
www.IrPDF.com

www.IrPDF.com

Linux

Command Line and
Shell Scripting

Bible

Richard Blum

Wiley Publishing, Inc.

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Linux

Command Line and
Shell Scripting

Bible

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Linux

Command Line and
Shell Scripting

Bible

Richard Blum

Wiley Publishing, Inc.

www.IrPDF.com

www.IrPDF.com

LinuxCommand Line and Shell Scripting Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-25128-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copy-
right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may
be created or extended by sales or promotional materials. The advice and strategies contained herein may
not be suitable for every situation. This work is sold with the understanding that the publisher is not en-
gaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. Linux is a registered trademark of Linus Torvald. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

www.IrPDF.com

www.IrPDF.com

www.wiley.com

To all the people who’ve helped form my education. Parents,

relatives, teachers, coworkers, and even anonymous posters on the

Internet. Always be prepared to accept education from wherever

you find it. Always continue to learn new things. ‘‘For the LORD

gives wisdom, and from his mouth come knowledge and

understanding.” Proverbs 2:6 (NIV)

www.IrPDF.com

www.IrPDF.com

About the Author
Richard Blum has worked in the IT industry for over 19 years as both a systems and network

administrator. During this time he has administered Unix, Linux, Novell, and Microsoft servers,

as well as helped design and maintain a 3500-user network utilizing Cisco switches and routers.
He has used Linux servers and shell scripts to perform automated network monitoring, and has

written shell scripts in just about every Unix shell environment.

Rich has a bachelor of science degree in Electrical Engineering, and a master of science degree

in Management, specializing in management information systems, from Purdue University. He

is the author of several Linux books, including sendmail for Linux, Running qmail, Postfix, Open
Source E-mail Security, Network Performance Open Source Toolkit, and Professional Assembly Language
Programming. He’s also a coauthor of Professional Linux Programming and Linux For Dummies, 8th
Edition. When he’s not being a computer nerd, Rich plays bass guitar for his church worship band

and enjoys spending time with his wife, Barbara, and their two daughters, Katie Jane and Jessica.

www.IrPDF.com

www.IrPDF.com

Credits

Acquisitions Editor

Jenny Watson

Senior Development Editor

Tom Dinse

Technical Editor

John Kennedy

Production Editor

Angela Smith

Copy Editor

Foxxe Editorial Services

Editorial Manager

Mary Beth Wakefield

Production Manager

Tim Tate

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Project Coordinator, Cover

Lynsey Stanford

Proofreader

Word One New York

Indexer

Melanie Belkin

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Acknowledgments . xxv
Introduction . xxvii

Part I The Linux Command Line
Chapter 1: Starting with Linux Shells ...3

Chapter 2: Getting to the Shell ...25

Chapter 3: Basic bash Shell Commands ...59

Chapter 4: More bash Shell Commands ...91

Chapter 5: Using Linux Environment Variables ..123

Chapter 6: Understanding Linux File Permissions ...147

Chapter 7: Working with Editors ...171

Part II Shell Scripting Basics
Chapter 8: Basic Script Building ...201

Chapter 9: Using Structured Commands ...229

Chapter 10: More Structured Commands ..255

Chapter 11: Handling User Input ...285

Chapter 12: Presenting Data ...313

Chapter 13: Script Control ...335

Part III Advanced Shell Scripting
Chapter 14: Creating Functions ..363

Chapter 15: Adding Color to Scripts ..385

Chapter 16: Introducing sed and gawk ..419

Chapter 17: Regular Expressions ..447

Chapter 18: Advanced sed ..473
Chapter 19: Advanced gawk ...501

Part IV Alternative Linux Shells
Chapter 20: The ash Shell ...533
Chapter 21: The tcsh Shell ...557

Chapter 22: The Korn Shell ..587

Chapter 23: The zsh Shell ...611

ix

www.IrPDF.com

www.IrPDF.com

Contents at a Glance

Part V Advanced Topics
Chapter 24: Using a Database ...639

Chapter 25: Using the Web ..673

Chapter 26: Using E-Mail ...701

Chapter 27: Shell Scripts for Administrators ...725

Appendix A: Quick Guide to bash Commands ...749

Appendix B: Quick Guide to sed and gawk .. 759

Appendix C: Comparing Shells ...771

Index ..777

x

www.IrPDF.com

www.IrPDF.com

Acknowledgments . xxv
Introduction . xxvii

Part I The Linux Command Line

Chapter 1: Starting with Linux Shells . 3

What Is Linux? ..3

Looking into the Linux kernel ..4

The GNU utilities ..12

The Linux desktop environment ..14

Linux Distributions ..20

Core Linux distributions ...21

Specialized Linux distributions ...22

The Linux LiveCD ...23

Summary ..24

Chapter 2: Getting to the Shell . 25

Terminal Emulation ...25

Graphics capabilities ...27

The keyboard ...30

The terminfo Database ..31

The Linux Console ..35

The xterm Terminal ..36

Command line parameters ..37

The xterm main menu ..38

The VT options menu ...41

The VT fonts menu ...43

The Konsole Terminal ...45

Command line parameters ..45

Sessions ..45

The menu bar ..48

The GNOME Terminal ..52

The command line parameters ...52

Tabs ...53

The menu bar ..54

Summary ..58

xi

www.IrPDF.com

www.IrPDF.com

Contents

Chapter 3: Basic bash Shell Commands 59

Starting the Shell ...59

The Shell Prompt ...60

The bash Manual ...63
Filesystem Navigation ..64

The Linux filesystem ...64

Traversing directories ..66

File and Directory Listing ...69

Basic listing ..69

Modifying the information presented ...71

The complete parameter list ...72

Filtering listing output ..74

File Handling ...75

Creating files ..75

Copying files ..76

Linking files ...79

Renaming files ...80

Deleting files ..81

Directory Handling ..82

Creating directories ...82

Deleting directories ... 82

Viewing File Contents ...83

Viewing file statistics ...84

Viewing the file type ...84

Viewing the whole file ..85
Viewing parts of a file ...89

Summary ..90

Chapter 4: More bash Shell Commands 91

Monitoring Programs ...91

Peeking at the processes ...91

Real-time process monitoring ...98

Stopping processes ..101

Monitoring Disk Space ..104

Mounting media ..104

Using the df command ...108

Using the du command ..109

Working with Data Files ...110

Sorting data ...110

Searching for data ...114

Compressing data ..116
Archiving data ...120

Summary ..121

xii

www.IrPDF.com

www.IrPDF.com

Contents

Chapter 5: Using Linux Environment Variables 123

What Are Environment Variables? ..123

Global environment variables ...124

Local environment variables ...125
Setting Environment Variables ..127

Setting local environment variables ..127

Setting global environment variables ..129

Removing Environment Variables ...129

Default Shell Environment Variables ..130

Setting the PATH Environment Variable ..134

Locating System Environment Variables .. 135

Login shell ...136

Interactive shell ...139

Non-interactive shell ...141

Variable Arrays ..142

Using Command Aliases ...143

Summary ..144

Chapter 6: Understanding Linux File Permissions 147

Linux Security ...147

The /etc/passwd file ...148

The /etc/shadow file ..150

Adding a new user ..150

Removing a user ..153

Modifying a user ...154

Using Linux Groups ..157

The /etc/group file ...157

Creating new groups ...158
Modifying groups ..159

Decoding File Permissions ..160

Using file permission symbols ..160

Default file permissions ...161

Changing Security Settings ... 163

Changing permissions ...163

Changing ownership ...165

Sharing Files ..166

Summary ..168

Chapter 7: Working with Editors . 171

The vim Editor ..171

The basics of vim ..172

Editing data ...174

Copy and paste ..174

Search and substitute ..175

xiii

www.IrPDF.com

www.IrPDF.com

Contents

The emacs Editor ...176

Using emacs on the console ...176

Using emacs in X Windows ..181

The KDE Family of Editors ...183

The KWrite editor ...183

The Kate editor ..189

The GNOME Editor ..191

Starting gedit ...191

Basic gedit features ..192

Setting preferences ..193

Summary ..197

Part II Shell Scripting Basics

Chapter 8: Basic Script Building . 201

Using Multiple Commands ...201

Creating a Script File ..202

Displaying Messages ..204

Using Variables ..206

Environment variables ...206

User variables ..207

The backtick ..209

Redirecting Input and Output ..210

Output redirection ..211

Input redirection ...211

Pipes ...213

Performing Math ..216

The expr command ...216

Using brackets ...218

A floating-point solution ...219

Exiting the Script ...223

Checking the exit status ..223

The exit command ..225

Summary ..226

Chapter 9: Using Structured Commands 229

Working with the if-then Statement ...229

The if-then-else Statement ..232

Nesting ifs ..232

The test Command ..233

Numeric comparisons ...234

String comparisons ..236

File comparisons ...241

Compound Condition Testing ..249

xiv

www.IrPDF.com

www.IrPDF.com

Contents

Advanced if-then Features ..250

Using double parentheses ...250

Using double brackets ...251

The case Command ...252

Summary ..253

Chapter 10: More Structured Commands 255

The for Command ...255

Reading values in a list ...256

Reading complex values in a list ..257

Reading a list from a variable ...259

Reading values from a command ...260

Changing the field separator ...261

Reading a directory using wildcards ...262

The C-Style for Command ..264

The C language for command ..264

Using multiple variables ..266

The while Command ...266

Basic while format ...267

Using multiple test commands ...268

The until Command ..269

Nesting Loops ..271

Looping on File Data .. 273

Controlling the Loop ...274

The break command ...275

The continue Command ...278

Processing the Output of a Loop ..281

Summary ..282

Chapter 11: Handling User Input . 285

Command Line Parameters ...285

Reading parameters ...285

Reading the program name ...288

Testing parameters ..289

Special Parameter Variables ...290

Counting parameters ...290

Grabbing all the data ..292

Being Shifty ..293

Working With Options ...295

Finding your options ..295

Using the getopt command ...299

The more advanced getopts ..302

Standardizing Options ...304

Getting User Input ..305

Basic reading ..306

xv

www.IrPDF.com

www.IrPDF.com

Contents

Timing out ...307

Silent reading ...308

Reading from a file ..309

Summary ..310

Chapter 12: Presenting Data . 313

Understanding Input and Output ...313

Standard file descriptors ...314

Redirecting errors ..316

Redirecting Output in Scripts ...318

Temporary redirections ...318

Permanent redirections ...319

Redirecting Input in Scripts ..320

Creating Your Own Redirection ..321

Creating output file descriptors ..321

Redirecting file descriptors ..322

Creating input file descriptors ..323

Creating a read/write file descriptor ...323

Closing file descriptors ..324

Listing Open File Descriptors ...326

Suppressing Command Output ..328

Using Temporary Files ..328

Creating a local temporary file ...329

Creating a temporary file in /tmp ...330

Creating a temporary directory ...331

Logging Messages ..332

Summary ..333

Chapter 13: Script Control . 335

Handling Signals ..335

Linux signals revisited ...335

Generating signals ...336

Trapping signals ..338

Trapping a script exit ..339

Removing a trap ..340

Running Scripts in Background Mode ..341

Running in the background ..341

Running multiple background jobs ..342

Exiting the terminal ..343

Running Scripts without a Console ..343

Job Control ..344

Viewing jobs ..345

Restarting stopped jobs ...347

Being Nice ..348

The nice command ..348

xvi

www.IrPDF.com

www.IrPDF.com

Contents

The renice command ..349

Running Like Clockwork ..349

Scheduling a job using the at command ..350

Using the batch command ..352

Scheduling regular scripts ...353

Start At the Beginning ...355

Starting your scripts at boot ...355

Starting with a new shell ..357

Summary ..358

Part III Advanced Shell Scripting

Chapter 14: Creating Functions . 363

Basic Script Functions ...363

Creating a function ..364

Using functions ...364

Returning a Value ..366

The default exit status ...367

Using the return command ...368

Using function output ...369

Using Variables in Functions ..369

Passing parameters to a function ..370

Handling variables in a function ..372

Array Variables and Functions ..375

Passing arrays to functions ..375

Returning arrays from functions ...376

Function Recursion ...377

Creating a Library ..379

Using Functions on the Command Line ..381

Creating functions on the command line ...381

Defining functions in the .bashrc file ...382

Summary ..384

Chapter 15: Adding Color to Scripts 385

Creating Text Menus ...385

Create the menu layout ...386

Create the menu functions ..387

Add the menu logic ..388

Putting it all together ..389

Using the select command ..390

Adding Color ...391

The ANSI escape codes ...392

Displaying ANSI escape codes ..393

Using colors in scripts ...395

xvii

www.IrPDF.com

www.IrPDF.com

Contents

Doing Windows ...397

The dialog package ..397

The dialog options ..404

Using the dialog command in a script ...407

Getting Graphic ...409

The KDE environment ..409

The GNOME environment ..412

Summary ..417

Chapter 16: Introducing sed and gawk 419

Text Manipulation ...419

The sed editor ...420

The gawk program ..423

The sed Editor Basics ..430

More substitution options ...430

Using addresses ...432

Deleting lines ...434

Inserting and appending text ..436

Changing lines ...438

The transform command ..439

Printing revisited ...440

Using files with sed ...442

Summary ..445

Chapter 17: Regular Expressions . 447

What Are Regular Expressions? ..447

A definition ..447

Types of regular expressions ...448

Defining BRE Patterns ...449

Plain text ..449

Special characters ..451

Anchor characters ..452

The dot character ..454

Character classes ...455

Negating character classes ...457

Using ranges ..458

Special character classes ..459

The asterisk ...460

Extended Regular Expressions ..461

The question mark ..461

The plus sign ...462

Using braces ..463

The pipe symbol ..464

Grouping expressions ..465

Regular Expressions in Action ..466

xviii

www.IrPDF.com

www.IrPDF.com

Contents

Counting directory files ..466

Validating a phone number ..467

Parsing an e-mail address ...469

Summary ..471

Chapter 18: Advanced sed . 473

Multiline Commands ...473

The next commands ..474

The multiline delete command ...477

The multiline print command ..479

The Hold Space ...479

Negating a Command ...481

Changing the Flow ..484

Branching ...484

Testing ...486

Pattern Replacement ..487

The ampersand ..488

Replacing individual words ...488

Using sed in Scripts .. 489

Using wrappers ..489

Redirecting sed output ..490

Creating sed Utilities ...491

Double spacing lines ...491

Double spacing files that may have blanks ..492

Numbering lines in a file ..493

Printing last lines ...494

Deleting lines ...495

Removing HTML tags ..497

Summary ..499

Chapter 19: Advanced gawk . 501

Using Variables ..501

Built-in variables ..502

User-defined variables ...508

Working with Arrays ...510

Defining array variables .. 510

Iterating through array variables ...511

Deleting array variables ...511

Using Patterns ..512

Regular expressions ...512

The matching operator ..513

Mathematical expressions ..514

Structured Commands ..514

The if statement ...514

The while statement ..516

xix

www.IrPDF.com

www.IrPDF.com

Contents

The do-while statement ..518

The for statement ..518

Formatted Printing ..519

Built-in Functions ..522

Mathematical functions ...522

String functions ...524

Time functions ..526

User-Defined Functions ..527

Defining a function ...527

Using your functions ...528

Creating a function library ..528

Summary ..529

Part IV Alternative Linux Shells

Chapter 20: The ash Shell . 533

What Is the ash Shell? ...533

The Original ash Shell ...534

The Original ash command line parameters ..534

The original ash built-in commands ..536

The ash shell files ..539

The dash Shell ...540

The dash command line parameters ..540

The dash environment variables ...540

The dash built-in commands ..544

Scripting in dash ...549

Creating ash and dash scripts ...549

Things that won’t work ...549

Summary ..555

Chapter 21: The tcsh Shell . 557

What Is the tcsh Shell? ...557

The tcsh Shell Components ..558

The tcsh command line parameters ...558

The tcsh files ...560

The tcsh login files ..560

Shell startup files ...561

The logout files ..562

The tcsh environment variables ..563

Shell variables ..563

Environment variables ...569

Setting variables in tcsh ..572

Using the set command ..572

Using the setenv command ...573

xx

www.IrPDF.com

www.IrPDF.com

Contents

The tcsh built-in commands ...574

Scripting in tcsh ..577
Working with variables ...578

Array variables ...578
Handling mathematical operations ...578

Structured commands ...578

The if statements ...579
The foreach statement ...582

The while statement ..582
The switch command ..583

Summary ..584

Chapter 22: The Korn Shell . 587

The Korn Shell History ...587
The Parts of the ksh93 Shell ...588

Command line parameters ..588
Default files ..590

Environment variables ...590
Built-in commands ..597

Scripting in the ksh93 Shell ... 602
Mathematical operations ...602

Structured commands ...605
Command redirection ...607

Discipline functions ...608
Summary ..609

Chapter 23: The zsh Shell . 611

History of the zsh Shell ...611

Parts of the zsh Shell ...612
Shell options ..612

The zsh shell files ..615
Environment variables ...619

Built-in commands ..625
Scripting with zsh ... 631

Mathematical operations ...631

Structured commands ...633
Functions ...634

Summary ..636

Part V Advanced Topics

Chapter 24: Using a Database . 639

The MySQL Database ..639

Installing MySQL ...640
Completing the MySQL configuration ..642

xxi

www.IrPDF.com

www.IrPDF.com

Contents

The MySQL client interface ..644

Creating MySQL database objects ..649

The PostgreSQL Database ...651

Installing PostgreSQL ..652

The PostgreSQL command interface ..654

Creating PostgreSQL database objects ..657

Working with Tables ...659

Creating a table ...659

Inserting and deleting data ...661

Querying data ..663

Using the Database in Your Scripts ..664

Connecting to the databases ...664

Sending commands to the server ...666

Formatting data ...670

Summary ..671

Chapter 25: Using the Web . 673

The Lynx Program ...673

Installing Lynx ...674

The lynx command line ..675

The Lynx configuration file ...676

The Lynx environment variables ..683

Capturing data from Lynx ..684

The cURL Program ..687

Installing cURL ..687

The cURL command line ..688

Exploring with curl ...688

Networking with zsh ...694

The TCP module ...694

The client/server paradigm ..695

Client/server programming with zsh ..695

Summary ..699

Chapter 26: Using E-Mail . 701

The Basics of Linux E-Mail ...701

E-Mail in Linux ...701

The Mail Transfer Agent ...702

The Mail Delivery Agent ...703

The Mail User Agent ...705

Setting Up Your Server ..708

sendmail ..709

Postfix ..711

Sending a Message with Mailx ..717

The Mutt Program ...720

Installing Mutt ...720

xxii

www.IrPDF.com

www.IrPDF.com

Contents

The Mutt command line ...721

Using Mutt ...721

Summary ..723

Chapter 27: Shell Scripts for Administrators 725

Monitoring System Statistics ...725

Monitoring disk free space ..725

Catching disk hogs ..728

Watching CPU and memory usage ...732

Performing Backups ..739

Archiving data files ..740

Storing backups off-site ...744

Summary ..746

Appendix A: Quick Guide to bash Commands 749

Built-In Commands ...749

Bash Commands ..749

Environment Variables ..753

Appendix B: Quick Guide to sed and gawk 759

The sed Editor ...759

Starting the sed editor ...759

sed commands ...760

The gawk program ..764

The gawk command format ..764

Using gawk ..765

The gawk variables ..766

The gawk program features ..768

Appendix C: Comparing Shells . 771

Variables ..771

Environment variables ...771

User-defined variables ...772
Array variables ...772

Structured Commands ..773

The if-then, while, and until statements ..773

The for statement ..774

Mathematical Operations ..775

Index ..777

xxiii

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

F
irst, all glory and praise go to God, who through His Son makes all things possible, and

gives us the gift of eternal life.

Many thanks go to the great team of people at John Wiley & Sons for their outstanding work

on this project. Thanks to Jenny Watson, the acquisitions editor, for offering me the opportunity

to work on this book. Also thanks to Tom Dinse, the development editor, for keeping things

on track and making this book more presentable. The technical editor, John Kennedy, did an

amazing job of double-checking all the work in this book, plus making suggestions to improve

the content. Thanks, John, for your hard work and diligence. I would also like to thank Carole

McClendon at Waterside Productions, Inc. for arranging this opportunity for me, and for helping

out in my writing career.

Finally, I would like to thank my parents, Mike and Joyce Blum, for their dedication and support

while raising me, and my wife, Barbara, and daughters, Katie Jane and Jessica, for their love,

patience, and understanding, especially while I was writing this book.

xxv

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

W
elcome to Linux Command Line and Shell Scripting Bible. Like all books in the Bible
series, you can expect to find both hands-on tutorials and real-world practical appli-
cation information, as well as reference and background information that provides

a context for what you are learning. This book is a fairly comprehensive resource on the Linux
command line and shell commands. By the time you have completed Linux Command Line and
Shell Scripting Bible, you will be well prepared to write your own shell scripts that can automate
practically any task on your Linux system.

Who Should Read This Book
If you’re a system administrator in a Linux environment, you’ll benefit greatly by knowing how to
write shell scripts. The book doesn’t walk through setting up a Linux system, but once you have
it running, you’ll want to start automating some of the routine administrative tasks. That’s where
shell scripting comes in, and that’s where this book will help you out. This book will demonstrate

how to automate any administrative task using shell scripts, from monitoring system statistics and
data files to generating reports for your boss.

If you’re a home Linux enthusiast, you’ll also benefit from Linux Command Line and Shell Scripting
Bible. Nowadays it’s easy to get lost in the graphical world of prebuilt widgets. Most desktop
Linux distributions try their best to hide the Linux system from the typical user. However, there

are times when you have to know what’s going on under the hood. This book shows you how
to access the Linux command line prompt, and what to do once you get there. Often performing
simple tasks, such as file management, can be done more quickly from the command line than
from a fancy graphical interface. There’s a wealth of commands you can use from the command
line, and this book shows you just how to use them.

How This Book Is Organized
This book is organized in a way that leads you through the basics of the Linux command line all

the way to creating your own shell scripts. The book is divided into five parts, each one building
on the previous parts.

Part I assumes that you either have a Linux system running or are looking into getting a Linux
system. Chapter 1, ‘‘Starting with Linux Shells,’’ describes the parts of a total Linux system and

xxvii

www.IrPDF.com

www.IrPDF.com

Introduction

shows how the shell fits in. After learning the basics of the Linux system, this section

continues with:

■ Using a terminal emulation package to access the shell (Chapter 2)

■ Introducing the basic shell commands (Chapter 3)

■ Using more advanced shell commands to peek at system information (Chapter 4)

■ Working with shell variables to manipulate data (Chapter 5)

■ Understanding the Linux filesystem and security (Chapter 6)

■ Knowing how to use the Linux editors to start writing shell scripts (Chapter 7)

In Part II, you’ll start writing shell scripts:

■ Learn how to create and run shell scripts (Chapter 8)

■ Alter the program flow in a shell script (Chapter 9)

■ Iterate through code sections (Chapter 10)

■ Handle data from the user in your scripts (Chapter 11)

■ See different methods for storing and displaying data from your script (Chapter 12)

■ Control how and when your shell scripts run on the system (Chapter 13)

Part III dives into more advanced areas of shell script programming:

■ Create your own functions to use in all your scripts (Chapter 14)

■ See different methods for interacting with your script users (Chapter 15)

■ Use advanced Linux commands to filter and parse data files (Chapter 16)

■ Use regular expressions to define data (Chapter 17)

■ Learn advanced methods of manipulating data in your scripts (Chapter 18)

■ See how to generate reports from raw data (Chapter 19)

In Part IV, you’ll get to see how to write shell scripts using some of the alternative shells available

in the Linux environment:

■ Write scripts for the ash or dash shells (Chapter 20)

■ See how writing scripts in the tcsh shell is different (Chapter 21)

■ Work with floating-point numbers in the ksh93 shell (Chapter 22)

■ Use advanced network and math features in the zsh shell (Chapter 23)

xxviii

www.IrPDF.com

www.IrPDF.com

Introduction

The last section of the book, Part V, demonstrates how to use shell scripts in real-world

environments:

■ See how to use popular open source databases in your shells scripts (Chapter 24)

■ Learn how to extract data from Web sites, and send data between systems (Chapter 25)

■ Use e-mail to send notifications and reports to external users (Chapter 26)

■ Write shell scripts to automate your daily system administration functions (Chapter 27)

Conventions and Features
There are many different organizational and typographical features throughout this book designed

to help you get the most out of the information.

Throughout the book, special typography indicates code and commands. Commands and code

are shown in a monospaced font. In a regular paragraph, programming code words look like
this. Lines of code are presented like this:

$ cat test2
#!/bin/bash
testing a bad command
if asdfg
then

echo "it didn’t work"
fi
echo "we’re outside of the if statement"
$./test2
./test2: line 3: asdfg: command not found
we’re outside of the if statement
$

Notes and Cautions

Whenever the author wants to bring something important to your attention, the information will

appear in a Note or Caution.

Notes provide additional, ancillary information that is helpful, but somewhat outside

of the current presentation of information.

This information is important and is set off in a separate paragraph with a special

icon. Cautions provide information about things to watch out for, whether simply

inconvenient or potentially hazardous to your data or systems.

xxix

www.IrPDF.com

www.IrPDF.com

Introduction

Minimum Requirements
Linux Command Line and Shell Scripting Bible looks at Linux from a generic point of view, so you’ll

be able to follow along in the book using any Linux system you have available. The bulk of the

book references the bash shell, which is the default shell for most Linux systems.

Where to Go from Here
Once you’ve completed Linux Command Line and Shell Scripting Bible, you’ll be well on your way to

incorporating Linux commands in your daily Linux work. In the ever-changing world of Linux,

it’s always a good idea to stay in touch with new developments. Often Linux distributions will

change, adding new features and removing older ones. To keep your knowledge of Linux fresh,

always stay well informed. Find a good Linux forum site and monitor what’s happening in the

Linux world. There are many popular Linux news sites, such as Slashdot and Distrowatch, that

provide up-to-the-minute information about new advances in Linux.

xxx

www.IrPDF.com

www.IrPDF.com

The Linux
Command Line

IN THIS PART

Chapter 1
Starting with Linux Shells

Chapter 2
Getting to the Shell

Chapter 3
Basic bash Shell Commands

Chapter 4
More bash Shell Commands

Chapter 5
Using Linux Environment
Variables

Chapter 6
Understanding Linux File
Permissions

Chapter 7
Working with Editors

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Starting with Linux
Shells

IN THIS CHAPTER

What Is Linux?

Parts of the Linux kernel

Exploring the Linux desktop

Visiting Linux distributions

B
efore you can dive into working with the Linux command line and

shells, it’s a good idea to first understand what Linux is, where it
came from, and how it works. This chapter walks you through

what Linux is, and explains where the shell and command line fit in the

overall Linux picture.

What Is Linux?

If you’ve never worked with Linux before, you may be confused as to why

there are so many different versions of it available. I’m sure that you have

heard various terms such as distribution, LiveCD, and GNU when looking

at Linux packages and been confused. Trying to wade through the world

of Linux for the first time can be a tricky experience. This chapter will take

some of the mystery out of the Linux system before we start working on
commands and scripts.

For starters, there are four main parts that make up a Linux system:

■ The Linux kernel

■ The GNU utilities

■ A graphical desktop environment

■ Application software

Each of these four parts has a specific job in the Linux system. Each of the

parts by itself isn’t very useful. Figure 1-1 shows a basic diagram of how

the parts fit together to create the overall Linux system.

3

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 1-1

The Linux system

Application Software

Windows
Management
Software

GNU
System
Utilities

Linux kernel

computer hardware

This section describes these four main parts in detail, and gives you an overview of how they
work together to create a complete Linux system.

Looking into the Linux kernel
The core of the Linux system is the kernel. The kernel controls all of the hardware and software on
the computer system, allocating hardware when necessary, and executing software when required.

If you’ve been following the Linux world at all, no doubt you’ve heard the name Linus Torvalds.
Linus is the person responsible for creating the first Linux kernel software while he was a student
at the University of Helsinki. He intended it to be a copy of the Unix system, at the time a popular
operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solicited
suggestions for improving it. This simple process started a revolution in the world of computer
operating systems. Soon Linus was receiving suggestions from students as well as professional
programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos. To
simplify things, Linus acted as a central point for all improvement suggestions. It was ultimately
Linus’s decision whether or not to incorporate suggested code in the kernel. This same concept is
still in place with the Linux kernel code, except that instead of just Linus controlling the kernel
code, a team of developers has taken on the task.

4

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

The kernel is primarily responsible for four main functions:

■ System memory management

■ Software program management

■ Hardware management

■ Filesystem management

The following sections explore each of these functions in more detail.

System memory management

One of the primary functions of the operating system kernel is memory management. Not only

does the kernel manage the physical memory available on the server, it can also create and

manage virtual memory, or memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the contents

of virtual memory locations back and forth from the swap space to the actual physical mem-

ory. This allows the system to think there is more memory available than what physically exists

(shown in Figure 1-2).

FIGURE 1-2

The Linux system memory map

Virtual Memory

Physical Memory

Swap Space

The Kernel

5

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The memory locations are grouped into blocks called pages. The kernel locates each page of mem-
ory either in the physical memory or the swap space. The kernel then maintains a table of the
memory pages that indicates which pages are in physical memory, and which pages are swapped
out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory pages
that have not been accessed for a period of time to the swap space area (called swapping out), even
if there’s other memory available. When a program wants to access a memory page that has been
swapped out, the kernel must make room for it in physical memory by swapping out a different
memory page, and swap in the required page from the swap space. Obviously, this process takes
time, and can slow down a running process. The process of swapping out memory pages for
running applications continues for as long as the Linux system is running.

You can see the current status of the virtual memory on your Linux system by viewing the special
/proc/meminfo file. Here’s an example of a sample /proc/meminfo entry:

cat /proc/meminfo
MemTotal: 255392 kB
MemFree: 4336 kB
Buffers: 1236 kB
Cached: 48212 kB
SwapCached: 1028 kB
Active: 182932 kB
Inactive: 44388 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 255392 kB
LowFree: 4336 kB
SwapTotal: 524280 kB
SwapFree: 514528 kB
Dirty: 456 kB
Writeback: 0 kB
AnonPages: 176940 kB
Mapped: 40168 kB
Slab: 16080 kB
SReclaimable: 4048 kB
SUnreclaim: 12032 kB
PageTables: 4048 kB
NFS Unstable: 0 kB
Bounce: 0 kB
CommitLimit: 651976 kB
Committed AS: 442296 kB
VmallocTotal: 770040 kB
VmallocUsed: 3112 kB
VmallocChunk: 766764 kB
HugePages Total: 0

6

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

HugePages Free: 0
HugePages Rsvd: 0
Hugepagesize: 4096 kB

#

The Mem: line shows that this Linux server has 256 MB of physical memory. It also shows that

about 4 MB is not currently being used (free). The output also shows that there is about 512 MB

of swap space memory available on this system.

By default, each process running on the Linux system has its own private memory pages. One

process cannot access memory pages being used by another process. The kernel maintains its
own memory areas. For security purposes, no processes can access memory used by the kernel

processes.

To facilitate data sharing, you can create shared memory pages. Multiple processes can read and

write to and from a common shared memory area. The kernel maintains and administers the

shared memory areas and allows individual processes access to the shared area.

The special ipcs command allows you to view the current shared memory pages on the system.

Here’s the output from a sample ipcs command:

ipcs -m

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 0 rich 600 52228 6 dest
0x395ec51c 1 oracle 640 5787648 6

#

Each shared memory segment has an owner that created the segment. Each segment also has a

standard Linux permissions setting that sets the availability of the segment for other users. The

key value is used to allow other users to gain access to the shared memory segment.

Software program management

The Linux operating system calls a running program a process. A process can run in the fore-

ground, displaying output on a display, or it can run in background, behind the scenes. The

kernel controls how the Linux system manages all the processes running on the system.

The kernel creates the first process, called the init process, to start all other processes on the

system. When the kernel starts, it loads the init process into virtual memory. As the kernel starts

each additional process, it gives it a unique area in virtual memory to store the data and code that

the process uses.

7

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Some Linux implementations contain a table of processes to start automatically on bootup. On

Linux systems this table is usually located in the special file /etc/inittabs.

The Linux operating system uses an init system that utilizes run levels. A run level can be used to

direct the init process to run only certain types of processes, as defined in the /etc/inittabs
file. There are five init run levels in the Linux operating system.

At run level 1, only the basic system processes are started, along with one console terminal pro-

cess. This is called single user mode. Single user mode is most often used for emergency filesystem

maintenance when something is broken. Obviously, in this mode only one person (usually the

administrator) can log in to the system to manipulate data.

The standard init run level is 3. At this run level most application software such as network

support software is started. Another popular run level in Linux is run level 5. This is the run

level where the system starts the graphical X Window software, and allows you to log in using a

graphical desktop window.

The Linux system can control the overall system functionality by controlling the init run level.

By changing the run level from 3 to 5, the system can change from a console-based system to an

advanced, graphical X Window system.

Later on (in Chapter 4) you’ll see how to use the ps command to view the processes currently

running on the Linux system. Here’s an example of what you’ll see using the ps command:

$ ps ax
PID TTY STAT TIME COMMAND

1 ? S 0:03 init
2 ? SW 0:00 [kflushd]
3 ? SW 0:00 [kupdate]
4 ? SW 0:00 [kpiod]
5 ? SW 0:00 [kswapd]

243 ? SW 0:00 [portmap]
295 ? S 0:00 syslogd
305 ? S 0:00 klogd
320 ? S 0:00 /usr/sbin/atd
335 ? S 0:00 crond
350 ? S 0:00 inetd
365 ? SW 0:00 [lpd]
403 ttyS0 S 0:00 gpm -t ms
418 ? S 0:00 httpd
423 ? S 0:00 httpd
424 ? SW 0:00 [httpd]
425 ? SW 0:00 [httpd]
426 ? SW 0:00 [httpd]
427 ? SW 0:00 [httpd]
428 ? SW 0:00 [httpd]
429 ? SW 0:00 [httpd]
430 ? SW 0:00 [httpd]

8

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

436 ? SW 0:00 [httpd]
437 ? SW 0:00 [httpd]
438 ? SW 0:00 [httpd]
470 ? S 0:02 xfs -port -1
485 ? SW 0:00 [smbd]
495 ? S 0:00 nmbd -D
533 ? SW 0:00 [postmaster]
538 tty1 SW 0:00 [mingetty]
539 tty2 SW 0:00 [mingetty]
540 tty3 SW 0:00 [mingetty]
541 tty4 SW 0:00 [mingetty]
542 tty5 SW 0:00 [mingetty]
543 tty6 SW 0:00 [mingetty]
544 ? SW 0:00 [prefdm]
549 ? SW 0:00 [prefdm]
559 ? S 0:02 [kwm]
585 ? S 0:06 kikbd
594 ? S 0:00 kwmsound
595 ? S 0:03 kpanel
596 ? S 0:02 kfm
597 ? S 0:00 krootwm
598 ? S 0:01 kbgndwm
611 ? S 0:00 kcmlaptop -daemon
666 ? S 0:00 /usr/libexec/postfix/master
668 ? S 0:00 qmgr -l -t fifo -u
787 ? S 0:00 pickup -l -t fifo
790 ? S 0:00 telnetd: 192.168.1.2 [vt100]
791 pts/0 S 0:00 login -- rich
792 pts/0 S 0:00 -bash
805 pts/0 R 0:00 ps ax

$

The first column in the output shows the process ID (or PID) of the process. Notice that the first

process is our friend the init process, and assigned PID 1 by the Linux system. All other processes

that start after the init process are assigned PIDs in numerical order. No two processes can have

the same PID.

The third column shows the current status of the process (S for sleeping, SW for sleeping and

waiting, and R for running). The process name is shown in the last column. Processes that are

in brackets are processes that have been swapped out of memory to the disk swap space due

to inactivity. You can see that some of the processes have been swapped out, but most of the

running processes have not.

Hardware management

Still another responsibility for the kernel is hardware management. Any device that the Linux

system must communicate with needs driver code inserted inside the kernel code. The driver

code allows the kernel to pass data back and forth to the device, acting as a middle man between

9

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

applications and the hardware. There are two methods used for inserting device driver code in

the Linux kernel:

■ Drivers compiled in the kernel

■ Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time you

added a new device to the system, you had to recompile the kernel code. This process became

even more inefficient as Linux kernels supported more hardware. Fortunately, Linux developers

devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver code into a

running kernel without having to recompile the kernel. Also, a kernel module could be removed

from the kernel when the device was finished being used. This greatly simplified and expanded

using hardware with Linux.

The Linux system identifies hardware devices as special files, called device files. There are three

different classifications of device files:

■ Character

■ Block

■ Network

Character device files are for devices that can only handle data one character at a time. Most types

of modems and terminals are created as character files. Block files are for devices that can handle

data in large blocks at a time, such as disk drives.

The network file types are used for devices that use packets to send and receive data. This

includes network cards and a special loopback device that allows the Linux system to communi-

cate with itself using common network programming protocols.

Linux creates special files, called nodes, for each device on the system. All communication with

the device is performed through the device node. Each node has a unique number pair that identi-

fies it to the Linux kernel. The number pair includes a major and a minor device number. Similar

devices are grouped into the same major device number. The minor device number is used to

identify a specific device within the major device group. This is an example of a few device files

on a Linux server:

$ ls -al sda* ttyS*
brw-rw---- 1 root disk 8, 0 May 5 2006 sda
brw-rw---- 1 root disk 8, 1 May 5 2006 sda1
brw-rw---- 1 root disk 8, 10 May 5 2006 sda10
brw-rw---- 1 root disk 8, 11 May 5 2006 sda11
brw-rw---- 1 root disk 8, 12 May 5 2006 sda12
brw-rw---- 1 root disk 8, 13 May 5 2006 sda13

10

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

brw-rw---- 1 root disk 8, 14 May 5 2006 sda14
brw-rw---- 1 root disk 8, 15 May 5 2006 sda15
brw-rw---- 1 root disk 8, 2 May 5 2006 sda2
brw-rw---- 1 root disk 8, 3 May 5 2006 sda3
brw-rw---- 1 root disk 8, 4 May 5 2006 sda4
brw-rw---- 1 root disk 8, 5 May 5 2006 sda5
brw-rw---- 1 root disk 8, 6 May 5 2006 sda6
brw-rw---- 1 root disk 8, 7 May 5 2006 sda7
brw-rw---- 1 root disk 8, 8 May 5 2006 sda8
brw-rw---- 1 root disk 8, 9 May 5 2006 sda9
crw------- 1 root tty 4, 64 Jun 29 16:09 ttyS0
crw------- 1 root tty 4, 65 May 5 2006 ttyS1
crw------- 1 root tty 4, 66 May 5 2006 ttyS2
crw------- 1 root tty 4, 67 May 5 2006 ttyS3

$

Different Linux distributions handle devices using different device names. In this distribution,

the sda device is the first SCSI hard drive, and the ttyS devices are the standard IBM PC COM

ports. The listing shows all of the sda devices that were created on the sample Linux system.

Not all are actually used, but they are created in case the administrator needs them. Similarly, the

listing shows all of the ttyS devices created.

The fifth column is the major device node number. Notice that all of the sda devices have the

same major device node, 8, while all of the ttyS devices use 4. The sixth column is the minor

device node number. Each device within a major number has its own unique minor device node

number.

The first column indicates the permissions for the device file. The first character of the permis-

sions indicates the type of file. Notice that the SCSI hard drive files are all marked as block (b)

device, while the COM port device files are marked as character (c) devices.

Filesystem management

Unlike some other operating systems, the Linux kernel can support different types of filesystems

to read and write data to and from hard drives. Besides having over a dozen filesystems of its

own, Linux can read and write to and from filesystems used by other operating systems, such as

Microsoft Windows. The kernel must be compiled with support for all types of filesystems that

the system will use. Table 1-1 lists the standard filesystems that a Linux system can use to read

and write data.

Any hard drive that a Linux server accesses must be formatted using one of the filesystem types

listed in Table 1-1.

The Linux kernel interfaces with each filesystem using the Virtual File System (VFS). This

provides a standard interface for the kernel to communicate with any type of filesystem. VFS

caches information in memory as each filesystem is mounted and used.

11

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 1-1

Linux Filesystems

Filesystem Description

ext Linux Extended filesystem — the original Linux filesystem

ext2 Second extended filesystem, provided advanced features over ext

ext3 Third extended filesystem, supports journaling

hpfs OS/2 high-performance filesystem

jfs IBM’s journaling file system

iso9660 ISO 9660 filesystem (CD-ROMs)

minix MINIX filesystem

msdos Microsoft FAT16

ncp Netware filesystem

nfs Network File System

ntfs Support for Microsoft NT filesystem

proc Access to system information

ReiserFS Advanced Linux file system for better performance and disk recovery

smb Samba SMB filesystem for network access

sysv Older Unix filesystem

ufs BSD filesystem

umsdos Unix-like filesystem that resides on top of MSDOS

vfat Windows 95 filesystem (FAT32)

XFS High-performance 64-bit journaling filesystem

The GNU utilities
Besides having a kernel to control hardware devices, a computer operating system needs utilities

to perform standard functions, such as controlling files and programs. While Linus created the

Linux system kernel, he had no system utilities to run on it. Fortunately for him, at the same

time he was working, a group of people were working together on the Internet trying to develop

a standard set of computer system utilities that mimicked the popular Unix operating system.

The GNU organization (GNU stands for GNU’s Not Unix) developed a complete set of Unix

utilities, but had no kernel system to run them on. These utilities were developed under a soft-

ware philosophy called open source software (OSS).

12

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

The concept of OSS allows programmers to develop software and then release it to the world with

no licensing fees attached. Anyone can use the software, modify it, or incorporate it into his or

her own system without having to pay a license fee. Uniting Linus’s Linux kernel with the GNU

operating system utilities created a complete, functional, free operating system.

While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will see

some Linux purists on the Internet refer to it as the GNU/Linux system to give credit to the GNU

organization for its contributions to the cause.

The core GNU utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like envi-

ronment available. This focus resulted in the project porting many common Unix system com-

mand line utilities. The core bundle of utilities supplied for Linux systems is called the coreutils
package.

The GNU coreutils package consists of three parts:

■ Utilities for handling files

■ Utilities for manipulating text

■ Utilities for managing processes

These three main groups of utilities each contain several utility programs that are invaluable to

the Linux system administrator and programmer. This book covers each of the utilities contained

in the GNU coreutils package in detail.

The shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start programs,

manage files on the filesystem, and manage processes running on the Linux system. The core

of the shell is the command prompt. The command prompt is the interactive part of the shell.

It allows you to enter text commands, interprets the commands, then executes the commands in

the kernel.

The shell contains a set of internal commands that you use to control things such as copying

files, moving files, renaming files, displaying the programs currently running on the system, and

stopping programs running on the system. Besides the internal commands, the shell also allows

you to enter the name of a program at the command prompt. The shell passes the program name

off to the kernel to start it.

There are quite a few Linux shells available to use on a Linux system. Different shells have dif-

ferent characteristics, some being more useful for creating scripts and some being more useful for

managing processes. The default shell used in all Linux distributions is the bash shell. The bash

shell was developed by the GNU project as a replacement for the standard Unix shell, called the

Bourne shell (after its creator). The bash shell name is a play on this wording, referred to as

the ‘‘Bourne again shell’’.

13

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 1-2

Linux Shells

Shell Description

ash A simple, lightweight shell that runs in low-memory environments but has full
compatibility with the bash shell

korn A programming shell compatible with the Bourne shell but supporting advanced
programming features like associative arrays and floating-point arithmetic

tcsh A shell that incorporates elements from the C programming language into shell scripts

zsh An advanced shell that incorporates features from bash, tcsh, and korn, providing
advanced programming features, shared history files, and themed prompts

Besides the bash shell we will cover several other popular shells in this book. Table 1-2 lists the

different shells we will examine.

Most Linux distributions include more than one shell, although usually they pick one of them
to be the default. If your Linux distribution includes multiple shells, feel free to experiment with

different shells and see which one fits your needs.

The Linux desktop environment
In the early days of Linux (the early 1990s) all that was available was a simple text interface to
the Linux operating system. This text interface allowed administrators to start programs, control

program operations, and move files around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text
interface to work with. This spurred more development in the OSS community, and the Linux
graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this more
relevant than in graphical desktops. There are a plethora of graphical desktops you can choose
from in Linux. The following sections describe a few of the more popular ones.

The X Windows system

There are two basic elements that control your video environment — the video card in your PC
and your monitor. To display fancy graphics on your computer, the Linux software needs to
know how to talk to both of them. The X Windows software is the core element in presenting
graphics.

The X Windows software is a low-level program that works directly with the video card and
monitor in the PC, and controls how Linux applications can present fancy windows and graphics
on your computer.

14

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

Linux isn’t the only operating system that uses X Windows; there are versions written for many

different operating systems. In the Linux world, there are only two software packages that can

implement it.

The XFree86 software package is the older of the two, and for a long time was the only

X Windows package available for Linux. As its name implies, it’s a free open source version of

the X Windows software.

Recently, a new package called X.org has come onto the Linux scene. It too provides an open

source software implementation of the X Windows system. It is becoming increasingly popular,

with many Linux distributions starting to use it instead of the older XFree86 system.

Both packages work the same way, controlling how Linux uses your video card to display con-

tent on your monitor. To do that, they have to be configured for your specific system. That is

supposed to happen automatically when you install Linux.

When you first install a Linux distribution, it attempts to detect your video card and monitor

and then creates an X Windows configuration file that contains the required information. During

installation you may notice a time when the installation program scans your monitor for sup-

ported video modes. Sometimes this causes your monitor to go blank for a few seconds. Because

there are lots of different types of video cards and monitors out there, this process can take a little

while to complete.

This is where many of the customized Linux distributions can be lifesavers. Most of them take

great effort to automatically detect video hardware and settings without asking you any technical

questions.

Unfortunately, sometimes the installation can’t autodetect what video settings to use, especially

with some of the newer, more complicated video cards. Unfortunately, some Linux distributions

will fail to install if they can’t find your specific video card settings. Others will ask a few ques-

tions during installation to help manually gather the necessary information. Still others default

to the lowest common denominator and produce a screen image that is not customized for your

video environment.

To complicate matters more, many PC users have fancy video cards, such as 3-D accelerator cards,

so they can play high-resolution games. In the past, this caused a lot of problems if you tried to

install Linux. But lately, video card companies are helping to solve this problem by providing

Linux drivers. And many of the customized Linux distributions now include drivers for specialty

video cards.

The core X Windows software produces a graphical display environment, but nothing else. While

this is fine for running individual applications, it is not too useful for day-to-day computer use.

There is no desktop environment allowing users to manipulate files or launch programs. To do

that, you need a desktop environment on top of the X Windows system software.

15

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The KDE desktop

The K Desktop Environment (KDE) was first released in 1996 as an open source project to
produce a graphical desktop similar to the Microsoft Windows environment. The KDE desk-
top incorporates all of the features you are probably familiar with if you are a Windows user.
Figure 1-3 shows a sample KDE desktop running on Linux.

The KDE desktop allows you to place both application and file icons on the desktop area. If you
single-click an application icon, the Linux system starts the application. If you single-click on a
file icon, the KDE desktop attempts to determine what application to start to handle the file.

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:

■ The K menu: Similarly to the Windows Start menu, the K menu contains links to start
installed applications.

■ Program shortcuts: These are quick links to start applications directly from the Panel.

■ The taskbar: The taskbar shows icons for applications currently running on the
desktop.

■ Applets: These are small applications that have an icon in the Panel that often can
change depending on information from the application.

FIGURE 1-3

The KDE desktop on a SimplyMEPIS Linux system

16

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

TABLE 1-3

KDE Applications

Application Description

amaroK Audio file player

digiKam Digital camera software

K3b CD-burning software

Kaffeine Video player

Kmail E-mail client

Koffice Office applications suite

Konqueror File and Web browser

Kontact Personal information manager

Kopete Instant messaging client

All of the Panel features are similar to what you would find in Windows. Besides the desktop
features, the KDE project has produced a wide assortment of applications that run in the KDE
environment. These applications are shown in Table 1-3. (You may notice the trend of using a
capital K in KDE application names.)

This is only a partial list of applications produced by the KDE project. There are lots more appli-
cations that are included with the KDE desktop.

The GNOME desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop envi-
ronment. First released in 1999, GNOME has become the default desktop environment for many
Linux distributions (the most popular being Red Hat Linux).

While GNOME chose to depart from the standard Microsoft Windows look-and-feel, it incorpo-
rates many features that most Windows users are comfortable with:

■ A desktop area for icons

■ Two panel areas

■ Drag-and-drop capabilities

Figure 1-4 shows the standard GNOME desktop used in the Fedora Linux distribution.

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical appli-
cations that integrate with the GNOME desktop. These are shown in Table 1-4.

As you can see, there are also quite a few applications available for the GNOME desktop. Besides
all of these applications, most Linux distributions that use the GNOME desktop also incorporate
the KDE libraries, allowing you to run KDE applications on your GNOME desktop.

17

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 1-4

A GNOME desktop on a Fedora Linux system

Other desktops

The downside to a graphical desktop environment is that they require a fair amount of system

resources to operate properly. In the early days of Linux, a hallmark and selling feature of Linux

was its ability to operate on older, less powerful PCs that the newer Microsoft desktop products

couldn’t run on. However, with the popularity of KDE and GNOME desktops, this hallmark

has changed, as it takes just as much memory to run a KDE or GNOME desktop as the latest

Microsoft desktop environment.

If you have an older PC, don’t be discouraged. The Linux developers have banded together to

take Linux back to its roots. They’ve created several low-memory-oriented graphical desktop

applications that provide basic features that run perfectly fine on older PCs.

While these graphical desktops don’t have a plethora of applications designed around them, they

still run many basic graphical applications that support features such as word processing, spread-

sheets, databases, drawing, and, of course, multimedia support.

18

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

TABLE 1-4

GNOME Applications

Application Description

epiphany Web browser

evince Document viewer

gcalc-tool Calculator

gedit GNOME text editor

gnome-panel Desktop panel for launching applications

gnome-nettool Network diagnostics tool

gnome-terminal Terminal emulator

nautilus Graphical file manager

nautilus-cd-burner CD-burning tool

sound juicer Audio CD–ripping tool

tomboy Note-taking software

totem Multimedia player

TABLE 1-5

Other Linux Graphical Desktops

Desktop Description

fluxbox A bare-bones desktop that doesn’t include a Panel, only a pop-up menu to
launch applications

xfce A desktop that’s similar to the KDE desktop, but with less graphics for
low-memory environments

fvwm Supports some advanced desktop features such as virtual desktops and Panels,
but runs in low-memory environments

fvwm95 Derived from fvwm, but made to look like a Windows 95 desktop

Table 1-5 shows some of the smaller Linux graphical desktop environments that can be used on
lower-powered PCs and laptops.

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but

they provide basic graphical functionality just fine. Figure 1-5 shows what the fluxbox desktop
used in the SimplyMEPIS antiX distribution looks like.

19

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 1-5

The fluxbox desktop as seen in the SimplyMEPIS antiX distribution

If you are using an older PC, try a Linux distribution that uses one of these desktops and see
what happens. You may be pleasantly surprised.

Linux Distributions
Now that you have seen the four main components required for a complete Linux system, you
may be wondering how you are going to get them all put together to make a Linux system. For-
tunately, there are people who have already done that for us.

A complete Linux system package is called a distribution. There are lots of different Linux distribu-
tions available to meet just about any computing requirement you could have. Most distributions
are customized for a specific user group, such as business users, multimedia enthusiasts, software
developers, or normal home users. Each customized distribution includes the software packages

required to support specialized functions, such as audio- and video-editing software for multi-
media enthusiasts, or compilers and integrated development environments (IDEs) for software
developers.

20

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

The different Linux distributions are often divided into three categories:

■ Full core Linux distributions

■ Specialized distributions

■ LiveCD test distributions

The following sections describe these different types of Linux distributions, and show some
examples of Linux distributions in each category.

Core Linux distributions
A core Linux distribution contains a kernel, one or more graphical desktop environments, and just
about every Linux application that is available, precompiled for the kernel. It provides one-stop
shopping for a complete Linux installation. Table 1-6 shows some of the more popular core Linux
distributions.

In the early days of Linux, a distribution was released as a set of floppy disks. You had to down-
load groups of files and then copy them onto disks. It would usually take 20 or more disks to
make an entire distribution! Needless to say, this was a painful experience.

Nowadays, with home computers commonly having CD and DVD players built in, Linux
distributions are released as either a CD set or a single DVD. This makes installing Linux
much easier.

However, beginners still often run into problems when they install one of the core Linux distri-
butions. To cover just about any situation in which someone might want to use Linux, a single
distribution has to include lots of application software. They include everything from high-end
Internet database servers to common games. Because of the quantity of applications available for
Linux, a complete distribution often takes four or more CDs.

TABLE 1-6

Core Linux Distributions

Distribution Description

Slackware One of the original Linux distribution sets, popular with Linux geeks

Red Hat A commercial business distribution used mainly for Internet servers

Fedora A spin-off from Red Hat but designed for home use

Gentoo A distribution designed for advanced Linux users, containing only Linux
source code

Mandriva Designed mainly for home use (previously called Mandrake)

openSuSe Different distributions for business and home use (now owned by Novell)

Debian Popular with Linux experts and commercial Linux products

21

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

While having lots of options available in a distribution is great for Linux geeks, it can become a

nightmare for beginning Linux users. Most distributions ask a series of questions during the instal-

lation process to determine which applications to load by default, what hardware is connected to

the PC, and how to configure the hardware. Beginners often find these questions confusing. As
a result, they often either load way too many programs on their computer or don’t load enough

and later discover that their computer won’t do what they want it to.

Fortunately for beginners, there’s a much simpler way to install Linux.

Specialized Linux distributions
A new subgroup of Linux distributions has started to appear. These are typically based on one

of the main distributions but contain only a subset of applications that would make sense for a
specific area of use.

Besides providing specialized software (such as only office products for business users), cus-

tomized Linux distributions also attempt to help beginning Linux users by autodetecting and

autoconfiguring common hardware devices. This makes installing Linux a much more enjoyable
process.

Table 1-7 shows some of the specialized Linux distributions available and what they specialize in.

That’s just a small sampling of specialized Linux distributions. There are literally hundreds of

specialized Linux distributions, and more are popping up all the time on the Internet. No matter

what your specialty, you’ll probably find a Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution. They
use the same installation files as Debian but package only a small fraction of a full-blown Debian

system.

TABLE 1-7

Specialized Linux Distributions

Distribution Description

Linspire A commercial Linux package configured to look like Windows

Xandros A commercial Linux package configured for beginners

SimplyMEPIS A free distribution for home use

Ubuntu A free distribution for school and home use

PCLinuxOS A free distribution for home and office use

dyne:bolic A free distribution designed for audio and MIDI applications

Puppy Linux A free small distribution that runs well on older PCs

22

www.IrPDF.com

www.IrPDF.com

Starting with Linux Shells 1

TABLE 1-8

Linux LiveCD Distributions

Distribution Description

Knoppix A German Linux, the first Linux LiveCD developed

SimplyMEPIS Designed for beginning home Linux users

PCLinuxOS Full-blown Linux distribution on a LiveCD

Ubuntu A worldwide Linux project, designed for many languages

Slax A live Linux CD based on Slackware Linux

Puppy Linux A full-featured Linux designed for older PCs

The Linux LiveCD
A relatively new phenomenon in the Linux world is the bootable Linux CD distribution. This
lets you see what a Linux system is like without actually installing it. Most modern PCs can boot
from a CD instead of the standard hard drive. To take advantage of this, some Linux distributions
create a bootable CD that contains a sample Linux system (called a Linux LiveCD). Because of the
limitations of the single CD size, the sample can’t contain a complete Linux system, but you’d be
surprised at all the software they can cram in there. The result is that you can boot your PC from
the CD and run a Linux distribution without having to install anything on your hard drive!

This is an excellent way to test various Linux distributions without having to mess with your PC.
Just pop in a CD and boot! All of the Linux software will run directly off the CD. There are lots
of Linux LiveCDs that you can download from the Internet and burn onto a CD to test drive.

Table 1-8 shows some popular Linux LiveCDs that are available.

You may notice a familiarity in this table. Many specialized Linux distributions also have a Linux
LiveCD version. Some Linux LiveCD distributions, such as Ubuntu, allow you to install the
Linux distribution directly from the LiveCD. This enables you to boot with the CD, test drive
the Linux distribution, and then if you like it, install it on your hard drive. This feature is
extremely handy and user-friendly.

As with all good things, Linux LiveCDs have a few drawbacks. Since you access everything from
the CD, applications run more slowly, especially if you’re using older, slower computers and CD
drives. Also, since you can’t write to the CD, any changes you make to the Linux system will be
gone the next time you reboot.

But there are advances being made in the Linux LiveCD world that help to solve some of these
problems. These advances include the ability to:

■ Copy Linux system files from the CD to memory

■ Copy system files to a file on the hard drive

23

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

■ Store system settings on a USB memory stick

■ Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux

system files and copy them directly into memory when the CD boots. This allows you to remove

the CD from the computer as soon as Linux boots. Not only does this make your applications

run much faster (since applications run faster from memory), but it also gives you a free CD tray

to use for ripping audio CDs or playing video DVDs from the software included in Puppy Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from the tray

after booting. It involves copying the core Linux files onto the Windows hard drive as a single

file. After the CD boots, it looks for that file and reads the system files from it. The dyne:bolic

Linux LiveCD uses this technique, which is called docking. Of course, you must copy the system

file to your hard drive before you can boot from the CD.

A very popular technique for storing data from a live Linux CD session is to use a common USB
memory stick (also called a flash drive and a thumb drive). Just about every Linux LiveCD can

recognize a plugged-in USB memory stick (even if the stick is formatted for Windows) and read

and write files to and from it. This allows you to boot a Linux LiveCD, use the Linux applications

to create files, store them on your memory stick, and then access them from your Windows

applications later (or from a different computer). How cool is that?

Summary
This chapter discussed where the Linux system came from and how it works. The Linux kernel is

the core of the system, controlling how memory, programs, and hardware all interact with each

other. The GNU utilities are also an important piece in the Linux system. The Linux shell, which

is the main focus of this book, is part of the GNU core utilities. The chapter also discussed the

final piece of a Linux system, the Linux desktop environment. Things have changed over the

years, and Linux now supports several graphical desktop environments.

Next, the chapter talked about the various Linux distributions. A Linux distribution bundles

the various parts of a Linux system into a simple package that you can easily install on

your PC. The Linux distribution world consists of full-blown Linux distributions that include just

about every application imaginable, as well as specialized Linux distributions that only include

applications focused on a special function. The Linux LiveCD craze has created another group of

Linux distributions that allow you to easily test drive Linux without even having to install it on

your hard drive.

In the next chapter, we’ll look at what we need to start our command line and shell scripting

experience. You’ll see what you need to do to get to the Linux shell utility from your fancy

graphical desktop environment. These days that’s not always an easy thing.

24

www.IrPDF.com

www.IrPDF.com

Getting to the Shell

IN THIS CHAPTER

Discussing terminal emulation

Examining the terminfo file

Looking at xterm

Exploring Konsole

Playing with GNOME Terminal

I
n the old days of Linux, all that was available to work with was the

shell. System administrators, programmers, and system users all sat at
the Linux console terminal entering text commands, and viewing text

output. These days, with our fancy graphical desktop environments, it’s

getting harder just to find a shell prompt on the system to work from. This
chapter discusses what is required to provide a command line environment,

then walks you through the terminal emulation packages you may run into

in the various Linux distributions.

Terminal Emulation

Back before the days of graphical desktops, the only way to interact with

a Unix system was through a text command line interface (CLI) provided by

the shell. The CLI allowed text input only, and could only display text and
rudimentary graphics output.

Because of this restriction, output devices did not have to be very fancy.

Often a simple dumb terminal was all that was required to interact with the
Unix system. A dumb terminal was usually nothing more than a monitor

and keyboard (although later on in life they started getting fancier by uti-

lizing a mouse) connected to the Unix system via a communication cable
(usually a multi-wire serial cable). This simple combination provided an

easy way to enter text data into the Unix system and view text results.

As you well know, things are significantly different in today’s Linux envi-

ronment. Just about every Linux distribution uses some type of graphical
desktop environment. However, to access the shell you still need a text

25

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

display to interact with a CLI. The problem now is getting to one. With all of the new graphical
Linux desktop features, sometimes finding a way to get a CLI in a Linux distribution is not an
easy task.

One way to get to a CLI is to take the Linux system out of graphical desktop mode and place it
in text mode. This provides nothing more than a simple shell CLI on the monitor, just like the
days before graphical desktops. This mode is called the Linux console, since it emulates the old
days of a hard-wired console terminal, and is a direct interface to the Linux system.

The alternative to being in the Linux console is to use a terminal emulation package from within
the graphical Linux desktop environment. A terminal emulation package simulates working on a
dumb terminal, all within a graphical window on the desktop. Figure 2-1 shows an example of
a terminal emulator running in a graphical Linux desktop environment.

Each terminal emulation package has the ability to emulate one or more specific types of dumb
terminal. If you’re going to work with the shell in Linux, unfortunately you’ll need to know a
little bit about terminal emulation.

Knowing the core features of the old dumb terminals will help you decide which emulation type
to select when you’re using a graphical terminal emulator, and use all of the available features
to their full capabilities. The main features used in the dumb terminal can be broken down into
two areas: the graphics capabilities and the keyboard. This section describes these features and
discusses how they relate to the different types of terminal emulators.

FIGURE 2-1

A simple terminal emulator running on a Linux desktop

26

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

Graphics capabilities
The most important part of terminal emulation is how it displays information on the monitor.
When you hear the phrase ‘‘text mode,’’ the last thing you’d think to worry about is graphics.
However, even the most rudimentary dumb terminals supported some method of screen manipu-
lation (such as clearing the screen and displaying text at a specific location on the screen).

This section describes the graphics features that make each of the different terminal types unique,
and what to look for in the terminal emulation packages.

Character sets

All terminals must display characters on the screen (otherwise, text mode would be pretty use-
less). The trick is in what characters to display, and what codes the Linux system needs to send to
display them. A character set is a set of binary commands that the Linux system sends to a mon-
itor to display characters. There are several character sets that are supported by various terminal
emulation packages:

■ ASCII The American Standard Code for Information Interchange. This character set
contains the English characters stored using a 7-bit code, and consists of 128 English
letters (both upper and lower case), numbers, and special symbols. This character set
was adopted by the American National Standards Institute (ANSI) as US-ASCII. You
will often see it referred to in terminal emulators as the ANSI character set.

■ ISO-8859-1 (commonly called Latin-1) An extension of the ASCII character set devel-
oped by the International Organization for Standardization (ISO). It uses an 8-bit code to
support the standard ASCII characters as well as special foreign language characters
for most Western European languages. The Latin-1 character set is popular in multina-
tional terminal emulation packages.

■ ISO-8859-2 ISO character set that supports Eastern European language characters.

■ ISO-8859-6 ISO character set that supports Arabic language characters.

■ ISO-8859-7 ISO character set that supports Greek language characters.

■ ISO-8859-8 ISO character set that supports Hebrew language characters.

■ ISO-10646 (commonly called Unicode) ISO 2-byte character set that contains codes
for most English and non-English languages. This single character set contains all of the
codes defined in all of the ISO-8859-x series of character sets. The Unicode character set
is quickly becoming popular among open source applications.

By far the most common character set in use today in English-speaking countries is the Latin-1
character set. The Unicode character set is becoming more popular, and may very well one day
become the new standard in character sets. Most popular terminal emulators allow you to select
which character set to use in the terminal emulation.

Control codes

Besides being able to display characters, terminals must have the ability to control special
features on the monitor and keyboard, such as the cursor location on the screen. They

27

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

accomplish this using a system of control codes. A control code is a special code not used in

the character set, which signals the terminal to perform a special, nonprintable operation.

Common control code functions are the carriage return (return the cursor to the beginning of the

line), line feed (put the cursor on the next horizontal row), horizontal tab (shift the cursor over
a preset number of spaces), arrow keys (up, down, left, and right), and the page up/page down

keys. While these codes mainly emulate features that control where the cursor is placed on the
monitor, there are also several other codes, such as clearing the entire screen, and even a bell ring

(emulating the old typewriter end-of-carriage bell).

Control codes were also used in controlling the communication features of dumb terminals.

Dumb terminals were connected to the computer system via some type of communication chan-
nel, often a serial communication cable. Sometimes data needed to be controlled on the com-

munication channel, so developers devised special control codes just for data communication
purposes. While these codes aren’t necessarily required in modern terminal emulators, most

support these codes to maintain compatibility. The most common codes in this category are the
XON and XOFF codes, which start and stop data transmission to the terminal, respectively.

Block mode graphics

As dumb terminals became more popular, manufacturers started experimenting with rudimentary

graphics capabilities. By far the most popular type of ‘‘graphical’’ dumb terminal used in the
Unix world was the DEC VT series of terminals. The turning point for dumb terminals came with

the release of the DEC VT100 in 1978. The DEC VT100 terminal was the first terminal to support
the complete ANSI character set, including block mode graphic characters.

The ANSI character set contains codes that not only allowed monitors to display text but also
rudimentary graphics symbols, such as boxes, lines, and blocks. By far one of the most popular

dumb terminals used in Unix operations during the 1980s was the VT102, an upgraded version
of the VT100. Most terminal emulation programs emulate the operation of the VT102 display,

supporting all of the ANSI codes for creating block mode graphics.

Vector graphics

The Tektronix company produced a popular series of terminals that used a display method called
vector graphics. Vector graphics deviated from the DEC method of block mode graphics by mak-

ing all screen images (including characters) a series of line segments (vectors). The Tektronix
4010 terminal was the most popular graphical dumb terminal produced. Many terminal

emulation packages still emulate its capabilities.

The 4010 terminal displays images by drawing a series of vectors using an electron beam, much

like drawing with a pencil. Since vector graphics doesn’t use dots to create lines, it has the ability
to draw geometric shapes using higher precision than most dot-oriented graphics terminals. This

was a popular feature among mathematicians and scientists.

Terminal emulators use software to emulate the vector graphics drawing capabilities of

the Tektronix 4010 terminals. This is still a popular feature for people who need precise

28

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

graphical drawings, or those who still run applications that used the vector graphics routines to
draw complicated charts and diagrams.

Display buffering

A key to graphics displays is the ability of the terminal to buffer data. Buffering data requires
having additional internal memory within the terminal itself to store characters not currently
being displayed on the monitor.

The DEC VT series of terminals utilized two types of data buffering:

■ Buffering data as it scrolled off of the main display window (called a history)

■ Buffering a completely separate display window (called an alternate screen)

The first type of buffering is known as a scroll region. The scroll region is the amount of memory
the terminal has that enables it to ‘‘remember’’ data as it scrolls off of the screen. A standard DEC
VT102 terminal contained a viewing area for 25 lines of characters. As the terminal displays a new
line of characters, the previous line is scrolled upward. When the terminal reaches the bottom line
of the display, the next line causes the top line to scroll off the display.

The internal memory in the VT102 terminal allowed it to save the last 64 lines that had scrolled
off of the display. Users had the ability to lock the current screen display and use arrow keys to
scroll backward through the previous lines that had ‘‘scrolled off’’ of the display. Terminal
emulation packages allow you to use either a side scrollbar or a mouse scroll button to scroll
through the saved data without having to lock the display. Of course, for full emulation compat-
ibility, most terminal emulation packages also allow you to lock the display and use arrow and
page up/page down to scroll through the saved data.

The second type of buffering is known as an alternative screen. Normally, the terminal writes
data directly to the normal display area on the monitor. A method was developed to crudely
implement animation by using two screen areas to store data. Control codes were used to signal
the terminal to write data to the alternative screen instead of the current display screen. That
data was held in memory. Another control code would signal the terminal to switch the monitor
display between the normal screen data and the data contained in the alternative screen almost
instantaneously. By storing successive data pages in the alternative screen area, then displaying it,
you could crudely simulate moving graphics.

Terminals that emulate the VT00 series of terminals have the ability to support the alternative
screen method.

Color

Even back in the black-and-white (or green) dumb terminal days, programmers were experiment-
ing with different ways to present data. Most terminals supported special control codes to produce
the following types of special text:

■ Bold characters

■ Underline characters

29

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

■ Reverse video (black characters on white background)

■ Blinking

■ Combinations of all of the above features

Back in the old days, if you wanted to get someone’s attention, you used bold, blinking, reverse

video text. Now there’s something that could hurt your eyes!

As color terminals became available, programmers added special control codes to display text in

various colors and shades. The ANSI character set includes control codes for specifying specific

colors for both foreground text and the background color displayed on the monitor. Most terminal

emulators support the ANSI color control codes.

The keyboard
There is more to a terminal than just how the monitor operates. If you have ever worked with

different types of dumb terminals, I’m sure you have seen that they often contain different keys

on the keyboard. Trying to emulate specific keys on a specific dumb terminal has proven to be a

difficult task for terminal emulation packages.

It was impossible for the creators of the PC keyboard to include keys for every possible type

of special key found in dumb terminals. Some PC manufacturers experimented with including

special keys for special functions, but eventually the PC keyboard keys became somewhat stan-

dardized.

For a terminal emulation package to completely emulate a specific type of dumb terminal, it must

remap any dumb terminal keys that don’t appear on the PC keyboard. This remapping feature

can often become confusing, especially when different systems use different control codes for the

same key.

Some common special keys you’ll see in terminal emulation packages are:

■ BREAK: Sends a stream of zeroes to the host. This is often used to interrupt the

currently executing program in the shell.

■ SCROLL LOCK: Also called no scroll, this stops the output on the display. Some

terminals included memory to hold the contents of the display so the user could scroll

backward through previously viewed information while the scroll lock was enabled.

■ Repeat: When held down with another key, this caused the terminal to repeatedly send

the other key’s value to the host.

■ Return: Commonly used to send a carriage return character to the host. Most often used

to signify the end of a command for the host to process (now called Enter on PC

keyboards).

■ Delete: While basically a simple feature, the Delete key causes grief for terminal emula-

tion packages. Some terminals delete the character at the current cursor location, while

30

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

others delete the preceding character. To resolve this dilemma, PC keyboards include

two delete keys, Backspace and Delete.

■ Arrow keys: Commonly used to position the cursor at a specific place; for example,

when scrolling through a listing.

■ Function keys: A combination of specialty keys that can be assigned unique values in

programs similar to the PC F1 through F12 keys). The DEC VT series of terminals

actually had two sets of function keys, F1 through F20, and PF1 through PF4.

Keyboard emulation is a crucial element in a terminal emulation package. Unfortunately, often

applications are written requiring users to hit specific keys for specific functions. I’ve seen many

a communications package that used the old DEC PF1 through PF4 keys, which are often a hard

thing to find on a terminal emulation keyboard.

The terminfo Database
Now that you have a terminal emulation package that can emulate different types of terminals,

you need a way for the Linux system to know exactly what terminal you’re emulating. The Linux

system needs to know what control codes to use when communicating with the terminal emu-

lator. This is done by using an environment variable (see Chapter 5) and a special set of files

collectively called the terminfo database.

The terminfo database is a set of files that identify the characteristics of various terminals that

can be used on the Linux system. The Linux system stores the terminfo data for each terminal

type as a separate file in the terminfo database directory. The location of this directory often

varies from distribution to distribution. Some common locations are /usr/share/terminfo,

/etc/terminfo, and /lib/terminfo.

To help with organization (often there are lots of different terminfo files), you will see that the

terminfo database directory contains directories for different letters of the alphabet. The individual

files for specific terminals are stored under the appropriate letter directory for their terminal name.

An individual terminfo file is a binary file that is the result of compiling a text file. This text file

contains code words that define screen functions, associated with the control code required to

implement the function on the terminal.

Since the terminfo database files are binary, you cannot see the codes within these files. However,

you can use the infocmp command to convert the binary entries into text. An example of using

this command is:

$ infocmp vt100
Reconstructed via infocmp from file: /lib/terminfo/v/vt100
vt100|vt100-am|dec vt100 (w/advanced video),

am, msgr, xenl, xon,

31

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

cols#80, it#8, lines#24, vt#3,
acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=^G, blink=\E[5m$<2>, bold=\E[1m$<2>,
clear=\E[H\E[J$<50>, cr=^M, csr=\E[%i%p1%d;%p2%dr,
cub=\E[%p1%dD, cub1=^H, cud=\E[%p1%dB, cud1=^J,
cuf=\E[%p1%dC, cuf1=\E[C$<2>,
cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%p1%dA,
cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>, el1=\E[1K$<3>,
enacs=\E(B\E)0, home=\E[H, ht=^I, hts=\EH, ind=^J, ka1=\EOq,
ka3=\EOs, kb2=\EOr, kbs=^H, kc1=\EOp, kc3=\EOn, kcub1=\EOD,
kcud1=\EOB, kcuf1=\EOC, kcuu1=\EOA, kent=\EOM, kf0=\EOy,
kf1=\EOP, kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
rev=\E[7m$<2>, ri=\EM$<5>, rmacs=^O, rmam=\E[?7l,
rmkx=\E[?1l\E>, rmso=\E[m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h,
sc=\E7,
sgr0=\E[m\017$<2>, smacs=^N, smam=\E[?7h, smkx=\E[?1h\E=,
smso=\E[7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

$

The terminfo entry defines the terminal name (in this case vt100), along with any alias names

that can be associated with the terminal name. Notice that the first line shows the location of the

terminfo file the values were extracted from.

Following that, the infocmp command lists the capabilities of the terminal definition, along with

the control codes used to emulate the individual capabilities. Some capabilities are either enabled

or disabled (such as the am, auto-right-margin, feature). If the capability appears in the list, it’s

enabled by the terminal definition. Other capabilities must define a specific control code sequence

to perform the task (such as clearing the monitor display). Table 2-1 shows a list of some of the

capabilities you see in the vt100 terminfo definition file listed.

The Linux shell uses the TERM environment variable to define which terminal emulation setting in

the terminfo database to use for a specific session. When the TERM environment variable is set to

vt100, the shell knows to use the control codes associated with the vt100 terminfo database

entry for sending control codes to the terminal emulator. To see the TERM environment variable,

you can just echo it from the CLI:

$ echo $TERM
xterm
$

This example shows that the current terminal type is set to the xterm entry in the terminfo

database.

32

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

TABLE 2-1

Terminfo Capability Codes

Code Description

am Set right-side auto-margin

msgr Safe to move cursor in standout mode

xenl Newline characters ignored after 80 columns

xon Terminal uses XON/XOFF characters for flow control

cols#80 80 columns in a line

it#8 Tab character set to eight spaces

lines#24 24 lines on a screen

vt#3 Virtual terminal number 3

bel Control code to use to emulate the bell

blink Control code used to produce blinking text

bold Control code used to produce bold text

clear Control code used to clear the screen

cr Control code used to enter a carriage return

csr Control code used to change scroll region

cub Move one character to the left without erasing

cub1 Move cursor back one space

cud Move cursor down one line

cud1 Control code to move cursor down one line

cuf Move one character to the right without erasing

cuf1 Control code to move the cursor right one space without erasing

cup Control code to move to row one, column two on the display

cuu Move cursor up one line

cuu1 Control code to move cursor up one line

ed Clear to the end of the screen

el Clear to the end of the line

el1 Clear to the beginning of the line.

continued

33

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 2-1 (continued)

Code Description

enacs Enable the alternate character set

home Control code to move cursor to the home position — row one, column two
(same as cup)

ht Tab character

hts Set tab in every row at current column

ind Scroll text up

ka1 Upper-left key in keypad

ka3 Upper-right key in keypad

kb2 Center key in keypad

kbs Backspace key

kc1 Lower-left key in keypad

kc3 Lower-right key in keypad

kcub1 The left arrow key

kcud1 Control code for down arrow key

kcuf1 The right arrow key

kcuu1 The up arrow key

kent The Enter key

kf0 The F0 function key

kf1 The F1 function key

kf10 The F10 function key

rc Restore cursor to last saved position

rev Reverse video mode

ri Scroll text down

rmacs End alternate character set

rmam Turn off automatic margins

rmkx Exit keyboard transmit mode

rmso Exit standout mode

rmul Exit underline mode

rs2 Reset

34

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

TABLE 2-1 (continued)

Code Description

sc Save current cursor position

sgr Define video attributes

sgr0 Turn off all attributes

smacs Start alternate character set

smam Turn on automatic margins

smkx Start keyboard transmit mode

smso Begin standout mode

smul Begin underline mode

tbc Clear all tab stops

The Linux Console
In the early days of Linux, when you booted up your system you would see a login prompt on

your monitor, and that’s all. As mentioned earlier, this is called the Linux console. It was the only
place you could enter commands for the system.

With modern Linux systems, when the Linux system starts it automatically creates several virtual
consoles. A virtual console is a terminal session that runs in memory on the Linux system.
Instead of having six dumb terminals connected to the PC, the Linux system starts seven (or

sometimes even more) virtual consoles that you can access from the single PC keyboard and
monitor.

In most Linux distributions, you can access the virtual consoles using a simple keystroke
combination. Usually you must hold down the Ctl+Alt key combination, then press a function

key (F1 through F8) for the virtual console you want to use. Function key F1 produces virtual
console 1, key F2 produces virtual console 2, and so on.

The first six virtual consoles use a full-screen text terminal emulator to display a text login screen,

as shown in Figure 2-2.

After logging in with your user ID and password, you are taken to the Linux bash shell CLI. In

the Linux console you do not have the ability to run any graphical programs. You can only use
text programs to display on the Linux text consoles.

After logging in to a virtual console, you can keep it active and switch to another virtual
console without losing your active session. You can switch between all of the virtual consoles,

with multiple active sessions running.

35

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 2-2

The Linux console login screen

The last two virtual consoles are normally reserved for X Windows graphical desktops. Some dis-
tributions only assign one or the other, so you may have to test both Ctl+Alt+F7 and Ctl+Alt+F8

to see which one your particular distribution uses. Most distributions automatically switch to one

of the graphical virtual consoles after the boot sequence completes, providing a complete graphical

login and desktop experience.

Logging in to a text virtual terminal session then switching over to a graphical one can get tedious.

Fortunately, there’s a better way to jump between graphical and text mode on the Linux system:

terminal emulation packages are a popular way to access the shell CLI from within a graphical

desktop session. The following sections describe the most common software packages that provide

terminal emulation in a graphical window.

The xterm Terminal
The oldest and most basic of X Windows terminal emulation packages is xterm. The xterm pack-

age has been around since the original days of X Windows, and is included by default in most X

Window packages.

The xterm package provides both a basic VT102/220 terminal emulation CLI and a graphical

Tektronix 4014 environment (similar to the 4010 environment). While xterm is a full terminal

emulation package, it doesn’t require many resources (such as memory) to operate. Because of
this feature, the xterm package is still popular in Linux distributions designed to run on older

hardware. Some graphical desktop environments, such as fluxbox, use it as the default terminal

emulation package.

36

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

FIGURE 2-3

The basic xterm display

While not offering many fancy features, the xterm package does one thing extremely well, and

that is emulate a VT220 terminal. The newer versions of xterm even emulate the VT series of

color control codes, allowing you to use color in your scripts (discussed in Chapter 15).

Figure 2-3 shows what the basic xterm display looks like running on a graphical Linux desktop.

The xterm package allows you to set individual features using both command line parameters and

a series of four simple graphical menus. The following sections discuss these features and how to

change them.

Command line parameters
The list of xterm command line parameters is extensive. There are lots of features you can

control to customize the terminal emulation features, such as enabling or disabling individual

VT emulations.

The xterm command line parameters use the plus (+) and minus (-) signs to signify how a feature

is set. A plus sign indicates that the feature should be returned to the default setting. A minus

sign indicates that you are setting the feature to a non-default value. Table 2-2 lists some of the
more common features that you can set using the command line parameters.

37

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 2-2

xterm Command Line Parameters

Parameter Description

132 By default xterm does not allow 132 characters per line mode

ah Always highlight the text cursor

aw Auto-line-wrap is enabled

bc Enables text cursor blinking

bg color Specify the color to use for the background

cm Disables recognition of ANSI color change control codes

fb font Specify the font to use for bold text

fg color Specify the color to use for the foreground text

fn font Specify the font to use for text

fw font Specify the font to use for wide text

hc color Specify the color to use for highlighted text

j Use jump scrolling, scrolling multiple lines at a time

l Enable logging screen data to a log file

lf filename Specify the file name to use for screen logging

mb Ring a margin bell when the cursor reaches the end of a line

ms color Specify the color used for the text cursor

name name Specify the name of the application that appears in the titlebar

rv Enable reverse video by swapping the background and foreground colors

sb Use a side scrollbar to allow scrolling of saved scroll data

t Start xterm in Tektronix mode

tb Specify that xterm should display a toolbar at the top

It is important to note that not all implementations of xterm support all of these command line

parameters. You can determine which parameters your xterm implements by using the -help
parameter when you start xterm on your system.

The xterm main menu
The main xterm menu contains configuration items that apply to both the VT102 and Tektronix
windows. You can access the main menu by holding down the Ctrl key and clicking the mouse

38

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

button once (the left button on a right-hand mouse, the right button on a left-hand mouse) while

in an xterm session window. Figure 2-4 shows what the xterm main menu looks like.

There are four sections in the xterm main menu, as described in the following sections.

X event commands

The X event commands section contains features that allow you to manage how xterm interacts

with the X Window display.

■ Toolbar: If the xterm installation supports the toolbar, this entry enables or disables

displaying the toolbar in the xterm window (the same as the tb command line

parameter).

■ Secure Keyboard: Restricts the keyboard keystrokes to a specific xterm window.

This is useful when typing passwords to ensure they don’t get hijacked by another

window.

■ Allow SendEvents: Allows X Window events generated by other X Window

applications to be accepted by the xterm window.

■ Redraw Window: Instructs X Windows to refresh the xterm window.

FIGURE 2-4

The xterm main menu

39

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Again, all of these features may not be supported by your particular xterm implementation. If

they’re not supported, they’ll appear grayed-out in the menu.

Output capturing

The xterm package allows you to capture data displayed in the window and either log it to

a file or send it to a default printer defined in X Windows. The features that appear in this
section are:

■ Log to file: Sends all data displayed in the xterm window to a text file.

■ Print window: Sends all data displayed in the current window to the default X Window

printer.

■ Redirect to printer: Sends all data displayed in the xterm window to the default X
Window printer as well. This feature must be turned off to stop printing data.

The capturing feature can get messy if you are using graphics characters or control characters
(such as colored text) in your display area. All characters sent to the display, including control

characters, are stored in the log file or sent to the printer.

The xterm print feature assumes that you define a default printer in the X Window system. If you
have no printer defined, the feature will appear grayed out in the menu.

Keyboard settings

The keyboard settings section contains features that allow you to customize how xterm sends

keyboard characters to the host system.

■ 8-bit controls: Sends 8-bit control codes, used in VT220 terminals, rather than 7-bit
ASCII control codes.

■ Backarrow key: Toggles the back arrow key between sending a backspace character or

a delete character.

■ Alt/Numlock Modifiers: Controls whether the Alt or Numlock keys change the PC
numberpad behavior.

■ Alt Sends Escape: The Alt key sends an escape control code along with the other key

pressed.

■ Meta sends Escape: Controls whether the function keys send a two-character control

code, including the escape control code.

■ Delete is DEL: The PC Delete key sends a delete character instead of a backspace
character.

■ Old Function keys: The PC functions keys emulate the DEC VT100 function keys.

■ HP Function keys: The PC function keys emulate the HP terminal function keys.

■ Sun Function keys: The PC function keys emulate the Sun Workstation function keys.

■ VT220 keyboard: The PC function keys emulate the DEC VT220 function keys.

40

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

As you can see, setting keyboard preferences often depends on the specific application and/or

environment you’re working in. There’s also a fair amount of personal preference involved as

well. Often it’s just a matter of what works best for you as to which keyboard settings to make.

The VT options menu
The VT options menu sets features xterm uses in the VT102 emulation. You access the VT options

menu by holding down the Control key and clicking the second mouse button. Normally the

second mouse button is the middle mouse button. If you’re using a two-button mouse, most

Linux X Window configurations emulate the middle mouse button when you click both the left

and right mouse buttons together. Figure 2-5 shows what the VT options menu looks like.

As you can see from Figure 2-5, many of the VT features that you can set from the command line

parameters can also be set from the VT options menu. This produces quite a large list of available

options. The VT options are divided into three sets of commands, described in the following

sections.

FIGURE 2-5

The xterm VT options menu

41

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

VT features

The VT features commands change the features of how xterm implements the VT102/220

emulation. They include:

■ Enable Scrollbar

■ Enable Jump Scrollbar

■ Enable Reverse Video

■ Enable Auto Wraparound

■ Enable Reverse Wraparound

■ Enable Auto Linefeed

■ Enable Application Cursor Keys

■ Enable Application Keypad

■ Scroll to Bottom on Keypress

■ Scroll to Bottom on TTY Output

■ Allow 80/132 Column Switching

■ Select to Clipboard

■ Enable Visual Bell

■ Enable Pop on Bell

■ Enable Margin Bell

■ Enable Blinking Cursor

■ Enable Alternate Screen Switching

■ Enable Active Icon

You can enable or disable each of these features by clicking on the feature in the menu. An

enabled feature will have a checkmark next to it.

VT commands

The VT commands section sends a specific reset command to the xterm emulation window. They

include:

■ Do Soft Reset

■ Do Full Reset

■ Reset and Clear Saved Lines

The soft reset sends a control code to reset the screen area. This is convenient if a program sets

the scroll region incorrectly. The full reset clears the screen, resets any set tab positions, and resets

any terminal mode feature set during the session to the initial state. The Reset and Clear Saved
Lines command performs a full reset, and also clears out the scroll area history file.

42

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

Current screen commands

The current screen commands section sends commands to the xterm emulator that affect which
screen is the currently active screen.

■ Show Tek Window: Display the Tektronix terminal window along with the VT100
terminal window.

■ Switch to Tek Window: Hide the VT100 terminal window and display the
Tektronix terminal window.

■ Hide VT Window: Hide the VT100 terminal window while displaying the Tektronix
terminal window.

■ Show Alternate Screen: Display the data currently stored in the VT100 alternate
screen area.

The xterm terminal emulator provides the ability to start in either VT100 terminal mode (by
default) or in the Tektronix terminal mode (by using the t command line parameter). After you
start in either mode, you can use this menu area to switch to the other mode during your session.

The VT fonts menu
The VT fonts menu sets the font style used in the VT100/220 emulation window. You can access
this menu by holding the Control key and clicking on mouse button three (the right button on a
right-handed mouse, or the left button on a left-handed mouse). Figure 2-6 shows what the VT
fonts menu looks like.

FIGURE 2-6

The xterm VT fonts menu

43

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The VT fonts menu, covered in the following sections, contains three sections of selections.

Set the font

These menu options set the size of the font used in the xterm window. The available sizes are:

■ Default

■ Unreadable

■ Tiny

■ Small

■ Medium

■ Large

■ Huge

■ Escape the Sequence

■ Selection

The default font is the standard-sized font used to display text in the current X Window frame.
The unreadable font is pretty much what it says. It shrinks the xterm window down to a size
that is not really usable. This is handy, however, when you want to minimize the window on
your desktop without completely minimizing it on the system. The large and huge font options
produce extremely large font sizes for visually-impaired users.

The Escape the Sequence option sets the font to the last font set by the VT100 set font control
code. The Selection option allows you to save the current font with a special font name.

Display the font

This section of menu options defines the type of characters used to create the text. There are two
options available:

■ Line Drawing Characters: Tells the Linux system to produce ANSI graphical lines
instead of using line characters from the chosen font

■ Doublesized characters: Tells the Linux system to scale the set font to double the
normal size

The line drawing characters allow you to determine which types of graphical features to use when

drawing in text mode. You can use either characters provided by the selected font source or
characters provided by the DEC VT100 control codes.

Specify the font

This section of the menu provides options for what type of fonts are used to create the characters:

■ TrueType Fonts

■ UTF-8 Fonts

44

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

The TrueType fonts are popular in graphical environments. Instead of each character taking the

same amount of space in the line, characters are proportioned by their natural sizes. Thus, the

letter i takes up less space on the line than the letter m. The UTF-8 font allows you to temporarily

switch to use the Unicode character set for applications that don’t support foreign characters.

The Konsole Terminal
The KDE Desktop Project has created its own terminal emulation package called Konsole. The

Konsole package incorporates the basic xterm features, along with more advanced features that

we now expect from a Windows application. This section describes the features of the Konsole

terminal, and shows how to use them.

Command line parameters
Often a Linux distribution provides a method for starting applications directly from the graphical

desktop menu system. If your distribution doesn’t provide this feature, you can manually start

Konsole by using the format:

konsole parameters

Just like xterm, the Konsole package uses command line parameters to set features in the new

sessions. Table 2-3 shows the available Konsole command line parameters.

Sessions
When you start Konsole, you’ll notice that it has a tabbed window, with one tab open to a ter-

minal emulation session. This is the default session, and it is normally a standard bash shell CLI.

You can define many different sessions for Konsole, and even have multiple sessions open at the

same time.

The default configuration for Konsole includes several different types of sessions that you can

access from the Konsole window:

■ A standard shell session using the xterm terminal emulation

■ A Linux console session using the text mode terminal emulation

■ A shell session logged in as the Linux root user (you must supply the password)

■ A Midnight Commander file management session (if installed in your distribution)

■ A session using the Python interactive CLI for testing programs written in the Python

language (if Python is installed in your distribution)

■ A shell started at a saved bookmark area (discussed in ‘‘The menu bar’’ section later

in this chapter)

45

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 2-3

The Konsole Command Line Parameters

Parameter Description

-e command Execute command instead of a shell.

--keytab file Use the specified key file to define key mappings.

--keytabs List all of the available keytabs.

--ls Start the Konsole session with a login screen.

--name name Set the name that appears in the Konsole titlebar.

--noclose Prevent the Konsole window from closing when the last session has been
closed.

--noframe Start Konsole without a frame.

--nohist Prevent Konsole from saving scroll history in sessions.

--nomenubar Start Konsole without the standard menubar options.

--noresize Prevent changing the size of the Konsole window area.

--notabbar Start Konsole without the standard tab area for sessions.

--noxft Start Konsole without support for aliasing smaller fonts.

--profile file Start Konsole with settings saved in the specified file.

--profiles List all of the available Konsole profiles.

--schema name Start Konsole using the specified schema name or file.

--schemata List the schemes available in Konsole.

-T title Set the Konsole window title.

--type type Start a Konsole session using the specified type.

--types List all of the available Konsole session types.

--vt_sz CxL Specify the terminal columns (C) and rows (L).

--workdir dir Specify the working directory for Konsole to store temporary files.

Konsole allows you to have multiple sessions active at the same time. Each session is contained

within its own tabbed window. Konsole places a tab on each session window to allow you to

easily switch between sessions. You’ll notice the tabs at either the top or bottom of the window

area. This is a great feature for programmers who need to edit code in one session, while testing

the code in another session. It’s easy to flip back and forth between different active sessions in

Konsole. Figure 2-7 shows a Konsole window with three active sessions.

46

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

FIGURE 2-7

The Konsole terminal emulator with three active sessions

There is a new session button at the left side of the tab area. Click this button to automatically
start a new session using the standard shell. Click and hold the button to see a session menu
which allows you to select the type of new session to start.

Similar to the xterm terminal emulator, Konsole provides a simple menu by right-clicking in
the active session area. If you right-click in the session area, a menu appears with the following
options:

■ Set Selection End: Select the session window area from the cursor to the location of the
mouse pointer.

■ Copy: Copy the selected text to the clipboard.

■ Paste: Paste the contents of the clipboard to the selected area.

■ Send Signal: Send a Linux control signal to the system.

■ Detach session: Move a tabbed session to a new Konsole session window (only avail-
able if there is more than one session active).

■ Rename session: Change the X Windows name of the session.

■ Bookmarks: Add a session bookmark at the current session location. You can recall the
bookmark later to return to the same directory in another session.

■ Close session: Terminate the session. If it is the last session in the Konsole window,
Konsole will close.

47

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Konsole also provides another quick way to access the new session menu by holding down the
Ctl key and right-clicking in the session area.

Besides the session tabs and new session button, by default Konsole uses a menu bar to provide
additional functionality so that you can modify and save your Konsole sessions.

The menu bar
The default Konsole setup uses a menu bar for you to easily view and change options and features
in your sessions. The menu bar consists of six items described in the following sections.

Session

The Session menu bar item provides yet another location for you to start a new session type.
Besides listing the standard session types to start a new session, it also contains the following
entries:

■ Start a new Konsole window with a default session

■ Print the screen of the current session

■ Close the current session

■ Quit the Konsole application

When you select one of the session types from the menu, the new session appears as a new tabbed
window frame in the Konsole window.

Edit

The Edit menu bar provides options for handling text in the session:

■ Copy: Copies selected text (that was highlighted with the mouse) to the system
clipboard.

■ Paste: Pastes text currently in the system clipboard to the current cursor location. If the
text contains newline characters, they will be processed by the shell.

■ Send Signal: Sends a Linux control signal to the system. The control signals available
are:

■ STOP: Stops the currently running program

■ CONT: Continue if interrupted

■ HUP: Resets the currently running program

■ INT: Interrupts the currently running program

■ TERM: Terminates the current session

■ KILL: Kills the current session

■ USR1: User-defined signal 1

■ USR2: User-defined signal 2

48

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

■ ZModem Upload: Uploads a file to the system using the ZModem protocol.

■ Clear terminal: Clears all text from the current session window.

■ Reset and Clear Terminal: Sends the control code to reset the terminal emulator, and
clears the current session window.

■ Find in History: Locates a text string in the previous lines of output text in the session.

■ Find Next: Locates the next occurrence of the text string in the previous lines of output

text in the session.

■ Find Previous: Locates the previous occurrence of the text string in the previous lines

of output text in the session.

■ Save History As: Saves the current history as a file.

■ Clear History: Clears the previous lines of output text in the session.

■ Clear All Histories: Clears the previous lines of output text in all sessions.

Konsole retains a history area for each active session. The history area contains the output text for
lines that scroll out of the viewing area of the terminal emulator. By default Konsole retains the

last 1000 lines of output in the history area. You can scroll through the history area by using the
scrollbar in the viewing area, or by pressing the Shift key and the Up Arrow key to scroll line by
line, or the Page Up key to scroll page (24 lines) by page.

View

The View menu bar item contains items for controlling the individual sessions in the Konsole
window. These selections include:

■ Detach Session: Remove the current session from the Konsole window, and start a new

Konsole window using the current session as the default session. This is only available
when more than one active session is available.

■ Rename Session: Change the name of the current session. The new name appears on
the session tab, allowing you to identify tabs more easily.

■ Monitor for Activity: Sets the session so that the session tab shows a special icon if new
text appears in the screen area. This is allows you to switch to another session while
waiting for output from an application, then notifies you when the output appears. This
feature is toggled between on and off.

■ Monitor for Silence: Sets the session so the session tab shows a special icon when no
new text appears in the screen area for 10 seconds. This allows you to switch to another
session while waiting for output from an application to stop, such as when compiling a

large application. This feature is toggled between on and off.

■ Send Input to All Sessions: Sends the text typed in one session to all the active

sessions.

■ Move Session Left: Moves the current session tab left in the window list.

■ Move Session Right: Moves the current session tab right in the window list.

49

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

After the standard menu options, the View menu bar area contains a list of the current active

sessions. You can switch between sessions by selecting a specific session icon.

Bookmarks

The Bookmarks menu items provide a way to manage bookmarks set in the Konsole window.

A bookmark enables you to save your directory location in an active session and then easily

return there in either the same session or a new session. Have you ever drilled down several

directories deep to find something on the Linux system, exited, and then forgotten how you got

there? Bookmarks will solve that problem. When you get to your desired directory location, just

add a new bookmark. When you want to return, look at the Bookmarks for your new bookmark,
and it’ll automatically perform the directory change to the desired location for you. The bookmark

entries include:

■ Add Bookmark: Create a new bookmark at the current directory location.

■ Edit Bookmarks: Edit existing bookmarks.

■ New Bookmark Folder: Create a new storage folder for bookmarks.

There is no limit to how many bookmarks you can store in Konsole, but having lots of bookmarks

can get confusing. By default they all appear at the same level in the Bookmark area. You can

organize them by creating new bookmark folders and moving individual bookmarks to the new

folders using the Edit Bookmarks item.

Settings

The Settings menu bar area allows you to customize the appearance of a specific session. This

area includes:

■ Hide Menubar: Remove the menu bar from the Konsole window.

■ Tab bar: Place the window tabs at the top or bottom of the windows, or hide them alto-

gether.

■ Scrollbar: Place the scrollbar at the right or left side of the window, or hide it altogether.

■ Fullscreen: Toggle between fullscreen mode (similar to the Linux console) and as a win-

dowed application.

■ Bell: Sets the action for the bell control code. This can set an audible tone, notify the

Linux system, flash the Konsole window, or do nothing.

■ Font: Set the character font, style, and size.

■ Encoding: Select the character set to use in the terminal emulation.

■ Keyboard: Select a keyboard mapping file to use for the session.

■ Schema: Select a color schema for the background and text colors.

■ Size: Set the number of columns and rows viewable in the session window.

■ History: Set how much (if any) data is saved in the history scroll area.

50

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

■ Save as Default: Save the current session configurations as the default.

■ Save Session Profile: Save the current open sessions as a profile that you can

recall later.

■ Configure Notifications: Set actions for specific session events.

■ Configure Shortcuts: Create keyboard shortcuts for Konsole commands.

■ Configure Konsole: Create custom Konsole schemas and sessions.

Most of these settings you should recognize from the discussion on terminal emulators. Konsole
allows you to select character sets, keyboard layouts, and colors, and even control how the bell

control code is emulated within the Konsole session window.

The Configure Notifications area is pretty cool. It allows you to associate five specific events that
can occur within a session with six different actions. When one of the events occurs, the defined
action (or actions) are taken.

The Configure Konsole settings provides for advanced control over setting session features, includ-
ing creating new color schemes. Figure 2-8 shows the main Configure Konsole dialog box.

FIGURE 2-8

The Konsole configuration dialog box

51

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Within the configuration dialog box there are three tabbed areas:

■ General: Allows you to set terminal emulation features such as a blinking cursor, allow-

ing running programs to resize the terminal window using control codes, setting the line
spacing, and setting the number of seconds before the session is considered inactive.

■ Schema: Allows you to save a color schema for the session, and save it so that you can
use it in later sessions.

■ Session: Allows you to configure new and existing Konsole sessions. You can configure
new sessions that start either with a standard shell or with a specific command, such as

an editor.

Help

The Help menu item provides the full Konsole handbook (if KDE handbooks were installed in

your Linux distribution), a ‘‘tip of the day’’ feature that shows interesting little-known shortcuts
and tips each time you start Konsole, and the standard About Konsole dialog box.

The GNOME Terminal
As you would expect, the GNOME desktop project has its own terminal emulation program. The
GNOME Terminal software package has many of the same features as Konsole and xterm. This

section walks through the various parts of configuring and using GNOME Terminal.

The command line parameters
The GNOME Terminal application also provides a wealth of command line parameters that allow

you to control its behavior when starting it. Table 2-4 lists the parameters available.

TABLE 2-4

The GNOME Terminal Command Line Parameters

Parameter Description

-e command Execute the argument inside a default terminal window.

-x Execute the entire contents of the command line after this
parameter inside a default terminal window.

--window Open a new window with a default terminal window. You
may add multiple --window parameters to start multiple
windows.

--window-with-profile= Open a new window with a specified profile. You may also
add this parameter multiple times to the command line.

continued

52

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

TABLE 2-4 (continued)

Parameter Description

--tab Open a new tabbed terminal inside the last opened terminal
window.

--tab-with-profile= Open a new tabbed terminal inside the last opened terminal
window using the specified profile.

--role= Set the role for the last specified window.

--show-menubar Enable the menu bar at the top of the terminal window.

--hide-menubar Disable the menu bar at the top of the terminal window.

--full-screen Display the terminal window fully maximized.

--geometry= Specify the X Window geometry parameter.

--disable-factory Don’t register with the activation nameserver.

--use-factory Register with the activation nameserver.

--startup-id= Set the ID for the Linux startup notification protocol.

-t, --title= Set the window title for the terminal window.

--working-directory= Set the default working directory for the terminal window.

--zoom= Set the terminal’s zoom factor.

--active Set the last specified terminal tab as the active tab.

The GNOME Terminal command line parameters allow you to set lots of features automatically

as GNOME Terminal starts. However, you can also set most of these features from within the

GNOME Terminal window after it starts.

Tabs
The GNOME Terminal calls each session a tab, as it uses tabs to keep track of multiple sessions

running within the window. Figure 2-9 shows a GNOME Terminal window with three session

tabs active.

You can right-click in the tab window to see the tab menu. This quick menu provides a few

actions for your use in the tab session:

■ Open Terminal: Open a new GNOME Terminal window with a default tab session.

■ Open Tab: Open a new session tab in the existing GNOME Terminal window.

■ Close Tab: Close the current session tab.

■ Copy: Copy highlighted text in the current session tab to the clipboard.

53

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

■ Paste: Paste data in the clipboard into the current session tab at the current cursor

location.

■ Change Profile: Change the profile for the current session tab.

■ Edit Current Profile: Edit the profile for the current session tab.

■ Show Menubar: Toggle whether the menubar is hidden or visible.

The quick menu provides easy access to commonly used actions that are available from the

standard menu bar in the terminal window.

The menu bar
The main operation of GNOME Terminal happens in the menu bar. The menu bar contains all of

the configuration and customization options you’ll need to make your GNOME Terminal just the

way you want it. The following sections describe the different items in the menu bar.

FIGURE 2-9

The GNOME Terminal with three active sessions

54

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

File

The File menu item contains items to create and manage the terminal tabs:

■ Open Terminal: Start a new shell session in a new GNOME Terminal window.

■ Open Tab: Start a new shell session on a new tab in the existing GNOME Terminal
window.

■ New Profile. . .: Allows you to customize the tab session and save it as a profile which
you can recall for use later.

■ Close Tab: Close the current tab in the window.

■ Close Window: Close the current GNOME Terminal session, closing all active tabs.

Most of the items in the File menu are also available by right-clicking in the session tab area. The
New Profile entry allows you to customize your session tab settings and save them for future use.

The New Profile first requests that you provide a name for the new profile, then produces the
Editing Profile dialog box, shown in Figure 2-10.

FIGURE 2-10

The GNOME Terminal Editing Profile dialog box

55

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

This is the area where you can set the terminal emulation features for the session. It consists of

six areas:

■ General: Provides general settings such as font, the bell, and the menubar

■ Title and Command: Allows you to set the title for the session tab (displayed on the

tab) and determine if the session starts with a special command rather than a shell

■ Colors: Sets the foreground and background colors used in the session tab

■ Effects: Allows you to set a background image for the session tab, or make it transparent

so you can see the desktop through the session tab

■ Scrolling: Controls whether a scroll region is created, and how large

■ Compatibility: Allows you to set which control codes the Backspace and Delete keys

send to the system.

Once you configure a profile, you can specify it when opening new session tabs.

Edit

The Edit menu item contains items for handling text within the tabs. You can use your mouse to

copy and paste texts anywhere within the tab window. This allows you to easily copy text from

the command line output to a clipboard and import it into an editor. You can also paste text from

another GNOME application into the tab session.

■ Copy: Copy selected text to the GNOME clipboard.

■ Paste: Paste text from the GNOME clipboard into the tab session.

■ Profiles. . .: Add, delete, or modify profiles in the GNOME Terminal.

■ Keyboard Shortcuts. . .: Create key combinations to quickly access GNOME Terminal

features.

■ Current Profile. . .: Provides a quick way to edit the profile used for the current
session tab.

The profile-editing feature is an extremely powerful tool for customizing several profiles, and then

changing profiles as you change sessions.

View

The View menu item contains items for controlling how the session tab windows appear.

They include:

■ Show Menubar: Either shows or hides the menu bar

■ Full Screen: Enlarges the GNOME Terminal window to the entire desktop

■ Zoom In: Makes the font in the session windows larger

56

www.IrPDF.com

www.IrPDF.com

Getting to the Shell 2

■ Zoom Out: Makes the font in the session windows smaller

■ Normal Size: Returns the session font to the default size

If you hide the menubar, you can easily get it back by right-clicking in any session tab and

toggling the Show Menubar item.

Terminal

The Terminal menu item contains items for controlling the terminal emulation features of the tab

session. They include:

■ Change Profile: Allows you to switch to another configured profile in the session tab.

■ Set Title. . .: Sets the title on the session tab to easily identify it.

■ Set Character Encoding: Selects the character set used to send and display characters.

■ Reset: Sends the reset control code to the Linux system.

■ Reset and Clear: Sends the reset control code to the Linux system and clears any text

currently showing in the tab area.

The character encoding offers a large list of available character sets to choose from. This is

especially handy if you must work in a language other than English.

Tabs

The Tabs menu item provides items for controlling the location of the tabs and selecting which

tab is active.

■ Previous Tab: Make the previous tab in the list active.

■ Next Tab: Make the next tab in the list active.

■ Move Tab to the Left: Shuffle the current tab in front of the previous tab.

■ Move Tab to the Right: Shuffle the current tab in front of the next tab.

■ Detach Tab: Remove the tab and start a new GNOME Terminal window using this tab

session.

■ The Tab list: Lists the currently running session tabs in the terminal window. Select a

tab to quickly jump to that session.

This section allows you to manage your tabs, which can come in handy if you have several tabs

open at once.

Help

The Help menu item provides a full GNOME Terminal manual so that you can research individual

items and features used in the GNOME Terminal.

57

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Summary
To start learning Linux command line commands, you need access to a command line. In a world

of graphical interfaces, this can sometimes be challenging. This chapter discussed different things

you should consider when trying to get to the Linux command line from within a graphical desk-

top environment. First, the chapter covered terminal emulation and showed what features you

should know about to ensure that the Linux system can properly communicate with your terminal

emulation package, and display text and graphics properly.

After discussing terminal emulators, three different types of terminal emulators were discussed.

The xterm terminal emulator package was the first available for Linux. It emulates both the VT102

and Tektronix 4014 terminals. The KDE desktop project created the Konsole terminal emulation

package. It provides several fancy features, such as the ability to have multiple sessions in the

same window, using both console and xterm sessions, with full control of terminal emulation

parameters.

Finally, the chapter discussed the GNOME desktop project’s GNOME Terminal emulation pack-

age. GNOME Terminal also allows multiple terminal sessions from within a single window, plus

it provides a convenient way to set many terminal features.

In the next chapter, you’ll start looking at the Linux command line commands. I’ll walk you

through the commands necessary to navigate around the Linux filesystem, and create, delete, and

manipulate files.

58

www.IrPDF.com

www.IrPDF.com

Basic bash Shell
Commands

IN THIS CHAPTER

Checking out the bash shell

Reading the manual

Cruising through the filesystem

Handling files and directories

Viewing file contents

T
he default shell used in all Linux distributions is the GNU bash
shell. This chapter describes the basic features available in the bash
shell, and walks you through how to work with Linux files and

directories using the basic commands provided by the bash shell. If you’re
already comfortable working with files and directories in the Linux environ-
ment, feel free to skip this chapter and continue with Chapter 4 to see more
advanced commands.

Starting the Shell

The GNU bash shell is a program that provides interactive access to the
Linux system. It runs as a regular program, normally started whenever a
user logs in to a terminal. The shell that the system starts depends on your
user ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along
with some basic configuration information about each user. Here’s a sample

entry from a /etc/passwd file:

rich:x:501:501:Rich Blum:/home/rich:/bin/bash

Each entry has seven data fields, with each field separated by a colon. The
system uses the data in these fields to assign specific features for the user.

These fields are:

■ The username

■ The user’s password (or a placeholder if the password is stored in

another file)

59

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

■ The user’s system user ID number

■ The user’s system group ID number

■ The user’s full name

■ The user’s default home directory

■ The user’s default shell program

Most of these entries will be discussed in more detail in Chapter 6. For now, just pay attention to
the shell program specified.

Most Linux systems use the default bash shell when starting a command line interface (CLI)
environment for the user. The bash program also uses command line parameters to modify the
type of shell you can start. Table 3-1 lists the command line parameters available in bash that
define what type of shell to use.

TABLE 3-1

The bash Command Line Parameters

Parameter Description

-c string Read commands from string and process them.

-r Start a restricted shell, limiting the user to the default directory.

-i Start an interactive shell, allowing input from the user.

-s Read commands from the standard input.

By default, when the bash shell starts, it automatically processes commands in the .bashrc file in
the user’s home directory. Many Linux distributions use this file to also load a common file that
contains commands and settings for everyone on the system. This common file is normally located
in the file /etc/bashrc. This file often sets environment variables (described in Chapter 5) used
in various applications.

The Shell Prompt
Once you start a terminal emulation package or log in from the Linux console, you get access to
the shell CLI prompt. The prompt is your gateway to the shell. This is the place where you enter
shell commands.

The default prompt symbol for the bash shell is the dollar sign ($). This symbol indicates that
the shell is waiting for you to enter text. However, you can change the format of the prompt
used by your shell. The different Linux distributions use different formats for the prompt. On my
SimplyMEPIS Linux system, the bash shell prompt looks like this:

rich@1[~]$

60

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

On my Fedora Linux system, it looks like this:

[rich@testbox ~]$

You can configure the prompt to provide basic information about your environment. The first

example above shows three pieces of information in the prompt:

■ The username that started the shell

■ The current virtual console number

■ The current directory (the tilde sign is shorthand for the home directory)

The second example provides similar information, except that it uses the hostname instead of

the virtual console number. There are two environment variables that control the format of the

command line prompt:

■ PS1: Controls the format of the default command line prompt

■ PS2: Controls the format of the second-tier command line prompt

The shell uses the default PS1 prompt for initial data entry into the shell. If you enter a command

that requires additional information, the shell displays the second-tier prompt specified by the
PS2 environment variable.

To display the current settings for your prompts, use the echo command:

rich@1[~]$ echo $PS1
\u@\l[\W]\$
rich@1[~]$ echo $PS2
>

rich@1[~]$

The format of the prompt environment variables can look pretty odd. The shell uses special

characters to signify elements within the command line prompt. Table 3-2 shows the special

characters that you can use in the prompt string.

Notice that all of the special prompt characters begin with a backslash (\). This is what delineates

a prompt character from normal text in the prompt. In the earlier example, the prompt contained

both prompt characters and a normal character (the ‘‘at’’ sign, and the square brackets). You can

create any combination of prompt characters in your prompt. To create a new prompt, just assign

a new string to the PS1 variable:

[rich@testbox ~]$ PS1="[\t][\u]\$ "
[14:40:32][rich]$

This new shell prompt now shows the current time, along with the username. The new PS1
definition only lasts for the duration of the shell session. When you start a new shell, the default

shell prompt definition is reloaded. In Chapter 5 you’ll see how you can change the default shell

prompt for all shell sessions.

61

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 3-2

bash Shell Prompt Characters

Character Description

\a The bell character

\d The date in the format ‘‘Day Month Date’’

\e The ASCII escape character

\h The local hostname

\H The fully qualified domain hostname

\j The number of jobs currently managed by the shell

\l The basename of the shell’s terminal device name

\n The ASCII newline character

\r The ASCII carriage return

\s The name of the shell

\t The current time in 24-hour HH:MM:SS format

\T The current time in 12-hour HH:MM:SS format

\@ The current time in 12-hour am/pm format

\u The username of the current user

\v The version of the bash shell

\V The release level of the bash shell

\w The current working directory

\W The basename of the current working directory

\! The bash shell history number of this command

\# The command number of this command

\$ A dollar sign if a normal user, or a pound sign if the root user

\nnn The character corresponding to the octal value nnn

\\ A backslash

\[Begins a control code sequence

\] Ends a control code sequence

62

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

The bash Manual
Most Linux distributions include an online manual for looking up information on shell com-
mands, as well as lots of other GNU utilities included in the distribution. It is a good idea to
become familiar with the manual, as it’s invaluable for working with utilities, especially when
trying to figure out various command line parameters.

The man command provides access to the manual pages stored on the Linux system. Entering
the man command followed by a specific utility name provides the manual entry for that utility.
Figure 3-1 shows an example of looking up the manual pages for the date command.

The manual page divides information about the command into separate sections, shown in
Table 3-3.

You can step through the man pages by pressing the spacebar or using the arrow keys to scroll
forward and backward through the man page text (assuming that your terminal emulation pack-
age supports the arrow key functions).

FIGURE 3-1

Displaying the manual pages for the Linux date command

63

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 3-3

The Linux man Page Format

Section Description

Name Displays the command name and a short description

Synopsis Shows the format of the command

Description Describes each command option

Author Provides information on the person who developed the command

Reporting bugs Provides information on where to report any bugs found

Copyright Provides information on the copyright status of the command code

See Also Refers you to any similar commands available

To see information about the bash shell, look at the man pages for it using the command:

$ man bash

This allows you to step through the entire man pages for the bash shell. This is extremely handy

when building scripts, as you don’t have to refer back to books or Internet sites to look up specific

formats for commands. The manual is always there for you in your session.

Filesystem Navigation
As you can see from the shell prompt, when you start a shell session you are usually placed in

your home directory. Most often, you will want to break out of your home directory and want to

explore other areas in the Linux system. This section describes how to do that using command

line commands. Before we do that though, we should take a tour of just what the Linux fileystem

looks like so we know where we’re going.

The Linux filesystem
If you’re new to the Linux system, you may be confused by how it references files and directories,

especially if you’re used to the way that the Microsoft Windows operating system does that. Before

exploring the Linux system, it helps to have an understanding of how it’s laid out.

The first difference you’ll notice is that Linux does not use drive letters in pathnames. In the Win-

dows world, the physical drives installed on the PC determine the pathname of the file. Windows

assigns a letter to each physical disk drive, and each drive contains its own directory structure for

accessing files stored on it.

64

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

For example, in Windows you may be used to seeing the file paths such as:

c:\Documents and Settings\Rich\My Documents\test.doc.

This indicates that the file test.doc is located in the directory My Documents, which itself is
located in the directory rich. The rich directory is contained under the directory Documents
and Settings, which is located on the hard disk partition assigned the letter C (usually the first

hard drive on the PC).

The Windows file path tells you exactly which physical disk partition contains the file named
test.doc. If you wanted to save a file on a floppy disk, you would click the icon for the A
drive, which automatically uses the file path a:\test.doc. This path indicates that the file is
located at the root of the drive assigned the letter A, which is usually the PC’s floppy disk drive.

This is not the method used by Linux. Linux stores files within a single directory structure, called

a virtual directory. The virtual directory contains file paths from all the storage devices installed
on the PC, merged into a single directory structure.

The Linux virtual directory structure contains a single base directory, called the root. Directories
and files beneath the root directory are listed based on the directory path used to get to them,
similar to the way Windows does it.

You’ll notice that Linux uses a forward slash (/) instead of a backward slash (\) to

denote directories in filepaths. The backslash character in Linux denotes an escape

character, and causes all sorts of problems when you use it in a filepath. This may take some getting

used to if you’re coming from a Windows environment.

For example, the Linux file path /home/rich/Documents/test.doc only indicates that the file
test.doc is in the directory Documents, under the directory rich, which is contained in the

directory home. It doesn’t provide any information as to which physical disk on the PC the file is
stored on.

The tricky part about the Linux virtual directory is how it incorporates each storage device. The

first hard drive installed in a Linux PC is called the root drive. The root drive contains the core of
the virtual directory. Everything else builds from there.

On the root drive, Linux creates special directories called mount points. Mount points are directo-

ries in the virtual directory where you assign additional storage devices.

The virtual directory causes files and directories to appear within these mount point directories,
even though they are physically stored on a different drive.

Often the system files are physically stored on the root drive, while user files are stored on a
different drive, as shown in Figure 3-2.

In Figure 3-2, there are two hard drives on the PC. One hard drive is associated with the root
of the virtual directory (indicated by a single forward slash). Other hard drives can be mounted
anywhere in the virtual directory structure. In this example, the second hard drive is mounted at
the location /home, which is where the user directories are located.

65

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 3-2

The Linux file structure

Disk 1

Disk 2

bin

etc

usr

var

home

barbara

jessica

katie

rich

The Linux filesystem structure has evolved from the Unix file structure. Unfortunately, the Unix
file structure has been somewhat convoluted over the years by different flavors of Unix. Nowadays
it seems that no two Unix or Linux systems follow the same filesystem structure. However, there
are a few common directory names that are used for common functions. Table 3-4 lists some of
the more common Linux virtual directory names.

When you start a new shell prompt your session starts in your home directory, which is a unique
directory assigned to your user account. When you create a user account, the system normally
assigns a unique directory for the account (see Chapter 6).

In the Windows world, you’re probably used to moving around the directory structure using a
graphical interface. To move around the virtual directory from a CLI prompt, you’ll need to learn
to use the cd command.

Traversing directories
The change directory command (cd) is what you’ll use to move your shell session to another
directory in the Linux filesystem. The format of the cd command is pretty simplistic:

cd destination

The cd command may take a single parameter, destination, which specifies the directory name
you want to go to. If you don’t specify a destination on the cd command, it will take you to your
home directory.

The destination parameter, though, can be expressed using two different methods:

■ An absolute filepath

■ A relative filepath

66

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

TABLE 3-4

Common Linux Directory Names

Directory Usage

/ The root of the virtual directory. Normally, no files are placed here.

/bin The binary directory, where many GNU user-level utilities are stored.

/boot The boot directory, where boot files are stored.

/dev The device directory, where Linux creates device nodes.

/etc The system configuration files directory.

/home The home directory, where Linux creates user directories.

/lib The library directory, where system and application library files are stored.

/media The media directory, a common place for mount points used for removable media.

/mnt The mount directory, another common place for mount points used for removable
media.

/opt The optional directory, often used to store optional software packages.

/root The root home directory.

/sbin The system binary directory, where many GNU admin-level utilities are stored.

/tmp The temporary directory, where temporary work files can be created and destroyed.

/usr The user-installed software directory.

/var The variable directory, for files that change frequently, such as log files.

The following sections describe the differences between these two methods.

Absolute filepaths

You can reference a directory name within the virtual directory using an absolute filepath. The
absolute filepath defines exactly where the directory is in the virtual directory structure, starting
at the root of the virtual directory. Sort of like a full name for a directory.

Thus, to reference the apache directory, that’s contained within the lib directory, which in turn
is contained within the usr directory, you would use the absolute filepath:

/usr/lib/apache

With the absolute filepath there’s no doubt as to exactly where you want to go. To move to a
specific location in the filesystem using the absolute filepath, you just specify the full pathname
in the cd command:

rich@1[~]$cd /etc
rich@1[etc]$

67

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The prompt shows that the new directory for the shell after the cd command is now /etc.

You can move to any level within the entire Linux virtual directory structure using the absolute

filepath:

rich@1[~]$ cd /usr/lib/apache
rich@1[apache]$

However, if you’re just working within your own home directory structure, often using absolute

filepaths can get tedious. For example, if you’re already in the directory /home/rich, it seems

somewhat cumbersome to have to type the command:

cd /home/rich/Documents

just to get to your Documents directory. Fortunately, there’s a simpler solution.

Relative filepaths

Relative filepaths allow you to specify a destination filepath relative to your current location, with-

out having to start at the root. A relative filepath doesn’t start with a forward slash, indicating the

root directory.

Instead, a relative filepath starts with either a directory name (if you’re traversing to a directory

under your current directory), or a special character indicating a relative location to your current

directory location. The two special characters used for this are:

■ The dot (.) to represent the current directory

■ The double dot (..) to represent the parent directory

The double dot character is extremely handy when trying to traverse a directory hierarchy. For

example, if you are in the Documents directory under your home directory and need to go to

your Desktop directory, also under your home directory, you can do this:

rich@1[Documents]$ cd ../Desktop
rich@1[Desktop]$

The double dot character takes you back up one level to your home directory, then the /Desktop
portion then takes you back down into the Desktop directory. You can use as many double

dot characters as necessary to move around. For example, if you are in your home directory

(/home/rich) and want to go to the /etc directory, you could type:

rich@1[~]$ cd ../../etc
rich@1[etc]$

Of course, in a case like this, you actually have to do more typing to use the relative filepath

rather than just typing the absolute filepath, /etc!

68

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

File and Directory Listing
The most basic feature of the shell is the ability to see what files are available on the system. The

list command (ls) is the tool that helps do that. This section describes the ls command, and all

of the options available to format the information it can provide.

Basic listing
The ls command at its most basic form displays the files and directories located in your current

directory:

$ ls
4rich Desktop Download Music Pictures store store.zip test
backup Documents Drivers myprog Public store.sql Templates Videos
$

Notice that the ls command produces the listing in alphabetical order (in columns rather than

rows). If you’re using a terminal emulator that supports color, the ls command may also show

different types of entries in different colors. The LS COLORS environment variable controls this

feature. Different Linux distributions set this environment variable depending on the capabilities

of the terminal emulator.

If you don’t have a color terminal emulator, you can use the -F parameter with the ls command

to easily distinguish files from directories. Using the -F parameter produces the following output:

$ ls -F
4rich/ Documents/ Music/ Public/ store.zip Videos/
backup.zip Download/ myprog* store/ Templates/
Desktop/ Drivers/ Pictures/ store.sql test
$

The -F parameter now flags the directories with a forward slash, to help identify them in the

listing. Similarly, it flags executable files (like the myprog file above) with an asterisk, to help you

find the files that can be run on the system easier.

The basic ls command can be somewhat misleading. It shows the files and directories contained

in the current directory, but not necessarily all of them. Linux often uses hidden files to store

configuration information. In Linux, hidden files are files with filenames that start with a period.

These files don’t appear in the default ls listing (thus they are called hidden).

To display hidden files along with normal files and directories, use the -a parameter. Figure 3-3

shows an example of using the -a parameter with the ls command.

Wow, that’s quite a difference. In a home directory for a user who has logged in to the system

from a graphical desktop, you’ll see lots of hidden configuration files. This particular example

is from a user logged in to a GNOME desktop session. Also notice that there are three files that

69

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

begin with .bash. These files are hidden files that are used by the bash shell environment. These
features are covered in detail in Chapter 5.

The -R parameter is another command ls parameter to use. It shows files that are contained
within directories in the current directory. If you have lots of directories, this can be quite a long
listing. Here’s a simple example of what the -R parameter produces:

$ ls -F -R
.:
file1 test1/ test2/

./test1:
myprog1* myprog2*

./test2:
$

FIGURE 3-3

Using the -a parameter with the ls command

70

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

Notice that first, the -R parameter shows the contents of the current directory, which is a file

(file1) and two directories (test1 and test2). Following that, it traverses each of the two

directories, showing if any files are contained within each directory. The test1 directory shows

two files (myprog1 and myprog2), while the test2 directory doesn’t contain any files. If there
had been further subdirectories within the test1 or test2 directories, the -R parameter would

have continued to traverse those as well. As you can see, for large directory structures this can

become quite a large output listing.

Modifying the information presented
As you can see in the basic listings, the ls command doesn’t produce a whole lot of informa-
tion about each file. For listing additional information, another popular parameter is -l. The

-l parameter produces a long listing format, providing more information about each file in the

directory:

$ ls -l
total 2064
drwxrwxr-x 2 rich rich 4096 2007-08-24 22:04 4rich
-rw-r--r-- 1 rich rich 1766205 2007-08-24 15:34 backup.zip
drwxr-xr-x 3 rich rich 4096 2007-08-31 22:24 Desktop
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Documents
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Download
drwxrwxr-x 2 rich rich 4096 2007-07-26 18:25 Drivers
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Music
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Pictures
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Public
drwxrwxr-x 5 rich rich 4096 2007-08-24 22:04 store
-rw-rw-r-- 1 rich rich 98772 2007-08-24 15:30 store.sql
-rw-r--r-- 1 rich rich 107507 2007-08-13 15:45 store.zip
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Templates
drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Videos
[rich@testbox ~]$

The long listing format lists each file and directory contained in the directory on a single line.

Besides the filename, it shows additional useful information. The first line in the output shows
the total number of blocks contained within the directory. Following that, each line contains the

following information about each file (or directory):

■ The file type (such as directory (d), file (-), character device (c), or block device (b)

■ The permissions for the file (see Chapter 6)

■ The number of hard links to the file (see the section ‘‘Linking files’’ in this chapter)

■ The username of the owner of the file

71

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

■ The group name of the group the file belongs to

■ The size of the file in bytes

■ The time the file was modified last

■ The file or directory name

The -l parameter is a powerful tool to have. Armed with this information you can see just about
any information you need to for any file or directory on the system.

The complete parameter list
There are lots of parameters for the ls command that can come in handy as you do file manage-
ment. If you use the man command for ls, you’ll see several pages of available parameters for you
to use to modify the output of the ls command.

The ls command uses two types of command line parameters:

■ Single-letter parameters

■ Full-word (long) parameters

The single-letter parameters are always preceded by a single dash. Full-word parameters are more

descriptive and are preceded by a double dash. Many parameters have both a single-letter and
full-word version, while some have only one type. Table 3-5 lists some of the more popular
parameters that’ll help you out with using the bash ls command.

You can use more than one parameter at a time if you want to. The double dash parameters must
be listed separately, but the single dash parameters can be combined together into a string behind
the dash. A common combination to use is the -a parameter to list all files, the -i parameter to
list the inode for each file, the -l parameter to produce a long listing, and the -s parameter to
list the block size of the files. The inode of a file or directory is a unique identification number
the kernel assigns to each object in the filesystem. Combining all of these parameters creates the

easy-to-remember -sail parameter:

$ ls -sail
total 2360
301860 8 drwx------ 36 rich rich 4096 2007-09-03 15:12 .
65473 8 drwxr-xr-x 6 root root 4096 2007-07-29 14:20 ..

360621 8 drwxrwxr-x 2 rich rich 4096 2007-08-24 22:04 4rich
301862 8 -rw-r--r-- 1 rich rich 124 2007-02-12 10:18 .bashrc
361443 8 drwxrwxr-x 4 rich rich 4096 2007-07-26 20:31 .ccache
301879 8 drwxr-xr-x 3 rich rich 4096 2007-07-26 18:25 .config
301871 8 drwxr-xr-x 3 rich rich 4096 2007-08-31 22:24 Desktop
301870 8 -rw------- 1 rich rich 26 2001-11-01 04:06 .dmrc
301872 8 drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Download
360207 8 drwxrwxr-x 2 rich rich 4096 2007-07-26 18:25 Drivers
301882 8 drwx------ 5 rich rich 4096 2007-09-02 23:40 .gconf
301883 8 drwx------ 2 rich rich 4096 2007-09-02 23:43 .gconfd
360338 8 drwx------ 3 rich rich 4096 2007-08-06 23:06 .gftp

72

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

TABLE 3-5

Some Popular ls Command Parameters

Single
Letter Full Word Description

-a --all Don’t ignore entries starting with a period.

-A --almost-all Don’t list the . and .. files.

--author Print the author of each file.

-b --escape Print octal values for nonprintable characters.

--block-size=size Calculate the block sizes using size-byte blocks.

-B --ignore-backups Don’t list entries with the tilde (∼) symbol (used to
denote backup copies).

-c Sort by time of last modification.

-C List entries by columns.

--color=when When to use colors (always, never, or auto).

-d --directory List directory entries instead of contents, and don’t
dereference symbolic links.

-F --classify Append file-type indicator to entries.

--file-type Only append file-type indicators to some filetypes (not
executable files).

--format=word Format output as either across, commas, horizontal, long,
single-column, verbose, or vertical.

-g List full file information except for the file’s owner.

--group-directories-
first

List all directories before files.

-G --no-group In long listing don’t display group names.

-h --human-readable Print sizes using K for kilobytes, M for megabytes, and G
for gigabytes.

--si Same as -h, but use powers of 1000 instead of 1024.

-i --inode Display the index number (inode) of each file.

-l Display the long listing format.

-L --dereference Show information for the original file for a linked file.

-n --numeric-uid-gid Show numeric userid and groupid instead of names.

continued

73

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 3-5 (continued)

Single
Letter Full Word Description

-o In long listing don’t display owner names.

-r --reverse Reverse the sorting order when displaying files and
directories.

-R --recursive List subdirectory contents recursively.

-s --size Print the block size of each file.

-S --sort=size Sort the output by file size.

-t --sort=time Sort the output by file modification time.

-u Display file last access time instead of last modification time.

-U --sort=none Don’t sort the output listing.

-v --sort=version Sort the output by file version.

-x List entries by line instead of columns.

-X --sort=extension Sort the output by file extension.

Besides the normal -l parameter output information, you’ll see two additional numbers added

to each line. The first number in the listing is the file or directory inode number. The second

number is the block size of the file. The third entry is a diagram of the type of file, along with the

file’s permissions. We’ll dive into that in more detail in Chapter 6.

Following that, the next number is the number of hard links to the file (discussed later in the

‘‘Linking file’’ section), the owner of the file, the group the file belongs to, the size of the file (in

bytes), a timestamp showing the last modification time by default, and finally, the actual filename.

Filtering listing output
As you’ve seen in the examples, by default the ls command lists all of the files in a directory.

Sometimes this can be overkill, especially when you’re just looking for information on a single file.

Fortunately, the ls command also provide a way for us to define a filter on the command line. It

uses the filter to determine which files or directories it should display in the output.

The filter works as a simple text-matching string. Include the filter after any command line param-

eters you want to use:

$ ls -l myprog
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
$

74

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

When you specify the name of specific file as the filter, the ls command only shows the informa-

tion for that one file. Sometimes you might not know the exact name of the file you’re looking for.
The ls command also recognizes standard wildcard characters and uses them to match patterns
within the filter:

■ A question mark to represent one character

■ An asterisk to represent zero or more characters

The question mark can be used to replace exactly one character anywhere in the filter string. For
example:

$ ls -l mypro?
-rw-rw-r-- 1 rich rich 0 2007-09-03 16:38 myprob
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
$

The filter mypro? matched two files in the directory. Similarly, the asterisk can be used to match

zero or more characters:

$ ls -l myprob*
-rw-rw-r-- 1 rich rich 0 2007-09-03 16:38 myprob
-rw-rw-r-- 1 rich rich 0 2007-09-03 16:40 myproblem
$

The asterisk matches zero characters in the myprob file, but it matches three characters in the

myproblem file.

This is a powerful feature to use when searching for files when you’re not quite sure of the file-

names.

File Handling
The bash shell provides lots of commands for manipulating files on the Linux filesystem. This
section walks you through the basic commands you will need to work with files from the CLI for
all your file-handling needs.

Creating files
Every once in a while you will run into a situation where you need to create an empty file. Some-

times applications expect a log file to be present before they can write to it. In these situations,
you can use the touch command to easily create an empty file:

$ touch test1
$ ls -il test1
1954793 -rw-r--r-- 1 rich rich 0 Sep 1 09:35 test1
$

75

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The touch command creates the new file you specify, and assigns your username as the file

owner. Since I used the -il parameters for the ls command, the first entry in the listing shows
the inode number assigned to the file. Every file on the Linux system has a unique inode number.

Notice that the file size is zero, since the touch command just created an empty file. The touch
command can also be used to change the access and modification times on an existing file without

changing the file contents:

$ touch test1
$ ls -l test1
-rw-r--r-- 1 rich rich 0 Sep 1 09:37 test1
$

The modification time of test1 is now updated from the original time. If you want to change

only the access time, use the -a parameter. To change only the modification time, use the -m
parameter. By default touch uses the current time. You can specify the time by using the -t
parameter with a specific timestamp:

$ touch -t 200812251200 test1
$ ls -l test1
-rw-r--r-- 1 rich rich 0 Dec 25 2008 test1
$

Now the modification time for the file is set to a date significantly in the future from the current
time.

Copying files
Copying files and directories from one location in the filesystem to another is a common practice

for system administrators. The cp command provides this feature.

In it’s most basic form, the cp command uses two parameters: the source object and the destina-

tion object:

cp source destination

When both the source and destination parameters are filenames, the cp command copies the source

file to a new file with the filename specified as the destination. The new file acts like a brand new
file, with an updated file creation and last modified times:

$ cp test1 test2
$ ls -il
total 0
1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
$

The new file test2 shows a different inode number, indicating that it’s a completely new file.
You’ll also notice that the modification time for the test2 file shows the time that it was created.

76

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

If the destination file already exists, the cp command will prompt you to answer whether or not

you want to overwrite it:

$ cp test1 test2
cp: overwrite `test2’? y
$

If you don’t answer y, the file copy will not proceed. You can also copy a file to an existing

directory:

$ cp test1 dir1
$ ls -il dir1
total 0
1954887 -rw-r--r-- 1 rich rich 0 Sep 6 09:42 test1
$

The new file is now under the dir1 directory, using the same filename as the original. These

examples all used relative pathnames, but you can just as easily use the absolute pathname for

both the source and destination objects.

To copy a file to the current directory you’re in, you can use the dot symbol:

$ cp /home/rich/dir1/test1 .
cp: overwrite `./test1’?

As with most commands, the cp command has a few command line parameters to help you out.

These are shown in Table 3-6.

Use the -p parameter to preserve the file access or modification times of the original file for the

copied file.

$ cp -p test1 test3
$ ls -il
total 4
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
$

Now, even though the test3 file is a completely new file, it has the same timestamps as the

original test1 file.

The -R parameter is extremely powerful. It allows you to recursively copy the contents of an

entire directory in one command:

$ cp -R dir1 dir2
$ ls -l
total 8

77

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

drwxr-xr-x 2 rich rich 4096 Sep 6 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 6 09:45 dir2/
-rw-r--r-- 1 rich rich 0 Dec 25 2008 test1
-rw-r--r-- 1 rich rich 0 Sep 6 09:39 test2
-rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
$

Now dir2 is a complete copy of dir1. You can also use wildcard characters in your cp com-
mands:

$ cp -f test* dir2
$ ls -al dir2
total 12
drwxr-xr-x 2 rich rich 4096 Sep 6 10:55 ./
drwxr-xr-x 4 rich rich 4096 Sep 6 10:46 ../
-rw-r--r-- 1 rich rich 0 Dec 25 2008 test1
-rw-r--r-- 1 rich rich 0 Sep 6 10:55 test2
-rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
$

TABLE 3-6

The cp Command Parameters

Parameter Description

-a Archive files by preserving their attributes.

-b Create a backup of each existing destination file instead of overwriting it.

-d Preserve.

-f Force the overwriting of existing destination files without prompting.

-i Prompt before overwriting destination files.

-l Create a file link instead of copying the files.

-p Preserve file attributes if possible.

-r Copy files recursively.

-R Copy directories recursively.

-s Create a symbolic link instead of copying the file.

-S Override the backup feature.

-u Copy the source file only if it has a newer date and time than the destination (update).

-v Verbose mode, explaining what’s happening.

-x Restrict the copy to the current filestytem.

78

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

This command copied all of the files that started with test to dir2. I included the -f parameter

to force the overwrite of the test1 file that was already in the directory without asking.

Linking files
You may have noticed a couple of the parameters for the cp command referred to linking files.

This is a pretty cool option available in the Linux filesystems. If you need to maintain two (or

more) copies of the same file on the system, instead of having separate physical copies, you can

use one physical copy and multiple virtual copies, called links. A link is a placeholder in a direc-

tory that points to the real location of the file. There are two different types of file links in Linux:

■ A symbolic, or soft, link

■ A hard link

The hard link creates a separate file that contains information about the original file and where to

locate it. When you reference the hard link file, it’s just as if you’re referencing the original file:

$ cp -l test1 test4
$ ls -il
total 16
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 test4
$

The -l parameter created a hard link for the test1 file called test4. When I performed the

file listing, you can see that the inode number of both the test1 and test4 files are the same,

indicating that, in reality, they are both the same file. Also notice that the link count (the third
item in the listing) now shows that both files have two links.

You can only create a hard link between files on the same physical medium. You can’t

create a hard link between files under separate mount points. In that case, you’ll have

to use a soft link.

On the other hand, the -s parameter creates a symbolic, or soft, link:

$ cp -s test1 test5
$ ls -il test*
total 16
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
$

79

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

There are a couple of things to notice in the file listing, First, you’ll notice that the new test5
file has a different inode number than the test1 file, indicating that the Linux system treats it
as a separate file. Second, the file size is different. A linked file needs to store only information
about the source file, not the actual data in the file. The filename area of the listing shows the
relationship between the two files.

Instead of using the cp command, if you want to link files you can also use the ln

command. By default the ln command creates hard links. If you want to create a soft

link, you’ll still need to use the -s parameter.

Be careful when copying linked files. If you use the cp command to copy a file that’s linked to
another source file, all you’re doing is making another copy of the source file. This can quickly get
confusing. Instead of copying the linked file, you can create another link to the original file. You
can have many links to the same file with no problems. However, you also don’t want to create
soft links to other soft-linked files. This creates a chain of links that can not only be confusing
but also be easily broken, causing all sorts of problems.

Renaming files
In the Linux world, renaming files is called moving. The mv command is available to move both
files and directories to another location:

$ mv test2 test6
$ ls -il test*
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6
$

Notice that moving the file changed the filename but kept the same inode number and the times-
tamp value. Moving a file with soft links is a problem:

$ mv test1 test8
$ ls -il test*
total 16
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test6
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test8
[rich@test2 clsc]$ mv test8 test1

The test4 file that uses a hard link still uses the same inode number, which is perfectly fine.
However, the test5 file now points to an invalid file, and it is no longer a valid link.

You can also use the mv command to move directories:

$ mv dir2 dir4

80

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

The entire contents of the directory are unchanged. The only thing that changes is the name of
the directory.

Deleting files
Most likely at some point in your Linux career you’ll want to be able to delete existing files.
Whether it’s to clean up a filesystem or to remove a software package, there’s always opportunities
to delete files.

In the Linux world, deleting is called removing. The command to remove files in the bash shell is
rm. The basic form of the rm command is pretty simple:

$ rm -i test2
rm: remove `test2’? y
$ ls -l
total 16
drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1
-rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
-rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
$

Notice that the command prompts you to make sure that you’re serious about removing the file.
There’s no trashcan in the bash shell. Once you remove a file it’s gone forever.

Now, here’s an interesting tidbit about deleting a file that has links to it:

$ rm test1
$ ls -l
total 12
drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
-rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4
lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
$ cat test4
hello
$ cat test5
cat: test5: No such file or directory
$

I removed the test1 file, which had both a hard link with the test4 file and a soft link with the
test5 file. Noticed what happened. Both of the linked files still appear, even though the test1
file is now gone (although on my color terminal the test5 filename now appears in red). When
I look at the contents of the test4 file that was a hard link, it still shows the contents of the file.
When I look at the contents of the test5 file that was a soft link, bash indicates that it doesn’t
exist any more.

81

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Remember that the hard link file uses the same inode number as the original file. The hard link
file maintains that inode number until you remove the last linked file, preserving the data! All the
soft link file knows is that the underlying file is now gone, so it has nothing to point to. This is
an important feature to remember when working with linked files.

One other feature of the rm command, if you’re removing lots of files and don’t want to be both-
ered with the prompt, is to use the -f parameter to force the removal. Just be careful!

As with copying files, you can use wildcard characters with the rm command. Again,

use caution when doing this, as anything your remove, even by accident, is gone

forever!

Directory Handling
In Linux there are a few commands that work for both files and directories (such as the cp com-
mand), and some that only work for directories. To create a new directory, you’ll need to use a
specific command, which I’ll discuss in this section. Removing directories can get interesting, so
we’ll look at that as well in this section.

Creating directories
There’s not much to creating a new directory in Linux, just use the mkdir command:

$ mkdir dir3
$ ls -il
total 16
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 10:55 dir2/
1954893 drwxr-xr-x 2 rich rich 4096 Sep 1 11:01 dir3/
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2008 test3
1954793 -rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4
$

The system creates a new directory and assigns it a new inode number.

Deleting directories
Removing directories can be tricky, but there’s a reason for that. There are lots of opportunity
for bad things to happen when you start deleting directories. The bash shell tries to protect us
from accidental catastrophes as much as possible. The basic command for removing a directory
is rmdir:

$ rmdir dir3
$ rmdir dir1
rmdir: dir1: Directory not empty
$

82

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

By default, the rmdir command only works for removing empty directories. Since there is a file
in the dir1 directory, the rmdir command refuses to remove it. You can remove nonempty
directories using the --ignore-fail-on-non-empty parameter.

Our friend the rm command can also help us out some when handling directories.

If you try using it with not parameters, as with files, you’ll be somewhat disappointed:

$ rm dir1
rm: dir1: is a directory
$

However, if you really want to remove a directory, you can use the -r parameter to recursively
remove the files in the directory, then the directory itself:

$ rm -r dir2
rm: descend into directory `dir2’? y
rm: remove `dir2/test1’? y
rm: remove `dir2/test3’? y
rm: remove `dir2/test4’? y
rm: remove directory `dir2’? y
$

While this works, it’s somewhat awkward. Notice that you still must verify every file that gets
removed. For a directory with lots of files and subdirectories, this can become tedious.

The ultimate solution for throwing caution to the wind and removing an entire directory, contents
and all, is the rm command with both the -r and -f parameters:

$ rm -rf dir2
$

That’s it. No warnings, no fanfare, just another shell prompt. This, of course, is an extremely
dangerous tool to have, especially if you’re logged in as the root user account. Use it sparingly,
and only after triple checking to make sure that you’re doing exactly what you want to do.

You may have noticed in the last example that I combined two command line param-

eters using one dash. This is a feature in the bash shell that allows us to combine

command line parameters to help cut down on typing.

Viewing File Contents
So far we’ve covered everything there is to know about files, except for how to peek inside of
them. There are several commands available for taking a look inside files without having to pull
out an editor (see Chapter 7). This section demonstrates a few of the commands you have avail-
able to help you examine files.

83

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Viewing file statistics
You’ve already seen that the ls command can be used to provide lots of useful information about

files. However, there’s still more information that you can’t see in the ls command (or at least
not all at once).

The stat command provides a complete rundown of the status of a file on the filesystem:

$ stat test10
File: "test10"
Size: 6 Blocks: 8 Regular File

Device: 306h/774d Inode: 1954891 Links: 2
Access: (0644/-rw-r--r--) Uid: (501/ rich) Gid: (501/ rich)
Access: Sat Sep 1 12:10:25 2007
Modify: Sat Sep 1 12:11:17 2007
Change: Sat Sep 1 12:16:42 2007

$

The results from the stat command show just about everything you’d want to know about the
file being examined, even down the major and minor device numbers of the device where the file

is being stored.

Viewing the file type
Despite all of the information the stat command produces, there’s still one piece of information

missing — the file type. Before you go charging off trying to list out a 1000-byte file, it’s usually
a good idea to get a handle on what type of file it is. If you try listing a binary file, you’ll get lots

of gibberish on your monitor, and possibly even lock up your terminal emulator.

The file command is a handy little utility to have around. It has the ability to peek inside of a
file and determine just what kind of file it is:

$ file test1
test1: ASCII text
$ file myscript
myscript: Bourne shell script text executable
$ file myprog
myprog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
$

The file command classifies files into three categories:

■ Text files: Files that contain printable characters

■ Executable files: Files that you can run on the system

■ Data files: Files that contain nonprintable binary characters, but that you can’t run on
the system

84

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

The first example shows a text file. The file command determined not only that the file contains
text but also the character code format of the text. The second example shows a text script file.
While the file is text, since it’s a script file you can execute (run) it on the system. The final
example is a binary executable program. The file command determines the platform that the
program was compiled for and what types of libraries it requires. This is an especially handy
feature if you have a binary executable program from an unknown source.

Viewing the whole file
If you have a large text file on your hands, you may want to be able to see what’s inside of it.
There are three different commands in Linux that can help you out here.

The cat command

The cat command is a handy tool for displaying all of the data inside a text file:

$ cat test1
hello

This is a test file.

That we’ll use to test the cat command.
$

Nothing too exciting, just the contents of the text file. There are a few parameters you can use
with the cat command, though, that can help you out.

The -n parameter numbers all of the lines for us:

$ cat -n test1
1 hello
2
3 This is a test file.
4
5
6 That we’ll use to test the cat command.

$

That feature will come in handy when you’re examining scripts. If you just want to number the
lines that have text in them, the -b parameter is for you:

$ cat -b test1
1 hello

2 This is a test file.

3 That we’ll use to test the cat command.
$

85

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Fancy! If you need to compress multiple blank lines into a single
blank line, use the -s parameter:
$ cat -s test1
hello

This is a test file.

That we’ll use to test the cat command.
$

Finally, if you don’t want tab characters to appear, use the -T parameter:

$ cat -T test1
hello

This is a test file.

That we’ll use to^Itest the cat command.
$

The -T parameter replaces any tabs in the text with the ^I character combination.

FIGURE 3-4

Using the more command to display a text file

86

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

For large files, the cat command can be somewhat annoying. The text in the file will just quickly
scroll off of the monitor without stopping. Fortunately, there’s a simple way to solve this problem.

The more command

The main drawback of the cat command is that you can’t control what’s happening once you
start it. To solve that problem, developers created the more command. The more command dis-
plays a text file, but stops after it displays each page of data. A sample more screen is shown in
Figure 3-4.

Notice that at the bottom of the screen in Figure 3-4 the more command displays a tag showing
that you’re still in the more application and how far along in the text file you are. This is the
prompt for the more command. At this point you can enter one of several options, shown in
Table 3-7.

TABLE 3-7

The more Command Options

Option Description

H Display a help menu.

spacebar Display the next screen of text from the file.

z Display the next screen of text from the file.

ENTER Display one more line of text from the file.

d Display a half-screen (11 lines) of text from the file.

q Exit the program.

s Skip forward one line of text.

f Skip forward one screen of text.

b Skip backward one screen of text.

/expression Search for the text expression in the file.

n Search for the next occurrence of the last specified expression.

′ Go to the first occurrence of the specified expression.

!cmd Execute a shell command.

v Start up the vi editor at the current line.

CTRL-L Redraw the screen at the current location in the file.

= Display the current line number in the file.

. Repeat the previous command.

87

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 3-5

Viewing a file using the less command

The more command allows some rudimentary movement through the text file. For more advanced
features, try the less command.

The less command

Although from its name it sounds like it shouldn’t be as advanced as the more command, the
less command is actually a play on words and is an advanced version of the more command
(the less command uses the phrase ‘‘less is more’’). It provides several very handy features for
scrolling both forward and backward through a text file, as well as some pretty advanced search-
ing capabilities.

The less command also has the feature of being able to display the contents of a file before it
finishes reading the entire file. This is a serious drawback for both the cat and more commands
when using extremely large files.

The less command operates much the same as the more command, displaying one screen of
text from a file at a time. Figure 3-5 shows the less command in action.

Notice that the less command provides additional information in its prompt, showing the total
number of lines in the file, and the range of lines currently displayed. The less command sup-
ports the same command set as the more command, plus lots more options. To see all of the
options available, look at the man pages for the less command. One set of features is that the

88

www.IrPDF.com

www.IrPDF.com

Basic bash Shell Commands 3

less command recognizes the up and down arrow keys, as well as the page up and page down
keys (assuming that you’re using a properly defined terminal). This gives you full control when
viewing a file.

Viewing parts of a file
Often the data you want to view is located either right at the top or buried at the bottom of a
text file. If the information is at the top of a large file, you still need to wait for the cat or more
commands to load the entire file before you can view it. If the information is located at the bottom
of a file (such as a log file), you need to wade through thousands of lines of text just to get to the
last few entries. Fortunately, Linux has specialized commands to solve both of these problems.

The tail command

The tail command displays the last group of lines in a file. By default, it’ll show the last 10 lines
in the file, but you can change that with command line parameters, shown in Table 3-8.

The -f parameter is a pretty cool feature of the tail command. It allows you to peek inside
a file as it’s being used by other processes. The tail command stays active and continues to
display new lines as they appear in the text file. This is a great way to monitor the system log file
in real-time mode.

The head command

While not as exotic as the tail command, the head command does what you’d expect, it dis-
plays the first group of lines at the start of a file. By default, it’ll display the first 10 lines of text.
Similar to the tail command, it supports the -c, and -n parameters so that you can alter what’s
displayed.

TABLE 3-8

The tail Command Line Parameters

Parameter Description

-c bytes Display the last bytes number of bytes in the file.

-n lines Display the last lines number of lines in the file.

-f Keeps the tail program active and continues to display new lines as
they’re added to the file.

--pid=PID Along with -f, follows a file until the process with ID PID terminates.

-s sec Along with -f, sleeps for sec seconds between iterations.

-v Always displays output headers giving the filename.

-q Never displays output headers giving the filename.

89

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Usually the beginning of a file doesn’t change, so the head command doesn’t support the -f
parameter feature. The head command is a handy way to just peek at the beginning of a file if

you’re not sure what’s inside, without having to go through the hassle of displaying the entire file.

Summary
This chapter covered the basics for working with the Linux filesystem from a shell prompt. It

started out by discussing the bash shell and showed you how to interact with the shell. The

command line interface (CLI) uses a prompt string to indicate when it’s ready for you to enter

commands. You can customize the prompt string to display useful information about your system,

your logon ID, and even dates and times.

The bash shell provides a wealth of utilities you can use to create and manipulate files. Before

you start playing with files, it’s a good idea to understand how Linux stores them. This chapter

discussed the basics of the Linux virtual directory and showed how Linux references store media

devices. After describing the Linux filesystem, the chapter walked you through using the cd com-

mand to move around the virtual directory.

After showing you how to get to a directory, the chapter demonstrated how to use the ls com-

mand to list the files and subdirectories. There are lots of parameters that customize the output

of the ls command. You can obtain information on files and directories just by using the ls
command.

The touch command is useful for creating empty files and for changing the access or modification

times on an existing file. The chapter also discussed using the cp command to copy existing files

from one location to another. It walked you through the process of linking files instead of copying

them, providing an easy way to have the same file in two locations without making a separate

copy. The cp command does this, as does the ln command.

Next, you learned how to rename files (called moving) in Linux using the mv command, and saw

how to delete files (called removing) using the rm command. It also showed how to perform the

same tasks with directories, using the mkdir and rmdir commands.

Finally, the chapter closed with a discussion on viewing the contents of files. The cat, more, and

less commands provide easy methods for viewing the entire contents of a file, while the tail
and head commands are great for peeking inside a file to just see a small portion of it.

The next chapter continues the discussion on bash shell commands. We’ll take a look at more

advanced administrator commands that’ll come in handy as you administer your Linux system.

90

www.IrPDF.com

www.IrPDF.com

More bash Shell
Commands

IN THIS CHAPTER

Managing processes

Getting disk statistics

Mounting new disks

Sorting data

Archiving data

C
hapter 3 covered the basics of rummaging through the Linux filesys-

tem and working with the files and directories. File and directory

management is a major feature of the Linux shell; however, there

are some more things we should look at before we start our script program-

ming. This chapter digs into the Linux system management commands,

showing you how to peek inside your Linux system using command line
commands. After that, it shows you a few handy commands that you can

use to work with data files on the system.

Monitoring Programs

One of the toughest jobs of being a Linux system administrator is keeping

track of what’s running on the system — especially now, when graphical

desktops take a handful of programs just to produce a single desktop. There

are always a lot of programs running on the system.

Fortunately, there are a few command line tools that can help make life

easier for you. This section covers a few of the basic tools you’ll need to

know how to use to manage programs on your Linux system.

Peeking at the processes
When a program runs on the system, it’s referred to as a process. To examine

these processes, you’ll need to become familiar with the ps command, the

Swiss Army knife of utilities. It can produce lots of information about all

the programs running on your system.

91

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Unfortunately, with this robustness comes complexity — in the form of numerous parameters —
making the ps command probably one of the most difficult commands to master. Most system
administrators find a subset of these parameters that provide the information they want, and then
stick with using only those.

That said, however, the basic ps command doesn’t really provide all that much information:

$ ps
PID TTY TIME CMD
3081 pts/0 00:00:00 bash
3209 pts/0 00:00:00 ps

$

Not too exciting. By default the ps command shows only the processes that belong to the current
user and that are running on the current terminal. In this case, I only had my bash shell run-
ning (remember, the shell is just another program running on the system) and, of course, the ps
command itself.

The basic output shows the process ID (PID) of the programs, the terminal (TTY) that they are
running from, and the CPU time the process has used.

The tricky feature of the ps command (and the part that makes it so complicated)

is that at one time there were two versions of it. Each version had its own set of

command line parameters controlling what information it displayed, and how. Recently, Linux

developers have combined the two ps command formats into a single ps program (and of course

added their own touches).

The GNU ps command that’s used in Linux systems supports three different types of command
line parameters:

■ Unix-style parameters, which are preceded by a dash

■ BSD-style parameters, which are not preceded by a dash

■ GNU long parameters, which are preceded by a double dash

The following sections examine the three different parameter types and show examples of how
they work.

Unix-style parameters

The Unix-style parameters originated with the original ps command that ran on the AT&T Unix
systems invented by Bell Labs. These parameters are shown in Table 4-1.

TABLE 4-1

The ps Command Unix Parameters

Parameter Description

-A Show all processes.

-N Show the opposite of the specified parameters.

continued

92

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

TABLE 4-1 (continued)

Parameter Description

-a Show all processes except session headers and processes without a terminal.

-d Show all processes except session headers.

-e Show all processes.

-C cmslist Show processes contained in the list cmdlist.

-G grplist Show processes with a group ID listed in grplist.

-U userlist Show processes owned by a userid listed in userlist.

-g grplist Show processes by session or by groupid contained in grplist.

-p pidlist Show processes with PIDs in the list pidlist.

-s sesslist Show processes with session ID in the list sesslist.

-t ttylist Show processes with terminal ID in the list ttylist.

-u userlist Show processes by effective userid in the list userlist.

-F Use extra full output.

-O format Display specific columns in the list format, along with the default columns.

-M Display security information about the process.

-c Show additional scheduler information about the process.

-f Display a full format listing.

-j Show job information.

-l Display a long listing.

-o format Display only specific columns listed in format.

-y Don’t show process flags.

-Z Display the security context information.

-H Display processes in a hierarchical format (showing parent processes).

-n namelist Define the values to display in the WCHAN column.

-w Use wide output format, for unlimited width displays

-L Show process threads

-V Display the version of ps

That’s a lot of parameters, and remember, there are still more! The key to using the ps command

is not to memorize all of the available parameters, only those you find most useful. Most Linux

system administrators have their own sets of commonly used parameters that they remember

93

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

for extracting pertinent information. For example, if you need to see everything running on the

system, use the -ef parameter combination (the ps command lets you combine parameters

together like this):

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 11:29 ? 00:00:01 init [5]
root 2 0 0 11:29 ? 00:00:00 [kthreadd]
root 3 2 0 11:29 ? 00:00:00 [migration/0]
root 4 2 0 11:29 ? 00:00:00 [ksoftirqd/0]
root 5 2 0 11:29 ? 00:00:00 [watchdog/0]
root 6 2 0 11:29 ? 00:00:00 [events/0]
root 7 2 0 11:29 ? 00:00:00 [khelper]
root 47 2 0 11:29 ? 00:00:00 [kblockd/0]
root 48 2 0 11:29 ? 00:00:00 [kacpid]
68 2349 1 0 11:30 ? 00:00:00 hald
root 2489 1 0 11:30 tty1 00:00:00 /sbin/mingetty tty1
root 2490 1 0 11:30 tty2 00:00:00 /sbin/mingetty tty2
root 2491 1 0 11:30 tty3 00:00:00 /sbin/mingetty tty3
root 2492 1 0 11:30 tty4 00:00:00 /sbin/mingetty tty4
root 2493 1 0 11:30 tty5 00:00:00 /sbin/mingetty tty5
root 2494 1 0 11:30 tty6 00:00:00 /sbin/mingetty tty6
root 2956 1 0 11:42 ? 00:00:00 /usr/sbin/httpd
apache 2958 2956 0 11:42 ? 00:00:00 /usr/sbin/httpd
apache 2959 2956 0 11:42 ? 00:00:00 /usr/sbin/httpd
root 2995 1 0 11:43 ? 00:00:00 auditd
root 2997 2995 0 11:43 ? 00:00:00 /sbin/audispd
root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
rich 3081 3080 0 12:00 pts/0 00:00:00 -bash
rich 4445 3081 3 13:48 pts/0 00:00:00 ps -ef
$

I’ve cut out quite a few lines from the output to save space, but as you can see, there are lots

of processes running on a Linux system. This example uses two parameters, the -e parameter,

which shows all of the processes running on the system, and the -f parameter, which expands

the output to show a few useful columns of information:

■ UID: The user responsible for launching the process

■ PID: The process ID of the process

■ PPID: The PID of the parent process (if a process is started by another process)

■ C: Processor utilization over the lifetime of the process

■ STIME: The system time when the process started

■ TTY: The terminal device from which the process was launched

94

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

■ TIME: The cumulative CPU time required to run the process

■ CMD: The name of the program that was started

This produces a reasonable amount of information, which is what many system administrators

would like to see. For even more information, you can use the -l parameter, which produces the
long format output:

$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 500 3081 3080 0 80 0 - 1173 wait pts/0 00:00:00 bash
0 R 500 4463 3081 1 80 0 - 1116 - pts/0 00:00:00 ps
$

Notice the extra columns that appear when you use the -l parameter:

■ F: System flags assigned to the process by the kernel

■ S: The state of the process (O = running on processor; S = sleeping; R = runnable,

waiting to run; Z = zombie, process terminated but parent not available; T = process

stopped)

■ PRI: The priority of the process (higher numbers mean lower priority)

■ NI: The nice value, which is used for determining priorities

■ ADDR: The memory address of the process

■ SZ: Approximate amount of swap space required if the process was swapped out

■ WCHAN: Address of the kernel function where the process is sleeping

Before moving on, there’s one more extremely handy parameter to remember, -H. The -H param-

eter organizes the processes in a hierarchical format, showing which processes started which other

processes. Here’s an extraction from an -efH-formatted listing:

$ ps -efH
UID PID PPID C STIME TTY TIME CMD
root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
rich 3081 3080 0 12:00 pts/0 00:00:00 -bash
rich 4803 3081 1 14:31 pts/0 00:00:00 ps -efH

Notice the shifting in the CMD column output. This shows the hierarchy of the processes that are

running. First, the sshd process started by the root user (this is the Secure Shell (SSH) server
session, which listens for remote SSH connections). Next, when I connected from a remote ter-

minal to the system, the main SSH process spawned a terminal process (pts/0), which in turn

spawned a bash shell.

From there, I executed the ps command, which appears as a child process from the bash pro-

cess. On a multi-user system, this is a very useful tool when trying to troubleshoot runaway

processes, or when trying to track down which userid or terminal they belong to.

95

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

BSD-style parameters

Now that you’ve seen the Unix parameters, let’s take a look at the BSD-style parameters. The

Berkeley Software Distribution (BSD) was a version of Unix developed at (of course) the Uni-

versity of California, Berkeley. It had many subtle differences from the AT&T Unix system, thus

sparking many Unix wars over the years. The BSD version of the ps command parameters are

shown in Table 4-2.

TABLE 4-2

The ps Command BSD Parameters

Parameter Description

T Show all processes associated with this terminal.

a Show all processes associated with any terminal.

g Show all processes including session headers.

r Show only running processes.

x Show all processes, even those without a terminal device assigned.

U userlist Show processes owned by a userid listed in userlist.

p pidlist Show processes with a PID listed in pidlist.

t ttylist Show processes associated with a terminal listed in ttylist.

O format List specific columns in format to display along with the standard columns.

X Display data in the register format.

Z Include security information in the output.

j Show job information.

l Use the long format.

o format Display only columns specified in format.

s Use the signal format.

u Use the user-oriented format.

v Use the virtual memory format.

N namelist Define the values to use in the WCHAN column.

O order Define the order in which to display the information columns.

S Sum numerical information, such as CPU and memory usage, for child
processes into the parent process.

continued

96

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

TABLE 4-2 (continued)

Parameter Description

c Display the true command name (the name of the program used to start the
process).

e Display any environment variables used by the command.

f Display processes in a hierarchical format, showing which processes started
which processes.

h Don’t display the header information.

k sort Define the column(s) to use for sorting the output.

n Use numeric values for user and group IDs, along with WCHAN information.

w Produce wide output for wider terminals.

H Display threads as if they were processes.

m Display threads after their processes.

L List all format specifiers.

V Display the version of ps.

As you can see, there’s a lot of overlap between the Unix and BSD types of parameters. Most of

the information you can get from one you can also get from the other. Most of the time which
one you use depends on which format you’re more comfortable with (for example, if you were

used to a BSD environment before using Linux).

When you use the BSD-style parameters, the ps command automatically changes the output to

simulate the BSD format. Here’s an example using the l parameter:

$ ps l
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 500 3081 3080 20 0 4692 1432 wait Ss pts/0 0:00 -bash
0 500 5104 3081 20 0 4468 844 - R+ pts/0 0:00 ps l
$

Notice that while many of the output columns are the same as when we used the Unix-style
parameters, there are a couple of different ones:

■ VSZ: The size in kilobytes of the process in memory

■ RSS: The physical memory that a process has used that isn’t swapped out

■ STAT: A two-character state code representing the current process state

Many system administrators like the BSD-style l parameter because it produces a more detailed

state code for processes (the STAT column). The two-character code more precisely defines exactly
what’s happening with the process than the single-character Unix-style output.

97

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The first character uses the same values as the Unix-style S output column, showing when a

process is sleeping, running, or waiting. The second character further defines the process’s status:

■ <: The process is running at high priority.

■ N: The process is running at low priority.

■ L: The process has pages locked in memory.

■ s: The process is a session leader.

■ l: The process is multi-threaded.

■ +: The process is running in the foreground.

From the simple example shown above, you can see that the bash command is sleeping, but it is

a session leader (it’s the main process in my session), while the ps command was running in the

foreground on the system.

The GNU long parameters

Finally, the GNU developers put their own touches on the new, improved ps command by adding

a few more options to the parameter mix. Some of the GNU long parameters copy existing

Unix- or BSD-style parameters, while others provide new features. Table 4-3 lists the GNU long

parameters available.

You can combine GNU long parameters with either Unix- or BSD-style parameters to really cus-

tomize your display. One cool feature of GNU long parameters that I really like is the --forest
parameter. It displays the hierarchical process information, but using ASCII characters to draw

cute charts:

1981 ? 00:00:00 sshd
3078 ? 00:00:00 \ sshd
3080 ? 00:00:00 \ sshd
3081 pts/0 00:00:00 \ bash

16676 pts/0 00:00:00 \ ps

This format makes tracing child and parent processes a snap!

Real-time process monitoring
The ps command is great for gleaning information about processes running on the system, but it

has one drawback. The ps command can only display information for a specific point in time. If

you’re trying to find trends about processes that are frequently swapped in and out of memory,

it’s hard to do that with the ps command.

Instead, the top command can solve this problem. The top command displays process informa-

tion similarly to the ps command, but it does it in real-time mode. Figure 4-1 is a snapshot of

the top command in action.

98

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

TABLE 4-3

The ps Command GNU Parameters

Parameter Description

--deselect Show all processes except those listed in the command line.

--Group grplist Show processes whose group ID is listed in grplist.

--User userlist Show processes whose user ID is listed in userlist.

--group grplist Show processes whose effective group ID is listed in grplist.

--pid pidlist Show processes whose process ID is listed in pidlist.

--ppid pidlist Show processes whose parent process ID is listed in pidlist.

--sid sidlist Show processes whose session ID is listed in sidlist.

--tty ttylist Show processes whose terminal device ID is listed in ttylist.

--user userlist Show processes whose effective user ID is listed in userlist.

--format format Display only columns specified in the format.

--context Display additional security information.

--cols n Set screen width to n columns.

--columns n Set screen width to n columns.

--cumulative Include stopped child process information.

--forest Display processes in a hierarchical listing showing parent processes.

--headers Repeat column headers on each page of output.

--no-headers Don’t display column headers.

--lines n Set the screen height to n lines.

--rows n Set the screen height to n rows.

--sort order Define the column(s) to use for sorting the output.

--width n Set the screen width to n columns.

--help Display the help information.

--info Display debugging information.

--version Display the version of the ps program.

99

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 4-1

The output of the top command while it is running

The first section of the output shows general system information. The first line shows the current

time, how long the system has been up, the number of users logged in, and the load average

on the system.

The load average appears as three numbers, the 1-minute, 5-minute, and 15-minute load aver-

ages. The higher the values, the more load the system is experiencing. It’s not uncommon for the

1-minute load value to be high for short bursts of activity. If the 15-minute load value is high,

your system may be in trouble.

The trick in Linux system administration is defining what exactly a high load average

value is. This value depends on what’s normally running on your system and the hard-

ware configuration. What’s high for one system might be normal for another. Usually, if your load

averages start getting over 2, things are getting busy on your system.

The second line shows general process information (called tasks in top): how many processes are
running, sleeping, stopped, and zombie (have finished but their parent process hasn’t responded).

The next line shows general CPU information. The top display breaks down the CPU utilization

into several categories depending on the owner of the process (user versus system processes) and
the state of the processes (running, idle, or waiting).

Following that, there are two lines that detail the status of the system memory. The first line
shows the status of the physical memory in the system, how much total memory there is, how

100

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

much is currently being used, and how much is free. The second memory line shows the status

of the swap memory area in the system (if any is installed), with the same information.

Finally, the next section shows a detailed list of the currently running processes, with some
information columns that should look familiar from the ps command output:

■ PID: The process ID of the process

■ USER: The user name of the owner of the process

■ PR: The priority of the process

■ NI: The nice value of the process

■ VIRT: The total amount of virtual memory used by the process

■ RES: The amount of physical memory the process is using

■ SHR: The amount of memory the process is sharing with other processes

■ S: The process status (D = interruptible sleep, R = running, S = sleeping, T = traced or
stopped, or Z = zombie)

■ %CPU: The share of CPU time that the process is using

■ %MEM: The share of available physical memory the process is using

■ TIME+: The total CPU time the process has used since starting

■ COMMAND: The command line name of the process (program started)

By default, when you start top it sorts the processes based on the %CPU value. You can change
the sort order by using one of several interactive commands while top is running. Each interactive

command is a single character you can press while top is running and changes the behavior of
the program. These commands are shown in Table 4-4.

You have lots of control over the output of the top command. Using this tool, you can often find

offending processes that have taken over your system. Of course, once you find one, the next job
is to stop it, which brings us to the next topic.

Stopping processes
A crucial part of being a system administrator is knowing when and how to stop a process.

Sometimes a process gets hung up and just needs a gentle nudge to either get going again or
stop. Other times, a process runs away with the CPU and refuses to give it up. In both cases,
you need a command that will allow you to control a process. Linux follows the Unix method of

interprocess communication.

In Linux, processes communicate between each other using signals. A process signal is a
predefined message that processes recognize and may choose to ignore or act on. The devel-
opers program how a process handles signals. Most well-written applications have the ability to

receive and act on the standard Unix process signals. These signals are shown in Table 4-5.

There are two commands available in Linux that allow us to send process signals to running
processes.

101

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 4-4

The top Interactive Commands

Command Description

1 Toggle the single CPU and Symmetric Multiprocessor (SMP) state.

b Toggle the bolding of important numbers in the tables.

I Toggle Irix/Solaris mode.

z Configure color for the table.

l Toggle the displaying of the load average information line.

t Toggle the displaying of the CPU information line.

m Toggle the displaying of the MEM and SWAP information lines.

f Add or remove different information columns.

o Change the display order of information columns.

F or O Select a field on which to sort the processes (%CPU by default).

< or > Move the sort field one column left (<) or right (>).

r Toggle the normal or reverse sort order.

h Toggle the showing of threads.

c Toggle the showing of the command name or the full command line
(including parameters) of processes.

i Toggle the showing of idle processes.

S Toggle the showing of the cumulative CPU time or relative CPU time.

x Toggle highlighting of the sort field.

y Toggle highlighting of running tasks.

z Toggle color and mono mode.

b Toggle bold mode for x and y modes.

u Show processes for a specific user.

n or # Set the number of processes to display.

k Kill a specific process (only if process owner or if root user).

r Change the priority (renice) of a specific process (only if process owner or if
root user).

d or s Change the update interval (default three seconds).

W Write current settings to a configuration file.

q Exit the top command.

102

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

TABLE 4-5

Linux Process Signals

Signal Name Description

1 HUP Hang up.

2 INT Interrupt.

3 QUIT Stop running.

9 KILL Unconditionally terminate.

11 SEGV Segment violation.

15 TERM Terminate if possible.

17 STOP Stop unconditionally, but don’t terminate.

18 TSTP Stop or pause, but continue to run in background.

19 CONT Resume execution after STOP or TSTP.

The kill command

The kill command allows you to send signals to processes based on their process ID (PID).
By default the kill command sends a TERM signal to all the PIDs listed on the command line.
Unfortunately, you can only use the process PID instead of its command name, making the kill
command difficult to use sometimes.

To send a process signal, you must either be the owner of the process or be logged in as the root
user.

$ kill 3940
-bash: kill: (3940) - Operation not permitted
$

The TERM signal tells the process to kindly stop running. Unfortunately, if you have a runaway
process, most likely it’ll ignore the request. When you need to get forceful, the -s parameter
allows you to specify other signals (either using their name or signal number).

The generally accepted procedure is to first try the TERM signal. If the process ignores that, try the
INT or HUP signals. If the program recognizes these signals, it’ll try to gracefully stop doing what
it was doing before shutting down. The most forceful signal is the KILL signal. When a process
receives this signal, it immediately stops running. This can lead to corrupt files.

As you can see from the following example, there’s no output associated with the kill command.

kill -s HUP 3940
#

To see if the command was effective, you’ll have to perform another ps or top command to see
if the offending process stopped.

103

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The killall command

The killall command is a powerful way to stop processes by using their names rather than the

PID numbers. The killall command allows you to use wildcard characters as well, making it a

very useful tool when you’ve got a system that’s gone awry.

Be extremely careful using the killall command when logged in as the root user.

It’s easy to get carried away with wildcard characters and accidentally stop important

system processes. This could lead to a damaged filesystem.

Monitoring Disk Space
Another important task of the system administrator is to keep track of the disk usage on the

system. Whether you’re running a simple Linux desktop or a large Linux server, you’ll need to

know how much space you have for your applications.

There are a few command line commands you can use to help you manage the media environ-
ment on your Linux system. This section describes the core commands you’ll likely run into

during your system administration duties.

Mounting media
As discussed in Chapter 3, the Linux filesystem combines all media disks into a single virtual
directory. Before you can use a new media disk on your system, you need to place it in the

virtual directory. This task is called mounting.

In today’s graphical desktop world, most Linux distributions have the ability to automatically

mount specific types of removable media. A removable media device is a medium that (obviously)

can be easily removed from the PC, such as CD-ROMs, floppy disks, and, recently, USB memory

sticks.

If you’re not using a distribution that automatically mounts and unmounts removable media,

you’ll have to do it yourself. This section describes the Linux command line commands to

help you manage your removable media devices.

The mount command

Oddly enough, the command used to mount media is called mount. By default, the mount
command displays a list of media devices currently mounted on the system:

$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda1 on /boot type ext3 (rw)

104

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt misc type binfmt misc (rw)
sunrpc on /var/lib/nfs/rpc pipefs type rpc pipefs (rw)
/dev/sdb1 on /media/disk type vfat
(rw,nosuid,nodev,uhelper=hal,shortname=lower,uid=503)
$

There are four pieces of information the mount command provides:

■ The device location of the media

■ The mount point in the virtual directory where the media is mounted

■ The filesystem type

■ The access status of the mounted media

The last entry in the example above is a USB memory stick that the GNOME desktop automat-

ically mounted at the /media/disk mount point. The vfat filesystem type shows that it was

formatted on a Microsoft Windows PC.

To manually mount a media device in the virtual directory, you’ll need to be logged in as the root

user. The basic command for manually mounting a media device is:

mount -t type device directory

The type parameter defines the filesystem type the disk was formatted under. There are lots and

lots of different filesystem types that Linux recognizes. If you share removable media devices with

your Windows PCs, the types you’re most likely to run into are:

■ vfat: Windows long filesystem.

■ ntfs: Windows advanced filesystem used in Windows NT, XP, and Vista.

■ iso9660: The standard CD-ROM filesystem.

Most USB memory sticks and floppies are formatted using the vfat filesystem. If you need to

mount a data CD, you’ll have to use the iso9660 filesystem type.

The next two parameters define the location of the device file for the media device and the

location in the virtual directory for the mount point. For example, to manually mount the USB

memory stick at device /dev/sdb1 at location /media/disk, you’d use the command:

mount -t vfat /dev/sdb1 /media/disk

Once a media device is mounted in the virtual directory, the root user will have full access to the

device, but access by other users will be restricted. You can control who has access to the device

using directory permissions (discussed in Chapter 6).

In case you need to use some of the more exotic features of the mount command, the available

parameters are shown in Table 4-6.

105

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 4-6

The mount Command Parameters

Parameter Description

-a Mount all filesystems specified in the /etc/fstab file.

-f Causes the mount command to simulate mounting a device, but not
actually mount it.

-F When used with the -a parameter, mounts all filesystems at the same time.

-v Verbose mode, explains all the steps required to mount the device.

-I Don’t use any filesystem helper files under /sbin/mount.filesystem.

-l Add the filesystem labels automatically for ext2, ext3, or XFS filesystems.

-n Mount the device without registering it in the /etc/mstab mounted device
file.

-p num For encrypted mounting, read the passphrase from the file descriptor num.

-s Ignore mount options not supported by the filesystem.

-r Mount the device as read-only.

-w Mount the device as read-write (the default).

-L label Mount the device with the specified label.

-U uuid Mount the device with the specified uuid.

-O When used with the -a parameter, limits the set of filesystems applied.

-o Add specific options to the filesytem.

The -o option allows you to mount the filesystem with a comma-separated list of additional

options. The popular options to use are:

■ ro: Mount as read-only.

■ rw: Mount as read-write.

■ user: Allow an ordinary user to mount the filesystem.

■ check=none: Mount the filesystem without performing an integrity check.

■ loop: Mount a file.

A popular thing in Linux these days is to distribute a CD as a .iso file. The .iso file is a com-

plete image of the CD in a single file. Most CD-burning software packages can create a new CD

based on the .iso file. A feature of the mount command is that you can mount a .iso file

106

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

directly to your Linux virtual directory without having to burn it onto a CD. This is accomplished
using the -o parameter with the loop option:

$ mkdir mnt
$ su
Password:
mount -t iso9660 -o loop MEPIS-KDE4-LIVE-DVD 32.iso mnt
ls -l mnt
total 16
-r--r--r-- 1 root root 702 2007-08-03 08:49 about
dr-xr-xr-x 3 root root 2048 2007-07-29 14:30 boot
-r--r--r-- 1 root root 2048 2007-08-09 22:36 boot.catalog
-r--r--r-- 1 root root 894 2004-01-23 13:22 cdrom.ico
-r--r--r-- 1 root root 5229 2006-07-07 18:07 MCWL
dr-xr-xr-x 2 root root 2048 2007-08-09 22:32 mepis
dr-xr-xr-x 2 root root 2048 2007-04-03 16:44 OSX
-r--r--r-- 1 root root 107 2007-08-09 22:36 version
cd mnt/boot
ls -l
total 4399
dr-xr-xr-x 2 root root 2048 2007-06-29 09:00 grub
-r--r--r-- 1 root root 2392512 2007-07-29 12:53 initrd.gz
-r--r--r-- 1 root root 94760 2007-06-14 14:56 memtest
-r--r--r-- 1 root root 2014704 2007-07-29 14:26 vmlinuz
#

The mount command mounted the .iso CD image file just as if it were a real CD and allowed
us to maneuver around within its filesystem.

The umount command

To remove a removable media device, you should never just remove it from the system. Instead,
you should always unmount it first.

Linux doesn’t allow you to eject a mounted CD. If you ever have trouble removing a

CD from the drive, most likely it means the CD is still mounted in the virtual directory.

Unmount it first, then try to eject it.

The command used to unmount devices is umount (yes, there’s no ‘‘n’’ in the command, which
gets confusing sometimes). The format for the umount command is pretty simple:

umount [directory | device]

The umount command gives you the choice of defining the media device by either its device
location or its mounted directory name. If there are any open files contained on the device, the
system won’t let you unmount it.

[root@testbox boot]# umount /home/rich/mnt
umount: /home/rich/mnt: device is busy

107

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

umount: /home/rich/mnt: device is busy
[root@testbox boot]# cd /home/rich
[root@testbox rich]# umount /home/rich/mnt
[root@testbox rich]# ls -l mnt
total 0
[root@testbox rich]#

In this example, even though I was not using a file from the mounted .iso image file, I was
still in a directory within the filesystem structure, so the umount command wouldn’t let me
unmount the image file. Once I moved out of the image file filesystem, I was able to success-
fully unmount the image file.

Using the df command
Sometimes you need to see how much disk space is available on an individual device. The df
command allows us to easily see what’s happening on all of the mounted disks:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 18251068 7703964 9605024 45% /
/dev/sda1 101086 18680 77187 20% /boot
tmpfs 119536 0 119536 0% /dev/shm
/dev/sdb1 127462 113892 13570 90% /media/disk
$

The df command shows each mounted filesystem that contains data. As you can see from the
mount command earlier, some mounted devices are used for internal system purposes. The

command displays:

■ The device location of the device

■ How many 1024-byte blocks of data it can hold

■ How many 1024-byte blocks are used

■ How many 1024-byte blocks are available

■ The amount of used space as a percentage

■ The mount point where the device is mounted

There are a few different command line parameters available with the df command, most of
which you’ll never use. One popular parameter is -h, which shows the disk space in human-
readable form, usually as an M for megabytes or a G for gigabytes:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sdb2 18G 7.4G 9.2G 45% /
/dev/sda1 99M 19M 76M 20% /boot
tmpfs 117M 0 117M 0% /dev/shm
/dev/sdb1 125M 112M 14M 90% /media/disk
$

108

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

Now instead of having to decode those ugly block numbers, all of the disk sizes are shown using

‘‘normal’’ sizes. The df command is invaluable in troubleshooting disk space problems on the

system.

Remember, the Linux system always has processes running in the background that

handle files. The values from the df command reflect what the Linux system thinks

are the current values at that point in time. It’s possible that you have a process running that has

created or deleted a file, but has not released the file yet. This value is not included in the free

space calculation.

Using the du command
With the df command, knowing that a disk is running out of space is easy. The next problem for

the system administrator is to know what to do when that happens.

Another useful command to help us out is the du command. The du command shows the disk

usage for a specific directory (by default, the current directory). This is a quick way to determine

if you have any obvious disk hogs on the system.

By default, the du command displays all of the files, directories, and subdirectories under the

current directory, and it shows how many disk blocks each file or directory takes. For a standard-

sized directory, this can be quite a listing. Here’s a partial listing of using the du command:

$ du
484 ./.gstreamer-0.10
8 ./Templates
8 ./Download
8 ./.ccache/7/0
24 ./.ccache/7
368 ./.ccache/a/d
384 ./.ccache/a
424 ./.ccache
8 ./Public
8 ./.gphpedit/plugins
32 ./.gphpedit
72 ./.gconfd
128 ./.nautilus/metafiles
384 ./.nautilus
72 ./.bittorrent/data/metainfo
20 ./.bittorrent/data/resume
144 ./.bittorrent/data
152 ./.bittorrent
8 ./Videos
8 ./Music
16 ./.config/gtk-2.0
40 ./.config
8 ./Documents

109

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The number at the right of each line is the number of disk blocks that each file or directory takes.

Notice that the listing starts at the bottom of a directory and works its way up through the files
and subdirectories contained within the directory.

The du command by itself can be somewhat useless. It’s nice to be able to see how much disk

space each individual file and directory takes up, but it can be meaningless when you have to
wade through pages and pages of information before you find what you’re looking for.

There are a few command line parameters that you can use with the du command to make things

a little more legible:

■ -c: Produce a grand total of all the files listed.

■ -h: Print sizes in human-readable form, using K for kilobyte, M for megabyte, and G for
gigabyte.

■ -s: Summarize each argument.

The next step for the system administrator is to use some file-handling commands for manipula-

ting large amounts of data. That’s exactly what the next section covers.

Working with Data Files
When you have a large amount of data, it’s often difficult to handle the information and make it
useful. As you saw with the du command in the previous section, it’s easy to get data overload
when working with system commands.

The Linux system provides several command line tools to help us manage large amounts of
data. This section covers the basic commands that every system administrator — as well as any
everyday Linux user — should know how to use to make their lives easier.

Sorting data
One popular function that comes in handy when working with large amounts of data is the sort
command. The sort command does what it says — it sorts data.

By default, the sort command sorts the data lines in a text file using standard sorting rules for
the language you specify as the default for the session.

$ cat file1
one
two
three
four
five
$ sort file1
five

110

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

four
one
three
two
$

Pretty simple. However, things aren’t always as easy as they appear. Take a look at this example:

$ cat file2
1
2
100
45
3
10
145
75
$ sort file2
1
10
100
145
2
3
45
75
$

If you were expecting the numbers to sort in numerical order, you were disappointed. By default,
the sort command interprets numbers as characters and performs a standard character sort,
producing output that might not be what you want. To solve this problem, use the -n parameter,
which tells the sort command to recognize numbers as numbers instead of characters, and to
sort them based on their numerical values:

$ sort -n file2
1
2
3
10
45
75
100
145
$

Now, that’s much better! Another common parameter that’s used is -M, the month sort. Linux log
files usually contain a timestamp at the beginning of the line to indicate when the event occurred:

Sep 13 07:10:09 testbox smartd[2718]: Device: /dev/sda, opened

111

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

If you sort a file that uses timestamp dates using the default sort, you’ll get something like this:

$ sort file3
Apr
Aug
Dec
Feb
Jan
Jul
Jun
Mar
May
Nov
Oct
Sep
$

Not exactly what you wanted. If you use the -M parameter, the sort command recognizes the

three-character month nomenclature, and sorts appropriately:

$ sort -M file3
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
$

There are several other handy sort parameters to use, shown in Table 4-7.

The -k and -t parameters are handy when sorting data that uses fields, such as the /etc/passwd
file. Use the -t parameter to specify the field separator character, and the -k parameter to specify

which field to sort on. For example, to sort the password file based on numerical userid, just

do this:

$ sort -t ’:’ -k 3 -n /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync

112

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

Now the data is perfectly sorted based on the third field, which is the numerical userid value.

The -n parameter is great for sorting numerical outputs, such as the output of the du command:

$ du -sh * | sort -nr
1008k mrtg-2.9.29.tar.gz
972k bldg1
888k fbs2.pdf
760k Printtest
680k rsync-2.6.6.tar.gz
660k code
516k fig1001.tiff
496k test
496k php-common-4.0.4pl1-6mdk.i586.rpm
448k MesaGLUT-6.5.1.tar.gz
400k plp

Notice that the -r option also sorts the values in descending order, so you can easily see what
files are taking up the most space in your directory.

TABLE 4-7

The sort Command Parameters

Single Dash Double Dash Description

-b --ignore-leading-blanks Ignore leading blanks when sorting.

-C --check=quiet Don’t sort, but don’t report if data is out of
sort order.

-c --check Don’t sort, but check if the input data is
already sorted. Report if not sorted.

-d --dictionary-order Consider only blanks and alphanumeric
characters; don’t consider special characters.

-f --ignore-case By default, sort orders capitalized letters
first. This parameter ignores case.

-g --general-numeric-sort Use general numerical value to sort.

continued

113

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 4-7 (continued)

Single Dash Double Dash Description

-i --ignore-nonprinting Ignore nonprintable characters in the sort.

-k --key=POS1[,POS2] Sort based on position POS1, and end at
POS2 if specified.

-M --month-sort Sort by month order using three-character
month names.

-m --merge Merge two already sorted data files.

-n --numeric-sort Sort by string numerical value.

-o -output=file Write results to file specified.

-R --random-sort Sort by a random hash of keys.

--random-source=FILE Specify the file for random bytes used by the
-R parameter.

-r --reverse Reverse the sort order (descending instead of
ascending.

-S --buffer-size=SIZE Specify the amount of memory to use.

-s --stable Disable last-resort comparison.

-T --temporary-direction=DIR Specify a location to store temporary
working files.

-t --field-separator=SEP Specify the character used to distinguish key
positions.

-u --unique With the -c parameter, check for strict
ordering; without the -c parameter, output
only the first occurrence of two similar lines.

-z --zero-terminated End all lines with a NULL character instead
of a newline.

Searching for data
Often in a large file you have to look for a specific line of data buried somewhere in the middle
of the file. Instead of manually scrolling through the entire file, you can let the grep command
search for you. The command line format for the grep command is:

grep [options] pattern [file]

The grep command searches either the input or the file you specify for lines that contain
characters that match the specified pattern. The output from grep is the lines that contain the
matching pattern.

Here are two simple examples of using the grep command with the file1 file used in the
Sorting data section:

114

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

$ grep three file1
three
$ grep t file1
two
three
$

The first example searches the file file1 for text matching the pattern three. The grep com-
mand produces the line that contains the matching pattern. The next example searches the file

file1 for the text matching the pattern t. In this case, there were two lines that matched the
specified pattern, and both are displayed.

Because of the popularity of the grep command, it has undergone lots of development changes

over its lifetime. There are lots of features that have been added to the grep command. If you
look over the man pages for the grep command, you’ll see how versatile it really is.

If you want to reverse the search (output lines that don’t match the pattern) use the -v parameter:

$ grep -v t file1
one
four
five
$

If you need to find the line numbers where the matching patterns are found, use the -n parame-
ter:

$ grep -n t file1
2:two
3:three
$

If you just need to see a count of how many lines contain the matching pattern, use the -c param-
eter:

$ grep -c t file1
2
$

If you need to specify more than one matching pattern, use the -e parameter to specify each

individual pattern:

$ grep -e t -e f file1
two
three
four
five
$

This example outputs lines that contain either the string t or the string f.

115

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

By default, the grep command uses basic Unix-style regular expressions to match patterns. A

Unix-style regular expression uses special characters to define how to look for matching patterns.

For a more detailed explanation of regular expressions, see Chapter 17.

Here’s a simple example of using a regular expression in a grep search:

$ grep [tf] file1
two
three
four
five
$

The square brackets in the regular expression indicate that grep should look for matches that
contain either a t or an f character. Without the regular expression, grep would search for text

that would match the string tf.

The egrep command is an offshoot of grep, which allows you to specify POSIX extended reg-
ular expressions, which contain more characters for specifying the matching pattern (again, see
Chapter 17 for more details). The fgrep command is another version that allows you to specify
matching patterns as a list of fixed-string values, separated by newline characters. This allows you
to place a list of strings in a file, then use that list in the fgrep command to search for the strings

in a larger file.

Compressing data
If you’ve done any work in the Microsoft Windows world, no doubt you’ve used zip files. It
became such a popular feature that Microsoft eventually incorporated it into the Windows XP

operating system. The zip utility allows you to easily compress large files (both text and exe-
cutable) into smaller files that take up less space.

Linux contains several file compression utilities. While this may sound great, it often leads to
confusion and chaos when trying to download files. Table 4-8 lists the file compression utilities
available for Linux.

The compress file compression utility is not often found on Linux systems. If you download a
file with a .Z extension, you can usually install the compress package (called ncompress in
many Linux distributions) and then uncompress the file with the uncompress command.

The bzip2 utility

The bzip2 utility is a relatively new compression package that is gaining popularity, especially
when compressing large binary files. The utilities in the bzip2 package are:

■ bzip2 for compressing files

■ bzcat for displaying the contents of compressed text files

■ bunzip2 for uncompressing compressed .bz2 files

■ bzip2recover for attempting to recover damaged compressed files

116

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

TABLE 4-8

Linux File Compression Utilities

Utility File extension Description

bzip2 .bz2 Uses the Burrows-Wheeler block sorting text
compression algorithm and Huffman coding

compress .Z Original Unix file compression utility; starting to fade
away into obscurity

gzip .gz The GNU Project’s compression utility; uses
Lempel-Ziv coding

zip .zip The Unix version of the PKZIP program for Windows

By default, the bzip2 command attempts to compress the original file, and replaces it with the

compressed file, using the same filename with a .bz2 extension:

$ ls -l myprog
-rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog
$ bzip2 myprog
$ ls -l my*
-rwxrwxr-x 1 rich rich 2378 2007-09-13 11:29 myprog.bz2
$

The original size of the myprog program was 4882 bytes, and after the bzip2 compression it is

now 2378 bytes. Also, notice that the bzip2 command automatically renamed the original file

with the .bz2 extension, indicating what compression technique we used to compress it.

To uncompress the file, just use the bunzip2 command:

$ bunzip2 myprog.bz2
$ ls -l myprog
-rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog
$

As you can see, the uncompressed file is back to the original file size. Once you compress a text

file, you can’t use the standard cat, more, or less commands to view the data. Instead, you
need to use the bzcat command:

$ bzcat test.bz2
This is a test text file.
The quick brown fox jumps over the lazy dog.
This is the end of the test text file.
$

The bzcat command displays the text inside the compressed file, without uncompressing the

actual file.

117

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The gzip utility

By far the most popular file compression utility in Linux is the gzip utility. The gzip package
is a creation of the GNU Project, in their attempt to create a free version of the original Unix
compress utility. This package includes the files:

■ gzip for compressing files

■ gzcat for displaying the contents of compressed text files

■ gunzip for uncompressing files

These utilities work the same way as the bzip2 utilities:

$ gzip myprog
$ ls -l my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz
$

The gzip command compresses the file you specify on the command line. You can also specify
more than one filename or even use wildcard characters to compress multiple files at once:

$ gzip my*
$ ls -l my*
-rwxr--r-- 1 rich rich 103 Sep 6 13:43 myprog.c.gz
-rwxr-xr-x 1 rich rich 5178 Sep 6 13:43 myprog.gz
-rwxr--r-- 1 rich rich 59 Sep 6 13:46 myscript.gz
-rwxr--r-- 1 rich rich 60 Sep 6 13:44 myscript~.gz
$

The gzip command compresses every file in the directory that matches the wildcard pattern.

The zip utility

The zip utility is compatible with the popular PKZIP package created by Phil Katz for MS-DOS
and Windows. There are four utilities in the Linux zip package:

■ zip creates a compressed file containing listed files and directories.

■ zipcloak creates an encrypted compress file containing listed files and directories.

■ zipnote extracts the comments from a zip file.

■ zipsplit splits a zip file into smaller files of a set size (used for copying large zip files
to floppy disks).

■ unzip extracts files and directories from a compressed zip file.

To see all of the options available for the zip utility, just enter it by itself on the command line:

$ zip
Copyright (C) 1990-2005 Info-ZIP
Type ’zip "-L"’ for software license.
Zip 2.31 (March 8th 2005). Usage:

118

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

zip [-options] [-b path] [-t mmddyyyy] [-n suffixes] [zipfile list]
[-xi list]

The default action is to add or replace zipfile entries from list,
which can include the special name - to compress standard input.
If zipfile and list are omitted, zip compresses stdin to stdout.

-f freshen: only changed files -u update: only changed or new files
-d delete entries in zipfile -m move into zipfile (delete files)
-r recurse into directories -j junk directory names
-0 store only -l convert LF to CR LF
-1 compress faster -9 compress better
-q quiet operation -v verbose operation
-c add one-line comments -z add zipfile comment
-@ read names from stdin -o make file as old as latest entry
-x exclude the following names -i include only the following names
-F fix zipfile (-FF try harder) -D do not add directory entries
-A adjust self-extracting exe -J junk zipfile prefix (unzipsfx)
-T test zipfile integrity -X eXclude eXtra file attributes
-y store symbolic links as the link instead of the referenced file
-R PKZIP recursion (see manual)
-e encrypt -n don’t compress these suffixes
$

The power of the zip utility is its ability to compress entire directories of files into a single com-
pressed file. This makes it ideal for archiving entire directory structures:

$ zip -r testzip test
adding: test/ (stored 0%)
adding: test/test1/ (stored 0%)
adding: test/test1/myprog2 (stored 0%)
adding: test/test1/myprog1 (stored 0%)
adding: test/myprog.c (deflated 39%)
adding: test/file3 (deflated 2%)
adding: test/file4 (stored 0%)
adding: test/test2/ (stored 0%)
adding: test/file1.gz (stored 0%)
adding: test/file2 (deflated 4%)
adding: test/myprog.gz (stored 0%)

$

This example creates the zip file named testzip.zip, and recurses through the directory test,
adding each file and directory found to the zip file. Notice from the output that not all of the
files stored in the zip file could be compressed. The zip utility automatically determines the best
compression type to use for each individual file.

When you use the recursion feature in the zip command, files are stored in the same

directory structure in the zip file. Files contained in subdirectories are stored in the zip

file within the same subdirectories. You must be careful when extracting the files, the unzip com-

mand will rebuild the entire directory structure in the new location. Sometimes this gets confusing

when you have lots of subdirectories and files.

119

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Archiving data
While the zip command works great for compressing and archiving data into a single file, it’s not
the standard utility used in the Unix and Linux worlds. By far the most popular archiving tool
used in Unix and Linux is the tar command.

The tar command was originally used to write files to a tape device for archiving. However, it

can also write the output to a file, which has become a popular way to archive data in Linux.

The format of the tar command is:

tar function [options] object1 object2 ...

The function parameter defines what the tar command should do, as shown in Table 4-9.

Each function uses options to define a specific behavior for the tar archive file. Table 4-10 lists
the common options that you can use with the tar command.

These options are usually combined to create the following scenarios:

tar -cvf test.tar test/ test2/

TABLE 4-9

The tar Command Functions

Function Long name Description

-A --concatenate Append an existing tar archive file to another existing
tar archive file.

-c --create Create a new tar archive file.

-d --diff Check the differences between a tar archive file and
the filesystem.

--delete Delete from an existing tar archive file.

-r --append Append files to the end of an existing tar archive file.

-t --list List the contents of an existing tar archive file.

-u --update Append files to an existing tar archive file that are
newer than a file with the same name in the existing
archive.

-x --extract Extract files from an existing archive file.

120

www.IrPDF.com

www.IrPDF.com

More bash Shell Commands 4

TABLE 4-10

The tar Command Options

Option Description

-C dir Change to the specified directory.

-f file Output results to file (or device) file.

-j Redirect output to the bzip2 command for compression.

-p Preserve all file permissions.

-v List files as they are processed.

-z Redirect the output to the gzip command for compression.

This creates an archive file called test.tar containing the contents of both the test directory
and the test2 directory.

tar -tf test.tar

This lists (but doesn’t extract) the contents of the tar file: test.tar.

tar -xvf test.tar

This extracts the contents of the tar file test.tar. If the tar file was created from a directory
structure, the entire directory structure is recreated starting at the current directory.

As you can see, using the tar command is a simple way to create archive files of entire directory
structures. This is a common method for distributing source code files for open source applica-
tions in the Linux world.

If you download open source software, often you’ll see filenames that end in .tgz.

These are gzipped tar files, and can be extracted using the command tar -zxvf

filename.tgz.

Summary
This chapter discussed some of the more advanced bash commands used by Linux system admin-
istrators and programmers. The ps and top commands are vital in determining the status of
the system, allowing you to see what applications are running and how many resources they are
consuming.

121

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

In this day of removable media, another popular topic for system administrators is mounting

storage devices. The mount command allows you to mount a physical storage device into the

Linux virtual directory structure. To remove the device, use the umount command.

Finally, the chapter discussed various utilities used for handling data. The sort utility easily

sorts large data files to help you organize data, and the grep utility allows you to quickly scan

through large data files looking for specific information. There are a few different file compression

utilities available in Linux, including bzip2, gzip, and zip. Each one allows you to compress
large files to help save space on your filesystem. The Linux tar utility is a popular way to archive

directory structures into a single file that can easily be ported to another system.

The next chapter discusses Linux environment variables. Environment variables allow you to

access information about the system from your scripts, as well as provide a convenient way

to store data within your scripts.

122

www.IrPDF.com

www.IrPDF.com

Using Linux
Environment Variables

IN THIS CHAPTER

Using environment variables

Setting your own environment

variables

Advanced variable techniques

Using aliases

L
inux environment variables help define your Linux shell experience.
However, they can be a confusing topic for new Linux users. Many
programs and scripts use environment variables to obtain system

information and store temporary data and configuration information. There
are lots of places where environment variables are set on the Linux system,
and it’s important to know where these places are. This chapter walks you
through the world of Linux environment variables, showing where they are,
how to use them, and even how to create your own. The chapter finishes
off with a related topic, defining and using aliases in your shell session.

What Are Environment Variables?

The bash shell uses a feature called environment variables to store informa-
tion about the shell session and the working environment (thus the name
environment variables). This feature also allows you to store data in mem-
ory that can be easily accessed by any program or script running from the
shell. This is a handy way to store persistent data that identifies features of
the user account, system, shell, or anything else you need to store.

There are two types of environment variables in the bash shell:

■ Global variables

■ Local variables

This section describes each type of environment variables, and shows how
to see and use them.

123

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Even though the bash shell uses specific environment variables that are consistent,

different Linux distributions often add their own environment variables. The environ-

ment variable examples you see in this chapter may differ slightly from what’s available in your

specific distribution. If you run into an environment variable not covered here, check the docu-

mentation for your Linux distribution.

Global environment variables
Global environment variables are visible from the shell session, and any child processes that the
shell spawns. Local variables are only available in the shell that creates them. This makes global
environment variables useful in applications that spawn child processes that require information
from the parent process.

The Linux system sets several global environment variables when you start your bash session (for
more details about what variables are started at that time, see the ‘‘Locating System Environment
Variables’’ section later in this chapter). The system environment variables always use all capital
letters to differentiate them from normal user environment variables.

To view the global environment variables, use the printenv command:

$ printenv
HOSTNAME=testbox.localdomain
TERM=xterm
SHELL=/bin/bash
HISTSIZE=1000
SSH CLIENT=192.168.1.2 1358 22
OLDPWD=/home/rich/test/test1
SSH TTY=/dev/pts/0
USER=rich
LS COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:
bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:
.cmd=00;32:.exe=00;32:*.com=00;32:*.btm=00;32:*.bat=00;32:
.sh=00;32:.csh=00;32:*.tar=00;31:*.tgz=00;31:*.arj=00;31:
.taz=00;31:.lzh=00;31:*.zip=00;31:*.z=00;31:*.Z=00;31:
.gz=00;31:.bz2=00;31:*.bz=00;31:*.tz=00;31:*.rpm=00;31:
.cpio=00;31:.jpg=00;35:*.gif=00;35:*.bmp=00;35:*.xbm=00;35:
.xpm=00;35:.png=00;35:*.tif=00;35:
MAIL=/var/spool/mail/rich
PATH=/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:/bin:/usr/bin:
/home/rich/bin
INPUTRC=/etc/inputrc
PWD=/home/rich
LANG=en US.UTF-8
SSH ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SHLVL=1
HOME=/home/rich
LOGNAME=rich
CVS RSH=ssh

124

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

SSH CONNECTION=192.168.1.2 1358 192.168.1.4 22
LESSOPEN=|/usr/bin/lesspipe.sh %s
G BROKEN FILENAMES=1
=/usr/bin/printenv
$

As you can see, there are lots of global environment variables that get set for the bash shell. Most
of them are set by the system during the login process.

To display the value of an individual environment variable, use the echo command. When ref-
erencing an environment variable, you must place a dollar sign before the environment variable
name:

$ echo $HOME
/home/rich
$

As I mentioned, global environment variables are also available to child processes running under
the current shell session:

$ bash
$ echo $HOME
/home/rich
$

In this example, after starting a new shell using the bash command, I displayed the current value
of the HOME environment variable, which the system sets when I log into the main shell. Sure
enough, the value is also available from the child shell process.

Local environment variables
Local environment variables, as their name implies, can be seen only in the local process in which
they are defined. Don’t get confused though about local environment variables, they are just as
important as global environment variables. In fact, the Linux system also defines standard local
environment variables for you by default.

Trying to see the list of local environment variables is a little tricky. Unfortunately there isn’t a
command that displays only local environment variables. The set command displays all of the
environment variables set for a specific process. However, this also includes the global environ-
ment variables.

Here’s the output from a sample set command:

$ set
BASH=/bin/bash
BASH ARGC=()
BASH ARGV=()
BASH LINENO=()
BASH SOURCE=()

125

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

BASH VERSINFO=([0]="3" [1]="2" [2]="9" [3]="1" [4]="release"
[5]="i686-redhat-linux-gnu")
BASH VERSION=’3.2.9(1)-release’
COLORS=/etc/DIR COLORS.xterm
COLUMNS=80
CVS RSH=ssh
DIRSTACK=()
EUID=500
GROUPS=()
G BROKEN FILENAMES=1
HISTFILE=/home/rich/.bash history
HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home/rich
HOSTNAME=testbox.localdomain
HOSTTYPE=i686
IFS=$’ \t\n’
INPUTRC=/etc/inputrc
LANG=en US.UTF-8
LESSOPEN=’|/usr/bin/lesspipe.sh %s’
LINES=24
LOGNAME=rich
LS COLORS=’no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;
01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:
.exe=00;32:.com=00;32:*.btm=00;32:*.bat=00;32:*.sh=00;32:
.csh=00;32:.tar=00;31:*.tgz=00;31:*.arj=00;31:*.taz=00;31:
.lzh=00;31:.zip=00;31:*.z=00;31:*.Z=00;31:*.gz=00;31:*.bz2=00;31:
.bz=00;31:.tz=00;31:*.rpm=00;31:*.cpio=00;31:*.jpg=00;35:
.gif=00;35:.bmp=00;35:*.xbm=00;35:*.xpm=00;35:*.png=00;35:
*.tif=00;35:’
MACHTYPE=i686-redhat-linux-gnu
MAIL=/var/spool/mail/rich
MAILCHECK=60
OPTERR=1
OPTIND=1
OSTYPE=linux-gnu
PATH=/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:/bin:/usr/bin:
/home/rich/bin
PIPESTATUS=([0]="0")
PPID=3702
PROMPT COMMAND=’echo -ne
"\033]0;${USER}@${HOSTNAME%%.*}:${PWD/#$HOME/~}"; echo -ne "\007"’
PS1=’[\u@\h \W]\$ ’
PS2=’> ’
PS4=’+ ’
PWD=/home/rich
SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:

126

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

interactive-comments:monitor
SHLVL=2
SSH ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH CLIENT=’192.168.1.2 1358 22’
SSH CONNECTION=’192.168.1.2 1358 192.168.1.4 22’
SSH TTY=/dev/pts/0
TERM=xterm
UID=500
USER=rich
=-H
consoletype=pty
$

You’ll notice that all of the global environment variables seen from the printenv command
appear in the output from the set command. However, there are quite a few additional environ-
ment variables that now appear. These are the local environment variables.

Setting Environment Variables
You can set your own environment variables directly from the bash shell. This section shows how
to create your own environment variables and reference them from your interactive shell or shell
script program.

Setting local environment variables
Once you start a bash shell (or spawn a shell script), you’re allowed to create local variables that
are visible within your shell process. You can assign either a numeric or a string value to an
environment variable by assigning the variable to a value using the equal sign:

$ test=testing
$ echo $test
testing
$

That was simple! Now any time you need to reference the value of the test environment variable,
just reference it by the name $test.

If you need to assign a string value that contains spaces, you’ll need to use a single quotation
mark to delineate the beginning and the end of the string:

$ test=testing a long string
-bash: a: command not found
$ test=’testing a long string’
$ echo $test
testing a long string
$

127

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Without the single quotation marks, the bash shell assumes that the next character is another

command to process. Notice that for the local environment variable I defined, I used lower-case

letters, while the system environment variables we’ve seen so far have all used upper-case letters.

This is a standard convention in the bash shell. If you create new environment variables, it is

recommended (but not required) that you use lower-case letters. This helps distinguish your

personal environment variables from the scores of system environment variables.

It’s extremely important that there are no spaces between the environment variable

name, the equal sign, and the value. If you put any spaces in the assignment, the bash

shell interprets the value as a separate command:

$ test2 = test
-bash: test2: command not found
$

Once you set a local environment variable, it’s available for use anywhere within your shell pro-

cess. However, if you spawn another shell, it’s not available in the child shell:

$ bash
$ echo $test

$ exit
exit
$ echo $test
testing a long string
$

In this example I started a child shell. As you can see, the test environment variable is not
available in the child shell (it contains a blank value). After I exited the child shell and returned

to the original shell, the local environment variable was still available.

Similarly, if you set a local environment variable in a child process, once you leave the child

process the local environment variable is no longer available:

$ bash
$ test=testing
$ echo $test
testing
$ exit
exit
$ echo $test

$

The test environment variable set in the child shell doesn’t exist when I go back to the parent

shell.

128

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

Setting global environment variables
Global environment variables are visible from any child processes created by the process that sets
the global environment variable. The method used to create a global environment variable is to
create a local environment variable, then export it to the global environment.

This is done by using the export command:

$ echo $test
testing a long string
$ export test
$ bash
$ echo $test
testing a long string
$

After exporting the local environment variable test, I started a new shell process and viewed the
value of the test environment variable. This time, the environment variable kept its value, as the
export command made it global.

Notice that when exporting a local environment variable, you don’t use the dollar sign

to reference the variable’s name.

Removing Environment Variables
Of course, if you can create a new environment variable, it makes sense that you can also remove
an existing environment variable. This is done by using the unset command:

$ echo $test
testing
$ unset test
$ echo $test

$

When referencing the environment variable in the unset command, remember not to use the
dollar sign.

When dealing with global environment variables, things get a little tricky. If you’re in a child
process and unset a global environment variable, it only applies to the child process. The global
environment variable is still available in the parent process:

$ test=testing
$ export test
$ bash
$ echo $test
testing
$ unset test

129

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

$ echo $test

$ exit
exit
$ echo $test
testing
$

In this example I set a local environment variable called test, then exported it to make it a

global environment variable. I then started a child shell process and checked to make sure that

the global environment variable test was still available. Next, while still in the child shell, I used

the unset command to remove the global environment variable test, then exited the child shell.

Now back in the original parent shell, I checked the test environment variable value, and it is

still valid.

Default Shell Environment Variables
There are specific environment variables that the bash shell uses by default to define the system

environment. You can always count on these variables being set on your Linux system. Since the

bash shell is a derivative of the original Unix Bourne shell, it also includes environment variables

originally defined in that shell.

Table 5-1 shows the environment variables the bash shell provides that are compatible with the

original Unix Bourne shell.

By far the most important environment variable in this list is the PATH environment variable.

When you enter a command in the shell command line interface (CLI), the shell must search

the system to find the program. The PATH environment variable defines the directories it searches

looking for commands. On my Linux system, the PATH environment variable looks

like this:

$ echo $PATH
/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:/bin:/usr/bin:
/home/rich/bin
$

This shows that there are six directories where the shell looks for commands. Each directory in

the PATH is separated by a colon. There’s nothing at the end of the PATH variable indicating the

end of the directory listing. You can add additional directories to the PATH simply by adding

another colon, and adding the new directory. The PATH also shows the order in which it looks

for commands.

Besides the default Bourne environment variables, the bash shell also provides a few variables of

its own, shown in Table 5-2.

130

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

TABLE 5-1

The bash Shell Bourne Variables

Variable Description

CDPATH A colon-separated list of directories used as a search path for the cd command.

HOME The current user’s home directory.

IFS A list of characters that separate fields used by the shell to split text strings.

MAIL The filename for the current user’s mailbox. The bash shell checks this file
for new mail.

MAILPATH A colon-separated list of multiple filenames for the current user’s mailbox. The
bash shell checks each file in this list for new mail.

OPTARG The value of the last option argument processed by the getopts command.

OPTIND The index value of the last option argument processed by the getopts
command.

PATH A colon-separated list of directories where the shell looks for commands.

PS1 The primary shell command line interface prompt string.

PS2 The secondary shell command line interface prompt string.

TABLE 5-2

The bash Shell Environment Variables

Variable Description

BASH The full pathname to execute the current instance of the bash shell.

BASH ENV When set, each bash script attempts to execute a startup file defined by
this variable before running.

BASH VERSION The version number of the current instance of the bash shell.

BASH VERSINFO A variable array that contains the individual major and minor version
numbers of the current instance of the bash shell.

COLUMNS Contains the terminal width of the terminal used for the current
instance of the bash shell.

COMP CWORD An index into the variable COMP WORDS, which contains the current
cursor position.

COMP LINE The current command line.

continued

131

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 5-2 (continued)

Variable Description

COMP POINT The index of the current cursor position relative to the beginning of the
current command.

COMP WORDS A variable array that contains the individual words on the current
command line.

COMPREPLY A variable array that contains the possible completion codes generated
by a shell function.

DIRSTACK A variable array that contains the current contents of the directory stack.

EUID The numeric effective user ID of the current user.

FCEDIT The default editor used by the fc command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename
completion.

FUNCNAME The name of the currently executing shell function.

GLOBIGNORE A colon-separated list of patterns defining the set of filenames to be
ignored by filename expansion.

GROUPS A variable array containing the list of groups of which the current user
is a member.

histchars Up to three characters which control history expansion.

HISTCMD The history number of the current command.

HISTCONTROL Controls what commands are entered in the shell history list.

HISTFILE The name of the file to save the shell history list (.bash history by
default).

HISTFILESIZE The maximum number of lines to save in the history file.

HISTIGNORE A colon-separated list of patterns used to decide which commands are
ignored for the history file.

HISTSIZE The maximum number of commands stored in the history file.

HOSTFILE Contains the name of the file that should be read when the shell needs
to complete a hostname.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine the bash shell is running on.

IGNOREEOF The number of consecutive EOF characters the shell must receive
before exiting. If this value doesn’t exist, the default is one.

132

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

TABLE 5-2 (continued)

Variable Description

INPUTRC The name of the Readline initialization file (the default is .inputrc).

LANG The locale category for the shell.

LC ALL Overrides the LANG variable, defining a locale category.

LC COLLATE Sets the collation order used when sorting string values.

LC CTYPE Determines the interpretation of characters used in filename expansion
and pattern matching.

LC MESSAGES Determines the locale setting used when interpreting double-quoted
strings preceded by a dollar sign.

LC NUMERIC Determines the locale setting used when formatting numbers.

LINENO The line number in a script currently executing.

LINES Defines the number of lines available on the terminal.

MACHTYPE A string defining the system type in cpu-company-system format

MAILCHECK How often (in seconds) the shell should check for new mail
(default is 60).

OLDPWD The previous working directory used in the shell.

OPTERR If set to 1, the bash shell displays errors generated by the getopts
command.

OSTYPE A string defining the operating system the shell is running on.

PIPESTATUS A variable array containing a list of exit status values from the processes
in the foreground process.

POSIXLY CORRECT If set, bash starts in POSIX mode.

PPID The process ID (PID) of the bash shell’s parent process.

PROMPT COMMAND If set, the command to execute before displaying the primary prompt.

PS3 The prompt to use for the select command.

PS4 The prompt displayed before the command line is echoed if the bash
-x parameter is used.

PWD The current working directory.

RANDOM Returns a random number between 0 and 32767. Assigning a value to
this variable seeds the random number generator.

REPLY The default variable for the read command.

continued

133

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

TABLE 5-2 (continued)

Variable Description

SECONDS The number of seconds since the shell was started. Assigning a value
resets the timer to the value.

SHELLOPTS A colon-separated list of enabled bash shell options.

SHLVL Indicates the shell level, incremented by one each time a new bash
shell is started.

TIMEFORMAT A format specifying how the shell displays time values.

TMOUT The value of how long (in seconds) the select and read commands
should wait for input. The default of zero indicates to wait indefinitely.

UID The numeric real user id of the current user.

You may notice that not all of the default environment variables are shown when I used the set
command. The reason for this is that although these are the default environment variables, not all

of them are required to contain a value.

Setting the PATH Environment Variable
The PATH environment variable seems to cause the most problem on Linux systems. It defines

where the shell looks for commands you enter on the command line. If it can’t find the command,

it produces an error message:

$ myprog
-bash: myprog: command not found
$

The problem is that often applications place their executable programs in directories that aren’t

in the PATH environment variable. The trick is ensuring that your PATH environment variable

includes all of the directories where your applications reside.

You can add new search directories to the existing PATH environment variable without having to

rebuild it from scratch. The individual directories listed in the PATH are separated by a colon. All

you need to do is reference the original PATH value, and add any new directories to the string.

This looks something like this:

$ echo $PATH
/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:/bin:/usr/bin:/home
/rich/bin
$ PATH=$PATH:/home/rich/test

134

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

$ echo $PATH
/usr/kerberos/bin:/usr/lib/ccache:/usr/local/bin:/bin:/usr/bin:/home
/rich/bin:/home/rich/test
$ myprog
The factorial of 5 is 120.
$

By adding the directory to the PATH environment variable, you can now execute your program

from anywhere in the virtual directory structure:

[rich@testbox ~]$ cd /etc
[rich@testbox etc]$ myprog
The factorial of 5 is 120
[rich@testbox etc]$

A common trick for programmers is to include the single dot symbol in their PATH environment

variable. The single dot symbol represents the current directory (see Chapter 3):

[rich@testbox ~]$ PATH=$PATH:.
[rich@testbox ~]$ cd test2
[rich@testbox test2]$ myprog2
The factorial of 6 is 720
[rich@testbox test2]$

In the next section you’ll see how you can make changes to environment variables permanent on

your system, so you can always execute your programs.

Locating System Environment Variables
The Linux system uses environment variables to identify itself in programs and scripts. This pro-

vides a convenient way to obtain system information for your programs. The trick is in how these

environment variables are set.

When you start a bash shell by logging in to the Linux system, by default bash checks several

files for commands. These files are called startup files. The startup files bash processes depend on

the method you use to start the bash shell. There are three ways of starting a bash shell:

■ As a default login shell at login time

■ As an interactive shell that is not the login shell

■ As a non-interactive shell to run a script

The following sections describe the startup files the bash shell executes in each of these startup

methods.

135

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Login shell
When you log in to the Linux system, the bash shell starts as a login shell. The login shell looks

for four different startup files to process commands from. The order in which the bash shell
processes the files is:

■ /etc/profile

■ $HOME/.bash profile

■ $HOME/.bash login

■ $HOME/.profile

The /etc/profile file is the main default startup file for the bash shell on the system. Every

user on the system executes this startup file when they log in. The other three startup files are

specific for each user and can be customized for each user’s requirements. Let’s take a closer look

at these files.

The /etc/profile file

The /etc/profile file is the main default startup file for the bash shell. Whenever you log in

to the Linux system, bash executes the commands in the /etc/profile startup file. Different

Linux distributions place different commands in this file. On my Linux system, it looks like this:

$ cat /etc/profile
/etc/profile

System wide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc

pathmunge () {
if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then

if ["$2" = "after"] ; then
PATH=$PATH:$1

else
PATH=$1:$PATH

fi
fi

}

ksh workaround
if [-z "$EUID" -a -x /usr/bin/id]; then

EUID=`id -u`
UID=`id -ru`

fi

Path manipulation

136

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

if ["$EUID" = "0"]; then
pathmunge /sbin
pathmunge /usr/sbin
pathmunge /usr/local/sbin

fi

No core files by default
ulimit -S -c 0 > /dev/null 2>&1

if [-x /usr/bin/id]; then
USER="`id -un`"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

fi

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then
INPUTRC=/etc/inputrc

fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

for i in /etc/profile.d/*.sh ; do
if [-r "$i"]; then

. $i
fi

done

unset i
unset pathmunge
$

Most of the commands and scripts you see in this file are covered in more detail later on in

Chapter 8. The important thing to notice now is the environment variables that are set in this

startup file. Notice the export line near the bottom of the file:

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

This ensures that these environment variables are available to all child processes spawned from

the login shell.

There’s also another tricky feature that the profile file uses. There’s a for statement that iterates

through any files located in the /etc/profile.d directory. (for statements are discussed in

detail in Chapter 10.) This provides a place for the Linux system to place application-specific

137

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

startup files that will be executed by the shell when you log in. On my Linux system, I have the

following files in the profile.d directory:

$ ls -l /etc/profile.d
total 168
-rw-r--r-- 1 root root 88 2007-03-15 10:08 ccache.csh
-rw-r--r-- 1 root root 87 2007-03-15 10:08 ccache.sh
-rw-r--r-- 1 root root 764 2007-02-26 08:04 colorls.csh
-rw-r--r-- 1 root root 713 2007-02-26 08:04 colorls.sh
-rw-r--r-- 1 root root 80 2007-07-11 09:00 cvs.csh
-rw-r--r-- 1 root root 78 2007-07-11 09:00 cvs.sh
-rw-r--r-- 1 root root 192 2004-09-09 01:17 glib2.csh
-rw-r--r-- 1 root root 192 2005-12-12 00:58 glib2.sh
-rw-r--r-- 1 root root 58 2007-03-20 05:17 gnome-ssh-askpass.csh
-rw-r--r-- 1 root root 70 2007-03-20 05:17 gnome-ssh-askpass.sh
-rw-r--r-- 1 root root 218 2004-09-09 03:12 krb5-devel.csh
-rw-r--r-- 1 root root 229 2006-01-19 13:05 krb5-devel.sh
-rw-r--r-- 1 root root 218 2004-09-09 03:12 krb5-workstation.csh
-rw-r--r-- 1 root root 229 2006-01-19 13:05 krb5-workstation.sh
-rwxr-xr-x 1 root root 3006 2007-06-25 12:57 lang.csh
-rwxr-xr-x 1 root root 3329 2007-06-25 12:57 lang.sh
-rw-r--r-- 1 root root 122 2007-02-07 07:55 less.csh
-rw-r--r-- 1 root root 108 2007-02-07 07:55 less.sh
-rw-r--r-- 1 root root 74 2007-06-27 05:11 vim.csh
-rw-r--r-- 1 root root 248 2007-06-27 05:11 vim.sh
-rwxr-xr-x 1 root root 170 2007-01-22 05:48 which-2.sh
$

You’ll notice that these are mostly related to specific applications on the system. Most applications

create two startup files, one for the bash shell (using the .sh extension) and one for the csh (using

the .csh extension). We’ll be talking about the differences between these two shells later on in

Chapter 21.

The lang.csh and lang.sh files attempt to determine the default language character set used

on the system, and set the LANG environment variable appropriately.

The $HOME startup files

The remaining three startup files are all used for the same function — to provide a user-specific

startup file for defining user-specific environment variables. Most Linux distributions use only

one of these three startup files:

■ $HOME/.bash profile

■ $HOME/.bash login

■ $HOME/.profile

138

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

Notice that all three files start with a dot, making them hidden files (they don’t appear in a normal
ls command listing). Since they are in the user’s HOME directory, each user can edit the files and
add his or her own environment variables that are active for every bash shell session they start.

My Linux system contains the following .bash profile file:

$ cat .bash profile
.bash profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH
$

The .bash profile startup file first checks to see if there’s another startup file present in the
HOME directory, called .bashrc (which we’ll talk about next in the ‘‘Interactive Shell’’ section).
If it’s there, the startup file executes the commands in it. Next, the startup file adds a directory
to the PATH environment variable, providing a common location to place executable files in your
HOME directory.

Interactive shell
If you start a bash shell without logging into a system (such as if you just type bash at a CLI
prompt), you start what’s called an interactive shell. The interactive shell doesn’t act like the login
shell, but it still provides a CLI prompt for you to enter commands.

If bash is started as an interactive shell, it doesn’t process the /etc/profile file. Instead, it
checks for the .bashrc file in the user’s HOME directory.

On my Linux distribution, this file looks like this:

[rich@testbox ~]$ cat .bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

User specific aliases and functions
[rich@testbox ~]$

139

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The .bashrc file does two things. First, it checks for a common bashrc file in the /etc
directory. Second, it provides a place for the user to enter personal aliases (discussed later in
the Using Command Aliases section) and private script functions (described in Chapter 14).

The common /etc/bashrc startup file is run by everyone on the system who starts an interac-

tive shell session. On my Linux distribution it looks like this:

$ cat /etc/bashrc
/etc/bashrc

System wide functions and aliases
Environment stuff goes in /etc/profile

By default, we want this to get set.
Even for non-interactive, non-login shells.
if [$UID -gt 99] && ["`id -gn`" = "`id -un`"]; then

umask 002
else

umask 022
fi

are we an interactive shell?
if ["$PS1"]; then

case $TERM in
xterm*)

if [-e /etc/sysconfig/bash-prompt-xterm]; then
PROMPT COMMAND=/etc/sysconfig/bash-prompt-

xterm
else
PROMPT COMMAND=’echo -ne

"\033]0;${USER}@${HOSTNAME%%.*}:${PWD/#$HOME/~}"; echo -ne "\007"’
fi
;;

screen)
if [-e /etc/sysconfig/bash-prompt-screen]; then

PROMPT COMMAND=/etc/sysconfig/bash-prompt-
screen

else
PROMPT COMMAND=’echo -ne

"\033 ${USER}@${HOSTNAME%%.*}:${PWD/#$HOME/~}"; echo -ne "\033\\"’
fi
;;

*)
[-e /etc/sysconfig/bash-prompt-default] &&

PROMPT COMMAND=/etc/sysconfig/bash-prompt-default
;;

esac
Turn on checkwinsize
shopt -s checkwinsize

140

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

["$PS1" = "\\s-\\v\\\$ "] && PS1="[\u@\h \W]\\$ "
fi

if ! shopt -q login shell ; then # We’re not a login shell
Need to redefine pathmunge, it get’s undefined at the end

of /etc/profile
pathmunge () {

if ! echo $PATH | /bin/egrep -q "(^|:)$1($|:)" ; then
if ["$2" = "after"] ; then

PATH=$PATH:$1
else

PATH=$1:$PATH
fi

fi
}

for i in /etc/profile.d/*.sh; do
if [-r "$i"]; then

. $i
fi
done
unset i
unset pathmunge

fi
vim:ts=4:sw=4
$

The default file sets a few environment variables, but notice that it doesn’t use the export com-

mand to make them global. Remember, the interactive shell startup file runs each time a new

interactive shell starts; thus, any child shell will automatically execute the interactive shell

startup file.

You’ll also notice that the /etc/bashrc file also executes the application-specific startup files

located in the /etc/profile.d directory.

Non-interactive shell
Finally, the last type of shell is a non-interactive shell. This is the shell that the system starts to

execute a shell script. This is different in that there isn’t a CLI prompt to worry about. However,

there may still be specific startup commands you want to run each time you start a script on your

system.

To accommodate that situation, the bash shell provides the BASH ENV environment variable.

When the shell starts a non-interactive shell process, it checks this environment variable for the

name of a startup file to execute. If one is present, the shell executes the commands in the file.

On my Linux distribution, this environment value is not set by default.

141

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Variable Arrays
A really cool feature of environment variables is that they can be used as arrays. An array is a

variable that can hold multiple values. Values can be referenced either individually or as a whole

for the entire array.

To set multiple values for an environment variable, just list them in parentheses, with each value

separated by a space:

$ mytest=(one two three four five)
$

Not much excitement there. If you try to display the array as a normal environment variable,

you’ll be disappointed:

$ echo $mytest
one
$

Only the first value in the array appears. To reference an individual array element, you must use

a numerical index value, which represents its place in the array. The numeric value is enclosed in

square brackets:

$ echo ${mytest[2]}
three
$

Environment variable arrays start with an index value of zero. This often gets

confusing.

To display an entire array variable, you use the asterisk wildcard character as the index value:

$ echo ${mytest[*]}
one two three four five
$

You can also change the value of an individual index position:

$ mytest[2]=seven
$ echo ${mytest[*]}
one two seven four five
$

You can even use the unset command to remove an individual value within the array, but be
careful, as this gets tricky. Watch this example:

$ unset mytest[2]
$ echo ${mytest[*]}

142

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

one two four five
$
$ echo ${mytest[2]}

$ echo ${mytest[3]}
four
$

This example uses the unset command to remove the value at index value 2. When you dis-

play the array, it appears that the other index values just dropped down one. However, if you

specifically display the data at index value 2, you’ll see that that location is empty.

Finally, you can remove the entire array just by using the array name in the unset command:

$ unset mytest
$ echo ${mytest[*]}

$

Sometimes variable arrays just complicate matters, so they’re often not used in shell script pro-

gramming. They’re not very portable to other shell environments, which is a downside if you

do lots of shell programming for different shells. There are a couple of bash system environment

variables that use arrays (such as BASH VERSINFO), but overall you probably won’t run into them

very often.

Using Command Aliases
While not environment variables per se, shell command aliases behave in much the same manner.

A command alias allows you to create an alias name for common commands (along with their

parameters) to help keep your typing to a minimum.

Most likely your Linux distribution has already set some common command aliases for you. To

see a list of the active aliases, use the alias command with the -p parameter:

$ alias -p
alias l.=’ls -d .* --color=tty’
alias ll=’ls -l --color=tty’
alias ls=’ls --color=tty’
alias vi=’vim’
alias which=’alias | /usr/bin/which --tty-only --read-
alias--show-dot --show-tilde’
$

Notice that on my Linux distribution, they use an alias to override the standard ls command. It

automatically provides the --color parameter, indicating that the terminal supports color mode

listings.

143

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

You can create your own aliases by using the alias command:

[rich@testbox ~]$ alias li=’ls -il’
[rich@testbox ~]$ li
total 989292
360621 drwxrwxr-x 2 rich rich 4096 2007-08-24 22:04 4rich

301871 drwxr-xr-x 4 rich rich 4096 2007-09-18 08:38 Desktop
301875 drwxr-xr-x 2 rich rich 4096 2001-11-01 01:10 Documents
301872 drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Download
360207 drwxrwxr-x 2 rich rich 4096 2007-07-26 18:25 Drivers

327362 drwxrwxr-x 2 rich rich 4096 2007-09-18 08:38 mnt
301876 drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Music
301942 -rw-rw-r-- 1 rich rich 0 2007-09-03 16:38 myprob
301963 -rw-rw-r-- 1 rich rich 0 2007-09-03 16:40 myproblem
301974 -rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
301877 drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Pictures
301874 drwxr-xr-x 2 rich rich 4096 2001-11-01 04:06 Public
360262 drwxrwxr-x 5 rich rich 4096 2007-08-24 22:04 store

Once you define an alias value, you can use it at any time in your shell, including in shell scripts.

Command aliases act like local environment variables. They’re only valid for the shell process in

which they’re defined:

$ alias li=’ls -il’
$ bash
$ li
bash: li: command not found
$

Of course, now you know a way to solve that problem. The bash shell always reads the $HOME/
.bashrc startup file when starting a new interactive shell. This is a great place to put command

alias statements (as was pointed out in the .bashrc file comments).

Summary
This chapter examined the world of Linux environment variables. Global environment variables

can be accessed from any child process spawned by the process they’re defined in. Local environ-

ment variables can only be accessed from the process in which they’re defined.

The Linux system uses both global and local environment variables to store information about the

system environment. You can access this information from the shell command line interface, as

well as within shell scripts. The bash shell uses the system environment variables defined in the

original Unix Bourne shell, as well as lots of new environment variables. The PATH environment

variable defines the search pattern the bash shell takes to find an executable command. You can

144

www.IrPDF.com

www.IrPDF.com

Using Linux Environment Variables 5

modify the PATH environment variable to add your own directories, or even the current directory

symbol, to make running your programs easier.

You can also create your own global and local environment variables for your own use. Once you

create an environment variable, it’s accessible for the entire duration of your shell session.

There are several startup files that the bash shell executes when it starts up. These startup files

can contain environment variable definitions to set standard environment variables for each

bash session. When you log in to the Linux system, the bash shell accesses the /etc/profile
startup file, and also three local startup files for each user, $HOME/.bash profile, $HOME/
.bash login, and $HOME/.profile. Users can customize these files to include environment

variables and startup scripts for their own use.

The bash shell also provides for environment variable arrays. These environment variables can

contain multiple values in a single variable. You can access the values either individually by ref-

erencing an index value or as a whole by referencing the entire environment variable array name.

Finally, the chapter discussed the use of command aliases. While not environment variables,

command aliases behave similar to environment variables. They allow you to define an alias name

for a command, along with its parameters. Instead of having to type in a long command and

parameters, you can just assign it to a simple alias and use the alias at any time in your shell

session.

The next chapter dives into the world of Linux file permissions. This is possibly the most difficult

topic for novice Linux users. However, to write good shell scripts, you need to understand how

file permissions work and be able to use them in your Linux system.

145

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Understanding Linux
File Permissions

IN THIS CHAPTER

Understanding Linux security

Decoding file permissions

Working with Linux groups

N
o system is complete without some form of security. There must be

a mechanism available to protect files from unauthorized viewing
or modification. The Linux system follows the Unix method of file

permissions, allowing individual users and groups access to files based on

a set of security settings for each file and directory. This chapter discusses
how to use the Linux file security system to protect data when necessary

and share data when desired.

Linux Security

The core of the Linux security system is the user account. Each individual

who accesses a Linux system should have a unique user account assigned.

The permissions users have to objects on the system depend on the user
account they log in with.

User permissions are tracked using a user ID (often called a UID), which

is assigned to an account when it’s created. The UID is a numerical value,

unique for each user. However, you don’t log in to a Linux system using
your UID. Instead, you use a login name. The login name is an alphanumeric

text string of eight characters or fewer that the user uses to log in to the

system (along with an associated password).

The Linux system uses special files and utilities to track and manage user

accounts on the system. Before we can discuss file permissions, we need to

discuss how Linux handles user accounts. This section describes the files
and utilities required for user accounts so that you can understand how to

use them when working with file permissions.

147

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The /etc/passwd file
The Linux system uses a special file to match the login name to a corresponding UID value. This

file is the /etc/passwd file. The /etc/passwd file contains several pieces of information about

the user. Here’s what the /etc/passwd file looks like on my Linux system:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
rpm:x:37:37::/var/lib/rpm:/sbin/nologin
vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
apache:x:48:48:Apache:/var/www:/sbin/nologin
rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
ntp:x:38:38::/etc/ntp:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
dbus:x:81:81:System message bus:/:/sbin/nologin
avahi:x:70:70:Avahi daemon:/:/sbin/nologin
hsqldb:x:96:96::/var/lib/hsqldb:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
haldaemon:x:68:68:HAL daemon:/:/sbin/nologin
xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
gdm:x:42:42::/var/gdm:/sbin/nologin
rich:x:500:500:Rich Blum:/home/rich:/bin/bash
mama:x:501:501:Mama:/home/mama:/bin/bash
katie:x:502:502:katie:/home/katie:/bin/bash
jessica:x:503:503:Jessica:/home/jessica:/bin/bash
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
$

148

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

The root user account is the administrator for the Linux system and is always assigned UID 0. As

you can see, the Linux system creates lots of user accounts for various functions that aren’t actual

users. These are called system accounts. A system account is a special account that services running

on the system use to gain access to resources on the system. All services that run in background

mode need to be logged in to the Linux system under a system user account.

Before security became a big issue, these services often just logged in using the root user account.

Unfortunately, if an unauthorized person broke into one of these services, he instantly gained

access to the system as the root user. To prevent this, now just about every service that runs in

background on a Linux server has its own user account to log in with. This way, if a troublemaker

does compromise a service, he still can’t necessarily get access to the whole system.

Linux reserves UIDs below 500 for system accounts. Some services even require specific UIDs to

work properly. When you create accounts for normal users, most Linux systems assign the first

available UID starting at 500 (although this is not necessarily true for all Linux distributions).

You probably noticed that the /etc/passwd file contains lots more than just the login name and
UID for the user. The fields of the /etc/passwd file contain the following information:

■ The login username

■ The password for the user

■ The numerical UID of the user account

■ The numerical group ID (GID) of the user account

■ A text description of the user account (called the comment field)

■ The location of the HOME directory for the user

■ The default shell for the user

The password field in the /etc/passwd file is set to an x. This doesn’t mean that all of the

user accounts have the same password. In the old days of Linux, the /etc/passed file contained

an encrypted version of the user’s password. However, since lots of programs need to access

the /etc/passwd file for user information, this became somewhat of a security problem.

With the advent of software that could easily decrypt encrypted passwords, the bad guys had

a field day trying to break user passwords stored in the /etc/passwd file. Linux developers

needed to rethink that policy.

Now, most Linux systems hold user passwords in a separate file (called the shadow file, located at

/etc/shadow). Only special programs (such as the login program) are allowed access to this file.

As you can see, the /etc/passwd file is a standard text file. You can use any text editor to

manually perform user management functions (such as adding, modifying, or removing user

accounts) directly in the /etc/passwd file. However, this is an extremely dangerous practice.

If the /etc/passwd file becomes corrupt, the system won’t be able to read it, and it will prevent

anyone (even the root user) from logging in. Instead, it’s safer to use the standard Linux user

management utilities to perform all user management functions.

149

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The /etc/shadow file
The /etc/shadow file provides more control over how the Linux system manages passwords.
Only the root user has access to the /etc/shadow file, making it more secure than the /etc/
passwd file.

The /etc/shadow file contains one record for each user account on the system. A record looks
like this:

rich:1.FfcK0ns$f1UgiyHQ25wrB/hykCn020:11627:0:99999:7:::

There are nine fields in each /etc/shadow file record:

■ The login name corresponding to the login name in the /etc/passwd file

■ The encrypted password

■ The number of days since January 1, 1970 that the password was last changed

■ The minimum number of days before the password can be changed

■ The number of days before the password must be changed

■ The number of days before password expiration that the user is warned to change the
password

■ The number of days after a password expires before the account will be disabled

■ The date (stored as the number of days since January 1, 1970) since the user account
was disabled

■ A field reserved for future use

Using the shadow password system, the Linux system has much finer control over user pass-
words. It can control how often a user must change his or her password, and when to disable the
account if the password hasn’t been changed.

Adding a new user
The primary tool used to add new users to your Linux system is useradd. This command pro-
vides an easy way to create a new user account and set up the user’s HOME directory structure
all at once. The useradd command uses a combination of system default values and command
line parameters to define a user account. To see the system default values used on your Linux
distribution, enter the useradd command with the -D parameter:

/usr/sbin/useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
#

150

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

Some Linux distributions place the Linux user and group utilities in the /usr/sbin

directory, which may not be in your PATH environment variable. If that’s the case in

your Linux distribution, either add the directory to your PATH or use the absolute filepath to run it.

The -D parameter shows what defaults the useradd command uses if you don’t specify them

in the command line when creating a new user account. This example shows the following

default values:

■ The new user will be added to a common group with group ID 100.

■ The new user will have a HOME account created in the directory /home/loginname.

■ The account will not be disabled when the password expires.

■ The new account will not be set to expire at a set date.

■ The new account will use the bash shell as the default shell.

■ The system will copy the contents of the /etc/skel directory to the user’s HOME directory.

■ The system will create a file in the mail directory for the user account to receive mail.

The next-to-the-last value is interesting. The useradd command allows an administrator to create

a default HOME directory configuration, then uses that as a template to create the new user’s HOME
directory. This allows you to place default files for the system in every new user’s HOME directory

automatically. On my Linux system, the /etc/skel directory has the following files:

ls -al /etc/skel
total 48
drwxr-xr-x 2 root root 4096 2001-11-01 00:23 .
drwxr-xr-x 107 root root 12288 2007-09-20 16:53 ..
-rw-r--r-- 1 root root 33 2007-02-12 10:18 .bash_logout
-rw-r--r-- 1 root root 176 2007-02-12 10:18 .bash_profile
-rw-r--r-- 1 root root 124 2007-02-12 10:18 .bashrc
#

You should recognize these file from Chapter 5. These are the standard startup files for the bash

shell environment. The system automatically copies these default files into every user’s HOME
directory you create.

You can test this by creating a new user account using the default system parameters and then

looking at the HOME directory for the new user:

/usr/sbin/useradd test
ls -al /home/test
total 40
drwx------ 2 test test 4096 2007-09-20 18:23 .
drwxr-xr-x 7 root root 4096 2007-09-20 18:23 ..
-rw-r--r-- 1 test test 33 2007-09-20 18:23 .bash_logout
-rw-r--r-- 1 test test 176 2007-09-20 18:23 .bash_profile
-rw-r--r-- 1 test test 124 2007-09-20 18:23 .bashrc
#

151

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

As expected, the useradd command created the new HOME directory, using the files in the

/etc/skel directory.

If you want to override a default value when creating a new user, you can do that with command

line parameters. These are shown in Table 6-1.

As you can see, you can override all of the system default values when creating a new user account

just by using command line parameters. However, if you find yourself having to override a value

all the time, it’s easier to just change the system default value.

You can change the system default new user values by using the -D parameter, along

with a parameter representing the value you need to change. These parameters are shown in

Table 6-2.

TABLE 6-1

The useradd Command Line Parameters

Parameter Description

-c comment Add text to the new user’s comment field.

-d home_dir Specify a different name for the home directory other than the login
name.

-e expire_date Specify a date, in YYYY-MM-DD format, when the account will expire.

-f inactive_days Specify the number of days after a password expires when the account
will be disabled. A value of 0 disables the account as soon as the
password expires; a value of -1 disables this feature.

-g initial_group Specify the group name or GID of the user’s login group.

-G group. . . Specify one or more supplementary groups the user belongs to.

-k Copy the /etc/skel directory contents into the user’s HOME directory
(must use -m as well).

-m Create the user’s HOME directory.

-M Don’t create a user’s HOME directory (used if the default setting is to
create one).

-n Create a new group using the same name as the user’s login name.

-r Create a system account

-p passwd Specify a default password for the user account.

-s shell Specify the default login shell.

-u uid Specify a unique UID for the account.

152

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

TABLE 6-2

The useradd Change Default Values Parameters

Parameter Description

-b default_home Change the location of where users’ HOME directories are
created.

-e expiration_date Change the expiration date on new accounts.

-f inactive Change the number of days after a password has expired before
the account is disabled.

-g group Change the default group name or GID used.

-s shell Change the default login shell.

Changing the default values is a snap:

useradd -D -s /bin/tsch
useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/tsch
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
#

Now, the useradd command will use the tsch shell as the default login shell for all new user
accounts you create.

Removing a user
If you want to remove a user from the system, the userdel command is what you need. By
default, the userdel command only removes the user information from the /etc/passwd file.
It doesn’t remove any files the account owns on the system.

If you use the -r parameter, userdel will remove the user’s HOME directory, along with the user’s
mail directory. However, there may still be other files owned by the deleted user account on the
system. This can be a problem in some environments.

Here’s an example of using the userdel command to remove an existing user account:

/usr/sbin/userdel -r test
ls -al /home/test
ls: cannot access /home/test: No such file or directory
#

153

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

After using the -r parameter, the user’s old /home/test directory no longer exists.

Be careful when using the -r parameter in an environment with lots of users. You

never know if a user had important files stored in his or her HOME directory that are

used by someone else or another program. Always check before removing a user’s HOME directory!

Modifying a user
Linux provides a few different utilities for modifying the information for existing user accounts.

Table 6-3 shows these utilities.

TABLE 6-3

User Account Modification Utilities

Command Description

usermod Edits user account fields, as well as specifying primary and
secondary group membership

passwd Changes the password for an existing user

chpasswd Reads a file of login name and password pairs, and updates the
passwords

chage Changes the password’s expiration date

chfn Changes the user account’s comment information

chsh Changes the user account’s default shell

Each of these utilities provides a specific function for changing information about user accounts.

The following sections describe each of these utilities.

usermod

The usermod command is the most robust of the user account modification utilities. It provides

options for changing most of the fields in the /etc/passwd file. To do that you just need to use
the command line parameter that corresponds to the value you want to change. The parameters

are mostly the same as the useradd parameters (such as -c to change the comment field, -e
to change the expiration date, and -g to change the default login group). However, there are a

couple of additional parameters that might come in handy:

■ -l to change the login name of the user account

■ -L to lock the account so the user can’t log in

■ -p to change the password for the account

■ -U to unlock the account so that the user can log in

154

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

The -L parameter is especially handy. Use this to lock an account so that a user can’t log in

without having to remove the account and the user’s data. To return the account to normal, just

use the -U parameter.

passwd and chpasswd

A quick way to change just the password for a user is the passwd command:

passwd test
Changing password for user test.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
#

If you just use the passwd command by itself, it’ll change your own password. Any user in

the system can change their own password, but only the root user can change someone else’s

password.

The -e option is a handy way to force a user to change the password on the next log in. This

allows you to set the user’s password to a simple value, then force them to change it to something

harder that they can remember.

If you ever need to do a mass password change for lots of users on the system, the chpasswd
command can be a lifesaver. The chpasswd command reads a list of login name and

password pairs (separated by a colon) from the standard input, and automatically encrypts the

password and sets it for the user account.

chsh, chfn, and chage

The chsh, chfn, and chage utilities are specialized for specific functions. The chsh command

allows you to quickly change the default login shell for a user. You must use the full pathname

for the shell, and not just the shell name:

chsh -s /bin/csh test
Changing shell for test.
Shell changed.
#

The chfn command provides a standard method for storing information in the comments field in

the /etc/passwd file. Instead of just inserting random text, such as names, nicknames, or even

just leaving the comment field blank, the chfn command uses specific information used in the

Unix finger command to store information in the comment field. The finger command allows

you to easily find information about people on your Linux system:

finger rich
Login: rich Name: Rich Blum
Directory: /home/rich Shell: /bin/bash

155

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2
No mail.
No Plan.
#

Because of security concerns, many Linux system administrators disable the finger

command on their systems.

If you use the chfn command with no parameters, it queries you for the appropriate values to
enter in to the comment field:

chfn test
Changing finger information for test.
Name []: Ima Test
Office []: Director of Technology
Office Phone []: (123)555-1234
Home Phone []: (123)555-9876

Finger information changed.
finger test
Login: test Name: Ima Test
Directory: /home/test Shell: /bin/csh
Office: Director of Technology Office Phone: (123)555-1234
Home Phone: (123)555-9876
Never logged in.
No mail.
No Plan.
#

If you now look at the entry in the /etc/passwd file, it looks like this:

grep test /etc/passwd
test:x:504:504:Ima Test,Director of Technology,(123)555-
1234,(123)555-9876:/home/test:/bin/csh
#

All of the finger information is neatly stored away in the /etc/passwd file entry.

Finally, the chage command helps us manage the password aging process for user accounts.
There are several parameters to set individual values, shown in Table 6-4.

The chage date values can be expressed using one of two methods:

■ A date in YYYY-MM-DD format

■ A numerical value representing the number of days since January 1, 1970

One neat feature of the chage command is that it allows you to set an expiration date for an
account. Using this feature, you can create temporary user accounts that automatically expire
on a set date, without your having to remember to delete them! Expired accounts are similar to
locked accounts. The account still exists, but the user can’t log in with it.

156

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

TABLE 6-4

The chage Command Parameters

Parameter Description

-d Set the number of days since the password was last changed.

-E Set the date the password will expire.

-I Set the number of days of inactivity after the password expires to lock the account.

-m Set the minimum number of days between password changes.

-W Set the number of days before the password expires that a warning message
appears.

Using Linux Groups
User accounts are great for controlling security for individual users, but they aren’t so good at

allowing groups of users to share resources. To accomplish this, the Linux system uses another

security concept, called groups.

Group permissions allow multiple users to share a common set of permissions for an object on the

system, such as a file, directory, or device (more on that later in the ‘‘Decoding File Permissions’’

section).

Linux distributions differ somewhat on how they handle default group memberships. Some Linux

distributions create just one group which contains all of the user accounts as members. You need

to be careful if your Linux distribution does this, as your files may be readable by all other users

on the system. Other distributions create a separate user account for each user, to provide a little

more security.

Each group has a unique GID, which, like UIDs, is a unique numerical value on the system.

Along with the GID, each group has a unique group name. There are a few group utilities you

can use to create and manage your own groups on the Linux system. This section discusses how

group information is stored, and how to use the group utilities to create new groups and modify

existing groups.

The /etc/group file
Just like user accounts, group information is stored in a file on the system. The /etc/group file

contains information about each group used on the system. Here are a few examples from the
/etc/group file on my Linux system:

root:x:0:root
bin:x:1:root,bin,daemon

157

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

daemon:x:2:root,bin,daemon
sys:x:3:root,bin,adm
adm:x:4:root,adm,daemon
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:
test:x:504:

Similarly to UIDs, GIDs are assigned using a special format. Groups used for system accounts are

assigned GIDs below 500, and user groups are assigned GIDs starting at 500. The /etc/group
file uses four fields:

■ The group name

■ The group password

■ The GID

■ The list of user accounts that belong to the group

The group password allows a non-group member to temporarily become a member of the group

by using the password. This feature is not used all that commonly, but it does exist.

You should never add users to groups by editing the /etc/group file. Instead, use the usermod
command (discussed earlier in the ‘‘Linux Security’’ section) to add a user account to a group.

Before you can add users to different groups, you must create the groups.

The list of user accounts is somewhat misleading. You’ll notice that there are several

groups in the list that don’t have any users listed. This isn’t because they don’t have

any members. When a user account uses a group as the default group in the /etc/passwd file, the

user account doesn’t appear in the /etc/group file as a member. This has caused confusion for

more than one system administrator over the years!

Creating new groups
The groupadd command allows you to create new groups on your system:

/usr/sbin/groupadd shared
tail /etc/group
haldaemon:x:68:
xfs:x:43:
gdm:x:42:
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:

158

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

test:x:504:
shared:x:505:
#

When you create a new group, there are no users assigned to it by default. The groupadd com-

mand doesn’t provide an option for adding user accounts to the group. Instead, to add new users,

use the usermod command:

/usr/sbin/usermod -G shared rich
/usr/sbin/usermod -G shared test
tail /etc/group
haldaemon:x:68:
xfs:x:43:
gdm:x:42:
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:
test:x:504:
shared:x:505:rich, test
#

The shared group now has two members, test and rich. The -G parameter in usermod appends

the new group to the list of groups for the user account.

Be careful when assigning groups for user accounts. If you use the -g parameter,

the group name you specify replaces the default group for the user account. The -G

parameter adds the group to the list of groups the user belongs to, keeping the default group intact.

Modifying groups
As you can see from the /etc/group file, there isn’t too much information about a group for

you to modify. The groupmod command allows you to change the GID (using the -g parameter)

or the group name (using the -n parameter) of an existing group:

/usr/sbin/groupmod -n sharing shared
tail /etc/group
haldaemon:x:68:
xfs:x:43:
gdm:x:42:
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:
test:x:504:
sharing:x:505:test,rich
#

159

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

When changing the name of a group, the GID and group members remain the same, only

the group name changes. Since all security permissions are based on the GID, you can change

the name of a group as often as you wish without adversely affecting file security.

Decoding File Permissions
Now that you know about users and groups, it’s time to decode the cryptic file permissions you’ve

seen when using the ls command. This section describes how to decipher the permissions and
where they come from.

Using file permission symbols
If you remember from Chapter 3, the ls command allows us to see the file permissions for files,
directories, and devices on the Linux system:

$ ls -l
total 68
-rw-rw-r-- 1 rich rich 50 2007-09-13 07:49 file1.gz
-rw-rw-r-- 1 rich rich 23 2007-09-13 07:50 file2
-rw-rw-r-- 1 rich rich 48 2007-09-13 07:56 file3
-rw-rw-r-- 1 rich rich 34 2007-09-13 08:59 file4
-rwxrwxr-x 1 rich rich 4882 2007-09-18 13:58 myprog
-rw-rw-r-- 1 rich rich 237 2007-09-18 13:58 myprog.c
drwxrwxr-x 2 rich rich 4096 2007-09-03 15:12 test1
drwxrwxr-x 2 rich rich 4096 2007-09-03 15:12 test2
$

The first field in the output listing is a code that describes the permissions for the files and direc-
tories. The first character in the field defines the type of the object:

■ - for files

■ d for directories

■ l for links

■ c for character devices

■ b for block devices

■ n for network devices

After that, there are three sets of three characters. Each set of three characters defines an access

permission triplet:

■ r for read permission for the object

■ w for write permission for the object

■ x for execute permission for the object

160

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

If a permission is denied, a dash appears in the location. The three sets relate the three levels of

security for the object:

■ The owner of the object

■ The group that owns the object

■ Everyone else on the system

This is broken down in Figure 6-1.

FIGURE 6-1

The Linux file permissions

-rwxrwxr-x 1 rich rich 4882 2007-09-18 13:58 myprog

permissions for everyone else

permissions for group members

permissions for the file owner

The easiest way to discuss this is to take an example and decode the file permissions one by one:

-rwxrwxr-x 1 rich rich 4882 2007-09-18 13:58 myprog

The file myprog has the following sets of permissions:

■ rwx for the file owner (set to the login name rich)

■ rwx for the file group owner (set to the group name rich)

■ r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write, and execute the file
(considered full permissions). Likewise, members in the group rich can also read, write, and
execute the file. However, anyone else not in the rich group can only read and execute the file;
the w is replaced with a dash, indicating that write permissions are not assigned to this security

level.

Default file permissions
You may be wondering about where these file permissions come from. The answer, is umask. The
umask command sets the default permissions for any file or directory you create:

$ touch newfile
$ ls -al newfile
-rw-r--r-- 1 rich rich 0 Sep 20 19:16 newfile
$

161

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The touch command created the file using the default permissions assigned to my user

account. The umask command shows and sets the default permissions:

$ umask
0022
$

Unfortunately, the umask command setting isn’t overtly clear, and trying to understand exactly

how it works makes things even muddier. The first digit represents a special security feature called
the sticky bit. We’ll talk more about that later on in this chapter in the ‘‘Sharing Files’’ section.

The next three digits represent the octal values of the umask for a file or directory. To understand
how umask works, you first need to understand octal mode security settings.

Octal mode security settings take the three rwx permission values and convert them into a 3-bit

binary value, represented by a single octal value. In the binary representation, each position is
a binary bit. Thus, if the read permission is the only permission set, the value becomes r--,

relating to a binary value of 100, indicating the octal value of 4. Table 6-5 shows the possible
combinations you’ll run into.

Octal mode takes the octal permissions and lists three of them in order for the three security

levels (user, group, and everyone). Thus, the octal mode value 664 represents read and write
permissions for the user and group, but read-only permission for everyone else.

Now that you know about octal mode permissions, the umask value becomes even more con-

fusing. The octal mode shown for the default umask on my Linux system is 0022, but the file I
created had an octal mode permission of 644. How did that happen?

TABLE 6-5

Linux File Permission Codes

Permissions Binary Octal Description

--- 000 0 No permissions

--x 001 1 Execute-only permission

-w- 010 2 Write-only permission

-wx 011 3 Write and execute permissions

r-- 100 4 Read-only permission

r-x 101 5 Read and execute permissions

rw- 110 6 Read and write permissions

rwx 111 7 Read, write, and execute
permissions

162

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

The umask value is just that, a mask. It masks out the permissions you don’t want to give to the

security level. Now we have to dive into some octal arithmetic to figure out the rest of the story.

The umask value is subtracted from the full permission set for an object. The full permission for

a file is mode 666 (read/write permission for all), but for a directory it’s 777 (read/write/execute

permission for all).

Thus, in the example, the file starts out with permissions 666, and the umask of 022 is applied,

leaving a file permission of 644.

The umask value is normally set in the /etc/profile startup file (see Chapter 5). You can

specify a different default umask setting using the umask command:

$ umask 026
$ touch newfile2
$ ls -l newfile2
-rw-r----- 1 rich rich 0 Sep 20 19:46 newfile2
$

By setting the umask value to 026, the default file permissions become 640, so the new file now

is restricted to read-only for the group members, and everyone else on the system has no permis-

sions to the file.

The umask value also applies to making new directories:

$ mkdir newdir
$ ls -l
drwxr-x--x 2 rich rich 4096 Sep 20 20:11 newdir/

Since the default permissions for a directory are 777, the resulting permissions from the umask
are different from those of a new file. The 026 umask value is subtracted from 777, leaving the

751 directory permission setting.

Changing Security Settings
If you’ve already created a file or directory, and need to change the security settings on it, there

are a few different utilities available in Linux. This section shows how to change the existing

permissions, the default owner, and the default group settings for a file or directory.

Changing permissions
The chmod command allows you to change the security settings for files and directories. The

format of the chmod command is:

chmod options mode file

163

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The mode parameter allows you to set the security settings using either octal or symbolic

mode. The octal mode settings are pretty straightforward; just use the standard three-digit octal
code you want the file to have:

$ chmod 760 newfile
$ ls -l newfile
-rwxrw---- 1 rich rich 0 Sep 20 19:16 newfile*
$

The octal file permissions are automatically applied to the file indicated. The symbolic mode
permissions are not so easy to implement.

Instead of using the normal string of three sets of three characters, the chmod command takes a

different approach. The format for specifying a permission in symbolic mode is:

[ugoa...][[+-=][rwxXstugo...]

Makes perfectly good sense, doesn’t it? The first group of characters defines to whom the new

permissions apply:

■ u for the user

■ g for the group

■ o for others (everyone else)

■ a for all of the above

Next, a symbol is used to indicate whether you want to add the permission to the existing permis-
sions (+), subtract the permission from the existing permission (−), or set the permissions to the

value (=).

Finally, the third symbol is the permission used for the setting. You may notice that there are
more than the normal rwx values here. The additional settings are:

■ X to assign execute permissions only if the object is a directory or if it already had

execute permissions

■ s to set the UID or GID on execution

■ t to save program text

■ u to set the permissions to the owner’s permissions

■ g to set the permissions to the group’s permissions

■ o to set the permissions to the other’s permissions

Using these permissions looks like this:

$ chmod o+r newfile
$ ls -l newfile
-rwxrw-r-- 1 rich rich 0 Sep 20 19:16 newfile*
$

164

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

The o+r entry adds the read permission to whatever permissions the everyone security level

already had.

$ chmod u-x newfile
$ ls -l newfile
-rw-rw-r-- 1 rich rich 0 Sep 20 19:16 newfile
$

The u-x entry removes the execute permission that the user already had. Note that the settings

for the ls command indicate if a file has execution permissions by adding an asterisk to the
filename.

The options parameters provide a few additional features to augment the behavior of the chmod
command. The -R parameter performs the file and directory changes recursively. You can use

wildcard characters for the filename specified, changing the permissions on multiple files with

just one command.

Changing ownership
Sometimes you need to change the owner of a file, such as when someone leaves an organization

or a developer creates an application that needs to be owned by a system account when it’s in

production. Linux provides two commands for doing that. The chown command to makes it easy
to change the owner of a file, and the chgrp command allows you to change the default group

of a file.

The format of the chown command is:

chown options owner[.group] file

You can specify either the login name or the numeric UID for the new owner of the file:

chown dan newfile
ls -l newfile
-rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile*
#

Simple. The chown command also allows you to change both the user and group of a file:

chown dan.dan newfile
ls -l newfile
-rw-rw-r-- 1 dan dan 0 Sep 20 19:16 newfile*
#

If you really want to get tricky, you can just change the default group for a file:

chown .rich newfile
ls -l newfile
-rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile*
#

165

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Finally, if your Linux system uses individual group names that match user login names, you can
change both with just one entry:

chown test. newfile
ls -l newfile
-rw-rw-r-- 1 test test 0 Sep 20 19:16 newfile*
#

The chown command uses a few different option parameters. The -R parameter allows you to
make changes recursively through subdirectories and files, using a wildcard character. The -h
parameter also changes the ownership of any files that are symbolically linked to the file.

Only the root user can change the owner of a file. Any user can change the default

group of a file, but the user must be a member of the groups the file is changed from

and to.

The chgrp command provides an easy way to change just the default group for a file or directory:

$ chgrp shared newfile
$ ls -l newfile
-rw-rw-r-- 1 rich shared 0 Sep 20 19:16 newfile*
$

Now any member in the shared group can write to the file. This is one way to share files on a
Linux system. However, sharing files among a group of people on the system can get tricky. The

next section discusses how to do this.

Sharing Files
As you’ve probably already figured out, creating groups is the way to share access to files on the
Linux system. However, for a complete file-sharing environment, things are more complicated.

As you’ve already seen in the ‘‘Decoding File Permissions’’ section, when you create a new file,
Linux assigns the file permissions of the new file using your default UID and GID. To allow
others access to the file, you need to either change the security permissions for the everyone
security group or assign the file a different default group that contains other users.

This can be a pain in a large environment if you want to create and share documents among
several people. Fortunately, there’s a simple solution for how to solve this problem.

There are three additional bits of information that Linux stores for each file and directory:

■ The set user id (SUID): When a file is executed by a user, the program runs under the
permissions of the file owner.

■ The set group id (SGID): For a file, the program runs under the permissions of the file
group. For a directory, new files created in the directory use the directory group as the
default group.

■ The sticky bit: The file remains (sticks) in memory after the process ends.

166

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

The SGID bit is important for sharing files. By enabling the SGID bit, you can force all new

files created in a shared directory to be owned by the directory’s group and now the individual

user’s group.

The SGID is set using the chmod command. It’s added to the beginning of the standard three-

digit octal value (making a four-digit octal value), or you can use the symbol s in symbolic

mode.

If you’re using octal mode, you’ll need to know the arrangement of the bits, shown in

Table 6-6.

TABLE 6-6

The chmod SUID, SGID, and Sticky Bit Octal Values

Binary Octal Description

000 0 All bits are cleared.

001 1 The sticky bit is set.

010 2 The SGID bit is set.

011 3 The SGID and sticky bits are set.

100 4 The SUID bit is set.

101 5 The SUID and sticky bits are set.

110 6 The SUID and SGID bits are set.

111 7 All bits are set.

So, to create a shared directory that always sets the directory group for all new files, all you need

to do is set the SGID bit for the directory:

$ mkdir testdir
$ ls -l
drwxrwxr-x 2 rich rich 4096 Sep 20 23:12 testdir/
$ chgrp shared testdir
$ chmod g+s testdir
$ ls -l
drwxrwsr-x 2 rich shared 4096 Sep 20 23:12 testdir/
$ umask 002
$ cd testdir
$ touch testfile
$ ls -l
total 0
-rw-rw-r-- 1 rich shared 0 Sep 20 23:13 testfile
$

167

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The first step is to create a directory that you want to share using the mkdir command. Next, the

chgrp command is used to change the default group for the directory to a group that contains

the members who need to share files. Finally, the SGID bit is set for the directory, to ensure that

any files created in the directory use the shared group name as the default group.

For this environment to work properly, all of the group members need to have their umask values

set to make files writable by group members. This is why I changed my umask to 002.

After all that’s done, I can go to the shared directory and create a new file. As expected, the new

file uses the default group of the directory, not my user account’s default group. Now any user in

the shared group can access this file.

Summary
This chapter discussed the command line commands you need to know to manage the Linux

security on your system. Linux uses a system of user IDs and group IDs to protect access to files,

directories, and devices. Linux stores information about user accounts in the /etc/passwd file,

and information about groups in the /etc/group file. Each user is assigned a unique numeric

user ID, along with a text login name to identify the user in the system. Groups are also assigned

unique numerical group IDs, and text group names. A group can contain one or more users to

allowed shared access to system resources.

There are several commands available for managing user accounts and groups. The useradd
command allows you to create new user accounts, and the groupadd command allows you to

create new group accounts. To modify an existing user account, use the usermod command.

Similarly, the groupmod command is used to modify group account information.

Linux uses a complicated system of bits to determine access permissions for files and directo-

ries. Each file contains three security levels of protection: the file’s owner, a default group that

has access to the file, and a level for everyone else on the system. Each security level is defined

by three access bits: read, write, and execute. The combination of three bits is often referred

to by the symbols rwx, for read, write, and execute. If a permission is denied, it’s symbol is

replaced with a dash (such as r-- for read-only permission).

The symbolic permissions are often referred to as octal values, with the 3 bits combined into one

octal value, and three octal values representing the three security levels. The umask command is

used to set the default security settings for files and directories created on the system. The system

administrator normally sets a default umask value in the /etc/profile file, but you can use the

umask command to change your umask value at any time.

The chmod command is used to change security settings for files and directories. Only the file’s

owner can change permissions for a file or directory. However, the root user can change the

security settings for any file or directory on the system. The chown and chgrp commands can be

used to change the default owner and group of the file.

168

www.IrPDF.com

www.IrPDF.com

Understanding Linux File Permissions 6

Finally, the chapter closed out with a discussion on how to use the set GID bit to create a shared

directory. The SGID bit forces any new files or directories created in a directory to use the default

group name of the parent directory, not that of the user who created them. This provides an easy

way to share files between users on the system.

Now that you know about Linux file security, you’re almost ready to start creating some

programs. However, before you start coding there’s one more element we need to discuss: edi-

tors. If you plan on writing shell scripts, you’ll need an environment in which to create your
masterpieces. The next chapter discusses the text editors available for you to use in different

Linux environments.

169

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Working with Editors

IN THIS CHAPTER

Working with the vim editor

Understanding emacs

Getting comfortable with KDE

The GNOME editor

B
efore you can start your shell scripting career, you’ll need to know

how to use at least one text editor in Linux. The more you

know about how to use these fancy features such as searching,

cutting, and pasting, the quicker you’ll be able to develop your shell scripts.

This chapter discusses the main text editors you’ll see in the Linux world.

The vim Editor

If you’re working in command line mode, you may want to become familiar

with at least one text editor that operates in the Linux console. The vi

editor is the original editor used on Unix systems. It uses the console

graphics mode to emulate a text-editing window, allowing you to visually

see the lines of your file, move around within the file, and insert, edit, and

replace text.

While it may quite possibly be the most complicated editor in the world
(at least in the opinion of those who hate it), it provides many features that

have made it a staple for Unix administrators for decades.

When the GNU Project ported the vi editor to the open source world, they

chose to make some improvements to it. Since it no longer resembled the

original vi editor found in the Unix world, they also renamed it, to vi

improved, or vim.

171

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Almost all Linux distributions create an alias name (see Chapter 5) vi to point to vim:

$ alias vi
alias vi=’vim’
$

This section walks you through the basics of using the vim editor to edit your text shell

script files.

The basics of vim
The vim editor works with data in a memory buffer. To start the vim editor, just type the vim
command (or vi if there’s an alias) and the name of the file you want to edit:

$ vim myprog.c

If you start vim without a filename, or if the file doesn’t exist, vim opens a new buffer area for

editing. If you specify an existing file on the command line, vim will read the entire contents of

the file into a buffer area, where it is ready for editing, as shown in Figure 7-1.

The vim editor detects the terminal type for the session (see Chapter 2) and uses a full-screen

mode to use the entire console window for the editor area.

FIGURE 7-1

The vim main window

172

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

The initial vim edit window shows the contents of the file (if there are any) along with a message

line at the bottom of the window. If the file contents don’t take up the entire screen, vim places

a tilde on lines that are not part of the file (as shown in Figure 7-1).

The message line at the bottom indicates information about the edited file, depending on the

status of the file, and the default settings in your vim installation. If the file is new, the message

[New File] appears.

The vim editor has two modes of operation:

■ Normal mode

■ Insert mode

When you first open a file (or start a new file) for editing, the vim editor enters normal mode. In

normal mode, the vim editor interprets keystrokes as commands (more on those later).

In insert mode, vim inserts every key you type at the current cursor location in the buffer. To

enter insert mode, press the i key. To get out of insert mode and go back into normal mode,

press the Escape key on the keyboard.

In normal mode, you can move the cursor around the text area by using the arrow keys (as

long as your terminal type is detected properly by vim). If you happen to be on a flaky terminal

connection that doesn’t have the arrow keys defined, hope is not lost. The vim commands include

commands for moving the cursor:

■ h to move left one character.

■ j to move down one line (the next line in the text).

■ k to move up one line (the previous line in the text).

■ l to move right one character

Moving around within large text files line by line can get tedious. Fortunately, vim provides a few

commands to help speed things along:

■ PageDown (or Ctl-f) to move forward one screen of data

■ PageUp (or Ctl-b) to move backward one screen of data

■ G to move to the last line in the buffer

■ num G to move to the line number num in the buffer.

■ gg to move to the first line in the buffer

The vim editor has a special feature within normal mode called command line mode. The command

line mode provides an interactive command line where you can enter additional commands to

control the actions in vim. To get to command line mode, press the colon key in normal mode.

The cursor moves to the message line, and a colon appears, waiting for you to enter a command.

173

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

Within the command line mode are several commands for saving the buffer to the file, and

exiting vim:

■ q to quit if no changes have been made to the buffer data

■ q! to quit and discard any changes made to the buffer data

■ w filename to save the file under a different filename

■ wq to save the buffer data to the file and quit

After seeing just a few basic vim commands you might understand why some people absolutely
hate the vim editor. To be able to use vim to its fullest, you must know plenty of obscure com-

mands. However, once you get a few of the basic vim commands down, you can quickly edit files
directly from the command line, no matter what type of environment you’re in.

Editing data
While in insert mode, you can insert data into the buffer; however, sometimes you need to add
or remove data after you’ve already entered it into the buffer. While in normal mode, the vim

editor provides several commands for editing the data in the buffer. Table 7-1 lists some common
editing commands for vim.

Some of the editing commands also allow you to use a numeric modifier to indicate how
many times to perform the command. For example, the command 2x deletes two characters,

starting from the current cursor position, and the command 5dd deletes five lines, starting at the
line from the current cursor position.

Be careful when trying to use the PC keyboard Backspace or Delete keys while in the

vim editor. The vim editor usually recognizes the Delete key as the functionality of the

x command, deleting the character at the current cursor location. Usually, the vim editor doesn’t

recognize the Backspace key.

Copy and paste
A standard feature of modern editors is the ability to cut or copy data, then paste it elsewhere in
the document. The vim editor provides a way to do this.

Cutting and pasting is relatively easy. You’ve already seen the commands in Table 7-1 that can
remove data from the buffer. However, when vim removes data, it actually keeps it stored in a

separate register. You can retrieve that data by using the p command.

For example, you can use the dd command to delete a line of text, then move the cursor to the

location in the buffer where you want to place it, then use the p command. The p command
inserts the text after the line at the current cursor position. You can do this with any command

that removes text.

Copying text is a little bit trickier. The copy command in vim is y (for yank). You can use the

same second character with y as with the d command (yw to yank a word, y$ to yank to the end
of a line). After you yank the text, move the cursor to the location where you want to place the

text, and use the p command. The yanked text now appears at that location.

174

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

TABLE 7-1

vim Editing Commands

Command Description

x Delete the character at the current cursor position.

dd Delete the line at the current cursor position.

dw Delete the word at the current cursor position.

d$ Delete to the end of the line from the current cursor position.

J Delete the line break at the end of the line at the current cursor position.

a Append data after the current cursor position.

A Append data to the end of the line at the current cursor position.

r char Replace a single character at the current cursor position with char.

R text Overwrite the data at the current cursor position with text, until you press Escape.

Yanking is tricky in that you can’t see what happened, since you’re not affecting the text that

you yank. You never know for sure what you yanked until you paste it somewhere. But there’s

another feature in vim that helps us out with yanking.

The visual mode highlights text as you move the cursor. You use visual mode to select text to

yank for pasting. To enter visual mode, move the cursor to the location where you want to start

yanking, and press v. You’ll notice that the text at the cursor position is now highlighted. Next,

move the cursor to cover the text you want to yank (you can even move down lines to yank

more than one line of text). As you move the cursor, vim highlights the text in the yank area.

After you’ve covered the text you want to copy, press the y key to activate the yank command.

Now that you’ve got the text in the register, just move the cursor to where you want to paste, and

use the p command.

Search and substitute
You can easily search for data in the buffer using the vim search command. To enter a search

string, press the forward slash (/) key. The cursor goes to the message line, and vim displays a

forward slash. Enter the text you want to find, and press the Enter key. The vim editor responds

with one of three actions:

■ If the word appears after the current cursor location, it jumps to the first location where

the text appears.

■ If the word doesn’t appear after the current cursor location, it wraps around the end of

the file to the first location in the file where the text appears (and indicates this with a

message).

■ It produces an error message stating that the text was not found in the file.

175

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

To continue searching for the same word, press the forward slash character, then press the Enter
key, or you can use the n key, for next.

The substitute command allows you to quickly replace (substitute) one word for another in the
text. To get to the substitute command you must be in command line mode. The format for the
substitute command is:

:s/old/new/

The vim editor jumps to the first occurrence of the text old and replaces it with the text new.
There are a few modifications you can make to the substitute command to substitute more than
one occurrence of the text:

■ :s/old/new/g to replace all occurrences of old in a line

■ :#,#s/old/new/g to replace all occurrences of old between two line numbers

■ :%s/old/new/g to replace all occurrences of old in the entire file

■ :%s/old/new/gc to replace all occurrences of old in the entire file, but prompt for
each occurrence

As you can see, for a command line text editor, vim contains quite a few advanced features. Since
every Linux distribution includes it, it’s a good idea to at least know the basics of the vim editor
so that you can always edit scripts, no matter where you are or what you have available.

The emacs Editor
The emacs editor is an extremely popular editor that appeared before even Unix was around.
Developers liked it so much they ported it to the Unix environment, and now it’s been ported to
the Linux environment. The emacs editor started out life as a console editor, much like vi, but
has made the migration to the graphical world.

The emacs editor still provides the original console mode editor, but now it also has the ability to
use a graphical X Windows window to allow editing text in a graphical environment. Normally,
when you start the emacs editor from a command line, it’ll determine if you have an available X
Window session and start in graphical mode. If you don’t, it’ll start in console mode.

This section describes both the console mode and graphical mode emacs editors so that you’ll
know how to use either one if you want (or need) to.

Using emacs on the console
The console mode version of emacs is another editor that uses lots of key commands to perform
editing functions. The emacs editor uses key combinations involving the Control key (the Ctrl
key on the PC keyboard) and the Meta key. In most PC terminal emulator packages, the Meta
key is mapped to the PC’s Alt key. The official emacs documents abbreviate the Ctrl key as C-
and the Meta key as M-, Thus, if you enter a Ctrl-x key combination, the document shows C-x.
I’ll do the same here so as not to confuse you.

176

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

FIGURE 7-2

Editing a file using the emacs editor in console mode

The basics of emacs

To edit a file using emacs, from the command line, enter:

$ emacs myprog.c

The emacs console mode window appears with a short introduction and help screen. Don’t be
alarmed; as soon as you press a key, emacs loads the file into the active buffer and displays the
text, as shown in Figure 7-2.

You’ll notice that the top of the console mode window shows a typical menubar. Unfortunately,
you won’t be able to use the menubar in console mode, only in graphical mode.

Unlike the vim editor, where you have to move in to and out of insert mode to switch between
entering commands and inserting text, the emacs editor only has one mode. If you type a print-
able character, emacs inserts it at the current cursor position. If you type a command, emacs
executes the command.

To move the cursor around the buffer area, you can use the arrow keys and the PageUp and
PageDown keys, assuming that emacs detected your terminal emulator correctly. If not, there are
commands for moving the cursor around:

■ C-p to move up one line (the previous line in the text).

■ C-b to move left (back) one character.

177

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

■ C-f to move right (forward) one character.

■ C-n to move down one line (the next line in the text).

There are also commands for making longer jumps with the cursor within the text:

■ M-f moves right (forward) to the next word.

■ M-b moves left (backward) to the previous word.

■ C-a moves to the beginning of the current line.

■ C-e moves to the end of the current line.

■ M-a moves to the beginning of the current sentence.

■ M-e moves to the end of the current sentence.

■ M-v moves back one screen of data.

■ C-v moves forward one screen of data.

■ M-< to move the first line of the text.

■ M-> to move to the last line of the text.

There are several commands you should know for saving the editor buffer back into the file, and
exiting emacs:

■ C-x C-s to save the current buffer contents to the file.

■ C-z to exit emacs but keep it running in your session so that you can come back to it.

■ C-x C-c to exit emacs and stop the program.

You’ll notice that two of these features require two key commands. The C-x command is called
the extend command. This provides yet another whole set of commands to work with.

Editing data

The emacs editor is pretty robust about inserting and deleting text in the buffer. To insert text,
just move the cursor to the location where you want to insert the text and start typing. To delete
text, emacs uses the Backspace key to delete the character before the current cursor position and
the Delete key to delete the character at the current cursor location.

The emacs editor also has commands for killing text. The difference between deleting text and
killing text is that when you kill text, emacs places it in a temporary area where you can retrieve
it (see the ‘‘Copying and pasting’’ section). Deleted text is gone forever.

There are a few commands for killing text in the buffer:

■ M-Backspace to kill the word before the current cursor position.

■ M-d to kill the word after the current cursor position.

■ C-k to kill from the current cursor position to the end of the line.

■ M-k to kill from the current cursor position to the end of the sentence.

178

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

The emacs editor also includes a fancy way of mass-killing text. Just move the cursor to the start

of the area you want to kill, and press either the C-@ or C-Spacebar keys. Then move the cursor
to the end of the area you want to kill and press the C-w command keys. All of the text between

the two locations is killed.

If you happen to make a mistake when killing text, the C-u command will undo the kill
command, and return the data the state it was in before you killed it.

Copying and pasting

You’ve seen how to cut data from the emacs buffer area; now it’s time to see how to paste it

somewhere else. Unfortunately, if you use the vim editor, this process may confuse you when
you use the emacs editor.

In an unfortunate coincidence, pasting data in emacs is called yanking. In the vim editor, copying

is called yanking, which is what makes this a difficult thing to remember if you happen to use
both editors.

After you kill data using one of the kill commands, move the cursor to the location where you

want to paste the data, and use the C-y command. This yanks the text out of the temporary area
and pastes it at the current cursor position. The C-y command yanks the text from the last kill

command. If you’ve performed multiple kill commands, you can cycle through them using the
M-y command.

To copy text, just yank it back into the same location you killed it from, then move to the new

location and use the C-y command again. You can yank text back as many times as you desire.

Searching and replacing

Searching for text in the emacs editor is done by using the C-s and C-r commands. The C-s
command performs a forward search in the buffer area from the current cursor position to the
end of the buffer, whereas the C-r command performs a backward search in the buffer area from

the current cursor position to the start of the buffer.

When you enter either the C-s or C-r command, a prompt appears in the bottom line, querying
you for the text to search. There are two types of searches that emacs can perform.

In an incremental search, the emacs editor performs the text search in real-time mode as you

type the word. When you type the first letter, it highlights all of the occurrences of that letter in
the buffer. When you type the second letter, it highlights all of the occurrences of the two letter

combination in the text, and so on until you complete the text you’re searching for.

In a non-incremental search, press the Enter key after the C-s or C-r commands. This locks the
search query into the bottom line area and allows you to type the search text in full before

searching.

To replace an existing text string with a new text string, you have to use the M-x command. This
command requires a text command, along with parameters.

179

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The text command is replace-string. After typing the command, press the Enter key, and

emacs will query you for the existing text string. After entering that, press the Enter key again,

and emacs will query you for the new replacement text string.

Using buffers in emacs

The emacs editor allows you to edit multiple files at the same time by having multiple buffer

areas. You can load files into a buffer and switch between buffers while editing.

To load a new file into a buffer while you’re in emacs, use the C-x C-f key combination. This

is the emacs find a file mode. It takes you to the bottom line in the window and allows you to

enter the name of the file you want to start to edit. If you don’t know the name or location of

the file, just press the Enter key. This brings up a file browser in the edit window, as shown in

Figure 7-3.

From here, you can browse to the file you want to edit. To traverse up a directory level, go to the

double dot entry, and press the Enter key. To traverse down a directory, go to the directory entry

and press the Enter key. When you’ve found the file you want to edit, just press the Enter key,

and emacs will load it into a new buffer area.

FIGURE 7-3

The emacs find a file mode browser

180

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

You can list the active buffer areas by pressing the C-x C-b extended command combination. The

emacs editor splits the editor window and displays a list of buffers in the bottom window. There

are always two buffers that emacs provides besides your main editing buffer:

■ A scratch area called *scratch*

■ A message area called *Messages*

The scratch area allows you to enter LISP programming commands, as well as enter notes to

yourself. The message area shows messages generated by emacs while operating. If any errors

occur while using emacs, they will appear in the message area.

There are two ways to switch to a different buffer area in the window:

■ C-x o to switch to the buffer listing window. Use the arrow keys to move to the buffer

area you want, and press the Enter key.

■ C-x b to type in the name of the buffer area you want to switch to.

When you select the option to switch to the buffer listing window, emacs will open the buffer

area in the new window area. The emacs editor allows you to have multiple windows open in a

single session. The following section discusses how to manage multiple windows in emacs.

Using windows in console mode emacs

The console mode emacs editor was developed many years before the idea of graphical win-

dows appeared. However, it was advanced for its time, in that it could support multiple editing

windows within the main emacs window.

You can split the emacs editing window into multiple windows by using one of two commands:

■ C-x 2 splits the window horizontally into two windows.

■ C-x 3 splits the window vertically into two windows.

To move from one window to another, use the C-x o command. You’ll notice that when you

create a new window, emacs uses the buffer area from the original window in the new window.

Once you move into the new window, you can use the C-x C-f command to load a new file, or

one of the commands to switch to a different buffer area in the new window.

To close a window, move to it and use the C-x 0 (that’s a zero) command. If you want to close

all of the windows except the one you’re in, use the C-x 1 (that’s a numerical one) command.

Using emacs in X Windows
If you use emacs from an X Windows environment (such as the KDE or GNOME desktops), it’ll

start in graphical mode, as shown in Figure 7-4.

181

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 7-4

The emacs graphical window

If you’ve already used emacs in console mode, you should be fairly familiar with the X Windows

mode. All of the key commands are available as menubar items. The emacs menubar contains the
following items:

■ File allows you to open files in the window, create new windows, close windows, save
buffers, and print buffers.

■ Edit allows you to cut and copy selected text to the clipboard, paste clipboard data to
the current cursor position, search for text, and replace text.

■ Options provides settings for many more emacs features, such as highlighting, word
wrap, cursor type, and setting fonts.

■ Buffers lists the current buffers available and allows you to easily switch between
buffer areas.

■ Tools provides access to the advanced features in emacs, such as the command line
interface access, spell checking, comparing text between files (called diff), sending

an e-mail message, calendar, and the calculator.

■ Help provides the emacs manual online for access to help on specific emacs functions.

182

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

Besides the normal graphical emacs menubar items, there is often a separate item specific to

the file type in the editor buffer. In Figure 7-4, I opened a C program, so emacs provided a C
menu item, allowing advanced settings for highlighting C syntax, and compiling, running, and
debugging the code from a command prompt.

The graphical emacs window is an example of an older console application making the migration
to the graphical world. Now that many Linux distributions provide graphical desktops (even

on servers that don’t need them), graphical editors are becoming more commonplace. Both of
the popular Linux desktop environments (KDE and GNOME) have also provided graphical text
editors specifically for their environments, which are covered in the rest of this chapter.

The KDE Family of Editors
If you’re using a Linux distribution that uses the KDE desktop (see Chapter 1), there are a couple
of options for you when it comes to text editors. The KDE project officially supports two different

text editors:

■ KWrite: A single-screen text-editing package

■ Kate: Full-featured multi-window text editing package

Both of these editors are graphical text editors that contain many advanced features. The Kate edi-

tor provides more advanced features, plus extra niceties not often found in standard text editors.
This section describes each of the editors and shows some of the features that you can use to help
with your shell script editing.

The KWrite editor
The basic editor for the KDE environment is KWrite. It provides simple word-processing-style text
editing, along with support for code syntax highlighting and editing. The default KWrite editing

window is shown in Figure 7-5.

You can’t tell from Figure 7-5, but the KWrite editor recognizes several types of programming
languages and uses color coding to distinguish constants, functions, and comments. Also, notice

that the for loop has an icon that links the opening and closing braces. This is called a folding
marker. By clicking the icon, you can collapse the function into a single line. This is a great feature
when working through large applications.

The KWrite editing window provides full cut and paste capabilities, using the mouse and the
arrow keys. Just as in a word processor, you can highlight and cut (or copy) text anywhere in the

buffer area and paste it at any other place.

To edit a file using KWrite, you can either select KWrite from the KDE menu system on your
desktop (some Linux distributions even create a Panel icon for it) or start it from the command

line prompt:

$ kwrite factorial.sh

183

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 7-5

The default KWrite window editing a shell script program

The kwrite command has several command line parameters you can use to customize how

it starts:

■ --stdin causes KWrite to read data from the standard input device instead of a file.

■ --encoding specifies a character encoding type to use for the file.

■ --line specifies a line number in the file to start at in the editor window.

■ --column specifies a column number in the file to start at in the editor window.

The KWrite editor provides both a menubar and a toolbar at the top of the edit window, allowing

you to select features and change configuration settings of the KWrite editor.

The menubar contains the following items:

■ File to load, save, print, and export text from files.

■ Edit to manipulate text in the buffer area.

■ View to manage how the text appears in the editor window.

184

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

■ Bookmarks for handling pointers to return to specific locations in the text.

■ Tools contains specialized features to manipulate the text.

■ Settings for configuring the way the editor handles text.

■ Help for getting information about the editor and commands.

The Edit menubar item provides commands for all of your text editing needs. Instead of having to

remember cryptic key commands (which by the way, KWrite also supports), you can just select

items in the Edit menubar, as shown in Table 7-2.

The Find Text dialog box, shown in Figure 7-6, is a powerful tool for searching for text in the
buffer area.

TABLE 7-2

The KWrite Edit Menu Items

Item Description

Undo Reverse the last action or operation.

Redo Reverse the last undo action.

Cut Deletes the selected text and places it in the clipboard.

Copy Copies the selected text to the clipboard.

Copy as HTML Copies the selected text to the clipboard as HTML code.

Paste Inserts the current contents of the clipboard at the current cursor position.

Select All Selects all text in the editor.

Deselect Deselects any text that is currently selected.

Block Selection
Mode

When enabled, allows you to select text between columns instead of
whole lines.

Overwrite
Mode

Toggles insert mode to overwrite mode, replacing text with new typed
text instead of just inserting the new text.

Find Produces the Find Text dialog box, which allows you to customize
a text search.

Find Next Repeats the last find operation forward in the buffer area.

Find Previous Repeats the last find operation backwards in the buffer area.

Replace Produces the Replace With dialog box, which allows you to customize a
text search and replace.

Go to Line Produces the Goto dialog box, which allows you to enter a line number.
The cursor moves to the specified line.

185

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 7-6

The KWrite Find Text dialog box

The Find Text dialog box uses the word at the current cursor location as the default text value
to search for. It also provides for you to use a regular expression (discussed in Chapter 17) for
the search. There are a few checkboxes you can use to customize the search as well, indicating,
for example, whether or not to perform a case-sensitive search, or to look only for whole words

instead of finding the text within words.

The Tools menubar item provides several handy features for working with the text in the buffer
area. Table 7-3 describes the tools available in KWrite.

There are lots of tools for a simple text editor!

The Settings menu includes the Configure Editor dialog box, shown in Figure 7-7.

The Configuration dialog box uses icons on the left side for you to select the feature in KWrite
to configure. When you select an icon, the right side of the dialog box shows the configuration

settings for the feature.

The Appearance feature allows you to set several features controlling how the text appears in the
text editor window. You can enable word wrap, line numbers (great for programmers), and the

folder markers from here. With the Fonts & Colors feature, you can customize the complete color
scheme for the editor, determining what colors to make each category of text in the program code.

186

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

TABLE 7-3

The KWrite Tools

Tool Description

Read Only Mode Locks the text so no changes can be made while in the editor.

Filetype Selects the filetype scheme used in the text.

Highlighting Highlights text based on content, such as program code or a
configuration file.

Indentation Automatically indents lines based on a selection..

Encoding Sets the character set encoding used by the text.

Spelling Starts the spellcheck program at the start of the text.

Spelling (from cursor) Starts the spellcheck program from the current cursor position.

Spellcheck Selection Starts the spellcheck program only on the selected section
of text.

Indent Increases the paragraph indentation by one.

Unindent Decreases the paragraph indentation by one.

Clean Indentation Returns all paragraph indentation to the original settings.

Align Forces the current line or the selected lines to return to the
default indentation settings.

Comment Adds a comment symbol to the current line based on the
detected file type.

Uncomment Removes a comment symbol from the current line based on the
detected file type.

Uppercase Sets the selected text, or the character at the current cursor
position to upper case.

Lowercase Sets the selected text, or the character at the current cursor
position to lower case.

Capitalize Uppercases the first letter of the selected text or the word at the
current cursor position.

Join Lines Combines the selected lines, or the line at the current cursor
position and the next line into one line.

Word Wrap
Document

Enable word wrapping in the text. If a line extends past the
editor window edge, the line continues on the next line.

187

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 7-7

The KWrite Configure Editor dialog box

FIGURE 7-8

The Kate session dialog box

188

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

The Kate editor
The Kate editor is the flagship editor for the KDE Project. It uses the same text editor as the

KWrite application (so most of those features are the same), but it incorporates lots of other
features into a single package.

The first thing you’ll notice when you start the Kate editor, is that the editor doesn’t start! Instead,

you get a dialog box, as shown in Figure 7-8.

The Kate editor handles files in sessions. You can have multiple files open in a session, and you

can have multiple sessions saved. When you start Kate, it provides you with the choice of which

session to return to. When you close your Kate session, it remembers the documents you had

open, and displays them the next time you start Kate.

After selecting a session, you’ll see the main Kate editor window, shown in Figure 7-9.

The left side frame shows the documents currently open in the session. You can switch between

documents just by clicking the document name. To edit a new file, click the Filesystem Browser

tab on the left side. The left frame is now a full graphical filesystem browser, allowing you to

graphically browse to locate your files.

FIGURE 7-9

The main Kate editing window

189

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 7-10

The Kate built-in terminal window

One of my favorite features of the Kate editor is the built-in terminal window, shown
in Figure 7-10.

The terminal tab at the bottom of the text editor window starts the built-in terminal emulator
in Kate (using the KDE Konsole terminal emulator). This feature horizontally splits the current
editing window, creating a new window with Konsole running in it. You can now enter command

line commands, start programs, or check on system settings without having to leave the editor!
To close the terminal window, just type exit at the command prompt.

As you can tell from the terminal feature, Kate also supports multiple windows. The Window
menubar item provides options to:

■ Create a new Kate window using the current session

■ Split the current window vertically to create a new window

■ Split the current window horizontally to create a new window

■ Close the current window

To set the configuration settings in Kate, select the Configure Kate item under the Settings
menubar item. The Configuration dialog box, shown in Figure 7-11, appears.

190

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

FIGURE 7-11

The Kate configuration settings dialog box

You’ll notice that the Editor settings area is exactly the same as for KWrite. This is because the two
editors share the same text editor engine. The Application settings area allows you to configure

settings for the Kate items, such as controlling sessions (shown in Figure 7-11), the documents
list, and the filesystem browser. Kate also supports external plugin applications, which can be

activated here.

The GNOME Editor
If you’re working on a Linux system using the GNOME desktop environment, there’s a graph-

ical text editor that you can use as well. The gedit text editor is a basic text editor, with a few
advanced features thrown in just for fun. This section walks you through the features of gedit

and demonstrates how to use it for your shell script programming.

Starting gedit
Most GNOME desktop environments include gedit in the Accessories Panel menu item. If you
can’t find gedit there, you can start it from the command line prompt:

$ gedit factorial.sh myprog.c

191

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 7-12

The gedit main editor window

When you start gedit with multiple files, it loads all of the files into separate buffers and displays
each one as a tabbed window within the main editor window, as shown in Figure 7-12.

The left frame in the gedit main editor window shows the documents you’re currently editing.
The right side shows the tabbed windows that contain the buffer text. If you hover your mouse
pointer over each tab, a dialog box appears, showing the full pathname of the file, the MIME type,
and the character set encoding it uses.

Basic gedit features
Besides the editor windows, gedit uses both a menubar and toolbar that allow you to set features
and configure settings. The toolbar provides quick access to menubar items. The menubar items
available are:

■ File for handling new files, saving existing files, and printing files.

■ Edit to manipulate text in the active buffer area and set the editor preferences.

■ View to set the editor features to display in the window and to set the text
highlighting mode.

■ Search to find and replace text in the active editor buffer area.

■ Tools to access plugin tools installed in gedit.

192

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

■ Documents to manage files open in the buffer areas.

■ Help to access the full gedit manual.

There shouldn’t be anything too surprising here. The File menu provides the option Open Loca-

tion, which allows you to open a file from the network using the standard Uniform Resource

Identifier (URI) format popular in the World Wide Web world. This format identifies the proto-

col used to access the file (such as HTTP or FTP), the server where the file is located, and the

complete path on the server to access the file.

The Edit menu contains the standard cut, copy, and paste functions, along with a neat feature

that allows you to easily enter the date and time in the text in several different formats. The

Search menu provides a standard find function, which produces a dialog box where you can

enter the text to find, along with the capability to select how the find should work (matching

case, matching the whole word, and the search direction). It also provides an incremental search

feature, which works in real-time mode, finding text as you type characters of the word.

Setting preferences
The Edit menu contains a Preferences item, which produces the gedit Preferences dialog box,

shown in Figure 7-13.

FIGURE 7-13

The gedit Preferences dialog box

193

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

This is where you can customize the operation of the gedit editor. The Preferences dialog box

contains five tabbed areas for setting the features and behavior of the editor.

View

The View tab provides options for how gedit displays the text in the editor window:

■ Text Wrapping determines how to handle long lines of text in the editor. The Enabling

text wrapping option wraps long lines to the next line of the editor. The Do Not Split

Words Over Two Lines option prevents the auto-inserting of hyphens into long words,
to prevent them being split between two lines.

■ Line Numbers displays line numbers in the left margin in the editor window.

■ Current Line highlights the line where the cursor is currently positioned, enabling you

to easily find the cursor position.

■ Right Margin enables the right margin and allows you to set how many columns should
be in the editor window. The default value is 80 columns.

■ Bracket Matching, when enabled, highlights bracket pairs in programming code,

allowing you to easily match brackets in if-then statements, for and while loops,

and other coding elements that use brackets.

The line-numbering and bracket-matching features provide an environment for programmers to

troubleshoot code that’s not often found in text editors.

Editor

The Editor tab provides options for how the gedit editor handles tabs and indentation, along with

how files are saved:

■ Tab Stops sets the number of spaces skipped when you press the Tab key. The default

value is eight. This feature also includes a checkbox that, when checked, inserts spaces

instead of a tab skip.

■ Automatic Indentation, when enabled, causes gedit to automatically indent lines

in the text for paragraphs and code elements (such as if-then statements and

loops).

■ File Saving provides two features for saving files: whether or not to create a backup

copy of the file when opened in the edit window, and whether or not to automatically

save the file at a preselected interval.

The auto-save feature is a great way to ensure that your changes are saved on a regular basis to

prevent catastrophes from crashes or power outages.

194

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

Font & Colors

The Font & Colors tab allows you to configure (not surprisingly) two items:

■ Font allows you to select the default font of Monospace 10, or to select a customized

font and font size from a dialog box.

■ Colors allows you to select the default color scheme used for text, background, selected

text, and selection colors, or choose a custom color for each category.

The default colors for gedit match the standard GNOME desktop theme selected for the desktop.

These colors will change to match the scheme you select for the desktop.

Syntax Highlighting

The Syntax Highlighting tab provides options to configure how gedit highlights elements in pro-

gramming code. The gedit editor has the capability to detect the programming language contained

in a text file and to automatically set the appropriate syntax highlighting for the text.

You can also customize the syntax-highlighting feature by selecting colors for various elements

of a programming code file. The elements change depending on the programming code type you
select. For shell scripts, select the sh highlighting mode. This mode contains color schemes for

the following code elements:

■ Text within a backtick string

■ Built-in shell commands

■ Common commands

■ Shell functions

■ Line comments

■ Multiline string (two versions)

■ Shell operator

■ Shell punctuator

■ Shell redirection

■ Self

■ Two types of strings

■ Two types of variables

This provides an amazing amount of control when selecting your shell-script-editing environment.

You can customize your own work area, down to the colors you prefer for the code highlighting.

195

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

FIGURE 7-14

The gedit Plugins Preferences tab

Plugins

The Plugins tab provides control over the plugins used in gedit. Plugins are separate programs

that can interface with gedit to provide additional functionality. The Plugins tab is shown in

Figure 7-14.

There are several plugins available for gedit, but not all of them are installed by default. Table 7-4

describes the plugins that are currently available in gedit.

Plugins that are enabled show a checkmark in the checkbox next to their name. Some plugins,

such as the External Tools plugin, also provide additional configuration features after you select

them. It allows you to set a shortcut key to start the terminal, where gedit displays output, and

the command to use to start the shell session.

Unfortunately, not all plugins are installed in the same place in the gedit menubar. Some plugins

appear in the Tools menubar item (such as the Spell Checker and External Tools plugins), while

others appear in the Edit menubar item (such as the Change Case and Insert Date/Time plugins).

196

www.IrPDF.com

www.IrPDF.com

Working with Editors 7

TABLE 7-4

The gedit Plugins

Plugin Description

Change Case Changes the case of selected text.

Document
Statistics

Reports the number of words, lines, characters, and non-space characters.

External Tools Provides a shell environment in the editor to execute commands and scripts.

File Browser
Pane

Provides a simple file browser to make selecting files for editing easier.

Indent Lines Provides advanced line indentation and un-indentation.

Insert
Date/Time

Inserts the current date and time in several formats at the current cursor
position.

Modelines Provides emacs-style message lines at the bottom of the editor window.

Python Console Provides an interactive console at the bottom of the editor window for
entering commands using the Python programming language.

Snippets Allows you to store often-used pieces of text for easy retrieval anywhere in
the text.

Sort Quickly sorts the entire file or selected text.

Spell Checker Provides dictionary spellchecking for the text file.

Tag List Provides a list of commonly used strings you can easily enter into your text.

User name Inserts the current user’s login name at the current cursor position.

Summary
When it comes to creating shell scripts, you’ll need some type of text editor. There are several

popular text editors available for the Linux environment. The most popular editor in the Unix

world, vi, has been ported to the Linux world as the vim editor. The vim editor provides simple

text editing from the console, using a rudimentary full-screen graphical mode. The vim editor

provides many advanced editor features, such as text searching and replacement.

Another popular Unix editor, emacs, has also made its way to the Linux world. The Linux version

of emacs has both console and an X Windows graphical mode, making it the bridge between the

old world and the new. The emacs editor provides multiple buffer areas, allowing you to edit

multiple files simultaneously.

197

www.IrPDF.com

www.IrPDF.com

Part I The Linux Command Line

The KDE Project created two editors for use in the KDE desktop. The KWrite editor is a simple

editor that provides the basic text-editing features, along with a few advanced features such as

syntax highlighting for programming code, line numbering, and code folding. The Kate editor

provides more advanced features for programmers. One great feature in Kate is a built-in termi-

nal window. You can open a command line interface session directly in the Kate editor without

having to open a separate terminal emulator window. The Kate editor also allows you to open

multiple files, providing different windows for each opened file.

The GNOME Project also provides a simple text editor for programmers. The gedit editor is a

basic text editor that provides some advanced features such as code syntax highlighting and line

numbering, but it was designed to be a bare-bones editor. To spruce up the gedit editor, devel-

opers created plugins, which expand the features available in gedit. Current plugins include a

spellchecker, a terminal emulator, and a file browser.

This wraps up the background chapters on working with the command line in Linux. The next

part of the book dives into the shell-scripting world. The next chapter starts you off by showing

you how to create a shell script file and how to run it on your Linux system. It’ll also show you

the basics of shell scripts, allowing you to create simple programs by stringing multiple commands
together into a script you can run.

198

www.IrPDF.com

www.IrPDF.com

Shell Scripting
Basics

IN THIS PART

Chapter 8
Basic Script Building

Chapter 9
Using Structured Commands

Chapter 10
More Structured Commands

Chapter 11
Handling User Input

Chapter 12
Presenting Data

Chapter 13
Script Control

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Basic Script Building

IN THIS CHAPTER

Building a script

Stringing commands

Storing variables

Playing with math

Redirecting output

Checking codes

N
ow that we’ve covered the basics of the Linux system and the

command line, it’s time to start coding. This chapter discusses

the basics of writing shell scripts. You’ll need to know these basic

concepts before you can start writing your own shell script masterpieces.

Using Multiple Commands

So far you’ve seen how to use the command line interface (CLI) prompt

of the shell to enter commands and view the command results. The key

to shell scripts is the ability to enter multiple commands, and process

the results from each command, even possibly passing the results of one

command to another. The shell allows you to chain commands together

into a single step.

If you want to run two commands together, you can enter them on the

same prompt line, separated with a semicolon:

$ date ; who
Mon Sep 24 19:44:35 EST 2007
rich :0 2007-09-24 18:23 (console)
rich pts/1 2007-09-24 18:24
rich pts/0 2007-09-24 18:42
barbara pts/2 2007-09-24 19:30
katie pts/3 2007-09-24 19:39
$

201

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Congratulations, you just wrote a shell script! This simple script uses just two bash shell

commands. The date command runs first, displaying the current date and time, followed by the

output of the who command, showing who is currently logged on to the system. Using this tech-

nique, you can string together as many commands as you wish, up to the maximum command

line character count of 255 characters.

While using this technique is fine for small scripts, it has a major drawback in that you have

to enter the entire command at the command prompt every time you want to run it. Instead of
having to manually enter the commands onto a command line, you can combine the commands

into a simple text file. When you need to run the commands, just simply run the text file.

Creating a Script File
To place shell commands in a text file, first you’ll need to use a text editor (see Chapter 7) to

create a file, then enter the commands into the file.

When creating a shell script file, you must specify the shell you are using in the first line of the

file. The format for this is:

#!/bin/bash

In a normal shell script line, the pound sign (#) is used as a comment line. A comment line in

a shell script isn’t processed by the shell. However, the first line of a shell script file is a special

case, and the pound sign followed by the exclamation point tells the shell what shell to run the

script under (yes, you can be using a bash shell and run your script using another shell).

After indicating the shell, commands are entered onto each line of the file, followed by a car-

riage return. As mentioned, comments can be added by using the pound sign. An example looks

like this:

#!/bin/bash
This script displays the date and who’s logged on
date
who

And that’s all there is to it. You can use the semicolon and put both commands on the same line if

you want to, but in a shell script, you can list commands on separate lines. The shell will process

commands in the order in which they appear in the file.

Also notice that I added another line that starts with the pound symbol and adds a comment.

Lines that start with the pound symbol (other than the first #! line) aren’t interpreted by the

shell. This is a great way to leave comments for yourself about what’s happening in the script, so

when you come back to it two years later you can easily remember what you did.

202

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

Save this script in a file called test1, and you are almost ready. I say ‘‘almost’’ because there are

still a couple of things to do before you can run your new shell script file.

If you try running the file now, you’ll be somewhat disappointed to see this:

$ test1
bash: test1: command not found
$

The first hurdle to jump is getting the bash shell to find your script file. If you remember from

Chapter 5, the shell uses an environment variable called PATH to find commands. Looking at the

PATH environment variable explains my problem:

$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/X11R6/bin
$

The PATH environment variable is set to look for commands only in a handful of directories. To

get the shell to find my test1 script, I need to do one of two things:

■ Add the directory where my shell script file is located to the PATH environment variable.

■ Use an absolute or relative filepath to reference my shell script file in the prompt.

Some Linux distributions add the $HOME/bin directory to the PATH environment

variable. This creates a place in every user’s HOME directory to place files where the

shell can find them to execute.

For this example, I’ll use the second method to tell the shell exactly where my script file is located.
Remember, to reference a file in the current directory, you can use the single dot operator in

the shell:

$./test1
bash: ./test1: Permission denied
$

Now the shell found the shell script file just fine, but there’s another problem. The shell indicated

that I don’t have permission to execute the file. A quick look at the file permissions should show

what’s going on here:

$ ls -l test1
-rw-r--r-- 1 rich rich 73 Sep 24 19:56 test1
$

When I created the new test1 file, my umask value determined the default permission settings for

the new file. Since my umask is set to 022 (see Chapter 6), the system created the file with only

read/write permissions for myself.

203

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The next step is to give myself permission to execute the file, using the chmod command (see

Chapter 6):

$ chmod u+x test1
$./test1
Mon Sep 24 19:58:35 EST 2007
rich :0 2007-09-24 18:23 (console)
rich pts/1 2007-09-24 18:24
rich pts/0 2007-09-24 18:42
barbara pts/2 2007-09-24 19:30
katie pts/3 2007-09-24 19:39
$

Success! Now all of the pieces are in the right places to execute the new shell script file.

Displaying Messages
Most shell commands produce their own output, which is displayed on the console monitor

where the script is running. Many times though you will want to add your own text messages

to help the script user know what is happening within the script. This is done using the echo
command. The echo command can display a simple text string if you add the string following

the command:

$ echo This is a test
This is a test
$

Notice that by default you don’t need to use quotes to delineate the string you’re displaying.

However, sometimes this can get tricky if you are using quotes within your string:

$ echo Let’s see if this’ll work
Lets see if thisll work
$

The echo command uses either double or single quotes to delineate text strings. If you use them

within your string, you need to use one type of quote within the text, and the other type to

delineate the string:

$ echo "This is a test to see if you’re paying attention"
This is a test to see if you’re paying attention
$ echo ’Rich says "scripting is easy".’
Rich says "scripting is easy".
$

Now all of the quotation marks appear properly in the output.

204

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

You can add echo statements anywhere in your shell scripts where you need to display additional

information:

$ cat test1
#!/bin/bash
This script displays the date and who’s logged on
echo The time and date are:
date
echo "Let’s see who’s logged into the system:"
who
$

When you run this script, it produces the output:

$ chmod u+x test1
$./test1
The time and date are:
Mon Sep 24 20:09:35 EST 2007
Let’s see who’s logged into the system:
rich :0 2007-09-24 18:23 (console)
rich pts/1 2007-09-24 18:24
rich pts/0 2007-09-24 18:42
barbara pts/2 2007-09-24 19:30
katie pts/3 2007-09-24 19:39
$

That’s nice, but what if you want to echo a text string on the same line as a command output? You

can use the -n parameter for the echo statement to do that. Just change the first echo statement
line to:

echo -n "The time and date are: "

You’ll need to use quotes around the string to ensure that there’s a space at the end of the echoed

string. The command output begins exactly where the string output stops. The output will now

look like:

$./test1
The time and date are: Mon Sep 24 20:11:35 EST 2007
Let’s see who’s logged into the system:
rich :0 2007-09-24 18:23 (console)
rich pts/1 2007-09-24 18:24
rich pts/0 2007-09-24 18:42
barbara pts/2 2007-09-24 19:30
katie pts/3 2007-09-24 19:39
$

Perfect! The echo command is a crucial piece of shell scripts that interact with users. You’ll find
yourself using it in many situations, especially when you want to display the values of script

variables. Let’s look at that next.

205

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Using Variables
Just running individual commands from the shell script is useful, but this has its limitations.
Often you’ll want to incorporate other data in your shell commands to process information. You
can do this by using variables. Variables allow you to temporarily store information within the
shell script for use with other commands in the script. This section shows how to use variables
in your shell scripts.

Environment variables
You’ve already seen one type of Linux variable in action. Chapter 5 described the environment
variables available in the Linux system. You can access these values from your shell scripts
as well.

The shell maintains environment variables that track specific system information, such as the
name of the system, the name of the user logged in to the system, the user’s system ID (called
UID), the default home directory of the user, and the search path used by the shell to find pro-
grams. You can display a complete list of active environment variables available by using the set
command:

$ set
BACKSPACE=Delete
BASH=/bin/bash
EUID=1000
HISTFILE=/home/rich/.bash history
HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home/rich
HOSTNAME=testing
HOSTTYPE=i586
LANG=en
LANGUAGE=en US:en
LINES=24
LOGNAME=rich
...

You can tap into these environment variables from within your scripts by using the environment
variable’s name preceded by a dollar sign. This is demonstrated in the following script:

$ cat test2
#!/bin/bash
display user information from the system.
echo "User info for userid: $USER"
echo UID: $UID
echo HOME: $HOME
$

206

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

The $USER, $UID, and $HOME environment variables are used to display the pertinent information

about the logged-in user. The output should look something like this:

$chmod u+x test2
$./test2
User info for userid: rich
UID: 501
HOME: /home/rich
$

Notice that the environment variables in the echo commands are replaced by their current values

when the script is run. Also notice that we were able to place the $USER system variable within

the double quotation marks in the first string, and the shell script was still able to figure out

what we meant. There is a drawback to using this method though. Look at what happens in this

example:

$ echo "The cost of the item is $15"
The cost of the item is 5

That is obviously not what I intended. Whenever the script sees a dollar sign within quotes, it

assumes you’re referencing a variable. In this example the script attempted to display the vari-
able $1 (which was not defined), then the number 5. To display an actual dollar sign, you must

precede it with a backslash character:

$ echo "The cost of the item is \$15"
The cost of the item is $15

That’s better. The backslash allowed the shell script to interpret the dollar sign as an actual dollar

sign, and not a variable. The next section shows how to create your own variables in your scripts.

You may also see variables referenced using the format ${variable}. The extra braces

around the variable name are often used to help identify the variable name from the

dollar sign.

User variables
Besides the environment variables, a shell script allows you to set and use your own variables

within the script. Setting variables allows you to temporarily store data and use it throughout the

script, making the shell script more like a real computer program.

User variables can be any text string of up to 20 letters, digits, or an underscore character. User

variables are case sensitive, so the variable Var1 is different from the variable var1. This little

rule often gets novice script programmers in trouble.

207

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Values are assigned to user variables using an equal sign. No spaces can appear between the
variable, the equal sign, and the value (another trouble spot for novices). Here are a few examples
of assigning values to user variables:

var1=10
var2=-57
var3=testing
var4="still more testing"

The shell script automatically determines the data type used for the variable value. Variables
defined within the shell script maintain their values throughout the life of the shell script but
are deleted when the shell script completes.

Just like system variables, user variables can be referenced using the dollar sign:

$ cat test3
#!/bin/bash
testing variables
days=10
guest="Katie"
echo "$guest checked in $days days ago"
days=5
guest="Jessica"
echo "$guest checked in $days days ago"
$

Running the script produces the output:

$ chmod u+x test3
$./test3
Katie checked in 10 days ago
Jessica checked in 5 days ago
$

Each time the variable is referenced, it produces the value currently assigned to it. It’s important
to remember that when referencing a variable value you use the dollar sign, but when referencing
the variable to assign a value to it, you do not use the dollar sign. Here’s an example of what
I mean:

$ cat test4
#!/bin/bash
assigning a variable value to another variable

value1=10
value2=$value1
echo The resulting value is $value2
$

208

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

When you use the value of the value1 variable in the assignment statement, you must still use
the dollar sign. This code produces the output:

$ chmod u+x test4
$./test4
The resulting value is 10
$

If you forget the dollar sign, and make the value2 assignment line look like:

value2=value1

you get the following output:

$./test4
The resulting value is value1
$

Without the dollar sign the shell interprets the variable name as a normal text string, which is
most likely not what you wanted.

The backtick
One of the most useful features of shell scripts is the lowly back quote character, usually called the
backtick (`) in the Linux world. Be careful, this is not the normal single quotation mark character
you are used to using for strings. Since it is not used very often outside of shell scripts, you may
not even know where to find it on your keyboard. You should become familiar with it, because
it’s a crucial component of many shell scripts (hint: on a U.S. keyboard, it is usually on the same
key as the tilde symbol (∼)).

The backtick allows you to assign the output of a shell command to a variable. While this doesn’t
seem like much, it is a major building block in script programming.

You must surround the entire command line command with backtick characters:

testing=`date`

The shell runs the command within the backticks, and assigns the output to the variable
testing. Here’s an example of creating a variable using the output from a normal shell
command:

$ cat test5
#!/bin/bash
using the backtick character
testing=`date`
echo "The date and time are: " $testing
$

209

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The variable testing receives the output from the date command, and it is used in the echo
statement to display it. Running the shell script produces the following output:

$ chmod u+x test5
$./test5
The date and time are: Mon Sep 24 20:23:25 EDT 2007
$

That’s not all that exciting in this example (you could just as easily just put the command in the echo
statement), but once you capture the command output in a variable, you can do anything with it.

Here’s a popular example of how the backtick is used to capture the current date and use it to

create a unique filename in a script:

#!/bin/bash
copy the /usr/bin directory listing to a log file
today=`date +%y%m%d`
ls /usr/bin -al > log.$today

The today variable is assigned the output of a formatted date command. This is a common

technique used to extract date information for log filenames. The +%y%m%d format instructs the

date command to display the date as a two-digit year, month, and day:

$ date +%y%m%d
070922
$

The script assigns the value to a variable, which is then used as part of a filename. The file itself

contains the redirected output (discussed later in the ‘‘Redirecting Output’’ section) of a directory

listing. After running the script, you should see a new file in your directory:

-rw-r--r-- 1 rich rich 769 Sep 22 10:15 log.070922

The log file appears in the directory using the value of the $today variable as part of the

filename. The contents of the log file are the directory listing from the /usr/bin directory. If

the script is run the next day, the log filename will be log.070923, thus creating a new file

for the new day.

Redirecting Input and Output
There are times when you’d like to save the output from a command instead of just having it

displayed on the monitor. The bash shell provides a few different operators that allow you to

redirect the output of a command to an alternative location (such as a file). Redirection can be

used for input as well as output, redirecting a file to a command for input. This section describes

what you need to use redirection in your shell scripts.

210

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

Output redirection
The most basic type of redirection is sending output from a command to a file. The bash shell

uses the greater-than symbol for this:

command > outputfile

Anything that would appear on the monitor from the command instead is stored in the output

file specified:

$ date > test6
$ ls -l test6
-rw-r--r-- 1 rich rich 29 Sep 24 17:56 test6
$ cat test6
Tue Sep 24 17:56:58 EDT 2007
$

The redirect operator created the file test6 (using the default umask settings) and redirected the

output from the date command to the test6 file. If the output file already exists, the redirect

operator overwrites the existing file with the new file data:

$ who > test6
$ cat test6
rich pts/0 Sep 24 17:55
$

Now the contents of the test6 file contain the output from the who command.

Sometimes, instead of overwriting the file’s contents, you may need to append output from a

command to an existing file, for example if you’re creating a log file to document an action on

the system. In this situation, you can use the double greater-than symbol (>>) to append data:

$ date >> test6
$ cat test6
rich pts/0 Sep 24 17:55
Tue Sep 24 18:02:14 EDT 2007
$

The test6 file still contains the original data from the who command processed earlier, plus now

it contains the new output from the date command.

Input redirection
Input redirection is the opposite of output redirection. Instead of taking the output of a

command and redirecting it to a file, input redirection takes the content of a file and redirects it

to a command.

211

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The input redirection symbol is the less-than symbol (<):

command < inputfile

The easy way to remember this is that the command is always listed first in the command line,
and the redirection symbol ‘‘points’’ to the way the data is flowing. The less-than symbol indicates
that the data is flowing from the input file to the command.

Here’s an example of using input redirection with the wc command:

$ wc < test6
2 11 60

$

The wc command provides a count of text in the data. By default it produces three values:

■ The number of lines in the text

■ The number of words in the text

■ The number of bytes in the text

By redirecting a text file to the wc command, you can get a quick count of the lines, words,
and bytes in the file. The example shows that there are 2 lines, 11 words, and 60 bytes in the

test6 file.

There’s another method of input redirection, called inline input redirection. This method allows
you to specify the data for input redirection on the command line instead of in a file. This may

seem somewhat odd at first, but there are a few applications for this process (such as those shown
in the ‘‘Performing Math’’ section later).

The inline input redirection symbol is the double less-than symbol (<<). Besides this symbol,
you must specify a text marker that delineates the beginning and end of the data used for
input. You can use any string value for the text marker, but it must be the same at the beginning

of the data and the end of the data:

command << marker
data
marker

When using inline input redirection on the command line, the shell will prompt for data using
the secondary prompt, defined in the PS2 environment variable (see Chapter 5). Here’s how this

looks when you use it:

$ wc << EOF
> test string 1
> test string 2
> test string 3
> EOF

3 9 42
$

212

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

The secondary prompt continues to prompt for more data until you enter the text marker. The

wc command performs the line, word, and byte counts of the data supplied by the inline input

redirection.

Pipes
There are times when you need to send the output of one command to the input of another

command. This is possible using redirection, but somewhat clunky:

$ rpm -qa > rpm.list
$ sort < rpm.list
a2ps-4.13b-65.fc7
acl-2.2.39-3.1.fc7
alacarte-0.11.3-3.fc7
alsa-lib-1.0.14-3.fc7
alsa-utils-1.0.14-1.fc7
anacron-2.3-47.fc7
apr-1.2.8-6
apr-util-1.2.8-7
aspell-0.60.5-3.fc7
aspell-en-6.0-7.fc7
at-3.1.10-13.fc7
atk-1.18.0-1.fc7
at-spi-1.18.1-1.fc7
...

The rpm command manages the software packages installed on systems using the Red Hat Pack-

age Management system (RPM), such as my Fedora system as shown. When used with the -qa
parameters, it produces a list of the existing packages installed, but not necessarily in any specific
order. If you’re looking for a specific package, or group of packages, it can be difficult to find it

using the output of the rpm command.

Using the standard output redirection, I was able to redirect the output from the rpm command

to a file, called rpm.list. After the command finished, the rpm.list file contained a list of all

the installed software packages on my system. Next, I used input redirection to send the contents

of the rpm.list file to the sort command to sort the package names alphabetically.

That was useful, but again, a somewhat clunky way of producing the information. Instead of

redirecting the output of a command to a file, you can redirect the output to another command.
This process is called piping. The pipe symbol is the bar operator (|):

command1 | command2

Piping provides a way to link commands to provide more detailed output. Don’t think of piping

as running two commands back to back though. The Linux system actually runs both commands
at the same time, linking them together internally in the system. As the first command produces

213

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

output, it’s sent immediately to the second command. No intermediate files or buffer areas are

used to transfer the data.

Now, using piping you can easily pipe the output of the rpm command directly to the sort
command to produce your results:

$ rpm -qa | sort
a2ps-4.13b-65.fc7
acl-2.2.39-3.1.fc7
alacarte-0.11.3-3.fc7
alsa-lib-1.0.14-3.fc7
alsa-utils-1.0.14-1.fc7
anacron-2.3-47.fc7
apr-1.2.8-6
apr-util-1.2.8-7
aspell-0.60.5-3.fc7
aspell-en-6.0-7.fc7
at-3.1.10-13.fc7
atk-1.18.0-1.fc7
at-spi-1.18.1-1.fc7
...

Unless you’re a (very) quick reader, you probably couldn’t keep up with the output generated

by this command. Since the piping feature operates in real time, as soon as the rpm command

produces data, the sort command gets busy sorting it. By the time the rpm command fin-

ishes outputting data, the sort command already has the data sorted and starts displaying it on

the monitor.

There’s no limit to the number of pipes you can use in a command (up to the 255 character limit

on the line length). You can continue piping the output of commands to other commands to

refine your operation.

In this case, since the output of the sort command zooms by so quickly, we can use one of the

text paging commands (such as less or more) to force the output to stop at every screen of data:

$ rpm -qa | sort | more

This command sequence runs the rpm command, pipes the output to the sort command, then

pipes that output to the more command to display the data, stopping after every screen of infor-

mation. This now lets you pause and read what’s on the display before continuing, as shown in

Figure 8-1.

To get even fancier, you can use redirection along with piping, to save your output to a file:

$ rpm -qa | sort > rpm.list
$more rpm.list
ammonite-1.0.0-1mdk
anacron-2.3-7mdk

214

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

apache-1.3.19-3mdk
apache-common-1.3.19-3mdk
apache-conf-1.3.19-3mdk
apache-mod perl-1.3.19 1.25-3mdk
apache-modules-1.3.19-3mdk
apache-suexec-1.3.19-3mdk
arts-2.1.1-7mdk
ash-0.2-24mdk
aspell-0.32.5-4mdk
aspell-en-0.32.5-4mdk
at-3.1.7-21mdk
...

As expected, the data in the rpm.list file is now sorted!

By far one of the most popular uses of piping is piping the results of commands that produce

long output to the more command. This is especially common with the ls command, as shown

in Figure 8-2.

The ls -l command produces a long listing of all the files in the directory. For directories with

lots of files, this can be quite a listing. By piping the output to the more command, you force the

output to stop at the end of every screen of data.

FIGURE 8-1

Using piping to send data to the more command

215

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

FIGURE 8-2

Using the more command with the ls command

Performing Math
Another feature crucial to any programming language is the ability to manipulate numbers. Unfor-

tunately, for shell scripts this process is a bit awkward. There a two different ways to perform

mathematical operations in your shell scripts.

The expr command
Originally, the Bourne shell provided a special command that was used for processing mathemat-

ical equations. The expr command allowed the processing of equations from the command line,

but it is extremely clunky:

$ expr 1 + 5
6

The expr command recognizes a few different mathematical and string operators, shown in

Table 8-1.

While the standard operators work fine in the expr command, the problem comes in actually

using them from a script or the command line. Many of the expr command operators have

216

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

other meanings in the shell (such as the asterisk). Using them in the expr command produces

odd results:

$ expr 5 * 2
expr: syntax error
$

TABLE 8-1

The expr Command Operators

Operator Description

ARG1 | ARG2 Return ARG1 if neither argument is null or zero; otherwise, return ARG2.

ARG1 & ARG2 Return ARG1 if neither argument is null or zero; otherwise, return 0.

ARG1 < ARG2 Return 1 if ARG1 is less than ARG2; otherwise, return 0.

ARG1 <= ARG2 Return 1 if ARG1 is less than or equal to ARG2; otherwise, return 0.

ARG1 = ARG2 Return 1 if ARG1 is equal to ARG2; otherwise, return 0.

ARG1 != ARG2 Return 1 if ARG1 is not equal to ARG2; otherwise, return 0.

ARG1 >= ARG2 Return 1 if ARG1 is greater than or equal to ARG2; otherwise, return 0.

ARG1 > ARG2 Return 1 if ARG1 is greater than ARG2; otherwise, return 0.

ARG1 + ARG2 Return the arithmetic sum of ARG1 and ARG2.

ARG1 - ARG2 Return the arithmetic difference of ARG1 and ARG2.

ARG1 * ARG2 Return the arithmetic product of ARG1 and ARG2.

ARG1 / ARG2 Return the arithmetic quotient of ARG1 divided by ARG2.

ARG1 % ARG2 Return the arithmetic remainder of ARG1 divided by ARG2.

STRING :
REGEXP

Return the pattern match if REGEXP matches a pattern in STRING.

match STRING
REGEXP

Return the pattern match if REGEXP matches a pattern in STRING.

substr STRING
POS LENGTH

Return the substring LENGTH characters in length, starting at position POS
(starting at 1).

index STRING
CHARS

Return position in STRING where CHARS is found; otherwise, return 0.

length STRING Return the numeric length of the string STRING.

+ TOKEN Interpret TOKEN as a string, even if it’s a keyword.

(EXPRESSION) Return the value of EXPRESSION.

217

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

To solve this problem, you need to use the shell escape character (the backslash) to identify any

characters that may be misinterpreted by the shell before being passed to the expr command:

$ expr 5 * 2
10
$

Now that’s really starting to get ugly! Using the expr command in a shell script is equally

cumbersome:

#!/bin/bash
An example of using the expr command
var1=10
var2=20
var3=`expr $var2 / $var1`
echo The result is $var3

To assign the result of a mathematical equation to a variable, you have to use the backtick

character to extract the output from the expr command:

$./test6
The result is 2
$

Fortunately, the bash shell has an improvement for processing mathematical operators.

Using brackets
The bash shell includes the expr command to stay compatible with the Bourne shell; however, it

also provides a much easier way of performing mathematical equations. In bash, when assigning

a mathematical value to a variable, you can enclose the mathematical equation using a dollar sign

and square brackets ($[operation]):

$ var1=$[1 + 5]
$ echo $var1
6
$ var2 = $[$var1 * 2]
$ echo $var2
12
$

Using brackets makes shell math much easier than with the expr command. This same technique

also works in shell scripts:

$ cat test7
#!/bin/bash
var1=100

218

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

var2=50
var3=45
var4=$[$var1 * ($var2 - $var3)]
echo The final result is $var4
$

Running this script produces the output:

$ chmod u+x test7
$./test7
The final result is 500
$

Also notice that when using the square brackets method for calculating equations you don’t need
to worry about the multiplication symbol, or any other characters, being misinterpreted by the

shell. The shell knows that it’s not a wildcard character, since it is within the square brackets.

There’s one major limitation to performing math in the bash shell script. Take a look at this

example:

$ cat test8
#!/bin/bash
var1=100
var2=45
var3=$[$var1 / $var2]
echo The final result is $var3
$

Now run it and see what happens:

$ chmod u+x test8
$./test8
The final result is 2
$

The bash shell mathematical operators only support integer arithmetic. This is a huge limitation

if you’re trying to do any sort of real-world mathematical calculations.

The z shell (zsh) provides full floating-point arithmetic operations. If you require

floating-point calculations in your shell scripts, you might consider checking out the z

shell (discussed in Chapter 23).

A floating-point solution
There have been several solutions for overcoming the bash integer limitation. The most popular

solution uses the built-in bash calculator (called bc).

219

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The basics of bc

The bash calculator is actually a programming language that allows you to enter floating-point
expressions at a command line, then interprets the expressions, calculates them, and returns the
result. The bash calculator recognizes:

■ Numbers (both integer and floating point)

■ Variables (both simple variables and arrays)

■ Comments (lines starting with a pound sign or the C language /* */ pair

■ Expressions

■ Programming statements (such as if-then statements)

■ Functions

You can access the bash calculator from the shell prompt using the bc command:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty’.
12 * 5.4
64.8
3.156 * (3 + 5)
25.248
quit
$

The example starts out by entering the expression 12 * 5.4. The bash calculator returns the
answer. Each subsequent expression entered into the calculator is evaluated, and the result is
displayed. To exit the bash calculator, you must enter quit.

The floating-point arithmetic is controlled by a built-in variable called scale. You must set this
value to the desired number of decimal places you want in your answers, or you won’t get what
you were looking for:

$ bc -q
3.44 / 5
0
scale=4
3.44 / 5
.6880
quit
$

The default value for the scale variable is zero. Before the scale value is set, the bash calculator
provides the answer to zero decimal places. After you set the scale variable value to four, the
bash calculator displays the answer to four decimal places. The -q command line parameter
suppresses the lengthy welcome banner from the bash calculator.

220

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

Besides normal numbers, the bash calculator also understands variables:

$ bc -q
var1=10
var1 * 4
40
var2 = var1 / 5
print var2
2
quit
$

Once a variable value is defined, you can use the variable throughout the bash calculator session.

The print statement allows you to print variables and numbers.

Using bc in scripts

Now you may be wondering how the bash calculator is going to help us with floating-point arith-

metic in your shell scripts. Do you remember our friend the backtick character? Yes, you can

use the backtick to run a bc command, and assign the output to a variable! The basic format

to use is:

variable=`echo "options; expression" | bc`

The first portion, options, allows us to set variables. If you need to set more than one variable,

separate them using the semicolon. The expression parameter defines the mathematical expres-

sion to evaluate using bc. While this looks pretty odd, trust me, it works like a champ. Here’s a

quick example of doing this in a script:

$ cat test9
#!/bin/bash
var1=`echo " scale=4; 3.44 / 5" | bc`
echo The answer is $var1
$

This example sets the scale variable to four decimal places, then specifies a specific calculation

for the expression. Running this script produces the following output:

$ chmod u+x test9
$./test9
The answer is .6880
$

Now that’s fancy! You aren’t limited to just using numbers for the expression value. You can also

use variables defined in the shell script:

$ cat test10
#!/bin/bash
var1=100

221

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

var2=45
var3=`echo "scale=4; $var1 / $var2" | bc`
echo The answer for this is $var3
$

The script defines two variables, which are used within the expression sent to the bc command.
Remember to use the dollar sign to signify the value for the variables, and not the variables them-
selves. The output of this script is:

$./test10
The answer for this is 2.2222
$

And of course, once a value is assigned to a variable, that variable can be used in yet another
calculation:

$ cat test11
#!/bin/bash
var1=20
var2=3.14159
var3=`echo "scale=4; $var1 * $var1" | bc`
var4=`echo "scale=4; $var3 * $var2" | bc`
echo The final result is $var4
$

This method works fine for short calculations, but sometimes you need to get more involved with
your numbers. If you have more than just a couple of calculations, it gets confusing trying to list
multiple expressions on the same command line.

There’s a simple solution to this problem. The bc command recognizes input redirection, allowing
you to redirect a file to the bc command for processing. However, this can just as easily get
confusing, as you’d need to store your expressions in a file.

Instead of using a file for redirection, you can use the inline input redirection method, which
allows you to redirect data directly from the command line. In the shell script, you can assign the
output to a variable. This looks like this:

variable=`bc << EOF
options
statements
expressions
EOF
`

The EOF text string indicates the beginning and end of the inline redirection data. Remember that
the backtick characters are still needed to assign the output of the bc command to the variable.

Now you can place all of the individual bash calculator elements on separate lines in the script
file. Here’s an example of using this technique in a script:

$ cat test12
#!/bin/bash

222

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

var1=10.46
var2=43.67
var3=33.2
var4=71

var5=`bc << EOF
scale = 4
a1 = ($var1 * $var2)
b1 = ($var3 * $var4)
a1 + b1
EOF
`

echo The final answer for this mess is $var5
$

Using this you can place each option and expression on a separate line in your script, making
things cleaner and easier to read and follow. The EOF string indicates the start and end of the data
to redirect to the bc command. Of course, you need to use the backtick characters to indicate the
command to assign to the variable.

You’ll also notice in this example that you can assign variables within the bash calculator. It’s
important to remember that any variables created within the bash calculator are only valid within
the bash calculator and can’t be used in the shell script.

Exiting the Script
So far, in our sample scripts we terminated things pretty abruptly. When we were done with
our last command, we just ended the script. There’s a more elegant way of completing things
available to us.

Every command that runs in the shell uses an exit status to indicate to the shell that it’s done pro-
cessing. The exit status is an integer value between 0 and 255 that’s passed by the
command to the shell when the command finishes running. You can capture this value and use
it in your scripts.

Checking the exit status
Linux provides the $? special variable that holds the exit status value from the last command
that executed. You must view or use the $? variable immediately after the command you want to
check. It changes values to the exit status of the last command executed by the shell:

$ date
Sat Sep 29 10:01:30 EDT 2007
$ echo $?
0
$

223

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

By convention, the exit status of a command that successfully completes is zero. If a command
completes with an error, then a positive integer value is placed in the exit status:

$ asdfg
-bash: asdfg: command not found
$ echo $?
127
$

The invalid command returns an exit status of 127. There’s not much of a standard convention
to Linux error exit status codes. However, there are a few guidelines you can use, as shown in
Table 8-2.

An exit status value of 126 indicates that the user didn’t have the proper permissions set to exe-
cute the command:

$./myprog.c
-bash: ./myprog.c: Permission denied
$ echo $?
126
$

Another common error you’ll encounter occurs if you supply an invalid parameter to a command:

$ date %t
date: invalid date `%t’
$ echo $?
1
$

TABLE 8-2

Linux Exit Status Codes

Code Description

0 Successful completion of the command

1 General unknown error

2 Misuse of shell command

126 The command can’t execute

127 Command not found

128 Invalid exit argument

128+x Fatal error with Linux signal x

130 Command terminated with Ctl-C

255 Exit status out of range

224

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

This generates the general exit status code of one, indicating an unknown error occurred in the

command.

The exit command
By default, your shell script will exit with the exit status of the last command in your script:

$./test6
The result is 2
$ echo $?
0
$

You can change that to return your own exit status code. The exit command allows you to

specify an exit status when your script ends:

$ cat test13
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 + var2]
echo The answer is $var3
exit 5
$

When you check the exit status of the script, you’ll get the value used as the parameter of the

exit command:

$ chmod u+x test13
$./test13
The answer is 40
$ echo $?
5
$

You can also use variables in the exit command parameter:

$ cat test14
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 + var2]
exit $var3
$

When you run this command, it produces the following exit status:

$ chmod u+x test14
$./test14

225

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

$ echo $?
40
$

You should be careful with this feature though, as the exit status codes can only go up to 255.
Watch what happens in this example:

$ cat test14b
#!/bin/bash
testing the exit status
var1=10
var2=30
var3=$[$var1 * var2]
echo The value is $var3
exit $var3
$

Now when you run it, you get:

$./test14b
The value is 300
$ echo $?
44
$

The exit status code is reduced to fit in the 0 to 255 range. The shell does this by using modulo
arithmetic. The modulo of a value is the remainder after a division. The resulting number is the
remainder of the specified number divided by 256. In the case of 300 (the result value), the
remainder is 44, which is what appears as the exit status code.

In Chapter 9, you’ll see how you can use the if-then statement to check the error status
returned by a command to see if the command was successful or not.

Summary
The bash shell script allows you to string commands together into a script. The most basic way of
creating a script is to separate multiple commands on the command line using a semicolon. The
shell executes each command in order, displaying the output of each command on the monitor.

You can also create a shell script file, placing multiple commands in the file for the shell to exe-
cute in order. The shell script file must define the shell used to run the script. This is done in the
first line of the script file, using the #! symbol, followed by the full path of the shell.

Within the shell script you can reference environment variable values by using a dollar sign in
front of the variable. You can also define your own variables for use within the script, and assign
values and even the output of a command by using the backtick character. The variable value can
be used within the script by placing a dollar sign in front of the variable name.

226

www.IrPDF.com

www.IrPDF.com

Basic Script Building 8

The bash shell allows you to redirect both the input and output of a command from the standard

behavior. You can redirect the output of any command from the monitor display to a file by

using the greater-than symbol, followed by the name of the file to capture the output. You can

append output data to an existing file by using two greater-than symbols. The less-than symbol is

used to redirect input to a command. You can redirect input from a file to a command.

The Linux pipe command (the bar symbol) allows you to redirect the output of a command

directly to the input of another command. The Linux system runs both commands at the same
time, sending the output of the first command to the input of the second command without using

any redirect files.

The bash shell provides a couple of ways for you to perform mathematical operations in your

shell scripts. The expr command is a simple way to perform integer math. In the bash shell you

can also perform basic math calculations by enclosing equations in square brackets, preceded by a

dollar sign. To perform floating-point arithmetic, you need to utilize the bc calculator command,

redirecting input from inline data and storing the output in a user variable.

Finally, the chapter discussed how to use the exit status in your shell script. Every command that

runs in the shell produces an exit status. The exit status is an integer value between 0 and 255

that indicates if the command completed successfully, and if not, what the reason may have been.

An exit status of 0 indicates that the command completed successfully. You can use the exit
command in your shell script to declare a specific exit status upon the completion of your script.

So far in your shell scripts, things have proceeded in an orderly fashion from one command to

the next. In the next chapter, you’ll see how you can use some logic flow control to alter which

commands are executed within the script.

227

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Using Structured
Commands

IN THIS CHAPTER

Altering command flow

Using if-then logic

Nesting if-thens

Testing conditions

Advanced if-then features

I
n the shell scripts presented in Chapter 8, the shell processed each

individual command in the shell script in the order it appeared. This

works out fine for sequential operations, where you want all of the

commands to process in the proper order. However, this isn’t how all pro-

grams operate.

Many programs require some sort of logic flow control between the com-

mands in the script. This means that the shell executes certain commands

given one set of circumstances, but it has the ability to execute other com-

mands given a different set of circumstances. There is a whole class of

commands that allows the script to skip over or loop through commands

based on conditions of variable values, or the result of other commands.

These commands are generally referred to as structured commands.

The structured commands allow you to alter the flow of operation of the

program, executing some commands under some conditions, while

skipping others under other conditions. There are quite a few structured

commands available in the bash shell, so we’ll look at them individually. In

this chapter, we’ll look at the if-then statement.

Working with the if-then
Statement

The most basic type of structured command is the if-then statement. The

if-then statement has the following format:

if command
then

commands
fi

229

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

If you’re use to using if-then statements in other programming languages, this format may be

somewhat confusing. In other programming languages, the object after the if statement is an

equation that is evaluated for a TRUE or FALSE value. That’s not how the bash shell if state-

ment works.

The bash shell if statement runs the command defined on the if line. If the exit status of the

command (see Chapter 8) is zero (the command completed successfully), the commands listed
under the then section are executed. If the exit status of the command is anything else, the then
commands aren’t executed, and the bash shell moves on to the next command in the script.

Here’s a simple example to demonstrate this concept:

$ cat test1
#!/bin/bash
testing the if statement
if date
then

echo "it worked"
fi

This script uses the date command on the if line. If the command completes successfully, the

echo statement should display the text string. When you run this script from the command line,
you’ll get the following results:

$./test1
Sat Sep 29 14:09:24 EDT 2007
it worked
$

The shell executed the date command listed on the if line. Since the exit status was zero, it also
executed the echo statement listed in the then section.

Here’s another example:

$ cat test2
#!/bin/bash
testing a bad command
if asdfg
then

echo "it didn’t work"
fi
echo "we’re outside of the if statement"
$./test2
./test2: line 3: asdfg: command not found
we’re outside of the if statement
$

In this example, I deliberately use a command I know won’t work in the if statement line. Since
this is a bad command, it’ll produce an exit status that’s non-zero, and the bash shell skips the

230

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

echo statement in the then section. Also notice that the error message generated from running

the command in the if statement still appears in the output of the script. There’ll be times when

you won’t want this to happen. Chapter 12 discusses how this can be avoided.

You’re not limited to just one command in the then section. You can list commands just as in

the rest of the shell script. The bash shell treats the commands as a block, executing all of them

if the command in the if statement line returns a zero exit status or skipping all of them if the
command returns a non-zero exit status:

$ cat test3
#!/bin/bash
testing multiple commands in the then section
testuser=rich
if grep $testuser /etc/passwd
then

echo The bash files for user $testuser are:
ls -a /home/$testuser/.b*

fi

The if statement line uses the grep comment to search the /etc/passwd file to see if a spe-

cific username is currently used on the system. If there’s a user with that logon name, the script
displays some text, then lists the bash files in the user’s HOME directory:

$./test3
rich:x:500:500:Rich Blum:/home/rich:/bin/bash
The files for user rich are:
/home/rich/.bash history /home/rich/.bash profile
/home/rich/.bash logout /home/rich/.bashrc
$

However, if you set the testuser variable to a user that doesn’t exist on the system, nothing

happens:

$./test3
$

That’s not all too exciting. It would be nice if we could display a little message saying that the

username wasn’t found on the system. Well, we can, using another feature of the if-then state-
ment.

You might see an alternative form of the if-then statement used in some scripts:

if command; then
commands

fi

By putting a semicolon at the end of the command to evaluate, you can include the then state-

ment on the same line, which looks more like how if-then statements are handled in some other

programming languages.

231

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The if-then-else Statement
In the if-then statement, you only have one option of whether or not a command is successful.

If the command returns a non-zero exit status code, the bash shell just moves on to the next

command in the script. In this situation, it would be nice to be able to execute an alternate set

of commands. That’s exactly what the if-then-else statement is for.

The if-then-else statement provides another group of commands in the statement:

if command
then

commands
else

commands
fi

If the command in the if statement line returns with an exit status code of zero, the com-

mands listed in the then section are executed, just as in a normal if-then statement. If the

command in the if statement line returns a non-zero exit status code, the bash shell executes
the commands in the else section.

Now you can modify the test script to look like this:

$ cat test4
#!/bin/bash
testing the else section
testuser=badtest
if grep $testuser /etc/passwd
then

echo The files for user $testuser are:
ls -a /home/$testuser/.b*

else
echo "The user name $testuser doesn’t exist on this system"

fi
$./test4
The user name badtest doesn’t exist on this system
$

That’s more user-friendly. Just like the then section, the else section can contain multiple
commands. The fi statement delineates the end of the else section.

Nesting ifs
Sometimes you must check for several situations in your script code. Instead of having to write

separate if-then statements, you can use an alternative version of the else section, called elif.

The elif continues an else section with another if-then statement:

232

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

if command1
then

commands
elif command2
then

more commands
fi

The elif statement line provides another command to evaluate, similarly to the original if state-

ment line. If the exit status code from the elif command is zero, bash executes the commands

in the second then statement section.

You can continue to string elif statements together, creating one huge if-then-elif
conglomeration:

if command1
then

command set 1
elif command2
then

command set 2
elif command3
then

command set 3
elif command4
then

command set 4
fi

Each block of commands is executed depending on which command returns the zero exit status

code. Remember, the bash shell will execute the if statements in order, and only the first one

that returns a zero exit status will result in the then section being executed. Later on in ‘‘The

case Command’’ section you’ll see how to use the case command instead of having to nest lots

of if-then statements.

The test Command
So far all you’ve seen in the if statement line are normal shell commands. You might be won-

dering if the bash if-then statement has the ability to evaluate any condition other than the exit

status code of a command.

The answer is no, it can’t. However, there’s a neat utility available in the bash shell that helps us

evaluate other things, using the if-then statement.

The test command provides a way to test different conditions in an if-then statement. If the

condition listed in the test command evaluates to true, the test command exits with a zero

exit status code, making the if-then statement behave in much the same way that if-then

233

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

statements work in other programming languages. If the condition is false, the test command

exits with a one, which causes the if-then statement to fail.

The format of the test command is pretty simple:

test condition

The condition is a series of parameters and values that the test command evaluates. When
used in an if-then statement, the test command looks like this:

if test condition
then

commands
fi

The bash shell provides an alternative way of declaring the test command in an if-then
statement:

if [condition]
then

commands
fi

The square brackets define the condition that’s used in the test command. Be careful; you must

have a space after the first bracket, and a space before the last bracket or you’ll get an error

message.

There are three classes of conditions the test command can evaluate:

■ Numeric comparisons

■ String comparisons

■ File comparisons

The next sections describe how to use each of these classes of tests in your if-then statements.

Numeric comparisons
The most common method for using the test command is to perform a comparison of two

numeric values. Table 9-1 shows the list of condition parameters used for testing two values.

The numeric test conditions can be used to evaluate both numbers and variables. Here’s an

example of doing that:

$ cat test5
#!/bin/bash
using numeric test comparisons
val1=10

234

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

val2=11

if [$val1 -gt 5]
then

echo "The test value $val1 is greater than 5"
fi

if [$val1 -eq $val2]
then

echo "The values are equal"
else

echo "The values are different"
fi

TABLE 9-1

The test Numeric Comparisons

Comparison Description

n1 -eq n2 Check if n1 is equal to n2.

n1 -ge n2 Check if n1 is greater than or equal to n2.

n1 -gt n2 Check if n1 is greater than n2.

n1 -le n2 Check if n1 is less than or equal to n2.

n1 -lt n2 Check if n1 is less than n2.

n1 -ne n2 Check if n1 is not equal to n2.

The first test condition:

if [$val1 -gt 5]

tests if the value of the variable val1 is greater than 5. The second test condition:

if [$val1 -eq $val2]

tests if the value of the variable val1 is equal to the value of the variable val2. Run the script

and watch the results:

$./test5
The test value 10 is greater than 5
The values are different
$

Both of the numeric test conditions evaluated as expected.

235

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

There is a limitation to the test numeric conditions though. Try this script:

$ cat test6
#!/bin/bash
testing floating point numbers
val1=` echo "scale=4; 10 / 3 " | bc`
echo "The test value is $val1"
if [$val1 -gt 3]
then

echo "The result is larger than 3"
fi
$./test6
The test value is 3.3333
./test6: line 5: [: 3.3333: integer expression expected
$

This example uses the bash calculator to produce a floating-point value, stored in the val1
variable. Next, it uses the test command to evaluate the value. Something obviously went

wrong here.

In Chapter 8, you learned how to trick the bash shell into handling floating-point values; there’s

still a problem in this script. The test command wasn’t able to handle the floating-point value

that was stored in the val1 variable.

Remember, the only numbers the bash shell can handle are integers. When we utilize the bash

calculator, we just fool the shell into storing a floating-point value in a variable as a string value.

This works perfectly fine if all you need to do is display the result, using an echo statement,

but this doesn’t work in numeric-oriented functions, such as our numeric test condition. The

bottom line is that you’re not able to use integer values in the test command.

String comparisons
The test command also allows you to perform comparisons on string values. Performing com-

parisons on strings can get tricky, as you’ll see. Table 9-2 shows the comparison functions you

can use to evaluate two string values.

The following sections describe the different string comparisons available.

String equality

The equal and not equal conditions are fairly self-explanatory with strings. It’s pretty easy to know

when two string values are the same or not:

$cat test7
#!/bin/bash

236

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

testing string equality
testuser=rich

if [$USER = $testuser]
then

echo "Welcome $testuser"
fi
$./test7
Welcome rich
$

Similarly, using the not equals string comparison:

TABLE 9-2

The test Command String Comparisons

Comparison Description

str1 = str2 Check if str1 is the same as string str2.

str1 != str2 Check if str1 is not the same as str2.

str1 < str2 Check if str1 is less than str2.

str1 > str2 Check if str1 is greater than str2.

-n str1 Check if str1 has a length greater than zero.

-z str1 Check if str1 has a length of zero.

$ cat test8
#!/bin/bash
testing string equality
testuser=baduser

if [$USER != $testuser]
then

echo "This isn’t $testuser"
else

echo "Welcome $testuser"
fi
$./test8
This isn’t baduser
$

The test comparison takes all punctuation and capitalization into account when comparing strings
for equality.

237

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

String order

Trying to determine if one string is less than or greater than another is where things start get-

ting tricky. There are two problems that often plague shell programmers when trying to use the

greater-than or less-than features of the test command:

■ The greater-than and less-than symbols must be escaped, or the shell will use them as
redirection symbols, with the string values as filenames.

■ The greater-than and less-than order is not the same as that used with the sort
command.

The first item can result in a huge problem that often goes undetected when programming your

scripts. Here’s a typical example of what sometimes happens to novice shell script programmers:

$ cat badtest
#!/bin/bash
mis-using string comparisons

val1=baseball
val2=hockey

if [$val1 > $val2]
then

echo "$val1 is greater than $val2"
else

echo "$val1 is less than $val2"
fi
$./badtest
baseball is greater than hockey
$ ls -l hockey
-rw-r--r-- 1 rich rich 0 Sep 30 19:08 hockey
$

By just using the greater-than symbol itself in the script, no errors are generated, but the results

are wrong. The script interpreted the greater-than symbol as an output redirection, so it created a
file called hockey. Since the redirection completed successfully, the test command returns a zero

exit status code, which the if statement evaluates as though things completed successfully!

To fix this problem, you need to properly escape the greater-than symbol:

$ cat test9
#!/bin/bash
mis-using string comparisons

val1=baseball
val2=hockey

if [$val1 \> $val2]

238

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

then
echo "$val1 is greater than $val2"

else
echo "$val1 is less than $val2"

fi
$./test9
baseball is less than hockey
$

Now that answer is more along the lines of what you would expect from the string comparison.

The second issue is a little more subtle, and you may not even run across it unless you’re working

with upper-case and lower-case letters. The way the sort command handles upper-case letters is

opposite of the way the test command considers them. Let’s test this feature in a script:

$ cat test9b
#!/bin/bash
testing string sort order
val1=Testing
val2=testing

if [$val1 \> $val2]
then

echo "$val1 is greater than $val2"
else

echo "$val1 is less than $val2"
fi
$./test9b
Testing is less than testing
$ sort testfile
testing
Testing
$

Capitalized letters appear less than lower-case letters in the test command. However, when you

put the same strings in a file and use the sort command, the lower-case letters appear first.

This is due to the ordering technique each command uses. The test command uses standard

ASCII ordering, using each character’s ASCII numeric value to determine the sort order. The sort

command uses the sorting order defined for the system locale language settings. For the English

language, the locale settings specify that lower-case letters appear before upper-case letters in

sort order.

Notice that the test command uses the standard mathematical comparison symbols

for string comparisons, and text codes for numerical comparisons. This is a subtle

feature that many programmers manage to get reversed. If you use the mathematical comparison

symbols for numeric values, the shell interprets them as string values and may not produce the

correct results.

239

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

String size

The -n and -z comparisons are handy when trying to evaluate if a variable contains data or not:

$ cat test10
#!/bin/bash
testing string length
val1=testing
val2=’’

if [-n $val1]
then

echo "The string ’$val1’ is not empty"
else

echo "The string ’$val1’ is empty"
fi

if [-z $val2]
then

echo "The string ’$val2’ is empty"
else

echo "The string ’$val2’ is not empty"
fi

if [-z $val3]
then

echo "The string ’$val3’ is empty"
else

echo "The string ’$val3’ is not empty"
fi
$./test10
The string ’testing’ is not empty
The string ’’ is empty
The string ’’ is empty
$

This example creates two string variables. The val1 variable contains a string, and the val2
variable is created as an empty string. The following comparisons are made:

if [-n $val1]

determines if the val1 variable is non-zero in length, which it is, so the then section is pro-

cessed:

if [-z $var2]

determines if the val2 variable is zero in length, which it is, so the then section is processed:

if [-z $val3]

determines if the val3 variable is zero in length. This variable was never defined in the shell
script, so it indicates that the string length is still zero, even though it wasn’t defined.

240

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

TABLE 9-3

The test Command File Comparisons

Comparison Description

-d file Check if file exists and is a directory.

-e file Checks if file exists.

-f file Checks if file exists and is a file.

-r file Checks if file exists and is readable.

-s file Checks if file exists and is not empty.

-w file Checks if file exists and is writable.

-x file Checks if file exists and is executable.

-O file Checks if file exists and is owned by the current user.

-G file Checks if file exists and the default group is the same as the current
user.

file1 -nt file2 Checks if file1 is newer than file2.

file1 -ot file2 Checks if file1 is older than file2.

Empty and uninitialized variables can have catastrophic effects on your shell script

tests. If you’re not sure of the contents of a variable, it’s always best to test if the

variable contains a value using -n or -z before using it in a numeric or string comparison.

File comparisons
The last category of test comparisons is quite possibly the most powerful and most used compar-
isons in shell scripting. The test command allows you to test the status of files and directories
on the Linux filesystem. Table 9-3 list these comparisons.

These conditions give you the ability to check files in your filesystem within your shell scripts,
and they are often used in scripts that access files. Since they’re used so much, let’s look at each
of these individually.

Checking directories

The -d test checks if a specified filename exists as a directory on the system. This is usually
a good thing to do if you’re trying to write a file to a directory, or before you try to change
to a directory location:

$ cat test11
#!/bin/bash
look before you leap
if [-d $HOME]

241

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

then
echo "Your HOME directory exists"
cd $HOME
ls -a

else
echo "There’s a problem with your HOME directory"

fi
$./test11
Your HOME directory exists
. Drivers .ICEauthority .recently
.. .emacs.d joomla .redhat
4rich .evolution .lesshst rpm.list
backup.zip .fontconfig .metacity .spamassassin
.bash history .gconf mnt store
.bash logout .gconfd .mozilla store.sql
.bash profile .gftp Music store.zip
.bashrc .gimp-2.2 myprob Templates
.bittorrent .gnome myproblem test
.ccache .gnome2 myprog test1
.config .gnome2 private .mysql history .thumbnails
Desktop .gphpedit .nautilus .Trash
.dmrc .gstreamer-0.10 .openoffice.org2.0 Videos
Documents .gtk-bookmarks Pictures .viminfo
Download .gtkrc-1.2-gnome2 Public
$

The sample code uses the -d test condition to see if the HOME directory exists for the user. If

it does, it proceeds to use the cd command to change to the HOME directory and performs a

directory listing.

Checking if an object exists

The -e comparison allows you to check if a file or directory object exists before you attempt to
use it in your script:

$ cat test12
#!/bin/bash
checking if a directory exists
if [-e $HOME]
then

echo "OK on the directory, now let’s check the file"
checking if a file exists
if [-e $HOME/testing]
then

the file exists, append data to it
echo "Appending date to existing file"
date >> $HOME/testing

else
the file doesn’t exist, create a new file

242

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

echo "Creating new file"
date > $HOME/testing

fi
else

echo "Sorry, you don’t have a HOME directory"
fi
$./test12
OK on the directory, now let’s check the file
Creating new file
$./test12
OK on the directory, now let’s check the file
Appending date to existing file
$

The first check uses the -e comparison to determine if the user has a HOME directory. If so,

the next -e comparison checks to determine if the testing file exists in the HOME directory.

If the file doesn’t exist, the shell script uses the single greater-than redirect symbol, creating a

new file with the output from the date command. The second time you run the shell script, it

uses the double greater-than symbol, so it just appends the date output to the existing file.

Checking for a file

The -e comparison works for both files and directories. To be sure that the object specified is a

file, you must use the -f comparison:

$ cat test13
#!/bin/bash
check if a file
if [-e $HOME]
then

echo "The object exists, is it a file?"
if [-f $HOME]
then

echo "Yes, it’s a file!"
else

echo "No, it’s not a file!"
if [-f $HOME/.bash history]
then

echo "But this is a file!"
fi

fi
else

echo "Sorry, the object doesn’t exist"
fi
$./test13
The object exists, is it a file?
No, it’s not a file!
But this is a file!
$

243

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

This little script does a whole lot of checking! First, it uses the -e comparison to test if $HOME
exists. If it does, it uses -f to test if it’s a file. If it isn’t a file (which of course it isn’t), we use the

-f comparison to test if it’s a file, which it is.

Can you read it?

Before trying to read data from a file, it’s usually a good idea to test if you can read from the file

first. This is done using the -r comparison:

$ cat test14
#!/bin/bash
testing if you can read a file
pwfile=/etc/shadow

first, test if the file exists, and is a file
if [-f $pwfile]
then

now test if you can read it
if [-r $pwfile]
then

tail $pwfile
else

echo "Sorry, I’m unable to read the $pwfile file"
fi

else
echo "Sorry, the file $file doesn’t exist"

fi
$./test14
Sorry, I’m unable to read the /etc/shadow file
$

The /etc/shadow file contains the encrypted passwords for system users, so it’s not readable by
normal users on the system. The -r comparison determined that I didn’t have read access to the

file, so the test command failed, and the bash shell executed the else section of the if-then
statement.

Checking for empty files

You should use -s comparison to check if a file is empty, especially if you’re trying to remove a

file. Be careful, because when the -s comparison succeeds, it indicates that a file has data in it:

$ cat test15
#!/bin/bash
testing if a file is empty
file=t15test
touch $file

if [-s $file]
then

244

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

echo "The $file file exists and has data in it"
else

echo "The $file exists and is empty"
fi

date > $file
if [-s $file]
then

echo "The $file file has data in it"
else

echo "The $file is still empty"
fi
$./test15
The t15test exists and is empty
The t15test file has data in it
$

The touch command creates the file, but doesn’t put any data in it. After we use the date
command and redirect the output to the file, the -s comparison indicates that there’s data in

the file.

Checking if you can write to a file

The -w comparison determines if you have permission to write to a file:

$ cat test16
#!/bin/bash
checking if a file is writeable

logfile=$HOME/t16test
touch $logfile
chmod u-w $logfile
now=`date +%Y%m%d-%H%M`

if [-w $logfile]
then

echo "The program ran at: $now" > $logfile
echo "The fist attempt succeeded"

else
echo "The first attempt failed"

fi

chmod u+w $logfile
if [-w $logfile]
then

echo "The program ran at: $now" > $logfile
echo "The second attempt succeeded"

else
echo "The second attempt failed"

245

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

fi
$./test16
The first attempt failed
The second attempt succeeded
$ cat $HOME/t16test
The program ran at: 20070930-1602
$

This is a pretty busy shell script! First, it defines a log file in your HOME directory, stores the
filename of it in the variable logfile, creates the file, and then removes the write permission for
the user, using the chmod command. Next, it creates the variable now and stores a timestamp,
using the date command. After all of that, it checks if you have write permission to the new log
file (which you just took away). Since you don’t have write permission, you should see the failed
message appear.

After that, the script uses the chmod command again to grant the write permission back for the
user, and tries to write to the file again. This time the write is successful.

Checking if you can run a file

The -x comparison is a handy way to determine if you have execute permission for a specific
file. While this may not be needed for most commands, if you run a lot of scripts from your shell
scripts, it could come in handy:

$ cat test17
#!/bin/bash
testing file execution
if [-x test16]
then

echo "You can run the script:"
./test16

else
echo "Sorry, you are unable to execute the script"

fi
$./test17
You can run the script:
The first attempt failed
The second attempt succeeded
$ chmod u-x test16
$./test17
Sorry, you are unable to execute the script
$

This example shell script uses the -x comparison to test if you have permission to execute the
test16 script. If so, it runs the script (notice that even in a shell script, you must have the proper
path to execute a script that’s not located in your PATH). After successfully running the test16
script the first time, change the permissions on it, and try again. This time the -x comparison
fails, as you don’t have execute permission for the test16 script.

246

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

Checking ownership

The -O comparison allows you to easily test if you’re the owner of a file:

$ cat test18
#!/bin/bash
check file ownsership

if [-O /etc/passwd]
then

echo "You’re the owner of the /etc/passwd file"
else

echo "Sorry, you’re not the owner of the /etc/passwd file"
fi
$./test18
Sorry, you’re not the owner of the /etc/passwd file
$ su
Password:
./test18
You’re the owner of the /etc/passwd file
#

The script uses the -O comparison to test if the user running the script is the owner of the

/etc/passwd file. The first time the script is run under a normal user account, so the test fails.

The second time, I used the su command to become the root user, and the test succeeded.

The -G comparison checks the default group of a file, and it succeeds if it matches the group of

the default group for the user. This can be somewhat confusing, because the -G comparison only

checks the default groups, and not all the groups the user belongs to. Here’s an example of this:

$ cat test19
#!/bin/bash
check file group test

if [-G $HOME/testing]
then

echo "You’re in the same group as the file"
else

echo "The file is not owned by your group"
fi
$ ls -l $HOME/testing
-rw-rw-r-- 1 rich rich 58 2007-09-30 15:51 /home/rich/testing
$./test19
You’re in the same group as the file
$ chgrp sharing $HOME/testing
$./test19
The file is not owned by your group
$

247

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The first time the script is run, the $HOME/testing file is in the rich group, and the -G
comparison succeeds. Next, I changed the group to the sharing group, which I’m also a mem-

ber of. However, the -G comparison failed, since it only compares the default groups, not any

additional groups I belong to.

Checking file date

The last set of comparisons deal with comparing the creation times of two files. This comes in

handy when writing scripts to install software. Sometimes you don’t want to install a file that is

older than a file already installed on the system.

The -nt comparison determines if a file is newer than another file. If a file is newer, it’ll have a

more recent file creation time. The -ot comparison determines if a file is older than another file.

If the file is older, it’ll have an older file creation time:

$ cat test20
#!/bin/bash
testing file dates

if [./test19 -nt ./test18]
then

echo "The test19 file is newer than test18"
else

echo "The test18 file is newer than test19"
fi

if [./test17 -ot ./test19]
then
echo "The test17 file is older than the test19 file"

fi
$./test20
The test19 file is newer than test18
The test17 file is older than the test19 file
$ ls -l test17 test18 test19
-rwxrw-r-- 1 rich rich 167 2007-09-30 16:31 test17
-rwxrw-r-- 1 rich rich 185 2007-09-30 17:46 test18
-rwxrw-r-- 1 rich rich 167 2007-09-30 17:50 test19
$

The filepaths used in the comparisons are relative to the directory from where you run the

script. This can cause problems if the files you’re checking can be moved around. Another prob-

lem is that neither of these comparisons check if the file exists first. Try this test:

$ cat test21
#!/bin/bash
testing file dates

if [./badfile1 -nt ./badfile2]

248

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

then
echo "The badfile1 file is newer than badfile2"

else
echo "The badfile2 file is newer than badfile1"

fi
$./test21
The badfile2 file is newer than badfile1
$

This little example demonstrates that if the files don’t exist, the -nt comparison just returns a

failed condition. It’s imperative that you ensure the files exist before trying to use them in the

-nt or -ot comparison.

Compound Condition Testing
The if-then statement allows you to use Boolean logic to combine tests. There are two Boolean

operators you can use:

■ [condition1] && [condition2]

■ [condition1] || [condition2]

The first Boolean operation uses the AND Boolean operator to combine two conditions. Both

conditions must be met for the then section to execute.

The second Boolean operation uses the OR Boolean operator to combine two conditions. If either

condition evaluates to a true condition, the then section is executed.

$ cat test22
#!/bin/bash
testing compound comparisons

if [-d $HOME] && [-w $HOME/testing]
then

echo "The file exists and you can write to it"
else

echo "I can’t write to the file"
fi
$./test22
I can’t write to the file
$ touch $HOME/testing
$./test22
The file exists and you can write to it
$

Using the AND Boolean operator, both of the comparisons must be met. The first comparison

checks to see if the HOME directory exists for the user. The second comparison checks to see if

249

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

there’s a file called testing in the user’s HOME directory, and if the user has write permissions

for the file. If either of these comparisons fails, the if statement fails and the shell executes the

else section. If both of the comparisons succeed, the if statement succeeds and the shell exe-

cutes the then section.

Advanced if-then Features
There are two relatively recent additions to the bash shell that provide advanced features that you

can use in if-then statements:

■ Double parentheses for mathematical expressions

■ Double square brackets for advanced string handling functions

The following sections describe each of these features in more detail.

Using double parentheses
The double parentheses command allows you to incorporate advanced mathematical formulas in

your comparisons. The test command only allows for simple arithmetic operations in the com-

parison. The double parentheses command provides more mathematical symbols that program-

mers from other languages are used to using. The format of the double parentheses command is:

((expression))

The expression term can be any mathematical assignment or comparison expression.

Besides the standard mathematical operators that the test command uses, Table 9-4 shows the

list of additional operators available for use in the double parentheses command.

You can use the double parentheses command in an if statement, as well as a normal command

in the script for assigning values:

$ cat test23
#!/bin/bash
using double parenthesis

val1=10

if (($val1 ** 2 > 90))
then

((val2 = $val1 ** 2))
echo "The square of $val1 is $val2"

fi
$./test23
The square of 10 is 100
$

250

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

TABLE 9-4

The Double Parentheses Command Symbols

Symbol Description

val++ post-increment

val-- post-decrement

++val pre-increment

--val pre-decrement

! logical negation

∼ bitwise negation

** exponentiation

<< left bitwise shift

>> right bitwise shift

& bitwise Boolean AND

| bitwise Boolean OR

&& logical AND

|| logical OR

Notice that you don’t need to escape the greater-than symbol in the expression within the double

parentheses. This is yet another advanced feature provided by the double parentheses command.

Using double brackets
The double bracket command provides advanced features for string comparisons. The double

bracket command format is:

[[expression]]

The double bracketed expression uses the standard string comparison used in the test com-

mand. However, it provides an additional feature that the test command doesn’t, pattern match-
ing.

In pattern matching, you can define a regular expression (discussed in detail in Chapter 17) that’s

matched against the string value:

$ cat test24
#!/bin/bash
using pattern matching

251

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

if [[$USER == r*]]
then

echo "Hello $USER"
else

echo "Sorry, I don’t know you"
fi
$./test24
Hello rich
$

The double bracket command matches the $USER environment variable to see if it starts with the
letter r. If so, the comparison succeeds, and the shell executes the then section commands.

The case Command
Often you’ll find yourself trying to evaluate the value of a variable, looking for a specific value
within a set of possible values. In this scenario, you end up having to write a lengthy if-then-
else statement, like this:

$ cat test25
#!/bin/bash
looking for a possible value

if [$USER = "rich"]
then

echo "Welcome $USER"
echo "Please enjoy your visit"

elif [$USER = barbara]
then

echo "Welcome $USER"
echo "Please enjoy your visit"

elif [$USER = testing]
then

echo "Special testing account"
elif [$USER = jessica]
then

echo "Don’t forget to logout when you’re done"
else

echo "Sorry, you’re not allowed here"
fi
$./test25
Welcome rich
Please enjoy your visit
$

The elif statements continue the if-then checking, looking for a specific value for the single

comparison variable.

252

www.IrPDF.com

www.IrPDF.com

Using Structured Commands 9

Instead of having to write all of the elif statements to continue checking the same variable value,
you can use the case command. The case command checks multiple values of a single variable
in a list-oriented format:

case variable in
pattern1 | pattern2) commands1;;
pattern3) commands2;;
*) default commands;;
esac

The case command compares the variable specified against the different patterns. If the variable
matches the pattern, the shell executes the commands specified for the pattern. You can list more
than one pattern on a line, using the bar operator to separate each pattern. The asterisk symbol
is the catch-all for values that don’t match any of the listed patterns. Here’s an example of con-
verting the if-then-else program to using the case command:

$ cat test26
#!/bin/bash
using the case command

case $USER in
rich | barbara)

echo "Welcome, $USER"
echo "Please enjoy your visit";;

testing)
echo "Special testing account";;

jessica)
echo "Don’t forget to log off when you’re done";;

*)
echo "Sorry, you’re not allowed here";;

esac
$./test26
Welcome, rich
Please enjoy your visit
$

The case command provides a much cleaner way of specifying the various options for each
possible variable value.

Summary
Structured commands allow you to alter the normal flow of execution on the shell script. The
most basic structured command is the if-then statement. This statement allows you to evaluate
a command, and perform other commands based on the outcome of the command you evaluated.

You can expand the if-then statement to include a set of commands the bash shell executes
if the specified command fails as well. The if-then-else statement allows you to execute
commands only if the command being evaluated returns a non-zero exit status code.

253

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

You can also link if-then-else statements together, using the elif statement. The elif
is equivalent to using an else if statement, providing for additional checking if the original

command that was evaluated failed.

In most scripts, instead of evaluating a command, you’ll want to evaluate a condition, such as a

numeric value, the contents of a string, or the status of a file or directory. The test command

provides an easy way for you to evaluate all of these conditions. If the condition evaluates to a

true condition, the test command produces a zero exit status code for the if-then statement.
If the condition evaluates to a false condition, the test command produces a non-zero exit status

code for the if-then statement.

The square bracket is a special bash command that is a synonym for the test command. You can

enclose a test condition in square brackets in the if-then statement to test for numeric, string,

and file conditions.

The double parentheses command allows you to perform advanced mathematical evaluations

using additional operators, and the double square bracket command allows you to perform

advanced string pattern-matching evaluations.

Finally, the chapter discussed the case command, which is a shorthand way of performing mul-

tiple if-then-else commands, checking the value of a single variable against a list of values.

The next chapter continues the discussion of structured commands by examining the shell loop-

ing commands. The for and while commands allow you to create loops that iterate through

commands for a given period of time.

254

www.IrPDF.com

www.IrPDF.com

More Structured
Commands

IN THIS CHAPTER

Looping with the for statement

Iterating with the until

statement

Using while statement

Combining loops

Redirecting loop output

I
n the previous chapter, you saw how to manipulate the flow of a shell
script program by checking the output of commands, and the values
of variables. In this chapter, we’ll continue to look at structured com-

mands that control the flow of your shell scripts. You’ll see how you can
perform repeating processes, commands that can loop through a set of
commands until an indicated condition has been met. This chapter dis-
cusses and demonstrates the for, while, and until bash shell looping
commands.

The for Command

Iterating through a series of commands is a common programming practice.
Often you need to repeat a set of commands until a specific condition has
been met, such as processing all of the files in a directory, all of the users
on a system, or all of the lines in a text file.

The bash shell provides the for command to allow you to create a loop

that iterates through a series of values. Each iteration performs a defined set
of commands using one of the values in the series. The basic format of the
bash shell for command is:

for var in list
do

commands
done

You supply the series of values used in the iterations in the list parameter.
There are several different ways that you can specify the values in the list.

255

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

In each iteration, the variable var contains the current value in the list. The first iteration uses
the first item in the list, the second iteration the second item, and so on until all of the items
in the list have been used.

The commands entered between the do and done statements can be one or more standard bash
shell commands. Within the commands the $var variable contains the current list item value for
the iteration.

If you prefer, you can include the do statement on the same line as the for statement,

but you must separate it from the list items using a semicolon: for var in list; do.

I mentioned that there are several different ways to specify the values in the list. The following
sections show the various ways to do that.

Reading values in a list
The most basic use of the for command is to iterate through a list of values defined within the
for command itself:

$ cat test1
#!/bin/bash
basic for command

for test in Alabama Alaska Arizona Arkansas California Colorado
do

echo The next state is $test
done
$./test1
The next state is Alabama
The next state is Alaska
The next state is Arizona
The next state is Arkansas
The next state is California
The next state is Colorado
$

Each time the for command iterates through the list of values provided, it assigns the test
variable the next value in the list. The $test variable can be used just like any other script
variable within the for command statements. After the last iteration, the $test variable remains
valid throughout the remainder of the shell script. It retains the last iteration value (unless you
change its value):

$ cat test1b
#!/bin/bash
testing the for variable after the looping

for test in Alabama Alaska Arizona Arkansas California Colorado
do

echo "The next state is $test"
done

256

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

echo "The last state we visited was $test"
test=Connecticut
echo "Wait, now we’re visiting $test"
$./test1b
The next state is Alabama
The next state is Alaska
The next state is Arizona
The next state is Arkansas
The next state is California
The next state is Colorado
The last state we visited was Colorado
Wait, now we’re visiting Connecticut
$

The $test variable retained its value, and also allowed us to change the value and use it outside
of the for command loop, as any other variable would.

Reading complex values in a list
Things aren’t always as easy as they seem with the for loop. There are times when you run into
data that causes problems. Here’s a classic example of what can cause shell script programmers
problems:

$ cat badtest1
#!/bin/bash
another example of how not to use the for command

for test in I don’t know if this’ll work
do

echo "word:$test"
done
$./badtest1
word:I
word:dont know if thisll
word:work
$

Ouch, that hurts. The shell saw the single quotation marks within the list values and attempted
to use them to define a single data value, and it really messed things up in the process.

There are two ways to solve this problem:

■ Use the escape character (the backslash) to escape the single quotation mark.

■ Use double quotation marks to define the values that use single quotation marks.

Neither solution is all that fantastic, but each one does help solve the problem:

$ cat test2
#!/bin/bash
another example of how not to use the for command

257

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

for test in I don\’t know if "this’ll" work
do

echo "word:$test"
done
$./test2
word:I
word:don’t
word:know
word:if
word:this’ll
word:work
$

In the first problem value, I added the backslash character to escape the single quotation mark in
the don’t value. In the second problem value, I enclosed the this’ll value in double quotation
marks. Both methods worked fine to distinguish the value.

Yet another problem you may run into is multi-word values. Remember, the for loop assumes
that each value is separated with a space. If you have data values that contain spaces, you’ll run
into yet another problem:

$ cat badtest2
#!/bin/bash
another example of how not to use the for command

for test in Nevada New Hampshire New Mexico New York North Carolina
do

echo "Now going to $test"
done
$./badtest1
Now going to Nevada
Now going to New
Now going to Hampshire
Now going to New
Now going to Mexico
Now going to New
Now going to York
Now going to North
Now going to Carolina
$

Oops, that’s not exactly what we wanted. The for command separates each value in the list with
a space. If there are spaces in the individual data values, you must accommodate them using
double quotation marks:

$ cat test3
#!/bin/bash
an example of how to properly define values

258

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

for test in Nevada "New Hampshire" "New Mexico" "New York"
do

echo "Now going to $test"
done
$./test3
Now going to Nevada
Now going to New Hampshire
Now going to New Mexico
Now going to New York
$

Now the for command can properly distinguish between the different values. Also, notice that

when you use double quotation marks around a value, the shell doesn’t include the quotation

marks as part of the value.

Reading a list from a variable
Often what happens in a shell script is that you accumulate a list of values stored in a variable

and then need to iterate through the list. You can do this using the for command as well:

$ cat test4
#!/bin/bash
using a variable to hold the list

list="Alabama Alaska Arizona Arkansas Colorado"
list=$list" Connecticut"

for state in $list
do

echo "Have you ever visited $state?"
done
$./test4
Have you ever visited Alabama?
Have you ever visited Alaska?
Have you ever visited Arizona?
Have you ever visited Arkansas?
Have you ever visited Colorado?
Have you ever visited Connecticut?
$

The $list variable contains the standard text list of values to use for the iterations. Notice that

the code also uses another assignment statement to add (or concatenate) an item to the existing

list contained in the $list variable. This is a common method for adding text to the end of an

existing text string stored in a variable.

259

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Reading values from a command
Yet another way to generate values for use in the list is to use the output of a command. You use
the backtick characters to execute any command that produces output, then use the output of the
command in the for command:

$ cat test5
#!/bin/bash
reading values from a file

file="states"

for state in `cat $file`
do

echo "Visit beautiful $state"
done
$ cat states
Alabama
Alaska
Arizona
Arkansas
Colorado
Connecticut
Delaware
Florida
Georgia
$./test5
Visit beautiful Alabama
Visit beautiful Alaska
Visit beautiful Arizona
Visit beautiful Arkansas
Visit beautiful Colorado
Visit beautiful Connecticut
Visit beautiful Delaware
Visit beautiful Florida
Visit beautiful Georgia
$

This example uses the cat command to display the contents of the file states. You’ll notice that
the states file includes each state on a separate line, not separated by spaces. The for command
still iterates through the output of the cat command one line at a time, assuming that each state
is on a separate line. However, this doesn’t solve the problem of having spaces in data. If you list
a state with a space in it, the for command will still take each word as a separate value. There’s a
reason for this, which we’ll look at in the next section.

The test5 code example assigned the filename to the variable using just the filename

without a path. This requires that the file be in the same directory as the script. If this

isn’t the case, you’ll need to use a full pathname (either absolute or relative) to reference the file

location.

260

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

Changing the field separator
The cause of this problem is the special environment variable IFS, called the internal field
separator. The IFS environment variable defines a list of characters the bash shell uses as field
separators. By default, the bash shell considers the following characters as field separators:

■ A space

■ A tab

■ A newline

If the bash shell sees any of these characters in the data, it’ll assume that you’re starting a new
data field in the list. When working with data that can contain spaces (such as filenames), this
can be annoying, as you saw in the previous script example.

To solve this problem, you can temporarily change the IFS environment variable values in your
shell script to restrict the characters the bash shell recognizes as field separators. However, there
is somewhat of an odd way of doing this. For example, if you want to change the IFS value to
only recognize the newline character, you need to do this:

IFS=$’\n’

Adding this statement to your script tells the bash shell to ignore spaces and tabs in data values.
Applying this to the previous script yields the following:

$ cat test5b
#!/bin/bash
reading values from a file

file="states"

IFS=$’\n’
for state in `cat $file`
do

echo "Visit beautiful $state"
done
$./test5b
Visit beautiful Alabama
Visit beautiful Alaska
Visit beautiful Arizona
Visit beautiful Arkansas
Visit beautiful Colorado
Visit beautiful Connecticut
Visit beautiful Delaware
Visit beautiful Florida
Visit beautiful Georgia
Visit beautiful New York
Visit beautiful New Hampshire
Visit beautiful North Carolina
$

261

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Now the shell script is able to use values in the list that contain spaces.

When working on long scripts, it’s possible to change the IFS value in one place, then

forget about it and assume the default value elsewhere in the script. A safe practice to

get into is to save the original IFS value before changing it, then restore it when you’re done.

This technique can be coded like this:

IFS.OLD=$IFS
IFS=$’\n’
‹use the new IFS value in code›
IFS=$IFS.OLD

This ensures that the IFS value is returned to the default value for future operations within the

script.

There are other excellent applications of the IFS environment variable. Say that you want to iterate
through values in a file that are separated by a colon (such as in the /etc/passwd file). All you
need to do is set the IFS value to a colon:

IFS=:

If you want to specify more than one IFS character, just string them together on the assignment
line:

IFS=$’\n’:;"

This assignment uses the newline, colon, semicolon, and double quotation mark characters as
field separators. There’s no limit to how you can parse your data using the IFS characters.

Reading a directory using wildcards
Finally, you can use the for command to automatically iterate through a directory of files. To
do this, you must use a wildcard character in the file or pathname. This forces the shell to use
file globbing. File globbing is the process of producing file or path names that match a specified
wildcard character.

This feature is great for processing files in a directory, when you don’t know all of the filenames:

$ cat test6
#!/bin/bash
iterate through all the files in a directory

for file in /home/rich/test/*
do

if [-d "$file"]
then

echo "$file is a directory"
elif [-f "$file"]
then

262

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

echo "$file is a file"
fi

done
$./test6
/home/rich/test/dir1 is a directory
/home/rich/test/myprog.c is a file
/home/rich/test/myprog is a file
/home/rich/test/myscript is a file
/home/rich/test/newdir is a directory
/home/rich/test/newfile is a file
/home/rich/test/newfile2 is a file
/home/rich/test/testdir is a directory
/home/rich/test/testing is a file
/home/rich/test/testprog is a file
/home/rich/test/testprog.c is a file
$

The for command iterates through the results of the /home/rich/test/* listing. The code tests
each entry using the test command (using the square bracket method) to see if it’s a directory
(using the -d parameter) or a file (using the -f parameter). (See Chapter 9, ‘‘Using Structured
Commands’’.)

Notice in this example I did something different in the if statement tests:

if [-d "$file"]

In Linux it’s perfectly legal to have directory and filenames that contain spaces. To accommodate
that, you should enclose the $file variable in double quotation marks. If you don’t, you’ll get
an error if you run into a directory or filename that contains spaces:

./test6: line 6: [: too many arguments

./test6: line 9: [: too many arguments

The bash shell interprets the additional words as arguments within the test command, causing
an error.

You can also combine both the directory search method and the list method in the same for
statement, by listing a series of directory wildcards in the for command:

$ cat test7
#!/bin/bash
iterating through multiple directories

for file in /home/rich/.b* /home/rich/badtest
do

if [-d "$file"]
then

echo "$file is a directory"
elif [-f "$file"]
then

263

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

echo "$file is a file"
else
echo "$file doesn’t exist"

fi
done
$./test7
/home/rich/.backup.timestamp is a file
/home/rich/.bash_history is a file
/home/rich/.bash_logout is a file
/home/rich/.bash_profile is a file
/home/rich/.bashrc is a file
/home/rich/badtest doesn’t exist
$

The for statement first uses file globbing to iterate through the list of files that result from the

wildcard character, then it iterates through the next file in the list. You can combine any number

of wildcard entries in the list to iterate through.

Notice that you can enter anything in the list data — even if the file or directory

doesn’t exist, the for statement attempts to process whatever you place in the list.

This can be a problem when working with files and directories. You have no way of knowing if

you’re trying to iterate through a nonexistent directory: It’s always a good idea to test each file or

directory before trying to process it.

The C-Style for Command
If you’ve done any programming using the C programming language, you’re probably surprised

by the way the bash shell uses the for command. In the C language, a for loop normally defines

a variable, which it then alters automatically during each iteration. Normally, programmers use

this variable as a counter, and either increment or decrement the counter by one in each iteration.

The bash for command can also provide this functionality. This section shows how you can use

a C-style for command in a bash shell script.

The C language for command
The C language for command has a specific method for specifying a variable, a condition that

must remain true for the iterations to continue, and a method for altering the variable for each

iteration. When the specified condition becomes false, the for loop stops. The condition equation

is defined using standard mathematical symbols. For example, take the C language code:

for (i = 0; i ‹ 10; i++)
{

printf("The next number is %d\n", i);
}

264

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

This code produces a simple iteration loop, where the variable i is used as a counter. The first
section assigns a default value to the variable. The middle section defines the condition under
which the loop will iterate. When the defined condition becomes false, the for loop stops iter-
ations. The last section defines the iteration process. After each iteration, the expression defined
in the last section is executed. In this example, the i variable is incremented by one after each
iteration.

The bash shell also supports a version of the for loop that looks similar to the C-style for loop,
although it does have some subtle differences, including a couple of things that’ll confuse shell
script programmers. Here’s the basic format of the C-style bash for loop:

for ((variable assignment ; condition ; iteration process))

The format of the C-style for loop can be confusing for bash shell script programmers, as it uses
C-style variable references instead of the shell-style variable references. Here’s what a C-style for
command looks like:

for ((a = 1; a ‹ 10; a++))

Notice that there are a couple of things that don’t follow the standard bash shell for method:

■ The assignment of the variable value can contain spaces.

■ The variable in the condition isn’t preceded with a dollar sign.

■ The equation for the iteration process doesn’t use the expr command format.

The shell developers created this format to more closely resemble the C-style for command.
While this is great for C programmers, it can throw even expert shell programmers into a tizzy.
Be careful when using the C-style for loop in your scripts.

Here’s an example of using the C-style for command in a bash shell program:

$ cat test8
#!/bin/bash
testing the C-style for loop

for ((i=1; i ‹= 10; i++))
do

echo "The next number is $i"
done
$./test8
The next number is 1
The next number is 2
The next number is 3
The next number is 4
The next number is 5
The next number is 6
The next number is 7
The next number is 8

265

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The next number is 9
The next number is 10
$

The for loop iterates through the commands using the variable defined in the for loop (the letter
i in this example). In each iteration, the $i variable contains the value assigned in the for loop.
After each iteration, the loop iteration process is applied to the variable, which in this example,
increments the variable by one.

Using multiple variables
The C-style for command also allows you to use multiple variables for the iteration. The loop
handles each variable separately, allowing you to define a different iteration process for each vari-
able. While you can have multiple variables, you can only define one condition in the
for loop:

$ cat test9
#!/bin/bash
multiple variables

for ((a=1, b=10; a ‹= 10; a++, b--))
do

echo "$a - $b"
done
$./test9
1 - 10
2 - 9
3 - 8
4 - 7
5 - 6
6 - 5
7 - 4
8 - 3
9 - 2
10 - 1
$

The a and b variables are each initialized with different values, and different iteration processes
are defined. While the loop increases the a variable, it decreases the b variable for each iteration.

The while Command
The while command is somewhat of a cross between the if-then statement and the for
loop. The while command allows you to define a command to test, then loop through a set
of commands for as long as the defined test command returns a zero exit status. It tests the test
command at the start of each iteration. When the test command returns a non-zero exit status,
the while command stops executing the set of commands.

266

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

Basic while format
The format of the while command is:

while test command
do
other commands

done

The test command defined in the while command is the exact same format as in if-then
statements (see Chapter 9). Just as in the if-then statement, you can use any normal bash shell

command, or you can use the test command to test for conditions, such as variable values.

The key to the while command is that the exit status of the test command specified must change,

based on the commands run during the loop. If the exit status never changes, the while loop will

get stuck in an infinite loop.

The most common situation uses the test command brackets to check a value of a shell variable

that’s used in the loop commands:

$ cat test10
#!/bin/bash
while command test

var1=10
while [$var1 -gt 0]
do

echo $var1
var1=$[$var1 - 1]

done
$./test10
10
9
8
7
6
5
4
3
2
1
$

The while command defines the test condition to check for each iteration:

while [$var1 -gt 0]

As long as the test condition is true, the while command continues to loop through the

commands defined. Within the commands, the variable used in the test condition must be

267

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

modified, or else you’ll have an infinite loop. In this example, we use shell arithmetic to decrease

the variable value by one:

var1=$[$var1 - 1]

The while loop stops when the test condition is no longer true.

Using multiple test commands
In somewhat of an odd situation, the while command allows you to define multiple test

commands on the while statement line. Only the exit status of the last test command is used

to determine when the loop stops. This can cause some interesting results if you’re not careful.

Here’s an example of what I mean:

$ cat test11
#!/bin/bash
testing a multicommand while loop

var1=10

while echo $var1
[$var1 -ge 0]

do
echo "This is inside the loop"
var1=$[$var1 - 1]

done
$./test11
10
This is inside the loop
9
This is inside the loop
8
This is inside the loop
7
This is inside the loop
6
This is inside the loop
5
This is inside the loop
4
This is inside the loop
3
This is inside the loop
2
This is inside the loop
1
This is inside the loop
0

268

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

This is inside the loop
-1
$

Pay close attention to what happened in this example. There were two test commands defined in

the while statement:

while echo $var1
[$var1 -ge 0]

The first test command simply displays the current value of the var1 variable. The second com-

mand uses the test command to determine the value of the var1 variable. Inside the loop, an

echo statement displays a simple message, indicating that the loop was processed. Notice when

you run the example, how the output ends:

This is inside the loop
-1
$

The while loop executed the echo statement for when the var1 variable was equal to zero,

then decreased the var1 variable value. Next, the test commands were executed for the next

iteration. The echo test command was executed, displaying the value of the var1 variable, which

is now less than zero. It’s not until the shell executes the test test command that the while
loop terminates.

This demonstrates that in a multi-command while statement, all of the test commands are exe-

cuted in each iteration, including the last iteration when the last test command fails. Be careful
of this.

The until Command
The until command works exactly the opposite way from the while command. The until
command requires that you to specify a test command that normally produces a non-zero exit

status. As long as the exit status of the test command is non-zero, the bash shell executes the
commands listed in the loop. Once the test command returns a zero exit status, the loop stops.

As you would expect, the format of the until command is:

until test commands
do

other commands
done

Similar to the while command, you can have more than one test command in the until com-
mand statement. Only the exit status of the last command determines if the bash shell executes

the other commands defined.

269

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Here’s an example of using the until command:

$ cat test12
#!/bin/bash
using the until command

var1=100

until [$var1 -eq 0]
do

echo $var1
var1=$[$var1 - 25]

done
$./test12
100
75
50
25
$

This example tests the var1 variable to determine when the until loop should stop. As soon
as the value of the variable is equal to zero, the until command stops the loop. The same cau-
tion as for the while command applies when you use multiple test commands with the until
command:

$ cat test13
#!/bin/bash
using the until command

var1=100

until echo $var1
[$var1 -eq 0]

do
echo Inside the loop: $var1
var1=$[$var1 - 25]

done
$./test13
100
Inside the loop: 100
75
Inside the loop: 75
50
Inside the loop: 50
25
Inside the loop: 25
0
$

The shell executes the test commands specified and stops only when the last command is true.

270

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

Nesting Loops
A loop statement can use any other type of command within the loop, including other loop com-
mands. This is called a nested loop. Care should be taken when using nested loops, as you’re
performing an iteration within an iteration, which multiplies the number of times commands are
being run. Not paying close attention to this can cause problems in your scripts.

Here’s a simple example of nesting a for loop inside another for loop:

$ cat test14
#!/bin/bash
nesting for loops

for ((a = 1; a ‹= 3; a++))
do

echo "Starting loop $a:"
for ((b = 1; b ‹= 3; b++))
do

echo " Inside loop: $b"
done

done
$./test14
Starting loop 1:

Inside loop: 1
Inside loop: 2
Inside loop: 3

Starting loop 2:
Inside loop: 1
Inside loop: 2
Inside loop: 3

Starting loop 3:
Inside loop: 1
Inside loop: 2
Inside loop: 3

$

The nested loop (also called the inner loop) iterates through its values for each iteration of the
outer loop. Notice that there’s no difference between the do and done commands for the two
loops. The bash shell knows when the first done command is executed that it refers to the inner
loop and not the outer loop.

The same applies when you mix loop commands, such as placing a for loop inside a while
loop:

$ cat test15
#!/bin/bash
placing a for loop inside a while loop

var1=5

271

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

while [$var1 -ge 0]
do

echo "Outer loop: $var1"
for ((var2 = 1; $var2 ‹ 3; var2++))
do

var3=$[$var1 * $var2]
echo " Inner loop: $var1 * $var2 = $var3"

done
var1=$[$var1 - 1]

done
$./test15
Outer loop: 5
Inner loop: 5 * 1 = 5
Inner loop: 5 * 2 = 10

Outer loop: 4
Inner loop: 4 * 1 = 4
Inner loop: 4 * 2 = 8

Outer loop: 3
Inner loop: 3 * 1 = 3
Inner loop: 3 * 2 = 6

Outer loop: 2
Inner loop: 2 * 1 = 2
Inner loop: 2 * 2 = 4

Outer loop: 1
Inner loop: 1 * 1 = 1
Inner loop: 1 * 2 = 2

Outer loop: 0
Inner loop: 0 * 1 = 0
Inner loop: 0 * 2 = 0

$

Again, the shell was able to distinguish between the do and done commands of the inner for
loop from the same commands in the outer while loop.

If you really want to test your brain, you can even combine until and while loops:

$ cat test16
#!/bin/bash
using until and while loops

var1=3

until [$var1 -eq 0]
do

echo "Outer loop: $var1"
var2=1
while [$var2 -lt 5]
do

var3=`echo "scale=4; $var1 / $var2" | bc`

272

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

echo " Inner loop: $var1 / $var2 = $var3"
var2=$[$var2 + 1]

done
var1=$[$var1 - 1]

done
$./test16
Outer loop: 3

Inner loop: 3 / 1 = 3.0000
Inner loop: 3 / 2 = 1.5000
Inner loop: 3 / 3 = 1.0000
Inner loop: 3 / 4 = .7500

Outer loop: 2
Inner loop: 2 / 1 = 2.0000
Inner loop: 2 / 2 = 1.0000
Inner loop: 2 / 3 = .6666
Inner loop: 2 / 4 = .5000

Outer loop: 1
Inner loop: 1 / 1 = 1.0000
Inner loop: 1 / 2 = .5000
Inner loop: 1 / 3 = .3333
Inner loop: 1 / 4 = .2500

$

The outer until loop starts with a value of three and continues until the value equals zero. The

inner while loop starts with a value of 1 and continues as long as the value is less than five. Each
loop must change the value used in the test condition, or the loop will get stuck infinitely.

Looping on File Data
Often, you must iterate through items stored inside a file. This requires combining two of the
techniques covered:

■ Using nested loops

■ Changing the IFS environment variable

By changing the IFS environment variable, you can force the for command to handle each line
in the file as a separate item for processing, even if the data contains spaces. Once you’ve extracted
an individual line in the file, you may have to loop again to extract data contained within it.

The classic example of this is processing data in the /etc/passwd file. This requires that you
iterate through the /etc/passwd file line by line, then change the IFS variable value to a colon
so that you can separate out the individual components in each line.

Here’s an example of doing that:

#!/bin/bash
changing the IFS value

273

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

IFS.OLD=$IFS
IFS=$’\n’
for entry in `cat /etc/passwd`
do

echo "Values in $entry -"
IFS=:
for value in $entry
do

echo " $value"
done

done
$

This script uses two different IFS values to parse the data. The first IFS value parses the individ-
ual lines in the /etc/passwd file. The inner for loop next changes the IFS value to the colon,
which allows you to parse the individual values within the /etc/passwd lines.

When you run this script, you’ll get output something like this:

Values in rich:x:501:501:Rich Blum:/home/rich:/bin/bash -
rich
x
501
501
Rich Blum
/home/rich
/bin/bash

Values in katie:x:502:502:Katie Blum:/home/katie:/bin/bash -
katie
x
506
509
Katie Blum
/home/katie
/bin/bash

The inner loop parses each individual value in the /etc/passwd entry. This is also a great way
to process comma-separated data, a common way to import spreadsheet data.

Controlling the Loop
You might be tempted to think that once you start a loop, you’re stuck until the loop finishes
all of its iterations. This is not true. There are a couple of commands that help us control what
happens inside of a loop:

■ The break command

■ The continue command

274

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

Each command has a different use in how to control the operation of a loop. The following
sections describe how you can use these commands to control the operation of your loops.

The break command
The break command is a simple way to escape out of a loop in progress. You can use the break
command to exit out of any type of loop, including while and until loops.

There are several situations in which you can use the break command. This section shows each
of these methods.

Breaking out of a single loop

When the shell executes a break command, it attempts to break out of the loop that’s currently
processing:

$ cat test17
#!/bin/bash
breaking out of a for loop

for var1 in 1 2 3 4 5 6 7 8 9 10
do

if [$var1 -eq 5]
then

break
fi
echo "Iteration number: $var1"

done
echo "The for loop is completed"
$./test17
Iteration number: 1
Iteration number: 2
Iteration number: 3
Iteration number: 4
The for loop is completed
$

The for loop should normally have iterated through all of the values specified in the list. How-
ever, when the if-then condition was satisfied, the shell executed the break command, which
stopped the for loop.

This technique also works for while and until loops:

$ cat test18
#!/bin/bash
breaking out of a while loop

var1=1

while [$var1 -lt 10]
do

275

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

if [$var1 -eq 5]
then

break
fi
echo "Iteration: $var1"
var1=$[$var1 + 1]

done
echo "The while loop is completed"
$./test18
Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
The while loop is completed
$

The while loop terminated when the if-then condition was met, executing the break
command.

Breaking out of an inner loop

When you’re working with multiple loops, the break command automatically terminates the

innermost loop you’re in:

$ cat test19
#!/bin/bash
breaking out of an inner loop

for ((a = 1; a ‹ 4; a++))
do

echo "Outer loop: $a"
for ((b = 1; b ‹ 100; b++))
do

if [$b -eq 5]
then

break
fi
echo " Inner loop: $b"

done
done
$./test19
Outer loop: 1

Inner loop: 1
Inner loop: 2
Inner loop: 3
Inner loop: 4

Outer loop: 2
Inner loop: 1
Inner loop: 2

276

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

Inner loop: 3
Inner loop: 4

Outer loop: 3
Inner loop: 1
Inner loop: 2
Inner loop: 3
Inner loop: 4

$

The for statement in the inner loop specifies to iterate until the b variable is equal to 100. How-
ever, the if-then statement in the inner loop specifies that when the b variable value is equal to
five, the break command is executed. Notice that even though the inner loop is terminated with
the break command, the outer loop continues working as specified.

Breaking out of an outer loop

There may be times when you’re in an inner loop but need to stop the outer loop. The break
command includes a single command line parameter value:

break n

where n indicates the level of the loop to break out of. By default, n is one, indicating to break
out of the current loop. If you set n to a value of two, the break command will stop the next
level of the outer loop:

$ cat test20
#!/bin/bash
breaking out of an outer loop

for ((a = 1; a ‹ 4; a++))
do

echo "Outer loop: $a"
for ((b = 1; b ‹ 100; b++))
do

if [$b -gt 4]
then

break 2
fi
echo " Inner loop: $b"

done
done
$./test20
Outer loop: 1

Inner loop: 1
Inner loop: 2
Inner loop: 3
Inner loop: 4

$

Now when the shell executes the break command, the outer loop stops.

277

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The continue command
The continue command is a way to prematurely stop processing commands inside of a loop

but not terminate the loop completely. This allows you to set conditions within a loop where the

shell won’t execute commands. Here’s a simple example of using the continue command in a

for loop:

$ cat test21
#!/bin/bash
using the continue command

for ((var1 = 1; var1 ‹ 15; var1++))
do

if [$var1 -gt 5] && [$var1 -lt 10]
then

continue
fi
echo "Iteration number: $var1"

done
$./test21
Iteration number: 1
Iteration number: 2
Iteration number: 3
Iteration number: 4
Iteration number: 5
Iteration number: 10
Iteration number: 11
Iteration number: 12
Iteration number: 13
Iteration number: 14
$

When the conditions of the if-then statement are met (the value is greater than five and less

than 10), the shell executes the continue command, which skips the rest of the commands in

the loop, but keeps the loop going. When the if-then condition is no longer met, things return

back to normal.

You can use the continue command in while and until loops, but be extremely careful with

what you’re doing. Remember, when the shell executes the continue command, it skips the

remaining commands. If you’re incrementing your test condition variable in one of those condi-

tions, bad things will happen:

$ cat badtest3
#!/bin/bash
improperly using the continue command in a while loop

var1=0

278

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

while echo "while iteration: $var1"
[$var1 -lt 15]

do
if [$var1 -gt 5] && [$var1 -lt 10]
then

continue
fi
echo " Inside iteration number: $var1"
var1=$[$var1 + 1]

done
$./badtest3 | more
while iteration: 0

Inside iteration number: 0
while iteration: 1

Inside iteration number: 1
while iteration: 2

Inside iteration number: 2
while iteration: 3

Inside iteration number: 3
while iteration: 4

Inside iteration number: 4
while iteration: 5

Inside iteration number: 5
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
while iteration: 6
$

You’ll want to make sure you redirect the output of this script to the more command so you can

stop things. Everything seems to be going just fine, until the if-then condition is met, and the

shell executes the continue command. When the shell executes the continue command, it

skips the remaining commands in the while loop. Unfortunately, that’s where I incremented the

counter variable that I tested in the while test command. That meant that the variable wasn’t

incremented, as you can see from the continually displaying output.

Just as with the break command, the continue command allows you to specify what level of

loop to continue with a command line parameter:

continue n

279

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

where n defines the loop level to continue. Here’s an example of continuing an outer for loop:

$ cat test22
#!/bin/bash
continuing an outer loop

for ((a = 1; a ‹= 5; a++))
do

echo "Iteration $a:"
for ((b = 1; b ‹ 3; b++))
do

if [$a -gt 2] && [$a -lt 4]
then

continue 2
fi
var3=$[$a * $b]
echo " The result of $a * $b is $var3"

done
done
$./test22
Iteration 1:

The result of 1 * 1 is 1
The result of 1 * 2 is 2

Iteration 2:
The result of 2 * 1 is 2
The result of 2 * 2 is 4

Iteration 3:
Iteration 4:

The result of 4 * 1 is 4
The result of 4 * 2 is 8

Iteration 5:
The result of 5 * 1 is 5
The result of 5 * 2 is 10

$

The if-then statement:

if [$a -gt 2] && [$a -lt 4]
then

continue 2
fi

uses the continue command to stop processing the commands inside the loop, but continue

the outer loop. Notice in the script output that the iteration for the value 3 doesn’t process any

inner loop statements, as the continue command stopped the processing, but continues with

the outer loop processing.

280

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

Processing the Output of a Loop
Finally, you can either pipe or redirect the output of a loop within your shell script. You do this

by adding the processing command to the end of the done command:

for file in /home/rich/*
do

if [-d "$file"]
then

echo "$file is a directory"
elif

echo "$file is a file"
fi

done > output.txt

Instead of displaying the results on the monitor, the shell redirects the results of the for com-

mand to the file output.txt.

Here’s an example of redirecting the output of a for command to a file:

$ cat test23
#!/bin/bash
redirecting the for output to a file

for ((a = 1; a ‹ 10; a++))
do

echo "The number is $a"
done > test23.txt
echo "The command is finished."
$./test23
The command is finished.
$ cat test23.txt
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9
$

The shell creates the file test23.txt, and redirects the output of the for command only to the

file. The shell displays the echo statement after the for command just as normal.

281

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

This same technique also works for piping the output of a loop to another command:

$ cat test24
#!/bin/bash
piping a loop to another command

for state in "North Dakota" Connecticut Illinois Alabama Tennessee
do

echo "$state is the next place to go"
done | sort
echo "This completes our travels"
$./test24
Alabama is the next place to go
Connecticut is the next place to go
Illinois is the next place to go
North Dakota is the next place to go
Tennessee is the next place to go
This completes our travels
$

The state values aren’t listed in any particular order in the for command list. The output of the

for command is piped to the sort command, which will change the order of the for command

output. Running the script indeed shows that the output was properly sorted within the script.

Summary
Looping is an integral part of programming. The bash shell provides three different looping com-

mands that we can use in our scripts. The for command allows us to iterate through a list of
values, either supplied within the command line, contained in a variable, or obtained by using

file globbing to extract file and directory names from a wildcard character.

The while command provides a method to loop based on the condition of a command, using

either ordinary commands or the test command, which allows us to test conditions of variables.

As long as the command (or condition) produces a zero exit status, the while loop will continue

to iterate through the specified set of commands.

The until command also provides a method to iterate through commands, but it bases its itera-

tions on a command (or condition) producing a non-zero exit status. This feature allows us to set

a condition that must be met before the iteration stops.

You can combine loops in shell scripts, producing multiple layers of loops. The bash shell pro-

vides the continue and break commands, which allow us to alter the flow of the normal loop

process based on different values within the loop.

282

www.IrPDF.com

www.IrPDF.com

More Structured Commands 10

The bash shell also allows us to use standard command redirection and piping to alter the output

of a loop. You can use redirection to redirect the output of a loop to a file, or piping to redirect

the output of a loop to another command. This provides a wealth of features with which you can

control your shell script execution.

The next chapter discusses how to interact with your shell script user. Often shell scripts aren’t

completely self-contained. They require some sort of external data that must be supplied at the

time you run them. The next chapter shows different methods with which you can provide
real-time data to your shell scripts for processing.

283

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Handling User Input

IN THIS CHAPTER

Using command line parameters

Working out your options

Getting input from users

S
o far you’ve seen how to write scripts that interact with data, vari-

ables, and files on the Linux system. Sometimes, you need to write
a script that has to interact with the person running the script. The

bash shell provides a few different methods for retrieving data from people,

including command line parameters (data values added after the command),

command line options (single-letter values that modify the behavior of the

command), and reading input directly from the keyboard. This chapter

discusses how to incorporate these different methods into your bash shell
scripts to obtain data from the person running your script.

Command Line Parameters

The most basic method of passing data to your shell script is by

using command line parameters. Command line parameters allow you to

add data values to the command line when you execute the script:

$./addem 10 30

This example passes two command line parameters (10 and 30) to the script

addem. The script handles the command line parameters using special vari-

ables. The following sections describe how to use command line parameters

in your bash shell scripts.

Reading parameters
The bash shell assigns special variables, called positional parameters, to all

of the parameters entered in a command line. This even includes the name

285

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

of the program the shell executes. The positional parameter variables are standard numbers, with

$0 being the name of the program, $1 being the first parameter, $2 being the second parameter,

and so on, up to $9 for the ninth parameter.

Here’s a simple example of using one command line parameter in a shell script:

$ cat test1
#!/bin/bash
using one command line parameter

factorial=1
for ((number = 1; number ‹= $1 ; number++))
do

factorial=$[$factorial * $number]
done
echo The factorial of $1 is $factorial
$./test1 5
The factorial of 5 is 120
$

You can use the $1 variable just like any other variable in the shell script. The shell script auto-

matically assigns the value from the command line parameter to the variable, you don’t need to

do anything with it.

If you need to enter more command line parameters, each parameter must be separated by a

space on the command line:

$ cat test2
#!/bin/bash
testing two command line parameters

total=$[$1 * $2]
echo The first paramerer is $1.
echo The second parameter is $2.
echo The total value is $total.
$./test2 2 5
The first paramerer is 2.
The second parameter is 5.
The total value is 10.
$

The shell assigns each parameter to the appropriate variable.

In this example, the command line parameters used were both numerical values. You can also use

text strings in the command line:

$ cat test3
#!/bin/bash
testing string parameters

286

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

echo Hello $1, glad to meet you.
$./test3 Rich
Hello Rich, glad to meet you.
$

The shell passes the string value entered into the command line to the script. However, you’ll

have a problem if you try to do this with a text string that contains spaces:

$./test3 Rich Blum
Hello Rich, glad to meet you.
$

Remember, each of the parameters is separated by a space, so the shell interpreted the space as

just separating the two values. To include a space as a parameter value, you must use quotation

marks (either single or double quotation marks):

$./test3 ’Rich Blum’
Hello Rich Blum, glad to meet you.
$./test3 "Rich Blum"
Hello Rich Blum, glad to meet you.
$

Notice that the quotation marks aren’t part of the data, they just delineate the beginning and end

of the data.

If your script needs more than nine command line parameters, you can continue, but the variable

names change slightly. After the ninth variable, you must use braces around the variable number,

such as ${10}. Here’s an example of doing that:

$ cat test4
#!/bin/bash
handling lots of parameters

total=$[${10} * ${11}]
echo The tenth parameter is ${10}
echo The eleventh parameter is ${11}
echo The total is $total
$./test4 1 2 3 4 5 6 7 8 9 10 11 12
The tenth parameter is 10
The eleventh parameter is 11
The total is 110
$

This technique allows you to add as many command line parameters to your scripts as you could

possibly need.

287

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Reading the program name
You can use the $0 parameter to determine the name of the program that the shell started from
the command line. This can come in handy if you’re writing a utility that can have multiple

functions. However, there’s a small problem that you’ll have to deal with. Look what happens in

this simple example:

$ cat test5
#!/bin/bash
testing the $0 parameter

echo The command entered is: $0
$./test5
The command entered is: ./test5
$ /home/rich/test5
The command entered is: /home/rich/test5
$

The actual string passed in the $0 variable is the entire path used for the program, not just the

program name.

If you want to write a script that performs different functions based on the name of the script run

from the command line, you’ll have to do a little work. You need to be able to strip off whatever

path is used to run the script from the command line.

Fortunately, there’s a handy little command available for us that does just that. The basename
command returns just the program name without the path. Let’s modify the example script and

see how this works:

$ cat test5b
#!/bin/bash
using basename with the $0 parameter

name=`basename $0`
echo The command entered is: $name
$./test5b
The command entered is: test5b
$ /home/rich/test5b
The command entered is: test5b
$

Now that’s much better. You can now use this technique to write scripts that perform different
functions based on the script name used. Here’s a simple example to demonstrate this:

$ cat test6
#!/bin/bash
testing a multi-function script

name=`basename $0`

288

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

if [$name = "addem"]
then

total=$[$1 + $2]
elif [$name = "multem"]
then

total=$[$1 * $2]
fi
echo The calculated value is $total
$ chmod u+x test6
$ cp test6 addem
$ ln -s test6 multem
$ ls -l
-rwxr--r-- 1 rich rich 211 Oct 15 18:00 addem*
lrwxrwxrwx 1 rich rich 5 Oct 15 18:01 multem -> test6*
-rwxr--r-- 1 rich rich 211 Oct 15 18:00 test6*
$./addem 2 5
The calculated value is 7
$./multem 2 5
The calculated value is 10
$

The example creates two separate filenames from the test6 code, one by just copying the file
and the other by using a link to create the new file. In both cases, the script determines the
basename of the script and performs the appropriate function based on that value.

Testing parameters
You need to be careful when using command line parameters in your shell scripts. If the script
runs without the parameters, bad things can happen:

$./addem 2
./addem: line 8: 2 + : syntax error: operand expected (error
token is " ")

The calculated value is
$

When the script assumes there’s data in a parameter variable, and there isn’t, most likely you’ll
get an error message from your script. This is not a good way to write scripts. It’s always a good
idea to check your parameters to make sure there’s really data there before using them:

$ cat test7
#!/bin/bash
testing parameters before use

if [-n "$1"]
then

echo Hello $1, glad to meet you.
else

echo "Sorry, you didn’t identify yourself."
fi

289

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

$./test7 Rich
Hello Rich, glad to meet you.
$./test7
Sorry, you didn’t identify yourself.
$

In this example, I used the -n parameter in the test command to check if there was data in

the command line parameter. In the next section you’ll see there’s yet another way to check for

command line parameters.

Special Parameter Variables
There are a few special variables available in the bash shell that track command line parameters.

This section describes what they are, and how to use them.

Counting parameters
As you saw in the last section, it’s often a good idea to verify command line parameters before

using them in your script. For scripts that use multiple command line parameters, this can get

tedious.

Instead of testing each parameter, you can just count how many parameters were entered on the

command line. The bash shell provides a special variable for this purpose.

The special $# variable contains the number of command line parameters included when the

script was run. You can use this special variable anywhere in the script, just as a normal variable:

$ cat test8
#!/bin/bash
getting the number of parameters

echo There were $# parameters supplied.
$./test8
There were 0 parameters supplied.
$./test8 1 2 3 4 5
There were 5 parameters supplied.
$./test8 1 2 3 4 5 6 7 8 9 10
There were 10 parameters supplied.
$./test8 "Rich Blum"
There were 1 parameters supplied.
$

290

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

Now you have the ability to test the number of parameters present before trying to use them:

$ cat test9
#!/bin/bash
testing parameters

if [$# -ne 2]
then

echo Usage: test9 a b
else

total=$[$1 + $2]
echo The total is $total

fi
$./test9
Usage: test9 a b
$./test9 10
Usage: test9 a b
$./test9 10 15
The total is 25
$./test9 10 15 20
Usage: test9 a b
$

The if-then statement uses the test command to perform a numeric test of the number of

parameters supplied on the command line. If the correct number of parameters isn’t present, you

can print an error message that shows the correct usage of the script.

This variable also provides a cool way of grabbing the last parameter on the command line, with-

out having to know how many parameters were used. However, you need to use a little trick to

get there.

If you think this through, you might think that since the $# variable contains the value of the

number of parameters, then using the variable ${$#} would represent the last command line

parameter variable. Try that out and see what happens:

$ cat badtest1
#!/bin/bash
testing grabbing last parameter

echo The last parameter was ${$#}
$./badtest1 10
The last parameter was 15354
$

291

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Wow, what happened here? Obviously, something wrong happened. It turns out that you can’t
use the dollar sign within the braces. Instead, you must replace the dollar sign with an exclama-
tion mark. Odd, but it works:

$ cat test10
#!/bin/bash
grabbing the last parameter

params=$#
echo The last parameter is $params
echo The last paramerer is ${!#}
$./test10 1 2 3 4 5
The last parameter is 5
The last paramerer is 5
$./test10
The last parameter is 0
The last parameter is ./test10
$

Perfect. This test also assigned the $# variable value to the variable params, then used that vari-
able within the special command line parameter variable format as well. Both versions worked.
It’s also important to notice that, when there weren’t any parameters on the command line, the
$# value was zero, which is what appears in the params variable, but the ${!#} variable returns
the script name used on the command line.

Grabbing all the data
There are situations where you’ll want to just grab all of the parameters provided on the command
line and iterate through all of them. Instead of having to mess with using the $# variable to
determine how many parameters are on the command line, then having to loop through all of
them, you can use a couple of other special variables.

The $* and $@ variables provide one-stop shopping for all of your parameters. Both of these
variables include all of the command line parameters within a single variable.

The $* variable takes all of the parameters supplied on the command line as a single word. The
word contains each of the values as they appear on the command line. Basically, instead of treat-
ing the parameters as multiple objects, the $* variable treats them all as one parameter.

The $@ variable on the other hand, takes all of the parameters supplied on the command line as
separate words in the same string. It allows you to iterate through the value, separating out each
parameter supplied. This is most often accomplished using the for command.

It can easily get confusing as to how these two variables operate. If you take them both at face
value, you won’t even see the difference:

$ cat test11
#!/bin/bash
testing $* and $@

292

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

echo "Using the \$* method: $*"
echo "Using the \$@ method: $@"
$./test11 rich barbara katie jessica
Using the $* method: rich barbara katie jessica
Using the $@ method: rich barbara katie jessica
$

Notice that on the surface, both variables produce the same output, showing all of the command
line parameters provided at once.

Now, here’s another example that’ll demonstrate where the difference comes into play:

$ cat test12
#!/bin/bash
testing $* and $@

count=1
for param in "$*"
do

echo "\$* Parameter #$count = $param"
count=$[$count + 1]

done

count=1
for param in "$@"
do

echo "\$@ Parameter #$count = $param"
count=$[$count + 1]

done
$./test12 rich barbara katie jessica
$* Parameter #1 = rich barbara katie jessica
$@ Parameter #1 = rich
$@ Parameter #2 = barbara
$@ Parameter #3 = katie
$@ Parameter #4 = jessica
$

Now we’re getting somewhere. By using the for command to iterate through the special variables,

you can see how they each treat the command line parameters differently. The $* variable treated
all of the parameters as a single word, while the $@ variable treated each parameter separately.
This is a great way to iterate through command line parameters.

Being Shifty
Another tool you have in your bash shell toolbelt is the shift command. The bash shell provides
the shift command to help us manipulate command line parameters. The shift command does
what it says, it shifts the command line parameters in their relative positions.

293

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

When you use the shift command, it ‘‘downgrades’’ each parameter variable one position by
default. Thus, the value for variable $3 is moved to $2, the value for variable $2 is moved to $1,
and the value for variable $1 is discarded (note that the value for variable $0, the program name,
remains unchanged).

This is another great way to iterate through command line parameters, especially if you don’t
know how many parameters are available. You can just operate on the first parameter, shift the
parameters over, then operate on the first parameter again.

Here’s a short demonstration of how this works:

$ cat test13
#!/bin/bash
demonstrating the shift command

count=1
while [-n "$1"]
do

echo "Parameter #$count = $1"
count=$[$count + 1]
shift

done
$./test13 rich barbara katie jessica
Parameter #1 = rich
Parameter #2 = barbara
Parameter #3 = katie
Parameter #4 = jessica
$

The script performs a while loop, testing the length of the first parameter’s value. When the first
parameter’s length is zero, the loop ends.

After testing the first parameter, the shift command is used to shift all of the parameters one
position.

Alternatively, you can perform a multiple location shift by providing a parameter to the shift
command. Just provide the number of places you want to shift:

$ cat test14
#!/bin/bash
demonstrating a multi-position shift

echo "The original parameters: $*"
shift 2
echo "Here’s the new first parameter: $1"
$./test14 1 2 3 4 5
The original parameters: 1 2 3 4 5
Here’s the new first parameter: 3
$

By using values in the shift command, you can easily skip over parameters you don’t need.

294

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

Be careful when working with the shift command. When a parameter is shifted out,

its value is lost and can’t be recovered.

Working With Options
If you’ve been following along in the book, you’ve seen several bash commands that provide both
parameters and options. Options are single letters preceded by a dash that alter the behavior of
a command. This section shows three different methods for working with options in your shell
scripts.

Finding your options
On the surface, there’s nothing all that special about command line options. They appear on the
command line immediately after the script name, just the same as command line parameters. In
fact, if you want, you can process command line options the same way that you process command
line parameters.

Processing simple options

In the test13 script earlier, you saw how to use the shift command to walk your way down
the command line parameters provided with the script program. You can use this same technique
to process command line options.

As you extract each individual parameter, use the case statement to determine when a parameter
is formatted as an option:

$ cat test15
#!/bin/bash
extracting command line options as parameters

while [-n "$1"]
do

case "$1" in
-a) echo "Found the -a option" ;;
-b) echo "Found the -b option";;
-c) echo "Found the -c option" ;;
*) echo "$1 is not an option";;
esac
shift

done
$./test15 -a -b -c -d
Found the -a option
Found the -b option
Found the -c option
-d is not an option
$

295

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The case statement checks each parameter for valid options. When one is found, the appropriate
commands are run in the case statement.

This method works, no matter what order the options are presented on the command line:

$./test15 -d -c -a
-d is not an option
Found the -c option
Found the -a option
$

The case statement processes each option as it finds it in the command line parameters. If any
other parameters are included on the command line, you can include commands in the catch-all
part of the case statement to process them.

Separating options from parameters

Often you’ll run into situations where you’ll want to use both options and parameters for a shell
script. The standard way to do this in Linux is to separate the two with a special character code
that tells the script when the options are done and when the normal parameters start.

For Linux, this special character is the double dash (--). The shell uses the double dash to indi-
cate the end of the option list. After seeing the double dash, your script can safely process the
remaining command line parameters as parameters and not options.

To check for the double dash, all you need to do is add another entry in the case statement:

$ cat test16
#!/bin/bash
extracting options and parameters

while [-n "$1"]
do

case "$1" in
-a) echo "Found the -a option" ;;
-b) echo "Found the -b option";;
-c) echo "Found the -c option" ;;
--) shift

break ;;
*) echo "$1 is not an option";;
esac
shift

done

count=1
for param in $@
do

echo "Parameter #$count: $param"
count=$[$count + 1]

done
$

296

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

This script uses the break command to break out of the while loop when it encounters the

double dash. Because we’re breaking out prematurely, we need to ensure that we stick in another

shift command to get the double dash out of the parameter variables.

For the first test, try running the script using a normal set of options and parameters:

$./test16 -c -a -b test1 test2 test3
Found the -c option
Found the -a option
Found the -b option
test1 is not an option
test2 is not an option
test3 is not an option
$

The results show that the script assumed that all the command line parameters were options when

it processed them. Next, try the same thing, only this time using the double dash to separate the

options from the parameters on the command line:

$./test16 -c -a -b -- test1 test2 test3
Found the -c option
Found the -a option
Found the -b option
Parameter #1: test1
Parameter #2: test2
Parameter #3: test3
$

When the script reaches the double dash, it stops processing options and assumes that any

remaining parameters are command line parameters.

Processing options with values

Some options require an additional parameter value. In these situations, the command line looks

something like this:

$./testing -a test1 -b -c -d test2

Your script must be able to detect when your command line option requires an additional param-

eter and be able to process it appropriately. Here’s an example of how to do that:

$ cat test17
#!/bin/bash
extracting command line options and values

while [-n "$1"]
do

case "$1" in
-a) echo "Found the -a option";;

297

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

-b) param="$2"
echo "Found the -b option, with parameter value $param"
shift 2;;

-c) echo "Found the -c option";;
--) shift

break;;
*) echo "$1 is not an option";;
esac
shift

done

count=1
for param in "$@"
do

echo "Parameter #$count: $param"
count=$[$count + 1]

done
$./test17 -a -b test1 -d
Found the -a option
Found the -b option, with parameter value test1
-d is not an option
$

In this example, the case statement defines three options that it processes. The -b option also

requires an additional parameter value. Since the parameter being processed is $1, you know

that the additional parameter value is located in $2 (since all of the parameters are shifted after

they are processed). Just extract the parameter value from the $2 variable. Of course, since we

used two parameter spots for this option, you also need to set the shift command to shift two

positions.

Just as with the basic feature, this process works no matter what order you place the options in

(just remember to include the appropriate option parameter with the each option):

$./test17 -b test1 -a -d
Found the -b option, with parameter value test1
Found the -a option
-d is not an option
$

Now you have the basic ability to process command line options in your shell scripts, but there

are limitations. For example, this won’t work if you try to combine multiple options in one

parameter:

$./test17 -ac
-ac is not an option
$

298

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

It is a common practice in Linux to combine options, and if your script is going to be user-
friendly, you’ll want to offer this feature for your users as well. Fortunately, there’s another

method for processing options that can help us.

Using the getopt command
The getopt command is a great tool to have handy when processing command line options and
parameters. It reorganizes the command line parameters to make parsing them in your script
easier.

The command format

The getopt command can take a list of command line options and parameters, in any form, and
automatically turn them into the proper format. It uses the command format:

getopt options optstring parameters

The optstring is the key to the process. It defines the valid option letters used in the command
line. It also defines which option letters require a parameter value.

First, list each command line option letter you’re going to use in your script in the optstring.
Then, place a colon after each option letter that requires a parameter value. The getopt com-
mand parses the supplied parameters based on the optstring you define.

Here’s a simple example of how getopt works:

$ getopt ab:cd -a -b test1 -cd test2 test3
-a -b test1 -c -d -- test2 test3

$

The optstring defines four valid option letters, a, b, c, and d. It also defines that the option
letter b requires a parameter value. When the getopt command runs, it examines the provided
parameter list, and parses it based on the supplied optstring. Notice that it automatically separated
the -cd options into two separate options and inserted the double dash to separate the additional
parameters on the line.

If you specify an option not in the optstring, by default the getopt command produces an error
message:

$ getopt ab:cd -a -b test1 -cde test2 test3
getopt: invalid option -- e
-a -b test1 -c -d -- test2 test3

$

If you prefer to just ignore the error messages, use the -q option with the command:

$ getopt -q ab:cd -a -b test1 -cde test2 test3
-a -b ’test1’ -c -d -- ’test2’ ’test3’

$

299

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Note that the getopt command options must be listed before the optstring. Now you should be

ready to use this command in your scripts to process command line options.

Using getopt in your scripts

You can use the getopt command in your scripts to format any command line options or param-

eters entered for your script. It’s a little tricky, though, to use.

The trick is to replace the existing command line options and parameters with the formatted

version produced by the getopt command. The way to do that is to use the set command.

You saw the set command back in Chapter 5. The set command works with the different vari-

ables in the shell. Chapter 5 showed how to use the set command to display all of the system

environment variables.

One of the options of the set command is the double dash, which instructs it to replace the

command line parameter variables with the values on the set command’s command line.

The trick then is to feed the original script command line parameters to the getopt command,

then feed the output of the getopt command to the set command to replace the original com-

mand line parameters with the nicely formatted ones from getopt. This looks something

like this:

set -- `getopts -q ab:cd "$@"`

Now the values of the original command line parameter variables are replaced with the output

from the getopt command, which formats the command line parameters for us.

Using this technique, we can now write scripts that handle our command line parameters for us:

$ cat test18
#!/bin/bash
extracting command line options and values with getopt

set -- `getopt -q ab:c "$@"`
while [-n "$1"]
do

case "$1" in
-a) echo "Found the -a option" ;;
-b) param="$2"

echo "Found the -b option, with parameter value $param"
shift ;;

-c) echo "Found the -c option" ;;
--) shift

break;;
*) echo "$1 is not an option";;
esac

300

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

shift
done

count=1
for param in "$@"
do

echo "Parameter #$count: $param"
count=$[$count + 1]

done
$

You’ll notice this is basically the same script as in test17. The only thing that changed is the

addition of the getopt command to help format our command line parameters.

Now when you run the script with complex options, things work much better:

$./test18 -ac
Found the -a option
Found the -c option
$

And of course, all of the original features work just fine as well:

$./test18 -a -b test1 -cd test2 test3 test4
Found the -a option
Found the -b option, with parameter value ’test1’
Found the -c option
Parameter #1: ’test2’
Parameter #2: ’test3’
Parameter #3: ’test4’
$

Now things are looking pretty fancy. However, there’s still one small bug that lurks in the getopt
command. Check out this example:

$./test18 -a -b test1 -cd "test2 test3" test4
Found the -a option
Found the -b option, with parameter value ’test1’
Found the -c option
Parameter #1: ’test2
Parameter #2: test3’
Parameter #3: ’test4’
$

The getopt command isn’t good at dealing with parameter values with spaces. It interpreted the
space as the parameter separator, instead of following the double quotation marks and combining

the two values into one parameter. Fortunately for us, there’s yet another solution that solves this

problem.

301

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The more advanced getopts
The getopts command (notice that it’s plural) is built into the bash shell. It looks a lot like its

getopt cousin, but has some expanded features.

Unlike getopt, which produces one output for all of the processed options and parameters found

in the command line, the getopts command works on the existing shell parameter variables

sequentially.

It processes the parameters it detects in the command line one at a time each time it’s called.

When it runs out of parameters, it exits with an exit status greater than zero. This makes it great

for using in loops to parse all of the parameters on the command line.

The format of the getopts command is:

getopts optstring variable

The optstring value is similar to the one used in the getopt command. List valid option

letters in the optstring, along with a colon if the option letter requires a parameter value. To
suppress error messages, start the optstring with a colon. The getopts command places the

current parameter in the variable defined in the command line.

There are two environment variables that the getopts command uses. The OPTARG environ-

ment variable contains the value to be used if an option requires a parameter value. The OPTIND
environment variable contains the value of the current location within the parameter list where

getopts left off. This allows you to continue processing other command line parameters after

finishing the options.

Let’s take a look at a simple example that uses the getopts command:

$ cat test19
#!/bin/bash
simple demonstration of the getopts command

while getopts :ab:c opt
do

case "$opt" in
a) echo "Found the -a option" ;;
b) echo "Found the -b option, with value $OPTARG";;
c) echo "Found the -c option" ;;
*) echo "Unknown option: $opt";;
esac

done
$./test19 -ab test1 -c
Found the -a option

302

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

Found the -b option, with value test1
Found the -c option
$

The while statement defines the getopts command, specifying what command line options to

look for, along with the variable name to store them in for each iteration.

You’ll notice something different about the case statement in this example. When the getopts
command parses the command line options, it also strips off the leading dash, so you don’t need

them in the case definitions.

There are several nice features in the getopts command. For starters, you can now include

spaces in your parameter values:

$./test19 -b "test1 test2" -a
Found the -b option, with value test1 test2
Found the -a option
$

Another nice feature is that you can run the option letter and the parameter value together with-

out a space:

$./test19 -abtest1
Found the -a option
Found the -b option, with value test1
$

The getopts command correctly parsed the test1 value from the -b option. Yet another nice

feature of the getopts command is that it bundles any undefined option that it finds in the

command line into a single output, the question mark:

$./test19 -d
Unknown option: ?
$./test19 -acde
Found the -a option
Found the -c option
Unknown option: ?
Unknown option: ?
$

Any option letter not defined in the optstring value is sent to your code as a question mark.

The getopts command knows when to stop processing options, and leave the parameters for

you to process. As getopts processes each option, it increments the OPTIND environment

303

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

variable by one. When you’ve reached the end of the getopts processing, you can just use the

OPTIND value with the shift command to move to the parameters:

$ cat test20
#!/bin/bash
processing options and parameters with getopts

while getopts :ab:cd opt
do

case "$opt" in
a) echo "Found the -a option" ;;
b) echo "Found the -b option, with value $OPTARG";;
c) echo "Found the -c option";;
d) echo "Found the -d option";;
*) echo "Unknown option: $opt";;
esac

done
shift $[$OPTIND - 1]

count=1
for param in "$@"
do

echo "Parameter $count: $param"
count=$[$count + 1]

done
$./test20 -a -b test1 -d test2 test3 test4
Found the -a option
Found the -b option, with value test1
Found the -d option
Parameter 1: test2
Parameter 2: test3
Parameter 3: test4
$

Now you have a full-featured command line option and parameter processing utility you can use
in all of your shell scripts.

Standardizing Options
When you create your shell script, obviously you’re in control of what happens. It’s completely

up to you as to which letter options you select to use, and how you select to use them.

However, there are a few letter options that have achieved somewhat of a standard meaning in

the Linux world. If you leverage these options in your shell script, it’ll make your scripts more

user-friendly.

304

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

TABLE 11-1

Common Linux Command Line Options

Option Description

-a Show all objects

-c Produce a count

-d Specify a directory

-e Expand an object

-f Specify a file to read data from

-h Display a help message for the command

-i Ignore text case

-l Produce a long format version of the output

-n Use a non-interactive (batch) mode

-o Specify an output file to redirect all output to

-q Run in quiet mode

-r Process directories and files recursively

-s Run in silent mode

-v Produce verbose output

-x Exclude and object

-y Answer yes to all questions

Table 11-1 shows some of the common meanings for command line options used in Linux.

You’ll probably recognize most of these option meanings just from working with the various bash

commands throughout the book. Using the same meaning for your options helps users interact

with your script without having to worry about manuals.

Getting User Input
While providing command line options and parameters is a great way to get data from your script

users, sometimes your script needs to be more interactive. There are times when you need to ask

a question while the script is running and wait for a response from the person running your

script. The bash shell provides the read command just for this purpose.

305

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Basic reading
The read command accepts input from the standard input (the keyboard), or from another file
descriptor (see Chapter 12). After receiving the input, the read command places the data into a

standard variable. Here’s the read command at its simplest:

$ cat test21
#!/bin/bash
testing the read command

echo -n "Enter your name: "
read name
echo "Hello $name, welcome to my program."
$./test21
Enter your name: Rich Blum
Hello Rich Blum, welcome to my program.
$

That’s pretty simple. Notice that the echo command that produced the prompt uses the -n
option. This suppresses the newline character at the end of the string, allowing the script user
to enter data immediately after the string, instead of on the next line. This gives your scripts a

more form-like appearance.

In fact, the read command includes the -p option, which allows you to specify a prompt directly

in the read command line:

$ cat test22
#!/bin/bash
testing the read -p option

read -p "Please enter your age:" age
days=$[$age * 365]
echo "That makes you over $days days old!"
$./test22
Please enter your age:10
That makes you over 3650 days old!
$

You’ll notice in the first example that when I typed my name, the read command assigned both

my first name and last name to the same variable. The read command will assign all data entered
at the prompt to a single variable, or you can specify multiple variables. Each data value entered is

assigned to the next variable in the list. If the list of variables runs out before the data does, the
remaining data is assigned to the last variable:

$ cat test23
#!/bin/bash
entering multiple variables

read -p "Enter your name: " first last

306

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

echo "Checking data for $last, $first..."
$./test23
Enter your name: Rich Blum
Checking data for Blum, Rich...
$

You can also specify no variables on the read command line. If you do that, the read command

places any data it receives in the special environment variable REPLY:

$ cat test24
#!/bin/bash
testing the REPLY environment variable

read -p "Enter a number: "
factorial=1
for ((count=1; count ‹= $REPLY; count++))
do

factorial=$[$factorial * $count]
done
echo "The factorial of $REPLY is $factorial"
$./test24
Enter a number: 5
The factorial of 5 is 120
$

The REPLY environment variable will contain all of the data entered in the input, and it can be

used in the shell script as any other variable.

Timing out
There’s a danger when using the read command. It’s quite possible that your script will get stuck

waiting for the script user to enter data. If the script must go on regardless of if there was any data

entered, you can use the -t option specify a timer. The -t option specifies the number of seconds

for the read command to wait for input. When the timer expires, the read command returns a

non-zero exit status:

$ cat test25
#!/bin/bash
timing the data entry

if read -t 5 -p "Please enter your name: " name
then

echo "Hello $name, welcome to my script"
else

echo
echo "Sorry, too slow!"

fi
$./test25

307

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Please enter your name: Rich
Hello Rich, welcome to my script
$./test25
Please enter your name:
Sorry, too slow!
$

Since the read command exits with a non-zero exit status if the timer expires, it’s easy to use

the standard structured statements, such as an if-then statement or a while loop to track what

happened. In this example, when the timer expires, the if statement fails, and the shell executes

the commands in the else section.

Instead of timing the input, you can also set the read command to count the input characters.

When a preset number of characters has been entered, it automatically exits, assigning the entered
data to the variable:

$ cat test26
#!/bin/bash
getting just one character of input

read -n1 -p "Do you want to continue [Y/N]? " answer
case $answer in
Y | y) echo

echo "fine, continue on...";;
N | n) echo

echo OK, goodbye
exit;;

esac
echo "This is the end of the script"
$./test26
Do you want to continue [Y/N]? Y
fine, continue on...
This is the end of the script
$./test26
Do you want to continue [Y/N]? n
OK, goodbye
$

This example uses the -n option with the value of one, instructing the read command to accept

only a single character before exiting. As soon as you press the single character to answer, the

read command accepts the input and passes it to the variable. There’s no need to press the

Enter key.

Silent reading
There are times when you need input from the script user, but you don’t want that input to
display on the monitor. The classic example of this is when entering passwords, but there are

plenty of other types of data that you will need to hide.

308

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

The -s option prevents the data entered in the read command from being displayed on the mon-

itor (actually, the data is displayed, but the read command sets the text color to the same as the

background color). Here’s an example of using the -s option in a script:

$ cat test27
#!/bin/bash
hiding input data from the monitor

read -s -p "Enter your password: " pass
echo
echo "Is your password really $pass?"
$./test27
Enter your password:
Is your password really T3st1ng?
$

The data typed at the input prompt doesn’t appear on the monitor but is assigned to the variable

just fine for use in the script.

Reading from a file
Finally, you can also use the read command to read data stored in a file on the Linux system.

Each call to the read command reads a single line of text from the file. When there are no more

lines left in the file, the read command will exit with a non-zero exit status.

The tricky part of this is getting the data from the file to the read command. The most common

method for doing this is to pipe the result of the cat command of the file directly to a while
command that contains the read command. Here’s an example of how to do this:

$ cat test28
#!/bin/bash
reading data from a file

count=1
cat test | while read line
do

echo "Line $count: $line"
count=$[$count + 1]

done
echo "Finished processing the file"
$ cat test
The quick brown dog jumps over the lazy fox.
This is a test, this is only a test.
O Romeo, Romeo! wherefore art thou Romeo?
$./test28
Line 1: The quick brown dog jumps over the lazy fox.
Line 2: This is a test, this is only a test.

309

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Line 3: O Romeo, Romeo! wherefore art thou Romeo?
Finished processing the file
$

The while command loop continues processing lines of the file with the read command, until

the read command exits with a non-zero exit status.

Summary
This chapter showed three different methods for retrieving data from the script user. Command

line parameters allow users to enter data directly on the command line when they run the script.

The script uses positional parameters to retrieve the command line parameters and assign them

to variables.

The shift command allows you to manipulate the command line parameters by rotating them

within the positional parameters. This command allows you to easily iterate through the parame-
ters without knowing how many parameters are available.

There are three special variables that you can use when working with command line parameters.

The shell sets the $# variable to the number of parameters entered on the command line. The

$* variable contains all of the parameters as a single string, and the $@ variable contains all of

the parameters as separate words. These variables come in handy when trying to process long

parameter lists.

Besides parameters, your script users can also use command line options to pass information to

your script. Command line options are single letters preceded by a dash. Different options can

be assigned to alter the behavior of your script. The bash shell provides three ways to handle

command line options.

The first way is to handle them just like command line parameters. You can iterate through the
options using the positional parameter variables, processing each option as it appears on the

command line.

Another way to handle command line options is with the getopt command. This command

converts command line options and parameters into a standard format that you can process in

your script. The getopt command allows you to specify which letters it recognizes as options

and which options require an additional parameter value. The getopt command processes the

standard command line parameters and outputs the options and parameters in the proper order.

The bash shell also includes the getopts command (note that it’s plural). The getopts com-

mand provides more advanced processing of the command line parameters. It allows for

multi-value parameters, along with identifying options not defined by the script.

The final method to allow data from your script users is the read command. The read command

allows your scripts to interactively query users for information and wait. The read command

310

www.IrPDF.com

www.IrPDF.com

Handling User Input 11

places any data entered by the script user into one or more variables, which you can use within

the script.

There are several options available for the read command that allow you to customize the data

input into your script, such as using hidden data entry, applying timed data entry, and requesting

a specific number of input characters.

In the next chapter, we’ll dig deeper into how bash shell scripts output data. So far, you’ve seen

how to display data on the monitor and redirect it to a file. Next we’ll explore a few other options

that you have available not only to direct data to specific locations but also to direct specific types

of data to specific locations. This’ll help make your shell scripts look professional!

311

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Presenting Data

IN THIS CHAPTER

Revisiting redirection

Standard input and output

Reporting errors

Throwing away data

Creating log files

S
o far the scripts shown in this book display information either by

echoing data to the monitor or by redirecting data to a file. Chapter 8

demonstrated how to redirect the output of a command to a file.

This chapter expands on that topic by showing you how you can redirect

the output of your script to different locations on your Linux system.

Understanding Input and Output

So far, you’ve seen two methods for displaying the output from your scripts:

■ Display output on the monitor screen

■ Redirect output to a file

Both methods produced an all-or-nothing approach to data output. There

are times though when it would be nice to display some data on the monitor

and other data in a file. For these instances, it comes in handy to know how

Linux handles input and output so that you can get your script output to

the right place.

The following sections describe how to use the standard Linux input and

output system to your advantage, to help direct script output to specific

locations.

313

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Standard file descriptors
The Linux system handles every object as a file. This includes the input and output process. Linux

identifies each file object using a file descriptor. The file descriptor is a non-negative integer, which

uniquely identifies open files in a session. Each process is allowed to have up to nine open file

descriptors at a time. The bash shell reserves the first three file descriptors (0, 1, and 2) for special

purposes. These are shown in Table 12-1.

These three special file descriptors handle the input and output from your script. The shell uses

them to direct the default input and output in the shell to the appropriate location (which by

default is usually your monitor). The following sections describe each of these standard file

descriptors in more detail.

STDIN

The STDIN file descriptor references the standard input to the shell. For a terminal interface, the

standard input is the keyboard. The shell receives input from the keyboard on the STDIN file

descriptor, and processes each character as you type it.

When you use the input redirect symbol (<), Linux replaces the standard input file descriptor

with the file referenced by the redirection. It reads the file and retrieves data just as if it were

typed on the keyboard.

Many bash commands accept input from STDIN, especially if no files are specified on the com-

mand line. Here’s an example of using the cat command with data entered from STDIN:

$ cat
this is a test
this is a test
this is a second test.
this is a second test.

When you enter the cat command on the command line by itself, it accepts input from STDIN.

As you enter each line, the cat command echoes the line to the display.

TABLE 12-1

Linux Standard File Descriptors

File Descriptor Abbreviation Description

0 STDIN Standard input

1 STDOUT Standard output

2 STDERR Standard error

314

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

However, you can also use the STDIN redirect symbol to force the cat command to accept input

from another file other than STDIN:

$ cat < testfile
This is the first line.
This is the second line.
This is the third line.
$

Now the cat command uses the lines that are contained in the testfile file as the input. You

can use this technique to input data to any shell command that accepts data from STDIN.

STDOUT

The STDOUT file descriptor references the standard output for the shell. On a terminal interface,

the standard output is the terminal monitor. All output from the shell (including programs and

scripts you run in the shell) is directed to the standard output, which is the monitor.

Most bash commands direct their output to the STDOUT file descriptor by default. As shown in

Chapter 8, you can change that using output redirection:

$ ls -l > test2
$ cat test2
total 20
-rw-rw-r-- 1 rich rich 53 2007-10-26 11:30 test
-rw-rw-r-- 1 rich rich 0 2007-10-26 11:32 test2
-rw-rw-r-- 1 rich rich 73 2007-10-26 11:23 testfile
$

With the output redirection symbol, all of the output that normally would have gone to the

monitor is instead redirected to the designated redirection file by the shell.

You can also append data to a file. You do this using the >> symbol:

$ who >> test2
$ cat test2
total 20
-rw-rw-r-- 1 rich rich 53 2007-10-26 11:30 test
-rw-rw-r-- 1 rich rich 0 2007-10-26 11:32 test2
-rw-rw-r-- 1 rich rich 73 2007-10-26 11:23 testfile
rich pts/0 2007-10-27 15:34 (192.168.1.2)
$

The output generated by the who command is appended to the data already in the test2 file.

However, if you use the standard output redirection for your scripts, you can run into a problem.

Here’s an example of what can happen in your script:

$ ls -al badfile > test3
ls: cannot access badfile: No such file or directory

315

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

$ cat test3
$

When a command produces an error message, the shell doesn’t redirect the error message to

the output redirection file. The shell created the output redirection file, but the error message

appeared on the monitor screen.

The shell handles error messages separately from the normal output. If you’re creating a shell

script that runs in background mode, often you must rely on the output messages being sent to a

log file. Using this technique, if any error messages occur, they won’t appear in the log file. You’ll

need to do something different.

STDERR

The shell handles error messages using the special STDERR file descriptor. The STDERR file

descriptor references the standard error output for the shell. This is the location where the shell

sends error messages generated by the shell or programs and scripts running in the shell.

By default, the STDERR file descriptor points to the same place as the STDOUT file descriptor

(even though they are assigned different file descriptor values). This means that, by default, all

error messages go to the monitor display.

However, as you saw in the example, when you redirect STDOUT this doesn’t automatically redi-

rect STDERR. When working with scripts, you’ll often want to change that behavior, especially if

you’re interested in logging error messages to a log file.

Redirecting errors
You’ve already seen how to redirect the STDOUT data by using the redirection symbol. Redirecting

the STDERR data isn’t much different, you just need to define the STDERR file descriptor when

you use the redirection symbol. There are a couple of ways to do this.

Redirecting just errors

As you saw in Table 12-1, the STDERR file descriptor is set to the value 2. You can select to redi-

rect only error messages by placing this file descriptor value immediately before the redirection

symbol. The value must appear immediately before the redirection symbol or it won’t work:

$ ls -al badfile 2> test4
$ cat test4
ls: cannot access badfile: No such file or directory
$

Now when you run the command, the error message doesn’t appear on the monitor. Instead, the

output file contains any error messages that are generated by the command. Using this method,

the shell only redirects the error messages, not the normal data. Here’s another example of mixing

STDOUT and STDERR messages in the same output:

316

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

$ ls -al test badtest test2 2> test5
-rw-rw-r-- 1 rich rich 158 2007-10-26 11:32 test2
$ cat test5
ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory
$

The normal STDOUT output from the ls command still goes to the default STDOUT file descriptor,

which is the monitor. Since the command redirects file descriptor 2 output (STDERR) to an output

file, the shell sends any error messages generated directly to the specified redirection file.

Redirecting errors and data

If you want to redirect both errors and the normal output, you’ll need to use two redirection

symbols. You need to precede each with the appropriate file descriptor for the data you want to

redirect, then have them point to the appropriate output file for holding the data:

$ ls -al test test2 test3 badtest 2> test6 1> test7
$ cat test6
ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory
$ cat test7
-rw-rw-r-- 1 rich rich 158 2007-10-26 11:32 test2
-rw-rw-r-- 1 rich rich 0 2007-10-26 11:33 test3
$

The shell redirects the normal output of the ls command that would have gone to STDOUT to

the test7 file using the 1> symbol. Any error messages that would have gone to STDERR were

redirected to the test6 file using the 2> symbol.

You can use this technique to separate normal script output from any error messages that occur

in the script. This allows you to easily identify errors without having to wade through thousands

of lines of normal output data.

Alternatively, if you want, you can redirect both STDERR and STDOUT output to the same output

file. The bash shell provides a special redirection symbol just for this purpose, the &> symbol:

$ ls -al test test2 test3 badtest &> test7
$ cat test7
ls: cannot access test: No such file or directory
ls: cannot access badtest: No such file or directory
-rw-rw-r-- 1 rich rich 158 2007-10-26 11:32 test2
-rw-rw-r-- 1 rich rich 0 2007-10-26 11:33 test3
$

Using the &> symbol, all of the output generated by the command is sent to the same location,

both data and errors. You’ll notice that one of the error messages is out of order from what

you’d expect. The error message for the badtest file (the last file to be listed) appears second

317

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

in the output file. The bash shell automatically gives error messages a higher priority than the

standard output. This allows you to view the error messages together, rather than scattered

throughout the output file.

Redirecting Output in Scripts
You can use the STDOUT and STDERR file descriptors in your scripts to produce output in

multiple locations simply by redirecting the appropriate file descriptors. There are two methods

for redirecting output in the script:

■ Temporarily redirecting each line

■ Permanently redirecting all commands in the script

The following sections describe how each of these methods works.

Temporary redirections
If you want to purposely generate error messages in your script, you can redirect an indi-

vidual output line to STDERR. All you need to do is use the output redirection symbol to

redirect the output to the STDERR file descriptor. When you redirect to a file descriptor, you

must precede the file descriptor number with an ampersand sign (&):

echo "This is an error message" >&2

This line displays the text wherever the STDERR file descriptor for the script is pointing, instead

of the normal STDOUT. Here’s an example of a script that uses this feature:

$ cat test8
#!/bin/bash
testing STDERR messages

echo "This is an error" >&2
echo "This is normal output"
$

If you run the script as normal, you won’t notice any difference:

$./test8
This is an error
This is normal output
$

Remember, by default Linux directs the STDERR output to STDOUT. However, if you redirect

STDERR when running the script, any text directed to STDERR in the script will be redirected:

$./test8 2> test9
This is normal output

318

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

$ cat test9
This is an error
$

Perfect! The text that’s displayed using STDOUT appears on the monitor, while the echo statement

text sent to STDERR is redirected to the output file.

This method is great for generating error messages in your scripts. If someone uses your scripts,

they can easily redirect the error messages using the STDERR file descriptor, as shown.

Permanent redirections
If you have lots of data that you’re redirecting in your script, it can get tedious having to redirect

every echo statement. Instead, you can tell the shell to redirect a specific file descriptor for the

duration of the script by using the exec command:

$ cat test10
#!/bin/bash
redirecting all output to a file
exec 1>testout

echo "This is a test of redirecting all output"
echo "from a script to another file."
echo "without having to redirect every individual line"
$./test10
$ cat testout
This is a test of redirecting all output
from a script to another file.
without having to redirect every individual line
$

The exec command starts a new shell, and redirects the STDOUT file descriptor to a file.

All output in the script that goes to STDOUT is instead redirected to the file.

You can also redirect the STDOUT in the middle of a script:

$ cat test11
#!/bin/bash
redirecting output to different locations

exec 2>testerror

echo "This is the start of the script"
echo "now reidirecting all output to another location"

exec 1>testout

echo "This output should go to the testout file"
echo "but this should go to the testerror file" >&2
$./test11

319

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

This is the start of the script
now reidirecting all output to another location
$ cat testout
This output should go to the testout file
$ cat testerror
but this should go to the testerror file
$

The script uses the exec command to redirect any output going to STDERR to the file testerror.

Next, the script uses the echo statement to display a few lines to STDOUT. After that, the exec
command is used again to redirect STDOUT to the testout file. Notice that even when STDOUT is

redirected, you can still specify the output from an echo statement to go to STDERR, which in this

case is still redirected to the testerror file.

This feature can come in handy when you want to redirect the output of just parts of a script to an

alternative location, such as an error log. There’s just one problem you’ll run into when using this.

Once you redirect STDOUT or STDERR, you can’t easily redirect them back to their original loca-

tion. If you need to switch back and forth with your redirection, there’s a trick you’ll need to

learn. The ’’Creating Your Own Redirection’’ section later in this chapter discusses what this trick

is and how to use it in your shell scripts.

Redirecting Input in Scripts
You can use the same technique used to redirect STDOUT and STDERR in your scripts to redirect

STDIN from the keyboard. The exec command allows you to redirect STDIN to a file on the

Linux system:

exec 0< testfile

This command informs the shell that it should retrieve input from the file testfile instead

of STDIN. This redirection applies anytime the script requests input. Here’s an example of this

in action:

$ cat test12
#!/bin/bash
redirecting file input

exec 0< testfile
count=1

while read line
do

echo "Line #$count: $line"
count=$[$count + 1]

done

320

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

$./test12
Line #1: This is the first line.
Line #2: This is the second line.
Line #3: This is the third line.
$

Chapter 11 showed how to use the read command to read data entered from the keyboard by

a user. By redirecting STDIN to a file, when the read command attempts to read from STDIN, it

retrieves data from the file instead of the keyboard.

This is an excellent technique to read data in files for processing in your scripts. A common task

for Linux system administrators is to read data from log files for processing. This is the easiest

way to accomplish that task.

Creating Your Own Redirection
When you redirect input and output in your script, you’re not limited to the three default file

descriptors. I mentioned that you could have up to nine open file descriptors in the shell. The

other six file descriptors are numbered from three through eight and are available for you to use

as either input or output redirection. You can assign any of these file descriptors to a file, then

use them in your scripts as well. This section shows how to use the other file descriptors in your

scripts.

Creating output file descriptors
You assign a file descriptor for output by using the exec command. Just as with the standard file

descriptors, once you assign an alternative file descriptor to a file location, that redirection stays

permanent until you reassign it. Here’s a simple example of using an alternative file descriptor in

a script:

$ cat test13
#!/bin/bash
using an alternative file descriptor

exec 3>test13out

echo "This should display on the monitor"
echo "and this should be stored in the file" >&3
echo "Then this should be back on the monitor"
$./test13
This should display on the monitor
Then this should be back on the monitor
$ cat test13out
and this should be stored in the file
$

321

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The script uses the exec command to redirect file descriptor 3 to an alternative file location.
When the script executes the echo statements, they display on STDOUT as you would expect.
However, the echo statements that you redirect to file descriptor 3 go to the alternative file. This
allows you to keep normal output for the monitor, and redirect special information to files, such
as log files.

Redirecting file descriptors
Now comes the trick to help you bring back a redirected file descriptor. You can assign an alter-
native file descriptor to a standard file descriptor, and vice versa. This means that you can redirect
the original location of STDOUT to an alternative file descriptor, then redirect that file descriptor
back to STDOUT. This might sound somewhat complicated, but in practice it’s fairly straightfor-
ward. Hopefully, this simple example will clear things up for you:

$ cat test14
#!/bin/bash
storing STDOUT, then coming back to it

exec 3>&1
exec 1>test14out

echo "This should store in the output file"
echo "along with this line."

exec 1>&3

echo "Now things should be back to normal"
$./test14
Now things should be back to normal
$ cat test14out
This should store in the output file
along with this line.
$

This example is a little crazy, so let’s walk through it piece by piece. First, the script redirects file
descriptor 3 to the current location of file descriptor 1, which is STDOUT. This means that any
output sent to file descriptor 3 will go to the monitor.

The second exec command redirects STDOUT to a file. The shell will now redirect any output
sent to STDOUT directly to the output file. However, file descriptor 3 still points to the original
location of STDOUT, which is the monitor. If you send output data to file descriptor 3 at this
point, it’ll still go to the monitor, even though STDOUT is redirected.

After sending some output to STDOUT, which points to a file, the script then redirects STDOUT
to the current location of file descriptor 3, which is still set to the monitor. This means that now
STDOUT is pointing to its original location, the monitor.

While this method can get confusing, it’s a common way to temporarily redirect output in script
files then set the output back to the normal settings.

322

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

Creating input file descriptors
You can redirect input file descriptors exactly the same way as output file descriptors. Save the
STDIN file descriptor location to another file descriptor before redirecting it to a file, then when
you’re done reading the file you can restore STDIN to its original location:

$ cat test15
#!/bin/bash
redirecting input file descriptors

exec 6<&0

exec 0< testfile

count=1
while read line
do

echo "Line #$count: $line"
count=$[$count + 1]

done
exec 0<&6
read -p "Are you done now? " answer
case $answer in
Y|y) echo "Goodbye";;
N|n) echo "Sorry, this is the end.";;
esac
$./test15
Line #1: This is the first line.
Line #2: This is the second line.
Line #3: This is the third line.
Are you done now? y
Goodbye
$

In this example, file descriptor 6 is used to hold the location for STDIN. The script then redirects
STDIN to a file. All of the input for the read command comes from the redirected STDIN, which
is now the input file.

When all of the lines have been read, the script returns STDIN to its original location by redirect-

ing it to file descriptor 6. The script tests to make sure that STDIN is back to normal by using
another read command, which this time waits for input from the keyboard.

Creating a read/write file descriptor
As odd as it may seem, you can also open a single file descriptor for both input and output. You
can then use the same file descriptor to both read data from a file and write data to the same file.

You need to be especially careful with this method though. As you read and write data to and
from a file, the shell maintains an internal pointer, indicating where it is in the file. Any reading

323

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

or writing occurs where the file pointer last left off. This can produce some interesting results if

you’re not careful. Take a look at this example:

$ cat test16
#!/bin/bash
testing input/output file descriptor

exec 3<> testfile
read line <&3
echo "Read: $line"
echo "This is a test line" >&3
$ cat testfile
This is the first line.
This is the second line.
This is the third line.
$./test16
Read: This is the first line.
$ cat testfile
This is the first line.
This is a test line
ine.
This is the third line.
$

This example uses the exec command to assign file descriptor 3 for both input and output sent

to and from the file testfile. Next, it uses the read command to read the first line in the file,

using the assigned file descriptor, then it displays the read line of data in STDOUT. After that, it

uses the echo statement to write a line of data to the file opened with the same file descriptor.

When you run the script, at first things look just fine. The output shows that the script read the

first line in the testfile file. However, if you display the contents of the testfile file after

running the script, you’ll see that the data written to the file overwrote the existing data.

When the script writes data to the file, it starts where the file pointer is located. The read
command reads the first line of data, so it left the file pointer pointing to the first character in

the second line of data. When the echo statement outputs data to the file, it places the data at

the current location of the file pointer, overwriting whatever data was there.

Closing file descriptors
If you create new input or output file descriptors, the shell automatically closes them when the

script exits. There are situations though when you need to manually close a file descriptor before

the end of the script.

To close a file descriptor, redirect it to the special symbol &-. This is how this looks in the script:

exec 3>&-

324

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

This statement closes file descriptor 3, preventing it from being used any more in the script.

Here’s an example of what happens when you try to use a closed file descriptor:

$ cat badtest
#!/bin/bash
testing closing file descriptors

exec 3> test17file

echo "This is a test line of data" >&3

exec 3>&-

echo "This won’t work" >&3
$./badtest
./badtest: 3: Bad file descriptor
$

Once you close the file descriptor, you can’t write any data to it in your script or the shell

produces an error message.

There’s yet another thing to be careful of when closing file descriptors. If you open the same

output file later on in your script, the shell replaces the existing file with a new file. This means

that if you output any data, it’ll overwrite the existing file. Here’s an example of this problem:

$ cat test17
#!/bin/bash
testing closing file descriptors

exec 3> test17file
echo "This is a test line of data" >&3
exec 3>&-

cat test17file

exec 3> test17file
echo "This’ll be bad" >&3
$./test17
This is a test line of data
$ cat test17file
This’ll be bad
$

After sending a data string to the test17file and closing the file descriptor, the script uses

the cat command to display the contents of the file. So far, so good. Next, the script reopens the

output file and sends another data string to it. When you display the contents of the output file,

all you’ll see is the second data string. The shell overwrote the original output file.

325

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Listing Open File Descriptors

With only nine file descriptors available to you, you’d think that it wouldn’t be too hard keeping

things straight. Sometimes, though, it’s easy to get lost when trying to keep track of which file

descriptor is redirected where. To help you keep your sanity, the bash shell provides the lsof
command.

The lsof command lists all of the open file descriptors on the entire Linux system. This is

somewhat of a controversial feature, as it can provide information about the Linux system to

non-system-administrators. Because of this, many Linux systems hide this command so that users

don’t accidentally stumble across it.

On my Fedora Linux system, the lsof command is located in the /usr/sbin directory. To run

it with a normal user account, I have to reference it by its full pathname:

$ /usr/sbin/lsof

This produces an amazing amount of output. It displays information about every file currently

open on the Linux system. This includes all of the processes running on background, as well as

any user accounts logged in to the system.

There are plenty of command line parameters and options available to help filter out the lsof
output. The most commonly used are -p, which allows you to specify a process ID (PID), and

-d, which allows you to specify the file descriptor numbers to display.

To easily determine the current PID of the process, you can use the special environment variable

$$, which the shell sets to the current PID. The -a option is used to AND the results of the other

two options, to produce the following:

$ /usr/sbin/lsof -a -p $$ -d 0,1,2
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
bash 3344 rich 0u CHR 136,0 2 /dev/pts/0
bash 3344 rich 1u CHR 136,0 2 /dev/pts/0
bash 3344 rich 2u CHR 136,0 2 /dev/pts/0
$

This shows the default file descriptors (0, 1, and 2) for the current process (the bash

shell). The default output of lsof contains several columns of information, described in

Table 12-2.

The file type associated with STDIN, STDOUT, and STDERR is character mode. Since the STDIN,

STDOUT, and STDERR file descriptors all point to the terminal, the name of the output file is the

device name of the terminal. All three standard files are available for both reading and writing

(although it does seem odd to be able to write to STDIN and read from STDOUT).

326

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

TABLE 12-2

Default lsof Output

Column Description

COMMAND The first nine characters of the name of the command in the process

PID The process ID of the process

USER The login name of the user who owns the process

FD The file descriptor number and access type (r - read, w - write, u - read/write)

TYPE The type of file (CHR - character, BLK - block, DIR - directory, REG - regular file)

DEVICE The device numbers (major and minor) of the device

SIZE If available, the size of the file

NODE The node number of the local file

NAME The name of the file

Now, let’s take a look at the results of the lsof command from inside a script that’s opened a
couple of alternative file descriptors:

$ cat test18
#!/bin/bash
testing lsof with file descriptors

exec 3> test18file1
exec 6> test18file2
exec 7< testfile

/usr/sbin/lsof -a -p $$ -d0,1,2,3,6,7
$./test18
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
test18 3594 rich 0u CHR 136,0 2 /dev/pts/0
test18 3594 rich 1u CHR 136,0 2 /dev/pts/0
est18 3594 rich 2u CHR 136,0 2 /dev/pts/0
18 3594 rich 3w REG 253,0 0 360712 /home/rich/test18file1
18 3594 rich 6w REG 253,0 0 360715 /home/rich/test18file2
18 3594 rich 7r REG 253,0 73 360717 /home/rich/testfile
$

The script creates three alternative file descriptors, two for output (3 and 6) and one for input (7).
When the script runs the lsof command, you can see the new file descriptors in the output.
I truncated the first part of the output so that you could see the results of the file name. The
filename shows the complete pathname for the files used in the file descriptors. It shows each of
the files as type REG, which indicates that they are regular files on the filesystem.

327

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Suppressing Command Output
There are times when you don’t want to display any output from your script. This often occurs

if you’re running a script as a background process (see Chapter 13). If any error messages occur

from the script while it’s running in background, the shell e-mails them to the owner of the

process. This can get tedious, especially if you run scripts that generate minor nuisance errors.

To solve that problem, you can redirect STDERR to a special file called the null file. The null file

is pretty much what it says it is, a file that contains nothing. Any data that the shell outputs to

the null file is not saved, thus lost.

The standard location for the null file on Linux systems is /dev/null. Any data you redirect to

that location is thrown away and doesn’t appear:

$ ls -al > /dev/null
$ cat /dev/null
$

This is a common way to suppress any error messages without actually saving them:

$ ls -al badfile test16 2> /dev/null
-rwxr--r-- 1 rich rich 135 Oct 29 19:57 test16*
$

You can also use the /dev/null file for input redirection as an input file. Since the /dev/null
file contains nothing, it is often used by programmers to quickly remove data from an existing file

without having to remove the file and recreate it:

$ cat testfile
This is the first line.
This is the second line.
This is the third line.
$ cat /dev/null > testfile
$ cat testfile
$

The file testfile still exists on the system, but now it is empty. This is a common method used

to clear out log files that must remain in place for applications to operate.

Using Temporary Files
The Linux system contains a special directory location reserved for temporary files. Linux uses the

/tmp directory for files that don’t need to be kept indefinitely. Most Linux distributions configure

the system to automatically remove any files in the /tmp directory at bootup.

328

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

Any user account on the system has privileges to read and write files in the /tmp directory.

This feature provides an easy way for you to create temporary files that you don’t necessarily

have to worry about cleaning up.

There’s even a specific command to use for creating a temporary file. The mktemp command

allows you to easily create a unique temporary file in the /tmp folder. The shell creates the file

but doesn’t use your default umask value (see Chapter 6). Instead, it only assigns read and write

permissions to the file’s owner and makes you the owner of the file. Once you create the file, you

have full access to read and write to and from it from your script, but no one else will be able to
access it (other than the root user of course).

Creating a local temporary file
By default, mktemp creates a file in the local directory. To create a temporary file in a local direc-

tory with the mktemp command, all you need to do is specify a filename template. The template
consists of any text filename, plus six X’s appended to the end of the filename:

$ mktemp testing.XXXXXX
$ ls -al testing*
-rw------- 1 rich rich 0 Oct 29 21:30 testing.UfIi13
$

The mktemp command replaces the six X’s with a six-character code to ensure the filename is

unique in the directory. You can create multiple temporary files and be assured that each one

is unique:

$ mktemp testing.XXXXXX
testing.1DRLuV
$ mktemp testing.XXXXXX
testing.lVBtkW
$ mktemp testing.XXXXXX
testing.PgqNKG
$ ls -l testing*
-rw------- 1 rich rich 0 Oct 29 21:57 testing.1DRLuV
-rw------- 1 rich rich 0 Oct 29 21:57 testing.PgqNKG
-rw------- 1 rich rich 0 Oct 29 21:30 testing.UfIi13
-rw------- 1 rich rich 0 Oct 29 21:57 testing.lVBtkW
$

As you can see, the output of the mktemp command is the name of the file that it creates. When

you use the mktemp command in a script, you’ll want to save that filename in a variable, so you

can refer to it later on in the script:

$ cat test19
#!/bin/bash
creating and using a temp file

tempfile=`mktemp test19.XXXXXX`

329

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

exec 3>$tempfile

echo "This script writes to temp file $tempfile"

echo "This is the first line" >&3
echo "This is the second line." >&3
echo "This is the last line." >&3
exec 3>&-

echo "Done creating temp file. The contents are:"
cat $tempfile
rm -f $tempfile 2> /dev/null
$./test19
This script writes to temp file test19.vCHoya
Done creating temp file. The contents are:
This is the first line
This is the second line.
This is the last line.
$ ls -al test19*
-rwxr--r-- 1 rich rich 356 Oct 29 22:03 test19*
$

The script uses the mktemp command to create a temporary file and assigns the file name to

the $tempfile variable. It then uses the temporary file as the output redirection file for file

descriptor 3. After displaying the temporary file name on STDOUT, it writes a few lines to the

temporary file, then it closes the file descriptor. Finally, it displays the contents of the temporary

file and then uses the rm command to remove it.

Creating a temporary file in /tmp
The -t option forces mktemp to create the file in the temporary directory of the system. When

you use this feature, the mktemp command returns the full pathname used to create the tempo-

rary file, not just the filename:

$ mktemp -t test.XXXXXX
/tmp/test.xG3374
$ ls -al /tmp/test*
-rw------- 1 rich rich 0 2007-10-29 18:41 /tmp/test.xG3374
$

Since the mktemp command returns the full pathname, you can then reference the temporary file

from any directory on the Linux system, no matter where it places the temporary directory:

$ cat test20
#!/bin/bash
creating a temp file in /tmp

tempfile=`mktemp -t tmp.XXXXXX`

330

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

echo "This is a test file." > $tempfile
echo "This is the second line of the test." >> $tempfile

echo "The temp file is located at: $tempfile"
cat $tempfile
rm -f $tempfile
$./test20
The temp file is located at: /tmp/tmp.Ma3390
This is a test file.
This is the second line of the test.
$

When mktemp creates the temporary file, it returns the full pathname to the environment variable.

You can then use that value in any command to reference the temporary file.

Creating a temporary directory
The -d option tells the mktemp command to create a temporary directory instead of a file. You

can then use that directory for whatever purposes you need, such as creating additional tempo-

rary files:

$ cat test21
#!/bin/bash
using a temporary directory

tempdir=`mktemp -d dir.XXXXXX`
cd $tempdir
tempfile1=`mktemp temp.XXXXXX`
tempfile2=`mktemp temp.XXXXXX`
exec 7> $tempfile1
exec 8> $tempfile2

echo "Sending data to directory $tempdir"
echo "This is a test line of data for $tempfile1" >&7
echo "This is a test line of data for $tempfile2" >&8
$./test21
Sending data to directory dir.ouT8S8
$ ls -al
total 72
drwxr-xr-x 3 rich rich 4096 Oct 29 22:20 ./
drwxr-xr-x 9 rich rich 4096 Oct 29 09:44 ../
drwx------ 2 rich rich 4096 Oct 29 22:20 dir.ouT8S8/
-rwxr--r-- 1 rich rich 338 Oct 29 22:20 test21*
$ cd dir.ouT8S8
[dir.ouT8S8]$ ls -al
total 16
drwx------ 2 rich rich 4096 Oct 29 22:20 ./
drwxr-xr-x 3 rich rich 4096 Oct 29 22:20 ../

331

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

-rw------- 1 rich rich 44 Oct 29 22:20 temp.N5F3O6
-rw------- 1 rich rich 44 Oct 29 22:20 temp.SQslb7
[dir.ouT8S8]$ cat temp.N5F3O6
This is a test line of data for temp.N5F3O6
[dir.ouT8S8]$ cat temp.SQslb7
This is a test line of data for temp.SQslb7
[dir.ouT8S8]$

The script creates a directory in the current directory, then it uses the cd command to change

to that directory before creating two temporary files. The two temporary files are then assigned to

file descriptors and used to store output from the script.

Logging Messages
Sometimes it’s beneficial to send output both to the monitor and to a file for logging. Instead of

having to redirect output twice, you can use the special tee command.

The tee command is like a T-connector for pipes. It sends data from STDIN to two destinations

at the same time. One destination is STDOUT. The other destination is a filename specified on the

tee command line:

tee filename

Since tee redirects data from STDIN, you can use it with the pipe command to redirect output

from any command:

$ date | tee testfile
Mon Oct 29 18:56:21 EDT 2007
$ cat testfile
Mon Oct 29 18:56:21 EDT 2007
$

The output appears in STDOUT, and it is written to the file specified. Be careful: by default, the

tee command overwrites the output file on each use:

$ who | tee testfile
rich pts/0 2007-10-29 18:41 (192.168.1.2)
$ cat testfile
rich pts/0 2007-10-29 18:41 (192.168.1.2)
$

If you want to append data to the file, you must use the -a option:

$ date | tee -a testfile
Mon Oct 29 18:58:05 EDT 2007
$ cat testfile
rich pts/0 2007-10-29 18:41 (192.168.1.2)

332

www.IrPDF.com

www.IrPDF.com

Presenting Data 12

Mon Oct 29 18:58:05 EDT 2007
$

Using this technique, you can both save data in files and display the data on the monitor for

your users:

$ cat test22
#!/bin/bash
using the tee command for logging

tempfile=test22file

echo "This is the start of the test" | tee $tempfile
echo "This is the second line of the test" | tee -a $tempfile
echo "This is the end of the test" | tee -a $tempfile
$./test22
This is the start of the test
This is the second line of the test
This is the end of the test
$ cat test22file
This is the start of the test
This is the second line of the test
This is the end of the test
$

Now you can save a permanent copy of your output at the same time that you’re displaying it to
your users.

Summary
Understanding how the bash shell handles input and output can come in handy when creating

your scripts. You can manipulate both how the script receives data and how it displays data,

to customize your script for any environment. You can redirect the input of a script from the
standard input (STDIN) to any file on the system. You can also redirect the output of the script

from the standard output (STDOUT) to any file on the system.

Besides the STDOUT, you can redirect any error messages your script generates, by redirecting
the STDERR output. This is accomplished by redirecting the file descriptor associated with the

STDERR output, which is file descriptor 2. You can redirect STDERR output to the same file as

the STDOUT output or to a completely separate file. This enables you to separate normal script

messages from any error messages generated by the script.

The bash shell allows you to create your own file descriptors for use in your scripts. You can

create file descriptors 3 through 9 and assign them to any output file you desire. Once you create

a file descriptor, you can redirect the output of any command to it, using the standard redirection
symbols.

333

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The bash shell also allows you to redirect input to a file descriptor, providing an easy way to read

data contained in a file into your script. You can use the lsof command to display the active file

descriptors in your shell.

Linux systems provide a special file, called /dev/null, to allow you to redirect output that you

don’t want. The Linux system discards anything redirected to the /dev/null file. You can also

use this file to produce an empty file by redirecting the contents of the /dev/null file to the file.

The mktemp command is a handy feature of the bash shell that allows you to easily create tempo-

rary files and directories. All you need to do is specify a template for the mktemp command, and

it creates a unique file each time you call it, based on the file template format. You can also cre-

ate temporary files and directories in the /tmp directory on the Linux system, which is a special

location that isn’t preserved between system boots.

The tee command is a handy way to send output both to the standard output and to a log file.

This enables you to display messages from your script on the monitor and store them in a log file

at the same time.

In Chapter 13, you’ll see how to control and run your scripts. Linux provides several different

methods for running scripts other than directly from the command line interface prompt. You’ll

see how to schedule your scripts to run at a specific time, as well as learn how to pause them

while they’re running.

334

www.IrPDF.com

www.IrPDF.com

Script Control

IN THIS CHAPTER

Revisiting signals

Hiding in the background

Running with no console

Being nice

Running like clockwork

Starting at the beginning

A
s you start building more advanced scripts, you’ll probably start to

wonder how to run and control them on your Linux system. So

far in this book, the only way we’ve run scripts is directly from

the command line interface in real-time mode. This isn’t the only way

to run scripts in Linux. There are quite a few other options available for

running your shell scripts on Linux systems. This chapter examines different
ways you can use to get your scripts started. Also, sometimes you might run

into the problem of a script that gets stuck in a loop and you need to figure

out how to get it to stop without having to turn off your Linux system. This

chapter examines the different ways you can control how and when your

shell script runs on your system.

Handling Signals

Linux uses signals to communicate with processes running on the sys-

tem. Chapter 4 described the different Linux signals and how the Linux

system uses these signals to stop, start, and kill processes. You can also use
these signals to control the operation of your shell scripts by programming

your shell script to perform commands when it receives specific signals

from the Linux system.

Linux signals revisited
There are over 30 Linux signals that can be generated by the system and

applications. Table 13-1 lists the most common Linux system signals that

you’ll run across in your Linux programming.

335

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

TABLE 13-1

Linux Signals

Signal Value Description

1 SIGHUP Hang up the process.

2 SIGINT Interrupt the process.

3 SIGQUIT Stop the process.

9 SIGKILL Unconditionally terminate the process.

15 SIGTERM Terminate the process if possible.

17 SIGSTOP Unconditionally stop, but don’t terminate the process.

18 SIGTSTP Stop or pause the process, but don’t terminate.

19 SIGCONT Continue a stopped process.

By default, the bash shell ignores any SIGQUIT (3) and SIGTERM (15) signals that it receives (this
is so that an interactive shell can’t be accidentally terminated). However, the bash shell processes
any SIGHUP (1) and SIGINT (2) signals it receives.

If the bash shell receives a SIGHUP signal, it exits. Before it exits though, it passes the SIGHUP
signal to any processes started by the shell (such as your shell script). With a SIGINT signal,
the shell is just interrupted. The Linux kernel stops giving the shell processing time on the CPU.
When this happens, the shell passes the SIGINT signal to any processes started by the shell to
notify them of the situation.

The shell passes these signals to your shell script program for processing. The default behavior of
shell scripts, however, is to ignore the signals, which may have an adverse effect on the operation
of your script. To avoid this situation, you can program your script to recognize signals, and
perform commands to prepare the script for the consequences of the signal.

Generating signals
The bash shell allows you to generate two basic Linux signals using key combinations on the
keyboard. This feature comes in handy if you need to stop or pause runaway programs.

Interrupting a process

The Ctrl-C key combination generates a SIGINT signal, and sends it to any processes currently
running in the shell. You can test this by running a command that normally takes a long time to
finish, and pressing the Ctrl-C key combination:

$ sleep 100

$

336

www.IrPDF.com

www.IrPDF.com

Script Control 13

The Ctrl-C key combination doesn’t produce any output on the monitor, it just stops the current

process running in the shell. The sleep command pauses operation for the specified number
of seconds. Normally, the command prompt wouldn’t return until the timer has expired. By

pressing the Ctrl-C key combination before the timer expires, you can cause the sleep command
to terminate prematurely.

Pausing a process

Instead of terminating a process, you can pause it in the middle of whatever it’s doing. Sometimes

this can be a dangerous thing (for example, if a script has a file lock open on a crucial system
file), but often it allows you to peek inside what a script is doing without actually terminating the

process.

The Ctrl-Z key combination generates a SIGTSTP signal, stopping any processes running in the

shell. Stopping a process is different than terminating the process, as stopping the process leaves
the program still in memory, and able to continue running from where it left off. In the ‘‘Job

Control’’ section later on you’ll learn how to restart a process that’s been stopped.

When you use the Ctrl-Z key combination, the shell informs you that the process has been
stopped:

$ sleep 100

[1]+ Stopped sleep 100
$

The number in the square brackets is the job number assigned by the shell. The shell refers to

each process running in the shell as a job, and assigns each job a unique job number. It assigns
the first process started job number 1, the second job number 2, and so on.

If you have a stopped job assigned to your shell session, bash will warn you if you try to exit
the shell:

$ exit
logout
There are stopped jobs.
$

You can view the stopped job by using our friend the ps command:

$ ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
rich 20560 0.0 1.2 2688 1624 pts/0 S 05:15 0:00 -bash
rich 20605 0.2 0.4 1564 552 pts/0 T 05:22 0:00 sleep 100
rich 20606 0.0 0.5 2584 740 pts/0 R 05:22 0:00 ps au
$

The ps command shows the status of the stopped job as T, which indicates the command is either
being traced or is stopped.

337

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

If you really want to exit the shell with the stopped job still active, just type the exit command

again. The shell will exit, terminating the stopped job. Alternately, now that you know the PID of

the stopped job, you can use the kill command to send a SIGKILL signal to terminate it:

$ kill -9 20605
$
[1]+ Killed sleep 100
$

When you kill the job, initially you won’t get any response. However, the next time you do some-

thing that produces a shell prompt, you’ll see a message indicating that the job was killed. Each

time the shell produces a prompt, it also displays the status of any jobs that have changed states

in the shell. After you kill a job, the next time you force the shell to produce a prompt, it displays

a message showing that the job was killed while running.

Trapping signals
Instead of allowing your script to ignore signals, you can trap them when they appear and per-

form other commands. The trap command allows you to specify which Linux signals your shell

script can watch for and intercept from the shell. If the script receives a signal listed in the trap
command, it prevents it from being processed by the shell, and instead handles it locally.

The format of the trap command is:

trap commands signals

That’s simple enough. On the trap command line, you just list the commands you want the

shell to execute, along with a space-separated list of signals you want to trap. You can specify

the signals either by their numeric value or by their Linux signal name.

Here’s a simple example of using the trap command to ignore SIGINT and SIGTERM signals:

$ cat test1
#!/bin/bash
testing output in a background job

trap "echo Haha" SIGINT SIGTERM
echo "This is a test program"
count=1
while [$count -le 10]
do

echo "Loop #$count"
sleep 10
count=$[$count + 1]

done
echo "This is the end of the test program"
$

338

www.IrPDF.com

www.IrPDF.com

Script Control 13

The trap command used in this example displays a simple text message each time it detects

either the SIGINT or SIGTERM signal. Trapping these signals makes this script impervious to the
user attempting to stop the program by using the bash shell keyboard Ctrl-C command:

$./test1
This is a test program
Loop #1
Haha
Loop #2
Loop #3
Haha
Loop #4
Loop #5
Loop #6
Loop #7
Haha
Loop #8
Loop #9
Loop #10
This is the end of the test program
$

Each time the Ctrl-C key combination was used, the script executed the echo statement specified

in the trap command instead of ignoring the signal and allowing the shell to stop the script.

Trapping a script exit
Besides trapping signals in your shell script, you can trap them when the shell script exits. This

is a convenient way to perform commands just as the shell finishes its job.

To trap the shell script exiting, just add the EXIT signal to the trap command:

$ cat test2
#!/bin/bash
trapping the script exit

trap "echo byebye" EXIT

count=1
while [$count -le 5]
do

echo "Loop #$count"
sleep 3
count=$[$count + 1]

done
$./test2
Loop #1
Loop #2

339

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Loop #3
Loop #4
Loop #5
byebye
$

When the script gets to the normal exit point, the trap is triggered, and the shell executes the

command you specify on the trap command line. The EXIT trap also works if you prematurely

exit the script:

$./test2
Loop #1
Loop #2
byebye

$

When the Ctrl-C key combination is used to send a SIGINT signal, the script exits (since

that signal isn’t listed in the trap list), but before the script exits, the shell executes the trap
command.

Removing a trap
You can remove a set trap by using a dash as the command and a list of the signals you want to

return to normal behavior:

$ cat test3
#!/bin/bash
removing a set trap

trap "echo byebye" EXIT

count=1
while [$count -le 5]
do

echo "Loop #$count"
sleep 3
count=$[$count + 1]

done
trap - EXIT
echo "I just removed the trap"
$./test3
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5

340

www.IrPDF.com

www.IrPDF.com

Script Control 13

I just removed the trap
$

Once the signal trap is removed, the script ignores the signals. However, if a signal is received
before the trap is removed, the script processes it per the trap command:

$./test3
Loop #1
Loop #2
byebye

$

In this example a Ctrl-C key combination was used to terminate the script prematurely. Since
the script was terminated before the trap was removed, the script executed the command specified
in the trap.

Running Scripts in Background Mode
There are times when running a shell script directly from the command line interface is inconve-
nient. Some scripts can take a long time to process, and you may not want to tie up the command
line interface waiting. While the script is running, you can’t do anything else in your terminal
session. Fortunately, there’s a simple solution to that problem.

When you use the ps command, you see a whole bunch of different processes running on the
Linux system. Obviously, all of these processes aren’t running on your terminal monitor. This is
called running processes in the background. In background mode, a process runs without being
associated with a STDIN, STDOUT, and STDERR on a terminal session (see Chapter 12).

You can exploit this feature with your shell scripts as well, allowing them to run behind the scenes
and not lock up your terminal session. The following sections describe how to run your scripts
in background mode on your Linux system.

Running in the background
Running a shell script in background mode is a fairly easy thing to do. To run a shell script in
background mode from the command line interface, just place an ampersand symbol after the
command:

$./test1 &
[1] 19555
$ This is test program
Loop #1
Loop #2

$ ls -l

341

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

total 8
-rwxr--r-- 1 rich rich 219 Nov 2 11:27 test1*
$ Loop #3

When you place the ampersand symbol after a command it separates the command from the bash

shell and runs it as a separate background process on the system. The first thing that displays is
the line:

[1] 19555

The number in the square brackets is the job number assigned to the background process by the

shell. The next number is the PID the Linux system assigns to the process. Every process running

on the Linux system must have a unique PID.

As soon as the system displays these items, a new command line interface prompt appears. You

are returned back to the shell, and the command you executed runs safely in background mode.

At this point, you can enter new commands at the prompt (as shown in the example). However,

while the background process is still running, it still uses your terminal monitor for STDOUT and

STDERR messages. You’ll notice from the example that the output from the test1 script appears

in the output intermixed with any other commands that are run from the shell.

When the background process finishes, it displays a message on the terminal:

[1]+ Done ./test1

This shows the job number and the status of the job (Done), along with the command used to

start the job.

Running multiple background jobs
You can start any number of background jobs at the same time from the command line prompt:

$./test1 &
[1] 19582
$ This is test program
Loop #1
$./test1 &
[2] 19597
$ This is test program
Loop #1
$./test1 &
[3] 19612
$ This is test program
Loop #1
Loop #2
Loop #2
Loop #2

342

www.IrPDF.com

www.IrPDF.com

Script Control 13

Each time you start a new job, the Linux system assigns it a new job number and PID. You can

see that all of the scripts are running using the ps command:

$ ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME
COMMAND
rich 19498 0.0 1.2 2688 1628 pts/0 S 11:38 0:00 -bash
rich 19582 0.0 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test1
rich 9597 0.1 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test1
rich 19612 0.1 0.9 2276 1180 pts/0 S 11:55 0:00 /bin/bash ./test1
rich 19639 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
rich 19640 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
rich 19641 0.0 0.4 1564 552 pts/0 S 11:56 0:00 sleep 10
rich 19642 0.0 0.5 2588 744 pts/0 R 11:56 0:00 ps au

Each of the background processes you start appears in the ps command output listing of running

processes. If all of the processes display output in your terminal session, things can get pretty

messy pretty quickly. Fortunately, there’s a simple way to solve that problem. which we’ll discuss

in the next section.

Exiting the terminal
You must be careful when using background processes from a terminal session. Notice in the

output from the ps command that each of the background processes is tied to the terminal session

(pts/0) terminal. If the terminal session exits, the background process also exits.

Some terminal emulators warn you if you have any running background processes associated

with the terminal, while others don’t. If you want your script to continue running in background

mode after you’ve logged off the console, there’s something else you need to do. The next section

discusses that process.

Running Scripts without a Console
There will be times when you want to start a shell script from a terminal session, then let the

script run in background mode until it finishes, even if you exit the terminal session. You can do

this by using the nohup command.

The nohup command runs another command blocking any SIGHUP signals that are sent to the

process. This prevents the process from exiting when you exit your terminal session.

The format used for the nohup command is:

$ nohup ./test1 &
[1] 19831
$ nohup: appending output to `nohup.out’
$

343

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Just as with a normal background process, the shell assigns the command a job number, and
the Linux system assigns a PID number. The difference is that when you use the nohup
command, the script ignores any SIGHUP signals sent by the terminal session if you close the
session.

Because the nohup command disassociates the process from the terminal, the process loses the
STDOUT and STDERR output links. To accommodate any output generated by the command,
the nohup command automatically redirects STDOUT and STDERR messages to a file, called
nohup.out.

The nohup.out file contains all of the output that would normally be sent to the terminal
monitor. After the process finishes running, you can view the nohup.out file for the output
results:

$ cat nohup.out
This is a test program
Loop #1
Loop #2
Loop #3
Loop #4
Loop #5
Loop #6
Loop #7
Loop #8
Loop #9
Loop #10
This is the end of the test program
$

The output appears in the nohup.out file just as if the process ran on the command line!

If you run another command using nohup, the output is appended to the

existing nohup.out file. Be careful when running multiple commands from the same

directory, as all of the output will be sent to the same nohup.out file, which can get

confusing.

Job Control
Earlier in this chapter, you saw how to use the Ctrl-Z key combination to stop a job running in
the shell. After you stop a job, the Linux system lets you either kill or restart it. You can kill the
process by using the kill command. Restarting a stopped process requires sending it a SIGCONT
signal.

The function of starting, stopping, killing, and resuming jobs is called job control. With job con-
trol, you have full control over how processes run in your shell environment.

This section describes the commands to use to view and control jobs running in your shell.

344

www.IrPDF.com

www.IrPDF.com

Script Control 13

Viewing jobs
The key command for job control is the jobs command. The jobs command allows you to
view the current jobs being handled by the shell:

$ cat test4
#!/bin/bash
testing job control

echo "This is a test program $$"
count=1
while [$count -le 10]
do

echo "Loop #$count"
sleep 10
count=$[$count + 1]

done
echo "This is the end of the test program"
$./test4
This is a test program 29011
Loop #1

[1]+ Stopped ./test4
$./test4 > test4out &
[2] 28861
$
$ jobs
[1]+ Stopped ./test4
[2]- Running ./test4 >test4out &
$

The script uses the $$ variable to display the PID that the Linux system assigns to the script, then
it goes into a loop, sleeping for 10 seconds at a time for each iteration. In the example, I start the
first script from the command line interface, then stop it using the Ctrl-Z key combination. Next,
I start another job as a background process, using the ampersand symbol. To make life a little
easier, I redirected the output of that script to a file so that it wouldn’t appear on the monitor.

After the two jobs were started, I used the jobs command to view the jobs assigned to the shell.
The jobs command shows both the stopped and the running jobs, along with their job numbers
and the commands used in the jobs.

The jobs command uses a few different command line parameters, shown in Table 13-2.

You probably noticed the plus and minus signs in the output. The job with the plus sign is con-
sidered the default job. It would be the job referenced by any job control commands if a job
number wasn’t specified in the command line. The job with the minus sign is the job that would
become the default job when the current default job finishes processing. There will only be one
job with the plus sign and one job with the minus sign at any time, no matter how many jobs are
running in the shell.

345

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

TABLE 13-2

The jobs Command Parameters

Parameter Description

-l List the PID of the process along with the job number.

-n List only jobs that have changed their status since the last notification from the shell.

-p List only the PIDs of the jobs.

-r List only the running jobs.

-s List only stopped jobs.

Here’s an example showing how the next job in line takes over the default status, when the default

job is removed:

$./test4
This is a test program 29075
Loop #1

[1]+ Stopped ./test4
$./test4
This is a test program 29090
Loop #1

[2]+ Stopped ./test4
$./test4
This is a test program 29105
Loop #1

[3]+ Stopped ./test4
$ jobs -l
[1] 29075 Stopped ./test4
[2]- 29090 Stopped ./test4
[3]+ 29105 Stopped ./test4
$ kill -9 29105
$ jobs -l
[1]- 29075 Stopped ./test4
[2]+ 29090 Stopped ./test4
$

In this example, I started, then stopped, three separate processes. The jobs command listing

shows the three processes and their status. Note that the default process (the one listed with the

plus sign) is the last process started.

346

www.IrPDF.com

www.IrPDF.com

Script Control 13

I then used the kill command to send a SIGHUP signal to the default process. In the next jobs

listing, the job that previously had the minus sign is now the default job.

Restarting stopped jobs
Under bash job control, you can restart any stopped job as either a background process or a

foreground process. A foreground process takes over control of the terminal you’re working on,

so be careful about using that feature.

To restart a job in background mode, use the bg command, along with the job number:

$ bg 2
[2]+ ./test4 &
Loop #2
$ Loop #3
Loop #4

$ jobs
[1]+ Stopped ./test4
[2]- Running ./test4 &
$ Loop #6
Loop #7
Loop #8
Loop #9
Loop #10
This is the end of the test program

[2]- Done ./test4
$

Since I restarted the job in background mode, the command line interface prompt appears,

allowing me to continue with other commands. The output from the jobs command now

shows that the job is indeed running (as you can tell from the output now appearing on the

monitor).

To restart a job in foreground mode, use the fg command, along with the job number:

$ jobs
[1]+ Stopped ./test4
$ fg 1
./test4
Loop #2
Loop #3

Since the job is running in foreground mode, I don’t get a new command line interface prompt

until the jobs finishes.

347

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Being Nice
In a multitasking operating system (which Linux is), the kernel is responsible for assigning CPU
time for each process running on the system. Only one process at a time can actually be running
in the CPU, so the kernel assigns CPU time to each process in turn.

By default, all processes started from the shell have the same scheduling priority on the Linux
system. The scheduling priority is the amount of CPU time the kernel assigns to the process
relative to the other processes.

The scheduling priority is an integer value, from −20 (the highest priority) to +20 (the lowest
priority). By default, the bash shell starts all processes with a priority of 0.

This means that a simple script that only requires a little bit of processing time gets the same CPU
time slices as a complex mathematical algorithm that can take hours to run.

Sometimes you want to change the priority of a specific command, either lowering its priority so
that it doesn’t take as much processing power from the CPU or giving it a higher priority so that
it gets more processing time. You can do this by using the nice command.

The nice command
The nice command allows you to set the scheduling priority of a command as you start it. To
make a command run with less priority, just use the -n command line option for nice to specify
a new priority level:

$ nice -n 10 ./test4 > test4out &
[1] 29476
$ ps al
F UID PID PPID PRI NI WCHAN STAT TTY TIME COMMAND

100 501 29459 29458 12 0 wait4 S pts/0 0:00 -bash
000 501 29476 29459 15 10 wait4 SN pts/0 0:00 /bin/bash .
000 501 29490 29476 15 10 nanosl SN pts/0 0:00 sleep 10
000 501 29491 29459 14 0 - R pts/0 0:00 ps al
$

The nice command causes the script to run at a lower priority. However, if you try to in-
crease the priority of one of your commands, you might be in for a surprise:

$ nice -n -10 ./test4 > test4out &
[1] 29501
$ nice: cannot set priority: Permission denied

[1]+ Exit 1 nice -n -10 ./test4 >test4out
$

The nice command prevents normal system users from increasing the priority of their com-
mands. This is a safety feature to prevent a user from starting all of his or her commands as high
priority.

348

www.IrPDF.com

www.IrPDF.com

Script Control 13

The renice command
Sometimes you’d like to change the priority of a command that’s already running on the system.

That’s what the renice command is for. It allows you to specify the PID of a running process to
change the priority of:

$./test4 > test4out &
[1] 29504
$ ps al

F UID PID PPID PRI NI WCHAN STAT TTY TIME COMMAND
100 501 29459 29458 12 0 wait4 S pts/0 0:00 -bash
000 501 29504 29459 9 0 wait4 S pts/0 0:00 /bin/bash .
000 501 29518 29504 9 0 nanosl S pts/0 0:00 sleep 10
000 501 29519 29459 14 0 - R pts/0 0:00 ps al
$ renice 10 -p 29504
29504: old priority 0, new priority 10
$ ps al

F UID PID PPID PRI NI WCHAN STAT TTY TIME COMMAND
100 501 29459 29458 16 0 wait4 S pts/0 0:00 -bash
000 501 29504 29459 14 10 wait4 SN pts/0 0:00 /bin/bash .
000 501 29535 29504 9 0 nanosl S pts/0 0:00 sleep 10
000 501 29537 29459 14 0 - R pts/0 0:00 ps al
$

The renice command automatically updates the scheduling priority of the running process. Just

as with the nice command, the renice command has some limitations:

■ You can only renice processes that you own.

■ You can only renice your processes to a lower priority.

■ The root user can renice any process to any priority.

If you want to fully control running processes, you must be logged in as the root account.

Running Like Clockwork
I’m sure that, as you start working with scripts, there’ll be a situation in which you’ll want to run

a script at a preset time, usually at a time when you’re not there. The Linux system provides three
ways of running a script at a preselected time:

■ The at command

■ The batch command

■ The cron table

Each method uses a different technique for scheduling when and how often to run scripts. The

following sections describe each of these methods.

349

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Scheduling a job using the at command
The at command allows you to specify a time when the Linux system will run a script. The at
command submits a job to a queue with directions on when the shell should run the job. Another

command, atd, runs in the background and checks the job queue for jobs to run. Most Linux

distributions start this automatically at boot time.

The atd command checks a special directory on the system (usually /var/spool/at) for jobs

submitted using the at command. By default the atd command checks this directory every

60 seconds. When a job is present, the atd command checks the time the job is set to be run. If

the time matches the current time, the atd command runs the job.

The following sections describe how to use the at command to submit jobs to run and how to

manage jobs.

The at command format

The basic at command format is pretty simple:

at [-f filename] time

By default, the at command submits input from STDIN to the queue. You can specify a filename

used to read commands (your script file) using the -f parameter.

The time parameter specifies when you want the Linux system to run the job. You can get pretty

creative with how you specify the time. The at command recognizes lots of different time formats:

■ A standard hour and minute, such as 10:15

■ An AM/PM indicator, such as 10:15PM

■ A specific named time, such as now, noon, midnight, or teatime (4PM)

If you specify a time that’s already past, the at command runs the job at that time on the

next day.

Besides specifying the time to run the job, you can also include a specific date, using a few

different date formats:

■ A standard date format, such as MMDDYY, MM/DD/YY, or DD.MM.YY

■ A text date, such as Jul 4 or Dec 25, with or without the year

■ You can also specify a time increment:

■ Now + 25 minutes

■ 10:15PM tomorrow

■ 10:15 + 7 days

350

www.IrPDF.com

www.IrPDF.com

Script Control 13

When you use the at command, the job is submitted into a job queue. The job queue holds the

jobs submitted by the at command for processing. There are 26 different job queues available for

different priority levels. Job queues are referenced using lower-case letters, a through z.

By default all at jobs are submitted to job queue a, the highest-priority queue. If you want to

run a job at a lower priority, you can specify the letter using the -q parameter.

Retrieving job output

When the job runs on the Linux system, there’s no monitor associated with the job. Instead, the

Linux system uses the e-mail address of the user who submitted the job as STDOUT and STDERR.

Any output destined to STDOUT or STDERR is mailed to the user via the mail system.

Here’s a simple example of using the at command to schedule a job to run:

$ cat test5
#!/bin/bash
testing the at command

time=`date +%T`
echo "This script ran at $time"
echo "This is the end of the script" >&2
$ date
Sat Nov 3 12:06:04 EST 2007
$ at -f test5 12:07
warning: commands will be executed using /bin/sh
job 6 at 2007-11-03 12:07
$ mail
Mail version 8.1.1 6/6/93. Type ? for help.
"/var/spool/mail/rich": 1 message 1 new
>N 1 rich@testbox Sat Nov 3 12:07 14/474 "Output from your job "
&
Message 1:
From rich Sat Nov 3 12:07:00 2007
Delivered-To: rich@testbox
Subject: Output from your job 6
Date: Sat, 3 Nov 2007 12:07:00 -0500 (EST)
From: rich@testbox (Rich)
To: undisclosed-recipients:;

This script ran at 12:07:00
This is the end of the script

&

The at command produces a warning message, indicating what shell the system uses to

run the script (the default shell assigned to /bin/sh, which for Linux is the bash shell),

along with the job number assigned to the job and the time the job is scheduled to run.

351

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

When the job completes, nothing appears on the monitor, but the system generates an e-mail

message. The e-mail message shows the output generated by the script. If the script doesn’t pro-

duce any output, it won’t generate an e-mail message, by default. You can change that by using

the -m option in the at command. This generates an e-mail message, indicating the job com-

pleted, even if the script doesn’t generate any output.

Listing pending jobs

The atq command allows you to view what jobs are pending on the system:

$ at -f test5 10:15
warning: commands will be executed using /bin/sh
job 7 at 2007-11-04 10:15
$ at -f test5 4PM
warning: commands will be executed using /bin/sh
job 8 at 2007-11-03 16:00
$ at -f test5 1PM tomorrow
warning: commands will be executed using /bin/sh
job 9 at 2007-11-04 13:00
$ atq
7 2007-11-04 10:15 a
8 2007-11-03 16:00 a
9 2007-11-04 13:00 a
$

The job listing shows the job number, the date and time the system will run the job, and the job

queue the job is stored in.

Removing jobs

Once you know the information about what jobs are pending in the job queues, you can use the

atrm command to remove a pending job:

$ atrm 8
$ atq
7 2007-11-04 10:15 a
9 2007-11-04 13:00 a
$

Just specify the job number you want to remove. You can only remove jobs that you submit for

execution. You can’t remove jobs submitted by others.

Using the batch command
The batch command is a little different from the at command. Instead of scheduling a script to
run at a preset time, you use the batch command to schedule a script to run when the system is

at a lower usage level.

352

www.IrPDF.com

www.IrPDF.com

Script Control 13

If the Linux system is experiencing high load levels, the batch command will defer running

a submitted job until things quiet down. This is a great feature for servers that may experience

different load levels at various times of the day and night. You can schedule a script to run during

the quiet time without having to know exactly when that is.

The batch command checks the current load average of the Linux system. If the load average is

below 0.8, it runs any jobs waiting in the job queue.

The command format for the batch command is:

batch [-f filename] [time]

Similarly to the at command, by default the batch command reads commands from STDIN. You

can use the -f parameter to specify a file to read commands from. You can also optionally specify

the earliest time that the batch command should try running the job.

Scheduling regular scripts
Using the at command to schedule a script to run at a preset time is great, but what if you need

that script to run at the same time every day or once a week or once a month? Instead of having

to continually submit at jobs, you can use another feature of the Linux system.

The Linux system uses the cron program to allow you to schedule jobs that need to run on a

regular basis. The cron program runs in the background and checks special tables, called cron
tables, for jobs that are scheduled to run.

The cron table

The cron table uses a special format for allowing you to specify when a job should be run. The

format for the cron table is:

min hour dayofmonth month dayofweek command

The cron table allows you to specify entries as specific values, ranges of values (such as 1–5) or

as a wildcard character (the asterisk). For example, if you want to run a command at 10:15 on

every day, you would use the cron table entry of:

15 10 * * * command

The wildcard character used in the dayofmonth, month, and dayofweek fields indicates that

cron will execute the command every day of every month at 10:15. To specify a command to

run at 4:15PM every Monday, you would use:

15 16 * * 1 command

You can specify the dayofweek entry as either a three-character text value (mon, tue, wed, thu,

fri, sat, sun) or as a numeric value, with 0 being Sunday and 6 being Saturday.

353

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

Here’s another example: to execute a command at 12 noon on the first day of every month, you’d

use the format:

00 12 1 * * command

The dayofmonth entry specifies a date value (1–31) for the month.

The astute reader might be wondering just how you’d be able to set a command to

execute on the last day of every month, since you can’t set the dayofmonth value to

cover every month. This problem has plagued Linux and Unix programmers, and has spawned quite

a few different solutions. A common method is to add an if-then statement that uses the date

command to check if tomorrow’s date is 01:

00 12 * * * if [`date +%d -d tomorrow` = 01] ; then ; command

This will check every day at 12 noon to see if it’s the last day of the month, and if so, it will run

the command.

The command list must specify the full pathname of the command or shell script to run. You can
add any command line parameters or redirection symbols you like, as a regular command line:

15 10 * * * /home/rich/test4 > test4out

The cron program runs the script using the user account that submitted the job. Thus, you must
have the proper permissions to access the command and output files specified in the command

listing.

Building the cron table

Each system user can have their own cron table (including the root user) for running scheduled
jobs. Linux provides the crontab command for handling the cron table. To list an existing cron

table, use the -l parameter:

$ crontab -l
no crontab for rich
$

By default, each user’s cron table file doesn’t exist. To add entries to your cron table, use the
-e parameter. When you do that, the crontab command automatically starts the vi editor

(see Chapter 7) with the existing cron table (or an empty file if it doesn’t yet exist).

The anacron program

The only problem with the cron program is that it assumes that your Linux system is operational
24 hours a day, 7 days a week. Unless you’re running Linux in a server environment, this may

not necessarily be true.

If the Linux system is turned off at the time a job is scheduled to run by cron, the job won’t run.

The cron program doesn’t retroactively run missed jobs when the system is turned back on. To
resolve this issue, many Linux distributions also include the anacron program.

354

www.IrPDF.com

www.IrPDF.com

Script Control 13

The anacron program uses timestamps to determine if a scheduled job has been run at the

proper interval. If it determines that a job has missed a scheduled running, it automatically runs
the job as soon as possible. This means that if your Linux system is turned off for a few days,
when it starts back up any jobs scheduled to run during the time it was off are automatically run.

This is a feature that’s often used for scripts that perform routine log maintenance. If the system
is always off when the script should run, the log files would never get trimmed and could grow
to undesirable sizes. With anacron, you’re guaranteed that the log files will be trimmed at least

each time the system is started.

The anacron program has its own table (usually located at /etc/anacrontab) to specify jobs.

On almost all Linux distributions, this table is only accessible by the root user. The format of the
anacron table is slightly different from that of the cron table:

period delay identifier command

The period entry defines how often the job should be run, specified in days. The delay entry
specifies how many minutes after the anacron program determines that a command should be
run it should actually run it. This allows you to set different delay values for different commands

so that you don’t have them all running as soon as you turn on the Linux system.

The identifier entry is a unique non-blank character string to uniquely identify the job in log

messages and error e-mails.

Start At the Beginning
The last method of starting shell scripts is to have your script run automatically either as soon as

the Linux system boots or whenever a user starts a new bash shell session. Starting scripts at boot
time is usually reserved for special scripts that perform system functions, such as configuring a
network interface or starting a server process. However, if you’re a Linux system administrator,
it’s possible that you’ll need to perform a function every time the Linux system boots, such as

resetting a custom log file or starting a custom application.

The ability to run a script every time a user starts a new bash shell (even just when a specific user

starts a bash shell) also can come in handy. There are times when you want to set shell features
for a shell session or just ensure that a specific file has been set.

This section describes how to configure your Linux system to run your scripts either at boot time

or each time a new bash shell starts.

Starting your scripts at boot
Before you can get your shell script to start at boot time, you’ll need to know a little bit about
how the Linux boot process works. There’s a specific order that Linux uses to start scripts at
boot time, and knowing that process can help you in getting your script to perform the way you
want it.

355

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

TABLE 13-3

The Linux Run Levels

Run level Description

0 Halt

1 Single-user mode

2 Multi-user mode, usually without networking support

3 Full multi-user mode, with networking

4 Unused

5 Multi-user mode, with networking and a graphical X Window session

6 Reboot

The boot process

After you turn on your Linux system, the Linux kernel loads into memory and runs. The first

thing it does is run the init program. Since the init program (usually located at /sbin/init)

is always the first thing to run, the kernel always assigns it PID 1. The init process is then

responsible for starting all other processes on the Linux system.

As part of the boot process, the init program reads the /etc/inittab file. The inittab
file lists scripts that the init program starts at different run levels. A Linux run level defines

the operating state of the Linux system. Different run levels start different programs and scripts.

Table 13-3 lists the Linux run levels.

Each run level defines what scripts the init program starts or stops. The normal run level for a

graphical Linux system is run level 5. Most Linux distributions start all of the server software at

run level 3, which allows multiple users to log in to the system.

The Linux system determines what programs to start at what run level by the rc script. The rc
script determines the current system run level and runs the appropriate scripts for that run level.

The Linux system starts applications using startup scripts. A startup script is a shell script that

starts an application, providing the necessary environment variables for it to run.

This is the part of the Linux boot process where things start to get a little fuzzy, mainly because

different Linux distributions place startup scripts in slightly different locations. Some distributions

place startup scripts in the /etc/rc.d directory, with a different directory for each run level.

Others use the /etc/init.d directory, and still others use the /etc/init.d/rc.d directory.

356

www.IrPDF.com

www.IrPDF.com

Script Control 13

Usually a quick glance in your /etc directory structure can easily determine what format your

distribution uses.

Defining your scripts

It’s best not to mess with the individual startup script files in your Linux distribution. Often

distributions provide tools to automatically build these scripts as you add server applications, and

manually changing these scripts can cause problems.

Instead, most Linux distributions provide a local startup file specifically to allow the system

administrator to enter scripts to run at boot time. Of course, the name and location of this file

are different in different Linux distributions. Table 13-4 identifies the location of the startup file

in three popular Linux distributions.

Inside the local startup file, you can either specify specific commands and statements, or enter

any scripts you want started at boot time. Remember, if you use a script, you’ll need to specify

the full pathname for the script so that the system can find it at boot time.

Different Linux distributions also execute the local startup script at different points in

the boot process. Sometimes the script is run before things such as network support

have been started. Consult your specific Linux distribution documentation to determine when the

local startup script is run in your distribution.

Starting with a new shell
Each user’s home directory contains two files that the bash shell uses to automatically start scripts

and set environment variables:

■ The .bash profile file

■ The .bashrc file

TABLE 13-4

The Linux Local Startup File Locations

Distribution File location

Debian /etc/init.d/rc.local

Fedora /etc/rc.d/rc.local

openSuse /etc/init.d/boot.local

357

www.IrPDF.com

www.IrPDF.com

Part II Shell Scripting Basics

The bash shell runs the .bash profile file when a new shell is run as a result of a new login.

Place any scripts that you want run at login time in this file.

The bash shell runs the .bashrc file any time a new shell is started, including when a new login
occurs. You can test this by adding a simple echo statement to the .bashrc file in your home
directory, then starting a new shell:

$ bash
This is a new shell!!
$

If you want to run a script for every user on the system, most Linux distributions provide the
/etc/bashrc file (note that there’s no period in front of the bashrc filename). The bash shell
executes the statements in this file every time any user on the system starts a new bash shell.

Summary
The Linux system allows you to control your shell scripts by using signals. The bash shell accepts
signals, and passes them on to any process running under the shell process. Linux signals allow
you to easily kill a runaway process or temporarily pause a long-running process.

You can use the trap statement in your scripts to catch signals and perform commands. This fea-

ture provides a simple way to control whether a user can interrupt your script while it’s running.

By default, when you run a script in a terminal session shell, the interactive shell is suspended
until the script completes. You can cause a script or command to run in background mode by
adding an ampersand sign (&) after the command name. When you run a script or command
in background mode, the interactive shell returns, allowing you to continue entering more com-

mands. Any background processes run using this method are still tied to the terminal session. If
you exit the terminal session, the background processes also exit.

To prevent this from happening, use the nohup command. This command intercepts any sig-
nals intended for the command that would stop it, for example, when you exit the terminal

session. This allows scripts to continue running in background mode even if you exit the ter-
minal session.

When you move a process to background mode, you can still control what happens to it. The
jobs command allows you to view processes started from the shell session. Once you know

the job ID of a background process, you can use the kill command to send Linux signals to the
process, or use the fg command to bring the process back to the foreground in the shell session.
You can suspend a running foreground process by using the Ctrl-Z key combination, then place
it back in background mode using the bg command.

The nice and renice commands allow you to change the priority level of a process. By giving a

process a lower priority, you allow the CPU to allocate less time to it. This comes in handy when
running long processes that can take lots of CPU time.

358

www.IrPDF.com

www.IrPDF.com

Script Control 13

Besides controlling processes while they’re running, you can also determine when a process starts

on the system. Instead of running a script directly from the command line interface prompt,

you can schedule the process to run at an alternative time. There are several different ways to

accomplish this. The at and batch commands allow you to run a script once at a preset time.

The cron program provides an interface that can run scripts at a regularly scheduled interval.

Finally, the Linux system provides script files for you to use for scheduling your scripts to run

either at system boot time or whenever a user starts a new bash shell. The rc.local
(or boot.local for openSuse) file allows you to list scripts that start each time the system boots.

This allows system administrators to run special scripts for system maintenance at boot time.

Similarly, the .bash profile and .bashrc files are located in every user’s home directory to

provide a location to place scripts and commands that run with a new shell. The .bash profile
file runs scripts each time a user logs in to the system, and the .bashrc file runs scripts on each

new shell instance.

In the next chapter, we’ll look at how to write script functions. Script functions allow you to write

code blocks once, then use them in multiple locations throughout your script.

359

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Advanced Shell
Scripting

IN THIS PART

Chapter 14
Creating Functions

Chapter 15
Adding Color to Scripts

Chapter 16
Introducing sed and gawk

Chapter 17
Regular Expressions

Chapter 18
Advanced sed

Chapter 19
Advanced gawk

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Creating Functions

IN THIS CHAPTER

Creating a function

Using parameters

Sharing functions

O
ften while writing shell scripts you’ll find yourself using the same

code in multiple locations. If it’s just a small code snippet, it’s
usually not that big of a deal. However, if you’re rewriting large

chunks of code multiple times in your shell script, that can get tiring. The

bash shell provides a way to help you out by supporting user-defined func-
tions. You can encapsulate your shell script code into a function, which

you can then use as many times as you want anywhere in your script.

This chapter walks you through the process of creating your own shell
script functions, and demonstrates how to use them in other shell script

applications.

Basic Script Functions

As you start writing more complex shell scripts, you’ll find yourself reusing
parts of code that perform specific tasks. Sometimes it’s something simple,

such as displaying a text message and retrieving an answer from the script

users. Other times it’s a complicated calculation that’s used multiple times
in your script as part of a larger process.

In each of these situations, it can get tiresome writing the same blocks of

code over and over again in your script. It would be nice to just write the
block of code once, then be able to refer to that block of code anywhere in

your script without having to rewrite it.

The bash shell provides a feature allowing you to do just that. Functions are

blocks of script code that you assign a name to, then reuse anywhere in
your code. Anytime you need to use that block of code in your script,

363

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

all you need to do is use the function name you assigned it (referred to as calling the function).

This section describes how to create and use functions in your shell scripts.

Creating a function
There are two formats you can use to create functions in bash shell scripts. The first format uses
the keyword function, along with the function name you assign to the block of code:

function name {
commands

}

The name attribute defines a unique name assigned to the function. Each function you define in

your script must be assigned a unique name.

The commands are one or more bash shell commands that make up your function. When you

call the function, the bash shell executes each of the commands in the order they appear in the

function, just as in a normal script.

The second format for defining a function in a bash shell script more closely follows how func-

tions are defined in other programming languages:

name() {
commands
}

The empty parentheses after the function name indicate that you’re defining a function. The same

naming rules apply in this format as in the original shell script function format.

Using functions
To use a function in your script, specify the function name on a line, just as you would any other

shell command:

$ cat test1
#!/bin/bash
using a function in a script

function func1 {
echo "This is an example of a function"

}

count=1
while [$count -le 5]
do

func1
count=$[$count + 1]

done

364

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

echo "This is the end of the loop"
func1
echo "Now this is the end of the script"
$./test1
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
Now this is the end of the script
$

Each time you reference the func1 function name, the bash shell returns to the func1 function

definition and executes any commands you defined there.

The function definition doesn’t have to be the first thing in your shell script, but be careful. If

you attempt to use a function before it’s defined, you’ll get an error message:

$ cat test2
#!/bin/bash
using a function located in the middle of a script

count=1
echo "This line comes before the function definition"

function func1 {
echo "This is an example of a function"

}

while [$count -le 5]
do

func1
count=$[$count + 1]

done
echo "This is the end of the loop"
func2
echo "Now this is the end of the script"

function func2 {
echo "This is an example of a function"

}
$./test2
This line comes before the function definition
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function

365

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This is an example of a function
This is the end of the loop
./test2: func2: command not found
Now this is the end of the script
$

The first function, func1, was defined after a couple of statements in the script, which is perfectly

fine. When the func1 function was used in the script, the shell knew where to find it.

However, the script attempted to use the func2 function before it was defined. Since the func2
function wasn’t defined, when the script reached the place where I used it, it produced an error

message.

You also need to be careful about your function names. Remember, each function name must be

unique, or you’ll have a problem. If you redefine a function, the new definition will override the

original function definition, without producing any error messages:

$ cat test3
#!/bin/bash
testing using a duplicate function name

function func1 {
echo "This is the first definition of the function name"
}

func1

function func1 {
echo "This is a repeat of the same function name"

}

func1
echo "This is the end of the script"
$./test3
This is the first definition of the function name
This is a repeat of the same function name
This is the end of the script
$

The original definition of the func1 function works fine, but after the second definition of the

func1 function, any subsequent uses of the function use the second definition.

Returning a Value
The bash shell treats functions like mini-scripts, complete with an exit status (see Chapter 8).

There are three different ways you can generate an exit status for your functions.

366

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

The default exit status
By default, the exit status of a function is the exit status returned by the last command in the

function. After the function executes, you use the standard $? variable to determine the exit

status of the function:

$ cat test4
#!/bin/bash
testing the exit status of a function

func1() {
echo "trying to display a non-existent file"
ls -l badfile

}

echo "testing the function:"
func1
echo "The exit status is: $?"
$./test4
testing the function:
trying to display a non-existent file
ls: badfile: No such file or directory
The exit status is: 1
$

The exit status of the function is 1 since the last command in the function failed. However, you

have no way of knowing if any of the other commands in the function completed successfully or

not. Take a look at this example:

$ cat test4b
#!/bin/bash
testing the exit status of a function

func1() {
ls -l badfile
echo "This was a test of a bad command"

}

echo "testing the function:"
func1
echo "The exit status is: $?"
$./test4b
testing the function:
ls: badfile: No such file or directory
This was a test of a bad command
The exit status is: 0
$

367

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This time, since the function ended with an echo statement that completed successfully, the exit
status of the function is 0, even though one of the commands in the function failed. Using the
default exit status of a function can be a dangerous practice. Fortunately, there are a couple of
other solutions for us.

Using the return command
The bash shell uses the return command to exit a function with a specific exit status. The
return command allows you to specify a single integer value to define the function exit status,
providing an easy way for you to programmatically set the exit status of your function:

$ cat test5
#!/bin/bash
using the return command in a function

function dbl {
read -p "Enter a value: " value
echo "doubling the value"
return $[$value * 2]

}

dbl
echo "The new value is $?"
$

The dbl function doubles the value contained in the $value variable provided by the user input.
It then returns the result using the return command, which the script displays using the $?
variable.

You must be careful though when using this technique to return a value from a function. There
are two things that can cause problems:

■ Remember to retrieve the return value as soon as the function completes.

■ Remember that an exit status can only be in the range of 0 to 255.

If you execute any other commands before retrieving the value of the function using the $? vari-
able, the return value from the function will be lost (remember, the $? variable returns the exit
status of the last executed command).

The second problem defines a limitation for using this return value technique. Since an exit status
must be less than 256, the result of your function must produce an integer value less than 256.
Any values over that returns an error value:

$./test5
Enter a value: 200
doubling the value
The new value is 1
$

You can’t use this return value technique if you need to return either larger integer values or a
string value. Instead, you’ll need to use another method, demonstrated in the next section.

368

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

Using function output
Just as you can capture the output of a command to a shell variable, you can also capture the

output of a function to a shell variable. You can use this technique to retrieve any type of output

from a function to assign to a variable:

result=`dbl`

This command assigns the output of the dbl function to the $result shell variable. Here’s an

example of using this method in a script:

$ cat test5b
#!/bin/bash
using the echo to return a value

function dbl {
read -p "Enter a value: " value
echo $[$value * 2]

}

result=`dbl`
echo "The new value is $result"
$./test5b
Enter a value: 200
The new value is 400
$./test5b
Enter a value: 1000
The new value is 2000
$

The new function now uses an echo statement to display the result of the calculation. The script

just captures the output of the dbl function instead of looking at the exit status for the answer.

There’s a subtle trick that this example demonstrates. You’ll notice that the db1 function really

outputs two messages. The read command outputs a short message querying the user for the

value. The bash shell script is smart enough to not consider this as part of the STDOUT output

and ignores it. If you had used an echo statement to produce this message, it would have been

captured by the shell variable as well as the output value.

Using this technique you can also return floating point and string values, making this

an extremely versatile method for returning values from functions.

Using Variables in Functions
You might have noticed in the test5 example in the previous section that I used a variable called

$value within the function to hold the value that it processed. When you use variables in your

functions, you need to be somewhat careful about how you define and handle them. This is a

369

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

common cause of problems in shell scripts. This section goes over a few techniques for handling

variables both inside and outside your shell script functions.

Passing parameters to a function
As was mentioned earlier in the ‘‘Returning a Value’’ section, the bash shell treats functions just

like mini-scripts. This means that you can pass parameters to a function just like a regular script

(see Chapter 11).

Functions can use the standard parameter environment variables to represent any parameters

passed to the function on the command line. For example, the name of the function is defined in

the $0 variable, and any parameters on the function command line are defined using the variables

$1, $2, and so on. You can also use the special variable $# to determine the number of parameters

passed to the function.

When specifying the function in your script, you must provide the parameters on the same

command line as the function, like this:

func1 $value1 10

The function can then retrieve the parameter values using the parameter environment variables.

Here’s an example of using this method to pass values to a function:

$ cat test6
#!/bin/bash
passing parameters to a function

function addem {
if [$# -eq 0] || [$# -gt 2]
then

echo -1
elif [$# -eq 1]
then

echo $[$1 + $1]
else

echo $[$1 + $2]
fi

}

echo -n "Adding 10 and 15: "
value=`addem 10 15`
echo $value
echo -n "Let’s try adding just one number: "
value=`addem 10`
echo $value
echo -n "Now trying adding no numbers: "
value=`addem`
echo $value

370

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

echo -n "Finally, try adding three numbers: "
value=`addem 10 15 20`
echo $value
$./test6
Adding 10 and 15: 25
Let’s try adding just one number: 20
Now trying adding no numbers: -1
Finally, try adding three numbers: -1
$

The addem function in the text6 script first checks the number of parameters passed to it by the

script. If there aren’t any parameters, or if there are more than two parameters, it returns a value
of -1. If there’s just one parameter, it adds it to itself for the result. If there are two parameters,

it adds them together for the result.

Since the function uses the special parameter environment variables for its own parameter values,
it can’t directly access the script parameter values from the command line of the script. This

example will fail:

$ cat badtest1
#!/bin/bash
trying to access script parameters inside a function

function badfunc1 {
echo $[$1 * $2]

}

if [$# -eq 2]
then

value=`badfunc1`
echo "The result is $value"

else
echo "Usage: badtest1 a b"

fi
$./badtest1
Usage: badtest1 a b
$./badtest1 10 15
./badtest1: * : syntax error: operand expected (error token is "*
")
The result is
$

Even though the function uses the $1 and $2 variables, they aren’t the same $1 and $2 variables
available in the main part of the script. Instead, if you want to use those values in your function,

you’ll have to manually pass them when you call the function:

$ cat test7
#!/bin/bash
trying to access script parameters inside a function

371

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

function func7 {
echo $[$1 * $2]

}

if [$# -eq 2]
then

value=`func7 $1 $2`
echo "The result is $value"

else
echo "Usage: badtest1 a b"

fi
$./test7
Usage: badtest1 a b
$./test7 10 15
The result is 150
$

By passing the $1 and $2 variables to the function, they become available for the function to use,

just like any other parameter.

Handling variables in a function
One thing that causes problems for shell script programmers is the scope of a variable. The scope

is where the variable is visible. Variables defined in functions can have a different scope than

regular variables. That is, they can be hidden from the rest of the script.

Functions use two types of variables:

■ Global

■ Local

The following sections describe how to use both types of variables in your functions.

Global variables

Global variables are variables that are valid anywhere within the shell script. If you define a global

variable in the main section of a script, you can retrieve its value inside a function. Likewise, if

you define a global variable inside a function, you can retrieve its value in the main section of the

script.

By default, any variables you define in the script are global variables. Variables defined outside of

a function can be accessed within the function just fine:

$ cat test8
#!/bin/bash
using a global variable to pass a value

372

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

function dbl {
value=$[$value * 2]

}

read -p "Enter a value: " value
dbl
echo "The new value is: $value"
$./test8
Enter a value: 450
The new value is: 900
$

The $value variable is defined outside of the function, and assigned a value outside of the func-
tion. When the dbl function is called, the variable and its value are still valid inside the function.
When the variable is assigned a new value inside the function, that new value is still valid when
the script references the variable.

This can be a dangerous practice though, especially if you intend to use your functions in different
shell scripts. It requires that you know exactly what variables are used in the function, including
any variables used to calculate values not returned to the script. Here’s an example of how things
can go bad:

$ cat badtest2
#!/bin/bash
demonstrating a bad use of variables

function func1 {
temp=$[$value + 5]
result=$[$temp * 2]

}

temp=4
value=6

func1
echo "The result is $result"
if [$temp -gt $value]
then

echo "temp is larger"
else

echo "temp is smaller"
fi
$./badtest2
The result is 22
temp is larger
$

Because the $temp variable was used in the function, its value is compromised in the script,
producing a result that you may not have intended. There’s an easy way to solve this problem in
your functions, shown in the next section.

373

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Local variables

Instead of using global variables in functions, any variables that the function uses internally can

be declared as local variables. To do that, just use the local keyword in front of the variable

declaration:

local temp

You can also use the local keyword in an assignment statement while assigning a value to the

variable:

local temp=$[$value + 5]

The local keyword ensures that the variable is limited to only within the function. If a variable

with the same name appears outside the function in the script, the shell keeps the two vari-

able values separate. Now you can easily keep your function variables separate from your script
variables, and share only the ones you want to share:

$ cat test9
#!/bin/bash
demonstrating the local keyword

function func1 {
local temp=$[$value + 5]
result=$[$temp * 2]

}

temp=4
value=6

func1
echo "The result is $result"
if [$temp -gt $value]
then

echo "temp is larger"
else

echo "temp is smaller"
fi
$./test9
The result is 22
temp is smaller
$

Now when you use the $temp variable within the func1 function it doesn’t affect the value

assigned to the $temp variable in the main script.

374

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

Array Variables and Functions
Chapter 5 discussed an advanced way of allowing a single variable to hold multiple values by

using arrays. Using array variable values with functions is a little tricky, and there are some special

considerations. This section describes a technique that allows you to do that.

Passing arrays to functions
The art of passing an array variable to a script function can be confusing. If you try to pass the

array variable as a single parameter, it won’t work:

$ cat badtest3
#!/bin/bash
trying to pass an array variable

function testit {
echo "The parameters are: $@"
thisarray=$1
echo "The received array is ${thisarray[*]}"

}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
testit $myarray
$./badtest3
The original array is: 1 2 3 4 5
The parameters are: 1
./badtest3: thisarray[*]: bad array subscript
The received array is
$

If you try using the array variable as a function parameter, the function only picks up the first

value of the array variable.

To solve this problem, you must disassemble the array variable into its individual values, then use

the values as function parameters. Inside the function, you can reassemble all of the parameters
into a new array variable. Here’s an example of doing this:

$ cat test10
#!/bin/bash
array variable to function test

function testit {
local newarray

375

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

newarray=(`echo "$@"`)
echo "The new array value is: ${newarray[*]}"

}

myarray=(1 2 3 4 5)
echo "The original array is ${myarray[*]}"
testit ${myarray[*]}
$./test10
The original array is 1 2 3 4 5
The new array value is: 1 2 3 4 5
$

The script uses the $myarray variable to hold all of the individual array values to place them

all on the command line for the function. The function then rebuilds the array variable from the
command line parameters. Once inside the function, the array can be used just like any other
array:

$ cat test11
#!/bin/bash
adding values in an array

function addarray {
local sum=0
local newarray
newarray=(`echo "$@"`)
for value in ${newarray[*]}
do

sum=$[$sum + $value]
done
echo $sum

}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
arg1=`echo ${myarray[*]}`
result=`addarray $arg1`
echo "The result is $result"
$./test11
The original array is: 1 2 3 4 5
The result is 15
$

The addarray function iterates through the array values, adding them together. You can put any
number of values in the myarray array variable, and the addarray function will add them.

Returning arrays from functions
Passing an array variable from a function back to the shell script uses a similar technique. The
function uses an echo statement to output the individual array values in the proper order, then

376

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

the script must reassemble them into a new array variable:

$ cat test12
#!/bin/bash
returning an array value

function arraydblr {
local origarray
local newarray
local elements
local i
origarray=(`echo "$@"`)
newarray=(`echo "$@"`)
elements=$[$# - 1]
for ((i = 0; i <= $elements; i++))
{

newarray[$i]=$[${origarray[$i]} * 2]
}
echo ${newarray[*]}

}

myarray=(1 2 3 4 5)
echo "The original array is: ${myarray[*]}"
arg1=`echo ${myarray[*]}`
result=(`arraydblr $arg1`)
echo "The new array is: ${result[*]}"
$./test12
The original array is: 1 2 3 4 5
The new array is: 2 4 6 8 10

The script passes the array value, using the $arg1 variable to the arraydblr function. The
arraydblr function reassembles the array into a new array variable, and it makes a copy for the

output array variable. It then iterates through the individual array variable values, doubles each
value, and places it into the copy of the array variable in the function.

The arraydblr function then uses the echo statement to output the individual values of the
array variable values. The script uses the output of the arraydblr function to reassemble a

new array variable with the values.

Function Recursion
One feature that local function variables provides is self-containment. A self-contained function

doesn’t use any resources outside of the function, other than whatever variables the script passes
to it in the command line.

This feature enables the function to be called recursively. Calling a function recursively is when
the function calls itself to reach an answer. Usually, a recursive function has a base value that

377

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

it eventually iterates down to. Many advanced mathematical algorithms use recursion to reduce

a complex equation down one level repeatedly, until they get to the level defined by the base

value.

The classic example of a recursive algorithm is calculating factorials. A factorial of a number is

the value of the preceding numbers multiplied with the number. Thus, to find the factorial of 5,

you’d perform the equation:

5! = 1 * 2 * 3 * 4 * 5 = 120

Using recursion, the equation is reduced down to the format:

x! = x * (x-1)!

or in English, the factorial of x is equal to x times the factorial of x-1. This can be expressed in a

simple recursive script:

function factorial {
if [$1 -eq 1]
then

echo 1
else

local temp=$[$1 - 1]
local result=`factorial $temp`
echo $[$result * $1]

fi
}

The factorial function uses itself to calculate the value for the factorial:

$ cat test13
#!/bin/bash
using recursion

function factorial {
if [$1 -eq 1]
then

echo 1
else

local temp=$[$1 - 1]
local result=`factorial $temp`
echo $[$result * $1]

fi
}

read -p "Enter value: " value
result=`factorial $value`
echo "The factorial of $value is: $result"

378

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

$./test13
Enter value: 5
The factorial of 5 is: 120
$

Using the factorial function is easy.

Creating a Library
It’s easy to see how functions can help save typing in a single script, but how about if you just

happen to use the same single code block between scripts? It would seem to not help if you have

to define the same function in each script, only to use it one time in each script.

There’s a solution for that problem! The bash shell allows you to create a library file for your

functions, then reference that single library file in as many scripts as you need to.

The first step in the process is to create a common library file that contains the functions you need

in your scripts. Here’s a simple library file called myfuncs that defines three simple functions:

$ cat myfuncs
my script functions

function addem {
echo $[$1 + $2]

}

function multem {
echo $[$1 * $2]

}

function divem {
if [$2 -ne 0]
then

echo $[$1 / $2]
else

echo -1
fi

}
$

The next step is to include the myfuncs library file in your script files that want to use any of

the functions. This is where things get tricky.

The problem is with the scope of shell functions. Just as with environment variables, shell func-

tions are only valid for the shell session in which you define them. If you run the myfuncs shell

379

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

script from your shell command line interface prompt, the shell creates a new shell, and runs

the script in that new shell. This will define the three functions for that shell, but when you try

to run another script that uses those functions, they won’t be available.

This applies to scripts as well. If you try to just run the library file as a regular script file, the

functions won’t appear in your script:

$ cat badtest4
#!/bin/bash
using a library file the wrong way
./myfuncs

result=`addem 10 15`
echo "The result is $result"
$./badtest4
./badtest3: addem: command not found
The result is
$

The key to using function libraries is the source command. The source command executes

commands within the current shell context instead of creating a new shell to execute them. You

use the source command to run the library file script inside of your shell script. This makes the

functions available to the script.

The source command has a shortcut alias, called the dot operator. To source the myfuncs library

file in a shell script, all you need to do is add the following line:

. ./myfuncs

This example assumes that the myfuncs library file is located in the same directory as the shell

script. If not, you’ll need to use the appropriate path to access the file. Here’s an example of

creating a script that uses the myfuncs library file:

$ cat test14
#!/bin/bash
using functions defined in a library file
. ./myfuncs

value1=10
value2=5
result1=`addem $value1 $value2`
result2=`multem $value1 $value2`
result3=`divem $value1 $value2`
echo "The result of adding them is: $result1"
echo "The result of multiplying them is: $result2"
echo "The result of dividing them is: $result3"
$./test14
The result of adding them is: 15

380

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

The result of multiplying them is: 50
The result of dividing them is: 2
$

The script successfully uses the functions defined in the myfuncs library file.

Using Functions on the Command Line
You can use script functions to create some pretty complex operations. Sometimes it would be

nice to be able to use these functions directly on the command line interface prompt.

Just as you can use a script function as a command in a shell script, you can also use a script

function as a command in the command line interface. This is a nice feature, since once you

define the function in the shell, you can use it from any directory on the system; you don’t have
to worry about a script being in your PATH environment variable. The trick is to get the shell to

recognize the function. There are a couple of ways to do that.

Creating functions on the command line
Since the shell interprets commands as you type them, you can define a function directly on the

command line. There are two ways to do that.

The first method defines the function all on one line:

$ function divem { echo $[$1 / $2]; }
$ divem 100 5
20
$

When you define the function on the command line, you must remember to include a semicolon

at the end of each command, so the shell knows where to separate commands:

$ function doubleit { read -p "Enter value: " value; echo $[
$ value * 2]; }

$ doubleit
Enter value: 20
40
$

The other method is to use multiple lines to define the function. When you do that, the bash

shell uses the secondary prompt to prompt you for more commands. Using this method, you
don’t need to place a semicolon at the end of each command; just press the ENTER key:

$ function multem {
> echo $[$1 * $2]
> }

381

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

$ multem 2 5
10
$

When you use the brace at the end of the function, the shell knows that you’re done defining the

function.

Be extremely careful when creating functions on the command line. If you use a func-

tion with the same name as a built-in command or another command, the function

will override the original command.

Defining functions in the .bashrc file
The obvious downside to defining shell functions directly on the command line is that when you

exit the shell, your function disappears. For complex functions, this can become somewhat of a

problem.

A much simpler method is to define the function in a place where it’ll be reloaded by the shell

each time you start a new shell.

The best place to do that is the .bashrc file. The bash shell looks for this file in your home

directory each time it starts, whether interactively or as the result of starting a new shell from

within an existing shell.

Directly defining functions

You can define the functions directly in the .bashrc file in your home directory. Most Linux

distributions already define some things in the .bashrc file, so be careful not to remove those

items. Just add your functions to the bottom of the existing file. Here’s an example of
doing that:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then

. /etc/bashrc
fi

function addem {
echo $[$1 + $2]

}
$

The function won’t take effect until the next time you start a new bash shell. After you do that,

you can use the function anywhere on the system.

382

www.IrPDF.com

www.IrPDF.com

Creating Functions 14

Sourcing function files

Just as in a shell script, you can use the source command (or its alias the dot operator) to add
functions from an existing library file to your .bashrc script:

$ cat .bashrc
.bashrc

Source global definitions
if [-r /etc/bashrc]; then

. /etc/bashrc
fi

. /home/rich/libraries/myfuncs
$

Make sure that you include the proper pathname to reference the library file for the bash shell
to find. The next time you start a shell, all of the functions in your library are available at the
command line interface:

$ addem 10 5
15
$ multem 10 5
50
$ divem 10 5
2
$

Even better, the shell also passes any defined functions to child shell processes, so your functions
are automatically available for any shell scripts you run from your shell session. You can test this
by writing a script that uses the functions without defining or sourcing them:

$ cat test15
#!/bin/bash
using a function defined in the .bashrc file

value1=10
value2=5
result1=`addem $value1 $value2`
result2=`multem $value1 $value2`
result3=`divem $value1 $value2`
echo "The result of adding them is: $result1"
echo "The result of multiplying them is: $result2"
echo "The result of dividing them is: $result3"
$./test15
The result of adding them is: 15
The result of multiplying them is: 50
The result of dividing them is: 2
$

Even without sourcing the library file, the functions worked perfectly in the shell script.

383

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Summary
Shell script functions allow you to place script code that’s repeated throughout the script in a

single place. Instead of having to rewrite blocks of code, you can create a function containing

the code block, then just reference the function name in your script. The bash shell jumps to the

function code block whenever it sees the function name used in the script.

You can even create script functions that return values. This allows you to create functions that

interact with the script, returning both numeric and character data. Script functions can return

numeric data by using the exit status of the last command in the function, or using the return
command. The return command allows you to programmatically set the exit status of your

function to a specific value based on the results of the function.

Functions can also return values using the standard echo statement. You can capture the output

data using the backtick character as you would any other shell command. This enables you to

return any type of data from a function, including strings and floating-point numbers.

You can use shell variables within your functions, assigning values to variables and retrieving

values from existing variables. This allows you to pass any type of data both into and out of a

script function from the main script program. Functions also allow you to define local variables,
which are accessible only from within the function code block. Local variables allow you to create

self-contained functions, which don’t interfere with any variables or processes used in the main

shell script.

Functions can also call other functions, including themselves. When a function calls itself, that’s

called recursion. A recursive function often has a base value that is the terminal value of the

function. The function continues to call itself with a decreasing parameter value until the base

value is reached.

If you use lots of functions in your shell scripts, you can create library files of script functions.

The library files can be included in any shell script file by using the source command, or its

alias, the dot operator. This is called sourcing the library file. The shell doesn’t run the library

file but makes the functions available within the shell that runs the script. You can use this same

technique to create functions that you can use on the normal shell command line. You can either

define functions directly on the command line or you can add them to your .bashrc file so that

they are available for each new shell session you start. This is a handy way to create utilities

that can be used no matter what your PATH environment variable is set to.

The next chapter discusses the topic of using text graphics in your scripts. In this day of modern

graphical interfaces, sometimes a plain text interface just doesn’t cut it. The bash shell provides

some easy ways for you to incorporate simple graphics features in your scripts to help spice

things up.

384

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts

IN THIS CHAPTER

Creating text menus

Making scripts colorful

Text windows widgets

Using X Windows graphics

O
ver the years, shell scripts have acquired a reputation for being

dull and boring. This doesn’t have to be the case, though, if you

plan on running your scripts in a graphical environment. There are

plenty of other ways to interact with your script user other than using the

read and echo statements. This chapter dives into a few different methods

you can use to help add life to your interactive scripts so that they don’t
look so old-fashioned.

Creating Text Menus

The most common way to create an interactive shell script is to utilize a

menu. Offering your customers a choice of various options helps guide

them through exactly what the script can and can’t do.

Menu scripts usually clear the display area, then show a list of options avail-

able. The customer can select an option by pressing an associated letter or

number assigned to each option. Figure 15-1 shows the layout of a sample

menu.

The core of a shell script menu is the case command (see Chapter 9). The

case command performs specific commands, depending on what character

your customer selects from the menu.

The following sections walk you through the steps you should follow to

create a menu-based shell script.

385

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

FIGURE 15-1

Displaying a menu from a shell script

Create the menu layout
The first step in creating a menu is, obviously, to determine what elements you want to appear in

the menu and lay them out the way that you want them to appear.

Before creating the menu, it’s usually a good idea to clear the monitor display. This enables you

to display your menu in a clean environment without distracting text.

The clear command uses the terminfo data of your terminal session (see Chapter 2) to clear any

text that appears on the monitor. After the clear command, you can use the echo command to

display your menu elements.

By default, the echo command can only display printable text characters. When creating menu

items, it’s often helpful to use nonprintable items, such as the tab and newline characters. To

include these characters in your echo command, you must use the -e option. Thus, the com-
mand:

echo -e "1.\tDisplay disk space"

results in the output line:

1. Display disk space

386

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

This greatly helps in formatting the layout of the menu items. With just a few echo commands,

you can create a reasonable looking menu:

clear
echo
echo -e "\t\t\tSys Admin Menu\n"
echo -e "\t1. Display disk space"
echo -e "\t2. Display logged on users"
echo -e "\t3. Display memory usage"
echo -e "\t0. Exit menu\n\n"
echo -en "\t\tEnter option: "

The -en option on the last line displays the line without adding the newline character at the end.

This gives the menu a more professional look, as the cursor will stay at the end of the line waiting

for the customer’s input.

The last part of creating the menu is to retrieve the input from the customer. This is done using

the read command (see Chapter 11). Since we only expect single-character input, the nice thing

to do is to use the -n option in the read command to only retrieve one character. This allows

the customer to enter a number without having to press the Enter key:

read -n 1 option

Next, you’ll need to create your menu functions.

Create the menu functions
Shell script menu options are easier to create as a group of separate functions. This enables you

to create a simple, concise case command that is easy to follow.

To do that, you need to create separate shell functions for each of your menu options. The first

step in creating a menu shell script is to determine what functions you want your script to per-

form and lay them out as separate functions in your code.

It’s common practice to create stub functions for functions that aren’t implemented yet. A stub

function is a function that doesn’t contain any commands yet, or possibly just an echo statement

indicating what should be there eventually:

function diskspace {
clear
echo "This is where the diskspace commands will go"

}

This enables your menu to operate smoothly while you work on the individual functions. You

don’t have to code all of the functions for your menu to work. You’ll notice that the function

starts out with the clear command. This enables you to start the function on a clean monitor

screen, without the menu showing.

387

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

One thing that helps out in the shell script menu is to create the menu layout itself as a function:

function menu {
clear
echo
echo -e "\t\t\tSys Admin Menu\n"
echo -e "\t1. Display disk space"
echo -e "\t2. Display logged on users"
echo -e "\t3. Display memory usage"
echo -e "\t0. Exit program\n\n"
echo -en "\t\tEnter option: "
read -n 1 option

}

This enables you to easily redisplay the menu at any time just by calling the menu function.

Add the menu logic
Now that you have your menu layout and your functions, all you need to do is create the pro-

gramming logic to put the two together. As mentioned, this requires the case command.

The case command should call the appropriate function according to the character selection

expected from the menu. It’s always a good idea to use the default case command character (the

asterisk) to catch any incorrect menu entries.

Using the case command in a typical menu would look something like this:

menu
case $option in
0)

break ;;
1)

diskspace ;;
2)

whoseon ;;
3)

memusage ;;
*)

clear
echo "Sorry, wrong selection";;

esac

This code first uses the menu function to clear the monitor screen and display the menu. The

read command in the menu function pauses until the customer hits a character on the keyboard.

Once that’s been done, the case command takes over. The case command calls the appropriate

function based on the returned character. After the function completes, the case command exits.

388

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

Putting it all together
Now that you’ve seen all of the parts that make up a shell script menu, let’s put them together

and see how they all interoperate. Here’s an example of a full menu script:

$ cat menu1
#!/bin/bash
simple script menu

function diskspace {
clear
df -k

}

function whoseon {
clear
who

}

function memusage {
clear
cat /proc/meminfo

}

function menu {
clear
echo
echo -e "\t\t\tSys Admin Menu\n"
echo -e "\t1. Display disk space"
echo -e "\t2. Display logged on users"
echo -e "\t3. Display memory usage"
echo -e "\t0. Exit program\n\n"
echo -en "\t\tEnter option: "
read -n 1 option

}

while [1]
do

menu
case $option in
0)

break ;;
1)

diskspace ;;
2)

whoseon ;;
3)

memusage ;;
*)

389

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

clear
echo "Sorry, wrong selection";;

esac
echo -en "\n\n\t\t\tHit any key to continue"
read -n 1 line

done
clear
$

This menu creates three functions to retrieve administrative information about the Linux system

using common commands. I used a while loop to continually loop through the menu until the

customer selects option 0, which uses the break command to break out of the while loop.

You can use this same template to create any shell script menu interface. It provides a simple way

to interact with your customers.

Using the select command
You may have noticed that half the problem of creating a text menu is just creating the menu

layout and retrieving the answer that you enter. The bash shell provides a handy little utility for

you that does all of this work automatically.

The select command allows you to create a menu from a single command line, then retrieve

the entered answer and automatically process it. The format of the select command is:

select variable in list
do

commands
done

The list parameter is a space-separated list of text items that build the menu. The select com-

mand displays each item in the list as a numbered option and then displays a special prompt,

defined by the PS3 environment variable, for the selection.

Here’s a simple example of the select command in action:

$ cat smenu1
#!/bin/bash
using select in the menu

function diskspace {
clear
df -k

}

function whoseon {
clear
who

390

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

}

function memusage {
clear
cat /proc/meminfo

}

PS3="Enter option: "
select option in "Display disk space" "Display logged on users"
"Display memory usage" "Exit program"
do

case $option in
"Exit program")

break ;;
"Display disk space")

diskspace ;;
"Display logged on users")

whoseon ;;
"Display memory usage")

memusage ;;
*)

clear
echo "Sorry, wrong selection";;

esac
done
clear
$

When you run the program, it automatically produces the following menu:

$./smenu1
1) Display disk space 3) Display memory usage
2) Display logged on users 4) Exit program
Enter option:

When you use the select command, remember that the result value stored in the variable is the

entire text string and not the number associated with the menu item. The text string values are

what you need to compare in your case statements.

Adding Color
Back in the old days of Unix, script programmers were limited to monochrome terminals, so

interactive shell scripts didn’t have to worry about using colors. These days, with all of the fancy

terminal emulation packages around, adding colors and special effects to your interactive scripts

has almost become a necessity. This section discusses and demonstrates how to add special text

features to your script output.

391

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The ANSI escape codes
Most all terminal emulation software recognizes the ANSI escape codes for formatting display out-

put. The ANSI escape codes begin with a control sequence indicator (CSI), which tells the terminal

that the data represents an escape code, followed by data indicating the operation to perform on

the display.

There are ANSI escape codes for positioning the cursor at a specific location on the display,

erasing parts of the display, and what we’re interested in here, controlling the display format.

To control the display format, you must use the Select Graphic Rendition (SGR) escape codes.

The format of an SGR escape code is:

CSIn[;k]m

The m in the code indicates the SGR escape code. The n and k parameters define which display

control is used. You can specify just one parameter or two at the same time, separating them

using the semicolon. There are three classes of display control parameters:

■ Effect control codes

■ Foreground color control codes

■ Background color control codes

Table 15-1 shows the effect control codes available.

Thus, to set the display to use italic font, you send the code:

CSI3m

TABLE 15-1

The ANSI SGR Effect Control Codes

Code Description

0 Reset to normal mode.

1 Set to bold intensity.

2 Set to faint intensity.

3 Use italic font.

4 Use single underline.

5 Use slow blink.

6 Use fast blink.

7 Reverse foreground/background colors.

8 Set foreground color to background color (invisible text).

392

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

If you want to set the display to use italic font and blink, you send the code:

CSI3;5m

The foreground and background color control codes use a two-digit code. Foreground colors use
a two-digit value starting with a 3, while background colors use a two-digit value starting with a
4. The second digit in each denotes the specific color. Table 15-2 shows the color control codes
available.

Thus, to specify a white foreground color, you send the code:

CSI37m

which specifies the 3 to represent the foreground color and a 7 to specify the white color. To
send a white background color, you’d use the code:

CSI47m

You can combine up to two attributes in each control code. Thus, to set the background color to
black, and the foreground color to red, you’d send the code:

CSI31;40m

Next, it’s time to look at how to send the actual codes to the terminal.

Displaying ANSI escape codes
Now that you know the ANSI escape codes, you’re probably wondering how you can use them in
your shell scripts. You can send the ANSI escape codes to the terminal session by using the echo
command, just like normal text. The only tricky part is creating the CSI character.

TABLE 15-2

The ANSI Color Control Codes

Code Description

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

393

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The CSI character is normally a two-character sequence. This sequence is the ESC ASCII value,

followed by the left square bracket character. Creating the ESC ASCII value in a script can be a

challenge.

Obviously you can’t just hit the Esc key on your keyboard, since most text editors interpret that

to mean something else. Fortunately, there’s a common key sequence that most editors recognize

to allow you to insert the ESC ASCII value in your script. That’s the Ctrl-v key combination,

followed by the Esc key. When you enter this key combination, the characters ^[appear.

You’ll often see the ^[characters in scripts that use ANSI escape codes. When you see

that character combination, remember that it’s generated using the Ctrl-v ESC key

combination.

So, a complete ANSI escape control code looks like this:

^[[0m

This specifies effect control code 0, which resets the display to the default settings.

You can test using ANSI escape control codes from your command line interface prompt:

$ echo ^[[41mThis is a test
This is a test
$

Of course, you can’t tell from the book example, but this statement sets the background color

to red on the terminal screen. The text appears in the default foreground color and with red as

the background color. If you do this in your terminal emulator, you’ll notice that after the shell

prints the text from the echo command, the new prompt still uses the color control code. This is

an important thing to remember.

ANSI color control codes remain active until another ANSI color control code changes

the output.

To solve this problem, it’s usually a good idea to use the reset control code (0) to reset the termi-

nal display to normal:

$ echo ^[[41mThis is a test^[[0m
This is a test
$

After this test, the new shell prompt reverts to its original color scheme.

The same applies to effect control codes:

$ echo ^[[1mThis is a test^[[0m
This is a test
$

394

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

The text displayed by the echo command should appear in bold font in your terminal emulator,

then the command line interface prompt should return to normal.

Some terminal emulators don’t support the effect control codes. For example, my

PuTTY terminal emulator software doesn’t blink text marked with the blink escape

control code. Instead, it just presents blinking text with a gray background.

If you need to set both the background and foreground colors, the ANSI escape control code

allows you to specify two codes in one escape sequence:

$ echo "^[[33;44mThis is a test^[[0m"
This is a test
$

This command sets the foreground color to yellow, and the background color to blue using just

one escape control code sequence.

When setting two escape control codes in an echo command, it’s important to use

double quotation marks around the code string. Without them, the echo command

doesn’t interpret the escape codes properly and produces an error message.

Using colors in scripts
You can now add ANSI escape control codes into your shell scripts to control the color format of
your script output. This is especially handy when using menus, as you can control the color to

direct the customer’s attention to a specific part of the menu.

You must be careful though when creating scripts that use ANSI escape control codes. Remember,

whenever the terminal emulator sees the code, it processes it. This is especially dangerous when
using the cat command to list a script that contains ANSI escape control codes. The cat com-

mand will echo the codes to the display, which are then interpreted by the terminal emulator,
changing the display. This can be annoying in large scripts that change lots of display features.

Here’s a modified version of the menu script that uses color control codes to liven things up a
bit:

$ cat menu2
#!/bin/bash
menu using colors

function diskspace {
clear
df -k

}

function whoseon {
clear

395

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

who
}

function memusage {
clear
cat /proc/meminfo

}

function menu {
clear
echo
echo -e "\t\t\tSys Admin Menu\n"
echo -e "\t1. Display disk space"
echo -e "\t2. Display logged on users"
echo -e "\t3. Display memory usage"
echo -e "^[[1m\t0. Exit program\n\n^[[0m^[[44;33m"
echo -en "\t\tEnter option: "
read -n 1 option

}

echo "^[[44;33m"
while [1]
do

menu
case $option in
0)

break ;;
1)

diskspace ;;
2)

whoseon ;;
3)

memusage ;;
*)
clear
echo -e "^[[5m\t\t\tSorry, wrong selection^[[0m^[[44;33m";;

esac
echo -en "\n\n\t\t\tHit any key to continue"
read -n 1 line

done
echo "^[[0m"
clear
$

The menu appears in yellow text on a blue background. Note that it’s important to set your

foreground and background colors before using the clear command; otherwise, the clear com-

mand will paint the terminal emulation screen with the default colors, making the menu items

not blend in with the rest of the background.

396

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

When you use the bold (1) or blink (5) control codes in your script to highlight important text,

you must change the foreground and background colors back, as there are no unbold or unblink

control codes. Unfortunately, the reset control code just sets the display back to the default, not

to whatever setting you were previously using.

Doing Windows
Using text menus and colors is a step in the right direction, but there’s still a lot missing in our

interactive scripts, especially if we try to compare them to the graphical Windows world. For-

tunately for us, there are some very resourceful people out in the open source world that have

helped us out.

The dialog package is a nifty little tool originally created by Savio Lam, and currently maintained

by Thomas E. Dickey. This package recreates standard Windows dialog boxes in a text environ-

ment using ANSI escape control codes. You can easily incorporate these dialog boxes in your

shell scripts to interact with your script users. This section describes the dialog package and

demonstrates how to use it in shell scripts.

The dialog package
The dialog command uses command line parameters to determine what type of Windows widget

to produce. A widget is the dialog package term for a type of Windows element. The dialog

package currently supports the types of widgets shown in Table 15-3.

As you can see from Table 15-3, there are lots of different widgets to choose from. This can give

your scripts a more professional look with very little effort.

To specify a specific widget on the command line, you need to use the double dash format:

dialog --widget parameters

Where widget is the widget name as seen in Table 15-3, and the parameters define the size of

the widget window and any text required for the widget.

Each dialog widget provides output in two forms:

■ Using STDERR

■ Using the exit code status

The exit code status of the dialog command determines the button selected by the user. If an

OK or Yes button is selected, the dialog command returns a zero exit status. If a Cancel or No

button is selected, the dialog command returns a one exit status. You can use the standard $?
variable to determine which button was selected in the dialog widget.

397

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

TABLE 15-3

The dialog Widgets

Widget Description

calendar Provides a calendar to select a date from

checklist Displays multiple entries where each entry can be turned on or off

form Allows you to build a form with labels and text fields to be filled out

fselect Provides a file selection window to browse for a file

gauge Displays a meter showing a percentage of completion

infobox Displays a message without waiting for a response

inputbox Displays a single text form box for text entry

inputmenu Provides an editable menu

menu Displays a list of selections to choose from

msgbox Displays a message and requires the user to select an OK button

pause Displays a meter showing the status of a specified pause period

passwordbox Displays a single textbox that hides entered text

passwordform Displays a form with labels and hidden text fields

radiolist Provides a group of menu items where only one item can be selected

tailbox Displays text from a file in a scroll window using the tail command

tailboxbg Same as tailbox, but operates in background mode

textbox Displays the contents of a file in a scroll window

timebox Provides a window to select an hour, minute, and second

yesno Provides a simple message with Yes and No buttons

If a widget returns any data, such as a menu selection, the dialog command sends the data

to STDERR. You can use the standard bash shell technique of redirecting the STDERR output to

another file or file descriptor:

dialog --inputbox "Enter your age:" 10 20 2>age.txt

This command redirects the text entered in the textbox to the age.txt file.

The following sections take a look at some examples of the more common dialog widgets you’ll

use in your shell scripts.

398

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

The msgbox widget

The msgbox widget is the most common type of dialog box. It displays a simple message in a

window and waits for the user to click on an OK button before disappearing. The format required

to use a msgbox widget is:

dialog --msgbox text height width

The text parameter is any string you want to place in the window. The dialog command will

automatically wrap the text to fit the size of the window you create, using the height and width
parameters. If you want to place a title at the top of the window, you can also use the --title
parameter, along with the text of the title. Here’s an example of using the msgbox widget:

$ dialog --title Testing --msgbox "This is a test" 10 20

After entering this command the message box will appear on the screen of the terminal emulator

session you’re using. Figure 15-2 shows what this looks like.

If your terminal emulator supports the mouse, you can click on the OK button. You can also use

keyboard commands to simulate a click, just press the Enter key.

FIGURE 15-2

Using the msgbox widget in the dialog command

399

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The yesno widget

The yesno widget takes the msgbox widget one step further, allowing the user to answer a yes/no

question displayed in the window. It produces two buttons at the bottom of the window, one for

Yes, and another for No. The user can switch between buttons by using the mouse, the tab key

or the keyboard arrow keys. To select the button the user can either press the space bar or the

Enter key.

Here’s an example of using the yesno widget:

$ dialog --title "Please answer" --yesno "Is this thing on?" 10 20
$ echo $?
1
$

This produces the widget shown in Figure 15-3.

The exit status of the dialog command is set depending on which button the user selects. If the

No button is selected, the exit status is one.

FIGURE 15-3

Using the yesno widget in the dialog command

400

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

The inputbox widget

The inputbox widget provides a simple textbox area for the user to enter a text string. The

dialog command sends the value of the text string to STDERR. You must redirect that to retrieve

the answer. Figure 15-4 demonstrates what the inputbox widget looks like.

As you can see in Figure 15-4, the inputbox provides two buttons, OK and Cancel. If the Cancel

button is selected, the exit status of the command is one; otherwise, the exit status will be zero:

$ dialog --inputbox "Enter your age:" 10 20 2>age.txt
$ echo $?
0
$ cat age.txt
12$

You’ll notice when you use the cat command to display the contents of the text file that there’s

no newline character after the value. This enables you to easily redirect the file contents to a

variable in a shell script to extract the string entered by the user.

FIGURE 15-4

The inputbox widget

401

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The textbox widget

The textbox widget is a great way to display lots of information in a window. It produces a

scrollable window containing the text from a file specified in the parameters:

$ dialog --textbox /etc/passwd 15 45

The contents of the /etc/passwd file are shown within the scrollable text window, as shown in

Figure 15-5.

You can use the arrow keys to scroll left and right, as well as up and down in the text file. The

bottom line in the window shows the percent location within the file that you’re viewing. The

textbox only contains a single Exit button that should be selected to exit the widget.

The menu widget

The menu widget allows you to create a window version of the text menu we created earlier in

this chapter. All you need to do is provide a selection tag and the text for each item:

$ dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk space"
2 "Display users" 3 "Display memory usage" 4 "Exit" 2> text.txt

FIGURE 15-5

The textbox widget

402

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

The first parameter defines a title for the menu. The next two parameters define the height and

width of the menu window, while the third parameter defines the number of menu items that
appear in the window at one time. If there are more menu items, you can scroll through them
using the arrow keys.

Following those parameters, you must add menu item pairs. The first element is the tag used
to select the menu item. Each tag should be unique for each menu item and can be selected by
hitting the appropriate key on the keyboard. The second element is the text used in the menu.

Figure 15-6 demonstrates the menu produced by the example command.

If a user selects a menu item by pressing the appropriate key for the tag, that menu item is high-
lighted but not selected. A selection isn’t made until the OK button is selected, by using either the

mouse or the Enter key. The dialog command sends the selected menu item text to STDERR,
which you can redirect as needed.

The fselect widget

There are several fancy built-in widgets provided by the dialog command. The fselect widget

is extremely handy when working with filenames. Instead of forcing the user to type in a filename,
you can use the fselect widget to browse to the file location and select the file, as shown in
Figure 15-7.

FIGURE 15-6

The menu widget with menu items

403

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

FIGURE 15-7

The fselect widget

The fselect widget format looks like:

$ dialog --title "Select a file" --fselect $HOME/ 10 50 2>file.txt

The first parameter after fselect is the starting location used in the window. The fselect wid-

get window consists of a directory listing on the left side, a file listing on the right side, showing

all of the files in the selected directory, and a simple textbox that contains the currently selected

file or directory. You can manually type a filename in the textbox, or use the directory and file

listings to select one.

The dialog options
Besides the standard widgets, you can customize lots of different options in the dialog com-

mand. You’ve already seen the --title parameter in action. This allows you to set a title for the
widget that appears at the top of the window.

There are lots of other options available that allow you to completely customize both the appear-

ance and the behavior of your windows. Table 15-4 shows the options available for the dialog
command.

404

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

TABLE 15-4

The dialog Command Options

Option Description

--add-widget Proceed to the next dialog unless Esc or the Cancel button has been
pressed.

--aspect ratio Specify the width/height aspect ratio of the window.

--backtitle title Specify a title to display on the background, at the top of the screen.

--begin x y Specify the starting location of the top-left corner of the window.

--cancel-label label Specify an alternative label for the Cancel button.

--clear Clear the display using the default dialog background color.

--colors Allows you to embed ANSI color codes in dialog text.

--cr-wrap Allow newline characters in dialog text and force a line wrap.

--create-rc file Dump a sample configuration file to the specified file.

--defaultno Make the default of a yes/no dialog No.

--default-item string Set the default item in a checklist, form, or menu dialog.

--exit-label label Specify an alternative label for the Exit button.

--extra-button Display an extra button between the OK and Cancel buttons.

--extra-label label Specify an alternative label for the Extra button.

--help Display the dialog command help message.

--help-button Display a Help button after the OK and Cancel buttons.

--help-label label Specify an alternative label for the Help button.

--help-status Write the checklist, radiolist, or form information after the help
information in the Help button was selected.

--ignore Ignore options that dialog does not recognize.

--input-fd fd Specify an alternative file descriptor, other than STDIN.

--insecure Changes the password widget to display asterisks when typing.

--item-help Adds a help column at the bottom of the screen for each tag in a
checklist, radiolist, or menu for the tag item.

--keep-window Don’t clear old widgets from the screen.

--max-input size Specify a maximum string size for the input. The default is 2048.

continued

405

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

TABLE 15-4 (continued)

Option Description

--nocancel Suppress the Cancel button.

--no-collapse Don’t convert tabs to spaces in dialog text.

--no-kill Place the tailboxbg dialog in background and disable SIGHUP for
the process.

--no-label label Specify an alternative label for the No button.

--no-shadow Don’t display shadows for dialog windows.

--ok-label label Specify an alternative label for the OK button.

--output-fd fd Specify an alternative output file descriptor other than STDERR.

--print-maxsize Print the maximum size of dialog windows allowed to the output.

--print-size Print the size of each dialog window to the output.

--print-version Print the dialog version to output.

--separate-output Output the result of a checklist widget one line at a time with
no quoting.

--separator string Specify a string that separates the output for each widget.

--separate-widget
string

Specify a string that separates the output for each widget.

--shadow Draw a shadow to the right and bottom of each window.

--single-quoted Use single quoting if needed for the checklist output.

--sleep sec Delay for the specified number of seconds after processing the
dialog window.

--stderr Send output to STDERR (this is the default behavior).

--stdout Send output to STDOUT.

--tab-correct Convert tabs to spaces.

--tab-len n Specify the number of spaces a tab character uses (the default is 8).

--timeout sec Specify the number of seconds before exiting with an error code if
no user input.

--title title Specify the title of the dialog window.

--trim Remove leading spaces and newline characters from dialog text.

--visit-items Modify the tab stops in the dialog window to include the list of
items.

--yes-label label Specify an alternative label for the Yes button.

406

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

The --backtitle option is a handy way to create a common title for your menu through the
script. If you specify it for each dialog window, it’ll persist throughout your application, creating
a professional look to your script.

As you can tell from Table 15-4, you can overwrite any of the button labels in your dialog win-
dow. This feature allows you to create just about any window situation you need.

Using the dialog command in a script
Using the dialog command in your scripts is a snap. There are just two things you must
remember:

■ Check the exit status of the dialog command if there’s a Cancel or No button available.

■ Redirect STDERR to retrieve the output value.

If you follow these two rules, you’ll have a professional-looking interactive script in no time.
Here’s an example using dialog widgets to reproduce the system admin menu we created earlier
in the chapter:

$ cat menu3
#!/bin/bash
using dialog to create a menu

temp=`mktemp -t test.XXXXXX`
temp2=`mktemp -t test2.XXXXXX`

function diskspace {
df -k > $temp
dialog --textbox $temp 20 60

}

function whoseon {
who > $temp
dialog --textbox $temp 20 50

}

function memusage {
cat /proc/meminfo > $temp
dialog --textbox $temp 20 50

}

while [1]
do
dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk space" 2
"Display users" 3 "Display memory usage" 0 "Exit" 2> $temp2
if [$? -eq 1]
then

break
fi

407

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

selection=`cat $temp2`

case $selection in
1)

diskspace ;;
2)

whoseon ;;
3)

memusage ;;
0)

break ;;
*)

dialog --msgbox "Sorry, invalid selection" 10 30
esac
done
rm -f $temp 2> /dev/null
rm -f $temp2 2> /dev/null
$

The script uses the while loop with a constant true value to create an endless loop displaying
the menu dialog. This means that, after every function, the script returns to displaying the menu.
Figure 15-8 shows what the dialog menu looks like.

FIGURE 15-8

The script menu using the dialog command

408

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

The menu dialog includes a Cancel button, so the script checks the exit status of the dialog
command in case the user presses the Cancel button to exit. Since it’s in a while loop, exiting is

as easy as using the break command to jump out of the while loop.

The script uses the mktemp command to create two temporary files for holding data for the

dialog commands. The first one, $temp, is used to hold the output of the df command so

that it can be displayed in the textbox dialog. The second temporary file, $temp2, is used to hold
the selection value from the main menu dialog.

Getting Graphic
If you’re looking for even more graphics for your interactive scripts, you can go one step fur-

ther. Both the KDE and GNOME desktop environments (see Chapter 1) have expanded on the
dialog command idea and include commands that produce X Windows graphical widgets for

their respective environments.

This section describes the kdialog and zenity packages, which provide graphical window

widgets for the KDE and GNOME desktops, respectively.

The KDE environment
The KDE graphical environment includes the kdialog package by default. The kdialog package

uses the kdialog command to generate standard windows, similar to the dialog-style widgets,
within your KDE desktop. This allows you to produce Windows-quality user interfaces directly

from your shell scripts!

kdialog widgets

Just like the dialog command, the kdialog command uses command line options to specify

what type of window widget to use. The format of the kdialog command is:

kdialog display-options window-options arguments

The window-options options allow you to specify what type of window widget to use. The
available options are shown in Table 15-5.

As you can see from Table 15-5, all of the standard window dialog box types are represented.

However, when you use a kdialog window widget, it appears as a separate window in the KDE
desktop, not inside the terminal emulator session!

The checklist and radiolist widgets allow you to define individual items in the lists, and

whether they are selected by default:

$ kdialog --checklist "Items I need" 1 "Toothbrush" on 2 "Toothpaste"
off 3 "Hair brush" on 4 "Deodorant" off 5 "Slippers" off

409

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

TABLE 15-5

kdialog Window Options

Option Description

--checklist title [tag
item status]

A checklist menu, with status specifying if the item is checked
or not.

--error text Error message box.

--inputbox text [init] Input textbox. You can specify the default value using the init
value.

--menu title [tag item] Menu selection box title and a list of items identified by a tag.

--msgbox text Simple message box with specified text.

--password text Password input textbox that hides user input.

--radiolist title [tag
item status]

A radiolist menu, with status specifying if the item is selected
or not.

--separate-output Returns items on separate lines for checklist and radiolist
menus.

--sorry text Sorry message box.

--textbox file [width]
[height]

Textbox displaying the contents of file, alternatively specified
by width and height.

--title title Specifies a title for the TitleBar area of the dialog window.

--warningyesno text Warning message box with Yes and No buttons.

--warningcontinuecancel
text

Warning message box with Continue and Cancel buttons.

--warningyesnocancel text Warning message box with Yes, No, and Cancel buttons.

--yesno text Question box with Yes and No buttons.

--yesnocancel text Question box with Yes, No, and Cancel buttons.

The resulting checklist window is shown in Figure 15-9.

To select or deselect an item in the checklist, just click on it. If you select the OK button, the

kdialog will send the tag values to STDOUT:

$ kdialog --checklist "Items I need" 1 "Toothbrush" on 2 "Toothpaste"
off 3 "Hair brush" on 4 "Deodorant" off 5 "Slippers" off

"1" "3" "5"
$

410

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

FIGURE 15-9

A kdialog checklist dialog window

When you hit the Enter key, the kdialog box appears with the selections. When you click the OK

or Cancel buttons, the kdialog command returns each tag as a string value to STDOUT (these

are the ‘‘1’’, ‘‘3’’, and ‘‘5’’ values you see in the example). Your script must be able to parse the

resulting values and match them with the original values.

Using kdialog

You can use the kdialog window widgets in your shell scripts similarly to how you use the dia-

log widgets. The big difference is that the kdialog window widgets output values using STDOUT
instead of STDERR.

Here’s a script that converts the sys admin menu created earlier into a KDE application:

$ cat menu4
#!/bin/bash
using kdialog to create a menu

temp=`mktemp -t temp.XXXXXX`
temp2=`mktemp -t temp2.XXXXXX`

function diskspace {
df -k > $temp
kdialog --textbox $temp 1000 10

}

411

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

function whoseon {
who > $temp
kdialog --textbox $temp 500 10

}

function memusage {
cat /proc/meminfo > $temp
kdialog --textbox $temp 300 500

}

while [1]
do
kdialog --menu "Sys Admin Menu" "1" "Display disk space" "2" "Display
users" "3" "Display memory usage" "0" "Exit" > $temp2
if [$? -eq 1]
then

break
fi

selection=`cat $temp2`

case $selection in
1)

diskspace ;;
2)

whoseon ;;
3)

memusage ;;
0)

break ;;
*)

kdialog --msgbox "Sorry, invalid selection"
esac
done
$

There isn’t much difference from using the kdialog command and the dialog command. The
resulting menu is shown in Figure 15-10.

Now things are looking like a real application! There’s no limit to what you can do with your
interactive scripts now.

The GNOME environment
The GNOME graphical environment supports two popular packages that can generate standard
windows:

■ gdialog

■ zenity

412

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

FIGURE 15-10

The sys admin menu script using kdialog

By far zenity is the most commonly available package found in most GNOME desktop Linux

distributions (such as Ubuntu and Fedora). This section describes the features of zenity and

demonstrates how to use it in your shell scripts.

zenity widgets

Just as you would expect, zenity allows you to create different windows widgets by using com-

mand line options. Table 15-6 shows the different widgets that zenity can produce.

The zenity program works somewhat different than the kdialog and dialog programs. Many

of the widget types are defined using additional options on the command line, instead of includ-

ing them as arguments to an option.

The zenity program does offer some pretty cool basic dialog windows. The calendar option

produces a full month calendar, as shown in Figure 15-11

When you select a date from the calendar, zenity returns the value to STDOUT, just like kdialog:

$ zenity --calendar
11/25/2008
$

Another pretty cool window in zenity is the file selection option, shown in Figure 15-12.

413

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

TABLE 15-6

The zenity Windows Widgets

Option Description

--calendar Display a full month calendar.

--entry Display a text entry dialog window.

--error Display an error message dialog window.

--file-selection Display a full pathname and filename dialog window.

--info Display an informational dialog window.

--list Display a checklist or radiolist dialog window.

--notification Display a notification icon.

--progress Display a progress bar dialog window.

--question Display a yes/no question dialog window.

--scale Display a scale dialog window.

--text-info Display a textbox containing text.

--warning Display a warning dialog window.

FIGURE 15-11

The zenity calendar dialog window

414

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

FIGURE 15-12

The zenity file selection dialog window

You can use the dialog window to browse to any directory location on the system (as long as you
have the privileges to view the directory) and select a file. When you select a file, zenity returns
the full file and pathname:

$ zenity --file-selection
/home/ubuntu/menu5
$

That’s about as professional looking as you can get in the shell script world!

Using zenity in scripts

As you would expect, zenity performs well in shell scripts. Unfortunately zenity chose not to
follow the option convention used in dialog and kdialog, so converting any existing interactive
scripts to zenity may prove challenging.

In converting the sys admin menu from kdialog to zenity, I found that I had to do quite a bit
of manipulation of the widget definitions:

$cat menu5
#!/bin/bash

415

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

using zenity to create a menu

temp=`mktemp -t temp.XXXXXX`
temp2=`mktemp -t temp2.XXXXXX`

function diskspace {
df -k > $temp
zenity --text-info --title "Disk space" --filename=$temp

--width 750 --height 10
}

function whoseon {
who > $temp
zenity --text-info --title "Logged in users" --filename=$temp

--width 500 --height 10
}

function memusage {
cat /proc/meminfo > $temp
zenity --text-info --title "Memory usage" --filename=$temp

--width 300 --height 500
}

while [1]
do
zenity --list --radiolist --title "Sys Admin Menu" --column "Select"
--column "Menu Item" FALSE "Display disk space" FALSE "Display users"
FALSE "Display memory usage" FALSE "Exit" > $temp2
if [$? -eq 1]
then

break
fi

selection=`cat $temp2`
case $selection in
"Display disk space")

diskspace ;;
"Display users")

whoseon ;;
"Display memory usage")

memusage ;;
Exit)

break ;;
*)

zenity --info "Sorry, invalid selection"
esac
done
$

416

www.IrPDF.com

www.IrPDF.com

Adding Color to Scripts 15

FIGURE 15-13

The sys admin menu using zenity

Since zenity doesn’t support the menu dialog window, I used a radiolist type window for the

main menu, as seen in Figure 15-13.

The radiolist uses two columns, each with a column heading. The first column is the radio but-

tons to select. The second column is the item text. The radiolist also doesn’t use tags for the items.

When you select an item, the full text of the item is returned to STDOUT. This makes life a little

more interesting for the case command. You must use the full text from the items in the case

options. If there are any spaces in the text, you need to use quotation marks around the text.

Using the zenity package, you can add a Windows feel to your interactive shell scripts in the

GNOME desktop.

Summary
Interactive shell scripts have a reputation for being dull and boring. You can change that by using

a few different techniques and tools available on most Linux systems. First, you can create menu

systems for your interactive scripts by using the case command and shell script functions.

The case command allows you to paint a menu, using the standard echo command, and read a

response from the user, using the read command. The case command then selects the appro-

priate shell script function based on the value entered.

417

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

You can liven up text mode menus by using the ANSI escape control codes to set colors and

control features in your menu text, such as blinking and bold text. Often just changing the colors

of a menu helps make the script experience more enjoyable.

The dialog program provides several prebuilt text widgets for creating Windows-like objects on a

text-based terminal emulator. You can create dialog boxes for displaying text, entering text, and

choosing files and dates by using the dialog program. This helps bring even more life to your

shell script.

If you’re running your shell scripts in a graphical X Windows environment, you can utilize even

more tools in your interactive scripts. For the KDE desktop, there’s the kdialog program. This

program provides simple commands to create windows widgets for all of the basic windows func-

tions. For the GNOME desktop, there are the gdialog and zenity programs. Each of these

programs provides window widgets that blend into the GNOME desktop just like a real Windows

application.

The next chapter dives into the subject of editing and manipulating text data files. Often the

biggest use of shell scripts revolves around parsing and displaying data in text files such as log

and error files. The Linux environment includes two very useful tools, sed and gawk, for working

with text data in your shell scripts. The next chapter introduces you to these tools, and shows the

basics of how to use them.

418

www.IrPDF.com

www.IrPDF.com

Introducing sed
and gawk

IN THIS CHAPTER

Working with text files

Discovering sed

Exploring gawk

B
y far, one of the most common functions that people use shell

scripts for is working with text files. Between examining log files,

reading configuration files, and handling data elements, shell scripts

can help automate the mundane tasks of manipulating any type of data

contained in text files. However, trying to manipulate the contents of text

files using just shell script commands can be somewhat awkward. If you
perform any type of data manipulation in your shell scripts, you’ll want to

become familiar with the sed and gawk tools available in Linux. These tools

can greatly simplify any data-handling tasks you need to perform.

Text Manipulation

Chapter 7 showed how to edit text files using different editor programs

available in the Linux environment. These editors allow you to easily manip-

ulate text contained in a text file, using simple commands or mouse clicks.

There are times though when you’ll find yourself wanting to manipulate text

in a text file on the fly, without having to pull out a full-fledged interactive

text editor. In these situations, it would be useful to have a simple command

line editor that could easily format, insert, modify, or delete text elements

automatically.

The Linux system provides two common tools for doing just that. This

section describes the two most popular command line editors used in the

Linux world, sed and gawk.

419

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The sed editor
The sed editor is called a stream editor, as opposed to a normal interactive text editor. In an

interactive text editor, such as vim, you interactively use keyboard commands to insert, delete, or

replace text in the data. A stream editor edits a stream of data based on a set of rules you supply

ahead of time, before the editor processes the data.

The sed editor can manipulate data in a data stream based on commands you either enter into the

command line or store in a command text file. It reads one line of data at a time from the input,

matches that data with the supplied editor commands, changes data in the stream as specified in

the commands, then outputs the new data to STDOUT. After the stream editor matches all of the

commands against a line of data, it reads the next line of data and repeats the process. After

the stream editor processes all of the lines of data in the stream, it terminates.

Since the commands are applied sequentially line by line, the sed editor only has to make one

pass through the data stream to make the edits. This makes the sed editor much faster than an

interactive editor, allowing you to quickly make changes to data in a file on the fly.

The format for using the sed command is:

sed options script file

The options parameters allow you to customize the behavior of the sed command, and

include the options shown in Table 16-1.

The script parameter specifies a single command to apply against the stream data. If more than

one command is required, you must use either the -e option to specify them in the command

line or the -f option to specify them in a separate file. There are lots of commands available for

manipulating data. We’ll examine some of the basic commands used by the sed editor later in this

chapter, then look at some of the more advanced commands in Chapter 18.

TABLE 16-1

The sed Command Options

Option Description

-e script Add commands specified in the script to the commands run while
processing the input.

-f file Add the commands specified in the file to the commands run while
processing the input.

-n Don’t produce output for each command, but wait for the print command.

420

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

Defining an editor command in the command line

By default, the sed editor applies the specified commands to the STDIN input stream. This allows

you to pipe data directly to the sed editor for processing. Here’s a quick example demonstrating

how to do this:

$ echo "This is a test" | sed ’s/test/big test/’
This is a big test
$

This example uses the s command in the sed editor. The s command substitutes a second text

string for the first text string pattern specified between the forward slashes. In this example,

I substituted the words big test for the word test.

When you run this example, it should display the results almost instantaneously. That’s the power

of using the sed editor, you can make multiple edits to data in about the same time it takes for

some of the interactive editors just to start up.

Of course, this simple test just edited one line of data. You should get the same speedy results
when editing complete files of data:

$ cat data1
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$ sed ’s/dog/cat/’ data1
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
The quick brown fox jumps over the lazy cat.
$

The sed command executes and returns the data almost instantaneously. As it processes each

line of data, the results are displayed. You’ll start seeing results before the sed editor completes

processing the entire file.

It’s important to note that the sed editor doesn’t modify the data in the text file itself. It only

sends the modified text to STDOUT. If you look at the text file, it still contains the original data:

$ cat data1
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

421

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Using multiple editor commands in the command line

To execute more than one command from the sed command line, just use the -e option:

$ sed -e ’s/brown/green/; s/dog/cat/’ data1
The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
The quick green fox jumps over the lazy cat.
$

Both commands are applied to each line of data in the file. The commands must be separated with a

semicolon, and there shouldn’t be any spaces between the end of the command and the semicolon.

Instead of using a semicolon to separate the commands, you can use the secondary prompt in the

bash shell. Just enter the first single quotation mark to open the script, and bash will continue to

prompt you for more commands until you enter the closing quotation mark:

$ sed -e ’
> s/brown/green/
> s/fox/elephant/
> s/dog/cat/’ data1
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$

You must remember to finish the command on the same line that the closing single quotation

mark appears, for once the bash shell detects the closing quotation mark, it’ll process the com-

mand. Once it starts, the sed command applies each command you specified to each line of data

in the text file.

Reading editor commands from a file

Finally, if you have lots of sed commands you want to process, it’s often easier to just store them

in a separate file and use the -f option to specify the file in the sed command:

$ cat script1
s/brown/green/
s/fox/elephant/
s/dog/cat/
$ sed -f script1 data1
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$

422

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

In this case, you don’t put a semicolon after each command. The sed editor knows that each line

contains a separate command. Just as with entering commands on the command line, the sed

editor reads the commands from the specified file and applies them to each line in the data file.

We’ll be looking at some other sed editor commands that’ll come in handy for manipulating data

in the ‘‘The sed Editor Basics’’ section. Before that, let’s take a quick look at the other Linux

data editor.

The gawk program
While the sed editor is a handy tool for modifying text files on the fly, it has its limitations.

Often you need a more advanced tool for manipulating data in a file, one that provides a more

programming-like environment allowing you to modify and reorganize data in a file. This is where

gawk comes in.

The gawk program is the GNU version of the original awk program in Unix. The awk program

takes stream editing one step further than the sed editor by providing a programming language

instead of just editor commands. Within the programming language you can:

■ Define variables to store data.

■ Use arithmetic and string operators to operate on data.

■ Use structured programming concepts, such as if-then statements and loops, to add

logic to your data processing.

■ Generate formatted reports by extracting data elements within the data file and reposi-

tioning them in another order or format.

The gawk program’s report-generating abilities are often used for extracting data elements from

large bulky text files and formatting them into a readable report. The perfect example of this is

formatting log files. Trying to pore through lines of errors in a log file can be difficult. The gawk

program allows you to filter just the data elements you want to view from the log file, then format

them in a manner that makes reading the important data easier.

The gawk command format

The basic format of the gawk program is:

gawk options program file

Table 16-2 shows the options available with the gawk program.

The command line options provide an easy way to customize features in the gawk program. We’ll

be looking more closely at these as we explore using gawk.

The power of gawk is in the program script. You can write scripts to read the data within a line

of text, then manipulate and display the data to create any type of output report.

423

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

TABLE 16-2

The gawk Options

Option Description

-F fs Specify a file separator for delineating data fields in a line.

-f file Specify a filename to read the program from.

-v var=value Define a variable and default value used in the gawk program.

-mf N Specify the maximum number of fields to process in the data file.

-mr N Specify the maximum record size in the data file.

-W keyword Specify the compatibility mode or warning level for gawk.

Reading the program script from the command line

A gawk program script is defined by opening and closing braces. You must place script commands

between the two braces. Since the gawk command line assumes that the script is a single text

string, you must also enclose your script in single quotation marks. Here’s an example of a simple

gawk program script specified on the command line:

$ gawk ’{print "Hello John!"}’

The program script defines a single command, the print command. The print command does

what it says; it prints text to STDOUT. If you try running this command, you’ll be somewhat

disappointed, as nothing will happen right away. Since no filename was defined in the command

line, the gawk program retrieves data from STDIN. When you run the program, it just waits for

text to come in via STDIN.

If you type a line of text and press the Enter key, gawk will run the text through the program

script:

$ gawk ’{print "Hello World!"}’
This is a test
Hello John!
hello
Hello John!
This is another test
Hello John!

$

Just like the sed editor, the gawk program executes the program script on each line of text avail-

able in the data stream. Since the program script is set to display a fixed text string, no matter

what text you enter in the data stream, you’ll get the same text output.

424

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

To terminate the gawk program, you must signal that the data stream has ended. The bash

shell provides a key combination to generate an End-of-File (EOF) character. The Ctrl-D key
combination generates an EOF character in bash. Using that key combination terminates the

gawk program and returns you to a command line interface prompt.

Using data field variables

As I mentioned, one of the primary features of gawk is its ability to manipulate data in the text
file. It does this by automatically assigning a variable to each data element in a line. By default,
gawk assigns the following variables to each data field it detects in the line of text:

■ $0 represents the entire line of text.

■ $1 represents the first data field in the line of text.

■ $2 represents the second data field in the line of text.

■ $n represents the nth data field in the line of text.

Each data field is determined in a text line by a field separation character. When gawk reads a line
of text, it delineates each data field using the defined field separation character. The default field

separation character in gawk is any whitespace character (such as the tab or space characters).

To demonstrate this, here’s an example gawk program that reads a text file and displays only the

first data field value:

$ cat data3
One line of test text.
Two lines of test text.
Three lines of test text.
$ gawk ’{print $1}’ data3
One
Two
Three
$

This program uses the $1 field variable to display only the first data field for each line of text.

If you’re reading a file that uses a different field separation character, you can specify it by using

the -F option:

$ gawk -F: ’{print $1}’ /etc/passwd
root
bin
daemon
adm
lp
sync
shutdown
halt
...

425

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This short program displays the first data field in the password file on the system. Because the

/etc/passwd file uses a colon to separate the data fields, if you want to separate out each data

element you must specify it as the field separation character in the gawk options.

Using multiple commands in the program script

A programming language wouldn’t be very useful if you could only execute one command. The

gawk programming language allows you to combine commands into a normal program. To use

multiple commands in the program script specified on the command line, just place a semicolon

between each command:

$ echo "My name is Rich" | gawk ’{$4="Dave"; print $0}’
My name is Dave
$

The first command assigns a value to the $4 field variable. The second command then prints the

entire data field. Notice from the output that the gawk program replaced the fourth data field in

the original text with the new value.

You can also use the secondary prompt to enter your program script commands one line at a

time:

$ gawk ’{
> $4="testing"
> print $0 }’
This is not a good test.
This is not testing good test.
$

After you open the single quotation mark, the bash shell provides the secondary prompt to

prompt you for more data. You can add your commands one at a time on each line until you

enter the closing single quotation mark. To exit the program, just press the Ctrl-D key combina-

tion to signal the end of the data.

Reading the program from a file

Just as with the sed editor, the gawk editor allows you to store your programs in a file and refer

to them in the command line:

$ cat script2
{ print $5 "’s userid is " $1 }
$ gawk -F: -f script2 /etc/passwd
root’s userid is root
bin’s userid is bin
PostgreSQL Server’s userid is postgres
FTP User’s userid is ftp
GDM User’s userid is gdm
HTDIG User’s userid is htdig

426

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

Dhcpd User’s userid is dhcpd
Bind User’s userid is named
NSCD Daemon’s userid is nscd
X Font Server’s userid is xfs
MySQL server’s userid is mysql
Rich’s userid is rich
test account’s userid is testing
postfix’s userid is postfix
$

The script2 program script uses the print command again to print the comment data

field (field variable $5) of the /etc/passwd file, a short text message, then the userid
data field (field variable $1).

You can specify multiple commands in the program file. To do so, just place each command on

a separate line. There’s no need to use semicolons:

$ cat script3
{
text="’s userid is "
print $5 text $1
}
$ awk -F: -f script3 /etc/passwd | more
root’s userid is root
bin’s userid is bin
PostgreSQL Server’s userid is postgres
FTP User’s userid is ftp
GDM User’s userid is gdm
HTDIG User’s userid is htdig
Dhcpd User’s userid is dhcpd
Bind User’s userid is named
NSCD Daemon’s userid is nscd
X Font Server’s userid is xfs
MySQL server’s userid is mysql
Rich’s userid is rich
test account’s userid is testing
postfix’s userid is postfix
$

The script3 program script defines a variable to hold a text string used in the print command.

You’ll notice that gawk programs don’t use a dollar sign when referencing a variable’s value, as

the shell script does.

Running scripts before processing data

The gawk program also allows you to specify when the program script is run. By default, gawk

reads a line of text from the input, then executes the program script on the data in the line of

text. Sometimes you may need to run a script before processing data, such as to create a header

427

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

section for a report. To do that you use the BEGIN keyword. This forces gawk to execute the

program script specified after the BEGIN keyword before reading the data:

$ gawk ’BEGIN {print "Hello World!"}’
Hello World!
$

This time the print command displays the text before reading any data. However, after it dis-

plays the text, it quickly exits, without waiting for any data.

The reason for that is the BEGIN keyword only applies the specified script before it processes any

data. If you want to process data with a normal program script, you must define the program

using another script section:

$ gawk ’BEGIN {print "Hello World!"} {print $0}’
Hello World!
This is a test
This is a test
This is another test
This is another test
This is the last test
This is the last test

$

Now after gawk executes the BEGIN script, it uses the second script to process any data that

appears. To exit the program, just press the Ctrl-D key combination to signal the end of the data.

Be careful when doing this, notice that both of the scripts are still considered one text string on

the gawk command line. You need to place your single quotation marks accordingly.

Running scripts after processing data

Similarly to the BEGIN keyword, the END keyword allows you to specify a program script that

gawk executes after reading the data:

$ gawk ’BEGIN {print "Hello World!"} {print $0} END {print
"byebye"}’

Hello World!
This is a test
This is a test
This is another test.
This is another test.
byebye
$

This time, after you press the Ctrl-D key combination to signal the end of the data, the gawk

program executes the commands in the END script. This is a great technique to use to add footer
data to reports after all the normal data has been processed.

428

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

You can put all of these elements together into a nice little program script file to create a full

report from a simple data file:

$ cat script4
BEGIN {
print "The latest list of users and shells"
print " Userid Shell"
print "-------- -------"
FS=":"
}

{
print $1 " " $7
}

END {
print "This concludes the listing"
}
$

This script uses the BEGIN script to create a header section for the report. It also defines a special

variable called FS. This is yet another way to define the field separation character. This way you

don’t have to count on whomever uses your script to define the field separation character in the
command line options.

Here’s a somewhat truncated output from running this gawk program script:

$ gawk -f script4 /etc/passwd
The latest list of users and shells
Userid Shell

-------- -------
root /bin/bash
sync /bin/sync
shutdown /sbin/shutdown
halt /sbin/halt
mysql /bin/bash
rich /bin/bash
test2 /bin/csh
test /bin/bash
This concludes the listing
$

As expected, the BEGIN script created the header text, the program script processed the information

from the specified data file (the /etc/passwd file), and the END script produced the footer text.

This gives you a small taste of the power available when you use simple gawk scripts. Chapter 19
describes some more basic programming principles available for your gawk scripts, along with

some even more advanced programming concepts you can use in your gawk program scripts to
create professional looking reports from even the most cryptic data files.

429

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The sed Editor Basics
The key to successfully using the sed editor is knowing its myriad commands and formats, which

are available to help you customize your text editing. This section describes some of the basic

commands and features you can incorporate into your script to start using the sed editor.

More substitution options
You’ve already seen how to use the s command to substitute new text for the text in a line.

However, there are a few other options available for the substitute command that can help make

your life easier.

Substitution flags

There’s a caveat to how the substitute command replaces matching patterns in the text string.

Watch what happens in this example:

$ cat data4
This is a test of the test script.
This is the second test of the test script.
$ sed ’s/test/trial/’ data4
This is a trial of the test script.
This is the second trial of the test script.
$

The substitute command works fine in replacing text in multiple lines, but by default it only

replaces the first occurrence in each line. To get the substitute command to work on different

occurrences of the text, you must use a substitution flag. The substitution flag is set after the sub-

stitution command strings:

s/pattern/replacement/flags

There are four types of substitution flags available:

■ A number, indicating the pattern occurrence for which new text should be substituted.

■ g — Indicates that new text should be substituted for all occurrences of the existing text.

■ p — Indicates that the contents of the original line should be printed.

■ w file — Write the results of the substitution to a file.

In the first type of substitution, you can specify which occurrence of the matching pattern the sed

editor should substitute new text for:

$ sed ’s/test/trial/2’ data4
This is a test of the trial script.
This is the second test of the trial script.
$

430

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

As a result of specifying a 2 as the substitution flag, the sed editor only replaces the pattern in the
second occurrence in each line. The g substitution flag enables you to replace every occurrence

of the pattern in the text:

$ sed ’s/test/trial/g’ data4
This is a trial of the trial script.
This is the second trial of the trial script.
$

The p substitution flag prints a line that contains a matching pattern in the substitute command.
This is most often used in conjunction with the -n sed option:

$ cat data5
This is a test line.
This is a different line.
$ sed -n ’s/test/trial/p’ data5
This is a trial line.
$

The -n option suppresses output from the sed editor. However, the p substitution flag outputs

any line that’s been modified. Using the two in combination produces output only for lines that
have been modified by the substitute command.

The w substitution flag produces the same output but stores the output in the specified file:

$ sed ’s/test/trial/w test’ data5
This is a trial line.
This is a different line.
$ cat test
This is a trial line.
$

The normal output of the sed editor appears in STDOUT, but only the lines that include the
matching pattern are stored in the specified output file.

Replacement characters

There are times when you run across characters in text strings that aren’t easy to use in the
substitution pattern. One popular example in the Linux world is the forward slash.

Substituting pathnames in a file can get awkward. For example, if you wanted to substitute the
Cshell for the bash shell in the /etc/passwd file, you’d have to do this:

$ sed ’s/\/bin\/bash/\/bin\/csh/’ /etc/passwd

Since the forward slash is used as the string delimiter, you must use a backslash to escape it if it
appears in the pattern text. This often leads to confusion and mistakes.

To solve this problem, the sed editor allows you to select a different character for the string
delimiter in the substitute command:

$ sed ’s!/bin/bash!/bin/csh!’ /etc/passwd

431

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

In this example the exclamation point is used for the string delimiter, making the pathnames

much easier to read and understand.

Using addresses
By default, the commands you use in the sed editor apply to all lines of the text data. If you only

want to apply a command to a specific line, or a group of lines, you must use line addressing.

There are two forms of line addressing in the sed editor:

■ A numeric range of lines

■ A text pattern that filters out a line

Both forms use the same format for specifying the address:

[address]command

You can also group more than one command together for a specific address:

address {
command1
command2
command3

}

The sed editor applies each of the commands you specify only to lines that match the address

specified.

This section demonstrates using both of these addressing techniques in your sed editor scripts.

Numeric line addressing

When using numeric line addressing, you reference lines using their line position in the text

stream. The sed editor assigns the first line in the text stream as line number one and continues

sequentially for each new line.

The address you specify in the command can be a single line number or a range of lines specified

by a starting line number, a comma, and an ending line number. Here’s an example of specifying

a line number to which the sed command will be applied:

$ sed ’2s/dog/cat/’ data1
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
$

432

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

The sed editor modified the text only in line two per the address specified. Here’s another

example, this time using a range of line addresses:

$ sed ’2,3s/dog/cat/’ data1
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog
$

If you want to apply a command to a group of lines starting at some point within the text, but

continuing to the end of the text, you can use the special address, the dollar sign:

$ sed ’2,$s/dog/cat/’ data1
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat
$

Since you may not know how many lines of data are in the text, the dollar sign often comes in

handy.

Using text pattern filters

The other method of restricting which lines a command applies to is a bit more complicated. The

sed editor allows you to specify a text pattern that it uses to filter lines for the command.

The format for this is:

/pattern/command

You must encapsulate the pattern you specify in forward slashes. The sed editor applies the com-

mand only to lines that contain the text pattern that you specify.

For example, if you want to change the default shell for only the user rich, you’d use the sed
command:

$ sed ’/rich/s/bash/csh/’ /etc/passwd
rich:x:500:500:Rich Blum:/home/rich:/bin/csh
barbara:x:501:501:Barbara:/home/barbara:/bin/bash
katie:x:502:502:Katie:/home/katie:/bin/bash
jessica:x:503:503:Jessica:/home/jessica:/bin/bash
test:x:504:504:Ima test:/home/test:/bin/bash
$

The command was only applied to the line with the matching text pattern. While using a fixed
text pattern may be useful for filtering specific values, as in the userid example, it’s somewhat

433

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

limited in what you can do with it. The sed editor uses a feature called regular expressions in text

patterns to allow you to create patterns that get pretty involved.

Regular expressions allow you to create advanced text pattern–matching formulas to match all
sorts of data. These formulas combine a series of wildcard characters, special characters, and fixed

text characters to produce a concise pattern that can match just about any text situation. Regular
expressions are one of the scarier parts of shell script programming, and Chapter 17 covers them
in great detail.

Grouping commands

If you need to perform more than one command on an individual line, group the commands
together using braces. The sed editor will process each command listed on the address line(s):

$ sed ’2{
> s/fox/elephant/
> s/dog/cat/
> }’ data1
The quick brown fox jumps over the lazy dog.
The quick brown elephant jumps over the lazy cat.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
$

Both commands are processed against the address. And of course, you can also specify an address

range before the grouped commands:

$ sed ’3,${
> s/brown/green/
> s/lazy/active/
> }’ data1
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick green fox jumps over the active dog.
The quick green fox jumps over the active dog.
$

The sed editor applies all of the commands to all of the lines in the address range.

Deleting lines
The text substitution command isn’t the only command available in the sed editor. If you need to

delete specific lines of text in a text stream, there’s the delete command.

The delete command, d, pretty much does what it says. It’ll delete any text lines that match the
addressing scheme supplied. Be careful with the delete command, because if you forget to include

an addressing scheme, all of the lines will be deleted from the stream:

$ cat data1
The quick brown fox jumps over the lazy dog

434

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
$ sed ’d’ data1
$

The delete command is obviously most useful when used in conjunction with a specified address.

This allows you to delete specific lines of text from the data stream, either by line number:

$ sed ’3d’ data6
This is line number 1.
This is line number 2.
This is line number 4.
$

or by a specific range of lines:

$ sed ’2,3d’ data6
This is line number 1.
This is line number 4.
$

or by using the special end of file character:

$ sed ’3,$d’ data6
This is line number 1.
This is line number 2.
$

The pattern-matching feature of the sed editor also applies to the delete command:

$ sed ’/number 1/d’ data6
This is line number 2.
This is line number 3.
This is line number 4.
$

The sed editor removes the line containing text that matches the pattern you specify.

Remember that the sed editor doesn’t touch the original file. Any lines you delete

are only gone from the output of the sed editor. The original file still contains the

‘‘deleted’’ lines.

You can also delete a range of lines using two text patterns, but be careful if you do this. The first
pattern you specify ‘‘turns on’’ the line deletion, and the second pattern ‘‘turns off’’

the line deletion. The sed editor deletes any lines between the two specified lines (including the

specified lines):

$ sed ’/1/,/3/d’ data6
This is line number 4.
$

435

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

I mentioned that you need to be careful with this, as the delete feature will ‘‘turn on’’ whenever

the sed editor detects the start pattern in the data stream. This may produce an unexpected result:

$ cat data7
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is line number 1 again.
This is text you want to keep.
This is the last line in the file.
$ sed ’/1/,/3/d’ data7
This is line number 4.
$

The second occurrence of a line with the number 1 in it triggered the delete command again,

deleting the rest of the lines in the data stream, as the stop pattern wasn’t recognized.
Of course, the other obvious problem occurs if you specify a pattern that never appears in

the text:

$ sed ’/1/,/5/d’ data7
$

Since the delete features ‘‘turned on’’ at the first pattern match, but never found the end pattern

match, the entire data stream was deleted.

Inserting and appending text
As you would expect, like any other editor, the sed editor allows you to insert and append text

lines to the data stream. The difference between the two actions can be confusing:

■ The insert command (i) adds a new line before the specified line

■ The append command (a) adds a new line after the specified line

A confusing thing about these two commands is their formats. You can’t use these commands on
a single command line. You must specify the line to insert or append on a separate line by itself.

The format for doing this is:

sed ’[address]command\

new line’

The text in new line appears in the sed editor output in the place you specify. Remember, when
you use the insert command, the text appears before the data stream text:

$ echo "testing" | sed ’i\

> This is a test’
This is a test
testing
$

436

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

And when you use the append command, the text appears after the data stream text:

$ echo "testing" | sed ’a\

> This is a test’
testing
This is a test
$

When you use the sed editor from the command line interface prompt, you’ll get the secondary
prompt to enter the new line data. You must complete the sed editor command on this line, for
once you enter the ending single quotation mark the bash shell will process the command.

This works great for adding text before or after the text in the data stream, but what about adding
text inside the data stream?

To insert or append data inside the data stream lines, you must use addressing to tell the sed

editor where you want the data to appear. You can only specify a single line address when using
these commands. You can match either a numeric line number or a text pattern, but you can’t use
a range of addresses (that makes sense, as you can only insert or append before or after a single
line, not a range).

Here’s an example of inserting a new line before line 3 in the data stream:

$ sed ’3i\

> This is an inserted line.’ data6
This is line number 1.
This is line number 2.
This is an inserted line.
This is line number 3.
This is line number 4.
$

Here’s an example of appending a new line after line 3 in the data stream:

$ sed ’3a\

>This is an inserted line.’ data6
This is line number 1.
This is line number 2.
This is line number 3.
This is an inserted line.
This is line number 4.
$

This uses the same process as the insert command; it just places the new text line after the speci-
fied line number. If you have a multiline data stream, and you want to append a new line of text

to the end of a data stream, just use our new friend the dollar sign, which represents the last line
of data:

$ sed ’$a\

> This is a new line of text.’ data6

437

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is a new line of text.
$

The same idea applies if you want to add a new line at the beginning of the data stream. Just

insert a new line before line number one.

To insert or append more than one line of text, you must use a backslash on each line of new

text until you reach the last text line where you want to insert or append text:

$ sed ’1i\

> This is one line of new text.\

> This is another line of new text.’ data6
This is one line of new text.
This is another line of new text.
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
$

Both of the specified lines are added to the data stream.

Changing lines
The change command allows you to change the contents of an entire line of text in the data
stream. It works the same way as the insert and append commands, in that you must specify the

new line separately from the rest of the sed command:

$ sed ’3c\

> This is a changed line of text.’ data6
This is line number 1.
This is line number 2.
This is a changed line of text.
This is line number 4.
$

In this example the sed editor changes the text in line number 3. You can also use a text pattern
for the address:

$ sed ’/number 3/c\

> This is a changed line of text.’ data6
This is line number 1.
This is line number 2.
This is a changed line of text.
This is line number 4.
$

438

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

The text pattern change command will change any line of text in the data stream that it matches.

$ sed ’/number 1/c\

> This is a changed line of text.’ data7
This is a changed line of text.
This is line number 2.
This is line number 3.
This is line number 4.
This is a changed line of text.
This is yet another line.
This is the last line in the file.
$

You can use an address range in the change command, but the results may not be what you
expect:

$ sed ’2,3c\

> This is a new line of text.’ data6
This is line number 1.
This is a new line of text.
This is line number 4.
$

Instead of changing both lines with the text, the sed editor uses the single line of text to replace
both lines.

The transform command
The transform command (y) is the only sed editor command that operates on a single charac-

ter. The transform command uses the format:

[address]y/inchars/outchars/

The transform command performs a one-to-one mapping of the inchars and the outchars

values. The first character in inchars is converted to the first character in outchars. The second

character in inchars is converted to the second character in outchars. This mapping continues
throughout the length of the specified characters. If the inchars and outchars are not the same

length, the sed editor will produce an error message.

A simple example of using the transform command is:

$ sed ’y/123/789/’ data7
This is line number 7.
This is line number 8.
This is line number 9.
This is line number 4.
This is line number 7 again.
This is yet another line.
This is the last line in the file.
$

439

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

As you can see from the output, each instance of the characters specified in the inchars pattern

has been replaced by the character in the same position in the outchars pattern.

The transform command is a global command, that is, it performs the transformation on any

character found in the text line automatically, without regard to the occurrence:

$ echo "This 1 is a test of 1 try." | sed ’y/123/456/’
This 4 is a test of 4 try.
$

The sed editor transformed both instances of the matching character 1 in the text line. You can’t
limit the transformation to a specific occurrence of the character.

Printing revisited
The ‘‘More Substitution Options’’ section showed how to use the p flag with the substitution

command to display lines that the sed editor changed. There are three commands that also can
be used to print information from the data stream:

■ The lowercase p command to print a text line

■ The equal sign (=) command to print line numbers

■ The l (lowercase L) command to list a line

The following sections look at each of these three printing commands in the sed editor.

Printing lines

Similarly to the p flag in the substitution command, the p command prints a line in the sed editor
output. On its own, there’s not much excitement:

$ echo "this is a test" | sed ’p’
this is a test
this is a test
$

All it does is print the data text that you already know is there. The most common use for the

print command is printing lines that contain matching text from a text pattern:

$ sed -n ’/number 3/p’ data6
This is line number 3.
$

By using the -n option on the command line, you can suppress all of the other lines and only
print the line that contains the matching text pattern.

You can also use this as a quick way to print a subset of lines in a data stream:

$ sed -n ’2,3p’ data6
This is line number 2.

440

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

This is line number 3.
$

Another use for the print command is when you need to see a line before it gets altered, such as

with the substitution or change command. You can create a script that displays the line before it’s

changed:

$ sed -n ’/3/{
p
s/line/test/p
}’ data6
This is line number 3.
This is test number 3.
$

This sed editor command searches for lines that contain the number 3, then executes two com-

mands. First, the script uses the p command to print the original version of the line, then it uses
the s command to substitute text, along with the p flag to print the resulting text. The output

shows both the original line text and the new line text.

Printing line numbers

The equal sign command prints the current line number for the line within the data stream.

Line numbers are determined by using the newline character in the data stream. Each time a newline

character appears in the data stream, the sed editor assumes that it terminates a line of text.

The basic use of the equal sign command isn’t too exciting:

$ sed ’=’ data1
1
The quick brown fox jumps over the lazy dog.
2
The quick brown fox jumps over the lazy dog.
3
The quick brown fox jumps over the lazy dog.
4
The quick brown fox jumps over the lazy dog.
$

The sed editor prints the line number before the actual line of text. The equal sign command

comes in handy if you’re searching for a specific text pattern in the data stream:

$ sed -n ’/number 4/{
=
p
}’ data6
4
This is line number 4.
$

441

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

By using the -n option you can have the sed editor display only both the line number and text

for the line that contains the matching text pattern.

Listing lines

The list command (l) allows you to print both the text and nonprintable ASCII characters in a

data stream. Any nonprintable characters are shown using either their octal values, preceded by a

backslash, or the standard C-style nomenclature for common nonprintable characters, such as \t
for tab characters:

$ cat data8
This line contains tabs.
$ sed -n ’l’ data8
This\tline\tcontains\ttabs.$
$

The tab character locations are shown with the \t nomenclature. The dollar sign at the end of the

line indicates the newline character. If you have a data stream that contains an escape character,

the list command displays it using the octal code:

$ cat data9
This line contains an escape character
$ sed -n ’l’ data9
This line contains an escape character \033[44m$
$

The data9 text file contains an escape control code (see Chapter 15) to change the display color.
When you use the cat command to display the text file, you don’t see the escape control code;

it just changes the color of the display.

However, using the list command you can display the escape control code used. The \033 is the

octal value of the ASCII code for the escape key.

Using files with sed
The substitution command contains flags that allow you to work with files. There are also regular

sed editor commands that let you do that without having to substitute text.

Writing to a file

The w command is used to write lines to a file. The format for the w command is:

[address]w filename

The filename can be specified as either a relative or absolute pathname, but in either case the

person running the sed editor must have write permissions for the file. The address can be any

type of addressing method used in sed, such as a single line number, a text pattern, or a range of

line numbers or text patterns.

442

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

Here’s an example that prints only the first two lines of a data stream to a text file:

$ sed ’1,2w test’ data6
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
$ cat test
This is line number 1.
This is line number 2.
$

Of course, if you don’t want the lines to display on STDOUT, you can use the -n option for the

sed command.

This is a great tool to use if you need to create a data file from a master file on the basis of

common text values, such as those in a mailing list:

$ cat data10
Blum, Katie Chicago, IL
Mullen, Riley West Lafayette, IN
Snell, Haley Ft. Wayne, IN
Woenker, Matthew Springfield, IL
Wisecarver, Emma Grant Park, IL
$ sed -n ’/IN/w INcustomers’ data10
$ cat INcustomers
Mullen, Riley West Lafayette, IN
Snell, Haley Ft. Wayne, IN
$

The sed editor writes to a destination file only the data lines that contain the text pattern.

Reading data from a file

You’ve already seen how to insert data into and append text to a data stream from the sed com-

mand line. The read command (r) allows you to insert data contained in a separate file.

The format of the read command is:

[address]r filename

The filename parameter specifies either an absolute or relative pathname for the file that contains

the data. You can’t use a range of addresses for the read command. You can only specify a single

line number or text pattern address. The sed editor inserts the text from the file after the address.

$ cat data11
This is an added line.
This is the second added line.
$ sed ’3r data11’ data6

443

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This is line number 1.
This is line number 2.
This is line number 3.
This is an added line.
This is the second added line.
This is line number 4.
$

The sed editor inserts into the data stream all of the text lines in the data file. The same technique

works when using a text pattern address:

$ sed ’/number 2/r data11’ data6
This is line number 1.
This is line number 2.
This is an added line.
This is the second added line.
This is line number 3.
This is line number 4.
$

If you want to add text to the end of a data stream, just use the dollar sign address symbol:

$ sed ’$r data11’ data6
This is line number 1.
This is line number 2.
This is line number 3.
This is line number 4.
This is an added line.
This is the second added line.
$

A cool application of the read command is to use it in conjunction with a delete command to

replace a placeholder in a file with data from another file. For example, suppose that you had a

form letter stored in a text file that looked like this:

$ cat letter
Would the following people:
LIST
please report to the office.
$

The form letter uses the generic placeholder LIST in place of a list of people. To insert the list

of people after the placeholder, all you need to do is use the read command. However, this still

leaves the placeholder text in the output. To remove that, just use the delete command. The result

looks like this:

$ sed ’/LIST/{
> r data10
> d

444

www.IrPDF.com

www.IrPDF.com

Introducing sed and gawk 16

> }’ letter
Would the following people:
Blum, Rich Chicago, IL
Mullen, Riley West Lafayette, IN
Snell, Haley Ft. Wayne, IN
Woenker, Matthew Springfield, IL
Wisecarver, Emma Grant Park, IL
please report to the office.
$

Now the placeholder text is replaced with the list of names from the data file.

Summary
While shell scripts can do a lot of work on their own, it’s often difficult to manipulate data with

just a shell script. Linux provides two handy utilities to help out with handling text data. The sed

editor is a stream editor that quickly processes data ‘‘on the fly’’ as it reads it. You must provide

the sed editor with a list of editing commands, which it applies to the data.

The gawk program is a utility from the GNU organization that mimics and expands on the func-

tionality of the Unix awk program. The awk program contains a built-in programming language

that you can use to write scripts to handle and process data. You can use the gawk program to

extract data elements from large data files and output them in just about any format you desire.

This makes processing large log files a snap, as well as creating custom reports from data files.

A crucial piece of both the sed and gawk programs is knowing how to use regular expressions.

Regular expressions are key to creating customized filters for extracting and manipulating data

in text files. The next chapter dives into the often misunderstood world of regular expressions,

showing how to build regular expressions for manipulating all types of data.

445

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Regular Expressions

IN THIS CHAPTER

Defining regular expressions

Looking at the basics

Extending our patterns

Creating expressions

T
he key to successfully working with the sed editor and the gawk
program in your shell script is being comfortable using regular
expressions. This is not always an easy thing to do, as trying to filter

specific data from a large batch of data can (and often does) get complicated.
This chapter describes how to create regular expressions in both the sed
editor and the gawk program that can filter out just the data you need.

What Are Regular Expressions?

The first step to understanding regular expressions is defining just exactly
what they are. This section explains just what a regular expression is and
describes how Linux uses regular expressions.

A definition
A regular expression is a pattern template you define that a Linux utility
uses to filter text. A Linux utility (such as the sed editor or the gawk pro-
gram) matches the regular expression pattern against data as that data flows
into the utility. If the data matches the pattern, it’s accepted for process-
ing. If the data doesn’t match the pattern, it’s rejected. This is illustrated in
Figure 17-1.

The regular expression pattern makes use of wildcard characters to represent
one or more characters in the data stream. There are plenty of instances in
Linux where you can specify a wildcard character to represent data that
you don’t know about. You’ve already seen an example of using wildcard
characters with the Linux ls command for listing files and directories (see
Chapter 3).

447

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

FIGURE 17-1

Matching data against a regular expression pattern

data stream matching data

rejected data

regular
expression

The asterisk wildcard character allows you to list only files that match a certain criteria.

For example:

$ ls -al da*
-rw-r--r-- 1 rich rich 45 Nov 26 12:42 data
-rw-r--r-- 1 rich rich 25 Dec 4 12:40 data.tst
-rw-r--r-- 1 rich rich 180 Nov 26 12:42 data1
-rw-r--r-- 1 rich rich 45 Nov 26 12:44 data2
-rw-r--r-- 1 rich rich 73 Nov 27 12:31 data3
-rw-r--r-- 1 rich rich 79 Nov 28 14:01 data4
-rw-r--r-- 1 rich rich 187 Dec 4 09:45 datatest
$

The da* parameter instructs the ls command to list only the files whose name starts with da.

There can be any number of characters after the da in the filename (including none). The ls
command reads the information regarding all of the files in the directory but only displays the

ones that match the wildcard character.

Regular expression wildcard patterns work in a similar way. The regular expression pattern con-

tains text and/or special characters that define a template for the sed editor and the gawk program

to follow when matching data. There are different special characters you can use in a regular

expression to define a specific pattern for filtering data.

Types of regular expressions
The biggest problem with using regular expressions is that there isn’t just one set of them. Sev-

eral different applications use different types of regular expressions in the Linux environment.

448

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

These include such diverse applications as programming languages (Java, Perl, and Python), Linux
utilities (such as the sed editor, the gawk program, and the grep utility), and mainstream applica-
tions (such as the MySQL and PostgreSQL database servers).

A regular expression is implemented using a regular expression engine. A regular expression engine
is the underlying software that interprets regular expression patterns and uses those patterns to
match text.

In the Linux world, there are two popular regular expression engines:

■ The POSIX Basic Regular Expression (BRE) engine

■ The POSIX Extended Regular Expression (ERE) engine

Most Linux utilities at a minimum conform to the POSIX BRE engine specifications, recognizing
all of the pattern symbols it defines. Unfortunately, some utilities (such as the sed editor) only
conform to a subset of the BRE engine specifications. This is due to speed constraints, as the sed
editor attempts to process text in the data stream as quickly as possible.

The POSIX ERE engine is often found in programming languages that rely on regular expressions
for text filtering. It provides advanced pattern symbols as well as special symbols for common
patterns, such as matching digits, words, and alphanumeric characters. The gawk program uses
the ERE engine to process its regular expression patterns.

Since there are so many different ways to implement regular expressions, it’s hard to present a
single, concise description of all the possible regular expressions. The following sections show the
most commonly found regular expressions and demonstrate how to use them in the sed editor
and gawk program.

Defining BRE Patterns
The most basic BRE pattern is matching text characters in a data stream. This section demon-
strates how you can define text in the regular expression pattern and what to expect from
the results.

Plain text
Chapter 16 demonstrated how to use standard text strings in the sed editor and the gawk program
to filter data. Here’s an example to refresh your memory:

$ echo "This is a test" | sed -n ’/test/p’
This is a test
$ echo "This is a test" | sed -n ’/trial/p’
$
$ echo "This is a test" | gawk ’/test/{print $0}’
This is a test
$ echo "This is a test" | gawk ’/trial/{print $0}’
$

449

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The first pattern defines a single word test. The sed editor and gawk program scripts each use

their own version of the print command to print any lines that match the regular expression

pattern. Since the echo statement contains the word test in the text string, the data stream text

matches the defined regular expression pattern, and the sed editor displays the line.

The second pattern again defines just a single word, this time the word trial. Since the echo
statement text string doesn’t contain that word, the regular expression pattern doesn’t match, so

neither the sed editor nor the gawk program print the line.

You probably already noticed that the regular expression doesn’t care where in the data stream

the pattern occurs. It also doesn’t matter how many times the pattern occurs. Once the regular

expression can match the pattern anywhere in the text string, it passes the string along to the

Linux utility that’s using it.

The key is matching the regular expression pattern to the data stream text. It’s important to

remember that regular expressions are extremely picky about matching patterns. The first rule

to remember is that regular expression patterns are case sensitive. This means they’ll only match

patterns with the proper case of characters:

$ echo "This is a test" | sed -n ’/this/p’
$
$ echo "This is a test" | sed -n ’/This/p’
This is a test
$

The first attempt failed to match since the word this doesn’t appear in all lower case in the text

string., while the second attempt, which uses the upper-case letter in the pattern, worked just fine.

You don’t have to limit yourself to whole words in the regular expression. If the defined text

appears anywhere in the data stream, the regular expression will match:

$ echo "The books are expensive" | sed -n ’/book/p’
The books are expensive
$

Even though the text in the data stream is books, the data in the stream contains the regular

expression book, so the regular expression pattern matches the data. Of course, if you try the

opposite, the regular expression will fail:

$ echo "The book is expensive" | sed -n ’/books/p’
$

The complete regular expression text didn’t appear in the data stream, so the match failed and

the sed editor didn’t display the text.

450

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

You also don’t have to limit yourself to single text words in the regular expression. You can

include spaces and numbers in your text string as well:

$ echo "This is line number 1" | sed -n ’/ber 1/p’
This is line number 1
$

Spaces are treated just like any other character in the regular expression:

$ echo "This is line number1" | sed -n ’/ber 1/p’
$

If you define a space in the regular expression, it must appear in the data stream. You can even

create a regular expression pattern that matches multiple contiguous spaces:

$ cat data1
This is a normal line of text.
This is a line with too many spaces.
$ sed -n ’/ /p’ data1
This is a line with too many spaces.
$

The line with two spaces between words matches the regular expression pattern. This is a great

way to catch spacing problems in text files!

Special characters
As you use text strings in your regular expression patterns, there’s something you need to be

aware of. There are a few exceptions when defining text characters in a regular expression. Regular

expression patterns assign a special meaning to a few characters. If you try to use these characters

in your text pattern, you won’t get the results you were expecting.

The special characters recognized by regular expressions are:

.*[]^${}\+?|()

As the chapter progresses, you’ll find out just what these special characters do in a regular expres-

sion. For now though, just remember that you can’t use these characters by themselves in your

text pattern.

If you want to use one of the special characters as a text character, you need to escape it. When
you escape the special characters, you add a special character in front of it to indicate to the

regular expression engine that is should interpret the next character as a normal text character.

The special character that does this is the backslash character (\).

451

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

For example, if you want to search for a dollar sign in your text, just precede it with a backslash

character:

$ cat data2
The cost is $4.00
$ sed -n ’/\$/p’ data2
The cost is $4.00
$

Since the backslash is a special character, if you need to use it in a regular expression pattern
you’ll need to escape it as well, producing a double backslash:

$ echo "\ is a special character" | sed -n ’/\\/p’
\ is a special character
$

Finally, although the forward slash isn’t a regular expression special character, if you use it in
your regular expression pattern in the sed editor or the gawk program, you’ll get an error:

$ echo "3 / 2" | sed -n ’///p’
sed: -e expression #1, char 2: No previous regular expression
$

To use a forward slash you’ll need to escape that as well:

$ echo "3 / 2" | sed -n ’/\//p’
3 / 2
$

Now the sed editor can properly interpret the regular expression pattern, and all is well.

Anchor characters
As shown in the ‘‘Plain Text ’’ section, by default, when you specify a regular expression pattern,

if the pattern appears anywhere in the data stream, it will match. There are two special characters
you can use to anchor a pattern to either the beginning or the end of lines in the data stream.

Starting at the beginning

The caret character (^) defines a pattern that starts at the beginning of a line of text in the data

stream. If the pattern is located any place other than the start of the line of text, the regular
expression pattern fails.

To use the caret character, you must place it before the pattern specified in the regular expression:

$ echo "The book store" | sed -n ’/^book/p’
$
$ echo "Books are great" | sed -n ’/^Book/p’
Books are great
$

452

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

The caret anchor character checks for the pattern at the beginning of each new line of data, as

determined by the newline character:

$ cat data3
This is a test line.
this is another test line.
A line that tests this feature.
Yet more testing of this
$ sed -n ’/^this/p’ data3
this is another test line.
$

As long as the pattern appears at the start of a new line, the caret anchor will catch it.

If you position the caret character in any place other than at the beginning of the pattern, it’ll act

like a normal character and not as a special character:

$ echo "This ^ is a test" | sed -n ’/s ^/p’
This ^ is a test
$

Since the caret character is listed last in the regular expression pattern, the sed editor uses it as a

normal character to match text.

If you need to specify a regular expression pattern using only the caret character, you

don’t need to escape it with a backslash. However, if you specify the caret character

first, followed by additional text in the pattern, you’ll need to use the escape character before the

caret character.

Looking for the ending

The opposite of looking for a pattern at the start of a line is looking for it at the end of a line. The

dollar sign ($) special character defines the end anchor. Add this special character after a text

pattern to indicate that the line of data must end with the text pattern:

$ echo "This is a good book" | sed -n ’/book$/p’
This is a good book
$ echo "This book is good" | sed -n ’/book$/p’
$

The problem with an ending text pattern is that you must be careful of what you’re looking for:

$ echo "There are a lot of good books" | sed -n ’/book$/p’
$

Making the book word plural at the end of the line means that it no longer matches the regular

expression pattern, even though book is in the data stream. The text pattern must be the last

thing on the line for the pattern to match.

453

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Combining anchors

There are a couple of common situations where you can combine both the start and end anchor
on the same line. In the first situation, suppose that you want to look for a line of data containing
only a specific text pattern:

$ cat data4
this is a test of using both anchors
I said this is a test
this is a test
I’m sure this is a test.
$ sed -n ’/^this is a test$/p’ data4
this is a test
$

The sed editor ignores the lines that include other text besides the specified text.

The second situation may seem a little odd at first, but is extremely useful. By combining both
anchors together in a pattern with no text, you can filter blank lines from the data stream. Look
at this example:

$ cat data5
This is one test line.

This is another test line.
$ sed ’/^$/d’ data5
This is one test line.
This is another test line.
$

The regular expression pattern defined looks for lines that have nothing between the start and
end of the line. Since blank lines contain no text between the two newline characters, they match
the regular expression pattern. The sed editor uses the delete command to delete lines that
match the regular expression pattern, thus removing all blank lines from the text. This is an
effective way to remove blank lines from documents.

The dot character
The dot special character is used to match any single character except a newline character. The
dot character must match a character though; if there’s no character in the place of the dot, then
the pattern will fail.

Let’s take a look at a few examples of using the dot character in a regular expression pattern:

$ cat data6
This is a test of a line.
The cat is sleeping.
That is a very nice hat.
This test is at line four.

454

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

at ten o’clock we’ll go home.
$ sed -n ’/.at/p’ data6
The cat is sleeping.
That is a very nice hat.
This test is at line four.
$

You should be able to figure out why the first line failed and why the second and third lines

passed. The fourth line is a little tricky. Notice that we matched the at, but there’s no character

in front of it to match the dot character. Ah, but there is! In regular expressions, spaces count

as characters, so the space in front of the at matches the pattern. The fifth line proves this, by

putting the at in the front of the line, which fails to match the pattern.

Character classes
The dot special character is great for matching a character position against any character, but

what if you want to limit what characters to match? This is called a character class in regular

expressions.

You can define a class of characters that would match a position in a text pattern. If one of the

characters from the character class is in the data stream, it matches the pattern.

To define a character class, you use square brackets. The brackets should contain any character

that you want to include in the class. You then use the entire class within a pattern just like any
other wildcard character. This takes a little getting used to at first, but once you catch on it can

generate some pretty amazing results.

Here’s an example of creating a character class:

$ sed -n ’/[ch]at/p’ data6
The cat is sleeping.
That is a very nice hat.
$

Using the same data file as in the dot special character example, we came up with a different

result. This time we managed to filter out the line that just contained the word at. The only
words that match this pattern are cat and hat. Also notice that the line that started with at
didn’t match as well. There must be a character in the character class that matches the appropriate

position.

Character classes come in handy if you’re not sure which case a character is in:

$ echo "Yes" | sed -n ’/[Yy]es/p’
Yes
$ echo "yes" | sed -n ’/[Yy]es/p’
yes
$

455

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

You can use more than one character class in a single expression:

$ echo "Yes" | sed -n ’/[Yy][Ee][Ss]/p’
Yes
$ echo "yEs" | sed -n ’/[Yy][Ee][Ss]/p’
yEs
$ echo "yeS" | sed -n ’/[Yy][Ee][Ss]/p’
yeS
$

The regular expression used three character classes to cover both lower and upper cases for all

three character positions.

Character classes don’t have to contain just letters; you can use numbers in them as well:

$ cat data7
This line doesn’t contain a number.
This line has 1 number on it.
This line a number 2 on it.
This line has a number 4 on it.
$ sed -n ’/[0123]/p’ data7
This line has 1 number on it.
This line a number 2 on it.
$

The regular expression pattern matches any lines that contain the numbers 0, 1, 2, or 3. Any

other numbers are ignored, as are lines without numbers in them.

You can combine character classes to check for properly formatted numbers, such as phone num-

bers and zip codes. However, when you’re trying to match a specific format, you must be careful.

Here’s an example of a zip code match gone wrong:

$ cat data8
60633
46201
223001
4353
22203
$ sed -n ’
>/[0123456789][0123456789][0123456789][0123456789][0123456789]/p
>’ data8
60633
46201
223001
22203
$

This might not have produced the result you were thinking of. It did a fine job of filtering out

the number that was too short to be a zip code, as the last character class didn’t have a character

456

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

to match against. However, it still passed the six-digit number, even though we only defined five

character classes.

Remember, the regular expression pattern can be found anywhere in the text of the data stream.
There can always be additional characters besides the matching pattern characters. If you want

to ensure that you only match against five numbers, you need to delineate them somehow,
either with spaces, or as in this example, by showing that they’re at the start and end of
the line:

$ sed -n ’
> /^[0123456789][0123456789][0123456789][0123456789][0123456789]$/p
> ’ data8
60633
46201
22203
$

Now that’s much better! Later on we’ll look at how to simplify this even further.

One extremely popular use for character classes is parsing words that might be misspelled, such as

data entered from a user form. You can easily create regular expressions that can accept common
misspellings in data:

$ cat data9
I need to have some maintenence done on my car.
I’ll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as new.
$ sed -n ’
/maint[ea]n[ae]nce/p
/sep[ea]r[ea]te/p
’ data9
I need to have some maintenence done on my car.
I’ll pay that in a seperate invoice.
After I pay for the maintenance my car will be as good as new.
$

The two sed print commands in this example utilize regular expression character classes to help
catch the misspelled words maintenance and separate in the text. The same regular expres-
sion pattern also matches the properly spelled occurrence of maintenance.

Negating character classes
In regular expression patterns, you can also reverse the effect of a character class. Instead of look-
ing for a character contained in the class, you can look for any character that’s not in the class.
To do that, just place a caret character at the beginning of the character class range:

$ sed -n ’/[^ch]at/p’ data6
This test is at line two.
$

457

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

By negating the character class, the regular expression pattern matches any character that’s neither

a c nor an h, along with the text pattern. Since the space character fits this category, it passed the
pattern match. However, even with the negation, the character class must still match a character,
so the line with the at in the start of the line still doesn’t match the pattern.

Using ranges
You may have noticed when I showed the zip code example earlier it was somewhat awkward
having to list all of the possible digits in each character class. Fortunately, you can use a shortcut
to prevent having to do that.

You can use a range of characters within a character class by using the dash symbol. Just specify

the first character in the range, a dash, then the last character in the range. The regular expression
includes any character that’s within the specified character range, according to the character set
used by the Linux system (see Chapter 2).

Now you can simplify the zip code example by specifying a range of digits:

$ sed -n ’/^[0-9][0-9][0-9][0-9][0-9]$/p’ data8
60633
46201
45902
$

That saved a lot of typing! Each character class will match any digit from 0 to 9. The pattern will
fail if a letter is present anywhere in the data:

$ echo "a8392" | sed -n ’/^[0-9][0-9][0-9][0-9][0-9]$/p’
$
$ echo "1839a" | sed -n ’/^[0-9][0-9][0-9][0-9][0-9]$/p’
$
$ echo "18a92" | sed -n ’/^[0-9][0-9][0-9][0-9][0-9]$/p’
$

The same technique also works with letters:

$ sed -n ’/[c-h]at/p’ data6
The cat is sleeping.
That is a very nice hat.
$

The new pattern [c-h]at matches words where the first letter is between the letter c and the
letter h. In this case, the line with only the word at failed to match the pattern.

You can also specify multiple, noncontinuous ranges in a single character class:

$ sed -n ’/[a-ch-m]at/p’ data6
The cat is sleeping.
That is a very nice hat.
$

458

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

The character class allows the ranges a through c, and h through m to appear before the at text.

This range would reject any letters between d and g:

$ echo "I’m getting too fat." | sed -n ’/[a-ch-m]at/p’
$

This pattern rejected the fat text, as it wasn’t in the specified range.

Special character classes
Besides defining your own character classes, the BRE contains special character classes you can
use to match against specific types of characters. Table 17-1 describes the BRE special characters

you can use.

You use the special character classes just as you would a normal character class in your regular
expression patterns:

$ echo "abc" | sed -n ’/[[:digit:]]/p’
$
$ echo "abc" | sed -n ’/[[:alpha:]]/p’
abc
$ echo "abc123" | sed -n ’/[[:digit:]]/p’
abc123
$ echo "This is, a test" | sed -n ’/[[:punct:]]/p’
This is, a test
$ echo "This is a test" | sed -n ’/[[:punct:]]/p’
$

TABLE 17-1

BRE Special Character Classes

Class Description

[[:alpha:]] Match any alphabetical character, either upper or lower case.

[[:alnum:]] Match any alphanumeric character 0–9, A–Z, or a–z.

[[:blank:]] Match a space or Tab character.

[[:digit:]] Match a numerical digit from 0 through 9.

[[:lower:]] Match any lower-case alphabetical character a–z.

[[:print:]] Match any printable character.

[[:punct:]] Match a punctuation character.

[[:space:]] Match any whitespace character: space, Tab, NL, FF, VT, CR.

[[:upper:]] Match any upper-case alphabetical character A–Z.

459

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Using the special character classes is an easy way to define ranges. Instead of having to use a
range [0-9], you can just use [[:digit:]].

The asterisk
Placing an asterisk after a character signifies that the character must appear zero or more times in
the text to match the pattern:

$ echo "ik" | sed -n ’/ie*k/p’
ik
$ echo "iek" | sed -n ’/ie*k/p’
iek
$ echo "ieek" | sed -n ’/ie*k/p’
ieek
$ echo "ieeek" | sed -n ’/ie*k/p’
ieeek
$ echo "ieeeek" | sed -n ’/ie*k/p’
ieeeek
$

This pattern symbol is commonly used for handling words that have a common misspelling or
variations in language spellings. For example, if you need to write a script that may be used in
either American or British English, you could write:

$ echo "I’m getting a color TV" | sed -n ’/colou*r/p’
I’m getting a color TV
$ echo "I’m getting a colour TV" | sed -n ’/colou*r/p’
I’m getting a colour TV
$

The u* in the pattern indicates that the letter u may or may not appear in the text to match the
pattern. Similarly, if you know of a word that is commonly misspelled, you can accommodate it
by using the asterisk:

$ echo "I ate a potatoe with my lunch." | sed -n ’/potatoe*/p’
I ate a potatoe with my lunch.
$ echo "I ate a potato with my lunch." | sed -n ’/potatoe*/p’
I ate a potato with my lunch.
$

Placing an asterisk next to the possible extra letter allows you to accept the misspelled word.

Another handy feature is combining the dot special character with the asterisk special charac-
ter. This combination provides a pattern to match any number of any characters. It’s often used
between two text strings that may or may not appear next to each other in the data stream:

$ echo "this is a regular pattern expression" | sed -n ’
> /regular.*expression/p’
this is a regular pattern expression
$

Using this pattern, you can easily search for multiple words that may appear anywhere in a line
of text in the data stream.

460

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

The asterisk can also be applied to a character class. This allows you to specify a group or range

of characters that can appear more than once in the text:

$ echo "bt" | sed -n ’/b[ae]*t/p’
bt
$ echo "bat" | sed -n ’/b[ae]*t/p’
bat
$ echo "bet" | sed -n ’/b[ae]*t/p’
bet
$ echo "btt" | sed -n ’/b[ae]*t/p’
$
$ echo "baat" | sed -n ’/b[ae]*t/p’
baat
$ echo "baaeeet" | sed -n ’/b[ae]*t/p’
baaeeet
$ echo "baeeaeeat" | sed -n ’/b[ae]*t/p’
baeeaeeat
$ echo "baabeeet" | sed -n ’/b[ae]*t/p’
$

As long as the a and e characters appear in any combination between the b and t characters
(including not appearing at all), the pattern matches. If any other character outside of the defined

character class appears, the pattern match fails.

Extended Regular Expressions
The POSIX ERE patterns include a few additional symbols that are used by some Linux applica-
tions and utilities. The gawk program recognizes the ERE patterns, but the sed editor doesn’t.

It’s important to remember that there is a difference between the regular expression

engines in the sed editor and the gawk program. The gawk program can use most of

the extended regular expression pattern symbols, and it can provide some additional filtering capa-

bilities that the sed editor doesn’t have. However, because of this, it is often slower in processing

data streams.

This section describes the more commonly found ERE pattern symbols that you can use in your
gawk program scripts.

The question mark
The question mark is similar to the asterisk, but with a slight twist. The question mark indicates

that the preceding character can appear zero or one time, but that’s all. It doesn’t match repeating
occurrences of the character:

$ echo "bt" | gawk ’/be?t/{print $0}’
bt
$ echo "bet" | gawk ’/be?t/{print $0}’
bet

461

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

$ echo "beet" | gawk ’/be?t/{print $0}’
$
$ echo "beeet" | gawk ’/be?t/{print $0}’
$

If the e character doesn’t appear in the text, or as long as it appears only once in the text, the
pattern matches.

Just as with the asterisk, you can use the question mark symbol along with a character class:

$ echo "bt" | gawk ’/b[ae]?t/{print $0}’
bt
$ echo "bat" | gawk ’/b[ae]?t/{print $0}’
bat
$ echo "bot" | gawk ’/b[ae]?t/{print $0}’
$
$ echo "bet" | gawk ’/b[ae]?t/{print $0}’
bet
$ echo "baet" | gawk ’/b[ae]?t/{print $0}’
$
$ echo "beat" | gawk ’/b[ae]?t/{print $0}’
$
$ echo "beet" | gawk ’/b[ae]?t/{print $0}’
$

If zero or one character from the character class appears, the pattern match passes. However, if
either both characters appear, or if one of the characters appears twice, the pattern match fails.

The plus sign
The plus sign is another pattern symbol that’s similar to the asterisk, but with a different twist

than the question mark. The plus sign indicates that the preceding character can appear one or

more times, but must be present at least once. The pattern doesn’t match if the character is not
present:

$ echo "beeet" | gawk ’/be+t/{print $0}’
beeet
$ echo "beet" | gawk ’/be+t/{print $0}’
beet
$ echo "bet" | gawk ’/be+t/{print $0}’
bet
$ echo "bt" | gawk ’/be+t/{print $0}’
$

If the e character is not present, the pattern match fails. The plus sign also works with character

classes, the same way as the asterisk and question mark do:

$ echo "bt" | gawk ’/b[ae]+t/{print $0}’
$

462

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

$ echo "bat" | gawk ’/b[ae]+t/{print $0}’
bat
$ echo "bet" | gawk ’/b[ae]+t/{print $0}’
bet
$ echo "beat" | gawk ’/b[ae]+t/{print $0}’
beat
$ echo "beet" | gawk ’/b[ae]+t/{print $0}’
beet
$ echo "beeat" | gawk ’/b[ae]+t/{print $0}’
beeat
$

This time if either character defined in the character class appears, the text matches the specified

pattern.

Using braces
Curly braces are available in ERE to allow you to specify a limit on a repeatable regular expres-

sion. This is often referred to as an interval. You can express the interval in two formats:

■ m: The regular expression appears exactly m times.

■ m,n: The regular expression appears at least m times, but no more than n times.

This feature allows you to fine-tune exactly how many times you allow a character (or character

class) to appear in a pattern.

By default, the gawk program doesn’t recognize regular expression intervals. You must

specify the --re-interval command line option for the gawk program to recognize

regular expression intervals.

Here’s an example of using a simple interval of one value:

$ echo "bt" | gawk --re-interval ’/be{1}t/{print $0}’
$
$ echo "bet" | gawk --re-interval ’/be{1}t/{print $0}’
bet
$ echo "beet" | gawk --re-interval ’/be{1}t/{print $0}’
$

By specifying an interval of one, you restrict the number of times the character can be present for

the string to match the pattern. If the character appears more times, the pattern match fails.

There are lots of times when specifying the lower and upper limit comes in handy:

$ echo "bt" | gawk --re-interval ’/be{1,2}t/{print $0}’
$
$ echo "bet" | gawk --re-interval ’/be{1,2}t/{print $0}’
bet

463

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

$ echo "beet" | gawk --re-interval ’/be{1,2}t/{print $0}’
beet
$ echo "beeet" | gawk --re-interval ’/be{1,2}t/{print $0}’
$

In this example, the e character can appear once or twice for the pattern match to pass; otherwise,

the pattern match fails.

The interval pattern match also applies to character classes:

$ echo "bt" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
$
$ echo "bat" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
bat
$ echo "bet" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
bet
$ echo "beat" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
beat
$ echo "beet" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
beet
$ echo "beeat" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
$
$ echo "baeet" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
$
$ echo "baeaet" | gawk --re-interval ’/b[ae]{1,2}t/{print $0}’
$

This regular expression pattern will match if there are exactly one or two a’s or e’s in the text
pattern, but it will fail if there are any more in any combination.

The pipe symbol
The pipe symbol allows to you to specify two or more patterns that the regular expression engine
uses in a logical OR formula when examining the data stream. If any of the patterns match the

data stream text, the text passes. If none of the patterns match, the data stream text fails.

The format for using the pipe symbol is:

expr1|expr2|...

Here’s an example of this:

$ echo "The cat is asleep" | gawk ’/cat|dog/{print $0}’
The cat is asleep
$ echo "The dog is asleep" | gawk ’/cat|dog/{print $0}’
The dog is asleep
$ echo "The sheep is asleep" | gawk ’/cat|dog/{print $0}’
$

464

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

This example looks for the regular expression cat or dog in the data stream. You can’t place

any spaces within the regular expressions and the pipe symbol, or they’ll be added to the regular

expression pattern.

The regular expressions on either side of the pipe symbol can use any regular expression pattern,

including character classes, to define the text:

$ echo "He has a hat." | gawk ’/[ch]at|dog/{print $0}’
He has a hat.
$

This example would match cat, hat, or dog in the data stream text.

Grouping expressions
Regular expression patterns can also be grouped by using parentheses. When you group a reg-

ular expression pattern, the group is treated like a standard character. You can apply a special

character to the group just as you would to a regular character. For example:

$ echo "Sat" | gawk ’/Sat(urday)?/{print $0}’
Sat
$ echo "Saturday" | gawk ’/Sat(urday)?/{print $0}’
Saturday
$

The grouping of the day ending along with the question mark allows the pattern to match either

the full day name or the abbreviated name.

It’s common to use grouping along with the pipe symbol to create groups of possible pattern

matches:

$ echo "cat" | gawk ’/(c|b)a(b|t)/{print $0}’
cat
$ echo "cab" | gawk ’/(c|b)a(b|t)/{print $0}’
cab
$ echo "bat" | gawk ’/(c|b)a(b|t)/{print $0}’
bat
$ echo "bab" | gawk ’/(c|b)a(b|t)/{print $0}’
bab
$ echo "tab" | gawk ’/(c|b)a(b|t)/{print $0}’
$
$ echo "tac" | gawk ’/(c|b)a(b|t)/{print $0}’
$

The pattern (c|b)a(b|t) matches any combination of the letters in the first group along with

any combination of the letters in the second group.

465

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Regular Expressions in Action
Now that you’ve seen the rules and a few simple demonstrations of using regular expression

patterns, it’s time to put that knowledge into action. The following sections demonstrate some

common regular expression examples within shell scripts.

Counting directory files
To start things out, let’s look at a shell script that counts the executable files that are present

in the directories defined in your PATH environment variable. To do that, you’ll need to parse

out the PATH variable into separate directory names. Chapter 5 showed how to display the PATH
environment variable:

$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/games:/usr/java/
j2sdk1.4.1 01/bin
$

Your PATH environment variable will differ, depending on where the applications are located

on your Linux system. The key is to recognize that each directory in the PATH is separated by

a colon. To get a listing of directories that you can use in a script, you’ll have to replace each

colon with a space. You now recognize that the sed editor can do just that using a simple regular

expression:

$ echo $PATH | sed ’s/:/ /g’
/usr/local/bin /bin /usr/bin /usr/X11R6/bin /usr/games /usr/java/
j2sdk1.4.1 01/bin
$

Once you’ve got the directories separated out, you can use them in a standard for statement (see

Chapter 10) to iterate through each directory:

mypath=`echo $PATH | sed ’s/:/ /g’`
for directory in $mypath
do
...
done

Once you have each directory, you can use the ls command to list each file in each directory,

and use another for statement to iterate through each file, incrementing a counter for each file.

The final version of the script looks like this:

$ cat countfiles
#!/bin/bash
count number of files in your PATH

466

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

mypath=`echo $PATH | sed ’s/:/ /g’`
count=0
for directory in $mypath
do

check=`ls $directory`
for item in $check
do

count=$[$count + 1]
done
echo "$directory - $count"
count=0

done
$./countfiles
/usr/local/bin - 79
/bin - 86
/usr/bin - 1502
/usr/X11R6/bin - 175
/usr/games - 2
/usr/java/j2sdk1.4.1 01/bin - 27
$

Validating a phone number
The previous example showed how to incorporate the simple regular expression along with sed to

replace characters in a data stream to process data. Often regular expressions are used to validate
data to ensure that data is in the correct format for a script.

A common data validation application is checking phone numbers. Often data entry forms request

phone numbers, and often customers fail to enter a properly formatted phone number. In the
United States, there are several common ways to display a phone number:

(123)456-7890
(123) 456-7890
123-456-7890
123.456.7890

This leaves four possibilities for how customers can enter their phone number in a form. The

regular expression must be robust enough to be able to handle either situation.

When building a regular expression, it’s best to start on the left-hand side, and build your pattern
to match the possible characters you’ll run into. In this example, the first thing is that there may

or may not be a left parenthesis in the phone number. This can be matched by using the pattern:

^\(?

The caret is used to indicate the beginning of the data. Since the left parenthesis is a special

character, you must escape it to use it as a normal character. The question mark indicates that
the left parenthesis may or may not appear in the data to match.

467

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Next comes the three digit area code. In the United States area codes start with the number 2
(no area codes use the digits 0 or 1), and can go to 9. To match the area code, you’d use the
pattern:

[2-9][0-9]{2}

This requires that the first character be a digit between 2 and 9, followed by any two digits. After
the area code, the ending right parenthesis may or may not be there:

\)?

After the area code there can be a space, no space, a dash, or a dot. You can group those using a
character group along with the pipe symbol:

(| |-|\.)

The very first pipe symbol appears immediately after the left parenthesis to match the no space
condition. You must use the escape character for the dot; otherwise, it’ll take on its special mean-
ing of matching any character.

Next comes the three-digit phone exchange number. Nothing special required here:

[0-9]{3}

After the phone exchange number, you must match either a space, a dash, or a dot (this time you
don’t have to worry about matching no space, since there must be at least a space between the
phone exchange number and the rest of the number):

(|-|\.)

Then to finish things off, you must match the four digit-local phone extension at the end of the
string:

[0-9]{4}$

Putting the entire pattern together results in this:

^\(?[2-9][0-9]{2}\)?(| |-|\.)[0-9]{3}(|-|\.)[0-9]{4}$

You can use this regular expression pattern in the gawk program to filter out bad phone numbers.
All you need to do now is create a simple script using the regular expression in a gawk program,
then filter your phone list through the script. Remember, when you use regular expression inter-
vals in the gawk program you must use the --re-interval command line option or you won’t
get the correct results.

Here’s the script:

$ cat isphone
#!/bin/bash
script to filter out bad phone numbers
gawk --re-interval ’/^\(?[2-9][0-9]{2}\)?(| |-|\.)
[0-9]{3}(|-|\.)[0-9]{4}/{print $0}’
$

468

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

While you can’t tell from this listing, the gawk command is on a single line in the shell script.
You can then redirect phone numbers to the script for processing:

$ echo "317-555-1234" | ./isphone
317-555-1234
$ echo "000-555-1234" | ./isphone
$

Or you can redirect an entire file of phone numbers to filter out the invalid ones:

$ cat phonelist
000-000-0000
123-456-7890
212-555-1234
(317)555-1234
(202) 555-9876
33523
1234567890
234.123.4567
$ cat phonelist | ./isphone
212-555-1234
(317)555-1234
(202) 555-9876
234.123.4567
$

Only the valid phone numbers that match the regular expression pattern appear.

Parsing an e-mail address
In this day and age e-mail addresses have become a crucial form of communication. Trying to
validate e-mail addresses has become quite a challenge for script builders, due to the myriad of
ways to create an e-mail address. The basic form of an e-mail address is:

username@hostname

The username value can use any alphanumeric character, along with several special characters:

■ Dot

■ Dash

■ Plus sign

■ Underscore

These characters can appear in any combination in a valid e-mail userid. The hostname portion
of the e-mail address consists of one or more domain names and a server name. The server and
domain names must also follow strict naming rules, allowing only alphanumeric characters, along
with the special characters:

■ Dot

■ Underscore

469

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The server and domain names are each separated by a dot, with the server name specified first,

any subdomain names specified next, and finally, the top-level domain name without a trail-

ing dot.

At one time there were a fairly limited number of top-level domains, and regular expression pat-

tern builders attempted to add them all in patterns for validation. Unfortunately, as the Internet

grew so did the possible top-level domains. This technique is no longer a viable solution.

Let’s start building the regular expression pattern from the left side. We know that there can be

multiple valid characters in the username. This should be fairly easy:

^([a-zA-Z0-9 \-\.\+]+)@

This grouping specifies the allowable characters in the username, and the plus sign to indicate

that there must be at least one character present. The next character is obviously going to be the

@ symbol, no surprises there.

The hostname pattern uses the same technique to match the server name and the subdomain

names:

([a-zA-Z0-9 \-\.]+)

This pattern matches the text:

server
server.subdomain
server.subdomain.subdomain

There are special rules for the top-level domain. Top-level domains are only alphabetic characters,

and they must be no fewer than two characters (used in country codes) and no more than five

characters in length. The regular expression pattern for the top-level domain is:

\.([a-zA-Z]{2,5})$

Putting the entire pattern together results in:

^([a-zA-Z0-9 \-\.\+]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5})$

This pattern will filter out poorly formatted e-mail addresses from a data list. Now you can create

your script to implement the regular expression:

$ echo "rich@here.now" | ./isemail
rich@here.now
$ echo "rich@here.now." | ./isemail
$
$ echo "rich@here.n" | ./isemail
$
$ echo "rich@here-now" | ./isemail
$

470

www.IrPDF.com

www.IrPDF.com

Regular Expressions 17

$ echo "rich.blum@here.now" | ./isemail
rich.blum@here.now
$ echo "rich blum@here.now" | ./isemail
rich blum@here.now
$ echo "rich/blum@here.now" | ./isemail
$
$ echo "rich#blum@here.now" | ./isemail
$
$ echo "rich*blum@here.now" | ./isemail
$

Summary
If you manipulate data files in shell scripts, you’ll need to become familiar with regular expres-

sions. Regular expressions are implemented in Linux utilities, programming languages, and
applications using regular expression engines. There are a host of different regular expression

engines available in the Linux world. The two most popular are the POSIX Basic Regular

Expression (BRE) engine, and the POSIX Extended Regular Expression (ERE) engine. The sed

editor conforms mainly to the BRE engine, while the gawk program utilizes most features found

in the ERE engine.

A regular expression defines a pattern template that’s used to filter text in a data stream. The

pattern consists of a combination of standard text characters and special characters. The special

characters are used by the regular expression engine to match a series of one or more characters,

similarly to how wildcard characters work in other applications.

By combining characters and special characters, you can define a pattern to match most any type

of data. You can then use the sed editor or gawk program to filter specific data from a larger data

stream, or for validating data received from data entry applications.

The next chapter digs deeper into using the sed editor to perform advanced text manipulation.

There are lots of advanced features available in the sed editor that make it useful for handling

large data streams and filtering out just what you need.

471

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Advanced sed

IN THIS CHAPTER

Digging deeper with sed

Handling multiple lines

Holding lines

Branching with labels

Using sed in scripts

C
hapter 16 showed how to use the basics of the sed editor to

manipulate text in data streams. The basic sed editor commands

are capable of handling most of your everyday text-editing require-

ments. This chapter takes a look at the more advanced features that the

sed editor has to offer. These are features that you might not use as often,

but when you need them, it’s nice to know that they’re there and how to

use them.

Multiline Commands

When using the basic sed editor commands you might have noticed a lim-

itation. All of the sed editor commands perform functions on a single line

of data. As the sed editor reads a data stream, it divides the data into lines

based on the presence of newline characters. The sed editor processes each

line of data one at a time, processing the defined script commands on a line

of text, then moving on to the next line and repeating the process.

There are times when you need to perform actions on data that spans more

than one line. This is especially true if you’re trying to find or replace

a phrase.

For example, if you’re looking for the phrase Linux System Administrators
Group in your data, it’s quite possible that the phrase can be split into two

lines between any of the words in the phrase. If you processed the text

using a normal sed editor command, it would be impossible to detect how

the phrase was split.

473

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Fortunately, the designers behind the sed editor thought of that situation and devised a solution.
The sed editor includes three special commands that you can use to process multiline text:

■ N: Add the next line in the data stream to create a multiline group for processing.

■ D: Delete a single line in a multiline group.

■ P: Print a single line in a multiline group.

The following sections examine these multiline commands more closely and demonstrate how
you can use them in your scripts.

The next commands
Before you can examine the multiline next command, you first need to take a look at how the
single-line version of the next command works. Once you know what that command does, it’s a
lot easier to understand how the multiline version of the next command operates.

The single-line next command

The lower-case n command tells the sed editor to move to the next line of text in the data stream,
without going back to the beginning of the commands. Remember, normally the sed editor
processes all of the defined commands on a line before moving to the next line of text in the
data stream. The single-line next command alters this flow.

This may sound somewhat complicated, and sometimes it is. Take a look at a simple example
first to see just how this works:

$ cat data1
This is the header line.

This is a data line.

This is the last line.
$ sed ’/header/{
> n
> d
> }’ data1
This is the header line.
This is a data line.

This is the last line.
$

In this example, you have a data file that contains five lines, two of them empty. The goal is to
remove the blank line after the header line but leave the blank line before the last line intact. If
you write a sed script to just remove blank lines, you remove both blank lines:

$ sed ’/^$/d’ data1
This is the header line.
This is a data line.
This is the last line.
$

474

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

Since the line you want to remove is blank, you don’t have any text you can search for to uniquely
identify the line. The solution is to use the n command. The example script looks for the unique
line before the blank line you want to remove, which is the header line. Once you identify
that line, you use the n command to move the sed editor to the next line of text.

At that point, the sed editor continues processing the command list, which uses the d command
to delete the line. When the sed editor reaches the end of the command script, it reads the next
line of text from the data stream and starts processing commands from the top of the command
script.

Combining lines of text

Now that you’ve seen the single-line next command, you can look at the multiline version. The
single-line next command moves the next line of text from the data stream into the processing
space (called the pattern space) of the sed editor. The multiline version of the next command
(which uses a capital N) adds the next line of text to the text already in the pattern space.

This has the effect of combining two lines of text from the data stream into the same pattern
space. The lines of text are still separated by a newline character, but the sed editor can now treat
both lines of text as one line.

Here’s a demonstration of how the N command operates:

$ cat data2
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$ sed ’/first/{
> N
> s/\n/ /
> }’ data2
This is the header line.
This is the first data line. This is the second data line.
This is the last line.
$

The sed editor script searches for the line of text that contains the word first in it. When it
finds the line, it uses the N command to combine the next line with that line. It then uses the
substitution command (s) to replace the newline character with a space. The result is that
the two lines in the text file appear as one line in the sed editor output.

This has a practical application if you’re searching for a text phrase that may be split between two
lines in the data file. Here’s an example of what I mean:

$ cat data3
The first meeting of the Linux System
Administrator’s group will be held on Tuesday.
All System Administrators should attend this meeting.
Thank you for your attendance.
$ sed ’s/System Administrator/Desktop User/’ data3

475

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The first meeting of the Linux System
Administrator’s group will be held on Tuesday.
All Desktop Users should attend this meeting.
Thank you for your attendance.
$

The substitution command is looking for the specific two-word phrase System Administrator in

the text file. In the single line where the phrase appears, everything is fine; the substitution com-

mand can replace the text. But in the situation where the phrase is split between two lines, the

substitution command doesn’t recognize the matching pattern.

The N command helps solve this problem:

$ sed ’
> N
> s/System.Administrator/Desktop User/
> ’ data3
The first meeting of the Linux Desktop User’s group will be held
on Tuesday.
All Desktop Users should attend this meeting.
Thank you for your attendance.
$

By using the N command to combine the next line with the line where the first word is found,

you can detect when a line split occurs in the phrase.

Notice that the substitution command uses a wildcard pattern to match both the space and the

newline situation. However, when it matched the newline character, it removed it from the string,

causing the two lines to merge into one line. This may not be exactly what you want.

To solve this problem, you can use two substitution commands in the sed editor script, one to

match the multiline occurrence and one to match the single-line occurrence:

$ sed ’
> N
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/
> ’ data3
The first meeting of the Linux Desktop
User’s group will be held on Tuesday.
All Desktop Users should attend this meeting.
Thank you for your attendance.
$

The first substitution command specifically looks for the newline character between the two

search words and includes it in the replacement string. This allows you to add the newline

character in the same place in the new text.

476

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

There’s still one subtle problem with this script though. The script always reads the next line of text

into the pattern space before executing the sed editor commands. When it reaches the last line of

text, there isn’t a next line of text to read, so the N command causes the sed editor to stop. If the

matching text is on the last line in the data stream, the commands won’t catch the matching data:

$ cat data4
The first meeting of the Linux System
Administrator’s group will be held on Tuesday.
All System Administrators should attend this meeting.
$ sed ’
> N
> s/System\nAdministrator/Desktop\nUser/
> s/System Administrator/Desktop User/
> ’ data4
The first meeting of the Linux Desktop
User’s group will be held on Tuesday.
All System Administrators should attend this meeting.
$

Since the System Administrator text appears in the last line in the data stream, the N command

misses it, as there isn’t another line to read into the pattern space to combine. You can easily
resolve this problem by moving your single-line commands before the N command and having

only the multiline commands appear after the N command, like this:

$ sed ’
> s/System Administrator/Desktop User/
> N
> s/System\nAdministrator/Desktop\nUser/
> ’ data4
The first meeting of the Linux Desktop
User’s group will be held on Tuesday.
All Desktop Users should attend this meeting.
$

Now, the substitution command that looks for the phrase in a single line works just fine on the

last line in the data stream, and the multiline substitution command covers the occurrence in

the middle of the data stream.

The multiline delete command
Chapter 16 introduced the single-line delete command (d). The sed editor uses it to delete the

current line in the pattern space. When working with the N command though, you must be

careful when using the single-line delete command:

$ sed ’
> N

477

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

> /System\nAdministrator/d
> ’ data4
All System Administrators should attend this meeting.
$

The delete command looked for the words System and Administrator in separate lines and then
deleted both of the lines in the pattern space. This may or may not have been what you intended.

The sed editor provides the multiline delete command (D) that only deletes the first line that is in
the pattern space. It removes all characters up to and including the newline character:

$ sed ’
> N
> /System\nAdministrator/D
> ’ data3
Administrator’s group will be held on Tuesday.
All System Administrators should attend this meeting.
$

The second line of text that’s added to the pattern space by the N command remains intact. This
comes in handy if you need to remove a line of text that appears before a line that you find a data
string in.

Here’s an example of removing a blank line that appears before the first line in a data stream:

$ cat data5

This is the header line.
This is a data line.

This is the last line.
$ sed ’/^$/{
> N
> /header/D
> }’ data5
This is the header line.
This is a data line.

This is the last line.
$

This sed editor script looks for blank lines and then uses the N command to add the next line
of text into the pattern space. If the new pattern space contents contain the word header,
the D command removes the first line in the pattern space. Without the combination of the N and
D commands it would be impossible to remove the first blank line without removing all other
blank lines.

478

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

The multiline print command
By now you’re probably catching on to the difference between the single-line and multiline

versions of the commands. The multiline print command (P) follows along using the same tech-

nique. It prints only the first line in a multiline pattern space. This includes all characters up to

the newline character in the pattern space. It’s used similarly to the single-line p command to

display text when you use the -n option to suppress output from the script.

$ sed -n ’
> N
> /System\nAdministrator/P
> ’ data3
The first meeting of the Linux System
$

When the multiline match occurs, the P command prints only the first line in the pattern space.

The power of the multiline P command comes into play when you combine it with the N and D
multiline commands.

The D command has a unique feature in that it forces the sed editor to return to the beginning of

the script and repeat the commands on the same pattern space (it doesn’t read a new line of text

from the data stream). By including the N command in the command script, you can effectively

single-step through the pattern space, matching multiple lines together.

Next, by using the P command, you can print the first line, and then using the D command, you

can delete the first line and loop back to the beginning of the script. Once you are back at the

script’s beginning, the N command reads in the next line of text and starts the process all over

again. This loop continues until you reach the end of the data stream.

The Hold Space
The pattern space is an active buffer area that holds the text examined by the sed editor while it

processes commands. However, it isn’t the only space available in the sed editor for storing text.

The sed editor utilizes another buffer area called the hold space. You can use the hold space to

temporarily hold lines of text while working on other lines in the pattern space. There are five

commands associated with operating with the hold space, shown in Table 18-1.

These commands let you copy text from the pattern space to the hold space. This frees up the

pattern space to load another string for processing.

479

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

TABLE 18-1

The sed Editor Hold Space Commands

Command Description

h Copy pattern space to hold space

H Append pattern space to hold space

g Copy hold space to pattern space

G Append hold space to pattern space

x Exchange contents of pattern and hold spaces

Usually, after using the h or H commands to move a string to the hold space, eventually you want

to use the g, G, or x commands to move the stored string back into the pattern space (otherwise,

you wouldn’t have cared about saving them in the first place).

With two buffer areas, trying to determine what line of text is in which buffer area can sometimes

get confusing. Here’s a short example that demonstrates using the h and g commands to move
data back and forth between the sed editor buffer spaces:

$ cat data2
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$ sed -n ’/first/{
> h
> p
> n
> p
> g
> p
> }’ data2
This is the first data line.
This is the second data line.
This is the first data line.
$

Take a look at this example step by step:

1. The sed script uses a regular expression in the address to filter the line containing the

word first.

2. When the line containing the word first appears, the h command places the line in the

hold space.

480

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

3. The p command prints the contents of the pattern space, which is still the first
data line.

4. The n command retrieves the next line in the data stream and places it in the
pattern space.

5. The p command prints the contents of the pattern space, which is now the second
data line.

6. The g command places the contents of the hold space (the first data line) back in the
pattern space, replacing the current text.

7. The p command prints the contents of the pattern space, which is now back to the first
data line.

By shuffling the text lines around using the hold space, you are able to force the first data line
to appear after the second data line in the output. If you just drop the first p command, you can
output the two lines in reverse order:

$ sed -n ’/first/{
> h
> n
> p
> g
> p
> }’ data2
This is the second data line.
This is the first data line.
$

This is the start of something useful. You can use this technique to create a sed script that
reverses an entire file of text lines! To do that though, you need to see the negating feature of
the sed editor, which is what the next section is all about.

Negating a Command
Chapter 16 showed that the sed editor applies commands either to every text line in the data
stream or to lines specifically indicated by either a single address or an address range. You can
also configure a command to not apply to a specific address or address range in the data stream.

The exclamation mark command (!) is used to negate a command. What this means is that in
situations where the command would normally have been activated, it isn’t. Here’s an example
demonstrating this feature:

$ sed -n ’/header/!p’ data2
This is the first data line.
This is the second data line.
This is the last line.
$

481

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The normal p command would have printed only the line in the data2 file that contained the
word header. By adding the exclamation mark, all of the lines in the file printed except the one
that contained the text referenced in the address.

There are several applications where using the exclamation mark comes in handy. Recall that ear-
lier in the chapter, ‘‘The next commands’’ section showed a situation where a sed editor command
wouldn’t operate on the last line of text in the data stream because there wasn’t a next line after
it. You can use the exclamation point to fix that problem:

$ sed ’{
$!N
s/System.Administrator/Desktop User/
}’ data4
The first meeting of the Linux Desktop User’s group will be held on
Tuesday.
All Desktop Users should attend this meeting.
$

This example shows the exclamation mark used with the N command, along with the dollar sign
special address. The dollar sign represents the last line of text in the data stream, so when the sed
editor reaches the last line, it doesn’t execute the N command. For all other lines though, it does
execute the command.

This is the technique you can use to reverse the order of text lines in a data stream. To reverse
the order of the lines as they appear in the text stream (display the last line first and the first line
last), you need to do some fancy footwork using the hold space.

The pattern you’ll need to work with goes like this:

1. Place a line in the hold space.

2. Put the next line of text in the pattern space.

3. Append the hold space to the pattern space.

4. Place the pattern space into the hold space.

5. Repeat steps 2 through 4 until you’ve put all of the lines in reverse order in the
hold space.

6. Retrieve the lines and print them.

Figure 18-1 diagrams what this looks like.

When using this technique, you do not want to print lines as they are processed. This means
using the -n command line option for sed. The next thing to determine is how to append the
hold space text to the pattern space text. This is done by using the G command. The only problem
is that you don’t want to append the hold space to the first line of text processed. This is easily
solved by using the exclamation mark command:

1!G

482

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

FIGURE 18-1

Reversing the order of a text file using the hold space

Pattern Space

1

3

6

9

10

8

7

5

4

2Line 1

Line 1

Line 1

Line 1

Line 1

Line 1

Line 1

Line 1

Line 3

Line 3

Line 3

Line 3

Line 3

Line 2
Line 2

Line 2

Line 2

Line 2

Line 2

Line 2

Line 4

Line 4

Line 4

Data File
Hold Space

The next step is to place the new pattern space (the text line with the appended reverse lines)

into the hold space. This is simple enough; just use the h command.

When you’ve got the entire data stream in the pattern space in reverse order, all you need to do

is print the results. You know you’ve got the entire data stream in the pattern space when you’ve

reached the last line in the data stream. To print the results, just use the command:

$p

Those are the pieces you need to create your line-reversing sed editor script. Now try it out in a

test run:

$ cat data2
This is the header line.
This is the first data line.
This is the second data line.
This is the last line.
$ sed -n ’{
1!G
h
$p
}’ data2

483

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This is the last line.
This is the second data line.
This is the first data line.
This is the header line.
$

The sed editor script performed as expected. The output from the script reverses the original
lines in the text file. This demonstrates the power of using the hold space in your sed scripts. It

provides an easy way to manipulate the order of lines in the script output.

In case you’re wondering, there’s a Linux command that can perform the function

of reversing a text file. The tac command displays a text file in reverse order. You

probably noticed the clever name of the command, since it performs the reverse function of the

cat command.

Changing the Flow
Normally, the sed editor processes commands starting at the top and proceeding toward the end

of the script (the exception is the D command, which forces the sed editor to return to the top

of the script without reading a new line of text). The sed editor provides a method for altering

the flow of the command script, producing a result similar to that of a structured programming

environment.

Branching
In the previous section, you saw how the exclamation mark command is used to negate the effect

of a command on a line of text. The sed editor provides a way to negate an entire section of

commands, based on an address, an address pattern, or an address range. This allows you to

perform a group of commands only on a specific subset within the data stream.

The format of the branch command is:

[address]b [label]

The address parameter determines which line or lines of data trigger the branch command. The

label parameter defines the location to branch to. If the label parameter is not present, the branch

command proceeds to the end of the script.

$ sed ’{
> 2,3b
> s/This is/Is this/
> s/line./test?/
> }’ data2
Is this the header test?
This is the first data line.

484

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

This is the second data line.
Is this the last test?
$

The branch command skips the two substitution commands for the second and third lines in the

data stream.

Instead of going to the end of the script you can define a label for the branch command to jump

to. Labels start with a colon and can be up to seven characters in length:

:label2

To specify the label, just add it after the b command. Using labels allows you to skip commands

that match the branch address but still process other commands in the script:

$ sed ’{
> /first/b jump1
> s/ is/ might be/
> s/line/test/
> :jump1
> s/data/text/
> }’ data2
This might be the header test.
This is the first text line.
This might be the second text test.
This might be the last test.
$

The branch command specifies that the program should jump to the script line labeled jump1
if the matching text first appears in the line. If the branch command pattern doesn’t match,

the sed editor continues processing commands in the script, including the command after the
branch label. (Thus, all three substitution commands are processed on lines that don’t match

the branch pattern).

If a line matches the branch pattern, the sed editor branches to the branch label line. Thus, only

the last substitution command is executed.

The example shows branching to a label further down in the sed script. You can also branch to a

label that appears earlier in the script, thus creating a looping effect:

$ echo "This, is, a, test, to, remove, commas." | sed -n ’{
> :start
> s/,//1p
> b start
> }’
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.

485

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This is a test to remove, commas.
This is a test to remove commas.

Each iteration of the script removes the first occurrence of a comma from the text string and
prints the string. There’s one catch to this script: it never ends. This situation creates an end-
less loop, searching for commas until you manually stop it by sending a signal with the Ctrl-C
key combination.

To prevent this problem, you should specify an address pattern for the branch command to look
for. If the pattern isn’t present, the branching should stop:

$ echo "This, is, a, test, to, remove, commas." | sed -n ’{
:start
s/,//1p
/,/b start
}’
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
$

Now the branch command branches only if there’s a comma in the line. After the last comma has
been removed, the branch command won’t execute, allowing the script to properly finish.

Testing
Similarly to the branch command, the test command (t) is also used to modify the flow of the
sed editor script. Instead of jumping to a label based on an address, the test command jumps to
a label based on the outcome of a substitution command.

If the substitution command successfully matches and substitutes a pattern, the test command
branches to the specified label. If the substitution command doesn’t match the specified pattern,
the test command doesn’t branch.

The test command uses the same format as the branch command:

[address]t [label]

Just like the branch command, if you don’t specify a label sed branches to the end of the script if
the test succeeds.

The test command provides a cheap way to perform a basic if-then statement on the text in
the data stream. For example, if you don’t need to make a substitution if another substitution was
made, the test command can help:

$ sed ’{
> s/first/starting/
> t
> s/line/test/

486

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

> }’ data2
This is the header test.
This is the starting data line.
This is the second data test.
This is the last test.
$

The first substitution command looks for the pattern text first. If it matches the pattern in the
line, it replaces the text, and the test command jumps over the subsequent substitution command.
If the first substitution command doesn’t match the pattern, the second substitution command
is processed.

Using the test command, you can clean up the loop you tried using the branch command:

$ echo "This, is, a, test, to, remove, commas." | sed -n ’{
:start
s/,//1p
t start
}’
This is, a, test, to, remove, commas.
This is a, test, to, remove, commas.
This is a test, to, remove, commas.
This is a test to, remove, commas.
This is a test to remove, commas.
This is a test to remove commas.
$

When there are no more substitutions to make, the test command doesn’t branch and continues
with the rest of the script.

Pattern Replacement
You’ve seen how to use patterns in the sed commands to replace text in the data stream. However,
the problem is that sometimes when using wildcard characters it’s not easy to know exactly what
text will match the pattern.

For example, say that you want to place double quotation marks around a word you match in a
line. That’s simple enough if you’re just looking for one word in the pattern to match:

$ echo "The cat sleeps in his hat." | sed ’s/cat/"cat"/’
The "cat" sleeps in his hat.
$

But what if you use a wildcard character in the pattern to match more than one word:

$ echo "The cat sleeps in his hat." | sed ’s/.at/".at"/g’
The ".at" sleeps in his ".at".
$

487

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Well, that didn’t work. The substitution string used the dot wildcard character to match any

occurrence of a letter followed by at. Unfortunately, the replacement string doesn’t match the

wildcard character value of the matching word.

The ampersand
The sed editor has a solution for you. The ampersand symbol (&) is used to represent the

matching pattern in the substitution command. Whatever text matches the pattern defined, you

can use the ampersand symbol to recall it in the replacement pattern. This lets you manipulate

whatever word matches the pattern defined:

$ echo "The cat sleeps in his hat." | sed ’s/.at/"&"/g’
The "cat" sleeps in his "hat".
$

When the pattern matches cat, cat appears in the substituted word. When it matched hat, hat
appears in the substituted word.

Replacing individual words
The ampersand symbol retrieves the entire string that matches the pattern you specify in the

substitution command. There are times when you’ll only want to retrieve a subset of the string.

You can do that, too, but it’s a little tricky.

The sed editor uses parentheses to define a substring component within the substitution pattern.

You can then reference each substring component using a special character in the replacement

pattern. The replacement character consists of a backslash and a number. The number indicates

the position of the substring component. The sed editor assigns the first component the character

\1, the second component the character \2, and so on.

When you use parentheses in the substitution command, you must use the escape

character to identify them as grouping characters and not normal parentheses. This is

backwards from when you escape other special characters.

Take a look at an example of using this feature in a sed editor script:

$ echo "The System Administrator manual" | sed ’
> s/\(System\) Administrator/\1 User/’
The System User manual
$

This substitution command uses one set of parentheses around the word System, identifying it as

a substring component. It then uses the \1 in the replacement pattern to recall the first identified

component. This wasn’t too exciting, but it can really be useful when working with wildcard

patterns.

488

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

If you need to replace a phrase with just a single word, that’s a substring of the phrase, but that
substring just happens to be using a wildcard character; using substring components is a lifesaver:

$ echo "That furry cat is pretty" | sed ’s/furry \(.at\)/\1/’
That cat is pretty
$ echo "That furry hat is pretty" | sed ’s/furry \(.at\)/\1/’
That hat is pretty
$

In this situation, you can’t use the ampersand symbol, as it would replace the entire matching
pattern. The substring component provides the answer, allowing you to select just which part of
the pattern to use as the replacement pattern.

This feature can be especially helpful when you need to insert text between two or more substring
components. Here’s a script that uses substring components to insert a comma in long numbers:

$ echo "1234567" | sed ’{
> :start
> s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
> t start
> }’
1,234,567
$

The script divides the matching pattern into two components:

.*[0-9]
[0-9]{3}

This pattern looks for two substrings. The first substring is any number of characters, ending in a
digit. The second substring is a series of three digits (see Chapter 17 for information about how to
use braces in a regular expression). If this pattern is found in the text, the replacement text puts a
comma between the two components, each identified by its component position. The script uses
the test command to iterate through the number until all commas have been placed.

Using sed in Scripts
Now that you’ve seen the various parts of the sed editor, it’s time to put them together and use
them in your shell scripts. This section demonstrates some of the features that you should know
about when using the sed editor in your bash shell scripts.

Using wrappers
You may have noticed that trying to implement a sed editor script can be cumbersome, especially
if the script is long. Instead of having to retype the entire script each time you want to use it, you
can place the sed editor command in a shell script wrapper. The wrapper acts as a go-between
with the sed editor script and the command line.

489

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Once inside the shell script, you can use normal shell variables and parameters with your sed

editor scripts. Here’s an example of using the command line parameter variable as the input to a

sed script:

$ cat reverse
#!/bin/bash
shell wrapper for sed editor script to reverse lines

sed -n ’{
1!G
h
$p
}’ "$1"
$

The shell script called reverse uses the sed editor script to reverse text lines in a data stream. It

uses the $1 shell parameter to retrieve the first parameter from the command line, which should

be the name of the file to reverse:

$./reverse data2
This is the last line.
This is the second data line.
This is the first data line.
This is the header line.
$

Now you can easily use the sed editor script on any file, without having to constantly retype the

entire command line.

Redirecting sed output
By default the sed editor outputs the results of the script to STDOUT. You can employ all of the

standard methods of redirecting the output of the sed editor in your shell scripts.

You can use backticks to redirect the output of your sed editor command to a variable for use

later on in the script. Here’s an example of using the sed script to add commas to the result of a

numeric computation:

$ cat fact
#!/bin/bash
#add commas to numbers in factorial answer

factorial=1
counter=1
number=$1

while [$counter -le $number]
do

490

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

factorial=$[$factorial * $counter]
counter=$[$counter + 1]

done

result=`echo $factorial | sed ’{
:start
s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
t start
}’`

echo "The result is $result"
$./fact 20
The result is 2,432,902,008,176,640,000
$

After you use the normal factorial calculation script, the result of that script is used as the input

to the sed editor script, which adds commas. This value is then used in the echo statement to

produce the result.

Creating sed Utilities
As you’ve seen in the short examples presented so far in this chapter, there are lots of cool

data-formatting things you can do with the sed editor. This section shows a few handy well-known

sed editor scripts for performing common data-handling functions.

Double spacing lines
To start things off, take a look at a simple sed script to insert a blank line between lines in a

text file:

$ sed ’G’ data2
This is the header line.

This is the first data line.

This is the second data line.

This is the last line.

$

That was pretty simple! The key to this trick is the default value of the hold space. Remember, the

G command simply appends the contents of the hold space to the current pattern space contents.

When you start the sed editor, the hold space contains an empty line. By appending that to an

existing line, you create a blank line after the existing line.

491

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

You may have noticed that this script also adds a blank line to the last line in the data stream,

producing a blank line at the end of the file. If you want to get rid of this, you can use the negate
symbol and the last line symbol to ensure that the script doesn’t add the blank line to the last line
of the data stream:

$ sed ’$!G’ data2
This is the header line.

This is the first data line.

This is the second data line.

This is the last line.
$

Now that looks a little better. As long as the line isn’t the last line, the G command appends the
contents of the hold space. When the sed editor gets to the last line, it skips the G command.

Double spacing files that may have blanks
To take double spacing one step further, what if the text file already has a few blank lines, but
you want to double space all of the lines? If you use the previous script, you’ll get some areas that

have too many blank lines, as each existing blank line gets doubled:

$ cat data6
This is line one.
This is line two.

This is line three.
This is line four.
$ sed ’$!G’ data6
This is line one.

This is line two.

This is line three.

This is line four.
$

Now you have three blank lines where the original blank line was located. The solution to this

problem is to first delete any blank lines from the data stream and then use the G command to
insert new blank lines after all of the lines. To delete existing blank lines, you just need to use the
d command with a pattern that matches a blank line:

/^$/d

492

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

This pattern uses the start line tag (the caret) and the end line tag (the dollar sign). Adding this
to the script produces the desired results:

$ sed ’/^$/d;$!G’ data6
This is line one.

This is line two.

This is line three.

This is line four.
$

Perfect!

Numbering lines in a file
Chapter 16 showed how to use the equal sign to display the line numbers of lines in the data
stream:

$ sed ’=’ data2
1
This is the header line.
2
This is the first data line.
3
This is the second data line.
4
This is the last line.
$

This can be a little awkward to read, as the line number is on a line above the actual line in the
data stream. A better solution would be to place the line number on the same line as the text.

Now that you’ve seen how to combine lines using the N command, it shouldn’t be too hard to
utilize that information in the sed editor script. The trick to this utility though is that you can’t
combine the two commands in the same script.

Once you have the output for the equal sign command, you can pipe the output to another
sed editor script that uses the N command to combine the two lines. You also need to use the
substitution command to replace the newline character with either a space or a tab character.
Here’s what the final solution looks like:

$ sed ’=’ data2 | sed ’N; s/\n/ /’
1 This is the header line.
2 This is the first data line.
3 This is the second data line.
4 This is the last line.
$

493

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Now that looks much better. This is a great little utility to have around when working on
programs where you need to see the line numbers used in error messages.

Printing last lines
So far you’ve seen how to use the p command to print all of the lines in a data stream or just
lines that match a specific pattern. What if you just need to work with the last few lines of a long
listing, such as a log file?

The dollar sign represents the last line of a data stream, so it’s easy to display just the last line:

$ sed -n ’$p’ data2
This is the last line.
$

Now how can you use the dollar sign symbol to display a set number of lines at the end of the
data stream? The answer is to create a rolling window.

A rolling window is a common way to examine blocks of text lines in the pattern space by com-
bining them using the N command. The N command appends the next line of text to the text
already in the pattern space. Once you have a block of 10 text lines in the pattern space, you
can check if you’re at the end of the data stream using the dollar sign. If you’re not at the end,
continue adding more lines to the pattern space, but removing the original lines (remember the D
command, which deletes the first line in the pattern space).

By looping through the N and D commands, you add new lines to the block of lines in the pattern
space, while removing old lines. The branch command is the perfect fit for the loop. To end the
loop, just identify the last line and use the q command to quit.

Here’s what the final sed editor script looks like:

$ sed ’{
> :start
> $q
> N
> 11,$D
> b start
> }’ /etc/passwd
mysql:x:415:416:MySQL server:/var/lib/mysql:/bin/bash
rich:x:501:501:Rich:/home/rich:/bin/bash
katie:x:502:506:Katie:/home/katie:/bin/bash
jessica:x:503:507:Jessica:/home/jessica:/bin/bash
testy:x:504:504:Test account:/home/testy:/bin/csh
barbara:x:416:417:Barbara:/home/barbara/:/bin/bash
ian:x:505:508:Ian:/home/ian:/bin/bash
emma:x:506:509:Emma:/home/emma:/bin/bash
bryce:x:507:510:Bryce:/home/bryce:/bin/bash
test:x:508:511::/home/test:/bin/bash
$

494

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

The script first checks if the line is the last line in the data stream. If it is, the quit command
stops the loop. The N command appends the next line to the current line in the pattern space.
The 11,$D command deletes the first line in the pattern space if the current line is after line 10.
This creates the sliding window effect in the pattern space.

Deleting lines
Another useful utility for the sed editor is removing unwanted blank lines in a data stream. It’s
easy to remove all the blank lines from a data stream, but it takes a little ingenuity to selectively
remove blank lines. This section shows a couple of quick sed editor scripts that you can use to
help remove unwanted blank lines from your data.

Deleting consecutive blank lines

One nuisance is when extra blank lines crop up in data files. Often you have a data file that
contains blank lines, but sometimes a data line is missing and produces too many blank lines (as
you saw in the double spacing example earlier).

The easiest way to remove consecutive blank lines is to check the data stream using a range
address. Chapter 16 showed how to use ranges in addresses, including how to incorporate
patterns in the address range. The sed editor executes the command for all lines that match within
the specified address range.

The key to removing consecutive blank lines is creating an address range that includes a non-
blank line and a blank line. If the sed editor comes across this range, it shouldn’t delete the line.
However, for lines that don’t match that range (two or more blank lines in a row), it should delete
the lines.

Here’s the script to do this:

/./,/^$/!d

The range is /./ to /^$/. The start address in the range matches any line that contains at least
one character. The end address in the range matches a blank line. Lines within this range aren’t
deleted.

Here’s the script in action:

$ cat data6
This is the first line.

This is the second line.

This is the third line.

This is the fourth line.
$ sed ’/./,/^$/!d’ data6
This is the first line.

495

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

This is the second line.

This is the third line.

This is the fourth line.
$

No matter how many blank lines appear between lines of data in the file, the output only places
one blank line between the lines.

Deleting leading blank lines

Another nuisance is data files containing multiple blank lines at the start of the file. Often when

trying to import data from a text file into a database, the blank lines create null entries, throwing

off any calculations using the data.

Removing blank lines from the top of a data stream is not too difficult of a task. Here’s the script

that accomplishes that function:

/./,$!d

The script uses an address range to determine what lines are deleted. The range starts with a

line that contains a character and continues to the end of the data stream. Any line within this

range is not deleted from the output. This means that any lines before the first line that contain a

character are deleted.

Take a look at this simple script in action:

$ cat data7

This is the first line.

This is the second line.
$ sed ’/./,$!d’ data7
This is the first line.

This is the second line.
$

The test file contains two blank lines before the data lines. The script successfully removes both

of the leading blank lines, while keeping the blank line within the data intact.

496

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

Deleting trailing blank lines

Unfortunately, deleting trailing blank lines is not as simple as deleting leading blank lines. Just

like printing the end of a data stream, deleting blank lines at the end of a data stream requires a

little ingenuity and looping.

Before I start the discussion, let me show you what the script looks like:

sed ’{
:start
/^\n*$/{$d; N; b start }
}’

This may look a little odd to you at first. Notice that there are braces within the normal script

braces. This allows you to group commands together within the overall command script. The

group of commands applies to the specified address pattern. The address pattern matches any

line that contains only a newline character. When one is found, if it’s the last line, the delete

command deletes it. If it’s not the last line, the N command appends the next line to it, and the

branch command loops to the beginning to start over.

Here’s the script in action:

$ cat data8
This is the first line.
This is the second line.

$ sed ’{
:start
/^\n*$/{$d ; N; b start }
}’ data8
This is the first line.
This is the second line.
$

The script successfully removed the blank lines from the end of the text file.

Removing HTML tags
In this day and age it’s not uncommon to download text from a Web site to save or use as data

in an application. Sometimes, though, when you download text from the Web site, you also

get the HTML tags used to format the data. This can be a problem when all you want to see is

the data.

497

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

A standard HTML Web page contains several different types of HTML tags, identifying formatting
features required to properly display the page information. Here’s a sample of what an HTML
file looks like:

$ cat data9
<html>

<head>

<title>This is the page title</title>

</head>

<body>

<p>

This is the first line in the Web page. This should provide
some <i>useful</i> information for us to use in our shell script.
</body>

</html>

$

HTML tags are identified by the less-than and greater-than symbols. Most HTML tags come in
pairs. One tag starts the formatting process (for example, for bolding), and another tag stops
the formatting process (for example, to turn off bolding).

Removing HTML tags creates a problem though if you’re not careful. At first glance, you’d think
that the way to remove HTML tags would be to just look for text that starts with the less-than
symbol and ends with a greater-than symbol, with any data in between:

s/<.*>//g

Unfortunately, this command has some unintended consequences:

$ sed ’s/<.*>//g’ data9

This is the line in the Web page. This should provide
some information for us to use in our shell script.

$

Notice that the title text is missing, along with the text that was bolded and italicized. The sed
editor literally interpreted the script to mean any text between the less-than and greater-than sign,
including other less-than and greater-than signs! Every place where text was enclosed in HTML
tags (such as first), the sed script removed the entire text.

The solution to this problem is to have the sed editor ignore any embedded greater-than signs
between the original tags. To do that, you can create a character class that negates the greater-than
sign. This changes the script to:

s/<[^>]*>//g

498

www.IrPDF.com

www.IrPDF.com

Advanced sed 18

This script now works properly, displaying the data you need to see from the Web page
HTML code:

$ sed ’s/<[^>]*>//g’ data9

This is the page title

This is the first line in the Web page. This should provide
some useful information for us to use in our shell script.

$

That’s a little better. To clean things up some, you can add a delete command to get rid of those
pesky blank lines:

$ sed ’s/<[^>]*>//g;/^$/d’ data9
This is the page title
This is the first line in the Web page. This should provide
some useful information for us to use in our shell script.
$

Now that’s much more compact; there’s only the data you need to see.

Summary
The sed editor provides some advanced features that allow you to work with text patterns across
multiple lines. This chapter showed how to use the next command to retrieve the next line in a
data stream and place it in the pattern space. Once in the pattern space you can perform complex
substitution commands to replace phrases that span more than one line of text.

The multiline delete command allows you to remove the first line when the pattern space contains
two or more lines. This is a convenient way to iterate through multiple lines in the data stream.
Similarly, the multiline print command allows you to print just the first line when the pattern
space contains two or more lines of text. The combination of the multiline commands allows you
to iterate through the data stream and create a multiline substitution system.

Next, the chapter discussed the hold space. The hold space allows you to set aside a line of text
while processing more lines of text. You can recall the contents of the hold space at any time and
either replace the text in the pattern space or append the contents of the hold space to the text
in the pattern space. Using the hold space allows you to sort through data streams, reversing the
order of text lines as they appear in the data.

The chapter also discussed the sed editor flow control commands. The branch command provides
a way for you to alter the normal flow of sed editor commands in the script, creating loops or
skipping commands under certain conditions. The test command provides an if-then type

499

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

of statement for your sed editor command scripts. The test command branches only if a prior

substitution command succeeds in replacing text in a line.

The chapter finished by discussing how to use sed scripts in your shell scripts. A common tech-

nique for large sed scripts is to place the script in a shell wrapper. You can use command line

parameter variables within the sed script to pass shell command line values. This creates an

easy way to utilize your sed editor scripts directly from the command line, or even from other

shell scripts.

The next chapter digs deeper into the gawk world. The gawk program supports many features

of higher-level programming languages. You can create some pretty involved data manipulation

and reporting programs just by using gawk. This chapter will describe the various programming

features and demonstrate how to use them to generate your own fancy reports from simple data.

500

www.IrPDF.com

www.IrPDF.com

Advanced gawk

IN THIS CHAPTER

Reexamining gawk

Use variables in gawk

Structured commands

Format your printing

Functions

C
hapter 16 introduced the gawk program and demonstrated the

basics of using it to produce formatted reports from raw data files.

This chapter dives more deeply into customizing gawk to produce

reports. The gawk program is a full-fledged programming language, provid-

ing features that allow you to write advanced programs to manipulate data.

In this chapter, you’ll see how to use the gawk programming language
to write programs to handle just about any data formatting task you’ll

run into.

Using Variables

One important feature of any programming language is the ability to store

and recall values using variables. The gawk programming language supports

two different types of variables:

■ Built-in variables

■ User-defined variables

There are several built-in variables available for you to use in gawk. The

built-in variables contain information used in handling the data fields and

records in the data file. You can also create your own variables in your gawk

programs. The following sections walk you through how to use variables in

your gawk programs.

501

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Built-in variables
The gawk program uses built-in variables to reference specific features within the program data.

This section describes the built-in variables available for you to use in your gawk programs and
demonstrates how to use them.

The field and record separator variables

Chapter 16 demonstrated one type of built-in variable available in gawk, the data field variables.
The data field variables allow you to reference individual data fields within a data record using a
dollar sign and the numerical position of the data field in the record. Thus, to reference the first

data field in the record, you use the $1 variable. To reference the second data field, you use the

$2 variable, and so on.

Data fields are delineated by a field separator character. By default the field separator character

is a whitespace character, such as a space or a tab. Chapter 16 showed how to change the field
separator character either on the command line by using the -F command line parameter or

within the gawk program by using the special FS built-in variable.

The FS built-in variable belongs to a group of built-in variables that control how gawk han-

dles fields and records in both input data and output data. Table 19-1 lists the built-in variables

contained in this group.

The FS and OFS variables define how your gawk program handles data fields in the data stream.

You’ve already seen how to use the FS variable to define what character separates data fields in
a record. The OFS variable performs the same function but for the output by using the print
command.

By default, gawk sets the OFS variable to a space, so when you use the command:

print $1,$2,$3

TABLE 19-1

The gawk Data Field and Record Variables

Variable Description

FIELDWIDTHS A space separated list of numbers defining the exact width (in
spaces) of each data field.

FS Input field separator character.

RS Input record separator character.

OFS Output field separator character.

ORS Output record separator character.

502

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

you’ll see the output as:

field1 field2 field3

You can see this in the following example:

$ cat data1
data11,data12,data13,data14,data15
data21,data22,data23,data24,data25
data31,data32,data33,data34,data35
$ gawk ’BEGIN{FS=","} {print $1,$2,$3}’ data1
data11 data12 data13
data21 data22 data23
data31 data32 data33
$

The print command automatically places the value of the OFS variable between each data field

in the output. By setting the OFS variable, you can use any string to separate data fields in the

output:

$ gawk ’BEGIN{FS=","; OFS="-"} {print $1,$2,$3}’ data1
data11-data12-data13
data21-data22-data23
data31-data32-data33
$ gawk ’BEGIN{FS=","; OFS="--"} {print $1,$2,$3}’ data1
data11--data12--data13
data21--data22--data23
data31--data32--data33
$ gawk ’BEGIN{FS=","; OFS="‹--›"} {print $1,$2,$3}’ data1
data11‹--›data12‹--›data13
data21‹--›data22‹--›data23
data31‹--›data32‹--›data33
$

The FIELDWIDTHS variable allows you to read records without using a field separator charac-

ter. In some applications, instead of using a field separator character, data is placed in specific

columns within the record. In these instances, you must set the FIELDWIDTHS variable to the

match the layout of the data in the records.

Once you set the FIELDWIDTHS variable, gawk ignores the FS and calculates data fields based

on the provided field width sizes. Here’s an example using field widths instead of field separator

characters:

$ cat data1b
1005.3247596.37
115-2.349194.00
05810.1298100.1
$ gawk ’BEGIN{FIELDWIDTHS="3 5 2 5"}{print $1,$2,$3,$4}’ data1b
100 5.324 75 96.37

503

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

115 -2.34 91 94.00
058 10.12 98 100.1
$

The FIELDWIDTHS variable defines four data fields, and gawk parses the data record accordingly.

The string of numbers in each record is split based on the defined field width values.

It’s important to remember that once you set the FIELDWIDTHS variable, those values

must remain constant. This method can’t accommodate variable-length data fields.

The RS and ORS variables define how your gawk program handles records in the data stream.

By default, gawk sets the RS and ORS variables to the newline character. The default RS variable

value indicates that each new line of text in the input data stream is a new record.

Sometimes you run into situations where data fields are spread across multiple lines in the data

stream. A classic example of this is data that includes an address and phone number, each on a

separate line:

Riley Mullen
123 Main Street
Chicago, IL 60601
(312)555-1234

If you try to read this data using the default FS and RS variable values, gawk will read each line
as a separate record, and interpret each space in the record as a field separator. This isn’t what

you intended.

To solve this problem, you need to set the FS variable to the newline character. This indicates
that each line in the data stream is a separate field and all of the data on a line belongs to the

data field. However, now you have the problem of not knowing where a new record starts.

To solve this problem, set the RS variable to an empty string, then leave a blank line between data
records in the data stream. The gawk program will interpret each blank line as a record separator.

Here’s an example of using this technique:

$ cat data2
Riley Mullen
123 Main Street
Chicago, IL 60601
(312)555-1234

Frank Williams
456 Oak Street
Indianapolis, IN 46201
(317)555-9876

Haley Snell
4231 Elm Street

504

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

Detroit, MI 48201
(313)555-4938
$ gawk ’BEGIN{FS="\n"; RS=""} {print $1,$4}’ data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

Perfect, the gawk program interpreted each line in the file as a data field and the blank lines as

record separators.

Data variables

Besides the field and record separator variables, gawk provides some other built-in variables to

help you know what’s going on with your data and extract information from the shell environ-

ment. Table 19-2 shows the other built-in variables in gawk.

TABLE 19-2

More gawk Built-in Variables

Variable Description

ARGC The number of command line parameters present.

ARGIND The index in ARGV of the current file being processed.

ARGV An array of command line parameters.

CONVFMT The conversion format for numbers (see the printf statement). The default
value is %.6g.

ENVIRON An associative array of the current shell environment variables and their
values.

ERRNO The system error if an error occurs when reading or closing input files.

FILENAME The file name of the data file used for input to the gawk program.

FNR The current record number in the data file.

IGNORECASE If set to a non-zero value, ignore the case of characters in strings used in the
gawk command.

NF The total number of data fields in the data file.

NR The number of input records processed.

OFMT The output format for displaying numbers. The default is %.6g.

RLENGTH The length of the substring matched in the match function.

RSTART The start index of the substring matched in the match function.

505

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

You should recognize a few of these variables from your shell script programming. The ARGC and

ARGV variables allow you to retrieve the number of command line parameters and their values

from the shell. This can be a little tricky though, as gawk doesn’t count the program script as

part of the command line parameters:

$ gawk ’BEGIN{print ARGC,ARGV[1]}’ data1
2 data1
$

The ARGC variable indicates that there are two parameters on the command line. This includes

the gawk command and the data1 parameter (remember, the program script doesn’t count as a

parameter). The ARGV array starts with an index of 0, which represents the command. The first

array value is the first command line parameter after the gawk command.

Note that unlike shell variables, when you reference a gawk variable in the script, you

don’t add a dollar sign before the variable name.

The ENVIRON variable may seem a little odd to you. It uses an associative array to retrieve shell

environment variables. An associative array uses text for the array index values instead of numeric

values.

The text in the array index is the shell environment variable. The value of the array is the value

of the shell environment variable. Here’s an example of this:

$ gawk ’
› BEGIN{
› print ENVIRON["HOME"]
› print ENVIRON["PATH"]
› }’
/home/rich
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
$

The ENVIRON["HOME"] variable retrieves the HOME environment variable value from the shell.

Likewise, the ENVIRON["PATH"] variable retrieves the PATH environment variable value. You

can use this technique to retrieve any environment variable value from the shell to use in your

gawk programs.

The FNR, NF, and NR variables come in handy when you’re trying to keep track of data fields and

records in your gawk program. Sometimes you’re in a situation where you don’t know exactly

how many data fields are in a record. The NF variable allows you to specify the last data field in

the record without having to know its position:

$ gawk ’BEGIN{FS=":"; OFS=":"} {print $1,$NF}’ /etc/passwd
rich:/bin/bash
testy:/bin/csh
mark:/bin/bash
dan:/bin/bash

506

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

mike:/bin/bash
test:/bin/bash
$

The NF variable contains the numerical value of the last data field in the data file. You can then

use it as a data field variable by placing a dollar sign in front of it.

The FNR and NR variables are similar to each other, but slightly different. The FNR variable con-

tains the number of records processed in the current data file. The NR variable contains the total

number of records processed. Let’s look at a couple of examples to see this difference:

$ gawk ’BEGIN{FS=","}{print $1,"FNR="FNR}’ data1 data1
data11 FNR=1
data21 FNR=2
data31 FNR=3
data11 FNR=1
data21 FNR=2
data31 FNR=3
$

In this example, the gawk program command line defines two input files. (It specifies the same

input file twice.) The script prints the first data field value and the current value of the FNR
variable. Notice that the FNR value reset back to 1 when the gawk program processed the second

data file.

Now, let’s add the NR variable and see what that produces:

$ gawk ’
› BEGIN {FS=","}
› {print $1,"FNR="FNR,"NR="NR}
› END{print "There were",NR,"records processed"}’ data1 data1
data11 FNR=1 NR=1
data21 FNR=2 NR=2
data31 FNR=3 NR=3
data11 FNR=1 NR=4
data21 FNR=2 NR=5
data31 FNR=3 NR=6
There were 6 records processed
$

The FNR variable value reset when gawk processed the second data file, but the NR variable

maintained its count into the second data file. The bottom line is that if you’re only using one

data file for input the FNR and NR values will be the same. If you’re using multiple data files for

input, the FNR value will reset for each data file, and the NR value will keep count throughout

all the data files.

You’ll notice when using gawk that often the gawk script can become larger than the

rest of your shell script. In the examples in this chapter, for simplicity I just run the

507

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

gawk scripts directly from the command line, using the multiline feature of the shell. When you use

gawk in a shell script, you should place different gawk commands on separate lines. This’ll make it

much easier to read and follow, rather than trying to cram it all onto one line in the shell script.

User-defined variables
Just like any other self-respecting programming language, gawk allows you to define your own
variables for use within the program code. A gawk user-defined variable name can be any number
of letters, digits, and underscores, but it can’t begin with a digit. It’s also important to remember
that gawk variable names are case sensitive.

Assigning variables in scripts

Assigning values to variables in gawk programs is similar to doing so in a shell script, using an
assignment statement:

$ gawk ’
› BEGIN{
› testing="This is a test"
› print testing
› }’
This is a test
$

The output of the print statement is the current value of the testing variable. Like shell script
variables, gawk variables can hold either numeric or text values:

$ gawk ’
› BEGIN{
› testing="This is a test"
› print testing
› testing=45
› print testing
› }’
This is a test
45
$

In this example, the value of the testing variable is changed from a text value to a numeric
value.

Assignment statements can also include mathematical algorithms to handle numeric values:

$ gawk ’BEGIN{x=4; x= x * 2 + 3; print x}’
11
$

As you can see from this example, the gawk programming language includes the standard math-
ematical operators for processing numerical values. These can include the remainder symbol (%)
and the exponentiation symbol (using either ∧ or **).

508

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

Assigning variables in the command line

You can also use the gawk command line to assign values to variables for the gawk program. This

allows you to set values outside of the normal code, changing values on the fly. Here’s an example

of using a command line variable to display a specific data field in the file:

$ cat script1
BEGIN{FS=","}
{print $n}
$ gawk -f script1 n=2 data1
data12
data22
data32
$ gawk -f script1 n=3 data1
data13
data23
data33
$

This feature allows you to change the behavior of the script without having to change the actual

script code. The first example displays the second data field in the file, while the second

example displays the third data field, just by setting the value of the n variable in the

command line.

There’s one problem with using command line parameters to define variable values. When you

set the variable, the value isn’t available in the BEGIN section of the code:

$ cat script2
BEGIN{print "The starting value is",n; FS=","}
{print $n}
$ gawk -f script2 n=3 data1
The starting value is
data13
data23
data33
$

You can solve this using the -v command line parameter. This allows you to specify variables
that are set before the BEGIN section of code. The -v command line parameter must be placed

before the script code in the command line:

$ gawk -v n=3 -f script2 data1
The starting value is 3
data13
data23
data33
$

Now the n variable contains the value set in the command line during the BEGIN section of code.

509

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Working with Arrays
Many programming languages provide arrays for storing multiple values in a single variable. The
gawk programming language provides this using associative arrays.

Associative arrays are different from numerical arrays in that the index value can be any text
string. You don’t have to use sequential numbers to identify data elements contained in the array.
Instead, an associative array consists of a hodge-podge of strings referencing values. Each index
string must be unique and uniquely identifies the data element that’s assigned to it.

The following sections walk you through using associative array variables in your gawk programs.

Defining array variables
You can define an array variable using a standard assignment statement. The format of the array
variable assignment is:

var[index] = element

where var is the variable name, index is the associative array index value, and element is the data
element value. Here are some examples of array variables in gawk:

capital["Illinois"] = "Springfield"
capital["Indiana"] = "Indianapolis"
capital["Ohio"] = "Columbus"

When you reference an array variable, you must include the index value to retrieve the appropri-
ate data element value:

$ gawk ’BEGIN{
› capital["Illinois"] = "Springfield"
› print capital["Illinois"]
› }’
Springfield
$

When you reference the array variable, the data element value appears. This also works with
numeric data element values:

$ gawk ’BEGIN{
› var[1] = 34
› var[2] = 3
› total = var[1] + var[2]
› print total
› }’
37
$

As you can see from this example, you can use array variables just as you would any other variable
in the gawk program.

510

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

Iterating through array variables
The problem with associative array variables is that you might not have any way of knowing what
the index values are. Unlike numeric arrays, which use sequential numbers for index values, an
associative array index can be anything.

If you need to iterate through an associate array in gawk, you can use a special format of the for
statement:

for (var in array)
{

statements
}

The for statement loops through the statements, each time assigning the variable var the next
index value from the array associative array. It’s important to remember that the variable is the
value of the index and not the data element value. You can easily extract the data element value
by using the variable as the array index:

$ gawk ’BEGIN{
› var["a"] = 1
› var["g"] = 2
› var["m"] = 3
› var["u"] = 4
› for (test in var)
› {
› print "Index:",test," - Value:",var[test]
› }
› }’
Index: u - Value: 4
Index: m - Value: 3
Index: a - Value: 1
Index: g - Value: 2
$

Notice that the index values aren’t returned in any particular order, but they each reference the
appropriate data element value. This is somewhat important to know, as you can’t count on
the returned values being in the same order, just that the index and data values match.

Deleting array variables
Removing an array index from an associative array requires a special command:

delete array[index]

The delete command removes the associative index value and the associated data element value
from the array:

$ gawk ’BEGIN{
› var["a"] = 1
› var["g"] = 2

511

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

› for (test in var)
› {
› print "Index:",test," - Value:",var[test]
› }
› delete var["g"]
› print "---"
› for (test in var)
› print "Index:",test," - Value:",var[test]
› }’
Index: a - Value: 1
Index: g - Value: 2

Index: a - Value: 1
$

Once you delete an index value from the associative array, you can’t retrieve it.

Using Patterns
The gawk program supports several types of matching patterns to filter data records, similar to
how the sed editor does. Chapter 16 already showed two special patterns in action. The BEGIN
and END keywords are special patterns that execute statements before or after the data stream data
has been read. Similarly, you can create other patterns to execute statements when matching
data appears in the data stream.

This section demonstrates how to use matching patterns in your gawk scripts to limit what
records a program script applies to.

Regular expressions
Chapter 17 showed how to use regular expressions as matching patterns. You can use either a
Basic Regular Expression (BRE) or an Extended Regular Expression (ERE) to filter which lines
in the data stream the program script applies to.

When using a regular expression, the regular expression must appear before the left brace of the
program script that it controls:

$ gawk ’BEGIN{FS=","} /11/{print $1}’ data1
data11
$

The regular expression /11/ matches records that contain the string 11 anywhere in the data
fields. The gawk program matches the defined regular expression against all the data fields in the
record, including the field separator character:

$ gawk ’BEGIN{FS=","} /,d/{print $1}’ data1
data11

512

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

data21
data31
$

This example matches the comma used as the field separator in the regular expression. This is not
always a good thing. It can lead to problems trying to match data specific to one data field that
may also appear in another data field. If you need to match a regular expression to a specific data
instance, you should use the matching operator.

The matching operator
The matching operator allows you to restrict a regular expression to a specific data field in the
records. The matching operator is the tilde symbol (∼). You specify the matching operator, along
with the data field variable, and the regular expression to match:

$1 ~ /^data/

The $1 variable represents the first data field in the record. This expression filters records where
the first data field starts with the text data. Here’s an example of using it in a gawk program
script:

$ gawk ’BEGIN{FS=","} $2 ~ /^data2/{print $0}’ data1
data21,data22,data23,data24,data25
$

The matching operator compares the second data field with the regular expression /&data2/,
which indicates the string starts with the text data2.

This is a powerful tool that is commonly used in gawk program scripts to search for specific data
elements in a data file:

$ gawk -F: ’$1 ~ /rich/{print $1,$NF}’ /etc/passwd
rich /bin/bash
$

This example searches the first data field for the text rich. When it finds the pattern in a record,
it prints the first and last data field values of the record.

You can also negate the regular expression match by using the ! symbol:

$1 !~ /expression/

If the regular expression isn’t found in the record, the program script is applied to the record
data:

$ gawk ’BEGIN{FS=","} $2 !~ /^data2/{print $1}’ data1
data11
data31
$

In this example the gawk program script prints the first data field of records where the second
data field doesn’t start with the text data2.

513

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Mathematical expressions
Besides regular expressions you can also use mathematical expressions in the matching pattern.
This feature comes in handy when matching numerical values in data fields. For example, if you
want to display all of the system users who belong to the root users group (group number 0),
you could use this script:

$ gawk -F: ’$4 == 0{print $1}’ /etc/passwd
root
sync
shutdown
halt
operator
$

The script checks for records where the fourth data field contains the value 0. On my Linux
system there are five user accounts that belong to the root user group.

You can use any of the normal mathematical comparison expressions:

■ x == y: Value x is equal to y.

■ x ‹= y: Value x is less than or equal to y.

■ x ‹ y: Value x is less than y.

■ x ›= y: Value x is greater than or equal to y.

■ x › y: Value x is greater than y.

You can also use expressions with text data, but you must be careful. Unlike regular expressions,
expressions are an exact match. The data must match exactly with the pattern:

$ gawk -F, ’$1 == "data"{print $1}’ data1
$
$ gawk -F, ’$1 == "data11"{print $1}’ data1
data11
$

The first test doesn’t match any records as the first data field value isn’t data in any of the
records. The second test matches one record with the value data11.

Structured Commands
The gawk programming language supports the usual cast of structured programming commands.
This section describes each of these commands and demonstrates how to use them within a gawk
programming environment.

The if statement
The gawk programming language supports the standard if-then-else format of the if
statement. You must define a condition for the if statement to evaluate, enclosed in

514

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

parentheses. If the condition evaluates to a TRUE condition, the statement immediately

following the if statement is executed. If the condition evaluates to a FALSE condition, the
statement is skipped. This can use the format:

if (condition)
statement1

or you can place it on one line, like this:

if (condition) statement1

Here’s a simple example demonstrating this format:

$ cat data4
10
5
13
50
34
$ gawk ’{if ($1 › 20) print $1}’ data4
50
34
$

Not too complicated. If you need to execute multiple statements in the if statement, you must
enclose them with braces:

$ gawk ’{
› if ($1 › 20)
› {
› x = $1 * 2
› print x
› }
› }’ data4
100
68
$

Be careful that you don’t confuse the if statement braces with the braces used to start and stop the
program script. The gawk program can detect missing braces and will produce an error message

if you mess up:

$ gawk ’{
› if ($1 › 20)
› {
› x = $1 * 2
› print x
› }’ data4
gawk: cmd. line:7: (END OF FILE)
gawk: cmd. line:7: parse error
$

515

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The gawk if statement also supports the else clause, allowing you to execute one or more

statements if the if statement condition fails. Here’s an example of using the else clause:

$ gawk ’{
› if ($1 › 20)
› {
› x = $1 * 2
› print x
› } else
› {
› x = $1 / 2
› print x
› }}’ data4
5
2.5
6.5
100
68
$

You can use the else clause on a single line, but you must use a semicolon after the if statement

section:

if (condition) statement1; else statement2

Here’s the same example using the single line format:

$ gawk ’{if ($1 › 20) print $1 * 2; else print $1 / 2}’ data4
5
2.5
6.5
100
68
$

This format is more compact but can be harder to follow.

The while statement
The while statement provides a basic looping feature for gawk programs. The format of the

while statement is:

while (condition)
{

statements
}

516

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

The while loop allows you to iterate over a set of data, checking a condition that stops the

iteration. This is useful if you have multiple data values in each record that you must use in

calculations:

$ cat data5
130 120 135
160 113 140
145 170 215
$ gawk ’{
› total = 0
› i = 1
› while (i ‹ 4)
› {
› total += $i
› i++
› }
› avg = total / 3
› print "Average:",avg
› }’ data5
Average: 128.333
Average: 137.667
Average: 176.667
$

The while statement iterates through the data fields in the record, adding each value to the

total variable, then incrementing the counter variable, i. When the counter value is equal to

4, the while condition becomes FALSE, and the loop terminates, dropping through to the next

statement in the script. That statement calculates the average; then the average is printed. This
process is repeated for each record in the data file.

The gawk programming language supports using the break and continue statements in while

loops, allowing you to jump out of the middle of the loop:

$ gawk ’{
› total = 0
› i = 1
› while (i ‹ 4)
› {
› total += $i
› if (i == 2)
› break
› i++
› }
› avg = total / 2
› print "The average of the first two data elements is:",avg
› }’ data5

517

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The average of the first two data elements is: 125
The average of the first two data elements is: 136.5
The average of the first two data elements is: 157.5
$

The break statement is used to break out of the while loop if the value of the i variable is 2.

The do-while statement
The do-while statement is similar to the while statement but performs the statements before
checking the condition statement. The format for the do-while statement is:

do
{

statements
} while (condition)

This format guarantees that the statements are executed at least one time before the condition
is evaluated. This comes in handy when you need to perform statements before evaluating the
condition:

$ gawk ’{
› total = 0
› i = 1
› do
› {
› total += $i
› i++
› } while (total ‹ 150)
› print total }’ data5
250
160
315
$

The script reads the data fields from each record and totals them until the cumulative value
reaches 150. If the first data field is over 150 (as seen in the second record), the script is guaran-
teed to read at least the first data field before evaluating the condition.

The for statement
The for statement is a common method using in many programming languages for looping. The
gawk programming language supports the C-style of for loops:

for(variable assignment; condition; iteration process)

This helps simplify the loop by combining several functions in one statement:

$ gawk ’{
› total = 0

518

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

› for (i = 1; i ‹ 4; i++)
› {
› total += $i
› }
› avg = total / 3
› print "Average:",avg
› }’ data5
Average: 128.333
Average: 137.667
Average: 176.667
$

By defining the iteration counter in the for loop, you don’t have to worry about incrementing it

yourself like you did when using the while statement.

Formatted Printing
You may have noticed that the print statement doesn’t exactly give you much control over how

gawk displays your data. About all you can do is control the output field separator character

(OFS). If you’re creating detailed reports, often you’ll need to place data in a specific format and

location.

The solution is to use the formatted printing command, called printf. If you’re familiar with C

programming, the printf command in gawk performs the same way, allowing you to specify

detailed instructions on how to display data.

The format of the printf command is:

printf "format string", var1, var2...

The format string is the key to the formatted output. It specifies exactly how the formatted

output should appear, using both text elements and format specifiers. A format specifier is a

special code that indicates what type of variable is displayed and how to display it. The gawk
program uses each format specifier as a placeholder for each variable listed in the command. The

first format specifier matches the first variable listed, the second matches the second variable,

and so on.

The format specifiers use the format:

%[modifier]control-letter

where control-letter is a one character code that indicates what type of data value will be

displayed, and modifier defines an optional formatting feature.

Table 19-3 lists the control-letters that can be used in the format specifier.

519

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

TABLE 19-3

Format Specifier Control Letters

Control Letter Description

c Displays a number as an ASCII character.

d Displays an integer value.

i Displays an integer value (same as d).

e Displays a number in scientific notation.

f Displays a floating point value.

g Displays either scientific notation or floating point, whichever is shorter.

o Displays an octal value.

s Displays a text string.

x Displays a hexadecimal value.

X Displays a hexadecimal value, but using capital letters for A through F.

Thus, if you need to display a string variable, you’d use the format specifier %s. If you need to

display an integer variable, you’d use either %d or %i (%d is the C-style for decimals). If you

want to display a large value using scientific notation, you’d use the %e format specifier:

$ gawk ’BEGIN{
› x = 10 * 100
› printf "The answer is: %e\n", x
› }’
The answer is: 1.000000e+03
$

In addition to the control-letters, there are three modifiers that you can use for even more control

over your output:

■ width: A numeric value that specifies the minimum width of the output field. If the

output is shorter, printf pads the space with spaces, using right-justification for

the text. If the output is longer than the specified width, it overrides the width value.

■ prec: A numeric value that specifies the number of digits to the right of the decimal

place in floating-point numbers, or the maximum number of characters displayed in a

text string.

■ − (minus sign): The minus sign indicates that left-justification should be used instead

of right-justification when placing data in the formatted space.

520

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

When using the printf statement, you have complete control over how your output appears.

For example, in the ‘‘Built-in variables’’ section, we used the print command to display data fields
from our records:

$ gawk ’BEGIN{FS="\n"; RS=""} {print $1,$4}’ data2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

You can use the printf command to help format the output so it looks better. First, let’s just
convert the print command to a printf command and see what that does:

$ gawk ’BEGIN{FS="\n"; RS=""} {printf "%s %s\n", $1, $4}’ data 2
Riley Mullen (312)555-1234
Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

That produces the same output as the print command. The printf command uses the %s
format specifier as a placeholder for the two string values.

Notice that you have to manually add the newline character at the end of the printf command
to force a new line. Without it, the printf command will continue to use the same line on

subsequent prints.

This is useful if you need to print multiple things on the same line, but using separate printf
commands:

$ gawk ’BEGIN{FS=","} {printf "%s ", $1} END{printf "\n"}’ data1
data11 data21 data31
$

Each of the printf outputs appears on the same line. To be able to terminate the line, the END
section prints a single newline character.

Next, let’s use a modifier to format the first string value:

$ gawk ’BEGIN{FS="\n"; RS=""} {printf "%16s %s\n", $1, $4}’ data2
Riley Mullen (312)555-1234

Frank Williams (317)555-9876
Haley Snell (313)555-4938

$

By adding the 16 modifier value, we force the output for the first string to use 16 spaces. By
default, the printf command uses right-justification to place the data in the format space. To
make it left-justified, just add a minus sign to the modifier:

$ gawk ’BEGIN{FS="\n"; RS=""} {printf "%-16s %s\n", $1, $4}’ data2
Riley Mullen (312)555-1234

521

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Frank Williams (317)555-9876
Haley Snell (313)555-4938
$

Now that looks pretty professional!

The printf command also comes in handy when dealing with floating point values. By specify-
ing a format for the variable, you can make the output look more uniform:

$ gawk ’{
› total = 0
› for (i = 1; i ‹ 4; i++)
› {
› total += $i
› }
› avg = total / 3
› printf "Average: %5.1f\n",avg
› }’ data5
Average: 128.3
Average: 137.7
Average: 176.7
$

By using the %5.1f format specifier, you can force the printf command to round the floating

point values to a single decimal place.

Built-in Functions
The gawk programming language provides quite a few built-in functions that perform common

mathematical, string, and even time functions. You can utilize these functions in your gawk pro-
grams to help cut down on the coding requirements in your scripts. This section walks you

through the different built-in functions available in gawk.

Mathematical functions
If you’ve done programming in any type of language, you’re probably familiar with using built-in
functions in your code to perform common mathematical functions. The gawk programming

language doesn’t disappoint those looking for advanced mathematical features.

Table 19-4 shows the mathematical built-in functions available in gawk.

While it does not have an extensive list of mathematical functions, gawk does provide some of the

basic elements you need for standard mathematical processing. The int() function produces the
integer portion of a value, but it doesn’t round the value. It behaves much like a floor function

found in other programming languages. It produces the nearest integer to a value between the
value and 0.

522

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

TABLE 19-4

The gawk Mathematical Functions

Function Description

atan2(x, y) The arctangent of x / y, with x and y specified in radians.

cos(x) The cosine of x, with x specified in radians.

exp(x) The exponential of x.

int(x) The integer part of x, truncated toward 0.

log(x) The natural logarithm of x.

rand() A random floating point value larger than 0 and less than 1.

sin(x) The sine of x, with x specified in radians.

sqrt(x) The square root of x.

srand(x) Specify a seed value for calculating random numbers.

This means that the int() function of the value 5.6 will return 5, while the int() function of

the value −5.6 will return −5.

The rand() function is great for creating random numbers, but you’ll need to use a trick to

get meaningful values. The rand() function returns a random number, but only between the

values 0 and 1 (not including 0 or 1). To get a larger number, you’ll need to scale the returned

value.

A common method for producing larger integer random numbers is to create an algorithm that

uses the rand() function, along with the int() function:

x = int(10 * rand())

This returns a random integer value between (and including) 0 and 9. Just substitute the 10 in

the equation with the upper limit value for your application, and you’re ready to go.

Be careful when using some of the mathematical functions, as the gawk programming language

does have a limited range of numeric values it can work with. If you go over that range, you’ll get

an error message:

$ gawk ’BEGIN{x=exp(100); print x}’
2.68812e+43
$ gawk ’BEGIN{x=exp(1000); print x}’
gawk: cmd. line:1: warning: exp argument 1000 is out of range
inf
$

523

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The first example calculates the exponential of 100, which is a very large number but within the

range of the system. The second example attempts to calculate the exponential of 1000, which

goes over the numerical range limit of the system and produces an error message.

Besides the standard mathematical functions, gawk also provides a few functions for bitwise

manipulating of data:

■ and(v1, v2): Performs a bitwise AND of values v1 and v2.

■ compl(val): Performs the bitwise complement of val.

■ lshift(val, count): Shifts the value val count number of bits left.

■ or(v1, v2): Performs a bitwise OR of values v1 and v2.

■ rshift(val, count): Shifts the value val count number of bits right.

■ xor(v1, v2): Performs a bitwise XOR of values v1 and v2.

■ The bit manipulation functions are useful when working with binary values in your data.

String functions
The gawk programming language also provides several functions you can use to manipulate string

values, shown in Table 19-5.

Some of the string functions are fairly self-explanatory:

$ gawk ’BEGIN{x = "testing"; print toupper(x); print length(x) }’
TESTING
7
$

However, some of the string functions can get pretty complicated. The asort and asorti func-

tions are new gawk functions that allow you to sort an array variable based on either the data

element values (asort) or the index values (asorti). Here’s an example of using asort:

$ gawk ’BEGIN{
› var["a"] = 1
› var["g"] = 2
› var["m"] = 3
› var["u"] = 4
› asort(var, test)
› for (i in test)
› print "Index:",i," - value:",test[i]
› }’
Index: 4 - value: 4
Index: 1 - value: 1
Index: 2 - value: 2
Index: 3 - value: 3
$

524

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

TABLE 19-5

The gawk String Functions

Function Description

asort(s [,d]) Sort an array s based on the data element values. The index
values are replaced with sequential numbers indicating the new
sort order. Alternatively, the new sorted array is stored in array
d if specified.

asorti(s [,d]) Sort an array s based on the index values. The resulting array
contains the index values as the data element values, with
sequential number indexes indicating the sort order.
Alternatively, the new sorted array is stored in array d if
specified.

gensub(r, s, h [, t]) Search either the variable $0, or the target string t if supplied,
for matches of the regular expression r. If h is a string
beginning with either g or G, replaces the matching text with s.
If h is a number, it represents which occurrence of r to replace.

gsub(r, s [,t]) Search either the variable $0, or the target string t if supplied,
for matches of the regular expression r. If found, substitute the
string s globally.

index(s, t) Returns the index of the string t in string s, or 0 if not found.

length([s]) Returns the length of string s, or if not specified, the length
of $0.

match(s, r [,a]) Returns the index of the string s where the regular expression r
occurs. If array a is specified, it contains the portion of s that
matches the regular expression.

split(s, a [,r]) Splits s into array a using either the FS character, or the
regular expression r if supplied. Returns the number of fields.

sprintf(format,
variables)

Returns a string similar to the output of printf using the
format and variables supplied.

sub(r, s [,t]) Search either the variable $0, or the target string t, for matches
of the regular expression r. If found, substitutes the string s for
the first occurrence.

substr(s, i [,n]) Returns the nth character substring of s, starting at index i. If n
is not supplied, the rest of s is used.

tolower(s) Converts all characters in s to lower case.

toupper(s) Converts all characters in s to upper case.

525

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

The new array, test, contains the newly sorted data elements of the original array, but the index
values are now changed to numerical values, indicating the proper sort order.

The split() function is a great way to push data fields into an array for further processing:

$ gawk ’BEGIN{ FS=","}{
› split($0, var)
› print var[1], var[5]
› }’ data1
data11 data15
data21 data25
data31 data35
$

The new array uses sequential numbers for the array index, starting with index value 1 containing
the first data field.

Time functions
The gawk programming language contains a few functions to help you deal with time values,
shown in Table 19-6.

The time functions are often used when working with log files that contain dates that you need
to compare. By converting the text representation of a date to the epoch time (the number of
seconds since January 1, 1970) you can easily compare dates.

Here’s an example of using the time functions in a gawk program:

$ gawk ’BEGIN{
› date = systime()
› day = strftime("%A, %B %d, %Y", date)
› print day
› }’
Friday, December 28, 2007
$

TABLE 19-6

The gawk Time Functions

Function Description

mktime(datespec) Converts a date specified in the format YYYY MM DD HH MM SS
[DST] into a timestamp value.

strftime(format
[, timestamp])

Formats either the current time of day timestamp, or timestamp if
provided, into a formatted day and date, using the date() shell
function format.

systime() Returns the timestamp for the current time of day.

526

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

This example uses the systime() function to retrieve the current epoch timestamp from the

system, then uses the strftime() function to convert it into a human-readable format using the

date shell command’s date format characters.

User-Defined Functions
You’re not limited to just using the built-in functions available in gawk. You can create your

own functions for use in your gawk programs. This section shows how to define and use

your own functions in your gawk programs.

Defining a function
To define you own function, you must use the function keyword:

function name([variables])
{

statements
}

The function name must uniquely identify your function. You can pass one or more variables into

the function from the calling gawk program:

function printthird()
{

print $3
}

This function will print the third data field in the record.

The function can also return a value using the return statement:

return value

The value can be a variable, or an equation that evaluates to a value:

function myrand(limit)
{

return int(limit * rand())
}

You can assign the value returned from the function to a variable in the gawk program:

x = myrand(100)

The variable will contain the value returned from the function.

527

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

Using your functions
When you define a function, it must appear by itself before you define any programming sections

(including the BEGIN section). This may look a little odd at first, but it helps keep the function

code separate from the rest of the gawk program:

$ gawk ’
› function myprint()
› {
› printf "%-16s - %s\n", $1, $4
› }
› BEGIN{FS="\n"; RS=""}
› {
› myprint()
› }’ data2
Riley Mullen - (312)555-1234
Frank Williams - (317)555-9876
Haley Snell - (313)555-4938
$

The function defines the myprint() function, which formats the first and fourth data fields in

the record for printing. The gawk program then uses the function to display the data from the

data file.

Once you define a function, you can use it as often as necessary in the program section of the

code. This saves lots of work when using long algorithms.

Creating a function library
Obviously, having to rewrite your gawk functions every time you need them is not all that

pleasant of an experience. However, gawk provides a way for you to combine your functions

into a single library file that you can use in all of your gawk programming.

First, you need to create a file that contains all of your gawk functions:

$ cat funclib
function myprint()
{

printf "%-16s - %s\n", $1, $4
}

function myrand(limit)
{

return int(limit * rand())
}

function printthird()
{

528

www.IrPDF.com

www.IrPDF.com

Advanced gawk 19

print $3
}
$

The funclib file contains three function definitions. To use them, you need to use the -f
command line parameter. Unfortunately, you can’t combine the -f command line parameter
with an in-line gawk script, but you can use multiple -f parameters on the same command line.

Thus, to use your library, just create a file that contains your gawk program, and specify both the
library file and your program file on the command line:

$ cat script4
BEGIN{ FS="\n"; RS=""}
{

myprint()
}
[rich@test2 ch19]$ gawk -f funclib -f script4 data2
Riley Mullen - (312)555-1234
Frank Williams - (317)555-9876
Haley Snell - (313)555-4938
$

Now all you need to do is add the funclib file to your gawk command line whenever you need

to use a function defined in the library.

Summary
This chapter walked you through the more advanced features of the gawk programming language.

Every programming language requires using variables, and gawk is no different. The gawk pro-
gramming language includes some built-in variables that you can use to reference specific data

field values and retrieve information about the number of data fields and records processed in the

data file. You can also create your own variables for use in your scripts.

The gawk programming language also provides many of the standard structured commands you’d
expect from a programming language. You can easily create fancy programs using if-then logic,

while, and do-while loops, and for loops. Each of these commands allows you to alter the

flow of your gawk program script to iterate through data field values to create detailed data
reports.

The printf command is a great tool to have if you need to customize your report output. It
allows you to specify the exact format for displaying data from the gawk program script. You can

easily create formatted reports, placing data elements in exactly the correct position.

Finally, this chapter discussed the many built-in functions available in the gawk programming

language, as well as showing how to create your own functions. The gawk program contains
many useful functions for handling mathematical features, such as standard square roots and

529

www.IrPDF.com

www.IrPDF.com

Part III Advanced Shell Scripting

logarithms, as well as trigonometric functions. There are also several string-related functions that

make extracting substrings from larger strings a breeze.

You aren’t limited to the built-in functions in the gawk program. If you’re working on an appli-

cation that uses lots of specialized algorithms, you can create your own functions to process the

algorithms, then use those functions in your own code. You can also set up a library file con-

taining all of the functions you use in your gawk programs, saving you time and effort in all of

your coding.

The next section of the book switches gears a little. It examines a few other shell environments

you may run into in your Linux shell-scripting endeavors. While the bash shell is the most com-

mon shell used in Linux, it’s not the only shell. It helps to know a little about some of the other

shells available and how they differ from the bash shell.

530

www.IrPDF.com

www.IrPDF.com

Alternative Linux
Shells

IN THIS PART

Chapter 20
The ash Shell

Chapter 21
The tcsh Shell

Chapter 22
The Korn Shell

Chapter 23
The zsh Shell

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

The ash Shell

IN THIS CHAPTER

Introducing the ash shell

Parts of the ash shell

The dash shell

Scripting differences

N
ow that you’ve seen the standard Linux bash shell, and what you

can do with it, it’s time to examine a few other shells available in

the Linux world. The ash shell is a low-budget shell that offers

basic features with a small footprint. This is perfect for low-memory appli-

cations, such as embedded Linux systems. This chapter describes the ash

shell environment and shows you what you’ll need to know to work with
your scripts in an ash shell environment.

What Is the ash Shell?

The first trick to understanding the ash shell is figuring out what version

of it you’re using. The ash shell started out life as a simple copy of the

original Bourne shell available on Unix systems (see Chapter 1). Kenneth

Almquist created a small-scale version of the Bourne shell for Unix systems

and called it the Almquist shell, which was then shortened to ash. This

original version of the ash shell was extremely small, making it fast, but

without many advanced features, such as command line editing or history
features, making it difficult to use as an interactive shell.

The NetBSD Unix operating system adopted the ash shell and still uses it

today as the default shell. The NetBSD developers customized the ash shell

by adding several new features, making it closer to the Bourne shell. The

new features include command line editing using both emacs and vi editor

commands, as well as a history command to recall previously entered com-

mands. This version of the ash shell is also used by the FreeBSD operating

system as the default login shell.

533

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The Debian Linux distribution created its own version of the ash shell (called Debian ash, or dash)
for inclusion in its version of Linux. For the most part, dash copies the features of the NetBSD
version of the ash shell, providing the advanced command line editing capabilities.

However, to help add to the shell confusion, the dash shell is actually not the default shell in
many Debian-based Linux distributions. Due to the popularity of the bash shell in Linux, most
Debian-based Linux distributions use the bash shell as the normal login shell, and only use the
dash shell as a quick-start shell for the installation script to install the distribution files.

The exception is the popular Ubuntu distribution. This often confuses shell script programmers
and causes a great number of problems with running shell scripts in a Linux environment. The
Ubuntu Linux distribution uses the bash shell as the default interactive shell, but uses the dash
shell as the default /bin/sh shell. This ‘‘feature’’ really confuses shell script programmers.

As you saw in Chapter 8, every shell script must start with a line that declares the shell used for
the script. In our bash shell scripts, we’ve been using:

#!/bin/bash

This tells the shell to use the shell program located at /bin/bash to execute the script. In the
Unix world, the default shell was always /bin/sh. Many shell script programmers familiar with
the Unix environment copy this into their Linux shell scripts:

#!/bin/sh

On most Linux distributions, the /bin/sh file is a symbolic link (see Chapter 3) to the /bin
/bash shell program. This allows you to easily port shell scripts designed for the Unix Bourne
shell to the Linux environment without having to modify them.

Unfortunately, the Ubuntu Linux distribution links the /bin/sh file to the /bin/dash shell
program. Since the dash shell only contains a subset of the commands available in the original
Bourne shell, this can (and often does) cause some shell scripts to not work properly.

The remainder of this chapter walks you through the different versions of the ash shell you may
run into in your Linux shell scripting travels, and shows you some tips on what to watch out for
if you need to run your shell scripts in an ash or dash shell.

The Original ash Shell
Before looking at the newer, more advanced ash and dash shells, it’s a good idea to understand
what the original ash shell looked like. Even though you may not run into it in desktop or server
Linux distributions, it still lives on today in some embedded Linux distributions, so it’s good to
know the limitations of the shell.

The Original ash command line parameters
The original ash shell uses command line parameters to control the behavior of the shell.
Table 20-1 lists the command line parameters available in the original ash shell.

534

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

TABLE 20-1

The Original ash Shell Command Line Parameters

Parameter Description

-c Execute the specified shell command from the command line.

-e Exit when a command terminates with a non-zero exit status.

-f Disable filename generation.

-I Ignore end-of-file characters.

-i Force an interactive shell.

-j Enable Berkeley job control (the default if using the -i
parameter).

-n Read commands but don’t execute them.

-s Read commands from STDIN.

-x Display each command before executing it.

-z Filename generation may generate zero files.

You can specify the command line parameters in any order, either individually, or together after
a single dash.

The -e command line option allows you to force the ash shell to exit immediately if a command
produces an error. This is a handy feature when trying to troubleshoot your shell scripts:

$ cat test1
#!/bin/ash -e
exiting on an error
cp /home/badfile test
echo "Does this display?"
$./test1
cp: /home/badfile: No such file or directory
$

The cp command attempts to copy a file that doesn’t exist, so it generates an error. When the ash
shell detects the error, it immediately exits, causing the script to stop.

The -f command line option allows you to disable wildcard expansion in the shell. The shell
treats the standard wildcard characters as normal characters:

$ ash -f
$ ls -al *.txt
ls: *.txt: No such file or directory
$

535

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

In this example, the shell is looking for a file called *.txt, instead of matching any file that ends

with .txt.

The -n command line option is not used in interactive shells, but if you use it in your shell script,

the ash shell will scan the script, but not actually run it. Here’s a quick example:

$ cat test2
#!/bin/ash -n
test run a script

echo "This is a test"
echo "This is a bad line.
$./test2
./test2: 5:Syntax error: Unterminated quoted string
$

The shell doesn’t execute the good echo statement, since the bad echo statement contained an

error. However, the shell does indicate that there’s an error in the bad echo statement line, so at

least you know where to look for the problem (the error message even tells you the line number).
This is a great way to quickly troubleshoot coding problems in your ash shell scripts without

having to actually run through the entire script line by line.

The original ash built-in commands
Since the original ash shell was designed to be lightweight, it contains just a subset of the Bourne

shell built-in commands. The trick is knowing which commands you can use and which ones

you can’t. Table 20-2 shows the built-in commands available in the original ash shell.

As you can see from Table 20-2, the ash shell contains some of the bash commands that you’re

used to, but there are quite a few things missing. The original ash shell doesn’t provide many

bells and whistles in its command environment. It just provides a bare-bones environment for

running programs. Of course, this feature is what makes it so popular in low-memory operations,

such as embedded Linux devices.

Let’s take a look at a few of the basic ash shell built-in commands that we haven’t already explored

in the bash shell.

The bltin command

You can use the bltin command when you want to run a built-in command in situations when

there’s another command available with the same name. When you’re running shell scripts, if

there’s more than one script with the same name, you can just specify the full pathname to select

the proper script. With a built-in command, you can’t do that.

To solve this problem, the ash shell provides the bltin command (its name is changed to

builtin in the bash shell). This forces the ash shell to look for a built-in command using the

specified name instead of a shell script.

536

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

TABLE 20-2

The Original ash Shell Built-In Commands

Command Description

bg Continue the specified job in background mode.

bltin Execute the specified built-in command.

cd Change to the specified directory, to $HOME if none is specified.

eval The supplied string is parsed as a shell command and executed.

exec Replace the shell process with the specified program.

exit Terminate the shell process.

export Export the specified variable and value pair so that shell subprocesses can
access it.

fg Continue the specified job in foreground mode.

getopts Retrieve the options and values specified on the shell command line.

hash Display, remove, and use the contents of a command hash table.

jobid Display the process IDs (PIDs) of the processes contained in the
supplied job.

jobs Display the background processes that are children of the current shell
process.

lc Re-execute the last command executed or define a specified function name
to execute the last command executed.

pwd Display the current working directory.

read Read a line of data from STDIN and assign it to a variable.

readonly Read a line of data from STDIN and assign it to a variable that can’t be
changed.

set List values of shell variables, set (or clear) option flags, and set values of the
shell’s positional parameters.

setvar Set a supplied value to a supplied variable name.

shift Shift the positional parameters a specified number of times.

trap Parse and execute a specified command when a specified signal is received.

umask Set the default permissions used when creating files and directories.

unset Unset the specified variable or options.

wait Wait for the specified job to complete and return the exit status.

537

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The hash command

The ash shell maintains a table of all commands you enter while in the shell process. The ash
shell then uses this table (called the hash table) to quickly retrieve the location of recently used
commands, instead of having to traverse all of the directories in the PATH environment variable
looking for them.

You can display the current hash table just by using the hash command by itself:

$ hash
builtin hash
builtin pwd
/bin/ls
$

The hash table contains the commands starting with the most recently used command. As you
can see from the example, it also remembers the built-in shell commands that you execute.

If you use the cd command to change your directory, the shell places an asterisk next to any
commands in the hash table that use a pathname:

$ cd
$ hash
builtin hash
builtin pwd
builtin cd
/bin/ls*
$

The asterisk means that the pathname may no longer be valid due to the change of directory since
the last time you executed the command.

You can use the -r parameter to remove individual items from the hash table:

$ hash -r /bin/ls
$ hash
builtin hash
builtin pwd
builtin cd
$

Sometimes you’ll run into the problem of a command that’s been moved, but the shell doesn’t
realize it and attempts to run the command from the location specified in the hash table. By
removing the hash table entry for the command you force the shell to re-find the command.

The -v parameter tells the hash command to display the full location where it finds a command
that you specify:

$ hash -v cd
builtin cd
$ hash -v ls
/bin/ls
$ hash -v fortune

538

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

/usr/games/fortune
$

This example also demonstrates that, if the command is a built-in shell command, the hash com-
mand will identify it as such.

The lc command

The lc command is a cute little utility that can save you some typing on the command line. It
stands for last command, and its job is to execute the last command that you ran on the command
line, including any command line arguments. Here’s a few examples of using the lc command:

$ pwd
/home/rich/test
$ lc
/home/rich/test
$./test1
Your HOME directory exists
$ lc
Your HOME directory exists
$ ls -al
total 148
drwxr-xr-x 2 rich rich 4096 Jan 7 08:15 .
drwxr-xr-x 17 rich rich 4096 Jan 3 10:03 ..
-rwxr--r-- 1 rich rich 97 Jan 3 10:04 test1
-rwxr--r-- 1 rich rich 84 Jan 7 08:01 test2
$ lc
total 148
drwxr-xr-x 2 rich rich 4096 Jan 7 08:15 .
drwxr-xr-x 17 rich rich 4096 Jan 3 10:03 ..
-rwxr--r-- 1 rich rich 97 Jan 3 10:04 test1
-rwxr--r-- 1 rich rich 84 Jan 7 08:01 test2
$

The lc command works no matter what the last command was, whether it was a built-in shell
command, an application program, or a shell script. As you can see from the example, the lc
command also duplicates any command line arguments you supplied with the original command.

The ash shell files
Just like the bash shell, the ash shell uses default files to control its start environment. The default
files allow you to define shell environment variables and settings when using the ash shell in an
interactive mode.

There are three files that the ash shell uses:

■ The /etc/profile file

■ The $HOME/.profile file

■ A file defined in the ENV environment variable

539

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

If the ash shell detects that it’s used as a login shell, it first executes the contents of the /etc/
profile file. This is the place to define system-wide environment variables that are set for all

interactive users.

Next, the ash shell searches the contents of the user’s HOME directory for a file named .profile.

If it exists, the ash shell executes it. Finally, the ash shell checks if the ENV environment variable

has been set (either before the ash shell is run or as part of the login script). If this variable is set,

the ash shell attempts to execute the contents of the filename specified by the variable.

The dash Shell
The original ash shell was a great place to start for emulating the original Bourne shell features,

but much needed to be added for a true interactive shell experience. The NetBSD Unix clone

developers took the original ash shell and modified it for their own use. The Debian Linux distri-

bution developers then took the NetBSD ash shell, and modified it to run in Debian Linux. This

section describes the Debian version of the ash shell, called dash.

The dash command line parameters
The dash shell uses command line parameters to control its behavior. Table 20-3 lists the com-

mand line parameters and describes what each one does.

There are just a few additional command line parameters that Debian added to the original ash

shell command line parameter list. The -E and -V command line parameters enable the special

command line editing features of the dash shell.

The -E command line parameter allows you to use the emacs editor commands for editing com-

mand line text (see Chapter 7). You can use all of the emacs commands for manipulating text on

a single line using the Ctrl and Meta key combinations.

The -V command line parameter allows you to use the vi editor commands for editing command
line text (again, see Chapter 7). This feature allows you to switch between normal mode and vi

editor mode on the command line by using the Esc key. When you’re in vi editor mode, you

can use all of the standard vi editor commands (such as x to delete a character, and i to insert

text). Once you are finished editing the command line, you must hit the Esc key again to exit

vi editor mode.

The dash environment variables
There are quite a few default environment variables that the dash shell uses to track information,

and you can create your own environment variables as well. This section describes the environ-

ment variables and how dash handles them.

540

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

TABLE 20-3

The dash Command Line Parameters

Parameter Description

-a Export all variables assigned to the shell.

-c Read commands from a specified command string.

-e If not interactive, exit immediately if any untested command fails.

-f Display pathname wildcard characters.

-n If not interactive, read commands but don’t execute them.

-u Write an error message to STDERR when attempting to expand a variable
that is not set.

-v Write input to STDERR as it is read.

-x Write each command to STDERR as it’s executed.

-I Ignore EOF characters from the input when in interactive mode.

-i Force the shell to operate in interactive mode.

-m Turn on job control (enabled by default in interactive mode).

-s Read commands from STDIN (the default behavior if no file arguments
are present).

-E Enable the emacs command line editor.

-V Enable the vi command line editor.

Default environment variables

Table 20-4 shows the default dash environment variables and describes what they are used for.

TABLE 20-4

The dash Shell Environment Variables

Variable Description

CDPATH The search path used for the cd command.

HISTSIZE The number of lines stored in the history file.

HOME The user’s default login directory.

IFS The input field separator characters. The default value is a space, tab, and
newline.

continued

541

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 20-4 (continued)

Variable Description

MAIL The name of the user’s mailbox file.

MAILCHECK The frequency to check the mailbox file for new mail.

MAILPATH A colon-separated list of multiple mailbox filenames. If set, this value
overrides the MAIL environment variable.

OLDPWD The value of the previous working directory.

PATH The default search path for executable files.

PPID The Process ID of the current shell’s parent.

PS1 The primary shell command line interface prompt.

PS2 The secondary shell command line interface prompt.

PS4 A character printed before each line when an execution trace is enabled.

PWD The value of the current working directory.

TERM The default terminal setting for the shell.

You should notice that the dash environment variables are very similar to the environment vari-

ables used in bash (see Chapter 5). This is not by accident. Remember, both the dash and bash

shells are extensions of the Bourne shell, so they both incorporate many of its features. However,

because of its goal of simplicity, the dash shell contains significantly fewer environment variables

than the bash shell. You need to take this into consideration when creating shell scripts in an ash

shell environment.

The dash shell uses the set command to display environment variables:

$set
COLORTERM="
DESKTOP SESSION=’default’
DISPLAY=’:0.0’
DM CONTROL=’/var/run/xdmctl’
GS LIB=’/home/atest/.fonts’
HOME=’/home/atest’
IFS=’
’
KDEROOTHOME=’/root/.kde’
KDE FULL SESSION=’true’
KDE MULTIHEAD=’false’
KONSOLE DCOP=’DCOPRef(konsole-5293,konsole)’
KONSOLE DCOP SESSION=’DCOPRef(konsole-5293,session-1)’
LANG=’en US’
LANGUAGE=’en’

542

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

LC ALL=’en US’
LOGNAME=’atest’
OPTIND=’1’
PATH=’/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin’
PPID=’5293’
PS1=’$ ’
PS2=’> ’
PS4=’+ ’
PWD=’/home/atest’
SESSION MANAGER=’local/testbox:/tmp/.ICE-unix/5051’
SHELL=’/bin/dash’
SHLVL=’1’
TERM=’xterm’
USER=’atest’
XCURSOR THEME=’default’
=’ash’
$

Your default dash shell environment will most likely differ, as different Linux distributions assign

different default environment variables at login.

Positional parameters

Besides the default environment variables, the dash shell also assigns special variables to any

parameters defined in the command line. Here are the positional parameter variables available for
use in the dash shell:

■ $0: The name of the shell

■ $n: The nth position parameter

■ $*: A single value with the contents of all of the parameters, separated by the first

character in the IFS environment variable, or a space if IFS isn’t defined

■ $@: Expands to multiple arguments consisting of all the command line parameters

■ $#: The number of positional parameters

■ $?: The exit status of the most recent command

■ $-: The current option flags

■ $$: The process ID (PID) of the current shell

■ $!: The process ID (PID) of the most recent background command

All of the dash positional parameters mimic the same positional parameters available in the
bash shell:

$ cat test3
#!/bin/dash
testing positional parameters

543

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

number=$#
pid=$$
third=$3
echo "Passed $number parameters"
echo "The third parameter is $third"
echo "The PID is $pid"
$./test3 one two three
Passed 3 parameters
The third parameter is three
The PID is 10095
$

You can use each of the positional parameters in your shell scripts just as you would in the

bash shell.

User-defined environment variables

The dash shell also allows you to set your own environment variables. As with bash, you can

define a new environment variable on the command line by using the assign statement:

$ testing=10
$ echo $testing
10
$

By default, environment variables are only visible in the shell session in which they’re defined. To

allow an environment variable to be visible in a child shell or process, you must use the export
command:

$ testing=10 ; export testing
$ dash
$ echo $testing
10
$

Without the export command, user-defined environment variables are only visible in the current

shell or process.

There’s one huge difference between dash variables and bash variables. The dash shell

doesn’t support variable arrays. This small feature causes all sorts of problems for

advanced shell script writers.

The dash built-in commands
Just as with the bash shell, the dash shell contains a set of built-in commands that it recognizes.

You can use these commands directly from the command line interface or you can incorporate

them in your shell scripts. Table 20-5 lists the dash shell built-in commands.

544

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

TABLE 20-5

The dash Shell Built-In Commands

Command Description

alias Create an alias string to represent a text string.

bg Continue specified job in background mode.

cd Switch to the specified directory.

echo Display a text string and environment variables.

eval Concatenate all arguments with a space.

exec Replace the shell process with the specified command.

exit Terminate the shell process.

export Export the specified environment variable for use in all child shells.

fc List, edit, or re-execute commands previously entered on the command line.

fg Continue specified job in foreground mode.

getopts Obtain options and arguments from a list of parameters.

hash Maintain and retrieve a hash table of recent commands and their locations.

pwd Display the value of the current working directory.

read Read a line from STDIN and assign the value to a variable.

readonly Read a line from STDIN to a variable that can’t be changed.

printf Display text and variables using a formatted string.

set List or set option flags and environment variables.

shift Shift the positional parameters a specified number of times.

test Evaluate an expression and return 0 if true, or 1 if false.

times Display the accumulated user and system times for the shell and all shell
processes.

trap Parse and execute an action when the shell receives a specified signal.

type Interpret the specified name and display the resolution (alias, built-in,
command, keyword).

ulimit Query or set limits on processes.

umask Set the value of the default file and directory permissions.

unalias Remove the specified alias.

unset Remove and unexport the specified variable or option flag.

wait Wait for the specified job to complete and return the exit status.

545

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

You probably recognize all of these built-in commands from the bash shell. The dash shell sup-

ports many of the same built-in commands as the bash shell. You’ll notice that there aren’t any

commands for the command history file, nor for the directory stack. The dash shell doesn’t sup-

port these features.

The following two sections describe a couple of commands that are in the dash shell, but not in

the ash shell.

The printf command

The echo command isn’t the only way to display data from the command line, or your shell

scripts. Chapter 10 demonstrated how to use the C programming language printf command in

a gawk program.

The dash shell also incorporates the printf built-in command to allow you to customize your

output. The printf command uses special formatting tags, which provide greater control over

how and where data appears in the output.

The format of the printf command is:

printf "format string" var1 var2 ...

Notice that the dash version of the printf command doesn’t use a comma between the for-

mat string and the variables. Just as in the gawk version, the format string is a string value that

contains up to three elements:

■ Standard text characters

■ Format specifications

■ Character escape sequences

The printf command displays each argument listed in the command line using a separate format
specification. The format specification defines what type of data to display, and how to display it.

The dash printf command uses the same format specifications as the gawk printf command

discussed in Chapter 19.

Here’s an example of using the printf command in a dash shell script:

$ cat test4
#!/bin/dash
testing the printf command

factorial=1
value=1
while [$value -le 10]
do

546

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

count=1
while [$count -le $value]
do

factorial=$(($factorial * $count))
count=$(($count + 1))

done
printf "The factorial of %d is %6.2e\n" $value $factorial
factorial=1
value=$(($value + 1))

done

The printf command allows us to format the output of the two variables, in this case displaying

the factorial value using scientific notation:

$./test4
The factorial of 1 is 1.00e+00
The factorial of 2 is 2.00e+00
The factorial of 3 is 6.00e+00
The factorial of 4 is 2.40e+01
The factorial of 5 is 1.20e+02
The factorial of 6 is 7.20e+02
The factorial of 7 is 5.04e+03
The factorial of 8 is 4.03e+04
The factorial of 9 is 3.63e+05
The factorial of 10 is 3.63e+06
$

The %6.2e format specifies a six-position scientific notation value, with two places after the deci-

mal point.

The ulimit command

The ulimit command is a great addition to the dash shell. It allows you to restrict system

resources to prevent overuse in the shell. The limits you place apply to the shell from which

the ulimit command is run.

There are two types of limits you can use in the dash shell:

■ A hard limit, which can only be reset by the root user account.

■ A soft limit, which can be reset by the owner user account for the shell.

When the shell violates a hard limit, an error occurs, blocking the operation. This is a great tool

for preventing system users from overrunning the system.

The ulimit command uses several command line parameters to define the system resources to

limit. These are shown in Table 20-6.

547

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 20-6

The ulimit Command Line Parameters

Parameter Description

-a The currently active limits

-c The largest core dump size (in KB)

-d The largest data segment size of a process (in KB)

-f The largest file block size (in 512-byte blocks)

-l The largest amount of memory that can be locked (in KB)

-m The largest amount of physical memory (in KB) that can be used

-n The number of files the process can have open at one time

-p The number of processes the user can have active at the same time

-s The largest stack size of a process

-t The CPU time limit

-H Display or set a hard limit

-S Display or set a soft limit

To display all of the currently set limits, use the -a parameter:

$ ulimit -a
time(seconds) unlimited
file(blocks) unlimited
data(kbytes) unlimited
stack(kbytes) 8192
coredump(blocks) 0
memory(kbytes) unlimited
locked memory(kbytes) unlimited
process unlimited
nofiles 1024
vmemory(kbytes) unlimited
locks unlimited
$

To set a limit, just add the number for the limit amount along with the appropriate parameter:

$ ulimit -f 2
$

548

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

This sets a soft limit on the number of blocks a new file can contain in the process. If you try to

create a file larger than the limit, the shell will block the attempt and display a warning:

$ cat data1 >> data2
File size limit exceeded
$

If you want to set limits for the login shell for each user, you can use the ulimit command in

the /etc/profile file, which the dash shell runs at each login. This is a great way to restrict

system resources for users.

Scripting in dash
Unfortunately, the dash shell doesn’t recognize all of the scripting features of the bash shell.

Shell scripts written for the bash environment often fail when run on the ash or dash shells.

This section describes the differences you’ll need to be aware of to get your shell scripts to run

properly in the ash or dash shell environments.

Creating ash and dash scripts
You probably guessed by now that creating shell scripts for the ash shell is pretty similar to cre-

ating shell scripts for the bash shell. You should always specify which shell you want to use in

your script to ensure that the script runs with the proper shell.

You do this on the first line of the shell:

#!/bin/ash

or

#!/bin/dash

You can also specify a shell command line parameter on this line, as was demonstrated earlier in

‘‘The Original ash Shell’’ section with the -e command line parameter.

Things that won’t work
Unfortunately, because the ash and dash shells are only a subset of the Bourne shell features,

there are a few things in bash shell scripts that won’t work in the ash or dash shells. These

are often called bashisms. This section is a quick summary of bash shell features you may

be used to using in your bash shell scripts that won’t work if you’re in an ash or dash shell

environment.

549

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Using arithmetic

Chapter 8 showed three ways to express a mathematical operation in the bash shell script:

■ Using the expr command: expr operation

■ Using square brackets: $[operation]

■ Using double parentheses: $((operation))

The ash and dash shells support the expr command and the double parentheses method but

don’t support the square bracket method. This can be a problem if you’ve got lots of mathematical

operations that use the square brackets:

$ cat test5
#!/bin/dash
testing mathematical operations

value1=10
value2=15

value3=$[$value1 * $value2]
echo "The answer is $value3"
$./test5
./test5: 7: value1: not found
The answer is
$

The proper format for performing mathematical operations in ash or dash shell scripts is to use

the double parentheses method:

$ cat test5b
#!/bin/dash
testing mathematical operations

value1=10
value2=15

value3=$(($value1 * $value2))
echo "The answer is $value3"
$./test5b
The answer is 150
$

Now the shell can perform the calculation properly.

The test command

While the dash shell supports the test command, you must be careful how you use it. The bash

shell version of the test command is slightly different than the dash shell version.

550

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

The bash shell test command allows you to use the double equal sign (==) to test if two strings

are equal. This is an add-on to accommodate programmers familiar with using this format in

other programming languages:

$ cat test6
#!/bin/bash
testing the == comparison

test1=abcdef
test2=abcdef

if [$test1 == $test2]
then

echo "They’re the same!"
else

echo "They’re different"
fi
$./test6
They’re the same!
$

Simple enough. However, if you run this script in an ash or dash shell environment, you’ll get an

unwelcome outcome:

$./test6
[: ==: unexpected operator
They’re different
$

The test command available in the ash and dash shells doesn’t recognize the == symbol for text

comparisons. Instead, it only recognizes the = symbol. If you change the text comparison symbol

to just a single equal sign, things are just fine in all of the ash, bash, and dash shell environments:

$ cat test7
#!/bin/dash
testing the = comparison

test1=abcdef
test2=abcdef

if [$test1 = $test2]
then

echo "They’re the same!"
else

echo "They’re different"
fi
$./test7
They’re the same!
$

551

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

This little bashism is responsible for many hours of frustration for shell programmers!

The echo statement options

The simple echo statement is also another source of frustration for dash shell programmers. It

doesn’t behave the same way in the dash and bash shells.

In the bash shell, if you want to display a special character in the output, you must use the -e
command line parameter:

echo -e "This line contains\ta special character"

The echo statement contains the \t special character to represent a tab. Without the -e com-

mand line parameter, the bash version of the echo statement ignores the special character. Here’s

a test that demonstrates this in the bash shell:

$ cat test8
#!/bin/bash
testing echo commands

echo "This is a normal test"
echo "This test uses a\tspecial character"
echo -e "This test uses a\tspecial character"
echo -n "Does this work: "
read test
echo "This is the end of the test"
$./test8
This is a normal test
This test uses a\tspecial character
This test uses a special character
Does this work: N
This is the end of the test
$

The echo statement that didn’t use the -e command line parameter just displayed the \t charac-
ter as normal text, so to get the tab character, you must use the -e command line parameter.

In the ash and dash shells, things are a little different. The echo statement in the ash and dash

shells automatically recognizes and displays special characters. Because of this, there is no -e
command line parameter. If you try to run the same script in an ash or dash environment, you

get this output:

$./test8
This is a simple test
This line uses a special character
-e This line uses a special character
Does this work: N
This is the end of the test
$

552

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

As you can see from the output, the dash shell version of the echo command recognizes the spe-
cial character in the line without the -e command line parameter just fine, but for the line
that does contain the -e command line parameter, it gets confused and displays the -e as
normal text.

The -n command line parameter is also unreliable. While being supported in bash to

suppress the newline character at the end of a line, it’s not supported in all versions

of the ash shell. The dash shell echo statement supports the -n parameter, but not all ash shell

versions support it.

Unfortunately, there’s no simple solution to this problem. If you must write scripts that work in
both the bash and dash or ash environments, the best solution is to use the printf command to
display text. This command works the same way in both shell environments, and it can display
special characters just fine.

The function command

Chapter 14 showed how to define your own functions in your shell scripts. The bash shell
supports two methods for defining functions. The first method is by using the function statement:

function name {
commands

}

The name attribute defines a unique name assigned to the function. Each function you define in
your script must be assigned a unique name.

The commands are one or more bash shell commands that make up your function. When you
call the function, the bash shell executes each of the commands in the order they appear in the
function, just as in a normal script.

The second format for defining a function in a bash shell script more closely follows how func-
tions are defined in other programming languages:

name() {
commands
}

The empty parentheses after the function name indicate that you’re defining a function. The same
naming rules apply in this format as the original shell script function format.

The ash and dash shells don’t support the first method of defining functions (they don’t support
the function statement). Instead, in the ash and dash shells you must define a function using the
function name with parentheses. If you try to run a function designed for the bash shell in an ash
or dash shell, you’ll get an error message:

$ cat test9
#!/bin/dash
testing functions

function func1() {

553

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

echo "This is an example of a function"
}

count=1
while [$count -le 5]
do

func1
count=$(($count + 1))

done
echo "This is the end of the loop"
func1
echo "This is the end of the script"
$./test9
./test9: 4: Syntax error: "(" unexpected
$
$

Instead of assigning the function code to the function, the dash shell executed the code within
the function definition, then complained about the format of the shell script.

If you’re writing shell scripts that may be used in the ash or dash environment, always use the
second method of defining your functions:

$ cat test10
#!/bin/dash
testing functions

func1() {
echo "This is an example of a function"

}

count=1
while [$count -le 5]
do

func1
count=$(($count + 1))

done
echo "This is the end of the loop"
func1
echo "This is the end of the script"
$./test10
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is the end of the loop
This is an example of a function
This is the end of the script
$

554

www.IrPDF.com

www.IrPDF.com

The ash Shell 20

Now the dash shell recognized the function defined in the script just fine and was able to use it

within the script.

Summary
This chapter discussed working in an ash shell environment. The ash shell is not a common shell

you’ll find in Linux distributions, but it does appear in the NetBSD and FreeBSD Unix distribu-

tions. A derivative of the ash shell is the dash shell, which is used in many Debian-based Linux

distributions, although not as a login shell.

The ash and dash shells are smaller versions of the Bourne shell, so they don’t support as many

features as the bash shell. You need to take this into consideration if you’re writing shell scripts

that may be used in an ash or dash shell environment.

The next chapter discusses another Linux shell environment you may run into. The C shell is a

popular shell in some Unix environments and has made its way over to the Linux world as the

tcsh shell. We’ll take a look at how the tcsh shell differs from the bash shell, and what you need

to know to get your scripts to work in a tcsh shell environment.

555

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

The tcsh Shell

IN THIS CHAPTER

The history of the tcsh shell

Parts of tcsh

Using the tcsh shell

A
nother popular alternative shell available in the Linux world is the

C shell. The C shell, as you might guess, is somewhat of an attempt
to incorporate features found in the C programming language into

shell scripting. The most popular version of the C shell implemented in

open source is the tcsh shell. This chapter discusses the tcsh shell, describ-
ing its features, and showing how to write shell scripts for it.

What Is the tcsh Shell?

The C shell was developed at the University of California, Berkeley by

Bill Joy as a replacement for the original Unix shell created at AT&T Labs
(before there was even a Bourne shell). Developers at Berkeley had designed

and built a Unix system to compete with AT&T Unix, and the C shell was

their choice for the default shell. This version of Unix is popularly called the
Berkeley Software Distribution (or BSD Unix). The goal of the C shell was

to provide a command line and scripting environment that C programmers

would be comfortable with.

In the late 1970s Ken Greer created an extension to the C shell that added

command line editing features found in the TENEX operating system. This

is where the name tcsh came from. The tcsh shell has become a popular
shell for many Unix systems patterned after BSD Unix (including early ver-

sions of the Mac OS X operating system; newer versions now use the bash

shell as the default).

While the bash shell has become the default shell for most every Linux
distribution, the tcsh shell is available as an option, and it can be easily

557

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

installed directly from source code if you desire. If you’re migrating shell scripts from a BSD Unix

environment to a Linux environment, it’s helpful to use the tcsh shell.

Because the C shell was created before the Bourne shell, there are significant differences

between the two. And because bash is based on the Bourne shell, there are significant differ-

ences between the tcsh and bash shells. Writing scripts that operate in both shell environments is

close to impossible for all but the simplest of applications.

The following sections walk you through the components and features of the tcsh shell, and

demonstrate how to write shell scripts for a tcsh environment.

The tcsh Shell Components
Just like the bash shell, the tcsh shell uses command line parameters, default files, environment

variables, and built-in commands to define the shell operating environment. This section describes

each of these features of the tcsh shell.

The tcsh command line parameters
The tcsh shell offers several command line parameters that allow you to customize how the shell

operates. These command line parameters define just what features of the shell are available and

how the shell behaves in the interactive environment. Table 21-1 lists the command line parame-

ters available with the tcsh shell.

The tcsh shell uses a few of the same command line parameters as the bash shell, but also has a

few of its own.

The -v and -V parameters are handy when you’re trying to do some troubleshooting in the tcsh

shell. They display commands as the shell executes them.

The -V parameter starts displaying commands as soon as the shell starts, including the login and

startup shell files (see the ‘‘The tcsh files’’ section). The -v parameter doesn’t display commands

until after the startup and login files finish.

This isn’t too useful for the command line, but it is pretty cool when dealing with shell scripts:

$ cat test1
#!/bin/tcsh -v
test run a script

set testing=10
echo "This is a test"
echo "The value of testing is $testing"
$./test1

558

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

set testing=10
echo "This is a test"
This is a test
echo "The value of testing is $testing"
The value of testing is 10
$

TABLE 21-1

The tcsh Shell Command Line Parameters

Parameter Description

-b Breaks from option parameters, forcing any remaining parameters to be treated
as non-option parameters.

-c Commands are read from the specified argument.

-d The shell loads the directory stack from the file $HOME/.cshdirs.

-e The shell exits if a command terminates abnormally or with a non-zero exit
status.

-f The shell doesn’t process the $HOME/.tcshrc file.

-i Force an interactive shell session.

-l Specify that the shell is used as a login shell.

-m Forces the shell to execute the $HOME/.tcshrc file, even if it doesn’t belong
to the effective user.

-n The shell parses commands but doesn’t execute them.

-q The shell accepts the SIGQUIT signal, and job control is disabled.

-s Shell commands are taken from STDIN.

-t The shell reads and executes a single line of input.

-v Sets the verbose shell variable, so command input is echoed when using
history substitution.

-V Sets the verbose shell variable before executing the $HOME/.tcshrc file.

-x Sets the echo shell variable, so commands are echoed immediately before
execution.

-X Sets the echo shell variable before executing the $HOME/.tcshrc file.

--help Display a help message on STDOUT and exit.

--version Display version information about the tcsh shell.

559

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Using the -v parameter when defining the tcsh shell in the script causes the shell to display each

statement before executing it.

The tcsh files
The tcsh shell automatically looks for several default files for setting environment variables and

executing commands. If the any of the default files exist, the tcsh shell executes them at specific

instances. There are three different types of default files the tcsh shell can handle:

■ Login files

■ Shell startup files

■ Logout files

This section examines the myriad of possible files you can use for your tcsh shell.

The tcsh login files
If you use the tcsh shell as a login shell, it first looks for and executes the files:

■ /etc/csh.login

■ /etc/csh/login

You’ll notice that all of these files use csh in the filename. Since the tcsh shell was designed as a

replacement for the original C shell, it was designed to handle any of the default files that the C

shell could. This made migrating from the C shell environment to the tcsh shell environment a

snap.

These files are executed for all users who use the tcsh shell as their login shell. The files should

contain system-wide environment variables that should be set for all users, and executable pro-

grams that all users should use (such as the umask command to set default file and directory

permissions). Most likely if you’re using a Linux distribution that supports the tcsh shell, one of

these files already exists for setting system environment variables at login.

After executing either of these two files, the tcsh shell looks for a file in each user’s $HOME
directory:

$HOME/.login

This file can contain user-specific environment variable settings, and executable commands that

an individual user wants to run when logging into the system, before the command line interface

prompt appears.

Any environment variable settings you make in the $HOME/.login shell will override any system-

wide settings made in the /etc/csh.login file. You can test the order in which the tcsh shell

executes these files by adding a simple echo statement to each one, then logging in:

560

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

$ telnet localhost
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is ’^]’.
Welcome to testbox
login: test
Password:
Last login: Fri Jan 11 18:54:41 from localhost.localdomain
This is the /etc/csh.login file
This is the .login file
$

As you can see from the example, the tcsh shell executed the /etc/csh.login file first.

Shell startup files
If you don’t use the tcsh shell as a login shell, but just an interactive shell, you must deal with a

different set of files when the shell starts up.

The default system-wide startup file is:

* /etc/csh.cshrc

After executing this file (if it exists), the tcsh shell proceeds to the user’s $HOME directory and

looks for either of the following files:

■ $HOME/.cshrc

■ $HOME/.tcshrc

If both exist, it will only execute the .tcshrc file. You can test the order in which the tcsh shell

executes these files by performing a simple test using the echo statement:

$ tcsh
This is the /etc/csh.cshrc file
This is the /home/test/.tcshrc file
$

When I started a new tcsh shell, it executed the /etc/csh.cshrc file first, then the .tcshrc
file in the $HOME directory.

The shell startup files also execute if you use the tcsh shell for a shell script:

$ cat test2
#!/bin/tcsh
test run a script
echo "This is a test"
$./test2
This is the /etc/csh/cshrc file

561

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

This is the /home/test/.tcshrc file
This is a test
$

Notice that before the output of the shell script appears, you see the echo statements from the

tcsh shell startup files.

The startup files don’t replace the login files, but add to them. If you have both set, when you

log in with a new login shell you’ll see that not only do the login shell files execute, but also the

startup shell files:

$ telnet localhost
Trying 127.0.0.1...
Connected to localhost.localdomain.
Escape character is ’^]’.
Welcome to testbox
login: test
Password:
Last login: Fri Jan 11 18:55:26 from localhost.localdomain
This is the /etc/csh.cshrc file
This is the /etc/csh.login file
This is the /home/test/.tcshrc file
This is the .login file
$

Notice the order in which the shell executes the default files:

1. The all-user startup file.

2. The all-user login file.

3. The private startup file.

4. The private login file.

This order is important to remember if you’re setting environment variables, as if any of these

files set the same environment variable values, the last value set wins.

The logout files
Besides the login and startup files, the tcsh shell also has the ability to execute commands in files

when you log out from an interactive or login shell session. These files can be in the following

locations:

■ /etc/csh.logout

■ $HOME/.logout

562

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

As you probably figured out by now, every user on the system executes the commands in the

/etc/csh.logout file at logout, while each individual user has a unique $HOME/.logout file.

The tcsh shell will execute any commands in these files before logging out of the current shell.

This doesn’t include just exiting from an interactive shell. Thus, if you just start another tcsh

shell from an existing shell session, the tcsh shell won’t execute the logout files when you exit

the shell.

To test this feature, you can’t just display text using the echo statement, as the shell will most

likely go away too quickly for you to see. However, you can redirect the output to a file, then

view the file after you’ve logged out.

Here’s what my file looked like after I logged out from a tcsh shell session:

$ cat logout.txt
This is the /etc/csh.logout file
This is the /home/test/.logout file
$

The tcsh shell executed the commands in the /etc/csh.logout file first, then executed the

commands in the $HOME/.logout file.

The tcsh environment variables
The tcsh shell environment variables can be somewhat confusing. The Bourne shell (and its

derivatives bash, ash, and dash) uses a single class of environment variables to store system infor-

mation. The tcsh shell contains two classes of environment variables:

■ Shell variables

■ System environment variables

The system environment variables consist of upper-case text strings that provide standard system

information. The tcsh shell variables are lower case variables which have special meaning to the

shell.

Shell variables
The special Table 21-2 shows the shell variables that tcsh uses to set behavior features in the

shell.

That’s quite a list of shell variables available for the tcsh shell! These variables demonstrate the

power of the tcsh shell. It allows you to customize many different aspects of the shell just by

setting shell variables.

563

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 21-2

The tcsh Special Shell Variables

Variable Description

addsuffix If set (by default) filename completion adds a forward slash (/) to the end of
directories, and a space to the end of normal filenames.

afsuser If set, the autologout uses this value instead of the local username for
Kerberos identification.

ampm If set, all times are shown in 12-hour AM/PM format.

argv The arguments supplied to the shell.

autocorrect The shell invokes the spell-word editor automatically before each command.

autoexpand If set, the shell invokes the expand-history editor automatically before each
command.

autolist If set, the shell lists possible commands after an ambiguous command.

autologout Set to the number of minutes of inactivity before automatically logging out. An
optional second parameter specifies the number of minutes of inactivity before
locking the terminal.

backslash
quote

If set, the shell always quotes special characters (backslash, single, and double
quotation marks) with a backslash character.

catalog The filename of the message catalog.

cdpath A list of directories that the cd command will search for subdirectories.

color If set, enables color display for some commands.

colorcat If set, color escape sequences for messages.

command If set, the command passed to the shell using the -c command line parameter.

complete Controls command completion. If set to enhance, completion ignores case and
considers special characters. If set to igncase, completion just ignores case.

continue If set to a list of commands, the shell will continue the list of commands instead
of starting a new one.

continue args Same as continue, but the shell passes arguments.

correct If set to cmd, commands are automatically spell-corrected. If set to complete,
commands are automatically completed. If set to all, the entire command
line is corrected.

csubstnonl If set, newlines and carriage returns in commands are replaced with spaces.

continued

564

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

TABLE 21-2 (continued)

Variable Description

cwd The full pathname of the current directory.

dextract If set, the pushd command extracts the nth entry from the directory stack
instead of rotating it to the top.

dirsfile The default location where the dirs command looks for a history file.

dirstack An array of all the directories on the directory stack.

dspmbyte Controls editing for multi-byte character sets.

dunique If set, the pushd command removes any instances of the directory name from
the stack.

echo If set, the shell echoes each command before executing it.

echo style Defines the style of echo command (bsd, sysv, both, or none).

edit If set, the command line editor is used.

ellipsis If set, the %c, %, and %C prompt sequences in the prompt indicate skipped
directories with . . . (an ellipsis).

fignore Lists filename suffixes to be ignored by completion.

filec If the edit variable is not set, uses the traditional csh shell command completion.

gid The user’s read group ID.

group The user’s group name.

histchars A string value determining the characters used in history substitution.

histdup Controls handling of duplicates in the history file (all, prev, erase).

histfile The default location of the history file.

histlit If set, built-in and editor commands and savehist use the unexpanded form
of lines in the history list.

history The first entry indicates the number of history items to save. The optional
second entry indicates the format in which history is printed.

home The home directory of the user.

ignoreeof If set to an empty string or 0, the Ctrl-D key combination doesn’t exit the shell.

implicitcd If set, typing a directory name on the command line acts as though you used
the cd command with the directory name.

inputmode Sets the editor to either insert or overwrite mode at the beginning of each line.

continued

565

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 21-2 (continued)

Variable Description

killdup Controls duplicate entries in the kill ring. Can be set to all, prev, or erase.

killring The number of killed strings to keep in memory (set to 30 by default).

listflags List of flags to add to the ls-F command (can be x, a, or A).

listjobs If set, all jobs are listed when a job is suspended. If set to long, the long
format is used.

listlinks If set, the ls-F command shows the type of file to which each symbolic link
points.

listmax The maximum number of items which the list-choices editor command
will list.

listmaxrows The maximum number of rows of items which the list-choices editor
command will list.

loginsh Set by the shell if it’s a login shell.

logout Set by the shell to normal, automatic, or hangup.

mail The names of files or directories (separated by white space) to check for new
mail.

matchbeep Sets condition to generate a beep for completion match — never, nomatch,
ambiguous, notunique.

nobeep Beeping is disabled.

noclobber If set, files are not automatically destroyed by redirection attempts.

noding If set, disables the DING! display in the prompt time when the hour changes.

noglob If set, filename substitution and directory stack substitution are disabled.

nokanji If set and the shell supports Kanji, it is disabled so that the meta-key can be
used.

nonomatch If set, a filename substitution or directory stack substitution that doesn’t match
doesn’t create an error.

nostat A list of directories that should not be included in the stat command during a
completion operation.

notify If set, the shell announces job completions asynchronously.

oid The users’ real organization ID.

owd The old working directory.

path A list of directories to look for executable commands.

continued

566

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

TABLE 21-2 (continued)

Variable Description

printexitvalue If set in an interactive shell, the shell displays the non-zero exit status.

prompt The string printed before each command line.

prompt2 The secondary command line prompt for command completions.

prompt3 The string used for automatic spelling corrections.

promptchars A two-character string; if set the first character is used for the normal user
prompt, and the second character is used for the root user prompt.

pushdtohome If set, the pushd command pushes to the $HOME directory by default.

pushdsilent If set, the pushd and popd commands don’t print the directory stack.

recexact If set, completion completes on an exact match even if a longer match is
possible.

recognize only
executables

If set, command listing displays only files in the path that are executable.

rmstar If set, the user is prompted before the rm * command is executed.

rprompt The string to display on the right side of the screen when the prompt is being
displayed on the left side.

savedirs If set, the shell performs a dirs -S command before exiting, saving the
current dirs listing.

savehist If set, the shell performs a history -S command before exiting, saving the
current history listing.

sched The format in which the sched command displays scheduled events.

shell The filename of the shell program.

shlvl The number of nested shells.

status The exit status returned by the last command.

symlinks Controls symbolic link resolution. Can be set to chase, ignore, or expand.

tcsh The version number of the tcsh shell.

term The terminal type.

time If set to a number, the time command executes automatically after each
command that takes longer than the specified CPU seconds.

tperiod The time period, in minutes, between executions of the periodic special alias.

tty The name of the current TTY device the shell is attached to.

continued

567

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 21-2 (continued)

Variable Description

uid The user’s real user ID.

user The user’s login name.

verbose If set, the shell displays each command after history substitution.

version Displays the tcsh shell version.

visiblebell If set, a screen flash appears instead of an audible bell.

watch Sets a list of user/terminal pairs to watch for logins and logouts (can use the any
keyword). Reports if the user or terminal are used.

who The format string used for watch messages.

wordchars A list of nonalphanumeric characters to be considered as part of words by the
editor commands.

To display the shell variables currently set in your shell, use the set command:

$ set
clear

addsuffix
argv ()
autologout 60
cwd /home/test
dirstack /home/test
echo style both
edit
file /etc/sysconfig/i18n
gid 511
group test
history 1000
home /home/test
loginsh
owd
path (/usr/local/bin /bin /usr/bin /usr/X11R6/bin)
prompt [%n@%m %c]$
prompt2 %R?
prompt3 CORRECT>%R (y|n|e|a)?
shell /bin/tcsh
shlvl 1
sourced 1
status 0
tcsh 6.10.00
term xterm
testing 10

568

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

tty pts/0
uid 508
user test
version tcsh 6.10.00 (Astron) 2000-11-19 (i386-intel-linux) options
8b,nls,dl,al,rh,color
$

Notice that the output of the tcsh set command is somewhat different from that produced when

you list variables in the bash shell. The tcsh shell version shows the shell variable on the left side

and the current value on the right side.

You should recognize many of these shell variables from their counterparts in the bash shell. Here

are a couple of differences that you need to be aware of:

■ The tcsh shell uses the prompt shell variable (along with prompt2 and prompt3),

instead of the PS1, PS2, and PS3 environment variables.

■ The path shell variable contains an indexed list of directories instead of a single string

with values separated by colons.

To display or use the current value of a shell variable, you must precede it with a dollar sign:

$ echo $path
/usr/local/bin /bin /usr/bin /usr/X11R6/bin
$

The indexed string uses an array format to contain the individual values of the shell variable. You

can use an array format to access the individual elements:

$ echo $path[1]
/usr/local/bin
$ echo $path[2]
/bin
$ echo $path[3]
/usr/bin
$

Notice that the array starts at index position 1.

It’s important to remember that shell variables use all lower-case letters, while the environment

variables use all upper-case letters. Confusing them can lead to problems.

Environment variables
The tcsh shell also maintains a set of environment variables, similarly to the Bourne shell.

Table 21-3 lists the environment variables.

569

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 21-3

The tcsh Shell Environment Variables

Variable Description

AFSUSER Equivalent to the afsuser shell variable.

COLUMNS The number of columns available on the terminal.

DISPLAY Pointer to the X Windows server for graphics windows.

EDITOR Pathname to the default editor.

GROUP Equivalent to the group shell variable.

HOME Equivalent to the home shell variable.

HOST The name of the system on which the shell process is running.

HOSTTYPE The type of machine on which the shell process is running.

HPATH A colon-separated list of directories in which the run-help editor command
looks for command documentation.

LANG Specifies the preferred character environment.

LC CTYPE If set, only ctype character handling is changed.

LINES The number of lines in the terminal.

LS COLORS A colon-separated list of file type and color assignments used with the ls
command.

MACHTYPE The microprocessor class or machine model of the system.

OSTYPE The operating system of the system.

PATH A colon-separated list of directories used to locate executable files.

PWD Equivalent to the cwd shell variable, but only updated after an actual directory
change.

REMOTEHOST If the current user has logged in remotely, the IP address of the remote host.

SHLVL The number of nested shells (equivalent to the shlvl shell variable).

SYSTYPE The current system type.

TERM The terminal type (equivalent to the term shell variable).

TERMCAP The terminal capability string.

USER Equivalent to the user shell variable.

VENDOR The vendor of the system processor.

VISUAL The pathname of the full-screen editor.

570

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

Many of the tcsh environment variables are duplicates of the shell variable of the same name. This

is to provide some compatibility with the Bourne shell environment (note the inclusion of the

PATH environment variable, which uses the same format as the Bourne shell PATH environment

variable).

However, the two aren’t linked together. If you change one, the other won’t change. Thus you

can cause all sorts of problems by setting a shell variable (such as path) without setting the

corresponding environment variable (PATH).

To display the current environment variables, you must use the setenv command:

$ setenv
USER=test
LOGNAME=test
HOME=/home/test
PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/X11R6/bin
MAIL=/var/mail/test
SHELL=/bin/tcsh
TERM=xterm
HOSTTYPE=i386-linux
VENDOR=intel
OSTYPE=linux
MACHTYPE=i386
SHLVL=1
PWD=/home/test
GROUP=test
HOST=testbox
INPUTRC=/etc/inputrc
LESS=-MM
LESSKEY=/etc/.less
BSNUM=14
BACKSPACE=
HOSTNAME=testbox
LS COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:bd=40;33;01
:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:*.cmd=01;32:*.exe
=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:*.tar=01;31:*.tgz=01;31:*.
tbz2=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.lha=01;3
1:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;31:*.bz=01;31:*
.tz=01;31:*.rpm=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;3
5:*.xbm=01;35:*.xpm=01;35:*.png=01;35:*.tif=01;35:*.tiff=01;35:
LC CTYPE=en US
LC MONETARY=en US
LANGUAGE=en US:en
LC TIME=en US
LC NUMERIC=en US
LC COLLATE=en US
LC MESSAGES=en US
LANG=en

571

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TMPDIR=/home/test/tmp
TMP=/home/test/tmp
$

Notice that the setenv command uses the same output format as the bash shell set command.

To display or use environment variable values you must also include the dollar sign:

$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
$

While the tcsh environment variables look and act a lot like their bash shell counterparts, there’s

a big catch to them. The next section describes what you need to do to set environment and shell

variables in the tcsh shell.

Setting variables in tcsh
Setting variables in tcsh is one of the more complicated aspects of the shell. Depending on what

data values you’re trying to use, it can become a frustrating experience unless you’re familiar with

all of the rules.

Using the set command
For shell variables, you can use the set command to set a value for a shell variable. For a simple,

one word data value, you use the format:

set variable=value

This is simple enough:

$ set testing=100
$ echo $testing
100
$ set test2=test
$ echo $test2
test
$

The tricky part comes into play when you need to work with indexed arrays values. If the index

value already exists, it’s easy to replace with a new value:

$ echo $path
/usr/local/bin /bin /usr/bin /usr/X11R6/bin
$ set path[4]=/home/test
$ echo $path
/usr/local/bin /bin /usr/bin /home/test
$

572

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

However, you can’t use this technique to add a new element:

$ set path[5]=/home/test
set: Subscript out of range.
$

Instead, you must use parentheses to denote the new array: use $path to insert the existing array
elements into the new array, then add the new array elements at the end:

$ set path=($path /home/test2)
$ echo $path
/usr/local/bin /bin /usr/bin /home/test /home/test2
$ echo $path[5]
/home/test2
$

Now the new array value contains the additional element.

Finally, the tcsh shell uses the at symbol (@) as an alias for the set command. You can use the at
symbol in the same way you would the set command:

$ @ testing = 100
$ echo $testing
100
$

It’s important to place a space after the at symbol, or else you’ll get an error message.

Using the setenv command
You use the setenv command to set environment variable values in the tcsh shell. However, the
format of the setenv command is slightly different from the set command:

setenv variable value

Notice that it doesn’t use the equal sign to assign the value:

$ setenv TESTING 10
$ echo $TESTING
10
$ setenv TEST2 test
$ echo $TEST2
test
$

The oddity with the setenv command is when you want to append a value to a list of values
(such as the PATH environment variable). If you attempt to do it as in the bash shell, you’ll get an

error message:

$ setenv PATH $PATH:/home/test
Bad : modifier in $ (/).
$

573

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The tcsh shell interprets the colon as part of the shell variable. To add an element to the PATH

environment variable, you need to use braces around the environment variable name:

$ setenv PATH ${PATH}:/home/test
$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/test
$

Now the additional element is added to the PATH environment variable properly.

The tcsh built-in commands
The tcsh shell contains a host of built-in commands available both on the command line and in

shell scripts. Table 21-4 describes the available commands.

TABLE 21-4

The tcsh Shell Built-in Commands

Command Description

@ Display or set shell variables.

alias Assign an alias name to a command.

alloc Display the dynamic memory status.

bg Place the current or specified job in background mode.

bindkey Display or set editor commands to keyboard keys.

builtins Displays the names of all built-in commands.

cd Change to the home directory, or to the specified directory.

chdir The same as the cd command.

complete Display or manage command completion strings.

dirs Display or save the current directory stack.

echo Display a string to STDOUT.

echotc Perform a terminal command on STDOUT.

eval Treat the supplied string as input to the shell executes the commands.

exec Execute the supplied command in place of the current shell.

exit Terminate the current shell process.

fg Continue the specified job in foreground mode.

continued

574

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

TABLE 21-4 (continued)

Command Description

filetest Apply a specified test to the specified file.

glob Similar to echo, except doesn’t recognize escape characters, and words are
delimited with null characters.

hashstat Display statistics on command line hash table hits.

history Display and manage the command history file.

hup Run specified command, and exit if a hangup signal is received.

jobs Display active jobs.

kill Send the specified signal to the specified process ID (PID).

limit Limit the specified resource so as to not take more than the specified resource
(CPU time, file space, memory size, and others).

log Display the contents of the watch shell variable, and report on each user.

login Terminates the shell and replaces it with the /bin/login process.

logout Terminates the shell.

ls-F Display files using the ls command and the -F parameter, identifying file
types with special characters.

nice Set the scheduling priority of the shell, or the specified command.

nohup Run command and ignore hangup signals.

notify Notify the user when status of the specified job(s) change(s).

onintr Set the shell action when it receives an interrupt.

popd Pop the directory stack and return to the new top directory.

printenv Display the names and values of environment variables.

pushd Exchange the top two elements of the directory stack.

rehash Recompute the command hash table.

repeat Execute the specified command a specified number of times.

sched Display or manage the scheduled event list.

set Display or manage shell variables.

setenv Display or manage environment variables.

settc Set the specified terminal capability feature to the specified value.

setty Set the TTY modes that are not allowed to change.

continued

575

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 21-4 (continued)

Command Description

shift Shift the positional parameters one position.

source Read and execute commands from the specified file.

stop Stop the specified job or process executing in background mode.

suspend Immediately stop the shell process using the SIGSTOP signal.

telltc Display the values of all terminal capabilities.

time Execute the specified command and display a time summary.

umask Set the default permissions for new files and directories.

unalias Remove all aliases that match the specified pattern.

uncomplete Remove all completions that match the specified pattern.

unhash Disable use of the hash table to find executable programs.

unlimit Remove the resource restriction on a resource.

unset Remove all shell variables whose names match the specified pattern.

unsetenv Remove all environment variables whose names match the specified pattern.

wait Wait for all background jobs to complete.

where Display all known instances of the specified command, including aliases.

which Display the command the shell will execute after matching the specified
pattern.

The tcsh shell is no slouch in providing built-in commands! I’m sure that you recognize many

of these commands from their bash counterparts. There are a few commands that the tcsh shell

provides that aren’t available in the bash shell.

The alloc command is an easy way to check up on the memory status on your Linux system:

$ alloc
tcsh current memory allocation:
free: 0 83 93 5 13 6 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0
used: 0 173 611 347 35 834 7 7 5 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

Total in use: 312176, total free: 33936
Allocated memory from 0x80c31e0 to 0x8117c00. Real top at

0x8117c00
$

576

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

The output from the alloc command is somewhat cryptic. The two sets of numbers show the
list of memory blocks in increasing block sizes, starting at an 8-byte block, then a 16-byte block,

and so on up to a 2 MB block of memory. Thus, in this example, there are eighty-three 16-byte
blocks free, 93 32-byte blocks free, five 64-byte blocks free, and so on up to one 16 KB block
free. The same process is used to display the used memory blocks. The result totals are shown at
the end of the listing.

The ls-F command is another unique command to the tcsh shell. It produces the same output

as if you use the ls command along with the -F parameter (which displays an indicator next to
each entry showing executable files, linked files, and directories). Since it’s a built-in command,
it can produce the output much faster than the standard ls command.

The bindkey command is another interesting built-in command in the tcsh shell. It allows you
to bind a key combination to any key sequence, or shell command. By default, the tcsh shell

binds lots of key combinations to editor commands, allowing you to easily edit your command
line entries using simple editor key combinations.

You can list all of the current key bindings just by entering the bindkey command by itself on
the command line:

$ bindkey
Standard key bindings
"^@" -> set-mark-command
"^A" -> beginning-of-line
"^B" -> backward-char
"^C" -> tty-sigintr
"^D" -> delete-char-or-list-or-eof
"^E" -> end-of-line

This is just a partial list of the current key binding in my tcsh shell. The list is quite lengthy.

To define a new key binding, just list the desired key combination and the command or string

you want to assign:

$ bindkey -c ^G ls-F
$
test1~* test2* tmp/
logout.txt test2~* test.txt
$

Now every time I hit the Ctrl-G key combination I get the ls-F listing!

Scripting in tcsh
Writing shell scripts in the tcsh shell isn’t any more difficult than in the bash shell, just differ-
ent. You’ll need to get used to a slightly different method for performing many of the standard
statements you’re used to in bash.

577

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Working with variables
You’ve already seen that when working with variables you need to use the set command. Other
than that, you can use variables the same as with the bash shell. Remember to precede a variable
with a dollar sign when you want to reference the variable value.

Array variables
The tcsh shell also supports one dimensional array variables using an index value:

$ set myarray = (one two three)
$ echo $myarray[1]
one
$ echo $myarray[2]
two
$ echo $myarray[3]
three
$

To create the new array, each element is placed within the parentheses, separated by spaces. The
first element in the array must be referenced as item 1.

Handling mathematical operations
In the bash shell you could use the expr command, the double parentheses, or the square brack-
ets to perform mathematical operations using variables. In the tcsh shell, you just need to use
parentheses to perform any mathematical function. However, you can only perform mathematical
operations using the at symbol alias of the set command:

$ set test1 = 10
$ set test2 = 15
$ @ test3 = ($test1 * $test2)
$ echo $test3
150
$

The only statement that must use the at symbol is the one that performs the mathematical oper-
ation. The statements that only assign values can use either the set command or the at symbol
alias.

Structured commands
The tcsh shell supports the following structured commands:

■ if-then-else

■ foreach

■ while

■ switch

578

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

The following sections describe how to use each of these structured commands in your shell

scripts.

The if statements
The tcsh if statement can use one of several formats. The first format looks like this:

if (expression) command

If the expression defined in the parentheses evaluates to a TRUE condition, the shell executes

the command listed on the line:

$ cat test3
#!/bin/tcsh
simple if statement test

set testing = 10

if ($testing == 10) echo "it worked"
echo "This is the end of the test"
$./test3
it worked
This is the end of the test
$

The if statement can also be used with the then clause to execute multiple statements if the

expression is TRUE:

if (expression) then
statements

endif

Similarly to the bash if statement, the tcsh if statement can incorporate the else clause to

perform alternative statements if the expression is FALSE:

if (expression) then
statements

else
other statements

endif

And finally, you can link multiple if statements together by using another if statement on the

else line:

if (expression1) then
statement1

579

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

else if (expression2) then
statement2

endif

The expression in the if statement uses standard C-style symbols for both mathematical and

string comparisons, ==, !=, <, >, <=, >+, && (logical AND), and || (logical OR). In addition to

the mathematical symbols, the tcsh if statement also supports two string symbols:

■ =∼ to match a string pattern.

■ !∼ to not match a string pattern.

Here’s an example of using the string expression:

$ cat test4
#!/bin/tcsh
testing a string comparison

set testing=testing

if ($testing =~ test*) echo "it matched test*"
if ($testing !~ test) echo "it didn’t match test"
$./test4
it matched test*
it didn’t match test
$

There’s also another expression symbol you’ll probably find handy. The $? symbol tests if a vari-

able has been set or not:

$ cat test5
#!/bin/tcsh
using the $? symbol

set test1 = 10

if ($?test1) echo "The test1 variable has been set"
if ($?test2) echo "The test2 variable has been set"
$./test5
The test1 variable has been set
$

The tcsh shell also contains special tests for files and directories. These tests take the form:

-op file

where op is a one-character operation that defines the type of file operation to test.

Table 21-5 shows the file test operators available in tcsh.

580

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

TABLE 21-5

The tcsh File Test Operators

Operator Description

r Read access

w Write access

x Executable

X Contained within the path or a built-in command

e The file exists

o The owner of the file

z Has zero size

s Has non-zero size

f Plain file

d Directory

l Symbolic link

This provides an easy way to test the status of files in your shell scripts:

$ cat test6
#!/bin/tcsh
testing for the $HOME directory and a file

if (-d $HOME) then
echo "The HOME directory exists"

endif
if (-f $HOME/test) then

echo "The test file exists"
else

echo "The test file doesn’t exist"
endif
$./test6
The HOME directory exists
The test file doesn’t exist
$ touch $HOME/test
$./test6
The HOME directory exists
The test file exists
$

Using the file test operators, you can easily determine the status of files before trying to use them
in your scripts.

581

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The foreach statement
The tcsh shell doesn’t use the for statement, but it does contain a foreach statement for iterat-

ing through the values in an array variable or a list. The format of the foreach statement is:

foreach var1 (wordlist)
statements

end

The parameter wordlist can be an array variable, or a list of values separated with spaces:

$ cat test7
#!/bin/tcsh
testing the foreach statement

echo "The directories in your PATH are:"
foreach dir ($path)

echo $dir
end
$./test7
The directories in your PATH are:
/usr/local/bin
/bin
/usr/bin
/usr/X11R6/bin
$

This is a great way to iterate through array variables, especially if you don’t know how many

elements are in the array.

The while statement
The while statement in tcsh allows you to loop until a specified expression evaluates to a FALSE
condition. The format of the while command is:

while (expression)
statements

end

The expression used in the while statement is the same format as for the if statement, using

C-style mathematical comparison symbols, as well as the special =∼ and !∼ string comparison

symbols:

$ cat test8
#!/bin/tcsh
determining the factorial of a value

set value=$1
set factorial = 1

582

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

set counter = 1
while ($counter <= $value)

@ factorial = ($factorial * $counter)
@ counter += 1

end
echo "The factorial of $value is $factorial"
$./test8 5
The factorial of 5 is 120
$

The while statement continues looping through the statements until the expression evaluates to

a FALSE condition.

The switch command
The switch command in the tcsh shell allows you to execute multiple statements based on the

value of a string match. The format of the switch statement is:

switch (string)
case val1:

statements
case val2:

statements
default:

statements
endsw

The shell compares the string value to the values listed in each case statement. If a case
statement value matches string, the shell executes all of the statements contained in that case
statement, plus all of the following case statements.

If you only want the shell to execute the statements in a single case section, you can use

the breaksw command at the end of the case section. This causes the shell to jump to the

end statement. If none of the case values match, the default section statements are executed.

Here’s an example of using the switch statement in a shell script:

$ cat test9
#!/bin/tcsh
reading input and using the switch statement

echo -n "Please enter a word: "
set input = $<

switch ($input)
case test:

echo "This is a test"
breaksw

case hello:

583

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

echo "Hello world!"
breaksw

case exit:
echo "Thank you for playing"
breaksw

default:
echo "Sorry, I don’t understand that command"

endsw
$./test9
Please enter a word: test
This is a test
$./test9
Please enter a word: testing
Sorry, I don’t understand that command
$./test9
Please enter a word: exit
Thank you for playing
$

Since the tcsh shell doesn’t include a read statement like the bash shell, you must read an input

value directly from STDIN. You do this using the $< symbol:

set input = $<

After retrieving the input, the switch statement compares the text to each case statement. If

none match, it uses the default statement (if provided).

In case you were wondering, the tcsh shell doesn’t support functions in shell scripts.

This can be a huge hindrance when converting bash shell scripts for the tcsh

environment.

Summary
This chapter discussed the features found in the C shell. While the C shell is not overly popular

in the Linux world, you may still run into it, so it’s a good idea to know how it differs from the

bash shell.

The most popular C shell implementation is the tcsh shell. While the tcsh shell is usually not the

default shell in Linux, it’s usually available as an installation file. This allows you to write and test

scripts used in a Unix environment that uses the C shell.

The C shell uses two types of variables, shell variables and environment variables. Shell variables

are lower case and contain system information and settings commonly used in the C shell. The

environment variables are mostly used for compatibility with Bourne and bash shell scripts, and

maintain simple values such as the path and shell name.

584

www.IrPDF.com

www.IrPDF.com

The tcsh Shell 21

To set shell variables you must use the set statement. The C shell allows you use assign mathe-

matical operations to variables, but you must use the set statement alias, the at symbol (@). Using

this symbol you can write mathematical equations using standard math symbols and parentheses.

To set environment variables you must use the setenv statement.

The C shell provides most of the standard structured commands you’re used to in the bash shell.

Unfortunately they use a slightly different format, so you’ll need to rewrite your bash shell scripts

to get them to work properly in a C shell environment.

The next chapter examines yet another popular Unix shell that’s made its way into the

Linux world. The Korn shell is popular in the Sun Unix environment, and it is often used

in Linux when it’s necessary to port shell scripts from a Sun server to a Linux server.

585

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

The Korn Shell

IN THIS CHAPTER

The Korn shell

Parts of the ksh93 shell

Scripting with the ksh93 shell

I
n exploring different Linux shells, no doubt sooner or later you’ll run

into the Korn shell. The Korn shell is popular in the Unix world, but

not so much in the Linux world. The Korn shell offers an interesting

mix of features from both the Bourne and C shell worlds. This chapter

discusses the features of the Korn shell, and walks you through the most

common version of the Korn shell, the ksh93 shell.

The Korn Shell History

The original Korn shell was developed by David Korn while working at

AT&T Bell Labs in the 1980s. David developed the Korn shell (you can

probably guess where its name comes from) to be a next-generation pro-

gramming shell, incorporating the best features of the Bourne shell and

the best features of the C shell. The Korn shell quickly became known as

a programmer’s shell. It supports advanced programming features missing

from the Bourne and C shells, including associative arrays and floating-point

arithmetic.

The original Korn shell was controlled by AT&T as a proprietary shell up

until 2000. Since then it has been released as open source software.

There are two separate threads of the original Korn shell:

■ ksh88

■ ksh93

587

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Most Korn shell implementations (including those found in Linux distributions) use the ksh93
shell. The exception is Sun Solaris. Sun uses a modified version of the ksh88 shell, which is
somewhat different from the ksh93 shell. Because the Korn shell used in Linux distributions uses
the ksh93 shell, that’s the shell that’s covered in this chapter.

The ksh93 shell is also referred to as the Enhanced Korn shell in some Linux distribu-

tions and Unix systems (such as IBM’s AIX operating system).

There is one other version of the Korn shell you may run into in the Linux environment. During
the time when the original Korn shell was proprietary software, a public domain version of the
Korn shell (called the pdksh shell) was developed. The pdksh shell has most of the same features
as the ksh88 shell, but it is missing the advanced mathematical features found in the ksh93 shell.

The Parts of the ksh93 Shell
Since the ksh93 shell is based upon the Bourne and C shells, you’ll see lots of similarities between
it and the bash and tcsh shells. This section describes the individual features of the ksh93 shell,
including the command line parameters, environment variables, and built-in commands.

Command line parameters
As with other shells, the Linux ksh93 shell utilizes command line parameters to define how it
behaves, both as an interactive shell, and a shell scripting shell. Table 22-1 shows the command
line parameters you can use when starting a new ksh93 shell session.

TABLE 22-1

The ksh93 Command Line Parameters

Parameter Description

-a Automatically export shell variables.

-A Assign values from the command line arguments to the
specified array variable.

-b Display job completion messages as soon as jobs change state.

-B Enable brace pattern field generation.

-c Read commands from the first argument.

-C Prevent redirection from truncating existing files.

-D Don’t execute commands. Display double-quoted strings that
are preceded by a dollar sign.

-e If a command has a non-zero exit status, exit the shell.

-f Disables filename generation.

588

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

TABLE 22-1 (continued)

Parameter Description

-G Cause the wildcard characters ** to match files and directories.

-h Each command becomes a tracked alias.

-i Interactive shell. All output goes to the terminal.

-m Background jobs run as a separate process group.

-n Read commands and check for errors, but don’t execute them.

-o Sets default shell options.

-p Disables processing the $HOME/.profile file.

-P Start the shell as a profile shell.

-r Start the shell as a restricted shell.

-R Generate a cross-reference database.

-s Send all output to file descriptor 2.

-v Display commands as they’re read.

-x Display commands and their arguments as they’re executed.

The ksh93 command line parameters are pretty similar to the bash shell. Besides the command
line parameters, you can customize the shell behavior using the -o command line parameter.
There are quite a few shell options you can set with this parameter:

■ allexport: Automatically export variables.

■ errexit: Exit the shell if a command generates a non-zero exit status.

■ bgnice: Run all background jobs at a lower priority.

■ bracexpand: Enable brace pattern field generation.

■ emacs: Use emacs editor mode for command line editing.

■ ignoreeof: The shell doesn’t exit on an EOF character.

■ markdirs: All directory names resulting from filename generation use a trailing slash.

■ monitor: Background jobs run as a separate process group.

■ noclobber: Prevent redirection from overwriting files.

■ noexec: Read commands and display errors, but don’t execute them.

■ noglob: Disable filename generation.

■ nolog: Don’t save functions in history log.

■ notify: Display new status of jobs when they change status.

■ nounset: Treat unset parameters as an error.

589

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

■ pipefail: Pipelines won’t complete until all components have completed.

■ privileged: Disables processing of $HOME/.profile file.

■ verbose: Display commands as the shell reads them.

■ trackall: Each command becomes a tracked alias.

■ vi: Use vi editor mode for command line editing.

■ viraw: Process each character as it’s typed in vi editor mode.

■ xtrace: Display commands as the shell executes them.

You can set multiple command line options on the command line to set multiple features for the
shell at once.

Default files
When you use the ksh93 shell as a login shell, it reads commands from two files:

■ /etc/profile

■ $HOME/.profile

You should store commands that are executed by all users in the /etc/profile file, while
commands for individual users should be stored in the appropriate $HOME/.profile file.

Environment variables
The ksh93 shell uses environment variables to set features and provide information about the
shell environment. Table 22-2 shows the default environment variables available in the ksh93
shell.

TABLE 22-2

The ksh93 Environment Variables

Variable Description

CDPATH The search path for the cd command

COLUMNS The terminal width in characters for edit mode

EDITOR The default editor used for command line editing

ENV Defines a file used for specifying parameter expansion, command substitution,
and arithmetic substitution (commonly $HOME/.kshrc)

FIGNORE The set of filenames ignored when performing filename matching

FPATH Search path for functions

HISTCMD The number of the current command in the history file

HISTEDIT The default editor for the history command

590

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

TABLE 22-2 (continued)

Variable Description

HISTFILE The file used to store command history

HOME The user’s default directory set at a login

IFS Internal field separator, set to space, tab, and newline by default

LANG The locale category used for functions not covered by an LC_
environment variable

LC_ALL Overrides LANG and all LC_ environment value settings

LC_COLLATE The language used for collation

LC_CTYPE The language used for handling character sets

LC_NUMERIC The language used for the decimal point character

LINES The number of lines available on the terminal

LINENO The current line in the script being processed

MAIL The name of a mail file to check for new mail

MAILCHECK How often (in seconds) to check the mail file specified by MAIL

MAILPATH A colon-separated list of directories to check for the mail file specified by
MAIL

OLDPWD The previous working directory

PATH A colon-separated list of directories to search for an executable command

PPID The process ID of the parent process

PS1 The primary command line prompt string (default is $)

PS2 The secondary command line prompt string (default is >)

PS3 The select loop prompt (default is #?)

PS4 The prompt used in parameter evaluation, command substitution, and
arithmetic substitution (default is +)

PWD The current working directory

RANDOM Generates a new random integer value each time it’s accessed

SECONDS The number of seconds since the shell was started

SHELL The pathname of the current shell

TIMEFORMAT A format string to specify how time is displayed

TMOUT If non-zero, the default timeout for read commands

VISUAL Allows you to enable the emacs, gmac, or vi editors

591

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The ksh93 environment variables use the same format as the bash environment variables, in

that system environment variables use all upper-case characters. You display the currently set

environment variables using the set command:

$ set
_=/bin/ksh
COLORTERM=’’
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-
JlNamp8Rkt,guid=a1ed8c4706b2db3ebaa39969fed7c100
DESKTOP_SESSION=kde
DISPLAY=:0.0
DM_CONTROL=/var/run/xdmctl
ENV=’$HOME/.kshrc’
FCEDIT=/bin/ed
GS_LIB=/home/rich/.fonts
GTK2_RC_FILES=/home/rich/.gtkrc-2.0
GTK_RC_FILES=/etc/gtk/gtkrc:/home/rich/.gtkrc:/home/rich/.kde/share/
config/gtkrc
HISTCMD=35
HOME=/home/rich
IFS=$’ \t\n’
KDEDIR=/usr
KDE_FULL_SESSION=true
KDE_MULTIHEAD=false
KDEROOTHOME=/root/.kde
KONSOLE_DCOP=’DCOPRef(konsole-4373,konsole)’
KONSOLE_DCOP_SESSION=’DCOPRef(konsole-4373,session-1)’
LANG=en_US
LANGUAGE=en
LC_ALL=en_US
LINENO=1
LOGNAME=rich
MAILCHECK=600
OLDPWD=/home/rich
OPTIND=1
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/X11R6/bin:/usr/local/bin:/usr
/local/sbin
PPID=5619
PS1=’$ ’
PS2=’> ’
PS3=’#? ’
PS4=’+ ’
PWD=/home/rich/test
QTDIR=/usr/share/qt3
RANDOM=17445
SECONDS=1.291
SESSION_MANAGER=local/testbox:/tmp/.ICE-unix/4315

592

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

SHELL=/bin/ksh
SHLVL=3
SSH_AGENT_PID=4270
SSH_AUTH_SOCK=/tmp/ssh-HcqYkH4172/agent.4172
TERM=xterm
TMOUT=0
USER=rich
WINDOWID=35651589
XCURSOR_THEME=default
XDM_MANAGED=/var/run/xdmctl/xdmctl-
:0,maysd,mayfn,sched,rsvd,method=classic
$

You can also create your own environment variables in the ksh93 shell. It’s common to use
lower-case characters for user-defined variables, so as not to get them confused with the system

environment variables.

To set an environment variable in the ksh93 shell, use the assignment operator:

$testing=10 ; export testing
$ ksh
$ echo $testing
10
$

The ksh93 shell uses the export command to export environment variables to child shells.

The next sections show some interesting features of the ksh93 environment variables.

Random numbers

The ksh93 shell uses the RANDOM variable as an easy way to generate random numbers in your

scripts. The RANDOM variable produces a random integer between 0 and 32767 each time you

reference it:

$ echo $RANDOM
13452
$ echo $RANDOM
12498
$ echo $RANDOM
31104
$

You can seed the random number generator by assigning an integer value to the RANDOM variable.

Different seed values produce different sequences of random numbers. It’s common practice to

use the $$ variable as the seed value. This special variable represents the process ID (PID) of the

shell and should be unique for each instance the shell runs.

593

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Defining the variable type

A feature in the ksh93 shell that’s not available in the bash shell is the typeset command. This
command allows you to set attributes for variables and functions. One of the attributes you can
set is the data type that the variable uses. Table 22-3 lists the parameters used with the typeset
command.

The typeset command is a great way to convert numbers between different bases:

$ typeset -i2 a
$ typeset -i8 b
$ typeset -i16 c
$ a=100
$ b=100
$ c=100
$ echo $a $b $c
2#1100100 8#144 16#64
$

Each of the variables appears using a different base (the base appears before the pound sign when
displaying the value).

TABLE 22-3

The typeset Command Parameters

Parameter Description

-A Make the variable an associative array.

-b The variable can contain any number of data bytes.

-En Make the variable a double-precision floating-point number with n significant figures.

-Fn Make the variable a double-precision floating-point number with n decimal places.

-f Assign a name for a function.

-in Make the variable an integer value with a base of n.

-l Convert all upper-case characters to lower-case.

-L Remove leading blanks and left-justify the text.

-n Declare the variable to be a reference to another variable.

-r Make the variable read-only.

-R Add leading blanks to right-justify the text.

-u Convert all lower-case characters to upper-case.

-x Mark the variable for automatic exporting.

-Z Right-justify and fill with leading zeros.

594

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

The -l and -u parameters work great in converting strings on the fly:

$ typeset -u testing
$ testing="This is a test"
$ echo $testing
THIS IS A TEST
$

It doesn’t get any easier than that!

Use the -n parameter to allow one variable to reference the value in a separate variable. This can

get confusing, so be careful when using it. Here’s an example of how this works:

$ ntest1=100
$ typeset -n ntest1=ntest2
$ ntest2=1
$ echo $ntest1
1
$ ntest1=100
$ echo $ntest2
100
$

The typeset command forces the ntest1 variable and the ntest2 variable to reference the

same memory location. Whatever value you assign to one, the other one also references. When

I assigned a value of 1 to the ntest2 variable, it replaced the existing value in netst1. When I

displayed the value of the ntest1 variable, it showed the same value as I assigned to ntest2.

The same applied to ntest2 when I assigned a value to the ntest1 variable.

Using arrays

Just like the bash shell, the ksh93 shell supports the use of numerical array variables:

$ mytest=(one two three four five)
$ echo $mytest
one
$ echo ${mytest[2]}
three
$ echo ${mytest[*]}
one two three four five
$

The ksh93 shell also supports associative arrays. Associative arrays allow you to use strings as the

index values instead of numbers. Before you can define the values in an associative array, you

must declare the variable you’ll use. You do that with the typeset command:

$ typeset -A test2
$

595

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Once you declare the variable as an associative array, you can assign keys and values using the
format:

variable=([key1]=value1 [key2]=value2 ...)

Each key can be any length string, and each value can be a number or a text string:

$ test2=([fruit]=banana [vegetable]=carrot [age]=18)
$

Once you define the elements in the associative array, you can access them based on the key:

$ echo ${test2[fruit]}
banana
$ echo ${test2[age]}
18
$

The problem with associative arrays is that unlike numeric arrays, where you can cycle through
the index numbers, you have no way of knowing the key values that exist. To solve this problem,
the ksh93 shell provides a special format for displaying just the key values of an associative
array:

$ echo ${!test2[@]}
fruit age vegetable
$

Notice that the order the keys were printed in doesn’t match the order in which they were
defined. This is an important thing to remember. There’s no guarantee that ksh93 will store the
associative array values in the same order in which you define them.

While this may seem confusing, it’s not really all that bad. When you display all of the element
values, you’ll see why:

$ echo ${test2[*]}
banana 18 carrot
$

When you display the element values, they appear in the same order as the keys. This allows you
to easily match the keys with their values.

Associative arrays provide a method for you to match string keys with values in your shell scripts,
which can be a very powerful tool.

Compound variables

The ksh93 shell supports yet another feature with variables called compound variables. A com-
pound variable is similar to an associative array, but references the values in a slightly different
manner.

To define a compound variable, you use the format:

variable=(subscript1=value1 subscript2=value2 ...)

596

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

The subscript is a text value, similar to the key in the associative array. The values can be any text
or numerical values:

$ test3=(fruit=banana vegetable=carrot age=18)
$

Once you assign the subscripts and values, you can reference an individual subscript value with
the format:

variable.subscript

Here’s how this looks:

$ echo ${test3.fruit}
banana
$ echo ${test3.age}
18
$

Each individual subscript value can be extracted just by referencing the subscript name along
with the variable.

Special variable subscripts

There are several special subscripts that are available in the ksh93 shell. These subscripts define
current information about the shell, as well as current information about the currently running
process in the shell. Table 22-4 lists the special ksh93 shell subscript variables.

Since the subscript variables use periods in their names, you must use braces around them when
referencing them:

$ echo ${.sh.version}
Version M 1993-12-28 r-
$

The subscript variables used in discipline functions are discussed later in the ‘‘Discipline func-
tions’’ section.

Built-in commands
The ksh93 built-in commands should look a lot like the bash commands, since they’re both based
on the Bourne shell. Table 22-5 shows the ksh93 built-in commands.

As you will see, the ksh93 shell contains a fair amount of built-in commands, making it a robust
shell to use for scripting. You should recognize most of these commands from the bash shell.

The ksh93 shell uses the echo, print and printf commands for displaying data and text. The
differences among these three commands can get confusing at times.

The echo command in ksh93 is somewhat unreliable. For the most part, it behaves similarly
to the bash shell, but it’s not guaranteed. Only the most basic use of the echo command is

597

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 22-4

The ksh93 Subscript Variables

Variable Description

.sh.command The current command line about to run.

.sh.edchar The value of the keyboard character entered for the last KEYBD trap.

.sh.edcol The character position of the cursor at the last KEYBD trap.

.sh.edmode Set to ESC when processing a key in vi editor mode, otherwise set to null.

.sh.edtext The characters in the keyboard buffer when processing the last KEYBD trap.

.sh.file The pathname of the file that contains the current command.

.sh.fun The name of the function currently being executed.

.sh.match An indexed array which stores the most recent match and subpattern
matches.

.sh.name The name of the variable at the time a discipline function is executed.

.sh.subscript Set to the name subscript of the variable at the time a discipline function is
executed.

.sh.subshell The current depth of subshells and command substitution.

.sh.value The value of the variable at the time a discipline function is executed.

.sh.version The version of the shell.

recommended in the ksh93 shell. For more advanced formatted printing, you should use either
the print or printf commands.

The print command uses the format:

print [-Renprs] [-u unit] [-f format] [arg ...]

The command line parameters are:

■ -R: Print all subsequent options and arguments other than -n.

■ -e: Enable escape characters (such as \n and \t). This is the default behavior.

■ -n: Don’t add a newline character at the end of the line.

■ -p: Write arguments onto the pipe of the spawned process instead of STDOUT.

■ -r: Disable escape characters in the format string.

■ -s: Write arguments into the history file instead of STDOUT.

■ -u: Write the output to the specified file descriptor instead of STDOUT.

■ -f: Use the specified C-style printf format string to display the arguments.

598

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

TABLE 22-5

The ksh93 Built-in Commands

Command Description

alias Defines an alias for a command.

bg Starts the specified job in background mode.

builtin Displays the built-in commands.

cd Changes the current working directory.

command Executes the specified command.

disown Causes the shell to not send a HUP signal to the specified jobs when
the shell terminates.

echo Displays a text string and variables.

eval The specified arguments are read into the shell and executed.

exec The specified command is executed in place of the shell without
creating a new process.

exit Causes the shell to exit with the specified exit status.

export Exports the specified environment variables to all child shells.

false Exits with an exit status of 1.

fg Starts the specified job in foreground mode.

getconf Displays the current values of the shell configuration parameters

getopts Retrieves the next option from a string of options each time it’s called.

hist Displays and edits the history file.

jobs Displays information about the specified job, or all active jobs.

kill Sends the specified signal (TERM if none specified) to the specified
process ID.

let Evaluates the specified arithmetic operation. Returns 0 if the value of
the expression is non-zero, and 1 if otherwise.

newgrp Equivalent to the /bin/newgrp utility.

print Displays arguments on STDOUT.

printf Displays arguments using a C-style formatting string.

pwd Displays the current working directory.

read Reads input from STDIN and stores it in a variable.

continued

599

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 22-5 (continued)

Command Description

readonly Reads input from STDIN and stores it in a variable that can’t be changed.

set Sets shell features defined in the command line parameters.

shift Renames positional parameters to shift the values down one parameter.

sleep Suspends execution for the specified number of seconds.

trap Intercepts the specified signal and performs the specified command.

true Exits with an exit status of 0.

typeset Sets attributes and values for shell variables and functions.

ulimit Displays or sets a resource limit.

umask Displays or sets the default permissions for new files and directories.

unalias Removes a defined alias.

unset Removes the value of the specified variable

wait Waits until the specified job completes and reports its exit status.

whence Displays how the specified command would be interpreted (built-in or
utility location)

You can customize the output of the print command by using both the command line param-

eters and a printf C-style format string (see Chapter 19). By default the print command just
prints out variables:

$ test=10
$ test2=15
$ print $test $test2
10 15
$

With the print command you can still use the same format as the echo command:

$ value1=10
$ value2=15
$ print "The first value is $value, while the second is $value2"
The first value is 10, while the second is 15
$

The print command also allows you to use the printf format string to display the variables in
a formatted text string, much like the printf command:

$ test=testing
$ test2=10

600

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

$ print -f "This %s value is %d\n" $test $test2
This testing value is 10
$

The %s and %d control codes determine the format of the output for the associated variables in the

print command list.

The printf command uses only the C-style printf format to display arguments by default. The

format of the printf command is:

printf format [arg ...]

The format parameter is a text string that uses the standard symbols to denote specific data

types and formats to use in the print (see Chapter 19). Each data symbol matches an argument

supplied on the command line:

$ printf "This %s value is %d\n" $test $test2
This testing value is 10
$

The printf command provides a few extra formatting tricks than the print command:

■ Reuses control codes until all of the listed variables are displayed.

■ Can print time and date values using the same format as the date command.

If you supply more variables on the printf command line than control codes in the format

string, the printf command automatically goes back to the first control code and repeats using

the control codes with the additional variables. This is useful if you’re trying to print a table of

values. You only have to define the control codes for the first row, then list all of the variables on

the same line:

$ test1=10
$ test2=15
$ test3=20
$ test4=25
$ printf "%d - %d\n" $test1 $test2 $test3 $test4
10 - 15
20 - 25
$

The printf command also allows you to easily reformat a date and time value into any format

using the date command format:

$ value1=’1/31/08’
$ print $value1
1/31/08
$ printf "%(%Y)T\n" $value1
2008

601

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

$ printf "%(%A, %B %d, %Y)T\n" $value1
Thursday, January 31, 2008
$ printf "%(%F)T\n" $value1
Thu Jan 31 12:42:11 EST 2008
$

It’s pretty amazing what you can do with the %T format control code!

Scripting in the ksh93 Shell
For the most part, scripting in the ksh93 shell isn’t much different than in the bash shell. Most
of your bash shell scripts should work just fine in a ksh93 shell environment, and the ones that
don’t usually just need a little modification.

If you’re writing scripts specifically for the ksh93 shell, there are a few additional things that you
can use to make life a little easier for you. This section describes the major differences you’ll find
between the ksh93 shell and the bash shell.

Mathematical operations
A great feature of the ksh93 shell is the ease with which you can use mathematical operations.
This section describes the features available in the ksh93 shell for manipulating numbers and
performing mathematical operations.

Performing calculations

Mathematical calculations are performed using one of two methods:

■ The let command

■ Double parentheses

The let command allows you to assign the result of a mathematical operation directly to a
variable:

$ let value1=4*5
$ echo $value1
20
$

Using this format, you can’t have any spaces between the equal sign and the equation elements.
Alternatively, you can enclose the equation in double quotation marks and use as many spaces as
you want:

$ let value1=" 4 * 3 "
$ echo $value1
12
$

602

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

Probably the most useful feature of the ksh93 shell’s mathematical abilities is that unlike the bash

shell, it can handle floating point numbers:

$ let value1=" 10.5 * 0.5 "
$ echo $value1
5.25
$

This feature alone makes the ksh93 shell a favorite for many shell programmers.

Instead of the let command, you can also use the double parentheses method of defining math-

ematical operations:

$ value1=$((4 * 3))
$ echo value1
12
$

You can perform any mathematical operation you need within the double parentheses, using both

numbers and variables:

$ value1=10.25
$ value2=$(($value1 / 10))
$ echo $value2
1.025
$

If you try to perform something that’s not valid, the ksh93 shell will let you know about it with

an error message:

$ value1=0
$ value2=$((10.25 / $value1))
ksh93: 10.25 / 0 : divide by zero
$

Besides the error message, the ksh93 shell also returns a non-zero exit status to indicate that the

operation failed.

Mathematical functions

The ksh93 shell includes several built-in mathematical functions you can use in your shell scripts.

The mathematical library built into the ksh93 shell consists of the following functions:

■ abs(x): Absolute value of x.

■ acos(x): The arc cosine of x (in radians).

■ asin(x): The arc sine of x (in radians).

603

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

■ atan(x): The arc tangent of x (in radians).

■ atan2(y, x): The arc tangent of y / x.

■ cos(x): The cosine of x (in radians).

■ cosh(x): The hyperbolic cosine of x (in radians).

■ exp(x): The exponent of x.

■ floor(x): The next lowest integer value by rounding down x.

■ fmod(x, y): The floating-point remainder of x / y.

■ hypot(x, y): The length of the hypotenuse of a right-angle triangle with sides x and y.

■ int(x): The nearest integer between x and 0.

■ log(x): The natural logarithm of x.

■ pow(b, e): The result of b raised to the e power.

■ sin(x): The sine of x (in radians).

■ sinh(x): The hyperbolic sine of x (in radians).

■ sqrt(x): The square root of x.

■ tan(x): The tangent of x (in radians).

■ tanh(x): The hyperbolic tangent of x (in radians).

That’s a lot of functions for you to use! Using them is as easy as just including the function name

and parameters in your shell script code:

$ cat test1
#!/bin/ksh93
testing the ksh93 math functions

value1=9
value2=$((sqt($value1)))
value3=$((int(10.52))
value4=$((sin(45)))
print "The square root of $value1 is $value2"
print "The integer part of 10.52 is $value3"
print "The sine of 45 is $value4"
$./test1
The square root of 9 is 3
The integer part of 10.52 is 10
The sine of 45 is 0.850903524534
$

As you can see from the examples, the ksh93 math functions can also work with floating-point

numbers.

604

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

Structured commands
The ksh93 shell implements all of the structured commands you’re familiar with in the bash shell:

■ if-then

■ for loops (including the C-style)

■ while loops

■ until loops

■ select statements

■ case statements

Each of these structured commands uses the same format as the Bourne shell (and thus the bash
and ash shells), so I won’t cover these in detail. However, the ksh93 shell provides a simpler
method for specifying mathematical operations in the if-then statement and the while/until
loops. The following sections take a closer look at these features.

The if-then-else statement

The if-then statement uses the same format as for the bash shell (see Chapter 9). The basic
format of the if-then statement is:

if command then
statements1

else
statements2

fi

Just as with the bash shell, the ksh93 shell if-then statement executes the command provided,
and if it returns a zero exit status, proceeds to execute the first set of statements. Otherwise, it
executes the second set of statements.

The ksh93 shell also supports the elif statement, allowing you to chain if-then-else
statements together:

if command1 then
statements1

elif command2 then
statements2

fi

The ksh93 if-then statement supports the test command (see Chapter 9), but it doesn’t
recognize the alternative test command format using the single brackets. Instead, the ksh93
shell supports using double parentheses for mathematical comparisons, and double brackets for
non-mathematical comparisons. Here’s an example of a math comparison:

$ cat test2
#!/bin/ksh93
testing the test command

605

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

value1=10
value2=20
if (($value1 ‹ $value2)) then

print "The value $value1 is less than $value2"
else

print "The value $value1 is greater than $value2"
fi
$./test2
The value 19 is less than 20
$

You’ll also notice that similarly to the tcsh shell, the ksh93 shell supports using standard mathe-

matical operators when comparing numerical values.

The ksh93 shell also supports the bash-style numerical comparators (such as -gt, -lt,

and -eq), but they’re considered obsolete and may go away in future versions of the

Korn shell.

The ksh93 shell uses the same file and directory tests as the bash shell, such as -d for directories,

-f for files, -r for readable, and -x for executable. Here’s an example using the directory com-

parison symbols:

$ cat test3
#!/bin/ksh93
testing the non-math comparison

if [[-d $HOME]] && [[-f $HOME/testing]] then
print "The file exists."

else
print "Sorry, the file doesn’t exist."

fi
$./test3
Sorry, the file doesn’t exist.
$ touch $HOME/testing
$./test3
The file exists.
$

You can also see from this example that the ksh93 shell supports the use of logical AND (&&)

symbols. It also supports using logical OR (| |) as well.

The while and until loops

The while and until loops require a condition to determine when the loop must stop. The

ksh93 shell allows you to set the condition using the same mathematical comparators as the

if-then statement:

$ cat test5
#!/bin/ksh93

606

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

calculating factorials the ksh93 way

value=1
while (($value ‹= 10))
do

factorial=1
counter=1
while (($counter ‹= $value))
do

factorial=$(($factorial * $counter))
counter=$(($counter + 1))

done
print "The factorial of $value is $factorial"
value=$(($value + 1))

done
$./test5
The factorial of 1 is 1
The factorial of 2 is 2
The factorial of 3 is 6
The factorial of 4 is 24
The factorial of 5 is 120
The factorial of 6 is 720
The factorial of 7 is 5040
The factorial of 8 is 40320
The factorial of 9 is 362880
The factorial of 10 is 3628800
$

The while statements performed as expected in the shell script.

Command redirection
In the ksh93 shell you can’t use the backtick to redirect the output of a command to a variable.

Instead, you must use the format:

variable=$(command)

This format assigns the output of a command to the variable:

$ value1=$(date)
$ echo $value1
Mon Jan 14 19:23:14 EST 2008
$

This feature comes in handy in your shell scripts, when you need to extract data from the output

of a command (more on that in Chapter 27).

607

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Discipline functions
A ksh93 shell feature related to command redirection is a discipline function. A discipline function
is a function that operates on a variable. There are three basic discipline functions:

■ get: To get the value of the function variable.

■ set: To set the value of the function variable.

■ unset: To reset the value of a function variable.

You define a discipline function similarly to how you would define a normal function (the ksh93
shell uses the function command, similar to how the bash shell does it). The key for a discipline

function is how it returns the resulting value.

If you’re using the get discipline function for a variable, instead of using the return command,
a discipline function uses the special .sh.value variable. This allows you to use the function

just like a variable, as each time you reference the discipline function name, it returns the value

stored in the .sh.value variable.

Here’s an example of defining and using a discipline function:

$ function date.get {
> .sh.value=$(date +’%A, %B %d, %Y’)
> }
$

Now the date variable will return the formatted date any time you retrieve its value:

$ echo $date
Monday, January 14, 2008
$

You use the set discipline function to automatically alter the way a variable value is set in an
assignment statement:

$ function sqrt.set {
> .sh.value=$((sqrt(${.sh.value})))
}
$

Now whenever you assign a value to the sqrt variable, the discipline function automatically

calculates the square root of the value and assigns the result to the variable:

$ sqrt=9
$ echo $sqrt
3
$ sqrt=16
$ echo $sqrt
4
$

608

www.IrPDF.com

www.IrPDF.com

The Korn Shell 22

This is a great way to create simple functions on the fly, both in your interactive shells and in

your shell scripts.

In case you’re wondering, the ksh93 shell supports normal functions also. They use

the same format as functions in the bash shell, either using the function command or

using the double parentheses to define the function name.

Summary
This chapter introduced the Korn shell and discussed one of the most popular Korn shell imple-

mentations, the ksh93 shell. The ksh93 shell is an advanced version of the original Korn shell

and provides lots of interesting features.

The ksh93 shell allows you to typeset variables, defining what type of data a variable can hold and

how to process it. By typesetting variables, you can change the way the shell displays numeric

values (such as the base used) and also modify the way text is stored (such as all upper or

lower-case).

You can create both numeric and associative array variables in the ksh93 shell. Associative arrays

allow you to assign a string key to a data value. To recall the value, just reference the string key

in the array. The use of compound variables is similar in that you assign multiple values to a

variable and reference the values using a subscript of the array.

The ksh93 shell also provides lots of built-in commands. One handy command is the printf
command, which allows you to use C-style printf formatting features to format your output.

One of the highlights of the ksh93 shell is its support for math features. The ksh93 shell can

perform mathematical operations using standard C-style math symbols, and even includes sev-

eral advanced built-in math functions, such as square root, absolute value, and the standard trig

functions. The selling feature of the ksh93 shell for many shell programmers is its full support of

floating-point numbers. You can process floating-point values the same as integer values directly

in your shell scripts!

Finally, the chapter discussed a unique feature of the ksh93 shell, discipline functions. Discipline

functions allow you to modify how variables are set and the value they return when you refer-

ence them. By overriding the default behavior, you can assign any type of function to a variable.

Whenever you reference the variable, the ksh93 shell automatically executes the function and

assigns the appropriate values when it completes.

The next chapter finishes off our tour of alternate Linux shells by examining the Z shell (zsh). The

Z shell is one of the newest shells, and shows it by including lots of advanced features.

609

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

The zsh Shell

IN THIS CHAPTER

Introducing the zsh shell

The parts of the zsh shell

Writing scripts for zsh

T
o wrap up our discussion on Linux shells, this chapter takes a look

at the newest of them, the zsh shell. The zsh shell provides some

amazing features, and sets the bar pretty high for any future shell

development. This chapter discusses what makes the zsh shell so unique,

and walks you through the various features available for use in your zsh

shell scripts.

History of the zsh Shell

The Z shell (called zsh) is an open source Unix shell developed by Paul

Falstad. It takes ideas from the Bourne, bash, ash, and tcsh shells and adds

many unique features to create a full-blown advanced shell designed for

programmers.

Some of the features that make the zsh shell unique are:

■ Improved shell option handling

■ Shell compatibility modes

■ Loadable modules

Of all these features, loadable modules is the most advanced thought in shell

design. As you’ve seen in the previous shell chapters, each shell contains a

set of built-in commands that are available without the need of external
utility programs. The benefit of built-in commands is execution speed. The

shell doesn’t have to load a utility program into memory before running it,

the built-in commands are already in the shell memory, ready to go.

611

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The zsh shell provides a core set of built-in commands, plus the ability to add additional com-
mand modules. Each command module provides a set of additional built-in commands for specific

circumstances, such as network support and advanced math functions. You can add only the

modules you think you need for your specific situation.

This feature provides a great way to either limit the size of the zsh shell for situations that require

a small shell size and few commands, or expand the number of available built-in commands for

situations that require faster execution speeds.

Parts of the zsh Shell
This section walks you through the basics of the zsh shell, showing the built-in commands that

are available (or can be added by installing modules), as well as the command line parameters

and environment variables used by the zsh shell.

Shell options
Most shells use command line parameters to define the behavior of the shell. The zsh shell uses

a few command line parameters to define the operation of the shell, but mostly it uses options
to customize the behavior of the shell. You can set shell options either on the command line, or

within the shell itself using the set command.

Table 23-1 lists the command line parameters available for the zsh shell.

While this may seem like a small set of command line parameters, the -o parameter is somewhat

misleading. It allows you to set shell options that define features within the shell. By far the zsh

shell is the most customizable shell available. There are lots of features that you can alter for

your shell environment. The different options fit into several general categories:

■ Changing directories: Options that control how the cd and dirs commands handle

directory changes

■ Completion: Options that control command completion features

■ Expansion and globbing: Options that control file expansion in commands

■ History: Options that control command history recall

■ Initialization: Options that control how the shell handles variables and startup files

when started

■ Input/Output: Options that control command handling

■ Job Control: Options that dictate how the shell handles and starts jobs

■ Prompting: Options that define how the shell works with command line prompts

■ Scripts and Functions: Options that control how the shell processes shell scripts and

defines shell functions

612

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

■ Shell Emulation: Options that allow you to set the behavior of the zsh shell to mimic

the behavior of other shell types

■ Shell State: Options that define what type of shell to start

■ zle: Options for controlling the zsh line editor (zle) feature

■ Option Aliases: Special options that can be used as aliases for other option names

With this many different categories of shell options, you can imagine just how many actual

options the zsh shell supports. The following sections show a sampling of the different zsh

shell options available for you to use when customizing your zsh shell environment.

Shell state

There are six different zsh shell options that define the type of shell to start:

■ interactive (-i): Provides a command line interface prompt for entering built-in

commands and program names.

■ login (-l): The default zsh shell type, processes the zsh shell startup files, and provides a

command line interface prompt.

■ privileged (-p): The default if the effective user ID (UID) of the user is not the same as

the real UID (the user has become the root user). This option disables the user startup

files.

■ restricted (-r): Restricts the user to a specified directory structure in the shell.

■ shin stdin (-s): Commands are read from STDIN.

■ single command (-t): Executes a single command from STDIN and exits.

The shell states define whether or not the shell starts with a command line interface prompt, and

what access the user has within the shell.

TABLE 23-1

The zsh Shell Command Line Parameters

Parameter Description

-c Execute only the specified command and exit.

-i Start as an interactive shell, providing a command line interface prompt.

-s Force the shell to read commands from STDIN.

-o Specify command line options.

613

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Shell emulation

The shell emulation options allow you to customize the zsh shell to perform similar to the csh or

ksh shells. These options are:

■ bsd echo: Make the echo statement compatible with the C shell echo command.

■ csh junkie history: Using the history command without a specifier references the

previous command.

■ csh junkie loops: Allow while and for loops to use end like the C shell instead of do
and done.

■ csh junkie quotes: Change the rules of using single and double quotation marks to

match the C shell.

■ csh nullcmd: Don’t use the values of the NULLCMD and READNULLCMD variables

when executing redirections with no commands.

■ ksh arrays: Use Korn-style arrays, starting numeric arrays at 0, and require braces to

reference array elements.

■ ksh autoload: Emulate the Korn shell autoload function feature.

■ ksh option print: Emulate the Korn shell method of printing options.

■ ksh typeset: Alter the way that the typeset command arguments are processed.

■ posix builtins: Use the builtin command to execute built-in commands.

■ sh file expansion: Perform filename expansion before any other expansion.

■ sh nullcmd: Don’t use the NULLCMD and READNULLCMD variables when performing

redirections.

■ sh option letters: Interpret single letter shell command line options similar to the Korn

shell.

■ sh word split: Perform field splitting on unquoted parameter expansions.

■ traps async: While waiting for a program to exit, handle signals and run traps

immediately.

By having multiple options you can pick and choose which csh or ksh shell feature you need to

emulate in your zsh shell, instead of having to emulate the entire shell.

Initialization

There are a few options for handling the shell startup features:

■ all export: All parameters and variables are exported to child shell processes

automatically.

■ global export: Parameters exported to the environment will not be made local to the

function.

614

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

■ global rcs: If not set, the zsh shell doesn’t run the global startup files, but it still runs
local startup files.

■ rcs: If not set, the zsh shell runs the /etc/zshenv startup file, but no others.

The initialization options allow you to specify which (if any) zsh shell startup files are run in
your shell environment. You can also set these values within startup files themselves to limit
which ones the shell executes.

Scripts and functions

The scripts and functions options allow you to customize the shell scripting environment in the

zsh shell. This is a handy way to set the way functions perform within the shell.

■ c bases: Display hexadecimal numbers in C format (0xdddd) instead of shell format
(16#dddd).

■ err exit: If a command exits with a non-zero exit status, perform the command in the
ZERR trap and exit.

■ err return: If a command has a non-zero exit status, return immediately from the
enclosing function.

■ eval lineno: If set, the line numbers of expressions evaluated using the eval built-in
command are tracked separately from the rest of the shell environment.

■ exec: Execute commands. If this option isn’t set, read commands and report errors, but
don’t execute the commands.

■ function argzero: Set $0 to the name of the function or script.

■ local options: If set, when a shell function returns, all of the options that were set
before the function are restored.

■ local traps: If set, when a signal trap is set within a function, the previous status of the
trap is restored when the function exits.

■ multios: Perform implicit tees or cats when multiple redirections are attempted.

■ octal zeroes: Interpret any integer string starting with a zero as an octal number.

■ typeset silent: If not set, using typeset with the name of a parameter displays the cur-

rent value of the parameter.

■ verbose: Displays shell input lines as they are read by the shell.

■ xtrace: Displays commands and their arguments as the shell executes them.

The zsh shell allows you to customize lots of features that occur when you’re exiting functions

defined in the shell.

The zsh shell files
The zsh shell uses files at both login and logout to allow you to preset variables and features
of the zsh shell. The zsh shell automatically looks for several default files for setting environment

615

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

variables and executing commands. If the any of the default files exist, the zsh shell executes them

at specific instances. There are four different types of default files the zsh shell can handle:

■ Shell startup files

■ Login files

■ Interactive files

■ Logout files

This section examines the myriad of possible files you can use for your zsh shell.

The shell startup files

When you start a new zsh shell as a login shell (either by logging into the system, or by running

the zsh shell program), the zsh shell looks for commands in two files.

The default system-wide zsh shell startup file is:

/etc/zshenv

After executing this file (if it exists), the zsh shell proceeds to the user’s $HOME directory and

looks for the file:

$HOME/.zshenv

You can test the order in which the zsh shell executes these files by performing a simple test using

the echo statement in each file:

% zsh
This is the /etc/zshenv file.
This is the .zshenv file in HOME.
%

When I started a new zsh shell, it executed the /etc/zshenv file first, then the .zshenv file in

the $HOME directory.

The shell startup files also execute if you use the zsh shell for a shell script:

% cat test1
#!/bin/zsh
test run a script
echo "This is a test"
% ./test1
This is the /etc/zshenv file.
This is the .zshenv file in HOME.
This is a test
%

616

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

Notice that before the output of the shell script appears, you see the echo statements from the

zsh shell startup files.

Some Linux distributions (such as Debian) create a zsh directory under the /etc direc-

tory to contain all of the zsh shell startup files, instead of placing them directly in the

/etc folder.

The shell login files

If you use the zsh shell as a login shell, it first looks for and executes two files:

■ /etc/zlogin

■ /etc/zprofile

These files are executed for all users who use the zsh shell as their login shell. The files should

contain system-wide environment variables that should be set for all users, and executable pro-

grams that all users should use (such as the umask command to set default file and directory

permissions). Most likely if you’re using a Linux distribution that supports the zsh shell, these

files already exist for setting system environment variables at login.

After executing this file, the zsh shell looks for two files in each user’s $HOME directory:

■ $HOME/.zlogin

■ $HOME/.zprofile

These files can contain user-specific environment variable settings, and executable commands that

an individual user wants to run when logging in to the system, before the command line interface

prompt appears.

Any environment variable settings you make in the $HOME/.zprofile shell will override any

system-wide settings made in the /etc/zprofile file, and similarly for the .zlogin files. You

can test the order in which the zsh shell executes these files by adding a simple echo statement

to each one, then logging in:

% zsh -l
This is the /etc/zshenv file.
This is the .zshenv file in HOME.
This is the /etc/zprofie file.
This is the .zprofile file in HOME.
This is the /etc/zlogin file.
This is the .zlogin file in HOME.
%

As you can see from the example, the zsh shell executes the zshenv files first, then the zprofile
files, and finally, the zlogin files.

617

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The interactive shell files

If you start an interactive zsh shell session, there’s another set of files that can hold startup vari-

ables and commands:

■ /etc/zshrc

■ $HOME/.zshrc

The zsh shell executes these files immediately after the startup files when starting an interactive

shell:

% zsh
This is the /etc/zshenv file.
This is the .zshenv file in HOME.
This is the /etc/zshrc file.
This is the .zshrc file in HOME.
%

Since a login shell is also an interactive shell, the zsh shell executes the contents of the zshrc files

as well:

% zsh -l
This is the /etc/zshenv file.
This is the .zshenv file in HOME.
This is the /etc/zprofie file.
This is the .zprofile file in HOME.
This is the /etc/zshrc file.
This is the .zshrc file in HOME.
This is the /etc/zlogin file.
This is the .zlogin file in HOME.
%

Notice the order in which the zsh shell executes the files. The zshrc file pair are executed after

the zprofile files, but before the zlogin files.

The shell logout files

Besides the login and startup files, the zsh shell also has the ability to execute commands in files

when you log out from an interactive or login shell session. These files can be in the following

locations:

■ /etc/zlogout

■ $HOME/.zlogout

618

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

As you probably figured out by now, every user on the system executes the commands in the

/etc/zlogout file at logout, while each individual user has a unique $HOME/.zlogout file.

The zsh shell will execute any commands in these files before logging out of the current shell.

This doesn’t include just exiting from an interactive shell. Thus, if you just start another zsh

shell from an existing shell session, the zsh shell won’t execute the logout files when you exit the

shell. However, if you start a login shell, the logout files should execute upon exiting:

% zsh -l
This is the /etc/zshenv file.
This is the .zshenv file in HOME.
This is the /etc/zprofie file.
This is the .zprofile file in HOME.
This is the /etc/zshrc file.
This is the .zshrc file in HOME.
This is the /etc/zlogin file.
This is the .zlogin file in HOME.
% exit
This is the .zlogout file in HOME.
This is the /etc/zlogout file.
%

Notice that the shell executes the .zlogout file before the global zlogout file, which is in the

opposite order from the other zsh file types.

Environment variables
Just like any other shell, the zsh provides standard environment variables for tracking system

and shell information. The zsh uses a combination of lower-case variable names and upper-case

variable names.

There are a few environment variables for which the zsh shell provides both a lower-case and
upper-case version. The reason for this is in the way the zsh handles arrays, and compatibility

with other shells.

The zsh shell uses a space-separated list of words to define an array. Many Bourne shell–derived

shells use a colon to separate array elements in multi-value variables, such as the PATH variable

in the bash shell.

To maintain compatibility, the zsh shell provides a lower-case path variable, which uses the

zsh-style array, and an upper-case PATH variable, which uses the Bourne-style array. Table 23-2

lists the environment variables found in the zsh shell.

619

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 23-2

The zsh Environment Variables

Variable Description

! The process ID of the last background command.

The number of parameters specified on the command line.

$ The process ID of the shell.

* An array containing the command line positional parameters.

- Options set on the command line.

argv An array containing the command line positional parameters.

ARGV0 The value of argv[0] of external commands, which is usually the
command name.

BAUD The baud rate of the current connection.

cdpath An array of directories used for the search path in the cd command.

CDPATH The same as cdpath, but using a colon as the field separator.

COLUMNS The number of columns in the terminal session.

CPUTYPE The microprocessor class or model of the system.

DIRSTACKSIZE The maximum size of the directory stack.

EGID The effective group ID of the shell process.

ENV If the shell is invoked as a Bourne or Korn shell, contains the location of
the zprofile file.

ERRNO The error status of the most recently failed system call.

EUID The effective user ID of the shell process.

FCEDIT The default editor used in the command history editor.

fignore An array of file suffixes to ignore during file completion.

FIGNORE The same as fignore, but using a colon as the field separator.

fpath An array of directories specifying the search path for functions.

FPATH The same as fpath, but using a colon as the field separator.

GID The real group ID of the shell process.

histchars Characters used by the history command.

HISTCMD The current history line number.

HISTFILE The file to save the history in when exiting an interactive shell.

620

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

TABLE 23-2 (continued)

Variable Description

HISTSIZE The maximum number of events allowed in the history file.

HOME The user’s default working directory.

HOST The current hostname.

IFS The internal file separators, defaults to space, tab, newline, and the NUL
character.

KEYTIMEOUT The time the shell waits (in hundredths of a second) for another key to be
pressed when reading multi-character sequences.

LANG The locale category for any category not covered by a LC variable.

LC ALL The locale category that overrides all other defined locale categories.

LC COLLATE The locale category used to determine character collation.

LC CTYPE The locale category used to determine character handling functions.

LC MESSAGES The locale category used to display messages.

LC NUMERIC The locale category used to display decimal point and thousands separator
characters.

LC TIME The locale category used to display dates and time.

LINES The number of lines in the terminal session.

LINENO The line number of the current command in the script or shell function.

LISTMAX The number of matches to list in the line editor before asking for more.

LOGCHECK The interval in seconds between checking for inactivity using the watch
parameter.

LOGNAME The login name corresponding to the current shell session.

MAIL If set the shell checks for mail in the specified file.

MAILCHECK The interval in seconds between mail checks.

mailpath An array of filenames to check for mail.

MAILPATH The same as mailpath, but using a colon as the field separator.

manpath An array of directories not used by the zsh shell (relates to MANPATH used in
the Bourne shell).

MANPATH The same as manpath, but using a colon as the field separator.

module path An array of directories used by zmodload to load new zsh modules.

MODULE PATH The same as module path, but using a colon as the field separator.

continued

621

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 23-2 (continued)

Variable Description

NULLCMD The command name to assume if a redirection is specified with no
command. The default is the cat command.

path An array of directories to search for commands.

PATH The same as path, but using a colon as the field separator.

POSTEDIT A string to display whenever exiting the line editor.

PROMPT The primary prompt string used by the shell.

PROMPT2 The secondary prompt string used when more input is required for a
command.

PROMPT3 The selection prompt used in a select loop.

PROMTP4 The trace prompt used when tracing a command.

prompt The same as PROMPT.

PS1 The same as PROMPT.

PS2 The same as PROMPT2.

PS3 The same as PROMPT3.

PS4 The same as PROMPT4.

psvar An array whose first nine values are referenced by the associated prompt
strings.

PSVAR The same as psvar, but using a colon as the field separator.

RANDOM A random number generator for integers between 0 and 32767.

READNULLCMD The default command name if an input redirection is specified with no
command. The default is the more command.

REPORTTIME Array of commands to report timing statistics for.

reply Reserved for passing string values between shell scripts and functions.

REPLY The same as reply, but uses an array value rather than string values.

RPROMPT A prompt displayed on the right side of the command line interface.

RPS1 The same as RPROMPT.

RPROMPT2 A prompt displayed on the right side of the command line interface when
more input is required for a command.

RPS2 The same as RPROMPT2.

SAVEHIST The maximum number of events to save in the history file.

622

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

TABLE 23-2 (continued)

Variable Description

SECONDS The number of seconds since the shell was created.

SHLVL The level of subshells invoked.

SPROMPT The prompt used for spelling corrections.

STTY The value used to set up TTY sessions for the shell.

TERM The type of terminal used for the shell session.

TIMEFMT The format to use to process time requests.

TMOUT The amount of time (in seconds) before issuing an alarm if no commands
are entered.

TMPREFIX The pathname prefix used for all temporary files. The default is /tmp/zsh.

USERNAME The user login name corresponding to the real user ID of the shell process.

watch An array of login and logout events to report.

WATCH The same as watch, but using a colon as the field separator.

WATCHFMT The format of the report generated if the watch variable is set.

WORDCHARS A list of nonalphabetic characters considered part of a word by the line
editor.

ZBEEP A string of characters sent to the display instead of generating a beep for an
alarm.

ZDOTDIR The directory to search for zsh personal startup files. The default is the
$HOME directory.

As you can see from Table 23-2 the zsh shell provides some unique features in the environment

variables. One of my favorites is the right prompt (RPROMPT) variable.

The RPROMPT variable displays a prompt on the right side of the command line interface:

% RPROMPT=’%d’
% /home/test
% cd test /home/test
% /home/test/test

The right prompt displays the defined prompt (set to the current working directory in this

example) on the far right if the space isn’t needed to display text. If the shell needs to display

text, it doesn’t display the right prompt.

The zsh shell supports the typeset command, which allows you to declare attributes for a vari-

able before using it. Table 23-3 show the options available for the zsh typeset command.

623

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 23-3

The typeset Command Parameters

Parameter Description

-a Create a numerical array variable.

-A Create an associative array variable.

-E Create a double-precision floating-point variable and display using scientific
notation.

-f Define a function name instead of a variable.

-F Create a double-precision floating-point variable and display using fixed-point
decimal notation.

-h Create a hidden special variable.

-H Don’t display the value of the variable.

-i Create an integer data type variable.

-l Convert the variable value to lower case.

-L Left-justify by removing leading blanks from a variable.

-r Make the specified variables read-only.

-R Right-justify by adding blanks on the left.

-t Tag the specified variables.

-u Convert the variable value to upper case.

-U Keep only the first occurrence for each duplicated value in a numerical array.

-x Mark the specified variable for automatic export.

-Z Right-justify using leading zeroes.

As you can see from the typeset command parameters, the zsh shell supports arrays, both

numeric and associative. If you’re used to using numeric arrays in the bash and ksh shells, you’ll

have to be a little careful when using them in the zsh shell. The zsh shell starts arrays with an

index value of 1 instead of 0:

% mytest=(one two three four)
% echo ${mytest[1]}
one
% echo ${mytest[2]}
two
%

624

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

Creating an associative array is also slightly different in the zsh shell. You must first declare it

using the typeset command:

% typeset -A test
%

Once you’ve declared the variable as being an associative array, you can define keys and values.

This is where things are a little different. In the zsh shell, you just alternate listing the keys and

values:

variable=(key1 value1 key2 value2 ...)

Thus, to add data to the test array:

$ test=(fruit banana vegetable carrot age 18)
$ echo ${test[fruit]}
banana
$ echo ${test[age]}
18
$

Because of this syntax, every key must be assigned a value in the zsh associative array.

Built-in commands
The zsh shell is unique in that it allows you to expand the built-in commands available in the

shell. This provides for a wealth of speedy utilities at your fingertips for a host of different appli-

cations.

This section describes the core built-in commands, along with the various modules available at

the time of this writing.

Core built-in commands

The core of the zsh shell contains the basic built-in commands you’re used to seeing in other

shells. Table 23-4 describes the built-in commands available for you.

The zsh shell is no slouch when it comes to providing built-in commands! You should recognize

most of these commands from their bash counterparts. The most important features of the zsh

shell built-in commands are modules.

Add-in modules

There’s a long list of modules that provide additional built-in commands for the zsh shell, and

the list continues to grow as resourceful programmers create new modules. Table 23-5 shows the

currently available modules at the time of this writing.

625

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 23-4

The zsh Core Built-In Commands

Command Description

alias Define an alternate name for a command and arguments.

autoload Preload a shell function into memory for quicker access.

bg Execute a job in background mode.

bindkey Bind keyboard combinations to commands.

builtin Execute the specified built-in command instead of an executable file of the same
name.

bye The same as exit.

cd Change the current working directory.

chdir Change the current working directory.

command Execute the specified command as an external file instead of a function or
built-in command.

declare Set the data type of a variable (same as typeset).

dirs Displays the contents of the directory stack.

disable Temporarily disable the specified hash table elements.

disown Remove the specified job from the job table.

echo Display variables and text.

emulate Set zsh to emulate another shell, such as the Bourne, Korn, or C shells.

enable Enable the specified hash table elements.

eval Execute the specified command and arguments in the current shell process.

exec Execute the specified command and arguments replacing the current shell process.

exit Exit the shell with the specified exit status. If none specified, use the exit status of
the last command.

export Allow the specified environment variable names and values to be used in child
shell processes.

false Returns an exit status of 1.

fc Select a range of commands from the history list.

626

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

TABLE 23-4 (continued)

Command Description

fg Execute the specified job in foreground mode.

float Set the specified variable for use as a floating point variable.

functions Set the specified name as a function.

getln Read the next value in the buffer stack and place it in
the specified variable.

getopts Retrieve the next valid option in the command line arguments and place it in
the specified variable.

hash Directly modify the contents of the command hash table.

history List the commands contained in the history file.

integer Set the specified variable for use as an integer value.

jobs List information about the specified job, or all jobs assigned to the shell process.

kill Send a signal (Default SIGTERM) to the specified process or job.

let Evaluate a mathematical operation and assign the result to a variable.

limit Set or display resource limits.

local Set the data features for the specified variable.

log Display all users currently logged in who are affected by the watch parameter.

logout Same as exit, but only works when the shell is a login shell.

popd Remove the next entry from the directory stack.

print Display variables and text.

printf Display variables and text using C-style format strings.

pushd Change the current working directory, and put the previous directory in the
directory stack.

pushln Place the specified arguments into the editing buffer stack.

pwd Display the full pathname of the current working directory.

read Read a line and assign data fields to the specified variables using the IFS
characters.

readonly Assign a value to a variable that can’t be changed.

rehash Rebuild the command hash table.

continued

627

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

TABLE 23-4 (continued)

Command Description

set Set options or positional parameters for the shell.

setopt Set the options for a shell.

shift Read and delete the first positional parameter, then shift the remaining ones
down one position.

source Find the specified file and copy its contents into the current location.

suspend Suspend the execution of the shell until it receives a SIGCONT signal.

test Returns an exit status of 0 if the specified condition is TRUE.

times Display the cumulative user and system times for the shell and processes that
run in the shell.

trap Block the specified signals from being processed by the shell, and execute the
specified commands if the signals are received.

true Return a zero exit status.

ttyctl Lock and unlock the display.

type Display how the specified command would be interpreted by the shell.

typeset Set or display attributes of variables.

ulimit Set or display resource limits of the shell or processes running in the shell.

umask Set or display the default permissions for creating files and directories.

unalias Remove the specified command alias.

unfunction Remove the specified defined function.

unhash Remove the specified command from the hash table.

unlimit Remove the specified resource limit.

unset Remove the specified variable attribute.

unsetopt Remove the specified shell option.

wait Wait for the specified job or process to complete.

whence Display how the specified command would be interpreted by the shell.

where Display the pathname of the specified command if found by the shell.

which Display the pathname of the specified command using csh style output.

zcompile Compile the specified function or script for faster autoloading.

zmodload Performs operations on loadable zsh modules.

628

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

TABLE 23-5

The zsh Modules

Module Description

zsh/cap POSIX compatibility commands

zsh/clone Commands to clone a running shell to another terminal

zsh/compctl Commands to control command completion

zsh/complete Command line completion commands

zsh/complist Commands for command line completion listing extensions

zsh/computil Utility commands for command line completion

zsh/datetime Additional date and time commands and variables

zsh/deltochar A line editor function replicating emacs functionality

zsh/files Commands for basic file handling

zsh/mapfile Access to external files via associative arrays

zsh/mathfunc Additional scientific functions

zsh/parameter Access to command hash tables via associative arrays

zsh/pcre The extended regular expression library

zsh/sched Scheduling commands for providing timed command execution

zsh/net/socket Unix domain socket support

zsh/stat Access to the stat system call to provide system statistics

zsh/system Interface for various low-level system features

zsh/net/tcp Access to TCP sockets

zsh/termcap Interface to the termcap database

zsh/terminfo Interface to the terminfo database

zsh/zftp A specialized FTP client command

zsh/zle The zshell line editor

zsh/zleparameter Access to modify zle using variables

zsh/zprof Allows profiling for shell functions

zsh/zpty Start a command in a pseudo-terminal

zsh/zselect Block and return when file descriptors are ready

zsh/zutil Various shell utilities

629

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The zsh shell modules cover a wide range of topics, from providing simple command line edit-

ing features to advanced networking functions. The idea behind the zsh shell is to provide a

basic minimum shell environment and let you add on the pieces you need to accomplish your

programming job.

Viewing, adding, and removing modules

The zmodload command is the interface to the zsh modules. You use this command to view,

add, and remove modules from the zsh shell session.

Using the zmodload command without any command line parameters displays the currently

installed modules in your zsh shell:

% zmodload
zsh/zutil
zsh/complete
zsh/main
zsh/terminfo
zsh/zle
zsh/parameter
%

Different zsh shell implementations include different modules by default. To add a new module,

just specify the module name on the zmodload command line:

% zmodload zsh/zftp
%

Nothing indicates that the module loaded. You can perform another zmodload command, and

the new module should appear in the list of installed modules.

Once you load a module, the commands associated with the module are available as built-in

commands:

% zftp open myhost.com rich testing1
Welcome to the myhost FTP server.
% zftp cd test
% zftp dir
01-21-08 11:21PM 120823 test1
01-21-08 11:23PM 118432 test2
% zftp get test1 > test1.txt
% zftp close
%

The zftp command allows you to conduct a complete FTP session directly from your zsh shell

command line! You can incorporate these commands into your zsh shell scripts to perform file

transfers directly from your scripts.

To remove an installed module, use the -u parameter, along with the module name:

% zmodload -u zsh/zftp
% zftp

630

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

zsh: command not found: zftp
%

This allows you to easily manage your modules via the standard zsh shell startup files (see ‘‘The

zsh shell files’’ section).

It’s a common practice to place zmodload commands in the $HOME/.zshrc file so that

your favorite functions load automatically.

Scripting with zsh
The main purpose of the zsh shell was to provide an advanced programming environment for

shell programmers. With that in mind, it’s no surprise that the zsh shell offers many features that

make shell scripting easier.

Mathematical operations
As you would expect, the zsh shell allows you to perform mathematical functions with ease. Sim-

ilar to the ksh93 shell (see Chapter 22), the zsh shell has full support for floating-point numbers

in all of its mathematical operations.

Performing calculations

The zsh shell supports the same two methods for performing mathematical operations as the

ksh93 shell:

■ The let command

■ Double parentheses

When you use the let command you should enclose the operation in double quotation marks to

allow for spaces:

% let value1=" 4 * 5.1 / 3.2 "
% echo $value1
6.3749999999999991
%

Notice that using floating point numbers introduces a precision problem. To solve this, it’s always

a good idea to use the printf command, and specify the decimal precision needed to correctly

display the answer:

% printf "%6.3f\n" $value1
6.375
%

Now that’s much better!

631

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

The second method is to use the double parentheses. This method incorporates two techniques

for defining the mathematical operation:

% value1=$((4 * 5.1))
% ((value2 = 4 * 5.1))
% printf "%6.3f\n" $value1 $value2
20.400
20.400
%

Notice that you can place the double parentheses either around just the operation (preceded by a

dollar sign) or around the entire assignment statement. Both methods produce the same results.

If you don’t use the typeset command to declare the data type of a variable beforehand, the zsh

shell attempts to automatically assign the data type. This can be dangerous when working with

both integer and floating-point numbers. Take a look at this example:

% value=10
% value2=$(($value1 / 3))
% echo $value2
3
%

Now that’s probably not the answer you want to come out from the calculation. When you specify

numbers without decimal places, the zsh shell interprets them as integer values, and performs

integer calculations. To ensure that the result is a floating point number, you must specify the
numbers with decimal places:

% value=10.
% value2=$(($value1 / 3.))
% echo $value2
3.3333333333333335
%
Now the result is in the floating point format.

Mathematical functions

With the zsh shell, built-in mathematical functions are either feast or famine. The default zsh shell

doesn’t include any special mathematical function. However, if you install the zsh/mathfunc
module, you’ll have more math functions than you’ll most likely ever need:

% value1=$((sqrt(9)))
zsh: unknown function: sqrt
% zmodload zsh/mathfunc
% value1=$((sqrt(9)))
% echo $value1
3.
%

632

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

That was simple! Now you have an entire math library of functions at your fingertips.

For a complete listing of all the math functions that the zsh/mathfunc module pro-

vides, look at the manual page for zshmodules.

Structured commands
The zsh shell provides the usual set of structured commands for your shell scripts:

■ it-then-else statements

■ for loops (including the C-style)

■ while loops

■ until loops

■ select statements

■ case statements

The zsh shell uses the same syntax for each of these structured commands that you’re used to
from the bash shell. The zsh shell also includes a different structured command called repeat.
The repeat command uses the format:

repeat param
do

commands
done

The param parameter must be a number or a mathematical operation that evaluates to a number.
The repeat command then performs the specified commands that number of times:

% cat test1
#!/bin/zsh
using the repeat command

value1=$((10 / 2))
repeat $value1
do

echo "This is a test"
done
$./test1
This is a test
This is a test
This is a test
This is a test
This is a test
%

This command allows you to repeat sections of code for a set number of times based on a
calculation.

633

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

Functions
The zsh shell supports creating your own functions using either the function command, or by

defining the function name with parentheses:

% function functest1 {
> echo "This is the test1 function"
}
% functest2() {
> echo "This is the test2 function"
}
% functest1
This is the test1 function
% functest2
This is the test2 function
%

Just as with bash shell functions (see Chapter 14), you can define functions within your shell

script and then either use global variables or pass parameters to your functions. Here’s an example

using a global variable:

% cat test3
#!/bin/zsh
testing functions in zsh

dbl() {
value=$(($value * 2))
return $value

}

value=10
dbl
echo The answer is $?
% ./test3
The answer is 20
%

You don’t have to place your functions within your shell scripts. The zsh shell allows you to

define your functions in separate files that it can access when trying to resolve a function name.

The zsh shell finds functions via the fpath environment variable. You can store your function

files in any directory in this path. Here’s the fpath value on my Linux workstation:

% echo $fpath
/usr/local/share/zsh/site-functions
/usr/share/zsh/4.2.5/functions/Completion
/usr/share/zsh/4.2.5/functions/Completion/AIX
/usr/share/zsh/4.2.5/functions/Completion/BSD

634

www.IrPDF.com

www.IrPDF.com

The zsh Shell 23

/usr/share/zsh/4.2.5/functions/Completion/Base
/usr/share/zsh/4.2.5/functions/Completion/Cygwin
/usr/share/zsh/4.2.5/functions/Completion/Darwin
/usr/share/zsh/4.2.5/functions/Completion/Debian
/usr/share/zsh/4.2.5/functions/Completion/Linux
/usr/share/zsh/4.2.5/functions/Completion/Mandrake
/usr/share/zsh/4.2.5/functions/Completion/Redhat
/usr/share/zsh/4.2.5/functions/Completion/Unix
/usr/share/zsh/4.2.5/functions/Completion/X
/usr/share/zsh/4.2.5/functions/Completion/Zsh
/usr/share/zsh/4.2.5/functions/MIME
/usr/share/zsh/4.2.5/functions/Misc
/usr/share/zsh/4.2.5/functions/Prompts
/usr/share/zsh/4.2.5/functions/TCP
/usr/share/zsh/4.2.5/functions/Zftp
/usr/share/zsh/4.2.5/functions/Zle
%

As you can see, there are lots of places the zsh shell goes hunting to resolve function names.

On my system, I can place my functions in the /usr/local/share/zsh/site-functions
directory, and the zsh shell will be able to resolve them.

However, before the zsh shell can resolve the function, you must use the autoload command.

This command loads the function into memory for the shell to access.

Here’s an example of a stand-alone function:

% cat dbl
#!/bin/zsh
a function to double a value
dbl() {

value=$(($1 * 2))
return $value

}
% cp dbl /usr/local/share/zsh/site-functions
%

Okay, now the function is created in a file and stored in a directory in the fpath. If I try to use

it though, I’ll get an error message until I load it into memory:

% dbl 5
zsh: command not found: dbl
% autoload dbl
% dbl 5
% echo $?
10
%

635

www.IrPDF.com

www.IrPDF.com

Part IV Alternative Linux Shells

This also applies to shell scripts. If you have a function you need to use, you’ll need to use the

autoload command to make sure that it’s available:

% cat test4
#!/bin/zsh
testing an external function

autoload dbl

dbl $1
echo The answer is $?
% ./test4 5
The answer is 10
%

Another interesting feature of the zsh shell is the zcompile command. This command processes

a function file and creates a ‘‘compiled’’ version for the shell. This isn’t really the same type of

compiling you’re used to in other programming languages. It does, however, put the function

into a binary format that the zsh shell can load more quickly.

When you run the zcompile command, it creates a .zwc version of the function file. When the

autoload command looks for the command in the fpath, it’ll see the .zwc version and load it

instead of the text function file.

Summary
This chapter discussed the zsh shell. The zsh shell provides lots of advanced features for shell

scripting, including many built-in commands available in loadable modules. The zsh shell pro-

vides several emulation modes, which allow it to closely emulate other common shells (such as

the Bourne, csh, and ksh shells). This feature allows you to seamlessly run shell scripts written
for other shell environments in the zsh shell.

The zsh shell uses the concept of loadable modules to expand the built-in commands available.

There are several modules created for the zsh shell, which provide additional features such as

command line editing, extended mathematical functions, and advanced network support. You

can write complicated network scripts using the zsh shell’s TCP module, without requiring any

other type of network library.

This finishes our walk through the world of Linux shells. The next section of this book dives

into some specific scripting applications you might run into in the Linux environment. The next

chapter shows how to incorporate the two most popular database packages in the Linux world,

MySQL and PostgreSQL, into your shell scripts.

636

www.IrPDF.com

www.IrPDF.com

Advanced Topics

IN THIS PART

Chapter 24
Using a Database

Chapter 25
Using the Web

Chapter 26
Using E-Mail

Chapter 27
Shell Scripts for Administrators

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Using a Database

IN THIS CHAPTER

Introducing MySQL

Introducing PostgreSQL

Creating database objects

Writing database shell scripts

O
ne of the problems with shell scripts is persistent data. You can

store all the information you want in your shell script variables,

but at the end of the script, they just go away. There are times

when you’d like for your scripts to be able to store data that you can use

later. In the old days, to store and retrieve data from a shell script required

creating a file, reading data from the file, parsing the data, then saving the
data back into the file. Trying to search for data in the file meant hav-

ing to read every record in the file to look for your data. Nowadays with

databases being all the rage, it’s a snap to interface your shell scripts with

professional-quality open source databases. The two most popular open

source databases used in the Linux world are MySQL and PostgreSQL. This

chapter shows how to get these databases running on your Linux system,

then spends some time getting you used to working with them from the

command line. It then goes on to show how to interact with each one using

normal bash shell scripts.

The MySQL Database

By far the most popular database available in the Linux environment is

the MySQL database. Its popularity has grown as a part of the Linux-

Apache-MySQL-PHP (LAMP) server environment, which many Internet

Web servers use for hosting online stores, blogs, and applications.

This section describes how to install a MySQL database in your Linux

environment and how to create the necessary database objects to use in

your shell scripts.

639

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

Installing MySQL
It’s not uncommon for Linux distributions to use automated software installation programs.

These programs not only allow you to easily download and install new software from network
repositories, but also automatically check for updates for your installed software packages and
install those too.

Figure 24-1 demonstrates the Add Software feature in the Fedora 8 Linux distribution.

You just have to select the option for MySQL, and Fedora downloads and installs the complete

MySQL server and client software. It doesn’t get any easier than that!

The openSuse 10.3 Linux distribution also uses an advanced software management system.

Figure 24-2 shows the Software Management window, where you can select packages based on
software category (the MySQL server is under Database Servers).

Again, selecting the option for the MySQL software downloads and installs the software
packages required.

FIGURE 24-1

Installing MySQL on a Fedora 8 Linux system.

640

www.IrPDF.com

www.IrPDF.com

Using a Database 24

FIGURE 24-2

Installing MySQL on an openSuse 10.3 Linux system

If you’re using a Linux distribution that doesn’t support automatic software loads, or you just
want to have the latest-and-greatest version of the MySQL server, you can download an installa-
tion file directly from MySQL and install it yourself.

Here are the steps to download the installation file:

1. Open a browser window to the URL: www.mysql.com.

2. Click the Downloads link, located in the Test Drive section.

3. Under the MySQL Community Server section, select the link for the current release
(5.0 at the time of this writing).

4. Select a link for your specific Linux platform. If a link for your specific platform exists,
you can select it and install the software using your specific software installation program
(such as .deb packages for Debian-based Linux systems, or .rpm packages for Red Hat–
based Linux systems). If there isn’t a link for your specific platform, select the Linux
(non RPM packages) option to download the binary files without an installer package.

5. Select either the link to register, or download without registering.

6. Select a mirror location to start the download.

641

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

After the download completes, you should have a file on your system that looks something like

this (the version number of the file you downloaded may vary):

mysql-5.0.45-linux-i686-tar.gz

If you remember from Chapter 4, the .tar.gz file extension indicates that the file is a gzipped

tar file. It contains all of the files for the MySQL server archived into a single file using the tar
command, then compressed using the gzip compression utility.

You’ll need to extract it using the tar command into a directory to use the files in it contains.

However, there are a few other steps you’ll need to take first:

1. Create a unique user and group account responsible for the running MySQL server.
Usually this account and group are called mysql. As the root Linux user account,

perform these commands:

groupadd mysql
useradd -g mysql mysql

2. Select a directory where you want to place the MySQL software. The recommended
location is /usr/local. Extract the files using the tar command, and create a link from

the resulting obnoxiously long directory name to a directory simply called mysql:

cp mysql-5.0.45-linux-i686.tar.gz /usr/local
cd /usr/local
tar -zxvf mysql-5.0.45-linux-i686.tar.gz
ln -s mysql-5.0.45-linux-i686 mysql

3. Change the owner and group of the new mysql directory to the mysql user and group
accounts you created:

cd mysql
chown -R mysql .
chgrp -R mysql .

So now you have your MySQL server and client files conveniently located in the /usr/
local/mysql directory on your Linux system.

Completing the MySQL configuration
Between installing the MySQL software and using it to store your data, there are a few steps you

need to perform. This section walks through what’s necessary to get the MySQL server running
on your Linux system.

Initializing the database files

The next step may or not be required on your system. If you’ve installed the MySQL server from

your Linux distribution’s software installation package, it created its own database files as part of
the installation process, so you can skip this part.

642

www.IrPDF.com

www.IrPDF.com

Using a Database 24

If you’ve manually downloaded and installed the MySQL binary package, you’ll need to create the

default MySQL database files (these aren’t included as part of the distribution package). As the

Linux root user account, enter this command:

/usr/local/mysql/scripts/mysql_install_db --user=mysql

After MySQL creates the default database, you can change the owner of everything but the

database directory back to the root user using these commands:

cd /usr/local/mysql
chown -R root .
chown -R mysql data

Now you’re ready to start the MySQL server.

Starting the MySQL server

If you’ve installed MySQL using your Linux distribution’s software installer, usually it’s configured

to start automatically the next time you boot your system. You can check by using our friend the

ps command (see Chapter 4):

ps ax | grep mysql
2084 ? S 0:00 /bin/sh /usr/bin/mysqld_safe --

datadir=/var/lib/mysql --socket=/var/lib/mysql/mysql.sock --log-
error=/var/log/mysqld.log --pid-file=/var/run/mysqld/mysqld.pid
2141 ? Sl 0:03 /usr/libexec/mysqld --basedir=/usr --

datadir=/var/lib/mysql --user=mysql --pid-
file=/var/run/mysqld/mysqld.pid --skip-external-locking --
socket=/var/lib/mysql/mysql.sock
8825 pts/1 S+ 0:00 grep mysql

#

The mysqld_safe script is used to start the MySQL server using the mysql user account.

If the MySQL server service isn’t running, you’ll need to start it. Many Linux distributions include

some type of services utility that allows you to view the services that the system starts at boot
time. In both Fedora 8 and openSuse 10.3 this feature is in the Administrative area.

Check to make sure that the MySQL server service on your Linux system is set to start auto-

matically.

If you installed the software manually, you’ll need to start the MySQL server yourself using the

mysqld_safe script:

/usr/local/mysql/bin/mysqld_safe --user=mysql &

This helper script starts the MySQL server in background mode, running as the new mysql user

account. The MySQL installation also provides a script you can use to automatically start the
MySQL server at boot time. Chapter 13 discusses how to place scripts so they automatically start

643

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

when the Linux system boots. You can create a link in your distribution’s startup script to refer-
ence the MySQL startup script, located at:

/usr/local/mysql/support-files/mysql.server

This script automatically starts the MySQL server using the mysql Linux user account.

Securing the MySQL user account

There’s one final step for the MySQL server installation. The MySQL server maintains its own set
of user accounts for controlling access to database objects. By default, the MySQL server has a
master administrator account called root. Unfortunately, by default that account doesn’t have a
password. It’s a very good idea to change the password for the root user account. You do this
using the mysqladmin command at the Linux command line prompt:

$ mysqladmin -u root password newpasswd

where newpasswd is the text for the new password you’re assigning to the root user account.

The MySQL client interface
The portal to the MySQL database is the mysql command line interface program. This section
describes the mysql client program and shows how to use it to interact with your database.

Connecting to the server

The mysql client program allows you to connect to any MySQL database server anywhere on the
network, using any user account and password. By default, if you enter the mysql program on a
command line without any parameters it’ll attempt to connect to a MySQL server running on the
same Linux system, using the Linux login user name.

Most likely this isn’t how you want to connect to the database. There are lots of command line
parameters that allow you to control not only which MySQL server you connect to but also the
behavior of the mysql interface. Table 24-1 shows the command line parameters you can use
with the mysql program.

As you can see, there are quite a lot of command line options available for modifying how you
log into the MySQL server.

By default, the mysql client program attempts to log in to the MySQL server using your Linux
login name. If this name isn’t configured in MySQL as a user account, you’ll need to use the -u
parameter to specify the name to log in as:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 5.0.45 Source distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>

644

www.IrPDF.com

www.IrPDF.com

Using a Database 24

TABLE 24-1

The mysql Command Line Parameters

Parameter Description

-A Disable automatic rehashing.

-b Disable beep after error.

-B Don’t use a history file.

-C Compress all information sent between the client and the server.

-D Specify the database to use.

-e Execute the specified statement and exit.

-E Display query output vertically, one data field per line.

-f Continue if an SQL error occurs.

-G Enable named mysql commands.

-h Specify the MySQL server hostname (the default is localhost).

-H Display query output in HTML code.

-i Ignore spaces after function names.

-N Don’t display column names in results.

-o Ignore statements except those for the default database named on the
command line.

-p Specify the password for the user account.

-P Specify the TCP port number to use for the network connection.

-q Don’t cache each query result.

-r Display column values without escape conversion.

-s Silent mode.

-S Specify a socket for connection to the localhost.

-t Display output in table form.

-T Display debugging information, memory, and CPU statistics when the
program exits.

-u Specify the user account to log in as.

-U Allow only UPDATE and DELETE statements that specify key values.

-v Verbose mode.

-w If the connection can’t be established, wait and retry.

-X Display query output in XHTML code.

645

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

The -p parameter tells MySQL to query for a password to use with the user account to log in.
Once you’re logged in to the server, you can start entering commands.

The mysql commands

The mysql program uses two different types of commands:

■ Special mysql commands

■ Standard SQL statements

The mysql program uses its own set of commands that let you easily control the environment
and retrieve information about the MySQL server. Table 24-2 shows these commands.

You can use either the full command or the shortcut command directly from the mysql command
prompt:

mysql> \s

mysql Ver 14.12 Distrib 5.0.45, for redhat-linux-gnu (i386) using
readline 5.0

Connection id: 10
Current database:
Current user: root@localhost
SSL: Not in use
Current pager: stdout
Using outfile: ’’
Using delimiter: ;
Server version: 5.0.45 Source distribution
Protocol version: 10
Connection: Localhost via UNIX socket
Server characterset: latin1
Db characterset: latin1
Client characterset: latin1
Conn. characterset: latin1
UNIX socket: /var/lib/mysql/mysql.sock
Uptime: 4 hours 15 min 24 sec

Threads: 1 Questions: 53 Slow queries: 0 Opens: 23 Flush tables:
1 Open tables: 17 Queries per second avg: 0.003

mysql>

The mysql program implements all of the standard Structured Query Language (SQL) commands
supported by the MySQL server. The ‘‘Creating MySQL database objects’’ section later on
discusses this in more detail.

646

www.IrPDF.com

www.IrPDF.com

Using a Database 24

TABLE 24-2

The mysql Commands

Command Shortcut Description

? \? Help.

clear \c Clear command.

connect \r Connect to database and server.

delimiter \d Set SQL statement delimiter.

edit \e Edit the command with the command line editor.

ego \G Send the command to the MySQL server, and display results
vertically.

exit \q Exit from the mysql program.

go \g Send command to MySQL server.

help \h Display help.

nopager \n Disable output pager and send output to STDOUT.

note \t Don’t send output to output file.

pager \P Set pager command to specified program (use more as default).

print \p Print current command.

prompt \R Change the mysql command prompt.

quit \q Quit from the mysql program (same as exit).

rehash \# Rebuild the command completion hash table.

source \. Execute the SQL script in the specified file.

status \s Retrieve status information from the MySQL server.

system \! Execute a shell command on the system.

tee \T Append all output to the specified file.

use \u Use another database.

charset \C Change to another character set.

warnings \W Show warnings after every statement.

nowarning \w Don’t show warnings after every statement.

647

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

One uncommon SQL command that the mysql program implements is the SHOW command.
Using this command you can extract information about the MySQL server, such as the databases
and tables created:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.04 sec)

mysql> USE mysql;
Database changed
mysql> SHOW TABLES;
+---------------------------+
| Tables_in_mysql |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
17 rows in set (0.00 sec)

mysql>

In this example, I used the SHOW SQL command to display the databases currently configured
on the MySQL server, then the USE SQL command to connect to a single database. Your mysql
session can only be connected to one database at a time.

You’ll notice that after each command I added a semicolon. The semicolon indicates the end of a
command to the mysql program. If you don’t use a semicolon, it prompts for more data:

mysql> SHOW
-> DATABASES;

648

www.IrPDF.com

www.IrPDF.com

Using a Database 24

+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
+--------------------+
2 rows in set (0.00 sec)

mysql>

This feature can come in handy when you’re working with long commands. You can enter part of
the command on a line and press the Enter key, then continue on the next line. This can continue
for as many lines as you like until you use the semicolon to indicate the end of the command.

Throughout this chapter you’ll see me use upper-case letters for SQL commands. This

has become a common way to write SQL commands, however, the mysql program

allows you to specify SQL commands using either upper-case or lower-case.

Creating MySQL database objects
Before you can start writing your shell scripts to interact with a database, you’ll need a few
database objects to work with. At a minimum, you’ll want to have:

■ A unique database to store your application data

■ A unique user account to access the database from your scripts

■ One or more data tables to organize your data

You build all of these objects using the mysql program. The mysql program interfaces directly
with the MySQL server, using SQL commands to create and modify each of the objects.

You can send any type of SQL commands to the MySQL server using the mysql program. This
section walks through the different SQL statements you’ll need to build the basic database objects
for your shell scripts.

Creating a database

The MySQL server organizes data into databases. A database usually holds the data for a single
application, separating it from other applications that use the database server. Creating a separate
database for each shell script application helps eliminate confusion and data mix-ups.

The SQL statement required to create a new database is:

CREATE DATABASE name;

That’s pretty simple. Of course, you must have the proper privileges to create new databases on
the MySQL server. The easiest way to do that is to log in as the root user account:

$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.

649

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

Your MySQL connection id is 15
Server version: 5.0.45 Source distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> CREATE DATABASE test;
Query OK, 1 row affected (0.00 sec)

mysql>

You can see if the new database was created by using the SHOW command:

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
3 rows in set (0.01 sec)

mysql>

Yes, it was successfully created. You should now be able to connect to the new database:

mysql> USE test;
Database changed;
mysql> SHOW TABLES;
Empty set (0.00 sec)
mysql>

The SHOW TABLES command allows us to see if there are any tables created. The Empty set result
indicates that there aren’t any tables to work with yet. Before we start creating tables though,
there’s one other thing we need to do.

Creating a user account

So far you’ve seen how to connect to the MySQL server using the root administrator account.
This account has total control over all of the MySQL server objects (much like how the root Linux
account has complete control over the Linux system).

It’s extremely dangerous to use the root MySQL account for normal applications. If there should
be a breach of security and someone figures out the password for the root user account, all sorts
of bad things could happen to your system (and data).

To prevent that, it’s wise to create a separate user account in MySQL that only has privileges for
the database used in the application. You do this with the GRANT SQL statement:

mysql> GRANT SELECT,INSERT,DELETE,UPDATE ON test.* TO test IDENTIFIED
by ’test’;

650

www.IrPDF.com

www.IrPDF.com

Using a Database 24

Query OK, 0 rows affected (0.35 sec)

mysql>

That’s quite a long command. Let’s walk through the pieces and see what it’s doing.

The first section defines the privileges the user account has on what database(s). This statement
allows the user account to query the database data (the select privilege), insert new data records,
delete existing data records, and update existing data records.

The test.* entry defines the database and tables the privileges apply to. This is specified in the
format:

database.table

As you can see from this example, you’re allowed to use wildcard characters when specifying the
database and tables. This format applies the specified privileges to all of the tables contained in
the database named test.

Finally, you specify the user account(s) the privileges apply to. The neat thing about the grant
command is that if the user account doesn’t exist, it creates it. The identified by portion allows
you to set a default password for the new user account.

You can test the new user account directly from the mysql program:

$ mysql test -u test -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.0.45 Source distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>

The first parameter specifies the default database to use (test), and as you’ve already seen, the
-u parameter defines the user account to log in as, along with the -p to query for the password.
After entering the password assigned to the test user account, I’m connected to the server.

Now that you’ve got a database and a user account, you’re ready to create some tables for the
data. But first, let’s take a look at the other database server you can use.

The PostgreSQL Database
The PostgreSQL database started out as an academic project, demonstrating how to incorpo-
rate advanced database techniques into a functional database server. Over the years, PostgreSQL
has evolved into one of the most advanced open source database servers available for the Linux
environment.

651

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

This section walks you through getting a PostgreSQL database server installed and running, then
setting up a user account and database to work with in your shell scripts.

Installing PostgreSQL
Just like MySQL, you can install the PostgreSQL database server package either by using your sys-
tem’s automated software installation system, or manually by downloading it from the PostgreSQL
Web site.

To use your Linux distribution’s automated software installation, follow the same procedures
outlined in the ‘‘Installing MySQL’’ section earlier. If you must manually download the PostgreSQL
server software, unfortunately you’ll have to do a little more work than with MySQL.

The only binary distribution for the PostgreSQL software uses the Red Hat RPM package man-
agement system. If your Linux system uses that package management system (or like the Debian
distribution, has a utility to convert an RPM package into its own format), you can download the
binary package and install it.

If not, you’ll need to download the source code package for PostgreSQL, and manually compile it
on your Linux system. This can be an interesting project.

Compiling a source code package requires that you have the C software development

package loaded onto your Linux system. These days this is a fairly common thing

for servers, but it may not be loaded if you’re using a desktop Linux distribution. Please consult

your individual Linux distribution documentation regarding compiling software, and what software

packages are required for compiling C source code projects.

Here are the steps to obtain the PostgreSQL source code and install it on your system:

1. Open a browser window to the URL: www.postgresql.org.

2. Select the Source link for the latest PostgreSQL version at the top-right corner of the
Web page.

3. Select the appropriate download file format (either using bzip2 or gzip) to download.

4. Select the download mirror site and method to begin the download.

After downloading the code, place it in a working directory on your Linux system (such as your
$HOME directory), and extract the package files using the tar command:

tar -zxvf postgresql-8.2.6.tar.gz

The tar command creates the directory postgresql-8.2.6 (or whatever version you’ve down-
loaded) in your working directory and extracts the source code files. You’re now ready to start
building.

Here are the steps you’ll need to follow to create the PostgreSQL server and client executable files:

1. Change to the new directory that contains the PostgreSQL source code.

$ cd postgresql-8.2.6

652

www.IrPDF.com

www.IrPDF.com

Using a Database 24

2. Run the configure script:

$./configure

This checks your system to ensure that you have the correct libraries needed to compile

the source code. There are quite a few libraries that PostgreSQL needs. If it reports that

you’re missing something, you’ll have to go out and install it on your Linux system.

3. Run the gmake utility to compile the source code:

$ gmake

4. Change to the root user, and run the install script using the gmake utility:

$ su
password:
gmake install

This installs the PostgreSQL binary files in the /usr/local/pgsql directory.

5. Create a user named postgres, create a directory for the database files, and make that user

the owner of that directory:

adduser postgres
mkdir /usr/local/postgres/data
chown postgres /usr/local/postgres/data

Congratulations, you now have the PostgreSQL programs installed on your system! Before you

can start PostgreSQL though, you’ll need to initialize the PostgreSQL database files. There’s a

utility program for doing that, but you must be the postgres user to do that:

su postgres
$ /usr/local/postgres/bin/initdb -D /usr/local/postgres/data

Now you’re ready to start the PostgreSQL server. To start the PostgreSQL database and have it

run in the background, you must again be the postgres user account:

su postgres
cd /usr/local/postgres/bin
./postgres -D /usr/local/postgres/data >logfile 2>&1 &

If you want the PostgreSQL server to automatically start at boot time, add these commands to the

startup script for your Linux distribution.

Logging into the PostgreSQL server is slightly different from the MySQL server. If you remember,

the MySQL server maintains its own internal database of users that can be granted access to

database objects. While PostgreSQL also has this capability, most PostgreSQL implementations

(including the default source code installation) utilize the existing Linux system user accounts to

authenticate PostgreSQL users.

653

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

While this can sometimes be confusing, it does make for a nice, clean way to control user accounts
in PostgreSQL. All you need to do is ensure each PostgreSQL user has a valid account on the
Linux system, rather than having to worry about a whole separate set of user accounts.

Another major difference for PostgreSQL is that the administrator account in PostgreSQL is called
postgres, not root. Thus the need for the postgres Linux system account, so the PostgreSQL
administrative user account can exist.

Next we’ll look at how to use the postgres account to access the PostgreSQL server.

The PostgreSQL command interface
The PostgreSQL command line client program is called psql. This program provides complete
access to the database objects configured in the PostgreSQL server. This section describes the
psql program and shows how to use it to interact with your PostgreSQL server.

Connecting to the server

The psql client program provides the command line interface to the PostgreSQL server. As you
would expect, it uses command line parameters to control what features are enabled in the client
interface. Each option uses either a long or short name format. Table 24-3 shows the command
line parameters available.

TABLE 24-3

The psql Command Line Parameters

Short Name Long Name Description

-a --echo-all Display all SQL lines processed from a script file
in the output.

-A --no-align Set the output format to unaligned mode. Data is
not displayed as a formatted table.

-c --command Execute the specified SQL statement and exit.

-d --dbname Specify the database to connect with.

-e --echo-queries Echo all queries to the screen.

-E --echo-hidden Echo hidden psql meta-commands to the
screen.

-f --file Execute SQL commands from the specified file
and exit.

-F --field-separator Specify the character used to separate column
data when in unaligned mode. The default is a
comma.

-h --host Specify the IP address or hostname of the remote
PostgreSQL server.

654

www.IrPDF.com

www.IrPDF.com

Using a Database 24

TABLE 24-3 (continued)

Short Name Long Name Description

-l --list Display a list of available databases on the
server and exit.

-o --output Redirect query output to the specified file.

-p --post Specify the PostgreSQL server TCP port to
connect with.

-P --pset Set the table printing option specified to a
specified value.

-q --quiet Quiet mode, doesn’t display output messages.

-R --record-separator Use the specified character as the record
separator. The default is the newline character.

-s --single-step Prompt to continue or cancel after every SQL
query.

-S --single-line Specify that the Enter key defines the end of an
SQL query instead of a semicolon.

-t --tuples-only Disables column headers and footers in table
output.

-T --table-attr Use the HTML table tag specified when in
HTML mode.

-U --username Use the specified user name to connect to the
PostgreSQL server.

-v --variable Set the specified variable to a specified value.

-V --version Display the psql version number and exit.

-W --password Force a password prompt.

-x --expanded Enable expanded table output to display
additional information for records.

-X --nopsqlrc Don’t process the psql startup file.

-? --help Display the psql command line help and exit.

As mentioned in the previous section, the administrative account for PostgreSQL is called post-

gres. Since PostgreSQL uses Linux user accounts to validate users, you must be logged in as the

postgres Linux account to access the PostgreSQL server as the postgres user.

Since the postgres user account is a special account, you shouldn’t assign a password to it.

That way no one can try to break into the system using that account. Instead, to log in using the

655

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

postgres account, you must be the root user, then use the su command to change to the

postgres user:

$ su
Password:
su postgres
bash-3.2$ psql
Welcome to psql 8.2.6, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\q to quit

postgres=#

The default psql prompt indicates the database you are connected to. The pound sign in the

prompt indicates that you’re logged in with the administrative user account. You’re now ready to

start entering some commands to interact with the PostgreSQL server.

The psql commands

Similarly to the mysql program, the psql program uses two different types of commands:

■ Standard SQL statements

■ PostgreSQL meta-commands

PostgreSQL meta-commands allow you to easily extract information about the database environ-

ment, plus set features for the psql session. A meta-command is indicted by using a backslash.

There are lots of PostgreSQL meta-commands for lots of different settings and features, but there’s

no reason to start worrying about them all right away. The most commonly used ones are:

■ \l to list the available databases

■ \c to connect to a database

■ \dt to list the tables in a database

■ \du to list the PostgreSQL users

■ \z to list table privileges

■ \? to list all of the available meta-commands

■ \h to list all of the available SQL commands

■ \q to exit the database

If you ever need to find a meta-command, just enter the \? meta-command. You’ll see a list, along

with an explanation, of all the available meta-commands.

656

www.IrPDF.com

www.IrPDF.com

Using a Database 24

To test the meta-commands, use the \l meta-command to list the available databases:

postgres=# \l
List of databases

Name | Owner | Encoding
-----------+----------+----------
postgres | postgres | UTF8
template0 | postgres | UTF8
template1 | postgres | UTF8

(3 rows)

postgres=#

These are the default databases provided by the PostgreSQL server. The postgres database main-

tains all of the system data for the server. The template0 and template1 databases provide
default database templates for you to copy when creating a new database.

You’re now ready to start working on your own data in PostgreSQL.

Creating PostgreSQL database objects
This section walks you through the process of creating your database and a user account to access
it. You’ll see that while some of the work in PostgreSQL is exactly the same as in MySQL, some

of it is completely different.

Creating a database object

Creating a database is one of those actions that’s the same as in MySQL. Remember to be logged

in as the postgres administrative account to create the new database:

$ su
Password:
su postgres
bash-3.2$ psql
Welcome to psql 8.2.6, the PostgreSQL interactive terminal.

postgres=# CREATE DATABASE test;
CREATE DATABASE
postgres=#

After you create the database, use the \l meta-command to see if it appears in the listing, then

the \c meta-command to connect to it:

postgres=# \l
List of databases

Name | Owner | Encoding
-----------+----------+----------
postgres | postgres | UTF8
template0 | postgres | UTF8

657

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

template1 | postgres | UTF8
test | postgres | UTF8

(4 rows)

postgres=# \c test
You are now connected to database "test".
test=#

When you connect to the test database, the psql prompt changes to indicate the new database

name. This is a great reminder when you’re ready to create your database objects, so you can
easily tell where you are in the system.

PostgreSQL adds another layer of control to the database called the schema.

A database can contain multiple schemas, each schema containing multiple tables.

This allows you to subdivide a database for specific applications or users.

By default, every database contains one schema, called public. If you’re only going to have one

application use the database, you’re fine with just using the public schema. If you’d like to really

get fancy, you can create new schemas. For this example, I’ll just use the public schema for my

tables.

Creating user accounts

After creating the new database, the next step is to create a user account that has access to it for
your shell scripts. As you’ve already seen, user accounts in PostgreSQL is one of those things that
is significantly different from MySQL.

User accounts in PostgreSQL are called Login Roles. The PostgreSQL server matches Login Roles to
the Linux system user accounts. Because of this, there are two common thoughts about creating

Login Roles to run shell scripts that access the PostgreSQL database:

■ Create a special Linux account with a matching PostgreSQL Login Role to run all your
shell scripts.

■ Create PostgeSQL accounts for each Linux user account that needs to run shell scripts to

access the database.

For this example I’ll choose the second method and create a PostgreSQL account that matches
my Linux system account. This way, I can run shell scripts that access the PostgreSQL database
directly from my Linux user account.

First, you must create the Login Role:

test=# CREATE ROLE rich login;
CREATE ROLE
test=#

That was simple enough. Without the login parameter, the role is not allowed to log in to the
PostgreSQL server, but it can be assigned privileges. This type of role is called a Group Role.

658

www.IrPDF.com

www.IrPDF.com

Using a Database 24

Group Roles are great if you’re working in a large environment with lots of users and tables.

Instead of having to keep track of which user has which type of privileges for which tables, you
just create Group Roles for specific types of access to tables, then assign the Login Roles to the
proper Group Role.

For simple shell scripting, you most likely won’t need to worry about creating Group Roles, and
just assign privileges directly to the Login Roles. That’s what I’ll do in this example.

However, PostgreSQL handles privileges a bit differently than MySQL. It doesn’t allow you to

grant overall privileges to all objects in a database that filter down to the table level. Instead,
you’ll need to grant privileges for each individual table you create. While this is somewhat of a
pain, it certainly helps enforce strict security policies. You’ll have to hold off assigning privileges

until you’ve created a table. That’s the next step in our process.

Working with Tables
Now that you’ve got your MySQL or PostgreSQL server running, created a new database and a
user account for accessing it, it’s time to start working with data! Fortunately, both the mysql
and psql programs use standard SQL to create and manage data tables. This section walks you
through the SQL required to create tables, insert and remove data, and query existing data in
both environments.

Creating a table
Both the MySQL and PostgreSQL servers are considered relational databases. In a relational

database, data is organized by data fields, records, and tables. A data field is a single piece of infor-
mation, such as an employee’s last name, or a salary. A record is a collection of related data fields,
such as the employee ID number, last name, first name, address, and salary. Each record indicates

one set of the data fields.

The table contains all of the records that hold the related data. Thus, you’ll have a table called
Employees which holds the records for each employee.

To create a new table in the database, you need to use the CREATE TABLE SQL command:

$ mysql test -u root -p
Enter password:
mysql> CREATE TABLE employees (

-> empid int not null,
-> lastname varchar(30),
-> firstname varchar(30),
-> salary float,
-> primary key (empid));

Query OK, 0 rows affected (0.14 sec)

mysql>

659

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 24-4

MySQL and PostgreSQL Data Types

Data Type Description

char A fixed-length string value

varchar A variable-length string value

int An integer value

float A floating-point value

Boolean A Boolean true/false value

Date A date value in YYYY-MM-DD format

Time A time value in HH:mm:ss format

Timestamp A date and time value together

Text A long string value

BLOB A large binary value, such as an image or video clip

First off, notice that to create the new table I needed to log in to MySQL using the root user
account, since the test user doesn’t have privileges to create a new table. The next item to notice
is that I specified the test database on the mysql program command line. If I hadn’t done that,
I would need to use the USE SQL command to connect to the test database.

It’s extremely important that you make sure you’re in the right database before creat-

ing the new table. Also, make sure that you’re logged in using the administrative user

account (root for MySQL and postgres for PostgreSQL) to create the tables.

Each data field in the table is defined using a data type. The MySQL and PostgreSQL databases
support lots of different data types. Table 24-4 shows some of the more popular data types you
may need.

The empid data field also specifies a data constraint. A data constraint restricts what type of data
you can enter to create a valid record. The not null data constraint indicates that every record
must have an empid value specified.

Finally, the primary key defines a data field that uniquely identifies each individual record. This
means that each data record must have a unique empid value in the table.

After creating the new table, you can use the appropriate command to ensure that it’s created. In
mysql, it’s the show table command:

mysql> show tables;
+----------------+
| Tables_in_test |
+----------------+

660

www.IrPDF.com

www.IrPDF.com

Using a Database 24

| employees |
+----------------+
1 row in set (0.00 sec)

mysql>

And in psql it’s the \dt meta-command:

test=# \dt
List of relations

Schema | Name | Type | Owner
--------+-----------+-------+----------
public | employees | table | postgres

(1 row)

test=#

If you remember from the ‘‘Creating PostgreSQL database objects’’ section earlier, in PostgreSQL
we need to assign privileges at the table level. Now that you have a table, you’ll need to give your
Login Role access to it:

su postgres
$ psql test
test=# GRANT SELECT,INSERT,DELETE,UPDATE ON public.employees TO rich;
GRANT
test=#

The format to specify the table must include the schema name, which by default is public. Also,
remember to perform this command as the postgres Login Role.

With the table created you’re now ready to start saving some data. The next section covers how
to do that.

Inserting and deleting data
Not surprisingly, you use the INSERT SQL command to insert new data records into the table.
Each INSERT command must specify the data field values for the MySQL or PostgreSQL server
to accept the record.

The format of the INSERT SQL command is:

INSERT INTO table VALUES (...)

The values are a comma-separated list of the data values for each data field:

$ mysql test -u test -p
Enter password:

mysql>

Query OK, 1 row affected (0.35 sec)

661

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

or, in PostgreSQL:

[rich@testbox ~]$ psql test
Welcome to psql 8.2.6, the PostgreSQL interactive terminal.

test=> INSERT INTO employees VALUES (1, ’Blum’, ’Rich’, 25000.00);
INSERT 0 1
test=>

Since the new user account in both MySQL and PostgreSQL has privileges to insert data, you
can log in using that account. The INSERT command pushes the data values you specify into the
data fields in the table. If you attempt to add another record that duplicates the empid data field
value, you’ll get an error message:

mysql> INSERT INTO employees VALUES (1, ’Blum’, ’Barbara’, 45000.00);
ERROR 1062 (23000): Duplicate entry ’1’ for key 1

However, if you change the empid value to a unique value, everything should be OK:

mysql> INSERT INTO employees VALUES (2, ’Blum’, ’Barbara’, 45000.00);
Query OK, 1 row affected (0.00 sec)

You should now have two data records in your table.

If you need to remove data from your table, you use the DELETE SQL command. However, you
need to be very careful with it.

The basic DELETE command format is:

DELETE FROM table;

where table specifies the table to delete records from. There’s just one small problem with this
command: it removes all of the records in the table.

To just specify a single record or a group of records to delete, you must use the WHERE clause.
The WHERE clause allows you to create a filter that identifies which records to remove. You use
the WHERE clause like this:

DELETE FROM employees WHERE empid = 2;

This restricts the deletion process to all of the records that have an empid value of 2. When
you execute this command, the mysql program returns a message indicating how many records
matched the filter:

mysql> DELETE FROM employees WHERE empid = 2;
Query OK, 1 row affected (0.29 sec)

As expected, only one record matched the filter and was removed.

662

www.IrPDF.com

www.IrPDF.com

Using a Database 24

Querying data
Once you’ve got all of your data in your database, it’s time to start running reports to extract

information.

The workhorse for all of your querying is the SQL SELECT command. The SELECT command is

extremely versatile, but with versatility comes complexity.

The basic format of a SELECT statement is:

SELECT datafields FROM table

The datafields parameter is a comma-separated list of the data field names you want the query

to return. If you want to receive all of the data field values, you can use an asterisk as a wildcard

character.

You must also specify the specific table you want the query to search. To get meaningful results,

you must match your query data fields with the proper table.

By default, the SELECT command returns all of the data records in the specified table:

mysql> SELECT * FROM employees;
+-------+----------+------------+--------+
| empid | lastname | firstname | salary |
+-------+----------+------------+--------+
1	Blum	Rich	25000
2	Blum	Barbara	45000
3	Blum	Katie Jane	34500
4	Blum	Jessica	52340
+-------+----------+------------+--------+
4 rows in set (0.00 sec)

mysql>

You can use one or more modifiers to define how the database server returns the data requested

by the query. Here’s a list of commonly used modifiers:

■ WHERE: Displays a subset of records that meet a specific condition

■ ORDER BY: Displays records in a specified order

■ LIMIT: Displays only a subset of records

The WHERE clause is the most common SELECT command modifier. It allows you to specify

conditions to filter data from the result set. Here’s an example of using the WHERE clause:

663

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

mysql> SELECT * FROM employees WHERE salary > 40000;
+-------+----------+-----------+--------+
| empid | lastname | firstname | salary |
+-------+----------+-----------+--------+
| 2 | Blum | Barbara | 45000 |
| 4 | Blum | Jessica | 52340 |
+-------+----------+-----------+--------+
2 rows in set (0.01 sec)

mysql>

Now you can see the power of adding database access to your shell scripts! You can easily control
your data management needs just with a few SQL commands and the mysql or psql programs.

The next section describes how you can incorporate these features into your shell scripts.

Using the Database in Your Scripts
Now that you’ve got a working database going, it’s finally time to turn our attention back to the
shell scripting world. This section describes what you need to do to interact with your databases
using shell scripts.

Connecting to the databases
Obviously, to connect to the databases you’ll need to somehow utilize the mysql or psql pro-
grams in your shell script. This isn’t too complicated of a process, but there are a few things you’ll

need to watch out for.

Finding the programs

The first hurdle you’ll need to complete is to figure out just where the mysql and psql command
line client programs are on the Linux system. The one downside to Linux software installs is that
often different Linux distributions place software packages in different locations.

Fortunately, there’s the which command. The which command tells you where the shell would
find a command if it attempted to run it from the command line:

$ which mysql
/usr/bin/mysql
$ which psql
/usr/bin/psql
$

The easiest way to handle this information is to assign it to an environment variable, then use
that in your shell script when you want to reference the appropriate program:

MYSQL=`which mysql`
PSQL=`which psql`

664

www.IrPDF.com

www.IrPDF.com

Using a Database 24

Now the $MYSQL variable points to the executable for the mysql program, and the $PSQL variable

points to the executable for the psql program.

Logging into the server

After finding the location of the client programs, you can use them in your scripts to access the
database servers. For the PostgreSQL server, this is easy:

[rich@testbox]$ cat ptest1
#!/bin/bash
test connecting to the PostgreSQL server

PSQL=`which psql`

$PSQL test
[rich@testbox]$./ptest1
Welcome to psql 8.2.6, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\q to quit

test=>

Since I’m running the script from my Linux user account, all I need to specify on the psql com-

mand line is the name of the database to connect with. The ptest1 script connected to the test
database and left you at the psql prompt inside that database.

If you’ve created a special user account in MySQL for your shell scripts, you’ll need to specify that

on the mysql command line:

$ cat mtest1
#!/bin/bash
test connecting to the MySQL server

MYSQL=`which mysql`

$MYSQL test -u test -p
$./mtest1
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 15
Server version: 5.0.45 Source distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>

665

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

That worked, but not all that well for a non-interactive script. The -p command line parameter
caused mysql to pause and ask for the password. You can solve that problem by including the
password on the command line:

$MYSQL test -u test -ptest

This however, is not a good idea. Anyone who has access to your script will know the user
account and password for your database.

To solve this problem, you can use a special configuration file used by the mysql program. The
mysql program uses the $HOME/.my.cnf file to read special startup commands and settings.
One of those settings is the default password for mysql sessions started by the user account.

To set the default password in this file, just create the following:

$ cat .my.cnf
[client]
password = test
$ chmod 400 .my.cnf
$

The chmod command is used to restrict the .my.cnf file so that only you can view it. You can
test this now from the command line:

$ mysql test -u test
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 15
Server version: 5.0.45 Source distribution

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql>

Perfect! Now you don’t have to include the password on the command line in your shell scripts.

Sending commands to the server
After establishing the connection to the server, you’ll want to send commands to interact with
your database. There are two methods to do this:

■ Send a single command and exit

■ Send multiple commands

To send a single command, you must include the command as part of the mysql or psql com-
mand line.

For the mysql command, you do this using the -e parameter:

$ cat mtest2
#!/bin/bash
send a command to the MySQL server

666

www.IrPDF.com

www.IrPDF.com

Using a Database 24

MYSQL=`which mysql`

$MYSQL test -u test -e ’select * from employees’
$./mtest2
+-------+----------+------------+---------+
| empid | lastname | firstname | salary |
+-------+----------+------------+---------+
1	Blum	Rich	25000
2	Blum	Barbara	45000
3	Blum	Katie Jane	34500
4	Blum	Jessica	52340
+-------+----------+------------+---------+
$

For the psql command, you do this using the -c parameter:

$ cat ptest2
#!/bin/bash
send a command to the PostgreSQL server

PSQL=`which psql`

$PSQL test -c ’select * from employees’
$./ptest2
empid | lastname | firstname | salary

-------+----------+------------+--------
1 | Blum | Rich | 25000
2 | Blum | Barbara | 45000
3 | Blum | Katie Jane | 34500
4 | Blum | Jessica | 52340

(4 rows)
$

The database servers return the results from the SQL commands to the shell scripts, which display

them in STDOUT.

If you need to send more than one SQL command, you can use file redirection (see Chapter 12).

To redirect lines in the shell script, you must define an end of file string. The end of file string

indicates the beginning and end of the redirected data.

Here’s an example of defining an end of file string, with data in it:

$ cat mtest3
#!/bin/bash
sending multiple commands to MySQL

MYSQL="$(which mysql)"
$MYSQL test -u test ‹‹EOF

667

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

show tables;
select * from employees where salary › 40000;
EOF
$./mtest3
Tables_in_test
employees
empid lastname firstname salary
2 Blum Barbara 45000
4 Blum Jessica 52340
$

The shell redirects everything with the EOF delimiters to the mysql command, which executes

the lines as if you typed them yourself at the prompt. Using this method, you can send as many

commands to the MySQL server as you need. You’ll notice though that there’s no separation

between the output from each command. In the next section, ‘‘Formatting data,’’ you’ll see how

to fix this problem.

You should also notice that the mysql program changed the default output style when

you used the redirected input method. Instead of creating the ASCII symbol boxes

around the data, the mysql program detected that the input was redirected, so it returned just the

raw data. This will come in handy when you need to extract the individual data elements.

The same technique also works for the psql program:

$ cat ptest3
#!/bin/bash
sending multiple commands to PostgreSQL

PSQL="$(which psql)"

$PSQL test ‹‹EOF
\dt
select * from employees where salary › 40000;
EOF
$./ptest3

List of relations
Schema | Name | Type | Owner

--------+-----------+-------+----------
public | employees | table | postgres

(1 row)

empid | lastname | firstname | salary
-------+----------+-----------+--------

2 | Blum | Barbara | 45000
4 | Blum | Jessica | 52340

(2 rows)
$

668

www.IrPDF.com

www.IrPDF.com

Using a Database 24

The psql program displays the output from each command directly to STDOUT in the order in

which you specify them.

Of course, you’re not limited to just retrieving data from the tables. You can use any type of SQL

command in your script, such as an INSERT statement:

$ cat mtest4
#!/bin/bash
send data to the table in the MySQL database

MYSQL=`which mysql`

if [$# -ne 4]
then

echo "Usage: mtest4 empid lastname firstname salary"
else

statement="INSERT INTO employees VALUES ($1, ’$2’, ’$3’, $4)"
$MYSQL test -u test ‹‹ EOF
$statement

EOF
if [$? -eq 0]
then

echo Data successfully added
else

echo Problem adding data
fi

fi
$./mtest4
Usage: mtest4 empid lastname firstname salary
$./mtest4 5 Blum Jasper 100000
Data added successfully
$
$./mtest4 5 Blum Jasper 100000
ERROR 1062 (23000) at line 1: Duplicate entry ’5’ for key 1
Problem adding data
$

This example demonstrates a few things about using this technique. When you specify the end of

file string, it must be the only thing on the line, and the line must start with the string. If I had

indented the EOF text to match the rest of the if-then indentation, it wouldn’t work.

Also, notice how I used the special $? variable to test the exit status of the mysql program. This

helps you determine whether the command failed or not.

Just sending output from the commands to STDOUT is not the easiest way to manage and manip-

ulate the data. The next section shows you some tricks you can use to help your scripts capture

data retrieved from the database.

669

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

Formatting data
The standard output from the mysql and psql commands doesn’t lend itself too much for data
retrieval. If you need to actually do something with the data you retrieve, you’ll need to do some
fancy data manipulation. This section describes some of the tricks you can use to help extract
data from your database reports.

Assigning output to a variable

The first step in trying to capture database data is to redirect the output from the mysql and
psql commands in an environment variable. This allows you to use the output information in
other commands. Here’s an example:

$ cat mtest5
#!/bin/bash
redirecting SQL output to a variable

MYSQL=`which mysql`

dbs=`$MYSQL test -u test -Bse ’show databases’`
for db in $dbs
do

echo $db
done
$./mtest5
information_schema
test
$

This example uses two additional parameters on the mysql program command line. The -B
parameter specifies for the mysql program to work in batch mode, and in combination with the
-s (silent) parameter, the column headings and formatting symbols are suppressed.

By redirecting the output of the mysql command to a variable, this example is able to step
through the individual values of each returned record.

Using formatting tags

In the previous example, you saw how adding the -B and -s parameters to the mysql program
command line allows you to suppress the output heading information, so all you get is data.
There are a few other parameters that you can use to help make life easier for you.

Generating data for Web pages is a popular thing these days. Both the mysql and psql programs
provide an option to display the output using HTML format. In both, this is enabled using the
-H command line parameter:

$ psql test -H -c ’select * from employees where empid = 1’
‹table border="1"›
‹tr›

‹th align="center"›empid‹/th›

670

www.IrPDF.com

www.IrPDF.com

Using a Database 24

‹th align="center"›lastname‹/th›
‹th align="center"›firstname‹/th›
‹th align="center"›salary‹/th›

‹/tr›
‹tr valign="top"›
‹td align="right"›1‹/td›
‹td align="left"›Blum‹/td›
‹td align="left"›Rich‹/td›
‹td align="right"›25000‹/td›

‹/tr›
‹/table›
‹p›(1 row)‹br /›
‹/p›
$

The mysql program also supports an additional popular format, called the Extensible Markup
Language (XML). This language uses HTML-like tags to identify data names and values.

For the mysql program, you do this using the -X command line parameter:

$ mysql test -u test -X -e ’select * from employees where empid = 1’
‹?xml version="1.0"?›

‹resultset statement="select * from employees
"›

‹row›
‹field name="empid"›1‹/field›
‹field name="lastname"›Blum‹/field›
‹field name="firstname"›Rich‹/field›
‹field name="salary"›25000‹/field›
‹/row›

‹/resultset›
$

Using XML, you can easily identify individual rows of data, along with the individual data values
in each record.

Summary
This chapter discussed the ability to save, modify, and retrieve data from your shell scripts in
databases. You can easily access both the MySQL and PostgreSQL database servers directly from
your shell scripts.

After installing the MySQL and PostgreSQL servers, you can use their respective client programs
to access the servers from the command line, or from shell scripts. The mysql client program
provides the command line interface to the MySQL server. You can send SQL commands as well
as customized MySQL commands to the server from your shell scripts, then retrieve the results.

671

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

The psql client program operates the same way for the PostgreSQL server. There are plenty of

command line parameters you can use to help format your data in just the right way.

Both client programs allow you to send either a single command to the server, or use input redi-

rection to send a batch of commands. The programs normally send the output data from the

server to STDOUT, but you can redirect the output to a variable, and use that information in your

shell script.

The next chapter examines the World Wide Web. Getting your shell scripts to interface with

Web sites on the Internet is a tricky task, but once you master it the world is yours to retrieve

data from.

672

www.IrPDF.com

www.IrPDF.com

Using the Web

IN THIS CHAPTER

Surfing with Lynx

Exploring with cURL

Client/Server programming

in zsh

O
ften when you think of shell script programming the last thing
you think of is the Internet. The command line world often seems

foreign to the fancy, graphical world of the Internet. There are,
however, several different utilities you can easily use in your shell scripts

to gain access to data content on the Web, as well as on other network
devices. This chapter walks you through three popular methods for getting

your shell scripts to interact with the network world.

The Lynx Program

Almost as old as the Internet itself, the Lynx program was created in 1992

by students at the University of Kansas as a text-based browser. Since it’s
text-based, the Lynx program allows you to browse Web sites directly from

a terminal session, replacing the fancy graphics on Web pages with HTML
text tags. This allows you to surf the Internet from just about any type of

Linux terminal. A sample Lynx screen is shown in Figure 25-1.

Lynx uses the standard keyboard keys to navigate around the Web page.

Links appear as highlighted text within the Web page. Using the right arrow
key allows you to follow a link to the next Web page.

You may be wondering how you can use a graphical text program in your
shell scripts. The Lynx program also provides a feature that allows you to

dump the text contents of a Web page to STDOUT. This feature is great for
mining for data contained within a Web page. This section describes how to

use the Lynx program within your shell scripts to extract data from Internet
Web sites.

673

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

FIGURE 25-1

Viewing a Web page using Lynx

Installing Lynx
Even though the Lynx program is somewhat old, it’s still in active development. At the time
of this writing, the latest version of Lynx is version 2.8.6, released in October of 2006, with a
new release in development. Due to its popularity among shell script programmers, many Linux
distributions install the Lynx program in their default installations.

If you’re using an installation that doesn’t provide the Lynx program, check your distribution’s
installation packages. Most likely you’ll find it there for easy installation.

If your distribution doesn’t include the Lynx package, or if you just want the latest version, you
can download the source code and compile it yourself (assuming that you’ve got the C develop-
ment libraries installed on your Linux system).

The Lynx program uses the curses text-graphics library in Linux. Most distributions

have this installed by default. If your distribution doesn’t, consult your particular dis-

tribution’s instructions on installing the curses library before trying to compile Lynx.

Follow these steps to download, compile, and install Lynx on your Linux system:

1. The Web page for the Lynx project is located at lynx.isc.org. From there you can
find links to the latest release and development versions. Download the latest version in
the compression format of your choice (such as .tar.gz or .zip).

674

www.IrPDF.com

www.IrPDF.com

Using the Web 25

2. Extract the download file into a working directory on your Linux system (such as your

$HOME folder):

tar -zxvf lynx2.8.6.tar.gz

3. Change to the resulting working directory (called lynx2.8.6 in this example):

cd lynx2.8.6

4. Execute the configure script in the directory:

./configure

5. Execute the make utility to compile the source code and create the executable file:

make

6. As the root user, copy the lynx executable file to a common directory in your PATH,
such as the /usr/local/bin directory.

The next section describes how to use the lynx command from the command line.

The lynx command line
The lynx command is extremely versatile in what information it can retrieve from the remote
Web site. When you view a Web page in your browser, you’re only seeing part of the information

that’s transferred to your browser. Web pages consist of three types of data elements:

■ HTTP headers

■ Cookies

■ HTML content

HTTP headers provide information about the type of data sent in the connection, the server send-
ing the data, and the type of security used in the connection. If you’re sending special types

of data, such as video or audio clips, the server identifies that in the HTTP headers. The Lynx

program allows you to view all of the HTTP headers sent within a Web page session.

If you’ve done any type of Web browsing, no doubt you’re familiar with Web page cookies. Web

sites use cookies to store data about your Web site visit for future use. Each individual site can
store information, but only access the information that it sets. The lynx command provides

options for you to view cookies sent by Web servers, as well as reject or accept specific cookies
sent from servers.

The Lynx program allows you to view the actual HTML content of the Web page in three different
formats:

■ In a text-graphics display on the terminal session using the curses graphical library.

■ As a text file, dumping the raw data from the Web page.

■ As a text file, dumping the raw HTML source code from the Web page.

675

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

For shell scripts, viewing the raw data or HTML source code is a gold mine. Once you capture
the data retrieved from a Web site, you can easily extract individual pieces of information.

As you can see, the Lynx program is extremely versatile in what it can do. However, with versatil-
ity comes complexity, especially when it comes to command line parameters. The Lynx program
is one of the more complex programs you’ll run into in the Linux world.

The basic format of the lynx command is:

lynx options URL

where URL is the HTTP or HTTPS destination you want to connect to, and options are one or
more options that modify the behavior of Lynx as it interacts with the remote Web site. There are
options for just about any type of Web interaction required by Lynx. Table 25-1 shows all of the
available command line parameters you can use with the lynx command.

As you can see, you can control just about any type of HTTP or HTML setting directly from
the command line. For example, if you want to post data to a Web form using the HTTP POST
method, you just include your data in the -post-data parameter. If you want to store the cook-
ies received by the Web site in a special location, you use the -cookie save file parameter.

Many of the command line parameters define behaviors that control Lynx when you’re using it in
full-screen mode, allowing you to customize the behavior of Lynx as you’re traversing Web pages.

There are often groups of command line parameters that you find useful in your normal browsing
environment. Instead of having to enter these parameters on the command line every time you
use Lynx, Lynx provides a general configuration file that defines the base behavior when you use
Lynx. This configuration file is discussed in the next section.

The Lynx configuration file
The lynx command reads a configuration file for many of its parameter settings. By default, this
file is located at /usr/local/lib/lynx.cfg, although you’ll find that many Linux distributions
change this to the /etc directory (/etc/lynx.cfg).

The lynx.cfg configuration file groups related parameters together into sections to make finding
parameters easier. The format of an entry in the configuration file is:

PARAMETER:value

where PARAMETER is the full name of the parameter (often, but not always in upper-case letters),
and value is the value associated with the parameter.

Perusing this file, you’ll find many parameters that are similar to the command line parameters,
such as the ACCEPT ALL COOKIES parameter, which is equivalent to setting the -accept all
cookies command line parameter.

There are also a few configuration parameters that are similar in function, but different in name.
The FORCE SSL COOKIES SECURE configuration file parameter setting can be overridden by the
-force secure command line parameter.

676

www.IrPDF.com

www.IrPDF.com

Using the Web 25

TABLE 25-1

The Lynx Command Parameters

Parameter Description

- Receive options and arguments from STDIN.

-accept_all_cookies Accept cookies without prompting if Set-Cookie handling
is on. Set to off by default.

-anonymous Apply restrictions for anonymous account.

-assume_charset=name Default charset for documents that don’t specify one.

-assume_local_charset=name Default charset for local files.

-assume_unrec_charset=name Default charset to use instead of unrecognized charsets.

-auth=id:pw Authentication information for protected documents.

-base Prepend a request URL comment and BASE tag to
text/HTML outputs for -source dumps

-bibhost=URL Local bibp server URL (default http://bibhost/).

-book Use the bookmark page as the startfile. Set to off by
default.

-buried_news Toggle scanning of news articles for buried references.
Set to on by default.

-cache=n Number of documents cached in memory.

-case Enable case-sensitive user searching. Set to off by default.

-center Toggle center alignment in HTML <table> tags. Set to
off by default.

-cfg=filename Specify a configuration file other than the default
lynx.cfg file.

-child Exit on left-arrow in startfile, and disable save to
disk.

-cmd_log=filename Log keystroke commands to the specified file.

-cmd_script=filename Read keystroke commands from the specified file.

-connect_timeout=n Set the connection timeout (in seconds). The default is
18000 seconds.

-cookie_file=filename Specify the file to use to read cookies.

-cookie_save_file=filename Specify the file to use to store cookies.

continued

677

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 25-1 (continued)

Parameter Description

-cookies Toggle handling of Set-Cookie headers. Set to on by
default.

-core Toggle forced core dumps on fatal errors. Set to off by
default.

-crawl With -traversal, output each page to a file with
-dump, format output as with -traversal, but to
STDOUT.

-curses_pads Use curses pad feature to support left/right shifting. Set to
on by default.

-debug_partial Display incremental display stages with MessageSecs
delay. Set to off by default.

-delay=n Set delay at statusline message (in seconds). Set to
0.000 by default.

-display=display Set the display variable for X Window programs.

-display_charset=name The charset for the terminal output.

-dont_wrap_pre Don’t wrap text in <pre> sections when -dump and
-crawl set. Mark wrapped lines in interactive session.
Set to on by default.

-dump Dump the first URL to STDOUT and exit.

-editor=editor Enable edit mode with the specified editor.

-emacskeys Enable emacs-like key movement. Set to off by default.

-enable_scrollback Toggle compatibility with scrollback keys. Set to off by
default.

-error_file=filename Write the HTTP status code to the specified file.

-exec Enable local program execution.

-force_empty_hrefless_a Force <a> elements without an href attribute to be
empty. Set to off by default.

-force_html Force the first document to be interpreted as HTML. Set
to off by default.

-force_secure Require the secure flag for SSL cookies. Set to off by
default.

-forms_options Use forms-based options menu. Set to on by default.

678

www.IrPDF.com

www.IrPDF.com

Using the Web 25

TABLE 25-1 (continued)

Parameter Description

-from Enable transmission of From headers. Set to on by
default.

-ftp Disable ftp access. Set to off by default.

-get_data Read data for get forms from STDIN, terminated by ---.

-head Send a HEAD request. Set to off by default.

-help Print usage message.

-hiddenlinks=option Specify how to handle hidden links. Option can be
merge, listonly, or ignore.

-historical Use ‘>’ instead of ‘-->’ as terminator for comments. Set
to off by default.

-homepage=URL Set homepage separate from start page.

-image_links Enable inclusion of links for all images. Set to off by
default.

-index=URL Set the default index filename.

-ismap Include ISMAP links when client-side MAPs are present.
Set to off by default.

-link=n Set the starting count for lnk#.dat files produced by
-crawl. Set to 0 by default.

-localhost Disable URLs that point to remote hosts. Set to off by
default.

-locexec Enable local program execution from local files only. Set
to off by default.

-mime_header Include mime headers and force source dump.

-minimal Use minimal instead of valid comment parsing. Set to off
by default.

-nested_tables Use nested-tables logic. Set to off by default.

-newschunksize=n Set the number of articles in chunked news listings.

-newsmaxchunk=n Set the maximum number of news articles in listings
before chunking.

-nobold Disable bold video-attribute.

-nobrowse Disable directory browsing.

continued

679

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 25-1 (continued)

Parameter Description

-nocc Disable Cc: prompts for self-copies of mailings. Set to off
by default.

-nocolor Disable color support.

-noexec Disable local program execution. Set to on by default.

-nofilereferer Disable transmission of Referer headers for file URLs. Set
to on by default.

-nolist Disable the link list feature in dumps. Set to off by
default.

-nolog Disable mailing of error messages to document owners.
Set to on by default.

-nonrestarting_sigwinch Make window size change handler non-restarting. Set to
off by default.

-nopause Disable forced pauses for statusline messages.

-noprint Disable some print functions, like
-restrictions=print. Set to off by default.

-noredir Don’t follow Location: redirection. Set to off by default.

-noreferer Disable transmission of Referer headers. Set to off by
default.

-noreverse Disable reverse video-attribute.

-nostatus Disable the miscellaneous information messages. Set to
off by default.

-nounderline Disable underline video-attribute

-number_fields Force numbering of links as well as form input fields. Set
to off by default.

-number_links Force numbering of links. Set to off by default.

-partial Display partial pages while downloading. Set to on by
default.

-partial_thres=n Set the number of lines to render before repainting
display with partial-display logic. Set to -1 by default,
which disables this feature.

-pauth=id:pw Set the authentication information for a protected proxy
server.

-popup Handle single-choice SELECT options via popup
windows instead of lists of radio buttons. Set to off by
default.

680

www.IrPDF.com

www.IrPDF.com

Using the Web 25

TABLE 25-1 (continued)

Parameter Description

-post_data Read data for post forms from stdin, terminated by ---.

-preparsed Show parsed text/html with -source and in source view
to visualize how Lynx behaves with invalid HTML. Set to
off by default.

-prettysrc Use syntax highlighting and hyperlink handling in source
view. Set to off by default.

-print Enable print functions, the opposite of -noprint. Set to
on by default.

-pseudo_inlines Use pseudo-ALTs for inlines with no ALT string. Set to on
by default.

-raw Use default setting of 8-bit character translations or
CJK mode for the startup character set. Set to off by
default.

-realm Restrict access to URLs in the starting realm. Set to off by
default.

-reload Flush the cache on a proxy server (only the first
document affected). Set to off by default.

-restrictions=options Set restriction options. Use -restrictions with no
parameters to see list.

-resubmit_posts Force resubmissions (no-cache) of forms with method
POST when the documents they returned are sought with
the PREV_DOC command or from the History List. Set to
off by default.

-rlogin Disable rlogin feature. Set to off by default.

-selective Require .www_browsable files to browse directories.

-short_url Enable examination of beginning and end of long URL in
status line. Set to off by default.

-show_cursor When set to off, hide the cursor in the lower right corner,
otherwise show cursor. Set to on by default.

-show_rate Display the transfer rate. Set to on by default.

-soft_dquotes Use emulation of old Netscape and Mosaic bug, which
treated ‘>’ as a co-terminator for double quotation marks
and tags. Set to off by default.

-source Dump the source of the first URL to STDOUT and exit.

-stack_dump Disable SIGINT cleanup handler. Set to off by default.

continued

681

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 25-1 (continued)

Parameter Description

-startfile_ok Allow non-HTTP startfile and homepage with
-validate. Set to off by default.

-stdin Read startfile from STDIN. Set to off by default.

-tagsoup Use TagSoup rather than SortaSGML parser. Set to off by
default.

-telnet Disable Telnet sessions. Set to off by default.

-term=term Specify the terminal type to emulate.

-tlog Use a Lynx Trace Log for the current session. Set to on
by default.

-tna Use ‘‘Textfields Need Activation’’ mode. Set to off by
default.

-trace Use Lynx trace mode. Set to off by default.

-trace_mask Customize Lynx trace mode. Set to 0 by default.

-traversal Traverse all HTTP links derived from startfile.

-trim_input_fields Trim input text/textarea fields in forms. Set to off by
default.

-underline_links Use an underline/bold attribute for links. Set to off by
default.

-underscore Use an underline format in dumps. Set to off by default.

-use_mouse Enable mouse support. Set to off by default.

-useragent=Name Set alternate Lynx User-Agent header.

-validate Accept only http URLs (meant for validation) implies
more restrictions than -anonymous, but goto is
allowed for http and https. Set to off by default.

-verbose Use [LINK], [IMAGE], and [INLINE] comments with
filenames of these images. Set to on by default.

-version Display Lynx version information

-vikeys Enable vi-like key movement. Set to off by default.

-width=n Set the screen width for formatting of dumps. The default
is 80 columns.

-with_backspaces Emit backspaces in output if using -dump or -crawl
parameters. Set to off by default.

682

www.IrPDF.com

www.IrPDF.com

Using the Web 25

However, you’ll also find quite a few configuration parameters that don’t match with command
line parameters. These values can only be set from the configuration file.

The most common configuration parameters that you can’t set on the command line are for the
proxy servers. Some networks (especially corporate networks) use a proxy server as a middle-
man between the client’s browser and the destination Web site server. Instead of sending HTTP
requests directly to the remote Web server, client browsers must send their requests to the proxy
server. The proxy server in turn sends the requests to the remote Web server, retrieves the results,
and forwards them back to the client browser.

While this may seem somewhat of a waste of time, it’s a vital function in protecting clients from
dangers on the Internet. A proxy sever can filter inappropriate content, malicious coding, or even
detect sites used for Internet data phishing schemes (rogue servers pretending to be someone
else in order to capture customer data). Proxy servers can also help reduce Internet bandwidth
usage, as they cache commonly viewed Web pages and return them to clients instead of having
to download the original page again.

The configuration parameters used to define proxy servers are:

http proxy:http://some.server.dom:port/
https proxy:http://some.server.dom:port/
ftp proxy:http://some.server.dom:port/
gopher proxy:http://some.server.dom:port/
news proxy:http://some.server.dom:port/
newspost proxy:http://some.server.dom:port/
newsreply proxy:http://some.server.dom:port/
snews proxy:http://some.server.dom:port/
snewspost proxy:http://some.server.dom:port/
snewsreply proxy:http://some.server.dom:port/
nntp proxy:http://some.server.dom:port/
wais proxy:http://some.server.dom:port/
finger proxy:http://some.server.dom:port/
cso proxy:http://some.server.dom:port/
no proxy:host.domain.dom

You can define a different proxy server for any network protocol supported by Lynx. The NO
PROXY parameter is a comma-separated list of Web sites that you prefer to have direct access to,
without using the proxy server. These are often internal Web sites that don’t require filtering.

The Lynx environment variables
As you can see from the wealth of command line options and configuration file parameters, the
Lynx program is extremely customizable. However, the customization doesn’t stop there. You can
override many configuration file parameters using environment variables. If you’re working in an
environment where you don’t have access to the lynx.cfg configuration file, you can override
some default parameters by setting your local environment variables. Table 25-2 lists the more
common Lynx environment variables that you might need to use when using Lynx in a restricted
environment.

683

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 25-2

The Lynx Environment Variables

Variable Description

LYNX_CFG Specify the location of an alternate configuration file.

LYNX_LSS Specify the location of the default Lynx character set style sheet.

LYNX_SAVE_SPACE Specify the location for saving files to disk.

NNTPSERVER Specify the server to use for retrieving and posting USENET news.

PROTOCOL_PROXY Override the proxy server for the specified protocol.

SSL_CERT_DIR Specify the directory containing trusted certificates for accessing trusted
sites.

SSL_CERT_FILE Specify the file containing your trusted certificates.

WWW_HOME Define the default URL for Lynx to use at startup.

You set these environment variables just as you would any other environment variable before
using the Lynx program:

$ http proxy=http://myproxy.com:8080
$ lynx

To specify a proxy server, you must provide the protocol, the server name, and the port used to
communicate with the proxy server. If you need this variable setting, it’s usually a good idea
to include it in a common startup file for your shell (such as the .bashrc file for the bash shell),
so you don’t have to enter it every time.

Capturing data from Lynx
When you use Lynx in a shell script, most likely you’re trying to obtain a specific piece (or pieces)
of information from a Web page. The technique to accomplish this is called screen scraping. In
screen scraping, you’re trying to programmatically find data in a specific location on a graphical
screen so you can capture it and use it in your shell script.

The easiest way to perform screen scraping with lynx is to use the -dump option. This option
doesn’t bother trying to display the Web page on the terminal screen. Instead, it displays the Web
page text data directly to STDOUT:

$ lynx -dump http://localhost/RecipeCenter/

The Recipe Center

"Just like mom use to make"

684

www.IrPDF.com

www.IrPDF.com

Using the Web 25

Welcome

[1]Home
[2]Login to post
[3]Register for free login

[4]Post a new recipe

Each link is identified by a tag number, and Lynx displays a listing of all the tag references after
the Web page data.

Once you have all of the text data from the Web page, you probably know what tools we’re going
to get out of the toolbox to start work on extracting data. That’s right, our old friends the sed
and gawk programs (see Chapter 16).

First, let’s find some interesting data to collect. The Yahoo! weather Web page is a great source for
finding the current weather conditions anywhere in the world. Each location uses a separate URL
to display weather information for that city (you can find the specific URL for your city by going
to the site in a normal browser, and entering in your city’s information). The Lynx command for
finding the weather in Chicago, Illinois, is:

lynx -dump http://weather.yahoo.com/forecast/USIL0225.html

This command dumps lots and lots of data from the Web page. The first step is to find the precise
information you want. To do that, redirect the output from the lynx command to a file, then
search the file for your data. After doing that with the above command, I found this text in the
output file:

Current conditions as of 1:54 pm EDT

Light Drizzle

Feels Like:
50◦

Barometer:
29.34 in and falling

Humidity:
93%

Visibility:
4 mi

Dewpoint:
48◦

Wind:
S 16 mph

685

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

That’s just about all the information about the current weather that you’ll need. There’s just one
small problem with this output. You’ll notice that the numbers are on a line below the heading.
Trying to just extract individual numbers will be difficult. Chapter 18 discussed how to deal with
a problem just like this.

The key to solving this is to write a sed script that can search for the data heading first. When
you find it, you can then go to the correct line to extract the data. We’re fortunate in this example
in that all of the data we need are on lines by themselves. We should be able to solve this with
just the sed script. If there had also been other text on the same line, we’d need to get out the
gawk tool to filter out just the data we needed.

First, you need to create a sed script that will look for the Current conditions text, then skip two
lines to get the text that describes the current weather condition, and print it. Here’s what that
looks like:

$ cat sedcond
/Current conditions/{
n
n
p
}
$

The address specifies to look for the line with the desired text. If sed finds it, the two n commands
skip the next two lines, then the p command prints the contents of the following line, which is
the text describing the current weather conditions of the city.

Next, you’ll need a sed script that can search for the Feels Like: text, then go to the next line to
print the temperature:

$ cat sedtemp
/Feels Like:/{
n
p
}
$

Perfect. Now, you can use these two sed scripts in a shell script that first captures the lynx
output of the Web page to a temporary file, then applies the two sed scripts to the Web page
data to extract only the data you’re looking for. Here’s an example of how to do that:

$ cat weather
#!/bin/bash
extract the current weather for Chicago, IL

URL="http://weather.yahoo.com/forecast/USIL0225.html"
LYNX=`which lynx`
TMPFILE=`mktemp tmpXXXXXX`
$LYNX -dump $URL > $TMPFILE

686

www.IrPDF.com

www.IrPDF.com

Using the Web 25

conditions=`cat $TMPFILE | sed -n -f sedcond`
temp=`cat $TMPFILE | sed -n -f sedtemp`
rm -f $TMPFILE
echo "Current conditions: $conditions"
echo The current temp outside is: $temp
$./weather
Current conditions: Light Rain
The current temp outside is: 49◦

$

The weather script connects to the Yahoo! weather Web page for the desired city, saves the Web
page to a temporary file, extracts the appropriate text, removes the temporary file, then displays
the weather information. The beauty of this is that once you’ve extracted the data from a Web
site you can do whatever you want with it, such as create a table of temperatures. You can then
create a cron job (see Chapter 13) that runs every day to track daily temperatures.

The Internet is a dynamic place. Don’t be surprised if you spend hours working out

the precise location of data on a Web page, only to find that it’s moved a couple of

weeks later, breaking your scripts. In fact, it’s quite possible that my example won’t work by the

time you read this book. The important thing is to know the process for extracting data from Web

pages. You can then apply that principle to any situation.

The cURL Program
The popularity of Lynx has spawned another similar product, called cURL. The cURL program
allows you to automatically transfer files from the command line using a specified URL. It cur-
rently supports the FTP, FTPS, HTTP, HTTPS, SCP, SFTP, TFTP, Telnet, DICT, LDAP, LDAPS,
and FILE protocols as specified in URLs.

While cURL isn’t used as a Web page browser per se, it allows you to easily send or retrieve
data unattended directly from the command line, or your shell scripts, just by using a simple
command. This provides a great tool to have in your shell scripting toolbox.

This section walks you through the process of installing and using cURL in your shell scripts.

There’s also a programming language called curl, owned and marketed by the Sum-

isho Computer System Corporation. Don’t confuse cURL with the curl programming

language.

Installing cURL
With it’s growing popularity, cURL is installed by default in many Linux distributions. If
it’s not available for your Linux distribution, or if you just want to use the latest version, you
can download the source code and compile it on your Linux system. Again, the standard dis-
claimers apply; you must have the C development libraries installed on your Linux system for this
to work.

687

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

Here are the steps for downloading and installing cURL:

1. Go to the main cURL Web site at curl.haxx.se, and click the Download link on the
left side of the page.

2. Click the link for the latest version of cURL in the archive format of your choice (such
as .tar.gz).

3. Change to the resulting working directory (called curl-7.18.0 in this example):

cd curl-7.18.0

4. Execute the configure script in the directory:

./configure

5. Execute the make utility to compile the source code and create the executable file:

make

6. As the root user, copy the curl executable file to a common directory in your PATH,
such as the /usr/local/bin directory.

The next section describes how to use the curl program from the command line.

The cURL command line
Just like the Lynx program command line, the curl command line can get messy. There are lots of
options available for controlling exactly how you want cURL to interface with the remote server.
Table 25-3 shows the command line parameters available for cURL.

The list of command line parameters is similar to the Lynx program. Most of the parameters
define how to interact with the remote server.

Now let’s take a look at what we can do with the curl command.

Exploring with curl
By default, cURL returns the complete HTML code for the Web page to STDOUT:

$ curl http://localhost/RecipeCenter/
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<link rel="stylesheet" type="text/css" href="mystyle.css" />

<link rel="stylesheet" media="print" type="text/css" href="print.css"
/>

<title>The Recipe Center</title>

</head>

<body>

<table width="100%" border="0">

688

www.IrPDF.com

www.IrPDF.com

Using the Web 25

<tr>

<td id="header" height="90" colspan="3">

<h1>

The Recipe Center</h1>

<h4>
 "Just like mom use to make"</h4></td>

</tr>

<tr>

<td id="nav" width="15%" valign="top">

<table width="100%" cellpadding="3">

<tr>

<td><h3>Welcome</h3></td>

</tr>

<tr>

[listing truncated]

TABLE 25-3

The cURL Command Line Parameters

Short
Long Parameter Parameter Description

--append -a Append to target file when uploading.

--user-agent name -A User-Agent to send to server.

--anyauth Use the ANY authentication method.

--cookie name=string -b Cookie string or file to read cookies from.

--basic Use HTTP Basic Authentication.

--use-ascii -B Transfer data using ASCII.

--cookie-jar file -c Write cookies to the specified file after operation.

--continue-at offset -C Resume file transfer at offset.

--data data -d Send data using the HTTP POST method.

--data-ascii data Send ASCII data using the HTTP POST method.

--data-binary data Send binary data using the HTTP POST method.

--negotiate Use HTTP Negotiate Authentication.

--digest Use HTTP Digest Authentication.

--disable-eprt Disable using EPRT or LPRT.

--disable-epsv Disable using EPSV.

continued

689

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 25-3 (continued)

Short
Long Parameter Parameter Description

--dump-header file -D Write the HTTP session headers to the specified file.

--egd-file file Specify a EGD socket path for random data.

--tcp-nodelay Use the TCP˙NODELAY option.

--referer -e Referer URL.

--cert cert:passwd -E Specify a client certificate file and password.

--cert-type type Specify a certificate file type (DER/PEM/ENG).

--key key Specify the private key file.

--key-type type Specify the private key file type (DER/PEM/ENG).

--pass pass Specify the passphrase for the private key.

--engine eng Specify the crypto engine to use.

--cacert file Specify a CA certificate to verify the remote peer.

--capath dir Specify a CA directory to verify the remote peer.

--ciphers list Specify a list of SSL ciphers to use in an SSL
connection.

--compressed Request compressed response.

--connect-timeout sec Specify the maximum time allowed for connection (in
seconds).

--create-dirs Create necessary local directory hierarchy.

--crlf Convert LF to CRLF in upload.

--fail -f Fail silently on HTTP errors.

--ftp-create-dirs Create the remote dirs if not present.

--ftp-pasv Use PASV/EPSV instead of PORT in FTP transfers.

--ftp-skip-pasv-ip Skip the IP address for PASV.

--ftp-ssl Enable SSL/TLS for the FTP transfer.

--form name=content -F Specify HTTP multipart POST data.

--form-string
name=string

Specify HTTP multipart POST data.

--globoff -g Disable URL sequences and ranges using {} and [].

--get -G Send the -d data with a HTTP GET.

690

www.IrPDF.com

www.IrPDF.com

Using the Web 25

TABLE 25-3 (continued)

Short
Long Parameter Parameter Description

--help -h Display the help text file.

--header header -H Specify a custom HTTP header to pass to the server.

--ignore-content-length Ignore the HTTP Content-Length header.

--include -i Include protocol headers in the output.

--head -I Show document info only.

--junk-session-cookies -j Ignore session cookies read from file.

--interface int Specify network interface to use.

--krb4 level Enable krb4 with specified security level.

--insecure -k Allow connections to SSL sites without certs.

--config -K Specify which config file to read.

--list-only -l List only names of an FTP directory.

--limit-rate rate Limit transfer speed to rate bits per second.

--location -L Follow HTTP Location: headers.

--location-trusted Follow Location: and send authentication even to
other hostnames.

--max-time sec -m Maximum time allowed for the file transfer (in
seconds)

--max-redirs num Maximum number of redirects allowed.

--max-filesize bytes Maximum file size to download (in bytes)

--manual -M Display the full manual.

--netrc -n Must read .netrc for user name and password.

--netrc-optional Use either .netrc or UR. Overrides -n.

--ntlm Use HTTP NTLM authentication.

--no-buffer -N Disable buffering of the output stream.

--output file -o Write output to file instead of STDOUT.

--remote-name -O Write output to a file named as the remote file.

--proxytunnel -p Operate through a HTTP proxy tunnel.

--proxy-anyauth Use the Any proxy authentication method.

continued

691

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 25-3 (continued)

Short
Long Parameter Parameter Description

--proxy-basic Use Basic authentication on the proxy.

--proxy-digest Use Digest authentication on the proxy.

--proxy-ntlm Use NTLM authentication on the proxy.

--ftp-port address -P Use TCP port address instead of PASV for FTP.

-q If used as the first parameter, disables reading
.curlrc file.

--quote cmd -Q Sends command cmd to server before file transfer.

--range range -r Retrieve a byte range from a HTTP/1.1 or FTP server.

--random-file file Specify a file for reading random data for SSL.

--remote-time -R Set the remote file’s time on the local output.

--retry num Retry request num times if transient problems occur.

--retry-delay sec When retrying, wait sec seconds between each
attempt.

--retry-max-time sec Retry only within sec period (in seconds).

--silent -s Silent mode. Doesn’t output anything.

--show-error -S Show error. With -s, show errors when they occur.

--socks host:port Use SOCKS5 proxy on specified host and port.

--stderr file Specify a file to redirect STDERR. Using -
redirects to STDOUT.

--telnet-option OPT=val -t Set Telnet option.

--trace file Write a debug trace to the specified file.

--trace-ascii file Like --trace but without the hex output.

--trace-time Add timestamps to trace/verbose output.

--upload-file file -T Specify file to transfer to remote site.

--url URL Specify the URL to connect with.

--user user:password -u Specify a user ID and password for the remote server.

--proxy-user
user:password

-U Specify the user ID and password required for proxy
server.

--verbose -v Display more output information if available.

692

www.IrPDF.com

www.IrPDF.com

Using the Web 25

TABLE 25-3 (continued)

Short
Long Parameter Parameter Description

--version -V Display version number and exit.

--write-out format -w Specify text to display after completion.

--proxy host:port -x Specify the HTTP proxy server hostname and port.

--request cmd -X Specify a request command to use.

--speed-time -y Time (in seconds) needed to trigger a
--speed-limit abort. Default is 30.

--speed-limit -Y Stop transfer if below speed-limit for
--speed-time setting.

--time-cond time -z Set a time condition for the transfer.

--http1.0 -0 Use HTTP 1.0.

--tlsv1 -1 Use TLSv1.

--sslv2 -2 Use SSLv2.

--sslv3 -3 Use SSLv3.

--3p-quote Similar to -Q for the source URL for third-party
transfer.

--3p-url Source URL to activate third-party transfer.

--3p-user User and password for source third-party transfer.

--ipv4 -4 Resolve name to IPv4 address.

--ipv6 -6 Resolve name to IPv6 address.

--progress-bar -# Display transfer progress as a progress bar.

Just as with the Lynx program, you can use the standard shell scripting techniques to extract
individual data elements from the dumped Web page.

What I like using cURL for is batch downloading files. These days it seems like I’m constantly
downloading the latest Linux distribution ISO file. Since the ISO files are so large, I need to start
the download and walk away while it’s downloading. Once I know the URL for an ISO file, I can
create a simple shell script using cURL to automate the process:

$ cat downld
#!/bin/bash
download latest cURL file automatically

693

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

curl -s -o /home/rich/curl-7.18.0.tar.gz
http://curl.haxx.se/downloads/curl-7.18.0.tar.gz
$

Note that the curl command is all one line in the script. This simple script just goes out and
directly downloads the file from the cURL Web site. I can now use the at or cron commands (see
Chapter 13) to schedule the download to take place in the evening when I’m not using my PC or
network.

Networking with zsh
Chapter 23 describes all of the features available in the zsh shell. The zsh shell is a newer
shell available for the Linux and Unix environments. One of the features of the zsh shell is
plug-in modules. Instead of trying to combine lots of features into the core zsh shell, it uses spe-
cialty modules, so you can pick and choose what commands you need to load. One of those is the
TCP module.

The TCP module in the zsh shell provides some pretty amazing network capabilities directly
from the command line. You can create a full TCP network session with another network device
directly from your command line (or shell script). This section discusses the features of the zsh
TCP module, and shows a simple client/server application you can build using a zsh shell script.

The TCP module
The zsh shell uses modules to add additional features to the core zsh shell. Each module contains
built-in commands that specialize in a specific area. The TCP module provides built-in commands
for a plethora of networking features.

To install the TCP module in a zsh shell, do the following:

% zmodload zsh/net/tcp
%

And that’s all there is to bring in the module! If you use the TCP module in your shell script,
remember to include this line in your script. The module only applies to the current shell.

Once you load the TCP module, you have access to the ztcp command. The format for the ztcp
command is:

ztcp [-acflLtv] [-d fd] [args]

The command line options available are:

■ -a: Accept a new connection.

■ -c: Close an existing connection.

■ -d: Use the specified file descriptor for the connection.

■ -f: Force a connection to close.

694

www.IrPDF.com

www.IrPDF.com

Using the Web 25

■ -l: Open a new socket for listening.

■ -L: List currently connected sockets.

■ -t: Exit if no connection is pending.

■ -v: Display verbose information about the connection.

The ztcp program uses a file descriptor to interact with an open TCP connection. By default,

the zsh referenced the file descriptor using the environment variable $RESULT. All you need to

do is send data to the file descriptor specified in the $RESULT variable, and the TCP module will

forward it to the remote host. Likewise, if the remote host sends you any data, all you need to

do is read it from the file descriptor specified in the $RESULT variable. Network programming

doesn’t get any easier than that!

The client/server paradigm
Before diving into creating a client/server program using the zsh shell, it’s a good idea to have

an understanding of how exactly client and server programs operate. Obviously, they each

have different responsibilities in the connection and transfer of data.

A server program listens to the network for requests coming from clients. A client initiates a

request to the server for a connection. Once the server accepts the connection request, a two-way

communication channel is available for each device to send and receive data. This process is

shown in Figure 25-2.

As you can see from Figure 25-2, the server must perform two functions before it can commu-

nicate with the client. First, it must set up a specific TCP port to listen for incoming requests.

When a connection request comes in, it must accept the connection.

The client’s responsibility is much simpler. All it must do is attempt to connect to a server on

the specific TCP port on which the server is listening. If the server accepts the connection, the

two-way communication is available and data can be sent.

Once a connection is established between the server and the client, there must be some sort of

communication process (or rule) used between the two devices. If both devices attempt to listen

for a message at the same time, they’ll deadlock and nothing will happen. Likewise, if they both

attempt to send a message at the same time, nothing will be accomplished.

It’s your job as the network programmer to decide the protocol rules that your client and server

programs must follow.

Client/server programming with zsh
To demonstrate creating a client/server program using ztcp, let’s set up a simple network applica-

tion. The server program we’ll create will listen for connection requests on TCP port 5150. When

a connection request comes in, the server will accept it, then send a welcome message to the

client.

695

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

FIGURE 25-2

The client/server communication diagram

Server

Listen on TCP port

Accept connection

Close connection Close connection

Send data

Send data

Receive data

Receive data

Connect to hostname and TCP port

Client

The server program will then wait to receive a message from the client. If it receives a mes-
sage, the server will display the message, then send the same message back to the client. After
sending the message, the server will loop back to listen for another message. This loop will con-
tinue until the server receives a message that consists of the text exit. When that happens the
server will terminate the session.

The client program we’ll create will send a connection request to the server on TCP port 5150.
When a connection is established, the client will need to receive the servers’ welcome message.

After receiving the message, the client displays it, then will query the user for data to send
to the server. After getting the message from the user, the client program will send it to the
server, and wait to receive the message back. If the message comes back, the client displays
the message and loops back to request another message from the user. This loop will continue
until the user enters the text exit. When this occurs, the client sends the exit text to the server,
then terminates the session.

The next sections show the server and client programs.

The server program

Here’s the code for the server program:

% cat server
#!/bin/zsh
zsh TCP server script
zmodload zsh/net/tcp

696

www.IrPDF.com

www.IrPDF.com

Using the Web 25

ztcp -l 5150
fd=$REPLY

echo "Waiting for a client..."
ztcp -a $fd
clientfd=$REPLY
echo "client connected"

echo "Welcome to my server" >& $clientfd

while [1]
do

read line <& $clientfd
if [[$line = "exit"]]
then

break
else

echo Received: $line
echo $line >& $clientfd

fi
done
echo "Client disconnected session"
ztcp -c $fd
ztcp -c $clientfd
%

The server program follows the client/server paradigm shown in Figure 25-2. It first uses the -l
parameter to listen on the specified port (5150). The $RESULT variable contains the file descriptor

that the Linux system returns to identify the connection. The server uses the -a parameter to

accept a new connection request. This command waits until a new connection request comes in

(called blocking). The script won’t progress unless a connection request is accepted.

Each client connection uses a separate file descriptor from the listening port file descriptor. This

allows you to maintain multiple client connections if you so desire (we don’t in this simple

exercise).

After accepting the connection, the server redirects a welcome message to the client’s file

descriptor:

echo "Welcome to my server" >& $clientfd

The zsh shell TCP module handles all of the mechanics of ensuring the data is sent to the remote

client.

Next, the server program enters an endless loop. It uses the read command to wait for data to

come back from the client:

read line <& $clientfd

697

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

This command also blocks execution of the script until it receives data from the client. This could
be a bad thing if the client has lost connection to the network. To prevent this problem, you can
use the -t option in the read line to specify a timeout value (in seconds). If the server doesn’t
receive data from the client in the timeout period, it continues on.

If the server receives data from the client, it displays the data on STDOUT, then sends it back to
the client. If the data is equal to the text string exit, the server exits the loop, and uses the -c
parameter in ztcp to close both the client’s file descriptor, and the listening port’s file descriptor.
If you prefer to have your server listen for another connection, after you close the client’s file
descriptor you can loop back to waiting to accept a new connection.

The client program

Here’s the code for the client shell script program:

% cat client
#!/bin/zsh
zsh TCP client program
zmodload zsh/net/tcp

ztcp localhost 5150
hostfd=$REPLY

read line <& $hostfd
echo $line

while [1]
do

echo -n "Enter text: "
read phrase
echo Sending $phrase to remote host...
echo $phrase >& $hostfd
if [[$phrase = "exit"]]
then

break
fi
read line <& $hostfd
echo " Received: $line"

done
ztcp -c $hostfd
%

The client program must specify the IP address (or hostname) of the system the server program is
running on, and the proper TCP port number the server is listening to. When the server accepts
the connection, the ztcp program sets the file descriptor for the connection and saves the value
in the $REPLY variable. The client program reads the server’s welcome message, then displays it:

read line <& $hostfd
echo $line

698

www.IrPDF.com

www.IrPDF.com

Using the Web 25

Next the client program enters a while loop, querying the user for text to send to the server,
reading the text entered, and sending the text to the server. After sending the text, it checks to
see if the text entered was exit. If so, it breaks out of the loop and closes the file descriptor, which
closes the TCP connection. If the text wasn’t exit, it waits for the response from the server, then
displays it.

Running the programs

You can either run these programs on two separate Linux systems on your network, or from two
different terminal sessions on the same system. You must start the server program first so that it’s
available to listen for incoming connections when the client starts:

% ./server
Waiting for a client...

Then you can start the client:

% ./client
Welcome to my server
Enter text: test
Sending test to remote host...

Received: test

When the client connects, you’ll see this on the server:

client connected
Received: test

This will continue until the user enters the text exit on the client:

Enter text: exit
Sending exit to remote host...
%

Then you should see the server automatically exit:

Client disconnected session
%

You now have the beginnings of a full-fledged network program! With zsh shell and the TCP
module it’s easy sending data between shell scripts operating on separate systems on a network.

Summary
This chapter walked you through the world of interfacing shell scripts to the Internet. One of the
most popular tools for doing that is the Lynx program. Lynx is a command line program that
can display Web site information in a terminal session using text-mode graphics. Besides that
feature, Lynx also provides a way to retrieve just the raw data from a Web site, and display it to
STDOUT. You can use Lynx to extract data from a Web site, then parse the data using standard
Linux text-handling tools such as sed and gawk to find specific information.

699

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

The cURL program is another handy tool to have when interfacing with the Internet. The cURL

program also allows you to dump data from a Web site, and it also provides a way to easily script

file downloads from many different types of servers.

Finally, the chapter showed you how to use the TCP module of the zsh shell to write your own

network programs. The zsh shell provides an easy way to communicate between shell scripts that

are located on separate systems on the network, just as easily as reading and writing data to a file.

In the next chapter, we’ll examine how to utilize e-mail in your shell scripts. Often when you use

shell scripts to automate processes, it’s nice to get a message indicating if the process failed or

succeeded. By knowing how to work with the installed e-mail software on your system, you can

easily send automated messages to anyone in the world.

700

www.IrPDF.com

www.IrPDF.com

Using E-Mail

IN THIS CHAPTER

E-mail and Linux

Setting up an e-mail server

Sending simple messages

Using attachments with Mutt

W
ith the popularity of e-mail, these days just about everyone
has an e-mail address. Because of that, people often expect to
receive data via e-mail instead of seeing files or printouts. That’s

no different in the shell script world. If you generate any type of report
from your shell script, most likely at some point you’ll be asked to e-mail
the results to someone. This chapter shows you just how to set up your
Linux system to support e-mailing directly from your shell scripts. It also
shows you how to make sure that your Linux system can send outbound
mail messages, and how to make sure you have a mail client that can do
that from the command line. But first, the chapter presents a brief overview
of the way Linux handles e-mails in general.

The Basics of Linux E-Mail

Sometimes the hardest part of using e-mail in your shell scripts is under-
standing just how the e-mail system works in Linux. Knowing what software
packages perform what tasks is crucial in getting e-mails from your shell
script to your inbox. This section walks you through the basics of how
Linux systems use e-mail, and what you need to have in place before you
can use it.

E-Mail in Linux
The Linux system derives its e-mail system from the Unix environment. One
of the main goals of the Unix operating system was to modularize software.
Instead of having one monolithic program that handles all of the required
pieces of a function, Unix developers created smaller programs each of
which handles a smaller piece of the total functionality of the system.

701

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

FIGURE 26-1

Linux modular e-mail environment

Linux server

E-mail database

Mail User Agent (MUA)

Workstation

Remote
MTAs

Mail Transfer Agent (MTA)

Mail Delivery Agent (MDA)

This philosophy was used when implementing the e-mail systems used in Unix, and was car-
ried over to the Linux environment. In Linux, e-mail functions are divided into separate pieces,

each assigned to separate programs. Figure 26-1 shows how most open source e-mail software

modularizes e-mail functions in the Linux environment.

As you can see in Figure 26-1, in the Linux environment the e-mail process is normally divided

into three functions:

■ The Mail Transfer Agent (MTA)

■ The Mail Delivery Agent (MDA)

■ The Mail User Agent (MUA)

The lines between these three functions are often fuzzy. Some e-mail packages combine function-

ality for the MDA and MTA functions, whereas others combine the MDA and MUA functions.
The following sections describe these basic e-mail components and how they are implemented in

Linux systems in more detail.

The Mail Transfer Agent
The MTA software is the core of the Linux e-mail system. It’s responsible for handling both
incoming and outgoing mail messages on the system. For each outgoing mail message the MTA

702

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

must determine the destination of the recipient addresses. If the destination host is the local

system, the MTA can either deliver it to the local mailbox directly or pass the message off to the

local MDA for delivery.

However, if the destination host is a remote mail server, the MTA must establish a communication

link with the MTA software on the remote host to transfer the message. There are two common

methods that MTA software packages use to deliver mail to remote hosts:

■ Direct delivery

■ Proxy delivery

If your Linux system is directly connected to the Internet, it can often deliver messages destined

for recipients on remote hosts directly to the remote host. The MTA software uses the Domain

Name System (DNS) to resolve the proper network IP address to deliver the mail message, then

establishes the TCP connection using the Simple Mail Transfer Protocol (SMTP).

There are plenty of times when a host is not directly connected to the Internet, or it doesn’t

want to communicate directly with other remote hosts. In those situations, it usually uses a smart
host. The smart host is a proxy server that accepts mail messages from your Linux system, then

attempts to directly deliver them to the intended recipient.

Smart hosts are becoming more difficult to work with on the Internet due to relay

spam. A rogue server sends relay spam by bouncing thousands of unsolicited commer-

cial e-mail (UCE) messages off of a smart host to hide its identity. Most smart hosts now require

some type of authentication before forwarding messages to other hosts.

For incoming messages, the MTA must be able to accept connection requests from remote mail

servers and receive messages destined for local users. Again, the most common protocol used for

this process is SMTP.

The Linux environment has many different types of open source MTA programs. Each program

offers different features that distinguish it from the others. By far the two most popular you’ll run

into are:

■ sendmail

■ Postfix

We’ll examine both of these e-mail MTA packages in detail in the ‘‘Setting Up Your Server’’

section.

The Mail Delivery Agent
The MDA program’s responsibility is to deliver a message destined for a local user. It receives

messages from the MTA program and must determine exactly how and where those messages

should be delivered. Figure 26-2 demonstrates how the MDA program interacts with the MTA

program to deliver mail.

703

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

FIGURE 26-2

Using an MDA program on a mail server

To: Rich

MTA MDA

rich folder

barbara folder

katie folder

To: Barbara

To: Katie

While sometimes the MDA function is performed within the MTA program itself, often Linux
e-mail implementations rely on a separate stand-alone MDA program to deliver messages to local
users. Because these MDA programs concentrate only on delivering mail to local users, they can
add additional bells and whistles that aren’t available on MTA programs that include MDA func-
tionality. This enables the mail administrator to offer additional mail features to mail users, such
as mail filtering for spam, out-of-office redirections, and automatic mail sorting.

When the MDA program receives a message, it must ensure that the message is delivered to
the proper location, either to the local user’s mailbox or to an alternate location defined by the
local user.

There are currently three different types of user mailboxes commonly used on Linux systems:

■ /var/spool/mail or /var/mail files

■ $HOME/mail files

■ Maildir-style mailbox directories

Each mailbox type has its own features that make it attractive to use. Most Linux distributions
use either the /var/spool/mail or /var/mail directories to contain individual mailbox files,
one file for each user account on the system. This is a central location for all mailbox files so that
MUA programs know where to find everyone’s mailbox file.

A few Linux distributions allow you to move the individual mailbox files to each user’s $HOME
directory. This provides greater security, in that each mailbox file is located in an area already set
with the proper access privileges.

Maildir-style mailboxes are a relatively new feature supported by some more advanced MTA,
MDA, and MUA applications. Instead of each message being part of a mailbox file, the mailbox is

704

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

a directory, and each message is a separate file in that directory. This helps cut down on mailbox
corruption, as a single message won’t corrupt the entire mailbox.

While Maildir-style mailbox directories offer increased performance, security, and fault tolerance,
there are many popular MDA and MUA programs that aren’t able to use them. Just about all MDA
and MUA programs can use the /var/spool/mail mailbox files.

The original Unix location for mailboxes is /var/spool/mail. Most Linux distributions

use this file-naming convention; however, there are a few Linux distributions that use

/var/mail instead.

If your system does use a special MDA program to process incoming mail messages, most likely
it’s the popular Procmail program. Procmail allows each individual user to create a customized
configuration file to define mail filters, out-of-office destinations, and separate mailboxes.

The Mail User Agent
So far we’ve followed the e-mail traffic from the remote host to the local host to an individual
user’s mailbox. The next step in the process is to allow individual users to view their e-mail
messages.

The Linux e-mail model uses a local mailbox file or directory for each user to hold messages for
that user. The job of the MUA program is to provide a method for users to interface with their
mailboxes to read their messages.

It’s important to remember that MUAs don’t receive messages; they only display messages that are
already in the mailbox. Many MUA programs also offer the ability to create separate mail folders
so the user can move mail from the default mailbox (often called the inbox) to separate folders for
organization.

Most MUA programs also provide the ability to send messages. This part gets a little fuzzy,
because as you’ve already seen, sending e-mail messages is the job of the MTA program.

To perform this function, most MUA programs utilize the smart host feature in SMTP. Either the
MUA program automatically delivers messages to the local MTA program for delivery, or you
must define a remote smart host in the MUA configuration for it to send messages to for delivery.

Throughout the years, many different open source MUA programs have been available for the
Linux platform. The following sections describe some of the more popular MUA programs you’ll
run across in Linux.

Mailx

The Mailx program is the most popular command line MUA program in use for the Linux envi-
ronment. The name Mailx comes from its being an improvement over the original mail program
developed for Unix. In all installations the Mailx program installs with the executable file mail,
indicating that it’s a replacement for the mail program, rather than a separate program.

The Mailx program allows users to access their mailboxes to read stored messages, as well
as to send messages to other mail users, all from the command line. Here’s a sample Mailx
session.

705

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

$ mail
Mail version 8.1.2 01/15/2001. Type ? for help.
"/var/mail/rich": 2 messages 2 new
›N 1 atest@testbox Fri Feb 1 17:42 16/664 This is a test
N 2 atest@testbox Fri Feb 1 17:43 16/676 This is another

test
& 1
Message 1:
From atest@testbox Fri Feb 1 17:42:56 2008
Date: Fri, 1 Feb 2008 17:42:56 -0500
From: atest@testbox
To: rich@localhost.localdomain
Subject: This is a test

This is a test message.

& d
& q
Held 1 message in /var/mail/rich
$mail Barbara
Subject: This is a test message
This is a test message that I’m sending to Barbara.
.
Cc:
$

The first line shows the Mailx program being executed with no command line options. By default
this allows the user to check the messages in his mailbox. After entering the mail command, a
summary of all of the messages in the user’s mailbox is displayed. The Mailx program can only

read messages in the /var/mail format or $HOME/mail format. It’s not able to process mail
using the Maildir mail folder format.

Each user has a separate file that contains all of his messages. The filename is usually the system
login name of the user and is located in the system mailbox directory. Thus, all messages for user
name rich are stored in the file /var/mail/rich on the Linux system. As new messages are

received for the user, they are appended to the end of the file.

The second use of the mail command demonstrates sending a mail message to another user from
the command line. The name of the recipient is included on the command line with the program
name. The Mailx program queries for the message subject, then allows you to type in the text

of the message. To terminate the message, enter a line with a single period. To finish, the Mailx
program queries if there should be any additional recipients to receive a copy of the message,
then it terminates and attempts to pass the message to the MTA program for delivery.

Mutt

As advancements were made to the Unix environment, MUA programs became fancier. One of
the first attempts at graphics on Unix systems was the ncurses graphics library. Using ncurses a

706

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

program could manipulate the location of a cursor on the terminal screen and place characters

almost anywhere on the terminal.

One MUA program that takes advantage of the ncurses library is the Mutt program. When you
start Mutt it paints a user-friendly menu on the terminal display, listing the messages similar to

the output of the Mailx program. You can select a message and view it in the display, as shown

in Figure 26-3.

The Mutt program uses key combinations to perform standard functions, such as read a message

and start a new message. Possibly the most useful feature for shell script programmers is the

ability to send messages directly from the command line, without going into text-graphics mode.
We’ll be covering the Mutt program in much more detail later on in ‘‘The Mutt Program’’ section.

Graphical e-mail clients

Almost all Linux systems support the graphical X Window environment. There are many e-mail
MUA programs that utilize the X Window system to display message information. The two most

popular graphical MUA programs available are:

■ KMail for the KDE windows environment

■ Evolution for the GNOME windows environment

FIGURE 26-3

The Mutt program

707

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

FIGURE 26-4

The KMail MUA program main screen

Each of these packages allows you to interact with your local Linux mailbox, as well as con-

nect to remote mail servers to read mail messages. Figure 26-4 shows a sample KMail session

screen.

To connect with remote servers, both KMail and Evolution support the Post Office Protocol

(POP), and the more advanced Internet Message Access Protocol (IMAP). While the KMail and

Evolution MUA programs are great for desktop Linux, they aren’t so useful in shell scripting.

Setting Up Your Server
Before you can start sending your automated e-mail messages off to the universe, you’ll need to

ensure that your Linux system has an MTA package running and that it’s configured correctly.

This is no small task in itself, but fortunately, some Linux distributions provide some basic tools
to help you out.

708

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

This section walks you through the basics of the two most popular e-mail MTA programs used

in Linux: sendmail and Postfix. While there have been complete books written on properly

configuring each of these packages, we’ll just look at the basics to see how to get e-mails off

the Linux system and into your inbox.

sendmail
The sendmail MTA package is one of the most popular open source MTA packages used by Inter-

net mail servers. In the past it had been plagued with stories about backdoors and security flaws;

however, it has been rewritten not only to remove the security flaws but also to incorporate many

newer MTA features such as spam control. The newer versions of the sendmail program have

proven to be secure as well as versatile.

Parts of the sendmail program

The main executable program is called sendmail. It normally runs in background mode, listen-

ing for SMTP connections from remote mail servers, and forwarding outbound messages from

local users.

Besides the main sendmail program, there’s a configuration file and several tables that it uses to

contain information used while processing incoming and outgoing mail messages. Table 26-1 lists

all the parts used in a normal sendmail installation.

Unless you’re running the main mail server for a corporation or Internet service provider, all you’ll

need to worry about is the sendmail.cf configuration file. In fact, many Linux distributions that

use sendmail create and configure a core sendmail.cf configuration file for you automatically

that should work just fine in most simple applications.

The sendmail.cf file

The sendmail program needs to be told how to handle messages as the server receives them. As

an MTA, sendmail processes incoming mail and redirects it to another mail package, either on a

remote system or on the local system. The configuration file is used to direct sendmail how to

manipulate the destination mail addresses to determine where and how to forward the messages.

The default location for the configuration file is /etc/mail/sendmail.cf.

The sendmail.cf file consists of rule sets that parse the incoming mail message and determine

what actions to take. Each rule set is used to identify certain mail formats and instruct sendmail

how to handle that message.

As the sendmail program receives a message, it parses the message header and passes the message

through the various rule sets to determine an action to take on the message. The sendmail con-

figuration file includes rules that allow sendmail to handle mail in many different formats. Mail

received from an SMTP host has different header fields than mail received from a local user. The

sendmail program must know how to handle any mail situation.

709

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 26-1

The sendmail Configuration Files

File Description

sendmail.cf Text file that controls the behavior of the sendmail program.

sendmail.cw Text file which contains a list of domain names that the sendmail program
will receive messages for.

sendmail.ct Text file which contains a list of trusted users that can control the sendmail
operations.

aliases Binary file which contains a list of valid local mail addresses that can
redirect mail to another user, a file, or a program.

newaliases Executable program that creates a new aliases database file from a text file.

mailq Executable program that checks the mail queue and prints any messages.

mqueue A directory used to store messages waiting to be delivered.

mailertable Text file used to specify route paths for specific domains.

domaintable Text file used to map old domain names to new ones.

virtusertable Text file used to map users and domains to alternate addresses.

relay-domains Text file used to list specific hosts that are allowed to relay messages
through the sendmail program.

access Text file that lists specific domains from which received messages are either
allowed or refused.

Rules also have helper functions defined in the configuration file. There are three different types

of helper functions that you can define:

■ Classes define common phrases that are used to help the rule sets identify certain types

of messages.

■ Macros are values that are set to simplify the typing of long strings in the configuration

file.

■ Options are defined to set parameters for the sendmail program’s operation.

The configuration file is made up of a series of classes, macros, options, and rule sets. Each func-

tion is defined as a single text line in the configuration file.

Each line in the configuration file begins with a single character that defines the action for that

line. Lines that begin with a space or a tab are continuation lines from a previous action line.

Lines that begin with a pound sign (#) indicate comments and are not processed by sendmail.

710

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

TABLE 26-2

sendmail Configuration File Lines

Configuration Line Description

C Defines classes of text

D Defines a macro

F Defines files containing classes of text

H Defines header fields and actions

K Defines databases that contain text to search

M Defines mailers

O Defines sendmail options

P Defines sendmail precedence values

R Defines rule sets to parse addresses

S Defines rule set groups

The action at the beginning of the text line defines what the line is used for. Table 26-2 shows

the standard sendmail actions and what they represent.

As I mentioned, most likely you won’t have to start from scratch with your sendmail.cf con-

figuration file, the Linux distribution should create a standard template file for you. Figure 26-5

shows part of the sendmail.cf configuration file from a Debian-based Linux system.

Most likely, the only piece you’ll have to worry about is if you must use a smart host to forward

mail for you. The DS configuration line controls this feature:

DSmyisp.com

Just add the hostname of the smart host immediately after the DS tag.

Postfix
The Postfix software package is quickly becoming one of the more popular e-mail packages

available for Unix and Linux systems. Postfix was developed by Wietse Venema to provide an

alternative MTA for standard Unix-type servers. The Postfix software is capable of turning any

Unix or Linux system into a fully functional e-mail server.

It is the responsibility of the MTA package to manage messages that come into or leave the mail

server. Postfix accomplishes this message tracking by using several different modular programs,

and a system of mail queue directories. Each program processes messages through the various

711

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

message queues until they are delivered to their final destinations. If at any time the mail server
crashes during a message transfer, Postfix can determine what queue the message was last suc-
cessfully placed in and attempt to continue the message processing.

Parts of the Postfix system

The Postfix system consists of several mail queue directories and executable programs, all inter-
acting with each other to provide mail service. Figure 26-6 shows a block diagram of the core
Postfix parts.

Each piece of the Postfix block diagram provides a different function for the whole e-mail process.
The following sections describe the different pieces of the Postfix block diagram in more detail.

The Postfix package utilizes a master program that runs as a background process at all times. The
master program allows Postfix to spawn programs that scan the mail queues for new messages and
send them to the proper destinations. The core programs can be configured to remain running
for set times after they are utilized. This allows the master program to reutilize a running helper
program if necessary, saving processing time. After a set time limit, the helper program quietly
stops itself.

FIGURE 26-5

The sendmail.cf configuration file in Debian Linux

712

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

FIGURE 26-6

Block diagram of Postfix

Message queues

Utility programs

Core programs Configuration files

Lookup tables

The master program is used to control the overall operation of Postfix. It is responsible for starting

other Postfix processes as needed. The qmgr and pickup programs are configured to remain as

background processes longer than other core programs. The pickup program determines when
messages are available to be routed by the Postfix system. The qmgr program is responsible for

the central message routing system for Postfix.

Table 26-3 shows other core programs that Postfix uses to transfer mail messages.

TABLE 26-3

The Postfix Core Programs

Program Description

bounce Posts a log in the bounce message queue for bounced messages and returns
the bounced message to the sender

cleanup Processes incoming mail headers and places messages in the incoming
queue

error Processes message delivery requests from qmgr, forcing messages to bounce

flush Processes messages waiting to be retrieved by a remote mail server

local Delivers messages destined for local users

pickup Waits for messages in the maildrop queue and sends them to the cleanup
program to begin processing

pipe Forwards messages from the queue manager program to external programs

continued

713

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 26-3 (continued)

Program Description

postdrop Moves an incoming message to the maildrop queue when that queue is not
writable by normal users

qmgr Processes messages in the incoming queue, determining where and how
they should be delivered and spawns programs to deliver them

sendmail Provides a sendmail compatible interface for programs to send messages to
the maildrop queue

showq Reports Postfix mail queue status

smtp Forwards messages to external mail hosts using the SMTP protocol

smtpd Receives messages from external mail hosts using the SMTP protocol

trivial-rewrite Receives messages from the cleanup program to ensure header addresses are
in a standard format for the qmgr program, and used by the qmgr program
to resolve remote host addresses

Unlike some other MTA packages, Postfix uses several different message queues for managing
e-mail messages as they are processed. Each message queue contains messages in a different mes-
sage state in the Postfix system. Table 26-4 lists the message queues that are used by Postfix.

If the Postfix system should be shut down at any time, messages remain in the last queue in which
they were placed. When Postfix is restarted, it will automatically begin processing messages from
the queues.

TABLE 26-4

Postfix Message Queues

Queue Description

maildrop New messages waiting to be processed, received from local users.

incoming New messages waiting to be processed, received from remote hosts, as
well as processed messages from local users.

active Messages that are ready to be delivered by Postfix.

deferred Messages that have failed on an initial delivery attempt and are waiting
for another attempt.

flush Messages that are destined for remote hosts that will connect to the mail
server to retrieve them.

mail Delivered messages stored for local users to read.

714

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

TABLE 26-5

Postfix Configuration Files

File Description

install.cf Contains information from the install parameters used when Postfix was installed.

main.cf Contains parameters used by the Postfix programs when processing messages.

master.cf Contains parameters used by the Postfix master program when running core
programs.

Postfix configuration files

The next block in the diagram is the Postfix configuration files. The configuration files contain
information that the Postfix programs use when processing messages. Unlike some other MTA
programs, it’s possible to change configuration information while the Postfix server is running
and issue a command to have Postfix load the new information without completely downing the
mail server.

There are three Postfix configuration files, which are located in a common Postfix directory. Often
the default location for this directory is /etc/postfix. Usually, all users have access to view the
configuration files, whereas only the root user has the ability to change values within the files.
Of course, this can be modified for your own security situation. Table 26-5 lists the Postfix
configuration files.

The install.cf configuration file allows you to retrieve installation parameters that were used
when the Postfix software was first installed on the system. This provides an easy way to deter-
mine which features are or aren’t available in the software setup.

The master.cf configuration file controls the behavior of the core Postfix programs. Each pro-
gram is listed in a separate line along with the parameters to control its operation. Here’s a sample
master.cf file with default settings.

===
#service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (50)
===
smtp inet n - n - - smtpd
pickup fifo n - n 60 1 pickup
cleanup unix - - n - 0 cleanup
qmgr fifo n - n 300 1 qmgr
rewrite unix - - n - - trivial-rewrite
bounce unix - - n - 0 bounce
defer unix - - n - 0 bounce
trac unix - - n - 0 bounce
verify unix - - n - 1 verify

715

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

flush unix n - n 1000 0 flush
proxymap unix - - n - - proxymap
smtp unix - - n - - smtp
relay unix - - n - - smtp -o fallback_relay=
showq unix n - n - - showq
error unix - - n - - error
local unix - n n - - local
virtual unix - n n - - virtual
lmtp unix - - n - - lmtp
anvil unix - - n - 1 anvil
scache unix - - n - 1 scache

The master.cf configuration file also includes lines for directing Postfix on how to interface

with external MDA software, such as Procmail.

The Postfix operational parameters are set in the main.cf configuration file. All of the Postfix

operational parameters have default values that are implied within the Postfix system. If a param-

eter value is not present in the main.cf file, its value is preset by Postfix. If a parameter value is

present in the main.cf file, its contents override the default value.

Each Postfix parameter is listed on a separate line in the configuration file along with its value, in

the form:

parameter = value

Both parameter and value are plain text strings that can be easily read and changed if neces-

sary. The Postfix master program reads the parameter values in the main.cf file when Postfix

is first started, and again whenever a postfix reload command is issued.

Two examples of Postfix parameters are the myhostname and mydomain parameters. If they are

not specified in the main.cf configuration file, the myhostname parameter assumes the results

of a gethostname() command on the Linux system, whereas mydomain assumes the domain

part of the default myhostname parameter. Often a single mail server will handle mail for an

entire domain. This is an easy setting in the Postfix configuration file:

myhostname = mailserver.smallorg.org
mydomain = smallorg.org

When Postfix starts, it will recognize the local mail server as mailserver.smallorg.org and

the local domain as smallorg.org and will ignore any system set values.

If you need to specify a smart host, do that with the relayhost parameter:

relayhost = myisp.com

You can also specify an IP address here, but it must be enclosed in square brackets.

716

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

TABLE 26-6

The Mailx Command Line Parameters

Parameter Description

-a Specify additional SMTP header lines.

-b Add a BCC: recipient to the message.

-c Add a CC: recipient to the message.

-e Don’t send the message if it’s empty.

-i Ignore TTY interrupt signals.

-I Force Mailx to run in interactive mode.

-n Don’t read the /etc/mail.rc startup file.

-s Specify a Subject line.

-v Display details of the delivery on the terminal

Sending a Message with Mailx
The main tool you have available for sending e-mail messages from your shell scripts is the Mailx

program. Not only can you use it interactively to read and send messages, but you can also use

the command line parameters to specify how to send a message.

The format for the Mailx program’s command line for sending messages is:

mail [-eIinv] [-a header] [-b addr] [-c addr] [-s subj] to-addr

The mail command uses the command line parameters shown in Table 26-6.

As you can see from Table 26-6, you can pretty much create an entire e-mail message just from

the command line parameters. The only thing you need to add is the message body.

To do that, you need to redirect text to the mail command. Here’s a simple example of how to

create and send an e-mail message directly from the command line:

$ echo "This is a test message" | mail -s "Test message" rich
$ mail
Mail version 8.1.2 01/15/2001. Type ? for help.
"/var/mail/rich": 1 message 1 new
›N 1 rich@testbox Fri Feb 1 19:12 16/664 Test message
&
Message 1:
From rich@testbox Fri Feb 1 14:12:03 2008

717

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

Date: Fri, 1 Feb 2008 19:12:02 -0500
From: rich ‹rich@testbox›
To: rich@localhost.localdomain
Subject: Test message

This is a test message

&

The Mailx program sent the text from the echo command as the message body. This provides an

easy way for you to send messages from your shell scripts. Here’s a quick example:

$ cat factmail
#!/bin/bash
mailing the answer to a factorial

MAIL=`which mail`

factorial=1
counter=1

read -p "Enter the number: " value
while [$counter -le $value]
do

factorial=$[$factorial * $counter]
counter=$[$counter + 1]

done

echo The factorial of $value is $factorial | mail -s "Factorial
answer" $USER
echo "The result has been mailed to you."

The first thing this script does is not assume that the Mailx program is located in the standard

location. It uses the which command to determine just where the mail program is.

After calculating the result of the factorial function, the shell script uses the mail command to

send the message to the user-defined $USER environment variable, which should be the person

executing the script.

$./factmail
Enter the number: 5
The result has been mailed to you.
$

All you need to do is check your mail to see if the answer arrived:

$ mail
Mail version 8.1.2 01/15/2001. Type ? for help.
"/var/mail/rich": 1 message 1 new

718

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

›N 1 rich@testbox Fri Feb 1 19:24 16/671 Factorial answer
&
Message 1:
From rich@testbox Fri Feb 1 14:24:33 2008
Date: Fri, 1 Feb 2008 19:24:33 -0500
From: rich ‹rich@testbox›
To: rich@localhost.localdomain
Subject: Factorial answer

The factorial of 5 is 120

&

It’s not always convenient to send just one line of text in the message body. Often you’ll need to
send an entire output as the e-mail message. In those situations, you can always redirect text to a
temporary file, then use the cat command and redirect the output to the mail program.

Here’s an example of sending a larger amount of data in an e-mail message:

$ cat diskmail
#!/bin/bash
sending the current disk statistics in an e-mail message

date=`date +%m/%d/%Y`
MAIL=`which mail`
TEMP=`mktemp tmp.XXXXXX`

df -k › $TEMP
cat $TEMP | $MAIL -s "Disk stats for $date" $1
rm -f $TEMP
$./diskmail rich
$ mail
Mail version 8.1.1 6/6/93. Type ? for help.
"/var/spool/mail/rich": 1 message 1 new
›N 1 rich@test2.dfas.mil Mon Feb 3 14:15 15/594 "Disk stats
for 02/03/"
&
Message 1:
From rich Mon Feb 3 14:15:57 2008
Delivered-To: rich@test2.dfas.mil
To: rich@test2.dfas.mil
Subject: Disk stats for 02/03/2008
Date: Mon, 3 Feb 2008 14:15:57 -0500 (EST)
From: rich@test2.dfas.mil (Rich)

Filesystem 1k-blocks Used Available Use% Mounted on
/dev/hda1 3526172 1464476 1882576 44% /
/dev/hda6 16002168 6570168 8619116 43% /home

&

719

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

The diskmail program gets the current date using the date command (along with some special
formatting), finds the location of the Mailx program, then creates a temporary file. After all that,
it uses the df command to display the current disk space statistics (see Chapter 4), redirecting
the output to the temporary file.

It then redirects the temporary file to the mail command, using the first command line parameter
for the destination address, and the current date in the Subject header.

The Mutt Program
The Mutt program is another popular e-mail client package for the Linux command line, devel-
oped in 1995 by Michael Elkins. It has one feature that’s not available in the Mailx program which
makes it a good tool to have handy for your shell scripts.

The Mutt program has the ability to send files as attachments in your e-mail messages. Instead of
having to incorporate a long text file in the body of your e-mail message as we did with Mailx,
you can use the Mutt program and include the text file as a separate attachment to the main
message body. This feature is great for e-mailing long files, such as log files.

This section walks through installing Mutt on your Linux system, and using it to attach files to
e-mail messages in your shell scripts.

Installing Mutt
The Mutt program is not a popular package in this day of fancy graphical e-mail clients such as
KMail or Evolution, so it’s a good bet that your Linux distribution doesn’t have it installed by
default. However, most Linux distributions include it in the normal distribution files for installa-
tion using the standard software installation methods.

If your Linux distribution doesn’t include the Mutt package, or you just want to install the latest
version, here are the steps to do that:

1. Go to the Mutt package Web site at www.mutt.org. From here, select the Downloading
link to go to the download page.

2. On the download page, there are compiled binary executable packages for specific Linux
distributions, as well as a source code distribution package. If your Linux distribution has
a compiled binary executable package, download that and follow the appropriate steps for
installing software on your Linux distribution. Otherwise, download the current source
code distribution (there are two packages, a stable release and a development release).

3. After downloading the source code package, extract it into a working directory using the
tar command:

tar -zxvf mutt-1.4.2.3.tar.gz

4. Change to the newly created directory:

cd mutt-1.4.2.3

720

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

5. Run the configure script to build the necessary files for compiling Mutt on your system:

./configure

6. As the root user, run the make utility with the install option to create and install Mutt:

make install

This will install the Mutt program on your Linux system for you to use from the command line.

The Mutt command line
The mutt command provides parameters for you to use to control how Mutt operates. Table 26-7

shows the command line parameters available to you.

With the myriad of command line parameters you can customize your e-mail message directly

from the command line, which is exactly what you’ll want to do in your shell scripts.

Much as with the Mailx program, there’s one thing that you can’t specify on the command line

with the Mutt program, and that’s the message body text. If you don’t redirect text to the Mutt

program, it’ll start in text-graphics mode with an editor window for you to type the message

body in.

This is not a good thing for the shell script, so you’ll always want to redirect some type of text for

the message body, even if you’re using the attachment option to specify a file to attach. The next

section demonstrates how to do this.

Using Mutt
Now you’re ready to start using the Mutt program in your shell scripts. To create the basic mutt
command in your shell script, you’ll want to include command line options that specify the sub-

ject of the message, the attachment file, and all the recipients of the message:

mutt -s Subject -a file recipients

The recipients list is a space-separated list of the e-mail addresses to send the message to.

If you want to attach more than one file, you’ll need to use multiple -a options, as each option

can only declare one filename. The file parameter must be an absolute pathname, or a rela-

tive pathname relative to the current working directory from which you’re running the mutt
command.

There’s one other catch with the mutt command. If you don’t redirect text for the message body,

Mutt will automatically go to full-screen mode for you to enter the text in an editor window. Most

likely this is not what you want to do, so be sure to redirect some text for the message body, even

if it’s an empty file:

echo "Here’s the log file" | mutt -s "Log file" -a
/var/log/messages rich

721

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

TABLE 26-7

The Mutt Command Line Parameters

Parameter Description

-A alias Pass an expanded version of the specified alias to STDOUT.

-a file Attach the specified file to your message using the MIME protocol.

-b address Specify a blind-carbon-copy (BCC) recipient.

-c address Specify a carbon-copy (CC) recipient.

-D Print the value of all configuration options to STDOUT.

-e command Specify a configuration command to be run after processing of
initialization files.

-f mailbox Specify a mailbox file to load.

-F muttrc Specify an initialization file to read instead of $HOME/.muttrc

-h Display help text.

-H draft Specify a draft file that contains header and body to use to send a
message.

-i include Specify a file to include in the body of a message.

-m type Specify a default mailbox type.

-n Ignore the system configuration file.

-p Resume a postponed message.

-Q query Query a configuration variable value. The query is executed after all
configuration files have been parsed and any commands given on the
command line have been executed.

-R Open a mailbox in read-only mode.

-s subject Specify the subject of the message.

-v Display the Mutt version number and compile-time definitions.

-x Emulate the Mailx compose mode.

-y Start with a listing of all mailboxes specified by the mailboxes command.

-z When used with -f, don’t start if there are no messages in the mailbox.

-Z Open the first mailbox specified by the mailboxes command that
contains new mail.

722

www.IrPDF.com

www.IrPDF.com

Using E-Mail 26

FIGURE 26-7

Using KMail to view a message with an attachment

This command sends the system log file as an attachment to the e-mail address rich on the local
system. Note that you must also have the proper permissions to access the file you want to attach.
Figure 26-7 shows the received e-mail message in the KMail mail client.

Notice that the message includes the body text from the echo statement, along with a separate
icon for the attached file. You can save the attached file directly from the KMail client.

If you look at the name of the attached file, you’ll notice that Mutt uses the basename

of the attached file as the filename in the attachment. Be careful when using tempo-

rary files, as Mutt will use the temporary filename as the attachment filename. You’ll be better off

saving temporary files using more descriptive names rather than using temporary filenames.

Summary
This chapter discusses how to incorporate e-mail in your shell scripts. The ability to regularly
e-mail reports to customers is a great feature to offer in your shell scripts.

723

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

Before using the command line to send e-mail messages, you’ll need to know how e-mail works in

the Linux environment, and what applications you’ll need to have installed and configured. The

Linux e-mail environment consists of three elements, a Mail Transport Agent (MTA) program, a

Mail Delivery Agent (MDA) program (which often is part of the MTA program), and a Mail User

Agent (MUA) program.

The MTA program is responsible for sending and receiving mail messages for the Linux system.

It must know how to pass incoming mail messages to the proper user mailboxes, as well as know
how to send outbound mail messages destined for users on remote mail servers. Often the MTA

program will use a proxy server (also called a smart host) to do the detailed mail delivery. It

forwards any message destined for a user on a remote mail server to the smart host for delivery.

It can rely on the smart host to make the delivery on its own.

The MDA program is responsible for ensuring that mail destined for local users ends up in the

proper local mailbox. Sometimes this function is performed directly by the MTA program. How-

ever, if you require advanced mail delivery features, such as out-of-office notifications or spam

filtering, you can configure the MTA program to pass messages to the MDA program, which often

has these capabilities built in.

The MUA program allows individual system users to access messages in their mailboxes and pass

outbound messages to other users to the MTA for delivery. These programs can range from simple

command line programs, such as Mailx and Mutt, to fancy graphical programs such as KMail and

Evolution.

The easiest way to send e-mails from your shell script is to use the Mailx program. This program

allows you to specify the subject header and one or more recipients on the command line. You

create the message body by redirecting text to the Mailx program. You can do this using either

the echo command for single line text, or the cat command to redirect the contents of a file

to the mail message.

The Mutt program is a more advanced command line MUA program that provides the ability to

attach files to the mail message, rather than including text inside the message body. This allows

you to attach large text files that your customers can easily save to disk for examination in other

programs, such as spreadsheets or word processing packages.

The last chapter in this section covers an important part of shell scripts, the administration func-

tions. If you’re a Linux system administrator, most likely you’ll run into a situation where you’ll
want to regularly monitor the status of a system feature. By creating a shell script and placing it

in a cron job, you can easily monitor what’s going on in your Linux system.

724

www.IrPDF.com

www.IrPDF.com

Shell Scripts
for Administrators

IN THIS CHAPTER

Managing statistics

Performing backups

Working with users

T
here’s no place where shell script programming is more useful

than for the Linux system administrator. The typical Linux system

administrator has a myriad of jobs that need to be done daily, from

monitoring disk space and users to backing up important files. Shell scripts

can make the life of the system administrator much easier! You can accom-

plish all of the basic system administration functions automatically using
simple shell scripts. This chapter demonstrates some of the capabilities you

have using shell scripts.

Monitoring System Statistics

One of the core responsibilities of the Linux system administrator is to

ensure that the system is running properly. To accomplish this task, there

are lots of different system statistics that you must monitor. Creating auto-

mated shell scripts to monitor specific situations can be a lifesaver.

This section shows how to create simple shell scripts that monitor and

report problems as soon as possible, without you even having to be logged

in to the Linux system.

Monitoring disk free space
One of the biggest problems with multi-user Linux systems is the amount

of available disk space. In some situations, such as in a file sharing server,

disk space can fill up almost immediately just because of one careless user.

725

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

This shell script will monitor the available disk space on a specific volume, and send out an e-mail
message if the available disk space goes below a set threshold.

The required functions

To automatically monitor the available disk space, you’ll first need to use a command that can
display that value. The best command to monitor disk space is the df command (see Chapter 4).
The basic output of the df command looks like this:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda1 3197228 2453980 580836 81% /
varrun 127544 100 127444 1% /var/run
varlock 127544 4 127540 1% /var/lock
udev 127544 44 127500 1% /dev
devshm 127544 0 127544 0% /dev/shm
/dev/hda3 801636 139588 621328 19% /home
$

The df command shows the current disk space statistics for all of the real and virtual disks on
the system. For the purposes of this exercise, we’ll monitor the size of the root filesystem. We’ll
first need to parse the results of the df command to extract only the line for the root filesystem.

There are a couple of different ways to do this. Probably the easiest is to use the sed command
to search for the line that ends with a forward slash:

/dev/hda1 3197228 2453980 580836 81% /

The sed script to build this uses the dollar sign (to indicate the end of the line), and the forward
slash (which you’ll need to escape since it’s a sed special character). That will look like this:

$ df | sed -n ’/\/$/p’
/dev/hda1 3197228 2453980 580836 81% /
$

Now that you’ve got the statistics for the root filesystem volume, the next step is to isolate the
percentage used value in the line. To do that, you’ll need to use the gawk command:

$ df | sed -n ’/\/$/p’ | gawk ’{print $5}’
81%
$

This is close, but there’s still one small problem. The gawk command let you filter out the fifth
data field, but the value also includes the percent symbol. You’ll need to remove that so you can
use the value in a mathematical equation. That’s easily accomplished by using the sed command
again:

$ df | sed -n ’/\/$/p’ | gawk ’{print $5}’ | sed ’s/%//’
81
$

Now you’re in business! The next step is to use this information to create the script.

726

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

Creating the script

Now that you know how to extract the used disk space value, you can use that formula to store

the value to a variable. You can then check the variable against a predetermined number to indi-

cate when the used space has exceeded your set limit.

Here’s an example of code using this technique:

$ cat diskmon
#!/bin/bash
monitor available disk space

SPACE=`df | sed -n ’/\/$/p’ | gawk ’{print $5}’ | sed ’s/%//`

if [$SPACE -ge 90]
then

echo "Disk space on root at $SPACE% used" | mail -s "Disk warning"
rich
fi
$

And there you have it. A simple shell script that’ll check the available disk space on the root

filesystem and send an e-mail message if the used space is at 90% or more.

Running the script

Before having the diskmon script run automatically, you’ll want to test it out a few times manu-

ally to ensure that it does what you think it should do. To test it, change the value that it checks

against to a value lower than the current disk usage percentage:

if [$SPACE -ge 40]
When you run the script, it should send you a mail message:
$./diskmon
$ mail
Mail version 8.1.2 01/15/2001. Type ? for help.
"/var/mail/rich": 1 message 1 new
›N 1 rich@testbox Tue Feb 5 06:22 16/672 Disk warning
&
Message 1:
From rich@testbox Tue Feb 5 06:22:26 2008
Date: Tue, 5 Feb 2008 06:22:26 -0500
From: rich ‹rich@testbox›
To: rich@localhost.localdomain
Subject: Disk warning

Disk space on root at 81% used

&q
$

727

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

It worked! Now you can set the shell script to execute at a set number of times to monitor the
disk activity. You do this using the cron table (see Chapter 13).

How often you need to run this script depends on how active your file server is. For a low-volume
file server, you may only have to run the script once a day:

30 0 * * * /home/rich/diskmon

This cron table entry runs the shell script every day at 12:30 AM. For a high-volume file server
environment, you may have to monitor this a few times a day:

30 0,8,12,16 * * * /home/rich/diskmon

This cron table entry runs the shell script four times a day, at 12:30 AM, 8:30 AM, 12:30 PM, and
4:30 PM.

Catching disk hogs
If you’re responsible for a Linux server with lots of users, one problem that you’ll often bump
up against is who’s using all of the disk space. This age-old administration question is sometimes
harder to figure out than others.

Unfortunately, for the importance of tracking user disk space usage, there’s no one Linux com-
mand that can provide that information for you. Instead, you need to write a shell script piecing
other commands together to extract the information you’re looking for. This section walks you
through this process.

The required functions

The first tool you’ll need to use is the du command (see Chapter 4). This command displays
the disk usage for individual files and directories. The -s option lets you summarize totals at
the directory level. This will come in handy when calculating the total disk space used by an
individual user. Just use this command for the /home directory contents to summarize for each
user’s $HOME directory:

du -s /home/*
40 /home/barbara
9868 /home/jessica
40 /home/katie
40 /home/lost+found
107340 /home/rich
5124 /home/test
#

Okay, that’s a start. You can now see the total listing (in KB) for the $HOME directory totals.
Depending on how your /home directory is mounted, you may or may not also see a special
directory called lost+found, which isn’t a user account.

To get statistics for all of the user $HOME directories, you must be logged in as the root

user account when running this script.

728

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

To get rid of that, we use the grep command with the -v option, which prints all of the lines

except ones that contain the specified text:

du -s /home/* | grep -v lost
40 /home/barbara
9868 /home/jessica
40 /home/katie
107340 /home/rich
5124 /home/test
#

Next, let’s get rid of the full pathname so all we see are the user names. This sounds like a job
for the sed command:

du -s /home/* | grep -v lost | sed ’s/\/home\//’
40 barbara
9868 jessica
40 katie
107340 rich
5124 test
#

Much better. Now, let’s sort this output so that it appears in descending order:

du -s /home/* | grep -v lost | sed ’s/\/home\///’ | sort -g -r
107340 rich
9868 jessica
5124 test
40 katie
40 barbara
#

The sort command sorts numerical values when you use the -g option, and will sort in descend-

ing order when you include the -r option.

There’s just one more piece of information that you’re interested in, and that’s the total amount
of space used for all of the users. Here’s how to get that value:

du -s /home
122420 /home
#

This is all the information you’ll need to create the disk hogs report. Now you’re ready to push
this into a shell script.

Creating the script

Now that you know how to extract the raw data for the report, it’s time to figure out a script
that can read the report, parse the raw data values, and display it in a format that’s presentable
to a user.

729

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

The easiest way to manipulate data for reports is with the gawk command. The report will have

three sections:

■ A header with text identifying the columns

■ The body of the report, showing the user, their total disk space used, and a percentage

of the total they’re consuming

■ A footer which shows the total disk space usage for all users

The gawk command can perform all of these functions as a single command, using the BEGIN
and END tags (see Chapter 16).

Here’s the diskhogs script that puts all of the elements together:

cat diskhogs
#!/bin/bash
calculate disk usage and report per user

TEMP=`mktemp -t tmp.XXXXXX`
du -s /home/* | grep -v lost | sed ’s/\/home\///’ | sort -g -r ›
$TEMP
TOTAL=`du -s /home | gawk ’{print $1}’`
cat $TEMP | gawk -v n="$TOTAL" ’
BEGIN {

print "Total Disk Usage by User";
print "User\tSpace\tPercent"

}

{
printf "%s\t%d\t%6.2f%\n", $2, $1, ($1/n)*100

}

END {
print "--------------------------";
printf "Total\t%d\n", n

}’
rm -f $TEMP
#

The script sends the result from the formula used to generate the raw data to a temporary file,

then stores the result of the total disk space formula in the variable $TOTAL.

Next, the script retrieves the raw data in the temporary file, and sends it to the gawk command.

The gawk command retrieves the $TOTAL value and assigns it to a local variable called n.

The code in the gawk command first creates the report header in the BEGIN section:

BEGIN {
print "Total Disk Usage by user";

730

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

print User\tSpace\tPercent"
}

It then uses the printf command to format and rearrange the text from the raw data:

{
printf "%s\t%d\t%6.2f%\n", $2, $1, ($1/n)*100

}

This is the section that processes each line of output from the du command. The printf com-
mand allows us to format the output to make a nice table. If you happen to have long usernames
on your system, you may need to fudge the formatting some to get it to turn out.

The other trick here is that the diskhogs script passes the $TOTAL variable value to the gawk
script via the gawk command line parameter:

-v n=$TOTAL

Now the gawk variable n is equal to the total user disk space, and you can the use that value
anywhere in the gawk script.

Finally, the script ends the output display by showing the total amount of user disk spaced used:

END {
print "--------------------------";
printf "Total\t%d\n", n

}’

This uses the n variable, which contains the value from the $TOTAL shell variable.

Running the script

Putting it all together, when you run the script you should get a nice report:

./diskhogs
Total Disk Usage by user
User Space Percent
rich 107340 87.68%
jessica 9868 8.06%
test 5124 4.19%
katie 40 0.03%
barbara 40 0.03%

Total 122420
#

Now you’ve got a report that you can send off to your boss and feel proud of!

If you really do have disk hogs on your system, it may take a long time for the du

command to calculate all the space they’re using. This causes quite a delay before you

see any output from the diskhogs script. Be patient!

731

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

Watching CPU and memory usage
The core statistics of any Linux system are the CPU and memory usage. If these values start
getting out of control, things can go wrong very quickly on the system. This section demonstrates

how to write scripts to help you monitor and track the CPU and memory usage on your Linux

system, using a couple of basic shell scripts.

The required functions

As with the other scripts shown so far in this chapter, the first step is to determine exactly what
data you want to produce with your scripts. There are a few different commands that you can use

to extract CPU and memory information for the system.

The most basic system statistics command is the uptime command:

$ uptime
09:57:15 up 3:22, 3 users, load average: 0.00, 0.08, 0.28

$

The uptime command gives us a few different basic pieces of information that we can use:

■ The current time

■ The number of days, hours, and minutes the system has been operational

■ The number of users currently logged into the system

■ The one, five, and fifteen minute load averages

Another great command for extracting system information is the vmstat command. Here’s an

example of the output from the vmstat command:

$ vmstat
procs- ----memory--------- ---swap-- --io-- --system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 178660 13524 4316 72076 8 10 80 22 127 124 3 1 92 4 0
$

The first time you run the vmstat command, it displays the average values since the last reboot.

To get the current statistics, you must run the vmstat command with command line parameters:

$ vmstat 1 2
procs- ----memory--------- ---swap-- --io-- --system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 178660 13524 4316 72076 8 10 80 22 127 124 3 1 92 4 0
0 0 178660 12845 4245 71890 8 10 80 22 127 124 3 1 86 10 0
$

The second line contains the current statistics for the Linux system. As you can see, the

output from the vmstat command is somewhat cryptic. Table 27-1 explains what each of the
symbols mean.

732

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

TABLE 27-1

The vmstat Output Symbols

Symbol Description

r The number of processes waiting for CPU time

b The number of processes in uninterruptible sleep

swpd The amount of virtual memory used (in MB)

free The amount of physical memory not used (in MB)

buff The amount of memory used as buffer space (in MB)

cache The amount of memory used as cache space (in MB)

si The amount of memory swapped in from disk (in MB)

so The amount of memory swapped out to disk (in MB)

bi Number of blocks received from a block device

bo Number of blocks sent to a block device

in The number of CPU interrupts per second

cs The number of CPU context switches per second

us Percent of CPU time spent running non-kernel code

sy Percent of CPU time spent running kernel code

id Percent of CPU time spent idle

wa Percent of CPU time spent waiting for I/O

st Percent of CPU time stolen from a virtual machine

This is a lot of information. You probably don’t need to record all of the values from the vmstat
command; just a few will do. The free memory, and percent of CPU time spent idle, should give

you a good snapshot of the system status (and by now you can probably guess exactly how we’ll

extract those values from the output).

You may have also noticed that the output from the vmstat command includes table heading

information, which we obviously don’t want in our data. To solve that problem, you can use the

sed command to display only lines that have a numerical value in them:

$ vmstat 1 2 | sed -n ’/[0-9]/p’
1 0 172028 8564 5276 62244 9 13 98 28 160 157 5 2 89 5 0
0 0 178660 12845 4245 71890 8 10 80 22 127 124 3 1 86 10 0
$

733

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

That’s better, but now we need to get only the second line of data. Another call to the sed editor

can solve that problem:

$ vmstat | sed -n ’/[0-9]/p’ | sed -n ’2p’
0 0 178660 12845 4245 71890 8 10 80 22 127 124 3 1 86 10 0
$

Now you can easily extract the data value you want using the gawk program.

Finally, you’ll want to tag each data record with a date and timestamp to indicate when the snap-

shots were taken. The date command is handy, but the default output from the date command
might be a little cumbersome. You can simplify the date command output by specifying another
format:

$ date +"%m/%d/%Y %k:%M:%S"
02/05/2008 19:19:26
$

That should look much better in our output. Speaking of the output, you should also consider
how you want to record the data values.

For data that you sample on a regular basis, often it’s best to output the data directly to a log file.
You can create the log file in your $HOME directory, appending data each time you run the shell

script. When you want to see the results, you can just view the log file.

You should also spend some time considering the format of the log file. You’ll want to ensure that
the data in the log file can be read easily (after all that’s the whole purpose of this script).

There are many different methods you can use to format the data in the log file. A popular format
is comma-separated values (CSV). This format places each record of data on a separate line, and
separates the data fields in the record with commas. This is a popular format for people who love

spreadsheets, as it’s easily imported into a spreadsheet.

However, staring at a CSV file of data is not the most exciting thing in the world. If you want to
provide a more aesthetically appealing report, you can create an HTML document.

HTML has been the standard method for formatting Web pages for years. It uses simple tags to
delineate data types within the Web page. However, HTML is not just for Web pages. You’ll often
find HTML used in e-mail messages as well. Depending on the MUA client (see Chapter 26), you
may or may not be able to view an embedded HTML e-mail document. A better solution is to

create the HTML report, and attach it to the e-mail message.

The script will save data in a CSV-formatted file, so you can always access the raw data to import
into a spreadsheet. When the system administrator runs the report script, that will reformat the

data into an HTML report. How cool is that?

Creating the capture script

Since you need to sample system data at a regular interval, you’ll need two separate scripts. One
script will capture the data and save it to the log file. This script should be run on a regular basis

734

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

from the cron table. The frequency depends on how busy your Linux system is. For most systems,

running the script once an hour should be fine.

The second script should output the report data and e-mail it to the appropriate individual(s).
Most likely you won’t want to e-mail a new report every time you get a new data sampling. You’ll

probably want to run the second script as a cron job at a lower frequency, such as once a day,
first thing in the day.

The first script, used to capture the data, is called capstats. Here’s what it looks like:

$ cat capstats
#!/bin/bash
script to capture system statistics

OUTFILE=/home/rich/capstats.csv
DATE=`date +%m/%d/%Y`
TIME=`date +%k:%M:%S`

TIMEOUT=`uptime`
VMOUT=`vmstat 1 2`

USERS=`echo $TIMEOUT | gawk ’{print $4}’`
LOAD=`echo $TIMEOUT | gawk ’{print $9}’ | sed ’s/,//’`
FREE=`echo $VMOUT |sed -n ’/[0-9]/p’ |sed -n ’2p’ |gawk ’{print $4}’`
IDLE=`echo $VMOUT |sed -n ’/[0-9]/p’ |sed -n ’2p’|gawk ’{print $15}’`

echo "$DATE,$TIME,$USERS,$LOAD,$FREE,$IDLE" ›› $OUTFILE
$

This script mines the statistics from the uptime and vmstat commands and saves them in vari-

ables. The script then writes the values to the file defined by the $OUTFILE variable. For this
example, I just saved the file in my $HOME directory. You should modify this location to what

suits your environment best.

After creating the capstats script, you should probably test it from the command line before hav-
ing it run regularly from your cron table:

$./capstats
$ cat capstats.csv
02/06/2008,10:39:57,4,0.26,57076,87
$

The script created the new file, and placed the statistic values in the proper places. Just to make

sure that subsequent runs of the script don’t overwrite the file, test it again:

$./capstats
$ cat capstats.csv
02/06/2008,10:39:57,4,0.26,57076,87
02/06/2008,10:41:52,4,0.14,46292,88
$

735

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

As hoped, the second time the script ran it appended the new statistics data to the end of the file.

Now you’re ready to place this in the cron table. To run it once every hour, create this cron table

entry:

0 * * * * /home/rich/capstats

You’ll need to use the full pathname of where you place your capstats shell script file for the

cron table. Now you’re capturing statistics once every hour without having to do anything else!

Generating the report script

Now that you have a file full of raw data, you can start working on the script to generate a fancy

report for your boss. The best tool for this is the gawk command.

The gawk command allows you to extract raw data from a file and present it in any manner

necessary. First, test this from the command line, using the new capstats.csv file created by

the capstats script:

$ cat capstats.csv | gawk -F, ’{printf "%s %s - %s\n", $1, $2, $4}’
02/06/2008 10:39:57 - 0.26
02/06/2008 10:41:52 - 0.14
02/06/2008 10:50:01 - 0.06
02/06/2008 11:00:01 - 0.18
02/06/2008 11:10:01 - 0.03
02/06/2008 11:20:01 - 0.07
02/06/2008 11:30:01 - 0.03
$

You need to use the -F option for the gawk command to define the comma as the field separator

character in your data. After that, you can retrieve each individual data field and display it as

you need.

For the report, we’ll be using HTML format. This allows us to create a nicely formatted report

with a minimum amount of work. The browser that displays the report will do all the hard work

of formatting and displaying the report. All you need to do is insert the appropriate HTML tags

to format the data.

The easiest way to display spreadsheet data in HTML is using the ‹table› tag. The table tag

allows you to create a table with rows and cells (called divisions in HTML-speak). You define

the start of a row using the ‹tr› tag, and the end of the row with the ‹/tr› tag. Similarly, you

define cells using the ‹td› and ‹/td› tag pair.

The HTML for a full table looks like this:

‹html›
‹body›
‹h2›Report title‹/h2›
‹table border="1"›

736

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

‹tr›
‹td›Date‹/td›‹td›Time‹/td›‹td›Users‹/td›
‹td›Load‹/td›‹td›Free Memory‹/td›‹td›%CPU Idle‹/td›

‹/tr›
‹tr›

‹td›02/05/2008‹/td›‹td›11:00:00‹/td›‹td›4‹/td›
‹td›0.26‹/td›‹td›57076‹/td›‹td›87‹/td›

‹/tr›
‹/table›
‹/body›
‹/html›

Each data record is part of a ‹tr›/‹/tr› tag pair. Each data field is within its own ‹td›/‹/td›
tag pair.

When you display the HTML report in a browser, the browser creates the table automatically for

you, as shown in Figure 27-1.

FIGURE 27-1

Displaying data in an HTML table

737

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

For the script, all you need to do is generate the HTML heading code by using echo commands,

generate the data HTML code by using the gawk command, then close out the table, again by

using echo commands.

Once you have your HTML report generated, you’ll want to redirect it to a file for mailing. The

mutt command (see Chapter 26) is a great tool for easily sending e-mail attachments.

Here’s the reportstats script, which will generate the HTML report and mail it off:

$ cat reportstats
#!/bin/bash
parse capstats data into daily report

FILE=/home/rich/capstats.csv
TEMP=/home/rich/capstats.html
MAIL=`which mutt`
DATE=`date +"%A, %B %d, %Y"`

echo "‹html›‹body›‹h2›Report for $DATE‹/h2›" › $TEMP
echo "‹table border=\"1\"›" ›› $TEMP
echo "‹tr›‹td›Date‹/td›‹td›Time‹/td›‹td›Users‹/td›" ›› $TEMP
echo "‹td›Load‹/td›‹td›Free Memory‹/td›‹td›%CPU Idle‹/td›‹/tr›" ››
$TEMP
cat $FILE | gawk -F, ’{

printf "‹tr›‹td›%s‹/td›‹td›%s‹/td›‹td›%s‹/td›", $1, $2, $3;
printf "‹td›%s‹/td›‹td›%s‹/td›‹td›%s‹/td›\n‹/tr›\n", $4, $5, $6;
}’ ›› $TEMP

echo "‹/table›‹/body›‹/html›" ›› $TEMP
$MAIL -a $TEMP -s "Stat report for $DATE" rich ‹ /dev/null
rm -f $TEMP
$

Since the mutt command uses the file name of the attached file as the attachment file name,

it’s best not to create the report file using the mktemp command. Instead, I gave the file a more

descriptive name. The script deletes the file at the end, so it’s not too important where you create

the file.

Most e-mail clients can automatically detect the type of file attachment by the file

extension. For this reason, you should end your report file name with .html.

Running the script

After creating the reportstats script, give it a test run from the command line and see what

happens:

$./reportstats
$

738

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

FIGURE 27-2

Viewing the report attachment in Evolution

Well, that wasn’t too exciting. The real test now is to view your mail message, preferably in a

graphical e-mail client such as KMail or Evolution. Figure 27-2 demonstrates viewing the message

from the Evolution e-mail client.

The Evolution e-mail client provide the option of either viewing the attachment separate from

the client window, or within the client window. Figure 27-2 demonstrates viewing the attached

report within the client window. Notice how the data is all nicely formatted using the HTML

tables, just as it was when viewing from the browser!

Performing Backups
Whether you’re responsible for a Linux system in a business environment or just using it in a

home environment, a loss of data can be catastrophic. To help prevent bad things from happening

to your data, it’s always a good idea to perform regular backups.

739

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

However, what’s a good idea and what’s practical are often two separate things. Trying to arrange

a backup schedule to store important files can be a challenge. This is another place where shell

scripts often come to the rescue.

This section demonstrates two different methods for using shell scripts to back up data on your

Linux system.

Archiving data files
Often the cause for lost data isn’t a catastrophic system failure. Many times, data is lost in that

‘‘oh no’’ moment. You know, that millisecond of time just after you click the Delete button. For

this reason, it’s always a good idea to have a separate archived copy of data you’re working on
laying around on the system.

If you’re using your Linux system to work on an important project, you can create a shell script
that automatically takes snapshots of your working directories, then stores them in a safe place on

the system. While not a protection against a catastrophic hardware failure, this is a great safeguard

against file corruption or accidental deletions.

This section shows how to create an automated shell script that can take snapshots of your work-
ing directory and keep an archive of past versions of your data.

The required functions

The workhorse for archiving data in the Linux world is the tar command (see Chapter 4). The
tar command is used to archive an entire directory into a single file. Here’s an example of creat-

ing an archive file of a working directory using the tar command:

$ tar -cf archive.tar /home/rich/test
tar: Removing leading `/’ from member names
$

The tar command responds with a warning message that it’s removing the leading forward slash

from the pathname to convert it from an absolute pathname to a relative pathname. This allows

you to extract the tar archive file anywhere you want in your filesytem. You’ll probably want to
get rid of that message in your script. You do that by redirecting STDERR to the /dev/null file

(see Chapter 12):

$ tar -cf archive.tar /home/rich/test 2› /dev/null
$

Now it’s ready to be used in a script.

If you’re using a Linux distribution that includes a graphical desktop, be careful about

archiving your $HOME directory. While this may be tempting, the $HOME directory

contains lots of configuration and temporary files related to the graphical desktop, and it will create

a much larger archive file than you probably intended. Pick a subdirectory in which to store your

working files, and use that as the archive directory.

740

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

After creating the archive file you can send it to your favorite compression utility to reduce
its size:

$ ls -l archive.tar
-rw-rw-r-- 1 rich rich 30720 2008-02-06 12:26 archive.tar
$ gzip archive.tar
$ ls -l archive*
-rw-rw-r-- 1 rich rich 2928 2008-02-06 12:26 archive.tar.gz
$

You now have the first component to your archive system.

The next step is to create a rolling archive system. If you save your working directory on a reg-
ular basis, you may not necessarily want the newest archive copy to immediately overwrite the
previous archive copy.

To prevent this, you’ll need to create a method to automatically provide a unique filename for
each archive copy. The easiest way to do that is to incorporate the date and time in your file-
names.

As you’ve seen from the ‘‘Monitoring System Statistics’’ section, you can format the date command
to produce information in just about any format you desire. This comes in handy when creating
unique filenames.

For example, if you want to create a filename using the two-digit year, the month, and the date,
you’d do something like this:

$ DATE=`date +%y%m%d`
$ FILE=tmp$DATE
$ echo $FILE
tmp080206
$

While it may look odd to squish the $DATE variable at the end of a text string, it’s perfectly legal
in the bash shell. The shell appends the variable’s value to the string, creating a unique filename.

Using a date to uniquely identify a file can get tricky when looking for the most recent

file version. Make that sure you remember the format you use to tag the date (such

as month-day-year or year-month-day). Often when sorting file names it is good to specify the year

first, then the month, and finally, the day.

You should now have enough information to start building the script. The next section walks you
through creating the archive script.

Creating a daily archive script

The archdaily script automatically creates an archived version of your working directory in a
separate location, using the day to uniquely identify the file. Here’s the code for that script:

$ cat archdaily
#!/bin/bash

741

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

archive a working directory

DATE=`date +%y%m%d`
FILE=archive$DATE
SOURCE=/home/rich/test
DESTINATION=/home/rich/archive/$FILE

tar -cf $DESTINATION $SOURCE 2› /dev/null
gzip $DESTINATION
$

The archdaily script generates a unique filename based on the year, month, and day that it runs.
It also uses environment variables to define the source directory to archive, so that can be easily
changed. You can even use a command line parameter to make the archdaily program even more
versatile.

The $DESTINATION variable appends the full pathname for the archived file. This too can be
easily changed to an alternative directory if needed.

Testing the archdaily script is pretty straightforward:

$./archdaily
$ ls -al /home/rich/archive
total 24
drwxrwxr-x 2 rich rich 4096 2008-02-06 12:50 .
drwx------ 37 rich rich 4096 2008-02-06 12:50 ..
-rw-rw-r-- 1 rich rich 3046 2008-02-06 12:50 archive080206.gz
$

The data is now safely archived away.

Creating an hourly archive script

If you’re in a high-volume production environment where files are changing rapidly, a daily
archive might not be good enough. If you want to increase the archiving frequency to hourly,
you’ll need to take another item into consideration.

If you’re backing up files hourly, and trying to use the date command to timestamp each file
name, things can get pretty ugly pretty quickly. I don’t thing you’d want to have to sift through a
directory of files with filenames looking like this:

archive080206110233.gz

Instead of placing all of the archive files in the same folder, you’d be better off creating a directory
hierarchy for your archived files. Figure 27-3 demonstrates this principle.

The archive directory contains directories for each month of the year, using the month number
as the directory name. Each month’s directory in turn contains folders for each day of the month
(using the day’s numerical value as the directory name). This allows you to just timestamp the
individual archive files, then place them in the appropriate directory for the day and month.

742

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

FIGURE 27-3

Creating an archive directory hierarchy

/home/rich/archive

01

02

01

02

01

Base

Month

Day

Now you have a new challenge to solve. Your script must create the individual month and day

directories automatically, and know that if they already exist, they don’t need to be created. As it

turns out, this isn’t as hard as it sounds!

If you peruse the command line options for the mkdir command (see Chapter 3), you’ll find

the -p command line option. This option allows you to create directories and subdirectories

in a single command, plus the added benefit in that it doesn’t produce an error message if the

directory already exists. Perfect!

We’re now ready to create the archhourly script. Here’s what it looks like:

$ cat archhourly
#!/bin/bash
archive a working directory hourly

DAY=`date +%d`
MONTH=`date +%m`
TIME=`date +%k%M`

743

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

SOURCE=/home/rich/test
BASEDEST=/home/rich/archive

mkdir -p $BASEDEST/$MONTH/$DAY

DESTINATION=$BASEDEST/$MONTH/$DAY/archive$TIME
tar -cf $DESTINATION $SOURCE 2› /dev/null
gzip $DESTINATION
$

The script retrieves the day and month values from the date command, along with the times-
tamp used to uniquely identify the archive file. It then uses that information to create the archive
directory for the day (or just silently exit if it already exists). Finally, the script uses the tar and
gzip commands to create the archive and compress it.

Just as with the archdaily script, it’s a good idea to test the archhourly script before putting it in
the cron table:

$./archhourly
$ ls -al /home/rich/archive/02/06
total 32
drwxrwxr-x 2 rich rich 4096 2008-02-06 13:20 .
drwxrwxr-x 3 rich rich 4096 2008-02-06 13:19 ..
-rw-rw-r-- 1 rich rich 3145 2008-02-06 13:19 archive1319.gz
$./archhourly
$ ls -al /home/rich/archive/02/06
total 32
drwxrwxr-x 2 rich rich 4096 2008-02-06 13:20 .
drwxrwxr-x 3 rich rich 4096 2008-02-06 13:19 ..
-rw-rw-r-- 1 rich rich 3145 2008-02-06 13:19 archive1319.gz
-rw-rw-r-- 1 rich rich 3142 2008-02-06 13:20 archive1320.gz
$

The script worked fine the first time, creating the appropriate month and day directories, then
creating the archive file. Just to test things out, I ran it a second time to see if it would have
a problem with the existing directories. The script again ran just fine and created the second
archive file. It’s now ready for the cron table!

Storing backups off-site
While creating archives of important files is a good idea, it’s certainly no replacement for a full
backup that’s stored in a separate location. In large commercial Linux environments, system
administrators often have the luxury of tape drives to copy important files off of the server for
safe storage.

For smaller environments this is not always an option. Just because you can’t afford a fancy
backup system doesn’t mean that you have to have your important data at risk. You can put
together a shell script that automatically creates an archive file, then sends it outside of the Linux
system. This section describes just how to do that.

744

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

The required functions

You’ve already seen the core of the archiving system, the tar and gzip commands. The trick is
getting the compressed archive file off of the Linux system. If you have the e-mail system config-
ured (see Chapter 26) that can be your portal to the outside world!

While system administrators don’t often think of e-mail as a way to archive data, it’s a perfectly
acceptable method in a snap for getting your archived data to another safe location. I wouldn’t
recommend trying to archive your entire Linux system and send it out as an e-mail attachment,
but archiving a working directory and using it as an attachment should not be a problem.

Let’s take a look at this script and see how it works.

Creating the script

The mailarch script creates a normal archive file as you did with the archdaily and archhourly
scripts. Once it creates the archive file, it uses the Mutt e-mail client to send the file to a remote
e-mail address.

Here’s the mailarch script:

$ cat mailarch
#!/bin/bash
archive a working directory and e-mail it out

MAIL=`which mutt`
DATE=`date +%y%m%d`
FILE=archive$DATE
SOURCE=/home/rich/test
DESTINATION=/home/rich/archive/$FILE
ZIPFILE=$DESTINATION.zip

tar -cf $DESTINATION $SOURCE 2› /dev/null
zip $ZIPFILE $DESTINATION
$MAIL -a $ZIPFILE -s "Archive for $DATE" rich@myhost.com ‹ /dev/null
$

One thing you may notice about the mailarch script is that I use the zip compression utility
instead of the gzip command. This allows you to create a .zip file that is more easily handled on
non-Linux systems, such as Microsoft Windows workstations.

Running the script

The mailarch script runs the same was as the archdaily script, by placing it in the cron table to
run at a specific time of the day (usually late at night). When the script runs, it creates the archive
file, compresses it using the zip command, then sends it off in an e-mail message. Figure 27-4
demonstrates what the e-mail message you receive should look like.

Congratulations, you now have a method for backing up your important files from your Linux
system.

745

www.IrPDF.com

www.IrPDF.com

Part V Advanced Topics

FIGURE 27-4

E-mail message with archive file

Summary

This chapter put some of the shell-scripting information presented in the book to good use in

the Linux system administration world. When you’re responsible for managing a Linux system,

whether it’s a large multi-user system or your own system, there are lots of things you need to

watch. Instead of pouring over log files, and manually running commands, you can create shell

scripts to do the work for you.

The chapter demonstrated how to use the df command to determine available disk space, then

use the sed and gawk commands to retrieve specific information from the data. Passing the out-

put from a command to sed and gawk to parse data is a common function in shell scripts, so it’s

a good idea to know how to do it.

Next the chapter showed how to use the du command to determine the disk space used by indi-

vidual users. The output from the du command was again passed to the sed and gawk commands

to help filter out just the data that we were interested in.

746

www.IrPDF.com

www.IrPDF.com

Shell Scripts for Administrators 27

The next section walked you through the world of creating system logs and reports. The capstats

shell script captured vital system statistics on a regular basis, extracted the data from the com-

mands, and stored it in a comma-separated value file. This data could then be imported into a

spreadsheet, but instead you saw how to create another script to create a formatted report from

the data. The reportstats shell script used HTML formatting to place the raw system data into an

HTML table, then used the Mutt e-mail client to send the file to a remote user.

The chapter closed out by discussing using shell scripts for archiving and backing up data files on
the Linux system. The tar and gzip commands are popular commands for archiving data. The

chapter showed how to use them in shell scripts to create archive files, and manage the archive

files in an archive directory. Finally, you saw how to e-mail an archive file to a remote user as a

crude form of backup for important data files.

Thanks for joining me on this journey through the Linux command line and shell scripting. I

hope that you’ve enjoyed the journey and have learned how to get around on the command line,

and how to create shell scripts to save you time. But don’t stop your command line education

there. There’s always something new being developed in the open source world, whether it’s a

new command line utility, or a full-blown shell. Stay in touch with the Linux community, and
follow along with the new advances and features.

747

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Quick Guide to bash
Commands

A
s you’ve seen throughout this book, the bash shell contains lots of

features and thus has lots of commands available. This appendix

provides a concise guide to allow you to quickly look up a feature

or command that you can use from the bash command line or from a bash

shell script.

Built-In Commands

The bash shell includes many popular commands built into the shell. This

provides for faster processing times when using these commands. Table A-1
shows the built-in commands available directly from the bash shell.

The built-in commands provide higher performance than external com-

mands, but the more built-in commands that are added to a shell, the more

memory it consumes with commands that you may never use. The bash
shell also contains external commands that provide extended functionality

for the shell. These are discussed in the next section.

Bash Commands

Besides the built-in commands, the bash shell utilizes external commands

to allow you to maneuver around the filesystem and manipulate files and

directories. Table A-2 shows the common external commands you’ll want

to use when working in the bash shell.

You can accomplish just about any task you need to on the command line

using these commands.

749

www.IrPDF.com

www.IrPDF.com

A Quick Guide to bash Commands

TABLE A-1

bash Built-in Commands

Command Description

alias Define an alias for the specified command.

bg Resume a job in background mode.

bind Bind a keyboard sequence to a readline function or macro.

break Exit from a for, while, select, or until loop.

builtin Execute the specified shell built-in command.

cd Change the current directory to the specified directory.

caller Return the context of any active subroutine call.

command Execute the specified command without the normal shell lookup.

compgen Generate possible completion matches for the specified word.

complete Display how the specified words would be completed.

continue Resume the next iteration of a for, while, select, or until loop.

declare Declare a variable or variable type.

dirs Display a list of currently remembered directories.

disown Remove the specified jobs from the jobs table for the process.

echo Display the specified string to STDOUT.

enable Enable or disable the specified built-in shell command.

eval Concatenate the specified arguments into a single command, then execute the
command.

exec Replace the shell process with the specified command.

exit Force the shell to exit with the specified exit status.

export Set the specified variables to be available for child shell processes.

fc Select a list of commands from the history list.

fg Resume a job in foreground mode.

getopts Parse the specified positional parameters.

hash Find and remember the full pathname of the specified command.

help Display a help file.

750

www.IrPDF.com

www.IrPDF.com

Quick Guide to bash Commands A

TABLE A-1 (continued)

Command Description

history Display the command history.

jobs List the active jobs.

kill Send a system signal to the specified process ID (PID).

let Evaluate each argument in a mathematical expression.

local Create a limited-scope variable in a function.

logout Exit a login shell.

popd Remove entries from the directory stack.

printf Display text using formatted strings.

pushd Add a directory to the directory stack.

pwd Display the pathname of the current working directory.

read Read one line of data from STDIN and assign it to a variable.

readonly Read one line of data from STDIN and assign it to a variable that can’t be
changed.

return Force a function to exit with a value that can be retrieved by the calling script.

set Set and display environment variable values and shell attributes.

shift Rotate positional parameters down one position.

shopt Toggle the values of variables controlling optional shell behavior.

suspend Suspend the execution of the shell until a SIGCONT signal is received.

test Return an exit status of 0 or 1 based on the specified condition.

times Display the accumulated user and system.

trap Execute the specified command if the specified system signal is received.

type Display how the specified word would be interpreted and used as a command.

ulimit Set a limit on the specified resource for system users.

umask Set default permissions for newly created files and directories.

unalias Remove the specified alias.

unset Remove the specified environment variable or shell attribute.

wait Wait for the specified process to complete, and return the exit status.

751

www.IrPDF.com

www.IrPDF.com

A Quick Guide to bash Commands

TABLE A-2

The bash Shell External Commands

Command Description

bzip2 Compression using the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding.

cat List the contents of the specified file.

chage Change the password expiration date for the specified system user account.

chfn Change the specified user account’s comment information.

chgrp Change the default group of the specified file or directory.

chmod Change system security permissions for the specified file or directory.

chown Change the default owner of the specified file or directory.

chpasswd Reads a file of login name and password pairs and updates the passwords.

chsh Change the specified user account’s default shell.

compress Original Unix file compression utility.

cp Copy the specified files to an alternate location.

df Display current disk space statistics for all mounted devices.

du Display disk usage statistics for the specified filepath.

file View the file type of the specified file.

finger Display information about user accounts on the Linux system or a remote
system.

grep Search a file for the specified text string.

groupadd Create a new system group.

groupmod Modify an existing system group.

gzip The GNU Project’s compression using Lempel-Ziv compression.

head Display the first portion of the specified file’s contents.

killall Send a system signal to a running process based on process name.

less Advanced viewing of file contents.

link Create a link to a file using an alias name.

ls List directory contents.

752

www.IrPDF.com

www.IrPDF.com

Quick Guide to bash Commands A

TABLE A-2 (continued)

Command Description

mkdir Create the specified directory under the current directory.

more List the contents of the specified file, pausing after each screen of data.

mount Display or mount disk devices into the virtual file system.

passwd Change the password for a system user account.

ps Display information about the running processes on the system.

pwd Display the current directory.

mv Rename a file.

rm Delete the specified file.

rmdir Delete the specified directory.

sort Organize data in a data file based on the specified order.

stat View the file statistics of the specified file.

tail Display the last portion of the specified file’s contents.

tar Archive data and directories into a single file.

touch Create a new empty file, or update the timestamp on an existing file.

umount Remove a mounted disk device from the virtual file system.

useradd Create a new system user account.

userdel Remove an existing system user account.

usermod Modify an existing system user account.

zip Unix version of the Windows PKZIP program.

Environment Variables
The bash shell also utilizes many environment variables. While environment variables aren’t

commands, they often affect how shell commands operate, so it’s important to know the shell

environment variables. Table A-3 shows the default environment variables available in the bash

shell.

You display the environment variables using the set built-in command. The default shell envi-

ronment variables set at boot time can and often do vary between different Linux distributions.

753

www.IrPDF.com

www.IrPDF.com

A Quick Guide to bash Commands

TABLE A-3

bash Shell Environment Variables

Variable Description

$* Contains all of the command line parameters as a single text value.

$@ Contains all of the command line parameters as separate text values.

$# The number of command line parameters.

$? The exit status of the most recently used foreground process.

$- The current command line option flags.

$$ The process ID (PID) of the current shell.

$! The PID of the most recently executed background process.

$0 The name of the command from the command line.

$ The absolute pathname of the shell.

BASH The full filename used to invoke the shell.

BASH_ARGC The number of parameters in the current subroutine.

BASH_ARGV An array containing all of the command line parameters specified.

BASH_COMMAND The name of the command currently being executed.

BASH_ENV When set, each bash script attempts to execute a startup file defined
by this variable before running.

BASH_EXECUTION_
STRING

The command used in the -c command line option.

BASH_LINENO An array containing the line numbers of each command in the script.

BASH_REMATCH An array containing text elements that match a specified regular
expression.

BASH_SOURCE An array containing source filenames for the declared functions in the
shell.

BASH_SUBSHELL The number of subshells spawned by the current shell.

BASH_VERSION The version number of the current instance of the bash shell.

BASH_VERSINFO A variable array that contains the individual major and minor version
numbers of the current instance of the bash shell.

COLUMNS Contains the terminal width of the terminal used for the current
instance of the bash shell.

754

www.IrPDF.com

www.IrPDF.com

Quick Guide to bash Commands A

TABLE A-3 (continued)

Variable Description

COMP_CWORD An index into the variable COMP_WORDS, which contains the current
cursor position.

COMP_LINE The current command line.

COMP_POINT The index of the current cursor position relative to the beginning of
the current command.

COM_WORDBREAKS A set of characters used as word separators when performing word
completion.

COMP_WORDS A variable array that contains the individual words on the current
command line.

COMPREPLY A variable array that contains the possible completion codes
generated by a shell function.

DIRSTACK A variable array that contains the current contents of the directory
stack.

EUID The numeric effective user ID of the current user.

FCEDIT The default editor used by the fc command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename
completion.

FUNCNAME The name of the currently executing shell function.

GLOBIGNORE A colon-separated list of patterns defining the set of filenames to be
ignored by filename expansion.

GROUPS A variable array containing the list of groups of which the current user
is a member.

histchars Up to three characters that control history expansion.

HISTCMD The history number of the current command.

HISTCONTROL Controls what commands are entered in the shell history list.

HISTFILE The name of the file to save the shell history list (.bash_history by
default).

HISTFILESIZE The maximum number of lines to save in the history file.

HISTIGNORE A colon-separated list of patterns used to decide which commands are
ignored for the history file.

HISTSIZE The maximum number of commands stored in the history file.

continued

755

www.IrPDF.com

www.IrPDF.com

A Quick Guide to bash Commands

TABLE A-3 (continued)

Variable Description

HOSTFILE Contains the name of the file that should be read when the shell
needs to complete a hostname.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine the bash shell is running on.

IGNOREEOF The number of consecutive EOF characters the shell must receive
before exiting. If this value doesn’t exist, the default is one.

INPUTRC The name of the Readline initialization file (the default is .inputrc).

LANG The local category for the shell.

LC_ALL Overrides the LANG variable, defining a local category.

LC_COLLATE Sets the collation order used when sorting string values.

LC_CTYPE Determines the interpretation of characters used in filename expansion
and pattern matching.

LC_MESSAGES Determines the local setting used when interpreting double-quoted
strings preceded by a dollar sign.

LC_NUMERIC Determines the local setting used when formatting numbers.

LINENO The line number in a script currently executing.

LINES Defines the number of lines available on the terminal.

MACHTYPE A string defining the system type in cpu-company-system format.

MAILCHECK How often (in seconds) the shell should check for new mail (default
is 60).

OLDPWD The previous working directory used in the shell.

OPTERR If set to 1, the bash shell displays errors generated by the getopts
command.

OSTYPE A string defining the operating system the shell is running on.

PIPESTATUS A variable array containing a list of exit status values from the
processes in the foreground process.

POSIXLY_CORRECT If set, bash starts in POSIX mode.

PPID The process ID (PID) of the bash shell’s parent process.

PROMPT_COMMAND If set, the command to execute before displaying the primary prompt.

756

www.IrPDF.com

www.IrPDF.com

Quick Guide to bash Commands A

TABLE A-3 (continued)

Variable Description

PS1 The primary command line prompt string.

PS2 The secondary command line prompt string.

PS3 The prompt to use for the select command.

PS4 The prompt displayed before the command line is echoed if the bash
-x parameter is used.

PWD The current working directory.

RANDOM Returns a random number between 0 and 32767. Assigning a value to
this variable seeds the random number generator.

REPLY The default variable for the read command.

SECONDS The number of seconds since the shell was started. Assigning a value
resets the timer to the value.

SHELLOPTS A colon-separated list of enabled bash shell options.

SHLVL Indicates the shell level, incremented by one each time a new bash
shell is started.

TIMEFORMAT A format specifying how the shell displays time values.

TMOUT The value of how long (in seconds) the select and read commands
should wait for input. The default of zero indicates to wait
indefinitely.

UID The numeric real user ID of the current user.

757

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

www.IrPDF.com

Quick Guide to sed
and gawk

I
f you do any type of data handling in your shell scripts, most likely

you’ll need to use either the sed or gawk programs (and sometimes

both). This appendix provides a quick reference for sed and gawk com-

mands that come in handy when working with data in your shell scripts.

The sed Editor

The sed editor can manipulate data in a data stream based on commands

you either enter into the command line or store in a command text file.

It reads one line of data at a time from the input and matches that data with

the supplied editor commands, changes data in the stream as specified

in the commands, then outputs the new data to STDOUT.

Starting the sed editor
The format for using the sed command is:

sed options script file

The options parameters allow you to customize the behavior of the sed
command, and include the options shown in Table B-1.

The script parameter specifies a single command to apply against the

stream data. If more than one command is required, you must use either

the -e option to specify them in the command line or the -f option to

specify them in a separate file.

759

www.IrPDF.com

www.IrPDF.com

B Quick Guide to sed and gawk

TABLE B-1

The sed Command Options

Option Description

-e script Add commands specified in script to the commands run while processing the
input.

-f file Add the commands specified in the file file to the commands run while
processing the input.

-n Don’t produce output for each command, but wait for the print command.

sed commands
The sed editor script contains commands that sed processes for each line of data in the input
stream. This section describes some of the more common sed commands you’ll want to use.

Substitution

The s command substitutes text in the input stream. The format of the s command is:

s/pattern/replacement/flags

where pattern is the text to replace, and replacement is the new text that sed will insert in its
place.

The flags parameter controls how the substitution takes place. There are four types of substitu-
tion flags available:

■ A number, indicating the pattern occurrence that should be replaced.

■ g: Indicates that all occurrences of the text should be replaced.

■ p: Indicates that the contents of the original line should be printed.

■ w file: Indicates that the results of the substitution should be written to a file.

In the first type of substitution, you can specify which occurrence of the matching pattern that
the sed editor should replace, such as a 2 to indicate to replace only the second occurrence of the
pattern.

Addressing

By default, the commands you use in the sed editor apply to all lines of the text data. If you only
want to apply a command to a specific line, or a group of lines, you must use line addressing.

There are two forms of line addressing in the sed editor:

■ A numeric range of lines

■ A text pattern that filters out a line

Both forms use the same format for specifying the address:

[address]command

760

www.IrPDF.com

www.IrPDF.com

Quick Guide to sed and gawk B

When using numeric line addressing, you reference lines by their line position in the text stream.
The sed editor assigns the first line in the text stream as line number one and continues sequen-
tially for each new line.

$ sed ’2,3s/dog/cat/’ data1

The other method of restricting which lines a command applies to is a bit more complicated. The

sed editor allows you to specify a text pattern that it uses to filter lines for the command. The
format for this is:

/pattern/command

You must encapsulate the pattern you specify in forward slashes. The sed editor only applies the

command to lines that contain the text pattern that you specify.

$ sed ’/rich/s/bash/csh/’ /etc/passwd

This filter finds the line that contains the text rich, and replaces the text bash with csh.

You can also group more than one command together for a specific address:

address {
command1
command2
command3

}

The sed editor applies each of the commands you specify only to lines that match the address
specified. The sed editor will process each command listed on the address line(s):

$ sed ’2{
> s/fox/elephant/
> s/dog/cat/
> }’ data1

The sed editor applies each of the substitutions to the second line in the data file.

Deleting lines

The delete command, d, pretty much does what it says. It’ll delete any text lines that match

the addressing scheme supplied. Be careful with the delete command, for if you forget to include
an addressing scheme, all of the lines will be deleted from the stream:

$ sed ’d’ data1

The delete command is obviously most useful when used in conjunction with a specified address.

This allows you to delete specific lines of text from the data stream, either by line number:

$ sed ’3d’ data6

or a specific range of lines:

$ sed ’2,3d’ data6

761

www.IrPDF.com

www.IrPDF.com

B Quick Guide to sed and gawk

The pattern-matching feature of the sed editor also applies to the delete command:

$ sed ’/number 1/d’ data6

Only lines matching the specified text are deleted from the stream.

Inserting and appending text

As you would expect, like any other editor, the sed editor allows you to insert and append text

lines to the data stream. The difference between the two actions can be confusing:

■ The insert command (i) adds a new line before the specified line.

■ The append command (a) adds a new line after the specified line.

A confusing thing about these two commands is their formats. You can’t use these commands on

a single command line. You must specify the line to insert or append on a separate line by itself.
The format for doing this is:

sed ’[address]command\

new line’

The text in new line appears in the sed editor output in the place you specify. Remember, when

you use the insert command, the text appears before the data stream text:

$ echo "testing" | sed ’i\

› This is a test’
This is a test
testing
$

And when you use the append command, the text appears after the data stream text:

$ echo "testing" | sed ’a\

› This is a test’
testing
This is a test
$

This allows you to insert text at the end of the normal text.

Changing lines

The change command allows you to change the contents of an entire line of text in the data
stream. It works the same as the insert and append commands, in that you must specify the new
line separately from the rest of the sed command:

$ sed ’3c\

› This is a changed line of text.’ data6

The backslash character is used to indicate the new line of data in the script.

762

www.IrPDF.com

www.IrPDF.com

Quick Guide to sed and gawk B

Transform command

The transform command (y) is the only sed editor command that operates on a single

character. The transform command uses the format:

[address]y/inchars/outchars/

The transform command performs a one-to-one mapping of the inchars and the outchars

values. The first character in inchars is converted to the first character in outchars. The second

character in inchars is converted to the second character in outchars. This mapping continues

throughout the length of the specified characters. If the inchars and outchars are not the same

length, the sed editor will produce an error message.

Printing lines

Similar to the p flag in the substitution command, the p command prints a line in the sed editor

output. The most common use for the print command is for printing lines that contain matching

text from a text pattern:

$ sed -n ’/number 3/p’ data6
This is line number 3.
$

The print command allows you to filter only specific lines of data from the input stream.

Writing to a file

The w command is used to write lines to a file. The format for the w command is:

[address]w filename

The filename can be specified as either a relative or absolute pathname, but in either case the

person running the sed editor must have write permissions for the file. The address can be any

type of addressing method used in sed, such as a single line number, a text pattern, or a range of

line numbers or text patterns.

Here’s an example that prints only the first two lines of a data stream to a text file:

$ sed ’1,2w test’ data6

The output file test contains only the first two lines from the input stream.

Reading from a file

You’ve already seen how to insert and append text into a data stream from the sed command line.

The read command (r) allows you to insert data contained in a separate file.

763

www.IrPDF.com

www.IrPDF.com

B Quick Guide to sed and gawk

The format of the read command is:

[address]r filename

The filename parameter specifies either an absolute or relative pathname for the file that con-

tains the data. You can’t use a range of addresses for the read command. You can only specify a

single line number or text pattern address. The sed editor inserts the text from the file after the

address.

$ sed ’3r data’ data2

The sed editor inserts the complete text from the data file into the data2 file, starting at line 3

of the data2 file.

The gawk program
The gawk program is the GNU version of the original awk program in Unix. The awk program

takes stream editing one step further than the sed editor by providing a programming language

instead of just editor commands. This section describes the basics of the gawk program as a quick

reference to its abilities.

The gawk command format
The basic format of the gawk program is:

gawk options program file

Table B-2 shows the options available with the gawk program.

TABLE B-2

The gawk Options

Option Description

-F fs Specify a file separator for delineating data fields in a line.

-f file Specify a filename to read the program from.

-v var=value Define a variable and default value used in the gawk program.

-mf N Specify the maximum number of fields to process in the data file.

-mr N Specify the maximum record size in the data file.

-W keyword Specify the compatibility mode or warning level for gawk. Use help to
list all the available keywords.

764

www.IrPDF.com

www.IrPDF.com

Quick Guide to sed and gawk B

The command line options provide an easy way to customize features in the gawk program.

Using gawk
You can use gawk either directly from the command line or from within your shell scripts. This

section demonstrates how to use the gawk program, and how to enter scripts for gawk to process.

Reading the program script from the command line

A gawk program script is defined by an opening and closing brace. You must place script com-

mands between the two braces. Since the gawk command line assumes that the script is a single

text string, you must also enclose your script in single quotation marks. Here’s an example of a

simple gawk program script specified on the command line:

$ gawk ’{print $1}’

This script will display the first data field in every line of the input stream.

Using multiple commands in the program script

A programming language wouldn’t be very useful if you could only execute one command. The

gawk programming language allows you to combine commands into a normal program. To use

multiple commands in the program script specified on the command line, just place a semicolon

between each command:

$ echo "My name is Rich" | gawk ’{$4="Dave"; print $0}’
My name is Dave
$

The script performs two commands: first it replaces the fourth data field with a different value,

then it displays the entire data line in the stream.

Reading the program from a file

Just as with the sed editor, the gawk editor allows you to store your programs in a file and refer

to them in the command line:

$ cat script2
{ print $5 "’s userid is " $1 }
$ gawk -F: -f script2 /etc/passwd

The gawk program processes all of the commands specified in the file on the input stream data.

765

www.IrPDF.com

www.IrPDF.com

B Quick Guide to sed and gawk

Running scripts before processing data

The gawk program also allows you to specify when the program script is run. By default, gawk

reads a line of text from the input, then executes the program script on the data in the line of

text. Sometimes you may need to run a script before processing data, such as to create a header

section for a report. To do that you use the BEGIN keyword. This forces gawk to execute the

program script specified after the BEGIN keyword before reading the data:

$ gawk ’BEGIN {print "This is a test report"}’
This is a test report
$

You can place any type of gawk command in the BEGIN section, such as assigning default values

to variables.

Running scripts after processing data

Similar to the BEGIN keyword, the END keyword allows you to specify a program script that gawk

executes after reading the data:

$ gawk ’BEGIN {print "Hello World!"} {print $0} END {print
"byebye"}’

Hello World!
This is a test
This is a test
This is another test.
This is another test.
byebye
$

The gawk program executes the code in the BEGIN section first, then processes any data in the

input stream, then executes the code in the END section.

The gawk variables
The gawk program is more than just an editor; it’s a complete programming environment. As

such, there are lots of commands and features associated with gawk. This section shows the main

features you’ll need to know for programming with gawk.

Built-in variables

The gawk program uses built-in variables to reference specific features within the program data.

This section describes the gawk built-in variables available for you to use in your gawk programs,

and demonstrates how to use them.

The gawk program defines data as records and data fields. A record is a line of data (delineated

by the newline characters by default), and a data field is a separate data element within the line

(delineated by a white space character, such as a space or tab, by default).

766

www.IrPDF.com

www.IrPDF.com

Quick Guide to sed and gawk B

The gawk program uses data field variables to reference data elements within each record.

Table B-3 describes these variables.

TABLE B-3

The gawk Data Field and Record Variables

Variable Description

$0 The entire data record.

$1 The first data field in the record.

$2 The second data field in the record.

$n The nth data field in the record.

FIELDWIDTHS A space separated list of numbers defining the exact width (in spaces) of
each data field.

FS Input field separator character.

RS Input record separator character.

OFS Output field separator character.

ORS Output record separator character.

Besides the field and record separator variables, gawk provides some other built-in variables to

help you know what’s going on with your data and extract information from the shell environ-

ment. Table B-4 shows the other built-in variables in gawk.

You can use the built-in variables anywhere in the gawk program script, including the BEGIN and

END sections.

Assigning variables in scripts

Assigning values to variables in gawk programs is similar to how you do it in a shell script, using

an assignment statement:

$ gawk ’
> BEGIN{
> testing="This is a test"
> print testing
> }’
This is a test
$

Once you assign a value to a variable, you can use that variable anywhere in your gawk script.

767

www.IrPDF.com

www.IrPDF.com

B Quick Guide to sed and gawk

TABLE B-4

More gawk Built-In Variables

Variable Description

ARGC The number of command line parameters present.

ARGIND The index in ARGV of the current file being processed.

ARGV An array of command line parameters.

CONVFMT The conversion format for numbers (see the printf statement). The default
value is %.6g.

ENVIRON An associative array of the current shell environment variables and their values.

ERRNO The system error if an error occurs reading or closing input files.

FILENAME The file name of the data file used for input to the gawk program.

FNR The current record number in the data file.

IGNORECASE If set to a non-zero value, gawk all string functions (including regular
expressions); ignore the case of characters.

NF The total number of data fields in the data file.

NR The number of input records processed.

OFMT The output format for displaying numbers. The default is %.6g.

RLENGTH The length of the substring matched in the match function.

RSTART The start index of the substring matched in the match function.

Assigning variables in the command line

You can also use the gawk command line to assign values to variables for the gawk program. This
allows you to set values outside of the normal code, changing values on the fly. Here’s an example
of using a command line variable to display a specific data field in the file:

$ cat script1
BEGIN{FS=","}
{print $n}
$ gawk -f script1 n=2 data1
$ gawk -f script1 n=3 data1

This feature is a great way to process data from your shell scripts in the gawk script.

The gawk program features
There are a few features of the gawk program that make it handy for manipulating data, allowing
you to create gawk scripts that can parse just about any type of text file, such as log files.

768

www.IrPDF.com

www.IrPDF.com

Quick Guide to sed and gawk B

Regular expressions

You can use either a Basic Regular Expression (BRE) or an Extended Regular Expression (ERE) to

filter which lines in the data stream the program script applies to.

When using a regular expression, the regular expression must appear before the left brace of the

program script that it controls:

$ gawk ’BEGIN{FS=","} /test/{print $1}’ data1
This is a test
$

The matching operator

The matching operator allows you to restrict a regular expression to a specific data field in the

records. The matching operator is the tilde symbol (∼). You specify the matching operator, along

with the data field variable, and the regular expression to match:

$1 ~ /^data/

This expression filters records where the first data field starts with the text data.

Mathematical expressions

Besides regular expressions you can also use mathematical expressions in the matching pattern.

This feature comes in handy when matching numerical values in data fields. For example, if you

want to display all of the system users who belong to the root users group (group number 0),

you could use this script:

$ gawk -F: ’$4 == 0{print $1}’ /etc/passwd

This script displays the first data field value for all lines that contain the value 0 in the fourth

data field.

Structured commands

The gawk program supports the following structured commands:

The if-then-else statement:

if (condition) statement1; else statement2

The while statement:

while (condition)
{

statements
}

769

www.IrPDF.com

www.IrPDF.com

B Quick Guide to sed and gawk

The do-while statement:

do
{

statements
} while (condition)

The for statement:

for(variable assignment; condition; iteration process)

This provides a wealth of programming opportunities for the gawk script programmer. You can

write gawk programs that rival the functions of just about any higher-level language program.

770

www.IrPDF.com

www.IrPDF.com

Comparing Shells

W
ith the wealth of shells available in the Linux environment,
sometimes it’s hard to decide which shell best suits your needs.
Other times you’re limited to using a specific shell and need

to determine which features that you use in shell scripts in your default
shell are available in the new shell and which ones aren’t supported. This
appendix provides a quick comparison between the features of the different
shells that are commonly used in the Linux environment.

Variables

Each shell supports environment and user-defined variables, but they differ
on just how they support variables. This section describes the things you
need to watch out for when working with variables in your shell scripts.

Environment variables
The bash, dash, ksh93, and zsh shells all use all uppercase letters for
environment variables. The zsh shell provides both upper- and lower-case
environment variables for the common variables, so if you refer to upper-
case environment variables in your script, they’ll work just fine in the
zsh shell.

Unfortunately, the tcsh shell uses lower-case variables for special shell
variables. However, it does provide a limited number of upper-case envi-
ronment variables that match some of the basic Bourne shell environment
variables to provide limited compatibility. If your shell script relies heavily
on bash shell environment variables, you’ll want to check to make sure that
those variables are available in the tcsh shell.

771

www.IrPDF.com

www.IrPDF.com

C Comparing Shells

One thing to watch out for is that the tcsh shell sets environment variables differently from the
other shells. It uses the setenv command for setting environment variables:

setenv variable value

This is different from the set command (described in the ‘‘User-defined variables’’ section next),
which the other shells use for environment variables.

User-defined variables
All shells allow users to define their own variables both on the command line and in shell scripts.
All of the shells except the tcsh shell allow you to set variables directly from the command prompt
without a special command:

$ testing=100

In the tcsh shell you must use the set command:

$ set testing=100

You can also use the set command in other shells as well, but it’s not required. The tcsh shell
also uses the at symbol for setting variables:

$ @ testing=100

In all shells, to make a variable accessible by child shells and processes, you must use the export
command:

$ export testing

The typeset command is available in all shells to declare attributes for the variable before using
it. In the ksh93 and zsh shells you must use the typeset command to define associative array
variables:

$ typeset -A testing

The ksh93 and zsh shells also allow you to define floating-point variables using the
typeset command.

Array variables
All of the shells support one-dimensional numeric arrays:

$ mytest=(one two three four five)
$ echo $mytest
one
$ echo ${mytest[2]}
three
$ echo ${mytest[*]}
one two three four five
$

772

www.IrPDF.com

www.IrPDF.com

Comparing Shells C

In the bash, ksh93, and tcsh shells, numeric arrays start at 0 for the first element. The zsh shell
starts arrays with an index value of 1 instead of 0.

The ksh93 and zsh shells also support associative arrays, which allow you to use a text value
as the array index. In the ksh93 shell, you define an associative array like this:

$ typeset -A test2
$ test2=([fruit]=banana [vegetable]=carrot [age]=18)

whereas in the zsh shell you do it like this:

% typeset -A test
% test=(fruit banana vegetable carrot age 18)

Notice the subtle difference in the way that the data elements are defined.

Structured Commands
All of the shells support the basic structured commands for manipulating the flow of the shell
script. Some of them use a slightly different syntax though. This section discusses the differences
between the shells.

The if-then, while, and until statements
The bash, dash, ksh93, and zsh shells use the same format for if-then, while, and until
statements. The format for the if-then statement is:

if command
then

commands
else

commands
fi

The same format applies to the while and until statements. Each statement executes a com-
mand, then checks the exit status of the command. The if-then statement executes the first
set of commands if the exit status is zero, and the second set of commands if the exit status is
non-zero.

The while and until statements loop through the specified commands until the exit status
of the evaluation command is zero.

The tcsh shell uses a slightly different format for each of these statements:

if (expression) then
commands

else
commands

endif

773

www.IrPDF.com

www.IrPDF.com

C Comparing Shells

The while and until statements use a similar format, using the expression instead of a command

as the evaluation. In both formats, the result of the expression determines which section the shell

executes. If the expression exits with an exit status of 0, the shell executes the commands in the

then section. If the expression exits with a non-zero exit status, the shell executes the commands

in the else section.

The bash, dash, ksh93, and zsh shells use the test command (or its alias, []) to evaluate values

and files:

if [-d $HOME]
then

echo "Your HOME directory exists"
else

echo "There’s a problem with your HOME directory"
fi

The tcsh shell uses this expression, which incorporates testing expressions similar to those used

by the test command:

if (-d $HOME) then
echo "The HOME directory exists"

endif

This subtle difference can cause all sorts of problems for shell scripts.

The for statement
The for statement is another problem area. The bash, dash, ksh93, and zsh shells all use the

same format for the basic for statement:

for var in list
do

commands
done

The bash and zsh shells also support the C-style for statements:

for ((variable assignment ; condition ; iteration process))

However, the tcsh shell doesn’t support the for statement. Instead, it uses the foreach
statement:

foreach var1 (wordlist)
statements

end

This is a huge compatibility problem when migrating shell scripts within the tcsh environment.

774

www.IrPDF.com

www.IrPDF.com

Comparing Shells C

Mathematical Operations
All of the shells allow you to perform some level of mathematical operations within them. This is

the area where the ksh93 and zsh shells shine.

The bash and dash shells use the expr command to evaluate a mathematical expression:

$ expr 1 + 5
6

They both also provide the $[] and $(()) shortcuts for defining mathematical operations:

$ var1=$[1 + 5]
$ echo $var1
6

The tcsh shell uses the at symbol for defining mathematical operations:

$ set test1 = 10
$ set test2 = 15
$ @ test3 = ($test1 * $test2)
$ echo $test3
150
$

The bash, dash, and tcsh shells can only perform integer mathematical operations.

Both the ksh93 and zsh shells use two methods for defining mathematical operations. The let
command:

% let value1=" 4 * 5.1 / 3.2 "
% echo $value1
6.3749999999999991

and the $(()) shortcut:

% value1=$((4 * 5.1))
% ((value2 = 4 * 5.1))
% printf "%6.3f\n" $value1 $value2
20.400
20.400
%

Also, both the ksh93 and zsh shells fully support floating-point arithmetic in all mathematical

operations.

775

www.IrPDF.com

www.IrPDF.com

C Comparing Shells

The ksh93 shell includes many common mathematical functions built into the shell:

$ value1=$((sqt(9)))
$ echo $value1
3

The zsh shell doesn’t include mathematical functions built-in, but provides them as a separate

loadable module:

% zmodload zsh/mathfunc
% value1=$((sqrt(9)))
% echo $value1
3.

Obviously, if you’re interested in writing shell scripts with advanced mathematical functions,

you’ll want to choose the ksh93 or zsh shells over the others.

776

www.IrPDF.com

www.IrPDF.com

A
absolute filepaths, 67–68

address command, sed editor, 432

alias command, 143–144

actions of, 144, 750

dash shell, 545

ksh93 shell, 599

tcsh shell, 574

zsh shell, 626

alloc command, tcsh shell, 574, 576–577

Almquist shell. See ash shell

alternative screen, 29

amaroK, 17

ampersand (&)

sed editor, matching pattern in substitution

command, 488–489

shell script, running in background, 341–342,

345

anacron program, scheduling scripts, 354–355

anchor characters, in regular expressions, 452–454,

467

animation, alternative screen buffering, 29

ANSI character set, 28

ANSI escape codes

color, adding to script, 392–395

control sequence indicator (CSI), 392–393

resetting, 394

append command, sed editor, 437–438, 762

appending

data, greater-than (≫), 211

text, sed editor, 436–438

archive(s), 740–744

archiving data, 120–121

daily archive, 741–742

with e-mail, 744–746

hourly archive, 742–744

importance of, 740

zip file, 745

ARGC, gawk variable, 505–506

ARGIND, gawk variable, 505

ARGV, gawk variable, 505–506

array variables

associative array variables, 510–512

environment variables, 142–143

functions of, 142

gawk program, 510–512

index value of, 142–143

ksh93 shell, 595

passing to function, 375–376

returning from functions, 376–377

shells, comparisons, 772–773

tcsh shell, 578

arrow keys, terminal emulation support, 31

ASCII character set

printing, sed editor, 442

terminal emulation support, 27

ash shell, 533–540

built-in commands, 536–539

command line parameters, original ash shell,

535–536

commands with same name, specifying, 536

features of, 14

functions, defining, 553–554

hash table, 538–539

last command, executing, 539

mathematical operations, 550

special characters, displaying, 552–553

start-up files, 539–540

test command, 550–552

version, checking, 533

777

www.IrPDF.com

www.IrPDF.com

A Index

associative array variables

gawk program, 510–512

ksh93 shell, 595–596

asterisk (*)

character classes, 461

in cron table, 353–354

regular expressions pattern matching, 448,

460–461

wildcard character, 75

at command, actions of, 350–352

atq command, actions of, 352

atrm command, actions of, 352

autoload command, zsh shell, 626, 635–636

awk program, 423

B
background mode

ampersand (&) for, 341–342, 345

color, adding, 392–393

exiting, 343

multiple jobs, running, 342–343

processes running in, 341

scripts, running in, 341–343

stopped jobs, restarting, 347

backslash (\)

with environment variables, 206

in regular expressions, 451–452

special prompt characters, 61

backtick

back quote character, on keyboard, 209

bash calculator (bc), 222–223

example of use, 210

functions of, 209–210

sed editor, output redirection, 490–491

backups. See archive(s)

bar operator (|), piping, 213

basename command, actions of, 288–289

BASH, functions of, 131, 754

bash calculator (bc), 219–223

accessing, 220

backtick, 222–223

inline input redirection, 222

scale variable, 220

in shell scripts, 221–223

bash shell, 59–121

bashisms, 549

.bashrc file, defining functions in, 382–383

Bourne variables, 131

built-in commands, listing of, 750–751

command line parameters, 60

data files operations, 110–121

directory handling, 82–83

disk space monitoring, 108–110

environment variables, 123–145, 754–757

external commands, listing of, 752–753

file handling, 75–82

file/directory listing, 69–75

filesystem, 64–68

functions of, 59

interactive shell, 139–141

login shell, 136–139

media management, 104–110

name, meaning of, 13

non-interactive shell, 141

online manual, 63–64

processes, 91–104

prompt characters, 60–62

startup files, 135

user account information, 59–60

BASH ARGC, functions of, 754

BASH ARGV, functions of, 754

BASH COMMAND, functions of, 754

BASH ENV, functions of, 131, 141, 754

BASH EXECUTION STRING, functions of,

754

BASH LINENO, functions of, 754

BASH REMATCH, functions of, 754

BASH SOURCE, functions of, 754

BASH SUBSHELL, functions of, 754

BASH VERSINFO, functions of, 131

BASH VERSION, functions of, 131, 754

.bashrc file, defining functions in, 382–383

Basic Regular Expression (BRE) engine, 449

batch command, actions of, 352–353

bc command, actions of, 220–222

778

www.IrPDF.com

www.IrPDF.com

Index C

bg command

actions of, 347, 750

ash shell, 537

dash shell, 545

ksh93 shell, 599

tcsh shell, 574

zsh shell, 626

binary directory, 67

bind command, actions of, 750

bindkey command

tcsh shell, 574, 577

zsh shell, 626

blank lines, deleting, sed editor, 495–497

blink, control codes for, 392–394, 397

block device files, 10

block mode graphics, terminal emulation

support, 28

bltin command, ash shell, 536–537

bold font, control codes for, 392, 397

bookmarks

Konsole terminal, 50

xterm terminal emulator, 47

Boolean operators, if-then statement, 249–250

boot

boot directory, 67

Linux run levels, 356

process of, 356–357

scripts, starting at, 355–357

startup files, location of, 357–358

Bourne shell, 13–14

Bourne variables, listing of, 131

bracket(s), double ([[]]), pattern matching,

251–252

bracket(s), single ([])

bracket-matching, GNOME terminal,

194

character class, defining with, 455–456

in math operations, 218–219

branch command, sed editor, 484–487

break command

actions of, 275–277, 750

break out of inner loop, 276–277

break out of loop, 275–276

break out of outer loop, 277

gawk program, 517–518

BREAK key, terminal emulation support, 30

BSD-style parameters, ps command, 96–98

buffer(s)

display buffering, 29

emacs editor, saving to file, 178

emacs editor, use of buffers, 181

vim editor, saving to file, 174

builtin command

actions of, 750

ksh93 shell, 599

zsh shell, 626

built-in commands

ash shell, 536–539

dash shell, 544–549

ksh93 shell, 597–602

tcsh shell, 574–577

zsh shell, 625–631

built-in variables, gawk program, 502–508,

766–768

builtins command, tcsh shell, 574

bunzip2 command, actions of, 117

bye command, zsh shell, 626

bzcat command, actions of, 117

bzip2 command, actions of, 116–117, 752

C
C language, for command, 264–266

calculator, bash calculator (bc), 219–223

calendar, zenity dialog window, 413–414

caller command, actions of, 750

capturing feature, xterm terminal, 40

caret (ˆ)

character classes, negating, 457–458

regular expression anchor, 452–453, 467, 493

case command

menu logic, adding, 388

options, processing, 295–298

value of variable, evaluating, 252–253

case statements, zsh shell, 633

cat command, actions of, 85–87, 260, 325, 752

779

www.IrPDF.com

www.IrPDF.com

C Index

cd command

actions of, 750

ash shell, 537, 538

dash shell, 545

ksh93 shell, 599

tcsh shell, 574

zsh shell, 626

CD distribution, LinuxLiveCD, 23–24

CDPATH, dash shell, 541

chage command

actions of, 154, 156–157, 752

parameters of, 157

change command, sed editor, 438–439

change directory, 66

character classes, 455–458

asterisk (*), 461

brackets ([]) to define, 455–456

combining, 456–457

defined, 455

interval pattern matching, 464

misspellings, finding, 457, 460

negating, 457–458

pipe symbol (|), 465

plus sign (+), 462–463

question mark (?), 462

range of characters in, 458–459

special character classes, 459–460

utility of, 455–456

character device files, 10

character sets, terminal emulation support, 27

charset command, MySQL, 647

chdir command

tcsh shell, 574

zsh shell, 626

chfn command, actions of, 154, 155–156, 752

chgrp command, actions of, 166, 752

child processes

and global environment variables, 124–125

and local environment variables, 128

chmod command, actions of, 163–165, 167, 666,

752

chown command, actions of, 165–166, 752

chpasswd command, actions of, 154, 155, 752

chsh command, actions of, 154, 155, 752

clear command

actions of, 386, 387, 396

MySQL, 647

client(s)

client/server connection, 695–696

defined, 695

See also TCP module

coding

backtick, 209–210

color, adding, 391–397

command line options, 295–305

command line parameters, 285–295

dash shell scripting, 549–555

dialog boxes, 397–409

environment variables, 206–207

exiting script, 222–226

functions, 363–384

GNOME window widgets, 412–417

if-then statement, 229–253

input and output, 313–334

input redirection, 211–213

job control, 344–347

KDE window widgets, 409–412

looping, 271–282

mathematical operations, 216–223

messages, displaying, 204–205

output redirection, 211

piping, 213–216

regular expressions, 447–471

scheduling priority, 348–349

script file, creating, 202–204

scripts, running at scheduled time, 349–355

scripts, running for every user, 358

scripts, running in background, 341–343

scripts, running without console, 343–344

signals, 335–341

for statement, 255–266

text menus, 385–391

until command, 269–270

user input, read command, 305–310

user variables, 207–209

while command, 266–269

780

www.IrPDF.com

www.IrPDF.com

Index C

color, 391–397

ANSI color control codes, 393

ANSI escape codes, 392–395

ANSI SGR effect control codes, 392

GNOME editor, 195

GNOME terminal, 56

Konsole terminal, 50

KWrite editor, 186

listed files/directories, 69

in scripts, adding to, 395–397

Select Graphic Rendition (SGR) escape codes,

392–393

terminal emulation support, 29–30

COLUMNS, functions of, 131, 754

COM WORDBREAKS, functions of, 755

command(s)

alternative shells. See built-in commands

command alias, 143–144

multiple commands, entering, 201–202

multiple from same directory, caution, 344

piping, 213–216

structured commands, 229

values, reading from command, 260

See also specific commands

command alias, 143–144

creating, 144

functions of, 143

command command

actions of, 750

ksh93 shell, 599

zsh shell, 626

command line editors

gawk program, 423–429

sed editor, 420–423, 430–445

command line, functions, creating on, 381–382

command line interface (CLI), 25–26

Linux console, 26

command line mode, vim editor, 173–174

command line options, 295–305

dash, double (--), end of list, 296–297

formatting, 299–300

formatting in scripts, 300–301

functions of, 295

geopts command, 302–304

getopt command, 299–301

listing of, 305

optstring, functions of, 299, 302

processing with values, 297–299

separating from parameters, 296–297

simple, processing, 295–296

command line parameters, 285–295

bash shell, 60

combining parameters, 72

counting parameters, 290–292

full-word (double dash), 72

functions of, 285

iteration through, 292–293

manipulating, 293–294

missing parameters, caution about, 289–290

multiple, separating on command line,

286–287

passing to function, 370–372

positional parameters, 285–287

program name, reading, 288–289

separating from options, 296–297

single-letter (single dash), 72

testing for data, 289–290

user input, getting data from, 305–310

command modules, zsh shell, 612, 612–615,

629–631

command redirection, ksh93 shell, 607

comment field, 149

COMP CWORD, functions of, 131, 755

COMP LINE, functions of, 131, 755

COMP POINT, functions of, 132, 755

COMP WORDS, functions of, 132, 755

compgen command, actions of, 750

complete command

actions of, 750

tcsh shell, 574

compound variables, ksh93 shell, 596–597

COMPREPLY, functions of, 132, 755

compress command, actions of, 116–117, 752

compression

database, extracting, 642

Linux utilities for, 116–119, 745

781

www.IrPDF.com

www.IrPDF.com

C Index

configuration files directory, 67

Configure Konsole settings, 51–52

connect command, MySQL, 647

console mode, emacs editor, 176–177, 181

continue command

actions of, 278–280, 750

gawk program, 517

loops, suspend processing, 278–280

control codes

colors, 29–30

functions of, 28

terminal emulation support, 27–28

control sequence indicator (CSI), ANSI escape

codes, 392–393

control signals, xterm terminal emulator, 48–49

CONVFMT, gawk variable, 505

cookies, 675

copy and paste

emacs editor, 179

GNOME editor, 193

KWrite editor, 185

vim editor, 174–175

copying files, 76–79

command parameters, 77–79

source and destination parameters, 76–77

wildcards in, 78

core Linux distributions, 21–22

coreutils package, components of, 13

cp command

actions of, 76–79, 752

ash shell, 535

linking files, 79–80

parameters of, 78

CPU usage, monitoring, 732–739

create directories, 82

create files, 75–76

cron command, actions of, 352–353

cron tables

and anacron program, 354–355

building table, 354

if-then statement, use of, 354

listing table, 354

regular jobs, scheduling, 353–355

curl command

actions of, 688–694

parameters of, 689–693

cURL program, 687–694

command line, 688

command line parameters, 689–693

files supported by, 687

HTML code, returning, 688–689, 693–694

installing, 687–688

curly braces ({ })

gawk program, 424

regular expressions, intervals, 463–464

D
d command, sed editor, 492–493

D command, sed editor, 478–479, 494–495

dash, double (--)

end of options list, 296–297

widgets, specifying on command line, 397

dash shell, 540–555

built-in commands, 544–549

command line parameters, 540–541

data, displaying from command line,

546–547

development of, 534

environment variables, 540–543

format specifiers, 546–547

functions, defining, 553–554

mathematical operations, 550

positional parameters, 543–544

scripts, creating, 549–555

special characters, displaying, 552–553

system resources, restricting, 547–549

test command, 550–552

user variables, 544

data buffering, types of, 29

data constraint, database tables, 660

data field, 659

data files

archiving data, 120–121

compressing data, 116–119

contents of, 84

782

www.IrPDF.com

www.IrPDF.com

Index D

search for data, 114–115

sorting data, 110–114

data sharing, shared memory pages, 7

database

commands, sending to server, 666–669

connecting to, 664–666

data field in, 659

formatting tags, 670–671

MySQL database, 639–651

output, assigning to variable, 670

PostgreSQL database, 651–659

records, 659

tables. See database tables

database tables, 659–664

creating, 659–661

data constraint, 660

inserting/deleting data, 661–662

querying data, 663–664

date. See time/date

date command, actions of, 230, 734, 744

date of files, checking for, 248–249

Debian, 21

startup file location, 357

DEC VT terminals

models, 28

xterm terminal options. See xterm terminal

declare command

actions of, 750

zsh shell, 626

delete

directories, 82–83

files, 81–82

versus kill text, 178

sed editor, consecutive blank lines, 495–496

sed editor, leading blank lines, 496

sed editor, multilines, 434–436

sed editor, single-line, 434–436, 761–762

sed editor, trailing blank lines, 497

text, emacs editor, 178

delete command

array variables, 511–512

sed editor, 434–436, 454, 478

delete key, terminal emulation support, 30–31

delimiter, MySQL, 647

Derbian Linux, dash shell, 534

desktop environment, 14–20

GNOME desktop, 17–18

KDE desktop, 16–17

and older PCs, 18–20

X Windows system, 14–15

destination object, copying files, 76–77

device directory, 67

device files, types of, 10–11

/dev/null, null file, 328

df command, actions of, 108–109, 726–727, 752

dialog boxes, 397–409

customizing, command options, 405–407

dialog widgets, listing of, 398

for filenames, 403–404

fselect widget, 403–404

inputbox widget, 401

menu widget, 402–403

msgbox widget, simple box, 399

in scripts, creating, 407–409

textbox widget, 402

widgets, specifying on command line, 397

yesno widget, 400

dialog command

actions of, 397–409

options, listing of, 405–406

in scripts, 407–409

See also dialog boxes

digiKam, 17

directory(ies)

absolute filepaths, 67–68

change directory, 66

checking for, 243–244

creating, 82

deleting, 82–83

destination paratmeters, 66

disk usage for, viewing, 109–110

file globbing, 262–264

filename as, checking, 241–242

files, copying to, 77

files, counting with regular expressions,

466–467

783

www.IrPDF.com

www.IrPDF.com

D Index

directory(ies) (continued)

forward slash (/), use of, 65

inodes of, 72, 74

listing directories, 69–75

mount points, 65

object, checking, 242–243

PATH environment variable, adding to,

134–135

relative filepaths, 68

shared, creating, 167–168

temporary, creating, 331–332

for temporary files (/tmp), 328

virtual directory, 65–66

dirs command

actions of, 750

tcsh shell, 574

zsh shell, 626

DIRSTACK, functions of, 132, 755

disable command, zsh shell, 626

discipline functions

defined, 608

ksh93 shell, 608–609

disk space

disk hogs, catching, 728–732

disk usage for directory, viewing, 109–110

monitoring, 725–728

viewing, 108–109

disown command

actions of, 750

ksh93 shell, 599

zsh shell, 626

display buffering, terminal emulation support, 29

distributions. See Linux distributions, 20–24

do command, with for statement, 256

dollar sign ($)

environment variables, referencing, 125,

206–207, 754

mathematical operations, 218–219

regular expression anchor, 453–454, 493

user variables, referencing, 208–209

dollar sign/question mark ($?), exit status,

223–224

done command, with for statement, 256

dot character

in regular expressions, 454–455

regular expressions pattern matching, 460

dot operator, source command, 380, 383

dot/double dot (.)(..), 68

double-spacing, sed editor scripts, 491–493

do-while statement, gawk program, 518,

770

driver(s), code, inserting in kernel, 10

du command, actions of, 109–110, 752

dumb terminal, 25

See also terminal emulation

dyne:bolic, 22

E
echo command

actions of, 125, 750

ash shell, 552–553

color, displaying, 395

dash shell, 545, 552–553

displaying messages, 204–205

ksh93 shell, 597, 599

and menu creation, 386–387

printable characters, displaying, 386

tcsh shell, 561, 574

zsh shell, 616–617, 626

echo statement

adding to scripts, 204–205

ash shell, 552–553

dash shell, 552–553

echotc command, tcsh shell, 574

edit command, MySQL, 647

Edit menu

GNOME terminal, 56

Konsole terminal, 48–49

editor(s)

emacs editor, 176–183

gawk program, 423–429

GNOME editor, 191–197

Kate editor, 189–191

KWrite editor, 183–188

sed editor, 420–423, 430–445

784

www.IrPDF.com

www.IrPDF.com

Index E

stream editor, 420

vim editor, 171–176

ego command, MySQL, 647

egrep command, actions of, 116

elif statement, 232–233

ksh93 shell, 605

value of variable, evaluating, 252–253

emacs editor, 176–183

buffer, saving to file, 178

buffers, use of, 181

console mode, 176–177, 181

copy and paste, 179

cursor, moving, 177–178

delete text, 178

extend command, 178

find a file mode, 180

graphical window, 182–183

insert text, 178

killing text, 178–179

Meta key, use of, 176

search and replace, 179–180

single mode operation, 177

windows in, 181

in X Windows, 181–183

yanking, 179

e-mail, 701–723

address, parts of, 469–470

archiving data with, 744–746

Evolution, 707–708

KMail program, 707–708

mail delivery agent (MDA), 703–705

mail transfer agent (MTA), 702–703

mail user agent (MUA), 705

Mailx, 705–706, 717–720

message of job completion, 351–352

Mutt program, 706–707, 720–723

parsing address, regular expressions,

469–471

Postfix, 711–716

relay spam problem, 703

sendmail, 709–711

empty files, checking for, 244–245

emulate command, zsh shell, 626

enable command

actions of, 750

zsh shell, 626

encoding

GNOME terminal, 57

Konsole terminal, 50

ENVIRON, gawk variable, 505–506

environment variables, 123–145

arrays, 142–143

backslash, use with, 207

bash shell, 131–134

command alias, 143–144

creating, lower case for, 128

dash shell, 540–543

functions of, 123

global, 124–125

ksh93 shell, 590–593

local, 125–127

Lynx program, 683–684

PATH, setting, 134–135

referencing, dollar sign, 125, 206–207

removing, 129–130

in script building, 206–207

setting, 127–129

shells, comparisons, 771–772

system, locating, 135–141

tcsh shell, 570–571, 573–574

zsh shell, 619–623

epiphany, 19

equal sign (=) command, sed editor, 441–442

equal sign, double (==), string equality, testing,

ash/dash shells, 551

equal sign, single (=), values for user variables,

208

ERRNO, gawk variable, 505

error messages

file descriptors for, 316–317

redirection of, 316–317

/etc/bashrc startup file, 140–141

/etc/group file, group information in, 157–158

/etc/passwd file, user information in, 147

/etc/profile startup file

environment variables, setting, 136–138

785

www.IrPDF.com

www.IrPDF.com

E Index

/etc/profile startup file (continued)

login shell, 136–138

for statement, use of, 137–138

/etc/shadow file, user information in, 150

EUID, functions of, 132, 755

eval command

actions of, 750

ash shell, 537

dash shell, 545

ksh93 shell, 599

tcsh shell, 574

zsh shell, 626

evince, 19

Evolution, 707–708

exclamation mark (!), sed editor, negating

commands, 481–484

exec command

actions of, 321–322, 324, 750

ash shell, 537

dash shell, 545

ksh93 shell, 599

tcsh shell, 574

zsh shell, 626

executable files, contents of, 84

exit

background mode, 343

dollar sign/question mark ($?),

223–224

exit command, 225–226

exit status, 222–223

exit status codes, 224

functions, 367–368

during stopped job, 338

terminal, 343

trapping shell script, 339–340

exit command

actions of, 225–226, 750

ash shell, 537

dash shell, 545

ksh93 shell, 599

MySQL, 647

tcsh shell, 574

zsh shell, 626

export command

actions of, 129, 750

ash shell, 537

dash shell, 544, 545

ksh93 shell, 599

zsh shell, 626

expr command, 216–218

actions of, 216–218

ash shell, 550

dash shell, 550

limitations of, 217–218

operators, 217

operators, listing of, 217

ext filesystem, 12

ext2 filesystem, 12

ext3 filesystem, 12

extend command, emacs editor, 178

Extended Regular Expression (ERE) engine, 449

F
factorial functions, recursion, use of, 378–379

false command

ksh93 shell, 599

zsh shell, 626

fc command

actions of, 750

dash shell, 545

zsh shell, 626

FCEDIT, functions of, 132, 755

Fedora, 21

shell prompt, 61

startup file location, 357

fg command

actions of, 347, 750

ash shell, 537

dash shell, 545

ksh93 shell, 599

tcsh shell, 574

zsh shell, 627

fgrep command, actions of, 116

field separators

changing, 261–262

786

www.IrPDF.com

www.IrPDF.com

Index F

characters for, 261

gawk program, 425

FIELDWIDTHS, gawk variable, 502–504

FIGNORE, functions of, 132, 755

file(s)

categories of, 84

checking for, 243–244

copying files, 76

creating, 75–76

data, reading from, sed editor, 443–445

dates, checking, 248–249

empty, checking for, 244–245

executing, checking permission for, 246

file types, viewing, 84–85

filename, dialog box for, 403–404

hidden files, 69

inodes of, 72, 74

object, checking, 242–243

owner of file, checking for, 247–248

permission to write to, checking, 245–246

readability, testing, 244

reading data from, 309–310

statistics, viewing, 84

temporary, 328–332

viewing, entire file, 85–88

viewing, parts of file, 89–90

writing to, sed editor, 442–443

file command, actions of, 84–85, 752

file descriptors, 314–316

closing, 324–325

for error messages, 316–318

for input, creating, 323

open, listing of, 326–327

for output, creating, 321–322

read/write, creating, 323–324

redirected, bringing back, 322

and redirection, 314–325

STDERR, 316

STDIN, 314–315

STDOUT, 315–316

file globbing

defined, 262

for statement, 262–264

File menu, GNOME terminal, 55–56

file permissions, 160–163

changing, 163–165

characters, meaning of, 160–162

codes, listing of, 162–163

default permissions, 161–162

file/directory information stored, 166–167

octal mode permissions, 162, 164, 167

owner of file, changing, 165–166

file sharing, 166–168

directory, shared, creating, 167–168

SGID bit, use of, 166–168

file test operators, tcsh shell, 580–581

filesystem(s)

and hard drive formatting, 11

listing of, 12

structure of, 65–66

virtual directory, 65

compared to Windows, 65

See also directory(ies); file(s)

filetest command, tcsh shell, 575

filter(s)

listing files/directories output, 74–75

pattern matching wildcards, 75

text patterns, sed editor, 433–434

find a file mode, emacs editor, 180

finger command, actions of, 752

float command, zsh shell, 627

floating-point arithmetic

bash calculator (bc), 219–223

formatted printing, gawk program, 522

fluxbox desktop, 19–20

FNR, gawk variable, 505–507

folding marker

defined, 183

KWrite editor, 183, 186

fonts

GNOME editor, 195

Konsole terminal, 50

KWrite editor, 186

xterm VT fonts menu, 43–44

for statement, 255–266

array variables, iteration through, 511

787

www.IrPDF.com

www.IrPDF.com

F Index

for statement, (continued)

in C language, 264–266

complex values, reading in list, 257–259

directory files, counting, 466–467

in /etc/profile startup file, 137–138

file globbing, 262–264

format of, 255

functions of, 255–256

gawk program, 770

gawk program for, 518–519

internal field separator, 261–262

list, reading from variable, 259

nested loops for, 271–272

output redirection, 281–282

shells, comparisons, 774

values, reading from command, 260

values, reading in list, 256–257

values, specifying, 255–256

wildcards, reading directory with,

262–264

zsh shell, 633

foreach statement, tcsh shell, 582

foreground mode

color, adding, 392–393

stopped jobs, restarting, 347

format specifiers

dash shell, 546–547

formatted printing, 519–520

formatted printing

floating-point values, 522

format specifiers, 519–520

format string, 519

gawk program, 519–522

modifiers, 520–521

formatting tags

database, 670–671

HTML, removing, sed editor, 497–499

forward slash (/)

in filesystem, 65

in regular expressions, 452

FS, gawk variable, 502, 504

fselect widget, 403–404

FUNCNAME, functions of, 132, 755

function(s), 363–384

arrays, passing to, 375–376

arrays, returning from, 376–377

on command line, 381–382

creating, 364

defined, 363–364

defining directly, 382

exiting, 367–368

factorial, 378–379

formats of, 364

global variables in, 372–373

library. See function library

local variables in, 374

naming, 366

output, capturing, 369

parameters, passing to, 370–372

recursion, 377–379

self-containment, 377

stub functions, 387–388

use in script, example of, 364–366

zsh shell, 615, 634–636

function command

actions of, 553

ash shell, 553–554

dash shell, 553–554

function keys, terminal emulation support, 31

function keyword, gawk program, 527

function library

creating, 379–381

functions, referencing from, 382

gawk program, 528–529

functions command, zsh shell, 627

fvwm desktop, 19

G
g command, sed editor, 480–481

G command, sed editor, 480–482

gawk command, actions of, 726, 729, 736–738

gawk program, 423–429, 764–770

associative array variables, 510–512

built-in variables, 502–508, 766–768

command format, 423, 764

788

www.IrPDF.com

www.IrPDF.com

Index G

command options, 424, 764

curly braces ({ }), use of, 424

data field variables, 425–426, 767

do-while statement, 518, 770

ERE pattern symbols, 461–465

field separators, 425

formatted printing, 519–522

function library, 528–529

functions, defining/using, 527–528

if-then-else statement, 514–516, 769

intervals, non-recognition of, 463

matching operator, 513

mathematical expressions, pattern matching, 514,

769

mathematical operations, 522–524

multiple commands, specifying, 426, 765

program script, reading from command line,

424–425, 765

programs, reading from file, 426–427, 765

record separators, 502–505, 767

regular expression engine, 461

regular expressions, pattern matching, 512–513,

769

scripts, running, 427–430, 766

for statement, 518–519, 770

string functions, 524–526

terminating, 425

time functions, 526–527

user-defined variables, 508–509

variable, assigning values to, 767–768

while statement, 516–518, 769–770

See also sed editor

gcalc-tool, 19

gedit text editor. See GNOME editor

Gentoo, 21

geopts command, actions of, 302–304

getconf command, ksh93 shell, 599

getln command, zsh shell, 627

getopt command

actions of, 299–301

ash shell, 537

getopts command

actions of, 750

dash shell, 545

ksh93 shell, 599

zsh shell, 627

glob command, tcsh shell, 575

global environment variables, 124–125

and child processes, 124–125

in functions, 372–373

removing, 129–130

setting, 129

value, displaying, 125

viewing, 124–125

GLOBIGNORE, functions of, 132, 755

GNOME desktop, 17–18

applications, 19

Evolution mail program, 707–708

X window widgets, GNOME window widgets

GNOME editor, 191–197

bracket-matching, 194

colors, 195

copy and paste, 193

Editor tab options, 194

fonts, 195

line numbering, 194

main window, 192

menubar items, 192–193

Plugins tab, 196–197

preferences, setting, 193–194

search and replace, 193

starting, 191–192

syntax-highlighting, 195

View tab options, 194

GNOME terminal, 19, 52–57

command line parameters, 52–53

Edit menu, 56

File menu, 55–56

Help menu, 57

reset, 57

Tab menu, 53–54

Tabs menu, 57

Terminal menu, 57

View menu, 56–57

GNOME window widgets, 412–417

radiolist, use with, 417

789

www.IrPDF.com

www.IrPDF.com

G Index

GNOME window widgets, (continued)

in script, example of, 413–415

zenity window options, 413–415

gnome-nettool, 19

gnome-panel, 19

GNU utilities, 12–14

coreutils package, 13

Linux shells, 13–14

as open source software, 12–13

ps command, 98–99

go command, MySQL, 647

graphical window

emacs editor, 182–183

GNOME window widgets, 412–417

KDE window widgets, 409–412

graphics and terminal emulation

block mode graphics, 28

character sets, 27

color, 29–30

control codes, 27–28

display buffering, 29

keyboard emulation, 30–31

vector graphics, 28–29

greater-than, double (≫), appending data, 211

greater-than (>)

HTML tag, 498

output redirection, 211

grep command, actions of, 114–115, 729, 752

group(s), 157–160

/etc/group file, 157–158

file sharing, 166–168

group ID, 157–158

group password, 158

modifying group information, 159–160

new, creating, 158–159

SGID (set group id), 166–168

Group Roles, 658–659

groupadd command, actions of, 158–159, 752

grouping

regular expressions, 465

sed editor commands, 434

groupmod command, actions of, 159–160,

752

GROUPS, functions of, 132, 755

gzip command, actions of, 117, 118, 642, 752

H
h command, sed editor, 480–482

H command, sed editor, 480

hard drive

formatting, and file systems, 11

root drive, 65

hard links, 79–80

hardware management, 9–11

device files, 10

distributions and device names, 11

driver codes, 9–10

nodes, 10–11

hash command

actions of, 750

ash shell, 537–539

dash shell, 545

zsh shell, 627

hash table, ash shell, 538–539

hashstat command, tcsh shell, 575

head command, actions of, 89–90, 752

help command

actions of, 750

MySQL, 647

Help menu, GNOME terminal, 57

hidden files, displaying, 69

highlighting, syntax-highlighting, GNOME editor,

195

hist command, ksh93 shell, 599

HISTCHARS, functions of, 132, 755

HISTCMD, functions of, 132, 755

HISTCONTROL, functions of, 132, 755

HISTFILE, functions of, 132, 755

HISTFILESIZE, functions of, 132, 755

HISTIGNORE, functions of, 132, 755

history, Konsole terminal, 50

history command

actions of, 751

tcsh shell, 575

zsh shell, 627

790

www.IrPDF.com

www.IrPDF.com

Index I

HISTSIZE

dash shell, 541

functions of, 755

hold space, sed editor, 479–481

HOME, dash shell, 541

home directory, 67, 68

default, creating, 151–152

$HOME startup file

environment variables, setting, 139

login shell, 138–139

HOSTFILE, functions of, 756

hostname, e-mail addresses, 469–470

HOSTNAME, functions of, 132, 756

HOSTTYPE, functions of, 132, 756

hpfs filesystem, 12

HTTP headers, defined, 675

hup command, tcsh shell, 575

I
if statement, tcsh shell, 579–580

if-then statement, 229–253

alternative forms of, 231, 232

ANSI escape codes, 249–250

AND Boolean operator, 249–250

elif statement, 252–253

elif statements, 232–233

example of use, 230–231

file comparisons, 241–249

format of, 229–230

if-then-else statement, 232

and job scheduling, 354

math formulas in expressions,

250–251

multiple commands, use with, 231

numeric comparisons, 234–235

OR Boolean operator, 249–250

pattern matching, 251–252

shells, comparisons, 773

string comparisons, 236–241, 251–252

tcsh shell, 579

test command with, 233–249, 291–292

value of variable, evaluating, 252–253

if-then-else statement

gawk program, 514–516, 769

ksh93 shell, 605–606

zsh shell, 633

IFS

dash shell, 541

field separators, changing, 261–262

file data, looping on, 273–274

IGNORECASE, gawk variable, 505

IGNOREEOF, functions of, 132, 756

inchars, one-to-one mapping, sed editor, 439–440

incremental search, 179

infocmp command, terminfo database capability

codes, 32–35

init process, 7–9

run levels, 8

inline input redirection, 212

bash calculator (bc), 222

inode(s), listing of, 72

input, file descriptors for, 314–315

input redirection, 211–213

with file descriptors, 320–321

file descriptors, creating, 323

file descriptors for, 315

inline input redirection, 212

input in scripts, 320–321

less-than (<), 212

inputbox widget, 401

INPUTRC, functions of, 133, 756

insert command, sed editor, 436–438, 762

insert mode, vim editor, 173, 174

insert text

emacs editor, 178

sed editor, 436–438, 762

integer command, zsh shell, 627

interactive scripts

color, adding, 391–397

dialog boxes, 397–409

GNOME window widgets, 412–417

KDE window widgets, 409–412

text menus, 385–391

interactive shell, 139–141

environment variables, setting, 141

791

www.IrPDF.com

www.IrPDF.com

I Index

internal field separator, for statement, 261–262

Internet. See Web pages

ipcs command, 7

ISO character sets, terminal emulation support, 27

iso9660 filesystem, 12

italic font, control codes for, 392–393

iteration

through command line parameters, 292–293

See also loops/looping

J
jfs filesystem, 12

job(s)

completion, e-mail message, 351–352

defined, 337

job number, 337

multiple, in background mode, 342–343

pending jobs, listing, 352

pending jobs, removing, 352

plus/minus signs, meaning of, 345–346

scheduling. See scheduling scripts

stopped jobs, restarting, 347

stopped jobs, viewing, 337

job control, 344–347

defined, 344

stopped jobs, restarting, 347

viewing jobs, 345–347

job queue, 351

jobid command, ash shell, 537

jobs command

actions of, 345–347, 751

ash shell, 537

ksh93 shell, 599

parameters of, 346

tcsh shell, 575

zsh shell, 627

K
K3b, 17

Kaffeine, 17

Kate editor, 189–191

configuration settings, 190–191

editing window, 189

plugins, 191

session, selecting, 189

session dialog box, 188

startup, 189

terminal window, 190

windows in, 190

KDE desktop, 16–17

applications, 17

KMail program, 707–708

X window widgets. See KDE window widgets

KDE window widgets, 409–412

kdialog window options, 409–411

in script, example of, 411–412

selecting/deselecting, 410–411

kdialog command

actions of, 409–412

in scripts, 411–412

window options, 409–411

kernel. See Linux kernel

key bindings, tcsh shell, 577

keyboard

Konsole terminal, 50

secure keyboard, 39

terminal emulation support, 30–31

xterm terminal, 39–41

keyboard emulation, 30–31

keyboard shortcuts

GNOME terminal, 56

Konsole terminal, 51

kill command

actions of, 103, 338, 751

ksh93 shell, 599

tcsh shell, 575

zsh shell, 627

killall command, actions of, 104, 752

killing text, emacs editor, 178–179

KMail program, 17, 707–708

Koffice, 17

Konqueror, 17

Konsole terminal, 45–52

Bookmarks, 50

792

www.IrPDF.com

www.IrPDF.com

Index L

command line parameters, 45–46

Configure Konsole settings, 51–52

Edit menu, 48–49

menu, 47

Session menu, 48

sessions, types of, 45–46

Settings menu, 50–51

View menu, 49–50

Kontact, 17

Kopete, 17

Koppix, 23

Korn shell, 587–588

development of, 587

features of, 14

See also ksh93 shell

ksh93 shell, 588–609

array variables, 595

associative array variables, 595–596

built-in commands, 597–602

command line parameters, 588–590

command redirection, 607

compound variables, 596–597

default files, 590

discipline functions, 608–609

environment variables, 590–593

if-then-else statement, 605–606

mathematical operations, 602–605

random number generator, 593

subscript variables, 598

until statement, 606–607

variable subscripts, 597

variable type, defining, 594–595

while statement, 606–607

KWrite editor, 183–188

colors, 186

Configure Editor, 186, 188

copy and paste, 185

edit menu items, 185–186

editing window, 184

folding marker, 183, 186

fonts, 186

KWrite tools, 187

menu bar, 184–185

search and replace, 185

startup, customizing, 184

text appearance, customizing, 186

L
l command, sed editor, 442

LANG, functions of, 133, 756

language(s), ISO character set support, 27

Latin-1 character set, terminal emulation support, 27

lc command, ash shell, 537, 539

LC ALL, functions of, 133, 756

LC COLLATE, functions of, 133, 756

LC CTYPE, functions of, 133, 756

LC MESSAGES, functions of, 133, 756

LC NUMERIC, functions of, 133, 756

less command, actions of, 88–89, 752

less-than, double (≪), inline input redirection, 212

less-than, single (<)

HTML tag, 498

input redirection, 212

let command

actions of, 751

ksh93 shell, 599, 602–603

zsh shell, 627, 631

library directory, 67

library file. See function library

limit command

tcsh shell, 575

zsh shell, 627

line addressing

numeric, 432–433

sed editor, 432–433, 760–761

text pattern filters, 433–434

line numbering

GNOME editor, 194

printing, sed editor, 441–442

sed editor script, 493–494

LINENO, functions of, 133, 756

LINES, functions of, 133, 756

link command, actions of, 752

linking files, 79–80

hard and soft links, 79–80

793

www.IrPDF.com

www.IrPDF.com

L Index

Linspire, 22

Linux

bash shell, 59–121

desktop environment, 14–20

distributions, 20–24

e-mail, 701–723

environment variables, 123–145

GNU utilities, 12–14

kernel, 4–12

security, 147–169

shells, 13–14

system administration, 725–746

system components, 3–4

terminal emulation, 25–58

Linux console, 26

session, xterm terminal emulation, 45

virtual console, 35–36

Linux distributions, 20–24

core distributions, 21–22

device names, 11

and environment variables, 124

LiveCD distributions, 23–24

specialized distributions, 22

and video card settings, 15

Linux kernel, 4–12

filesystem management, 11–12

functions of, 4–5, 348

hardware management, 9–11

init process, 7–9

memory management, 5–7

Linux shells

bash shell, 13

functions of, 13

listing of, 14

types of, 14

listing files/directories, 69–75

basic listing, 69–71

command parameters, 72–74

filtering output, 74–75

long listing format, 71–72

LiveCD distributions, 23–24

local command

actions of, 751

zsh shell, 627

local environment variables, 125–127

and child processes, 128

in functions, 374

removing, 130

setting, 127–128

viewing, 125–127

log command

tcsh shell, 575

zsh shell, 627

logging, messages, 332–333

login command, tcsh shell, 575

login name, 147

Login Roles, PostgreSQL database, 658

login shell, 136–139

/etc/profile startup file, 136–138

$HOME startup file, 138–139

logout command

actions of, 751

tcsh shell, 575

zsh shell, 627

loops/looping, 271–282

break out of inner loop, 276–277

break out of loop, 275–276

break out of outer loop, 277

for command, 255–266

loop on file data, 273

nested loops, 271–273

output, processing of, 281–282

suspend processing, 278–280

until command, 269–270

ls command

actions of, 69–75, 752

directory files, counting, 466

listing output, filtering, 74–75

parameters of, 69–74

and piping, 214–215

ls-F command, tcsh shell, 575, 577

lsof command, actions of, 326–327

lynx command, actions of, 675–676

Lynx program, 673–687

command parameters, 677–682

configuration file, 676, 683

794

www.IrPDF.com

www.IrPDF.com

Index M

data capturing, 684–687

environment variables, 683–684

HTML content, methods for viewing,

675–676

installing, 674–675

proxy servers, 683–684

M
MACHTYPE, functions of, 133, 756

MAIL, dash shell, 542

mail delivery agent (MDA), 703–705

mail programs. See e-mail

mail transfer agent (MTA), 702–703

mail user agent (MUA), 705

MAILCHECK

dash shell, 542

functions of, 133, 756

MAILPATH, dash shell, 542

Mailx, 705–706, 717–720

capabilities of, 705

command line parameters, 717

sending message, 717–720

session, example of, 706

man pages, format of, 64

Mandriva, 21

matching operator, gawk program, 513

mathematical operations, 216–223

ash shell, 550

bash calculator (bc), 219–223

brackets, use of, 218–219

dash shell, 550

expr command, 216–218

gawk program, 514, 522–524, 769

in if-then statements, 250–251

ksh93 shell, 602–605

mathematical functions, ksh93 shell, 603–604

mathematical functions, zsh shell, 632–633

modulo arithmetic, 226

recursion, 378

shells, comparisons, 775–776

tcsh shell, 578

zsh shell, 631–633

media

media directory, 67

mounting, 104–105

unmounting, 107–108

memory management, 5–7

memory map, 5

memory usage, monitoring, 732–739

pages, 6

shared memory pages, 7

swap space, 5

swapping out, 6

virtual, viewing of, 6–7

menus

menu widget, dialog boxes, 402–403

text menus, 385–391

messages

echo statements, adding, 204–205

logging, 332–333

Meta key, emacs editor, 176

meta-commands, PostgreSQL database,

656–657

Microsoft Windows

filesystem structure, 64–65

KDE desktop, 16–17

Midnight Commander, session, xterm terminal

emulation, 45

minix filesystem, 12

minus sign (−), next default job, 345–346

misspellings, finding, 457, 460

mkdir command, actions of, 82, 743, 753

mktemp command, actions of, 329–332

modulo arithmetic, 226

monitor, clearing display, 386

more command

actions of, 87–88, 753

options, listing of, 87

and piping, 214–215

mount command

actions of, 104–107, 753

parameters of, 105–107

mounting

media, 104–105

mount directory, 67

795

www.IrPDF.com

www.IrPDF.com

M Index

mounting (continued)

mount points, functions of, 65

umounting, 753

moving, renaming files, 80–81

msgbox widget, 399

Mutt program, 706–707, 720–723

capabilities of, 707

command line, 721

command line parameters, 722

installing, 720–721

use in scripts, 721–723

mv command, actions of, 80–81, 753

MySQL database, 639–651

command line parameters, mysql command, 645

commands, listing of, 647

commands, sending to server, 666–669

connecting to, 664–666

data types, 660

database, creating, 649–650

database files, initializing, 642–643

finding on system, 664–665

installing, 640–642

server, connecting to, 644, 646, 665–666

server, extracting information about, 648–649

server, starting, 643–644

tables, 659–664

user accounts, creating, 650–651

user accounts, securing, 644

XML support, 671

mysqladmin command, actions of, 643

N
n command, sed editor, 474–475, 481–482

N command, sed editor, 475–477, 479, 493–495,

497

nautilus cd-burner, 19

ncp filesystem, 12

ncurses graphics library, 706–707

nested loops, 271–273

for command, 271–272

until command, 272–273

while command, 272–273

networking

network device files, 10

TCP module/zsh shell, 694–699

newgrp, ksh93 shell, 599

next command, sed editor, 474

NF, gawk variable, 505–507

nfs filesystem, 12

nice command

actions of, 348

tcsh shell, 575

nohup command

actions of, 343–344

tcsh shell, 575

non-incremental search, 179

non-interactive shell, environment variables, setting,

141

nopager command, MySQL, 647

normal mode, vim editor, 173, 174

note command, MySQL, 647

notify command, tcsh shell, 575

nowarning command, MySQL, 647

NR, gawk variable, 505–507

ntfs filesystem, 12

null file

defined, 328

location of, 328

numbers, numeric comparisons, 234–235

O
octal mode permissions, 162, 164, 167

OFMT, gawk variable, 505

OFS, gawk variable, 502–503

OLDPWD

dash shell, 542

functions of, 133, 756

onintr command, tcsh shell, 575

online manual, 63

See also man pages

open source software (OSS), and GNU utilities,

12–13

openSuSe, 21

startup file location, 357

796

www.IrPDF.com

www.IrPDF.com

Index P

OPTERR, functions of, 133, 756

OPTIND, 303–304

optional directory, 67

options. See command line options

optstring, 299, 302

OR Boolean operator, if-then statement,

249–250

ORS, gawk variable, 502

OSTYPE, functions of, 133, 756

outchars, one-to-one mapping, sed editor,

439–440

output

capturing, 40

file descriptors for, 315–316

of functions, capturing, 369

logging messages, 332–333

of loop, redirecting, 281–282

piping, 213–216

redirecting. See output redirection

suppressing, 328

output redirection

of errors and normal output, 317–318

of errors messages, 316–317

file descriptors, creating, 321–322

file descriptors for, 315–316

greater-than (>), 211

permanent redirections, 319–320

sed editor, 490–491

for statement, 281–282

temporary redirections, 318–319

owner of file

changing permissions, 165–166

checking for, 247–248

P
p command, sed editor, 440–441, 481–482

P command, sed editor, 479, 481

pager command, MySQL, 647

pages, memory locations, 6

param command, zsh shell, 633

parameters, command line. See command line

parameters

parentheses, double ((()))

math formulas, if-then statements, 250–251

math operations, ash/dash shells, 250–251

parentheses, single ()

grouping regular expressions, 465

substring, defining in sed editor, 488

passwd command, actions of, 154, 155, 753

password(s), 149

aging, management of, 150, 156–157

changing, 155

/etc/passwd file, 149

/etc/shadow file, 149–150

group password, 158

silent reading, 308–309

paste. See copy and paste

PATH

actions of, 130

dash shell, 542

setting, 134–135

pattern command, sed editor, 433–434

pattern matching

gawk program, 512–513

if-then statement, 251–252

question mark (?) and regular expressions,

461–462

sed editor, matching pattern in substitution

command, 488–489

strings, 251–252

wildcards for, 75, 487–488

pattern space, sed editor, 475, 479

pause, process, 337–338

PCLinuxOS, 22

pending jobs, listing, 352

phone number, validating, regular expressions,

467–469

physical memory

in memory system, 5

viewing, 7

pipe symbol (|)

character classes, 465

grouping regular expressions, 465

regular expressions, multiple patterns, 464–465,

468

797

www.IrPDF.com

www.IrPDF.com

P Index

PIPESTATUS, functions of, 133, 756

piping, 213–216

command sequence, 214

functions of, 213–214

output of loop, 281–282

with redirection, 214–215

symbol for, 213

plugins

GNOME editor, 196–197

Kate editor, 191

plus sign (+)

character classes, 462–463

default job, 345–346

regular expressions and pattern matching,

462–463

popd command

actions of, 751

tcsh shell, 575

zsh shell, 627

positional parameters, 285–287

dash shell, 543–544

POSIX Basic Regular Expression (BRE) engine, 449

POSIX Extended Regular Expression (ERE) engine,

449, 461

POSIXLY CORRECT, functions of, 133, 756

Postfix, 711–716

configuration files, 715–716

core programs of, 713–714

message queues, 714

parts of system, 712

PostgreSQL database, 651–659, 656

command line parameters, psql command,

654–655

commands, sending to server, 666–669

data types, 660

database object, creating, 657–658

finding on system, 664–665

installing, 652–654

Login Roles, 658

meta-commands, 656–657

posgres user account, 644

schema, 658

server, connecting to, 654–656, 665–666

tables, 659–664

user accounts, creating, 658–659

PPID

dash shell, 542

functions of, 133, 756

print command

gawk program, 503, 519

ksh93 shell, 599, 600–601

MySQL, 647

sed editor, 424, 427–428, 763

zsh shell, 627

printenv command, tcsh shell, 575

printf command

actions of, 731, 751

dash shell, 545, 546–547

gawk program, 519–522

ksh93 shell, 598, 599, 601–602

zsh shell, 627, 631–632

printing

formatted, gawk program, 519–522

sed editor, last lines, 494–495

sed editor, multilines, 440–442

sed editor, single-line, 440–442, 763

proc filesystem, 12

process(es), 91–104

background, running in, 341

BSD-style parameters, 96–98

defined, 91

init process, 7–9

interrupting with signals, 336–337

monitoring in real-time, 98–101

pausing with signals, 337–338

process ID, 9

run levels, 357

running without console, 343–344

scheduling priority, 348–349

stopping, 101–104

Unix-style parameters, 92–95

viewing, 8–9

program name, reading with $0 parameter,

288–289

prompt

characters, 60–62

798

www.IrPDF.com

www.IrPDF.com

Index R

multiple jobs, starting from, 342–343

secondary, 212–213

prompt command, MySQL, 647

PROMPT COMMAND, functions of, 756 133

PROMPT CORRECT, functions of, 133

proxy servers, Lynx program, 683–684

ps command

actions of, 8, 92–99, 643, 753

BSD-style parameters, 96–98

GNU long parameters, 98–99

Unix-style parameters, 92–95

PS1

dash shell, 542

functions of, 757

PS2

dash shell, 542

functions of, 757

PS3, functions of, 133, 757

PS4

dash shell, 542

functions of, 133, 757

public schema, PostgreSQL database, 658

Puppy Linux, 22, 23, 24

pushd command

actions of, 751

tcsh shell, 575

zsh shell, 627

pushln command, zsh shell, 627

PWD

dash shell, 542

functions of, 757

pwd command

actions of, 751, 753

ash shell, 537

dash shell, 545

ksh93 shell, 599

zsh shell, 627

PWD command, functions of, 133

Python, session, xterm terminal emulation, 45

Q
question mark (?)

character classes, 462

regular expressions and pattern matching,

461–462, 487

wildcard character, 75

quit command, MySQL, 647

quotation mark, single (’), beginning/end of string,

127–128, 287

quotation marks, double ("), to distinguish values

in list, 258–259

R
RANDOM, functions of, 133, 757

random number generator, ksh93 shell, 593

ranges, regular expressions, 458–459

read command, 305–310

actions of, 306–310, 387, 751

ash shell, 537

basic function, 306–307

dash shell, 545

ksh93 shell, 599

reading from file, 309–310

sed editor, 443–445, 763–764

silent reading, 308–309

timing out, 307–308

zsh shell, 627

reading from file, sed editor, 763–764

readonly command

actions of, 751

ash shell, 537

dash shell, 545

ksh93 shell, 600

zsh shell, 627

read/write file descriptors, creating, 323–324

record separators, gawk program, 502–505, 767

records, database, 659

recursion, functions, 377–379

Red Hat, 21

redirection

commands, ksh93 shell, 607

of error messages, 316–317

of errors and normal output, 317–318

file descriptors, default descriptors, 314–325

799

www.IrPDF.com

www.IrPDF.com

R Index

redirection (continued)
input, 211–213, 320–321

input file descriptors, creating, 323

output file descriptors, creating, 321–322

output of loop, 281–282

output redirection, 211

permanent redirections, 319–320

versus piping, 213–216

piping with, 214–215

redirected file descriptors, bringing back, 322

suppressing output, 328

temporary redirections, 318–319

regular expressions, 447–471

asterisk (*) and pattern matching, 448,

460–461

Basic Regular Expression (BRE) engine, 449

character classes, 455–461

combining anchors, 454

curly braces ({ }) for intervals, 463–464

directory files, counting, 466–467

dot character, 454–455

e-mail address, parsing, 469–471

Extended Regular Expression (ERE) engine, 449,

461

functions of, 447–448

gawk program pattern matching, 512–513,

769

grouping, 465

look for end anchor, 453

pattern matching order, 450

phone number, validating, 467–469

pipe symbol (|) for multiple patterns, 464–465,

468

plain text, defining, 449–451

plus sign (+) and pattern matching, 462–463

question mark (?) and pattern matching,

461–462

ranges, 458–459

sed editor, 434

spaces in, 451

special characters, 451–452

start at beginning anchor, 452–453, 467

wildcards in, 447–448

rehash command

MySQL, 647

tcsh shell, 575

zsh shell, 627

ReiserFS filesystem, 12

remove

deleting files, 81–82

pending jobs, 352

users, 153–154

renaming files, 80–81

renice command, actions of, 349

repeat command

tcsh shell, 575

zsh shell, 633

repeat key, terminal emulation support, 30

REPLY, functions of, 133, 307, 757

reset

GNOME terminal, 57

xterm terminal, 42

return command, actions of, 368, 751

return key, terminal emulation support, 30

RLENGTH, gawk variable, 505

rm command, actions of, 81–82, 753

rmdir command, actions of, 82–83, 753

rolling window

functions of, 494

last lines, printing, 494–495

root account, MySQL database, 644

root drive, 65

root home directory, 67

rpm command, actions of, 214–215

RS, gawk variable, 502, 504

RSTART, gawk variable, 505

run levels

init process, 8

Linux, 357

S
scale variable, bash calculator (bc), 220

sched command, tcsh shell, 575

scheduling priority, 348–349

defined, 348

800

www.IrPDF.com

www.IrPDF.com

Index S

priority level, changing, 349

priority level, specifying, 348

safety feature, 348

scheduling scripts, 349–355

anacron program, 354–355

commands for, 349

job output, e-mail message, 351–352

job queue, 351

at low system load level, 352–353

missed jobs, running, 355

pending jobs, listing, 352

regular jobs, cron tables for, 353–355

removing jobs, 352

time/date, specifying, 350–351

schema, PostgreSQL database, 658

screen scraping

defined, 684

Lynx data, capturing, 684–687

script(s)

file, creating, 202–204

input redirection in, 320–321

output redirection in, 318–320

running for every user, 358

running in background, 341–343

running without console, 343–344

scheduling running of, 349–355

script building. See coding

starting at boot, 355–357

startup scripts, 356–357

SCROLL LOCK key, terminal emulation support, 30

scroll region, 29

GNOME terminal, 56

search and replace

emacs editor, 179–180

GNOME editor, 193

grep commands, 114–116

incremental/non-incremental search, 179

KWrite editor, 185

vim editor, 175–176

search for data, 114–115

SECONDS, functions of, 134, 757

security, 147–169

file permissions, 160–163

file sharing, 166–168

groups, 157–160

octal mode permissions, 162, 164

permissions, changing, 163–166

sticky bits, 162, 166

user accounts, 147–156

sed command

actions of, 420–423, 729, 759–760, 762

options, 420

sed editor, 420–423, 430–445, 759–764

ampersand (&), matching pattern in substitution

command, 488–489

appending text, 436–438

branching, 484–486

command line, editor command in, 421

command options, 420, 760

commands, reading from file, 422–423

data from file, reading, 443–445

delete consecutive blank lines, 495–496

delete leading blank lines, 496

delete multilines, 478

delete single-line, 434–436, 761–762

delete trailing blank lines, 497

double-spacing, script for, 491–493

flow of commands, modifying, 484–487

functions of, 420

grouping, 434

hold space, 479–481

HTML tags, removing, 497–499

if-then like substitutions, 486–487

inchars/outchars, one-to-one mapping, 439–440

inserting text, 436–438, 762

last lines, printing, 494–495

line addressing, 432–433, 760–761

line numbering, 493–494

lines, changing content, 438–439, 762

lines, writing to file, 442–443, 763

lines of text, combining, 475–477

listing lines, 442

multiple commands, specifying, 420, 422

negating commands, 481–484

output redirection, 490–491

pattern space, 475, 479

801

www.IrPDF.com

www.IrPDF.com

S Index

sed editor, (continued)

print, multilines, 479

printing, single-line, 440–441, 763

printing line numbers, 441–442

programming language, capabilities using, 423

reading from file, 763–764

regular expression engine, 461

regular expressions, 434

replacement characters, 431–432

single-line next command, 474–475

speed of, 420

starting, 759

as stream editor, 420

substitute text in input stream, 760

substitution flags, 430–431

test lines, reversing, 490

text pattern filters, 433–434

words, replacing, 488–489

wrappers, 489–490

See also gawk program

Select Graphic Rendition (SGR) escape codes, color,

adding to script, 392–393

select statements

actions of, 390–391

zsh shell, 633

self-containment, functions, 377

sendmail, 709–711

configuration file lines, 711

configuration files, 709–710

helper functions, 710

parts of program, 709

rules, setting, 709–711

server(s)

client/server connection, 695–696

defined, 695

See also MySQL database; PostgreSQL database;

TCP module

session(s)

exiting, 343

Kate editor, 188–189

Konsole terminal menu, 48

scripts, running without console, 343–344

xterm terminal emulation, 45–48

set command

actions of, 125–127, 751

ash shell, 537

dash shell, 542, 545

ksh93 shell, 600

tcsh shell, 572–573, 575, 578

zsh shell, 612, 628

setenv command, tcsh shell, 573–574, 575

setopt command, zsh shell, 628

settc command, tcsh shell, 575

Settings menu, Konsole terminal, 50–51

setty command, tcsh shell, 575

setvar command, ash shell, 537

SGID (set group id), 166–168

shadow file, passwords in, 149–150

SHELLOPTS, functions of, 134, 757

shells. See Linux shells

scripts, building. See coding

session, xterm terminal emulation, 45

terminal emulation, 25–58

shift command

actions of, 293–294, 297–298, 751

ash shell, 537

dash shell, 545

ksh93 shell, 600

tcsh shell, 576

zsh shell, 628

SHLVL, functions of, 134, 757

shopt command, actions of, 751

show command, MySQL, 650

SIGCONT, 336

SIGHUP, 336, 343–344

SIGINT, 336, 338–340

SIGKILL, 336, 338

signals, 335–341

functions of, 335

to interrupt process, 336–337

listing of, 336

to pause process, 337–338

trapping, 338–341

SIGQUIT, 336

SIGSTOP, 336

SIGTERM, 336, 338–339

802

www.IrPDF.com

www.IrPDF.com

Index S

SIGTSTP, 336–337

Simple Mail Transfer Protocol (SMTP), 703

SimplyMEPIS, 22, 23

shell prompt, 60

single user mode, 8

Slackware, 21

Slax, 23

sleep command, ksh93 shell, 600

smb filesystem, 12

soft links, 79–80

sort command

actions of, 110–114, 214, 729, 753

parameters of, 111–114

sorting data, 110–114

sound juicer, 19

source command

actions of, 380

dot operator, 380, 383

MySQL, 647

tcsh shell, 576

zsh shell, 628

source object, copying files, 76–77

spaces, in regular expressions, 451

special character classes, regular expressions,

459–460

special characters, regular expressions, 451–452

specialized Linux distributions, 22

spelling, misspellings, finding, 457, 460

startup files

bash shell, 135

location of, 357–358

startup scripts, 356–357

stat command, actions of, 84, 753

statistics, files, viewing, 84

status command, MySQL, 647

STDERR file descriptor, 316

redirect output to, 318–319

STDIN file descriptor, 314–315

redirect input to, 320–321

restoring, 323

STDOUT file descriptor, 315–316

redirect file descriptor to, 322

redirect output to, 319–320

sticky bits, 162

octal values, 167

stop command, tcsh shell, 576

stopping

stopped jobs, restarting, 347

stopped jobs, viewing, 337

versus terminate, 337

trapping during stopped job, 338

stream editor, sed editor, 420

string(s)

beginning/end of string, delineating, 127–128,

287

equal value, checking, 236–237

gawk program functions, 524–526

order, checking, 238–239

pattern matching, 251–252

size, comparing, 240–241

values, and environment variables, 127

structured commands

functions of, 229

if-then statement, 229–253

shells, comparisons, 773–774

for statement, 255–266

until command, 269–270

while command, 266–269

stub functions, 387–388

subscript variables, ksh93 shell, 598

substitute command, sed editor, 430–431,

488–489

substitution flags, sed editor, 430–431

SUID (set user id), 166–167

suspend command

actions of, 751

tcsh shell, 576

zsh shell, 628

swap space, 5

swapping out, 6

switch command, tcsh shell, 583–584

syntax-highlighting, GNOME editor, 195

system accounts, 149

system administration, 725–746

archiving data files, 740–744

CPU/memory usage, monitoring, 732–739

803

www.IrPDF.com

www.IrPDF.com

S Index

system administration, (continued)

disk hogs, catching, 728–732

disk space, monitoring, 725–728

system binary directory, 67

system command, MySQL, 647

sysv filesystem, 12

T
tables. See database tables

tabs

GNOME terminal, 53–54, 57

Konsole terminal, 50

tail command

actions of, 89, 753

parameters of, 89

tar command

actions of, 120–121, 642, 740, 753

functions, 120

options of, 121

PostgreSQL, 652

TCP module, 694–699

client program code, 698–699

command line options, 694–695

installing, 694

running client/server programs, 699

server program code, 695–698

tcsh shell, 557–584

array variables, 578

built-in commands, 574–577

command line parameters, 558–560

development of, 557–558

environment variables, 570–571

environment variables, setting value for,

573–574

features of, 14

file test operators, 580–581

foreach statement, 582

if statements, 579–580

key bindings, 577

login files, 560–561

logout files, 562–563

mathematical operations, 578

multiple statements, executing, 583–584

shell startup files, 561–562

shell variables, 563–569

variables, setting value for, 572–573

variables, testing if set, 580

while statement, 582–583

tee command

actions of, 332–333

MySQL, 647

Tektronix terminals, 28

xterm terminal commands, 43

telltc command, tcsh shell, 576

temporary directory, 67

temporary files, 328–332

command for, 329

local, creating, 329–330

removing at bootup, 328

temporary directory for, 331–332

in /tmp, creating, 330–331

temporary redirections, 318–319

TERM

dash shell, 542

functions of, 32

terminal emulation, 25–58

functions of, 26

GNOME terminal, 52–57

in graphical window. See xterm terminal

graphics capabilities, 27–30

keyboard emulation, 30–31

Konsole terminal, 45–52

terminfo database, 31–35

virtual consoles, 35–36

xterm terminal, 36–45

Terminal menu, GNOME terminal, 57

terminal sessions. See session(s)

terminal window, Kate editor, 190

terminate

and exit, 338

process, 101–104

versus stopping, 337

terminfo database, 31–35

binary conversion to text, 31–32

capability codes, 33–35

804

www.IrPDF.com

www.IrPDF.com

Index U

directory location, 31

functions of, 31

TERM environment variable, 32

test command

actions of, 751

ash shell, 550–552, 551

dash shell, 545, 550–552, 551

file comparisons, 241–249

if-then statement with, 233–249,

291–292

sed editor, 486–487

string comparisons, 236–241

while command with, 267–268

zsh shell, 628

text files

contents of, 84

editing. See editor(s)

reverse order, display in, 484

text menus, 385–391

auto generate, utility for, 390–391

layout, creating, 386–387

menu elements, displaying, 386–387

menu functions, 387–388

menu logic, 388

script, example of, 389–391

text strings, echo statements, adding to scripts,

204–205

textbox widget, 402

tilde (∼), matching operator, 513

time command, tcsh shell, 576

time/date

calendar, zenity dialog window, 413–414

formats, 350

gawk program functions, 526–527

scripts, scheduling. See scheduling scripts

TIMEFORMAT, functions of, 134, 757

times command

actions of, 751

dash shell, 545

zsh shell, 628

timestamps, anacron program, 355

TMOUT, functions of, 134, 757

tomboy, 19

top command

actions of, 98–102

parameters of, 102

totem, 19

touch command, actions of, 75–76, 753

transform command, sed editor, 439–440, 763

trap command

actions of, 338–341, 751

ash shell, 537

dash shell, 545

ksh93 shell, 600

zsh shell, 628

trapping

removing trap, 340–341

script exit, 339–340

signals, 338–339

true command

ksh93 shell, 600

zsh shell, 628

TrueType fonts, 43–44

ttyctl command, zsh shell, 628

type command

actions of, 751

dash shell, 545

zsh shell, 628

typeset command

ksh93 shell, 594–595, 600

zsh shell, 623–625, 628, 632

U
Ubuntu, 22, 23

bash and dash shells, 534

ufs filesystem, 12

UID, functions of, 134, 757

ulimit command

actions of, 751

dash shell, 545, 547–549

ksh93 shell, 600

zsh shell, 628

umask command

actions of, 161–163, 751

ash shell, 537

805

www.IrPDF.com

www.IrPDF.com

U Index

umask command (continued)

dash shell, 545

ksh93 shell, 600

tcsh shell, 576

zsh shell, 617, 628

umount command, actions of, 753

umsdos filesystem, 12

unalias command

actions of, 751

dash shell, 545

ksh93 shell, 600

tcsh shell, 576

zsh shell, 628

uncomplete command, tcsh shell, 576

unfunction command, zsh shell, 628

unhash command

tcsh shell, 576

zsh shell, 628

Unicode

terminal emulation support, 27

xterm VT fonts, 45

Uniform Resource Identifier (URI), functions of, 193

Unix-style parameters, ps command, 92–95

unlimit command, zsh shell, 628

unmount command, actions of, 107–108

unmounting media, 107–108

unset command

actions of, 129–130, 142–143, 751

ash shell, 537

dash shell, 545

ksh93 shell, 600

tcsh shell, 576

zsh shell, 628

unsetenv, tcsh shell, 576

unsetopt command, zsh shell, 628

until statement, 269–270

example of use, 270

format of, 269

functions of, 269

ksh93 shell, 606–607

nested loops, 272–273

shells, comparisons, 774

zsh shell, 633

unzip command, actions of, 118–119

uptime command, actions of, 732

use command, MySQL, 647

user accounts, 147–156

default login shell, changing, 155

/etc/passwd file, 148–149

/etc/shadow file, 150

login name, 147

modifying user information, 154–155

new users, adding, 150–153

password aging, management of, 156–157

passwords, changing, 155

removing users, 153–154

SUID (set user id), 166–167

system accounts, 149

user ID, 147, 206

user management utilities, 149, 154–156

users, storing information on, 155–156

user input, read command, 305–310

user variables

dash shell, 544

functions of, 207

gawk program, 508–509

referencing, dollar sign, 208–209

in script building, 207–209

shells, comparisons, 772

values, referencing, 208

useradd command

actions of, 151–153, 753

change default values parameters, 153

parameters of, 152

userdel command, actions of, 153–154,

753

user-installed software directory, 67

usermod command, actions of, 154, 159, 753

V
validation with regular expressions

e-mail addresses, 469–471

phone numbers, 467–469

values

for command actions, 255–266

806

www.IrPDF.com

www.IrPDF.com

Index W

command line options, processing with,

297–299

complex, reading in list, 257–259

of Linux signals, 336

options, processing with, 297–299

reading from command, 260

reading in list, 256–257

returning from functions, 368

variable(s)

array variables, 142–143

backtick, functions of, 209–210

bash calculator (bc), 220–223

built-in variables, 502–508

compound variables, 596–597

in functions, 369–374

gawk program, 502–509

list, reading from variable, 259

positional parameters, 285–287

tcsh shell variables, 563–569

value of, evaluating, 252–253

variable directory, 67

See also environment variables; global

environment variables; local environment

variables; user variables

vector graphics, terminal emulation support, 28–29

vfat filesystem, 12

video card

and distribution installation, 15

and X Windows system, 14–15

view

disk space/usage, 108–110

file contents. See file(s)

file statistics, 84

global environment variables, 124–125

local environment variables, 125–127

memory, 6–7

process, 8–9

stopped jobs, 337

View menu

GNOME terminal, 56–57

Konsole terminal, 49–50

vim editor, 171–176

buffer, saving to file, 174

command line mode, 173–174

copy and paste, 174–175

Delete/Backspace key, caution about, 174

editing commands, 175

insert mode, 173, 174

main window, 172–173

navigation commands, 173

normal mode, 173, 174

search and substitute, 175–176

starting, 172

visual mode, 175

yanking, 174–175

virtual consoles, 35–36

functions of, 35

listing of, 36

logging in, 35–36

switching between, 35–36

virtual directory

absolute filepaths, 67–68

mount points, 65

names, listing of, 67

root of, 67

structure of, 65–66

virtual memory

init process, loading of, 7

in memory system, 5

viewing, 6–7

visual mode, vim editor, 175

vmstate command

actions of, 732–733

output symbols, 733

W
w command, sed editor, 442–443

wait command

actions of, 751

ash shell, 537

dash shell, 545

ksh93 shell, 600

tcsh shell, 576

zsh shell, 628

warnings command, MySQL, 647

807

www.IrPDF.com

www.IrPDF.com

W Index

Web pages

capturing data from. See cURL program; Internet;

Lynx program

cookies, 675

HTML tags, removing, sed editor, 497–499

HTTP headers, 675

whence command

ksh93 shell, 600

zsh shell, 628

where command

tcsh shell, 576

zsh shell, 628

which command

actions of, 664

tcsh shell, 576

while statement, 266–269

format of, 267

functions of, 266

gawk program, 516–518, 770

ksh93 shell, 606–607

multiple test commands with, 268–269

nested loops, 272–273

shells, comparisons, 774

tcsh shell, 582–583

test command with, 267–269

zsh shell, 633

widgets

dialog boxes, 398–404

GNOME window widgets, 412–417

KDE window widgets, 409–412

specifying on command line, 397

wildcards

file globbing, 262–264

pattern matching characters, 75, 487–488

in regular expressions, 447–448

window(s)

dialog boxes, 397–409

emacs editor, 181

Kate editor, 190

wrappers

functions of, 489

sed editor, 489–490

writing to file, sed editor, 442–443, 763

X
x command, sed editor, 480

X event commands, 39–40

X Windows system, 14–15

emacs editor, use of, 181–183

KDE window widgets, 409–412

Xandros, 22

xfce desktop, 19

XML, MySQL support, 671

xterm command, parameters of, 38

xterm terminal, 36–45

command line parameters, 37–38

keyboard settings, 40–41

main menu, accessing, 38–39

output capturing, 40

plus/minus signs, use of, 37

reset, 42

VT commands, 42–43

VT features, 42

VT fonts menu, 43–44

X event commands, 38–39, 39–40

Y
yanking

emacs editor, 179

vim editor, 174–175

yesno widget, 400

Z
z shell. See zsh shell

zcompile command, zsh shell, 628, 636

zenity

in scripts, 413–415

window options, 413–415

zftp command, zsh shell, 630–631

zip command

actions of, 745, 753

files, directory for storage, 753

zip compression utility, 745

actions of, 117, 118–119

808

www.IrPDF.com

www.IrPDF.com

Index Z

zmodload command, zsh shell, 628, 630–631

zoom, GNOME terminal, 56–57

zsh shell

add-in modules, 625, 629–631

adding/removing/viewing modules, 630–631

built-in commands, 625–631

code, repeating sections, 633

command line parameters, 612–615

command modules, 612, 612–615, 629–631

development of, 611

environment variables, 619–623

features of, 14

floating-point arithmetic, 219

function, compiled version, creating, 636

functions, 615, 634–636

functions, loading into memory, 635

initialization features, 616–617

interactive shell files, 618

login files, 617

logout files, 618–619

mathematical operations, 631–633

shell emulation, 614

shell state, options for, 613

startup features, 614–615

structured commands, 633

TCP module, 694–699

typeset command parameters, 623–625

ztcp command, TCP module, 694

809

www.IrPDF.com

www.IrPDF.com

Get the most out of the latest software and leading-edge technologies
with a Wiley Bible—your one-stop reference.

The books you
read tosucceed.

Available wherever books are sold.

0-471-78886-4
978-0-471-78886-7

0-7645-4256-7
978-0-7645-4256-5

0-470-04030-0
978-0-470-04030-0

0-470-10089-3
978-0-470-10089-9

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc.
All other trademarks are the property of their respective owners.

hTTh obehhe skooko o
htteG

hTTh
aerre

stsetatlehtfotuotsomeh

obehhe
otdaad

egde-gniddaeldnaerarwtfftos

skooko
ccuucssu

seiggolonhcete

uoouyyo
.deec

htteG stsetatlehtfotuotsomeh
elbiByeliWWiahtiwwi

egdegniddaeldnaerarwtfftos
cnereferpots-enoruoy——ye

seiggolonhcete
.e

0-471-78
978-0-471-78

0-470-04030-0
978-0-470-04030-0

70-7645-4256-7
5978-0-7645-4256-5

0-470-10089-3
978-0-470-10089-9

koobreevereehewelbaliaaivAAv .dloseraarsk
ileyiley and the WW

All other trad
iley logo are registered trademarks of John W

ty of their respective odemarks are the proper
ey & Sons, Inc.
owners.

www.IrPDF.com

www.IrPDF.com

	About the Author
	Credits
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Who Should Read This Book
	How This Book Is Organized
	Minimum Requirements
	Where to Go from Here

	Part I: The Linux Command Line
	Chapter 1: Starting with Linux Shells
	What Is Linux?
	Linux Distributions
	Summary

	Chapter 2: Getting to the Shell
	Terminal Emulation
	The terminfo Database
	The Linux Console
	The xterm Terminal
	The Konsole Terminal
	The GNOME Terminal
	Summary

	Chapter 3: Basic bash Shell Commands
	Starting the Shell
	The Shell Prompt
	The bash Manual
	Filesystem Navigation
	File and Directory Listing
	File Handling
	Directory Handling
	Viewing File Contents
	Summary

	Chapter 4: More bash Shell Commands
	Monitoring Programs
	Monitoring Disk Space
	Working with Data Files
	Summary

	Chapter 5: Using Linux Environment Variables
	What Are Environment Variables?
	Setting Environment Variables
	Removing Environment Variables
	Default Shell Environment Variables
	Setting the PATH Environment Variable
	Locating System Environment Variables
	Variable Arrays
	Using Command Aliases
	Summary

	Chapter 6: Understanding Linux File Permissions
	Linux Security
	Using Linux Groups
	Decoding File Permissions
	Changing Security Settings
	Sharing Files
	Summary

	Chapter 7: Working with Editors
	The vim Editor
	The emacs Editor
	The KDE Family of Editors
	The GNOME Editor
	Summary

	Part II: Shell Scripting Basics
	Chapter 8: Basic Script Building
	Using Multiple Commands
	Creating a Script File
	Displaying Messages
	Using Variables
	Redirecting Input and Output
	Pipes
	Performing Math
	Exiting the Script
	Summary

	Chapter 9: Using Structured Commands
	Working with the if-then Statement
	The if-then-else Statement
	Nesting ifs
	The test Command
	Compound Condition Testing
	Advanced if-then Features
	The case Command
	Summary

	Chapter 10: More Structured Commands
	The for Command
	The C-Style for Command
	The while Command
	The until Command
	Nesting Loops
	Looping on File Data
	Controlling the Loop
	Processing the Output of a Loop
	Summary

	Chapter 11: Handling User Input
	Command Line Parameters
	Special Parameter Variables
	Being Shifty
	Working With Options
	Standardizing Options
	Getting User Input
	Summary

	Chapter 12: Presenting Data
	Understanding Input and Output
	Redirecting Output in Scripts
	Redirecting Input in Scripts
	Creating Your Own Redirection
	Listing Open File Descriptors
	Suppressing Command Output
	Using Temporary Files
	Logging Messages
	Summary

	Chapter 13: Script Control
	Handling Signals
	Running Scripts in Background Mode
	Running Scripts without a Console
	Job Control
	Being Nice
	Running Like Clockwork
	Start At the Beginning
	Summary

	Part III: Advanced Shell Scripting
	Chapter 14: Creating Functions
	Basic Script Functions
	Returning a Value
	Using Variables in Functions
	Array Variables and Functions
	Function Recursion
	Creating a Library
	Using Functions on the Command Line
	Summary

	Chapter 15: Adding Color to Scripts
	Creating Text Menus
	Adding Color
	Doing Windows
	Getting Graphic
	Summary

	Chapter 16: Introducing sed and gawk
	Text Manipulation
	The sed Editor Basics
	Summary

	Chapter 17: Regular Expressions
	What Are Regular Expressions?
	Defining BRE Patterns
	Extended Regular Expressions
	Regular Expressions in Action
	Summary

	Chapter 18: Advanced sed
	Multiline Commands
	The Hold Space
	Negating a Command
	Changing the Flow
	Pattern Replacement
	Using sed in Scripts
	Creating sed Utilities
	Summary

	Chapter 19: Advanced gawk
	Using Variables
	Working with Arrays
	Using Patterns
	Structured Commands
	Formatted Printing
	Built-in Functions
	User-Defined Functions
	Summary

	Part IV: Alternative Linux Shells
	Chapter 20: The ash Shell
	What Is the ash Shell?
	The Original ash Shell
	The dash Shell
	Scripting in dash
	Summary

	Chapter 21: The tcsh Shell
	What Is the tcsh Shell?
	The tcsh Shell Components
	Scripting in tcsh
	Summary

	Chapter 22: The Korn Shell
	The Korn Shell History
	The Parts of the ksh93 Shell
	Scripting in the ksh93 Shell
	Summary

	Chapter 23: The zsh Shell
	History of the zsh Shell
	Parts of the zsh Shell
	Scripting with zsh
	Summary

	Part V: Advanced Topics
	Chapter 24: Using a Database
	The MySQL Database
	The PostgreSQL Database
	Working with Tables
	Using the Database in Your Scripts
	Summary

	Chapter 25: Using the Web
	The Lynx Program
	The cURL Program
	Networking with zsh
	Summary

	Chapter 26: Using E-Mail
	The Basics of Linux E-Mail
	Setting Up Your Server
	Sending a Message with Mailx
	The Mutt Program
	Summary

	Chapter 27: Shell Scripts for Administrators
	Monitoring System Statistics
	Performing Backups
	Summary

	Appendix A: Quick Guide to bash Commands
	Built-In Commands
	Bash Commands
	Environment Variables

	Appendix B: Quick Guide to sed and gawk
	The sed Editor
	The gawk program

	Appendix C: Comparing Shells
	Variables
	Structured Commands
	Mathematical Operations

	Index

