment that supports this operation. When simulating a disk failure, the
md driver will not register that a disk has failed until an I/O operation
is performed. That means you might have to access or create a file on
the array before the md driver reports the failure. Running the sync
command to flush filesystem buffers from memory to disk might also
be required.

The default limits (100 KB and 100,000 KB, respectively) can be changed by echoing
new values into the pseudofiles:

echo "5000" > /proc/sys/dev/raid/speed_limit_min
echo "50000" > /proc/sys/dev/raid/speed_limit_max

This changes the low and high limits to 5 MB and 50 MB, respectively. You can add
the above commands to your system initialization scripts if you want to change the
default values of speed_limit_min and speed_limit_max automatically each time the
system boots. Most distributions now provide the configuration file /etc/sysctl.conf to
preserve changes to /proc/sys across reboots. For instance, you can alter resynchroni-
zation speeds by adding the following lines to /etc/sysctl.conf:

dev.raid.speed_limit_min = 5000
dev.raid.speed_limit_max = 50000

Consult the manual pages for sysctl and sysctl.conf for further details.

raidtools
raidtools is the traditional package used to manage software arrays. Although the
newer mdadm is more feature-rich, raidtools is in wider use throughout the software
RAID community. While it’s a bit more complex to manage arrays using raidtools,
the package has proved reliable for many years. raidtools has remained at version 0.
90 for several years, but the prerelease for version 1.0 of raidtools became available
during the course of this writing, although it has not been officially released yet. The
new version has some new utilities, including a tool that allows users to generate /etc/

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

raidtools | 115

raidtab files by querying an active array, which is very useful if you’ve accidentally
deleted your /etc/raidtab file. The additions to version 1.0 are covered in this section,
but keep in mind that I used a narrowly released beta version during my testing, and
that some functionality might have changed since then.

Version 1.0 fixes several known bugs in the 0.90 release of raidtools. raidtools-
20010914 (version 0.90.0), in addition to having some minor bugs, was released
without a vital utility, raidsetfaulty.This utility is used to manually induce a disk fail-
ure and had been included with previous releases. Instead, raidtools-20010914
shipped with a new program named raidhotgenerateerror, whose name makes it look
like a replacement for raidsetfaulty. Unfortunately, raidhotgenerateerror does not
perform the same function as raidsetfaulty and should not be used as a replacement.
raidhotgenerateerror is merely a utility for testing error handling in the md driver.
This has caused some confusion among Linux RAID users. Because of these incon-
sistencies, I advise against using raidtools-20010914. Instead, download and use the
previous release raidtools-19990824 from ftp.kernel.org/pub/daemons/raid/alpha. If
you are working with a version of raidtools that came installed with your distribu-
tion, check to see if you have /sbin/raidsetfaulty on your system. If it doesn’t exist,
then it’s likely that you are working with a repackaged version of raidtools-
20010914. In that case, I recommend installing the previous version from source, or
using a newer version if one is available and tested. The beta version of raidtools-1.0
corrects many of the problems with the raidtools-20010914 release and also contains
raidsetfaulty. It likely that raidtools-1.0 will be in wide release by the time this book
is in print.

The /etc/raidtab File
The current raidtools package requires a configuration file, which, by default, is
named /etc/raidtab. The /etc/raidtab file contains a stanza about each software array
connected to the system. (A stanza is a collection of keywords and variables that
describe a single array.) The configuration is parsed from top to bottom so that pre-
viously defined arrays may be used in subsequent stanzas. This is useful when creat-
ing hybrid arrays like RAID-10, but it also means that the order of the stanzas in /etc/
raidtab is extremely important. Each stanza begins with a raiddev directive and con-
tinues with other directives from the following list.

raiddev mddevice
The raiddev parameter begins the configuration of an array. All subsequent
directives are assumed to refer to the most recent raiddev directive. raiddev takes
the full path to the device block special file as its argument (for example, raiddev
/dev/md2). A unique raiddev directive is required for each array.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 4: Software RAID Reference

raid-level level
raid-level specifies the mode of the current array. This parameter takes an
alphanumeric value (see Table 4-1) that corresponds to kernel RAID levels.

Each raid-level directive defined in /etc/raidtab corresponds to the previously
defined raiddev entry. In addition, support for the RAID level you have selected
using raid-level must be compiled into your kernel, or be available as a load-
able module, before the array can be started.

nr-raid-disks integer
The nr-raid-disks directive defines the number of active member disks in the
current array. This number does not include any spare disks that might be used
in an array that supports failover. (Use the nr-spare-disks parameter to indicate
the number of spare disks in the current array.) nr-raid-disks takes an integer
value greater than zero and is required once for each array that is defined using
the raiddev parameter. Subsequently, a number of device and raid-disk entries
equal to the number defined with nr-raid-disks is required to specify the block
special file and disk order for each member disk.

nr-spare-disks integer
Spare disks provide a mechanism for hot failover in the event of a drive failure.
nr-spare-disks takes an integer value greater than zero and equal to the number
of available spares. As with nr-raid-disks, spares must be specified later by
using the device and spare-disk parameter. Spare disks are optional for arrays
that support failover (mirroring, RAID-4, and RAID-5). RAID-0 and linear mode
do not support the use of spare disks, so nr-spare-disks is never used with these
RAID levels. Spares need to be defined in /etc/raidtab if you want automatic
failover. You can manually replace a failed disk using raidhotremove and
raidhotadd, but that requires user intervention.

persistent-superblock boolean
The persistent-superblock directive determines whether an array contains a
RAID superblock. The RAID superblock allocates a small area for metadata at
the end of each member disk. This metadata allows the kernel to identify disk

Table 4-1. raid-level parameters

raidtab entry Description

linear Linear concatenation

0 Striping

1 Mirroring

4 Single parity drive

5 Distributed parity

multipath Multipath I/O

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

raidtools | 117

order and membership even in the event that a drive has moved to a different
controller. It is essential for autodetection. persistent-superblock should be
enabled for any newly created array.

This parameter should be set to zero only when you need to provide backward
compatibility with versions of the md driver that did not support a RAID super-
block (version 0.35 and earlier). Set persistent-superblock to zero when a leg-
acy array is being used with the new md driver.

parity-algorithm algorithm_name
The parity-algorithm directive specifies the algorithm used to generate parity
blocks. Note that this directive is used only with RAID-5. Parity is used to recon-
struct data during a drive failure. There are four choices available, and they
determine how parity is distributed throughout the array (Figure 4-1). Left-sym-
metric, right-symmetric, left-asymmetric, and right-asymmetric are all valid
choices, but left-symmetric is recommended because it yields the best overall per-
formance.

Figure 4-1. Each algorithm distributes parity and data blocks differently.

/dev/md0

C

H

P2

M

R

P0

E

J

O

T

B

G

L

P3

Q

A

F

K

P

P4

D

P1

I

N

S

Data

/dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1 /dev/sde1

Left-symmetric /dev/md0

B

E

P2

P

S

D

G

J

M

P4

A

P1

L

O

R

P0

H

K

N

Q

C

F

I

P3

T

Data

/dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1 /dev/sde1

Right-symmetric

/dev/md0

C

G

P2

N

R

P0

H

L

P

T

B

F

J

P3

Q

A

E

I

M

P4

D

P1

K

O

S

Data

/dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1 /dev/sde1

Left-asymmetric /dev/md0

B

F

P2

O

S

D

H

L

P

P4

A

P1

J

N

R

P0

E

I

M

Q

C

G

K

P3

T

Data

/dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1 /dev/sde1

Right-asymmetric

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 4: Software RAID Reference

You can specify the parity-algorithm by name in /etc/raidtab or use its numeri-
cal equivalent (see Table 4-2). If you fail to specify a parity-algorithm in /etc/
raidtab, the md driver will default to left-asymmetric, which is not an optimal
choice. So be certain to select left-symmetric explicitly.

chunk-size size
chunk-size specifies the size of the array stripe in kilobytes. Values may range
from 4 to 4096 kilobytes and must be powers of two. A bigger chunk-size will
work well for large, sequential operations, but a smaller chunk-size will yield
better performance for smaller, random operations. Most users should choose a
chunk-size of about 64 KB.

With linear mode, the chunk-size specifies the rounding factor for the array. The
rounding factor helps evenly group I/O operations. It’s similar to the chunk-size,
except it does not spread I/O across multiple disks.

chunk-size has no effect on RAID-1, but to satisfy error checking in raidtools,
you must specify a valid chunk-size for any RAID-1 defined in /etc/raidtab.

The chunk-size is written into the RAID superblock during array ini-
tialization. If you determine that you need to adjust the chunk-size
after your array is up and running, you will need to rebuild the array
using mkraid or mdadm. Be advised that your data will be lost if you
need to change the chunk-size for an array that has already been
brought online. It is possible to adjust the chunk-size of an existing
array using raidreconf, but all the caveats regarding raidreconf still
apply. See the “raidreconf” reference entry later in this chapter.

device devpath
The device directive specifies the block special device of an individual array
member. The full path to the block device should be used. The total number of
device entries must equal the sum of the numbers defined by nr-raid-disks and
nr-spare-disks. In an array with four nr-raid-disks and one nr-spare-disk, a
total of five device entries are required. Each device entry must be paired with
either a raid-disk or a spare-disk index entry.

Table 4-2. Parity algorithms

Name Numeric value

left-asymmetric (default) 0

right-asymmetric 1

left-symmetric (best choice) 2

right-symmetric 3

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

lsraid | 119

raid-disk index
raid-disk takes an integer value that indicates the sequence number of a mem-
ber disk. The value of the raid-disk directive should increase sequentially for
each new device entry. After a new array is defined using raiddev, the index
number for all device entries is reset. That is to say, each array has a separate list
of member disks starting at zero.

spare-disk index
The spare-disk directive also takes an integer value beginning with zero. This
parameter indicates the order of spare disks in an array. In the event of a disk
failure, available spare disks will be brought online in the order in which they are
indexed in /etc/raidtab.

parity-disk index
parity-disk specifies an out-of-sequence member disk as the parity drive in a
RAID-4 array. Normally, the last member disk is used for parity. However, the
parity-disk directive allows administrators to flag any member disk as a parity
drive. This directive is accompanied by both a device entry and a raid-disk
entry.

failed-disk index
The failed-disk parameter lets you flag one or more member disks as failed dur-
ing array initialization. Flagging a device as failed can be useful for testing data
redundancy without having to force a drive failure through a less gentle method.
Flagging a device as failed also allows you to evaluate the performance of parity
algorithms. Finally, the parameter can be used to create an array with a missing
disk, which is a useful trick to use as part of migrating an existing system disk to
software RAID. (See “Converting to Software RAID” in Chapter 7 for more
details.) failed-disk takes an integer value beginning with zero. Much like the
parity-disk directive, failed-disk should be accompanied by device and raid-
disk entries.

raidtools Commands
The following referemce section describes the commands in the raidtools package.
The fundamental command is mkraid command, which is responsible for creating a
RAID device.

lsraid
lsraid [mode] [options] -a mddevice
lsraid [mode] [options] -d memberdevice

lsraid is included with release 1.0 of raidtools. It allows users to examine arrays and
generate /etc/raidtab files by querying active arrays. lsraid is useful for checking devices,
diagnosing problems, and recovering lost configuration files. lsraid was written by Joel
Becker at Oracle Corporation.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 4: Software RAID Reference

Options

-A
Specifies array mode. Displays information about an array. When combined with the -a
option, array mode will query an active array. When combined with the -d option,
array mode will read the RAID superblock from a member disk instead of querying the
array.

-D
Denotes disk mode. Displays information about member disks. When used with the -a
option, disk mode returns information about each array member. When combined
with -d, disk mode returns information about the specified member disks.

-R
Specifies raidtab mode. Queries an array or member disk and generates an /etc/raidtab
file based on the RAID superblock it finds.

-a device
Selects an active md device to query. If the md device is inactive, lsraid indicates the
device major and minor numbers and specifies that the array is offline.

-d device
Selects which block device (member disk) to query. lsraid reads the RAID superblock
from the member disk.

-f
When combined with -A, displays only member disks that have failed.

-g
When combined with -A, displays only member disks that are working.

-s
When combined with -A, displays only spare disks in an array.

-l
When combined with -D, displays the superblock from any member disk that may not
be consistent with the rest of the array.

-h, --help
Displays configuration flags and exits.

-V, --version
Displays the command version and exits.

Example usage

The following displays information about an md device:

lsraid -A -a /dev/md0
[dev 9, 0] /dev/md0 \
 226805E6.2D643610.E36B8421.BBD29055 online
[dev 8, 17] /dev/sdb1 \
 226805E6.2D643610.E36B8421.BBD29055 good
[dev 8, 33] /dev/sdc1 \
 226805E6.2D643610.E36B8421.BBD29055 good
[dev 8, 49] /dev/sdd1 \
 226805E6.2D643610.E36B8421.BBD29055 good

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

lsraid | 121

The following lists information about the array of which /dev/sdb1 is a member:

lsraid -A -d /dev/sdb1
[dev 9, 0] /dev/md0 \
 226805E6.2D643610.E36B8421.BBD29055 online
[dev 8, 17] /dev/sdb1 \
 226805E6.2D643610.E36B8421.BBD29055 good
[dev 8, 33] /dev/sdc1 \
 226805E6.2D643610.E36B8421.BBD29055 good
[dev 8, 49] /dev/sdd1 \
 226805E6.2D643610.E36B8421.BBD29055 good

The following uses multiple instances of -a or -d to query more than one device at a time:

lsraid -A -a /dev/md0 -a /dev/md1
[dev 9, 0] /dev/md0 \
 226805E6.2D643610.E36B8421.BBD29055 online
[dev 8, 17] /dev/sdb1 \
 226805E6.2D643610.E36B8421.BBD29055 good
[dev 8, 33] /dev/sdc1 \
 226805E6.2D643610.E36B8421.BBD29055 good
[dev 8, 49] /dev/sdd1 \
 226805E6.2D643610.E36B8421.BBD29055 good

[dev 9, 1] /dev/md1 \
 F12F6203.49568B65.232305F6.08909BDA online
[dev 8, 97] /dev/sdg1 \
 F12F6203.49568B65.232305F6.08909BDA good
[dev 8, 113] /dev/sdh1 \
 F12F6203.49568B65.232305F6.08909BDA good

lsraid with the -R option is especially useful for generating an /etc/raidtab file that might
have been lost because of file corruption or user error:

lsraid -R -a /dev/md0
This raidtab was generated by lsraid version 0.3.0.
It was created from a query on the following devices:
/dev/md0

md device [dev 9, 0] /dev/md0 queried online
raiddev /dev/md0
 raid-level 0
 nr-raid-disks 3
 nr-spare-disks 0
 persistent-superblock 1
 chunk-size 64

 device /dev/sdb1
 raid-disk 0
 device /dev/sdc1
 raid-disk 1
 device /dev/sdd1
 raid-disk 2

The previous example works only with an online array. If the array is offline, you can
combine the -R and -d options to generate an /etc/raidtab based on the RAID superblocks

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 4: Software RAID Reference

found on individual disks. lsraid will attempt to collate member disks so you can use
multiple instances of -d to query all potential member disks, letting lsraid sort out the mess
for you.

lsraid -R -d /dev/sdb1 -d /dev/sdc1 -d /dev/sdd1 -d /dev/sde1 -d /dev/sdf1 -d /dev
 /sdg1 -d /dev/sdh1
lsraid: Device "/dev/sde1" does not have a valid raid superblock
lsraid: Device "/dev/sdf1" does not have a valid raid superblock
This raidtab was generated by lsraid version 0.3.0.
It was created from a query on the following devices:
/dev/sdb1
/dev/sdc1
/dev/sdd1
/dev/sde1
/dev/sdf1
/dev/sdg1
/dev/sdh1

md device [dev 9, 0] /dev/md0 queried online
raiddev /dev/md0
 raid-level 0
 nr-raid-disks 3
 nr-spare-disks 0
 persistent-superblock 1
 chunk-size 64

 device /dev/sdb1
 raid-disk 0
 device /dev/sdc1
 raid-disk 1
 device /dev/sdd1
 raid-disk 2

md device [dev 9, 1] /dev/md1 queried online
raiddev /dev/md1
 raid-level 1
 nr-raid-disks 2
 nr-spare-disks 0
 persistent-superblock 1
 chunk-size 64

 device /dev/sdg1
 raid-disk 0
 device /dev/sdh1
 raid-disk 1

Redirect the output of lsraid -R to create or append an /etc/raidtab file.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

mkraid | 123

mkraid
mkraid [options] mddevice

mkraid (make raid) creates a RAID device from a set of block devices. All previous data on
the block devices will be lost, so be careful to back up any data on drives that you are plan-
ning to include in an array. mkraid must be used to create arrays before filesystems are built
and requires an /etc/raidtab file for successful execution. See the “Example Usage” section
below for details on the usage of mkraid.

Options

-c, --configfile filename
Specifies the use of a configuration file other than the default /etc/raidtab.

-f, --force, --really-force, -R
Forces the initialization, even if data or filesystems are detected on any of the block
devices to be included in the array. This is a fail-safe to prevent uninitiated users from
accidentally destroying their data. The --really- force or -R flag is undocumented in
the command help and manual pages. When the -f or --force flags are used, mkraid
will display an additional warning and request that the command be retyped with the
--really-force flag.

-h, --help
Displays some helpful information about the command.

-u, --upgrade
Upgrades an old RAID to the current version of the kernel’s RAID subsystem. This
option brings arrays with a RAID superblock up to the current md driver version. It
does not convert older arrays without superblocks. It is advisable to back up data
before attempting this operation.

-V, --version
Displays the command’s version.

Example usage

The following creates an array at /dev/md0, as described in /etc/raidtab:

mkraid /dev/md0

Using alternate configuration files is extremely useful if you are experimenting with many
different types of arrays. That way, you can keep copies of array configurations that have
been successful, copying and combining them into /etc/raidtab when you’re ready to go
into production. The force flag is also useful when experimenting. The following creates,
by force, the array /dev/md1 specified in the alternate configuration file /home/derek/
myraidtab:

mkraid --really-force -c /home/derek/myraidtab /dev/md1

The following upgrades an array to the kernel’s current version:

raidstop /dev/md0
mkraid -u /dev/md0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 4: Software RAID Reference

raidhotadd
raidhotadd mdevice memberdevice

raidhotadd inserts a new disk into a running array. After a failed drive has been removed
using raidhotadd, you can use this command to add a replacement drive.

When a new drive is introduced into an active array, reconstruction commences. There-
fore, it’s a wise idea to add a new drive when you are certain that the recovery process will
not impact users. There may, of course, be times when waiting is not an option. You can
also fine-tune the speed at which recovery occurs in order to minimize the impact on the
system. Refer to the “/proc/sys/dev/raid” section, earlier in this chapter, for details on how
to throttle the recovery process.

Options

raidhotadd has no command-line options. It takes an md device and a member disk as its
only arguments.

Example usage

The following adds /dev/sdc1 to the array /dev/md0:

raidhotadd /dev/md0 /dev/sdc1

raidhotgenerateerror
raidhotgenerateerror mddevice memberdevice

raidhotgenerateerror should not be used to administer arrays. I mention it here only
because it has caused some confusion among Linux RAID users, as described near the
beginning of the “raidtools” section.

raidhotremove
raidhotremove mddevice memberdevice

raidhotremove removes a failed disk or a spare disk from an array. This is useful, in combi-
nation with raidhotadd, for replacing a failed disk with a new, working disk. You could also
use raidhotremove to remove a spare disk from an array so that it can be used in another
array, which is helpful when only one spare disk is available on a system with multiple
arrays. In that case, you could use raidhotremove to pull the spare disk from a fully func-
tional array and insert it into an array to make up for a failed disk.

There might be some instances when a disk is generating errors at the bus level, but hasn’t
been marked as failed by the md driver. In that case, first use raidsetfaulty to fail the drive
manually, then use raidhotremove to pull it out of the array.

Options

raidhotremove has no command-line options. It takes an md device and a member disk as
its only arguments.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

raidreconf | 125

Example usage

The following removes /dev/sdc1 from the array /dev/md0:

raidhotremove /dev/md0 /dev/sdc1

raidhotremove and raidhotadd are merely software interfaces to the
Linux kernel. They operate independently of any hardware connected
to the system. Using these commands does not mean you can safely
disconnect and reconnect drives from a powered-on system. Doing
this with hardware that does not support hot-swap could result in a
complete, unrecoverable system failure. For more information on hot-
swap, consult the “Hot-swap” and “Single Connector Attachment
(SCA)” sections in Chapter 2 and the “Managing Disk Failures” sec-
tion in Chapter 7.

raidreconf
raidreconf [options] -m mddevice

raidreconf can reconfigure certain properties of a RAID-0 or RAID-5 without data loss.

First, it can be used to resize an existing array. Normally, if you wanted to add or remove a
disk from an array, you would need to back up your data, create a new array, and then
restore the data. raidreconf circumvents the backup and restore steps by inserting or
removing a device and reorganizing the data so that it spans the remaining disks.

raidreconf can also be used to import or export data to or from an array. That means you
can take a single block device and use raidreconf to transfer data block-by-block onto an
already existing software RAID. You can also export data from an existing array onto a
single block device, provided the target device has enough space. raidreconf can also
convert between RAID-0 and RAID-5. Finally, raidreconf can alter the chunk-size of an
array.

raidreconf does not support linear mode, RAID-1, or RAID-4 and should never be used
with these RAID levels.

raidreconf was originally written by Jakob OEstergaard (he is also its current maintainer),
but some critical bug fixes were implemented by Danny Cox. raidreconf is included with
raidtools-1.0 and is also available from http://unthought.net/raidreconf/.

Be advised that raidreconf is still very much beta software, even though it looks like it could
be widely distributed with raidtools in the near future. I strongly recommend checking its
web site and version history for a list of known bugs. Take note of the following warning
from http://unthought.net/raidreconf/:

Status is, that we do not currently know of any critical bugs in the software, it has
already been used for both conversion and re-sizing of various arrays. However: it is
very likely that there are serious bugs that will destroy your data, possibly even on
disks not related directly to the array you are re-configuring.

raidreconf is also quite slow and requires that arrays be taken offline before any operations
can be performed, which means your data won’t be accessible for long periods of time. On
my test system, for example, it took about three hours to add a disk to an existing five-disk

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 4: Software RAID Reference

RAID-0 (using 18 GB drives). The time it takes to perform operations is directly related to
the size in blocks of the original array. For example, converting an existing two-disk RAID-
0 to a six-disk RAID-5 took only 53 minutes on the same system, also using 18 GB drives.
Despite all these caveats, raidreconf is still useful, simply because no alternative is avail-
able. Just be certain to make a backup before using it on an array with data (as you should
always do when using beta software on critical data).

Options

-o raidtab
Specifies the raidtab file that contains the entry for the current (about to be reconfig-
ured) array.

-n raidtab
Indicates the raidtab file that contains the entry for the new (post-reconfigured) array.

-m mdevice, --mddev mddevice
Specifies the array to reconfigure (for example, /dev/md0).

-i device, --import device
Imports data from a single block device into a new array.

-e device, --export device
Exports data from an existing array to a single block device.

-h, --help
Displays some helpful information about the command.

-V, --version
Displays the command’s version.

Example usage

The following example imports data from /dev/sda8 to a new array, /dev/md0, as defined in
/etc/raidtab.

raidreconf -i /dev/sda8 -n /etc/raidtab -m /dev/md0

Since /dev/sda8 and /dev/md0 differ in size, the filesystem that is already on /dev/sda8 will
need to be resized once it is copied to /dev/md0. Since it’s an ext2 filesystem, we can use
resize2fs to change the size of the filesystem to fill the new array. But first, we have to fsck
the filesystem.

e2fsck -fy /dev/md0
resize2fs /dev/md0

To resize an array, simply make a copy of your /etc/raidtab file and edit the stanza for the
array you want to resize to include a new disk, or to remove an existing one. Then use
raidreconf. Remember that if you remove a disk, you need to be certain that the resulting
array is large enough to store the data that’s already on it. Whether you add a disk or
remove one, you will need to resize the filesystem, using resize2fs or the appropriate utility
for the filesystem you have chosen. If you add a disk, you should resize the filesystem after
you run raidreconf. Shrink the filesystem before running raidreconf if you are removing a
disk. In the next example, the array /dev/md0, defined in /etc/raidtab, will be converted to
the array defined in /root/raidtab.new:

raidreconf -o /etc/raidtab -n /root/raidtab.new -m /dev/md0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

raidstart | 127

Once the conversion is completed, manually fsck the new array to ensure that everything
was successful.

e2fsck -f /dev/md0

If e2fsck (or another filesystem check program) returns no errors, raidreconf was a success.
Errors mean that something went wrong and that you will need to restore from backups.
Using e2fsck to repair any problems that are detected is likely to be a fruitless effort.

You can also change the raid-level in the new raidtab file to convert between RAID-0 and
RAID-5. raidreconf also ships with a HOWTO written by Danny Cox.

raidsetfaulty
raidsetfaulty mddevice memberdevice

Use raidsetfaulty to mark a member disk as failed. For example, if you suspect there are
problems with a disk, but the md driver hasn’t yet kicked it out of the array, you can use
raidsetfaulty to fail the disk manually. Once a disk is failed, you can use raidhotremove to
pull it out of the array.

Options

raidsetfaulty has no command-line options. It takes an md device and a member disk as its
only arguments.

Example usage

The following marks /dev/sdd1, a member of /dev/md0, as failed:

raidsetfaulty /dev/md0 /dev/sdd1

Once raidsetfaulty is executed, /proc/mdstat will show that the disk has failed. If a spare
disk is available, recovery will automatically begin:

cat /proc/mdstat
Personalities : [linear] [raid0] [raid1] [raid5] [multipath]
read_ahead 1024 sectors
md0 : active raid1 sdb1[2] sdd1[0](F) sdf1[1]
 17920384 blocks [2/1] [_U]
 [>....................] recovery = 4.2% (764480/17920384)
finish=10.4min speed=27302K/sec
unused devices: <none>

raidstart
raidstart [options] mddevice

Although the modern kernel can now automatically detect and initialize RAID devices, it
might be necessary to manually start a device. Maybe the array was not properly initialized
when the system booted, or perhaps you are simply experimenting with various types of
arrays. The command is also useful for restarting arrays in the unlikely event that they have
crashed.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 4: Software RAID Reference

Options

-a, --all
Applies the command to all RAID devices found in /etc/raidtab. You will not need to
specify an mddevice.

-c, --configfile filename
Uses a configuration file other than the default /etc/raidtab.

-h, --help
Displays some helpful information about the command.

-V, --version
Displays the command’s version.

Example usage

The following starts all arrays described in /etc/raidtab:

raidstart -a

The following starts all arrays defined in /home/derek/example-raid0:

raidstart -a -c /home/derek/example-raid0

The following starts only the array /dev/md2, as described in /etc/raidtab:

raidstart /dev/md2

The following starts /dev/md2, as defined in /home/derek/example-raid0:

raidstart -c /home/derek/example-raid0 /dev/md2

raidstart can also be included in system initialization scripts. This is quite useful in cases in
which you don’t want the kernel to automatically detect and activate software arrays.
Perhaps you would like to defer array startup until after some other scripts have run, or
maybe you are not using MS-DOS partitions and simply can’t autostart. Simply add the
raidstart command to the appropriate system initialization files. Many distributions, in
fact, provide an initialization script that automatically parses /etc/raidtab and activates
arrays that it finds there. /etc/rc.d/rc.sysinit on Red Hat performs this function, for example.

I want to point out that many users report that raidstart is unreliable,
especially in cases when the first component drive listed in /etc/raidtab
has failed or when major or minor numbers for component disks have
changed. For that reason, using kernel autodetection, or even mdadm,
are recommended alternatives.

raidstop
raidstop [options] mddevice

raidstop is the counterpart of raidstart and is useful for the same reasons. Since member
disks can be allocated to only one array at a time, arrays must be deactivated by using
raidstop before their member disks can become available to use in new arrays.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

mdadm | 129

Options

-a, --all
Applies command to all devices found in /etc/raidtab. You will not need to specify an
mddevice.

-c, --configfile filename
Specifies the use of a configuration file other than the default /etc/raidtab.

-h, --help
Displays configuration flags and exits.

-V, --version
Displays the command version and exit.

Example usage

The following stops all devices found in /etc/raidtab:

raidstop -a

The following stops all arrays defined in /home/derek/example-raid0:

raidstop -a -c /home/derek/example-raid0

The following stops /dev/md2, as defined in /home/derek/example-raid0:

raidstart -c /home/derek/example-raid0 /dev/md2

The following stops only the array /dev/md2, as described in /etc/raidtab:

raidstart /dev/md2

mdadm
mdadm provides a convenient, single-command interface for managing software
arrays under Linux. While mdadm is fully functional without the use of a configura-
tion file, it does support a configuration file, /etc/mdadm.conf, which is more concise
and straightforward than /etc/raidtab. With mdadm, the configuration file is created
after arrays, as a way to preserve information for arrays and member disks, so that
they can be reactivated later. mdadm can be used as a total replacement for raidtools.

mdadm
mdadm [mode] mddevice [options] memberdevices

mdadm has several modes of operation: Create, Build, Assemble, and Monitor. Each of
these modes has its own command-line switch. In addition to these modes, there are many
management features that operate independently. These standalone features are grouped
into Manage or Miscellaneous mode. Most mdadm options have a long and a short form,
although a few options have only a long form, to safeguard against using them acciden-
tally. You can use whichever form you prefer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 4: Software RAID Reference

General options for mdadm

-h, --help
Displays general help for mdadm. The --help option can also be combined with other
options to display topic-specific help (for example, mdadm --create -help).

-V, --version
Displays the mdadm version.

-v, --verbose
Increases verbosity. This option can be combined with other options to increase the
amount of information that mdadm displays.

Create and Build modes
mdadm --create mddevice [options] memberdevices
mdadm --build mddevice [options] memberdevices

The Create and Build modes are similar in that they are both used to create new arrays.
However, Build mode is used only for backward compatibility, to create legacy arrays
without a RAID superblock. Never use Build mode to create a new array.

Options

-C, --create
Creates a new array.

-B, --build
Creates an old-style array without a RAID superblock.

-c, --chunk=
Sets the array chunk-size in kilobytes. The chunk-size is a power of two between 4 and
4096. For example, -c128 or --chunk=128 sets a chunk-size of 128 KB. The default is
64 KB.

--rounding=
Sets the rounding factor, which linear mode uses to align I/O operations. The rounding
factor is similar to chunk-size, with the exception that it does not distribute operations
across multiple disks. The default value of 64 KB should be fine for most users. The
same rules that apply to chunk-size apply to rounding (for example, --rounding=8 for 8
KB rounding).

-l, --level=
Specifies the RAID level: linear, RAID-0, RAID-1, RAID-4, or RAID-5. For Build
mode, only linear and RAID-0 are supported. For example, type -l5 or --level=5 for
RAID-5.

-p, --parity=, --layout=
Sets the parity algorithm for RAID-5. The parity algorithmoptions are left-asymmetric,
right-asymmetric, left-symmetric, or right-symmetric. The best choice is left-symmetric
(which is also the default). Choices may also be abbreviated as la, ra, ls, and rs. Exam-
ples include -pls, --parity=left-symmetric, or --layout=left-symmetric.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Create and Build modes | 131

-n, --raid-disks=
Defines the number of member disks in an array. This is equivalent to nr-raid-disks
when working with /etc/raidtab and raidtools. Like nr-raid-disks, it does not include
spare disks. For example, type -n5 or --raid-disks=5 for five member disks.

-x, --spare-disks=
Defines the number of spare disks in an array (equivalent to nr-spare-disks in /etc/
raidtab). For example, enter -x1 or --spare-disks=1 for a single spare disk.

-z, --size=
Manually sets the size in kilobytes of member disks in a RAID-1, RAID-4, or RAID-5.
By default, the size is automatically computed by mdadm. The --size must be a
multiple of the --chunk-size and must leave at least 128 KB at the end of each device
for the RAID superblock. This is useful when working with disks of varying sizes. It’s
also useful if the sizes of your disks are incorrectly calculated. For example, with a
chunk size of 64 KB, -z16000 or --size=16000 sets the size of each component disk to 1
GB (64 KB * 16,000).

-f, --force
Normally when a RAID-5 is created, mdadm builds the array with a missing disk and
then inserts the remaining disk into the array. This induces recovery, instead of the
slower resynchronization process. The --force option causes mdadm to create an array
the traditional way, using resynchronization instead of recovery to initialize the array.

--run
Starts the array even if mdadm detects problems. Using --run will prevent mdadm from
requiring confirmation for potentially dangerous operations. For example, if mdadm
detects an existing filesystem or RAID superblock on a member disk, --run will none-
theless force the array online, possibly destroying data.

--readonly
Starts the new array as read-only.

Example usage

All --create and --build operations must contain at least --raid-disks and --level options. The
following creates a RAID-0 at /dev/md0 with a chunk-size of 128 KB and two member
disks.

mdadm --create /dev/md0 --level=0 --chunk=128 --raid-disks=2 /dev/sda1 /dev/sdb1

The following commands use the short form of mdadm to create a four-disk RAID-0 at /dev/
md1. We don’t need to specify the chunk-size because the default chunk-size of 64 K is
what we want.

mdadm -C /dev/md1 -l0 -n4 /dev/sda1 /dev/sdb1 /dev/sdc1 /dev/sdd1

The list of component disks can be abbreviated using standard shell expansions. Consult
the manual pages for the particular shell you use to be sure you are using the proper
semantics. I use the Bourne-again shell (bash).

mdadm -C /dev/md1 -l0 -n4 /dev/sd[a-d]1
mdadm -C /dev/md1 -l0 -n4 -c64 /dev/sd{a,b,c,d}1

The three previous examples are equivalent. The list of devices is expanded from left to
right, so /dev/sda1 becomes the first member disk in the array and /dev/sdd1 becomes the
last.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 4: Software RAID Reference

Linear mode uses a rounding factor instead of a chunk-size. This command creates a linear
mode array with two disks and a rounding factor of 128 KB:

mdadm -C /dev/md0 -llinear -n2 --rounding=128 /dev/hd{a,b}1

RAID-1 does not require a chunk-size:

mdadm -C /dev/md0 -l1 -n2 /dev/sd{a,b}1

RAID-5 can take both both a chunk-size and a parity algorithm. The following example
creates a five-disk RAID-5 at /dev/md0, using a chunk-size of 128 KB and the left-symmetric
algorithm:

mdadm -C /dev/md0 -l5 -c128 -pls -n5 /dev/sd[a-e]1

By default, RAID-5 will automatically choose the left-symmetric parity algorithm, and all
levels that use striping default to a 64 KB chunk-size. So you don’t need to specify either
option on the command line if the defaults meet your needs.

Use the -x option to specify spare disks for arrays that support redundancy. In this
example, a RAID-1 is created at /dev/md0 with /dev/sda1 and /dev/sdb1 as its member disks.
/dev/sde1 is a spare disk. The last disk listed on the command line becomes the spare disk.

mdadm -C /dev/md0 -l1 -n2 -x1 /dev/sd{a,b,e}1

RAID-5 can also use spare disks. Normally, the last disk listed on the command line
becomes a spare disk (or the last two disks, if you specified -x2, and so on). However,
because of the way that mdadm creates a RAID-5, this isn’t always the case. I mentioned in
earlier chapters that resynchronization occurs when an array is initialized and that recovery
occurs when an array rebuilds after being in degraded mode. Under RAID-5, recovery is
faster than resynchronization, so mdadm attempts to force recovery mode to synchronize
disks, rather than using the slower resynchronization process.

To facilitate this, mdadm creates an array with N-1 member disks and X+1 spare disks, as
specified by the --raid-disks (-n) and --spare-disks (-x) options. The kernel then initiates
recovery when it notices the array is degraded and inserts one of the spare disks into the
array. In the following example, a five-disk RAID-5 with one spare disk is created at /dev/
md0. /dev/sdf1 becomes the spare disk because mdadm assembles the array using the first
four disks and then inserts the last (/dev/sdf1) of the two spare disks. This induces recovery,
and /dev/sde1 becomes the only remaining spare disk.

mdadm -C /dev/md0 -l5 -n5 -x1 /dev/sd{a,b,c,d,e,f}1

To force mdadm to initialize a RAID-5 using resynchronization instead of recovery, while
honoring the device order at it appears on the command line, use the --force or -f option:

mdadm -C /dev/md0 -f -l5 -n5 -x1 /dev/sd{a,b,c,d,e,f}1

mdadm can also create hybrid arrays:

mdadm -C /dev/md0 -l1 -n2 -x1 /dev/sd{a,b,c}1
mdadm -C /dev/md1 -l1 -n2 -x1 /dev/sd{d,e,f}1
mdadm -C /dev/md2 -l0 -c64 -n2 /dev/md{0,1}

This example creates two mirroring arrays, each with a spare disk (/dev/md0 and /dev/md1).
The third command combines both of these arrays into a RAID-0 with a chunk-size of 64
KB.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Assemble mode | 133

Assemble mode
mdadm --assemble mddevice [options] memberdevices

Assemble mode activates an array that has already been created using --create or --build. It
might be helpful to think of Assemble mode as being similar to the raidstart command.

Options

-A, --assemble
Assembles (starts) an existing array.

-u, --uuid=
Specifies the UUID of an array to assemble. Disks are scanned for a RAID superblock
containing the UUID and combined into an array.

-m, --super-minor=
Uses the minor number to identify which member disks belong to an array. All soft-
ware arrays have a major number of 9. By default, each array has a minor number that
corresponds to the number of its device special name. Thus, /dev/md1 has a minor
number of 1, and /dev/md22 has a minor number of 22.

-s, --scan
Scans the configuration file /etc/mdadm.conf for information that could be used to
assemble the array listed on the command line. This is useful for assembling arrays
without having to remember their UUIDs, minor numbers, or component devices. See
the “/etc/mdadm.conf” section, later in this chapter, for more information.

-c, --config=
Specifies an alternate location for /etc/mdadm.conf. See the “/etc/mdadm.conf” section,
later in this chapter, for more information.

-R, --run
Starts an array when possible, even if some of its member disks are missing or unavail-
able. This is useful for starting a RAID-1, RAID-4, or RAID-5 in degraded mode.

-f, --force
Starts an array even if the RAID superblocks found on member disks are inconsistent.

Example usage

Assemble the array named /dev/md1 from all disks whose names begin with /dev/sd and
that bear the specified UUID:

mdadm --assemble /dev/md1 --uuid=0bd9fe83:702b6f5e:ab4d0e06:7dd7dbf4 /dev/sd*

You can examine the first partition of SCSI disks A through Z for the array with UUID
0bd9fe83:702b6f5e:ab4d0e06:7dd7dbf4 and start it on /dev/md1:

mdadm -A /dev/md1 -u0bd9fe83:702b6f5e:ab4d0e06:7dd7dbf4 /dev/sd[a-z]1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 4: Software RAID Reference

Search SCSI disks A through Z for member disks with the minor number 1 and combine
them into /dev/md1:

mdadm -A /dev/md1 --super-minor=1 /dev/sd[a-z]1

The following command looks in /etc/mdadm.conf for a list of devices to scan for the minor
number 1 and the UUID 0bd9fe83:702b6f5e:ab4d0e06:7dd7dbf4. When both a UUID and a
minor number are specified, both items must match the member disk for the disk to be
considered an array component.

mdadm -A /dev/md1 -m1 -u0bd9fe83:702b6f5e:ab4d0e06:7dd7dbf4

Combine the --scan option with the -A assemble option to activate an md device, using an
array entry found in /etc/mdadm.conf:

mdadm -A --scan /dev/md0

Start all arrays that have entries in /etc/mdadm.conf:

mdadm -As

Refer to the “/etc/mdadm.conf” section, later in this chapter, for further information on how
to create a configuration file and use it with assemble mode.

Monitor mode
mdadm --monitor mddevice [options]

Monitor, or Follow, mode allows administrators to configure email notification, set up
event handling, and share spare disks between arrays.

Options

-F, --follow, --monitor
Enables Follow mode for the specified array(s). mdadm will not exit when Follow
mode is invoked. Instead, it polls arrays and monitors for critical events. Run mdadm
in the background as necessary.

-m, --mail=
Sets the email address to notify when a failure event occurs. Example: -mderek or
--mail=derek.

-p, --program=, --alert=
Executes the specified program when an event occurs. You can create homegrown
scripts to help mdadm monitor and manage arrays. Examples of these options include
-pmymdmonitor.sh or --program=/usr/local/sbin/mymdmonitor.pl.

-d, --delay=
Changes the number of seconds to wait between polling arrays (for example, -d30 or
--delay=30 for thirty seconds). The default is one minute.

-s, --scan
When used in Monitor mode, consults /etc/mdadm.conf for a MAILADDR line that indi-
cates where to email results, and for a PROGRAM line that indicates what program to run,
instead of taking those pieces of information from the command line.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Monitor mode | 135

Example usage

When monitor mode is invoked, mdadm will not exit, so it’s a good idea to run it in the
background and redirect its output to a file that you can examine. The following example
polls /dev/md1 every sixty seconds (the default) and sends critical event notifications to
root:

nohup mdadm --monitor /dev/md1 --mail=root &

If an md device is not specified on the command line, mdadm will monitor all devices listed
in /etc/mdadm.conf. The next example monitors all arrays listed in the configuration and
sends notifications to derek@azurance.com.

nohup mdadm --monitor --mail=derek@azurance.com &

It’s useful to invoke mdadm in monitor mode when the system boots. You can do this by
creating an rc script for it at specific runlevels or adding it to /etc/rc.local where available.
Chapter 7 covers practical usage of mdadm --monitor.

mdadm reports the following events via email:

Fail mddevice
A member disk that was part of mddevice has failed and was marked as faulty.

FailSpare mddevice spare-disk
The spare-disk that was added to mddevice failed before reconstruction completed.

In addition to Fail and FailSpare, mdadm reports the following events to the program speci-
fied on the command line using --program= or in /etc/mdadm.conf.

DeviceDisappeared mddevice
An array that was active during the last poll is no longer active.

NewArray mddevice
An array that was inactive during the last poll is now active.

RebuildStarted mddevice
The array has begun reconstruction.

Rebuild[20,40,60,80] mddevice
The percentage complete for an array that is undergoing resynchronization or recon-
struction. The status is reported at 20, 40, 60, and 80 percent.

SpareActive mddevice spare-disk
A spare disk that was inserted to replace a failed disk has been activated, meaning that
the rebuild process has completed.

MoveSpare mddevice mddevice
A spare disk has been moved from one array to another.

Event names and device information is passed to the receiving program as command-line
options. So if you decide to develop your own monitoring utilities, parsing the command
line passed to your script or program will provide you with the event, the md device name,
and in some cases, the name of a spare disk or additional md device. To get an idea of how
the events work, I suggest using echo as the program to execute:

nohup mdadm --monitor --program=/bin/echo &

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 4: Software RAID Reference

The previous example creates the file nohup.out in the current directory or in your home
directory. Because we have set echo as the event program to execute, mdadm will print any
event information to nohup.out.

The next example imports an email address and event program from /etc/mdadm.conf and
polls all arrays listed in the configuration file every thirty seconds:

nohup mdadm --monitor --scan --delay=30 &

Manage and Miscellaneous modes
mdadm [options] mddevice memberdevices
mdadm mddevice [options] memberdevices
mdadm [options] memberdevices
mdadm [options]

The remaining options fall into the loosely defined categories of Manage and Miscella-
neous modes. For the most part, these options work individually, but some of them can be
combined to provide additional functionality. Many of these options are used on arrays,
while some of them are used directly on member disks. See the “Example usage” section
that follows for some common tasks.

Options

-Q, --query
Queries an array or member disk to determine array properties, member disk proper-
ties, or both in cases when an array is also a member disk (in a hybrid array, for
example). --query displays very brief information: array size, RAID level, and status.
For member disks, it displays the disk sequence instead of the array size.

-D, --detail
Prints verbose details about an active array.

-E, --examine
Prints the contents of the md superblock from a member disk. This is usually a single
device, but in the case of hybrids, it can also be an array.

-b, --brief
When combined with either --detail or -examine, generates a configuration file entry
for an array. When combined with --detail, an active array is queried and used to
generate the configuration entry. When combined with --examine, the RAID super-
block is read from a member disk and used to generate the configuration entry. In
general, it’s best to use the --detail form when possible because on-disk superblocks
could occasionally contain incorrect information.

-s, --scan
When combined with --detail or --examine, provides results similar to --brief. The
difference in this case is that --scan queries multiple arrays or member disks and gener-
ates /etc/mdadm.conf entries for each array it discovers. mdadm --detail --scan looks for
active arrays in /proc/mdstat and generates configuration file entries for each array.
mdadm --examine --scan looks for a list of potential member disks in /etc/mdadm.conf,

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Manage and Miscellaneous modes | 137

reads the RAID superblock from each disk, and then generates a configuration line for
each unique array. See the “/etc/mdadm.conf” section, later in this chapter, for more
information.

-S, --stop
Stops a running array. Equivalent to the raidtools command raidstop.

-a, --add
Adds a disk to an inactive array or hot-adds a disk to an active array. This option
works like the raidtools command raidhotadd.

-r, --remove
Removes a member disk from an active array. This option works like the raidtools
command raidhotremove.

-f, --fail, --set-faulty
Marks a member disk in an active array as failed. This option works like the raidtools
command raidsetfauly.

 -R, --run
Starts an inactive array. When mdadm assembles arrays that are missing component
disks, it will mark the arrays as inactive, even if they can function with disks missing
(for example, a RAID-1, RAID-4, or RAID-5 that is in degraded mode). The --run
option will start an inactive array that has already been assembled. --run works as a
standalone option, but it can also be combined with --assemble to automatically start a
degraded array.

-o, --readonly
Marks an array as read-only.

-w, --readwrite
Marks an array as read/write.

--zero-superblock
Erases the RAID superblock from the specified device.

Example usage

The query option outputs brief information about an array or member disk. For example:

mdadm --query /dev/md0:
/dev/md0: 34.18GiB raid5 3 devices, 1 spare. Use mdadm --detail for more detail.
/dev/md0: No md super block found, not an md component.

When used on member disks, --query will output disk sequence information. The
following example uses the short form of the command:

mdadm -Q /dev/sdc1
/dev/sdc1: is not an md array
/dev/sdc1: device 2 in 3 device active raid5 md0. Use mdadm --examine for more
 detail.

When an array is also a member disk, as in the case of a hybrid array, --query displays
information about both of its roles:

mdadm -Q /dev/md1
/dev/md1: 17.09GiB raid1 2 devices, 0 spares. Use mdadm --detail for more detail.
/dev/md1: device 1 in 2 device active raid0 md2. Use mdadm --examine for more
 detail.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 4: Software RAID Reference

The output of mdadm --detail displays information about an active array. There is some
overlap between this information and the data found in /proc/mdstat, but mdadm provides
some additional information. In the following example, we have a four-disk RAID-5:

mdadm --detail /dev/md0
/dev/md0:
 Version : 00.90.00
 Creation Time : Wed Mar 13 06:52:41 2002
 Raid Level : raid5
 Array Size : 53761152 (51.27 GiB 55.05 GB)
 Device Size : 17920384 (17.09 GiB 18.35 GB)
 Raid Devices : 4
 Total Devices : 4
Preferred Minor : 0
 Persistance : Superblock is persistant

 Update Time : Wed Mar 13 06:52:41 2002
 State : dirty, no-errors
 Active Devices : 4
Working Devices : 4
 Failed Devices : 0
 Spare Devices : 0

 Layout : left-symmetric
 Chunk Size : 64K

 Number Major Minor RaidDisk State
 0 8 17 0 active sync /dev/sdb1
 1 8 33 1 active sync /dev/sdc1
 2 8 49 2 active sync /dev/sdd1
 3 8 65 3 active sync /dev/sde1
 UUID : 3d793b9a:c1712878:1113a282:465e2c8f

The first section of the listing displays general information about the array, including the
version of the md driver that created it, the creation date and time, the RAID level, the total
size, and the total number of disks.

The second section displays information about the current state of the array. Update Time
reflects the last time that the array changed status. This includes disk failures, as well as
normal operations such as array activation. State reflects the health of the array; in this
case, the array is operating within normal parameters, as indicated by no-errors. The dirty
state might be a bit confusing, since it implies that there is a problem. Dirty simply means
that there are array stripes that haven’t yet been committed to disk by the kernel. When an
array is stopped, dirty stripes are written and the array becomes clean. Both dirty and
clean indicate normal operation.

Next, a list of Active Devices, Working Devices, Failed Devices, and Spare Devices is
displayed. Active Devices reflects the number of functioning (non-failed) array members,
but does not include spare disks. Working Devices is the total number of non-failed disks in
the array (Active Devices + Spare Devices). Failed Devices and Spare Devices display the
number of each of those types, respectively.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Manage and Miscellaneous modes | 139

The next section displays properties that are specific to the RAID level. Layout reports the
parity algorithm in use, followed by the Chunk Size in kilobytes. Because both of these
options are specific to various RAID levels, they will not appear in all output of mdadm -D.
In this example, both settings are displayed because RAID-5 is in use. A mirroring array
would display neither because it does not support striping and does not use parity, while a
RAID-0 would display only Chunk Size.

The last section displays a list of all array member disks, including their major and minor
numbers, their positions in the array, current states, and block special files. Finally, the
UUID of the array, if available, is displayed.

The -E or --examine option is used to display information about a member disk, as
opposed to information about the array.

mdadm --examine /dev/sdb1
/dev/sdb1:
 Magic : a92b4efc
 Version : 00.90.00
 UUID : 3d793b9a:c1712878:1113a282:465e2c8f
 Creation Time : Wed Mar 13 06:52:41 2002
 Raid Level : raid5
 Device Size : 17920384 (17.09 GiB 18.35 GB)
 Raid Devices : 4
 Total Devices : 4
Preferred Minor : 0

 Update Time : Wed Mar 13 06:52:41 2002
 State : dirty, no-errors
 Active Devices : 4
Working Devices : 4
 Failed Devices : 0
 Spare Devices : 0
 Checksum : 79b87088 - correct
 Events : 0.1

 Layout : left-symmetric
 Chunk Size : 64K

 Number Major Minor RaidDisk State
this 0 8 17 0 active sync /dev/sdb1
 0 0 8 17 0 active sync /dev/sdb1
 1 1 8 33 1 active sync /dev/sdc1
 2 2 8 49 2 active sync /dev/sdd1
 3 3 8 65 3 active sync /dev/sde1

The above output is from a member disk (/dev/sdb1) from the array used in the previous
--detail example. The -E or --examine option reads the md superblock from an array
member and displays the information found there. The --detail option, in contrast, looks
at the array as a whole. --examine is used to query individual member disks. However,
since you can combine arrays into larger arrays (such as RAID-10), the member disk that
is displayed by the --examine option could actually be an array in its own right, instead
of an individual disk. While much of the information provide by --detail and --examine
overlaps, you can see that there are some pieces of information that are unique to each
option.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 4: Software RAID Reference

Magic shows the magic number* used by the kernel RAID subsystem to mark the beginning
of a RAID superblock. This hexadecimal number (a92b4efc) is a constant defined in the
Linux kernel. Every md superblock stores Checksum information about itself. When mdadm
examines a component disk, it computes the Checksum for the superblock and compares it
to the value already stored there. In this case, that computation matched the value found
on the disk. If there had been a discrepancy, it would have been noted here. Immediately
following is the event counter, which displays the number of Events in the array’s history.

Combine the --brief option with --detail to generate array entries suitable for /etc/mdadm.
conf. For instance, the following command generates an entry for /dev/md0. You might find
it convenient to redirect the output to /etc/mdadm.conf/.

mdadm --detail --brief /dev/md0
ARRAY /dev/md0 level=raid5 num-devices=4 UUID=41d0ebc5:befadd9f:cfab6144:dfa13287

Stop the array at /dev/md0:

mdadm --stop /dev/md0

Stop the arrays at /dev/md0, /dev/md1, and /dev/md2 using the short form of --stop:

mdadm -S /dev/md0 /dev/md1 /dev/md2

Run an array that was partially assembled, but not activated, because a missing disk would
have started it in degraded mode:

mdadm --run /dev/md0

Mark /dev/md0 as --readonly using the short form:

mdadm -o /dev/md0.

Mark /dev/md0 as --readwrite using the short form:

mdadm -w /dev/md0.

Erase the RAID superblock from /dev/sda1. This option has no short form.

mdadm --zero-superblock /dev/sda1

The --zero-superblock option also works on multiple disks:

mdadm --zero-superblock /dev/sd{a,b,c,d,e,f}1

/etc/mdadm.conf
Although mdadm does not rely on a configuration file, using one will make array
management much easier. /etc/mdadm.conf contains four types of lines that provide
information to mdadm. DEVICE lines tell mdadm which block devices are member
disks of an array, and ARRAY helps mdadm identify arrays that have already been cre-
ated. MAILADDR and PROGRAM lines provide information about where to send email
alerts and what program to execute when mdadm is monitoring arrays.

* Magic numbers have a few different definitions in computer programming. In this case, the magic number
is used to let programs like raidtools or mdadm know that a particular disk block marks the beginning of the
RAID superblock. The number itself, in this case, is arbitrary and simply acts as a marker. See the magic
number entry in the jargon file 4.3.1 for more information: http://www.tuxedo.org/jargon/html/entry/magic-
number.html.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Manage and Miscellaneous modes | 141

DEVICE lines

DEVICE entries have the following format:

DEVICE device1 device2 ... deviceN

DEVICE lines can contain a complete list of individual block devices or use shell
expansions to shorten the list and make managing the configuration file less tedious.
In the following example, the first two ATA disks and all SCSI devices are consid-
ered potential array components:

DEVICE /dev/hda /dev/hdb /dev/sd*

The wildcard in the previous example can also be confined to the first partition only:

DEVICE /dev/sd*1

You might not want to scan every SCSI device, since cycling through SCSI device
special files that don’t point to real disks is a waste of time. In the following exam-
ple, the first two partitions of the first four SCSI disks are considered member disks:

DEVICE /dev/sd[abcd][12]

You can also specify multiple wildcard entries on a single line. The next example
includes the first partition of the first four IDE disks and the first partition of the first
eight SCSI disks:

DEVICE /dev/hd[abcd]1 /dev/sd[a-h]1

Or, give each entry its own line:

DEVICE /dev/hdb1
/dev/sdb1 /dev/sdc1 and /dev/sdd1
DEVICE /dev/sd[bcd]1
/dev/sdk1 /dev/sdk2 /dev/sdl1 /dev/sdl2 /dev/sdm1
and/dev/sdm2
DEVICE /dev/sd[klm][12]

DEVICE lines can be shortened using the abbreviation DEV. For example:

DEV /dev/hd[abcd]1

ARRAY lines

ARRAY lines are bit different from DEVICE lines, in that they have two fields, an md
device name, and a list of identification information:

ARRAY mddevice idtype=info idtype=info ... idtype=info

Valid identifier types are as follows:

uuid=
A 128-bit hexadecimal number that matches the UUID stored in the RAID
superblock. A separator may appear after every 4 bits, but is not necessary. Use
mdadm -D to determine the UUID of an active array. In this example, the separa-
tor appears after every 32 bits: uuid=6055c0b4:c3ec7631:c069b1fc:695acc70.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 4: Software RAID Reference

super-minor=
The array’s minor number, as stored in the RAID superblock (for example,
super-minor=0). The minor number is written to the superblock when the array
is created. In general, if an array was created on /dev/md0, the minor number is
0, and so on. However, if arrays are started on different md devices than the ones
on which they were originally created, the minor number still remains the same.

devices=
A comma-separated list of devices that make up the array (for example,
devices=/dev/sda, /dev/sdb, /dev/sdc). Devices listed in a device identifier must
also appear on a DEVICE line.

level=
The RAID level of the array (for example, level=1). This option is only included
for compatibility with the output of mdadm --examine --scan.

num-devices=
The total number of devices in an array (for example, num-devices=6). This is
also used for compatibility with mdadm --examine --scan.

spare-group=
The identifier used by mdadm when in monitor mode to keep track of moveable
spare disks (for example, spare-group=database). The value is an arbitrary text
mnemonic. mdadm will move spare disks, as needed, between arrays that are in
the same spare group.

A typical entry using a UUID is:

ARRAY /dev/md0 UUID=ea3cb40f:b0bb05c1:b6525f1c:bf21268e

An ARRAY line that uses the minor number:

ARRAY /dev/md0 superminor=0

The following uses a device list to provide identification:

ARRAY /dev/md0 devices=/dev/sdb1,/dev/sdc1,/dev/sdd1

Identification methods can be combined to place multiple conditions on what is
required to activate an array. For example, you can combine a UUID with a RAID
level and the number of member disks to further narrow the scope of an ARRAY line:

ARRAY /dev/md0 level=raid5 num-devices=6 UUID=6055c0b4:c3ec7631:c069b1fc:695acc70

In the previous example, /dev/md0 is a RAID-5 with six member disks and a UUID of
6055c0b4:c3ec7631:c069b1fc:695acc70. When mdadm -As /dev/md0 is executed, all of
these conditions must be true, or the array will not be started.

The following example might be appropriate on a system that has a two-member
IDE array at /dev/md0 and a six-member SCSI array, with the UUID ea3cb40f:
b0bb05c1:b6525f1c:bf21268e at /dev/md1.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Manage and Miscellaneous modes | 143

ARRAY /dev/md0 spare-group=home_directories \
 super-minor=0 devices=/dev/hda1,/dev/hdb1
ARRAY /dev/md1 spare-group=home_directories \
UUID=ea3cb40f:b0bb05c1:b6525f1c:bf21268e \
devices=/dev/sda1,/dev/sdb,/dev/sdc

The arrays in the previous example both belong to the spare group home_directories.
So mdadm will share spare disks between the two arrays as needed. Don’t forget that
DEVICE lines listing the member disks for each of these arrays also need to be included
in your /etc/mdadm.conf file. For example:

DEVICE /dev/sd[a-z]1 /dev/hda /dev/hd?1
ARRAY /dev/md0 spare-group=home_directories \
 super-minor=0 devices=/dev/hda1,/dev/hdb1
ARRAY /dev/md1 spare-group=home_directories \
 UUID=ea3cb40f:b0bb05c1:b6525f1c:bf21268e \
 devices=/dev/sda1,/dev/sdb,/dev/sdc

Once you have created /etc/mdadm.conf, you can easily assemble arrays without pro-
viding detailed information on the command line. The following example starts /dev/
md0 based on its ARRAY entry in /etc/mdadm.conf:

mdadm -As /dev/md0

MAILADDR lines

/etc/mdadm.conf should have only one MAILADDR line, which should contain a single
email address. The address listed will receive email alerts from mdadm when it is
invoked in monitor mode. For example:

MAILADDR derek@azurance.com

If you need to send alerts to more than one user, set up aliases in your mail transport
agent. Using a MAILADDR line in /etc/mdadm.conf is not necessary, but it does mean
that you can omit the --mail option on the command line when using mdadm in
Monitor mode.

PROGRAM lines

The PROGRAM line specifies the name of a program or script to execute when an event
is detected in monitor mode. This eliminates the need to provide a program name on
the command line with --program in monitor mode. /etc/mdadm.conf should have
only one PROGRAM line, containing the full pathname to execute. For example:

PROGRAM /usr/local/sbin/mymdalert.pl

Maintaining /etc/mdadm.conf

You should create /etc/mdadm.conf after you have built your first array and should
update any time you create a new array. Add the DEVICE, MAILADDR, and PROGRAM
entries by hand. ARRAY lines, however, can be added automatically by invoking

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 4: Software RAID Reference

mdadm. Combining -scan with either the --detail or --examine options causes mdadm
to scan /proc/mdstat and generate an ARRAY line for any array it finds there:

mdadm --detail --scan
ARRAY /dev/md0 level=raid0 num-devices=4 UUID=6055c0b4:c3ec7631:c069b1fc:695acc70
ARRAY /dev/md1 level=raid0 num-devices=2 UUID=930c4aaa:08c1fe3a:5c436830:3f4c5daa

The --detail option is useful to create ARRAY lines from active arrays. If an array is not
currently active, invoke mdadm with the --examine and --scan options to scan all
devices in /etc/mdadm.conf for RAID superblocks and then use the information to
organize member disks and create ARRAY lines.

mdadm can also generate an ARRAY entry for one array at a time. To do this, just com-
bine the --brief option with --examine or --detail and specify an md device or mem-
ber disk on the command line:

mdadm --detail --brief /dev/md0
mdadm --examine --brief /dev/sda1

The first command looks at an active array (/dev/md0, in this case) and generates an
ARRAY entry. The second command queries member disk /dev/sda1 and generates an
ARRAY line based on its RAID superblock. Use --detail to create an ARRAY line, when
possible.

You can also redirect the output of mdadm to append the ARRAY lines automatically
to /etc/mdadm.conf:

mdadm --detail --scan >> /etc/mdadm.conf
mdadm --detail --brief /dev/md0 >> /etc/mdadm.conf

But don’t forget to edit the file and add DEVICE lines that include all your member
disks. You should also add PROGRAM and MAILADDR lines as needed.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

145

Chapter 5 CHAPTER 5

Hardware RAID

Today, nearly every RAID controller manufacturer supports Linux in at least one of
its product lines. Furthermore, most of these vendors now provide open source driv-
ers for their cards, although in a few cases, the drivers have been developed by phil-
anthropic programmers. Some vendors have even ported their management
applications to Linux, although none of them yet provide source code for these
applications. The vendors and products discussed in this section are:

• Mylex AcceleRAID 352 (SCSI)

• Adaptec 2100S (SCSI)

• Promise FastTrak100 (ATA)

• 3ware Escalade 7500 (ATA)

• LSI Logic MegaRAID Elite 1650 (SCSI) and MegaRAID i4 (ATA)

The sections devoted to individual controllers apply generally to other models from
the same vendor, since they often share the same firmware and management inter-
faces. I’ll point out any differences of which I’m aware. The introductory sections of
this chapter will provide useful information, even if you choose a vendor that I have
not covered.

Choosing a RAID Controller
There are quite a number of issues involved in determining which RAID controller to
purchase. Chapter 2 covered basic hardware considerations and should help you dif-
ferentiate between some of the available controllers. Chapter 2 can also help you
choose between purchasing a SCSI or ATA controller, which is the first step in select-
ing a RAID controller.

I would like to point out that although hardware RAID controllers have traditionally
been SCSI-only, the demand for inexpensive and consumer-grade solutions has
prompted many vendors to include ATA controllers in their product lines. There are

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 5: Hardware RAID

even a few companies that specialize solely in ATA RAID controllers. While many
vendors now produce ATA controllers, many of them are low-quality and geared
toward consumer desktop systems, not servers. One reason for this trend is the
increasing omnipresence of ATA RAID on desktop motherboards. This makes it con-
venient for ATA RAID chipset manufacturers to build RAID cards to supplement
their product lines.

However, not all ATA RAID controllers are created equal. There are also some ven-
dors that specialize in high-end controllers that many organizations are now using to
create terabyte storage systems at costs much lower than SCSI solutions, and with
comparable performance. If you do choose ATA, I urge you to investigate thor-
oughly the solution you are considering, so that you don’t end up with commodity
hardware in a server. Some users even purchase ATA RAID controllers only for the
extra channels, running Linux software RAID instead of using the controller’s RAID
capabilities.

Regardless of which disk protocol you choose, RAID controllers share some addi-
tional properties that you should consider before your purchase.

Motherboard and System Compatibility
The most important issue to consider when purchasing a RAID controller is its
interoperability with the rest of your system. Many controllers are designed specifi-
cally to work in server motherboards or with specific motherboard chipsets. Some
controllers are even incompatible with certain hard disks and drive firmware. I can-
not stress enough the importance of doing your own research before purchasing.
When possible, avoid getting technical information of any kind from sales represen-
tatives. Instead, check the support section of the vendor’s web site for known issues,
mine the archives of related discussion lists, and in general, search the Web for user
reports about the controller. The Storage Review web site (http://www.storagereview.
com) is a good place to look for third-party evaluations.

During my evaluation of hardware RAID controllers, I encountered compatibility
issues with nearly every card I tested. I used several different motherboards (each
with a different BIOS and chipset) and found that each card had problems with at
least one of the motherboards, ranging from data corruption to general system fail-
ure. In some, but not all cases, upgrading the controller and the motherboard to the
most up-to-date firmware resolved the issues. Ironically, the one card that worked
with all three motherboards I tested did not work reliably with the disks I was using
until I upgraded both the controller and the drive firmware.

Controller Memory
The controller uses memory to cache data during write operations. This process
improves overall write performance and helps the system recover from a crash by

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Choosing a RAID Controller | 147

storing unwritten data in the controller cache and committing the data to disk when
the system restarts. The more controller cache you have, the more data the card can
buffer before committing the data to disk.

All RAID controllers come with a fixed amount of onboard memory, but it can usu-
ally be augmented by purchasing memory expansion kits.

In some cases, memory expansion kits are available only at the time of
purchase. You may not be able to order the kits standalone and install
them yourself. While many RAID controllers use standard 72-pin
SDRAM DIMMs (Dual Inline Memory Modules), purchasing untested
third-party upgrades is likely to void the controller’s warranty. Please
check with the vendor before upgrading any controller.

Purchasing additional controller memory is a good idea if you typically work with a
lot of large files, such as audio, video, or image files. If you have a lot of small files or
files of varying sizes, additional cache memory is unlikely to improve performance. In
general, additional controller cache memory will improve performance on systems
that have a lot of large sequential file I/O. Systems that lean toward random I/O on
small files won’t see much of a difference. A typical office file server probably doesn’t
need extra memory. A graphics or video production workstation does.

Battery backed-up cache memory

Many high-end controllers support an optional battery pack that ensures that data in
the controller cache memory is preserved during power failures. The amount of
memory you have on your controller generally affects how long the cache memory
will be preserved when the system loses power. Thus, if you purchase a controller
with extra memory, the time that the controller can preserve data in the cache
decreases. Cards with less memory can store data in the cache for a longer period
because there is less memory to power.

Product specification sheets or pre-sales materials should provide you with a chart
showing the length of time that cache memory will be preserved, based on how
much memory you have. Some vendors increase the number of batteries based on
the amount of memory installed, so that the duration of time when memory is pre-
served is consistent, regardless of how much memory you purchase. Check the speci-
fications prior to purchase to make sure that the controller and memory
combinations meet your needs.

JBOD (Just a Bunch of Disks)
While nearly all controllers support JBOD mode at this point, it’s still a good idea to
check with your vendor before purchasing. In particular, make sure that Linux will
recognize disks that are connected to the controller but are not part of any array. If

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 5: Hardware RAID

you don’t buy a card that supports JBOD mode, you’ll need a separate controller for
any non-RAID disks you want to connect to the system. Usually there are a couple of
controllers on the motherboard, but it’s best to double-check.

Software Considerations
There are also software issues to consider. First, is the controller you are thinking
about purchasing supported by Linux? If there is support, is it open source and inte-
grated into the kernel? Or is it available only as a kernel patch or as a binary-only
kernel module?

Integrated open source support is obviously the best bet when choosing any piece of
hardware for use with Linux, although in some rare cases. a vendor-provided kernel
patch might be more desirable.

Be extremely wary of binary-only modules. Forward compatibility is never guaran-
teed, and support is available only from your vendor, instead of the vast community
of open source developers. And you can’t fix problems that might arise on your own
because you don’t have access to the source code.

The availability of user-space tools—that is, tools that are run after the operating sys-
tem has loaded—is also a consideration. After all, the potential high-availability fea-
tures of RAID aren’t much good if you have to restart your system to run BIOS-level
configuration tools to perform essential administrative tasks such as creating a new
array, managing failed disks, and adding new spare disks. So, when choosing a con-
troller, look for a vendor that provides open source drivers, preferably integrated into
the current stable kernel tree, as well as some user-space management tools.

So far, I have not found any vendor-provided, open source management tools. How-
ever, I have been told by at least one vendor that they have plans to open source their
command line and GUI management tools, and I think this move will start a trend
among other manufacturers. In past years, there have been a few open source
projects that provided user-space support for various RAID controllers, but at the
time of this writing, they are all unmaintained.

Preparing Controllers and Disks
It’s vitally important that all disks used in any hardware array are identical (see the
“Matched drives” section in Chapter 2) and that all have the same firmware revision.
There are documented cases in which non-uniform firmware revisions have led to
data corruption. Furthermore, it’s important to use the latest firmware revision for
both controllers and disks and, in some cases, even for the BIOS on your mother-
board. In general, it’s a good idea to upgrade all system components to the most up-
to-date firmware before placing any system in production.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Preparing Controllers and Disks | 149

Computer equipment, especially disk controllers and hard disks, tends to sit in ware-
houses for several months before it is shipped to resellers and end users. That usu-
ally means that by the time you purchase your equipment, there has been at least one
firmware, or controller BIOS, release correcting important bugs that often affect
interoperability or performance.

For example, a controller I was working with during the course of this writing
wouldn’t work consistently using recently purchased SCSI hard disks that were a
couple of firmware revisions behind. Hard disks often ship with older firmware, and
that doesn’t usually affect systems that use standalone disks. However, since hard
disk firmware controls environmental factors such as rotation speed and thermal cal-
ibration, using disks with varying firmware in an array can be catastrophic. To func-
tion optimally, RAID controllers require that all disks be calibrated the same way.
Variations in firmware can foil the entire process.

Nearly every vendor provides simple utilities that perform firmware and BIOS
upgrades. These utilities are available from vendor web sites and FTP servers. Unfor-
tunately, very few component hardware vendors provide an easy way for Linux users
to apply these upgrades without depending on Microsoft products.

Almost all vendors distribute their upgrades and upgrade utilities in
ZIP archives. You will need the unzip utility to decompress them. It’s
also common for some of these vendors to distribute self-extracting
ZIP archives with the .exe extension. These archives are not self-
extracting under Linux, but you can use the unzip utility to manually
decompress the file’s contents.

That’s because all of these utilities (with a very small number of exceptions) are
designed to run under a DOS-compatible operating system. That means you will
need to provide your own bootable DOS disks, onto which you can copy firmware
and BIOS upgrades and their associated utilities. The problem is that many Linux,
and indeed many Unix, users lack access to Microsoft products. I went through sev-
eral major headaches when I was trying to upgrade the controllers that I’ll be dis-
cussing throughout the rest of this chapter, because I simply didn’t have a way to
create a bootable DOS diskette. Vendors don’t provide such diskettes because if they
did, they’d have to pay royalties to Microsoft.

One possible solution is that at most places of business, there are systems running
Microsoft operating systems. You can easily create a bootable DOS disk on such sys-
tems and place the necessary utilities and firmware revisions on them. Unfortu-
nately, I believe that this is illegal.

Fortunately, there are a few workarounds that are relatively hassle-free. Most hard
disk manufactures provide drive test utilities that come with bootable disks. You can
download one of these bootable floppy disk images from a hard disk vendor’s web

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 5: Hardware RAID

site, mount the filesystem under another Linux system, and erase the contents of the
disk, replacing them with your firmware and BIOS upgrades. Or you can use Free-
DOS.

FreeDOS
If you don’t have access to a Microsoft operating system to generate a bootable DOS
disk and upgrade system hardware, you will find FreeDOS very useful. FreeDOS is a
free (GPL) MS-DOS-compatible operating system. You can download a bootable
disk image from the FreeDOS web site (http://www.freedos.org) and use it to upgrade
system hardware with vendor-supplied utilities.

First, download a disk image from freedos.org. For each release, a subdirectory
named instdisk contains bootable disk images for floppy drives of various sizes. For
example, instdisk/1.44 contains bootable images for 1.44 MB floppy disks. Down-
load the file FD8_144.DSK from the directory:

ftp://ftp.ibiblio.org/pub/micro/pc-stuff/freedos/files/distributions/beta8/

Next, use dd to write the disk image onto a blank floppy disk:

dd if=/home/derek/FDB8_144.DSK of=/dev/fd0H1440 bs=1k

Format another floppy disk and create an MS-DOS filesystem on it:

fdformat /dev/fd0
mkfs.msdos /dev/fd0

Next, mount the newly formatted disk:

 # mount -t msdos /dev/fd0 /mnt/floppy

Copy the firmware upgrades you downloaded from your vendor to the disk. Next,
boot the system with the FreeDOS disk inserted. After the system starts, insert the
disk with the firmware upgrades and run the vendor-provided utility to update your
controllers and disks. You might need to create more than one blank disk in order to
store all the firmware files and utilities. Some of them will fill an entire 1.44 MB
floppy disk.

General Configuration Issues
While each Linux-compatible RAID controller has vendor-specific drivers and con-
figuration utilities, they all share some common semantics.

Controller Card BIOS
Like motherboards, most RAID controllers (and even many standard disk control-
lers) have an onboard controller BIOS. The controller BIOS performs many of the
same tasks as the BIOS on a motherboard (such as low-level disk maintenance and

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Configuration Issues | 151

configuration) and also provides an interface for configuring and managing RAID
devices. While some manufacturers also provide user-space tools, you will need to
configure the first array using the controller’s BIOS if you plan to install an operat-
ing system onto an array, and in some cases, even if you plan to install Linux directly
to a standalone disk connected to a RAID controller.

If you are interested only in adding a new array to an existing system, and not in add-
ing RAID support to your existing system disks (that is, you plan to keep your exist-
ing disk controller), you might be able to utilize user-space tools to configure and
initialize arrays. However, not all vendors provide tools to manage controllers using
Linux. Please see the specific controller sections later in this chapter for more infor-
mation, or check with your vendor if you are using a controller that isn’t covered in
this chapter.

Even if you have user-space tools available, you may wish to use the onboard BIOS
to configure arrays. Vendor-provided management tools for Linux are often buggy
and incompatible across different Linux distributions and versions (kernels, GUI
toolkits, and libraries). Some simply provide WINE-compatible executables. WINE
allows you to run Windows programs under Linux. Although WINE is widespread,
many programs are unstable when run under it.

Like any standard motherboard BIOS, most controllers follow a fairly standard menu
system, with the following conventions:

• Arrow keys and/or TAB move between fields.

• ENTER confirms, enters a submenu, or selects the current field.

• ESC moves to the previous menu or cancels the current dialog.

• PLUS, MINUS, and SPACEBAR change values in the current field.

Some fields might require normal alphanumeric input, and some controllers may
adhere to only a subset of these conventions.

System Installation
Normally you need to configure a hardware array using the controller’s BIOS before
you can install an operating system. However, there are a few exceptions when creat-
ing an array first is undesirable.

The first case is when you already have an operating system on a disk that is con-
nected to the controller. This usually happens when you upgrade an existing system
by installing a RAID controller. Some controllers support a pass-through mode,
which means that you can connect an existing system disk to a new controller and
boot the system normally, without any additional configuration. However, not all
controllers support this pass-through mode. In that case, you first need to configure
the existing system disk as a JBOD mode array. I’ve included cookbook examples for
setting up JBOD modes for existing system disks in many of the sections about indi-
vidual controllers, later in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 5: Hardware RAID

Since many users upgrade from a single disk environment to a RAID-1 configura-
tion, I have also included cookbook examples that will help you migrate from a sin-
gle disk system to RAID-1, using the controllers that I have evaluated. These
procedures are often not documented, even though they represent a common task
that many users and system administrators need to perform.

Unfortunately, it’s really not possible to move from a single disk system to any RAID
level other than JBOD or disk mirroring. Although moving from a single disk to a
RAID-0 or RAID-5 might be highly desirable, it is nearly impossible without a
backup and recovery step. Unfortunately, some manufacturers imply that these pro-
cedures are possible in the way they name their menu items and document the con-
trollers. I’ll point out any potential workarounds or migration hazards that I’m aware
of in the sections on individual controllers.

If you plan to use arrays only for data drives, you can safely install the operating sys-
tem onto a single disk and create arrays later. You might need first to create a JBOD
mode array that refers to the disk onto which you plan to install the system. When
you are ready to create arrays, either reboot the system and use the controller’s BIOS
or use user-space utilities, if available.

RAID Autoconfiguration
Many RAID controllers come with automatic configuration features. These features
are designed to make it easy for users who have no background in RAID to help
determine which RAID level best meets their needs. I hope that, having purchased
this book, you never need to use these features. Instead, configure your arrays manu-
ally, using the material from earlier chapters as a reference.

Autoconfiguration works by asking the user a series of questions that are used to
determine performance and redundancy requirements. For example, the controller
might prompt the user with the question:

Do you need fault tolerance?

Depending on whether the user answers yes or no, the controller can determine
which RAID levels to eliminate from the possible choices. An answer of “no” elimi-
nates RAID-1 and RAID-5, while answering “yes” includes them, but excludes
RAID-0 and JBOD. A follow-up question might look like this:

Do you need a spare disk?

Depending on how this question is answered, the controller could determine how to
size a potential array, based on the number of disks connected to the system.

Vendors have several different names for the autoconfiguration process, such as Auto
Configure, Assisted Configuration, or Configuration Wizard, depending on the con-
troller you purchase. I recommend against using these shortcuts, because they obfus-
cate the configuration process and build arrays using the lowest common

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

General Configuration Issues | 153

denominator for important array properties. These features also don’t take future
expansion into account. A system administrator might know that while there are
only five disks connected to the controller, one more is arriving next week. Because
the controller only makes autoconfiguration suggestions based on hardware that is
already connected to the system, it might recommend creating a four-disk RAID-5
with one spare disk. However, the system admistrator will realize that creating a
RAID-5 that uses all five disks is a better option. The disk arriving next week can be
introduced later and set up as a spare disk.

Write Cache
Controller cache memory operates in one of two modes. Each mode offers trade-offs
between performance and reliability.

Write-back caching

When the controller is configured for write-back caching, the controller holds data in
the controller’s memory until it is full or until the controller is idle and then com-
mits the data to disk. This mode yields the best performance, but it’s not as reliable
as write-through caching because a system failure could result in the loss of data that
is still in the controller’s memory, but not flushed to disk.

Having a controller battery is very helpful when using the write-back caching method
because a power failure only means that unflushed buffers are stored until the sys-
tem restarts. Extra controller memory is also important for write-back caching. On
heavily used systems with lots of sequential disk I/O, it’s a good idea to consider get-
ting a memory upgrade.

Write-through caching

Write-through caching commits data to disk immediately. This method is much
slower than write-back caching, but it ensures that all writes are committed to disk
and are never lost because a failure occurred while unwritten buffers were waiting in
the controller’s memory. If you use write-through caching, the amount of memory
on your controller is not as important as getting a fast controller and fast disks.

Each array can generally use its own caching method. Thus, it’s possible to config-
ure heavily used, less important arrays for write-back caching, and critical, less fre-
quently used system disks for write-through operation.

Don’t forget that other system features might help provide the security that write-
through caching delivers. Data journaling under XFS or ext3 is one option. Using an
uninterruptible power supply (UPS) with automatic system shutdown is always a
good idea and might also provide the necessary safeguards required to use write-back
caching even in critical situations.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 5: Hardware RAID

Logical Drives
It should be clear by now that sales sheets and documentation about RAID use many
terms interchangeably, although their meaning varies depending on the context. The
term logical drive is used to mean an array in some software RAID implementations.
In the context of a controller, the term logical drive has another meaning. Some con-
trollers let you split a single large array into multiple smaller logical drives. So, while
I might create a single RAID-5 that is several hundred gigabytes in size, I can further
segment that array by creating logical drives that contain a subset of the total storage
space. This is useful when you are working with very large disks, but want to allot a
manageable amount of space for system disks. It’s also useful if subpartitioning at
the operating system level won’t work because you need more partitions than are
supported by a single disk. Not all controllers implement logical drives.

Using logical drives also helps maximize storage space. Let’s say that you have a sys-
tem with five 18 GB disks. You know already that you need roughly 25 GB to store a
MySQL database. It might seem ideal to allocate two disks for a RAID-1 to house the
system partitions. That leaves three remaining disks that you could use to create a
RAID-5, yielding 36 GB of raw storage space. However, that’s not much room for
database growth, and neither array has a spare disk. Furthermore, the system parti-
tions on the RAID-1 aren’t going to use anywhere near the whole 18 GB allocated to
that array. It might make a bit more sense to create a five-disk RAID-5, segmenting it
into two logical drives: one drive with a couple of gigabytes for system partitions,
and the other with the remaining space for the database. That should leave you with
roughly 70 GB of space for the MySQL partition, depending on how you split up the
logical disks. You could also create a four-disk RAID-5 with a single spare disk. That
would also leave you plenty of room to create an efficient logical drive for system
partitions and another logical drive with room for database growth.

Breaking an array into logical drives does not mean that you can
implement different RAID levels on the same set of disks. If you have
different performance and redundancy requirements for different file-
systems, you need to create separate arrays.

During normal operation, an unsegmented array appears as a logical drive that spans
the entire array.

Controller Disk Spin-up
Before a disk can be accessed, it must be spinning at its nominal RPM. This process
usually takes only a few seconds and occurs automatically when power is applied to
the system. On systems with a lot of SCSI disks, it is useful to defer spin-up until
each I/O channel is scanned. This helps underpowered systems with many disks

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Mylex | 155

because disks draw additional power during the spin-up process. ATA disks spin up
automatically and offer no user control over their startup behavior.

While SCSI controllers can spin up disks, many drives ship with power-on spin-up
enabled. That means the disk will spin up as soon as power is applied. If you want to
use the controller’s deferred spin-up features, you need to enable controller spin-up
on individual disks, which is usually accomplished by installing or removing a
jumper on each drive. Consult your hard disk manuals for further details.

Mylex
Mylex has two RAID controller product lines, both SCSI-only and both supported
directly by the Linux kernel. The entry-level AcceleRAID line currently features a 100
MHz Intel i960 RISC Processor. The high-end eXtremeRAID series boasts a 233
MHz StrongARM SA 110 Processor. Thus, the main difference between the two
product lines is the controller’s processing power. Within each product line, cards
are differentiated by the number of I/O channels present, as well as the amount of
cache memory.

Although each card varies slightly in terms of its hardware, they are all managed with
the same BIOS and user-space utilities. I evaluated the AcceleRAID 352, a dual-chan-
nel controller, but my experiences should apply, regardless of which Mylex card you
decide to purchase. For more information about the hardware differences among the
available Mylex controllers, consult the Mylex web site at http://www.mylex.com or
the driver’s home page at http://www.dandelion.com/Linux/DAC960.html.

The DAC960 Driver
All Mylex cards are supported under the DAC960 driver, written by Leonard
Zubkoff. The complete documentation for the driver is included with every kernel
(/usr/src/linux/Documentation/README.DAC960). The driver documentation con-
tains a complete compatibility list for Mylex RAID controllers. I recommend refer-
ring to this list when purchasing any new controller. If your card is not listed there,
you may wish to check the DAC960 driver home page at http://www.dandelion.com/
Linux/DAC960.html. As long as your controller shares a firmware revision and pro-
cessor with a controller that is listed as compatible, you will probably have good
results in using any new controllers.

Distribution support

Because the DAC960/DAC1100 driver has been in the kernel for such a long time,
most distributions now support direct installation to Mylex arrays. I tested installa-
tion with Mandrake, Red Hat, and SuSE.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 5: Hardware RAID

Configuring the kernel

The DAC960/DAC1100 driver is located under the Block Devices submenu (see
Figure 5-1) and can be compiled statically or as a loadable kernel module.

Once you have enabled support for the DAC960/DAC1100 driver, you can rebuild
and install the new kernel, using the make dep and make bzImage commands.

Device special files

The DAC960/DAC1100 uses a Devfs-style naming system. All device files are located
in the /dev/rd directory and are named to reflect the controller, logical device, and
partition numbers. For example, /dev/rd/c0d0p1 refers to first partition (p1) of con-
troller zero’s (c0) first logical drive (d0). In general, /dev/rd/cXdYpZ refers to control-
ler X, logical drive Y, and partition Z. This naming method is useful because unlike
standard SCSI devices, disks do not change names when a disk fails.

Partition limitations

All Mylex arrays and logical drives are limited to seven partitions. This limit can be
constraining when you’re working with a single large array and also using a standard
FHS partitioning scheme.

For example, let’s say that you have a 100 GB RAID-5 that you are using for both
system and data disks. The seven-partition limit constricts standard filesystem seg-
mentation, because after allocating a separate partition for /boot, /, /home, /usr, /tmp,
/var, and swap, you’ve hit the partition limit. You can’t even add separate /usr/local
and /opt partitions when necessary. And the seven-partition limit certainly doesn’t
leave any room for creating new partitions for databases, network filesystems, or web
servers.

Figure 5-1. Enable the DAC960/DAC1100 driver for Mylex support.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Mylex | 157

In cases such as this, it’s useful to simply split a large array into multiple logical
drives. You can allocate a couple of small logical drives for system partitions and
leave the remaining space on a separate logical drive to partition as needed for larger
data filesystems.

Controller Setup
After installing a Mylex RAID controller, you should see a message similar to the fol-
lowing when you power on the system:

Scanning Option ROMs...
Mylex AcceleRAID 352 BIOS PLUS V6.01-30 (Nov 14, 2001)
Copyright (c) 2001 IBM Corporation. All rights reserved.
www.mylex.com

 Spinning up drives......
 AcceleRAID 352 Firmware Version 7.00-03
 RAID Adapter Serial #: 10026500327
 PCI Address: F0000000 Bus=2 Dev/Slot=13 Function=0 IRQ=9
 Adapter Memory Size = 64 MB (SDRAM/ECC)
 BIOS Enabled - 8 GB Disk Drive Geometry Selected.
 Press <ALT-M> for BIOS options
 Press <ALT-R> for RAID Configuration options
 No system drives installed

If arrays had already been defined, the last line would have displayed the number of
arrays (logical drives) in the controller’s configuration. The banner also displays the
amount of memory installed in the controller, the firmware version, and the card’s
PCI address, location, and interrupt.

BIOS options

Press ALT-M to enter the BIOS options menu. There are three options, each of which
controls the card’s ability to boot the system.

BIOS enabled/disabled
The BIOS must be enabled if you wish to boot from disks, arrays, or CD-ROM
drives connected to the controller. If you don’t want to boot from these devices,
you can disable the BIOS and shave a few seconds off the system startup. The
remaining options do not apply if this option is disabled.

CD-ROM boot enabled/disabled
If you want to boot from a CD-ROM drive that is connected to your Mylex con-
troller, this option must be enabled. Remember that using a slower device (such
as a CD-ROM) on a fast SCSI channel will cause the entire channel to run at the
speed of the slowest device. You probably don’t want to connect a CD-ROM to
an expensive RAID controller. However, this option is quite useful for system
installation. Disable it when you’re done using the CD-ROM, and don’t forget to
disconnect the drive.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 5: Hardware RAID

 2 GB/8 GB drive geometry
This option selects how much of an array/disk the BIOS can address. When set
to 2 GB, the controller can boot only operating systems found in the first 2 GB of
the logical drives that you define. When you use an 8 GB drive geometry, the
controller can use the first 8 GB. Set this option before installing an operating
system.

EzAssist (RAID configuration)

EzAssist is the primary utility used to configure Mylex controllers and arrays. It is
normally invoked when the controller initializes, but can also be installed on a floppy
disk and run from an MS-DOS compatible operating system. The latter option is use-
ful when attempts to enter EzAssist at system startup fail. You can download EzAssist
from the Mylex web site.

After you press ALT-R to enter the EzAssist RAID configuration menu, the following
messages appear on the screen:

Checking RAID Configuration Software ...
Loading RAID Configuration Software ...
Starting RAID Configuration Software ...

An ASCII animation of the forward slash and backslash characters will appear imme-
diately following the last line. Be aware that on slow systems, it could take some time
for the software to start, and the animation will move slowly.

Once the software loads, you will be presented with a list of all Mylex controllers
connected to the system. In many cases, you will see a single controller with an entry
such as the following:

Controller PCI PCI PCI Firmware
No. Model Bus Device Function Version

0 AcceleRAID 352 2 13 0 7.00-03

Navigate the list using the arrow keys and press ENTER when the controller that you
wish to administer is highlighted. After rescanning the SCSI bus, if no arrays are cur-
rently defined and there are disks connected to the controller, EzAssist will ask if you
wish to configure a new array. Otherwise, the following menu options are presented:

• Configure a RAID Drive

• View or Modify Controller Configuration

• Perform Administration On ...

• Rescan for New Devices

• Advanced Options

In order for you to install any operating system on disks connected to a Mylex con-
troller, at least one array must be defined. If you already have an operating system

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Mylex | 159

installed, you can create additional arrays using either the EzAssist BIOS utility or
the Global Array Manager, once Linux has booted.

Configuring the first array

Before you can install Linux, at least one array must be created. The following
instructions explain how to configure an array.

1. Use ALT-R to enter the EzAssist RAID configuration utility.

2. Select your controller.

3. If a dialog pops up, warning that no configuration was detected, answer yes.
Otherwise, choose Configure RAID Drive from the main menu.

4. A menu with three configuration methods will appear: Automatic, Assisted, and
Custom. Choose Custom and then select Configure a New Disk Array from the
menu that appears.

5. The next menu contains a list of all disks connected to the controller, organized
by SCSI ID. Select all the disks that you want to include in the new array by
highlighting them and pressing the ENTER key. When you are done selecting
disks, navigate to and choose Save Array.

6. If there are other unconfigured disks connected to the controller, a dialog will
appear, asking if you want to configure logical drives. Choose yes, and then
select the array that you just defined from the pop-up dialog that follows.

7. The next screen displays information about your new array. Use the arrow keys
to move between fields and make any necessary changes to the array configura-
tion. You can change the RAID level, cache type, and stripe size. In addition, you
can alter the array’s logical size by moving to the logical size field, using the
arrow keys, and typing in the new logical drive size. Changing an array’s logical
size is useful for splitting a single array into two or more smaller logical drives.
As mentioned earlier in this chapter, the DAC960/DAC1100 driver supports
only seven disk partitions. So if you need more than that for a large array, you
will have to split up the array into more than one logical drive. See the “Parti-
tion Limitations” and “Logical Drives” sections, earlier in this chapter.

8. After you have customized your array settings, use the TAB key to activate the
menu on the right side of the screen. Then select Add Disk.

9. The array now appears in the dialog window at the bottom of the screen. If you
changed the logical size of the array, you have the option to add another logical
disk that contains some or all of the remaining space. If you want to add another
logical disk, simply tune the array’s configuration, as described in step 7, and
then repeat step 8. You can also leave the remaining space unallocated and con-
figure it later, but you won’t be able to access it until you’ve assigned it to a logi-
cal drive.

10. Choose Apply to commit the array to the controller’s memory.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 5: Hardware RAID

After you select the Apply option, the new configuration is written to the control-
ler’s memory, and after a few seconds, you are returned to the main menu. If you cre-
ated arrays that use redundancy (such as RAID-1 or RAID-5), the initial
synchronization process will commence. You can monitor the progress of the rebuild
process by selecting Advanced Options and then Background Tasks from EzAssist’s
main menu. You can now reboot the system and install a new operating system on
the array that you just created, or wait until the rebuild process is complete. You may
also create additional arrays and fine-tune the controller. See “The DAC960” sec-
tion, earlier in this chapter.

Configuring an existing disk for standalone JBOD mode

Mylex controllers do not operate in pass-through mode for JBOD. If you are replac-
ing an existing SCSI controller with a Mylex RAID controller and want to access an
operating system that was already installed on a single physical disk, you will need to
create a logical JBOD drive first.

Before connecting existing disks to the new controller and creating a logical JBOD
drive, you should take a few preparatory steps. You can install the Mylex controller
along with your existing SCSI controller, or you can wait until you’ve completed the
first six steps and then swap controllers. It’s advisable, but not required, to perform
steps 1–6 in single-user mode. I also recommend creating a backup copy of /etc/lilo.
conf and /etc/fstab before proceeding. It’s also a good idea to have a rescue floppy
disk or CD-ROM handy.

1. Reconfigure the kernel so that it supports Mylex controllers (see “The DAC960
Driver” section, earlier in this chapter).

2. Copy the new kernel and System.map to /boot.

3. Edit /etc/lilo.conf and add a new kernel stanza that uses the new kernel. It’s
essential that this new stanza contain a root line that points to the device special
file for the new root partition. So if your current root partition is /dev/sda2, cre-
ate a root line that reads root=/dev/rd/c0d0p2. In this case, your system disk will
be connected to the first channel of the first Mylex controller and appear as logi-
cal drive 0. Use a device file that will reflect your new system configuration. In
general, you probably want any system disk in JBOD mode to be the first logical
drive on the first controller.

4. If /etc/lilo.conf contains a boot line, remove it. You can add a new boot line after
the new controller is installed and the system is brought back online.

5. Execute /sbin/lilo to rebuild the master boot record.

6. Edit /etc/fstab to reflect the new Mylex device files. On modern systems that use
disk labels, you will likely need to change only the swap entry (which always
uses a real device entry instead of a disk label). Thus, if your swap file is located
at /dev/sda3, change it to /dev/rd/c0d0p3 to indicate partition three on the first
logical drive of the first controller.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Mylex | 161

7. At this point, you should power down the system and install the new controller.
If the controller is already installed, move your existing disk to the Mylex con-
troller and then power-on the system.

8. Use ALT-R to enter the EzAssist RAID configuration utility.

9. Select the controller that is connected to your existing system disk.

10. If a dialog warning pops up, saying that no configuration was detected, answer
yes, and a configuration menu will appear. Otherwise, choose Configure RAID
Drive from the main menu.

11. A menu with three configuration methods will appear: Automatic, Assisted, and
Custom. Choose Custom, and then select Configure a New Disk Array from the
menu that appears.

12. This menu contains a list of all disks connected to the controller, organized by
SCSI ID. Select the disk that you want to configure for JBOD mode (see step 3)
by highlighting it and pressing the ENTER key. Then navigate to, and select, Save
Array.

13. If there are other unconfigured disks connected to the controller, a dialog asking
if you want to configure logical drives will appear. Choose yes, and then select
the array that you just defined from the pop-up dialog that appears next.

14. The next screen displays information about your new JBOD array. Since only
one disk was included in the array, JBOD is the only array type available. You
can optionally change the write cache type and stripe size as needed.

15. Use the TAB key to activate the menu on the right side of the screen. Then select
Add Disk. The array now appears in the dialog window at the bottom of the
screen. Choose Apply to commit the array to the controller’s memory.

Once you apply the configuration, a window appears indicating that the new array
configuration is being stored in the controller. After a few seconds, you will be
returned to the main menu, or to the array creation menu, if there are additional free
disks connected to the system. You can now continue to define additional arrays or
exit EzAssist and reboot the system.

When the system reboots, your original system disk (now a JBOD mode array) is
accessible just like a normal disk, and the operating system boot prompt appears. If
the kernel panics, or you encounter unrecoverable problems, simply boot into res-
cue mode from a floppy disk or CD-ROM and fine-tune /etc/lilo.conf and /etc/fstab.
Don’t forget that if you make changes to /etc/lilo.conf, you will need to rerun /sbin/
lilo to update the boot sector. If all else fails, you will still be able to re-install your
original disk controller and access the system, although you will have to use a rescue
disk to restore the original settings to /etc/lilo.conf and /etc/fstab.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 5: Hardware RAID

Converting an existing standalone disk to a mirror

Unfortunately, there is no simple, automatic way to create a new mirror and include
a disk with existing data as one of its components. To accomplish the job, start by
following the procedures outlined in the previous section. Once the system is work-
ing in JBOD with the new Mylex controller, follow these steps:

1. Reboot the system and use ALT-R to enter the EzAssist RAID configuration util-
ity.

2. Select the controller to which your JBOD logical drive is connected.

3. From the main menu, choose Perform Administration On and then select Logi-
cal Drive.

4. A pop-up window appears that lists all your logical drives. Choose the drive that
you wish to convert to a RAID-1.

5. Now select Advanced Options and Delete Logical Drive. There is a short delay
while the RAID configuration is updated.

6. Use the ESC key to return to EzAssist’s main menu. Then choose the first option:
Configure RAID Drive.

7. A menu with three configuration methods will appear: Automatic, Assisted, and
Custom. Choose Custom and then select Configure a New Disk Array from the
menu that appears.

8. The next menu contains a list of all disks connected to the controller, organized
by SCSI ID. First, select the disk that used to be the JBOD mode disk by high-
lighting it and pressing the ENTER key.

9. Now select another available disk. This will become the second mirror compo-
nent. It’s important to choose the former JBOD system disk first, since it con-
tains the data. If you want to create a mirror that has more than two member
disks, you can select additional disks now.

10. When you’re done selecting disks, navigate using the TAB key and select Save
Array.

11. If there are other unconfigured disks connected to the controller, a dialog will
appear, asking if you want to configure logical drives. Choose yes and then select
the array that you just defined from the pop-up dialog that appears next.

12. The next screen displays information about your new array. Since two disks
were included in the array, RAID-1 is the default array type. You can optionally
change the write cache type and stripe size as needed.

Depending on how many disks you have selected for inclusion in your
new RAID-1, EzAssist will allow you to change the RAID level on the
Logical Drive Definition screen. Changing the RAID level to anything
other than RAID-1 will be catastrophic and result in total data loss
from the previous system.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Mylex | 163

13. Use the TAB key to activate the menu on the right side of the screen. Then select
Add Disk. The array now appears in the dialog window at the bottom of the
screen. Choose Apply to commit the array to the controller’s memory.

14. After the new configuration is written to the controller, return to the main menu
and select Perform Administration On ➝ Physical Device.

15. A list of disks is presented. Select the second disk in the array—that is, the disk
that has no preexisting data.

16. Choose Advanced Options from the menu that appears and then select Make
Drive Offline.

17. A two-step confirmation appears. Answer yes to both questions. Now the drive
is marked offline.

18. Finally, return to the main menu and choose Perform Administration On ➝ Log-
ical Drive.

19. Select the array that contains the member disk that you just marked offline; the
disk will appear highlighted and in critical condition.

20. Choose Advanced Options and Rebuild Redundancy Data from the menu that
pops up.

21. A confirmation appears. Answer affirmatively. After a short pause, you are
returned to the array status menu, and the array is now marked as rebuilding.

You can monitor the progress of the rebuild process by selecting Advanced Options
and then Background Tasks from EzAssist’s main menu. After the rebuild process
has completed, you can reboot your system. System partitions that were on the origi-
nal JBOD logical drive are now mirrored.

In general, you can delete any JBOD disk and create a new RAID-1 with the former
JBOD drive as its first component. The process also works in the other direction.
Delete any mirror and then create a JBOD logical drive that contains a former RAID-
1 member to return to single disk operation.

Managing Arrays
You can manage arrays using the DAC960/DAC1100 driver’s /proc entry, but its
functionality is limited. To manage all aspects of your Mylex controller without
bringing down the system, you will also need to use the Mylex Global Array Man-
ager.

/proc/rd

The DAC960/DAC1100 driver uses the /proc/rd directory to report information
about the status of Mylex controllers and to provide a user interface for performing
some online management functions.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 5: Hardware RAID

/proc/rd/status provides a simple interface for determining the status of all Mylex
controllers connected to the system. When all controllers are operating normally, the
status file returns OK:

$ cat /proc/rd/status
OK

If an array is degraded or failed, or a physical disk has failed, /proc/rd/status reports
an alert:

$ cat /proc/rd/status
ALERT

Detailed status information is provided in controller-specific directories named /proc/
rd/cN, where N is the controller number. Each controller subdirectory contains three
files: current_status, initial_status, and user_command. Examine current_status using
cat or a file pager to view the controller state of a controller and its arrays. A lot of
information is displayed. The initial output is similar to what is provided by the con-
troller’s startup banner and is found in the controller configuration menu under
EzAssist:

***** DAC960 RAID Driver Version 2.4.11 of 11 October 2001 *****
Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
Configuring Mylex AcceleRAID 352 PCI RAID Controller
 Firmware Version: 7.00-03, Channels: 2, Memory Size: 64MB
 PCI Bus: 2, Device: 13, Function: 0, I/O Address: Unassigned
 PCI Address: 0xF0000000 mapped at 0xD083F000, IRQ Channel: 9
 Controller Queue Depth: 512, Maximum Blocks per Command: 2048
 Driver Queue Depth: 511, Scatter/Gather Limit: 128 of 257 Segments

Next, a list of physical disks is displayed, including an entry for each controller chan-
nel. In the interest of brevity, I’ve included only entries for the first disk and the first
controller channel. Normally, each disk and channel is displayed in ascending order,
beginning with its SCSI ID.

 Physical Devices:
 0:0 Vendor: IBM Model: DDYS-T18350M Revision: SA2A
 Wide Synchronous at 160 MB/sec
 Serial Number: VEY04122
 Disk Status: Online, 35155968 blocks
[...]

 0:7 Vendor: MYLEX Model: AcceleRAID 352 Revision: 0700
 Wide Synchronous at 160 MB/sec
 Serial Number:

After the physical devices, a list of logical drives (arrays) is displayed. In the follow-
ing example, there are two arrays. The first (/dev/rd/c0d0) is a JBOD logical drive,
indicated by RAID-7. The DAC960/DAC1100 driver uses the term RAID-7 to denote
JBOD logical drives. The next array (/dev/c0d1) is a RAID-0.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Mylex | 165

 Logical Drives:
 /dev/rd/c0d0: RAID-7, Online, 35155968 blocks
 Logical Device Initialized, BIOS Geometry: 255/63
 Stripe Size: 64KB, Segment Size: 64KB
 Read Cache Disabled, Write Cache Disabled
 /dev/rd/c0d1: RAID-0, Online, 140623872 blocks
 Logical Device Initialized, BIOS Geometry: 255/63
 Stripe Size: 64KB, Segment Size: 64KB
 Read Cache Disabled, Write Cache Disabled

Unfortunately, the components that make up each array are not displayed. To deter-
mine which disks are part of each array, you need to either use Mylex-supplied user-
space tools or reboot the system and use the EzAssist utility.

Of particular note is the last line of output:

 No Rebuild or Consistency Check in Progress

This line reports whether or not there is a rebuild, consistency check, or initializa-
tion in progress. These processes occur when a new, redundant array is brought
online for the first time or when a degraded array is being repaired. The percentage
of the process that is complete, along with the logical drive number and device spe-
cial file, are displayed:

 Foreground Initialization in Progress: Logical Drive 1 (/dev/rd/c0d1) 28% completed

/proc/rd/c0/initial_status displays the same information as current_status, but it
remains a static snapshot of the state of the controller when the system was booted.
It does not display any information about array rebuilds or consistency checks.

Finally, user_command allows system administrators to perform some administrative
tasks on the controller, arrays, and physical disks. To use these commands, simply
echo them into the user_command file:

echo command > /proc/rd/cX/user_command

Each controller has its own user_command file and can accept the following com-
mands:

flush-cache
Writes all uncommitted data in the controller’s memory to disk. You can use
this command in conjunction with shutdown scripts (such as those executed by
a UPS) to make certain that all buffers have been committed to disk before the
system is powered down. For example:

echo "flush-cache" > /proc/rd/c0/user_command

kill channel:target-id
Marks a physical disk as offline. This is useful for testing hot failover. For exam-
ple, to kill the disk with SCSI ID 4 on controller 0, use:

echo "kill 0:4" > /proc/rd/c0/user_command

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 5: Hardware RAID

make-online channel:target-id
Brings a drive back online after it has failed (and ideally been replaced) or after
you have killed it for testing purposes. make-online is the opposite of kill. For
example:

echo "make-online 0:1" > /proc/rd/c0/user_command

make-standby channel:target-id
Marks a drive as a spare. (Standby is yet another term used to mean spare-disk
or hot-spare.) This command is useful when an array has already undergone an
automatic rebuild. Even though it is no longer in degraded mode, the array has
no hot-spare. After the dead disk is replaced, use this command to mark the new
disk as the spare disk. For example:

echo "make-standby 0:1" > /proc/rd/c0/user_command

rebuild channel:target-id
Manually initiates a rebuild. If you disabled Automatic Rebuild Management,
use this command to start the rebuild manually. The target-id always specifies
the dead disk that should be synchronized with the remaining working disks.
For example, to rebuild the array to which the disk with SCSI ID4 belongs, use:

echo "rebuild 0:4" > /proc/rd/c0/user_command

check-consistency logical drive number
Initiates a consistency check on a logical drive. This process simply verifies that
the redundancy information is correct. For example:

echo "check-consistency 0" > /proc/rd/c0/user_command

cancel-rebuild
Cancels all rebuilds that are currently in progress. This command applies to all
arrays. For example:

echo "cancel-rebuild" > /proc/rd/c0/user_command

cancel-consistency-check
Cancels all consistency checks that are currently in progress. This applies to all
arrays. For example:

echo "cancel-consistency-check" > /proc/rd/c0/user_command

Refer to the file /usr/src/linux/Documentation/README.DAC960 for further informa-
tion about these commands.

The Global Array Manager (GAM)

The Mylex Global Array Manager (GAM) is used to monitor and manage arrays
while the system is running. It’s included on the CD-ROM packaged with your con-
troller, but I recommend downloading the most recent update from the Mylex web
site. Grab the linux-gam_510.exe file (it’s marked GAM for Linux). Since its location
might vary, I haven’t included it here, but you can find it by navigating to the Driver/
Support page. Don’t forget that the version number might also change slightly. The

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adaptec | 167

file is a self-extracting zip archive, so you’ll have to use unzip, not gunzip, to extract
the RPM files from it.

$ unzip linux-gam_510.exe
Archive: linux-gam_510.exe
 inflating: sam-client-5.00-10.i386.rpm
 inflating: gam-client-5.00-13.i386.rpm
 inflating: gam-linux-readme_510.txt
 inflating: gam-server-5.00-12.i386.rpm
 inflating: gam-agent-5.00-12.i386.rpm

The Global Array Manager is comprised of a client (gam-client-5.00-13.i386.rpm)
and a server (gam-server-5.00-12.i386.rpm) package. The gam-server package pro-
vides the underlying framework for communicating with the controller, and the gam-
client package provides the GUI management interface. To install gam-server suc-
cessfully, you must have either inetd or xinetd installed and running. It’s not enough
for either program to simply be installed; one of them must be running. That’s
because the client and server components use TCP/IP to communicate with each
other. After installation, a desktop icon is created for KDE and GNOME users. You
can also run GAM directly from /opt/gam/bin/gam. The Global Array Manager is very
straightforward to use and is well documented. There’s built-in HTML help and an
installation guide (http://www.mylex.com/pub/support/current_raid/Linux-GAM.pdf).
Most of GAM’s functions mimic EZAssist.

Adaptec
Adaptec has two RAID controller product lines based on different processors and
technologies. This dichotomy stems from Adaptec’s history with RAID controllers.
In 1999, Adaptec, Inc. acquired Distributed Processing Technology (DPT), a manu-
facturer of, among other storage products, SCSI RAID controllers. At that time,
Linux support for DPT controllers was provided in the form of a GPL kernel patch.
Since the acquisition, Adaptec has continued to support Linux in its RAID product
line by continuing driver development for controllers based on the original DPT
architecture.

After the acquisition, Adaptec began to develop a new product line aimed at OEM
controllers. These controllers were featured in server-class systems available from
Dell Computer and Hewlett-Packard. Many users will know these controllers as the
Poweredge Expandable RAID Controller (PERC). Since the new controllers had a
different architecture, a new Linux driver was needed. Eventually, Adaptec released
several boxed controllers based on this new architecture. So today, the new driver is
used for OEM controllers, as well as some newer boxed products.

If you have a Dell system with a branded Adaptec controller, you
might want to take a look at Matt Domsch’s page on the subject: http://
www.domsch.com/linux/. It’s the best resource that I’ve been able to
find for Dell’s RAID solutions and Linux.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 5: Hardware RAID

The controller that you purchase dictates which of the two drivers you need to use.
For the DPT-based controllers, use the Adaptec I2O RAID driver (dpt_i2o). For
OEM and newer controllers, use the AACRAID driver (aacraid). I evaluated an
Adaptec 2100S, which is a single-channel, SCSI Ultra 160 RAID controller. The
2100S is an I2O card, so throughout the rest of this section, I’ll be referring to that
driver and its user-space tools. However, the same tools are also available for AAC-
RAID controllers.

Linux support for Adaptec RAID controllers is common in many distributions. I
tested direct installation to my 2100S controller using Red Hat, SuSE, and Man-
drake. The official documentation recommends creating a driver disk by using the
included CD-ROM, or by downloading a disk image from the Adaptec web site.
However, I have found that out-of-the-box installation works fine, at least with Red
Hat, SuSE, and Mandrake. You need to create a driver disk and use a distribution
that is officially supported only if you encounter problems and need technical sup-
port from Adaptec.

Adaptec I2O RAID Driver
The Adaptec I2O RAID driver currently supports all I2O RAID cards and the DPT
SmartRAID V controller. The dpt_i2o driver also provides support for some of
Adaptec’s ATA RAID controllers. Please check the driver’s documentation and the
Adaptec web site for specific compatibility information.The GPL driver was origi-
nally ported to Linux version 2.0.34 and was available as a patch to the kernel. The
GPL driver was ported by Karen White (Dell Computer), with help from Mark
Salyzyn and Bob Pasteur.

The driver was eventually rewritten from scratch. This new version (2.0) was devel-
oped by Deanna Bonds and Mark Salyzyn. Bonds currently maintains the driver for
Adaptec. During the development of kernel 2.4, the driver finally made it into the
stable kernel tree (2.4.10). That means users no longer have to undergo the arduous
process of patching kernels or creating custom driver disks to perform installation.

What Is I2O?
I2O stands for Intelligent Input/Output. I2O is a way to achieve improved system per-
formance by offloading tasks traditionally performed by the CPU onto dedicated I/O
processors. I2O also offers a split-driver architecture that allows vendors to create plat-
form-independent hardware drivers, so long as a generic I2O driver for each operating
system is available.

Linux contains generic I2O support. In fact, you’ll notice an entire subsection of the
kernel configuration dedicated to I2O device support. But be certain to use the dpt_i2o
driver in the SCSI subsection of the kernel configuration, and not the generic I2O
driver. The generic driver does not work with Adaptec I2O RAID controllers.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adaptec | 169

To determine if your card is supported by the dpt_i2o driver, look for the Adaptec
I2O logo in the card’s BIOS banner, or consult the Adaptec web site (http://www.
adaptec.com) or the README.dpti file, located within the kernel source tree in the
directory /usr/src/kernel/drivers/scsi.

Configuring the kernel

Enable Adaptec I2O RAID support (CONFIG_SCSI_DPT_I2O) under the SCSI Low-Level
Drivers submenu of the SCSI Support menu. The driver can be compiled statically or
as a loadable kernel module (dpt_i2o).

SCSI support --->
 ...
 SCSI low-level drivers --->
 ...
 <*> Adaptec I2O RAID support
 ...

Arrays and standalone disks that are connected to Adaptec controllers show up with
device entries just like any standard SCSI disk. So the first disk or array connected to
the controller gets named /dev/sda by Linux, the second /dev/sdb, and so on.

The aacraid Driver
The original aacraid driver for Linux was merely a wrapper for the Windows NT
driver. This presented both technical and philosophical problems. Eventually, Alan
Cox rewrote the aacraid driver from the ground up. While some programmers at
Adaptec were also working on a new replacement driver, that work was eventually
scrapped in favor of Alan’s rewrite, partly because his driver had already been inte-
grated into the 2.4 kernel tree. Deanna Bonds is now improving the aacraid driver by
adding new features, as well as support for new, non-I2O controllers.

Use the aacraid driver if you have an OEM or a non-I2O boxed controller. Refer to
the file /usr/src/kernel/drivers/scsi/aacraid/README to determine if your controller is
supported by the aacraid driver.

Configuring the kernel

The aacraid driver is still experimental, so you have to enable support for develop-
ment drivers before you can see the aacraid driver as a configuration option. From
the Code Maturity Level Options (the first item in the Linux kernel configuration),
choose the option Prompt For Development and/or Incomplete Code/Drivers.

After development support is enabled, look for the Adaptec AACRAID Support
(CONFIG_SCSI_AACRAID) option under the SCSI Low-Level Drivers submenu of the
SCSI Support menu.

SCSI support --->
 ...
 SCSI low-level drivers --->

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 5: Hardware RAID

 ...
 <*> Adaptec AACRAID support (EXPERIMENTAL)
 ...

The driver can be compiled statically or as a loadable kernel module.

Adaptec RAID Setup Utility
The Adaptec RAID Setup Utility is the controller BIOS configuration tool used to
create and manage Adaptec arrays. In this section, I’ll provide some examples for
common tasks using the BIOS Setup Utility, including configuring an array for the
first time and converting an existing system to a RAID-1 system. When the card ini-
tializes, you’ll see a banner that provides information about disks and arrays. Use
CTRL-A to enter the utility.

Adaptec controllers also ship with a bootable CD-ROM that contains a more robust
GUI configuration tool. You can use that disk, instead of the setup utility, to per-
form your initial setup.

Configuring the first array

1. Use CTRL-A to enter the Adaptec RAID Setup Utility.

2. After the utility initializes and scans connected disks, press ALT-R to activate the
RAID configuration menu.

3. Select Create from the RAID configuration menu. A window that lists the avail-
able RAID levels and the default stripe size will appear.

4. Use the TAB or arrow keys to move between each option. Pressing the SPACEBAR
selects the RAID level that is currently highlighted. Choose the one that meets
your needs.

5. If necessary, navigate to the Stripe Size field and press the ENTER key to bring up a
list of available stripe sizes. Use the arrow keys and the ENTER key to select the
desired stripe size. The default value is fine for most systems.

6. Navigate to the Okay button and press ENTER to confirm the RAID configuration.

7. The next screen lists available disks. Move up and down the list, using the arrow
keys, and then use the ENTER key to select each disk you want to include in the
array. A checkmark appears to the left of each disk after it is selected.

Remember that data on disks included in a new array will be lost.
Please back up necessary data before using disks in an array, or use
new disks.

8. When you are finished selecting disks, navigate to the Done button, using the
TAB key, and press ENTER to create the new array.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adaptec | 171

9. If you created a RAID-1, a dialog will appear, asking which disk to use as the
synchronization source and destination. Since this is a new array and the disks
are either new or contain incidental data, just select either option and choose
Okay.

10. If any of the disks you included in a new array contain a valid partition table or
boot section, the Adaptec RAID Setup Utility will warn you just before the array
is created. A dialog for each disk that contains data appears, and you must man-
ually confirm that each disk can be included in the array.

11. After confirming any additional dialogs, you are returned to the Adaptec RAID
Setup Utility’s main menu. The new array appears in the left column just below
the controller’s entry. You can use the ENTER key to expand and collapse the
array’s entry, revealing its member disks.

12. Finally, press ALT-F to bring up the File menu and choose Set System Config.
This writes the array configuration into the controller’s memory. You may now
reboot and begin installing a new Linux operating system. If you created an array
with redundancy, the initial resynchronization will begin. You can either wait
until it completes or reboot and begin installing an operating system right away.
Navigating to the array’s entry in the left column will display the percentage
complete of the initial resynchronization in the right windowpane.

Configuring an existing disk for JBOD mode

Adaptec RAID controllers support JBOD mode by default. So if you replace an exist-
ing SCSI controller with an Adaptec RAID controller, your existing single-disk sys-
tem will boot normally. You still need to reconfigure and recompile your kernel so it
supports either the dpt_i2o or the aacraid driver. Don’t forget to rerun /sbin/lilo.

I recommend adding support for your Adaptec controller while your disks are still
connected to your original SCSI controller. Restart the system and make sure your
kernel still works with your original configuration. Next, shut down the system and
replace the SCSI controller with your Adaptec RAID controller, connecting your sys-
tem disks to the RAID controller. Be certain that your system disk is still the first disk
after you reconnect to the RAID controller. When you power on the system, Linux
should boot normally, provided that the kernel was compiled properly. If you
encounter problems, you can revert to your original hardware configuration and
troubleshoot.

Converting an existing standalone disk to a mirror

If you want to upgrade an existing system with a single disk to a RAID-1, using an
Adaptec RAID controller, you should first compile a new kernel with support for the
dpt_i2o or aacraid driver. Consult the driver sections earlier in this chapter for more
information. It’s okay to leave the driver for your existing SCSI controller compiled

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 5: Hardware RAID

into the kernel. In fact, that will make it easier to revert back to your original config-
uration if you encounter any problems. After the driver is enabled, and the new ker-
nel is installed, follow these steps:

1. Reconfigure your kernel so that it supports either the dpt_i2o driver or the
aacraid driver, depending on which controller you have.

2. Reboot the system and use CTRL-A to enter the Adaptec RAID Setup Utility.

3. After the utility initializes and scans the connected disks, press ALT-R to activate
the RAID configuration menu.

4. Select Create from the RAID configuration menu. A window that lists the avail-
able RAID levels and the default stripe size will appear.

5. Use the TAB or arrow keys to move between each option. Pressing the SPACEBAR
selects the RAID level that is currently highlighted. Choose RAID-1.

6. Navigate to the Okay button and press ENTER to confirm the RAID configuration.

7. The next screen lists available disks. Use the ENTER key to select your existing sys-
tem disk, as well as a second disk to include in the mirror. Move up and down
the list using the arrow keys. When a disk is selected, a checkmark appears to its
left.

8. When you are finished selecting disks, navigate to the Done button, using the
TAB key, and press ENTER to create the new array.

9. A dialog will appear, asking in which direction the initial resynchronization
should move. Two choices are presented. Synchronize from the first disk to the
second, or synchronize from the second disk to the first. This choice is extremely
important. If you make the wrong decision, it will result in a total loss of data.
Make certain that data is copied from your existing system disk to the new disk.
Generally, this means copying data from disk 0,0,0,0 (the disk with the existing
system data) to disk 0,0,1,0 (the second blank hard disk).

10. An additional dialog appears, indicating that there is valid data on at least one of
the disks. That’s because the first disk, at least, contains a valid partition table
and a boot sector. The second disk might also contain some residual but
expendable data. After confirming these additional dialogs, you are returned to
the Adaptec RAID Setup Utility’s main menu. The new array appears in the left
column just below the controller’s entry. You can use the ENTER key to expand
and collapse the array’s entry, in order to reveal its member disks.

11. Finally, press ALT-F to bring up the File menu and choose Set System Config.
This writes the array configuration into the controller’s memory and starts the
initial resynchronization. I recommend waiting until the process completes
before rebooting the system. Navigating to the array’s entry in the left column
will display the percentage complete of the initial resynchronization in the right
windowpane.

12. Once the resynchronization is complete, you can reboot and begin using your
new, redundant Linux system.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Adaptec | 173

The Adaptec Storage Manager
The Adaptec Storage Manager is a user-space application that can monitor and man-
age Adaptec RAID controllers. It is packaged as an RPM file and included on the
CD-ROM that shipped with your controller. You can also download the package file
from Adaptec’s Linux web site (http://linux.adaptec.com). Follow the Linux Down-
loads link and choose the Storage Manager package for your controller and distribu-
tion. Adaptec provides package files for Red Hat and SuSE, and while they are
usually a couple of revisions behind each distribution’s most recent release, they tend
to work even with newer versions of either distribution. You shouldn’t have any
problem using the RPM files with an unsupported distribution. I tested them with
Mandrake and encountered no problems.

The Storage Manager includes a command-line utility for managing arrays and con-
trollers (raidutil) and a GUI utility (dptmgr) that performs the same functions. It also
includes a few daemons that provide event logging and a low-level communication
layer for interfacing with the controller.

The Storage Manager RPM (dptapps) depends on the driver RPM (dptdriver). Since
support is now included in the stable kernel, it’s undesirable and unnecessary to use
the prepackaged RPM kernel and driver that Adaptec provides. Just pass the --nodeps
option to rpm when installing the storage manager:

rpm -ihv --nodeps sm_linux_v314_install.rpm

There are a couple of device special files that also need to be created. These would
have been created had we chosen the Adaptec installation for dptdriver, but because
we skipped that step, we have to create them manually. Use mknod to create the files
manually:

mknod -m644 /dev/dpti0 c 151 0
mknod -m644 /dev/dpti1 c 151 1
mknod -m644 /dev/dpti2 c 151 2
mknod -m644 /dev/dpti3 c 151 3

The -m644 option sets the permissions for each file (rw-r--r--), /dev/dptiN specifies
the filename, and c indicates that we are creating a character special file. The device
major number is 151, and we need to create minor numbers 0 through 3. That’s why
we execute the command four times, with slightly different parameters.

Once the files are created, start the DPT engine by executing the startup script that
was copied into your init.d directory.

/etc/rc.d/init.d/dpt start

If everything was successful, you should see several DPT-related processes running:

ps xw | grep dpt
 949 ? S 0:00 /usr/dpt/dptelog
 967 ? S 0:00 /usr/dpt/dptcom
 972 ? S 0:00 /usr/dpt/dpteng
 976 ? S 0:00 /usr/dpt/dptcom

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 5: Hardware RAID

 977 ? S 0:00 /usr/dpt/dptcom
 978 ? S 0:00 /usr/dpt/dptscom -DAEMON
 984 ? S 0:00 /usr/dpt/dptelog
 985 ? S 0:00 /usr/dpt/dptelog

These processes control event logging and allow the operating system to communi-
cate with the controller. Normally, communication with the controller occurs
locally, using a Unix Domain Socket. However, in its default configuration, the
dptapps package creates a configuration file that exposes the controller to the local
Ethernet network when the daemon processes are started. This service is bound to
port 2091/tcp by default. You may decide to provide a security mechanism for this
port, if you plan to manage your controller from a remote workstation. I recom-
mend disabling the network communication capability to avoid any potential exploi-
tation. Edit the file /usr/dpt/dptmgr.ini and comment out (use ; to indicate that a line
is a comment) or delete the line containing the word TCP in the [Modules] section.
This disables remote management via TCP/IP and forces the programs in the dptapps
package to use Unix Domain Sockets to communicate.

Running /usr/dpt/dptmgr will invoke the GUI management portion of the Storage
Manager. It provides the same functions as the controller BIOS, in addition to some
monitoring capabilities. Complete documentation for dptmgr is available from the
Adaptec web site.

Working with raidutil

raidutil is useful for administering Adaptec controllers at the command line. You can
use raidutil to create, modify, delete, and manage arrays. Execute raidutil with no
arguments to get a list of options or read the manual page for details on usage.

After you have installed the dptapps package and started the Adaptec daemons, use
raidutil to ensure that everything is functioning properly. The -I switch queries the
controller and returns the model and firmware version:

/usr/dpt/raidutil -I

Use the -L option to view information about the controller’s configuration. For
example, to list arrays and their components, use the following command:

/usr/dpt/raidutil -L array

Promise Technology
Promise Technology, Inc. is one of the oldest manufacturers of ATA RAID control-
lers. They produce several dual-channel controllers aimed at end users and small
businesses (FastTrak), as well as a high-end six-channel controller (SuperTrak).

The low-end controllers are, in essence, software RAID controllers because they rely
on the operating system to handle RAID operations and because they store array

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Promise Technology | 175

configuration information on individual component disks. The real value of the con-
troller is in the extra ATA channels. If you purchased a controller that supports a
better ATA protocol than your motherboard’s built-in ATA controller, you will get
improved disk bus performance.

I evaluated the Promise FastTrak 100, a dual-channel Ultra ATA/100 card. The
information that I have provided in this section is relevant for any of the FastTrak
series RAID controllers. You might also find the Linux ATA RAID HOWTO a use-
ful complement to the material in this section. Download a copy from http://www.
tldp.org/HOWTO/ATA-RAID-HOWTO/index.html or from any Linux Documenta-
tion Project mirror.

Creating an Array
Press CTRL-F to invoke the Promise FastBuild utility when the controller’s initializa-
tion banner appears. Select the Define Array option to create a new array. Use the
SPACEBAR to choose between the available options and the arrow keys to navigate
between the fields. After choosing a RAID level and stripe size (RAID-0 only), navi-
gate to the bottom section of the screen to select individual disks to be included in
the array. The letter Y to the right of a disk indicates that it has been marked for
inclusion. When you’re finished selecting disks, press CTRL-Y to save the array.

If you created a RAID-1, FastBuild will ask you if you prefer to Create and Build the
array (that is, perform an initial resynchronization) or to only Create the array. It’s
safe to select the Create Only option (answering no to the question that appears),
since you are about to install an operating system for the first time. After you finish
the installation process, the controller will warn you that an array is not synchro-
nized. At that point, you can use FastBuild to manually build the array, and then
continue booting your newly installed Linux operating system.

Next, exit to the main menu by pressing the ESCAPE key. Finally, press the ESCAPE key
again to exit the FastBuild utility and restart the system.

When the system restarts, the array you just created will be listed in the controller’s
initialization banner. If you need to make any changes, use CTRL-F to restart the
FastBuild utility.

Installing Linux onto a Promise Array
Installation on Promise RAID controllers can be problematic for two reasons. First,
most Linux installers detect both the arrays defined (logical disks) and the individual
ATA disks, and list both as available, valid installation targets during the system con-
figuration. Thus, disks that are members of arrays might also show up in partition-
ing utilities. It’s left up to the user to determine which device is the valid array on
which to install the Linux operating system.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 5: Hardware RAID

When working with Promise controllers, it’s important to choose the ataraid driver
and not the FastTrak driver. The ataraid driver is open source and was developed by
Arjan van de Ven of Red Hat. The FastTrak driver is a binary-only driver and is dis-
tributed by Promise. Licensing aside, the main difference between the two drivers is
that the Promise driver uses the SCSI subsystem to interface with the Linux kernel.
That means Promise’s binary-only driver needs to perform additional steps to trans-
late commands between SCSI and ATA. Conversely, the open source driver uses
ATA directly and is consequently faster and more stable.

If you are using the SuperTrak controller, the same semantics I
describe here will apply, but the SuperTrak controller uses a different
driver, also available from Promise. The SuperTrak controllers are also
reported to work using Linux’s Generic I2O Driver. Your mileage may
vary.

When using the FastTrak driver, I experienced many system lockups and slow-
downs (all non-fatal) while performing normal, low-impact disk operations such as
editing files and listing directories. You’ll notice many associated entries, as in the
following code listing, either in the system logs or printed on the console:

FastTrak : Drive Interrupt Time Out.(1)
FastTrak : RESET Channel1 * DEV1(OK)
FastTrak : Drive Interrupt Time Out.(3)
FastTrak : RESET Channel2 * DEV3(OK)
FastTrak : Drive Interrupt Time Out.(3)
FastTrak : RESET Channel2 * DEV3(OK)

These messages indicate that I/O commands have timed out before they were com-
pleted. The controller must reissue the commands to ensure data integrity. These
timeouts can also result in low-level seek and read errors on individual member disks
and cause the system to become unstable, requiring a cold reboot. Using the ataraid
driver eliminates these problems, and it should always be used in lieu of the binary-
only FastTrak driver.

Unfortunately, most distributions do not currently support direct installation using
the ataraid driver. That means you’ll need to use Promise’s FastTrak driver disk to
install Linux from scratch, and then rebuild the kernel with support for the ataraid
driver. If you are adding a Promise ATA RAID controller to an existing Linux sys-
tem, you can simply rebuild the kernel so that it includes the ataraid driver and begin
using the new controller. The I/O issues associated with the FastTrak driver can
cause filesystem errors between system reboots. If possible, choose a journaling file-
system such as ext3 or ReiserFS during the installation process. This will save you
from some additional headaches if you have to reboot the system a few times before
you can upgrade to the ataraid driver. Chapter 6 discusses filesystems.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Promise Technology | 177

Creating a driver disk

You should download the driver disk appropriate for your distribution from the
Promise web site (http://www.promise.com). A section of the web site is dedicated to
Linux support. Driver disks are provided for Red Hat, SuSE, TurboLinux, and
Caldera’s OpenLinux. On my Red Hat system, I downloaded the zip file for RedHat
7.1/7.2/7.3 (T-FTS-02-RHD73.zip). Included in the archive are two additional zip
files: one file for uniprocessor (rhup-ftb22.zip) systems and one file for multiproces-
sor systems (rhsmp-ftb22.zip). Use the following commands to prepare a blank disk
and unpack the archive. (Note that this example is for a single-processor Red Hat
system.)

mkfs.msdos /dev/fd0
mount /dev/fd0 /mnt/floppy
unzip rhup-ftb22.zip -d /mnt/floppy
sync
umount /mnt/floppy

Installation

Now you can begin system installation. Boot the new system with your installation
media and choose the option that lets you specify additional drivers. For Red Hat,
that means typing linux dd at the boot prompt. When prompted for the driver disk,
insert it, and the FastTrak driver will load. After a few moments, the installer will
execute normally.

During system partitioning, arrays defined on Promise controllers will show up as
SCSI disks, a by-product of using the FastTrak driver. So if you have one array, it
appears as /dev/sda. A second array would appear as /dev/sdb, and so on. Detection
order is important here. If you have another SCSI controller connected to the sys-
tem, and it’s in a lower- numbered PCI slot, disks connected to that controller could
show up as /dev/sda and shift the lettering of your Promise arrays. Pay careful atten-
tion to the size of each disk, so that you are sure to define partitions on the proper
disk. Depending on the partitioning method you use, the driver associated with indi-
vidual disks might also be displayed, clarifying where disks are connected. Arrays
defined on Promise controllers should be explicitly marked. For example: sda:
Promise 2+0 Stripe/RAID01.109804 - 38178 MB.

The individual disks in your arrays will also show up as standalone
ATA disks when using GUI partitioning tools such as Disk Druid. It’s
very important to create system partitions for installation on the vir-
tual SCSI devices for the array (usually /dev/sda). Never create parti-
tions on the component disks.

When the time comes to configure your boot loader, be certain to choose LILO. Do
not use GRUB with Promise RAID controllers. It’s also important to make sure that

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 5: Hardware RAID

the master boot record is installed in the proper location: onto the array, not an indi-
vidual disk. Despite installing Linux onto the proper array partitions, some installa-
tion programs still botch the boot loader configuration.

If you’re working with a distribution other than Red Hat, download the appropriate
zip files to create driver disks for your distribution. I strongly recommend creating a
boot disk during the installation process, even if it’s a step you normally skip. When
the installation is finished, restart the system and use the boot disk you created if you
encounter problems. Once the system is online, examine the system logs and system
partitions to make certain that you are using the FastTrak driver and that software
was installed onto the proper devices, as shown here:

grep FastTrak /var/log/messages
Jul 28 17:35:29 bored kernel:PROMISE FastTrak Series Linux Driver Version 1.02.0.22
Jul 28 17:35:29 bored kernel: scsi0 : FastTrak
df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda2 2.4G 1.7G 696M 71% /
/dev/sda1 197M 9.4M 177M 5% /boot

These system logs indicate that the FastTrak driver is bound to the first SCSI chan-
nel (scsi0), and the output of df -h shows that the partitions are located on /dev/sda. If
the output of df -h reported partitions on an ATA device (/dev/hda, for example), or if
the Promise initialization messages did not appear in the system logs, something
went wrong during the installation and Linux was installed to a standalone ATA disk
instead of the array.

Configuring the ataraid Driver
After your system is up and running with the FastTrak driver, I recommend convert-
ing to the ataraid driver for increased stability and performance. If you are only add-
ing a Promise controller to an existing system, start with the steps in this section.

Native support for Promise RAID controllers is located in the ATA/IDE/MFM/RLL
Support section of the Linux kernel configuration. First enable Development Sup-
port because the ataraid driver is still experimental. Then enable the following fea-
tures:

<*> ATA/IDE/MFM/RLL support
IDE, ATA and ATAPI Block devices --->

 <*> Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support
 ...
 <*> Include IDE/ATA-2 DISK support
 ...
 [*] Generic PCI IDE chipset support
 ...
 [*] PROMISE PDC202{46|62|65|67|68} support
 [*] Special UDMA Feature

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Promise Technology | 179

 [*] Special FastTrak Feature
 ...
 <*> Support for IDE Raid controllers
 <*> Support Promise software RAID (Fasttrak(tm))

Once you have enabled support for the preceding options, execute make and copy
the new kernel into your /boot directory:

make dep && make bzImage
make modules && make modules_install
cp arch/i386/boot/bzImage /boot/bzImage.ataraid

Reconfiguring LILO

Versions of LILO earlier than 22 do not recognize ataraid devices. So you will have
to upgrade LILO before executing /sbin/lilo to update the boot sector of a Promise
array that uses the ataraid driver. Use the command lilo -V to determine which ver-
sion of LILO you are using. If necessary, download the latest version of LILO from
http://ibiblio.org/pub/Linux/system/boot/lilo/ and install it before rewriting the boot
sector.

Now that the new ataraid kernel is built and installed, add a stanza to /etc/lilo.conf.

image=/boot/bzImage
 label=ataraid
 read-only
 root=/dev/ataraid/d0p2

Note that the root line contains a nonstandard device entry. The ataraid driver uses
the /dev/ataraid directory to organize the devices it manages. In this case, the root
partition is located on the first array’s (d0) second partition (p2). In general, ataraid
devices use the format /dev/ataraid/dXpN, where X is the array number and N is the
partition number.

While you’re editing /etc/lilo.conf, check the boot line to make certain it points to the
current system disk (/dev/sda or /dev/sda1, in most cases) because at this point, you’re
still using the FastTrak driver. After you reboot the system, you can change the boot
line to reflect the ataraid naming scheme, but for now, you need to be certain that
the boot record is being written to the proper place. Since this is a new system, the
installer might have created an /etc/lilo.conf file with a boot line that refers directly to
one of the component disks. That means you could unknowingly run /sbin/lilo and
write a boot sector that will hang the system on the next reboot. Don’t forget to
either change the default line in /etc/lilo.conf to specify the new ataraid entry, or
remove the default line altogether and make sure the ataraid stanza appears first.

You don’t need to take any additional steps if you merely added support for a Prom-
ise RAID controller to an existing system. However, you will need to restart the sys-
tem and use the FastBuild utility to define arrays. After you reboot, you can access
any new arrays, using the naming scheme outlined earlier. Just create a filesystem as
you would with any normal block device.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 5: Hardware RAID

Additional steps for new systems

Change the /etc/fstab entries for your system partitions if you are not using partition
labels. If you’re using partition labels, you don’t need to make any changes to /etc/
fstab right now.

Execute /sbin/lilo and reboot the system. The system will restart, using the ataraid
driver. If an error occurs, just reboot with the original kernel and double-check each
step that I have outlined. After the system restarts, you can execute the mount com-
mand, without any options, to ensure that the proper driver is in use and that the
partitions have been correctly mounted.

mount
/dev/ataraid/d0p2 on / type ext3 (rw)
none on /proc type proc (rw)
/dev/ataraid/d0p1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)

The proper device entries are listed in this output: /dev/ataraid/d0p2 for the root file-
system and /dev/ataraid/d0p1 for /boot.

Next, edit /etc/fstab and change your swap partition’s entry to reflect the ataraid
naming style. My original swap partition was /dev/sda3, so I’ll change its /etc/fstab
entry to /dev/ataraid/d0p3. Since the change to the swap device was made after the
system started, execute swapon -a to activate the swap space.

Finally, edit /etc/lilo.conf so that the boot line references the ataraid device instead of
the /dev/sdN device used by the FastTrak driver. In this case, we’ll change the boot
line to boot=/dev/ataraid/d0, meaning that the boot sector should be installed onto
the first array defined on the controller.

Converting an Existing Standalone Disk to a Mirror
Because there are so many problems associated with the Promise installation pro-
cess, I recommend upgrading your system from a standalone disk to a mirror via a
backup and restore procedure.

Post-Installation Array Management
There are no user-space management tools for Linux. While Promise does provide
some Microsoft Windows management packages, they have unfortunately not been
ported to Linux. To perform low-level array administration, you will need to reboot
the system and invoke the FastBuild utility.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3ware Escalade ATA RAID Controller | 181

3ware Escalade ATA RAID Controller
3ware, Inc. sells several well-supported, multichannel ATA RAID controllers. Adam
Radford developed an open source driver for 3ware. Joel Jacobson and Brad Strand
of 3ware also worked on the driver, as well as Arnaldo Carvalho de Melo of Conec-
tiva, Andre Hedrick of SuSE, and of course, Alan Cox.

The driver supports all 3ware controllers and has been standard in the stable Linux
kernel since 2.2.15. Direct installation to 3ware controllers is simple and headache-
free. You should have no issues when working with any distribution that uses a 2.4
or later kernel. I enjoyed problem-free installation using Red Hat, SuSE, and Man-
drake.

Creating an Array and Installing Linux
The following steps outline the process for creating a new array and installing Linux
onto a new system with a 3ware controller. The “Kernel Configuration” section later
in this chapter outlines the process for adding 3ware support to the kernel on an
existing system.

1. When the controller’s startup banner appears, press ALT-3 to access the configu-
ration screen. The main menu is split into a list of disks and a list of arrays. No
arrays will appear during the first use.

2. Use the arrow keys to navigate and the ENTER key to select disks for inclusion in
the new array. An asterisk appears next to each disk once it has been selected.

3. After the desired disks are selected, navigate to the Create Array button at the
bottom of the screen and press the ENTER key.

4. An array properties screen appears. Use the arrow and ENTER keys to adjust the
RAID level, cache type (write-through or write-back) and stripe size as needed.
Select OK when finished, and you’ll be returned to the main menu.

5. Press F8 to commit the new array to the controller’s memory. Some additional
warnings may appear, indicating that data on the selected disk will be destroyed.
Confirm the warnings if you are certain that the disks contain no important data
and you want to continue creating the array. If you created an array with redun-
dancy, a synchronization process will start before the system reboots. When the
system restarts, the new array appears in the controller’s initialization banner.

When you install Linux, the array you created will show up as a standard SCSI device.
If you created only one array and have no other disks, the array appears as /dev/sda
during installation. Create partitions as you would with any standalone disk and pro-
ceed with the installation as you would normally.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 5: Hardware RAID

Converting an Existing Standalone Disk to a Mirror
I was not able to successfully import a single disk into a 3ware mirror without com-
promising the existing data. I recommend using a traditional backup and restore pro-
cedure if you have a single disk system that you would like to upgrade to a RAID-1
using a 3ware controller.

Kernel Configuration
3ware controllers use the 3w-xxxx SCSI driver. If you installed Linux directly onto a
3ware controller, 3w-xxxx support is already enabled (although it is likely a loadable
kernel module). Follow the steps in this section if you are installing a 3ware control-
ler into an existing Linux system or want to compile a kernel without the 3w-xxxx
driver as a module. Although I have used the 2.4.18 kernel throughout most of this
book, I recommend using a later kernel (2.4.19 became available in August 2002) for
this process because the 3ware driver code has been significantly updated. It’s likely
that the 2.4.19 kernel will not make it into any distributions for quite some time, so I
recommend manually upgrading after the initial installation when possible. Readers
who are already using a 2.5 development kernel should already have the most recent
code.

Support for 3ware ATA RAID controllers is found in the SCSI support section of the
Linux kernel.

SCSI support --->
 ...
 SCSI low-level drivers --->
 <*> 3ware Hardware ATA-RAID support
 ...

Enable support statically (as I have shown above) or as a loadable kernel module.
Next, execute make and copy the new kernel into your /boot directory:

make dep && make bzImage
make modules && make modules_install
cp arch/i386/boot/bzImage /boot/bzImage.3ware
cp System.map /boot

Now add an entry for the new kernel to /etc/lilo.conf, updating global parameters as
needed, and execute /sbin/lilo to rewrite the boot sector. When the system restarts,
access your 3ware arrays like any normal SCSI device. Before creating a filesystem,
you’ll need to partition the array like any normal block device.

3DM Disk Manager
3ware provides the proprietary 3DM software package for post-installation array
management. 3DM runs as a daemon and monitors 3ware controllers, reporting any
information (such as errors, status changes, and array health) via syslog. Email alerts
are also available.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

3ware Escalade ATA RAID Controller | 183

Administrators can use a web browser to access 3DM’s built-in web management
interface. From the web interface, users can configure spare disks, email alerts and
array properties, and monitor arrays and disks.

Downloading and installing 3DM

Download 3DM from the support section of 3ware’s web site (http://www.3ware.
com). 3DM is also available on the CD-ROM that was included with your controller.
Unpack the tarball and execute the installation script:

tar xzf 3dm.tgz
cd 3dm
./install.3dm

The script will ask a few questions about how to install the software.

Was RPM used to install the Escalade driver and/or 3dm? (Y/N) [N]

**** 3DM version being installed is: 1.13.00.015 ****

Please enter the location of the help documentation. [/usr/local/doc/3dm]

Would you like to have email notification enabled? (Y/N) [Y]

Please enter the name of your mail server. \
 [bored.cynicism.com]: smtp.cynicism.com

Please enter the name of the user you want sending email \
 notification. [root]: 3ware-controller

Please enter the name of the user you want receiving \
 email notification. [3ware_admin]: admin

Please enter the port number you would like to use for \
 web monitoring. [1080]: 8080

Would you like 3DM connection security to limit \
 connections to localhost only? (Y/N) [Y]

**** Starting 3dmd using configuration found in \
 /etc/3dmd.conf ****

Starting 3ware DiskSwitch daemon: [OK]

Notice that I have changed the SMTP server used to email alerts, as well as the
sender and recipient addresses. You can fine-tune the other portions of installation as
needed. For security reasons, I strongly recommend keeping the default localhost-
only option. Since port 1080 is also the default port for a socks5 proxy, I have
decided to change the port number to 8080. Using port 1080 will likely generate
errors with some web browsers and distributions.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 5: Hardware RAID

Configuration and usage

After installation, the 3dmd program executes. If you need to change any of these
options, edit the file /etc/3dmd.conf and restart 3dmd using the init.d script /etc/init.d/
3dm. Of particular note are the PORT and REMOTEACCESS lines, which control the port
that the 3dmd web server runs on, and whether or not hosts other than the localhost
can connect.

Once 3DM is installed and running, use a web browser to connect to the controller. I
strongly recommend changing the default password as a first step. Click the Settings
tab at the top of the browser window. You’ll see a Change Password section with text
input boxes for both a user and an administrator password. The difference between
the two security levels is that users have read-only access. Change them by entering
the current password (the default password is “3ware”) and your new password, as
well as a confirmation for the new password. You must manually change both the
user and administrator passwords, even if you want to use the same password for
each. After the passwords are changed, they must be enabled in the Password Enable
section, located just below the Password Change boxes. Once the passwords have
been enabled, the 3DM web interface will prompt you to enter the new passwords
before you can proceed. Please also note that the passwords’ ciphertext is stored in
the /etc/3dmd.conf file. As always, securing services like 3dmd at the network level is
a recommended additional safeguard.

Most of 3DM’s other features are very straightforward, and its documentation is
thorough and accessible via the web interface. Use the Configuration tab to perform
administrative tasks without taking the system offline. From the Configuration tab,
you can add spare disks, remove failed disks, rebuild faulty arrays, and schedule reg-
ular integrity checks. The Settings tab controls 3DM’s settings, but it also contains
options to change the write caching for individual arrays, as well as the amount of
the controller’s resources dedicated to background tasks such as media verification
and array rebuilds. The Monitor and Alarms tabs display status information about
the controller and its arrays. And configuration information about the controllers
and arrays is provided under the Details tab.

Running 3DM is not a requirement, but it will provide some additional helpful infor-
mation about your 3ware arrays and controllers. Even if you prefer not to use the
web interface to manage and monitor arrays, 3DM still provides useful information
via syslog for a more traditional approach.

LSI Logic (MegaRAID)
LSI Logic (http://www.lsilogic.com) sells a variety of SCSI and ATA RAID controllers,
all of which are directly supported by Linux. I evaluated both the Elite 1650, a dual-
channel SCSI controller, and the MegaRAID i4, a quad-channel ATA controller.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

LSI Logic (MegaRAID) | 185

Working with these controllers is identical, except for some hard disk-specific con-
figuration options. So the information in this section applies to both the ATA and
the SCSI controllers.

Like some of the Adaptec controllers, LSI Logic RAID controllers have also shipped
as OEM products with Dell systems. If you have a Dell system with a branded LSI
Logic controller, you might want to take a look at Matt Domsch’s page on the sub-
ject: http://www.domsch.com/linux/.

Creating an Array
Users have two options when creating an array for the first time. When the control-
ler’s initialization banner appears, a choice between the MegaRAID Configuration
Utility (CTRL-M) and WebBIOS (CTRL-H) is presented. The difference between the two
really boils down to ease of use. The MegaRAID Configuration Utility is a typical
menu-driven utility, while WebBIOS is a mouse-driven GUI tool. WebBIOS is a bit
slower, and since it does require a mouse, it might not be a good choice for some sys-
tems, despite its ease of use. On the other hand, the legacy configuration utility is a
bit cryptic. Some of its navigation and menus are confusing, and it’s sometimes not
clear what changes you are making to arrays and disks.

Installing Linux Directly to a MegaRAID Controller
Since support for LSI Logic controllers is integrated into the Linux kernel, distribu-
tion support is common and straightforward. Arrays appear during Linux installa-
tion as standard SCSI devices, and no special driver disks are needed. I tested
installation using Red Hat, SuSE, Mandrake, and Debian.

The MegaRAID Driver
LSI Logic controllers are supported by the megaraid kernel driver, which is found in
the SCSI low-level drivers configuration submenu:

SCSI support --->
 SCSI low-level drivers --->
 ...
 <*> AMI MegaRAID support
 ...

There are no other configurable kernel options for the megaraid driver.

Converting an Existing Standalone Disk to a Mirror
Follow these steps if you want to replace your existing disk controller with an LSI
Logic RAID controller and mirror your existing system disk.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 5: Hardware RAID

1. Before physically replacing the controller, configure a new kernel with support
for the megaraid driver. After the kernel is compiled, install it and add an /etc/
lilo.conf stanza for it. Don’t forget to run /sbin/lilo to rebuild the master boot
record, too.

2. Power down the system and install the new controller in place of your original
disk controller. Connect your existing disk and any new disks to the new LSI
Logic RAID adapter.

3. After powering on the system, use CTRL-M to enter the MegaRAID Configuration
Utility. (You can, alternatively, use the WebBIOS tool to perform the steps I
have outlined here. However, I’m going to provide step-by-step instructions for
the MegaRAID Configuration Utility because it’s usable by everyone and is a bit
more obtuse.)

4. Choose Configure and then New Configuration from the main menu. A list of
disks, organized by channel, is presented. Use the arrow keys to move between
disks and the SPACEBAR to include a disk in the array. Select your original system
disk first and then the new disk. Once a disk is selected, it will be marked online.

5. Press the ENTER key twice, and a window containing RAID properties appears.
Make certain that RAID-1 is selected, and tune the other options to you meet
your needs.

6. Choose Accept (you will need to press the ENTER key twice) and a final confirma-
tion dialog appears. Answer yes, and the configuration is written into the con-
troller’s memory.

7. At the main menu, choose Check Consistency. Use the SPACEBAR to select the
array you just created and press F10 to begin the consistency check. The process
could take some time, but when it is complete, your RAID-1 will be operational.
Then reboot the system and run Linux as you would normally.

Managing Arrays
Like many other hardware vendors, LSI Logic does not provide a way to manage
arrays from within Linux. Dell has ported the MS-DOS version of the MegaRAID
Configuration Utility to Linux, but if you use it, don’t expect support from LSI Logic
or Dell. Since Dell only uses certain LSI Logic controllers in its servers, you might
experience varied results when using Dell’s MegaRAID management utility. I recom-
mend searching the Web to read about other users’ experiences with the controller
you purchased to find out if an undocumented bug destroys the information on your
disks, or worse.

Download the utility from Matt Domsch’s Linux web page (http://www.domsch.com/
linux/). Using the utility is very straightforward; it’s a statically compiled binary and
works the same as the BIOS utility.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

187

Chapter 6 CHAPTER 6

Filesystems

Choosing and properly configuring a filesystem is as important as selecting an appro-
priate RAID level. ext2 (the Second Extended Filesystem) is the standard Linux filesys-
tem. Many users will be perfectly happy using ext2; it is reliable and can be fine-
tuned to meet specific demands of file usage. But while ext2 might be suitable for
end users, it doesn’t fare as well for large, heavily used filesystems that have
extremely large files or thousands of small files. ext2 doesn’t provide any way to
maintain filesystem integrity through system crashes. Also, ext2 is slowly making
way for ext3, a journaling filesystem that I’ll cover later in this chapter. Maintaining
data integrity and availability has become an essential requirement for all critical sys-
tems. After all, this is one of the most recognizable benefits of RAID. Fortunately,
there are a wide variety of filesystems for Linux that implement crash recovery and
prevention features. These systems are collectively called journaling filesystems, and
their main distinction from traditional Unix filesystems is that they don’t require file-
system checks after a system crash. I’ll cover journaling in greater detail later in this
chapter. Even if you aren’t interested in journaling filesystems right now, it’s a good
idea to begin learning about them. It won’t be long before your need for increased
data reliability or fast recovery may force you to make a change to a journaling file-
system.

There are several alternatives to ext2, in the event that it does not meet your needs.
IBM has ported its JFS implementation to Linux. (Like many computer industry
terms, JFS has a dual meaning. It refers generically to any journaling filesystem, but
also refers specifically to the IBM implementation.) Silicon Graphics has released
XFS, the longtime journaling filesystem of the IRIX platform, for Linux. And Hans
Reiser has created ReiserFS, a journaling filesystem developed specifically for Linux.
Finally, ext3 enhances the features of ext2 by adding journaling capabilities, along
with many other features.

This chapter includes information about each of these filesystems, but a complete
primer on the different filesystems is well beyond the scope of this book. I have pro-
vided enough information here so that you can make an informed decision about

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 6: Filesystems

which filesystem to choose, how to patch your kernel, and how to build the filesys-
tem. I strongly recommend reading more about each of the filesystems at their
respective web sites (for which I’ve provided references).

Each of the filesystems that I cover in this chapter, including ext2, can be fine-tuned
using filesystem parameters and mount options. In this chapter, I will explain how to
make some adjustments that will improve overall system performance.

Basic Filesystem Concepts
This section provides some basic information about filesystems. While this overview
is far from complete, it should help you decide which filesystem will best meet your
needs.

If you’re interested in learning more about filesystems, I recommend Moshe Bar’s
book Linux Filesystems (McGraw-Hill). William Von Hagen’s book of the same
name (Sams) also comes highly recommended, although I haven’t had time to pur-
chase and read a copy. There is an abundance of online resources about filesystems,
both for Linux and for other operating systems. Without question, the site that
stands out Daniel Robbins’s Advanced Filesystem Implementor’s Guide, available
from the IBM DeveloperWorks web site at http://www.ibm.com/developerworks/
library/l-fs.html. I’ve also pointed out online material that is specific to each filesys-
tem throughout the rest of this chapter.

Blocks and Inodes
All Unix filesystems use two basic components to organize and store data: blocks and
inodes. Just as a physical disk is organized into sectors, data on a filesystem is
abstracted into blocks. Blocks have a fixed size, determined at the time the filesystem
is created. The block size of a filesystem determines how many bytes are allocated to
each block on the filesystem. Generally, block sizes are 1 KB, 2 KB, or 4 KB for 32-bit
systems. A block size of 8 KB is also available on 64-bit systems.

Inodes are used to map blocks to physical disk locations on Unix filesystems. Every
file created, whether it’s a directory, normal file, or special file, is assigned an inode.
Inodes work in much the same way as pointers do in programming languages such as
C, Perl, and Java. Inodes also store information about a file, including its type, size,
and parent directory. On traditional Unix filesystems, inodes are typically allocated
when the filesystem is created. ext2, for example, allocates one inode for every 8 KB
worth of data blocks when a new filesystem is initialized, although this value can be
manually altered. That means an ext2 filesystem with a block size of 4 KB allocates a
single inode for every two data blocks.

When a filesystem runs out of inodes, no new files can be created until existing files
are deleted, thereby freeing up inodes that are already in use. For this reason, many

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Basic Filesystem Concepts | 189

new filesystems implement dynamic inode allocation, freeing system administrators
from worrying about such limitations.

Space efficiency versus performance

Most filesystems use a default block size of 4 KB, but that size might not be efficient
for all situations. Let’s say that you have a partition that contains many files that are
smaller than 4096 bytes. When those files are created, the remaining space in each
block is wasted. So on a filesystem that contains many files that are smaller than the
block size, you end up with a lot of wasted disk space. Tailoring the block size to
meet the needs of your data helps you use disk space efficiently. A block size of 1024
or 2048 bytes on partitions that are expected to utilize many small files will help
maximize disk usage, though files smaller than the block size will still waste disk
space on some filesystems.

There is a trade-off when using smaller block sizes. Bigger block sizes mean that
fewer I/O operations are required when reading larger files. For example, on a file-
system with a block size of 4096 bytes, only one block needs to be accessed to read a
file that is 3 KB. On a filesystem with a block size of 1024 bytes, three different
blocks must be accessed for I/O on that file. Now, consider a file that is many mega-
bytes in length. The increase in the number of blocks that must be accessed to read
that file is substantial when a smaller block size is used. In cases in which the blocks
holding the data in the file are not contiguous, that also means that additional opera-
tions to locate the data blocks must also be performed.

Remember my discussion of sequential disk I/O from Chapter 2. Using bigger block
sizes helps increase sequential data access for large files. Larger block sizes reduce file
fragmentation by insuring that bigger chunks of files are contiguous. This translates
into improved performance because the disk performs fewer seeks when reading or
writing large files.

In general, use smaller block sizes when you anticipate creating many small files that
could fit into single small blocks. Use a larger block size when you expect to be
working with larger files. As a rule, you can safely use the 4 KB default block size on
filesystems larger than a few hundred megabytes. Unless you have sound reasons for
going with a smaller block size, 4 KB is likely to be a good choice.

Organization
Different filesystems implement different methods for organizing data. Traditional
Unix filesystems relied on linked lists to organize inodes and data blocks. A table of
inodes pointed to a physical disk block. This arrangement obviously doesn’t scale
well. So, newer filesystems have sought to optimize the process. ext2, for example,
applies a block bitmap and splits up the inode table so that it is distributed across the
entire disk. Rather than look up a data block from a single, large table, a filesystem
such as ext2 needs to examine only a small subset of inodes to perform I/O.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 6: Filesystems

As the complexity of applications and operating systems has evolved, so has filesys-
tem design. Today, many new filesystems implement a data structure known as a B-
tree to organize the filesystem. B-trees have been used in database design for many
years. A B-tree is optimized so that it can be quickly accessed, even when it’s stored
on a hard disk. This usually means that the size of a leaf in a B-tree is equal to, or is
some function of, the size of a filesystem data block.

A B-tree is similar to a balanced binary tree, with a few notable exceptions. B-trees
have a large branching factor. Where a binary tree has only two leaves per node, a B-
tree can have many, which makes the path to access data much shorter. In turn, the
height of a B-tree is small, compared with a traditional binary tree. Some filesystems
use B-trees exclusively, while others implement a combination with the traditional
linked-list/block bitmap approach. A thorough discussion of data structures and
algorithms is beyond the scope of this chapter, however. I humbly refer your to more
learned texts on the subject, such as Readings in Database Systems, edited by Michael
Stonebreaker and Joseph M. Hellerstein (Morgan Kaufmann); The Art of Computer
Programming, by Donald E. Knuth (Addison-Wesley); and Algorithms in C, by Rob-
ert Sedgewick (Addison-Wesley).

Journaling Filesystems
Journaling offers improved filesystem reliability and fast crash recovery through the
use of a transaction log, or journal. The journal is an on-disk log of metadata, or data
about the filesystem, that is kept up-to-date as the filesystem changes.

Filesystems without journaling store changes to the updates in memory. These
changes are periodically flushed from memory and written to disk. If a crash occurs
before the buffers are flushed, data that has not been written to disk is lost. Instead
of storing these changes in memory, a journaling filesystem writes a log of the
changes to disk. The actual data is kept in memory until enough free system
resources are available so that the full write operations can be performed efficiently.
When the data is committed to disk, the journals are updated.

The journal allows a filesystem to instantly recover to the last good state after a sys-
tem crash. After the system reboots, outstanding consistent entries in the journal are
replayed (committed to disk), while any remaining inconsistent entries are dis-
carded. This process is often referred to as a log replay. The benefit here is that you
don’t have to wait for a large filesystem to fsck. Journaling is especially helpful when
working with RAID because arrays tend to be larger than single disks, which already
take a long time to fsck. Imagine waiting for fsck to complete on a terabyte RAID par-
tition that is using ext2. The downtime could be hours, or even days! With a journal-
ing filesystem, the replay process generally takes only a few seconds, or at most a few
minutes.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Linux Virtual Filesystem (VFS) | 191

Doesn’t journaling hurt performance?

Normally, the process of maintaining a journal would carry serious performance
overhead. However, two factors help alleviate this additional load. First, journaling
usually records only metadata, which has a very small overhead. Second, unlike tra-
ditional Unix filesystems, most journaling filesystems are designed with perfor-
mance in mind. While a well-designed nonjournaling filesystem would outperform a
similarly designed journaling filesystem, the new journaling filesystems available for
Linux typically perform at least as well as legacy filesystems.

Just as RAID offers varying trade-offs between performance and reliability, so do
journaling filesystems. While all journaling filesystems support metadata journaling,
some support data journaling as well.

The Linux Virtual Filesystem (VFS)
The Virtual Filesystem (VFS) was developed to provide a common interface for many
filesystems to interoperate with the Linux kernel. The VFS is an additional layer of
abstraction between specific filesystem implementations and system calls. Figure 6-1
illustrates the relationship between filesystems, block devices, and the VFS.

Figure 6-1. The Linux Virtual Filesystem.

Users and Applications

System calls

VFS

ReiserFS ext2 IBMs and
JFS XFS ext3

Software RAID
(md driver)

Individual device drivers

Disk controllers

I/O requests

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 6: Filesystems

The Linux kernel and the VFS impose some limits that affect the usability of any file-
system. Originally, the Linux file access API used a signed 32-bit value to represent
file sizes on 32-bit systems such as x86 and PowerPC. This imposed a serious limit
because file size could never be larger than a single 32-bit value. Using 32-bit values
to store file sizes limits users to a maximal file size of 231 (2,147,483,648) bits or 2
GB. Beginning with the 2.4 series kernel, this limit was raised to 1 terabyte (TB) or
1000 GB. Patches to correct the 2 GB limitation are available for 2.0 and 2.2 series
kernels. Libraries and applications must also be patched if you want large file sup-
port. So even with a patched kernel, not all applications will support large file sizes
natively. For more information on large file support, see http://www.suse.de/~aj/
linux_lfs.html. Also note that many distributions that shipped 2.0 and 2.2 series ker-
nels came with large file support already implemented. Check the specific distribu-
tion if you are unable to use 2.4, or later, kernels.

Limits on file sizes are also imposed by the filesystem, but these usually exceed the
kernel API limit significantly. For general purposes, the maximum file size for any
filesystem is limited to 1 TB, although filesystems could support larger sizes natively.

The maximum size of a filesystem on a 32-bit system is also limited by the kernel.
Linux imposes a hard limit of 2 TB on any filesystem. In fact, the hard limit for just
about anything running under Linux, as of version 2.4, is 2 TB. This 2 TB limit is
much smaller than many filesystems are capable of supporting.

64-bit architectures

64-bit systems are not subject to the same limitations as 32-bit systems because they
use a 64-bit value to represent file sizes. On 64-bit systems such as Alpha and IA64,
files can be as large as 263, 8 exabytes (EB), or 8 million TB.

ext2
ext2, originally released in 1993, has a single advantage over the new, high-perfor-
mance filesystems available to Linux users: it is the most widely implemented filesys-
tem for Linux and has undergone seven years’ worth of development and debugging.
ext2 is not without its limitations. For example, unlike some newer filesystems,
which can dynamically allocate inodes, ext2 allocates a fixed number of inodes when
the filesystem is created. As a result, users must plan carefully when creating large
filesystems because when all inodes are exhausted, no new files can be created. The
only options at that point are to build a new filesystem or to erase existing files in
order to deallocate inodes.

ext2 Organization
Each ext2 filesystem contains a superblock. The superblock contains general informa-
tion about the filesystem, including its block size, the total number of inodes and

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ext2 | 193

blocks in the filesystem, and information about the state of the filesystem. The super-
block is essential for successfully mounting an ext2 filesystem. The superblock is
stored at the beginning of a filesystem, at an offset of 1024 bytes from the start of the
device. Because of its importance, backup copies of the superblock are stored
throughout the filesystem in block groups.

Block groups are collections of blocks that further organize an ext2 filesystem. In
addition to containing a fixed amount of blocks, each block group originally stored a
backup copy of the superblock. However, this method wasted space, and now
backup copies are stored only in block groups 0 and 1, as well as block groups that
are powers of 3, 5, and 7. This distribution conserves space, while insuring that a
usable copy of the superblock is always intact. In the event that the superblock
becomes corrupt, a mount option allows system administrators to specify an alter-
nate superblock location.

Each block group begins with a group descriptor, which contains a block bitmap, an
inode bitmap, and an inode table. (The group descriptor follows the superblock
backup on block groups that contain a backup of the superblock.) The block and
inode bitmaps are simply bit patterns that identify which blocks and inodes in the
current block group have been allocated. The inode table contains pointers to data
blocks in the current block group.

Block groups help improve disk performance in two ways. First, because each block
group has its own inode table, the time between looking up an inode and retrieving
data blocks is decreased. Imagine if the inode table were centralized, for example, at
the beginning of the disk. The time needed to move the actuator arm to the inode
table and then back out to data blocks would significantly impact performance.

Block groups also help improve performance by keeping data in the same block
group as its inodes and by attempting to store an entire file in the same block group.
Overall, block groups help reduce the number of seeks a hard disk needs to make
when locating and accessing files.

Creating an ext2 Filesystem
The mke2fs command is used to create ext2 filesystems on disk partitions or RAID
devices. In addition, ext2 users have several other commands at their disposal to
manage ext2 filesystems. Of particular note is tune2fs, which allows administrators
to configure tunable ext2 parameters that don’t require re-initialization of the filesys-
tem. tune2fs, as well as many other useful ext2 utilities, is available as part of the
e2fsprogs package, which is included with most distributions and is available from
http://e2fsprogs.sourceforge.net.

By default, mke2fs creates a filesystem on the specified device, using a block size of
4096 bytes.

mke2fs /dev/md0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 6: Filesystems

Use the -b flag to change the default block size.

mke2fs -b 1024 /dev/md0

Normally, the number of inodes is automagically computed by mke2fs, based on the
block size chosen (8192 bytes for each inode, by default). However, if the values that
mke2fs computes are inadequate, the ratio of inodes to bytes can be altered as well.
Note that the ratio of bytes to inodes should never be smaller than the block size. As
the number of bytes per inode increases, you are left with fewer inodes; as the num-
ber decreases (or approaches the block size), more inodes are created. Here is an
example that creates an ext2 filesystem with a block size of 1024 bytes and an inode
ratio of 2048 bytes per inode, or one inode for every two blocks:

mke2fs -b 1024 -i 2048 /dev/md0

This arrangement might be useful for a system where you expect to find many small
files, varying in size from 1 to 2 KB. mke2fs also lets you specify the number of
inodes without attempting to compute the value. Use the -N flag to pass a fixed
number of inodes to mke2fs.

mke2fs -N 8960896 /dev/md0

Tuning ext2 Filesystems
As I mentioned in the previous section, tune2fs can configure variables associated
with an already initialized ext2 filesystem. In addition, there are a number of other
tactics that you can use to improve the performance of an ext2 partition: software-
RAID-specific options for mke2fs, mount options, and filesystem attributes.

Reserved space

ext2 sets aside a fixed amount of space, by default, for the super-user. This reserved
space is supposed to ensure that essential processes, usually running with a UID or
GID of root, are able to continue writing data, even after the filesystem becomes full
for normal users. In practice, nonprivileged users and processes are often able to
unintentionally bypass this safeguard, so it’s not really a reliable security mechanism.

By default, 5 percent of the total disk space is reserved when an ext2 filesystem is cre-
ated. Using the -m flag, users can adjust this percentage to meet their needs. An inte-
ger value between 1 and 100 must be used. In this example, 10 percent of the total
disk space is reserved:

mke2fs -m 10 /dev/md0

It might also be useful to change the user who is allowed to write data to the reserved
disk space. Since security is such a well-publicized issue these days, many programs
no longer run as root. Therefore, you might find it useful to allow the user account
under which your database runs, for instance, to have access to the reserved areas on

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ext2 | 195

certain partitions. Use the tune2fs command to modify the reserved blocks UID and
group. It’s safe to make this change while the filesystem is mounted.

tune2fs -u mysql -g mysql /dev/md0
tune2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Setting reserved blocks gid to 75
Setting reserved blocks uid to 75

There is some confusion surrounding the need for reserved space under ext2. Many
administrators create ext2 filesystems without any reserved space, or with the mini-
mum amount (1 percent), when working with extremely large partitions. Their rea-
soning is that when the reserved space option was introduced, even big partitions
were small by today’s standards. So reserving the default 5 percent on a partition typ-
ical for large systems, such as 40 GB, is perceived as a waste of valuable disk space.
Generally, the super-user doesn’t need that much reserved space because partitions
that large are normally user partitions such as /home.

However, reserved space is essential for minimizing file fragmentation. Fragmenta-
tion occurs as filesystems become increasingly full. As space on a disk decreases, it
becomes more unlikely that large files can be stored in contiguous disk blocks.
Because the file must be spread across different parts of the disk, the actuator arm
needs to move more frequently to access those fragmented files. The result is slower
disk performance.

Theodore Ts’o, an ext2 developer, advises:

As the [filesystem] get[s] progressively full, the chance for fragmentation goes up. So it
is appropriate to use a constant percentage of the total filesystem size for the reserved
space. If you have a 500GB array, using 25GB of reserved space is therefore not neces-
sarily overkill. It sounds like a lot of space, but it’s still only 5 percent of the total file-
system.

The dangers of fragmentation present themselves only when a filesystem changes.
Therefore, reserved space might not be needed at all when data is static. For exam-
ple, an array serving large images that never change (perhaps from a popular space
telescope), might require a filesystem that doesn’t waste any space. Simply adding
new images, without erasing old ones, isn’t going to cause fragmentation.

RAID options

Using the -R flag to mke2fs sets options specific to software RAID during filesystem
initialization. Currently, only one option is available—stride, which distributes
metadata blocks evenly across an array so that an equal number of blocks is included
in each chunk-size stripe. An array with a 64 KB chunk-size and an ext2 filesystem
with a block size of 4 KB needs 16 blocks to fill a 64 KB chunk. In this case, a stride
of 16 will yield optimal performance.

mke2fs -b 4096 -R stride=16

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 6: Filesystems

The stride option increases the performance of any striped array
(RAID-0, RAID-4, and RAID-5), but it has no impact on linear arrays
or mirroring arrays.

Access time

Each file on an ext2 partition contains metadata concerning when it was created
(ctime), the last time it was modified (mtime), and the last time it was accessed
(atime). Whenever a file is written, its ctime and mtime are updated, and because
these values are updated during write operations, the performance overhead is not
noticeable. Keeping track of when files were created and modified is also quite use-
ful for system administration, while access times are not often required.

Unlike modification and creation timestamps, access time (atime) is updated when-
ever a file is read or opened. This means that each time a file is accessed (read), a
write operation, albeit a small one, is performed. On heavily used filesystems, this
process can become an unwarranted burden. Is it really necessary to update the
atime every time the ls command is executed? Certainly not. Likewise, the overhead
needed to update the atime for files stored in news and mail spool directories, web
caches, and httpd servers’ document roots is also a waste of performance.

You can use the chattr command to set files and directories so that their atime is no
longer updated.

chattr +A /bin/ls

Using chattr +A on a directory automatically sets the noatime option for all new files
created within that directory tree. But files that already exist under a directory struc-
ture must be manually changed after the command is issued. You can recursively set
entire directory structures to cease recording atime information using the -R flag.

chattr -R +A /usr/local/httpd/htdocs/

Modifying the atime flag is useful when you wish to continue updating access times
for certain files and directories, while ignoring them for others. In some circum-
stances, it might be useful to ignore all atime updates for an entire mounted parti-
tion. For example, a machine that is hosting Usenet news might use a software RAID
to store new articles. Passing the noatime option at mount time is better than issuing
chattr, because storing the atime for any file on the news spool is unnecessary.

mount -o noatime /dev/md0 /var/spool/news

A working example

To illustrate the ext2 features I have discussed so far, I’ll create a RAID-5 array with a
32 KB chunk-size. This array will contain mostly compressed graphics files that are
each about 100 KB in size. In this case, I’m not worried about the default number of

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ext3 Extensions for the ext2 Filesystem | 197

inodes, because given the average image size, it’s unlikely that all of my inodes will
be exhausted before running out of space on the array. I’ll create the filesystem with
the following command:

mke2fs -b 4096 -R stride=8 /dev/md0

Here, I’ve initialized an ext2 filesystem, making sure to include eight 4 KB blocks in
each 32 KB array stripe. Because I’m working with large files, I’ve also chosen a
block size of 4 KB—the maximum for the 32-bit system that I’m using. Since I plan
to use this array as part of an httpd image server, I’m also going to modify my /etc/
fstab to automatically mount the array with the noatime option, so that I won’t waste
any time storing file metadata that I’ll never use.

/dev/md0 /var/spool/news ext2 defaults,noatime 1,2

ext3 Extensions for the ext2 Filesystem
ext3 is an attempt to add many of the features found in other journaling filesystems
to the ext2 filesystem. Many users feel that this design approach will cause ext3 to
inherit some problems that have arisen with ext2 over the years, and have instead
opted to use a journaling filesystem that has been developed from the ground up,
like ReiserFS. However, many also feel that by adding the journaling features onto
ext2, users of ext3 are inheriting the time-tested reliability of the ext2 filesystem. And
since ext3 is fully forward- and backward-compatible with ext2, users don’t need to
go through a tedious backup and restore process to upgrade older ext2 systems.

Regardless of whether you are ready to embrace ext3 or remain a skeptic, two things
are certain. First, ext3 will become pervasive, simply because ext2 is so widely
deployed. Second, ext2 is always being improved, so just because ext3 inherits its
architecture from ext2 doesn’t mean that there isn’t room for it to develop as a file-
system.

ext3 supports journaling for metadata only, as well as combined journaling of data
and metadata. That means users can improve the reliability of their filesystems by
taking additional safeguards against data loss resulting from a system crash. ext3
inherits filesystem and file size limits from ext2. It also uses the same data structures
and organization as ext2.

Support for ext3 has been included with the stable Linux kernel since 2.4.15. Users
working with older kernels can apply a patch to gain ext3 support. As always,
upgrading to the most recent stable kernel is advisable, when possible.

Patching the Kernel for ext3 Support
Patches for 2.4 series kernels are available from http://www.zip.com.au/~akpm/linux/
ext3/. Download the patch that matches the kernel version you are working with and

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 6: Filesystems

apply it to a clean kernel. If you don’t find a patch for the kernel you are working
with, upgrade. For example, if you are using 2.4.10, enter the following:

cd /usr/src/linux-2.4.10
patch -p1 < /usr/src/patches/ext3-2.4-0.9.10-2410

Patches for 2.2 kernels are available from ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/,
although using a 2.4 kernel is recommended.

Compiling the Kernel with ext3 Support
In 2.4 kernels, ext3 features are found under the Filesystems section of the kernel
configuration.

Filesystems --->
 [...]
 <*> Ext3 journalling file system support (EXPERIMENTAL)
 [] JBD (ext3) debugging support

The first option (CONFIG_EXT3_FS) turns on support for ext3 filesystems. It can be
compiled statically (as shown above) or as a module.

For 2.2 kernels, ext3 support is listed as Second extended fs develop-
ment code, and not as ext3.

You can also enable debugging support (CONFIG_JBD_DEBUG) if you are trying to track
a problem. When debugging support is activated, you need to set a debug level
before any information is reported. Set the debug level by echoing a number between
1 and 5 to the file /proc/sys/fs/jdb-debug.

echo 5 > /proc/sys/fs/jdb-debug

The number indicates the verbosity level. A higher number means more verbosity.
During normal use, you can leave debugging disabled by never setting the verbosity
level. This way, you can keep its support compiled into the kernel without risking
the performance degradation normally associated with such logging.

After the new kernel is compiled, installed, and running, you should see ext3 listed in
/proc/filesystems. If you compiled ext3 as a module, it won’t appear in /proc/
filesystems until it is inserted.

Working with ext3
To successfully use ext3, you need a version of the e2fsprogs package that is newer
than 1.25. As of this writing, release 1.27 is available. To determine which version of
the toolset you have installed, execute mke2fs with the -v option:

mke2fs -V
mke2fs 1.27 (8-Mar-2002)
 Using EXT2FS Library version 1.27

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ext3 Extensions for the ext2 Filesystem | 199

If you are using an older version, download a new one from the e2fsprogs home page
(http://e2fsprogs.sourceforge.net/), compile, and install it. You may also be able to get
an update from your distributor, although the tools can sometimes be a revision
behind.

All of the traditional ext2 tools, like tune2fs, can also be used with ext3 filesystems.
Be certain to check the manual pages to see which options apply; not all do. I’ve out-
lined some specific tasks in the rest of this section, but this information is by no
means comprehensive.

Creating an ext3 Partition
You can create ext3 partitions by adding parameters to the mke2fs command. Exe-
cuting mke2fs -j creates an ext3 filesystem. For example:

mke2fs -j /dev/md0

The program mkfs.ext3 is equivalent to executing mke2fs -j.

The size of the journal can be fine-tuned, but must be a minimum of 1024 blocks
and cannot exceed 102,400 blocks. If you are using a block size of 2048 bytes, the
minimum usable journal size is 2 MB and the maximum is 200 MB. By default, 8192
blocks are allocated (32 MB when using a 4 KB block size). The default block size for
an ext3 filesystem, as for an ext2 filesystem, is 4096 bytes. Thus, the following exam-
ple creates an ext3 filesystem with a journal size of 16 MB (4096 blocks * 4096 bytes
per block).

mke2fs -j -J size=16 /dev/md0

Converting an ext2 Filesystem to ext3
Perhaps the most convenient benefit of using ext3 is the ability to convert old ext2
partitions without destroying data or relying on a backup and restore process. Use
the tune2fs command to add journal support to an existing ext2 partition. This
method has been tested and proven safe by many users, but the paranoid should
make certain they have backups.

tune2fs -j /dev/md0
tune2fs 1.25 (20-Sep-2001)
Creating journal inode: done

While it’s possible to upgrade a mounted ext2 partition, you will need to remount
the filesystem as ext3 before journaling commences.

umount /mnt/array
mount -t ext3 /dev/md0 /mnt/ext3

Now that the filesystem has been upgraded, change your /etc/fstab entry to indicate
that the partition is an ext3.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 6: Filesystems

Tuning ext3 Features
You can make a variety of performance-tuning enhancements to the ext3 filesystem.
Remember that in addition to the changes I’ve outlined in this section, the perfor-
mance tweaks associated with ext2 (like the noatime mount option) also apply to
ext3 partitions. In fact, using noatime on any journaling filesystem is strongly recom-
mended. Because all changes to the filesystem are logged, the impact of access time
updates is amplified. This is especially noticeable on heavily used systems.

Data journaling

By default, only metadata journaling is enabled for an ext3 filesystem. To enable data
journaling, mount the filesystem with the option data=journal. For example:

mount -t ext3 -o data=journal /dev/md0 /mnt/ext3

While data journaling should slow down the overall performance of your filesystem,
there has been some suggestion that in certain situations it could improve perfor-
mance. I recommend testing each option. The default ext3 operations (data=ordered)
specify that data should be written to disk before metadata. This is the default
because it offers the best trade-off between performance and reliability.

The data=writeback option provides the best overall performance, but impairs reli-
ability a bit. Unlike ordered writes, writeback mode places no constraints on the
order in which data and metadata are written to disk. While filesystem integrity is
maintained using writeback mode, it’s possible that some data will not be commit-
ted to disk in the event of a system crash, meaning that you could be left with some
old data. Still, this sacrifice is worthwhile on systems that require the highest level of
performance.

Use the following command to mount an ext3 filesystem in writeback mode:

mount -t ext3 -o data=writeback /dev/md0 /mnt/ext3

Once you’ve decided on the best journaling mode, add the mount option into your
/etc/fstab file so that it’s always selected when the system restarts.

Using a separate journal device

To improve overall performance, try creating the journal for an ext3 partition on a
separate device. For example, creating a journal on a small RAID-1 partition when
the filesystem uses RAID-0 or RAID-5 for data adds some protection.

First, you need to create a journal device. This can be any block device attached to
the system. The only requirement for the journal device is that it use the same block
size as the ext3 filesystem for which it provides journaling.

mke2fs -O journal_dev /dev/md0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ReiserFS | 201

Now /dev/md0 is a journal device usable by an ext3 filesystem. When a journal
device is created, all the space available on the device is allocated for the journal, so
it’s important to repartition your disks appropriately. Using a pair of 9 GB disks for a
journal device is overkill and will impact performance, especially when the system
boots. Create smaller partitions and add them to your array. Next, create an ext3
filesystem that uses your journal device to store transaction logs. For instance, the
following creates /dev/md1 and allocates the preexisting /dev/md0 as its journal
device:

mke2fs -J device=/dev/md0 /dev/md1

Further Information
For more detailed information about ext3, refer to the ext3 home page (http://www.
zipworld.com.au/~akpm/linux/ext3/) as a starting point. The ext3 mailing list is also
of particular interest:

https://listman.redhat.com/mailman/listinfo/ext3-users/

Finally, the following paper describing some of ext3’s features:

http://www.redhat.com/support/wpapers/redhat/ext3/index.html

ReiserFS
ReiserFS is the brainchild of Hans Reiser, although today, a large cavalcade of devel-
opers is involved in its production. ReiserFS was the first journaling filesystem devel-
oped for Linux and has held its own remarkably well, considering that IBM and SGI
have contributed impressive alternatives (the JFS and XFS filesystems, respectively).

Reiser began the ReiserFS project with an untraditional design that uses balanced
trees* to manage and organize the filesystem, instead of a traditional linked list
approach. Balanced trees have been used for quite some time in database architec-
ture, but various disappointing attempts to create balanced-tree filesystems have led
many in the operating system community to believe they are not suited to that pur-
pose. Reiser, on the other hand, maintains that a proper implementation will eventu-
ally result in a better-performing and more reliable filesystem. While some other
filesystems that have implemented the balanced tree algorithm used the tree to man-
age only metadata, ReiserFS stores both files and filesystem metadata in the bal-
anced tree structure.

* A balanced tree is a tree where the lowest level of the tree must become full before a node is created at the
next level. This arrangement ensures maximum efficiency in searching, because at most, half of the nodes in
a tree must be examined for any given search. The trade-off lies in adding more overhead to each change in
the tree. The balanced tree that ReiserFS uses has a maximum depth of 5, by default.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 6: Filesystems

The ReiserFS design approach works very well for small files and for filesystem meta-
operations, such as deletion. While ReiserFS used to struggle with performance on
larger files, those issues have now been all but resolved, and some improved code for
large files will appear in the 2.4.20 kernel, as well as in future development kernels.
Performance continues to be a priority for Hans Reiser, and it’s one of the main goals
of ReiserFS version 4. Reiser writes:

Most filesystems are able to run at close to disk bandwidth for large files unless data
journaling is in use, and large files without data journaling on are not a good discrimi-
nator among filesystems anymore. Reiser4 will be unique in being able to run at close
to disk bandwidth with data journaling on, and it will be able to run at close to disk
bandwidth with medium and small files written in large batches. In version 3 we turn
off data journaling by default, because for large files the performance is horrible due to
needing to write the data twice. Wandering logs in V4 cure that, and data journaling
will be the default. V4 is in alpha testing now.

ReiserFS originally provided metadata journaling only. In other words, the filesys-
tem remembered after a crash that you wanted to move or delete a file, but did not
remember how a file’s contents might have changed. When kernel 2.4.20 is released,
ReiserFS will support data journaling as well. Previously, users had to apply a patch,
written by Chris Mason of SuSE, if they wanted data journaling under ReiserFS.

ReiserFS also implements a file packing approach called file tails. File tails allow
unused portions of a filesystem block to be reused to store other files. That means
that almost no disk space is ever wasted, making storage extremely efficient in Reis-
erFS. Despite this, many users, as well as Reiser, find that ReiserFS begins to slow
down as disks become full. Reiser notes, “Once a disk drive gets more than 85% full,
the performance starts to suffer,” and that as you approach higher percentages, per-
formance is seriously degraded. But he points out, quite correctly, that this is true for
nearly all filesystems. Remember that ext2 reserves 5 percent of the total disk space,
by default, to help alleviate such issues. Also, because of ReiserFS’s use of file tails,
85 percent full is a more accurate reflection of actual data usage, as opposed to an
indication of how many blocks are allocated.

Unlike traditional Unix filesystems, such as ext2, ReiserFS provides dynamic inode
allocation, which means that users don’t need to worry about creating a filesystem
with sufficient inodes ahead of time. New inodes are automatically allocated as
needed.

ReiserFS has suffered some bad press over the years. User reports complaining about
mysterious filesystem corruption and interoperability problems with NFS have
clouded many of its benefits. But the NFS issues have been resolved, and many users
have been working successfully with ReiserFS for quite a long time.

I strongly recommend reading the white papers, FAQ, and documentation available
at the ReiserFS web site (http://www.namesys.com). The ReiserFS version 4 white
paper also provides a good road map for future development and outlines some of
the proposed changes that seek to rectify some of the known performance issues

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ReiserFS | 203

when using ReiserFS. You might also wish to subscribe to the ReiserFS mailing list.
To do so, send an email to reiserfs-list-subscribe@namesys.com. The archives are
available at http://marc.theaimsgroup.com/?l=reiserfs&r=1&w=2.

Installing Directly to ReiserFS
If you want to install a new Linux system that uses ReiserFS for system partitions,
you will need to choose a distribution that provides installation support for Reis-
erFS. Currently, SuSE and Mandrake both support out-of-the-box installation. If you
use Red Hat, type linux reiserfs at the boot prompt. Reiser FS now appears as a
filesystem choice in Disk Druid. (Cory Ellenson (http://www.ellenson.org) gets credit
for pointing out this trick to me.) By starting Red Hat in this fashion, you can install
directly onto a software RAID with ReiserFS.

Debian users who want to install directly onto ReiserFS should take a look at http://
kebo.vlsm.org/debian-extra/reiserfs/. That is the best resource I could locate for
Debian/ReiserFS boot media. I advise you to search for additional resources. If you
have an existing system and merely want to add ReiserFS support, move on to the
next section.

Compiling the Kernel with ReiserFS Support
Support for ReiserFS has been included in the stable Linux kernel since 2.4.1. Enable
support for ReiserFS (CONFIG_REISERFS_FS) in the Filesystems section of the kernel
configuration.

Filesystems --->
 <*> Reiserfs support
 [] Have reiserfs do extra internal checking
 [] Stats in /proc/fs/reiserfs

Depending on which sublevel release you are using, you might also need to activate
support for development drivers (CONFIG_EXPERIMENTAL) because ReiserFS was not
considered stable until 2.4.18. ReiserFS may also be compiled as a loadable kernel
module.

After you enable support for ReiserFS, two more options appear. The first, CONFIG_
REISERFS_CHECK, turns on debugging for ReiserFS. This option should always be dis-
abled, unless you are experiencing problems and are planning to send in a bug
report. In that case, turning on the extra internal checking might provide you with a
useful error message that you can show to developers. Filesystem performance will
be seriously hindered when this option is enabled, so don’t forget to disable it after
you have collected the error messages you need.

Enabling statistic reporting for /proc/fs/reiserfs (CONFIG_REISERFS_PROC_INFO) will add
some additional memory overhead to your kernel, but will provide you with statis-
tics and internal data about your filesystem. The /proc/fs/reiserfs/ directory contains a

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 6: Filesystems

subdirectory for each mounted ReiserFS partition and a file named version that con-
tains the current filesystem driver version. Partition-specific subdirectories are named
according to their driver and device major and minor numbers. For example, the
directory sd(8,6) refers to /dev/sda6. Each directory contains several undocumented
files that report information about the filesystem.

/proc/fs/reiserfs support is generally used for development and testing. Few users
enable statistics support because there are no user-space tools available to examine
the data collected.

Patching older kernels

ReiserFS is not available for kernels prior to 2.2. Patches for the most recent 2.2 ker-
nels are available from ftp://ftp.namesys.com/pub/reiserfs-for-2.2/. Grab the patch for
the most recent 2.2 kernel and apply it to a corresponding unpatched 2.2 kernel
source with commands such as the following:

cd /usr/src/linux
patch -p0 < /usr/src/patches/linux-2.2.19-reiserfs-3.5.35-patch.bz2

Now rebuild the kernel, turning on support for development drivers through CONFIG_
EXPERIMENTAL in the the Filesystems subsection and enabling ReiserFS support
through CONFIG_REISERFS_FS, as described in the previous section. Compile the ker-
nel as you would normally, install it, and rebuild your boot sector as required.

There are several known issues with 2.2 kernels and ReiserFS, includ-
ing one problem that affects the usage of disks larger than 32 GB.
There are also compatibility issues with ReiserFS and Linux’s soft-
ware RAID subsystem in the 2.2 kernel. These issues prevent RAID-1
and RAID-5 from working properly with ReiserFS and a 2.2 kernel.
You should be able to successfully use linear mode and RAID-0 with
ReiserFS and a 2.2 kernel, but I recommend upgrading to the 2.4 ker-
nel, if possible. Please consult the ReiserFS FAQ (http://www.namesys.
com/faq.html) for more information.

Creating a Filesystem
Like other filesystems, ReiserFS requires a set of tools to create and maintain filesys-
tems. Download and install the most recent toolset from ftp://ftp.namesys.com/pub/
reiserfsprogs.

tar xzvf reiserfsprogs-3.6.2.tar.gz
cd reiserfsprogs-3.6.2
./configure
make && make install

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

ReiserFS | 205

An RPM is also available from the NAMESYS FTP server, if you prefer not to com-
pile the tools yourself. Most distributors now provide a reiserfsprogs RPM as well.
Debian users can simply enter:

apt-get install reiserfsprogs

Use the mkreiserfs program to create a new filesystem on an unused partition.
Remember that this process will destroy all existing data on the partition. The
default options should be fine for most situations. To create a ReiserFS on /dev/sdb1,
enter:

mkreiserfs /dev/sdb1

mkreiserfs generates some output describing the filesystem that was created. The
default block size of 4 KB is the only block size currently supported. Additional block
sizes are planned for future releases.

r5 is the default algorithm (hash function) that ReiserFS uses to locate files on disk.
While two other hash functions (rupasov and tea) are available, r5 is the most reli-
able and performs best. rupasov should never be used, and tea should be used only
when r5 presents problems, because the performance of tea is not as good. For more
information about the particulars of each algorithm, including information about
when to use tea in lieu of r5, check http://www.namesys.com/mount-options.html.

One option that may be useful with the mkreiserfs command is --journal-device, or
-j, which specifies a separate disk partition for journaling. This is quite useful when
you are working with a slower disk or array, but have access to a smaller partition
on a faster disk. Thus, the following command creates a filesystem on /dev/sdb1
and uses /dev/sda6 for the journal:

mkreiserfs -j /dev/sda6 -s 8193 /dev/sdb1

The -s option specifies the size of the journal (in blocks). If a size is not specified,
mkreiserfs will use the entire partition for the journal, which is usually undesirable
for large partitions. If you are using a separate journal device, it’s wise to create a
journal partition of the correct size ahead of time. The maximum size of a journal
partition is 32749 and the minimum size is 513. The default size is 8193, and a 4 KB
block size is assumed. Refer to the mkreiserfs(8) manual page for more filesystem
options.

Mounting the filesystem

Mounting works the same way as in any other Linux filesystem:

mount -t reiserfs /dev/sdb1 /mnt/reiserfs

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 6: Filesystems

ReiserFS has a number of mount options that affect its performance and behavior.
Particularly interesting is the notail option, which disables the use of file tails and is
reported to improve performance on systems with heavy random I/O—particularly
systems with the type of activity that uses RAID-5.

Craig Sanders originally reported this performance improvement on
the Postfix mailing list. To read about it, see the thread http://
archives.neohapsis.com/archives/postfix/2001-03/1071.html, and spe-
cifically the message http://archives.neohapsis.com/archives/postfix/
2001-03/1148.html. Related discussions have also taken place on the
ReiserFS mailing list.

To disable the use of file tails, enter a command like the following:

mount -t reiserfs -o notail /dev/sdb1 /mnt/reiserfs

The disadvantage of the notail mount option is that it eliminates the space effi-
ciency gained through ReiserFS’s method of file packing.

A complete list of options is available on the mount options web page (http://www.
namesys.com/mount-options.html). In addition to options specific to ReiserFS, mount
options like noatime (described earlier in this chapter in the “ext2” section, under
“Access time”) are also fair game.

reiserfsck, reiserfstune, and debugreiserfs
Despite its name, reiserfsck does not perform a traditional filesystem check, but
rather replays transactions that might not have not been completed since the last
unmount. This is usually done when the system boots (that’s why the hard link fsck.
reiserfs is also present), but system administrators can manually invoke reiserfsck in
the following manner:

reiserfsck /dev/sdb1

By default, reiserfsck performs a check and reports any errors found, but does not fix
them. If no errors are detected, reiserfsck exits cleanly. To fix any fixable errors, try:

reiserfsck --fix-fixable /dev/sdb1

reiserfstune and debugreiserfs perform additional administrative tasks on a filesys-
tem. reiserfstune can be used to modify the filesystem’s journal size and maximum
transaction size (the number of journal updates possible without a commitment to
disk). It’s also useful for relocating a journal to another device. debugreiserfs displays
the parameters of a ReiserFS and its journal. Without options, debugreiserfs displays
the filesystem superblock. For further details, options, and examples, please refer to
the reiserfsck(8), reiserfstune(8), and debugreiserfs(8) manual pages.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IBM JFS | 207

IBM JFS
IBM JFS was originally designed for the OS/2 Warp Server operating system. The
filesystem was developed from the ground up for this operating system, not as an
extended feature set for a nonjournaling filesystem. In addition to journaling capabil-
ities, JFS also supports dynamic inode allocation. In February 2000, IBM began to
port its JFS implementation to Linux.

JFS uses B+ trees to organize and manage large directories. B+ trees are similar to B-
trees, but they use indexing to improve searches and data retrieval. Smaller directo-
ries—that is, directories with fewer than eight entries—use a traditional approach,
storing directory information within the directory’s inode. This two-pronged
approach helps JFS perform well when working with heavily populated directories,
as well as with sparse directories.

The maximum filesystem size under JFS is based on the chosen block size. With a 4
KB block size, a maximum filesystem size of 4 petabytes (4000 terabytes) is possible.
With a block size of 512 bytes, a maximum of 512 terabytes is allowed.

Distribution Support
Recent versions of Red Hat, SuSE, Mandrake, and TurboLinux all support direct
installation to JFS volumes. On Red Hat, the same trick that I mentioned earlier for
ReiserFS applies. Although undocumented, typing linux jfs at the boot prompt
causes JFS to appear as an option in Disk Druid. This allows you to install Linux
directly to a software RAID, using JFS.

I am not aware of any boot media that allow Debian users to install a new system
with JFS.

Patching the Kernel
JFS didn’t make it into the official kernel releases until 2.5.6, so if you want to work
with a 2.4 kernel, you will have to download and apply a patch. If you’re confident
using a development kernel, download the most recent 2.5 kernel and skip ahead to
the next section, “Configuring the Kernel.”

IBM JFS was accepted into the 2.4 tree with 2.4.20-pre4. So users
working with stable kernels later than 2.4.20 (which, at the time of
this writing, is not yet released) won’t need to go through the process
of patching.

You can download a patch that matches your kernel version as well, as the most
recent JFS core patch, from http://www.ibm.com/developerworks/oss/jfs/. Since I’m

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 6: Filesystems

working with kernel 2.4.18, I downloaded both jfs-2.4.18-patch and jfs-2.4-1.0.21.
tar.gz. After unpacking a clean 2.4.18 kernel, change into the source directory, apply
the patch that is specific to 2.4.18, and unpack the jfs-1.0.21 archive.

cd /usr/src/linux-2.4.18
patch -p1 < /usr/src/patches/jfs-2.4.18-patch
tar xzvf /usr/src/patches/jfs-2.4-1.0.21.tar.gz

The jfs-2.4.18-patch makes the necessary changes to the kernel configuration scripts.
If no errors are encountered, the patch command outputs a list of the files that have
been modified. If you encounter errors while patching, first ensure you are working
with a clean kernel and then attempt to repatch.

Unpacking the file jfs-2.4-1.0.21.tar.gz creates the directories and files that comprise
the JFS portions of the kernel source code. These files are created relative to the cur-
rent path. So be sure to execute the tar command in the root directory of the kernel’s
source tree. Once the kernel is successfully patched and the JFS code has unpacked,
you can begin configuration.

Configuring the Kernel
Turn on support for JFS (CONFIG_JFS_FS) from the Filesystems submenu:

File systems --->
 <*> JFS filesystem support
 [] JFS debugging
 [] JFS statistics

JFS support can also be compiled as a loadable kernel module. Debugging (CONFIG_
JFS_DEBUG) provides some additional error reporting via the system log. It should nor-
mally remain disabled, although it has minimal overhead. Statistics support (CONFIG_
JFS_STATISTICS) enables JFS statistics collection at /prov/fs/jfs. It’s safe to enable this
option.

After you recompile, install, and boot the new JFS-enabled kernel, you should see
JFS listed in /proc/filesystems. If it does not appear there, make sure that you patched
and compiled the kernel properly.

Installing the JFS Utilities
The JFS utilities let administrators create and manage JFS partitions. Download the
utility archive that matches the JFS version you applied to your kernel from http://
www.ibm.com/developerworks/oss/jfs/. In my case, I’ve downloaded jfsutils-1.0.21.tar.
gz. Configure and build the JFS utilities as you would any standard GNU package:

tar xzvf jfsutils-1.0.21.tar.gz
cd jfsutils-1.0.21
./configure
make && make install

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

IBM JFS | 209

Alternatively, an RPM containing the JFS utilities can be built using the command:

rpm -ta jfsutils-1.0.21.tar.gz

You can also grab an RPM directly from your Linux distributor—many now provide
one for jfsutils. Debian users may issue the command apt-get install jfsutils.

Always use a version of the utilities that matches the JFS kernel version. RPM and .deb
users must double-check their utilities to ensure that they are up-to-date. Use mkfs.jfs
-V to determine the current version.

Creating a filesystem

Use mkfs.jfs to create a new JFS filesystem:

mkfs.jfs /dev/sdb1
mkfs.jfs version 1.0.21, 12-Aug-2002
Warning! All data on device /dev/sdb1 will be lost!

Continue? (Y/N) y

Format completed successfully.

17920476 kilobytes total disk space.

The default block size, and the only one that is currently usable, is 4 KB. There are a
few options for mkfs.jfs that are outlined in detail in its manual page. Mount the new
JFS partition normally, using the -t flag to specify the filesystem type:

mount -t jfs /dev/sdb1 /mnt/jfs

Several other utilities are also included with JFS that can be used to maintain and
analyze the filesystem and the journals. fsck.jfs is used to replay transaction logs and
ensure that the filesystem is clean. It is normally invoked automatically when the sys-
tem boots, although system administrators can also invoke it manually. Also
included in the jfsutils package are logdump, xchkdmp, xchklog, and xpeek. These
utilities provide various low-level methods for examining and repairing the filesys-
tem and its journals. Please read the associated manual pages before working with
them.

Further Information
For more information about IBM JFS, consult the project web site at http://oss.
software.ibm.com/developer/opensource/jfs/. Manual pages for each of the JFS utili-
ties are also available. A short installation and overview document, created during
the patch process, can be found in the sources under /usr/src/linux/Documentation/
filesystems/jfs.txt.

You can also use Moshe Bar’s JFS FAQ, located at http://www.moelabs.com/modules.
php?op=modload&name=FAQ&file=index&myfaq=yes&id_cat=1&categories=JFS. In

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 6: Filesystems

addition, there is a mailing list, complete with an archive, for JFS users. Subscription
information is available at http://oss.software.ibm.com/developerworks/opensource/
mailman/listinfo/jfs-discussion.

SGI XFS
XFS has long been the default filesystem for SGI’s IRIX operating system. It is a jour-
naling filesystem designed with an eye toward performance and crash recovery. Since
mid-2000, SGI developers have been working on a port of XFS for Linux. In May
2001, version 1.0 of XFS for Linux was released. Development continues, and ver-
sion 1.1 is currently available.

Like the other filesystems covered in this chapter, XFS provides fast crash recovery
through journaling. An XFS filesystem is divided into allocation groups not unlike
the block groups used in ext2. Files, data, and free space within allocation groups are
organized using B-trees. For a detailed overview of the XFS layout, refer to http://oss.
sgi.com/projects/xfs/design_docs/xfsdocs93_pdf/space_overview.pdf.

XFS has been time-proven on the IRIX operating systems. Given that history, XFS’s
port to Linux is used by groups in the scientific community, such as Fermilab and
the Sloan Digital Sky Survey. One of Quantum’s NAS product lines is also based on
XFS. So even though XFS is handicapped by its lack of inclusion in the standard
Linux kernel and its lack of direct support across many Linux distributions, it is
being used successfully in some high-demand projects.

Distribution Support
The most recent versions of Mandrake and SuSE support direct installation onto
XFS. If you want to use another distribution to install directly onto XFS partitions,
you will need to download and create XFS-compatible boot media. I recommend
checking the XFS FAQ for a list of compatible distributions and links to alternative
boot media that supports XFS. SGI keeps the list quite up-to-date, and it is an excel-
lent resource.

SGI also distributes customized Red Hat CD-ROM images that allow you to install a
new system directly to an XFS partition. You can use these images to burn a boota-
ble Red Hat CD-ROM. Since Red Hat also provides installation onto software RAID
partitions, you can use the custom SGI disk to install a new system that supports
XFS and software RAID from the get-go, avoiding the headache of a post-installa-
tion upgrade.

You can download the install disk from ftp://oss.sgi.com/projects/xfs/download/latest/
installer/. i386 is currently the only architecture supported.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SGI XFS | 211

Obtaining XFS
XFS isn’t included in any of the stable or development kernels. So you’ll need to
obtain and apply patches from the XFS web site or use CVS to get a prepatched ker-
nel.

Using CVS to obtain a patched kernel

Since XFS is not included with any official kernel releases, CVS is by far the easiest
way to obtain an XFS-ready kernel. To obtain a kernel with XFS support using CVS,
execute the following commands:

cd /usr/src
export CVSROOT=':pserver:cvs@oss.sgi.com:/cvs'
cvs login
(Logging in to cvs@oss.sgi.com)
CVS password: cvs
cvs -z3 checkout linux-2.4-xfs

After the cvs command completes, you will be left with the directory /usr/src/linux-2.
4-xfs. The linux subdirectory contains the XFS kernel, and the cmd subdirectory con-
tains the user-space programs needed to manage XFS partitions. Skip ahead to the
section “Compiling the Kernel with XFS Support” for instructions on enabling XFS
features.

Patching the kernel

If using CVS isn’t agreeable, you can download a patch and apply it to a clean ker-
nel. Grab the file that corresponds to your kernel version from ftp://oss.sgi.com/
projects/xfs/download/patches. There is also a patch-2.5 directory for those working
with development kernels.

Decompress the patch and apply it to your kernel:

cd /usr/src/linux-2.4.19
patch -p1 < /usr/src/xfs-2.4.19-all-i386

A list of successfully patched files is printed on the screen. If errors are reported, it’s
likely that you didn’t apply the XFS patch to a clean kernel. Download a new kernel
and try to apply the patch again.

Compiling the Kernel with XFS Support
Whether you applied a patch or obtained an XFS kernel using CVS, XFS support
(CONFIG_XFS_FS) will already be enabled under the Filesystems submenu. Note that
development support is enabled, as indicated by the experimental options that

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 6: Filesystems

appear. I’m using a 2.4.19 kernel in this example, as it is the kernel currently avail-
able via CVS.

File systems --->
 [...]
 <*> SGI XFS filesystem support
 [] Realtime support (EXPERIMENTAL)
 [*] Quota support
 [] DMAPI support
 [] Debugging support (EXPERIMENTAL)
 [] Pagebuf debugging support (EXPERIMENTAL)

Quota support (CONFIG_XFS_QUOTA) is also enabled by default, but if you don’t need
disk quotas, you can disable this option. The remaining options provide support for
additional features, and many of them are still experimental. If you don’t require the
specific support that these features provide, it’s best to leave them disabled.

Real-time support (CONFIG_XFS_RT) allows the use of a data-only portion of an XFS
partition. That means reduced overhead for metaoperations and results in increased
data throughput. Real-time support is useful for streaming media. Refer to the xfs(5)
manual page for more information.

DMAPI support (CONFIG_XFS_DMAPI) provides an interface for the Data Management
API, which allows XFS to support hierarchical storage. (Hierarchical storage is an
attempt to provide translucent access between filesystems and backup systems.) For
more information on DMAPI and XFS, refer to http://oss.sgi.com/projects/xfs/dmapi.
html.

Debugging support (CONFIG_XFS_DEBUG) is intended for developers and should never
be used unless you are troubleshooting a problem and have exhausted other
attempts at problem resolution. The same caveat applies to pagebuf debugging sup-
port (CONFIG_PAGEBUF_DEBUG).

Building the XFS Utilities
Once you have restarted your system with an XFS kernel, you will need to install the
XFS tools before you can create and manage filesystems. If you obtained your kernel
using CVS, you already have a copy of the XFS utilities.

cd /usr/src/linux-2.4-xfs/cmd/xfsprogs
make install

Alternatively, you can download a tarball containing the source code from ftp://oss.
sgi.com/projects/xfs/download/cmd_tars/xfsprogs-2.1.2.src.tar.gz. SGI also provides an
RPM file (ftp://oss.sgi.com/projects/xfs/download/cmd_rpms/). Debian users can use
apt-get install xfsprogs.

The mkfs.xfs command is used to create a new filesystem; the -b flag specifies the
block size of the new filesystem.

mkfs.xfs -b size=4k /dev/md0

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

SGI XFS | 213

This command creates a new filesystem on /dev/md0, with a block size of 4 KB. XFS
supports block sizes ranging from 512 bytes to 64 KB in power-of-2 increments.
However, the current implementation allows only a block size less than or equal to
the page size of the resident system. That means 4 KB or less on 32-bit systems (i386,
PowerPC) and 8 KB or less on 64-bit systems (Alpha, SPARC, IA64). By default,
mkfs.xfs creates a filesystem using a block size equal to page size.

Further Information
For more information about XFS, please refer to the project’s web site at http://oss.
sgi.com/projects/xfs/. I’d specifically like to point out both the FAQ (http://oss.sgi.
com/projects/xfs/faq.html) and mailing list (http://oss.sgi.com/projects/xfs/mail.html) as
excellent sources of up-to-date information.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

214

Chapter 7CHAPTER 7

Performance, Tuning,
and Maintenance

Keeping a system running, and running well, should be the desire of every system
administrator worth their salt. This chapter covers a variety of topics related to this
goal:

• Monitoring RAID devices

• Tuning hard disks

• Performance testing

• Installing directly to a software RAID

Monitoring RAID Devices
Monitoring is an essential part of working with RAID. Since most arrays can survive
only a single disk failure, it’s important to know when any failure occurs. That way,
failed disks can be replaced before a second disk fails and causes data loss. The easi-
est way to monitor arrays is by modifying your existing scripts and monitoring plat-
forms to look for information about the RAID subsystem in your system logs. You
can look for keywords such as md, raid1, recovery, resyncing, raid5, raid0, linear,
RAID, and superblock. It’s a good idea to take a look at the information that the
RAID subsystem reports to syslog so that you can get a good idea of how to custom-
tailor monitoring for your specific needs.

RAID and syslog
The md driver uses the system logging daemon (syslogd) to report pertinent informa-
tion and errors relating to the kernel RAID subsystem. md reports information using
the kern facility (LOG_KERN). Table 7-1 outlines the priorities at which the RAID sub-
system reports information to the kernel ring buffer.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Monitoring RAID Devices | 215

Many distributions log this information to some combination of /var/log/messages
and /var/log/warn. The following line in /etc/syslog.conf captures all kernel-level mes-
sages:

kern.* /var/log/kernel

After adding this line, be certain to restart syslogd. You should also touch the file /var/
log/kernel, as well as any new files you reference in /etc/syslogd.conf, if they do not
already exist:

touch /var/log/kernel
kill -HUP `/var/run/syslogd.pid`

Since a lot of information is reported using the kern facility, it’s a good idea to tune /etc/
syslog.conf to meet specific system needs. On high-volume systems, it is advisable to
break out information reported by the kern facility into files of varying priority. This
makes it easy to monitor the system for serious problems, while maintaining verbose
information to retroactively diagnose persistent and unclear problems.

In general, search log files for the phrase " md:" to get a list of all software RAID-
related messages:

grep " md:" /var/log/kernel

You can also use mdadm’s monitor mode, combined with the logger utility, to dump
messages that are generated specifically by mdadm into the system logs:

mdadm --monitor --program='logger -p kern.crit -t md: $*'

The logger program creates system log entries. In this example, I report any message
that mdadm generates using the kern facility at the crit priority. The -t option adds a
bit of informational text to each entry (in this case, md:). You can also put the com-
mand used by the --program option in /etc/mdadm.conf. In addition, mdadm reads its
configuration file for a list of devices to monitor.

Table 7-1. Software RAID log reporting

facility.priority Information reported

kern.info Status changes, including insertion and removal of member disks, resynchronization progress, and
startup and shutdown notices. In general, any information about an array that does not affect perfor-
mance or continuing operation.

kern.err Error messages about problems that either prevent an array from being started, created, or modified,
or affect array operation in a nonfatal manner. This includes disk failures and consequent insertion of
spare disks, initialization and completion of reconstruction, and problems with the configuration file.

kern.alert Catastrophic errors that prevent a running array from continuing to operate. Problems logged at this
level usually result in the crash of a running array or the inability to start an array that is not running.
These issues include memory problems, low-level device problems, and fatal errors that occur during
the reconstruction process.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 7: Performance, Tuning, and Maintenance

It’s a good idea to run mdadm detached and in the background, as I described in
Chapter 4. Remember that mdadm will report only limited information about criti-
cal problems. You should configure syslogd to capture md driver messages, even if
you are using mdadm in Monitor mode.

BigBrother
Users of the popular monitoring tool BigBrother can use the bb-mdstat.sh script to
monitor software arrays. Download the script from http://www.deadcat.net/cgi-bin/
download.pl?section=1&file=bb-mdstat.sh.

SysOrb
SysOrb is a commercial system monitoring package developed by Evalesco Systems.
It has complete support for Linux software RAID monitoring. The lead architect of
SysOrb is Jakob Oestergaard, author of the Linux RAID HOWTO. You can demo
SysOrb at http://www.evalesco.com.

Verbose SCSI Reporting
It might also be helpful to enable additional error reporting for low-level SCSI hard-
ware. This is helpful for diagnosing SCSI problems that might affect array perfor-
mance and stability.

When building your kernel, just turn on the Verbose SCSI Error Reporting (CONFIG_
SCSI_CONSTANT) feature in the SCSI section.

SCSI support --->
 ...
 [*] Verbose SCSI error reporting (kernel size +=12K)
 ...

Now SCSI messages that appear in the system logs will be more human-readable. For
example:

Jun 27 18:15:53 apathy kernel: SCSI disk error : host 1 channel 0 id 2 lun 0 return
 code = 10000
Jun 27 18:15:53 apathy kernel: I/O error: dev 08:61, sector 0

Managing Disk Failures
When a member disk of a RAID-1, RAID-4, or RAID-5 fails, the array enters into
degraded mode. Degraded mode means that both performance and redundancy are
impacted. RAID-0 and linear mode never enter into degraded mode because they do
not support redundancy. If a disk in either a RAID-0 or linear mode configuration
fails, the array stops. Unless the disk can be repaired, data will be lost.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Managing Disk Failures | 217

RAID-1 can withstand at least a single disk failure. For a RAID-1 of n member disks,
n-1 disks can fail before service is interrupted. When all disks in a RAID-1 fail, the
array is no longer functional. In addition, parallel read performance of RAID-1 is
affected by disk failures. For example, a RAID-1 consisting of three disks can poten-
tially achieve parallel reads of up to three times the throughput of a single member
disk. If a single disk fails, parallel read performance is reduced by a factor of one. An
interesting side effect of disk failures under RAID-1 is that write performance will
actually improve during degraded operation. That’s because the number of writes
that occurs is multiplied by the number of member disks in the array. As a RAID-1
loses member disks, the number of writes per I/O operation decreases.

RAID-4 and RAID-5 deal with disk failures in the same way. They can each survive
only a single disk failure. Disk failures in RAID-4 and RAID-5 considerably impact
array performance. Each time data is read from the array, the system must perform
parity reconstruction to access data from the missing disk. When working with soft-
ware RAID, this means that a larger amount of CPU resources must be dedicated to
array management. When you are working with hardware controllers, the controller
handles the task of on-the-fly parity reconstruction, and the CPU is not affected.
However, that does not mean I/O performance will not be affected.

Under software RAID, disk failures are reported at the kern.crit log level. In the fol-
lowing example, /dev/sdc1 has failed, but the array continues operating in degraded
mode:

Jun 12 14:49:20 apathy kernel: raid5: Disk failure on sdg1, disabling device.
 Operation continuing on 5 devices

If you enabled Verbose SCSI Reporting (as I described earlier in this chapter), syslogd
also reports low-level device information:

Jun 27 18:15:53 apathy kernel: SCSI disk error : host 1 channel 0 id 2 lun 0 return
 code = 10000
Jun 27 18:15:53 apathy kernel: I/O error: dev 08:61, sector 0

In this case, the entire drive has failed and is no longer detected on the SCSI bus. (In
reality, I have disconnected the drive from the SCSI bus to simulate a disk failure.)
Note that the I/O error is returned when reading from sector 0. This information will
aid in evaluating whether or not the disk failure is the result of data corruption (mul-
tiple sector I/O failures) or complete hardware failure. Usually, when the drive fails
completely, only one error message, like the one above, is reported. Consequently,
the system will slow down as the SCSI bus is rescanned and reset. During that
period, I/O on that channel will be interrupted. On the other hand, data corruption
would yield multiple errors at either single or multiple nonzero sectors.

Automatic Failover to a Spare Disk
Disk replacement can be handled automatically by the Linux kernel, or by RAID
controllers, if hot-spare disks have been allocated to the array. Insertion of these

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 7: Performance, Tuning, and Maintenance

disks should be fairly automatic. The md driver takes action immediately following
the first read or write to an array in degraded mode and reports any changes via
syslogd. When the hot-spare is introduced, reconstruction commences.

Jun 27 18:15:53 apathy kernel: md: updating md0 RAID superblock on device
Jun 27 18:15:53 apathy kernel: sde1 [events: 00000002](write) sde1's sb offset:
 17920384
Jun 27 18:15:53 apathy kernel: md: recovery thread got woken up ...
Jun 27 18:15:53 apathy kernel: md0: resyncing spare disk sde1 to replace failed disk

First, the md driver updates the RAID superblock for /dev/md0 to reflect the fact that
the failed disk is no longer a member of the array and that the spare-disk is now an
active member. Next, information about the new member’s event counter is
reported. (The event counter is simply a report of how many RAID configuration
changes have been executed on the device.) Next, reconstruction commences and
the mdrecoveryd process rebuilds the array. You can also examine /proc/mdstat to
monitor the reconstruction process.

When the process is completed, syslogd reports on the new status of the array:

Jun 27 18:35:33 apathy kernel: md: md0: sync done.
Jun 27 18:35:33 apathy kernel: RAID5 conf printout:
Jun 27 18:35:33 apathy kernel: --- rd:3 wd:2 fd:1
Jun 27 18:35:33 apathy kernel: disk 0, s:0, o:1, n:0 rd:0 us:1 dev:sdb1
Jun 27 18:35:33 apathy kernel: disk 1, s:0, o:1, n:1 rd:1 us:1 dev:sdf1
Jun 27 18:35:33 apathy kernel: disk 2, s:0, o:0, n:2 rd:2 us:1 dev:sdg1
Jun 27 18:35:33 apathy kernel: RAID5 conf printout:
Jun 27 18:35:33 apathy kernel: --- rd:3 wd:3 fd:0
Jun 27 18:35:33 apathy kernel: disk 0, s:0, o:1, n:0 rd:0 us:1 dev:sdb1
Jun 27 18:35:33 apathy kernel: disk 1, s:0, o:1, n:1 rd:1 us:1 dev:sdf1
Jun 27 18:35:33 apathy kernel: disk 2, s:0, o:1, n:2 rd:2 us:1 dev:sde1
Jun 27 18:35:33 apathy kernel: md: updating md0 RAID superblock on device
Jun 27 18:35:33 apathy kernel: sde1 [events: 00000003](write) sde1's sb offset:
 17920384
Jun 27 18:35:33 apathy kernel: (skipping faulty sdg1)
Jun 27 18:35:34 apathy kernel: sdf1 [events: 00000003](write) sdf1's sb offset:
 17920384
Jun 27 18:35:34 apathy kernel: sdb1 [events: 00000003](write) sdb1's sb offset:
 17920384
Jun 27 18:35:34 apathy kernel: .
Jun 27 18:35:34 apathy kernel: md: recovery thread finished
...

Now the faulty disk can be replaced or repaired.

Remember that the reconstruction process affects overall system performance. In
addition, ATA systems typically require longer reconstruction times and more CPU
overhead than SCSI systems because intra-disk transfers are slower and more inten-
sive. During reconstruction of ATA arrays, the CPU needs to handle not only the
reconstruction process, but also array and disk management. This sometimes can be
too much for a system to handle and can result in extremely long reconstruction
times.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Managing Disk Failures | 219

Sharing Spare Disks
While the md driver can’t directly share spare disks between arrays, mdadm does
support this feature through its monitor mode. When mdadm is in monitor mode, it
will automatically move a spare disk from a working array to an array that encoun-
ters a disk failure, provided they are both marked as having the same spare disk
group.

Manual Disk Replacement
Even if online spare disks are used, system administrators must physically replace
failed drives. Replacement should take place as soon as possible to avoid the poten-
tial for a secondary disk failure that might incapacitate an array. A secondary disk
failure, when no more spares are available, means that the array will operate in
degraded mode until the disk can be physically replaced. It’s also advisable to replace
dead disks as soon as possible so they can be reallocated as spares in the event of
another failure.

Remember that ATA does not technically support any hot-swap capability. Although
some newer disk enclosures and controllers support this feature, disk manufacturers
and reports from users discourage the use of hot-swap ATA. Therefore, set up hot-
swap ATA equipment at your own risk.

Likewise, SCSI supports hot-swap only when working with SCA drives. Although
some users have successfully swapped non-SCA SCSI disks out of running systems,
this practice is not recommended.

If your system supports SCA disks, you can simply remove the drive and add a new
one. The SCSI bus needs to be told that a new disk is present, because the Linux ker-
nel or the hardware disk controller will have already marked the failed disk as non-
operational when it entered the reconstruction phase.

Using the /proc/scsi interface, disks can be added and removed from a running sys-
tem. To remove a failed disk from the bus (if the kernel hasn’t already removed it),
use the following command:

echo "scsi remove-single-device 0 1 0 0" > /proc/scsi/scsi

This instructs the kernel to scan the first SCSI controllers for the disk with ID 0 and
activate it. The scsiadd utility, available from http://llg.cubic.org/tools/, provides a
command-line wrapper for this and other SCSI management functions. I encourage
you to download and experiment with this utility.

There is no ATA equivalent for this function. On ATA RAID systems, you need to
restart the computer to facilitate a rescan of the bus in order to activate disks that
have been connected since the last time the system was started.

Don’t forget that you also need to use either raidhotadd or mdadm -a to add replace-
ment disks back into their respective arrays.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 7: Performance, Tuning, and Maintenance

Problems with Hot-Swap and Disk Replacement
One of the biggest problems with hot-swapping or replacing devices under Linux
(and many other Unix systems) stems from device naming. On an ATA system,
Linux assigns the first drive on the first controller to /dev/hda. Subsequently detected
devices are named in the order in which they are detected, using the same naming
scheme. Thus, the slave device on the primary channel is assigned /dev/hdb, and the
master and slave devices on the secondary channel are assigned /dev/hdc and /dev/
hdd, respectively.

ATA is unique because of its legacy master and slave arrangement. If a device that
was initially detected during installation suddenly disappears from a system, the
naming order isn’t affected. If /dev/hdb suddenly dies, and the system reboots, /dev/
hda, /dev/hdc, and /dev/hdd will still be assigned the same device names.

One exception to this rule is systems that have add-on ATA channels via PCI cards.
If an entire card is removed, or fails, the detection order will change. Let’s say that a
system has two ATA/100 PCI controllers, each with two channels. The first card,
containing two disks that are assigned /dev/hde and /dev/hdf, fails. Naturally, users
and applications will no longer be able to access data on those disks. The problem is
further complicated when the system reboots and assigns device names. Because the
first PCI controller isn’t detected this time, the disks on the second controller now
have their device names shifted down two positions. So while the disks on the sec-
ond controller were originally assigned /dev/hdg and /dev/hdh, they will now be
assigned /dev/hde and /dev/hdf. Not only will applications that are looking for data on
disks connected to the failed controller complain, but filesystems associated with /dev/
hdg and /dev/hdh will now look for their disks in the wrong place, causing another
series of problems. Luckily, the advent of filesystem labels and UUID information
helped fix some of the issues associated with device naming because arrays can now
be started using parameters stored on disk, rather than based on their physical con-
nections. Filesystems can be mounted in the same manner.

SCSI operates in almost the same way, except that the first four device names are not
tied to onboard controllers. Although any onboard SCSI controllers will be detected
first by the BIOS and Linux, the first device names are not reserved for them. On a
motherboard with onboard SCSI and a PCI SCSI controller, the onboard controller is
assigned a value of 0 and the PCI controller a value of 1. If the PCI controller has
four disks connected and the onboard controller has no disks connected, then the
disks on the PCI controllers are assigned /dev/sda through /dev/sdd. If two disks are
added to the onboard controller, they will be assigned /dev/sda and /dev/sdb. The
disks connected to the PCI controller would then shift to /dev/sdc through /dev/sdf.
It’s best to disable onboard controllers that you are not using to avoid any confusion
or potential problems with device naming.

I advise you to consider using the Device Filesystem (Devfs) to help solve some of
these issues. Devfs uses a device-naming scheme similar to the one used in many

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Configuring Hard Disk Parameters | 221

commercial Unix operating systems, such as Solaris. Devices’ names are based on
controller number and SCSI identification number, instead of simple device letter-
ing. So a disk failure doesn’t affect device naming within a single I/O channel. But
failure or removal of an entire controller still has the same effect. Consult the Devfs
FAQ at http://www.atnf.csiro.au/people/rgooch/linux/docs/devfs.html.

Configuring Hard Disk Parameters
Hard disks, like most computer components, are shipped with certain configura-
tions that manufacturers have determined are ideal for the largest denomination of
users. Unfortunately, these default settings often mean that disks are shipped with
configurations that make them compatible with the largest number of consumer
desktops, as opposed to making them perform as fast as possible. Luckily, many of
these parameters can be tuned to meet specific system needs. With the help of sys-
tem-tuning utilities, these parameters can be modified to increase overall array and
standalone disk performance.

The performance tips covered in this section are meant to be per-
formed on individual disks, not arrays. However, it is essential that
you apply any changes uniformly to each component disk in your
arrays. Tuning one or more disks and failing to tune others will result
in poor, and probably bizarre, performance.

I strongly recommend that anyone who isn’t already familiar with the basic tactics of
performance tuning first carefully read http://linuxperf.nl.linux.org/baseline.html. It
outlines quite a number of ideas that are essential to successful systems management
and stability. There are also many other articles available from http://linuxperf.nl.
linux.org/ that make excellent complementary material to the disk I/O-specific infor-
mation that I will provide in this section.

Tuning ATA Disks with hdparm
Written by Mark Lord, hdparm allows administrators to change low-level hard disk
settings. Unfortunately, hdparm is really useful only for tuning ATA disks. (While
hdparm can conduct a few operations on SCSI disks, most of those operations are
purely informational.) SCSI users are left with quite a void in terms of low-level disk
tweaking, compared with the number of features that hdparm can adjust. (Zealous
proponents of SCSI would surely argue, of course, that SCSI needs no tuning because
of its superiority!)

hdparm is usually found at /sbin/hdparm. Because of the low-level hardware changes
it can make, you must be root to use it. It’s a good idea to make certain the most
recent version is installed on your system. If you need to upgrade (version 5.2 is the
most recent version, as of this writing), or if hdparm wasn’t included as part of your

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 7: Performance, Tuning, and Maintenance

distribution, you can download it at http://www.ibiblio.org/pub/Linux/system/
hardware/ or download a package from your distributor. Debian users may be able to
run apt-get install hdparm, but as of this writing, the stable version is not the most
recent.

With a device as its only argument, hdparm returns information about a hard disk’s
current settings:

hdparm /dev/hda

/dev/hda:
 multcount = 16 (on)
 I/O support = 0 (default 16-bit)
 unmaskirq = 0 (off)
 using_dma = 1 (on)
 keepsettings = 0 (off)
 nowerr = 0 (off)
 readonly = 0 (off)
 readahead = 8 (on)
 geometry = 2434/255/63, sectors = 39102336, start = 0
 busstate = 1 (on)

The hdparm command can also be combined with the -i option to display identifica-
tion information about the hard disk, as well as a list of its alleged capabilities. I use
the word “alleged” because hdparm -i isn’t always 100 percent accurate. Using the -i
parameter is a feature supported only by disks that are relatively new (built within
the last few years), so using it on older disk will have varied results.

hdparm -i /dev/hda

/dev/hda:

 Model=ST320414A, FwRev=3.05, SerialNo=3EC0V5EG
 Config={ HardSect NotMFM HdSw>15uSec Fixed DTR>10Mbs RotSpdTol>.5% }
 RawCHS=16383/16/63, TrkSize=0, SectSize=0, ECCbytes=0
 BuffType=unknown, BuffSize=2048kB, MaxMultSect=16, MultSect=16
 CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=39102336
 IORDY=on/off, tPIO={min:240,w/IORDY:120}, tDMA={min:120,rec:120}
 PIO modes: pio0 pio1 pio2 pio3 pio4
 DMA modes: mdma0 mdma1 mdma2 udma0 udma1 udma2 udma3 *udma4 udma5
 AdvancedPM=no WriteCache=enabled
 Drive Supports : Reserved : ATA-1 ATA-2 ATA-3 ATA-4

Some of the tweaks I’m going to outline here can cause problems that include data
corruption. Some of these problems may not necessarily be immediately noticeable. I
advise testing thoroughly any changes you implement before moving your system
into production. I’ll point out some particulars and point you to additional informa-
tion whenever it’s available.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Configuring Hard Disk Parameters | 223

Enabling DMA mode transfers

All ATA disks transfer data using one of two modes: Programmed I/O (PIO) or
Direct Memory Access (DMA). You’ll notice in the hdparm -i output above that there
are PIO and DMA lines, each with a list of more specific transfer modes. PIO sup-
port is deprecated at this point because it is much slower than even the original
incarnations of DMA. There are also a few different iterations of DMA: single-word,
multi-word, and ultra. (Multi-word DMA is also commonly referred to as bus-mas-
tering.)

UltraDMA is the most modern and fastest implementation. On the DMA mode line
in the last code example, there are three multi-word DMA modes and six UltraDMA
modes listed. udma2, udma4, and udma5 correspond to the common UltraATA/33,
UltraATA/66, and UltraATA/100 transfer speeds that I outlined in Chapter 2 (see
also Table 7-2, below).

You generally want to use the fastest mode available. The asterisk next to udma4 indi-
cates that UltraATA/66 is currently selected. To change the transfer mode from udma4
to udma5, use the following command:

hdparm -d1 -X69 /dev/hda

/dev/hda:
 setting xfermode to 69 (UltraDMA mode5)

Table 7-2. hdparm -X values

Name Speed (MB/s) Value (-X#)

pio0 3.3 8

pio1 5.2 9

pio2 8.3 10

pio3 11.1 11

pio4 16.7 12

mdma0 4.2 32

mdma1 13.3 33

mdma2 16.7 34

udma0 16.7 64

udma1 25 65

udma2 33.3 66

udma3 44.4 67

udma4 66.7 68

udma5 100 69

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 7: Performance, Tuning, and Maintenance

The -X option uses a somewhat confusing syntax, so I’ve included Table 7-2 as an
easy reference for all the integer and mode correlations. Each data transfer mode has
a base numeric value: PIO (8), multi-word DMA (32), and UltraDMA (64). Single-
word DMA is not used, because multi-word DMA has replaced it. (hdparm will allow
the use of the base value 16 for single-word DMA, but I have not successfully used it,
and it is undocumented.) To determine the correct value for the -X option, add a
mode’s base numeric value to the specific transfer mode within that particular type.
For example, udma4 uses the numeric value 68 because the base value for UltraDMA
(64) and the value for udma4 (4) equal 68.

The -d1 option ensures that DMA mode is enabled. Even though I just set my disk to
UltraDMA mode 5, generic support for DMA is also required. Otherwise, the disk
will operate in its default, archaic PIO mode. If you look back at the hdparm /dev/hda
output that I showed earlier in the section “Tuning ATA Disks with hdparm,” you’ll
notice that using_dma was already turned on. So I wasn’t required to include it again
with this command. However, I find that it’s good practice to combine the -d and -X
commands to be certain the transfer mode is properly set.

Most new disks ship with the best (fastest) mode enabled, but it’s always a good idea
to double-check. A lot of older disks typically shipped with PIO as their default
transfer mode, even though they were capable of some level of DMA functionality.
Therefore, it’s especially recommended that you check the transfer mode if you are
working with older disks.

32-bit I/O support

32-bit I/O describes the amount of data per cycle (remember my coverage of bus-
width and bus-speed in Chapter 2) that the ATA controller sends over the data bus.
It might seem obvious that hard disks should ship with 32-bit support enabled, but
this isn’t the case at all. I’ve found that while most manufacturers now have the good
sense to enable the best transfer mode, few of them actually ship drives with 32-bit
mode activated. If you look at the drive parameters I listed earlier in the section
“Tuning ATA Disks with hdparm,” you’ll see that my Ultra ATA/100 disk was actu-
ally set to use 16-bit I/O:

 I/O support = 0 (default 16-bit)

Add the -c option to hdparm to enable 32-bit I/O:

hdparm -c3 /dev/hda

/dev/hda:
 setting 32-bit I/O support flag to 3
 I/O support = 3 (32-bit w/sync)

I’ve used I/O mode 3, which supports 32-bit data transfers and also implements a
synchronization sequence that provides computability with the largest number of
ATA controllers. Using mode 2 (hdparm -c2 /dev/hda) also enables 32-bit transfers,

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Configuring Hard Disk Parameters | 225

but doesn’t provide the extra synchronization steps. This improves performance a lit-
tle bit, but sacrifices some computability. If you do try using mode 2, please do ade-
quate testing before putting the system into production. Use hdparm -c0 /dev/hda if
you need to set the disk back into 16-bit mode.

Increasing multiple sector I/O

Multiple sector I/O (also called Block Mode IDE) allows the system to read/write
more than one sector per interrupt. This tremendously increases the overall through-
put of ATA disks and greatly reduces the CPU overhead required to perform I/O on
ATA devices. My disk has a multiple sector I/O value of 16, as indicated by
multcount = 16 (on) in the hdparm output I showed earlier in this chapter. That
means that I/O occurs in 8 KB chunks (16 * 512 bytes per sector = 8 KB). This is
actually a reasonably decent default value and the maximum value my disk will
allow. You’ll notice that in the output of hdparm -i, there is a maximum multiple sec-
tor I/O listed:

 BuffType=unknown, BuffSize=2048kB, MaxMultSect=16, MultSect=16

On systems where this value is set below the maximum, increasing it doesn’t neces-
sarily mean increasing your I/O throughput, so I do recommend experimenting with
different values. In fact, even if your disk is set to its maximum, as in my case, throt-
tling down and running some throughput tests is still a good idea. The following
command decreases the multiple sector I/O value to 8:

hdparm -m8 /dev/hda

/dev/hda:
 setting multcount to 8
 multcount = 8 (on)

There are quite a few caveats and computability issues surrounding the multiple sec-
tor I/O value. I recommend reading the hdparm(8) manual page for a complete dis-
cussion of these issues.

Interrupt unmasking

Normally when disk I/O is performed, the rest of the system must wait until the
request is completed. On heavily loaded systems, it might be useful to allow other
hardware to perform some tasks while waiting for disk I/O to finish. Interrupt
unmasking won’t specifically increase disk throughput, but it will increase the over-
all speed and responsiveness of a Linux system. Use the hdparm -u1 command to
enable this functionality.

hdparm -u1 /dev/hda

/dev/hda:
 setting unmaskirq to 1 (on)
 unmaskirq = 1 (on)

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 7: Performance, Tuning, and Maintenance

I must warn you that this feature has been reported to cause hazardous results with
some hardware configurations, including filesystem corruption. Again, please con-
sult the hdparm manual page for further details and use this option with caution. Use
hdparm -u0 if you need to disable interrupt unmasking.

Filesystem read-ahead

The filesystem read-ahead determines how many sectors are read, in anticipation
that contiguous sequential blocks will be required by the current operation. The
default value for this setting is 8 sectors (4 KB). Increasing it helps systems with a lot
of sequential I/O, but a smaller value helps with random read performance.

To change the value to 4 sectors per read:

hdparm -a4 /dev/hda

/dev/hda:
 setting fs readahead to 4
 readahead = 4 (on)

To increase the value to 16 sectors per read:

hdparm -a16 /dev/hda

Testing your configuration

After you have made some modifications to your disks, you can use the -t option to
perform a rudimentary throughput test:

hdparm -t /dev/hda

/dev/hda:
 Timing buffered disk reads: 64 MB in 1.65 seconds = 38.79 MB/sec

I recommend using one of the other benchmark programs, such as bonnie++ or
tiobench in lieu of, or in addition to, hdparm -t.

Saving your configuration

Most of the settings that can be altered using hdparm are not persistent through cold
system reboots. Therefore, I recommend creating an initialization script that runs
each time the system starts. Add one command for each hard disk that includes all
the options you wish to modify. For example:

hdparm -a16 -m16 -u1 -d1 -X69 /dev/hda
hdparm -a16 -m16 -u1 -d1 -X69 /dev/hda

Tuning Disk Elevators
Linux tries to balance read and write operations on block devices to maximize per-
formance. This helps ensure that heavily utilized systems aren’t dominated solely by

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Booting with Software RAID | 227

either read or write operations. The ratio can be tuned on a per-device basis, using
the elvtune command.

Use elvtune <device> to get a list of the current settings:

elvtune /dev/sdb

/dev/sdb elevator ID 246
 read_latency: 256
 write_latency: 512
 max_bomb_segments: 0

The -w and -r flags allow you to alter the read and write latency settings. The best
settings really depend on system and device usage, so I recommend experimenting
until you get an optimal setting. Try doubling each value, one at a time, and running
some performance tests until you find a balance that works for you.

elvtune -r 512 -w 1024 /dev/sdb

/dev/sdb elevator ID 246
 read_latency: 512
 write_latency: 1024
 max_bomb_segments: 0

Like settings altered with hdparm, elvtune settings should be added into your initial-
ization scripts, so that changes are made each time the system starts. You need to use
elvtune on low-level block devices, not arrays. So be certain to alter the settings for
each array component, and not just one disk.

Performance Testing
I’ve already discussed using hdparm -t as a way of performing some elementary data
throughput tests. But hdparm doesn’t test a broad range of I/O operations, nor does
it test performance over long periods of time, on large and small files, or on filesys-
tem metaoperations such as file creation and deletion. For that reason, I recommend
downloading and familiarizing yourself with some other performance test suites.

The two programs that I recommend are bonnie++ (http://www.coker.com.au/
bonnie++/) and tiobench (http://tiobench.sourceforge.net/). You can use either pro-
gram to run a variety of throughput tests on both individual block devices, as well as
arrays (software and hardware). I urge you to perform tests at each stage of array
deployment and performance tuning to get a better idea of the overall effect of the
various adjustments on your system performance.

Booting with Software RAID
One of the most frequently asked questions on the linux-raid mailing list is how to
boot directly to software RAID. The answer depends on your situation. If you have

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 7: Performance, Tuning, and Maintenance

an existing system and you want to move from a standalone, non-RAID situation to
a software RAID system, you can use some very straightforward conversion steps
that I’ve outlined below in the “Converting to Software RAID” section. If you are
installing a new system for the first time, many distributions now support direct
installation to a software RAID. I’ve listed some of these distributions here and out-
lined any noteworthy pitfalls that I’ve encountered.

Installing Directly to Software RAID
First, all /boot and / partitions must be on a RAID-1. So if you have only two disks,
you can’t create a RAID-1 for /boot and root and then create a few RAID-0 partitions
for /usr, /home, and /var. While some installers and the md driver will allow this, it’s
strongly discouraged. There’s no reason that you couldn’t create non-boot and non-
root partitions on separate arrays on a separate set of disks. However, considering
the large size of even today’s smaller hard disks, it would be quite a waste of space to
house only /boot and root filesystems on a two-disk RAID-1.

Second, always use LILO in combination with bootable software RAID devices.
Although GRUB provides some limited support, it’s not as evolved as the support
that LILO provides for md devices. Some installers might default to GRUB, so don’t
forget to manually select LILO as necessary.

There’s also one drawback to direct installation to software RAID. Since RAID-1 is a
requirement for booting, that means initial synchronization for every partition you
create must occur in parallel with the installation process. This increases the time it
takes to install the system. But the benefits of RAID-1 do provide a reward for this
imposition.

Red Hat

Red Hat has supported software RAID directly in its installation process for some
time. That means system administrators don’t need to go through all of the extra
steps that I’m about to outline when using Red Hat for a first-time installation onto
software RAID.

The process for creating a bootable RAID-1 in Red Hat is very straightforward, but it
does require using Disk Druid. Those of you who would like switch to a virtual termi-
nal and use fdisk to manually create the partition tables should remember an impor-
tant requirement: you must create the same partitions on each RAID-1 component
disk. When Disk Druid executes, you can choose the software RAID filesystem type
for each partition (on both disks). Next, use the Make RAID button to create each
software array. If I wanted to create root, /boot, and swap filesystems for my new
Linux machine, I’d create the same partitions for each filesystem on my first (/dev/sda)
and second (/dev/sdb) hard disks.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Booting with Software RAID | 229

Red Hat provides some good documentation for this process at the URL http://www.
redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/ch-software-raid.html.
The documentation describes the software RAID installation process step-by-step,
with screenshots. If you purchased a boxed copy of Red Hat, you should be able to
find the same information in your printed manuals.

SuSE

SuSE now supports (as of 8.0) direct installation to software RAID, but I’ve noticed
that it’s buggy when compared with Red Hat’s software RAID installation software.
For example, YaST2 complains that /boot partitions cannot be created on a software
RAID device. But clearly, this is an acceptable choice that is practiced by many users
and other distributors.

Mandrake

Mandrake’s RAID installation process (part of DrakX) is so seamless that it warrants
almost no discussion. It is the most straightforward, and the most flexible, of all the
installation-time RAID utilities that I have encountered. I used Mandrake 8.2 in my
experiments. You should have no problems when using Mandrake to install directly
to a software RAID.

Converting to Software RAID
The process for converting an existing system to utilize software RAID is simple and
requires just a few steps:

1. Build a new kernel with software RAID support. Refer to Chapter 3 for details
on how to include RAID support in the kernel. Be certain to include support for
RAID-1, as well as generic RAID support. Remember, only RAID-1 works for
boot partitions. In this tutorial, I’ll assume that you are using RAID-1 for all sys-
tem partitions, that your existing system partitions are on /dev/sda, and that the
new disk is /dev/sdb.

2. After you reboot the system using your new kernel, create partitions on your
new disk for each of the partitions (including swap space) on your existing sys-
tem disk. So if you have three partitions on your existing disk (/, /boot, and
swap) create three matching partitions on the new disk. If you want to alter the
size of any system partition, do so at this point by creating the new partitions
using different specifications. Don’t forget to mark each new partition Linux
RAID Auto (that’s type 0xFD).

3. After creating partitions on the new disk (/dev/sdb), create a new RAID-1 for
each partition. Include a partition from /dev/sdb in each array. If you use mkraid,
you will need to create each array so that it has a failed-disk entry. The failed-
disk entry corresponds to the existing partition on /dev/sda. The raid-disk entry

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 7: Performance, Tuning, and Maintenance

for each array will be the new partition on /dev/sdb. I prefer to use mdadm for
this process.

mdadm -C -n2 -l1 /dev/md0 /dev/sdb1 missing

missing is used as a placeholder for a disk that’s not yet part of the array. In
this case, we created a new RAID-1 in degraded mode (because only one parti-
tion, /dev/sdb1, was used). Repeat this process for each new system partition.

4. Once you have created an array for each system partition, create a new filesys-
tem on each array. Use mkswap to initialize the array that will act as the swap
partition.

5. Bring the system into single-user mode and mount each new partition at an arbi-
trary mount point. I prefer to create some temporary mount points in the /mnt
directory (for example, /mnt/new-boot).

6. Edit /etc/fstab so that it contains the new RAID partitions instead of the existing
partitions on /dev/sda. I advise removing the use of filesystem labels in /etc/fstab
(LABEL=/home, for example) and using device names (such as /dev/md0 and /dev/
md1) instead. This will avoid any confusion. Don’t forget to change the entry for
swap as well.

7. Edit /etc/lilo.conf and change the root line for the RAID kernel’s stanza to reflect
the new md entry. Don’t change the boot line at this time.

8. Copy all the files from the current system partitions to the new arrays that will
replace them. I find it best to use the find and cpio commands to accomplish
this. First, change to the root directory of a filesystem. Then use the following
command to copy all files to the new partition:

cd /boot
find . -xdev | cpio -pm /mnt/new-boot

The -xdev flag that I’ve passed to find instructs it to only return files that are on
the current filesystem. This is very important because when we copy files from
the root partition, we don’t want files from /boot to be copied, for example. The
-p flag for cpio turns on pass-through mode, allowing another program to pro-
vide the list of files to copy—in this case, it’s find. The -m option preserves mod-
ification times.

9. Repeat step 6 for each existing filesystem. When you’re done, you should have
populated each new array with the corresponding system partition.

10. Now run /sbin/lilo and reboot the system into single-user mode. After the system
reboots, you should notice that your degraded arrays are mounted (use df or
mount to confirm this).

11. Next, add the old (/dev/sda) system partition to the new arrays, taking them out
of degraded mode. If you’re working with raidtools, use the raidhotadd com-
mand. For mdadm, use:

mdadm -a /dev/md0 /dev/sda1

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Booting with Software RAID | 231

Repeat this command for each remaining partition and array until all of them are
out of degraded mode. As you add partitions to the arrays, each one will begin
reconstructing. So, the system might be a bit sluggish until the rebuild tasks have
completed.

12. Use fdisk on /dev/sda to change the partition types of Linux Raid Auto.

13. Edit /etc/lilo.conf and change the boot line so that it points to the boot partition
(for example, boot=/dev/md0). Now run /sbin/lilo to rebuild the boot sector on
your array.

For more information about booting using software RAID, I recommend the “Boot +
Root + Raid + Lilo : Software Raid mini-HOWTO,” written by Michael Robinton.
You can find it at http://www.tldp.org/HOWTO/mini/Boot+Root+Raid+LILO.html or
at any Linux Documentation project mirror.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

233

Appendix A APPENDIX A

Additional Resources

The following web sites, books, mailing lists, and magazines are valuable supple-
ments to the material covered in this book.

Mailing Lists
The best resource for Linux RAID is the linux-raid mailing list. Many experts and
developers read this list, and it’s generally the best place to look for information. Be
certain to check the archives before posting to the list. Archives are available at http://
marc.theaimsgroup.com/?l=linux-raid or http://groups.google.com/groups?group=mlist.
linux.raid.

To subscribe to the list, send a message to majordomo@vger.kernel.org, with the
word “subscribe” in the message body (not the subject).

Web Sites and Online Resources
This section contains online resources that offer RAID and filesystem information, as
well as hardware reviews.

RAID
Here are some web sites that provide information about RAID.

• The Linux Documentation (http://www.tldp.org) project provides a free, compre-
hensive library covering Linux and open source software. Of particular note are
the following documents.

— The Software RAID HOWTO provides a quick tutorial on configuring
arrays, using raidtools. You can find this tutorial at http://www.tldp.org/
HOWTO/Software-RAID-HOWTO.html.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

234 | Appendix A: Additional Resources

— The Boot+Root+Raid+LILO mini-HOWTO provides cookbook examples
for booting directly from a software RAID using LILO. You can access the
document at http://www.tldp.org/HOWTO/mini/Boot+Root+Raid+LILO.
html.

• “A Case for Redundant Arrays of Inexpensive Disks (RAID),” also known as the
start of the Berkeley Papers, is available from the ACM web site (http://www.
acm.org/sigmod/dblp/db/conf/sigmod/PattersonGK88.html), provided you have a
subscription to their digital library.

• http://www.nobell.org/~gjm/linux/ide-raid/ contains a case study of various ATA
RAID setups.

Filesystems

The following web sites provide information about filesystems.

http://www.research.att.com/~gjm/linux/ide-raid.html
The ext2 home page

http://e2fsprogs.sourceforge.net/ext2intro.html
A technical paper authored by the developers of ext2

http://www.ibm.com/developerworks/oss/jfs/
IBM’s JFS for Linux home page

http://oss.sgi.com/projects/xfs/
The XFS for Linux home page

http://www.namesys.com/
The ReiserFS home page

http://www.zip.com.au/~akpm/linux/ext3/
The ext3 home page

Hardware

Storage Review (http://www.storagereview.com) is an excellent resource that evalu-
ates hard disks, RAID controllers, and standalone disk controllers.

Books
You might find the following reading material useful when building RAID systems.
I’d like to specifically recommend Advanced PC Architecture, for those who need
additional material to supplement what I provided in Chapter 2. Advanced PC Archi-
tecture covers many details that were beyond the scope of this book. I’ve also
included Readings in Database Systems on my list. Although this book might seem

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Books | 235

out of place in the context of RAID, it provides a good introduction to many data
structures, and I think that it can help readers to understand the interconnected rela-
tionships between applications, filesystems, operating systems, and hardware.

Bar, Moshe. Linux File Systems. McGraw-Hill Osborne Media, 2001.

Bovet, Daniel P. and Marco Cesati. Understanding the Linux Kernel, Second Edition.
O’Reilly & Associates, 2001.

Buchanan, William and Austin Wilson. Advanced PC Architecture. Addison-Wesley,
2001.

Field, Gary and Peter Ridge. The Book of SCSI: I/O For The New Millennium. No
Starch Press, 2000.

Schmidt, Friedhelm. The SCSI Bus & IDE Interface: Protocols, Applications, and
Programming, Second Edition.Addison-Wesley, 1998.

Stonebraker, Michael and Joseph M. Hellerstein, eds. Readings in Database Systems,
Third Edition. Morgan Kaufmann, 1998.

Thompson, Robert Bruce and Barbara Fritchman Thompson. PC Hardware in a
Nutshell. O’Reilly & Associates, 2000.

Von Hagen, William. Linux Filesystems. Sams, 2002.

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

236

Appendix BAPPENDIX B

Hardware RAID Controller Vendors

This appendix contains a list of vendors who sell hardware RAID controllers.

Mylex (an IBM business unit)
6607 Kaiser Drive
Fremont, CA 94555
(510) 796-6100 (main)
http://www.mylex.com

Adaptec, Inc.
691 South Milpitas Boulevard
Milpitas, California 95035
(800) 442-7274
http://www.adaptec.com

Promise Technology, Inc.
1745 McCandless Drive
Milpitas, CA 95035
(408) 228-6300
http://www.promise.com

3ware, Inc.
Corporate Office
701 E. Middlefield Road
Suite 300
Mountain View, California, 94043
(877) 883-9273
http://www.3ware.com

LSI Logic Corporation
1621 Barber Lane
Milpitas, California 95035
(866) 574-5741
http://www.lsil.com

Highpoint Technologies, Inc.
5177 Brandin Court
Fremont, CA 94538 USA
(510) 623-0968
http://www.highpoint-tech.com/

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

237

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
0.90 driver, importance of upgrade, 69
32-bit I/O, 224
3DM Disk Manager, 182

configuration and usage, 184
downloading and installing, 183

3ware, 181–184
driver, 181
Escalade 7500, 145
vendor address, 236

64-bit architectures, 192
64-bit motherboards, 36

A
aacraid driver, 168
access time (atime), 196
actuator arm, defined, 50
Adaptec, 167

configuring
existing disk for JBOD, 171
first array, 170

converting existing standalone disk to
mirror, 171

setup utility, 170
Storage Manager, 173–174

defined, 173
vendor address, 236

Adaptec 2100S, 145, 168
Adaptec I2O RAID driver, 168
additional resources, 233–235
Advanced PC Architecture, 234
Append mode (see Linear mode)
architecture of RAID, 11–58

ARRAY lines, 141
arrays, 3

configuring existing, 160–163
configuring the first, 159
creating, 81, 130, 175
examining, 76, 119
existing, 77
hybrid, 26, 97–104
managing, 163–167, 180
partitioning, 81
stopping, 78

Assemble mode, 133
ATA

3ware Escalade 7500, 145
and hot-swap, 219
cable select, 42
defined, 41
Direct Memory Access (DMA), 223
DMA (direct memory access), 42
FastTrak, 174
interface, 41
limitations, 42
master and slave, 42
MegaRAID i4, 145
multiple sector I/O performance, 225
Promise FastTrak100, 145
RAID controllers, 146, 174
reconstruction times, 218
SuperTrak, 174
unique master/slave arrangement, 220
versus SCSI, 45–48

ataraid driver, 176
autoconfiguration, 152
Autodetect RAID Partitions, 68

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

238 | Index

autodetection, defined, 68
average formatted transfer rate (see transfer

rate, defined)
average seek time, defined, 51

B
B+ trees, defined, 207
backup memory, 147
backups, 3
balanced trees, defined, 201
Bar, Moshe, 67, 188, 209, 235
battery backed-up memory, 147
Berkeley Papers, web site, 234
BigBrother monitoring tool, 216
binary-only modules, warning, 148
BIOS

controller card, 150
defined, 34
options, 157

block groups, defined, 193
block size, 189
blocks, defined, 188
Bonds, Deanna, 168, 169
bonnie++ program, 227
boot message, dmesg command, 64
bootable DOS diskette, 149
bootstrap, defined, 34
bottlenecks, 21–25, 34–36, 49–57, 93

analog, 51
defined, 33
I/O bus, 36
SAN solution, 16

Bovet, Daniel P., 235
Brown, Neil, 60, 69, 70, 106
B-trees, defined, 190
Buchanan, William, 235
building a RAID system, 56–58
burst rate, defined, 51
bus-speed, defined, 35
bus-width, defined, 35

C
cable select, 42
cables, 52

length limits, 52
cache

memory, 147, 153
write-back, 153
write-through, 153

cancel-consistency-check command, 166
cancel-rebuild command, 166

case studies (see examples)
Cesati, Marco, 235
chattr command, 196
check-consistency command, 166
checksum, 140
chipset, defined, 33
chunk size, defined, 6
chunk-size option (/etc/raidtab file), and

RAID-1, 118
clock rate, 43
configuring

ataraid drivers, 178
hard disks, 221
issues, 150–155
kernel, 60–70
saving hard disk settings, 226

connectors, 54
custom SCSI cables, 54
single connector attachment (SCA), 55

controller card BIOS, 150
controller cards (see RAID controllers)
controller disk spin-up, 154
controller memory, 146
Cox, Alan, 169
Create and Build modes, 130–132
creating an array, 81
cylinders, defined, 50

D
DAC1100 driver, 156
DAC960 driver, 155, 156
data buffer, defined, 51
data bus, defined, 34
data loss, 79
dd command, for erasing RAID

superblock, 80
Debian

and ReiserFS, 203
building XFS utilities, 212
installing JFS utilities, 209
raidtools version 0.42, 73

debugreiserfs command, 206
dedicated parity (see RAID-4)
Degraded mode, 31

defined, 5
Devfs-style naming system, 156
Device Filesystem (Devfs), 220
DEVICE lines, 141
device option (/etc/raidtab file), 118

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 239

device special names, 156
disk access protocols, 40

ATA, 41
IDE, 41

disk bus, defined, 34
Disk Druid, 177, 228
disk elevators, tuning, 226
disk failure, 3, 31, 112–129

Linear mode, 216
managing, 216–221
RAID-0 (striping), 216
RAID-1 (mirroring), 217
RAID-4 (dedicated parity), 217
RAID-5 (distributed parity), 217

disk mirroring (see RAID-1)
disk replacement

and hot-swap problems, 220
manual, 219

disk spanning (see spanning, defined)
distributed parity (see RAID-5)
DMA (direct memory access), 42
DMA mode transfers, 223
dmesg command, 64
documentation

books, 234
mailing lists, 233
online filesystems, 234
web sites and online resources, 233

Domsch, Matt, 167
downloads

Adaptec Storage Manager, 173
e2fsprogs, 199
fdisk, 82
FreeDOS, 150
JFS patch, 207
LILO, 179
patches for kernel 2.2, 198
patches for kernel 2.4, 197
Promise Technology, 175
Promise Technology driver disks, 177
raidtools version 0.42, 73
ReiserFS toolset, 204
unzipping, 149
XFS installation, 210
XFS utilities, 212

DPT (Distributed Processing
Technology), 167

dptmgr utility, 173
driver disk, Promise Technology, 177
drivers

3ware, 181
aacraid, 169

ataraid, 176
commonalities, 150
creating driver disks, 177
DAC1100, 155, 163
DAC960, 155, 163
FastTrak, 176
GPL, 168
I2O, 168
megaraid, 185
Mylex, 155
open source, 148, 176
RPM, 173

E
Ellenson, Cory, 203
elvtune command, 227
Enlight Corporation, home page, 56
/etc/mdadm.conf, 75, 140–144

ARRAY lines, 141
DEVICE lines, 141
maintaining, 143

/etc/raidtab, 72, 115–119
examining arrays, 76, 119
examples

building a RAID system, 56–58
ext2, 196
hybrid arrays, 98
Manage and Miscellaneous modes, 137
RAID architectures, 28–30
RAID-0 (striping), 29
RAID-1 (mirroring), 28–30
RAID-10 (striped mirror), 98
RAID-5 (distributed parity), 25, 30, 56,

196
exclusive OR (XOR), 24
existing arrays, 77
ext2, 192

block groups in, 193
converting to ext3, 199
creating, 193
home page, 234
reserved space, 194
tuning, 194

ext3
compiling the kernel, 198
converting from ext2, 199
creating partitions, 199
documentation online, 201
e2fsprogs, 198

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

240 | Index

ext3 (continued)
home page, 234
patching kernel for support, 197
performance tuning, 200
working with, 198

EzAssist, 158
for RAID-1 (mirroring), 162

F
failed-disk option (/etc/raidtab file), 119
failover, automatic, 217
FastBuild, 175
FastTrak, 174, 176, 179

driver, 176
fdisk, download, 82
Field, Gary, 235
file packing, 202
file tails, defined, 202
filesystems, 10, 187–213

converting from ext2 to ext3, 199
creating JFS, 209
documentation online, 234
ext2, 192
ext3, 197
JFS (Journaled File System), 207
journaling, 190
read-ahead, 226
ReiserFS, 201–206
VFS (Virtual Filesystem), 191
XFS (Extended File System), 210–213

filesystems concepts, 188–191
Firewire, 40
flush-cache command, 165
fragmentation, defined, 195
FreeDOS, 150
fsck (file system check), 190

G
Gibson, Garth A., 2
Global Array Manager (GAM), 166
GPL driver, 168
GRUB (Grand Unified Boot Loader),

defined, 64

H
hard disks

configuration, 221
saving settings, 226
testing, 226

hard drives
choosing, 49–52
power supply, 56

hardware considerations, for RAID
architecture, 32

hardware RAID, 2, 145–186
comparing with software RAID, 11–16

trade-offs, 13
defined, 13
system compatibility and, 146

Hedrick, Andre, 181
Hellerstein, Joseph M., 190, 235
Highpoint Technologies, vendor

address, 236
hot-spares, 217

defined, 31
hot-swap

and ATA, 219
defined, 32
SCA connector, 55
and SCSI, 220

hybrid arrays, 26, 97–104
performance, 97

I
I2O (Intelligent Input/Output)

defined, 168
driver, 168

de Icaza, Miguel, 61
IDE, defined, 41
implementing RAID, 11–58
inodes, defined, 188
installing

directly to software RAID, 228
kernel, 63
Promise Technology RAID

controllers, 177
system, 151

interoperability, between drivers and
kernel, 14

interrupt unmasking, 225
I/O bandwidth, 38
I/O bus, defined, 35
I/O channels, 36

array performance, 39

J
Jacobson, Joel, 181
JBOD (Just a Bunch of Disks), 147

defined, 8

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 241

JFS (Journaled File System), 207–210
configuring kernel, 208
creating filesystems, 209
distribution support, 207
documentation online, 209
home page, 234
IBM, 207
installing utilities, 208
kernel patching, 207

journaling
data, 191
defined, 191
metadata, 191

K
Katz, Randy H., 2
kernel

autodetection, 128
configuring, 60–70, 156, 169

ext3 support, 198
for JFS, 208
ReiserFS support, 203
XFS, 211

history, 60
installing, 63
options, 106–108

deprecated, 108
patching

for ext3 support, 197
older, 66

ring buffer, 64
upgrades, summary, 69
version 2.0, 68

importance of 0.90 driver upgrade, 69
patch download, 68

version 2.2, 66
importance of 0.90 driver upgrade, 69

version 2.4, 61
XFS patch, 211

kill command, 165
Knuth, Donald E., 190

L
large file support, 192
latency, defined, 51
LILO (Linux Loader)

downloads, 179
reconfiguring, 179

Linear mode, 8, 20, 84–88
Degraded mode, 216
for recycling drives, 21
for reusing ATA disks, 88

Linux, installing onto a Promising
Technology array, 175

loadable modules, 59
logger program, 215
logical drives, 154
logical volumes (see arrays)
Lord, Mark, 221
loss of data, 79
LSI Logic Corporation

MegaRAID Elite 1650, 145
vendor address, 236

LSI Logic (see MegaRAID)
lsraid command, 119–122

M
magic number, 140
MAILADDR lines (/etc/mdadm.conf

file), 143
mailing lists, 233
maintenance, 214–231
major number, 9
MAKEDEV program, 109
make-online command, 166
make-standby command, 166
Manage and Miscellaneous modes, 136–140
Mandrake, and software RAID, 229
manually start a device, 127
master, 42
matched drives, 52
md block special files, 109
md (multiple devices)

defined, 9
driver, 60

mdadm (multiple devices
administration), 60, 70, 73

Assemble mode, 133
command, 129–144
Create and Build modes, 130–132
/etc/mdadm.conf, 75
Manage and Miscellaneous

modes, 136–140
modes, 74

Assemble mode, 74
Build mode, 74
Create mode, 74
Follow/Monitor mode, 75
Manage mode, 74
Misc mode, 75

Monitor mode, 134
Universally Unique ID (UUID), 73

MegaRAID, 184
driver, 185

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

242 | Index

MegaRAID i4, 145
de Melo, Arnaldo Carvalho, 181
member disks, reusing, 78–81
metadevices (see arrays)
minor number, 9
mirroring (see RAID-1)
mke2fs command, 193
mkraid command, 123
Molnar, Ingo, 60, 69, 70, 106
monitoring

BigBrother, 216
RAID devices, 214–216
syslog program, 214
SysOrb program, 216
Verbose SCSI Error Reporting, 216

monolithic kernel, defined, 59
motherboards

64-bit, 36
component connections, 35
defined, 33
PCI, 35
and system compatibility, 146

multiple devices
administration (see mdadm)
driver (see md, driver), 60
driver support, 106

multiple sector I/O, 225
Mylex, 155–167

AcceleRAID 352, 145
drivers

DAC1100, 156
DAC960, 155

Global Array Manager (GAM), 166
limitations, 156
vendor address, 236

N
nr-raid-disks option (/etc/raidtab file), 85,

116
nr-spare-disks option (/etc/raidtab file), 116

O
Oestergaard, Jakob, 106, 216
open source, 9

ataraid driver, 176
hardware RAID and, 13

options, in RAID, 195
OS/2 Warp Server, 207
outboard RAID systems, 15
Oxman, Gadi, 61

P
parity

algorithms, 4
defined, 4
distributed (see RAID-5)
striping (see RAID-50)

parity-algorithm option (/etc/raidtab
file), 95, 117

parity-disk option (/etc/raidtab file), 119
partitioning, 81–84

for autodetection, 82
with fdisk, 81
limitations, 156
rules, 84
without autodetection, 83

partitions
ext3, 199
never create on component disks, 177

Pasteur, Bob, 168
Patterson, David A., 2
PCI bus, defined, 35
PCI motherboards (see motherboards)
PERC, 167
performance, 38, 189, 214–231

32-bit I/O, 224
and disk access protocols, 40
documentation online, 221
filesystem read-ahead, 226
hard disk parameters, 221
hdparm command, 221
hybrid arrays, 97
interrupt unmasking, 225
journaling effect on, 191
multiple sector I/O, 225
RAID-5 (distributed parity), 96

versus RAID-4 (dedicated parity), 93
testing, 227

bonnie++ program, 227
hard disk configuration, 226
tiobench program, 227

tuning, 214–231
ATA disks, 221
disk elevators, 226
ext3, 200

UltraDMA mode, 223
persistent-superblock option (/etc/raidtab

file), 85, 116
planning RAID implementation, 11–58
platters, 49
/proc filesystem, defined, 109
/proc/mdstat directory, 76, 110–113
/proc/rd directory, 163–166

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 243

/proc/rd/cX/user_command
cancel-consistency-check, 166
cancel-rebuild, 166
check-consistency, 166
commands, 165
flush-cache, 165
kill, 165
make-online, 166
make-standby, 166
rebuild, 166

/proc/sys/dev/raid directory, 113
PROGRAM lines, 143
Promise FastTrak100, 145
Promise Technology, 174–180

configuring ataraid drivers, 178
converting existing standalone disk to

mirror, 180
creating driver disk, 177
documentation online, 175
FastBuild, 175
importance of ataraid drivers, 176
installing Linux, 175
installing system, 177
post-installation array management, 180
reconfiguring LILO, 179
vendor address, 236

R
RAID

defined, 2
hardware considerations, 32
outboard systems, 15
storage capacities, 18
superblock, 76, 78
terminology, 3

RAID autoconfiguration, 152
RAID controllers

3ware, 181–184
Adaptec

DPT (Distributed Processing
Technology), 167

PERC, 167
setup utility, 170

ATA, 146
automatic configuration, 152
BIOS, 150
compatibility issues, 146
configuring, 158
configuring existing disk for a mirror, 162
configuring existing disk for standalone

JBOD, 160
configuring the first array, 159

disk spin-up, 154
EzAssist, 158
general configuration issues, 150–155
Global Array Manager (GAM), 166
interoperability, 146
JBOD default, 171
Mylex, 155–167

managing, 163–167
Pass-through mode, 151
preparing disks and, 148
Promise Technology, 174–180
SCSI, Mylex, 155
setup, 157
software considerations, 148
third-party evaluations, 146

RAID levels, 6, 17
comparison, 18
examples, 28–30
hybrid, 26

RAID-0 (striping), 7, 19–21, 88–90
Degraded mode, 216
disk failure, 216
example, 29
for Usenet news, 20
for video production, 20

RAID-1 (mirroring), 7, 21, 90–93
chunk-size option, 132
disk failure, 217
example, 28–30
expensive, 22
hardware and software RAID-1

(mirroring) compared, 22
suited for load-balanced servers, 22

RAID-10 (striped mirror), 26, 99–102
RAID-2, obsolete, 18
RAID-3, obsolete, 18
RAID-4 (dedicated parity), 7, 23, 93–94

compared with RAID-5, 24
disk failure, 217
XOR and, 23

RAID-5 (distributed parity), 7, 24, 95–96
chunk-size option, 132
disk failure, 217
e-commerce and, 25
example, 25, 30, 56
performance, 25
spare disks, 132
XOR and, 24

RAID-50 (striped parity), 28, 102–104
raiddev command, 85, 115
raid-disk option (/etc/raidtab file), 119
raidhotadd command, 124

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

244 | Index

raidhotgenerateerror command, 124
raidhotremove command, 124
raid-level option (/etc/raidtab file), 116
raidreconf command, 125
raidsetfaulty command, 127
raidstart command, 127
raidstop command, 128
raidtools package, 70–73, 114–129

configuration file, 72
defined, 60
difference under Debian, 71
download version 0.42, 73
downloading source code, 71
version 0.42, 70, 73
version 0.90, 71

raidutil command, 173, 174
random access, defined, 50
read-ahead, for performance, 226
read-write head, defined, 50
rebuild command, 166
rebuild (see recovery)
reconstruction (see recovery)
recovery, 112

defined, 5
Red Hat, and software RAID, 228
redundancy, 3–5
Reiser, Hans, 187, 201
ReiserFS, 201–206

compiling kernel with, 203
creating filesystems, 204
documentation online, 202
home page, 234
installing, 203

reiserfsck command, 206
reiserfstune command, 206
reserved space, 194

to minimize fragmentation, 195
resynchronization, 91, 94, 100, 112, 114
reusing member disks, 78–81
Ridge, Peter, 235
Robbins, Daniel, 188
Robinton, Michael, 231
RPM driver, 173

S
Salyzyn, Mark, 168
SAN (Storage Area Network), 16
Sanders, Craig, 206
Schmidt, Friedhelm, 235
SCSI, 43–48, 141

AcceleRAID, 155
Adaptec 2100S, 145

and hot-swap, 220
and transmission types, 44
bus-width, 43
cabling, 44
cards, 37
eXtremeRAID, 155
high-voltage differential (HVD),

defined, 45
low-voltage differential (LVD),

defined, 45
LSI Logic MegaRAID Elite 1650, 145
Mylex AcceleRAID 352, 145
signaling rate, 43
single-ended, defined, 44
versus ATA, 45–48

sectors, defined, 49
Sedgewick, Robert, 190
sequential access, defined, 50
signaling rate, 43
Single Large Expensive Disk (SLED), 2
slave, 42
software RAID, 2, 59–105

booting, 227–231
comparing with hardware RAID, 11–16
converting to, 229
defined, 11
documentation online, 229, 231
installing directly to, 228
Mandrake and, 229
Red Hat and, 228
reference, 106–144
stigma of using, 12
SuSE and, 229

spanning, defined, 8
spare disks, 113, 124, 132, 134

automatic failover, 217
sharing, 219

spare-disk option, 91
spare-disk option (/etc/raidtab file), 119
speed_limit_max option, 113
speed_limit_min option, 113
spin rate, defined, 50
spin-up, 154
SSE (Streaming SIMD Extensions), 65
standalone disk, converting to mirror, 171,

180
Stonebraker, Michael, 190, 235
stopping an array, 78
Storage Area Network (SAN), 16
storage capacities, 18
The Storage Review.com, 146
Strand, Brad, 181

This is the Title of the Book, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

Index | 245

striping, defined, 5
striping mirror (see RAID-10)
striping parity (see RAID-50)
striping (see RAID-0)
superblock, 76, 78

ext2, 192
SuperTrak, 174
SusE, and software RAID, 229
sustained data rate (see transfer rate, defined)
syslog program, 214
SysOrb program, 216
system initialization, 64–66
system installation, 151
system logging, 214

T
testing hard disk performance, 226
third-party evaluations, 146
Thompson, Barbara Fritchman, 235
Thompson, Robert Bruce, 235
tiobench program, 227
transfer rate, defined, 51
Troan, Erik, 60
Ts’o, Theodore, 195
tune2fs command, 194
tuning performance, 214–231

U
UltraDMA mode, 223
unzip utility, 149

V
Vepstas, Linas, 106
Verbose SCSI reporting, 216
VFS (Virtual Filesystem), 191
volume groups (see arrays)
Von Hagen, William, 188, 235

W
Ward, Brian, 59
White, Karen, 168
Wilson, Austin, 235
write cache memory, 153
write-back caching, 153
write-through caching, 153

X
XFS (Extended File System), 210–213

compiling kernel, 211
distribution support, 210
documentation online, 213
home page, 234
installation download, 210
kernel patch, 211
overview, online, 210
utilities, 212

XOR (exclusive OR), 24

Z
zip archives, 149
Zubkoff, Leonard, 155
Zyngier, Mark, 61

About the Author
Derek Vadala lives in New York City. He works for Azurance.com, an open source
and security consulting firm that he cofounded. He has been published in Sys Admin
magazine, Linux Journal, The Perl Journal, and The Journal of Linux Technology.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

Claire Cloutier was the production editor and copyeditor for Managing RAID on
Linux. Ann Schirmer was the proofreader. Ann Schirmer, Mary Brady, and Jeffrey
Holcomb provided quality control. Reginald Aubry wrote the index. Claire Cloutier,
Genevieve d’Entremont, and Judy Hoer were the compositors.

The image on the cover of Managing RAID on Linux is a logjam. Emma Colby
designed the cover of this book, based on a series design by Hanna Dyer and Edie
Freedman. The cover image is a 19th-century engraving from the Trades and Occu-
pations collection of the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1, using Adobe’s ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are from the
Dover Pictorial Archive, Marvels of the New West: A Vivid Portrayal of the Stupen-
dous Marvels in the Vast Wonderland West of the Missouri River, by William Thayer
(The Henry Bill Publishing Co., 1888), and The Pioneer History of America: A
Popular Account of the Heroes and Adventures, by Augustus Lynch Mason, A.M.
(The Jones Brothers Publishing Company, 1884).

This book was converted to FrameMaker 5.5.6 by Joe Wizda, using a format conver-
sion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses
Perl and XML technologies. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read, using Macromedia FreeHand 9 and Adobe Photoshop
6. The tip and warning icons were drawn by Christopher Bing.

	Table of Contents
	Preface
	Overview of the Book
	A Note About Architecture
	Kernels
	LILO

	Prompts
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Introduction
	RAID Terminology
	Redundancy
	Mirroring
	Parity
	Degraded
	Reconstruction, resynchronization, and recovery

	Striping
	Stripe-size versus chunk-size

	The RAID Levels: An Overview
	RAID-0: Striping
	RAID-1: Mirroring
	RAID-4: Dedicated Parity
	RAID-5: Distributed Parity
	Linear Mode
	Disk spanning

	JBOD (Just a Bunch Of Disks)

	RAID on Linux
	Hardware Versus Software

	Planning and Architecture
	Hardware or Software?
	Software (Kernel-Managed) RAID
	Hardware
	RAID controllers
	Outboard solutions
	Storage Area Network (SAN)

	The RAID Levels: In Depth
	RAID-0 (Striping)
	Linear Mode
	RAID-1 (Mirroring)
	RAID-4
	RAID-5
	Hybrid Arrays
	RAID-10 (striping mirror)
	RAID-50 (striping parity)

	RAID Case Studies: What Should I Choose?
	Case 1: HTTP Image Server
	Case 2: Usenet News
	Case 3: Home Use (Digital Audio, Video, and Images)
	Case 4: The Acme Motion Picture Company
	Case 5: Video on Demand

	Disk Failures
	Degraded Mode
	Hot-Spares
	Hot-Swap

	Hardware Considerations
	An Organizational Overview
	Motherboards and the PCI Bus
	Bus-width and bus-speed

	I/O Channels
	Disk Access Protocols
	The AT Attachment (ATA) and Integrated Disk Electronics (IDE)
	Master and slave
	Direct memory access (DMA)
	The drawbacks of ATA

	SCSI
	Bus-width and signaling rates
	Transmission types

	SCSI Versus ATA
	Speed
	Configuration
	Growth
	Summary of SCSI versus ATA

	Other Disk Access Protocols
	Choosing Hard Drives
	Platters, tracks, sectors, and cylinders
	Actuator arm
	Maximum data throughput
	Matched drives

	Cases, Cables, and Connectors
	Connectors
	Single connector attachment (SCA)
	Power

	Making Sense of It All

	Getting Started: Building a Software RAID
	Kernel Configuration
	A Brief History Lesson
	Kernel 2.4
	Installing the new kernel
	System initialization

	Patching Older Kernels
	Kernel 2.2
	Kernel 2.0

	Summary of Kernel Upgrades

	Working with Software RAID
	raidtools
	raidtools-0.90
	/etc/raidtab
	raidtools-0.42

	mdadm
	/etc/mdadm.conf

	The RAID Superblock
	Examining Arrays Using /proc/mdstat
	Existing Arrays
	Stopping an array
	Reusing member disks

	Creating an Array
	Partitioning with fdisk
	Partitioning for autodetection
	Partitioning without autodetection

	Linear (Append) Mode
	RAID-0 (Striping)
	RAID-1 (Mirroring)
	RAID-4 (Dedicated Parity)
	RAID-5 (Distributed Parity)
	Hybrid Arrays
	RAID-10 (striped mirror)
	RAID-50 (striped parity)

	Finishing Touches

	The Next Step

	Software RAID Reference
	Kernel Options
	Deprecated Kernel Options

	md Block Special Files
	/proc and Software RAID
	/proc/mdstat
	Failed disks
	Resynchronization and reconstruction

	/proc/sys/dev/raid

	raidtools
	The /etc/raidtab File
	raidtools Commands
	lsraid
	mkraid
	raidhotadd
	raidhotgenerateerror
	raidhotremove
	raidreconf
	raidsetfaulty
	raidstart
	raidstop

	mdadm
	mdadm
	Create and Build modes
	Assemble mode
	Monitor mode
	Manage and Miscellaneous modes
	/etc/mdadm.conf
	DEVICE lines
	ARRAY lines
	MAILADDR lines
	PROGRAM lines
	Maintaining /etc/mdadm.conf

	Hardware RAID
	Choosing a RAID Controller
	Motherboard and System Compatibility
	Controller Memory
	Battery backed-up cache memory

	JBOD (Just a Bunch of Disks)
	Software Considerations

	Preparing Controllers and Disks
	FreeDOS

	General Configuration Issues
	Controller Card BIOS
	System Installation
	RAID Autoconfiguration
	Write Cache
	Write-back caching
	Write-through caching

	Logical Drives
	Controller Disk Spin-up

	Mylex
	The DAC960 Driver
	Distribution support
	Configuring the kernel
	Device special files
	Partition limitations

	Controller Setup
	BIOS options
	EzAssist (RAID configuration)
	Configuring the first array
	Configuring an existing disk for standalone JBOD mode
	Converting an existing standalone disk to a mirror

	Managing Arrays
	/proc/rd
	The Global Array Manager (GAM)

	Adaptec
	Adaptec I2O RAID Driver
	Configuring the kernel

	The aacraid Driver
	Configuring the kernel

	Adaptec RAID Setup Utility
	Configuring the first array
	Configuring an existing disk for JBOD mode
	Converting an existing standalone disk to a mirror

	The Adaptec Storage Manager
	Working with raidutil

	Promise Technology
	Creating an Array
	Installing Linux onto a Promise Array
	Creating a driver disk
	Installation

	Configuring the ataraid Driver
	Reconfiguring LILO
	Additional steps for new systems

	Converting an Existing Standalone Disk to a Mirror
	Post-Installation Array Management

	3ware Escalade ATA RAID Controller
	Creating an Array and Installing Linux
	Converting an Existing Standalone Disk to a Mirror
	Kernel Configuration
	3DM Disk Manager
	Downloading and installing 3DM
	Configuration and usage

	LSI Logic (MegaRAID)
	Creating an Array
	Installing Linux Directly to a MegaRAID Controller
	The MegaRAID Driver
	Converting an Existing Standalone Disk to a Mirror
	Managing Arrays

	Filesystems
	Basic Filesystem Concepts
	Blocks and Inodes
	Space efficiency versus performance

	Organization
	Journaling Filesystems
	Doesn’t journaling hurt performance?

	The Linux Virtual Filesystem (VFS)
	64-bit architectures

	ext2
	ext2 Organization
	Creating an ext2 Filesystem
	Tuning ext2 Filesystems
	Reserved space
	RAID options
	Access time
	A working example

	ext3 Extensions for the ext2 Filesystem
	Patching the Kernel for ext3 Support
	Compiling the Kernel with ext3 Support
	Working with ext3
	Creating an ext3 Partition
	Converting an ext2 Filesystem to ext3
	Tuning ext3 Features
	Data journaling
	Using a separate journal device

	Further Information

	ReiserFS
	Installing Directly to ReiserFS
	Compiling the Kernel with ReiserFS Support
	Patching older kernels

	Creating a Filesystem
	Mounting the filesystem

	reiserfsck, reiserfstune, and debugreiserfs

	IBM JFS
	Distribution Support
	Patching the Kernel
	Configuring the Kernel
	Installing the JFS Utilities
	Creating a filesystem

	Further Information

	SGI XFS
	Distribution Support
	Obtaining XFS
	Using CVS to obtain a patched kernel
	Patching the kernel

	Compiling the Kernel with XFS Support
	Building the XFS Utilities
	Further Information

	Performance, Tuning, and Maintenance
	Monitoring RAID Devices
	RAID and syslog
	BigBrother
	SysOrb
	Verbose SCSI Reporting

	Managing Disk Failures
	Automatic Failover to a Spare Disk
	Sharing Spare Disks
	Manual Disk Replacement
	Problems with Hot-Swap and Disk Replacement

	Configuring Hard Disk Parameters
	Tuning ATA Disks with hdparm
	Enabling DMA mode transfers
	32-bit I/O support
	Increasing multiple sector I/O
	Interrupt unmasking
	Filesystem read-ahead
	Testing your configuration
	Saving your configuration

	Tuning Disk Elevators

	Performance Testing
	Booting with Software RAID
	Installing Directly to Software RAID
	Red Hat
	SuSE
	Mandrake

	Converting to Software RAID

	Additional Resources
	Mailing Lists
	Web Sites and Online Resources
	RAID
	Filesystems
	Hardware

	Books

	Hardware RAID Controller Vendors
	Index

